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Abstract

Analytics is the technology working with the manipulation of data to pro-
duce information able to change the world we live every day. Analytics
have been largely used within the last decade to cluster people’s behaviour
to predict their preferences of items to buy, music to listen, movies to watch
and even electoral preference. The most advanced companies succeded in
controlling people’s behaviour using analytics. Despite the evidence of the
super-power of analytics, they are rarely applied to the big data collected
within supply chain systems (i.e. distribution network, storage systems and
production plants).

This PhD thesis explores the fourth research paradigm (i.e. the gener-
ation of knowledge from data) applied to supply chain system design and
operations management. An ontology defining the entities and the metrics
of supply chain systems is used to design data structures for data collec-
tion in supply chain systems. The consistency of this data is provided by
mathematical demonstrations inspired by the factory physics theory.

The availability, quantity and quality of the data within these data struc-
tures define different decision patterns. Ten decision patterns are identified,
and validated on-field, to address ten different class of design and control
problems in the field of supply chain systems research.
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How do we know what we know?

Thousands of years ago, the Greek philosopher Plato introduced the
“theory of Forms”, i.e. a philosophical viewpoint where an ideal world
called Hyperuranion contains the purest and most accurate realisation of
the knowledge. This unreachable knowledge is called the Form. The reality
surrounding us in the real world is an imitation of the Form, and it is called
the Substance. Then, according to Plato, knowledge is a deductive process,
from the steady and perfect Form to its “dirty” realisation in the Substance.

Differently, the Greek Philosopher Aristotle considers the real world as
the only source of knowledge. In his viewpoint, the empirical process of
observing the world is the only path to get knowledge. This process is,
then, inductive and implies that anything can only exist if a living being
can observe it.

Aristotle’s philosophy is the background of this work that will approach
the logistics and operations phenomena with an inductive approach. The
data-driven methodology creating knowledge by observing and classifying
data is an implementation on lifeless machines of one of the most beautiful
philosophical intuition in the story of our world.

ix
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Figure 1: “The school of Athens”, Apostolic Palace, Vatican City. In the
centre of the fresco, Plato and Aristotle.
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Introduction

How do you know if what you
believe is really true?

This chapter introduces the background of this work identifying its rel-
evance, originality and the placement within the existing literature.

The background of this work is engineering. Engineering is composed
of models based on math (approximations) that describe a physical phe-
nomenon. The electricity current passing through a wire, the lift force of
the air which supports the weight of an aircraft, the exchange of heat in an
air conditioning system are physical phenomenon described by engineering
models. On-field experiments and observations lead to the definition of the
models, i.e. the mathematical relationships between the entities involved in
the phenomenon.

1.1 Taxonomy

Logistics research is the research domain of this work, which is borderline
between engineering and economics. The world taxonomy comes from the
ancient Greek τάξις (order) and νόμος (law). A taxonomy is used to clas-
sify the disciplines of a research domain systematically. Figure 1.1 proposes
a taxonomy of the research domain regarding logistics and production sys-
tems. Table 1.1 introduces the glossary with the keywords of this taxonomy.

This work considers the relationship between decision science and data
science proposing a new role of data analytics as a prescriptive tool (together
with operations management). The System Analysis is the field of applica-

3
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Figure 1.1: Taxonomy of logistics and operations research

tion of this work in the supply chain. The following paragraphs introduce
the topology for decision 1.2 and data science 1.3.

1.2 Decision Science Topology

The word topology comes from the ancient Greek τόπος and λόγοσ, liter-
ally place and study. Differently from taxonomy, the topology studies the
“space” of a discipline. In this case, we want to explore which variables
influence the nature of the tools used in decision and data science.

To define the object of study of this work, we consider the literature [1]
classifying a decision-making process according to:

• the number of decision-makers;

• their knowledge about the information relevant for a decision.

Usually, a decision-maker (DM) makes a decision (i.e., setting the value
of decision variables) based on the knowledge of some information (i.e.,
decision parameters).

A decision process can have single or multiple DMs. We define, accord-
ingly, concentrated and distributed decision making. The information for
the decision-making process can be centralised within a single entity/actor
or decentralised and owned by several sources. Depending on the topology
of information and decision-makers, there are different tools to support the
decision process. Figure 1.2 illustrates this decision topology with classic
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decision science tools. We analyse four different cases (CC, CD, DC and
DD).

Figure 1.2: The Taxonomy of deision support methods.

1.2.1 Centralised information with centralised decision-
makers (CC)

When a single DM knows all the decision parameters, the optimisation (e.g.
integer linear programming, nonlinear programming, robust optimisation)
is the most used decision support tool. When the complexity of an instance
arises, the optimisation runtime increases exponentially. Under these con-
ditions, suboptimal heuristics or metaheuristics are good alternatives to get
proper results within a brief time. A vast number of operational decisions
belong to this group since a single person (i.e. the manager) has the re-
sponsibility for the decision and the ownership of the information. Some
examples are:

• the definition of the storage assignment in an industrial storage sys-
tem;
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• the job scheduling on a production machine;

• the loading sequence of the containers on a vessel;

• the definition of the route for a fleet of trucks.

An intermediate decision support tool between CC and DC is the “sys-
tem dynamics”, which defines connection and cause-effect relationships be-
tween the decision variables (i.e. the entities of a system) and the DMs.
The relationships are usually nonlinear, and the system dynamic evolves at
different time steps. The discrete event simulation (DES) is an implemen-
tation of system dynamics which evaluates the states of a system at discrete
time lags.

1.2.2 Centralised information with distributed decision-
makers (CD)

When the output of a single DM depends on the information owned by
other DMs, it is necessary to identify different decision scenarios guessing
the behaviour of the other actors. Usually, two tools go in this direction:

• game theory;

• problem-oriented heuristics or metaheuristics algorithms.

The game theory assesses the probability of the outcomes of a decision
process evaluating all the alternatives in a tree structure. Game theory
is mostly used to evaluate the payback of many actors cooperating or not
cooperating in a supply chain. All the possibilities of cooperation or not
cooperation are evaluated, finding the payback for each actor. Different
approaches exist to identify the strategy which provides a higher benefit to
a single actor or the entire system.

Heuristics and metaheuristics result suitable to provide sub-optimal so-
lutions since they can be tailored to a specific instance of the problem.

The definition of the route of a truck is an example of this problem: the
planner has all the information, but some decisions (e.g. route replanning)
may happen due to exogenous facts as disruptions.

1.2.3 Decentralised information with distributed decision-
makers (DD)

When the information and the ownership of a decision are decentralised, the
outcome of the decision process depends on several independent decisions
for each actor of the system. An important support tool is the agent-
based modelling where each actor (i.e. an agent) has its own set of (partial)
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information to base its decision. Multi-agent simulation is similar to discrete
event simulation. However, each actor implements its specific heuristics to
make decisions based on the current state of the system from his point of
view (i.e. based on its information set).

The participation of a company to a logistic tender for the outsourcing
of the shipping or storage service (i.e. third-party logistics) is an example of
DD; each company makes an offer based on its information. The outcome
of the process depends on all the offers from all the companies participating
in the tender.

1.2.4 Decentralised information with centralised decision-
makers (DC)

When a single DM has the ownership of the decision but not all the infor-
mation needed, the analysis of the uncertainty is a good choice to deal with
the decision process. There are statistical models and methods to evaluate
the risk behind a decision (e.g. Montecarlo simulation), and it is possible
to infer information finding integrity rules among data.

Any CC case with incomplete knowledge on the decision parameters is
a DC decision process. The incompleteness can be approached using sta-
tistical approaches as Montecarlo simulation or Markov chain to identify
confidence intervals on a target variable. It is the case of cost-benefit anal-
ysis, where some cost distributions are skewed or hard to estimate.

This book focuses on centralised decision making in the supply chain,
i.e. CC and DC cases.

1.3 Data Science Topology

The previous paragraph introduces a topology of the most used decision
support methods without paying attention to the type of data they need.
First of all, it is necessary to classify the input data depending on their
structure:

• structured data. These data usually are from a relational database
(e.g., SQL-based) designed using an entity-relationship (ER) model;

• Semi-structured data. These data come with a precise but non-relational
structure (e.g. CSV, NO-SQL, XML and JSON1 data);

• unstructured data. These data have no structure (e.g. text, pictures).

In the majority of cases, the literature on logistics and operations works
with structured data. Usually, scholars and researchers first approach the

1JavaScript Object Notation.
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methodology to solve a problem and then look for data to validate the
approach (model-driven approach). These data are rarely available, and a
considerable part of the literature on decision sciences relies on theoretical
models validated by randomly generated instances. This research approach
supports the development of robust and efficient algorithms, but it does not
address real problems. Besides, there is a risk that the problem identified
by the researchers does not exist in practice.

In this work, we use a different perspective, by introducing the data-
driven approach, that is based on the classification in [2] (see Figure 1.3).
Data-driven means “let data speak for itself”. The major effort is on un-
derstanding the meaning of data and developing a decision support method
only after translating data into information.

Figure 1.3: The relationship between data and analyticsl methods.

During the last decade, scholars pay attention to data science because of
the advent of big data. Big data is the collection, storage and manipulation
of data that are [3]:

• Huge in storage volume;
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• High in velocity (e.g., real time);

• Diverse in variety (e.g., structured/semi-structured/unstructured);

• Exhaustive in scope (i.e., getting the information of a whole popula-
tion)

• Fine-grained in resolution and uniquely indexical;

• Relational (i.e., with attributes lining different datasets);

• Flexible (i.e., can easily add new attributes);

• Scalable (i.e., can easily add new records).

Under the perspective of big data, data science opens a new horizon for
science. Traditionally, statistical techniques are used to extract knowledge
from scarce and static data with weak relations between datasets. This
analysis served to answer specific questions (generated under restrictive as-
sumptions) by a researcher with a clear research question in mind [4].
This perspective is changed by big data whose characteristics provides a
level of information to explore phenomena without a specific question in
mind. Data science introduces a new research paradigm (see Table 1.2):
Exploratory Science [5].

Table 1.2: The four research paradigms and their features.

The following chapters of this book aim at evaluating when data-driven
methods are suitable to address strategic decisions in the field of logistics
and operations.

1.3.1 Fundamentals of data science

We start, first, from the fundamental theoretical concepts of data science
[6].
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1. Extracting useful knowledge from data to solve business problems can
be treated systematically by following a process with reasonably well-
defined stages.

2. Evaluating data-science results requires careful consideration of the
context in which they will be used.

3. The relationship between the business problem and the analytics so-
lution often can be decomposed into tractable subproblems via the
framework of analysing expected value.

4. Information technology can be used to find informative data items
from within a large body of data.

5. Entities that are similar with respect to known features or attributes
are similar with respect to unknown features or attributes.

6. If you look too hard at a set of data, you will find something—but it
might not generalise beyond the data you’re observing.

7. To draw causal conclusions, one must pay very close attention to the
presence of confounding factors, possibly unseen ones.

The following paragraphs comes from the (2) and (3) proposing a frame-
work for logistic and operational data. The other points are implemented
in the following sections of this work that are dedicated to storage systems,
distribution networks and production plants.

1.4 History of Logistic Design and Operations
Management

Section 1.1 introduced the research field of this work, while sections 1.2 and
1.3 review the organisation of the decision support tools belonging to the
fields of Decision Science and Data Science. The careful readers already will
have noticed some overlaps between these two disciplines. Nevertheless, to
understand these overlaps and to point out the direction of this work, it is
necessary to introduce some history of the operations research (that, in our
taxonomy, embeds both Decision Science and Data Science).

Logistics research was born in 1910 with the term “scientific manage-
ment”, and it is possible to identify eight different periods where technolo-
gies, decision making and quantitative methods embed different roles within
the same research domain [7]:

1. Scientific Management (1910-1945)

2. Scientific Method (1945-1965)
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3. Management Information System (1965-1970)

4. Decision Support System (1970-1990)

5. Business Intelligence (1990-2005)

6. Analytics (2005-2015)

7. Artificial Intelligence (2015-today)

8. Non-Human Intelligence (future)

The scientific management of the work (1) starts together with the first
assembly line to produce the Ford Model T. For the first time there is a
scientific organisation of the work and the time and motion analysis are
used to measure and control the productivity of the line. It is the beginning
of the application of scientific tools to operations, the era of logistics research
began.

In the second period (2), after World War II, the Von Neumann’s ar-
chitecture defines how to connect the component of a computer. This ar-
chitecture changed the world, implementing the separation of the processor
and the storage unit of a computer. This architecture is still used today in
almost all IT applications, and it opened for the implementation of many
decision support tools we still use nowadays.

The third period (3) has seen the development of microchips, which
make affordable for companies to build information technology (IT) systems.
Companies started to collect and store data on their operations into their
system.

In the fourth period (4), these data are used to improve the decision
process through:

• decision support systems (DSS), providing the decision-makers with
a suggestion to their problem;

• expert system (ES), guiding the DM step by step to get a suggestion
to his/her problem.

During the period of business intelligence (5), it becomes obvious that
there is a value behind the data collected by the IT systems. In addition to
companies, the world wide web started providing tons of data and informa-
tion to a broad public.

The period of analytics (6) saw the realisation of the deductive process
where information is obtained from tons of data and used to understand and
improve the operations. Mathematics is used for understanding the data,
but human intuition is still necessary to choose and implement the right
decision. According to [7], period (6) was the current one. Nevertheless,
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the technological developments of the last few years move us to add two
additional periods.

The period of artificial intelligence (7) starts in 2015 when a team of data
scientist from Google develops a neural network able to play the game of Go
better than the world champion of this game [8]. It is the advent of artificial
intelligence. IT systems have already overcome the speed of the human brain
(during period (6)), but now they are also able to think and react similarly
to a real human brain. The following step is theoretical, but natural (8):
when the artificial systems will be able to program themselves, they will be
able to understand a problem autonomously and to get a solution faster and
better than a real human brain. However, for the sake of our knowledge,
this step in the history of IT is yet to come.

This work focuses on step (6) in the field of logistics and operations. We
want to approach analytics to deeper investigate how human intuition and
the value of logistics information match for proper management of a supply
chain [9].

Accordingly to the periods defined above, step (6) should already be out-
to-date. Nevertheless, the literature (see chapter 2) shows that few papers
study analytics from a research point of view and their application in the
logistics practice is still rare. The majority of supply chain systems stopped
at the stage (4) where complex ES and DSS are seen as the final weapon
against the inefficiencies of the supply chain.

Big companies use analytics to profile customers, price products and
make financial analysis (the green shade in Figure 1). Nevertheless, they
rarely studied analytics for engineering applications whose potential is even
higher due to big data available from production, tracking and other activ-
ities in a supply chain.

1.5 A change in the perspective

Figure 1.1 illustrates the topology of logistics research and the traditional
role of decision science and data science. Here we want to investigate their
role from a control perspective. Traditionally, decision science is used to
model the system to control (e.g. a supply chain or a plant), and data
science is used to get relevant data and keep the variables of the system
under control. Figure 1.4 illustrates the differences between a data-driven
and a model-driven approach [10], which will now be investigated, from a
system control perspective. It is important to remark that a model is never
the reality, but a useful approximation used to get information on it [11].

The traditional model-driven approach can be seen as a system to control
through a feedback loop:

1. the real system is modelled through decision science, defining decision
variables based on the human understanding of the system;
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Figure 1.4: Model-driven vs. data-driven learning process.

2. the historical data of the system is the input parameter of the model;

3. the output of the model is analysed and used again to control the
system.

Here we have a traditional model-driven approach (see Figure 1.5) where
the “system model” is an ES or a DSS.

Figure 1.5: Traditional model-driven approach, based on feedback control.

In this work, we introduce a different approach (see Figure 1.6). Data
science is not only the base for the control of the system but also the design
of the model. Figure 1.4 already illustrated the differences between model-
driven to data-driven perspectives.
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Figure 1.6: Novel data-driven approach, based on predictions.

By using this approach, data science is used to train a model which
is based on the real behaviour of the system and not on apriori human
intuition. The outcome of the model which highlight patterns, correlations
and relationships among data are discussed and interpreted by human and
used as input for decision-making. The model is, then, used to predict the
behaviour of the system in the future. The model is trained and updated
each time new historical data from the real system are available, making the
data-driven approach flexible and up-to-date. We can think of this fact as
the change from a world where there was the need to design from scratch to
a world where it is necessary to understand, control and improve the extant
processes. This is the reason why the following sections of this book analyse
the control of a logistic system first.

This approach does not question the relevance of decision science, but
it considers a new relationship between data science and decision science.
We can exemplify this new relationship thinking of the design of a DSS. We
identify the four fundamental stages in the design of a DSS from a data-
driven perspective (whose implementation will be the object of Parts III,
IV and V of this book):

1. diagnosis of the real system (business-as-usual);

2. training of the model;

3. validation of the model;

4. deployment of the DSS.
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The diagnosing of the business-as-usual scenario (1) is the phase where
the DM assesses the problem, its environment, its criticalities, identify the
managerial question to answer and the KPIs to measure the goodness of
possible answers. In this phase, the DM takes a “snapshot” of the real
system using statistical inference and data visualisation to:

• understand the business-as-usual process;

• identify the level of information at his/her disposal.

The training of the model (2) is the phase where the decision variables
are identified and the model to predict their value is built (based on data
science methods). The model is trained upon the available data from the
real world. Differently from the model-driven approach, we do not assume
any relationship between the input variables. In some case, assumptions
are made on the value of each column to clean the data but, in general, we
are interested in augmenting the knowledge we have on the data by only
observing the data. For this reason, other assumptions are discouraged at
this stage. The model will highlight the relationships between the input
data and the decision variables.

Human intuition is then required to understand the output of the model
and the link between the input data that is the validation of the model
(3). Decision science methods can be implemented at this stage when the
scenario is complex, and it requires additional information to be useful for
the DM (e.g. it is necessary to merge the results of two models trained on
different decision variables).

When the output of the model is considered confident enough for the
DM (and from a statistical point of view), the model can be deployed into
a DSS (e.g., a software) able to get input, train the model and present the
output aiding the DM in his/her work.

This work proposes a novel approach where data-driven models are used
together with the traditional scholars’ model-driven approach. In other
words, instead of modelling a logistic/operations process based on human
understanding, the modelling phase is based on the data available from the
measurement of that process.

A human effort is required in the organisation of the measurement data
and the understanding of the outcome of the model. In other words, we
switch from the control of a logistic/operation process to the prediction of
the outcome of that process. In this work, we use the terms “data-driven”,
“logistics 4.0”, “smart logistics”, supply-chain 4.0” and “predictive logistics”
to indicate this change of perspective.
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1.6 Towards Predictive-Prescriptive Optimi-
sation

Model-driven and data-driven models can co-exist. For this reason, we
introduce the mathematical formulation of a problem addressed together
by them [12]). We introduce here the general formulation of:

• data-driven optimisation;

• supervised learning;

• predictive-prescriptive problem.

Let introduce the following variables. Let y1, . . . , yN ∈ Y a quantity
of logistics/operational interest (e.g. the demand); x1, . . . , xN ∈ X be an
associated covariates X (e.g. search engine attention); z ∈ Z the decision
variables.

In data-driven optimisation, we are interested in setting decision vari-
ables z to minimise an uncertain cost c(z;Y ). We only consider the pre-
scriptive approach (i.e. defining the values of z) and the historical data Y .
The problem can be written as:

minz∈Z [c(z, Y )] (1.1)

The solution to the problem can be found by sample average approxi-
mation solving the problem with different replication of the input variable
Y :

ẑSAAN ∈ arg min
z∈Z

1

N

N∑
i=1

c(z; yi) (1.2)

The “pure” supervised learning approach, on the other side, does not
involve prescription but focuses on the prediction (i.e. the forecast) of the
future values of Y given the historical values of Y and X. In other words, we
are looking for a prediction m̂N (x) for the future value of Y after observing
X = x and Y = y. The problem can be written as:

E [Y |X = x] (1.3)

The problems defined by (1) and (3) matches together in the predictive-
prescriptive problem i.e. fitting a machine learning (supervised) model
m̂N ≈ E[Y |X = x] and then solving a deterministic problem:

ẑpoint−predN (x) ∈ arg min
z∈Z

c(z; m̂N (x)) (1.4)
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An optimal solution to the problem can be found as:

z∗(x) ∈ argminz∈ZE[c(z;Y )|X = x] (1.5)

Roughly speaking, predictive-prescriptive optimisation works:

1. finding a relationship (i.e. a predictive model) between the set of
variables X and Y ;

2. exploring the cost c of different configurations of Y , predicted by dif-
ferent settings of X;

3. Averaging over different replicates finding the set of decision variables
z connected to the minimum of c.

1.7 The quality of data

Data-driven methods offer the technology to substitute some knowledge-
based roles of a human by a machine. Nevertheless, we would like to know
how much accurate can a machine be. In other words, if a company needs
a logistic expert, they hire (or train) a person with a logistic background.
How can we measure the degree of competence of a machine?

The outcomes of a data-driven process always depend on the quality of
the input data [11]. We can think of the data production process as a
manufacturing process with three stages:

1. raw data;

2. data processing;

3. data product.

The data product is the final product of a data collection process and, as
for physical products, it is possible to measure its quality. The higher the
quality of the data product, the more robust the results of a data-driven
model fed by the data product. We identify four metrics to measure the
quality of a data product (see Table 1.3).

The accuracy identifies if data corresponds to the real values. Timeli-
ness describes if data records are up-to-date (currency) and their update
frequency (volatility). Consistency regards the robustness of data format
and data structure. Completeness measures the fraction of missing data
over the total information content. It is important to check the quality of
the input data before starting with data-driven modelling since poor data
quality is the most common cause of bad predictions.
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Table 1.3: Metrics to measure the quality of data.
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Table 1.1: Glossary of opertions research.

Keyword Description
Research domain contributions of academic research on a spe-

cific topic.
Real World a physical system.
Operations Research a research discipline studying the operations

(e.g., storage, distribution and production) in
the supply chain.

Management Science a research discipline studying the relationship
between people and resources in an opera-
tional context.

Decision Science a research discipline studying the outcome of
people’s decisions or expert systems in an op-
erational context.

Data Science a research discipline studying the information
content of data.

Operations Management the outcome of management and decision sci-
ence, i.e. a set of models to design and control
a supply chain.

Data Analytics a set of models to understand and analyse the
information content of a dataset.

Supply Chain & Produc-
tion systems

the set of physical and virtual entities imple-
menting technologies for the realisation, stor-
age and transportation of goods.

Financial Analysis application of a set of methods to identify the
financial position of a physical (e.g., an asset)
or virtual (e.g. a stock) entity in the supply
chain.

Marketing application of a set of methods to connect the
demand and offer of a product/service.

Project Management application of a set of methods to manage re-
source and time for the realisation of a project.

Risk Management application of a set of methods to manage and
control the risk connected to the entities of the
supply chain.

System Analysis application of a set of methods to manage and
control the behaviour of a set of entities in the
supply chain.

Operations Planning application of a set of methods to manage re-
source and time for the realisation of the prod-
uct/service.

Quality application of a set of methods to keep the
operations under statistical control.
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Research Background

The line between statistics,
computer science and
engineering is getting thinner.

This chapter reviews the relevant literature identifying the academic
position of this work. As introduced, this work provides advances in the
field of engineering applied to the “system analysis” (see Figure 1.1) of a
supply chain system by using data-driven technologies.

Before starting with this data-driven journey, it is necessary to intro-
duce a brief glossary with the keywords used to gather academic papers by
scholars and practitioners (see Table 2.1).

Figure 2.1: Glossary of data science terms.
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2.1 Academic background

The data-driven approach is gathering an increasing interest in literature
during the last decade. In particular, the number of research paper ap-
proaching logistics research issues from a data-driven perspective is increas-
ing exponentially [1, 2]. Figure 2.2 illustrates research trends on Scopus
reporting the number of research papers published in international journals
resulting from four research queries. The world “machine learning”, “deep
learning” and “data-driven” are used together with the word “industry” to
check how literature evolves approaching this topic from an industrial per-
spective. The last trend is focused on the field of supply chain management.
This trend is similar, but with a lower absolute number of papers.

This analysis shows that, in the last few years, scholars are paying more
attention to data-driven approaches applied to industrial fields. Neverthe-
less, the amount of contributions in the field of industrial engineering and
supply chain is still limited. A closer investigation of the industrial engi-
neering field confirms the need for a broader study of data-driven methods
in this field [3]. Figure 2.3 categorises the topics of industrial engineering
where data-driven approach is used within a sample of 23 journal articles.

Industrial engineering shares engineering and decision science features.
Figure 2.4 (defined on a sample of 52 journal articles) shows that both of
them are areas of research where analytics and data-driven modelling are
established methodologies [4].

The literature lacks of a comprehensive approach of data-driven models
in the field of logistics research as tools for system analysis [5, 6]. Many
papers show frameworks for the application of analytics and data-driven
methods to sub-topics as safety engineering, industrial database design data
structures and real-time data collection with internet-of-things (IoT) indus-
trial devices [7, 8]. Nevertheless, none of them proposes a holistic point of
view on logistics and operations.

On the other side, they clearly recognise a value behind data [9, 10] and
the importance of smart logistics and smart factories whose capability is to
adapt decision making dynamically to predict future scenarios.

This new approach involves a large mass of data exchanged between
several actors [11, 12]. Literature suggests robust methodologies to manage
the information flow of data [13]. The outcome of these data structures
supports the development of the smart factory, i.e. a manufacturing plants
where information is used to control the process and to make decisions on
the future processes (i.e. the design) [14].

In [15], they identify three main research issues to improve the opera-
tions in a smart factory using data-driven methods:

1. modelling the theory and method of smart factory;
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Figure 2.2: Literature trends corrsemponding to different research queries
on Scopus.

2. knowledge discovery and knowledge management based on industrial
big data analysis;

3. adaptive scheduling and optimisation of the smart factory.

This book focuses on the key issues (2) and (3). Often, literature focuses
only on theoretical frameworks for the application of data-driven methods
[16]. In this work, we aim at a comprehensive approach for logistics and op-
erations being practice-ready for a company proposing areas of application
of data-driven methods.
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Figure 2.3: The fields of application of data-driven algorithms in the indus-
trial engineering sector.

Figure 2.4: The fields of application of data-driven algorithms.

2.2 Industrial background

In addition to the academic relevance, we want to highlight the rationale of
this work considering the structure of the external industrial sector: data
science is the present, not the future. In the last decade, companies started
creating a new professional role called “data scientist” able to generate
value from industrial data. From this perspective, the statistic is the his-
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tory, machine learning is the past, and deep learning is the present [17].
These methodologies have already been established and implemented in
many business areas (e.g. marketing, finance) with or without the contribu-
tion of the research community since a number of companies recognised their
data could be used to improve the efficiency, reliability and sustainability
of their business [18, 19].

Looking at the industrial practice, we notice that there is an enormous
potential for data-driven application in the field of logistics. The industry
is reacting to this new trend with significant investments in data-driven
projects [20, 21]. Managers and directors from logistics and operations
identify in the big data analytics the main tool to handle decision and pro-
cesses in the future [22]. Nevertheless, a significant gap exists between large
companies, able to train data scientist themselves, and small and medium
enterprises (SME) that cannot afford this kind of investment [23].

It is the case of large third-party providers that develop machine learning
and artificial intelligence tools to support their business [24]. They identify
a precise workflow to check if a data-driven approach can be used to generate
value, improving a logistic process (see Figure 2.5) with two main activities:

1. creating new knowledge;

2. reducing costs.

These two objectives are the reason why companies started collecting
data on their processes and hiring data scientists. The flowcharts in Figure
2.5 identify the necessary ingredients to get success from a data-driven ap-
proach. The quantity and quality of the data is, obviously, a crucial issue
to work with a data-driven approach. Besides, the data collected must be
relevant to solve a decision problem. Finally, if an algorithm can find pat-
terns better than a human does, the data-driven approach is a good choice
to create knowledge and reduce costs.

Both these objectives are reachable when data scientists have both an-
alytic skills and profound knowledge of the industry-specific domain [24].
When these two characteristics come together, data-driven application leads
these companies to success while some small logistics companies still strive
to work with pen and paper.

Logistics companies identify the need to anticipate the behaviour of the
market with predictions on:

• lead times;

• transport capacity;

• customer orders.
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Figure 2.5: Checklist for the implementation of a data-driven project
adapted from [24].

Predictive logistics can forecast the value of these metrics anticipating
market demand. Traditional logistics is way less efficient and unable to
anticipate market behaviour [25]. Data-driven tools are not limited to
transportation activities. Recent applications in the manufacturing and
storage industry have seen several predictive models to support the opera-
tions [26, 27, 28].

While a small number of big companies recognises the value of its opera-
tional data, researchers strive to get data to test their assumptions enriching
the literature and public knowledge. Besides, the more these companies see
a profit in their data-driven approaches, the less they are willing to share
data with the research community. This happens because they get a compet-
itive advantage from the utilisation of their data and sharing their valuable
knowledge with the public would not be safe for their business.

In this sense, our work is even harder since it is difficult not only to
design new methods but also to get data to test them and keep them useful
in the real world. For this reason, we notice a gap between practice and
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academic research, especially when internal research units of multinational
companies hold the data and autonomously lead the research activities.

Also, the application of data-driven models in industrial practice is still
limited in the field of logistics and operations [29]. We think that aca-
demic research has the responsibility to explore the role and the potential
of analytics and data-driven methods in the logistics and operations fields.
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[2] K. Spanaki, Z. Gürgüç, R. Adams, and C. Mulligan, “Data supply
chain (DSC): research synthesis and future directions,” International
Journal of Production Research, vol. 56, no. 13, pp. 4447–4466, 2018.

[3] T. Nguyen, L. ZHOU, V. Spiegler, P. Ieromonachou, and Y. Lin, “Big
data analytics in supply chain management: A state-of-the-art litera-
ture review,” Computers and Operations Research, vol. 98, pp. 254–264,
2018.

[4] S. Gupta, S. Modgil, and A. Gunasekaran, “Big data in lean six sigma:
a review and further research directions,” International Journal of Pro-
duction Research, vol. 0, no. 0, pp. 1–23, 2019.

[5] G. Wang, A. Gunasekaran, E. W. Ngai, and T. Papadopoulos, “Big
data analytics in logistics and supply chain management: Certain in-
vestigations for research and applications,” International Journal of
Production Economics, vol. 176, pp. 98–110, 2016.

[6] K. Lamba and S. P. Singh, “Modeling big data enablers for opera-
tions and supply chain management,” International Journal of Logis-
tics Management, vol. 29, no. 2, pp. 629–658, 2018.

[7] L. Huang, C. Wu, B. Wang, and Q. Ouyang, “Big-data-driven safety
decision-making: A conceptual framework and its influencing factors,”
Safety Science, vol. 109, no. May, pp. 46–56, 2018.

[8] Y. Zhang, Z. Guo, J. Lv, and Y. Liu, “A Framework for Smart
Production-Logistics Systems Based on CPS and Industrial IoT,” IEEE
Transactions on Industrial Informatics, vol. 14, no. 9, pp. 4019–4032,
2018.



Re
vi
ew
ed
Ve
rs
io
n

28 CHAPTER 2. RESEARCH BACKGROUND

[9] S. Balandin, S. Andreev, and Y. Koucheryavy, “Big Data Governance
for Smart Logistics: A Value-Added Perspective,” in 15th international
conference, NEW2AN 2015 and 8th conference, ruSMART 2015 St.
Petersburg, Russia, 2015.

[10] D. Uckelmann, “A definition approach to smart logistics,” Lecture
Notes in Computer Science (including subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), vol. 5174 LNCS,
pp. 273–284, 2008.

[11] A. Kawa, “SMART Logistics Chain,” in ACIIDS, pp. 432–438, 2012.

[12] P. M. Singh, M. J. Van Sinderen, and R. J. Wieringa, “Smart logistics:
An enterprise architecture perspective,” CEUR Workshop Proceedings,
vol. 1848, pp. 9–16, 2017.

[13] H. Tran-Dang and D. S. Kim, “An Information Framework for In-
ternet of Things Services in Physical Internet,” IEEE Access, vol. 6,
pp. 43967–43977, 2018.

[14] M. Hajdul and M. Cudzilo, “Information Technologies in Environ-
mental Engineering,” Information Technologies in Environmental En-
gineering, vol. 3, pp. 501–513, 2011.

[15] Y. TAN, F. QIAO, S. YANG, J. WANG, and L. SHI, “Engineering
management for high-end equipment intelligent manufacturing,” Fron-
tiers of Engineering Management, vol. 5, no. 4, p. 420, 2018.

[16] V. L. da Silva, J. L. Kovaleski, and R. N. Pagani, “Technology transfer
in the supply chain oriented to industry 4.0: a literature review,” Tech-
nology Analysis and Strategic Management, vol. 31, no. 5, pp. 546–562,
2019.

[17] HubSpot, “Artificial Intelligence Is here - People Just Don’t Realize
It,” 2016.

[18] D. L. M. Nascimento, V. Alencastro, O. L. G. Quelhas, R. G. G. Caiado,
J. A. Garza-Reyes, L. R. Lona, and G. Tortorella, “Exploring Industry
4.0 technologies to enable circular economy practices in a manufactur-
ing context: A business model proposal,” Journal of Manufacturing
Technology Management, vol. 30, no. 3, pp. 607–627, 2019.

[19] P. Trkman, K. McCormack, M. P. V. De Oliveira, and M. B. Ladeira,
“The impact of business analytics on supply chain performance,” De-
cision Support Systems, vol. 49, no. 3, pp. 318–327, 2010.

[20] W. economic forum, “These charts will change how you see the rise of
artificial intelligence,” 2017.



Re
vi
ew
ed
Ve
rs
io
n

BIBLIOGRAPHY 29

[21] R. Y. Zhong, S. T. Newman, G. Q. Huang, and S. Lan, “Big Data for
supply chain management in the service and manufacturing sectors:
Challenges, opportunities, and future perspectives,” Computers and
Industrial Engineering, vol. 101, pp. 572–591, 2016.

[22] B. Roßmann, A. Canzaniello, H. von der Gracht, and E. Hartmann,
“The future and social impact of Big Data Analytics in Supply Chain
Management: Results from a Delphi study,” Technological Forecasting
and Social Change, vol. 130, no. November 2017, pp. 135–149, 2018.

[23] R. Dubey, A. Gunasekaran, S. J. Childe, C. Blome, and T. Papadopou-
los, “Big Data and Predictive Analytics and Manufacturing Perfor-
mance: Integrating Institutional Theory, Resource-Based View and
Big Data Culture,” British Journal of Management, vol. 30, no. 2,
pp. 341–361, 2019.
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The Information Framework

Pure mathematics is, in its way,
the poetry of logical ideas.

Albert Einstein

Supply chains systems involve a large number of connected entities, re-
sources, actors and flows. In this chapter, we introduce a framework to
model the entities of storage systems, distribution networks and production
plants. In particular, this work investigates the room for the application of
data science in the field of logistics and operations. For this reason, we are
interested in mapping the information relationships between these entities.

Here we introduce an ontology of entities and metrics. This ontology
meets the fractal manufacturing system philosophy (see [1]), where each
element of a supply chain can be seen as a black box with inputs and
outputs. The elements can be aggregated or disaggregated into other black
boxes. In the following parts of this book, we will re-define this ontology by
applying it to smaller blocks of the supply chain, with specific references to
storage systems, distribution networks and production plants.

3.1 Ontology

We base our ontology on [2], a milestone book in logistics and operations
science. It was the first providing a scientific framework to model a factory.

Entities

We identify the following entities.
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Part (i): it is a piece of raw material, component, subassembly or as-
sembly. Where:

• Raw material is a part purchased out of the system.

• Component is an individual piece assembled into more complex prod-
ucts.

• Subassembly is an assembled unit further assembled into more com-
plex products.

• Assembly/final assembly/finished product is the fully assembled prod-
uct.

Processing node (j): we define the processing node using the concept
of fractal manufacturing. From this perspective, a processing node is any
entity that can be modelled as a black box with input and output. A
production machine, a production line, a packing machine, a manufacturing
robot, a production plant, a storage system, a port, a logistic platform, a
train terminal are all examples of entities working as a processing node. A
processing node usually performs value-added activities on a part.

Edge (j, k): it is a physical connection between processing nodes. Aisles
and conveyors are edges in a production plant; while railways, rivers and
roads are the edges of a distribution system.

Vehicle (v): a vehicle is a handling unit able to transport one or more
parts from a processing node to another. Operators, forklifts, AGVs, trucks,
trains, vessels are all examples of a vehicle.

Consumable (s): a consumable is a material that is used by a pro-
cessing node or a vehicle to perform its work. A consumable is generally
responsible for the variable costs of the processing node or a vehicle (e.g.
energy and fuel).

Route (e): is the sequence (ordered set) of processing nodes j = 1, . . . ,m
visited by a vehicle to add value on a part.

Order (o): is a processing request on a part sent by a customer.
Job (b): is the response to the market demand from the operations side.

Production batches and transportation loads are examples of a job.
System network G(V,A): the system network is the set of processing

nodes j ∈ V and edges (j, k) ∈ A that connect all the entities involved in
the supply chain system.

Metrics

We identify the following metrics to assess the performances of a processing
node j.

Throughput (THj): the throughput of a processing node is the average
output per unit of time (e.g., parts per hour).
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Work in process (WIPj): is the number of parts (i.e., the level of
inventory) being processed/waiting for processing by a processing node.

Work in process (WIPjk): is the number of parts (i.e. the inventory
position) being transported on edge (j, k) by a vehicle v.

Capacity (Cj): is the upper bound of the throughput.
Capacity (Cv): is the maximum capacity of a vehicle v.
Utilisation (Uj): it is the fraction of time that a processing node is not

idle for lack of demand.
Utilisation (Uv): is the fraction of transportation space that a vehicle

uses due to the variability of the transportation demand.
Lead time (LTe): is the time allocated for a given route.
Cycle time (CTe): is the average time from the release of a job to the

end of its route.
Service level (SLe): Prob{cycle time ≤ lead time}
Little’s law (see equation (3.1)) defines a basic relationship linking the

three main metrics, i.e. WIP , TH and CT .

WIPj [pz] = THj

[pz
h

]
× CTe:e∈{j}[h] (3.1)

Usually, managers have data on the entities at their disposal, but they
need to get information on the metrics. This data can be dirty or incom-
plete. For this reason, we build upon this ontology to show how to infer the
properties of entities and metrics when data are incomplete or missing.

Our approach is highly generalisable and based on a few standard rules
of a supply chain, with minimum bias. For this reason, the theoretical effort
of this work stands in the definition of a structure for industrial data, the
understanding of the role of data, and the consistency rules among different
features that can be used to increase the value of an incomplete dataset.

The modelling of a system accordingly with a robust data structure
allows using only logistics-relevant data and base the model on robust re-
lationships. The following sections define this data structure for storage,
distribution and production systems. We first introduce the law of physics
to analyse the material flows of a supply chain. Then, a theorem regulating
the consistency of the information flow is introduced and demonstrated.

3.2 The physics of a supply chain

The laws of physics can be used to model the material flows between the
entities of a supply chain. We can think of a processing node j as a physical
system with an inventory WIPj subjected to “forces” modifying its value.
It is not difficult to imagine that the value of WIPj can change when:

• some forces pull a number of items from j;
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• some forces push a number of items into j.

Figure 3.1: Physical model of a processing node.

Figure 3.1 presents a scheme of the physical model of a processing node
where the forces generated by the production and the demand modify the
value of the inventory.

The concept of a force modifying the inventory matches very well with
the definition of pull and push production philosophy. The analysis of push
and pull systems is out of the scope of this book. We will limit to describe
the dynamics and the rules of these systems using the idea of a force as-
sociated with the production and the demand. To model j, we are just
interested in defining how these forces are linked to the value of WIPj .

The purpose of a supply chain is to provide a physical connection be-
tween demand and offer. A supply chain connects several processing nodes
to develop a product or a service to the final consumer. Processing nodes
works at a variable rate, and the only way to keep them synchronised is by
using buffers. There are three types of buffers with different nature:

• inventory buffer is a number of goods stored between the production
and the demand of a processing node;

• time buffer is an amount of queuing time between the time instant
when the order of a customer occurred and the time instant when it
is finally satisfied;

• capacity buffer is an amount of production capacity calculated as
the difference between the capacity of a working station and its average
demand.
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These types of buffers are interrelated and react to the demand and
production forces. Time and capacity buffers are generally defined in the
design phase of a network since they are linked with the type of physical
assets of the supply chain. Inventory buffers are generally more flexible and
more used since they are cheaper than the two others.

We use an approach based on dynamic and stochastic system equations
to generalise the Little’s law, and understand the relationships between the
variables describing the physics of a supply chain.

We can model a production-inventory model as follows. Let consider
the inventory of a processing node measured in a number of parts. We are
interested in knowing the value of the inventory function q. The inventory
function depends on the demand function d, and the production function
x. Figure 3.2 identifies samples demand and production functions.1 The
demand curve is generally more volatile, while the production curve is more
stable since the output of a processing node is hardly flexible as related to
its assets.

Figure 3.2: Examples of demand and production functions.

Given x, d, and an initial inventory q0, it is possible to define the inven-
tory function q.

qt = qt−1 + pt − dt (3.2)

The difference between the demand and production functions define the
momentum p of the production node. The momentum indicates the direc-
tion in which the inventory function q moves, and it is measured as the
number of parts per unit of time.

p = x− d = q̇ (3.3)

We identified an approach to model a supply chain using the law of
physics. In particular, there is a relationship between the flows (demand d

1The source code of Figure 3.2 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/Supply%20chain%20physics.ipynb
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and production p) and the inventory q. We can assume that some forces
(may them be ”push” or ”pull” forces) play a role in changing the value
of the inventory function q. Table 3.3 illustrates the parallelism between
classical mechanics and the physics of a supply chain.

Figure 3.3: Examples of demand and production functions.

[3] demonstrated that the energy conservation law is appliable to the
physics of a supply chain to control the behaviour of the inventory curve q
The Lagrangian is used to express the equation of the force ṗ, representing
the ”push” and ”pull” forces of a supply chain, i.e. the movements of the
supply chain.

ṗ =
∂L(q, q̇)

∂q
(3.4)

Where L (q, q̇) = 1
2p

2 − V (q). The Lagrangian express a difference be-
tween kinetic and potential energy. The potential energy is defined using
a linear potential V (q) = −F0q. This means that, as it works with the
force of gravity, the perturbation of the value of the inventory depends on
the value of the inventory q with a linear law. We can assume conservation
of energy using the Hamiltonian principle (the Principle of Least Action).
This principle states that nature always chooses the lowest energy path (i.e.
the difference between kinetic and potential energy) between all the feasible
ones defined by forces. The inventory function q, is then, defined from the
Lagrangian as:

S [q] =

∫ t2

t1

L(q, q̇, t)dt = 0 (3.5)

[3] shows how choosing the value of F0 to control the value of inventory
q.

3.3 The information of a supply chain

Section 3.2 demonstrated that a physical relation exists between three vari-
ables of a supply chain: the inventory q, the productivity p, and the move-
ments ṗ. Physics is the core of science, and we can always rely on physical
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laws. Nevertheless, in practice, we may not have the possibility to apply
these laws since data are collected with different granularities (i.e. referred
to different processing nodes) or with inconsistencies. For this reason, this
section introduces an original information framework to build q, p, and ṗ
using the available data. We move the focus from the physical relationship
to the information relationship existing between these three functions.

3.3.1 Information framework

While defining data structures to support logistics, databases are usually de-
signed using an entity-relationship (ER) model [4]. The focus of ER models
is on the entities, i.e. the ones we defined in section 3.1. Here we propose a
different perspective, focusing on the physical logistic phenomenon, i.e. the
variation in the demand d, production x and inventory q due to the forces
ṗ, regardless of the entities generating these forces.

This change of perspective enhances the flexibility of this modelling ap-
proach since it is often difficult to collect data from all the entities involved
in a supply chain and to connect them into an ER model. On the other
side, the effect of the forces generated by these entities is clearly measurable
on the production and demand functions.

For the sake of clarity, we abandon the dot notation, and we define:

1. a movement function Mi(t) to represent the forces ṗ, applied to a part
i;

2. a productivity function Pj(t) to represent the speed p at which the
forces change the value of the inventory q;

3. an inventory function Ii (t) representing the inventory q of part i.

The M function has different granularity (e.g. order, vehicle, terminal,
network) depending on the measurement system and the data collection
system used. The most granular is a movement called by a single order o of
a part i involving a processing node j and a vehicle v. The function uses:

• a positive value to describe the physical movement of a quantity q
from a processing node to a vehicle (load movement: j → v);

• a negative value to describe a physical movement of a quantity q from
a vehicle to a processing node (offload movement: v → j).

M j,v
o (t) =

 q if t = tIN ,
−q if t = tOUT ,
0 otherwise.

(3.6)
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Where t measures the time; q is the quantity (e.g. the number of parts)
involved in the physical movement; tIN is the timestamp when the part i is
loaded on a vehicle v; tOUT is the timestamp when it is unloaded from it.

The inventory function I describes the inventory position (e.g. the num-
ber of parts) of a vehicle v or a processing node j. The function I is linked
to M j,v

o (t) by aggregating the movements of single orders.

Ij(t) = Ij(t− ε)−
∑
i

∑
v

M j,v
o (t) (3.7)

Iv(t) = Iv(t− ε) +
∑
i

∑
j

M j,v
o (t) (3.8)

The parameter ε is a sufficiently small time sampling unit (e.g. a
minute). It is essential to consider the initial inventory Ij(t = 0) and
Iv(t = 0) to define the inventory functions correctly. Figure 3.4 represents
an example of the movements and inventory functions for a part i.

Figure 3.4: Example of movements and inventory function.

The productivity function P defines the motion equation of a processing
node j, i.e. the speed of the changes in its inventory position. Two distinct
P functions exist to describe the loads (IN), and the offloads (OUT) speed
of a processing node. The productivity function P is defined, starting from
the cumulative function of the movements Q.

QINj (τ) =
∑
i

∑
v

{M j,v
i |M

j,v
o > 0, t ≤ τ} (3.9)

QOUTj (τ) =
∑
i

∑
v

{M j,v
i |M

j,v
o < 0, t ≤ τ} (3.10)
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The productivity P at a time instant t∗ is given by:

P INj (t∗) =
dQINj (τ)

dτ
|t∗ (3.11)

POUTj (t∗) =
dQOUTj (τ)

dτ
|t∗ (3.12)

Movements usually have redundant information on vehicles ad process-
ing nodes. We overcome this redundancy by splitting this information into
two separate functions of inventory I and productivity P . Productivity
function, in fact, does not suffer redundancies, and it converges to a value
determined by the physical assets of a terminal.

At this stage, we want to demonstrate the relationship between these
three functions. For this reason, we consider the movement function at the
granularity of a processing node Mj(t) =

∑
v

∑
oM

j,v
o (t) and we prove the

following theorem that introduces consistency rules between the functions
Mj , Ij and Pj calculated with the granularity of a processing node j.

Let us consider the supply chain system as a network G(V,A) where V
is the set of the processing nodes connected by arcs (j, k) ∈ A. Let us define
a set B containing the vehicles v ∈ B, travelling on the arcs (j, k) ∈ A. We
define a state function Λ(τ) to describe the state of the network G at the
time instant τ .

Λ (τ) =
{
Ij (τ) , j ∈ V

⋃
Iv (τ) , v ∈B

}
(3.13)

We demonstrate that:

Theorem 1. One of the following set of equations

(i) Mj(t)

(ii) Ij(t)

(iii) P INj
⋃
POUTj

has enough information to define the state Λ of a logistic network.

Proof. We demonstrate Theorem 1 by showing that the knowledge of (i),
(ii), or (iii) is enough to define all the three M , I, and P . Statement (i) has
already been demonstrated by the 3.7, 3.11 and 3.12. Statement (ii) can be
proved considering the definition of I, since:

Mj(t) = Ij(t)− I(t− ε) (3.14)

Given Mj(t) the functions P INj and POUTj are calculated similarly to
3.11 and 3.12.
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Statement (iii) can be proved considering:

QINj (τ) =

∫ τ

0

P INj (t)dt (3.15)

QOUTj (τ) =

∫ τ

0

POUTj (t)dt (3.16)

By sampling the functionsQ with a sampling frequency ε (e.g. a minute),
it is possible to get the movement function.

Mj(t) =
dQINj (t)

dt
−
dQOUTj (t)

dt
(3.17)

The proof of Theorem 1 shows that the functions M , I and P are in-
terconnected, and retain enough information to define the state Λ of the
network when they are measured with terminal granularity.

3.3.2 Implementation and utilisation of the framework

The following chapters of this work start from the application of this infor-
mation framework to warehouses, production and distribution system. The
consistency rules between the metrics of movements, inventory and produc-
tivity, are the starting point to collect, store and analyse data leading, and
to generate knowledge from this data.

We start with the definition of a data structure able to host movements
and inventory data of a specific type of processing node. Then data-driven
methodologies are proposed to build prediction models addressing node-
specific problems. ER structures are designed to store both planning or
actual data. In particular:

• planning data, (i.e., recorded before it happens what they describe)
describes how operations are planned to be performed;

• actual data (i.e., recorded when it happens what they describe), de-
scribes how activities were performed.

Table 3.1 qualitatively introduces different types of data recorded on-
field and used in the following sections to populate the data structure, ac-
cording to the M, I, P framework.
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Table 3.1: Examples of datasets connected to the functions.
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Data-driven decision making

A data scientist must deeply
know his knowledge domain.

Chapter 3 introduced the entities and the metrics of a supply chain
system. This book deals with these entities from a system analysis perspec-
tive (see section 1.1), i.e. considering the design and control alternatives
to manage the operations of a distribution network, a storage system, or
a production plant. These problems have been mostly addressed by deci-
sion science. The following chapters aim at identifying boundaries between
decision science, and data science in the system analysis of a supply chain
system. It will be remarked, as well, where data science is ready to compete
with decision science to address a decision problem.

It is crucial to consider the knowledge domain of supply chain systems to
do this job [1, 2]. While decision science has the ability to model each prob-
lem precisely, with instance-tailored boundaries and objective functions, we
aim at designing a high-level classification of supply chain system problems.
We identify patterns among similar decision problems encountered in differ-
ent supply chain systems whose entities are defined by the ontology in 3.1.
Each decision pattern is identified by an id used in the following chapter as
reference.

The following section introduces a glossary of data and information to
understand the meaning of these words correctly; the classification of the
decision patterns; a method to choose the right analytical technique to
address a supply chain system problem, given its data, and its decision
pattern; a summary of the main contributions of this book.

43
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4.1 Data Glossary

Since this book deals with data, it is important to remark some crucial as-
pects. The traditional engineering modelling approach is based on intuition.
The researcher observes a logistic phenomenon, makes assumptions, build a
model, and fit the empirical data to the model. The data-driven approach is
profoundly different since it collects data and different models fit the data,
identifying the model with the best fit.

Our data collection activities involve multiple entities since we use a top-
view perspective, looking at the system analysis. For this reason, we may
have multiple data sources with redundant information, different synchro-
nism, different granularities, different data protocols. Table 4.1 introduces
the glossary explaining all these elements.

Table 4.1: Glossary of data-related terms.

4.2 Decision patterns

Entities are connected with relevant strategic and control issues that must
be addressed to properly organise the operations of a warehouse, produc-
tion plant, or distribution system. The literature defines these issues as
problems, using mathematical models. We organise these problems by in-
troducing an original classification, with ten classes. Each class is address-
able by the same branch of analytics (descriptive, explorative, predictive,
or prescriptive), depending on the type of problem.
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Family problems (P1) This class of problems aims at defining homo-
geneous clusters of parts, to simplify the organisation of operations. Issues
belonging to this class concern definitions of product families with the same
production cycle (i.e. the route), and definitions of classes of stock-keeping
units (SKUs) with similar characteristics (e.g. weight and volume). De-
scriptive and explorative analytics offer tools to assess the features of parts
and to produce clusters.

(Technology) Assignment problems (P2) This class of problems solves
the assignment of parts to resources and vehicles from a high-level strategic
perspective. Some examples are the assignment of SKUs to storage loca-
tions, the assignment of points of demand to trucks or the identification
of the families of product to be processed by a resource (e.g. a produc-
tion line or an FMS). The best configuration is found by the evaluation
of every single alternative (prescriptive methodologies) or the definition of
homogeneous clusters by an explorative technique.

Problems involving the definition of adequate technology for production
nodes belong to this class and can be addressed using the same rationale.
The definition of the storage system technology (storage rack with/without
forward-reserve, floor stack, automated storage technology) and the iden-
tification of the level of automation in a production plant are examples of
these problems. The technological choice in a distribution network (i.e.
truck/rail/water/air) is neglected since it is imposed by the existent infras-
tructure or by political choices falling outside the domain of this research.
The choice of the vehicle is solved in an operational environment with syn-
chromodality i.e. when multiple transportation options exist for the same
transportation unit (e.g. a pallet on a barge or a truck).

Flow problems (P3) This class of problems identifies how processing
nodes are connected. They only exist for warehouse and production nodes
since the design of the distribution infrastructure belongs to transportation
science, and it is outside the domain of this research. The definition of the
rationale to travel within storage racks (i.e. return or traversal policy) and
the identification of paths for conveyors and forklifts in a production plant
are examples of these problems. As for technology assignment problem, flow
problems need prescriptive tools to identify efficient handling solutions.

Mechanical plant and equipment design (P4) This class of prob-
lems addresses engineering issues, such as the design of power plants, ther-
mal plants, mechanical plants, lighting systems, air conditioning systems,
and/or the physical designs of workbenches, material slots, and ergonomics.
All these activities usually have poor historical data, and it is difficult to
structure a series of previous observations of data addressing the same prob-
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lem. For this reason, prescriptive models often address these problems by
relying on an engineering model describing the dynamics or thermodynam-
ics of the system.

Power problems (P5) This class of problems identifies the amount of
power required for a specific resource j, and defines its capacity Cj . The
storage allocation and design of areas for inbound/outbound operations are
examples of power problems in a storage system. The design of the fre-
quency of a route and service time windows at a terminal are power prob-
lems in a distribution network; the definition of the number of machines of
the same type is a version of this problem in a production node. Prescriptive
tools allow for solving these problems.

Placement problems (P6) A placement problem defines the identifica-
tion of the proper disposition of entities (e.g. resources or set of parts) on
the plant layout of a production system or storage system. Examples in-
clude the definition of a plant layout or location of a facility, the assignment
and placement of SKUs to warehouse zones, the definition of the location of
the facilities of a distribution network (location-allocation problem). Pre-
scriptive and explorative techniques address these problems by clustering
parts with similar behaviour (e.g. placing the same resources close to each
other).

Dispatching rules (P7) This class of problems provides rules for organ-
ising operations among the many possibilities and uncertainties that may
occur in practice. The definitions of the shipping priority for transportation
units and the picking policy (e.g. batching, sorting, pick and pack, single-
order picking, cross-dock) for SKUs are examples of dispatching rules. In
a production environment, the choice between a pull or a push policy is
another dispatching rule. Dispatching rules affect the level of the work in
process, size of the lots, and rationale for satisfying the market demand (i.e.
pull/push). The definition of these rules requires a prescriptive model.

Performance assessment (P8) This class of problem is deliberately de-
scriptive. It aims to describe the system G, its entities (i.e. parts, resources
and vehicles), and its processes (i.e. jobs and routes). Data science offers
tools to approach this type of problem, as the results are obtained exclu-
sively using descriptive and explorative tools for evaluating the log data
from a storage system, production system, or distribution network.

Workload predictions (P9) This class of problems aims at forecasting
the values of relevant variables regarding a product or a process in the fu-
ture. The predictions are influenced by market demand. Hence, predictions
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consider the number of parts (e.g. SKUs, containers, or products) which
will be processed by a system G in the near future. The estimate of the
number of parts leads to the prediction of other relevant process variables
(e.g. the speed of a machine, or number of operators required to perform
activities).

Operations management (P10) This class of problems prescribes how
to act within given circumstances to perform operations. This problem
always involves a prescription, e.g. the definition of a sequence of products
to process on a machine (job scheduling), or the sequence of locations to visit
from a truck in a distribution system or a forklift in a warehouse system.
Prescription tools can approach these problems when the input data are
consistent and compliant with their hypotheses. In particular situations,
predictive and explorative tools may be used to address the problem as
well. For example, when processing a single part to assign to a resource in
an online version of the problem (e.g. a last-minute order to assign to a
production machine), a prediction or clustering model based on robust data
can solve the assignment, given the current state of the system G.

4.3 Decision trees

Once the class of analytics (i.e. descriptive, explorative, predictive, or pre-
scriptive) for solving a problem has been defined, it is necessary to identify
the technique for obtaining a solution. Different methodological paths exist
to solve a problem P , depending on:

1. the need to set up decision variables D to solve the problem (e.g. in
prescriptive analytics);

2. the availability of measurements on previous realisations of the solu-
tion;

3. the completeness and the accuracy of the realisation dataset; and

4. the knowledge on the boundary conditions of X.

We introduce three original decision trees to identify these paths, and to
guide the decision-maker in the definition of the proper technique to address
a problem. Decision trees focus on descriptive, predictive, and prescriptive
analytics, whereas exploratory analytics appears in some branches of the
other trees.
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Descriptive decision tree

This tree aims at the description of a variable y as a random variable; y
is usually a KPI metric, and there are no decision variables D to set up.
Sometimes, it is impossible to directly measure a variable on-field (e.g. of-
ten when y is a cost). In these cases, it is necessary to link the value of
y with a kinematic model y = f(X), based on a set of measurable vari-
ables X that are inputs of a motion equation f . The variables X usually
describe the movements of a logistical process (e.g. the path travelled by
a truck on a road or by a forklift within a plant). Once f is defined, a
numerical simulation (e.g. Monte Carlo simulation) allows for investigating
the behaviour of y, depending on the distribution of X and on the tuning
parameters of the kinematic model. When y is measurable but the dataset
presents different data sources with different levels of accuracy, Bayesian
statistics can be used to infer the properties of y by leveraging its estimate
and considering the reliability of each input data source. Otherwise, the
inferential statistic is appropriate when the data are from a single source,
and there are no measurements Y of other variables linked to y. When a
dataset Y containing observations of a set of variables connected to y is
available, explorative analytics (i.e. clustering) is suitable for investigating
the correlations between the variables and improving the knowledge of the
decision maker regarding the important variables affecting the process. Fig-
ure 4.1 introduces the descriptive decision tree, and illustrates the decision
steps identified above.
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Predictive decision tree

This tree aims at forecasting future realisations of a variable y, given its
description as a random variable. For this reason, there are no variables
D to set up (except for the hyperparameters of some forecasting models).
The ability to empirically measure the variable y is a key branch of the de-
cision tree. If the variable cannot be measured directly (e.g. the inventory
position of a truck while travelling), the only other option is to define a
kinematic model to estimate its value (e.g. estimating the inventory using
loading and unloading records). Without a kinematic model and/or a direct
measurement, it is impossible to make predictions. When the variable can
be measured but the measures are incomplete (e.g. a small subset of the
dataset), explorative clustering techniques can be used to extend the prop-
erties measured for the small sample to the entire population ỹ (e.g. from a
subset of parts to an entire product family). In this case, it is necessary to
have a validation dataset ŷ associated with the values of ỹ. If a validation
dataset is not available, the kinematic model remains the sole alternative for
obtaining an estimate. Otherwise, it is possible to set a prediction model.
When there are no other variables Y associated with y, time-series forecast-
ing (e.g. decomposition, Fourier analysis, autoregressive integrated moving
average (ARIMA) models) can be used to make predictions. When a dataset
of variables Y associated with y is available, supervised machine learning
models can lead to more accurate predictions. Figure 4.2 illustrates the
decision tree, along with the decision steps identified above.
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Prescriptive decision tree

When addressing prescription problems, it is necessary to identify a set of
decision variables D, such that an objective on y can be reached (e.g. a cost
can be minimised). As for the previous trees, when y cannot be directly
measured, it is necessary to define a kinematic model y = f(D). If no vali-
dation dataset ŷ is available, there is no scientific way to set D. Otherwise,
control theory can help to adapt the kinematic model to realisations in the
real world. The optimal solution is obtained by using mathematical min-
imisation (e.g. derivatives) on the motion equations of the system. When
measurements are available on a subset of realisations of y, unsupervised
clustering is used to extend the properties of the observed dataset with a
clustering function y = g(D). If the problem is an assignment problem, the
clustering boundaries g may be sufficient to solve the problem (e.g. assign-
ment of parts to processing nodes); otherwise, it is necessary to enumerate
all of the alternatives and to select the best one. When a dataset with
observations for all of the entities is available and it is possible to define a
feasibility region for any value of y, optimisation should be used. Figure 4.3
presents the decision tree, along with the decision steps identified above.
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The resulting classification of problems, analytics, and solving tech-
niques is introduced in Table 4.2. Each row of the table refers to a problem
within its system domain (i.e. warehouse/production plant/distribution
system). It identifies the type of decision (design or control) and the en-
tities involved (e.g. part, vehicle). The right side of the table describes
the classes of analytics that address the problem, and the methodologies
for obtaining a solution (according to the labels used in the decision trees).
For example, the first row of the table addresses the family problem (P1) in
warehousing systems. This is a design decision involving the definitions of
clusters of SKUs. SKUs are, then, the entities involved in being modelled
as parts in the ontology. The problem is addressable by using descriptive or
explorative methodologies, labelled as D1, D2, and D3 in the decision trees.
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4.4 Main contributions of this book

Chapter 3, and the previous paragraph of this chapter, introduced a new
method to structure data, and precise pattern to identify the analytical
approach to solve a problem. The remainder of this book shows how to apply
these elements to distribution networks, storage systems, and production
plants.

In particular, we focus on the data-driven models presented in part II
to show how to learn information from a dataset; while part III, IV, and V
shows what information can be learnt from logistics and operational data.

We explore the role of data in logistics and operations research. The
research, according to the first three paradigms, involves the design of a
model and the optimisation of the modelled system using the models’ pa-
rameters. Here we use the fourth science paradigm; for this reason, the solely
modelling activity involves the definition of consistency rules between data
(i.e. the information framework introduced in chapter 3). For this reason,
each of the following sections proposes relational, and non-relational data
structures to host data from a specific industrial domain (i.e. warehousing,
transportation and production). We will show that, if data are stored cor-
rectly, it is possible to define consistency rules to get the highest information
even when the input data is incomplete.

Another important contribution regards the way we do research. Re-
searchers must do experiments. Doing experiments at a system level is hard
since it is impossible to build a lab containing a globally distributed supply
chain. For this reason, we create virtual environments using digital twins
of the entities of a supply chain. Then, we do experiments on these virtual
entities. Data define the entities while scripts of code do the experiments
on these entities. Our research becomes reproducible since the scripts can
be run many times with different input data supporting the generalisation
of our research. These scripts implement the analytics, that is the tech-
nology we want to explore and test in this research. There are two groups
of scripts implemented within the virtual laboratory: general-purpose, and
problem-oriented scripts.

General-purpose scripts implement general-purpose methods, i.e. pieces
of code based on data-driven approaches that are not necessarily linked to
the field of logistics and operations. All the methods illustrated in part II
belong to this class of scripts.

Problem-oriented scripts find the solution of a problem by using a decision-
pattern illustrated in 4.2, and may combine many general-purpose scripts.
These methods are presented in part III, IV, V.

Another type of script manages the flow of data from the industrial data
sources to the other type of scripts. Figure 4.4 illustrates the flow of data.

To support the research community in the field of supply chain systems
with robust methods, and data structure, problem-oriented and general-
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Figure 4.4: Data flow between scripts.

purpose scripts are written using python [3], the most used programming
language nowadays, and distributed with an open-source licence, according
with the open-science mission indicated by the European Union [4].1

From a research perspective, we can state several research questions
addressed by the contents of this book.

RQ1: Which data are needed to solve a problem in the field of logistics
and operations?

RQ2: how to collect, organise, preprocess and manipulate this data?

RQ3: which method should be used to address an issue in the field of
logistics and operations?

RQ4: when the data-driven approach is recommendable to address a
problem in the field of logistics and operations?

The remainder of this book is organised as follows. Part II introduces
and clarifies all the math, statistics and the basic models which will be
applied in this book. Part III, IV and V are dedicated to a logistic system,
i.e. storage nodes, distribution networks, and production plants. Each part
has a similar structure illustrating:

• The design of a diagnostic model to assess the entities and the metrics
of a logistics system;

• The design of a relational data structure to store planned and actual
logistics/operations data;

• The design of a non-relational data structure to store planned and
actual logistics/operations data;

1The package logproj contains general-purpose, and problem-oriented scripts here.

https://github.com/aletuf93/logproj
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• Model-driven methods to address control issues of the logistic system;

• Data-driven methods to address control issues of the logistic system;

• Model-driven methods to address design issues of the logistic system;

• Data-driven methods to address design issues of the logistic system.

Part VI presents three data-driven case studies in the supply chain systems
illustrated in the book to reveal the practical value and implications of the
data-driven approach.
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Logical Modelling

All models are wrong, but some
are useful.

George E. P. Box

This book part is about math. Nevertheless, before deepening into math,
it is necessary to mention the Logic, another important branch of science
deeply connected with math. The Logic was the main character of the
philosophical debate in ancient Greece. Aristotle was the first to set the
rules of the Logic as we study nowadays [1].

Today we study the Logic by using the truth table and the logical oper-
ator (i.e. AND, OR, NOT ). These simple operations on zero and ones are
performed on any CPU allowing from simple calculations to the moon land-
ing, to machine learning and artificial intelligence. Every input or output
of a computer is processed by using the rules of the logic.

Logical modelling is crucial for all the STEM disciplines (science, tech-
nology, engineering and mathematics) to identify a deterministic connection
between the input and the output of a phenomenon. Logic permits to STEM
researchers to build models based on their intuitions. These models can be
validated or not by using math and statistics. Nevertheless, it is necessary
to remember that all models are wrong. Models approximate reality, but
they are not reality. For this reason, they are wrong.

Models help to understand how reality works. If you can understand
reality, you can control, and change it. This fact is actual in the field of
logistics and operations, whose environment involves thousands of resources,
assets, goods and tasks. In this chapter, we use the logic to model and
connect these entities aiming at the understanding of complex operational
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environments.

5.1 Business Process Model and Notation

Literature introduces many notations for modelling a business process. In
this work, we introduce the Business Process Model and Notation (BPMN)
that results adequate, when applied to the modelling of logistics and oper-
ational processes [2]. The BPMN uses a number of predefined symbols to
model entities, flows, resources and activities of any business process. The
full notation requires hundred of pages of details, but the main elements
(see Figure 5.1) are three [3]:

• Event: it is represented by a circle and is something that “happens”
during a business process. These Events affect the flow of the process
and usually have a cause (trigger) or an impact (result).

• Activity: it is represented by a rounded-corner and is a generic term
for work that company performs.

• Gateway: it is represented by a diamond and is used to control the
divergence and convergence of flows as a logic gate.

Figure 5.1: Main elements of a BPMN.

The following sections of this work identify the resources, asset, tasks
and goods to associate with each of these elements. Figure 5.2 illustrates
an example of a BPMN to describe the operations of a port terminal.
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An additional logistic feature of the BPMN is represented by the possi-
bility of georeferencing tasks and events. Using this method, the physical
location of each activity is identified. In addition, it is possible to annotate
the responsible of the activity. The BMN allows tracking the physical and
information flows of logistics operations qualitatively, by introducing logical
rules on the events and gateways leading to the tasks.
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Elements of probability and statistics

Let math do its work.

This work comes with the idea that probability and statistics can solve
the majority of the problem from logistics and operations. Unfortunately,
many logistics and operations managers forgot about the superpowers of
statistics. Software developers do the same while deploying warehouse man-
agement systems (WMS), transportation management system (TMS) and
manufacturing execution system (MES). For this reason, this chapter re-
views the most essential elements of statistics and probability upon which
are the base of the methods implemented in the following chapters. To
support the reader, an online repository with the implementation of all the
methods presented in this part of the book is available. While these chap-
ters focus on the mathematical core of the analytics and methods, their
implementation is valuable as an example reference for the readers. The
following chapters use sample dataset in the field of data science (e.g. the
iris dataset, the wine dataset, the digits dataset) to illustrate the methods.
The remainder parts of the book, instead, will implement the same methods
using logistics system and operations management industrial datasets.

6.1 Probability Theory

Probability theory aims at defining the behaviour of a variable (let us call
it random variable) whose value is not deterministic. A random variable
describes the realisations of an event whose outcomes are not static. Any
phenomenon measured on-field is describable by a random variable. Flip-
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ping a coin is an event having two outcomes (heads or tails); a random
variable can be used to describe the outcome (e.g. the expected number of
heads over many flips). Operations and logistics management are based on
many quantities measured on-field (e.g., time and motion, efficiency, pro-
ductivity, as already introduced in Chapter 3). Random variables can be
used to describe all these variables.

Switching to math, we can define a series of n observations recording
the values of n different realisations of the event described by the random
variable X. In practice, we use the n empirical observations to infer the
properties of the random variable X. A random variable X is fully defined
by:

• a probability density function (PDF) fX(x), or

• a cumulative distribution function (CDF) FX(x) defined as follows.

fX (x) = prob{X = x} (6.1)

FX (x) = prob{X ≤ x} (6.2)

The probability theory is based on the knowledge of the CDF or PDF of
a random variable X. As previously stated, one out of the two functions is
enough to fully define X since f and F are linked by the following equation.

FX(x) =

∫ x

−∞
fX (t) dt (6.3)

Probability theory defines many “famous” probability functions where f
and F are defined on a continuous domain by using closed-form equations.
The Gaussian, exponential, uniform, beta, Weibull distributions are exam-
ples of continuous probability distributions. Discrete distributions as the
binomial and Poisson are used to define a discrete realisation of an event
(e.g. heads or tails, ’0’ or ’1’). In practice, a researcher tries to find the
best fit between a series of n realisations collected on-field and a “famous”
probability distribution with known f and F . When he/she finds an ade-
quate fit, the probability distribution models the behaviour of the random
variable and can be used to infer relevant information of the observed event.

In practice, we interpret the as a frequency analysis (i.e. the histogram)
of the random variable X. On the other side, the CDF measures the relative
importance of every single observed value cumulated to all the previous.
Figure 6.1 shows the empirical and the best-fit PDF and CDF of a sample
with n = 200 observations.1

1The source code of Figure 6.1 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/01.%20Probability%20Theory.ipynb
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Figure 6.1: Empirical and best-fit probability distribution

6.1.1 Statistical Moments

As stated before, it is of our interest to infer properties on the random vari-
able to understand the realisations of the related event. Statistical moments
are properties that aim at parametrising the shape of a PDF. Let us define
the moment of order m as:

E [(x)
m

] =

∫ +∞

−∞
xmf (x) dx (6.4)

and the central moment of order m, as:

Mm = E[(x− µ)
m

] (6.5)

The moment of the first order is called mean (or expectation) of the prob-
ability distribution, generally indicated using the Greek letter µ = E[(x)].

The central moment of the second order is called variance, and it quan-
tifies how much the observations are far from the mean value µ of the
distribution. The variance is represented by σ2.We can express the value of
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σ2 by using equation 6.4.

σ2 = E
[
(x− µx)

2
]

=

∫ +∞

−∞
(t− µ)

2
fxdt = E

[
x2 + µ2 − 2xµ

]
= E

(
x2
)

+ µ2 − 2µ2

= E
(
X2
)
− µ2

(6.6)

Usually, we take care of σ =
√
σ2 since it has the same unit of measure of

µ.

Other important central moments (order 3 and 4) are used to describe
the shape of a PDF:

• M3

σ3 is called skewness;

• M4

σ4 is called kurtosis or flatness.

Figure 6.2: Skewness and kurtosis of a lognormal distribution.

Figure 6.2 presents an example of skewness and kurtosis of different
distributions (here we use the lognormal). Skewness describes how the mode
M of the distribution is far from the mean µ (positive skewness when M < µ
and negative skewness when M > µ). Kurtosis defines the tailedness of the
distribution, higher the kurtosis, higher the relevance of the tails of the
distribution.2

2The source code of Figure 6.2 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/01.%20Probability%20Theory.ipynb
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6.1.2 Covariance and Correlation

Often, it is necessary to compare the behaviour of two random variables to
understand if their related events are somehow correlated. The covariance
function cov(X,Y ) measures how much two random variables vary together.

cov (X,Y ) = E [(X − E [Y ]) (Y − E [Y ])] = E [XY ]− E[X]E[Y ] (6.7)

The correlation between two random variables is a scalar number defin-
ing a measure of their statistical association. The correlation between two
random variables is measured normalising the covariance to ρX,Y .

ρX,Y =
cov(X,Y )

σXσY
(6.8)

Measuring the correlation between variables is extremely important to
evaluate their information content. If two variables are completely corre-
lated (or uncorrelated), their information content is entirely defined by a
single of them. Scatterplots are used to visualise correlations. Figure 6.3
presents an example from the famous iris dataset. This dataset is largely
used in machine learning examples, and it contains 50 samples for each of
the three species of the iris flower (iris setosa, iris virginica and iris ver-
sicolor). For each sample, the dataset maps the sepal and petal length
and width. A high positive correlation can be easily identified between the
variables petal len and petal wid.3

Sometimes, it may be interesting to evaluate how much a single random
variable varies with itself. This is the case of a time series that may have
some seasonal components. The autocovariance is introduced to meet this
goal. It measures how much a random variable varies with itself after some
lag k (e.g. the sampling period of a time series).

γk = cov (Xt, Xt−k) = E [(Xt − µt) (Xt−k − µt−k)]− µtµt−k (6.9)

Similarly to the variance, it is possible to define a global autocorrelation
function (ACF) ρk measuring the correlation of a variable X with itself after
a time lag k. This function expresses the linear dependence between the
random variable observed at time t and itself observed at time t− k.

ρk = corr (Xt, Xt−k) =
E[(Xt − µt)(Xt−k − µt−k)]√

V ar(Xt)V ar(Xt−k)
(6.10)

A partial autocorrelation function (PACF) φkk is introduced to measure
the linear dependence between the random variable observed at time t and

3The source code of Figure 6.3 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/01.%20Probability%20Theory.ipynb
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Figure 6.3: Scatterplot of the iris sample dataset.

itself observed at time t− k without taking into account the intermediate
correlations (i.e. φkk does not consider the dependence between Xt and
Xt−1 ; Xt and Xt−2 ; ... ; Xt and Xt−k+1).

φkk = Corr(Xt, Xt−k|Xt−1, Xt−2, . . . , Xt−k+1) (6.11)

Figure 6.4 illustrates a seasonal time series with its ACF and PACF. ACF
and PACF of the series evidence that autocorrelation of the realisations
exists after about five time lags.4 Additional details on the use of this
information for time series analysis are introduced in Section 6.5.

4The source code of Figure 6.4 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/02.%20Time%20Series.ipynb


Re
vi
ew
ed
Ve
rs
io
n

6.1. PROBABILITY THEORY 71

Figure 6.4: An example of the ACF and PACF of a time series.

6.1.3 Distance between random variables

In many applications, it is interesting to have a measure of the distance
between two random variables as, for example, the distance between two
points on a line, chosen with a law of probability.

The distance function is a random variable Z estimated as Z = |x− y|.
We need to estimate its PDF or CDF to get knowledge about Z. By the
definition of F we have:

Fz (z) = Prob{Z ≤ z} = Prob {|x− y| ≤ z} (6.12)

It is necessary to integrate the density function fZ in the domains DX ,
and DY , to calculate FZ .In order to define the domains DX and DY , it is
necessary to consider the function Z = |X − Y | on the plan x,y (see Figure
6.5).

The value of FZ can be determined from the PDF fXY .

Fz (z) =

∫
DX

∫
DY

fxy (x, y) dxdy (6.13)

Let assume X and Y being independent5 and uniformly distributed on

5With the independence hypothesis, fXY = fX • fY
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Figure 6.5: Domain of the random variable Z = |X − Y |

[0, p].

X U [0, p] ; fx =
1

p
;Fx =

x

p

Y U [0, p] ; fx =
1

p
;Fx =

y

p

(6.14)

The value of FZ is consequently defined as:

FZ(z) =

∫
DX

∫
DY

fx (x) fy(y)dxdy (6.15)

The domain of the function is one out of the three regions of plan defined
by the corresponding equalities Y = X + Z , Y = X − Z. In Figure 6.5,
Z = 0.5. The region is the one between the two lines. It is, then possible
to obtain FZ .
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Fz (z) =

∫ x=p−z

x=0

∫ y=z+x

y=0

1

p
× 1

p
dy dx +

∫ x=z

x=p−z

∫ y=p

y=0

1

p
× 1

p
dy dx +

+

∫ x=p

x=z

∫ y=p

y=x−z

1

p
× 1

p
dy dx =

=
1

p2

{∫ x=p−y

x=0

(x+ z) dx+

∫ x=z

x=p−z
pdx+

∫ x=p

x=z

(p− x+ z) dx

}
=
z (2p− z)

p2

(6.16)

The PDF fZ is defined from equation 6.3 as follows.

fZ(z) =
dF (z)

dz
=

2 (p− z)
p2

(6.17)

We can prove that fz is a PDF since by the definition of X,Y its domain
is [0, p] and its integral equals 1.

fZ(z) =

∫ p

0

2 (p− z)
p2

dz =

[
2z2

2p2

]p
0

= 1 (6.18)

At this stage, all the properties of Z are defined by f and F . For
example, it is possible to calculate the mean value corresponding to the
average distance between X and Y .

E [Z] =

∫ p

0

2 (p− z)
p2

zdz =
1

p2

∫ p

0

(
2pz − 2z2

)
dz =

=
1

p2

[
2pz2

2
− 2z3

3

]p
0

=
1

p2

[
p3 − 2p3

3

]
=

=
p

3

(6.19)

The procedure above can be applied to any probability distribution of X
and Y under the independence hypothesis.

6.2 Statistics

The statistic is an application of the probability theory to infer the proper-
ties of a population of elements working on a small subset of it (also known
as ”sample”). The statistic was born to solve the trade-off between the
time necessary to collect data on-field and the accuracy of the information



Re
vi
ew
ed
Ve
rs
io
n

74 CHAPTER 6. ELEMENTS OF PROBABILITY AND STATISTICS

obtained by these data. In fact, it is always impossible to collect all the
information available since a population may count thousand or millions
of different elements. Statistics provides models to get robust results even
when we have few observations of a physical phenomenon.

6.2.1 Estimators

Statistics usually follows a precise workflow:

1. Collect data;

2. Sample data;

3. Infer properties from samples to the whole population.

The last step is the one we are interested in the most: we need to
estimate the parameters of the probability distribution of the population.
Estimators are used to calculating the value of a parameter of a population
(e.g., the mean or the variance) based on the observed values given by the
sample. Estimators are classified as biased or unbiased. We call ”unbiased”

an estimator θ̂ of a parameter θ when E
[
θ̂
]

= θ.

The most common estimators are needed for the estimation of µ and σ
of the population. The sample mean X̄ is an unbiased estimator of µ (see
equation 6.20). While the sample variance S2 is an unbiased estimator for
σ2 (see equation 6.21).

X̄ =
X1 + . . .+XN

N
(6.20)

S2 =
1

N − 1

N∑
i

(
Xi − X̄

)2
(6.21)

Estimators are evaluated according to their accuracy (i.e. their closeness
to the random variable they estimate). In general, we can find two sources
of inaccuracy of an estimator: the bias and the variance. Let assume having
a model f producing an estimator θ̂ for the random variable θ with an error
ε.

θ ' θ̂ = f (X) + ε (6.22)

A vector x0 defines a set of realisations of X and we want to define the error
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of the estimator θ̂.

ε (x0) = E

[(
θ̂ − f̂ (X)

)2

|X = x0

]
=

= E

[(
θ̂ − E

[
f̂ (x0)

]
+ E

[
f̂ (x0)

]
− f̂ (xo)

)2
]

=

= E[
(
θ̂ − E

[
f̂ (x0)

])2

+
(
E
[
f̂ (x0)

]
− f̂ (xo)

)2

+

2
(
θ̂ − E

[
f̂ (x0)

])
×
(
E
[
f̂ (x0)− f̂(x0)

])
] =

= E

[(
θ̂ − E

[
f̂ (x0)

])2
]

+ E

[(
E
[
f̂ (x0)

]
− f̂ (xo)

)2
]

+

+E
[
2
(
θ̂ − E

[
f̂ (x0)

])(
E
[
f̂ (x0)− f̂ (x0)

])]
=

V ar
(
f̂ (x0)

)
+
(
E
[
f̂ (x0)

]
− f̂ (xo)

)2

= V ar
(
f̂ (x0)

)
+ Bias2

(
f̂ (x0)

)

(6.23)

The error of an estimator can be defined according to 6.23 using:

• Bias2
(
f̂ (x0)

)
is the squared bias in the estimation of the mean. It

describes how much the mean of the estimator is far from the true
mean.

• V ar
(
f̂ (x0)

)
is the deviation of the estimator around its mean.

The role of the variance and bias can be easily interpreted graphically
in Figure 6.6.

Complex prediction models developed using data-driven methods, have
to take into account the variance and the bias of the predictions they pro-
duce. In particular, there is a bias-variance trade-off. Typically, the more
complex the model, the lowest the variance and the highest the bias pro-
duced by predictions of the models. On the opposite, a simple model leads
to low bias but high variance. Practically speaking, it is always necessary
to take into account the bias and the variance of the response of a model
to check if it fits with its purpose. Developing a complex model to solve a
simple problem is just a way to add additional bias to the responses of the
model. In general, we keep a model as simpler as possible (according to the
Ockham’s razor principle).

We introduce the Gauss-Markov theorem to show an important property
of the linear regression estimator, one of the simplest prediction models (see

chapter 9). Let θ̂ = cT y be an unbiased estimator of:

αTβ = αT
(
XTX

)−1
XT y (6.24)
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Figure 6.6: The bias and variance of an estimator

Then:

E
[
cT y

]
= αTβ (6.25)

V ar
(
αT β̂

)
≤ V ar(cT y ) (6.26)

The 6.24 is the expression of a linear regression of θ = αTβ. In other
words, a linear regression provides the lowest variance estimator possible.
The lowest variance does not imply a lower error in the prediction since
we have no information about the other error component (i.e. the bias).
Nevertheless, we should prefer linear regression, that is a very simple model,

when we are sure there is no bias, i.e. E
[
E
[
θ̂
]
− θ
]2

= 0. In other words,

when the world behaves linearly, use a linear model.

6.2.2 Maximum Likelihood Inference

In many practical cases, we need to get a good estimate of a parameter θ of
a PDF, given a sample of the population. Maximum likelihood estimation
(MLE) is the tool to do that. We define a function gθ(z); where g is the
PDF (e.g., normal distribution) of zi and θ are the unknown parameters to
estimate (e.g. the mean and the variance µ, σ2). We need to find values of
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θ such that they properly represent the statistical sample. This equals to
imply the maximisation of a likelihood function L.

L (θ, Z) =

N∏
i=1

gθ(zi) (6.27)

The maximisation is done by considering the logarithm of L. Maximising
L will maximise log(L) too, due to the monotony of the logarithm. To get
a maximum likelihood estimation, we need to maximise:

l (θ, Z) =

N∑
i=1

l (θ, zi) =

N∑
i=1

log (gθ (zi)) (6.28)

This is done by looking for θ maximising the function:

l̇ (θ, Z) =

N∑
i=1

l̇ (θ, zi) =

N∑
i=1

∂l (θ, zi)

∂θ
= 0 (6.29)

In practical cases, it may be difficult to express the formula of the PDF
g and to calculate its derivative to get an MLE. Computerised algorithms
have been implemented to solve this problem by approximation where it is
not possible to solve it analytically. Bootstrap and Montecarlo simulation
are common examples.

6.2.3 Kernel Density Estimation

The estimation of a PDF, can be obtained using a graphic methodology,
instead of mathematically define its parameters. Having a set of empirical
observations, it is always possible to use a histogram to represent its fre-
quency analysis. The width of each bin of the histogram defines the shape
of the curve. Figure 6.7 shows different histograms of the same empirical
sample by using different widths of the histogram bins.6

Kernel Density Estimation (KDE) is a procedure to estimate the PDF
of a random variable based on its observations. The idea is to define the
shape of the PDF based on the empirical values smoothed around a local
region b called bandwidth. This is similar to the choice of the number of
bins to define a histogram. KDE can be expressed as:

f̂ =
1

n

n∑
i

K

(
x− x(i)

b

)
(6.30)

6The source code of Figure 6.7 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/03.%20Statistics.ipynb
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Figure 6.7: Definition of histograms with different bin size

Where K is a kernel function with a peak on 0 (it is common to use
a gaussian function). Figure 6.8 shows the effect of different KDEs with
several values of b. 7

6.2.4 Bootstrapping method

Bootstrapping is an algorithm used to estimate the value of a parameter α
(e.g. the mean or variance) from a population where its PDF is unknown
or too difficult to estimate analytically. Let X be a set of observations with
cardinality n. Algorithm 1 illustrates the Bootstrapping method.

Algorithm 1: Bootstrapping algorithm

Set the number of iterations B
for i = 1 : B do

Set β = n points randomly picked from X.
Use β to estimate the parameter α.

end
Define the confidence interval of α using the statistic of the B
iterations; ᾱ = 1

B

∑B
i=1 αi

7The source code of Figure 6.8 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/03.%20Statistics.ipynb
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Figure 6.8: KDE with different bandwidths to estimate the PDF of an
empirical sample.

6.2.5 Montecarlo method

Montecarlo simulation is a valid alternative to measure the outcome of a
process where many random variables with given PDF are involved, but
their joint distribution is hard to compute.

Let consider the M random variables Xi i = 1, . . . ,M whose distribution
are given and α = f(Xi). We need to infer properties on the distribution
of α. Algorithm 2 shows the Montecarlo simulation to estimate the distri-
bution of α.

Algorithm 2: Montecarlo algorithm

Set the number of iterations M
for i = 1 : M do

Sample the value for each Xi, i ∈ q according to their PDFs
Evaluate α = f(Xi)

end
Define the confidence interval of α using the statistic of the M
iterations; ᾱ = 1

M

∑M
i=1 αi

6.2.6 Data collection and Measurement systems

Dealing with empirical data, it is always necessary to define a measurement
system to pick accurate data on-field. If the measurement system is not ac-
curate or not precise, all the following analyses will keep an underlying error.
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A measurement system determines the measured value X1 of a realisation
Xtrue. Having:

X1 = Xtrue + β + ε (6.31)

Where Xtrue is the real value of the variable; β is the bias (accuracy or
systematic error), i.e. how much far the average value of the measure is from
Xtrue; ε are random errors depending on the precision of the measurement
system. A good measurement procedure has:

µ = lim
N→+∞

1

N

N∑
i=1

Xi = Xtrue + β (6.32)

lim
N→+∞

1

N

N∑
i=1

εi = 0 (6.33)

The analysis of uncertainty aims at the definition of β and ε of data
collected on-field, providing methods to handle and process empirical data
correctly.

Systematic errors

Systematic error (or bias errors) is determined by a measure of the accuracy
of the measurement instrument. Systematic errors occur when an instru-
ment has not an appropriate level of accuracy compared to the variable one
wants to measure. For example, it is inadequate to measure the length of
a warehouse rack using a ruler. A measurement instrument always requires
calibration to be accurate. For example, using a calliper, the systematic
error is often linked to a wrong calibration.

Uncertainty errors

The uncertainty error (or random errors) is a measure of precision linked
with the random nature of the measurement process. This is unavoidable
and must be normally distributed in any empirical data collection (e.g., the
processing time of a part on a workbench should be normally distributed
when the process is under control).

Mistakes

Mistakes are data points with wrong values. They may be error storing the
results of an experiment or outliers which must be deleted when there are
solid arguments against the value of these data points.
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Data cleaning

The process of cleaning data implies deleting data points whose value is
outside the limit of the analysis one wants to perform. In particular, it
often happens to have outliers whose measure is due to errors, having no
connection with the real measure. We introduce two methodologies to deal
with outliers.

The Chauvenet’s criterion provides a simple method to deal with outliers
assuming that data have a Gaussian distribution with mean µ and standard
deviation σ. Let consider a point i with value xi to be suspect of being an

outlier. Its t-value is defined as ti = |xi−µ|
σ . Chauvenets’ criterion considers

the probability that i is found inside or outside a probability band defined
as P = 1 − 1

2N ; where N is the number of samples. Chauvenet’s criterion
defines z = Prob (tiσ /∈ P )×N . If z < 0.5 the point should be rejected. In
other words, if a point i is too far from the mean of the normal distribution
associated with the sample, it should be rejected. 8

The second methodology we introduce to deal with outliers is the in-
terquartile range (IQR). The IQR method considers the range between the
25th and the 75th percentile of the data points to detect outliers. In partic-
ular, being IQR = Q3 − Q1, where Q1, and Q3 are the first and the third
quartile (equivalent to the 25th, and the 75th percentiles), outliers are found
below Q1 − (1.5× IQR), and above Q3 + (1.5× IQR).9

6.3 Statistical Distributions

This section introduces the relevant statistical distribution for the applica-
tions in the field of logistics and operations.

6.3.1 Normal distribution

The most important probability distribution is called normal (or Gaussian)
distribution, and its PDF is defined as:

f (X) =
e−

(X−µ)2

2σ2

σ
√

(2π)
(6.34)

Having mean µ =
∑N
i=1

xi
N , and standard deviation σ =

[
1
N

∑N
i (Xi − µ)

2
] 1

2

.

When the distribution has a large standard deviation, its peak tends to be
lower.

The Normal distribution is characterized by a concentration of the obser-
vation around the mean. It is possible to control the density of the function

8The source code of the Chauvenet’s method is available here.
9The source code of the IQR method is available here.

https://github.com/aletuf93/logproj/blob/master/logproj/ml_dataCleaning.py
https://github.com/aletuf93/logproj/blob/master/logproj/ml_dataCleaning.py
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with reference to the distance from the mean µ expressed in terms of the
number of standard deviations σ (Figure 6.9).

Figure 6.9: Normal distribution probability distribution function (PDF).

When a random variable X is normally distributed, we can prove that
there is a probability equal to 0.95 that its mean value is found within a
confidence interval of 1.96σ.

Prob

{
−1.96 ≤ Xi − µ

σ
≤ 1.96

}
= 0.95 (6.35)

Prob {Xi − 1.96σ ≤ µ ≤ Xi + 1.96σ} = 0.95 (6.36)

A normal distribution has many useful properties. In practice, it is nec-
essary to prove that a sample is normally distributed (e.g. using statistical
tests see 6.4) to apply all the magical properties of the normal distribu-
tion. This way, by estimating the σ of the population with the estimator

s = 1
N−1

∑N
i=1 (Xi − X̄)

2
, the mean value µ of the population will have a

confidence interval of 95% within the range ±1.96σ. The central limit theo-
rem generalises these properties of the normal distribution to any statistical
distribution.

6.3.2 Central limit theorem

The central limit theorem states that describing an event with a sufficiently
large number N (with N ≥ 30) of random variables Xi, the arithmetic mean
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of these variables is normally distributed.

x̄ =
X1 +X2 + . . .+XN

N
∼ N(µ, σ) (6.37)

In other words, no matter the distribution of the random variables Xi,
increasing the number of experiments measuring Xi, there is a random
variable describing the mean value of the experiments, and it is normally
distributed.

6.3.3 Multivariate normal distribution

The multivariate normal distribution generalizes the univariate normal dis-
tribution to a multidimensional space. Assume X = (X1, . . . , Xp)

T
be a

p-dimensional random vector. X is distributed as a multivariate normal
distribution when its density function is as follows.

X ∼ Np (µ,Σ) = f (x1, . . . , xp) =
1

(2π)
p
2 |Σ|

1
2

e−
1
2 (x−µ)TΣ−1(x−µ) (6.38)

Where µ is the mean vector µ = E [X] = [E [X1] , E [X2] , . . . , E [Xp]]
T

and Σ is a p×p covariance matrix Σi,j = E [(Xi − µi) (Xj − µj)] = Cov[Xi, Xj ].

6.3.4 Poisson Distribution

The Poisson distribution is a discrete probability distribution useful to de-
scribe the realisations of events when the average time between the event
is given, but the interarrival time between the events is random. This situ-
ation is common when dealing with queues (the average throughput of the
resource is given, but the interarrival time of the workload is random) or
maintenance (the mean time to failure is given, but the exact failure time
is unknown). The Poisson distribution has PDF:

Prob (X = k) =
λke−λ

k!
(6.39)

The Poisson distribution identifies the probability of realisation of k
events within a time interval τ having an average number of event per time
unit d, where λ = dτ . Figure 6.10 identifies the shape of the PDF of the
Poisson distribution using different values of λ.10

10The source code of Figure 6.10 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/03.%20Statistics.ipynb
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Figure 6.10: Poisson distribution probability distribution function (PDF).

6.3.5 Triangular Distribution

Some times empirical measurements are done on the minimum, maximum
and average value of a random variable X. In these situations, we have only
three values to infer the properties of the random variable X. Triangular
distribution assumes X having a density with a triangular shape with its
mode in correspondence of the mean value, and the vertices at the minimum
and maximum values. The triangular distribution has PDF:

f(X) =



0 if X < a,
2(X−a)

(b−a)(c−a) if a ≤ X ≤ c,
2
b−a if X = c,

2(b−X)
(b−a)(b−c) if c < X ≤ b,
0 if b < X

(6.40)

Where a is the minimum value, b is the maximum value, and c is the
mean value. Figure 6.11 shows the shape of a triangular distribution.11

11The source code of Figure 6.11 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/03.%20Statistics.ipynb
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Figure 6.11: Triangular distribution probability distribution function
(PDF).

6.4 Statistical tests

All the statistical tools introduced so far have been used with a descriptive
purpose, i.e. to describe the behaviour of an experiment. At some point, it
may be necessary to use statistical tools to get answers about the validity of
a theory (e.g. a research intuition). Statistical tests are used for this reason.
A statistical test checks if a “test distribution” (e.g., Gaussian, t, χ2) fits
with the empirical data. The workflow of a statistical test is as follows.

1. Identify the problem and the parameters of interests;

2. State the null hypothesis H0;

3. State the alternative hypothesis H1;

4. Identify a level of significance α;

5. Choose an appropriate statistical test;

6. Define the rejection region for the null hypothesis;

7. Compute the test and check whether H0 should be rejected or not.
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H0 (or, more often H1) is the hypothesis (e.g. the research intuition
one wants to test). Engineeringly speaking, H0 is often formulated as the
opposite of what one wants to test. Such that, rejecting H0 is a successful
test since it supports the initial thesis.

A typical null hypothesis is that there are no differences between two
parameters (e.g., the means µ1 and µ2) observed from two populations
(i.e. they have the same distribution and the differences between them are
only due to the chance). The hypothesis is tested within a certain level of
significance α. Any statistical test works calculating a probability p called
p-value.

The p-value is the probability of obtaining an empirical result more
extreme than the observed ones due to the sample variability, assuming H0

being true. In other words, the p-value is an estimation of the probability
that rejecting the null hypothesis is only due to the chance. A high p-value
may be due to a bad selection of the sample (e.g., too small) while a low
p-value suggests the significance of the test.

For a random variable X with unknown distribution, we observe a value
x. The calculation of p-value is:

p = Prob {X ≤ x|H0} (6.41)

Figure 6.12 shows an example whereX is an unknown distribution that is
tested to have the same mean µ of the represented normal distribution. The
null hypothesis H0 is that “the empirical data are normally distributed”. In
the figure on the left, the sample with mean value X is too far from the mean
of the distribution and the p-value is low; for this reason, H0 is rejected.
Otherwise, in the figure on the right, the sample with mean X behaves as
the distribution (within the confidence interval of the test α = 0.05), the
p-value is higher than α, and H0 is not rejected.

The significance of the test depends on the value of α chosen for the
test. Table 6.1 shows some common values of α used to accept or discard
hypothesis. Please note that α has to be chosen before the test depending
on the context and the level of significance expected from the decision-
maker. It is a bad practice to make an experiment and afterwards evaluate
its results depending on the p-value.

6.4.1 Z-test (normal distribution)

Z-test is used to check if the mean value of a sample is equal to a reference
value. In other words, given the value of σ, one wants to check how far is the
sample mean X̄ from the population mean µ. Table 6.2 lists the summary
of the Z-test.

Z-test assumes a normal distribution and evaluates the Z-score of the
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Figure 6.12: Graphical representation of a statistical test.

Table 6.1: p-value and levels of significance.

Table 6.2: Z-test summary.

distribution. The statistic of the test is as follows.

Z =
X̄ − µ
σ/
√
n

(6.42)
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where n is the number of samples. If Z < −1.96 OR Z > 1.96 H0 is
rejected. The p-value is higher than 0.05 and the value of X̄ is too far from
µ. If −1.96 ≤ Z ≤ 1.96 H0 is accepted since X̄ falls within the acceptance
region. When the value of σ is unknown, or the sample size is too small
(n < 30), a similar test can be performed using a t-test.

6.4.2 t-test

The t-test aims at checking if a sample behaves like a normal distribution
when the sample size n is small. In other words, dealing with a small
sample it is important to check if it is possible to apply normal distribution
statistics or if the sample belongs to a different distribution. In practice,
it is necessary to compare the sample mean X̄ and the population mean
µ. Since the population variance is unknown, it is assumed σ2 = s2 i.e.,
the variance of the population equals the variance of the sample. The t-
student distribution measures the difference between the sample mean and
the population mean. The statistic of the test follows this distribution.

t =
(X̄ − µ)

s/
√
n

(6.43)

Where n indicates the number of samples i.e., the degree of freedom
of the distribution. Consequently , the t-distribution has a different shape
for different degrees of freedom (see Figure 6.13).12 When the number of
samples n (i.e. the degrees of freedom) approaches 30, the t-distribution
has the same shape of the normal distribution. Table 6.3 illustrates the
summary of this test.

6.4.3 χ2-test

This test is used to check if a sample is distributed according to a given
statistical distribution. The distribution of the test is a χ2 distribution
defined as:

χ2
k =

k∑
i=1

x2
i = x2

1 + . . .+ x2
k (6.44)

x1, . . . xk are random variables normally distributed and k is the number
of degrees of freedom. To check if a sample fits a statistical distribution (e.g.,
a normal distribution), the events are divided into k subset each one having
an observed frequency ok (sample) and an expected frequency ek (from the
distribution). The definition of the k classes is very important. The more
the classes, the more one can check the fit with a statistical distribution. A

12The source code of Figure 6.13 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/03.%20Statistics.ipynb
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Figure 6.13: PDF of the t-distribution with different degrees of freedom.

Table 6.3: t-test summary.

good rule is that % of the classes has at least 5 items and no class is empty.
The statistic of the test is calculated as follows:

s =

k∑
i

|oi − ei|2

ei
(6.45)

The value s is, then, compared to the value of a random variable χ2

distributed with n − 1 degrees of freedom. The greater the value of s, the
greater the gap with the theoretical distribution. To quickly compare the
obtained value of s, one defines a confidence interval α, i.e. the maximum
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p-value accepted and the value of the degree of freedoms (i.e. the number
of independent variables). The hypothesis is discarded, from the definition
of the p-value, when s ≥ χ2

dof . Note that the value α = 0.1 is the most
restrictive test since it considers a smaller region of acceptance than the
other (the non-acceptance region is 10% of the whole data distribution).
The hypothesis about the data and H0 of the test are summarised in Table
6.4.

Table 6.4: χ2 test summary

6.4.4 F-test

This test aims at checking if two samples are normally distributed with the
same variance. The statistics of this test is distributed as a Fisher-Snedecor
distribution.

F =
N1

m
N2

n

(6.46)

Where N1 and N2 are independent random variable χ2 distributed with
m and n degrees of freedom. The test assumes X and Y are normally
distributed. X has n samples and Y has m samples. The null hypothesis is
H0 = σ2

X = σ2
Y . The statistic follows a Fisher distribution with n − 1 and

m− 1 degrees of freedom:

F =
S2
X

S2
Y

(6.47)

The value of F can be easily calculated having a dimensional space a number
of p parameters considering the sum of the squared residuals.

F =

(
SSRX−SSRY

pX−pY

)
SSRY
n−pY

(6.48)

The summary of the F -test is presented in Table 6.5.

6.5 Time series analysis

A time series (TS) is a series of the realisation of a random variable measured
at constant time intervals. Time series can be used to forecast future values
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Table 6.5: F-test summary.

or to classify the realisations according to the properties of the TS (e.g., the
seasonality). Even if both these applications sound intuitive, there is a lot
of theory and math behind TSs. The entire theory of TS analysis is based
on statistics.

The aim of TS analysis is the definition of a PDF describing the realisa-
tion of the events over time. Sometimes observations are some way linked to
the others. This concept can be easily recognised thinking about the “con-
tinuity” of the nature around us (this is somehow related to the Principle
of Least Action, already introduced in chapter 3.2). Besides, it may exist
a seasonality involving observations distant in the time (e.g. every summer
is warmer than every winter). All these aspects drop the hypothesis of the
independence of the observed variable that is commonly used in statistics
to built simpler models. Under the independence hypothesis, it is possi-
ble to assume that the joint PDF of X1, . . . , Xn random variables equals
f(x1, . . . , xn) =

∏n
i=1 f(xi). This is not true for TSs, and our work will get

harder.

Since it is easy that each observation of a TS may depend on the pre-
vious: there is a sort of “influence” between them (in general, we can say
that a TS has memory). This is good news since it suggests that we could
check historical values to make forecasts, that is one of our purposes.

TSs are modelled as stochastic processes; for this reason, we introduce
the notation indicating X(ω, t), where X is the stochastic process. A TS
behaves as a set of events ω, one for each t step, generated by X(ω, t). The
random variable Xt models the event at each time period t. Figure 6.14
shows the inputs and outputs of a stochastic process. We aim at describing
the generating process X(ω, t) modelling the behaviour of the process to
make forecasts.

When modelling a TS as a stochastic process, there is a limit. A TS is
composed of a single observation for each couple (ω, t). This is equal to have
each event at a time t represented by a single record (as having a single TS
of the n represented in Figure 6.4). In practice, a single observation X(t) is
assumed to be representative of the entire event ω at time t. 13

13The package logproj provides methods to deal with time series here.

https://github.com/aletuf93/logproj/blob/master/logproj/stat_time_series.py
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Figure 6.14: Representation of a stochastic process.

6.5.1 Time series decomposition

TS decomposition is one of the approaches used to estimate the parameters
of a stochastic process. The first assumption is made on how the stochastic
process works. It is assumed it generates the TS based on three independent
components.

• A trend component T (t);

• A seasonal component S(t);

• A residual (random) component R(t).

The literature proposes two models to mix these components. An addi-
tive (see equation 6.49) and a multiplicative model (see equation 6.50). Fig-
ure 6.15 illustrates two realisations of an additive a multiplicative model.14

X (t) = T (t) + S (t) +R(t) (6.49)

X (t) = T (t)× S (t)×R(t) (6.50)

For the sake of brevity, the following paragraphs consider a TS modelled
through additive model (see equation 6.49) given that a multiplicative series
can be transformed into an additive one using a logarithm transformation.

log (X (t)) = log (T (t)× S (t)×R (t)) =

= log (T (t)) + log (S(t)) + logR(t))
(6.51)

For this reason, all the techniques here presented are applicable to mul-
tiplicative models (see equation 6.50) too. In practice, one can fit both of
them and measure their goodness of fit choosing the model which better
describe the empirical measurements.

14The source code of Figure 6.15 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/03.%20Statistics.ipynb
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Figure 6.15: Comparison between additive and multiplicative time series

An option to fit an additive model is to get the trend component of the
series as a linear regression model fitted by ordinary least square (OLS15).
The result is a function T (t) = mt + q, where m is the angular coefficient
and q is the intercept of the straight line best approximating the trend of
X(t). Alternatively, the trend can be estimated using a smoothing function,
for example, using a Moving Average (MA) with a time window equal to
the seasonality of X(t)16. Equation 6.52 illustrates the formula of the MA;
the time window is equal to 2h+ 1 (e.g., 2h+ 1 = 7 for a weekly seasonality
of a time series having one sample per day).

Tt =
1

2h+ 1

t+h∑
i=t−h

Xi (6.52)

Once the trend component T(t) has been extracted, the residual part
(see Figure 6.16) of the TS equals17:

S(t) +R(t) = X(t)− T (t) (6.53)

To estimate the seasonal component S(t) averaging is performed on the
residual series S (t)+R(t). Averaging works by grouping all the observation
of the same seasonal period and applying average on it. The resulting
value defines St. It is necessary to know the seasonality period to perform
averaging (see Figure 6.17). This can be done by the visualisation of the
graphs or analytically using the Fourier transform analysing the frequency
domain of the TS (see Section 6.5.3).

The residuals Rt are obtained, again, by subtraction. If the residuals
are randomly distributed, our model is interpreting the behaviour of the
TS correctly. Otherwise, if the residuals show a pattern, the estimations of

15Section 9.2 provides additional details of the OLS method.
16Sometimes, the seasonality of X(t) is unknown. Section 6.5.3 shows how to detect

the seasonality of a TS.
17The source code of Figure 6.16 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/03.%20Statistics.ipynb


Re
vi
ew
ed
Ve
rs
io
n

94 CHAPTER 6. ELEMENTS OF PROBABILITY AND STATISTICS

Figure 6.16: Extraction of the trend component from the TS.

Figure 6.17: Visualisation of the averaging method to estimate S(t)

T (t) and S(t) need more accuracy, or the choice of additive or multiplicative
model is wrong. Figure 6.18 shows the seasonal component and residuals.
The residuals are randomly distributed, and it is possible to conclude that
the decomposition process worked properly. Nevertheless, their magnitude
is significant; collecting a higher number of samples would help in practice
to reduce their magnitude and better detect the seasonality18.

18The source code of Figure 6.18 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/03.%20Statistics.ipynb
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Figure 6.18: Extraction of the seasonal component from the TS.

6.5.2 ARIMA models

A more complex way to model TSs comes from the autoregressive and mov-
ing average (ARIMA) models. These models are based on the Wold’s de-
composition theorem stating that “Every covariance-stationary time series
X(t) can be written as the sum of two time series, one deterministic and one
stochastic. In other words, given a stationary stochastic process Xt with
mean value µ it is always possible to decompose the process intoXt = Zt+Vt
such that cov (Zt, Xt) = 0. In particular:

Vt = µ+

+∞∑
j=1

[αj sin (ωjt) + βj (ωjt)] , 0 ≤ ωj ≤ π (6.54)

Zt =

+∞∑
j=0

ψjat−j (6.55)

Equation 6.54 models the autoregressive component where Vt is the de-
terministic part of the model; ωj is a fixed frequency and αj and βj are un-
correlated white noise 19 processes. Zt (see equation 6.55) is the stochastic
process and it is a moving average of infinity order where at is the prediction
error. In practice, a consequence of the Wold’s theorem is that once a TS
has been transformed into a stationary TS it can be modelled as a linear
function of a white noise process.A stochastic process is stationary when it
has constant mean and variance and its autocovariance only depends on the

19A white noise process at ∼ WN (0, σa) is such that: E (at) = 0; V ar (at) = σ2
a;

cov (at, at−k) = 0∀t ∈ T, k 6= 0.
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time lag k (not by the time t). Using equations:

E (Xt) = µ <∞, ∀t ∈ T
V ar (Xt) = σ2

X <∞, ∀t ∈ T
Cov (Xt, Xt−k) = γk <∞,∀k ∈ T

(6.56)

If these conditions are met, it is possible to apply an ARIMA model
to a TS to model it as a sum of an autoregressive process (AR) (derived
from Vt) and a moving average process (MA) (derived from Zt). In general,
a TS is not stationary, and it is not possible to directly apply ARIMA
models. A trend in the series, for example, violates equations 6.56. For this
reason, detrending is almost always necessary to get a series meeting the
stationarity condition. Box and Jenkins [1] introduced some transformation
to deal with non-stationary TS (see Table 6.6).

Table 6.6: Transformations to obtain a stationary TS

Once the TS has been transformed into a stationary one, it is possible
to fit an ARIMA model choosing adequate parameters p and q, indicating
the autoregressive (AR) order and the moving average (MA) order. At
this purpose, the autocorrelation functions PACF, and ACF are studied.
The echo phenomenon exemplifies the effect of the autocorrelation. After
a certain amount of time units (i.e. time lags), the echo overlaps original
message altering the sound waveform. The echo of the signal of a TS is
the seasonality (i.e. certain weeks or months of the year where the TS is
amplified). To detect this phenomenon, we use ACF and PACF as defined
in Section 6.1.2. Figure 6.19 illustrates a TS with its ACF and PACF, while
Figure 6.20 illustrates the same series with ACF and PACF after detrend
using OLS.20.

Stationarity can be tested using the Dickey-Fuller test for stationarity.
Alternatively, a series is stationary if its ACF and PACF decrease, i.e. the
ACF, and PACF correlograms tends to zero asymptotically. The last sig-
nificant value of the PACF is used for the parameter p (the order of the

20The source code of Figure 6.19, and Figure 6.20 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/03.%20Statistics.ipynb
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Figure 6.19: ACF and PACF of the original TS.

Figure 6.20: ACF and PACF of the detrended TS.

AR model) while the last significant lag value of the ACF is used for the
parameter q (the order of the MA model). In this case, we would try to fit
a model ARIMA(1,1). Note that if the PACF goes to zero immediately, the
most important value is ’1’ (since a TS is always autocorrelated with itself
at the same time lag). In this case, Tt is constant and no waveform (i.e.
seasonality) exists. When the ACF suggests no values, instead, ’0’ should
be the order used for q.

6.5.3 Fourier transform

All the models introduced in the previous paragraphs assume that a sea-
sonality exists and its lag is defined (or can be defined analysing the graph
of the time series). Nevertheless, in some cases, it may be necessary to have
analytical methods to study the seasonality of a series. For this reason, we
introduce the spectrum analysis and the Fourier transform. Spectrum anal-
ysis is a methodology widely used in telecommunication for the analysis of
signals. Signals (analogue or digital) are usually periodic and characterised
by a period τ , due to their sinusoidal behaviour. A periodic (i.e. sinusoidal)
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signal (see Figure 6.21) can be modelled as21:

y = S(t) = Asin(ωt+ φ) (6.57)

Figure 6.21: Model of a periodic signal.

Where A is the amplitude of the signal, φ is the phase (translation on
the time axis). ω is the angular velocity, i.e. the number of periods within
a time interval of 2π. The frequency f is linked to the period τ and to the
angular velocity ω by the following.

f =
1

τ
=

ω

2π
(6.58)

Given the equation 6.58, the S (t) can be expressed in terms of the
frequency f .

y = Asin(f2πt+ φ) (6.59)

Telecommunication uses different strategies to transmit signals avoiding
losses during the transmission. It often happens to transmit signals digitally.
When the source is analogue (i.e. continuous bu nature) the signal has to be
sampled. Sampling means removing part of the signal, but if it is performed
correctly, it does not remove any information. Sampling is performed at a
fixed frequency fs i.e., each sample has a distance in time from the previous
one equal to T . To properly maintain the level of information of a signal,
fs must be chosen adequately. The Nyquist-Shannon sampling theorem
demonstrates that given a periodic signal g (t) with maximum frequency
fM (i.e. a bandwidth [0, fM ]), can be completely defined (i.e. without
loss of information) using a sampling frequency fs ≥ 2fM i.e. a sampling

21The source code of Figure 6.21 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/03.%20Statistics.ipynb
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step ts ≤ 1
2fM

. Figure 6.22 shows the samples of a signal generated by a

continuous source.22

Figure 6.22: signal with N = 600 and fs = 800 Hz.

The original signal can be recreated using the Fourier transform of the
sampled signal, and investigating its behaviour in the frequency domain.
The signal is expected to have a maximum original frequency of 400 Hz
(i.e. it has been sampled correctly, accordingly with the Nyquist-Shannon
theorem).

The Fourier theorem states that any periodic function x(t) may be ex-
pressed as a sum of infinite terms of sine and cosine terms (called Fourier
series), each of them with a specific amplitude and phase complex coefficient
cn called the Fourier coefficient.

cn =
1

T0

∫
T0

x (t) e−2πnf0t dt (6.60)

Fourier transform is used to calculate the values of cn .

X (f) = F {x (t)} =

∫ +∞

−∞
x (t) e−j2πftdt (6.61)

The representation of these frequencies is obtained through amplitude
and phase spectra which represent the absolute value and the argument of
the complex coefficients cn. The amplitude spectrum of the sampled signal
is shown in Figure 6.23.23

The amplitude spectrum shows that two sinusoids with frequency 50
and 80 Hz generate the original signal; the harmonics are showed on the
chart. Looking at the source code, the generating function of the samples
was y = sin (50× 2πx) + 0.5 sin(80× 2πx) which confirms the results of the
transform.

22The source code of Figure 6.22 is available here.
23The source code of Figure 6.23 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/03.%20Statistics.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/03.%20Statistics.ipynb
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Figure 6.23: Amplitude spectrum of the signal.

Dealing with time series, we can use the Fourier transform to investigate
if a periodical signal can be used to model the seasonal component of the
series. In particular, we are looking for f of the model in equation 6.58.
Where f can be reasonably be expressed in week−1, i.e. f−1 defines the
length of a period, i.e. the length of the seasonality.

Time series are usually extracted from a database which is digitalised
and already sampled (e.g. daily/monthly/yearly) so it is difficult to define
a priori the number of samples. This can be defined by different grouping
strategy (e.g., daily/weekly). It is, anyway, essential to verify if the number
of samples allows for resilient inference on the seasonality.

To perform Fourier analysis on a time series, it is necessary to detrend it
first, as shown in 6.5.1. At this stage, the time series fluctuates around its
mean with an unknown frequency and can be modelled as a periodic signal
using the Fourier transform.

6.6 Bayesian Statistics

The statistics illustrated so far is entirely based on the observation of phys-
ical phenomena. The events are observed, measured, and the outcomes of
these experiments are analysed in a frequency fancy. The values occurring
the most are the most probable. This statistics is based on the frequentist
approach. Sometimes we do not have the possibility of measure the vari-
able of our interest; nevertheless, we have beliefs on the behaviour of this
variable, and we may be interested in expressing these believes in terms of
probability.

For example, when measuring partial data of a total quantity, we have
the belief that the total quantity is higher than the measured one. We can
measure a variable using two different measurement systems, having the
belief that one outperforms the other under certain circumstances. We may
start an experiment having prior beliefs on the expected outcome. Bayesian
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statistics helps in all these situations. The main theorem of Bayesian statis-
tic is the Bayes’ theorem:

P (A|B) =
P (A ∩B)

P (B)
=
P (B|A)

P (B)
(6.62)

This theorem is also known as the theorem of conditional probability.
While frequentist statistics assume A, and B being events; the Bayesian
approach defines A as the prior, and B the posterior. The prior A defines
the belief we have before an experiment starts, i.e. before starting collecting
measurement. The information of the measurements is, then, contained in
the posterior B. Bayesian statistics aims at matching the prior and the
posterior by assuming that the prior A is true. In practice, we have obser-
vations, we expect they behave as A describes, but we observe a behaviour
B, and we need to correct it. Bayesian statistics is the perfect tool to
match prior models with posterior empirical observations to predict their
behaviour. Bayesian tools work similarly to machine learning models since
all machine learning models aim at the definition of a joint probability dis-
tribution between a prior and a posterior. For this reason, these methods
are presented in 11.3.

Further reading

Supplementary reading materials can be found in [2], [3], [4], [5].
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Dimensionality reduction

We need data, but maybe not all
of them.

Databases, Internet of Things, big data provide tons of data per second.
There is an obvious obstacle in processing all of them since a large compu-
tational power and a lot of storage memory are needed. Besides, a portion
of this data does not provide useful information since it may have a fixed
value or an extremely high correlation with the other data. We introduce
dimensionality reduction strategies to smooth the process of data processing
and to get information fastly and efficiently. These strategies aim at getting
the highest level of information possible using the lowest amount of input
data.

Let assume that data from our sources is organised in a dataset XN×P
having N observation (rows) and P features (columns). Each observation
describes the realisation of a phenomenon characterised by the P features.
Dimensionality reduction aims at explaining the information of each row in
X using only K features, with K < P . To meet this goal, features can be:

• extracted (i.e. the P features are transformed to explain the majority
of the information in X);

• selected (i.e. a subset K of P explains the majority of the information
in X).

The following paragraphs explore techniques belonging to these two
methodologies.1

1The package logproj provides methods to deal with dimensionality reduction here.
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7.1 Feature extraction

The most common feature extraction strategy is the principal component
analysis (PCA); this section introduces it using the singular value decompo-
sition (SVD) to decompose a dataset X. SVD and PCA can be used when
a learning table is composed of many columns (e.g. with image recognition
or dummy columns from an initial dataset containing categorical variables
converted into binary features). SVD and PCA use eigenvalues and eigen-
vector to transform the features space reducing overfitting. Eigenvectors
are defined as vectors whose direction does not change when a linear trans-
formation is applied to them. Eigenvalues are the scalar used to transform
the eigenvectors. Given a matrix A, we can write:

Ax− λx = 0 (7.1)

Where x is the eigenvector of A and λ are the eigenvalues of A.

7.1.1 Singular Value Decomposition (SVD)

In general, any matrix XN,P can be decomposed into a product of a mixing
matrix UN,K and a dictionary matrix VP,K such that:

X = UV T (7.2)

A row xi ∈ X is a linear combination (according to an entry ui ∈ U)
of the linearly independent elements vi ∈ V . Singular value decomposition
(SVD) is a matrix factorisation technique which decomposes a matrix X
into:

XN,P = UN,KDK,KV
T
P,K (7.3)

Table 7.1 shows the information content of the three matrices produced
by the SVD.

Table 7.1: elements of the SVD.
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7.1.2 Principal Component Analysis (PCA)

PCA aims at reducing XN,P to CN,K with K < P where K is the number of
orthogonal vectors used to explain the variability of X. The PCA projects
the elements of X in the K directions defined by VK such that the variance
of the N observation is maximised along this direction. In practice, PCA
projects the reference system of the P variables onto a new K-dimensional
coordinate system V . All the entries xi of the matrix X(N,P ) are converted
into the new reference system at xTi(1,P )v(P,1) . PCA defines:

v(P,1) = arg max
v:||v||=1

1

N

∑
i

(
xTi v

)2
(7.4)

It is necessary to remember that, before applying PCA:

1. Data has to be centred; i.e. X = X − x̄T , since the equation 7.4
maximises the variance of the sample data.

2. Data has to be standardised; i.e. having the same variance of all the
variables P . Otherwise, variables with higher (absolute) variances will
overcome the others.

In addition to these, the maximisation objective is constrained to ||v|| =
1 for two reasons:

1. We are only interested in the direction of the projection, not in its
magnitude;

2. Without this constraint, the maximisation objective would be un-
bounded.

Let, now, express the maximisation function at:

arg max
v:||v||=1

1

N
vTXTXv (7.5)

Please note that the covariance matrix Sxx equals 1
NX

TX, then:

arg max
v:||v||=1

vTSxxv (7.6)

By using Lagrangian multipliers λ, it is possible to express the maximi-
sation function at:

max vTSxxv − λ(vT v − 1) (7.7)

It is then, possible proceed to calculate the stationary points, i.e. where
the derivative of the function (regards to v) is equal to zero.

d

dv

{
vTSxxv − λ

(
vT v − 1

)}
= vTSxx − λv = 0 (7.8)
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Sxxv = λv (7.9)

We conclude that:

• v is the eigenvector of Sxx;

• λ is the eigenvalue of Sxx.

It is, then, possible to conclude that the variance is maximised when v
is an eigenvector of Sxx (i.e. the covariance matrix) corresponding to the
largest eigenvalue λ. In practice, the PCA is performed using the sample
covariance matrix Sxx = 1

N−1X
TX and the SDV of XTX.

XTX = (UDV )
T (
UDV T

)
= V DTUTUDV T (7.10)

Since U is orthogonal, UTU = I, then:

XTX = V DTDV T (7.11)

Since D is a square matrix, DTD = D2, then:

XTX = V D2V T

V TXTXV = D2

1

N − 1
V
T

XTXV =
1

N − 1
D

2

V TSxxV =
1

N − 1
D

2

(7.12)

Then:

• The eigenvectors of Sxx are the right-singular vectors V ;

• The eigenvalues λk (which are the variance of the components) are
equal to 1

N−1dk, where dk are the squared singular values.

In conclusion, the PCA performs the SVD on the data covariance matrix
Sxx, and it produces three outputs:

1. The principal component directions, i.e. the right singular vectors
VK,P of an SVD which are the eigenvectors of XTX.

2. The principal components, i.e. a matrix CN,K , obtained projecting
XN,P onto the principal components directions VK,P the left singular
vectors UN,K :

CN,K = XN,PVP,K = UDV TN,PVP,K = UDT
N,K (7.13)
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Accordingly, U (the left-singular value matrix) is the matrix of uj
with the projections of the row vectors of X in the new reference
system (direction vj) scaled by dj . In practice, the PCA produces k
principal components (k = 1, . . . ,K) which are a linear combination
of the original variables:

ck = x1u1 + x2u2 + . . .+ xPuP (7.14)

3. The variance of each component, given by the eigenvalues λk = 1, . . . ,K.
This is obtained from the singular values in DK,K .

var (ck) =
1

N − 1
d2
k (7.15)

The theory does not explain how to choose the number of PCs. This
information can be obtained by building a curve showing the information
content of each principal component. Figure 7.2 presents this curve based
on the data of the sample wine dataset. This dataset maps the results of the
chemical analysis (13 attributes) of wines grown in the same Italian region,
coming from three different cultivars. The curve illustrates the percentage
of the variance of the dataset X given a certain number of components K.
In this case, the dataset X count 13 features, but the first six components
are enough to explain 80% of the variance of X.2

7.1.3 Multi-dimensional scaling

In some cases, we do not have a matrix XN,P with observations and features
but a distance matrix DN,N expressing a pairwise distance between each
observation, for a given feature. In this case, it is recommendable to turn
the D matrix into a X one, but this involves the approximation of the
distance values into a K-dimensional space.

Multidimensional scaling aims at this goal, considering a DN,N and find-
ing a low-dimensional projection of the data such that a stress function is
minimised.

min stress (X) =
∑
i 6=j

(dij − ||xi − xj ||)
2

(7.16)

7.1.4 t-SNE

t-SNE is a common technique when the number of features P is high. This
technique tries to separate the variables rather than combining their effect

2The source code of Figure 7.2 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/05.%20Dimensionality%20Reduction.ipynb


Re
vi
ew
ed
Ve
rs
io
n

108 CHAPTER 7. DIMENSIONALITY REDUCTION

Table 7.2: Cumulative curve of the information content of the principal
components.

(as in PCA); also, it provides effective visualisation in low dimensional space
(e.g., K = 2).

t-SNE algorithm proceeds step by step, determining the similarity be-
tween each observation of the dataset X according to the values of its fea-
tures P . The similarity is measured as the distance between each observa-
tion and a Gaussian curve which is, then normalised to 1. Once all similarity
values are calculated, a similarity matrix D is defined.

All the observation are randomly scattered on the K-dimensional space,
and their distance is measured as the distance between the observation and
a t-distribution populating the matrix Dt. At this stage, points are re-
organised in the K-dimensional space one by one to make Dt similar to D
defining compact clusters.

7.2 Feature selection

Feature selection strategies implement heuristics to define a subset of the
P features to train learning algorithms. The following paragraphs illustrate
these strategies.
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7.2.1 Selection by correlation

The correlations between the features of the input dataset X are values
to check carefully before training a learning algorithm. If two features are
highly correlated, it may be necessary to exclude one of them since the other
already describes the variability of the dataset. The correlation matrix is
used for this purpose to identify the correlation coefficients of all the possible
couples of variables. Figure 7.3 shows an example of a correlation matrix
from the wine dataset using different colour gradients to highlight positive
and negative correlations.3

Table 7.3: Correlation matrix of the wine dataset.

Another strategy based on the correlation consists of training an algo-
rithm only with a subset of variables having a minimum value of correlation
with the target variable. Figure 7.4 shows the correlation behaviour of the
features of the wine dataset with the target variable. The plot shows the
number of features (y-axis) having a minimum correlation value (x-axis)
with the target variable. One may decide to set a threshold of minimum
correlation to work with a subset of variables resulting significantly corre-
lated to the target variable (e.g. at least 30% of correlation).4

3The source code of Figure 7.3 is available here.
4The source code of Figure 7.4 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/05.%20Dimensionality%20Reduction.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/05.%20Dimensionality%20Reduction.ipynb
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Table 7.4: Number of features with a minimum correlation threshold with
the target variable (wine dataset).

7.2.2 Selection by variance

Another strategy is to select a subset of variables whose variance is above a
certain level. The idea is the following: if a feature has a low variance, it does
not add too much information to the dataset. All the features with variance
equal to zero should be removed since they do not add any information to
the dataset. Figure 7.5 illustrates the variance of the features of the wine
dataset. The majority of the features has a variance lower than 60%.5

7.2.3 Selection by Lasso coefficients

Lasso regression (further details in Section 9.3.2) is a prediction model that
extends the linear regression which embeds a feature selection strategy. It
automatically identifies a coefficient for each feature, shrinking the feature
according to its relative importance. The coefficients of a Lasso regression
can be used to select only the important features. Figure 7.6 shows the graph
with the feature coefficients of the wine dataset (on the y-axis) depending
on the tuning hyperparameter α of the Lasso on the x-axis and the value of
the coefficients.6

The graph shows that many coefficients are kept to zero up to some
values of α. Features can be selected using Lasso identifying a minimum
threshold on the value of the coefficients, pinpointing relative importance

5The source code of Figure 7.5 is available here.
6The source code of Figure 7.6 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/05.%20Dimensionality%20Reduction.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/05.%20Dimensionality%20Reduction.ipynb
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Table 7.5: Number of features above a minimum variance threshold (wine
dataset).

Table 7.6: Lasso shrinkage coefficients graph depending on the value of the
hyperparameter α (wine dataset).

of the underlying attributes. Figure 7.7 illustrated the number of features
selected from the wine dataset by using different thresholds on the value of
the coefficients.7

7.2.4 Selection by using a decision tree

A decision tree trains a predicting model branching on the value of a vari-
able defining a tree structure (further details in Section 11.2.1). The most
important features can be selected, evaluating which of them appears the

7The source code of Figure 7.7 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/05.%20Dimensionality%20Reduction.ipynb
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Table 7.7: Number of features above a minimum lasso coefficient threshold
(wine dataset).

most as a branching variable. Identifying a minimum threshold on the num-
ber of times a feature appears as a branching variable works as a feature
selection strategy.

7.2.5 Forward Stepwise selection

Forward stepwise selection uses the principles of the linear regression (see
section 9.2) to identify the most relevant features. There are other algo-
rithms based on the linear regression to select features (e.g. best subset
selection, forward stagewise selection) but forward stepwise has been cho-
sen since it can be efficiently implemented compared to the others. The
residual sum-of-squares (RSS) of linear regression is always minimised when
the number of predictors is maximum. Nevertheless, this does not imply a
low bias and variance (affecting the prediction error). For this reason, we
want to select a subset of the initial features to reduce the probability of
overfitting. Forward stepwise selection works as follows.

Algorithm 3: Forward Stepwise algorithm

Identify the intercept of the linear regression
for i=1:number of features of the dataset do

Select one feature improving the most the fit of the model
Add the feature to the model

end
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Figure 7.8 shows the outcome of the forward stepwise selection of the
wine dataset. Increasing the number of features, the RSS decreases and the
r2 of the model increases. Besides, a relatively small number of feature (i.e.
the first five features) is enough to fit the linear model obtaining a relatively
small error. 8

Table 7.8: Forward stepwise selection graph applied to the wine dataset.

Further reading

Supplementary reading materials can be found in [1].

Bibliography

[1] I. D. Dinov, Data Science and Predictive Analytics. 2018.

8The source code of Figure 7.8 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/05.%20Dimensionality%20Reduction.ipynb
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Unsupervised learning

ἕν οἶδα ὅτι οὐδὲν οἶδα.

Socrates

Sometimes we observe phenomena without a precise idea in mind of what
we want to investigate. Phenomena may retain information and hidden
data patterns that we have never considered. Unsupervised learning use
algorithms to uncover these patterns and create knowledge from the data.1

8.1 Association rules

Association rules are a powerful data mining set of algorithm aiming at
investigating patterns in the co-occurrences of items in a series of indepen-
dent observations. Usually, they are used to mine a commercial database
investigating patterns in the buyers’ attitude to set promotions, discounts
or the shelf allocation. The most used algorithm is the apriori algorithm
which aims at the definition of association rules between the p features of a
dataset X.

The definition of association rules is based on the evaluation of the fol-
lowing metrics for each association rule:

• Support, T (p1→ p2). It indicates the probability that an observa-
tion contains a group of features (e.g., (p1, p2));

• Confidence C (p1→ p2) = T (p1→ p2)
T (p1) , it indicates the probability a

feature p2 is in a transaction containing p1 (conditional probability).

1The package logproj provides methods to deal with unsupervised learning here.
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It is calculated as the support of the rule divided by the support of
the antecedent;

• Lift L (p1→ p2) = C(p1→p2)
T (p2) , defines the increase in the observation

of p2 when p1 is observed.

The outcome of the apriori algorithm is a set of rules (p1 → p2) with
support and confidence above a predetermined threshold.

8.2 Clustering

Association rules produce a list of causal relations between the features. Dif-
ferently, clustering produces a label for each of the N observation identifying
“homogeneous” groups. Clustering, in fact, involves a set of unsupervised
learning algorithms aiming at grouping the observations into subsets such
that the observations in the same subset are close to each other.

Clustering algorithms works using proximity matrices, defining the pair-
wise distance between observations. For this reason, it is necessary to con-
vert qualitative, ordinal and categorical variables such that a measure of
distance is defined.

Hard clustering algorithm creates clusters and assigns observations to
one of them; on the other side, soft clustering defines a probability for each
observation to belong to each cluster. Clustering approaches are divided
into:

1. combinatorial algorithms, which directly works on the observed data;

2. mixture models, which makes assumptions on the probability distri-
butions generating the observations.

Combinatorial algorithms (e.g., k-means) are hard-clustering algorithms
minimising a loss function describing the distance between the observations.
Let k = 1, . . . ,K be the number of clusters and k = C(i) the assignment of
observations i to the cluster k. Then:

W (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′)=k

d(xi, xi′) (8.1)

B (C) =
1

2

K∑
k=1

∑
C(i)=k

∑
C(i′) 6=k

d(xi, xi′) (8.2)

Where d(xi, xi′) is the distance between data points xi, and xi′ . W (C)
defines the distance of points within a cluster, while B(C) defines the dis-
tance of points between different clusters. Combinatorial algorithms aim at
maximising W (C) or minimising B(C). These two objectives are exactly
the same.
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8.2.1 K-means

K-means algorithm is used to cluster a set of N observation with p features
(i.e., placed in a Rp). This space is assumed to be Euclidean, and the
algorithm produces k clusters. Algorithm 4 illustrates the procedure to
generate the clusters.

Algorithm 4: K-means algorithm

k =number of centroids (clusters)
r =number of iterations of the algorithm
i = 1, ..., N ∈ V set of points
j = 1, ..., k ∈ C set of centroids
Di ∈ Rp set of coordinates of point i
S = ∅
for l = 1 : r do

randomly assign Dj , j ∈ C
t = 0
converge =false
while (not converge) do

t = t+ 1
zi,t = argminj∈C [dist(Dj , Di)]

Dj = 1
|Di|

∑
zi=j

Di

if (zi,t == zi,t−1) then
converge =true

end

end

z =
∑N
i=1

∑k
j=1 dist[(Dj , Di)]

S = S
⋃
z

end
Select min(z) ∈ S

We use the digits dataset containing 8x8 pixels images of a digit to show
the power of unsupervised learning techniques. The dataset contains 1797
images of digits, from zero to nine with their label. We use unsupervised
learning to cluster the observations, and we project the input dataset into
two components to visually compare the results of the clustering with the
true label. Figure 8.1 illustrates that k-means is able to detect patterns
similar to the true labels.2

8.2.2 Hierarchical clustering

Hierarchical clustering defines clusters based on a proximity metric between
the observations. Similarly to Multi-Dimensional scaling (see Section 7.1.3)

2The source code of Figure 8.1 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/06.%20Unsupervised%20learning.ipynb
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Figure 8.1: Comparison between k-means clustering and true labels of the
digits dataset. Different colours identify different labels. There is no specific
assignment between colours and labels.

hierarchical clustering does not work with a matrix XN,P with a number
of observations N and P features (as the k-means algorithm does). Hier-
archical clustering relies on a proximity matrix DN,N expressing a pairwise
distance between each observation (according to a single feature expressing
a distance). It is common to work using similarity values sij as entries of
DN,N . Once the pairwise distance di,j is calculated, the similarity can be

calculated as si,j = 1 − di,j
maxi,j di,j

. Table 8.1 illustrates an example of the

proximity matrix DN,N .

Table 8.1: Example of a similarity matrix.

The matrix in Table 8.1 is symmetric, this is not strictly required, but
it can simplify the structure of the data without adding too much bias. If
a similarity matrix is not symmetric, it can be converted into a symmetric
one by setting si,j = sj,i =

si,j+sj,i
2 . Once DN,N is defined, it is possible

to apply hierarchical clustering to group the N observations into clusters.
The number of clusters is not defined in advance. Algorithm 5 presents an
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algorithm for hierarchical clustering.

Algorithm 5: Hierarchical clustering algorithm

i = 1, ..., N ∈ V set of observations
si,j similarity between observation i and j
S = ∅
for k ← 1 : (N − 1) do

v = max(i,j)−S (si,j)
(h, l) = arg(v)
S = S

⋃
(h, l)

for r ← 1 : m do
if CLINK then

sr,h = min(sr,h, sr,l)
sh,r = min(sh,r, sl,r)

end
if SLINK then

sr,h = max(sr,h, sr,l)
sh,r = max(sh,r, sl,r)

end
if UPGMA then

sr,h = mean(sr,h, sr,l)
sh,r = mean(sh,r, sl,r)

end
sr,l = −1
sl,r = −1

end

end

The algorithm iteratively selects two observations and aggregate them
into a single cluster until all the observations belong to one big cluster. The
value of similarity si,j of an observation i (aggregated with an observation
k at an iteration) and all the others, j is selected according to the tuning
of the algorithm which can consider the minimum, the maximum or the
average (complete linkage, single linkage or average linkage) among si,j and
sk,j .

Since each observation/cluster is aggregated at a value of similarity,
at the end of the procedure, a similarity threshold is selected to identify a
number of clusters and the cluster each observation belongs. This procedure
can be visually interpreted by a dendrogram which maps the aggregations of
the algorithms with a threshold of similarity identifying the clusters. Figure
8.2 illustrates the dendrogram obtained clustering the digits dataset using
single, complete and average linkages having a Euclidean distance between
the observations.3

3The source code of Figure 8.2 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/06.%20Unsupervised%20learning.ipynb
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Figure 8.2: Similarity dendrograms of the digits dataset.

Different similarity thresholds identify a different number of clusters.
Assuming ten clusters, ad the number of labels of the digits dataset, Fig-
ure 8.3 illustrates the comparison between the clusters obtained with the
different linkages and the true labels.4

8.2.3 Mixture models

In general, the observations may be generated by an unknown number K of
PDF with unknown parameters (i.e. mean and variance). Mixture models
are soft clustering techniques used to investigate the probability that a point
is generated by one of the K generating PDF. It is called soft because it
defines a probability for each point and each distribution, without a direct
binary (i.e. true or false) assignment to a cluster. The generating function
of a Gaussian mixture model can be seen as:

f (x) =

K∑
m=1

αmφ(x;µm; Σm) (8.3)

Where φ is a multidimensional Gaussian PDF with parameters µm and

4The source code of Figure 8.3 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/06.%20Unsupervised%20learning.ipynb
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Figure 8.3: Comparison between hierarchical clustering and true labels of
the digits dataset. Different colours identify different labels. There is no
specific assignment between colours and labels.

Σm, and αm ∈ [0, 1] is the probability of the m-th generating function. The
problem of fitting a mixture model to data is to define the value of αm,
µm, Σm that best represent the real distribution of the data. This is a
likelihood maximisation problem with θ = αm,µm,Σm. To efficiently get
the result the so-called EM-algorithm (Expectation-Maximization) is used.
This algorithm can be used when it is difficult to maximise a likelihood but it
is made simpler by enlarging the sample using unobserved data. Considering
K = 2, the EM algorithm can be exemplified as follows:

Algorithm 6: Expectation Maximization (EM) algorithm

1. Randomly select µa, σa, µb, σb
2. Calculate the posterior probability ai = Prob(a|xi) and
bi = Prob(b|xi)

3. Redefine µa, σa, µb, σb as the weighted average of mean and
variance of xi in a and b

4. Repeat from 2. until µa, σa, µb, σb converges

Figure 8.4 illustrates the output of a Gaussian mixture model applied
to the digits dataset.5

5The source code of Figure 8.4 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/06.%20Unsupervised%20learning.ipynb
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Figure 8.4: Comparison between Gaussian mixture model and true labels
of the digits dataset. Different colours identify different labels. There is no
specific assignment between colours and labels.

8.2.4 Bag of words

A Bag of words is a text-mining method which works as an unsupervised
model for strings. It is a frequency analysis for strings of text. Given a
dataset composed of N strings (e.g., a paragraph) the bag of word model
counts the number of occurrences of each string. Each string can be in-
terpreted as a feature of the dataset with different relative importance.
The words occurring the most retain the highest level of information of the
dataset and can be used as predictors (e.g., depending on the content, it is
possible to classify an email into spam/not spam).

Further reading

Supplementary reading materials can be found in [1], [2].

Bibliography
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Linear Methods for Regression

The Earth is not flat, but the
world behaves linearly,
sometimes.

This chapter, together with chapters, 10, 11, 12, introduces the so-called
“supervised learning”. Differently from unsupervised learning, these algo-
rithms train models on data to predict the value of a given feature y. This
section addresses regression models, i.e. models targeting a real number. 1

9.1 Supervised learning

Supervised learning (predictive algorithms) are used to predict the value of
an unknown variable y, from a training set X of observations where y is
given for each row of X. This technique is useful when it is necessary to
build a prediction model of the future value of y. If the observations contains
only the feature y, then time series analysis (see Section 6.5) applies. When
a number of features P is available for each observation, together with y,
then an option is to build a supervised learning model.

The dataset of a learning model is composed of (see Figure 9.1):

• A matrix XN,P−1 with N observations of the P − 1 predictors;

• A vector yN,1 with N observations of the target variable.

1The package logproj provides methods to deal with linear regression here.

123

https://github.com/aletuf93/logproj/blob/master/logproj/M_learningMethod/linear_models.py
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Figure 9.1: Scheme of the input dataset of a predictive model.

Our goal is to train a model to link X and y efficiently. This link is the
approximation of the joint probability distribution function y = f(X). Pre-
dictive models are effective when they correctly estimate f . For validation
reasons, the dataset X is always split into two separate datasets:

1. the training set: used to train the model;

2. the testing set: used to test the performance of the model by measur-
ing its error.

The training set is needed to train the model by setting a number of
parameters to maximise the fitting of the function f to the data. The
tuning parameters are specific for each family of models, and their value is
set during the training phase. Models may have other parameters (called
hyperparameters) whose values are set before the beginning of the training
phase.

The testing set is used to compare the predictions obtained by the model
with true values selected from the input dataset. If a model succeeded in this
testing phase, it is ready for the implementation, i.e. to make predictions
based on new data. Figure 9.2 illustrates the dataflow to build a predictive
model.

The following chapters illustrate tens of machine learning models. It is
necessary to understand how to choose the most proficient in practice. The
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Figure 9.2: Flow of the development and deployment of a prediction model.

main idea is to have an error metric and to choose the model that minimises
the most this error metric. The prediction error can be calculated for the
training set or the testing set. Given a training set T , we can define a
prediction error on the training set err and a prediction error Err on the
independent testing set as follows.

err =
1

N

N∑
i=1

L (yi, f (xi)) (9.1)

Err = ET

[
EX0,Y 0

[
L
(
Y 0, f̂(X0)

)
|T
]]

(9.2)

Where L is our error metric, called loss function (e.g., the mean squared
error (MSE) or the absolute error). The definition of err and Err shows
that an error metric can always be computed for both the training and
the testing set. Unfortunately, the error err measured on the training set
is not a good estimate for the error Err in the testing set. We want to
minimise the error Err on the testing set since it is the best estimate of the
error that the model will have while working with new data. Stressing the
minimisation of err leads to a phenomenon called overfitting ; the training
error is minimised, while the training error raises.

A model adapts itself to best fit to the training set, but this does not
imply the same good fit happens with the testing set. For this reason, it is
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not a good idea striving to reduce the error in the training set. In general,
err < Err and the training error tends to zero increasing the complexity
of the model (e.g., the number of features involved) but this fact does not
guarantee good results of the test set.

Model selection involves different metrics to measure the performance of
different predictive models in order to choose the best one. For this reason,
the in-sample error ErrIN is introduced to describe the error having N new
response values at each of the training points2.

ErrIN =
1

N

N∑
i=1

ET

[
EY 0

[
L
(
Y 0
i , f̂(Xi)

)
|T
]]

(9.3)

A metrics called optimism is defined as op = ErrIN − err. We usually
consider ω = Ey[op] which can be estimated as:

ω =
2

N

N∑
i

cov(ŷi, yi) (9.4)

The underestimation by err in the true error depends on how much yi
affects its own prediction. ω is a metrics used as a basis for the evaluation
of the performance of machine learning algorithms.

MSE

The most commonly used error metric to select a regression model is the
mean squared error. It is calculated as:

MSE =
1

N

n∑
i=1

(yi − ŷi)2
(9.5)

A main limitation of the MSE is that it suffers significant prediction
errors on the outliers. For this reason, it is possible to introduce quantiles
of errors which evaluates the error of a model within a given percentile. The
mean absolute percentage error (MAPE) is used at this purpose:

MAPE = p

(
|yi − ŷi|
yi

)
(9.6)

Where p is the chosen percentile. In practice, we can evaluate the per-
centage of estimates that differs from the true value no more than a given
percentage (e.g. 10%).

2This is a sampling error, i.e. a measure of how much the sample chosen to train the
model represents the entire population.
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AIC and BIC

We consider ÊrrIN = err + ω̂. Akaike information criterion (AIC) and
Bayesian information criterion (BIC) are two very common metrics used to
assess the performance of a model. They are defined as follows.

AIC = − 2

N
E [loglik] +

2d

N
(9.7)

Where loglik =
∑N
i=1 log(Prθ̂ yi), N is the number of samples, and d

defines the number of features. BIC is defined similarly.

BIC = −2loglik + (logN)d (9.8)

Both these metrics can be used to identify the best tuning parameter of a
model or to compare different models. The model with the minimum AIC or
BIC value should be chosen. To choose among AIC or BIC, it is important
to remember that BIC is asymptotically consistent, which is equivalent to
say that BIC selects the correct model with a probability approaching 1 as
N →∞. Otherwise, increasing the number of samples AIC tends to choose
more complex models. In other words, BIC tends to prefer simpler models
than AIC, that chooses more complex models.

Cross-validation

The metrics proposed in the previous paragraphs allows investigating the
reliability of the predictions. Sometimes, when having few data, split into
training, and the testing dataset may lead to very small datasets. For this
reason, cross-validation (CV) or bootstrapping are used.

The selection of the train-test split of the data may bias these mea-
sures of the error. The CV is used to evaluate the extra-sample error
Err = E[L(Y, f̂(X))]. K-fold cross-validation splits the set into K sub-
sets and performs all the different permutations choosing one of them as
a validation set and using the others to train the algorithms. Figure 9.3
shows an example of 5-folds CV.

Figure 9.3: Schema of a 5-folds cross-validation.
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The CV produces an estimate of Err as:

CV
(
f̂
)

=
1

N

N∑
i=1

L(yi, f̂
−k(i)(xi)) (9.9)

Where f̂−k(i) is the function fitted without the k-th fold. A CV can also
be used to choose the value of a tuning hyperparameter α of a model.

CV
(
f̂ , α

)
=

1

N

N∑
i=1

L(yi, f̂
−k(i)(xi, α)) (9.10)

Besides, CV can be used together with bootstrap methods (see Section
6.2.4). The idea of the bootstrap is to estimate the value of the loss func-
tion. Bootstrapping samples from the empirical distribution of the data (i.e.
the input dataset, since we do not know the real distribution). Bootstrap
samples with replacement since a point can be added to the sampled distri-
bution multiple times to reflect the behaviour of the empirical distribution
(when sampling without replacement, we have a jackknife sampling). The
error Err can be estimated as:

Êrr =
1

N

N∑
i=1

1

|C−1|
∑
b∈C−1

L(yi, f̂
∗b(xi)) (9.11)

Where C−1 is the set of the bootstrap samples b that does not contain
observation i.

Hyperparameters tuning

While the training phase set the values of the parameters of the model, there
is no precise way to set the hyperparameters of the model. Nevertheless,
hyperparameters deeply affect the prediction performance of a model. This
can be done by several iterations, trying different hyperparameters values
for each model. There are different strategies to tune the model3. Two
strategies are:

• Grid search: i.e. testing all the parameters of a given set, evaluate the
performance of the model and choose the best one.

• Random search: random select a subsample of the grid and select the
best hyperparameter among this subset.

Smart algorithms (e.g. gradient-based) exist to identify the best direc-
tion to search good values of a hyperparameter, but they are usually time-
consuming and affect the total training time of the model significantly.

3The package logproj provides grid search methods to train model, identifying the
best hyperparameter here.

https://github.com/aletuf93/logproj/tree/master/logproj/M_learningMethod
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9.2 Linear regression (OLS)

Linear regression is a predictive model assuming a linear relationship be-
tween the input X and the output y. Let assume XN,P being the input
matrix of P features and N observation, we are interested in predicting the
value of the output vector yN,1 using a linear relationship. In other terms,
the linear regression works in a P + 1-dimensional space aiming at predict-
ing the value of y ∈ R as a linear combination of the variables x ∈ RP . In
practice,we are looking for the function f .

f (X) = β0 +

P∑
j=1

XjβJ (9.12)

Since X is given, our problem is to define a vector β of scalar values
such that the residual sum of squares (RSS) between the values of y and
ŷ = f(X) is minimized.

RSS (β) =

N∑
i=1

(yi − f (xi))
2

=

=

N∑
i=1

yi − β0 −
N∑
j

xijβj

2

=

(9.13)

By the definition, the sum of squares in matrix notation is the product of
the transpose of a vector with the vector itself: A2 = ATA; for this reason,

RSS (β) = yT y − yTXβ − βTXT y + βTXT (Xβ) =

= yT y − yTXβ − (Xβ)
T
y + (Xβ)

T
(Xβ) =

(9.14)

By the definition, (AB)
T

= BTAT ; then,

RSS (β) = yT y − yTXβ − βTXT y + βTXT (Xβ) = (9.15)

Considering that yT1NXNPβP1 is a scalar number as well as βT1PX
T
PNyN1,

RSS (β) = yT y − 2βTXT y + βTXT (Xβ) (9.16)

The partial derivatives with respect to each βi(i = 1, . . . , P ) are consid-
ered. They are all set equal to 0 to find a minimum of RSS (β). Let define
a P × 1 vector ei with 1 in the i-th position and 0 elsewhere.

∂RSS(β)

∂βi
= −2eTi X

T y + eTi X
TXβ + βTXTXeTi

= −2eTi X
T y + 2eTi X

TXβ

(9.17)
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It is a good idea learning for a minimum since the second derivative with
respect to β is as follows.

∂2RSS(β)

∂β
= 2XTX (9.18)

We can assume, by definition, that XTX is always positive if X has full
column rank (i.e., all its columns are linearly independent). In general, this
is not true, but it is always possible to apply the PCA (see section 7.1.2) to

obtain an X with full column rank. Given this hypothesis, ∂RSS(β)
∂β is set

equal to 0 (for all the values of i) looking for a minimum.

−2eTi X
T y + 2eTi X

TXβ = XT (y −Xβ) = 0

XTXβ = XT y

β̂ =
(
XTX

)−1
XT y

(9.19)

The equation (9.19) defines the value of β̂ which best fits the training
data.

9.2.1 Geometrical representation of the linear regres-
sion

The linear nature of this model allows us to interpret the results of the
previous paragraph geometrically. Equation (9.19) proves that:

ŷ = Xβ̂ =
(
XTX

)−1
XT y (9.20)

The value of β̂ is found such that XT
(
y −Xβ̂

)
= XT (y − ŷ) = 0. This

fact is due to the result of the derivative of the RSS (β) = 0 but, by the
definition of orthogonal vector, it implies the vector y − ŷ is orthogonal to
the subspace generated by the P columns of X (remember of the hypothesis

of full column rank of X). In practice
(
XTX

)−1
XT = H is the function

generating ŷ as the orthogonal projection of y onto the subspace of RP
generated by the P columns of X (see Figure 9.4).

ŷ =
(
XTX

)−1
XT y = Hy (9.21)

It is possible to take a step further considering the univariate (i.e., single
variable) linear regression.

Y = Xβ + ε

β̂ =

∑N
i=1 xiyi∑N
i=1 x

2
i

(9.22)
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Figure 9.4: Linear regression as a projection of y on the space generated by
X.

With residuals: ri = yi − xiβ̂. These formulae can be written as scalar
products4 with vector notation.

β̂ =
〈x, y〉
〈x, x〉

r = y − xβ̂
(9.23)

For this reason, compute a linear regression of b on a means orthogonal-
ize b on a by:

1. Producing the coefficient γ̂ = 〈a,b〉
〈a,a〉 ;

2. Producing the residuals z = b− γ̂a.

When dealing with multivariate linear regression, it is always possible to
use this approach, applying regression by successive orthogonalization (see
Algorithm 7).

Algorithm 7: Multivariate linear regression

1. Set z0 = x0 = 1
2. for j = 1 : p do

Regress xj on z0, z1, . . . , zj−1 to produce γ̂l,j =
〈zl,xj〉
〈zl,zl〉 with

l = 0, . . . , j − 1 and zl = xj −
∑j−1
k=0 γ̂l,jzk

3. Regress y on the residual zp to get β̂p.

end

4〈x, y〉 =
∑N

i xiwi = xT y
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It is clear that we are writing xj as a linear combination of zk (with
k < j) where each zk is the additive contribution of the j-th parameter.
Theoretically, zk are orthogonal. In case a xj is highly correlated with any
of the zk (with k < j) the additive contribution of the residual vector zk
will be close to zero (i.e. the information given by j-th parameter is already
described by the previous zk with k < j).

There is still an open question: to identify the confidence interval of
the linear coefficients βj . To answer this question, the observations yi are
assumed to be uncorrelated with constant variance σ2. In addition, the
deviation of y around its mean is assumed being additive and Gaussian
(i.e. additive white gaussian noise). These hypotheses allow applying some
statistical test to check which of the input parameters p is significant for
the prediction model.

The variance-covariance matrix5 is obtained as:

V ar
(
β̂
)

=
(
XTX

)−1
σ2 (9.24)

The value of the variance σ2 can be estimated by an unbiased estimator
(see section 6.2.1) as follows.

σ̂2 =
1

N − p− 1

N∑
i=1

(yi − ŷi)2
(9.25)

Given the these hypotheses, β is distributed as a multivariate normal
distribution.

β̂ N(β,
(
XTX

)−1
σ2) (9.26)

The variance can be described as a χ2 distribution with N−p−1 degrees
of freedom σ2χ2

N−p−1. To test the hypothesis H0 that a coefficient βj = 0
the Z-score of its coefficient is calculated as follows.

zj =
β̂

σ̂
√
vj

(9.27)

With vj the j-th diagonal element of
(
XTX

)−1
. zj is distributed as

tN−p−1 and the t-test is used to assess the null hypothesis H0 : βj = 0.
When the number of samples increases, a Z-test can be used as well. A
large (absolute) values of zj (connected to low p-values) suggest rejecting
H0 i.e., the βj coefficient is relevant in the prediction model.

5The variance-covariance matrix is the generalization of the concept of covariance
applied to a space with n variables.
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To simultaneously compare the effect of groups of input parameters, the
F-test is used. The value of RSS is calculated for each group of parameters
(group 0 and group 1).

F =

(
RSS0−RSS1

p0−p1

)
RSS1

N−p1−1

(9.28)

9.3 Shrinkage methods

As demonstrated by the Gauss-Markov theorem (see 6.2.1), the OLS pro-
vides the estimator of β with the smallest variance among all linear unbiased
estimates. Nevertheless, this does not imply the lowest prediction error at
all; especially while fitting a few data points having a high (e.g. more than
10) number of features. These characteristics lead to a high risk of overfit-
ting. The shrinkage methods are introduced to avoid overfitting. The main
idea of shrinking methods is adding some bias in the predictive model (i.e.
to reduce the learning accuracy on the training set) to reduce the prediction
error in the testing set.

9.3.1 Ridge regression (L2-regularisation)

Ridge regression adds some bias in the prediction model shrinking the re-
gression coefficients adding a penalty on their value.

β̂ridge = argminβ


N∑
i=1

yi − β0 −
N∑
j=1

xijβj

2

+ λ

P∑
j=1

β2
j

 (9.29)

Predictions with ridge regressions are less sensitive to variations in the
independent variables compared to simple linear regression. Increasing the
value of λ, the values of β̂ tend asymptotically to 0 (i.e. a constant line
in R2). Since the ridge coefficients are not equivariant, it is necessary to
standardise the inputs before applying the ridge regression (see Figure 9.5).6

In addition, it is better to centre the input (as already seen for the PCA in
7.1.2) by setting xij = xij−x̄j , and apply ridge regression without intercept.

β0 = ȳ =
1

N

N∑
i=1

yi (9.30)

6The source code of Figure 9.5 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/07.%20Linear%20Regression.ipynb
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Figure 9.5: Comparison between the original dataset and the centered and
scaled one.

By switching the equation (9.29) to matrix form we have:

RSS (λ) = (y −Xβ)
T

(y −Xβ) + λβTβ (9.31)

The values of the ridge coefficients are calculated as follows.

β̂ridge =
(
XTX + λI

)−1
XT y (9.32)

Compared to the β̂ coefficients of the linear regression, the ridge coeffi-
cients add λ to the diagonal of XTX. I is a P × P identity matrix. Using
the singular value decomposition (see section 7.1.1) it is possible to express
the least squared fitted vector and the solution of the ridge regression. In
practice, U spans the columns space of X, while V spans the rows space of
X and D is a diagonal matrix.

Xβ̂ls = UUT y (9.33)

Xβ̂ridge = UD
(
D2 + λI

)−1
DUT y (9.34)

In practice, it can be proved that the matrix XTX (which is similar to
the sample covariance matrix S = 1

NX
TX) has been written using singular

value decomposition matrix.

XTX = V D2V T (9.35)

As already introduced in section 7.1.1, the eigenvector V describes the
directions of the principal components of X. In practice, ridge regression
shrinks the most the predictors having a small variance protecting against a
potentially high variance estimated in the short directions (coefficients close

to zero). The value of β̂ and the goodness of fit r2 changes with different
values of λ. Cross-validation can be used to identify the best value for λ.
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9.3.2 Lasso regression (L1-regularisation)

Lasso regression works similarly to Ridge regression, but it considers the
minimisation of a different penalty function.

β̂lasso = argminβ

1

2

N∑
i=1

yi − β0 −
N∑
j=1

xijβj

2

+ λ

p∑
j=1

|βj |

 (9.36)

Differently from ridge regression, the value of β̂ridge cannot be computed
directly since its computation is non-linear. Anyway, it can be efficiently
computed through efficient algorithms to get a solution in a short time.

The lambda of a lasso regression can be determined using CV similarly
to the lambda of ridge regression. Lasso regression penalty contains the β̂
as well as ridge regression, but they shrink parameters differently.

Lasso regression can shrink a coefficient slope to 0. Increasing lambda,
the bad-prediction parameters can go to zero (and the linked features are
excluded from the model). Figure 9.6 shows the effect of L1 and L2 regu-
larisation on a 3-dimensional dataset.

9.3.3 Elastic-net regression

When the number of parameters increases dramatically, elastic-net regres-
sion results adequate since it mixes the power of the Ridge and the Lasso.
It is useful when a correlation between features exist since lasso can discard
useless features, and ridge shrinks the correlated features together.

With elastic net regression, the parameters associated with the corre-
lated variables are shrunk or removed all at once. The elastic-net penalty
has the formula

λ

p∑
j=1

(
αβ2

j + (1− α) |βj |
)

(9.37)

9.3.4 Least angle regression

This shrinkage method works as a forward stepwise regression (see section 3)
but it only enters “as much” of a predictor as it deserves. Its algorithm starts
from a standardisation of the predictor. At each stage of the algorithm, it
finds the predictor most correlated with the residuals, and it moves its β̂j
from 0 to its least-square coefficient until some other predictor has as much
correlation as j. It continues until all the j predictors have entered.
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Figure 9.6: Effects of the regularisation algorithms on the linear regression.

9.4 Derived input methods

When the input is highly correlated, it could result convenient to preprocess
the input first and then to apply a linear regression model

Principal component regression

This method applies the PCA first, to define a subset of M < p orthogonal
predictors, and then it performs the linear regression. It is important to
standardise the input before applying PCA since it depends on its scaling.
This procedure is similar to the Ridge regression, but it works discretely (it
provides entire predictors) while ridge regression shrinks each coefficient.

Partial Least Squares

Partial Least square works similarly to the principal component regression.
Nevertheless, while the principal component regression is based on the PCA
and it gives higher importance to the directions having a higher variance,
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the partial least square seeks for the directions having both high variance
and high correlation with the response.

Transformation for linearity

The assumption of a linear model (i.e., the function f is linear in y = f(X))
often produces approximations on real predictions. It is always possible
to transform the input data X using a function h before applying a linear
model. In particular, the prediction model will be in the form:

y = f (X) =

M∑
m=1

βmhm(X) (9.38)

Common functions for hm are:

• hm(X) = Xm, no transformation on the initial data;

• hm (X) = X2
j or XjXk;

• hm (X) = log (Xj)or
√
Xj ;

• hm (X) = I(Lm ≤ Xm < Um), this case applies spline function to get
a local polynomial approximation of the initial data.

Finding a function h that linearise the relationship between X and y
extends the field of application of the linear models.

Further reading

Supplementary reading materials can be found in [1], [2].

Bibliography
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Linear Methods for Classification

People label people; algorithms
too.

Differently from regression models, classification models aim at predict-
ing a categorical target variable k ∈ K.1 The input space where the predic-
tors X lies can always be divided into a set of regions divided by decision
boundaries according to the values of G. A statistical model with a discrete
target variables aims at describing a function F as:

Pr (G = k) = F (xTβ) (10.1)

Where G is a discrete value assuming values k ∈ K and F is a function
of an input vector x and a vector of unknown parameters β. In general, the
OLS model is not a good model since its domain is continuous. In this case,
it is necessary to provide a different probability model with the following
characteristics:

f(X) =

{
limxT β→−∞ F

(
xTβ

)
= 0

limxT β→+∞ F
(
xTβ

)
= 1

(10.2)

A cumulative distribution function (CDF) has both these features and
it is chosen as a model, for this reason. Two very common CDF functions
are used.

1. Probit (probability unit) function (CDF of the gaussian distribution

1The package logproj provides methods to deal with linear classification here.
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https://github.com/aletuf93/logproj/blob/master/logproj/M_learningMethod/linear_models.py
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function)

Pr (G = 1) = Fp
(
xTβ

)
=

∫ xT β/σ

−∞

1

2π
e−

z2

2 dz (10.3)

2. Logit (logistic unit) function (CDF of the logistic distribution func-
tion)

Pr (G = 1) = Fl
(
xTβ

)
=

∫ xT β/σ

−∞

ez

(1 + ez)
2 dz =

ex
T β

1 + exT β
(10.4)

In particular, the logit function can be linearized to build a linear clas-
sification model (see section 10.3). To compare two classes (i.e., to define
a boundary between them) the odds ratio p

1−p are considered. A decision
boundary is defined where an odd ratio is equal to zero. In general, the
Pr (G = k|X = x) is defined according to different statistical distributions.
Let assume:

• fk(x) is the class density of X in class G = k;

• πk is the prior probability of class k (with
∑K
k=1 πk = 1).

By applying the Bayes theorem (see equation (6.62)), we have:

Pr (G = k|X = x) =
fk (x)πk∑K
l=1 fl (x)πl

(10.5)

Each classification model assumes or uses a different way to define fk(x).
When it exists a monotone transformation of Pr(G = k|X = x) which make
it linear in X, then the prediction model is linear. All these models use the
Pr (G = k|X = x) to define discriminant functions δk(x) such that an entry
x is classified by the model into one of the k class maximising δk(x).

In general, classification aims at dividing the hyperplanes into a number
of subspaces equal to the classes of the target variable. This can be done by
minimising the distance of misclassified points to the decision boundaries. A
simple algorithm explaining this logic is Rosenblatt’s Perceptron Algorithm.
A perceptron is a classifier which computes a linear combination of the input
feature and returns the sign. If yi = −1, then the point i is misclassified,
otherwise yi = 1. The objective function of the algorithm is to minimise:

min (D (β, β0)) = −
∑
i∈M

yi(x
T
i β + β0) (10.6)

Where M is the set of misclassified points. The gradient of this function
is:

∂D (β, β0)

∂β
= −

∑
i∈M

yixi (10.7)
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∂D (β, β0)

∂β0
= −

∑
i∈M

yi (10.8)

The algorithm visits in a sequence all the misclassified points and up-
dates the parameter β. (

β
β0

)
←
(
β
β0

)
+ ρ

(
yixi
yi

)
(10.9)

ρ is called “learning rate”, and it can be proved that this algorithm
converges when the classes are linearly separable.

10.1 Model selection

Similarly to the error metrics evaluating regression models, classification
models have specific error metrics to compare the outcome of each model
and choose the one with the best predictive performance.

10.1.1 Accuracy

The accuracy is the simplest indicator since it measures the number of good
predictions over the total number of predictions. We consider the case of
binary classification (i.e., two classes ’1’, and ’-1’) and the number of the:

• true positives TP : the items with true label ’1’, classified correctly;

• true negatives TN , the items with true label ’-1’, classified correctly;

• false positives FP , the items with true label ’-1’, classified incorrectly;

• false negatives FN , the items with true label ’1’, classified incorrectly.

Accuracy is calculated as follows:

Accuracy =
TN + TP

TN + TP + FN + FP
(10.10)

Accuracy can also be defined for every single class (per-class accuracy) to
avoid class skewness (i.e. an imbalanced number of samples among classes
in the training dataset).

10.1.2 Confusion matrix

A confusion matrix (see Figure 10.1) is a visualization tool used to identify
the number of correctly or incorrectly classified points. A confusion matrix
is useful when the error generated by a false positive and the one generated
by a false negative have different relevance in practice which accuracy is not
able to detect (since it averages all positives and negatives together).
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Figure 10.1: Example of a confusion matrix.

10.1.3 Log-loss

Log-loss can be used as a “soft” (see section 8.2) measure of accuracy when
the classifier outputs a probability that an observation belongs to a class
(or another). Log-loss is calculated as:

log − loss = − 1

N

N∑
i=1

yi log (pi) + (1− yi) log(1− pi) (10.11)

This definition of log-loss is similar to the cross-entropy in the information
theory, which measures the unpredictability of something. In practice, by
minimising the cross-entropy, the accuracy is maximised.

10.1.4 AUC

The area under the curve (AUC) is a scalar indicator calculated as the area
of a Receiver Operating Characteristic (ROC) curve. The ROC curve shows
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the sensitivity of the classifier by plotting the rate of true positives to the
rate of false positives. The sensitivity of a classifier is defined as follows.

True positive rate = specificity =
TN

FP + TN
(10.12)

False positive rate = 1− specificity =
FP

FP + TN
(10.13)

Specificity, together with specificity, is used to define the ROC curve.
A ROC curve defines the performance of a classifier by plotting the false
positive rate on the x-axis, and the true positive rate on the y-axis. An ideal
classifier (classifying observations 100% correctly) would go to a 100% rate
of true positives immediately. This is unlike to happen in practice, but the
faster the curve to go closer to 100%, the better the classifier. To quickly
compare the performance of different models, the area under the ROC curve
is calculated, and the higher the area, the better the performance of the
classifier.

10.1.5 Precision and recall

Based on the confusion matrix, it is possible to identify other metrics to
evaluate the classification model. There is no optimal evaluation metric.
The choice of the metric depends on the problem instance and the risk of
misclassification into false positives or false negatives.

Precision =
TP

TP + FP
(10.14)

Recall = Sensitivity =
TP

TP + FN
(10.15)

Precision gives importance to the cost of false-positive. It answers the
question “Out of the items that the classifier predicted to be relevant, how
many are truly relevant?” On the other side, sensitivity (or recall) gives im-
portance to the cost of a false negative. Answering the question: “Out of all
the items that are truly relevant, how many are detected by the classifier?”.
Precision and recall can be matched together by plotting a precision versus
recall curve (similar to a ROC curve) or calculating the so-called F1 score.

F1 =
2× precision× recall
precision+ recall

(10.16)

A low F1 score indicates that either precision or recall is small.



Re
vi
ew
ed
Ve
rs
io
n

144 CHAPTER 10. LINEAR METHODS FOR CLASSIFICATION

10.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) assumes the decision boundaries be-
ing linear. In particular, each class k is assumed having Gaussian density
(defined by a multivariate Gaussian distribution), consequently:

fk (x) =
1

(2π)
p
2 |Σk|

1
2

e−
1
2 (x−µk)TΣ−1

k (x−µk) (10.17)

LDA assumes all classes k has the same covariance matrix Σ. Under this
hypothesis, the equation describing the decision boundaries remains a linear
function of x.To compare two classes k and l defining decision boundaries,
the log ratio is considered.

log

(
Pr(G = k|X = x)

Pr(G = l|X = x)

)
= log

(
fk (x)

fl (x)

)
+ log

(
πk
πl

)
=

= log

(
πk
πl

)
− 1

2
(µk + µl)

T
Σ−1 (µk − µl) + xTΣ−1(µk − µl)

(10.18)

Decision boundaries are found where the equation (10.18) equals zero.
Assuming that all classes have an equal covariance matrix Σk = Σ ∀k im-
plies that the decision boundaries are linear in x. In other words, the p-
dimensional space Rp, where the points in X lie, is divided by hyperplanes
(for example, when X ∈ R2 i.e., p = 2 the plane is divided by a number of
straight lines). The resulting discriminant function is as follows.

δk (x) = xTΣ−1µK −
1

2
µTk Σ−1µk + log πk (10.19)

In practice, the model assumes a certain distribution of the data (the
multivariate Gaussian) estimating the parameters as follows. Given the
number Nk of the observations for each class k, having

π̂k =
Nk
N

(10.20)

µ̂k =
∑
gi=k

xi
Nk

(10.21)

Σ̂ =

K∑
k=1

∑
gi=k

(xi − µ̂k) (xi − µ̂k)
T

N −K
(10.22)

In general, when the covariance matrix Σk are different, the discriminant
functions are quadratic (QDA).

δk (x) = −1

2
log |Σk| −

1

2
(x− µk)

T
Σ−1
k (x− µk) + log πk (10.23)
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It is possible to apply LDA as well, by shrinking the covariance matrices,
using an hyperparameter α and then applying LDA.

Σ̂ (α) = αΣ̂k + (1− α) Σ̂ (10.24)

10.3 Logistic Regression

Similarly to LDA, Logistic regression is a linear model used to predict the
value of a discrete variable. The model has the form:

log

(
Pr (G = 1|X = x)

Pr (G = K|X = x)

)
= β10 + βT1 x

log

(
Pr (G = 2|X = x)

Pr (G = K|X = x)

)
= β20 + βT2 x

. . .

log

(
Pr (G = K − 1|X = x)

Pr (G = K|X = x)

)
= β(K−1)0 + βT(K−1)x

(10.25)

The model uses K − 1 classes while the K-th class can be arbitrar-
ily chosen and is always found in the denominator of the model. Dif-
ferently from LDA (where linearity is given by the assumption of Gaus-
sian parameter), logistics regression does not assume the distribution of X,
but it is linear by construction. To get a simplified notation we introduce
θ = β10, . . . , β(K−1)0;βT1 , . . . , β

T
K−1, and

Pr (G = k|X = x) = pk(x, θ) (10.26)

Since the probability distribution of x is not given apriori, it is not
possible to develop the equation and get a closed-form formula to fit the
model. A maximum likelihood estimator (MLE) is, then, used to fit the
model and get β. A multinomial distribution is appropriate to define the
distribution of Pr (G|X) . Here the case of K = 2 is discussed for brevity.
Using the multinomial distribution, the formula of the log-likelihood2 of β
is:

l (β) =

N∑
i=1

yi log (p (xi;β)) + (1− yi) log (1− p (xi;β)) (10.27)

2Log-likelihood is used since the logarithm is an increasing function and it is equivalent
to maximize the likelihood or the log-likelihood. In this application and many other cases,
maximizing a logarithm results much more simple.
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To get an MLE the ∂l(β)
∂β is computed, set to zero and solved in β.

This implies solving p + 1 non-linear equations in β. The calculus can be
done using the Newton-Raphson algorithm which usually converges since
log-likelihood is concave.

Further reading

Supplementary reading materials can be found in [1].

Bibliography
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Non-linear methods

The world does not behave
linearly. Models do.

The previous chapters introduce regression and classification, presenting
numerical example from linear models. Often, linear models cannot be ap-
plied in practice since they simplify too much the behaviour of reality. For
this reason, non-linear models are implemented to build supervised models
both for regression, and classification. Well-established mathematical mod-
els define non-linear models. Differently from linear models that the solving
approach is not exact, but approximated by efficient heuristics.

This chapter presents non-linear models according to the classification
of machine learning methods into the five tribes [1]. Each tribe is related
to a specific branch of science whose researchers are used to learn and make
discoveries with a precise technique. Each tribe has a precise way of working:

1. Evolutionaries create knowledge by evolving structures;

2. Connectionists create knowledge by learning parameters;

3. Symbolists create knowledge by composing element on the fly;

4. Bayesians create knowledge by weighting evidence;

5. Analogisers create knowledge by mapping to new situations.

All these tribes have a precise way of thinking, a specific optimisation
algorithm, an evaluation metric and a representation tool (i.e. the formal
language of each tribe). Figure 11.1, introduced in [1] illustrates all these
elements and suppose the existence of a master algorithm able to merge the
five approaches, aiming at learning anything.

147
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Figure 11.1: The five tribes optimisation, evaluation, and representation
tools, from [1].

11.1 Evolutionaries’ methods

The name evolutionaries comes from the theory of evolution of Charles
Darwin [2]. With this tribe, we refer to researchers and methods born
in the field of biology to model and understand how nature evolves. The
machine learning tribe called evolutionaries mimics the natural behaviour
to learn information.

The formal language of evolutionaries is the genetic programming and
they think that it leads to classifying systems, as the classification of the
species. Their evaluation metric is the goodness of fit that measures the
distance between the outcome of a model and its true value. Evolutionaries
use search algorithms that move on the input data hyperplane to find solu-
tions. These algorithms are called genetic search algorithms and belong to
the family of metaheuristics.
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11.1.1 Genetic search

Genetic search algorithms are metaheuristic algorithms that consider an
initial feasible solution of a prescriptive problem and make it evolve by
mimics of the natural evolution mechanisms as mutations and cross-over.
They aim at finding a new feasible solution with a better performing solution
value.

Figure 11.2 identifies the mutation of a string of data, where a bit of the
original input has been randomly changed. The impact of this mutation on
the solution value is evaluated by the goodness of fit of the model.

Figure 11.2: Example of mutation of a string of data.

Figure 11.3 identifies an example of a cross-over of two strings of data.
The values of the string are pivoted around a splitting point and combined
to generate two new strings. The fitness function evaluates if the cross-over
leads to an improvement of the solution value.

Figure 11.3: Example of cross-over of a string of data.
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11.2 Symbolists’ methods

The symbolists use the formal language of the logic to learn and generate
information. We already introduced the logic in Chapter 5, and we have
already seen the application of logic to unsupervised learning models in the
definition of association rules (see Section 8.1). A similar “if-else” statement
can be used to learn information in a supervised fashion by using decision
trees. Decision trees are the application of the formal language of symbolists
to supervised learning. Their evaluation metric is measured through the
accuracy and the information gain.1

11.2.1 Decision trees

Decision trees can be used both for regression and for classification. The
idea behind a regression tree is to split the space of the input features into
M partitions such that the response of the model is:

f (x) =

M∑
m=1

cmI (x ∈ Rm) (11.1)

In other words, the model assigns a constant response value cm for each
partition m of the feature space. The model can be represented as a tree
where the observations are split based on the value of a splitting variable
j and a splitting point s. Each branch, consequently, divides the current
feature region into two regions R1 and R2 such that R1 (j, s) = {X|Xj ≤ s}
and R2 (j, s) = {X|Xj > s}.The branching variable j and its splitting point
s are chosen to minimize the error function:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2

+ min
c2

∑
xi∈R2(j,s)

(yi − c2)
2

 (11.2)

At each stage of the tree, all the splitting points s are tested for each
variable j very quickly defining two new partitions of the feature space. The
responses c1 and c2 are defined as:

c1 = E[(yi|xi ∈ R1 (j, s))]

c2 = E[(yi|xi ∈ R2 (j, s))]
(11.3)

A minimum node size can be predetermined to avoid an exponential
growth of the number of nodes of the tree. Alternatively, a tree node can

1The package logproj provides methods to deal with symbolists’ methods here.

https://github.com/aletuf93/logproj/blob/master/logproj/M_learningMethod/symbolists_models.py
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be split only if the decrease in the sum-of-squares exceeds a threshold. This
can be expressed using a cost-complexity criterion:

Cα (T ) =

|T |∑
m=1

NmQm (T ) + α |T | (11.4)

Where Nm = card(xi ∈ Rm), cm = 1
Nm

∑
xi∈Rm yi and Qm (T ) =

1
Nm

∑
xi∈Rm (yi − cm)

2
. Qm (T ) is a measure of impurity in each parti-

tioned region, the equation (11.4) aim at defining a subtree that controls
the tradeoff between impurity and the growth of the tree.

Classification trees work as regression trees with a different definition of
the impurity function. Classification trees offer different impurity functions
Qm(T ):

• The misclassification error Qm(T ) = 1− pmk;

• The Gini index Qm(T ) =
∑K
k=1 pmk(1− pmk);

• The cross-entropy Qm(T ) = −
∑K
k=1 pmk log pmk.

All these impurity functions are based on the value of pmk, i.e. the
proportion of class k observation in node m.

pmk =
1

Nm

∑
xi∈Rm

I(yi = k) (11.5)

Where Nm = card(xi ∈ Rm).
Similarly to regression trees, a new branch of a decision tree is opened

if it reduces the value of the impurity function at that node m compared to
the weighted impurity of the nodes of the new sub-tree.

When implementing a decision tree, it is possible to measure the relative
importance of an input feature l by using:

I2
l (T ) =

J−1∑
t=1

î2t I (v (t) = l) (11.6)

Where J−1 are the internal nodes of the regression tree T and î2t is the max-
imal estimated improvement in the squared error risk obtained by choosing
l as splitting variable at the node t.

11.3 Bayesians’ methods

Bayesian methods rely on the well known Bayes’ theorem that we already
introduced in section 6.6. By using prior and posterior probability, we
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have the possibility to update the belief we have on an event when new
observation (e.g. new data or data from another data source) are available.
The formal language of the bayesians is the graphical modelling as Bayesian
and Markov networks. The posterior probability given from the empirical
observation is the evaluation metric of these models. The search method
is the averaging between initial beliefs given by the prior (i.e. the initial
assumptions) and the posterior (i.e. the empirical evidence).2

11.3.1 Näıve Bayes

The prior probability of the Bayes theorem reflects the initial belief we have
on an event. The posterior probability indicates all the other data we add
to support or discard our initial belief. When applying the Bayes theorem
to machine learning, we obtain a relationship between causes (i.e. the input
dataset X) and effect (the target variable y):

P (cause|effect) =
P (cause)× P (effect|cause)

P (effect)
(11.7)

Unluckily, phenomena have many causes leading to and effect.

We have already seen that any machine learning model can be inter-
preted as a method to estimate the joint probability distribution between
the input features, and the target (i.e. the cause, and the effects). Näıve
Bayes approaches this problem simply, by assuming all the causes, i.e. the
input features are independent. Under this assumption, the joint density
distribution is obtained as:

fj (X) =

p∏
k=1

fjk(Xk) (11.8)

Each marginal density distribution can be estimated using one-dimensional
kernel density estimation (see section 6.2.3). Näıve Bayes calculates the
product of these kernels, and the logit transform is, then, used to get a
model in an additive form (similar to the perceptron algorithm illustrated

2The package logproj provides methods to deal with bayesians’ methods here.

https://github.com/aletuf93/logproj/blob/master/logproj/M_learningMethod/bayesians_models.py
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in chapter 10).

log

(
Prob{G = l|X}
Prob{G = J |X}

)
= log

(
πlfl(X)

πJfJ(X)

)
=

= log

(
πl
∏P
k=1 flk(Xk)

πJ
∏P
k=1 fJk(Xk)

)
=

= log

(
πl
πJ

)
+

P∑
k=1

log

(
flk(Xk)

fJk(Xk)

)
=

= αl +

P∑
k=1

glk(Xk)

(11.9)

11.3.2 Markov Chains

The hypothesis of the independence between the input variables is hardly
often valid. On the other side, the definition of an accurate joint probability
distribution requires a huge amount of data and a significant computational
time. To overcome these obstacles, Markov chains assume that the proba-
bility of an event only depends on the current state of a system.

The p attributes of the input dataset X define the state of a system,
and they are linked together by a transition probability. This way, even
if the number of features p is high, the number of transition probabilities
t calculate is still limited. Figure 11.4 introduce the graphical model of a
Markov chain, whose information content is described by a transition matrix
T with states i and j as rows and columns labels. The entries tij ∈ T
identifies the probabilities from i to j.

11.3.3 Hidden Markov Models and Kalman filter

Sometimes, state variables are not observable, but the state depends on a
subset of measurable variables that affect the state variables, and a model
(i.e. a prior) of how these variables affect the state is given (see Figure
11.5).

Kalman filter implements this rationale when the states and the obser-
vations are continuous variables [3]. The filter works by considering a prior
knowledge given by a model describing the state of a system [4, 5]. The
state of the system is estimated and updated online by considering empirical
measurements of the transitions (representing a posterior knowledge). Let
µ and σ2 be the mean value and standard deviation of the prior and ν and
r2 the ones of the posterior. The Kalman filter works correctly when the
measurements have a higher information content than the model, i.e. their
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Figure 11.4: Network of a Markov chain.

accuracy is higher r2 < σ2. This hypothesis is often verified since the mea-
surements depend on the accuracy of the instrument on a single transition
(see 6.2.6), while models tend to be more general and inaccurate. Kalman

filter calculates a new mean µ′ and σ2′ of the system state as:

µ′ =
r2µ+ σ2ν

r2 + σ2

σ2′ =
1

1
r2 + 1

σ2

(11.10)

At this stage, the state is updated by considering the transition mea-
surement u:

µ′ = µ+ u

σ2′ = σ2 + r2
(11.11)

11.3.4 Bayesian Networks and Montecarlo Markov Chains

When multiple prior and posteriors are involved, Bayesian networks can be
used to describe a system. In practice, a Bayesian network defines a number
of variables with a specific probability distribution and a connection between
them. This way, it is possible to model multiple interconnected events
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Figure 11.5: Network of a Hidden Markov Model

with different probability distributions. The parameters of a probability
distribution can be variables as well.

Let us consider the example where we know that if it is sunny, we will
go to the beach. We are interested in knowing the probability of going to
the beach, without any empirical observations on it. Nevertheless, we know
that it is sunny when it is not raining: Prob{sun} = 1 − Prob{rain}.
We assume that rain probability is distributed as a Poisson probability
distribution whose parameter λ follows a normal distribution. All these
elements are the priors of our model (see Figure 11.6).

We are interested in sampling the posterior, i.e. to measure the proba-
bility of going to the beach, given all these parameters. A technique called
Montecarlo Markov Chain (MCMC) permits to sample from the posterior,
given the connection between all the random variables of a Bayesian net-
work, and given observations of some of these variables. For example, we
have past observations of the probability of rain, from the weather forecasts.
MCMC can fit these empirical observations to the Poisson probability dis-
tribution and compute all the other parameters of the network consequently.
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Figure 11.6: Example of a Bayesian network.

11.4 Analogisers’ methods

Analogisers proceeds by labelling items depending on their similarity to a
set of given items. The simplest approach is the k-nearest neighbour, an
algorithm computing the distance of a new observation from all the given
observations and assigning to it the label of the closes. The formal language
of analogisers is the weighting of a specific instance as in the Support Vector
Machine whose evaluation metric is the margin. Their search method is the
constrained optimization that moves within the boundaries, looking for the
best values.3

11.4.1 Support vector machines

Support vector machines (SVM) are based on the concept of support vector
classifier (SVC); they can be interpreted as a weighted k-nearest neighbour.
An SVC identifies thresholds are defined to identify regions of the hyper-
plane containing all the input data. Different regions have different labels.
New observations are classified depending on the region of the hyperplane
where they fall. The shortest distance between the observation and the
threshold dividing the hyperplane’s regions is called margin.

By setting thresholds that gives the largest margin, there is a high risk
of misclassification if the input dataset contains outliers. For this reason, it

3The package logproj provides methods to deal with analogisers’ methods here.

https://github.com/aletuf93/logproj/blob/master/logproj/M_learningMethod/analogizers_models.py
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is necessary to allow the SVC to misclassify the input data. This way, we
have data points falling within a hyperplane’s region with a different label.
This is called soft margin classifier or SVC since the observation on the
edge of a region, and within the soft margin are called support vectors. The
support vectors define the regions’ boundaries. The support vectors always
have a p− 1 dimension, where p is the dimension of the input dataset.

A SVC defines hyperplanes f (x) = xTβ + β0 such that yif (xi) > 0 ∀ i.
The hyperplane which best separates the space is defined by the optimisa-
tion problem:

max
β,β0,|β|=1

M

yi
(
xTi β + β0

)
≥M , i = 1, . . . , N

(11.12)

In case the classes overlap, it is still possible to maximise M allowing for
some points to be on the other side of the margin. Let ξ be a slack variable
ξ = ξ1, . . . , ξN , we have:

yi
(
xTi β + β0

)
≥M − ξi (11.13)

Where the value of ξ indicates a proportional amount by which the predic-
tion is on the wrong side of the margin.

SVC have a problem when a region is enclosed by another, i.e. there is
no possibility to define a support vector p-1 dimensional to separate the two
regions correctly. Kernel transformations are used to overcome this problem.
The input dataset is projected into a hyperplane with a higher dimension,
and then an SVC is used. This procedure is called SVM. Common kernels
are polynomial kernel with dimension d, that projects the point using a
power elevation of their values, or the non-linear radial basis function.

11.5 Connectionists’ methods

Connectionsts aim at learning by mimic the connection of the human brain.
The human brain is composed of interconnected neurons activated by elec-
trical impulses. The formal language of the connectionists is the neural
network. A neural network has an input similar to the input from the five
senses of a human. Depending on the input, different groups of neurons are
activated, producing the output. The evaluation metric of connectionists is
a continuous error metric, as the mean squared error (see section 9.1) that
measures the difference between the know target label, and the output of
the neural network. The search algorithm to define the behaviour of the
neurons is the gradient descent.4

4The package logproj provides methods to deal with connectionists’ methods here.

https://github.com/aletuf93/logproj/blob/master/logproj/M_learningMethod/connectionists_models.py
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11.5.1 Neural Networks

Neural networks work by mimic a network of neurons. Figure 11.7 illustrate
how a mathematical neuron is defined. A neuron has some inputs, a bias
input quantity b. All these inputs are summed up and processed by an
activation function. This is usually a sigmoid function, as a logistic function,
a hyperbolic tangent, a rectified linear (RELU) or a fixed threshold. If the
sum of the input is enough to activate the function, a positive output is
obtained; otherwise, the energy provided by the inputs is not enough to
activate the neuron, that produces a zero.

Figure 11.7: Schema of a neuron.

In practice, each neuron works similarly to a logistic regressor. Putting
together multiple neurons into deep layers is what they called deep learning.
The central idea of a neural network is to extract linear combinations of the
input features X to create hidden features Z and model the target as a
non-linear function of these features.

There are neural networks with complex mechanisms and topologies.
For the sake of brevity, we analyse how a single layer neural network works.
This model is also known as “single-layer perceptron Let consider the case
of classification into K different classes. The model involves:

• p input features x1, . . . , xp;

• M derived features Z1, . . . Zm, . . . , ZM ;

• K target Y1, . . . , Yk, . . . YK .

The main idea is modelling the target Y as a combination of Z.

fk (X) = gk(T ) (11.14)

Where:
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• Tk = β0 + βTk Z, k = 1, . . . ,K is a linear combination of the hidden
layer features Z, with

• Zm = σ(α0m + αTmX), m = 1, . . . ,M .

The function σ is the activation function, usually the sigmoid function
σ (v) = 1

1+e−v . This function is a non-linear transformation of the input X,
which is the core of neural networks. If σ equals an identity function, all the
model collapses to a linear model. gk is a transformation function to get the
final input. For regression the identity function gk(T ) = Tk is used while

the softmax function is used for k-classification problems gk (T ) = eTk∑K
l=1 e

Tl
.

Fitting a neural network means to identify the unknown weights α0m, αm;
m = 1, . . . ,M and β0m; βk; k = 1, . . . ,K. A neural network use the gra-
dient descent algorithm to find the value of these parameters minimising

an error metric as the sum-of-squared errors
∑K
k=1

∑N
i=1

(
yik − fk(xi)

)2
for

regression, or the cross-entropy
∑N
i=1

∑K
k=1 yik log fk (xi) for classification.
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Ensemble methods

A choir sings better than a
single voice.

In the chapter 11 we introduced machine learning methods born from
different research approaches. Each of them has peculiarity and limits, and
there is not the best method that outperforms the others. Ensemble learn-
ing aims at combining the power of these different learners to obtain a more
effective result. The idea behind ensemble learning is to combine different
prediction models and consider their output together to make predictions
on the target variable. Ensemble methods are mainly based on bagging and
boosting (see Figure 12.1). Bagging combines the effect of multiple inde-
pendent learners while boosting creates a pipeline of learners in sequence.1

12.1 Bagging

The word bagging means bootstrap aggregation. This method uses the boot-
strap sampling technique (see section 6.2.4) to get B different samples of the
original dataset and train B different models on them. The type of model
to train can be chosen arbitrarily. The final prediction will be the average
of the prediction f b of the B models.

f (x) =
1

B

B∑
b=1

f b(x) (12.1)

1The package logproj provides methods to deal with ensemble methods here.

161
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Figure 12.1: Representation of the rationale of the ensemble methods.

12.2 Random Forests

A Random Forest is a bagging method whose model is a decision tree or a
regression tree. The underlying idea is to average many unbiased trees to
reduce the variance in the predictions. Random forests work as follows.

Algorithm 8: Random forests algorithm

Import the input dataset with N observations, and p features
Set the number of iterations B
for b = 1 : B do

Get a bootstrap sample Z∗ of size N
Set a number m of features to extract
Grow a tree tree Tb on Z∗ doing the following
while a minimum node size nmin is not reached. do

Select m variables out of p at random
Choose the best variable split on m
Split the node into two daughter nodes

end

end
Output the ensemble of trees T1, . . . , TB

Predictions are obtained differently depending on regression or classifi-
cation. The predictions for a regression tree are obtained by averaging all
the output predictions:

f (x) =
1

B

B∑
b=1

Tb (x) (12.2)

For a classification tree the function of majority vote is considered:

f (x) = majority vote {C1 (x) , . . . CB(x)} (12.3)
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where Cb(x) is the class predicted by the b tree of the random forest.
The hyperparameters of a random forest are the number m of features to

extract and the minimum number of nodes nmin. Valid tuning parameter for
regression random forests are m =

√
p, and nmin = 1; while for classification

random forests are used m = p/3, and nmin = 5.
The performance of a random forest can be assessed through a tradi-

tional error metric (e.g. the MSE) calculated on out-of-bag (OOB) sam-
ples. OOB samples are the samples of the original dataset which does not
appear in the bootstrapped dataset. This measure of error is similar to the
cross-validation.

12.3 AdaBoost

AdaBoost means adaptive boosting, and it has been one of the firsts boosting
methods. The main idea behind these methods is to combine the outputs
of many weak classifiers to get a robust prediction. A weak classifier is
any classification function with an error rate slightly better than random
classification (i.e., flipping a coin). These weak classifiers are called stumps,
and can be modelled as decision trees with a single split. Each of the
classifiers votes to produce a different weighted contribution on the final
prediction. AdaBoost born as a classification method on two classes y ∈
{−1; 1}. The final prediction is obtained as:

G (x) = sign

(
M∑
m=1

αmGm (x)

)
(12.4)

Where Gm(x) is the contribution of each weak predictor and α1, . . . , αm
are the relative importance of each predictor. The AdaBoost algorithm
works as follows:

Algorithm 9: AdaBoost algorithm

Set a weight wi = 1
N for each observation i = 1, . . . , N

for m = 1 : M do
Normalise weights wi i = 1, . . . , N
Fit a stump classifier Gm(x) to the training data

Compute the error errm =
∑N
i=1 wiI(yi 6=Gm(xi))∑N

i=1 wi

Compute αm = log
(

1−errm
errm

)
Set wi = wie

αmI(yi 6=Gm(xi)) i = 1, . . . , N

end

Predict the output G (x) = sign
(∑M

m=1 αmGm (x)
)

At each iteration, the algorithm increases the value of αm if the classifier
Gm gives a robust prediction. In addition, a higher weight wi is associated
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with misclassified observation to give them higher importance in the forth-
coming iterations. From this perspective, AdaBoost connects a series of
stump classifiers as a chain such that the following classifiers produce good
predictions where the previous failed.

12.4 Gradient boosting

Gradient boosting is a boosting model similar to AdaBoost with a main
difference; it uses decision trees instead of stumps. Gradient boosting min-
imises a loss function L (f) =

∑N
i=1 L (yi, f (xi)), where f(x) is a sum of

trees. Algorithm 10 illustrates how gradient boosting works.

Algorithm 10: AdaBoost algorithm

Initialise f0 (x) = arg minγ
∑N
i=1 L (yi, γ)

for m = 1 : M do
for observation i = 1 : N do

rim = −
[(

∂L(yi,f(xi))
∂f(xi)

)]
f=fm−1

end
Fit a tree with target rim and terminal regions Rjm,
j = 1, . . . , Jm

for j = 1 : Jm do
γjm = arg minγ

∑
xi∈Rjm L(yi, fm−1 (xi) + γ)

end

Set fm (x) = fm−1 (x) + ρ
∑Jm
j=1 γjm (x ∈ Rjm)

end

Predict the output f̂ (x) = fM (x)

In particular, working with a regression problem, the initial value is
set to the average of the target variable f0 (x) = ȳ. The loss function

L = 1
2 (yi − f (xi))

2
is set to the sum of squared residual multiplied by a

coefficient 1
2 which will be simplified after calculating the gradient of L.

The algorithm builds M different trees to get the final prediction. Each
tree defines Jm terminal regions (i.e. leaves) to target the value of rim.
The value of rim is calculated at each step, based on the value of the loss
function L generated at the previous tree fm−1. The values of fm, i.e. the
prediction on y at the step m of the algorithm, is generated summing the
prediction from the previous step fm−1 plus a value γjm. γjm is the output
value at the terminal region Rjm chosen to minimise the sum of squared
residuals generated by the multiple observations falling into the same leave
Rjm. ρ ∈ [0, 1] is a learning rate used to reduce the variance produced by the
model on the test set. The experience suggests setting the hyperparameters
choosing ρ = 0.1 and building trees with 8 to 32 leaves.
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Gradient boosting can be used for classification problem as well, by
setting the initial value equal to the log of the odds of the target variable.
The algorithm updates the values of the γjm with respect to the residuals
of the predicted values calculated on a logistic function.

12.5 Mixture of Experts

The mixture of experts models combine the predictions of multiple trees in a
soft way (see Section 8.2). As the word mixture suggests, this is not a hard
model, but it works by calculating the probability that a point belongs to a
split branch or another. The terminal nodes of this tree are called experts,
while the non-terminal nodes are gating networks. Gating networks have an
output in the form:

gj (x, γj) =
eγ
T
j x∑K

k=1 e
γTk x

j = 1, . . . ,K (12.5)

Where gj (x, γj) represents the probability of assigning a vector x of
the input dataset to the branch j. γj is a vector of unknown parameters
representing the soft k-way split (while dealing with regression tree k is
always equal to 2). At each terminal node (expert), the response variable
is in the form:

Y ∼ Pr(y|x, θjl) (12.6)

Where Y is a linear regression model θjl = (βjl, σ
2
jl). Y = βTjlx + ε ∼

N(0, σ2
jl). In the case of classification, Y is the logistic regression.
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Prescriptive analysis

Aren’t we doctor, after all?

All the previous chapters of this mathematical section, introduced meth-
ods to describe and understand a dataset, and even to create knowledge by
discovering hidden patterns within data.

When the decision-maker has a clear description of the processes, it is
necessary to find decision-support methods to leave a footprint in the real
world. This should be the last stage of any serious data-driven process
since starting building a decision-support tool without a clear idea of the
process where the decision-support tool has to be embedded may lead to
catastrophic results.

Besides, it is important to remember that statistics and learning algo-
rithms provide much information. Sometimes, this information is enough for
making a decision without additional biases introduced by complex decision-
support tools.

We know that prescriptive models are highly complex and incredibly
problem-oriented. This fact suggests that they usually embed the highest
bias possible and a limited generalisation of their mechanism, which also
prevents their reproducibility and their value for the scientific community.

13.1 Prescriptive models

Prescriptive models aim at setting the value of decision variables that mimic
the decision alternatives in a real context. These models are defined using
the following notation.

167
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• P is the decision problem;

• x is the matrix of the decision variables;

• z is the objective function explaining the goodness of x;

• ξ is the domain of x.

Prescriptive models are algorithms minimising (or maximising) z by
changing the entries of x within the domain ξ. Prescriptive models out-
come are the solution x̂ and the solution value ẑ. Let assume P being a
minimisation problem, we define x̂:

• optimal solution (indicated with x∗) if the value of ẑ is the minimum
among all the possible values of ẑ;

• feasible solution if x ∈ ξ;

• unfeasible solution if x /∈ ξ.

13.2 Heuristics and metaheuristics

Considering a minimisation problem P , a heuristic procedure is any algo-
rithm that produces a feasible solution x̂ performing different step; each
step aims at reducing the value of z. Each step of a heuristic algorithm
is called move. Usually, a move of a heuristics produces an improvement
(i.e., it reduces the value of z), when no improvement occurs the algorithm
stops returning the value of x̂ and ẑ. Differently, a metaheuristic algorithm
allows accepting bad values of z at the intermediate moves of the algorithm
aiming at a lower value of z in the last move. Figure 13.1 presents the
typical behaviour of the moves of heuristics and metaheuristics algorithms.

Heuristics can be:

• greedy algorithms, i.e. they perform a number of steps to build a
feasible solution;

• local search, i.e. they perform a number of steps to improve an initial
feasible solution.

Metaheuristics usually start from a feasible solution (e.g. produced by
a greedy algorithm), and they perform a number of moves according to the
type of the algorithm. Examples of metaheuristics algorithms are simulated
annealing, tabu search, ant colony algorithm, genetic algorithm (see section
11.1.1). Each of them has a precise logic to generate the solution at each
step, it checks (or recovers) the feasibility of the incumbent solution within
ξ improving z.
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Figure 13.1: Representation of the moves of heuristics and metaheuristics
algorithms.

13.3 Linear Optimisation

Heuristics and metaheuristics hardly guarantee to find the optimal x∗ and
z∗. Linear optimisation uses predefined algorithms to find the optimal so-
lution to a linear problem P having ξ defined by linear constraints. An
optimisation problem can be written in the form:

z = min c′x

Ax ≤ b
x ≥ 0

(13.1)

If ξ is a continuous domain, P is a linear problem (LP) and can be solved
in polynomial time using the simplex algorithm. If ξ is made of integer
values, the problem is an integer linear problem (ILP), and it is solvable in
exponential time using the branch & bound algorithm. Exponential time
may take forever to solve an instance; for this reason, ILP optimisation is
not suitable for big instance of problems requiring real-time response. In the
next paragraph, we introduce some algorithms (still having an exponential
complexity) which can improve the running time to get an optimal solution.

13.3.1 Duality

We can find a smart way to compute the optimal solution of an optimisation
problem P , by considering its dual problem D.
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Let consider a primal problem P defined as:

z = min c′x

Ax ≤ b
x ≥ 0

(13.2)

The optimal solution value z of the problem P is obtained at c′x∗.
Let consider the Lagrangian relaxation L of the problem P , where the

set of constraints Ax ≤ b is replaced by a penalty addendum p′ (b−Ax) in
the objective function.

min c′x− p′(b−Ax)

x ≥ 0
(13.3)

Let g(p) be the solution value of the relaxed problem L. g(p) is a lower
bound of c′x.

g (p) ≤ c′x (13.4)

Equation (13.4) implies that it is possible to find a vector p′ such that
p′ (b−Ax) = 0 obtaining a solution value of the relaxed problem equal to
the optimal solution value of the non-relaxed problem. The problem to find
p′ is called dual problem D, and it is formally defined as:

v = max p′b

p′A ≤ c
p ≥ 0

(13.5)

A set of mathematical rules from the theorem of duality allows obtain-
ing the definition of the dual problem of any primal problem. Table 13.1
illustrates these rules.

Table 13.1: Table of the rules to obtain the dual problem.

Sometimes, solving the dual problem is easier than solving the primal
problem. In particular, the dual problem can be used to:
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1. find a lower bound of the solution value of a problem. g (p) ≤ c′x (e.g.
to start a branch & bound procedure);

2. generate variables (i.e. columns) for a problem with an exponential
number of variables p′ (b−Ax) (Branch & Price algorithm).

Branch & price algorithm

Branch & price uses the duality theorem to expedite the search of an optimal
solution for an ILP problem P having an exponential number of variables.
It is a common technique when we express a problem in a set-covering
approach, since set covering formulation has an exponential number of vari-
ables.

Let consider, for example, a facility location problem in its set covering
formulation where wi is the demand of node i, and W is the service capacity
of a facility. We define the set S as a set of vectors s, each one containing
a feasible solution of the facility location problem.

S =

{
s ⊆ {i = 1, . . .m} :

∑
i∈s

wi ≤W

}
(13.6)

We formulate the facility location problem in the form of a set covering
problem using the variable xs, and the parameter cs:

xs =

{
1 if configuration s is selected
0 otherwise

(13.7)

cs cost of serving set s (13.8)

The primal problem P is defined as:

min csxS∑
s∈S:i∈s

xs ≥ 1 ∀ i = 1, . . . ,m

xs ∈ {0, 1}

(13.9)

If we relax the integrality of P we obtain the dual problem D.

maxπi∑
i∈S

πi ≤ cs ∀ s ∈ S

πi ≥ 0

(13.10)
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We defined P as an ILP problem with an exponential number of vari-
ables xs. The dual problem, instead, has an exponential number of con-
straints

∑
i∈S πi ≤ cs ∀ s ∈ S. To optimally solve D we use the separation

procedure (also known as branch & cut). Let solve P and D and obtain
x∗, cx∗, π∗, g (π∗). Let assume x∗ being feasible with no guarantee of opti-
mality for P :

• if π∗ is feasible for D, then x∗ is optimal for P (weak duality theorem);

• if π∗ is unfeasible for D, at least a dual constraint is violated, and a
column (a variable of the primal problem P ) must be added to x to
proceed towards optimality.

Since constraints of D are in the form:
∑
i∈S πi − cs ≤ 0 ∀ s ∈ S, a

violated constraint of D equals to a vector s respecting the following con-
straints.

s :
∑
i∈s

πi − cs > 0

s :
∑
i∈s

πi −
∑
i∈s

ci > 0

s :
∑
i∈s

(πi − ci) > 0

(13.11)

∑
i∈s (πi − ci) is the reduced cost of variable s. To identify the best

column to add, an optimisation problem called column generation problem
CG is defined.

µi =

{
1 if i belongs to the column
0 otherwise

(13.12)

max

m∑
i=1

µi(πi − ci)

m∑
i=1

πiwi ≤W

πi ∈ 0, 1

(13.13)

If the reduced cost
∑m
i=1 µi(πi − ci) is positive, it is worth to add this

column to reduce the value of the primal objective function. The proce-
dure of adding columns is repeated until the objective function of equations
(13.13) has a positive value (i.e., a reduced cost exists). When there is no
reduced cost, all the necessary columns have been added to S in the primal
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problem P . At this stage, the integrality constraints of P are restored, and
P is solved to optimality.

A column generation procedure needs that S contains an initial feasible
solution. For this reason, the initial value of S is initialised to a sij =′ 1′ if
i = j, ’0’ otherwise. Figure 13.2 illustrates the evolution of the set S from
an initial feasible solution to the optimal solution obtained by a column
generation algorithm; the x-axis identifies the iterations of the algorithm
while the y-axis the value of the added column (i.e. yellow for ones and
blue for zeros).

Figure 13.2: Evolution of a column generation algorithm.

13.4 Discrete event simulation

Discrete event simulation (DES) is a problem-oriented technique which vir-
tualises an entire system (products, resources, material handling system)
and simulates the effect of the production to measure the efficiency of the en-
tire system and get an estimate of some parameters as queues and takt-time
dynamically. A DES model, as well as its outcomes, is hard to generalise to
multiple scenarios.

13.5 Multiple decisions or decision-makers

All the methods presented in this chapter are linked to a single objective
and a single decision-maker. They can be easily generalised into multiple
decision-making techniques using, for example, multi-objective optimisa-
tion. Nevertheless, when the information on the decision or the decision
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itself is distributed among different actors, there are different techniques
(as game theory agent-based theory) which results adequate for this type of
problems. The following section will focus on the decision problem where
the final decision is in charge of a single decision-maker. For this reason, we
will not use these techniques.
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Diagnostic Models

This section analyses distribution networks (also known as distribution sys-
tems). Distribution networks connect the nodes of a supply chain, that
can have a worldwide extent. They involve the network infrastructure, i.e.
roads, rails, water connections, air connection, pipelines and any other in-
frastructure needed to move goods from a point to another. Production
network must be effective, by providing a fast and safe connection between
customers and clients, and efficient since they add no value to the product
transported.

Special attention must be paid in the design of the infrastructure of
these networks. The capacity and the velocity of the connection make a
country powerful and competitive in the international market. The design
and control of the distribution on the network is a crucial issue as well.
Decisions as the type of vehicle, or the frequency of a connection heavily
affect the efficiency of the network.

Distribution systems are modelled using the graph theory which is well
explored from a mathematical and computational point of view; for this
reason, there is room for the application of graph-based data-driven models
in the field of distributions science.

This chapter focuses on the definition of the keywords and key entities
extending the ontology of chapter 3 to distribution systems. After that, it
introduces the diagnostic framework for production nodes with a relational
data structure. A non-relational data structure is introduced to overcome
some limits of the relational data structure, enhancing data collection from
multiple sources and more effective analysis to support the design and con-
trol of a distribution network.

Chapter 15 focuses on model-driven and data-driven approaches to con-
trol a distribution network. In contrast, chapter 16 does the same to support
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the decisions on the design of a distribution network.

14.1 Ontology

Here we go deeper into the details of the general ontology introduced in
chapter 3. This chapter applies that approach to a distribution network
that, in general, can be considered the biggest logistic system possible, since
it is globally ditributed.

Entities

We identify the following entities.
Part (i): A part is a handling unit (HU), i.e. the smallest part that is

loaded and unloaded from a vehicle. The HU is usually the object of digital
tracking in the supply chain. Depending on the type, and the extent of the
network, a HU can be a carton (e.g. parcels supply chain), a pallet (e.g.
supply chains with distribution centres), or even a container (e.g. globally
distributed supply chain).

Processing node (j): The resources in charge of loading and unloading
parts from vehicles. These entities are terminals, platform or bays, depend-
ing on the type of vehicle to load/unload (aircraft, vessels, trains, trucks,
vans).

Edge (j, k): Any path connecting two processing nodes is an edge.
Edges of a distribution network have a type, defining the type of vehicle
able to travel on the edge (e.g. air, rail, water, road) and a capacity.

Vehicle (v): A vehicle is an element travelling on edges to transport
HUs from a processing node to another.

Consumable (s): It models the energy or the fuel to operate vehicles.
Route (e): It is a predefined visiting sequence of different processing

nodes.
Order (o): It is a transportation order received from a customer or

generated by a freight forwarder.
Job (b): It is the schedule of the processing nodes to visit, including the

expected service time windows and the detail of the HUs to load/unload.
System network The graph G(V,A) of nodes j ∈ V and edges (j, k) ∈

A composing the distribution network.

Metrics

We identify the following metrics to assess the performances of a processing
node j.

Throughput (THj): The productivity of a resource, i.e. the average
number of HUs loaded and unloaded per unit of time (e.g., containers per
hour).
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Work in process (WIPj): It is the number of parts stored in a location
j.

Work in process (WIPjk): It is the number HUs (i.e., the level of
inventory) waiting to be loaded on a vehicle v.

Capacity (Cj): It is the upper bound of the throughput of a resource.
Capacity (Cv): It is the maximum number of HUs transportable by a

vehicle v at the same time.
Utilisation (Uj): It is the average fraction of time that a resource is

not idle for lack of vehicles to load/unload.
Utilisation (Uv): It is the average fraction of non-empty space on a

vehicle.
Lead time (LTe): It is the time allocated to serve a given route (i.e.

from the beginning to the end).
Cycle time (CTe): It is the average time to serve a given route.
Service level (SLe): Prob{cycle time ≤ lead time}

Information functions

Finally, we define the three information functions: Movements M are re-
ferred to load/unload of HUs on vehicles v; inventories I are referred to the
work in process on a terminal j, or a vehicle v. The productivity P refers
to the inbound and outbound absorption rates of the terminal. Table 14.1
summarises the definition of the three functions in a distribution network.

Table 14.1: Definition of the information functions of a distribution network.

14.2 Data Structure

In the supply chain field, data collection developed together with the concept
of traceability. Robust relational data structures rose to control the shipping
processes and identify the status of HUs. For this reason, all the data
collected in a distribution network revolves around the shipping information.
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The bias of the data structure is shallow compared to other supply chain
entities (e.g. production systems). HUs are similar, share similar vehicles,
and they travel on a graphG defined by nodes and edges where often the arcs
refer to a finite and well-known set of elements (roads, rail tracks, air tracks
or waterways). We present a relational data structure to study many aspects
of a distribution network from a research point of view, keeping in mind
that the ER structure is the most widely used in the shipping companies.
Together with that, an original non-relational structure is introduced to
overcome the rigidity of the relational structure and to improve the level of
information from different players on the supply chain.

14.2.1 A relational model for distribution networks

Organisational and industrial practice choose the entity-relationship (ER)
model as the most used method to store and organise data. The outcome of
this organisation is the well-known table structure of a SQL database. ER
models use tables to describe the attributes of entities and define relation-
ships to link entities that share the same attributes. Entities can be a part
i, a vehicle v or resource j connected by relationships which describing a
route e, or a job b. A SQL database provides many benefits in a production
environment as:

• Low replication of data since tables are structured in the so-called
normal form;

• Easy access to data. The SQL language allows programmers to get
data just thinking of which data do they need and not how to fetch
that data from the database;

• High data consistency; since relationships impose relational integrity
which prevents from adding sparse data.

The ER model we propose is organised into three macro-areas of a dis-
tribution network aiming at providing a comprehensive framework to model
a distribution network [1]:

1. A geographical level;

2. A logistic level;

3. An on-field level.

The entities and relationships belong to each of these areas.
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Geographical level

The geographical level aims at defining the characteristic of macro-areas of
the world called Geoareas from a geopolitical perspective. A table SocioEco-
nomicProfile identifies the statistics on the GDP, inflation and other similar
indicators. The table AgroProfile tracks the characteristics of the soil while
the table ClimateProfile tracks the weather and climate trends. The table
InfrastructureProfile maps the transport infrastructure of a Geoarea while
the table LogisticProfile contains aggregated logistics indicators as the im-
port and export volumes. The tables InfrastructureCostProfile and Energy-
CostProfile identify the average costs of the infrastructures (e.g. buildings,
land, licences) and the price for consumables (e.g. electricity). A table
DemandGeoArea has aggregated values of demand for clusters of similar
products (e.g. fruits, vegetables, potatoes) within the Geoarea. Table 14.2
illustrates the details of the attributes for each table of the geographical
level.

Table 14.2: Tables and attributes of the geographical level.

Logistic level

The logistic level contains all the entities to populate the ontology presented
in 14.1. A table node identifies all the processing nodes of the network con-
nected by the edges whose material flow is mapped in the table Flow. Each
row of the table Node identifies a processing node of a specific type. De-
pending on the node type, the tables Crop, ProcessingPlant, StorageFacility,
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Market, Port, Terminal, MultimodalHub, and RailConnection identify the
characteristics of the node. Table 14.3 illustrates the details of the attributes
for each table of the logistic level.

Table 14.3: Tables and attributes of the logistic level.

On-field level

The on-field level deals with the track&trace world collecting the shipping
logs and all the related information. The table order contains all the ship-
ping orders (i.e. provisional data) from a processing node j to a processing
node k. The table shipment contains all the shipping jobs (i.e. execution
data) of the shipping orders from j to k. The table product map is the
item master file containing all the details (e.g. code, size, volume, weight)
of the items. A product mapped in this table is equal to the definition of a
part in a production node (see section 20.2). A table shelflife identifies the
quality decay rates of each item. The tables package and unitLoad maps all
the features of the handling units (HU). A table ClimateProfileMonitoring
contains the temperature logs of shipping. Table 14.4 illustrates the details
of the attributes for each table of the on-field level.

Figure 14.1 presents the resulting ER structure with the tables belonging
to the three levels.

14.2.2 A non-relational model for distribution networks

This section presents a non-relational data structure able to embed the
same information content of the ER model introduced in 14.2.1 but able
to host any other additional attribute. Besides, the model has a minimum
number of required attributes that enables define a minimum viable model
(MVM). The MVM contains a number of mandatory attributes for each
class of the model allowing analysis of a supply chain network. The classes
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Table 14.4: Tables and attributes of the on-field level.

of the non-relational model are the natural implementation of the MIP
model introduced in Section 3.3.1.

A non-relational data-structure is usually stored in a computer using a
JSON or XML notation. Non-relational structures are widely used in web
application with databases as MongoDB since they allow to store tons of
data in an (apparently) unstructured way without the prior definition of
any table or relationship. Each record of the database is a document of a
collection. These characteristics lead to many benefits as:

• the high flexibility of the data structure, since it is possible to load
data with or without attribute already stored in a collection;

• the fast data fetching due to a leaner structure compared to SQL
databases;

• the scalability of the data structure since the performance of the
database is not directly related to its size.

These benefits come with some important limitations:

• many data may be replicated, leading to data storage inefficiencies.
Due to the lack of relationships, information can be replicated in many
documents with inefficiencies in the use of the storage space;

• join operations are not allowed. When a join operation is needed, it
is necessary to perform it externally and without query optimisation;
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Figure 14.1: ER diagram of the relational data structure for distribution
networks. Figure from [1].

• data are not as consistent as with an ER model; Since relations does
not exist, it is impossible to store consistent data. Data consistency
check must be performed outside of the database.

The model consists of three collections whose data are recorded by the
transportation management system (TMS).

A collection handling units identifies all the parts i transported on the
network. The code of the handling unit is the only attribute necessary to
define the MVM. Other attributes can be stored as well, like:
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• the description

• the size,

• the weight,

• the dimension,

• the type of package (e.g. primary, secondary, tertiary).

A collection movement defines the movement function of the MIP model,
storing information on when a part i is loaded or discharged by a vehicle v.
The timestamp and the quantity are the attributes needed for the definition
of the MVM. Other features can be recorded, as for example:

• the id of the loading node,

• the id of the discharging node,

• the latitude and longitude of the loading node,

• the latitude and longitude of the discharging node,

• the provisional loading time window,

• the actual loading time window,

• the provisional discharging time window,

• the actual discharging time window,

• the id of the vehicle,

• the id of the voyage.

A collection node stored the information of all the suppliers and cus-
tomers of the supply chain network. The id of the node is enough to define
the MVM. It is possible to record a attributes as:

• the description,

• the latitude and longitude of a node,

• the address of a node,

• the type of the node (i.e. supplier/customer),

• the list of the material flows exchanges every year with a given node
(e.g. the production plant serving the distribution network).

This non-relational structure is used in the rest of this section to support
model and analysis on production systems. Figure 14.2 uses the unified
modelling language (UML) to represent the MVM of the non-relational
data structure of a distribution network.
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Figure 14.2: ER diagram of the relational data structure for distribution
networks.

14.3 Decision patterns

This section aims at defining the set of decision patterns for the design and
control of a distribution system, according to the definitions of section 4.2.
The problems of a distribution system are classified into:

1. Network design problems, dealing with the design of the network,
given the existent physical infrastructure;

2. Network control problems, dealing with the assessment and improve-
ment of the performance of an existing distribution network.

Different methodologies allow getting feasible solutions to these prob-
lems. Table 14.5 illustrates the entities and their definition according to the
ontology in Paragraph 3.1.
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Seven decision problems are identified in the design and control of a
storage node:

1. Network design; it is a covering problem where each point node of the
network needs at least one route serving it.

2. Route frequency design; it involved the definition of the frequency of
the service on a given route.

3. Service time windows design; it is the definition of the placement and
the time span of the time windows to serve each node j.

4. Performance assessment (control); it involves the measurement of the
performance of a distribution system.

5. Workload forecast (control); it involves the prediction of the workload
and workforce needed to perform the operation in the short-, mid- or
long-term.

6. Vehicle choice; it is the choice of the right vehicle (or the right type
of vehicle in case of synchromodality) to perform a route.

7. Vehicle routing (control); it involves the definition of the scheduled
routes and their assignment to vehicles.

While descriptive and prescriptive techniques are preferred for control
problems, explorative and prescriptive techniques result adequate when
dealing with design problems. Chapters 15 and 16 illustrate these tech-
niques in details.
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Distribution System Control

This chapter focuses on the problems and decisions involving the control of
a distribution network. All the problems defined in this chapter deal with
the presence of different actors and stakeholders using different systems and
with a low willingness to cooperate. For this reason, the methods must take
into account the incompleteness, inaccuracy and disharmony of the data
collected from different systems.

15.1 Introduction

15.1.1 The actors of a supply chain network

Supply chains connect stakeholders and resources providing services for the
production, storage and transportation of goods. In the case of global supply
chains, the stakeholders own resources with worldwide extent. The global
logistics market has an estimated value of 1171 billions $, which yearly
increases by about 7% [1]. The demand for logistics connection increases
as well as the number of companies working in this market.

A supply chain is complex since it involves actors, entities and procedures
that are not synchronised or coordinated. When the demand increases and
the scale is global, supply chains become even more complex, and the lack
of coordination among the actors leads to inefficiencies in the management
of the logistics flows. Supply chain stakeholders get revenues by managing
three types of value flows [2]:

1. The physical flow of goods (e.g., between buyers and vendors);

2. The information flow needed to track the shipping state and the po-
sition of goods;
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3. The flow of money that pays the activities performed by each stake-
holder.

While thinking about these flows, it is easy to understand the complexity
of managing all of them in a globally distributed supply chain. Carriers,
shippers and freight forwarders make use of their practices for handling
the physical flows, tracking shipping information and may have different
currencies and protocols for the management of the flow of money.

Market trends show the increasing awareness of companies on the value
of their data [3]. They started using new technologies like analytics, big
data and internet of things devices [4] to improve the knowledge of the
processes and increase their efficiency [5]. The information flow contains
data whose content is not only intended to track a physical flow. Data
embeds the value for making decisions about the design of the supply chain
itself [6]. In the era of big data, the number of records available from a
logistics information flow increases dramatically with obvious obstacles and
costs to maintain the IT infrastructures. There is an unexplored potential
of learning from historical data to design efficient operations in the future.
The stakeholders usually involved in a generic distribution supply chain are:

• producers, are any production or storage system connected to a pro-
cessing node j (i.e. a terminal) by road, rail or inland waterways;

• freight forwarders, are the operators in charge of organising door-
to-door shipping. They get transportation orders from the producers,
and they place them on one or many routes performed by one or more
vehicles v to reach the destination;

• operators (carriers), get transportation orders of handling units
from the freight forwarders, and they organise the single transporta-
tion routes from terminals to terminals.

• conveyance operators, perform transportation by driving vehicles
according to its route schedule;

• terminal operators, perform loading and unloading of handling
units at the processing nodes j. They use physical equipment as load-
ing bays, cranes, and forklifts;

• customers, receive the goods at the end of the transport operations.

Figure 15.1 introduces these stakeholders, their decision-making activi-
ties, and the logistic flows.



Re
vi
ew
ed
Ve
rs
io
n

F
ig

u
re

1
5
.1

:
S

ta
ke

h
o
ld

er
s,

lo
g
is

ti
c

fl
ow

s
a
n

d
re

la
te

d
d

ec
is

io
n

s.



Re
vi
ew
ed
Ve
rs
io
n

192 CHAPTER 15. DISTRIBUTION SYSTEM CONTROL

As Figure 15.1 shows, coordination among different actors is a crucial is-
sue to control the operations of a distribution network. The figure remarks
the constraints imposed by each actor to the following one depicting the
complexity of the system. In practice, a supply chain network is such con-
strained that can be thought as a system in unstable equilibrium where each
actor found its equilibrium within the constraints imposed by the other. Un-
less a big player has the authority to change these constraints, it is difficult
to improve the performance of the supply chain, and it is even challenging
to collect the data to control it. During the last few years, the platform
economy opened for new opportunities also in this field.

15.1.2 Logistics platforms

The advent of new technologies as the internet of things, artificial intelli-
gence and fast internet connections paved the way for the so-called “plat-
form revolution”, i.e. the establishment of new business models based on
the idea of a platform connecting stakeholders [7]. Often, the economic
edge of a platform is based on the concept of arbitrage, since platforms can
link stakeholders in different ways compared to the established companies
in the market [8, 9]. Platforms started by connecting the end-user to the
supplier of a service. It is the case of platforms offering booking services for
hotels, taxi or flight that started by offering a link between the supplier and
the end-user and consequently started developing complex algorithms based
on the collected data to improve their services and their edges [10, 11]. The
value of a platform on the market depends on the amount of data it can col-
lect [11]. Recently, platforms started to operate in the business-to-business
(B2B) market, too [12]. In the B2B market, platforms connect companies
using different data protocols and complex system by using interfaces and
data exchange protocols [13].

The market of logistics has seen a prolific increase in the development
and use of logistic platforms during the last decade. A logistic platform is an
IT infrastructure to store data and support storage, handling and transport
operations across multiple stakeholders.

Literature classifies logistic platforms into four classes depending on the
functionality they offer [14]:

1. Electronic Data Processing (EDP) platforms; they track the logistic
processes storing data into relational databases.

2. Enterprise Resource Planning (ERP); they integrate all the activi-
ties of a stakeholder providing insights and algorithms to improve its
performance.

3. Enterprise Application Integration (EAI); they integrate the activities
of a subset of stakeholders enhancing collaborative planning.
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4. Smart Contracts (SC); they fully integrate the tracking of goods pro-
cessed by the stakeholders of a supply chain providing full visibility
on the data and allowing for automatic execution of contracts (e.g.,
replenishment orders).

Figure 15.2 presents an overview of these functionalities together with
the topology and the degree of collaboration offered by each platform.
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The topology of logistic platforms changes from a no-platform topology,
where data is manually exchanged by the use of telephone, emails and fax
[15, 16], to centralised platforms where a central entity guarantees the va-
lidity of data and transactions between stakeholders. The evolution of this
topology is the de-centralised platform where no entity has full control on
the platform, but it is distributed among all the stakeholders.

De-centralised platforms allow full collaborations between stakeholders
using smart contract: each of them has full visibility on the data exchanged
by the others, and this provides the highest amount of information for de-
cision making.

When stakeholders are not willing to completely share data among them,
centralised platforms using incomplete information result adequate. It is the
case of collaborative platforms where a low number of stakeholders (typically
two) decide to exchange some data to improve their performance. The data-
driven 4PL platform is a more complex solution that collects data from
many stakeholders providing them with functionalities and services based
on big data (impossible to deliver basing only on the data of a few of them).
These platforms maintain confidentiality on the data since they are not
shared with the other users of the platform.

The interest of the scholars on the design and development of logistic
platforms increased exponentially during the last decades (see Figure 15.3.

The role of a logistics platform stands in its ability to collect and merge
data from different actors and use them to functionalities to them as:

• New pricing models [17, 18, 19];

• Synchromodality [20];

• Process integration [21];

• Estimated time of arrival forecast [22];

• Collaborative forecasting and replenishment [23];

• Possibility of last-minute planning [24];

• Real-time booking (arbitrage) by prediction of the available capacity
(this paper);

• Digitisation of the processes;

• More visibility on the market.

All these methods are data-driven and rely on an incomplete but broad
data structure. All the data-driven methods presented in the following para-
graphs are intended for a logistic platform using a non-relational structure
to merge data from different actors of the supply chain.
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Figure 15.3: Number of journal articles in logarithmic scale obtained us-
ing “logistic platform”, “logistic IT platform”, and “collaborative logistic
platform” as research queries on Scopus.

15.1.3 The day-by-day of a distribution network

Before diving into the math of problems and methods, it is important to
understand the operations of a distribution network. For this reason, we
introduce some additional details keeping, for example, a port supply chain,
one of the most complex types of supply chains. This choice is due to the
fact that a port connects thousands of destinations globally distributed using
any type of equipment and vehicle to transport any type of good.

A port receives physical flows of many types. It always has road and
rail connection, at least. Commonly, a port collects goods from inland
waterways, and it may be close to an airport collecting air flows. Terminals
j process all these flows using storage areas and handling units. Usually,
inland terminals pre-process many flows from road and air by consolidating
them on barges. Barges, then, reach the deepsea terminal where cargo
vessels are loaded and unloaded. Cargo vessels operate:

• liner shipping, when routes are predetermined, and the schedule is
fixed;

• tramp shipping, when shipping is operated on-demand (similarly to
charter flights).
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The complex information flows for booking and tracking is managed by
freight forwarders, shipping company and shipbrokers. Figure 15.4 illus-
trates the logistic and the information flow of a port supply chain.

Figure 15.4: Physical and information flow of a port supply chain.

Different types of cargo vessels exist, depending on the type of handling
unit they transport. Bulk cargo transport dry or liquid materials as coal,
grain or crude oil. Breakbulk cargos are used for steel, wood or other volu-
minous goods that cannot fit a container. Container cargo vessels load TEU
and FEU containers as transport units. Roll-on/off cargo vessels transport
vehicles (car and trucks) that drive to enter or exit the vessel. Finally,
project cargos are organised for oversize loads. Figure 15.5 illustrates im-
ages of the vessels used with different types of products.
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Figure 15.5: Different types of cargo vessels.

Loading and unloading different types of cargo vessels need a different
type of equipment. For this reason, port terminals are specialised on specific
types of cargo vessels and specific type of products. Figure 15.6 illustrates
the typical equipment of a terminal working with container cargo vessels.

Other supply chain nodes as airport and multimodal hubs are organised
similarly. Generally, a logistic hub consists of multiple terminals (generally
belonging to different companies) specialised in handling a specific type of
product. Terminal companies own the equipment to load and unload cargos
and connect a multitude of actors by using freight forwarders and brokers
to manage the flow of money and information.
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Figure 15.6: Examples of the equipment and physical assets of a port ter-
minal.

15.2 Performance assessment (P8)

This paragraph introduces models to assess the performance of a supply
chain network from a model- and data-driven perspectives.

15.2.1 Model-driven methods (D4)

When the number of actors and flows is high and complex, qualitative busi-
ness process mapping is always a good starting point to understand what is
going on. A common technique is the Business Process Model and Notation
(BPMN) (see section 5.1). It remarks the responsibility of each actor and
their tasks (e.g. send an order, send confirmation, load container) remark-
ing the activities triggered by each task. Applying the BPMN notation in
a distribution network:

• activities are tasks necessary for the storage, handling or transporta-
tion of a handling unit;
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• events identify when an activity is terminated (e.g. delivery at the
point of consumption, loading completed at a terminal);

• gateways describe a different variant of the process (e.g. store in
cross-dock or storage area of the terminal depending on the delivery
due date).

• pools identify the actor of the supply chain in charge of an activity.

BPMN defines a qualitative map of the production processes useful for
manager and practitioners to identify the way their processes are realised.
More difficult is the assessment of these processes from a quantitative point
of view. For this reason, a dashboard of KPIs is introduced, coherently with
the ontology of 14.1. The KPIs used in these chapters refers to the problems
defined in section 4.2. KPIs are organised according to four classes [25]:

1. Logistic KPIs, evaluate the logistic impact of a certain solution. They
use metrics like time, distance and the performance parameters intro-
duced in section 14.1.

2. Cost KPIs, evaluate the economic sustainability of a given solution.
They are expressed in e or other currency.

3. Energy KPIs, evaluate the energy needed to feed a given solution.
They use metrics as kW and kWh.

4. Environmental KPIs, evaluate the environmental impact of a given
solution. They are expressing the equivalent CO2 produced per year.

Table 15.1 identifies which KPI is relevant to each problem. In general, each
problem can be assessed from multiple perspectives.

Table 15.1: KPIs to evaluate the solutions to problems in a distribution
network.

We show an application of a model-driven method to evaluate the impact
of a food supply chain [26, 27]. The method relies on the definition of a
relational data-structure containing information on:
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• customer orders, defining the product code and the quantity to trans-
port;

• products, including description, volumes, and weights;

• transportation units, defining size, capacity concerning the volumes
and weights of the products;

• vehicles, defining size and capacity concerning the volumes and weights
of the transportation units.

• impact, defining for each vehicle the cost, and the environmental im-
pact KPIs (e.g. CO2

ton×km ).

In practice, the ER structure is organised with a Chinese boxes structure
by defining for each vehicle, and for each transportation unit, how many
products can be loaded. The model is based on customer orders, and it
calculates:

1. The number of transportation units necessary to load all the products
in the customer orders;

2. The number of vehicles necessary to transport the transportation units
found at 1);

3. The distance travelled by each vehicle;

4. The overall cost and impact;

5. The cost and the impact of each vehicle;

6. The cost and the impact of each transport unit;

7. The cost and the impact of each product.

Figure 15.2 illustrates the entities and the KPIs involved in this model.

15.2.2 Data-driven methods (D1, D2)

The aforementioned model-driven approach is punctual and precise. Never-
theless, it relies on a massive amount of static data. All of them are neces-
sary to perform the calculation of the KPIs. In addition, when a parameter
is unknown, many hypotheses must be made to run the model, adding bias
to the results. To avoid biased results and to expedite the data collection,
we introduce a data-driven approach based only on the available data. This
method assesses a distribution network from different points of view by con-
sidering only the available data, without additional assumptions.There are
three macro-areas of analyses:
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Table 15.2: Entities and KPIs of the model-driven approach.

1. the profiling of the actors of the supply chain;

2. the profiling of the operations of the supply chain;

3. the profiling of the geographical network of the supply chain.

The presence in the dataset of certain attributes allows the realisation
of some analyses. We can think of attributes as keys and analysis as doors;
the right keys unlock the right doors. Figure 15.7 illustrates the links be-
tween attributes and analysis (keys and doors), illustrated in details in the
following paragraphs.
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Actors Profiling

Demand time series analysis and forecast To support our data-
driven approach, we base on the definition of the MVM of the collection
movement, defined in 14.1. The MVM prescribe two mandatory attributes:

• a timestamp describing when the movement is created (i.e. when an
order arrives from a client);

• the quantity involved.

By using these two attributes, it is possible to analyse the demand time
series and use this information to make forecasts (see section 15.3). Analysis
should be performed on:

• the number of lines, i.e. the count of the timestamps;

• the quantities, i.e. the sum of the quantity processed at the same
timestamps.

These two analyses are always relevant since the business of the com-
panies can be line-oriented (e.g. it is the case of third party logistics) or
quantity-oriented (e.g. for production industry). Timeseries must always
be resampled using an aggregation function. The sampling interval depends
on the amount of data collected and on the relevance of the analysis. Fre-
quent sampling intervals are the day, the week or the month. Figure 15.8
illustrate the daily, weekly and monthly trends of the number of movement
with their probability distributions. The bottom of Figure 15.8 shows the
comparison between the lines and quantity trends, and a histogram of the
number of movements per day of the week.1

These time series can be analysed, and decomposed to uncover trend and
seasonality patterns. Figure 15.9 illustrates the decomposition of the weekly
aggregated lines and quantities time series with the Fourier analysis.2

By considering the time series and all the available attributes of the
dataset, it is possible to define a correlation matrix to uncover hidden pat-
terns and behaviours of the network (see Figure 15.10).3

1The source code of Figure 15.8 is available here.
2The source code of Figure 15.9 is available here.
3The source code of Figure 15.10 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/LOG_01%20Demand%20assessment.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/LOG_01%20Demand%20assessment.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/LOG_01%20Demand%20assessment.ipynb
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Figure 15.8: Time series and probability distributions of the movements of
a distribution network, using different aggregation levels.

Figure 15.9: Time series decomposition, and Fourier analysis of the move-
ments.
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Figure 15.10: Correlation matrix of the movements dataset.
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Client Pareto Time series analysis focuses on the workload. From an-
other perspective, it is important to identify the source of the workload.
Clients define the market demand and, almost always, their relevance fol-
lows the Pareto law: 20% of the customers generate 80% of the workload.
Having information both on the quantities and the clients allows identifying
the relative importance of each client. Figure 15.11 presents this informa-
tion using a pie chart and a Pareto curve.4

Figure 15.11: Pie chart and Pareto curve of a set of clients.

Similar information may be of interest when referred to a single terminal
of the distribution network. Figure 15.12 illustrates the violin chart of the
four most congested terminals of a distribution network. The chart identifies
the demand (e.g. the quantity or the number of movements) of each client
assigned to each terminal. 5

Product Pareto If clients define the market demand, products define the
offer. Again, it is common that 20% of the products realise 80% of sales

4The source code of Figure 15.11 is available here.
5The source code of Figure 15.12 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/DIST_01%20Supply%20Chain%20Assessment.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/DIST_01%20Supply%20Chain%20Assessment.ipynb
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Figure 15.12: Violin chart with demand for each client for each terminal.

the volumes. The Pareto analysis helps to identify these products. Similar
analyses to Figures 15.11, and 15.12 can be used to map the product mix.

Information Pareto Pareto analysis is important to assess the relevance
of the information and the statistical coverage of any analysis. Let us define
the “operators” as the different users uploading information in the dataset.
When working with a supply chain network, it is easy to have many oper-
ators since there are tens of actors and multiple data sources. Each actor
has a different relevance in terms of:

1. The number of records uploaded;

2. The amount of information generated by the records uploaded.

The last metric is not trivial since it considers the information added by
a single operator compared to the information already known in the dataset.
This metric is important when data are incomplete. Let assume we want
to identify the route travelled by truck transporting a number of HUs. The
truck receives order from multiple stakeholders. These stakeholders are
operators since they upload data to our dataset.

Assuming a single stakeholder load the 80% of the truck, the amount of
information generated by that single user is much more relevant than the
others. The other operators have a low probability of adding information if a
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single operator generates 80% of the knowledge. Figure 15.13 illustrates the
behaviour of the information provided by different users of a vehicle. The
first three users cover 80% of all the destinations of the vehicle, providing the
principal amount of information on its route. Even without the information
provided by the last three users, it is possible to use the data to estimate
the route of the vehicle correctly. 6

Figure 15.13: Information Pareto on client and vessel route.

Operations profiling

Movement Travel Time analysis The analysis of the travel time re-
veals the time each HU i spend on a vehicle. By knowing the loading time
window at node j, and the discharging time windows at the node k, it is
possible to calculate the upper bound TTUB and the lower bound TTLB of
the travel time as:

• TTUBπ = PTDTO
ik − PTAFROMij

• TTLBπ = PTATOik − PTDFROM
ij

By aggregating these analyses, it is possible to identify the lead time
LTe of a route e. By knowing the actual time windows, the analysis can be
repeated using:

• TTUBα = ATDTO
ik −ATAFROMij

• TTLBα = ATATOik −ATDFROM
ij

Figure 15.14 compares the planned and actual travel time for the HUs
handled in a distribution network. 7

6The source code of Figure 15.13 is available here.
7The source code of Figure 15.14 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/DIST_01%20Supply%20Chain%20Assessment.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/DIST_01%20Supply%20Chain%20Assessment.ipynb
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Figure 15.14: Planned and actual travel time.

By aggregating the actual travel times, the cycle time CTe of a route e is
revealed. By considering all the route e of a network G, the level of service
of the network is calculated as the ProbCTe ≤ LTe (see Figure 15.15).8

Figure 15.15: Pie chart representing the level of service of the ditribution
network.

Product Lifecycle analysis When the dataset contains a different code
(specific item) for each different HU transported on the network, it is pos-
sible to have full traceability of the network and to reconstruct all the
distribution stages. In particular, by knowing the loading and unloading
timestamps, it is possible to define three status of the load:

• when a product was travelling;

• when a product was waiting (e.g. in a buffer or a storage system);

• when a product was loaded/unloaded.

8The source code of Figure 15.15 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/DIST_01%20Supply%20Chain%20Assessment.ipynb
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In addition, the commercial speed of the product is identified by consid-
ering the plot of the travelled distance (on the x-axis), and the timeline (on
the y-axes). Figure 15.16 identifies the lifecycle of a HU with the timeline
of the three states, and the commercial speed plot.9

Figure 15.16: Plot of the lifecycle, and the commercial speed of a HU ac-
cording to the three states

Vehicle Inventory analysis The analysis of the inventory positionWIPv
is important to identify the utilisation Uv of a vehicle v, given its capacity
Cv. It is necessary to know the planned/actual time windows at each ter-
minal to infer the values of WIPv, Uv, and Cv. Usually, the value of Cv is
fixed and depends on the type of vehicle or fleet. The other two values can
be obtained by reconstructing the route of a vehicle v. Given a dataset with
all the data, this is a heuristic procedure to get an estimate of the route.

• Filter the dataset by a vehicle v;

9The source code of Figure 15.16 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/DIST_01%20Supply%20Chain%20Assessment.ipynb
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• Select the actual or provisional time windows;

• Sort the values by the visiting time;

• Calculate the cumulative of the movements to estimate WIPj .

When there are no known values of the WIPv(τ) (e.g. from observa-
tion at time instant τ), the best estimate is obtained by shifting to positive
values the cumulative function of the movements. Otherwise, the cumula-
tive function can be added forward, and backward to the known value of
WIPj(τ) (see Figure 15.17); the inventory information is also represented
as the weight of a graph G(V,E). 10

Figure 15.17: The function of the inventory position of a vehicle in the time
and space domains.

10The source code of Figure 15.17 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/DIST_01%20Supply%20Chain%20Assessment.ipynb
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Terminal Productivity analysis The network moves at speed defined
by its terminals. It may sound weird that the speed of the distribution is
imposed by fixed infrastructure, but it is easier the capacity of a terminal
is the bottleneck of a distribution network, more than the capacity of a
vehicle. It is always simpler to add a truck, a vessel, a train or even an air
cargo than to add loading and discharging capacity of these vehicles.

By collecting, for each movement, the information on the provisional
and actual time windows, it is possible to say a lot on the planned and
actual behaviour of the terminals. Figure 15.18 illustrates a scatterplot of
the planned time windows of a terminal. 11 The x-axis identifies the span of
the time windows, while the y-axis the amount of HUs loaded or discharged.
The plot identifies two patterns, almost linearly distributed. This pattern
uncovers that the terminal may use one or two cranes at the same time to
load/discharge a vehicle.

Figure 15.18: Productivity plot of a terminal.

This data reveals information on the capacity Cj of a terminal j. The in-
ventory positionWIPj can be estimated with the same procedure illustrated
in 15.2.2 by filtering on terminals, and not on vehicles. The throughput of
a terminal usually depends on the time of the day. This information can be
revealed by grouping the movements of a terminal on a specific day hour
(see Figure 15.19). 12

11The source code of Figure 15.18 is available here.
12The source code of Figure 15.19 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/DIST_01%20Supply%20Chain%20Assessment.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/DIST_01%20Supply%20Chain%20Assessment.ipynb


Re
vi
ew
ed
Ve
rs
io
n

214 CHAPTER 15. DISTRIBUTION SYSTEM CONTROL

Figure 15.19: Productivity patterns of four terminals (planned, and actual).
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Network profiling

Workload geography cost function It is possible to represent a geo-
graphical cost function by matching together the pieces of information used
in the previous paragraph and the geographical information (latitude and
longitude) of the node of the network. In particular, the cost is represented
by the quantity delivered at each node. Figure 15.20 illustrates the cost
function using the map as a background to identify the geographical po-
sition and the size of the bubble to identify the intensity of the demand
quantity. The colour of the bubble can represent the type of service (e.g.,
the type of the delivery node), or a gradient to represent the intensity.13

Figure 15.20: Workload of the network represented on a map.

Network centre of mass It is possible to define the centre of mass of the
network, by considering the quantities, and the coordinates of the demand
nodes of the network. Figure 15.21 compares the position of the centre of
mass and the location of the plants serving the network.14

13The source code of Figure 15.20 is available here.
14The source code of Figure 15.21 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/DIST_02%20Location%20assessment.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/DIST_02%20Location%20assessment.ipynb
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Figure 15.21: Current location of the plants of the network, and centre of
mass.

Demand geographical covering It is possible to identify with different
colours the node served by a specific plant of the network to identify how
the production covers the demand on a geographical profile. Figure 15.22
illustrates the covering of the network.15

Figure 15.22: Covering of the network. Different colours identify nodes
served by different facilities.

Road graph analyses Finally, it is possible to consider the road graph
G(V,E) of the network to perform analysis on the real distances. The top of
Figure 15.23 illustrates the edges of the graph. The subplot on the left uses
rays to connect the nodes of the network exchanging the more significant

15The source code of Figure 15.22 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/DIST_02%20Location%20assessment.ipynb
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amount of HUs. The subplot on the right use a colour gradient to identify
the arcs travelled the most by the vehicles of the network.16

Figure 15.23: Road graph analyses.

15.2.3 Application

This section presents a real-world case study developed for a logistic plat-
form operating in the port of Rotterdam. The platform collects transporta-
tion orders from barge operators and provides advanced booking options to
them, in return. They aim at providing a real-time allocation of containers
to barges.

The platform collects data around 5% of the containers transported in
the port area of Rotterdam through inland waterways. Barge operators col-
lect orders and assign those to multiple barges. Typically they do not have
complete visibility on the load of a barge, which is to the discretion of the
barge owner. For this reason, the data of the logistic platform are incom-
plete, and it is hard to say when the observations available to the platform
describe an entire load of a barge. The barge owner has full visibility on
the containers barge operators have allocated on his own plate, but not for
all the containers in the logistic network. The barge operators have a full
visibility on the containers they assign to different barge owner, but their
orders are merged with the ones of other barge operators within the same
barge. It is always possible that some containers transported by a barge are

16The source code of Figure 15.23 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/DIST_02%20Location%20assessment.ipynb
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out of the visibility of the platform. For this reason, we use our information
framework to build the movement, inventory and productivity functions, to
improve the consistency of the data and to assess the performance of the
network.

The platform collects cargo data as single orders. The dataset is anonymised
and does not contain any personal data, recording seven months of activities
of the platform (June to December 2018). Each row of the dataset describes
the movement of a container from its origin to its destination. Table 15.3
identifies the attributes of the input dataset and the number of different
entities for each type of attribute.

Table 15.3: Attributes and size of the input dataset

The unit of analysis consists of the location of the movement function
at the origin terminal M i,v

o (t), and the destination terminal M j,v
o (t). The

data is split between origin and destination, is grouped for each terminal i
visited by a barge v, and is finally sorted by the planned visit timestamp ai.
By using this procedure, it is possible to define the values of the movement
function M i,v

o (t), for each terminal i. By grouping all the M i,v
o (t) on a barge

v, sorting on the planned visit timestamp ai, or the actual visit timestamp
âi it is possible to obtain an estimate of the planned or the actual route of
v.

Given the incompleteness of the data, they may not capture stops at
all terminals. Nevertheless, the platform can take advantage of its multiple
data sources to test the accuracy of the route by checking whether patterns
in the barge routes exist, even when data are incomplete. The barge owners
tend to maintain a fixed route schedule for their barges, for this reason
we assume the provisional assignment of containers to barges are made
coherently with this assumption. Thus, the logistic platform can check
the amount of information provided by each single data source, i.e. barge
operators who provide data to the platform. The parameter ηvk is introduced
to reflect the number of terminals visited by barge v to serve the orders of
the k-th barge operator whose destinations have not already been visited
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to serve the barge operators k − 1, k − 2, ..., 1. ηvk identifies the amount
of additional information, in terms of visited destinations, provided to the
platform by the k-th barge operator, given all the destination known from
the barge operators up to k. Figure 15.24 compares the ηvk of three different
barges, i.e. barges 11, 7, 8, by showing the value of ηvk , and its cumulative
function on the y-axes, and the value of k, i.e. the number of the observed
barge operators on the x-axes. In the case of barge 11, the data of the
first 20% of the barge operators cover 100% of the visited terminals. By
observing the shape of the Pareto curve, it is improbable that an additional
barge operators provides a new destination for barge 11. For this reason,
the logistic platform can assume having in its dataset all the destinations
of barge 11, whose route estimate is, then, robust. Route estimate on barge
7 is less, but still robust since data from 50% of the barge operators covers
100% of the visited terminals. Considering barge 8, the number of barge
operators is smaller, and 90% of the customers covers 100% of the visited
locations. In this case, there is a high probability that when an additional
k + 1-th barge operator provides data to the platform, the route estimate
of barge 8 changes.

Figure 15.24: Pareto curve of ηvk to evaluate the robustness of the route
estimates of three barges.

Since M i,v
o (t) functions have already been defined, equation (3.8) is used

to estimate the inventory position for each barge v. The direct application
of equation (3.8) may lead to negative values of Iv in the absence of em-
pirical observation of the inventory position. The platform can correct the
estimated barge inventory Iv by shifting all the points of the inventory func-
tion to positive values, Iv(t) ← Iv(t) −min(Iv(t)) when min(Iv) < 0. The
robustness of the estimate of the inventory position of a barge v depends
both on ηvk , and on the completeness of the dataset, i.e. the ratio between
the movements observed by the platform and the performed ones. The lo-
gistic platform cannot check when it has complete data. Nevertheless, it
can consider the peak value qv = max(Iv(t))−min(Iv(t)) as the maximum
capacity of the barge v, and check whether the value of the peak value is
compatible with the nominal capacity of the barge Qv, qv ≤ Qv. Figure
15.25 presents the estimates of the inventory position for barges 11, 7, and
8. The horizontal red line identifies the peak value of the inventory qv. The
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red vertical lines on the graphs identify the range where the inventory can
be considered accurate. Since the platform collects the order from barges
operators (and not the execution data from barge owners or termials), the
results obtained are censored by previous unknown orders (on the left) and
future orders still to be received (beyond the red line on the right, indicating
the last day of orders of the input dataset). The platform acquired data
from barge operators who assign containers to barge 11 only in the last few
months. For this reason the value of I11(t) is steady for the first period (for
lack of obsered movements). Barge 7 is frequently used, and its estimate is
robust both considered η7

k, and q7 = 200 TEU containers. Finally, barge 8
shows a slow change of the inventory, which may be due to longer trips with
a stable inventory or, considered η8

k, to few data available to the platform.

Figure 15.25: Definition of the estimate of the inventory position I(t) of
three barges.

While collecting data from the barge operator, the platform can take
advantage of its data inferring properties on terminals j and the entire
distribution network. The movement functions M j,v

o (t) are used accord-
ing to Theorem 1 to identify how fast the inventory Ij(t) changes. Since

both planned and actual time windows [aj , bj ] and [âj , b̂j ] are available, the
platform can impute both the theoretical and the actual productivity of
each terminal j. The theoretical productivity, P INj or POUTj , measured in
time over the number of handled containers, shows linearity traits, probably
linked to the capacity of the equipment of a terminal since a terminal, given
the length of a barge, can use either one or two cranes to load or discharge
containers on a barge at the same time. Figure 15.26 identifies this pat-
tern by comparing it with the actual productivity obtained using the actual
time window. The x-axis identifies the number of containers handled, and
the y-axes the span of the time window. The actual productivity shows an
erratic behaviour, showing mostly randomly distributed observations. This
pattern reveals the frequent delays and re-planning that occur in practice.

The logistic platform can use productivity data to identify when the net-
work is congested the most, according to

∑
t∈hn P

IN
j (τ) and

∑
t∈hn P

OUT
j (τ)

where hn is the span of the n-th hour of the day, e.g. h16: from 16.00 to
16.59. Figure 15.27 presents a stem graph based on the operations of all
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Figure 15.26: Actual and planned productivity of a deep-sea terminal in the
dataset

the terminals of the network analysed per hour of the day. Similarly to
Figure 15.26 it compares the planned and the actual workload of the termi-
nals processing barge calls in the port area. The incompleteness of the data
affects the absolute value on the y-axes (i.e. the total number of containers
handled). Nevertheless, the pattern identified by the shape of the platform
reveals when terminals are most likely to serve the barges and when the
network is congested the most.

Figure 15.27: Average port workload per hour of the day

15.3 Workload prediction (P9)

In a distribution network, it is crucial to forecast demand. The demand can
be expressed in terms of:

• the number of orders (i.e. the workload).
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• the inventory of a vehicle (i.e. the available space to allocate to han-
dling units).

We introduce model-driven methods to forecast the number of orders,
and data-driven methods to deal with the prediction of the available space
of a vehicle.

15.3.1 Model-driven methods (PD2)

Model-driven methods to forecast the workload are provided by the sta-
tistical analysis of the time series. When dealing with order data of a
distribution network, it is possible to obtain a time series by:

1. considering the timestamp of the dataset;

2. cleaning the data by removing outliers;

3. grouping and summing the quantities of the dataset by the times-
tamps;

4. resampling the dataset to obtain an equispaced series y (e.g. weekly,
daily or hourly).

At this stage, the series y is consistent and can be used to feed prediction
models as the time series decomposition (see section 6.5.1), ARIMA models
(see section 6.5.2), Fourier analysis to detect seasonality (see section 6.5.3),
or other prediction models (e.g. fbprophet). Any of these models always
provides:

• the predicted value in a future time lag;

• a confidence interval.

It is always necessary to consider the confidence interval. When it is
too wide, the model does not provide robust predictions. In this case,
it is possible to tune the model with different hyperparameters, provide
additional data, or change the model.17

15.3.2 Data-driven methods (PD1)

As well as in storage and production system, forecasts on the number of
movements (i.e. the number of HUs to handle) is essential for all the actors
of a supply chain [28]. Another crucial variable is the inventory position
of a vehicle v, important to assign transportation orders to vehicle. These
forecasts are made by using time series methods; nevertheless, the WIP (t),

17The logproj package provides methods to deal with workload predictions here.

https://github.com/aletuf93/logproj/blob/master/examples/LOG_02%20Demand%20prediction.ipynb
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is more incline to be affected by multiple factors, than the movements func-
tion. For this reason, machine learning algorithms are suitable to approach
the predictions of the WIP (t).

Once the route of a vehicle v, and its WIPv have been estimated, as
illustrated in 15.2.2, it is possible to train learning models for the prediction
of the inventory position of the vehicle. In particular, the residual capacity
rj (t) = Cj −WIPj(t) is of interest to investigate if a vehicle could handle
more HUs than the ones already assigned to it. Learning models can be
trained by using a training dataset Xe containing information on the route
e (each row of the dataset is an arc travelled by a vehicle):

• the id of the vehicle;

• the capacity of the vehicle;

• the node of departure;

• the time of departure;

• the node of arrival;

• the time of arrival.

While the target variable is represented by WIPj(t). The input dataset
Xe contains many date and time information. Learning models work ap-
proximating functions, i.e. they need only numerical values as inputs. For
this reason, pre-processing is necessary to convert timestamps and categor-
ical variables. Timestamps are transformed using sin and cos functions to
separate year, month, days, hours and minutes in different attribute, pre-
serving a measure of proximity between them (e.g. 00.01 is hugely close to
23.59 even if the digits representing the timestamp are at the opposite of the
hours and minute domains). This transformation produces nine numerical
features for each timestamp (one representing the years, two representing
the month numbers, two representing the day numbers, two representing the
hours, two representing the minutes). Categorical variables are converted
to dummy column having value one if the observation has the value of the
column, zero otherwise. This conversion produces a number of additional
columns to the dataset Xe equal to the number of categories of a categorical
variable.

At this stage, man learning algorithms can be trained to approximate
the value of WIPj(t). Any of the algorithms in chapters 9, and 11 can
be used, e.g. linear regression, lasso, ridge regression, elastic net, regression
tree, random forest, gradient boosting, AdaBoost, support vector regression
and single perceptron neural network. It is recommended to implement a
validation procedure, as the cross-validation (see 9.1) and to choose a proper
loss function (e.g. the MSE).
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If the value of the MSE is low enough to support robust predictions, the
model can be used to support decisions and to allocate capacity in advance.
There is an additional parameter to consider to evaluate the performance
of a model. When the model is trained, it produces an error with a fixed
amount of data. When the model is deployed, this amount of data may
vary. For this reason, it is crucial to consider the learning curve of a model.
Learning curves track the value of the loss function (e.g. the MSE) de-
pending on the amount of input data. Each algorithm runs several times
with a different size of the input dataset randomly bootstrapped from the
complete dataset Xe. An example of learning curves is presented in Figure
15.28. The x-axes represent the number of records used to feed the learning
algorithm (i.e. from 10% to 100% of the input dataset) while the y-axes
indicate the average MSE produced by the algorithms with 5-folds CV.

Figure 15.28: Example of the learning curves of regression algorithms to
predict the residual capacity of a vehicle.

The example shows that many algorithms (i.e., neural network, gradient
boosting, random forest and elastic net) tend to significantly reduce the
MSE while increasing the size of the dataset. For this reason, the model
built by these algorithms may have significant potential in practice fed using
bigger datasets than the one used in this example.18

18The logproj package provides methods to deal with inventory predictions here.

https://github.com/aletuf93/logproj/blob/master/examples/LOG_02%20Demand%20prediction.ipynb


Re
vi
ew
ed
Ve
rs
io
n

15.4. VEHICLE CHOICE & SYNCHROMODALITY (P2) 225

15.4 Vehicle choice & synchromodality (P2)

The choice of an adequate vehicle to transport HUs from an origin to a
destination can heavily affect the performance of the supply chain network
in terms of the level of service and environmental impact. This problem
is called synchromodality when the choice is performed online, i.e. with-
out a predefines association between the HU and the vehicle (e.g. truck,
train, barge). Recent literature put a strong effort into developing synchro-
modality models. For the sake of brevity, we introduce an example inspired
to the operations of a logistic platform, i.e. a company with a business
model based on platform economy aiming at simplifying the operations of
a distribution network (see section 15.1.2).

15.4.1 Data-driven methods (PS2)

We simulate the operations of a logistic platform by measuring the perfor-
mance of the network using the transportation cost. The platform has to
assign a set of containers to transportation services using barges or truck,
where transportation of a container by truck costs 1.3 times more than a
barge [29, 30]. For simplicity, we consider a single barge sailing the distri-
bution network. The platform prefers to assign containers to the barge since
it is cheaper than the truck. For this reason, their objective is the maximi-
sation of the number of containers successfully transported by barge.

The platform uses a prediction model Π to forecast the inventory position
of the barge, defining the available capacity µpred of the barge in terms of
available container slots. The accuracy of the available capacity is measured
using the standard deviation σpred. The more accurate the prediction model
Π, the lower σpred. The platform assigns a container to a truck when there
is no space on a barge, based on µpred; or when the real available capacity
µreal < µtrue. The assignments performed by the platform can be wrong
due to bad predictions of the model Π. In particular, a type I error is
made when a container is allocated to barge when the barge is already full
(i.e. false positive prediction); a type II error is made when a container is
allocated to a truck when the barge has space (i.e. false negative prediction).
Figure 15.29 identifies all the possible outcomes of the prediction model Π.

We implemented a simulation to investigate the impact of the accuracy
σpred of the model Π on the performance of the platform, by measuring:

• the number of containers α assigned to the barge when µpred > µtrue

(i.e. the number of false positives);

• the number of containers β assigned to trucks due to wrong predic-
tions, when µpred < µtrue (i.e. the number of false negatives);

• the total cost of the transportation service;
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Figure 15.29: Confusion matrix of a predictive model for synchromodality.

• the level of service, measured as the probability that the platform
successfully assign a container to a barge (i.e. the percentage of true
positives).

The simulation varies the accuracy of the predictions σpred in a range
from 0 to µreal. Figure 15.30 illustrates the outcome of the simulation,

having on the x-axes the variation coefficient σpred

µtrue , and the KPIs identified
above on the y-axes, for each plot. The graph reveals that when the model
Π has higher accuracy in the prediction of the inventory position of the
barge (i.e. the state Λ), the platform performs better, with a lower number
of false positives and false negatives. This has a positive outcome on the
level of service of the platform, and on the total transportation cost of the
network.

This example shows that good prediction models targeting the inventory
position of a barge can improve the level of service of the platform itself, and
reduce the total transportation cost of a barge network. Differently from
single actors of the supply chain, logistic platforms have the data and the
possibility to implement these methodologies. The service they can deliver
with this information is not only for their clients (e.g. the barge operators).
Other stakeholders like terminals, shipper, and port authorities, can benefit
from the information produced by the platforms.
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Figure 15.30: Results of the simulation of the operations of a logistic plat-
form

15.5 Vehicle routing (P10)

Vehicle routing is a prescriptive problem to assign HUs to vehicles and define
vehicle routes such that the distribution cost is minimised. We consider, first
the problem from a classic and model-driven operation research perspective.

15.5.1 Model-driven methods (PS1)

This paragraph considers three different operations research approaches.
The first is the travelling salesman problem (TSP), aiming at the definition
of the cheapest route connecting all the nodes of a graph (regardless of the
resource capacity). Then, the vehicle routing problem (VRP) is introduced
using a traditional descriptive model and a smarter solving strategy using
column generation.

Separation algorithm for the TSP

We do not introduce the descriptive model of the TSP since it can be found
in almost any operation research book. We start illustrating a smarter
procedure to solve it by separation (see 13.3.1). Let consider the parameter
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da be the cost of travelling the arc a = (i, j). Let introduce the variables:

wa =

{
1 if arc (i, j) is included in the solution
0 otherwise

(15.1)

wi =

{
1 if vertex i is included in the solution
0 otherwise

(15.2)

The TSP problem is defined as follows.

min
∑
a∈A

wada (15.3)

∑
a∈δ+(i)

wa = wi,∀ i ∈ V (15.4)

∑
a∈δ−(i)

wa = wi,∀ i ∈ V (15.5)

∑
i∈V

wi = N (15.6)

wa, wi ∈ 0, 1 (15.7)

The objective function (15.3) aims at the minimisation of the distribu-
tion cost. Constraints (15.4), and (15.5) impose to chose arcs both to enter
and exit a vertex i, constraints (15.6) impose to visit all the vertices, con-
straint (15.7) impose integrality of the decision variables. A model set using
equations (15.3)-(15.7) may produce a solution with multiple sub-tours. A
set of sub-tour elimination constraints is needed to avoid this behaviour.
The number of sub-tours in a graph can be exponential. For this reason,
there is an exponential number of constraints to add to the problem (15.3)-
(15.7). Models with an exponential number of constraints may take forever
to reach optimality. For this reason, we relax this constraint and use a
separation procedure adding one-by-one violated sub-tour elimination con-
straints to the model.

We introduce an optimisation problem called separation problem to find
a sub-tour elimination constraint S∗ violated by the initial problem. The
problem has variables:

yi =

{
1 if vertex i ∈ S∗
0 otherwise

(15.8)
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za =

{
1 if arc (i, j) ∈ S∗
0 otherwise

(15.9)

The solution z∗a of the following separation problem is used to identify
a sub-tour elimination constraint which is violated by the solution of the
initial problem w∗a. The separation problem is defined as follows:

min
∑
i∈V

yi −
∑
a∈A

w∗aza (15.10)

∑
i∈V

yi ≤ 2 (15.11)

∑
i∈V

yi ≥ N − 2 (15.12)

yi ≤ za,∀a = (i, j) ∈ A (15.13)

yj ≤ za,∀a = (i, j) ∈ A (15.14)

za ≤ yi + yj − 1,∀a = (i, j) ∈ A (15.15)

za, yi ∈ 0, 1 (15.16)

When the separation problem produces a solution value less than, or
equal to ’1’, a constraint ∑

a∈A(S∗)

z∗a >
∑

i∈V (S∗)

yi − 1 (15.17)

is added to the initial problem. Then the initial problem is solved again
(with the relaxation of the sub-tour elimination constraints), and the solu-
tion goes again to the separation problem. This algorithm stops when the
separation problem does not produce additional constraints to add to the
original problem. At this point, the initial problem is solved to optimality
using a minimal number of sub-tour elimination constraints produced by
the separation problem.
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Descriptive model for the VRP

The most comprehensive prescriptive model in the field of distribution net-
works is an evolution of the TSP taking care of the capacity of the vehi-
cle visiting the vertices [31]. This is the vehicle routing problem (VRP).
One of the most complex and comprehensive versions of this problem is
the VRP with pickup and deliveries and time windows (VRPPDTW). The
VRPPDTW is modelled considering:

• a fleet of vehicles v ∈ B;

• a set of pickup and delivery orders o ∈ O to serve;

• a set of pickup nodes j ∈ P and a set of delivery nodes j ∈ D defining
a directed graph G (V,A) where V = P

⋃
D and (i, j) ∈ A.

In this paragraph, we introduce a VRPPDTW problem to maximise the
profit of a shipper of cargo vessels [32]. Despite the scope of the problem, its
formulation is valid for any distribution network with pickup and deliveries
and time windows. The parameters of the problem are illustrated in Table
15.4.

Table 15.4: Parameters of the VRP problem.
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The mathematical model admits the following decision variables.

xi,j =

{
1 if arc i, j is travelled
0 otherwise

(15.18)

vi =

{
1 if node i is visited
0 otherwise

(15.19)

si = timestamp upon leaving node i (15.20)

up,i,j =

{
1 if order p, i, j is served
0 otherwise

(15.21)

loadp,i = upper bound of the total pickup quantity upon leaving node i
(15.22)

unloadp,i = upper bound of the total delivered quantity upon leaving node i
(15.23)

The feasible region is defined by the following sets of constraints.∑
j

xi,j = vi, i ∈ V (15.24)

∑
i

xi,j = vj , j ∈ V (15.25)

si = 0, i ∈ V : ai = 1 (15.26)

sj ≥ si + timei,j −M(1− xi,j), (i, j) ∈ E; i, j ∈ V \{j : aj = 1} (15.27)

sj ≤ si + timei,j +M(1− xi,j), (i, j) ∈ E; i, j ∈ V \{j : aj = 1} (15.28)

up,i,j ≤ vi, (p, i, j ∈ O) (15.29)

up,i,j ≤ vj , (p, i, j ∈ O) (15.30)
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loadp,i =
∑
j

qp,i,j×up,i,j , p ∈ P, i ∈ V : ai = 1 (15.31)

loadp,j ≥ −M (1− xi,j) + loadp,i +
∑
k

qp,j,k×up,j,k,

p ∈ P (i, j) ∈ E; i, j ∈ V \{j : aj = 1}
(15.32)

unloadp,i = 0, p ∈ P, i ∈ V : ai = 1 (15.33)

unloadp,j ≥ −M (1− xi,j) + unloadp,i +
∑
k

qp,k,j×up,k,j ,

p ∈ P (i, j) ∈ E; i, j ∈ V \{j : aj = 1}
(15.34)

0 ≤
∑
p

loadp,i − unloadp,i ≤ Q, i ∈ V (15.35)

up,i,j × tp,i,j ≤ sj + timei,j , (p, i, j) ∈ O (15.36)

xi,j ∈ 0, 1, (i, j) ∈ E (15.37)

vi ∈ 0, 1, i ∈ V (15.38)

si ≥ 0, i ∈ V (15.39)

up,i,j ∈ 0, 1, (p, i, j) ∈ O (15.40)

loadp,i,j ≥ 0, (p, i, j) ∈ O (15.41)

unloadp,i,j ≥ 0, (p, i, j) ∈ O (15.42)

Constraints (15.24) and (15.25) ensure the route is continuous among
nodes. Constraints (15.26) set the leaving timestamp at the first node.
Constraints (15.27) and (15.28) are used to track the leaving timestamp
at each node. Constraints (15.29) and (15.30) impose a node must be vis-
ited to serve its orders. Constraints (15.31) set the pickup value at the
first node while constraints (15.32) do the same for all the following. Con-
straints (15.33) set the delivery value at the first node while constraints
(15.34) do the same for all the following. Constraints (15.35) ensure the ca-
pacity is never exceeded, and constraints (15.36) state that an order can be
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served when it comes before the picking node is visited. Constraints (15.37),
(15.38), (15.39), (15.40), (15.41), (15.42) set the values of the variables.

The maximisation of the profit of the shipper is chosen as objective
function.

∑
p,i,j

qp,i,j × up,i,j × pricep,i,j −
∑
i

Cstopi × vi −
∑
i,j

ci,j × xi,j (15.43)

This problem has been solved using the branch and bound algorithm to
test its functionality on a toy instance (i.e. an extremely small instance of
the problem). The toy instance network is composed of the nine vertices
illustrated in the left of Figure 15.31. The right part of Figure 15.31 illus-
trates the solution of the toy instance, similarly to the descriptive analytics
illustrated in 15.2.2.

Figure 15.31: Solution of the toy instance of the VRP problem.

Since the problem involves time windows, for each route identified by
the solution, it is possible to identify the timestamps of visit at the ports
similarly to the analytics of 15.2.2 (see Figure 15.32).

It is crucial to utilise the same KPIs and analytics to evaluate both the
actual scenario and the ones produced by prescriptive analytics.

Column generation algorithms for the VRP

Operations research proposes many descriptive models to address the vehicle
routing problem (VRP). Unfortunately, even if easy to understand, they are
hard to solve since VRP is NP-complete. Still being NP-complete, there
are smart algorithm known as column generation algorithms to expedite
the research of the optimal solution. For this reason, we introduce this
type of algorithms that works properly with relatively small networks (few
hundreds of nodes).Let us consider the parameters of the problem presented
in Table 15.5.
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Figure 15.32: Descriptive analytics to evaluate the solution of the prescrip-
tive problem.

Table 15.5: Parameters of the column generation algorithm for the VRP.

We define a set S containing all the feasible routes on the network (i.e.
the routes respecting the capacity W , and where nodes are not farther than
D.

S =

{
s ⊆ {i = 1, . . .m} :

∑
i∈s

wi ≤W, MAXa:j,k∈sda ≤ D

}
(15.44)

The optimal solution to the VRP is the solution to the set covering
problem (SCP) called primal problem, having the parameter cs to define
the cost of the route s, and a variable:

xs =

{
1 if configuration s is selected
0 otherwise

(15.45)

The primal problem is defined as follows.

min csxS (15.46)

∑
s∈S:i∈s

xs ≥ 1, i = 1, . . . ,m (15.47)
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xs ∈ {0, 1} (15.48)

The SCP problem has an exponential number of variables that are un-
known in advance (we do not know, at the beginning, all the feasible routes
of set S). For this reason, we initialise the primal problem with a trivial
feasible solution of the SCP (i.e. an identity matrix with a high cost cs)
and we use a dual problem to generate cheaper columns of the matrix. We
relax the integrality of the primal problem and consider its dual problem, as
follows.

maxπi (15.49)

∑
i∈S

πi ≤ cs, s ∈ S (15.50)

πi ≥ 0, i ∈ S (15.51)

At this point, we need to violate a constraint of the set (15.50). When
this constraint exists, a cheaper column to add to the S exists as well for
the theorem of optimality by separation (see section 13.3.1). We use an
optimisation model to find the violated constraint.

µi =

{
1 if i belongs to column
0 otherwise

(15.52)

max

m∑
i=1

µi(πi − ci) (15.53)

m∑
i=1

πiwi ≤W (15.54)

µi ≥ za, a = (i, j) (15.55)

µj ≤ za, a = (i, j) (15.56)

µi + µj − 1 ≤ za, a = (i, j) (15.57)

zada ≤ D, a = (i, j) (15.58)

πi, za ∈ 0, 1, a = (i, j) ; i, j = 1, . . . ,m (15.59)
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If this model produces a solution value
∑m
i=1 µi(πi − ci) > 0, a column

with profit is found, and it is added to the set S of the SCP. Otherwise, the
set S contains all the routes to find the optimal solution to the problem.
The solution of the primal SCP problem reveals the solution to the VRP.

Similarly, it is possible to use this approach to solve the VRPPDTW
maximising the profit of the shipper, illustrated in the previous paragraph
using the descriptive model. Let consider the set packing problem with the
following variables:

C = set of all maximal orderset served by a feasible route (15.60)

xc =

{
1 if orderset c selected
0 otherwise

(15.61)

The problem has a parameter γc, indicating the profit associated to the
orderset (i.e.e the route) c. The primal problem is identified as:

max
∑
c∈C

xcγc (15.62)

∑
c∈C:o∈c

xc ≤ 1, o ∈ O (15.63)

xc ∈ {0, 1} , c ∈ C (15.64)

Let define the dual problem at:

max
∑
o∈O

πo (15.65)

∑
o∈c

π≤o − γc, c ∈ C (15.66)

π≤o 0, i ∈ O (15.67)

We are interested in finding a set c such that:

c :
∑
o∈c

π∗o + γc > 0 (15.68)

Let consider a column generation problem setting the value of the deci-
sion variable:

yo =

{
1 if order o in c
0 otherwise

(15.69)
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The problem is defined as follows:

max
∑
o∈O

(π∗o − profito)yo −
∑
i

Cstopi × vi −
∑
i,j

ci,j × xi,j (15.70)

profito ≤ qp,i,j × up,i,j × pricep,i,j , o = (p, i, j) (15.71)

up,i,j ≤ yo , o = (p, i, j) (15.72)

Subject to all the constraints 15.24 to 15.42 defining the feasible region.
Each time this problem is solved with a solution value greater than ’0’, a
maximal orderset is found and added to the primal problem following the
algorithm illustrated for the minimisation case.

15.5.2 Data-driven methods (PS4)

The models illustrated in the previous section are complex and extremely
biased. Besides, they need long runtimes to produce an optimal solution.
This running time and the hypotheses made to set the model (e.g. the lin-
earity of all the behaviour described by the constraints) are hard to support
in a real environment.

For this reason, we introduce a different approach, where the past ob-
servation of the network can help to find a solution to an online version of
the VRP by using predictive algorithms. The models presented in 15.5.1
solve an offline version of the VRP, i.e. all the data are not only static
but given before running the algorithm that solves the model. In practice,
many parameters of the problem are unknown, or they change their value
depending on many external factors. Finding an online solution of the VRP
means finding a feasible assignment of a HU to a vehicle, given the current
state of the system (i.e. the vehicles present in the network, their routes,
and their available capacity). This can be seen as the Uber problem, who
find a ride to share with other users, given a set of available cabs.

This is the perfect job for a logistic platform, collecting the data of dif-
ferent stakeholders of a distribution network. Let us consider, for example,
a platform collecting the movements M j,v

o from different conveyance oper-
ators, where o is a single transportation order, j the origin terminal, and v
the vehicle. Let us define a state Λ̃(τ) defined as the set of the inventory
position of all the terminals j, and all the vehicles v of the network at time
instant τ . If the logistic platform can estimate Λ̃(τ), is it able to define if a
vehicle has available capacity for an additional HU (i.e. a feasible solution
of the online VRP).

The platform can estimate the inventory position of the barge, by using
the movement function (using an algorithm similar to the one presented in
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section 3.3.1). Another source of information comes from the productivity
function of the terminals j (i.e. P INj , and POUTj ). These two data sources
can be matched together by using a Kalman filter, to improve the estimate
Λ̃. The number of movements nv observed for each single vehicle v de-
fines the completeness of Mv(t), while the number of all the observations
m defines the completeness of P INj , and POUTj for each terminal j. Two

estimators of Λ̃ can, then, be obtained by using two different approaches:

• Λ̃M , with an empirical approach, from the knowledge of the move-
ments Mj (t);

• Λ̃K , with a probabilistic approach, from the definition of kinematic
models based on the speeds of the terminals given by P INj , and POUTj .

An empirical approach directly applies the equations (3.7) and (3.8).
A probabilistic approach defines a kinematic model Kj for each terminal

j. Kj(δ
t, P

IN
j , POUTj , P robOUTj ) returns the number of HUs loaded or of-

floaded when a barge stops at a terminal j with a service time windows δt.
The model considers the probability distribution functions of the productiv-
ity P INj and POUTj , and the probability that the terminal j loads or offload

containers ProbOUTj ).

The Kalman filter (see section 11.3.3) is introduced to mix the informa-
tion from the empirical, and the probabilistic approach. A Kalman filter
(KF) considers the input and outputs of a kinematic model, and it corrects
the output value based on empirical measurements when they are available.
The filter is suitable for a logistic platform since it can be continuously
updated, allowing real-time implementations. The Kalman filter estimates
the value of Λ̃(τ) as a hidden state of a Markov model. Given the motion

equation Kj for each terminal j, the filter updates Λ̃ (τ) by considering the
empirical measurements M j,v

o . The use of the filter always improves the

accuracy of Λ̃ (τ) obtained by using only the probabilistic approach. Nev-
ertheless, it may be useless when Mv(t) has an information content high
enough to (e.g. when all the movements M j,v

o of a vehicle v have been
observed.

15.5.3 Applications

This section illustrates two applications approaching the vehicle routing
problem. The first application uses a descriptive model for the VRPPDTW
applies to vessel routing in the Mediterranean basing. The second one.
uses the data recorded from a 4PL IT platform of the port of Rotterdam
to solve the online version of the vehicle routing problem, i.e. an real-time
assignment of last-minute orders to the space available on the sailing barges.
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Application of vessel routing in the Mediterranean sea

This section illustrates the application of a VRPPDTW model to a set
of instances inspired to the maritime import/export flows of fruits across
the Mediterranean basin. The maritime trade across the Mediterranean
sea is growing not just as a consequence of the global shipping routes, but
because of the intensification of policy making toward a Euro-Mediterranean
free trade area which yet contribute to make Europe the main market for
Mediterranean fruits and vegetables.

The following numerical application is developed within the FUTUREMED
project [33], that is aimed at supporting the design and planning of logistics
and distribution channels for food supply chains across the Mediterranean
countries. Optimisation is hence used to study the optimal visiting tours
for a tramp shipping vessel starting at the port of Ravenna (Italy) and ex-
ploring potential destinations combining pickups and deliveries to maximise
the carrier’s profit.

We considered the seasonal demand of import and export services which
varies with the port in agreement with the fruits availability and produc-
tion/consumption flows. Table 15.6 and Figure 15.33 illustrates the charac-
teristics of the container ship involved and the value of fixed time spent at
each port respectively.

Table 15.6: Container ship characteristics.
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Figure 15.33: Fixed visiting time (days) per port. Figure from [32].
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Three scenarios have been built to study the effect of variable fruits
prices and availability on the monthly tours of a container ship. The three
scenarios involve different groups of port according to the seasonal avail-
ability of apples, kiwis, pears, and peaches from some Mediterranean pro-
ducing/consuming regions. Scenarios are reported in Figures 15.34, 15.35,
15.36 organised as histograms of the import and export orders (expressed in
tons per month) and radar graphs of selling/purchasing price at each port.

The proposed model is applied to establish the three optimal routing
sequences that maximise the profit of the carrier.

Figure 15.34: Scenario 1: Input parameters (Histogram bars: yellow/red
for apple import/export; dark green/green for kiwi import/export). Figure
from [32].

The different pickups and deliveries demand results in modifying the
tramp shipping service month by month as reported in Table 15.7, which
summarises the solutions obtained from the solver Gurobi, run on a Intel i7
3.20 GHz with 32 GB of RAM, with a computational time of 10800 sec.
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Figure 15.35: Scenario 2: Input parameters (Histogram bars: yellow/red
for apple import/export; dark green/green for kiwi import/export). Figure
from [32].

Figure 15.36: Scenario 3: Input parameters (Histogram bars: grey/red for
pear import/export; yel-low/orange for peach import/export). Figure from
[32].
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Table 15.7: Routing scenarios: solutions.
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Application of online barge routing in the port of Rotterdam

This section illustrates the application of a Kalman filter to predict the
number of available container slots on a sailing barge and assign last-minute
orders to it. The numerical data are obtained from a 4PL IT platform
collecting data of barge operators in the port area of Rotterdam.

When the movement, inventory and productivity functions are defined
and updated real-time, the current state of the distribution system Λ can
be predicted using Λ̃. A 4PL IT platform benefits from the knowledge of
the state of the system, which permits them to allocate orders real-time,
e.g. assigning a last-minute order to a barge on its route having residual
capacity. Such an assignment can be interpreted as a feasible solution to the
online version of the VRP problem. The more accurate the estimator Λ̃, the
larger the probability that the platform is able to assign orders respecting
the capacity of the barges.

Predictions about the system state are perfectly accurate when Λ̃ = Λ,
if the platform has a complete data about the movements of a barge. In
general, however, information about barge movements is not complete, and
the predictions about the system state are imperfect. A possible way to
improve the quality of these predictions is to match the imperfect data about
barge movements with the terminal productivity. Below we demonstrate
how the Kalman filter can be applied to achieve this matching and enhance
predictive performance of the available data.

The input dataset counts 43 clients, i.e. barge operators, and nine barges
that have a significant number of movements in the input dataset. A sim-
ulation is run to evaluate the effectiveness of the Kalman filter and the
relative importance of the information provided by the barge operators to
the platform. A function of complete knowledge Mχ

v (t) is defined, assuming
it contains all the movements of a barge v, and collecting all the records of
the input dataset. At each iteration of the simulation, a function M ε

v(t) is
generated, identifying a subset of data known to the platform. To study the
relevance of the incompleteness of the data, M ε

v(t) contains a percentage
πMv of the movements defined by Mχ

v (t). The value of πMv varies from 0.1
to 0.9 at each iteration of the simulation.

In addition, the simulation evaluates the relevance of the number of
barge operators providing order data to the platform. The simulation
varies the number of barge operators in the platform within the set πC ∈
{1, 2, . . . , 43} inserting in M ε

v(t) only the movements produced by the subset
of barge operators considered.

The value of πC increases of at each iteration of the simulation, and the
value of the data of an additional barge operator of the 4PL IT platform
is assessed. The simulation repeats the prediction for each barge, with
different levels of completeness of the data πMv , and different amount of
information due to the number of barge operators observed by the platform
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πC .
The simulation generates two predictors; Λ̃M generated using the move-

ment functions only, and Λ̃K , using the Kalman filter. Figure 15.37 com-
pares the performance of Λ̃M and Λ̃K . Each row of the table identifies
a barge. The column profile identifies Iv(t) for each barge v, similarly to

Figure 15.25. The orange trace represents Iv (t) estimated using Λ̃M , while
the green trace identifies Iv(t) obtained using the kinematic models Kj for
each terminal j. The main frame of Figure 15.37 evaluates the predictions
of the Kalman filters in different scenarios of the simulation. The columns
of the table identify πMv , i.e. the different scenarios due to different level of
completeness of the dataset. Each frame shows the accuracy of the Kalman
filter compared with the empirical approach based on the movements. The
x-axis identifies the number of barge operators in the platform πC while the
y-axis of each frame compares the rooted mean squared error (RMSE) of

Λ̃K , and Λ̃M , by plotting 1− RMSE(Λ̃K)

RMSE(Λ̃M )
. Both RMSE values are calculated

comparing the predictors with the function of complete knowledge Mχ
v (t).

The blue zone highlights the area between the value of the accuracy function
and the x-axis. When the function has a positive value, Λ̃K outperforms
Λ̃M . The Kalman filter outperforms, on average, in the scenario identified
by green boxes. The Kalman filter does not always lead to an improvement
of the predictions, since the kinematic models Kj describing the operations
of the terminals have a low accuracy. This result reveals that adding the
data of a barge operator to the platform does not autonomously affect the
accuracy of the predictions.
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Table 15.8 presents the aggregated results of the simulation by showing
the absolute number of times (over a maximum of 43) when the proba-
bilistic approach implementing the Kalman filter outperforms the empirical
approach based on the movements. The table maps the number of move-
ments, the mean value, and the standard deviation of the inventory Iv(t)
for each barge. The simulation reveals that the empirical approach always
overcomes the Kalman filter when the completeness of the input dataset is
over 70%. When the completeness of the input dataset is low, and the vari-
ability of the inventory position is significant, the Kalman filter can provide
reliable predictions.

Table 15.8: Accuracy of the predictions of the Kalman filter compared to
the empirical approach
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Distribution System Design

This chapter deals with the design of a distribution network (or the re-
design of an existing supply chain). Controlling a supply chain focuses on
the description of the processes and the day-by-day planning; on the other
hand, the design of a network profoundly modify the distribution strategy
for many actors of the chain. The design activities are classified depending
on the decision patterns (see section 14.3) involved into:

1. location-allocation problem, i.e. clustering points of demand of the
network into groups without exceeding the capacity of the resources
assigned to each group;

2. network topology design, i.e. the definition of service routes within
each cluster;

3. route frequency design, i. e. defining the frequency of service for each
node of the network;

4. service time windows design, i.e. defining the time interval when each
node of the network should be served;

5. shipping priority definition, i.e. identify dispatching rules for HUs.

These problems can be seen in the perspective of a hierarchical procedure
to design a distribution network from scratch. First of all, for each terminal
j of the network, it is necessary to investigate:

1. its position (i.e. the longitude, and the latitude);

2. its demand;

251
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3. its serving infrastructure is identified (e.g. road, rail, water).

Then, the location-allocation problem LAP (1) identifies the number
of resources, their capacity, and their location to satisfy the demand of
the nodes. The design of the routeing topology (2) assign each terminal
j to a route e travelled by a vehicle v connecting the terminal to one of
the resources (e.g. production plant or storage system) identified by the
LAP. The design of the route frequency (3) matches the demand of the
terminal, and the capacity of the resources identifying the number of visits
per unit of time of a vehicle v, on a route e. Service time windows design (4)
identify how to set the loading/discharging time windows for each route e,
at each terminal j. Shipping priority definition (5) identifies how to organise
the loading/discharging operations at the terminal to maximise the service
level of the network. Figure 16.1 illustrates the hierarchy of these decision
problems, identifying whether the decision belongs to the network or to the
single terminals.

Figure 16.1: Hierarchy of decision problems for distribution network design.

16.1 Location – allocation problem (P6)

Location allocation problem (LAP) is a classic operations research problem
defined as follows. Given:

• the n nodes of a distribution network;

• the requirements for each node;

• the shipping cost;

Determining:



Re
vi
ew
ed
Ve
rs
io
n

16.1. LOCATION – ALLOCATION PROBLEM (P6) 253

1. a number m of resources to place

2. where to place each resource;

3. the capacity needed by each resource.

The capacity may be the inventory level of a storage system or the
throughput of a production plant. The problem definition is general and
links together the position on a graph with an amount of capacity.

16.1.1 Model-driven methods (PS3)

LAP problem requires a model to be solved since it is hard to collect ob-
servation on different realisations of a LAP solution. For this reason, we
only approach the problem using a model-driven approach. One of the first
approaches to the LAP problem sharply identify two main cost function to
model and minimise to obtain the optimal solution of the problem [1]. Let
us consider the cost functions:

CPLANT = f(m) (16.1)

CDIST = g(m) (16.2)

The total cost to minimise is given by E = CPLANT + CDIST where:

• CPLANT represents the cost connected to opening a number of re-
sources m (e.g. the cost of the land, the building, the depreciation,
the energy, the direct labour);

• CDIST represents the cost connected to serving the n nodes of the
network using the m selected facilities (e.g. the cost of distribution).

From this perspective, the LAP problem represents a generalisation of
the facility location problem introduced in section 22.2 where the optimal
facility location is the coordinate where CDIST has a minimum.

From a mathematical perspective, the optimal solution to the LAP prob-
lem is given by:

dE

dm
=
df(m)

dm
+
dg(m)

dm
= 0 (16.3)

Solving equation (16.3) in the variable m provides the optimal solution
to the LAP problem. Unluckily, solving equation (16.3) is computationally
expensive, and there is no guarantee on how functions f , and g have been
defined. They are generally not linear, and hard to estimate. Thinking of
moving on their surface (if a continuous surface exists) is science fiction.

Nevertheless, in practice, both CPLANT , and CDIST are easy and fast
to estimate for a finite set of solutions of the LAP. A smart approach is to
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evaluate the total cost Eχ for a finite number of scenarios χ. Often these
scenarios already exist in the mind of the decision-makers. A comparison
between these scenarios immediately leads to the most profitable one.

16.1.2 Application

We show an example of an application of the LAP problem by comparing
a network in two alternative scenarios: as-is scenario describing the current
situation of the network, and to-be scenario evaluating an alternative. The
comparison method evaluates the differential cash flows in the two scenarios
in a Montecarlo fashion.1

A cost model is defined to identify which cost items are relevant to
compare the two scenarios, for example:

• the direct labour cost;

• the cost of logistics and distribution;

• the operating costs (e.g. the energy);

• the fixed costs to operate the plant;

• the depreciation cost;

• the investment cost (only for the to-be scenario).

The sum of these cost items (except for the depreciation cost) deter-
mined the cash flow in each scenario. The difference between the to-be
and the as-is scenario determines the differential cash flow. Extending this
analysis to a significant time horizon (e.g. ten years) identify the payback
period of the to-be investment. When a probability distribution is given
for all the cost items identified above, it is possible to determine the risk
of the investment using a Montecarlo simulation. The Montecarlo simula-
tion identifies different behaviour, randomly generating numbers from the
distribution of the input cost items. Figure 16.2 illustrates the Montecarlo
approach and the static approach applied to sample data. This approach
can be used to evaluate multiple LAP alternatives compared to an existent
scenario identifying which alternative produce an adequate return on the
investment.

16.2 Network topology design (P2)

Defining the topology of a network consists of grouping terminals j together,
such that a single facility can serve all of them without exceeding its ca-

1An example of this application is available here.

https://github.com/aletuf93/logproj/blob/master/examples/DIST_04%20Location-Allocation%20problem.ipynb
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Figure 16.2: Montecarlo and static simulations to evaluate the cash flows
of a LAP configuration compared to the existent scenario.

pacity. For example, assigning a distribution centre to a set of points of
demand provides a solution to this problem.

This problem is similar to the LAP, but it has a different focus. The
LAP determines the number, the location, and the capacity of the facilities
to open. On the other side, the network topology design assigns terminals
to facilities minimising the service cost and without exceeding the capacity
of each facility.

16.2.1 Model-driven methods (PS1)

Operations research provides models for the capacitated facility-location
problem to approach the network topology problem. These models can be
thought of adaptations of a set covering problem where the terminals j are
the points to be covered by the service of the facility. The basic models
have the parameters illustrated in Table 16.1.

Table 16.1: Parameters of the capacitated facility-location problem.

The model has the following variables.

yk =

{
1 if facility k is activated
0 otherwise

(16.4)
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xjk =

{
1 if terminal j is served by facility k
0 otherwise

(16.5)

The problem has the following objective function:

min
∑
k

fkyk +
∑
j

∑
k

cjkxjk (16.6)

Subjected to the linear constraints:∑
k

xjk = 1, ∀j (16.7)

xjk ≤ yk, ∀j,∀k (16.8)

∑
j

djxjk ≤ bkyk, ∀k (16.9)

yk, xjk ∈ {0, 1} , ∀k, ∀j (16.10)

Constraints (16.7) impose that all terminal j must be assigned to a
facility; constraints (16.8) links the variables x and y; constraints (16.9)
imposes the respect of the capacity of each facility; constraints (16.10) check
the integrality of the decision variables.

This model is easy to understand but has many problems in production.
The problem is NP-complete, and the number of decision variables xjk is
exponential. For these reasons, a branch & bound algorithm may take
forever to solve a real instance of the problem.

16.2.2 Data-driven methods (PS2)

Data-driven methodologies involve unsupervised learning (see chapter 8 that
clusters observations into groups given their similarity. Clustering tech-
niques effectively solve the network topology problem since they are com-
putationally efficient. These techniques are uncapacitated. For this reason,
we present five approaches to introduce the feasibility check on the capacity
parameter. We assume having a number of facilities m with a fixed capac-
ity C, equal for all the facilities. All the approaches consider similar input
parameters, illustrated in Table 16.2.
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Table 16.2: Parameters of the data-driven methods for the route topology
design.
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Capacitated similarity tree (CST)

This algorithm builds clusters using a similarity tree produced by hierarchi-
cal clustering (see section 8.2.2). Hierarchical clustering aggregates the m
observations relying on a proximity matrix m×m, describing how close the
observations are. To cluster terminals, we consider a similarity matrix S
whose entries sij measure the closeness of two terminals. S is calculated as
the inverse of the matrix of the distances (e.g. the road distance) between
nodes. At each step of the algorithm sij are ordered and the two nodes
with the maximum sij are clustered together if the capacity constraint is
respected; otherwise the following sij is considered for clustering. The al-
gorithm starts creating m clusters. This number is progressively reduced
grouping nodes together when the capacity is respected. Algorithm 11 il-
lustrates the pseudocode for this algorithm.2

Algorithm 11: Capacitated similarity tree (CST)

i = 1, ...,m ∈ V set of vertices
qi demand of vertex i
C maximum capacity of a cluster
si,j similarity between vertices i, and j
for k ← 1 : (m− 1) do

set S = ∅
found = false
while notfound do

v = max(i,j)−S (si,j)
(h, l) = arg(v)
if (qh + ql ≤ C) then

found = true
else

S = S
⋃

(h, l)
end

end
qh = qh + ql
for r ← 1 : m do

sr,h = min(sr,h, sr,l)
sh,r = min(sh,r, sl,r)
sr,l = −1
sl,r = −1

end

end

2The source code of Algorithm 11 is available here.

https://github.com/aletuf93/logproj/blob/master/logproj/ml_unsupervised_models.py
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Construction heuristics on a similarity tree (CHST)

This algorithm works slightly differently from the previous. This algorithm
still works on a similarity tree but generating one cluster at a time. When
a cluster is full (no residual capacity is left), the algorithm opens a new
cluster. A maximum allowable distance D is introduced as a parameter
of the algorithm, to avoid that points too “far” enter the same cluster.
Algorithm 12 illustrates the pseudocode for this algorithm.

Algorithm 12: Construction heuristics on a similarity tree
(CHST)

i = 1, ...,m ∈ V set of vertices
qi demand of vertex i
C maximum capacity of a cluster
di,j distance between vertices i and j
D maximum allowable distance within a cluster
R = V
incumbentCluster = false
while (R not empty) do

if (not incumbentCluster) then
Z = ∅

end
S = ∅
v = min(i,j)−S (di,j)
(h, l) = arg(v)
if (qh + ql ≤ C AND dhl ≤ D) then

Z = Z
⋃

(h, l)
R = R− (h, l)
for r ← 1 : m do

sr,h = min(sr,h, sr,l)
sh,r = min(sh,r, sl,r)
sr,l = −1
sl,r = −1

end

else
S = S

⋃
(h, l)

if (S == R) then
incumbentCluster = false

end

end

end
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Iterative k-means covering algorithm (KCOV)

This algorithm uses the well-known k-means algorithm (see section 8.2.1) as
a generator of columns of a set covering problem (SCP) (see section 13.3.1.
The problem us the parameters cj to identify the cost of a column, and the
following variable.

xj =

{
1 if column j selected
0 otherwise

(16.11)

The problem is defined as follows.

min

n∑
j=1

xjcj (16.12)

∑
j:i∈j

xj ≥ 1, i ∈ V (16.13)

xj ∈ 0; 1, j = 1, . . . , n (16.14)

A column j has value ’1’ at position i if terminal i is included in the
cluster; otherwise, its value is ’0’. The cost cj of a column is a measure
of saturation and it is calculated at C −

∑
i∈j qi. Columns are generated

by iteratively running the k-means algorithm with increasing values of k
(starting from 1 to the number of considered terminals). Only clusters
whose capacity falls within a given range are selected as columns of the
SCP problem. k-means stops increasing when a feasible solution of the SCP
exists. The SCP is then optimally solved using branch & bound algorithm.
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Algorithm 13 presents the pseudocode of this algorithm.

Algorithm 13: Iterative k-means covering algorithm (KCOV)

k = s, ...,K = neighborhood of the number of centroids
r =number of replicates
i = 1, ...,m ∈ V set of vertices
qi demand of vertex i
Di ∈ Rn set of coordinates of point i
C maximum capacity of a cluster
c minimum allowable capacity of a cluster
S = ∅
for k = 1 : m do

for j = 1 : r do
s = solution of K-means(k)
for cluster g ∈ s do

cap =
∑
i∈g qi

if c ≤ cap ≤ C then
S = S

⋃
s

end

end

end

end

Variable neighbourhood search K-means covering algorithm (VK-
COV)

This algorithm works as the previous with a pre-selection of the value of
k (i.e. the number of clusters created by the k-means algorithm). All
the values of k (i.e., from 1 to the number of terminals) are tested, and
it chooses the values of k generating the highest fraction (e.g. the 95%)
of feasible columns (respect with the capacity constraints). Algorithm 14
illustrates the pseudocode of this algorithm.



Re
vi
ew
ed
Ve
rs
io
n

262 CHAPTER 16. DISTRIBUTION SYSTEM DESIGN

Algorithm 14: Variable neighbourhood search k-means covering
algorithm (VKCOV)

k = s, ...,K = neighborhood of the number of centroids
r =number of replicates
i = 1, ...,m ∈ V set of vertices
qi demand of vertex i
Di ∈ Rn set of coordinates of point i
C maximum capacity of a cluster
c minimum allowable capacity of a cluster
S = ∅
for k = 1 : m do

for j = 1 : r do
s = solution of K-means(k)
for cluster g ∈ s do

cap =
∑
i∈g qi

if c ≤ cap ≤ C then
S = S

⋃
s

end

end

end

end
δ = select k ∈ s, ...K generating 95 percentile of feasible solutions
S = ∅
for k ∈ δ do

for j = 1 : r do
s = solution of K-means(k)
for cluster g ∈ s do

cap =
∑
i∈g qi

if c ≤ cap ≤ C then
S = S

⋃
s

end

end

end

end

Optimal column generation heuristics (CG)

This algorithm uses an optimal approach to generate the columns of the
SCP presented in paragraph 16.2.2. The columns are generated while they
provide a benefit (i.e. a reduced cost) of the objective function, identifying
the closeness of the points within the clusters. A column is generated if:

• it has a positive profit;
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• it respects the capacity constraints;

• it respects a distance constraint on the maximum distance of each arc.

The primal model of the column generation problem is defined as follows.
Table 16.3 illustrates the parameters of the problem.

Table 16.3: Parameters of primal problem.

The set of the columns of the primal problem is

S =

{
s ⊆ {i = 1, . . .m} :

∑
i∈s

wi ≤W, MAXa:i,j∈sda ≤ D

}
(16.15)

where cs is the cost of serving the set s. The primal problem has the
following variable.

xs =

{
1 if configuration s is selected
0 otherwise

(16.16)

The model is defined as follows.

min csxS (16.17)

∑
s∈S:i∈s

xs ≥ 1,∀ i = 1, . . . ,m (16.18)

xs ∈ {0, 1} (16.19)

The dual problem is defined as follows.

maxπi (16.20)

∑
i∈S

πi ≤ cs ,∀ s ∈ S (16.21)

πi ≥ 0 (16.22)
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The column generation problem find violated dual constraints by solving
an optimisation column generation problem with variable

µi =

{
1 if i belongs to column
0 otherwise

(16.23)

The model is defined as follows.

max

m∑
i=1

µi(πi − ci) (16.24)

m∑
i=1

πiwi ≤W (16.25)

µi ≥ za,∀ a = (i, j) (16.26)

µj ≤ za,∀ a = (i, j) (16.27)

µi + µj − 1 ≤ za,∀ a = (i, j) (16.28)

zada ≤ D , ∀ a = (i, j) (16.29)

πi, za ∈ 0, 1 (16.30)

16.2.3 Application

We test the five algorithms mentioned above in the field of urban logistics
while designing the waste collection service of a wide urban area. The
problem involves clustering point of waste production (POWP) together, to
assign them to vehicles.3

We define three indicators to evaluate the performance of the algorithm
from a computational point of view (see Table 16.4. The average number of
cluster is a measure of the compactness of the outcome clusters. It gives an
idea of which algorithm produces, on average, a higher number of classes.
It is important to remark that this indicator cannot be directly used as
a logistics indicator since it may not be related to the travelled distance
within a cluster. The optimal solution of the bin-packing problem (BPP) is
calculated, to measure the efficiency of the algorithm in clustering points in
the minor number of cluster possible. This solution defines the lower bound
of the number of clusters to create. For each algorithm, we measure the

3An example of this application is available here.

https://github.com/aletuf93/logproj/blob/master/examples/DIST_03%20Route%20topology%20design.ipynb
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gap between its solution and the BPP solution. Besides, we measure the
average solving time and the percentage of failing of the algorithms (i.e., the
percentage of the instances when an algorithm is not able to find a feasible
solution). Since CST and CHST are fully heuristic algorithms, they always
provide a feasible solution in a relatively short time.

Table 16.4: Performance of the clustering algorithms.

The logistics performance of each algorithm is evaluated, first, match-
ing the number of clusters (generated by an algorithm) with the travelled
distance (calculated a posteriori after solving the TSP problem for each
cluster). Figure 16.3 presents these analyses showing a dot for each clus-
ter generated by the algorithm in all the 498 instances. The figure shows
the number of clusters generated by each algorithm on the x-axis of each
subplot while the y-axis indicates the distance travelled (expressed in km)
to serve the POWPs belonging to that cluster. Besides, the colour indi-
cates the number of POWPs in each cluster according to the colour bar.
CST and CHST have similar behaviours, but CHST tends to create fewer
clusters where more populated clusters account for a higher travelled dis-
tance. KCOV and VNKCOV are extremely similar. CG creates clusters
whose travelled distance increase with the number of clusters created. Only
CG presents a correlation between the number of clusters and the travelled
distance. Considering the number of clusters created, the hierarchical algo-
rithms (i.e. CST and CHST) outperform the others since they serve all the
nodes with a smaller number of clusters.

Figure 16.4 investigates the correlation between the number of nodes per
service area and the travelled distance resulting from the clustering obtained
with different algorithms.

As the figure shows, in principle, it always exists a correlation between
the number of nodes to serve and the distance travelled to connect them.
Nevertheless, different algorithms allow obtaining very diverse performance.
The performance is measured using the mean value (red line) of the distance
travelled to serve each cluster. The blue line identifies the linear regression
of the points. CST has a lower average distance value than CHST. Never-
theless KCOV and VNKCOV produce denser clusters with a lower travelled
distance. CG, in this case, does not lead to good performance. This can be
partly explained thinking at the objective function of the CG algorithm that
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Figure 16.3: Scatterplot of the number of cluster per area (x-axis), and
travelled km (y-axis).

Figure 16.4: Scatterplot of the number of nodes (x-axis), and km (y-axs)
one chart for each algorithm.

maximises the saturation of the trucks considering the travelling distance
as a constraint (and not as an objective function).

Another important logistic indicator is the working time needed to per-
form a service. This amount of time must match the estimate of time
needed to perform operations within each area of service. To get a mea-
sure of the feasibility in time of the solution proposed by the algorithms,
historical data are considered to assign the time performance to the trav-
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elled distance identified by the route design. An average collection speed
of 10 km/h is considered and a fixed time of 30 minutes is considered for
the operations at the collection points. Given these values, the time effect
produced by the algorithms is statically computed. Figure 16.5 presents
the histogram of the expected time necessary to serve each area of service
with the solution proposed by the clustering algorithms. The feasibility in
time of the routes is considered based on the existing working shift of 6
hours. CST and CHST provide a higher percentage of time-feasibility (66,6
and 76,8 respectively). About half of the solutions provided by KCOV,
VNKCOV and CG are feasible in time while MDSCOV mainly does not fit
the available time of the existing working shifts.

Figure 16.5: Histogram of the estimated service time per area.

16.3 Route frequency design (P5)

The design of the frequency of a route defines the capacity of the network,
and also the saturation of the vehicle. This problem is approached using
models to prescribe the power of each route of a network.

16.3.1 Model-driven methods (PS4)

Models to define the frequency of a route can be static or dynamic. When
no information about the dynamic behaviour of the demand is available, a
static model should be chosen. Static models always work by considering:

• aev, the capacity of the vehicle v, serving route e;
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• bj , the demand of a terminal j.

The minimum frequency of the route e, served by a vehicle v can be statically
calculated as:

nj =

⌈
bj∑
j∈e aj

⌉
(16.31)

When the decision-maker has information on the dynamics of the de-
mand, e.g. its seasonality, a discrete event simulation approach can be
preferred to the static approach. Many models adapt real-time the capacity
of a route. It is the case of bucket brigades [2], that adds resources to a
route only when these resources are needed.

16.4 Service time windows design (P5)

Time windows design involves the definition of an optimal time horizon to
visit all the terminals of a route e. Similarly to route frequency, this problem
is approached by using models.

16.4.1 Model-driven methods (PS4)

Let consider the problem to define a time windows for a terminal j to be
visited by a vehicle v [3]. We consider a random variable X describing
the distribution of arrivals of a vehicle, where f and F are its probability
distribution function (PDF) and cumulative distribution function (CDF),
respectively. The problem is to identify a time window τ ± ∆ when the
vehicle is allowed to visit the terminal j. A cost of earliness C− is associated
with an early arrival (e.g. corresponding to the cost of wait of the vehicle)
as well as a cost of tardiness C+ is associated with a delay in the arrival
(e.g., the waiting cost for the terminal). We assume that the cost of a delay
is greater than the cost of early arrival (C+ > C−), and we introduce Cr,
the cost of the terminal resource per unit of time. Figure 16.6 introduces
f(X), with the associated costs.

Based on these parameters, we calculate:

Prob(X < τ −∆) = F (τ −∆) (16.32)

Prob(X ≥ τ + ∆) = 1− F (τ + ∆) (16.33)

Consequently, three cost items are defined as:

Cearliness = C− × F (τ −∆) (16.34)
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Figure 16.6: Probabilty distribution function of the arrival of a vehicle with
the associated costs.

Clateness = C+ × [1− F (τ + ∆)] (16.35)

Cresource = 2Cr ×∆ (16.36)

Ctot = Cearliness + Clateness + Cresource (16.37)

We need to find τ and ∆ such that Ctot is minimised. We introduce the
partial derivatives of the cost, and look for the values of τ , and ∆ where
the derivatives equal zero.

µi =

{
∂Ctot
∂τ = 0

∂Ctot
∂∆ = 0

(16.38)

∂Ctot
∂τ

= C− × f(τ −∆)− C+ × f(τ + ∆) (16.39)

∂Ctot
∂∆

= C− × f(τ −∆) + C+ × f(τ + ∆)− 2Cr (16.40)



Re
vi
ew
ed
Ve
rs
io
n

270 CHAPTER 16. DISTRIBUTION SYSTEM DESIGN

Let assumeX being normally distributed: 1
σ
√

2π
e
−(x−µ)2

2σ2 . Here it follows

the development of the equation (16.39).

C−
1

σ
√

2π
e
−((τ−∆)−µ)2

2σ2 = C+ 1

σ
√

2π
e
−((τ+∆)−µ)2

2σ2

C−

C+
e
−((τ−∆)−µ)2

2σ2 = e
−((τ+∆)−µ)2

2σ2

log

(
C−

C+
e
−((τ−∆)−µ)2

2σ2

)
= log

(
e
−((τ+∆)−µ)2

2σ2

)
log

(
C−

C+

)
+ log

(
C−

C+
e
−((τ−∆)−µ)2

2σ2

)
=
−((τ + ∆)− µ)2

2σ2

log

(
C−

C+

)
+
−((τ −∆)− µ)2

2σ2
=
−((τ + ∆)− µ)2

2σ2

2σ2 ln

(
C−

C+

)
−
[
(τ −∆)2 + µ2 − 2µ(τ −∆)

]
=[

(τ + ∆)2 + µ2 − 2µ(τ + ∆)
]

2σ2 ln

(
C−

C+

)
−
[
τ2 + ∆2 − 2∆τ + µ2 − 2µ(τ −∆

]
=[

τ2 + ∆2 + 2∆τ + µ2 − 2µ(τ + ∆)
]

2σ2 ln

(
C−

C+

)
+ 2∆τ + 2µ(τ −∆) = −2∆τ + 2µ(τ + ∆)

2σ2 ln

(
C−

C+

)
= −4∆τ − 2µτ + 2µ∆ + 2µτ + 2µ∆

2σ2 ln

(
C−

C+

)
= −4∆τ + 4µ∆

σ2

2
ln

(
C−

C+

)
= ∆(µ− τ)

(16.41)

For practical reason, the additional variable u = σ2

2 ln
(
C−

C+

)
is consid-

ered, such that:

u = ∆(µ− τ) (16.42)

Equation (16.42) is now used to solve the equation (16.40). Please note
that from the definition, the term u is a parameter (i.e., it is not function
of the variables τ and ∆). Here it follows the development of the equation
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(16.40).

C− × f(τ −∆) + C+ × f(τ + ∆)− 2Cr

= C−
1

σ
√

2π
e
−((τ−∆)−µ)2

2σ2 + C+ 1

σ
√

2π
e
−((τ+∆)−µ)2

2σ2 − 2Cr

C−e
−((τ−∆)−µ)2

2σ2 + C+e
−((τ+∆)−µ)2

2σ2 = 2Crσ
√

2π = ?

C−e
−[(τ−∆)2−µ2−2µ(τ−∆)]

2σ2 + C+e
−[(τ+∆)2−µ2−2µ(τ+∆)]

2σ2 = ?

C−e
−[τ2+∆2−2τ∆+µ2−2µτ∆+2µ∆]

2σ2 + C+e
−[τ2+∆2+2τ∆+µ2−2µτ∆−2µ∆]

2σ2 = ?

(16.43)
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Let be h = τ2 + ∆2 + µ2 − 2µτ

C−e
−[h−2τ∆+2µ∆]

2σ2 + C+e
−[h+2τ∆−2µ∆]

2σ2 = ?

C−e
−[h+2∆(µ−τ)]

2σ2 + C+e
−[h−2∆(µ−τ)]

2σ2 = ?

C−e
−[h+2u]

2σ2 + C+e
−[h−2u]

2σ2 = ?

C−e
−[h+2u]

2σ2 + C+e
−[h+2u−4u]

2σ2 = ?

C−e
−[h+2u]

2σ2 + C+e
−[h+2u]

2σ2 e
4u
2σ2 = ?

e
−[h+2u]

2σ2

{
C− + C+e

4u
2σ2

}
= 2Crσ

√
2π

e
−[h+2u]

2σ2 =
2Crσ

√
2π

C− + C+e
4u
2σ2

−[h+ 2u]

2σ2
= log

(
2Crσ

√
2π

C− + C+e
4u
2σ2

)

h = −2σ2 log

(
2Crσ

√
2π

C− + C+e
4u
2σ2

)
− 2u

τ2 + ∆2 + µ2 − 2µτ = −2σ2 ln

(
2Crσ

√
2π

C− + C+e
4u
2σ2

)
− 2u

∆2 + τ2 + µ2 − 2µτ = −2σ2 ln

(
2Crσ

√
2π

C− + C+e
4u
2σ2

)
− 2u

∆2 + (µ− τ)2 = −2σ2 ln

(
2Crσ

√
2π

C− + C+e
4u
2σ2

)
− 2u

∆2 +
u2

∆2
= −2σ2 ln

(
2Crσ

√
2π

C− + C+e
4u
2σ2

)
− 2u

∆4 −∆2

(
−2σ2 ln

(
2Crσ

√
2π

C− + C+e
4u
2σ2

)
− 2u

)
= −u2

∆2

(
∆2 + 2σ2 log

(
2Crσ

√
2π

C− + C+e
4u
2σ2

)
+ 2u

)
= −u2

(16.44)

The equation admits up to four solutions. But the equation ∆2 = −u2 is
discarded since the solution belongs to the imaginary space. The remaining
solutions are given by the followings.

∆2 = −u2 − 2σ2 ln

(
2Crσ

√
2π

C− + C+e
4u
2σ2

)
− 2u (16.45)
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∆ = ±

√√√√−u2 − 2σ2 ln

(
2Crσ

√
2π

C− + C+e
4u
2σ2

)
− 2u (16.46)

Only the positive value of ∆ is taken into account. Finally, considering
that:

u =
σ2

2
ln

(
C−

C+

)
(16.47)

The optimal values for τ , and ∆ are obtained as

∆ =

√√√√−u2 − 2σ2 ln

(
2Crσ

√
2π

C− + C+e
4u
2σ2

)
− 2u (16.48)

τ =
∆µ− u

∆
(16.49)

We apply these results using an academic proof of concept. Let consider
X, being normally distributed with parameters X ∼ N (60, σ) and C+ = 5;
C− = 4; Cr = 0.3. We may vary the value of σ to perform a sensitivity
analysis on the results. Figure 16.7 illustrates the results of the simulation.
The first box shows the shape of f , varying the value of σ. The other boxes
illustrate the values of τ , ∆, and the total cost. Realistic values exist until
σ has real value. Imaginary values are plotted with value ’-1’. The example
shows that the cost increases while the uncertainty (i.e. σ) increases. The
value of τ increases when the uncertainty increases since we assume a higher
cost of the delay than the cost of earliness. The span of the time window
∆ increases up to a critical value of σ where the span of ∆ is large enough
that the cost of the terminal resources dedicated to the vehicle equals the
cost of lateness plus the cost of tardiness.

16.5 Shipping priority definition (P7)

The definition of shipping priority is the rationale to assign HUs to vehicles.
Usually, shipping companies associate HUs to vehicles based on a FIFO
rationale in a push fashion. As soon as an order is available, as soon it has
to be assigned. Shipping priority rules answer the question: may we have
some benefit by waiting before assigning a HU to a vehicle. The answer to
this question is very firm-dependent and product-dependent.

When a product is perishable, it is wise to immediately deliver it to
provide the consumer with a higher level of service. When a shipping firm
has due date to comply with (e.g. deliver within 24, 48, 72 hours) is it
appropriate to organise shipping respect with this due dates. In general,
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Figure 16.7: Results of the optimal time windows design.

the more a HU can wait, the higher the probability of obtaining a better
saturation of the vehicle (e.g. loading last-minute orders), see section 15.5.2.
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Diagnostic Models

This section analyses storage systems (also known as warehousing systems).
The scientific field analysing storage system is warehouse science [1]. This
topic is profoundly important in the management of a supply chain since
warehouses are the first source of inefficiencies in a supply chain. The as-
signment of a proper inventory level in the warehouses of a supply chain
network is the first step to smooth the flows and improve the operations of
the entire chain.

Warehouses work as decoupling points between other supply chain nodes
[2, 3]. Their role is unavoidable since they enhance the flexibility of the
entire supply chain by separating the demand and the production rates. We
often hear of zero inventory as the central paradigm of lean thinking. In
truth, it is impossible to build a supply chain without inventory. Contrarily,
it is absolutely possible, and always recommendable, to design supply chain
able to keep the inventory levels under control (that is the real meaning of
the zero inventory philosophy).

Nevertheless, the stock is a cost with, or without the control on the level
of the inventory. Warehouses do not add any value to the product, but they
always lead to costs. For this reason, it is necessary to pay close attention
to the design and control of warehouses in order to avoid inefficiencies.

Warehouses retain all the ingredients for a data-driven approach. Op-
erations within warehouses are pretty repetitive, and even the warehouse
layout is easy-to-model; it is composed of many standard blocks working
the same way. Besides, for traceability reasons, warehouses produce tons of
data to keep track of put-away, picking operations, and inventory positions.

This chapter focuses on the definition of the keywords and key entities
extending the ontology of Chapter 3 to storage nodes. After that, we intro-
duce the diagnostic framework for production nodes using a relational data
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structure and a dashboard of KPIs. A non-relational data structure is pro-
posed as well, to enhance data-driven features by combining the information
sources of multiple storage systems.

Chapter 18 focuses on data- and model-driven methods to control a stor-
age node, while chapter 19 does the same focusing on the design methods.

17.1 Ontology

Section 3 introduces the general ontology of this book. This paragraph
develops that ontology by applying its keys and metrics to a warehouse
system.

Entities

We identify the following entities:
Part (i): it is a storage unit, better known as a stock keeping unit

(SKU). An SKU is usually:

• a part, i.e. a single product;

• a carton, i.e. a (secondary) package, containing many parts, or

• a pallet, i.e. a (tertiary) package, containing many cartons.

Processing node (j): it is a storage location. Each area able to host
one or more SKUs is a processing node of the storage system.

Edge (j, k): paths connecting the storage locations (the aisles of the
warehouse) are the edges. Generally, aisles can be travelled:

• traversal (using a single direction);

• teturn (using both the directions).

Traversal policy implies that the graph of the storage system is directed.
Otherwise, return policy implies an undirected graph.

Vehicle (v): a vehicle is any unit able to travel on edges and load or
unload parts (e.g. a forklift).

Consumable (s): the energy to feed the vehicles, and the resources of
a storage system.

Route (e): the routes in a storage system are the set of edges travelled
in sequence by a vehicle to complete a put-away or picking job. Routes are
usually not predefined and can continuously change depending on the set of
orders.

Order (o): it is a set of products to put away or pick received by the
customer
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Job (b): it is the sequence of locations to visit and the quantity of SKUs
to move to complete an order. A picking/put-away list is a job.

System network: the graph G(V,A) of nodes j ∈ V and edges (j, k) ∈
A composing the warehouse system.

Metrics

We identify the following metrics to assess the performances of a processing
node j.

Throughput (THj): the put-away or picking rate of a set of locations.
(parts per hour).

Work in process (WIPj): it is the number of parts stored in a location
j.

Work in process (WIPjk): it is the number of parts being transported
by a vehicle v.

Capacity (Cj): it is the maximum storage capacity of a storage location
j, usually measured in quantity or volume (dm3).

Capacity (Cv): it is the maximum number of part transportable by a
vehicle v at the same time.

Utilisation (Uj): it is the average saturation of the space of a storage
location.

Utilisation (Uv): it is the average fraction of non-empty space on a
vehicle.

Lead time (LTe): it is the time allocated to perform a route (i.e. to
complete a picking or put-away list).

Cycle time (CTe): it is the average time from the receipt of an order
to the completion of the associated picking list (job).

Service level (SLe): Prob{cycle time ≤ lead time}

Information functions

Finally, we define the three information functions introduced 3.3.1: move-
ments M are referred to put-away (IN) and picks (OUT) of SKUs to or
from a storage location j; the inventory I is referred to the number of SKUs
stored in a storage location j. The productivity P refers to the inbound
and outbound throughput of a set of locations. Usually, a set contains lo-
cations close to each other, depending on the warehouse technology (e.g.
manual or automated) offering a different THj and with different produc-
tivity patterns. Table 17.1 summarises the definition of the three functions
in a storage system.



Re
vi
ew
ed
Ve
rs
io
n

280 CHAPTER 17. DIAGNOSTIC MODELS

Table 17.1: Definition of the information functions of a storage system.

17.2 Data Structure

This paragraph introduces an ER model to describe the operations of a
storage system. Warehouses operations are similar for different nodes and
enterprises, and despite their level of automation, it is possible to define a
rigid model able to identify the aspects of value from a logistics perspective.
For this reason, the relational database infrastructures are still the most
widely used in the industry [4].

17.2.1 A relational model for warehousing systems

The ER model has a table for each of the relevant aspects of a storage
system:

1. the SKUs;

2. the storage locations;

3. the vehicles;

4. the inventory position;

5. the movements.

SKUs

The SKUs table contains all the information from the SKU master file. The
features of the SKUs are relevant to identify the proper storage area for
each SKU, depending on its dimensions, weight, volume, inflammability,
shelflife, and many other industry-oriented features. For these reasons, the
SKU table identifies:

• the id of the item;
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• the description of the item;

• the category of the item (e.g. the commercial category);

• the id of the product family of the item;

• the temperature profile of the item (if any);

• the production route of the item (if any);

• the package route of the item (if any);

• the volume and weight of the item;

• the size (i.e. length, height, width) of the item;

• the supplier of the item.

The description, size volume and weight are the most important infor-
mation to design the storage system and to identify the proper location of
the item. Other information as the supplier, the category, the product fam-
ily may be of interest to place similar items in different zones of the storage
system. The production and the package flow are important information for
the picker who has to place the item on the correct flow (e.g. in a packing
area) before the shipping.

Storage locations

Storage locations are the areas where each single SKU is stored and waits
to be picked. Many information is tracked for each location to enhance the
traceability and to speed up the put-away and picking process (in particular,
the search of a specific location). For each location, this table keeps track
of:

• the id of the storage system (i.e. the building);

• the id of the logical warehouse (i.e. a subset of locations that are
logically but not necessarily physically separated by the others);

• the id of the location;

• the coordinate of the aisle which serves the location (x coordinate);

• the coordinates of the location (x, y, z coordinates);

• the number of the rack;

• the number of the bay;

• the number of the level;
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• the id of the area where the location is placed;

• the category of the vehicle serving the location;

• the type of the package (part/carton/pallet) stored in the location.

This information is beneficial to analyse the flows generated by the ware-
house on its plant layout. Nevertheless, the majority of the warehouse man-
agement systems (WMS) does not keep track of the physical coordinates of
storage locations, creating a significant lack of data for warehouse control
and improvement.

Vehicles

The vehicles table identifies the macro category of vehicles handling SKUs
within a warehouse. A non-exhaustive list comprises:

• manual operator (i.e. walking through aisles and shelves);

• forklift serving racks;

• forklift serving floor stack;

• man-on-board picking vehicle;

• vertical warehouse (e.g. Modula);

• miniload;

• automated storage & retrieval system (AR/RS).

Inventory

This table defines the inventory level of each storage location at a specific
date defining the quantity of the item codes stored in that location. Its
attributes are:

• the id of the storage system (i.e. the building) inherited from the table
locations;

• the id of the logical warehouse (i.e. a subset of locations that are logi-
cally but not necessarily physically separated by the others) inherited
from the table locations;

• the id of the location inherited from the table locations;

• the id of the item inherited from the SKU table;

• the timestamp when the inventory is recorded;
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• the number of parts of the item code above stored in the location.

The inventory information defines the state of a storage location at a
precise timestamp.

Movements

The movements table tracks each movement, i.e. put-away or picking ac-
tivity modifying the state of a storage location (i.e. its storage level). The
table records the following attributes:

• the id of the storage system (i.e. the building) inherited from the table
locations;

• the id of the logical warehouse (i.e. a subset of locations that are logi-
cally but not necessarily physically separated by the others) inherited
from the table locations;

• the id of the location inherited from the table locations;

• the id of the item inherited from the SKU table;

• the timestamp when the movement is recorded;

• the id of the order;

• the quantity picked or put away;

• the id of the picking/put-away mission;

• the sign of the movement (e.g. ’+’ for put-away and ’-’ for picking)

• the type of the order;

• the id of the picking operator/vehicle;

• the id of the package associated with the SKU.

Figure 17.1 presents the relational model linking all these tables by the
definition of relationship and integrity constraints between entities.

17.2.2 A non-relational model for warehousing systems

ER databases are the most used in the design of the WMS. Nevertheless,
non-relational structures allow flexibility and easiness of use with benefits
applied to the field of warehousing science. In particular, traditional WMS
does not store information on the layout coordinates of the storage locations.
In addition, many locations are virtual and only exists in the WMS to
provide relational integrity without any physical relevance.
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Figure 17.1: ER-model for storage systems.

An important feature to control a storage system is the possibility to
measure the distance between storage locations. While dealing with an ER
structure, it is possible to define a block-layout identifying:

• the input and output points;

• the presence of traversal aisles;

• a modular distance between storage locations of the same aisle;
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• a modular distance between aisles.

Figure 17.2 identifies the layout, and its coordinates identified by these
features. The coordinates are identified by using the letter a for the aisles,
the letter r for the racks, and the letter t for the traversal aisles.

Figure 17.2: Warehouse layout model.

Unluckily, the application of modular distances does not always correctly
represent the distances within a storage system, adding an avoidable bias.
There can be multiple storage blocks within the same warehouses using
different technologies, or different storage areas whose distances are poorly
represented by this modular pattern. To overcome this limitation, we aim
at defining a graph G(V,A) with a vertex j ∈ V for each storage location,
and a set of arcs (i, j) ∈ A representing the available connections with their
distance. A non-relational structure is the natural tool to both contain all
the information of the relational model, and to save the graph G to enhance
warehouse design and control. We introduce the collections and attributes
of the non-relational data structure first. Then we illustrate a method to
define the warehouse graph.

The non-relational data structure consists of five collections: parts, stor-
age locations, movements, inventory and graph. For each collection, a min-
imal number of attributes defines the minimal viable model (MVM) with
the essential information to map the operations of a storage system.
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The collection parts, is similar to the table SKU of the relational model.
It stores the information from the SKUs master file of the storage system.
The id of each SKU is the only attribute necessary to have an MVM.

The collection storage locations records information on the storage loca-
tion of the warehouse. The id of the storage location is the only attribute
necessary to define the MVM. Additional attributes can be recorded as:

• the coordinates of the location;

• the coordinates of the aisle;

• the list of the type of vehicles serving the location;

• the available capacity of the location;

• the logical warehouse containing the location;

• the inventory function of the storage location.

The collection movements records all the activities performed in the
warehouse. The necessary attributes of the MVM are:

• the timestamp;

• the id of the part;

• the id of the storage location;

• the id of the order;

• the quantity;

• the sign (i.e. “+” or “-“).

Other attributes that can be recorded are:

• the id of the picking list;

• the id of the operator;

• the weight of the movement;

• the volume of the movement;

• the destination of the movement.

The collection inventory stores observation of the inventory position of
the warehouse. The MVM is composed by:

• the timestamp;
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• the id of the part;

• the id of the location;

• the observed quantity.

Figure 17.3 uses the unified modelling language (UML) to represent the
MVM of the non-relational data structure of a storage system.

Figure 17.3: Diagram in UML notation of the minimum viable model for a
non-relational structure of a storage system.

Finally, a collection graph stores a single graph object G(V,E), repre-
senting the graph of the storage system, defined using a standard proce-
dure 1. Algorithm 15 illustrates this procedure appliable to any warehouse
dataset. It aims at defining a graph with edges and vertices associated with
all the storage locations recorded in the storage location collection. First,
the procedure defines the set of vertices V by considering all the coordinates
of the storage locations projected onto the aisles that serve them. Then a
set of edges E is created to connect all these vertices virtualising the path
of the aisles of the warehouse. Missing values (e.g. missing coordinates in
the storage location collections) are replaced by using linear interpolation

1The source code to generate the graph of a storage system is available here.

https://github.com/aletuf93/logproj/blob/master/logproj/P6_placementProblem/warehouse_graph_definition.py
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between the known values.

Algorithm 15: Definition of the warehouse graph.

Import storage locations s ∈ S
Import I/O locations f ∈ F
Set L = S

⋃
F

Consider La, aisle coordinate for each storage location
Set V = La(x, y)
Clean the coordinates La with linear interpolation of missing values
if F == ∅ then

Define a I/O point in ( max{La(y)}−min{La(y)}
2 ,min{La(x)} )

end
Map fake locations with coordinates in F
Set E = ∅
E = E

⋃
{vertical edges connecting aligned coordinates}

E = E
⋃
{horizontal on the front and back of the warehouse}

E = E
⋃
{edges connecting the I/O points to the closest node}

17.3 Decision Patterns

This section aims at defining the set of decision problems for the design and
control of a storage system, using the decision patterns identified in 4.2.
Problems are classified into:

1. Warehouse design problems, dealing with the design and placement of
the physical entities of a storage system;

2. Warehouse control problems, dealing with the assessment and im-
provement of the performance of an existing storage system.

Different methodologies allow getting feasible solutions to these problems
[5, 6, 7, 8]. Table 17.2 illustrates the entities and their definition according
to the ontology in 3.1 involved in each decision pattern.
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Twelve decision problems are identified in the design and control of a
storage node:

1. Volume, weight, size estimation; it involves the definition or estimation
of the attributes of an SKU.

2. Choice of the storage system; it involves the definition of an adequate
set of vehicles to serve the storage needs.

3. Forward-reserve design; it involves the design of a reserve area (on the
upper levels of a storage system) serving a fast pick area on the floor.

4. Storage allocation; it involves the design of the level of inventories on
the fast-pick and reserve area.

5. Storage assignment; it involves the assignment of SKUs to storage
locations.

6. Layout design; it involves the design of the areas (i.e. the zones) of
the storage system.

7. Picking policy design; it involves the definition of the picking policies
(e.g. single-order vs. batching and sorting).

8. Route design; it involves the definition of the direction allowable for
each aisle (i.e. return or traversal)

9. Inbound and outbound area design; it involves the definition of the
amount of space dedicated to inbound and outbound operations

10. Performance assessment (control); it involves the measurement of the
performance of a storage system.

11. Workload forecast (control); it involves the prediction of the workload
and workforce needed to perform the operation in the short-, mid- or
long-term

12. Vehicle routing (control); it involves the definition of the picking/put-
away lists and their assignment to vehicles.

Besides, Table 17.2 specifies which data science technique results ad-
equate to propose a solution to the problem. While descriptive and pre-
scriptive techniques are preferred for control problems, explorative and pre-
scriptive techniques result adequate when dealing with design problems.
Chapters 18 and 19 illustrate these techniques in details.
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Storage System Control

This chapter deals with the control of the operations of a storage system.
Controlling the performance of a storage system is a crucial activity to
maximise its productivity.

18.1 Performance assessment (P8)

This paragraph illustrates the approaches to evaluate the performance of a
storage system. The measurement of the performance of a storage system
involves a wide number of metrics since storage systems exist at any stage
of the supply chain [1, 2, 3, 4].

18.1.1 Model-driven methods (D4)

A storage system works as an intermediate buffer of a supply chain. It re-
ceives material flows from suppliers, and generate material flows directed
to the customers. Many information flows connect suppliers and customers
with the operations of a warehouse. Mapping this flow is a common tech-
nique to assess the exchange of materials and information from a qualitative
point of view. The Business Process Model and Notation is used to identify
entities, flows and responsibilities. When applying the BPMN to a storage
system:

• activities are tasks necessary for the storage and handling of SKUs;

• events identify when an activity is terminated (e.g. a put-away or a
picking list);

293
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• gateways describe a different variant of the process (e.g. value-added
activities as packing, quality control, labelling).

• pools identify the operators and the offices of the storage system,
identifying their responsibilities.

BPMN defines a qualitative map of the production processes useful for
manager and practitioners to identify the way their processes are realised.
More difficult is the assessment of these processes from a quantitative point
of view. For this reason, a dashboard of KPIs is introduced, coherently with
the ontology of 17.1. The KPIs used in these chapters refers to the problems
defined in 4.2. KPIs are organised according to four classes [5]:

1. Logistic KPIs, evaluate the logistic impact of a certain solution. They
use metrics like time, distance and the performance parameters intro-
duced in Paragraph 17.1.

2. Cost KPIs, evaluate the economic sustainability of a given solution.
They are expressed in e or other currency.

3. Energy KPIs, evaluate the energy needed to feed a given solution.
They use metrics as kW and kWh.

4. Environmental KPIs, evaluate the environmental impact of a given
solution. They are expressing the equivalent CO2 produced per year.

Table 18.1 identifies which KPI is relevant to each problem. In general,
each problem can be assessed from multiple perspectives.

Table 18.1: KPIs to evaluate the solutions to problems in a distribution
network.
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18.1.2 Data-driven methods (D2, D4)

While the operations of different storage systems have similar patterns, their
data can have different organisation and features. The assessment of the
performance of a storage system depends on the type and quality of the data
recorded. Figure 18.1 illustrates the data pipelines connecting the attributes
of the dataset, the analysis and the performance metrics identified by Table
18.1.
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The analysis (identified by the orange blocks in Figure 18.1) are grouped
into four main areas, depending on the entity of the warehouse they affect:
the SKUs, the inventory level, the workload, and the layout.

SKU profiling

Warehouses contain thousands of different SKUs. For this reason, it is nec-
essary to profile them and approach the design and control of the operations
differently depending on the SKUs profile.

We introduce four different profiling indexes; some indexes are defined
differently for inbound and outbound operations.

• the popularity index Pop+
i , Pop−i counting the number of put-away/picks

of SKU i;

• the turn index Turni =
Qty−i

¯Ii(t)
; where Qty−i is the outbound quantity

of SKU i measured in parts or dm3, and Ii (t) is the mean value of
the inventory function of part i measured in parts or dm3. The turn
measures the rotation of the inventory of a part.

• the cube-per-order index COI+
i =

Pop+
i

Ii(t)
, COI−i =

Pop−i
Ii(t)

; where Pop+
i ,

and Pop−i are the inbound or outbound popularity and Ii (t) is the
mean value of the inventory function of part i measured in dm3. The
COI mixes the two metrics above to have both a measure of the num-
ber of accesses and the space occupied by a part [6, 7].

• the order completion index OCi =
∑
e:i∈e

1
card(e) ; where e is an order

or a picking list. The index measures the relative importance of a part
i to complete a single order.

Mapping all these indexes provide a behaviour of each single SKU. This
indexes can be grouped using the Pareto curve, and the frequency analysis
to investigate the behaviour of an entire storage system (see Figure 18.2).1

1The source code of Figure 18.2 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/WH_02%20Warehouse%20indexes%20assessment.ipynb
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Figure 18.2: Pareto curves and frequency analysis of the indexes to classify
the SKUs of a storage system.
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Inventory profiling

Inventory profiling is a fundamental activity to assess the efficiency of a
storage system. The space efficiency of a storage system depends on the
degree of saturation. The less the available space, the better the utilisation
of the storage system. Nevertheless, the higher the saturation of the storage
system, the higher the probability to have a lack of space for incoming goods.
The design of the inventory level is analysed in paragraph 19.2 and relies
on the results of the inventory profile defined here.

The definition of the inventory function Ii(t) for each SKU i is a prelimi-
nary activity to profile the inventory of a storage system. When the dataset
contains an inventory snapshot Ii(τ) at time instant τ , the inventory is
obtained by considering:

Ii (τ + ε) = Ii (τ) +M+
i (τ + ε)−M−i (τ + ε) (18.1)

Ii (τ − ε) = Ii (τ)−M+
i (τ + ε) +M−i (τ + ε) (18.2)

When there is no inventory snapshot it is possible to use the formulae
(18.1), and (18.2) by setting Ii (τ) = 0. The estimate of Ii (t) is obtained
by shifting the function to positive values Ii (τ) = Ii (τ)−min(Ii (τ)) when
min (Ii (τ)) < 0.

By summing the inventory functions for all the SKUs, it is possible to
measure the saturation of the storage system. It is recommendable to mea-
sure I(t) using dm3; otherwise, the estimate of the global inventory function
will not be accurate using the number of parts. Figure 18.3 illustrates the
inventory function I(t) of a storage system, together with the frequency
analysis, and the cumulative distribution functions. The cumulative distri-
bution function is used to design the inventory level of the warehouse (see
section 19.2). 2

2The source code of Figure 18.3 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/WH_03%20Warehouse%20Inventory%20assessment.ipynb
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Figure 18.3: Inventory profile of a storage system.



Re
vi
ew
ed
Ve
rs
io
n

18.1. PERFORMANCE ASSESSMENT (P8) 301

Workload profiling

Workload profiling aims at assessing patterns of workload per different types
of areas or vehicles of the storage system. The workload of a storage system
is measurable using:

• the popularity Pop+
i (t), Pop−i (t), indicating the number of accesses

to part i;

• the volume V ol+i (t), V ol−i (t), indicating the put-away or picking vol-
ume of part i, calculates as quantity times volume of a single part;

• the weight W+
i (t), W−i (t), indicating the put-away or picking weight

of part i, calculated as quantity times weight of a single part.

The quantity is rarely used as a workload estimator since the picking,
or put-away quantities rarely have an effect on the operations. These func-
tions refer to single parts and can be aggregated at any level, defining the
workload of:

• the entire storage system;

• a specific area of the storage system;

• a vehicle or picker.

These analyses consider a single independent variable (i.e. the time t).
By considering the coordinates of the storage locations, it is possible to
define multivariate functions to classify the operations of a storage system.
Figure 18.4 illustrates the workload of a storage system using a single di-
mension (i.e. the time), two dimensions (i.t. the length and the depth of
the storage system), and three dimensions (i.e. illustrating the workload
within the warehouse space).3

3The source code of Figure 18.4 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/WH_01%20Warehouse%20productivity%20assessment.ipynb
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Figure 18.4: 1-dimensional, 2-dimensional, and 3-dimensional popularity
workload analysis.
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Layout profiling

Profiling the behaviour of the resources on the layout of a storage system is
the key to identify sources of inefficiencies. By considering the rectangular
(also known as “city-block”) distance between the I/O area and each single
storage location, it is possible to identify which locations are closer to reach.
Placing the items with a high number of accesses close to the I/O point may
increase the efficiency of a storage system.

By analysing the distance to reach the storage location where an SKU i
is placed, and the popularity of the SKU i, it is easy to identify which SKUs
are far from their optimal location, and generate a long travelling distance
that can be avoided with a reassignment of SKUs to storage locations [8].

Finally, it is important to identify where the traffic is located within a
storage system. When storage location coordinates are known, it is possible
to define a graph G(V,E) as introduced in 17.2.2. The distance between
a storage location and the input and output point is a piece of important
information to identify the locations where placing SKUs with the highest
popularity indexes (see the chart in the top left panel of Figure 18.5).4

By solving the shortest path between the sequence of locations visited
by a picking list, it is possible to identify the traffic within the aisles of
the storage system. This procedure reveals the travelled distance for each
picking list and the part of the aisles where each vehicle travelled. A traffic
chart is used to reveal this information (see the chart in the top right panel
of Figure 18.5).

The optimisation of a storage system can be obtained by placing the
SKUs in a different storage location, to reduce the travelled distance to pick
them. The degree of suboptimisation of a storage system is measurable by
using a chart plotting the popularity, and the distance from the input and
output points for each storage location [8]. The storage system is optimised
when the chart is similar to a negative exponential function (see the chart
in the bottom right panel of Figure 18.5). Otherwise, the storage system is
sub-optimised (see the chart in the bottom left panel of Figure 18.5).

4The source code of Figure 18.5 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/WH_04%20Warehouse%20layout%20assessment.ipynb
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Figure 18.5: Analyses to profile the layout of a storage system.
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18.1.3 Application

In this section, the benchmarking and data-driven design methodologies are
applied considering 16 warehouse case studies with real operational data
provided by their companies (6 from distribution centres and 10 from third-
party logistic (3PL) companies), accounting for almost 15 millions database
records. These data come from different traceability systems and are inher-
ently heterogeneous. We aim at proving that our benchmarking metrics are
generalisable and appliable to any storage system where the relevant data
(i.e. the data fields identified in Figure 18.1) are recorded. Table 18.2 maps
the 16 datasets involved in this study identifying the type of warehouse,
the industrial sector and the number of SKUs stored. To identify the re-
sponsiveness of the storage system, we calculate the percentage of SKUs for
each demand pattern based on the ADI, and CV 2 classification in [9]. It
is easy to observe that 3PL operators experience, on average, more lumpi-
ness (i.e. unpredictability of both the demand quantity and time interval of
their SKUs) than distribution centres. Table 18.2 reports a reference year
for each dataset, the number of recorded days, the number of movements
recorded and the presence of relevant data attributes as:

1. the inbound data (i.e. put-aways);

2. the outbound data (i.e. pickings);

3. the layout data (i.e. the ordinal number of rack, bay and level for each
storage location);

4. the layout coordinates (i.e. the (x, y, z) coordinates in space for each
storage location);

5. the volume data for each SKU;

6. the picking list data (i.e. an id for all the movements processed within
the same putaway or picking route).



Re
vi
ew
ed
Ve
rs
io
n

T
a
b

le
1
8
.2

:
W

a
re

h
o
u

se
o
p

er
a
ti

o
n

a
l

d
a
ta

se
ts

in
vo

lv
ed

in
th

e
st

u
d

y.



Re
vi
ew
ed
Ve
rs
io
n

18.1. PERFORMANCE ASSESSMENT (P8) 307

The benchmarking metrics identified in section 18.1.2 are applied to
the datasets of the considered case studies. Figure 18.6 represents the SKU
profile of each case study mapping the Pareto charts of the Popularity, COI,
Turn and OC indexes. When inbound data are not recorded, Popularity and
COI indexes are limited to the outbound data. Similarly, the COI is not
calculated when the SKU master file does not contain the volume for each
SKU.

The Popout index has a similar pattern for the automotive distribution
centres, having very few items producing the majority of pickings. A differ-
ent behaviour is found in food, beverage and biomedical warehouses where
a wider number of SKUs determines the majority of the outbound activi-
ties. Specific patterns are determined in the popularity of the publishing
warehouses with a strong influence of the seasonality of the academic years
leading to a high turn index for some SKUs and complete immobility for
others. The OC index is connected to the length of the orders in each ware-
house. The automotive, beverage and manufacturing warehouses have many
SKUs ordered alone or ordered frequently. Orders tend to be more uniform
in food and biomedical warehouses. Turn indexes are differenced, depend-
ing on the operations. High Turn indexes are encountered in distribution
centres (that usually have cross-docking areas where SKUs transit fastly)
and different patterns in the 3PL, depending on the tasks the operators are
demanded to perform.

Figure 18.7 identifies the inventory profile of the case studies. The in-
ventory profile cannot be identified when the input data lack of inbound
records. Besides, when the volumes are not recorded, only the normalised
inventory function ÎS (t) is calculated. The ÎS (t) can be useful to identify
the warehouse saturation trend when the volumes recorded in the SKU mas-
ter file are not reliable. It is the case of the case study tp manu 2, where
the 3PL provider receives the volume of the SKUs from its client, but this
data are of bad quality.

The inventory profile is highly market-oriented and difficult to generalise
both in distribution centres, that have the role to absorb the variability of
the market demand by varying the inventory levels, and in 3PL providers
that frequently encounter inventory variability due to changes in the con-
tracts with their customers. The profiles of the distribution centres identify
positive or negative trends, while 3PL highlights a rapid growth (when the
client is acquired) followed by an almost stationary profile with stable part-
ners (e.g. tp manu 2, tp manu 3, and tp bio 2 ), or a rapid decrease with
strong seasonality (e.g. tp pub 2 ) or e-commerce services (tp cos).

Figure 18.8 identifies the workload profile of the analysed case studies.
The plots represent the workload on the plant of the warehouse system
or in the space by considering the coordinates of the storage locations.
The graphs are not represented when the input data does not provide the
coordinates of the storage locations. The graphs identify how the workload
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Figure 18.6: SKUs profile of the case studies.
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Figure 18.7: Inventory profile of the case studies.

is distributed in the different areas of the storage systems.
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In distribution centres, few areas host the majority of the workload, and
these areas are mostly placed in the lowest levels nearby the input/output
points. Differently, the 3PL provides have fewer locations and a randomly
distributed workload reaching the higher levels when picking activities are
performed using order pickers.

Figure 18.9 illustrates the benchmarking metrics of the layout of the case
studies. The case studies without layout data are omitted. The popularity
bubble chart and the popularity-distance bubble charts compare the actual
storage assignment policy (asis) with an assignment policy identified by the
ranking on the SKUs based on their popularity (tobe). The tobe assign-
ment policy ranks the locations based on their distance from the input and
output points. The smaller the distance of a storage location, the higher
the popularity of an SKU to be placed there.

The traffic charts identify an intense traffic on the front and back cor-
ridors when warehouses have picking missions with few stops (i.e. a small
number of lines) and the majority of the distance is travelled horizontally to
move from the input or output points to the aisles. Differently, the distances
are travelled vertically when having long orders or when the input and out-
put points are placed on two different sides of the storage plant (e.g. dc furn
and tp manu 3 ). The popularity bubble charts identify how the workload
should be transferred by passing from an asis to a tobe assignment given by
the popularity ranking. It is possible to identify that the workload tends to
be organised vertically when the input is placed on the opposite side of the
plant compared to the output; otherwise the workload concentrates around
the same side of the plant. The popularity-distance bubble charts confirm
the change from a distributed workload to an optimised workload where the
SKUs with higher popularity are placed in a location with a lower distance.
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Figure 18.9: Layout profile of the case studies.
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18.2 Workload prediction (P9)

Storage system datasets track both the behaviour of its suppliers and cus-
tomers by considering put-aways (labelled with the “+” sign), and pickings
(labelled with the “-“ sign). For this reason, they have all the data to make
forecasts of the workload in the future.

18.2.1 Model-driven methods (PD2)

Classic time series methods help to model and predict the workload of the
storage system in the future. Usually, the number of movements (i.e. the
lines) is much more representative than the quantities (more used in pro-
duction forecasts) [10].

Storage systems have an additional peculiarity; their inventory function
I(t) is much more inert than the inventory functions of distribution or pro-
duction system. This is because warehouses exist to stock goods, and they
are efficient in space when the value of I(t) is steadily high. For this reason,
when analysing a storage system, it is important to remember the speed at
which the inventory rotates (a sort of turn index of the entire warehouse).
The following chapters provide methods to analyse and optimise the oper-
ations within a warehouse. Nevertheless, it is important to remember that
when optimisation means reallocate thousands of SKUs, the cost of this
reallocation may be higher than the benefit of the optimisation. For this
reason, we introduce the concept of the frequency of I(t), to evaluate the
best season to optimise a storage system, and even the expected life of the
efficiency from the optimisation.

18.2.2 Data-driven methods (D1, PD1)

This section introduces data-driven methods to forecast the value of the key
variables of a storage system in the future. In particular, a metric of the cost
of a storage system can be estimated by the time to put-away/pick a line
of a picking list. Multiple tasks compose this time, depending on the type
of product and process of the warehouse. A non-exhaustive list comprises:

• travel time;

• search time;

• pick time;

• pack time.

A rigorous time and motion campaign measures all these components on-
field. Nevertheless, setting an accurate campaign is costly. Consider that
the generalisation of the results of a measurement campaign needs at least
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30 samples to apply the central limit theorem. Some tasks are performed
rarely, and collecting 30 samples may take forever. Besides, a campaign lasts
months, there is the risk that the inventory function I(t) already “rotated”
(see section 18.1.2), and the samples are unrepresentative of the operations.

To overcome these limits, we use a different approach, still rigorous, even
if with a lower level of details. Since the WMS always records a timestamp
for each operation, it is possible to estimate the starting and the ending time
of a picking list. Depending on the attributes of the dataset, it is possible
to aggregate quantitative values and to train machine learning models to
predict the total time to execute a picking list. For example, the input
dataset X, can be composed of the following attributes for each picking list
(each picking list is an observation):

• the number of lines of the picking list;

• the total quantities of the picking list;

• the total volume of the picking list;

• the total weight of the picking list;

• the area of the layout defined by the coordinates of the storage loca-
tions in the picking list;

• the enterprises of the SKUs involved in the picking list;

• the logical warehouses of the SKUs involved in the picking list;

• the warehouse technologies of the SKUs involved in the picking list.

This information can be used to define a learning table where each row
assesses the value of these metrics of a picking list. Data exploration tech-
niques allow investigating the behaviour of the inbound and outbound oper-
ations of a storage system. Figure 18.10 presents the pair plot with the his-
togram of each metric and the scatterplot of each pair of metrics. Different
colours of the scatter plots identify inbound, outbound or other activities.5

It is possible to evaluate the correlation between these metrics by using
a correlation matrix. Figure 18.11 illustrates the correlation matrices of the
inbound and outbound lists.6

5The source code of Figure 18.10 is available here.
6The source code of Figure 18.11 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/WH_05%20Warehouse%20key%20variables%20exploration.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/WH_05%20Warehouse%20key%20variables%20exploration.ipynb
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Figure 18.10: Pairplot of the key metrics to measure the picking lists.
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Figure 18.11: Inbound and outbound correlation matrices.
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18.3 Vehicle routing (P10)

Warehouse day-by-day involves the generation of the picking lists. This
problem is equal to routing vehicle of a distribution system or assigning
jobs to production machines. It is necessary to group picking activities
such that the total travelled distance is minimised. It is a vehicle routing
problem (VRP), where the nodes to visit are the storage locations [11].

Despite our introduction already defines a graph G(V,A) with vertices
and distances, sometime VRP within a storage system is more complex than
it appears. First of all, the cost of picking is not only linked to the travelled
distance. For a warehouse having thousands of SKUs, the cost of picking
the wrong SKUs is much higher than travelling a few meters more. This
is why random allocation and random picking policy are preferred when
companies pay a high cost for a wrong picking (e.g. in the e-commerce).

Besides, VRP works offline, assuming that all the orders are known in
advance. This is not always true for a WMS that can be frequently updated
during the working shift. Finally, the set V of the graph G could have
thousands of nodes (one for each storage location) resulting in a vast VRP
problem, taking forever to solve.

Sometimes heuristics are used to approach this problem; e.g. by printing
a picking list for each zone of the warehouse when zoning is used. Ware-
houses with traversal directions use a single-direction snake path travelling
through all the aisles of the warehouses for each picking list.

Generally, simulation is used to investigate the best picking list gener-
ation policy [12, 13, 14, 15]. In truth, this work does not approach the
problem since it is highly warehouse-dependent involving, in our opinion,
too many parameters to be integrated into a single approach generalisable
for any storage system.
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Storage System Design

This section is about warehouse design, i.e. the design from scratch or the
redesign of an existing storage system [1, 2] . This activity involves many
decision problems belonging to different classes. In practice, these problems
are approached in sequence, enlarging the focus of the decision from stock
keeping units (SKUs), to storage areas to handling areas [3, 4, 5, 6, 7, 8].
Figure 19.1 identifies the hierarchical procedure used in this chapter, accord-
ing to the definition of logistics problems introduced in 4.2. The SKUs are
the parts stored within the storage system. The same SKUs have the same
properties (e.g. id, weight, volume, package). Storage areas are a set of
storage locations of the warehouse having a similar storage technology (e.g.
served by forklifts, automated guided vehicles (AGV), automated storage
and retrieval systems (AS/RS)). Handling areas are sets of storage areas,
processing areas (e.g. packing, quality control, inbound and outbound ar-
eas), and edges (i.e. aisles connecting all these areas).

Figure 19.1: Hierarchical procedure for storage system design.
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The hierarchical procedure identifies nine decision problems:

1. the estimation of weights and sizes for all the SKUs of the storage
system;

2. the definition of the inventory level for each SKU;

3. the choice of the storage technology for each set of SKUs;

4. the allocation of storage space to SKUs;

5. the assignment (also known as “slotting”) of SKUs to storage loca-
tions;

6. the design of the layout of a handling area;

7. the definition of the picking policies (e.g. single order/batching/zoning);

8. the definition of the routing policy (i.e. returns; traversal);

9. the design of the inbound and outbound areas.

The following paragraphs introduce model- and data-driven methods to
address these problems.

19.1 Weight and size estimation (P1)

The knowledge of the features of the SKUs is the first step to design a
storage system adequately. It may appear evident that companies must
know everything about their parts. Nevertheless, the SKU master file of
a warehouse management system (WMS) is easily full of null values. The
most important indicator to design a storage system is the volume of the
SKUs; this value is often unknown due to the labour-intensive activity to
measure the dimensions of thousands of SKUs. In practice, a warehouse
designer needs to know the size (i.e. length, height and width), and the
weight of an SKU.

19.1.1 Model-driven methods (D2)

When sizes and weights are unknown for all the SKUs of a storage system,
on-field measurement is the only possibility to start generating this data. A
scale is used to measure the weight; while the length, height, and width of
an SKU are used to define its volume. When dealing with the measurement
of the volume of the SKUs of an existing storage system, an approximate
procedure exist. Let vi be the volume of SKU i to measure. We estimate the

volume vi by using v̂i = 1
card(j:nij>0)

∑
j:nij>0

[
Vj ηj
nij

]
where ηj ∈ [0, 1] is
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the percentage saturation of each storage location j, and nij is the number
of SKUs i stored in each location j. Vj is the volume of the storage location
j. This way, it is possible to measure a single storage location j, to observe
the storage locations to estimate ηj , and to consider the number of SKUs nij
obtained, for example, from the inventory of the WMS. This procedure is
approximated but faster than measuring thousands of SKUs and it provides
information on how much the volumes of SKUs i are different.

19.1.2 Data-driven methods (D1)

When a feature (e.g. the volume) is given for a subset of SKUs of the SKU
master file, this procedure can be used to extend the properties of the given
features to the whole set of SKUs by using clustering [7].

The description of an SKU is always recorded together with its id in
the WMS. This is mainly due for avoiding errors since pickers read on their
terminal the description of the SKU they have to pick. We use text mining
techniques to cluster SKUs based on their description. In particular, we
build a bag of words (BOW) model using the descriptions of the SKUs.

A BOW is a frequency analysis on text strings. The BOW model counts
the number of occurrences of each word, giving higher importance to the
strings occurring the most. It is necessary to clean the input strings separat-
ing words (e.g. removing and - characters) and removing special characters
(i.e., +, /, —, ”, ’, . characters), in order to make the BOW model work
properly. BOW defines a vocabulary of the storage system (SSV) which
contains the one single words or a couple of words occurring the most. It
is recommendable to set a threshold on the minimum number of occur-
rences for a word to enter the SSV (e.g., at least ten occurrences among
all the descriptions) to prevent having huge and meaningless SSVs. Finally,
each SKU is associated with a set Bi i.e., containing each word of the SSV
contained by the description of the SKU i.

At this stage, unsupervised learning methods are used to find patterns
among SKUs descriptions based on the values of the sets Bi. A matrix M is
defined to measure the similarity between each couple of SKUs (e.g. SKUs
i, and h) based on the value of a similarity index (e.g. the Jaccard index)
calculated on Bi,Bh. A hierarchical clustering algorithm (e.g. complete
linkage CLINK, single linkage SLINK or average linkage UPGMA) is applied
on M to define clusters of SKUs. Once clusters are defined, the given
properties of an SKU are extended to all the SKUs of a cluster. If the
features are known for many SKUs within the same cluster, their value is
averaged before extending to the other SKUs.
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19.2 Definition of the inventory level (P5)

The definition of the level of inventory of a storage system is a crucial
decision to reduce the storage costs of the storage system [9, 10, 11, 12,
13, 14, 15, 16, 17, 18]. The definition of the inventory level is based on the
statistical analysis of previous observation of the inventory values. For this
reason, we only introduce data-driven methods.

19.2.1 Data-driven methods (D2, D3)

The inventory level of a warehouse is described by the function I (t) =∑
i Ii(t). This function is crucial since it describes the evolution of the state

of the storage system. Unfortunately, WMS usually records only the current
inventory of a storage system, losing all the information of the previous
states. Luckily, by recording all the movements, this information can be
inferred by using the Theorem 1. Let introduce this algorithm to define the
inventory function of a part i 1.

1. Consider all the inbound (+) and outbound (-) movements of a part
i;

2. Daily sample the movement, and group by day summing the quantities
with their sign.

3. Sort the series by the time, and shift everything to positive values
Ii (t) = Ii (t)−min(Ii (t)), when min (Ii (t)) < 0.

4. For any given inventory point IINVi (t = τ) such that IINVi (τ) >
IINVi (τ), try to shift the function up Ii (t) = Ii (t) + (IINVi (τ) −
IINVi (τ)) to correct underestimations of the inventory function.

Once Ii(t) has been defined, it is possible to use statistics to describe it,
and identify the optimal inventory level. For example, by considering the
probability distribution function (PDF) of Ii(t), and its cumulative distribu-
tion function (CDF), it is possible to observe the behaviour of the inventory
in the past. The CDF F (x) identifies the probability of observing an inven-
tory value lower or equal to x, F (x) = prob{Ii < x}. By identifying the
inverse of the probability as a risk (see Figure 19.2), the inventory value
equal to a given risk is identified: I∗ (risk = ρ) = F−1 (1− ρ).

It is necessary to remark that the aforementioned procedure uses one
observation of the Ii(t), i.e. the only observed for a part i. By extracting
the features of the function Ii(t) it is possible to bootstrap Ii (t), obtaining
a probabilistic definition of the inventory behaviour of the part i.

1The source code to estimate the inventory of a storage system is available here.

https://github.com/aletuf93/logproj/blob/master/logproj/information_framework.py
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Figure 19.2: Cumulative distribution function of I(t), and stockout risk
function.

The movement function Mi(t) is defined based on Ii(t), and the out-
bound movements M−i (t) = Mi (t) : Mi (t) < 0 are considered. The mean

value µM
−

i , and the standard deviation σM
−

i of the quantity involved in

the M−i (t) are defined. The mean interarrival time µ
M−int
i , and its standard

deviation σ
M−int
i are defined as well. At this stage, Montecarlo simulation is

used to bootstrap a multitude of inventory functions Ibooti (t). Depending on
the demand pattern of the part i (see section 21.2.1 for the classification),
a different approach is used. When the part i is intermittent, or lumpy a
Poisson distribution (see Section 6.3.4) is used to generate the time instant
when there is outbound demand with λ equal to the number of movements
of M−i (t):

t ∼ Poisson(λ = card{M−i (t)}) (19.1)

When parts are erratic or stable, a Gaussian distribution generates the
waiting time between the arrivals, using the parameters from the interarrival
distribution:

t ∼ Normal(µ = µ
M−int
i , σ = σ

M−int
i ) (19.2)

The quantities of the M−i
boot

(t) are always generated by using a Gaus-
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sian function:

M−i
boot

(t) ∼ Normal(µ = µM
−

i , σ = σM
−

i ) (19.3)

Algorithm 16 identifies the pseudocode to bootstrap inventory func-
tions.2.

Algorithm 16: Bootstrap algorithm for inventory functions.

Consider the movement function Mi(t) of a part i
Set µM to the mean of Mi(t)
Set σM to the standard deviation of Mi(t)
Set µintM to the mean of the interarrival time of Mi(t)
Set σintM to the standard deviation of the interarrival time of Mi(t)
Set B to the numer of iterations
for b : 1→ B do

if Demand pattern of i ∈ {′Intermittent′, ′Lumpy′} then
toutbound = {Poisson(λ = ADIi)}

end

if Demand pattern of i ∈ {′Erratic′, ′Stable′} then
toutbound = {t spaced by Normal(µintM , σintM )}

end

Quantityout = Normal(µM , σM )}
Infer the inventory functionI(t)

Save µbI(t)
Save σbI(t)
Save min{I(t)}b
Save max{I(t)}b

end

Extract the statistics of µBI(t), σ
B
I(t), min{I(t)}B , max{I(t)}B .

By considering the minimum, maximum and average value across all
the bootstrapped inventory functions, it is possible to make decisions on
the target inventory level.

19.3 Choice of the storage technology (P2)

Different storage technologies exist, offering a wide range of solution to
stock SKUs. A non-exhaustive list of storage technology involves (see Figure
19.3):

2The source code to estimate the inventory of a storage system is available here.

https://github.com/aletuf93/logproj/blob/master/logproj/information_framework.py
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• block stacking. Unit loads are placed on the floor, and eventually
stacked [19, 20, 21].

• Pallet Racks. Unit loads are placed on different levels by using fixed
racks [22, 23, 24, 25, 26, 27].

• Drive-in Pallet Racks. Unit loads are placed side-by-side on racks.
Forklifts can travel through the racks. Last-In-First-Out (LIFO) pol-
icy is used since unit loads in the back are blocked by the unit loads
on the front [28].

• Push-Back Pallet Racks. Unit loads are placed by pushing back the
unit loads already on the racks. LIFO policy is used.

• Movable Pallet Racks. Racks can be moved on trails to improve the
space utilisation of the warehouse.

• Cantilever Racks. These racks are used to store oversize SKUs as
metal or wooden bars.

• Manual Shelves. These racks host cartons or parts and are served by
manual operators.

• Automated vertical warehouse.

• Carousel. It is an automates storage system where racks or shelves
rotates along a track [29, 30, 31, 32].

• Miniload. These systems are fully automated and host cartons or
single parts placed inside bins. Bins are automatically stored and
retrieved by the cranes of the miniload.

• Automated Storage & Retrieval System (AS/RS). These systems works
similarly to miniloads, but managing full-pallet [33, 34, 35, 36, 37, 38].

• Highly automated robotic warehouse. These systems use shuttles and
robots able to move and stack bins containing carton or single parts.
All the bins compose a cube with a high storage density, whose storage
operations are fully managed by the robots [39].
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Figure 19.3: Classification of storage technologies.
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The different storage technologies are integrated with different storage
vehicles to put away and pick the SKUs. A non-exhaustive list of vehicles
comprises (see Figure 19.4):

• forklift. The traditional handling vehicle used to move any type of
SKUs in most of the industries.

• Side loader. Handling vehicle able to enter storage racks with narrow
aisles.

• Pallet Jack. A manual handler to move one pallet at the time.

• Walkie Stacker. A forklift used for picking where the operator can
stand an move together with the vehicle.

• Order picker. A vehicle able to bring a man on the higher levels of
the storage system to permit manual picking [40].

• Crane. The automated crane of an AS/RS or a miniload.

• Shuttle. The automated robots of a highly automated storage system

• Operator. Manual operators can walk through racks or shelves per-
forming manual picking operations.

• AGV forklift. Automated guided forklift able to autonomously put
away and pick pallets.

• AGV shuttle. Automated guided shuttle able to autonomously move
shelves.
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Figure 19.4: Classification of handling vehicles.
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Storage technologies and vehicles can be classified together depending
on their degree of flexibility and automation. Figure 19.5 illustrates this
classification.

Figure 19.5: Classification of storage vehicles and storage technologies de-
pending on the degree of automation and flexibility.

19.3.1 Model-driven methods (D4)

The choice of storage technology is the most challenging decision in the
design of a storage system. There is no specific model to assist the decision-
maker. In addition, there are a number of elements to take into account:

• the expected throughput;

• the available space;

• the space saturation of each technology;

• the risk due to fragile or inflammable SKUs;

• the dimension (i.e. size, and weight) of the SKUs and their stackabil-
ity;

• the economic investment.

Generally, discrete event simulation is the preferred way to assess the
behaviour of each storage technology, and identify the most suitable one.
It is important to remark that a storage node may host multiple storage
technologies to deal with different SKUs and to reach different levels of
performance.
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19.4 Storage allocation (P5)

Storage allocation procedures define the space of the storage system to al-
locate to each SKU [41, 42, 43, 44, 45, 46, 47, 48]. In particular, storage
systems can be organised using:

• a fast pick area (FPA) (also known as “forward area”) placed at the
ground level of the storage system, where pickers can immediately pick
SKUs without wasting time to reach the higher levels of the storage
system;

• a reserve area (RA) storing additional SKUs for all the SKUs in the
fast pick area, and all the other SKUs (not in the fast pick area).

Storage allocation aims at defining when an FPA is needed, which SKUs
should be placed in the FPA, and in which amount [47]. In storage system
with multiple technologies, a storage block with a faster technology (e.g. a
miniload or a cross-docking area) can be the FPA of a slower reserve storage
area (e.g. a drive-in) [49, 50].

The methods for the definition of the inventory level already defined a
recommendable amount Ii of an SKU i to keep inhouse. This is the starting
parameter for the storage allocation of a greenfield storage system. An
inventory snapshot is considered, when dealing with the re-allocation of an
existing warehouse, instead.

We already introduced the difference between full pallet, carton, and
part picking. The package type of the unit load guides the choice of the
storage system. A storage system of full pallet does not need allocation
since the benefit provided by an FPA is relevant when the number of picks
pi in the FPA is higher than the number of restocks ri from the RA to
the FPA. This condition can be verified when the picking process involves
single parts or carton, but never when picking operations are full pallet. In
addition, it is important to remember that the RA always hosts full pallet.
These pallets are moved down to the FPA and opened to allow carton or
parts picking. For each SKU i in the FPA, it is recommendable to have
at least the space of two pallets. Otherwise, having a single pallet space
in the FPA, it would not be possible to move a pallet from the RA before
the pallet in the FPA is completely empty. It is straightforward that SKUs
with a Ii lower than two pallets cannot enter the FPA.

19.4.1 Model-driven methods (PS4)

Allocation problem is solved using a model. Re-allocation of a storage
system profoundly change the use of the space within the storage system,
and it is hard to have observations of any possible configuration to use a
data-driven model. We define, first the theoretical amount of space vi to
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allocate in fast-pick for each SKU i. Secondly, depending on the availability
of space, we consider which SKU can enter the FPA.

Generally, not all the SKUs of a warehouse are suitable for the FPA. To
define which SKUs are suitable to be stored in the FPA we can consider a
ranking index, for example, the top 20% moving based on the Popi Pareto
curve (see section 18.1.2. We can think this problem as an instance of
the knapsack problem where the FPA has a fixed capacity, and it is filled
based on the ranking resulting from the Pareto curve. It is important to
remember that this procedure is suboptimal and hard to generalise. The
filling heuristics of the knapsack by sorting for a ranking index does not
imply the optimality of the solution. In addition, the actual volume to
allocate in the FPA is still to be defined. Finally, there are many aspects
to be considered. If the inventory levels are low for all the SKUs (e.g.
one pallet), it does not make sense to have a fast pick area. Having a
fast pick area with a subset of the items must consider the probability to
complete an order within the FPA. If this probability is low, implying to
retrieve SKUs from the higher levels in order to complete an order, the FPA
does not lead to efficiency improvement. Ranking the SKUs on the OCi
could help; nevertheless, there is no optimal policy to define this allocation.
Always remember of the rotation frequency of the inventory function I(t)
(see section 18.1.2). The definition of the SKUs worth to be included in the
FPA changes with the change of the I(t).

The amount of space to allocate to SKU i in the FPA is calculated
aiming at minimising the number of restocks ri between the RA and the
FPA. The cost of restocks is the augmented operational cost of setting an
FPA; for this reason, it has to be minimised. Let fi be the annual outbound
volume of SKU i, and S the total space of the FPA (e.g. given by the sum
of the volume of all the locations at the ground floor of the warehouse).

It is demonstrated [51] that the value of vi minimising ri is:

v∗i = S

( √
fi∑

j

√
fj

)
(19.4)

This optimal (OPT) strategy produces decimal values of vi, that need to
be rounded. In addition, this policy can be hard to be applied in practice,
since each SKU can have a different space in the FPA. For this reason,
two additional strategies are introduced. The equal space (EQS) strategy
allocates the same amount of space for all the SKUS, vi = S

card(SKU) . An

equal time (EQT) strategy, defines the volume for each SKU i, such that
all the SKUs have the same number of restocks ri (i.e. all restocks have the

same frequency), vi = S
(

fi∑
j fi

)
. Table 19.1 identifies the allocated space

vi, the number of restocks ri, and the total number of restocks R =
∑
i ri.

The OPT strategy should be preferred when possible. Nevertheless, it
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Table 19.1: Storage allocation policies.

could be infeasible, from an organisational perspective, to define slots of
the FPA with different dimensions. In this case, the EQS strategy should
be preferred. In case the restock activity results intense for some SKUs,
the EQT strategy allows to restock all the SKUs together (on average)
enhancing the planning of the restock activity.

19.5 Storage assignment/slotting (P2)

Storage assignment (also known in the literature as slotting) aims at defining
a storage location for each SKU of the storage system. This activity is
fundamental since it heavily affects the travelled distance to put away and
pick SKUs during the operations. In practice, three assignment strategies
exist [52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70,
71, 72, 73]:

• random assignment strategy; SKUs are randomly assigned to the stor-
age locations;

• class-based assignment strategy; SKUs are clustered into classes, and
storage locations are clustered into the same classes. SKUs are ran-
domly assigned within the set of storage locations of their class;

• dedicated assignment strategy; each SKU is assigned to specific stor-
age locations.

While random assignment strategy does not need any additional model;
both model- and data-driven models help in the definition of class-based
and dedicated assignment.

19.5.1 Model-driven methods (PS3)

Ranking methods are particularly efficient to deploy a dedicated assignment
strategy. In particular, they rank the SKUs by considering an SKU profiling
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index (e.g. the Popi), and they rank the storage location by summing the
distance to travel from the input point to the storage location, to the output
point. The two rankings provide the information to fill the storage system
in a bin-packing fashion. Starting by placing the SKUs with a high value of
the profiling index (e.g. the Popi) to the locations with a smaller distance
value. When a storage location has no space to host SKUs, the following
storage location is used. 3.

A similar method can be used to define a class-based assignment. A
common class-based strategy is called “ABC”, and it is based on the defini-
tion of three classes depending on an SKU profiling index (e.g. the Popi).
SKUs with high Popi belong to class A, with intermediate Popi to class B,
with low Popi to class C. In practice the ranking of storage locations is used
to define a Pareto curve on the value of their distance to the I/O, and to
generate the three classes, for example:

• the first 20% of the closest storage locations to the I/O are labelled
as class A locations;

• the following 30% of the closest storage locations to the I/O are la-
belled as class B locations;

• the remaining 50% are labelled as class C locations.

At this stage, storage locations are filled with SKUs, based on the rank-
ing on an SKU profiling index, and SKUs inherits their class from the loca-
tion where they are placed.

Both these data-driven methods, highly depend on the frequency of ro-
tation of the inventory function I(t), since after a period of time an SKU can
be stored in a wrong position since its SKU profile index changed. For this
reason, it is necessary to reconsider the storage assignment periodically.
Decision support systems have been developed to support the warehouse
managers in this choice [74].

19.5.2 Data-driven methods (PS2)

Data-driven methods provide tools to generate classes of SKUs by clustering
them based on recurrent patterns of their features [75, 76, 77, 78, 79, 80,
81, 82].

Correlated storage assignment uses an incidence matrix Mi,o between
SKUs and orders (i.e. ‘1’ if an SKU i has been picked during order o; ‘0’
otherwise) to define a proximity matrix Di,j where i and j are SKUs. A
similarity index (e.g. the Jaccard index) is used to convert the incidence
matrix into a proximity matrix. At this stage, hierarchical clustering is used

3The source code to assign SKUs to storage locations is available here.

https://github.com/aletuf93/logproj/blob/master/logproj/P2_assignmentProblem/warehousing_ABC_saving.py
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to define clusters (i.e. classes) of SKUs. The SKUs within the same cluster
have been historically picked together. For this reason, they are placed close
to each other.

Another data-driven method can be used to investigate the degree of
health of the assignment strategy of a storage system. It always considers
two metrics for each SKU: a profiling index (e.g. the Popi), and the average
distance Di to reach the SKU (or the average of the distances when an SKU
has multiple storage locations). When the assignment is optimal, the two
metrics are linked with an exponential law [83]: Popi = αe−βDi . During
the operations of the warehouse, with the rotation of the frequency of the
inventory function, the link between the two functions becomes similar to
a Gaussian function (see Figure 18.5).

By considering the gap between these two functions, the cost saving of
exchanging locations between locations can be measured.4

19.6 Layout design (P6)

Layout design deeply affects the total travelled distance of a storage system
[84, 65, 85, 86, 87]. A storage system is generally composed of different stor-
age blocks, with different storage technologies (identified in Section 19.3).
For this reason, the storage allocation and assignment (Section 19.4 and
section 19.5) can be repeated for the SKUs assigned to each storage block.

19.6.1 Model-driven methods (PS3)

At this stage, the layout design procedure produces a number of blocks with
different technologies, performing different activities (e.g. picking, packing,
quality control), which need to be placed within the same building. Plant
layout design procedures (see section 22.6) applies to identify a feasible
placement of the areas minimising the distances between the blocks.

It is important to remark that, so far, all the methods proposed aims
at the minimisation of the travelled distance to pick each SKU within each
warehouse block. When designing the entire storage system, it is important
to identify the material and information flows between these blocks, and
to place them such that they are minimised. Figure 19.6 identifies the
material flows between different areas of the same storage system. Areas
with an intense material flow should be placed closed to each other.

4The source code to estimate the saving obtained by exchanging the position of two
storage locations is available here.

https://github.com/aletuf93/logproj/blob/master/logproj/P6_placementProblem/warehouse_graph_definition.py
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Figure 19.6: Spaghetti chart of a warehouse node.

19.6.2 Data-driven methods (D3)

The spaghetti chart introduced above is static, and it does not consider
the dynamics of the operations of the storage system. To simulate the ef-
fect of time on the exchange of materials, a from-to matrix T with entries
tj,k is defined accordingly to the intensity of flow exchange between control
points (CP), identifying different areas. tj,k estimates the number of trips
between CPs j and k. The value of tj,k is static and does not consider
how the system evolves. Nevertheless, it gives no information on the work
in progress (WIP) between CPs (i.e. the number of SKUs waiting to be
processed/shipped), that is an important parameter for the design of the
buffering areas. A Markow Chain (MC) is introduced (see 11.3.2) to es-
timate this parameter. An MC applies statistical Markov properties on a
directed graph to measure the probability of occurrences of an event (i.e.
the node) given the probability of the transitions between the events (i.e.,
the arcs). In this case, T is the input matrix representing the probability
of transitions between the events. A complete graph G (V,E) is defined as
follows.
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• a set of nodes, corresponding to the number of rows of the matrix (i.e.
each CP is a node of G);

• a set of directed arcs representing the probability of transition be-
tween the nodes (i.e., the CPs). The weight of each arc represents the
probability that the edge is travelled to transfer materials. This value
is calculated as: t̂j,k =

tj,k∑n
j

∑n
k tj,k

The value of t̂j,k defines the probability of a transition from CP j to CP k.
MC implements an initial state of the system (i.e., a number of SKUs located
in each CP) and it simulates a given number of transitions. The transitions
redistribute the initial state value among the others CPs according to the
transition probability t̂j,k. The initial state of the MC is chosen accordingly
to the specifics of the real storage system (e.g., the inbound node is fully
loaded, and all the others are empty) and a number of transitions on the
graph are performed to check how the WIP is redistributed after a number
of transitions of the system. Figure 19.7 illustrates the outcome of a MC
after a number of iterations, i.e. the probability to find WIP at each CP.

Figure 19.7: Markov chain outcome to estimate the work in process (WIP)
at each control point (CP).

Even if this approach does not provide statistics on the number of SKUs
in each buffering areas, it defines how the workload flows between control
points. Some CPs have a higher probability of hosting WIP after a signifi-
cant number of transitions. This fact suggests that these CPs deserve much
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more area than the others. DES can be used to accurately design these CPs
(see section 19.9).

19.7 Picking policy design (P7)

Depending on the type of technology involved in a storage system, it can be
necessary to design a picking policy to connect the different storage blocks
[88, 89, 90, 62, 91, 92, 93, 94, 95]. Fully automated storage technologies
(e.g. AS/RS, miniload and shuttle systems) automatically manage both the
assignment and the picking strategy actuated by the automation. Manual
storage systems (shelves, racks, stacking areas) need policies for pickers to
complete the orders. In addition, it is rare to find fully automated storage
systems. For this reason, at some stage of the process, the parts picked by
automated systems need to be consolidated with the others.

Picking policies are implemented only for the outbound activities, since
they are generally responsible of the majority of the workload of a storage
system:

• single-order: the picker receives a single picking list with a single
order. He/she travel across all the storage system to pick the parts of
the order;

• multi-order with batching: the picker receives a single picking list with
multiple order. She/he is equipped with tools (e.g. a cart with slots,
or a put-to-light cart) to pick parts belonging to different orders. Parts
remain separated during the whole picking process, and the orders are
complete at the end of the route or the picker [96, 97, 98];

• multi-order with zoning: Pickers are assigned to a specific zone of the
storage system (i.e. a subset of storage locations). A picker receives
a single picking list with multiple orders. He/she is equipped with
tools (e.g. a cart with slots, or a put-to-light cart) to pick parts
belonging to different orders. Parts remain separated during the whole
picking process, and the orders are completed in the outbound area
by aggregating the subset of parts picked from each zone;

• multi-order with zoning and sorting: Pickers are assigned to a specific
zone of the storage system (i.e. a subset of storage locations). A
picker receives a single picking list with multiple orders. Parts are
collected together and separated after the picking process in a sorting
zone close to the outbound area.
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19.7.1 Model-driven methods (D4)

Discrete event simulation (DES) is the method used to compare the ef-
ficiency of different picking policies applied to the same storage system
[99, 100]. DES allows to estimate the efficiency of each policy and to identify
bottlenecks of the process.

19.8 Route design (P3)

Storage systems can be very congested areas with hundred of operators
travelling to put away and pick parts. For this reason, as for the roads where
we are used to riding our bicycles, precise policies exist [99, 101, 102, 103]:

• return policy: allows to travel the aisles and corridors (i.e. the edges
of the set E) of the storage system in both their directions;

• traversal policy: allow to travel the aisles and corridors (i.e. the edges
of the set E) of the storage system in one direction (one way).

19.9 Inbound and outbound area design (P5)

This phase aims at designing handling (i.e., buffering or processing) areas.
In the handling areas, the operators prepare the SKUs for storage (e.g.,
inbound, inspection) or shipping (e.g., packing, order consolidation) [23,
104, 105]. Buffering areas are zones between activities where the SKUs
wait for handling. The design of the buffering area is crucial since too small
areas would generate congestions of the activities. Otherwise too large areas
remove space from the storage/handling areas

19.9.1 Model-driven methods (D4)

To get statistics on the expected workload in this area, discrete event sim-
ulation (DES) is used. Typically, inbound and outbound areas deserve
design validation via simulation due to their importance for all the receiv-
ing/shipping processes. Figures 19.8 and 19.9 illustrates the flowchart of a
DES model and the data needed to support the design of these areas.

It is necessary to have data about the probability distribution of the exe-
cution time of the tasks, to feed the DES properly. Considering the inbound
process, it is necessary to know the distribution of the arrivals of trucks and
the distribution of the number of pallets transported by each truck. The
arrivals distribution is usually available from the warehouse management
system (WMS); otherwise, a random distribution over the daily shift can
define their arrival time. After truck unloading, pallets wait in the inbound
area (the one to be designed) for the following processes. It is necessary to
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Figure 19.8: Discrete event simulation (DES) of the inbound processes of a
storage system.

Figure 19.9: Discrete event simulation (DES) of the outbound processes of
a storage system.

know the distribution of the execution time for each of the following pro-
cesses and to know the number of resources dedicated to these activities.
On-field monitoring campaign aims at collecting these data.

Outbound modelling is similar to the inbound modelling process. To
design outbound areas, it is necessary to know the distribution of arrivals
of the shipping trucks, and the distribution of picking and packing times.
These values can be obtained, as well, via the on-field monitoring campaign
or by analysing the records of the WMS.

The DES produces charts of the WIP at each control point. Figure 19.10
illustrates an example of the number of pallet waiting at the inbound and
outbound area of a storage system.

At this stage, each storage and handling area is adequately designed
and accounts for a precise area (m2) on the plant layout. Areas should be,
then, placed on the available space such that CPs which exchange intense
materials flows are close to each other.
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Figure 19.10: Work in process (WIP) time series of the inbound and out-
bound areas of a storage system.

19.9.2 Applications

This sections illustrates two applications of analytics and methods for ware-
house design. The first follows a hierarchical procedure for the design of the
storage areas of a manufacturing and hardware storage system. The second
application illustrates the potential of a data-driven approach to select the
adequate design parameters of a new storage system, based on the observed
data.

Hierarchical design of a manufacturing warehouse

This section presents an application of a subset of the methodologies illus-
trated in the previous sections to relocate (i.e., the transfer of all the SKUs
from an existent storage system to an empty one to design from scratch)
a manufacturing warehouse. The company hosts two customers in the ex-
istent warehouse and needs to relocate the entire storage area due to the
expiration of their building rental contract. For this reason, they are in-
terested in the opportunity of optimising their processes since they must
transfer all of them to move a new empty building. The existent storage



Re
vi
ew
ed
Ve
rs
io
n

19.9. INBOUND AND OUTBOUND AREA DESIGN (P5) 343

system is composed of:

• a traditional rack storage area (i.e., served by forklifts)

• a block stacking area

• an automated vertical warehouse (for small parts)

• a cantilever rack area

• a shelf storage area (i.e., served by walking operators)

Besides, the warehouse manager suggested replacing the automated ver-
tical warehouse with a man-on-board in-rack picking solution because of the
very low productivity of the former. The company owns the data about one
year of put-away and picking for each of the two customers, but the SKUs
master file does not contain the volumes of the SKUs.

An on-field monitoring campaign collects the data to fill this lack. Vol-
umes and weights have been assigned to more than 10.000 SKUs using the
BOW model based on SKUs description. Figure 19.11 illustrates the result
of the BOW using a word cloud. The bigger words represent a higher num-
ber of occurrences in the SSV. In this case study, the BOW-based volume
estimation has a crucial role. It is essential to check whether an SKU has
a volume small enough to fit the new man-on-board in-rack picking system
which has a different number of levels (i.e. 20) compared to the rest of the
storage racks (i.e. 7 levels).

Figure 19.11: The word cloud representation of the BOW model.

Once the assignment of SKUs to the different storage mode is defined,
a decision support system is used to identify the best allocation and as-
signment policy. Due to a low inventory level and a very high number
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of SKUs (i.e. around 10.000) no allocation policy is selected since there
are not enough quantities to justify a forward-reserve storage policy. A
multi-scenario analysis assesses the effect of four different assignment poli-
cies producing rankings based on Popularity, Turn, Order closing and COI.
Statistical analysis is performed on the distribution of the travelled distance
per order inbound/outbound order. The mean value of each distribution is
an estimate of the performance of the assignment policy (see Table 19.2).
Popularity and COI outperform the other indices and Popularity has been
chosen, in practice, since it is simpler to implement using the existing data
structure of the WMS.

Table 19.2: Mean value and best-fit distribution of the travelled distance
per order in the multi-scenario analysis.

BPMN is used to map and understand the existing processes and to
define the relevant CPs. A monitoring campaign estimates the amount of
material flows exchanged between CPs defining matrix T .

A Markov Chain (MC) model based on the value of T is designed and
used to simulate a number of steps close to the number of lines processed
daily (i.e. 500). The initial state of the MC is set to a workload equiprob-
ability among all nodes to evaluate how a randomly loaded system evolves.
Figure 19.7 illustrates the probability (color gradient and dot size) that a
SKU is found on a specific CP after 500 transitions.

Based on these results, a higher probability regards the inbound and
outbound areas, the inbound quality control area and the outbound packing
area.

To carefully design these areas, four distinct DES models have been de-
veloped. Each model monitors the number of pallets/cartons in a buffer,
waiting for processing. Data about the distribution of the arrivals are in-
ferred from the WMS. Conversely, on-field monitoring campaign collects the
time distribution of the processing operation (e.g., picking, packing). The
model is built and run on the software Automod to produce the results.
For each model, it measures several variables: the average, minimum and
maximum WIP, the average waiting time of each pallet in each buffer queue,
the saturation of the resources (e.g., packing or inspection operators). For
the design purpose, each model produces a timeline graph representing the
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average and the current value of the number of pallets in each buffer at sam-
pling time instances. By sampling this variable at an adequate frequency
(i.e., one sample per minute), it is possible to assess the behaviour of any
buffer and to properly design the space needed for them. Buffering mod-
elled with DES are designed with a capacity equal or major than the peak
value obtained by the simulation. Figure 19.10 presents the graph of the
expected number of pallets in the inbound and outbound areas.

Data-driven design of a 3PL warehouse

This section illustrates a data-driven application of warehouse design, based
on the available data. The benchmarking metrics illustrated in 18.1.2 are
used to define a learning table where each rows corresponds to a specific
SKU, and the columns to a benchmarking metric.

The learning tables come with four additional attributes, identifying the
design target labels of the observed data, identifying how strategic decisions
have been addressed in the observed data:

1. SS, e.g. automated storage & retrieval system (AS/RS), automated
vertical warehouse, block-stacking, cantilever racks, miniload, pallet
rack, shelves;

2. MHS, e.g. cart, forklift, operator, order picker.

3. SAS, e.g. reserve & forward, only reserve;

4. PP, e.g. multi-order with batching, multi-order with zoning and sort-
ing, single-order.

Disregarding the interpretability of the prediction models, we are inter-
ested in design a decision-support tool able to suggest how to select the SS,
MHS, SAS and PP, among the existing ones, for an incoming SKU (e.g.
provided by a new customer of the 3PL provider). We train both classifica-
tion models, and a deep neural network (NN) whose structure is identified
differently for each model, in Figure 19.12.

The performance of the predictions is evaluated by using the precision
metric. The NN predictions significantly outperform the ones of other mod-
els while predicting the SS. When dealing with the other entities, the pre-
dictions of the other models are similar or better than the ones of the NN.
By using such a decision support methodology a 3PL provider can be able
to serve the incoming customers by adapting the services operated on the
new SKUs based on its current practices, without a strong and impactful
reorganisation of its assets. This fact can help to identify appropriate cus-
tomers, estimate a service level and an operational organisation just looking
at the customer’s historical data, before the physical transfer of the SKUs.
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Figure 19.12: Structure of the neural networks with the prediction perfor-
mance of the other models on the X2

3PL learning table.
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Diagnostic Models

The last part of this book is about production nodes. Production nodes are
where the magic happens: they add value to raw materials by transforming
them to semifinished or finished products.

Here we encounter the highest degree of complexity with low standardi-
sation of the methods, technologies and processes. Nevertheless, it is not a
good reason to abandon a data-driven approach. On the contrary, it is the
field where decision-makers benefit the most from this approach linking the
model-driven and the data-driven approaches.

This chapter focuses on the definition of the keywords and key entities
extending the ontology of chapter 3 to production nodes. After that, it
introduces the diagnostic framework for production nodes with a relational
data structure and some KPIs. It will be necessary to pay special attention
to the definition of the data structure since it needs the flexibility to host
data from very diverse production systems. The same rationale applies to
the KPIs, developed from the definition in chapter 3, and applicable to any
industry. A smaller subset is, then, introduced to be industry-oriented.

Chapter 21 focuses on the control of a production node by using analytics
to get knowledge on the existing processes and to improve their efficiency.
Chapter 22 studies the design of a production facility, and chapter 23 the
design of production processes from a data- and model-driven approach.

20.1 Ontology

Here we develop the general ontology introduced in chapter 3, by applying
it to a production node.

359



Re
vi
ew
ed
Ve
rs
io
n

360 CHAPTER 20. DIAGNOSTIC MODELS

Entities

We identify the following entities.
Part (i): it is a piece of raw material, component, subassembly or as-

sembly. Where:

• Raw material is a part purchased out of the production node (i.e. from
the suppliers).

• Component is an individual piece assembled into more complex prod-
ucts.

• Subassembly is an assembled unit further assembled into more com-
plex products.

• Assembly/final assembly/finished product is the fully assembled prod-
uct, i.e. the outcome of the production node.

Processing node (j): a processing node is a resource within the pro-
duction nodes (e.g. machines and workbenches). In this section, they are
also called resources or machines.

Edge (j, k): the paths connecting resources (e.g. conveyors, corridors)
Vehicle (v): is a unit travelling on edges to handle materials between

resources; some examples are forklifts, AGVs and conveyors.
Consumable (s): it is an additional material (often a fluid) or a service

necessary to perform activities within the production node. Some examples
are electricity, compressed air or steam.

Route (e): it is the production cycle of a part i, i.e. the sequence
(ordered set) of resources (machines or workbenches) to visit to transform
it to a finished product.

Order (o): it is a production order received from a customer.
Job (b): it is a planned activity (a sequence of tasks) to perform on a

part i using resources j.
System network the graph G(V,A) of nodes j ∈ V and edges (j, k) ∈

A, composing a job-shop, flow-shop or a production line.

Metrics

We identify the following metrics to assess the performances of a processing
node j.

Throughput (THj): the throughput is the productivity of a resource,
i.e. the average number of parts in output per unit of time (e.g., parts
produced per hour)..

Work in process (WIPj): it is the number of parts (i.e., the level of
inventory) waiting for processing nearby a resource j.

Work in process (WIPjk): it is the number of parts being transported
by a vehicle v.
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Capacity (Cj): it is the upper bound of the throughput of a resource.
Capacity (Cv): it is the maximum number of part transportable by a

vehicle v at the same time.
Utilisation (Uj): it is the average fraction of time that a resource is

not idle for lack of parts.
Utilisation (Uv): it is the average fraction of non-empty space on a

vehicle.
Lead time (LTe): it is the time allocated for a given route (i.e. to

complete the production cycle of a part).
Cycle time (CTe): it is the average time from the release of a job to

the end of its route.
Service level (SLe): Prob{cycle time ≤ lead time}

Information functions

Finally, we define the three information functions: movements M are re-
ferred to load/unload of parts on resources; inventories I are referred to the
work in process on a resource j, or a vehicle v. The productivity P refers to
the inbound and outbound absorption rates of a resource. Since production
resources do not have a decoupling purpose (as, for example, storage system
does) it is possible to refer to Pj = P IN = POUT . Table 20.1 summarises
the definition of the three functions in a storage system.

Table 20.1: Definition of the information functions of a production node.

20.2 Data Structure

Production environments are extremely biased. This paragraph aims at
providing data structures that are robust and adaptable to many different
production environments. Non-relational structures have this characteristic.
For the sake of completeness, this paragraph analyses a traditional relational
data structure first. The criticalities of this structure are, then, identified
moving to the definition of a non-relational model.
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20.2.1 A relational model for production environments

Modelling a system with an ER structure means identifying the physical
entities with their attributes and the relationship among them. The rela-
tionships between entities lead to extraordinarily rigid and instance-oriented
data structures which are hardly generalisable in production systems. For
this reason, the ER model could not be the best choice to build a model
usable for analytics and data-driven modelling, at least not in the case of a
production node. We support this fact by empirical evidence starting from
the design of an ER model to structure data from the food industry and
showing that the model is too rigid to host information from other types
of industries. We introduce, then a non-relational model for a production
environment with all the ingredients to enable data-driven generalizable
models.

Modelling is performed by using a top-down approach, starting with the
definition of macro-areas that involve similar entities. Afterwards, it is nec-
essary to identify each table (i.e. entities and relations) and the attributes
for each table. Following this direction, we apply a top-down approach
to a production environment of a food catering industry, identifying three
macro-areas to model:

1. supply chain network;

2. production plant;

3. product quality and control.

Within each of these macro-areas, we identify a set of entities to model
using tables.

Supply chain network

This macro area considers all the entities linked to the operations performed
out of the production plant, which may affect the operations within the
production plant. It is the case of customers, suppliers, carriers and other
stakeholders connected with the production plant.

Customers-based tables These tables deal with distribution flows be-
tween production nodes final customer. A table Nodes collects the informa-
tion of the plants involved as producers or suppliers. The attributes of this
table are the address, latitude and longitude, working days. A table Client
stores similar information for the customers: address, latitude and longitude
and the client’s profile (depending on the product/service customisation).
A table Tour includes the information on the shipping tours. Each tour is
performed at a different frequency with a due date for its departure. This
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time profoundly affects the operations in production since everything must
be completed and ready before that time. Besides, each tour has delivery
time windows to respect for each client. A relationship between Tour and
Client maps this information.

Demand-based tables The table Orderlist collects all the information
on the customers’ order that a production plant needs to process. This
table maps the order code, the quantity for each item, the customer, and
the service level (i.e. the due time) to deliver the finished product.

Production plant

Within this macro-area, we model all the entities involved in the realisation
of the final product within the production plant.

Resource-based tables These tables map the production resources with
their attributes and relationships. A table Machine category identifies the
different technological group of the machines in the production plant (e.g.
lathe, mill, oven). A table Machine park identifies all the different variants
of the resources in the production area. This table has attributes to record
all the specifics of a resource (name, manufacturer, speed, performance,
capacity, energy absorption, etc.).

The relationship between Machine category and Machine park defines
the type of capacity of the machine too. Especially while dealing with
the design of the number of resources, it is necessary to identify a proper
measure of capacity. Unfortunately, many different ways exist to define the
capacity of a machine. Here we identified the five different types of capacity
specifying the units of measure. A machine belongs to one of these types:

1. type 1: is a capacity measured with a continuous size metric (e.g. kg
or litres);

2. type 2: is applied to measure the capacity of a machine which has
a discrete number of available slots to process parts. Each slot is
available/occupied and can host a single part i;

3. type 3 is applied to bottleneck machines that have a throughput metric
of capacity. This capacity is measured in a metric belonging to type
1 or type 2 over a time unit (e.g. Kg/h or parts/h);

4. type 4 is used for buffer and stock areas whose capacity is expressed
in cube meters of inventory;

5. type 5 is used for machines which process entities containing a set of
parts (e,g, a tray). Their capacity is expressed in terms of container
entities (e.g. number of trays).
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A table Tasks identifies all the possible activities executable by the re-
sources on the plant layout. Attributes of this table map if a task needs
energy to be executed and/or the supervision of a human.

Plant Layout-based tables These tables model the placement of the
resources on the layout of a production plant. A table Departments identifies
all the departments of the production area. A table Control points identify a
set of known coordinates (x; y; z) on the plant layout assigning each of them
to a department. A table Machine cp assignment links a resource from the
table Machine park to a control point modelling the physical position of a
resource on the plant-layout.

A table Machine cycle assignment defines the relationship between the
resources and the production tasks specifying which resource can perform
a task.

Auxiliary systems-based table These tables identify all the entities
(e.g. packages, consumables, energy) which are necessary to perform pro-
duction tasks. A table Packages maps all the packages (e.g. cartons, trays)
with their dimensions (i.e. height, length, width) used in the production
plant to handle semifinished and finished products. A table Vehicles iden-
tify all the resource used for the handling of products and packages in the
production area. A table Energy cost identify the cost for each source of
energy of the production plant. A table Efficiency parameters identify the
behaviour of each machine supplied with a specific source of energy. In
particular, for each machine and source of energy, a curve of efficiency is
defined as a function of the working time.

Product, quality and control

These tables revolve around the product mapping all the information on
the product itself (i.e. the bill of materials), the production cycle to realise
it, the packaging cycles to pack and customise it and the safety constraints
(e.g. temperature and quality decay) associated with the finished product.

Product-based tables A table Products map all the products identifying
their characteristics (e.g., length, width, height, weight, volume), product
family and other attributes as:

• the slicing profile (mono/multi-portion);

• the temperature profile (cook-warm/cook-chill);

• the organic profile (organic/non-organic);

• the post-processing (eventually mixed after cooking);
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• the shelflife (in hours or days);

• the nutritional values (energy, carbs, fats, protein).

A table Bill of materials defines, for each product, the graph where
raw materials converge into semi-finished and finished products. The table
defines the nodes and edges of the graph specifying which quantity of raw
material is necessary to assemble the following semifinished. A table Cycles
identify the production cycle to transform raw materials into the finished
products. Each cycle row defines:

• the type of the task;

• the quantity of the raw materials (which must be coherent with a
machine type capacity);

• the working time;

• the time type;

• the department where the task must be performed;

• the temperature-humidity profile.

The working time indicates the time required to perform a specific task,
but the real duration of the task depends on the time type. Time type
’0’ indicates handling activities: the processing time depends on the dis-
tance travelled between control points. Time type ’1’ is a fixed time, not
dependent by the processing quantity (e.g. a machine setup). Time type
’2’ represents cooking time; this time is not conditioned by the quantity but
can be affected by temperature and humidity. Time type ’3’ models a man-
ual operation which depends on the processed quantity. This dependence is
hardly linear: less than linear (e.g. logarithmic) curves have been used to
estimate the duration of the task.

A table Packaging cycles defines all the options to package a finished
product by identifying the type of packaging and thermal treatment to per-
form after cooking.

Quality- and control-based tables These tables are needed to moni-
tor the quality of the products from the safety point of view that is mainly
represented by the temperature in the food industry. A table Product cat-
egory identifies the different thermal category (e.g. cook-chill, cook-warm)
of the products and a safe holding temperature for each category. A table
Cycles temperature collects time-series information from sensors monitor-
ing the temperature and humidity of the products at different stages of the
production process.



Re
vi
ew
ed
Ve
rs
io
n

366 CHAPTER 20. DIAGNOSTIC MODELS

The paragraphs above give a clear picture of the entities and relationship
of a food catering plant. The same structure is reported in Figure 20.2
illustrating the resulting ER-model.
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Figure 20.2 remarks the high level of complexity covering a production
plant and its modelling. Regardless of the complexity, the bias due to the
market niche of the plant leads to the impossibility of a general-purpose
model to model entities and processes of any production site.

This rigidity may be useful in a production environment to keep track
of everything within a robust structure. Nevertheless, it is not a good
starting point to analyse data, compare it with different production plants
and generalise the results, which is the primary aim of research and this
book. For this reason, the following paragraph proposes a different approach
using a non-relational structure which removes some bias and allows to
generalise some entities for any production system.

20.2.2 A Non-relational model for production environ-
ments

This section presents a non-relational data structure able to embed the
same information content of the ER model introduced in 20.2.1 but able to
host any other additional attribute. In addition, the model has a minimum
number of required attributes that enables define a minimum viable model
(MVM) enhancing analysis appliable to any production node. This is the
natural implementation of the MIP model introduced in section 3.3.1. The
model consists of four collections whose data are recorded by the manufac-
turing execution system (MES).

A collection Part identifies all the parts i processed within the produc-
tion plant. The id of the item and the description are required to define the
MVM. Other attributes can be stored as well, like:

• the size,

• the weight,

• the supplier,

• the product family.

A collection Movements defines the movement function of the MIP
model storing information on when a part i enter or leave the production
node (or one of its subsystems, as a resource j). Attributes timestamp, part
id, and quantity are needed for the MVM. Each document can record other
attributes as:

• the type of package,

• the id of the operator,

• the id of the order,
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• the id of the machine performing a task.

A collection Temmeasurement store information on on-field time and
motion analysis which corrects and complete the measurements of the MES.
The id the observation and its duration in seconds define the MVM.

A collection Plant contains a single document with the information of
the production node. The node code is the only attribute necessary to define
an MVM. Other attributes can be recorded, like:

• the latitude and longitude of the plant,

• the address of the plant,

• the list of customers served by the plant

• the overall productivity of the plant,

• the energy absorption of the plant.

Figure 20.1 uses the unified modelling language (UML) to represent the
MVM of the non-relational structure of a production system.

Figure 20.1: Diagram in UML notation of the minimum viable model for a
non-relational structure of a production system.

20.3 Decision Patterns

This section introduces the decision patterns (see section 4.2) analysed in
chapters 21, 22 and 23 focusing on the role of analytics to solve production
node control, design and process design. Each chapter addresses a family
of problems:

1. production control problems, deal with the assessment and improve-
ment of the performance of an existing production plant.
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2. plant design problems, deal with the design and placement of the
physical assets of a production plant;

3. process design problems, deal with the definition of the production
processes.

Different methodologies allow getting feasible solutions to these prob-
lems. Table 20.3 illustrates the entities and their definition according to the
ontology in Paragraph 3.1.
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Production control involves the following decisions:

1. the assessment of the performance of production processes;

2. the prediction of the market demand and the workload in the future;

3. the prescription of job scheduling to assign jobs to resources.

Plant design involves the following decisions:

1. the definition of homogeneous product families to process and analyse
together;

2. the definition of the location of the physical plant;

3. the design of the auxiliary system to feed with energy and fluid asset
and resources;

4. the definition of the technology of asset and resources to provide ad-
equate throughput;

5. the definition of a proper amount of resources identifying a proper
production capacity;

6. the design of the plant layout.

Process design involves the following decisions:

1. The definition of an inventory policy and inventory level for parts;

2. The design of the handling systems to manage the flow of materials
within the production plant;

3. The design of workstation and workbench to smooth production flows,
keep order and provide an ergonomic working place to the operators.
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Production Node Control

This chapter focuses on the problems involving the control of a production
node. The control activity, from a logistic point of view, is necessary to
ensure the production processes are smooth and efficient.

21.1 Performance assessment (P8)

“If you can’t measure it, you can’t manage it”. This famous quote of the
philosopher and economist Peter Drucker clearly defines the importance of
performance assessment. The aim is the modelling of processes and the
measurement of their efficiency from different points of view. Here qualita-
tive and quantitative methods are introduced to measure and understand
the processes.

21.1.1 Model-driven methods (D4)

Business process modelling is a qualitative mapping activity aiming at the
definition of the relationships between physical and information entities in-
volved in any process. The modelling of production processes allows defining
their interactions with operators, resources, parts and information systems.
The Business Process Model and Notation (see section 5.1 is a graphical
model for this purpose using predefined symbols to model tasks, activities
and interactions. Mapping a production environment:

• activities are any production or auxiliary task necessary for the real-
isation of the product (manufacturing, traceability, supplier and cus-
tomers interactions);

373
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• events identify the step of the processes concluding an activity, and
the part increases its value (e.g. the end of the production or the
inbound process);

• gateways describe different production path (e.g. variants of the prod-
ucts);

• pools identify the department or the office in charge of specific tasks.

BPMN defines a qualitative map of the production processes useful for
manager and practitioners to identify the way their processes are realised.
The hard assessment takes place with the definition of quantitative KPIs.
The KPIs used in these chapters refers to the metrics defined in 3.1. KPIs
are organised according to four classes, relevant to the logistics and opera-
tion design [1]:

1. Logistic KPIs, evaluate the logistic impact of a certain solution. They
use metrics like time, distance and the performance parameters intro-
duced in section 3.1.

2. Cost KPIs, evaluate the economic sustainability of a given solution.
They are expressed in e or other currency.

3. Energy KPIs, evaluate the energy needed to feed a given solution.
They use metrics as kW and kWh.

4. Environmental KPIs, evaluate the environmental impact of a given
solution. They are expressing the equivalent CO2 produced per year.

Table 21.1 identifies which KPI is relevant to each problem. In general,
each problem can be assessed from multiple perspectives.

21.1.2 Data-driven methods (D1, D2, D3, D4)

The definition of the KPIs is a modelling activity where the definition of a
BPMN may help to identify which are the KPIs essential to monitor. With
the advent of Big Data, the amount of collected record can be ample, and
the pure definition of the KPI neglects a significant amount of information.

Data-driven methods use descriptive analytics to manipulate these data
and extract information. Clustering methods (see section 8.2) allows defin-
ing clusters. In particular, having a time series of a KPIs it is possible to
identify if a value diverges to out-of-control of anomalous values. These
values are often associated with bottlenecks and inefficiencies of the pro-
duction process. Inferential statistics (see section 6.2) is used to describe
the behaviour of a KPI as a random variable. Almost always the value of
a KPI changes, and it is relevant to identify its statistics to evaluate the
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Table 21.1: KPIs to evaluate the solution of the problems in a production
node.

robustness and steadiness of a production process. Bayesian statistic (see
section 11.3) can be used to define the statistics of a KPI when only par-
tially reliable measurements are available. Finally, simulation approaches
(e.g. Monte Carlo see section 6.2.5) uses different input measurement to
identify the behaviour of the output from a statistical point of view.

21.2 Workload prediction (P9)

Workload prediction aims at forecasting the value of the workload in the
future. Companies rely on a demand forecast that is the starting point to
derive all the other predictions.

21.2.1 Model-driven methods (D1)

Demand forecast depends on the type of demand pattern of a part. Iden-
tifying the right demand pattern can be seen as a clustering problem (i.e.
solved using data-driven methods) [2]. Figure 21.1 identifies the four de-
mand patterns.

Parts demand is classified by considering the variability of the quantity
and the lead time between orders. These two metrics are identified by:

• ADI =
∑n
i
γi
n ;

• CV 2 =
(
σq
q̄

)2

.

Where γi is the interarrival time between two batches of goods; σq is the
standard deviation of the quantity for each batch, q̄ is the average quantity
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Figure 21.1: Demand patterns classification.

for each batch. Thresholds on these metrics are identified to classify the
demand [3]:

• stable; these parts have a regular demand frequency (ADI < 1.32),
and low variability in quantities (CV 2 < 0.49). Their behaviour is
stable and easy to forecast.

• Intermittent; these parts have a variable demand frequency (ADI ≥
1.32), and low variability in quantities (CV 2 < 0.49). Their demand is
extremely sporadic, and few data points are available making harder
to predict their behaviour in the future.

• Erratic; these parts have a regular demand frequency (ADI < 1.32),
and high variability in quantities (CV 2 ≥ 0.49). Their demand is
frequent but extremely variant in quantities. Forecasts are possible
but their accuracy remains a crucial issue.

• Lumpy; these parts have a variable demand frequency (ADI ≥ 1.32),
and high variability in quantities (CV 2 ≥ 0.49). Their behaviour is
difficult to predict since there are few data points with great variabil-
ity.

Depending on the nature of the pattern demand, different analytics
should be used to address the demand prediction.



Re
vi
ew
ed
Ve
rs
io
n

21.3. JOB SCHEDULING (P10) 377

21.2.2 Data-driven methods (PD1, PD2)

Once the demand pattern has been identified, an appropriate predictive
method should be chosen to make forecasts.

When dealing with stable and erratic parts, many data points should
be available since these parts have a short average interarrival time (i.e.
at least 20 data points per year). In this case, time series analysis is an
appropriate methodology to analyse and forecast the demand series. In
particular time series decomposition (see 6.5.1) is simple and appropriate.
ARIMA models (see 6.5.2) work as well with some additional efforts in the
data manipulation step since these models require stationary time series.

When dealing with intermittent and lumpy parts, the variance of the
interarrival times is high, and it is hard to identify a robust sampling interval
to estimate the demand (e.g. parts per week, per months, per year). In
these cases, the probability distribution of the number of pieces per time
unit cannot be approximated to the uniform, and a different distribution
must be used to approximate the rareness of the events. For this reason,
the Poisson distribution (see section 6.3.4) is used since it can well describe
the behaviour of rare events.

The Poisson method identifies the probability of absorption of x parts
within a time interval τ having an average demand d calculated in a time
interval of the same span of τ . The Poisson distribution assumes λ = dτ .

Pd,τ (x) =
λxe−λ

x!
(21.1)

Alternatively, when a complex dataset X containing other attributes in
addition to the time series, to train a learning model (see 9) can lead to
more accurate results.

21.3 Job scheduling (P10)

When a production plant is ready to produce, a final word is needed to assign
tasks to resources. Job scheduling aims at allocating the space and time
of a resource to perform a task [4]. The nature of this problem requires
a prescriptive solution which, usually, aims at minimising some objective
function.

21.3.1 Model-driven methods (PS1)

Let ci be the time instant where a part i is completed and di its completion
due date, the production engineer aims at minimising the lateness Li =
ci − di.
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Many optimisation algorithms perform this assignment by setting the
value of the decision problem P :

xs =

{
1 if job j assigned to resource i
0 otherwise

(21.2)

min z (21.3)

n∑
i=1

pijxij ≤ z, i = 1, . . . ,m (21.4)

m∑
i=1

xij = 1, j = 1, . . . , n (21.5)

xij ∈ {0, 1} i = 1, . . . ,m ; j = 1, . . . , n (21.6)

The problem P usually embeds many other constraints to describe industry-
oriented specifics which prevents from the feasibility of a solution (e.g.
setup time, machines dedicated to specific tasks, scheduling priorities). Job
scheduling is almost entirely prescriptive, and many contributions illustrate
models, optimal and suboptimal algorithms to get feasible solutions [5].

21.4 Applications

This section illustrates the application of the methodologies above to design
the control systems in two different production nodes. The first production
node works in the catering sector, while the second operates in the 3PL of
the automotive industry.

21.4.1 Control of a food catering plant

Performance assessment

The collection of historical data and time series from the company’s ERP is
a crucial activity to control system a catering plant. Unfortunately, the ERP
of the company may not include the definition of the production cycles of the
items. For this reason, a monitoring campaign helps to collect information
to model the processes and to populate a relational database structured as
in section 20.2.1. Figure 21.2 illustrates the ER structure obtained after
monitoring the production processes. The database maps 213 customers,
29 delivery routes, 500 products, and more than 800 production orders on
a time horizon of a week.
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Figure 21.2: Complexity of tables and attributes in an ER model of a pro-
duction node.

The production processes have been, also, modelled from a qualitative
point of view by using a business process model. Logistics and operations
processes are highly related to the temperature profile of the products (cook-
warm, cook-chill, cook-chill-re-warm). Figure 21.3 shows that depending on
the temperature profile, products must follow different physical paths.

After modelling the processes, the production flows and tasks appeared
more evident to the management and the analysts. It was, then, possible to
perform a quantitative analysis by defining KPIs on the single product or
process [1]. Figure 21.4 illustrates a visual KPIs representing the average
processing time (on the x-axis) and the average cost (on the y-axes) for each
product. They both are random variable represented as error bars of the
dot-plot. Besides, the dashboard shows both the Pareto curve of average
times and costs, highlighting that a small number of parts generates the
most considerable workload in terms of time and costs.

Another visual analytic tool (see Figure 21.5) allows identifying the en-
ergy and environmental performance for each resource of the food plant.
The histogram identifies the consumption of electric energy and gas, to-
gether with the estimate of the environmental impact measured in equiva-
lent CO2 for each production task identified by the monitoring campaign.
This way, it is possible to determine which tasks and which resources need
to be carefully managed to limit energy consumption.

Workload prediction

Once a set of KPIs to assess the performance of the system has been identi-
fied, it is necessary to classify and make forecasts on the demand that guide
any other control or design step. Historical data are collected and organised
to define the value of ADI and CV 2 for each part. The dot-plot in Figure
21.6 identifies each product with a dot where the x- and y-axes represent the
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Figure 21.3: Demand patterns classification.

Figure 21.4: Example of a dashboard of KPIs for time and costs of a catering
plant.

ADI, and CV 2 calculated within the reference time horizon of the dataset
(one week). The size of the dot represents the number of lines (i.e. the
number of orders) for each part; the bigger the dot, the higher the number
of orders. The heatmap on the right pf Figure 21.6 identifies the demand
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Figure 21.5: Energy and environmental impact for each production task.

patterns of the entire production system. In this case, the demand is mainly
intermittent, with low variability but significant time spans between orders
of the same part. The production system has, then, to be flexible, allowing
the production of the same average quantity of a vast product mix.1

Job scheduling

Job scheduling in food catering involves the pre-processing, cooking and
packing departments of the plant. This activity deeply affects the quality
of the finished products since the more the time they wait at the end of
the production, the more the quality and taste decay due to the holding
temperature [6]. Figure 21.7 graphically identifies the variable to control
in the scheduling of a recipe: the resource r, the processing quantity and
the cycle time cj affect on the final time and temperature of the production
lot.

In a food context, the quality is an additional constraint of the job
scheduling problem; for this reason, finding the optimal solution of the
model presented in 21.3 becomes even more difficult since the problem is

1The source code of Figure 21.6 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/PROD_02%20Demand%20patterns.ipynb
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Figure 21.6: Classification and patterns of the demand for a food catering
production plant.

Figure 21.7: Scheduling variables in a food catering plant. Figure from [6].

overconstrained. In addition, the minimisation of the makespan is only one
of the objective function since the maximisation of the food is considered
an objective as well. A multiobjective problem is proposed To meet both
these purposes. It is solved by a metaheuristic algorithm called simulated
annealing [7]. The solutions to the problem produce the Pareto frontiers
built on five daily instances (one per each production day of the input
dataset). The frontiers in Figure 21.8 show how preserving the quality of
the food product is a much more sensitive objective than the minimisation
of the makespan.

Finding the best food safety solution only slightly affect the scheduling
from a makespan perspective while adding significant value to the quality of
the finished product. For this reason, with particular reference to the end-
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Figure 21.8: Pareto frontier of the bi-objective problem. Figure from [6].

of-line of cook-warm product, it is crucial to design areas with hot-holder
able to maintain the quality and the food safety of the products. The hot
holding areas can be over-sized since their investment cost is limited but it
reduces the risk of food safety and food loss due to quality and temperature
decay.

21.4.2 Control of a 3PL packaging plant for automotive
spare parts

Performance assessment

The management of this production node relies on a third-party company
that performs the operations. Business processes are then fractioned, un-
clear, inefficient and even unknown to the managers. For this reason, the
business process mapping and notation (BPMN) is used to investigate the
physical and information flows between entities and actors involved in pro-
duction and planning. Figure 21.9 illustrates an example of the BPMN
together with the georeferencing of the processes on the plant layout. This
technique enables visual analysis of the routes e of different processes and
identifies which resources and which areas are responsible for processing a
specific task.

A dashboard of KPIs was defined to identify the workload and assess its
impact on the working time and the distance travelled within the production
site. The dashboard of KPIs in Figure 21.10 shows these metrics.

The graph in the left upper corner identifies the workload per week
(number of processed lines); the bar chart in the right upper corner identifies
which type of tasks are responsible for the workload in terms of time. The
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Figure 21.9: BPMN and georeferencing of the processes operated in the 3PL
packaging plant.

Figure 21.10: Control dashboard of the processes operated in the 3PL pack-
aging plant.

dot-plot in the left bottom corner identifies the trend between the number
of processed lines and the distance travelled between the workstations to
handle those parts. The last Pareto chart in the right bottom corner shows
that a minor amount of product families is responsible for the majority of the
handling activities, in terms of the distance travelled between workstations.
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Workload prediction

The model in 21.2.1 is applied to identify demand patterns and choose
the most appropriate methods to control and design the production node.
Figure 21.11 classifies the demand of the production system, highlighting a
significant number of intermittent and lumpy parts.2

Figure 21.11: Classification and patterns of the demand for a 3PL packaging
plant.

Given this pattern of demand, the production node must be flexible to
meet productivity variance and time requirements. In addition, demand
forecast must be carefully addressed since lumpy parts have significant vari-
ance.

The demand trend is assessed by using descriptive analytics techniques.
Figure 21.12 identifies the global trends of quantities and the number of
lines processed by the entire production plant. The trends are aggregated
weekly and daily.3

Decomposition is applied, and the trend, seasonal and residual compo-
nents are identified. Due to the length of the time series (more than six
years), the series is weekly aggregated before the decomposition.

Figure 21.13 illustrates the decomposition showing a descending trend
component and a seasonality occurring twice a year. The residual compo-
nent is significant; this is due to the large variability of the demand already
identified with the demand patterns in Figure 21.11.4 The yearly trend is
predicted using the fbProphet prediction model. Figure 21.14 illustrates the
predictions and confidence intervals. ARIMA models cannot be applied to
this time series since no transformation (square root, power, log, boxcox)
leads to a stationary series. 5

2The source code of Figure 21.11 is available here.
3The source code of Figure 21.12 is available here.
4The source code of Figure 21.13 is available here.
5The source code of Figure 21.14 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/PROD_02%20Demand%20patterns.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/LOG_01%20Demand%20assessment.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/LOG_01%20Demand%20assessment.ipynb
https://github.com/aletuf93/logproj/blob/master/examples/LOG_01%20Demand%20assessment.ipynb
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Figure 21.12: Daily and weekly trend of the demand in a 3PL packaging
plant.

Figure 21.13: Decomposition of the market demand in a 3PL packaging
plant.
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Plant Design

This chapter and the following one address the design from scratch (i.e.
greenfield) of a production node. Greenfield design is often a hard task
since it involves risk, uncertainty and the definition of many assumptions
which are hard to set since the production node only exists in our minds.

In general, this activity is complicated. Luckily, there are some general
rules and framework that can help in this activity. When historical data
from previous experience (or similar production nodes) are available, the
data-driven approach helps to work with few but robust information. When
historical data are not available, the definition of a kinematic/engineering
model may help to get trustful estimates.

This chapter focuses on the problems related to the design of the plant:

1. clustering items into product families;

2. facility location;

3. technology and asset choice;

4. auxiliary systems design;

5. definition of the number of assets;

6. layout design.

Chapter 23 focuses on the problems related to the design of the processes:

1. Inventory policy design;

2. Workstation design;

3. Handling design.

389
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Figure 22.1 presents a cascade procedure, inspired to [1] showing these
nine tasks for the design of a greenfield production node. This procedure
is known in the literature as “facility design” and guides all the activity to
transform a greenfield to a production plant.

Figure 22.1: Hierarchical framework for facility design.

22.1 Clustering parts into product families (P1)

Engineering is about complexity. Companies rely on engineers and engi-
neering science since they are able to use tools and method to:

1. pickup a complex problem;

2. reduce its complexity;

3. understand the problem;

4. find a method to solve the problem;

5. solve the problem.

Production nodes are responsible for creating goods, i.e. parts i. Glob-
alisation and mass customisation trends lead production nodes to incredibly
high levels of complexity. This complexity is measurable in terms of:

• The size of the product portfolio (i.e. the number of different parts i);

• The production volume QG,i (i.e. the number of items produced by
the plant G, for each type of part i).

These metrics are important to identify an adequate production tech-
nology, with a proper throughput THj for each resource j; but this task
can be hard when the number of parts i is high (e.g. more than 1000). For
this reason, it is good practice to cluster items into homogeneous families
with similar features in order to reduce the complexity of the problem and
focus on similar entities. According to Section 4.2, this is a version of the
family problem, applied to a production system.
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22.1.1 Model-driven methods (D2)

The design of a production system is all about creating an environment
for a smooth and efficient production of goods. Empirically, the evidence
shows that grouping parts i with similar production cycle (i.e. route e) is
an excellent way to improve efficiency. Model-driven approaches rely on the
definition of an incidence matrix Xij , defined as:

Xij =

{
1 if part i needs resource j in its production process
0 otherwise

(22.1)

The diagonalisation of the matrix Xij into a matrix Xδ
ij is used to iden-

tify groups of homogeneous parts (see Figure 22.2).

Figure 22.2: Diagonalisation of a part-resource incidence matrix.

Any diagonalisation algorithm is suitable to identify clusters of parts
and resources since the model assumes that operations can be improved
when the clusters of parts using the same subset of resources are handled
together. For the sake of completeness, we mention the direct clustering
algorithm [2], and the rank order clustering algorithm [3] that produce the
diagonalization of Xij .

Once product families π ∈ Π are defined, the rest of the design of the
production node should consider the family π instead of all the parts i ∈ π,
so that the complexity due to the variety of the size of the product portfolio
is reduced. In case, the number of families is still difficult to handle (e.g.
higher than 100 families). A Pareto analysis may help. For example, if a
small subset of families (e.g. the 20%) produces the major amount of the
volumes QG,i, it is good to consider only the first 20% of the families to
reduce the complexity and the bias in the other design stages (see Figure
22.3).

Clustering does not guarantee cluster are feasible in practice. For exam-
ple, a cluster to be assigned to a group of machines may exceed the available
working time of the resources. To solve this feasibility problem, an original
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Figure 22.3: Pareto curve of a production plant where the first 40% of
the items produces the 80% of the production volume (i.e. the number of
production lines)

capacitated clustering algorithm is proposed [4]. The algorithm is inspired
to hierarchical clustering with a capacity constraint. Let di be the demand
(e.g. the total working time) of a point (i.e. a part) i and C the maximum
capacity of a cluster. The algorithm works similarly to algorithm 111. The
outcome of this algorithm is a set of clusters whose cardinality is unknown
in advance. Each cluster k has a total demand d =

∑
i∈k di, with d ≤ C.

22.1.2 Data-driven methods (D1)

The matrix Xij can be seen as the learning table introduced in chapter 8.
It consists of n observations (one for each part i = 1, . . . n) and p features
(one for each resource j = 1, . . . , p). Data driven-methods enhance more
powerful applications, by defining the similarity of the resources j, given
the set of parts they can process. The incidence matrix Xij can, then, be
transformed into a proximity matrix Dik (where i, and k are both parts)
by using a similarity index (see section 8.2.2). Similarity indexes were born
in the biological, and are defined using:

• a, the number of resources processing by both i, and k;

• b, the number of resources processing only by i, and not by k;

1The source code of Algorithm 11 is available here

https://github.com/aletuf93/logproj/blob/master/logproj/ml_unsupervised_models.py
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• c, the number of resources processing only by k, and not by i;

• d, the number of resources processing neither by i, nor by k.

Using a, b, c and d, the matrix Dik is defined for all the couples of
resources (i, k) using dik = 1, where sik is a similarity index. The most
famous is the Jaccard index:

sik =
a

a+ b+ c
(22.2)

For the sake of completeness, there are other many other definitions of
similarity coefficients sij , as: the simple or relative matching coefficients
[5], Yule coefficients, Rogers and Tanimoto coefficients [6], Baroni-Urbani
coefficients [7], Sorenson coefficient [8]. Given Dik, hierarchical clustering
(see section 8.2.2) is used to agglomerate parts into clusters.

The same procedure can be applied to create clusters of similar resources
j to locate close to each other on the plant layout. So far, the data-driven
approach does not add too much to the classical model-driven approach.

There are unlucky but ordinary circumstances where the route e of a
product is unknown (e.g. not available in the information system during
the planning). In this case, the data-driven approach is useful by combin-
ing different type of data to determine product families. There are many
features that can enter the matrix Xij , for example:

• the set of processing resources j;

• the size of the part i;

• the volume and weight of i;

• the description of the item i;

• the package or the vehicle needed to transport i;

• the supplier of i;

• the customer of i;

• the bill of materials of i.

Given a matrix Xij with all the available information, it is necessary to
investigate (e.g. using historical data) if a correlation exists between one of
the features and the route e. If a correlation exists, feature selection should
be performed, and unsupervised learning algorithms can be applied. Many
unsupervised learning algorithms can be used as:

• the k-means (see section 8.2.1), suitable when all the data are nu-
merical and with the same unit of measure (e.g. length, height and
width);
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• the Gaussian mixture model (see section 8.2.3), suitable when all the
data are numerical and with the same unit of measure (e.g. length,
height and width) and values are normally distributed within the same
cluster;

• hierarchical clustering (see section 8.2.2), when data are categorical
or provided by a binary incidence matrix Xij or a proximity matrix
Dik.

Measuring the goodness of a cluster is a hard task both using a data-
driven and a model-driven approach. The underlying assumption is that
when clusters are homogeneous, the WIPj of the resources is minimised
since flows are smooth. In addition, if resources processing the same product
family are placed close to each other, the LTe is reduced and provides a
higher LoSe.

22.2 Facility location (P6)

Facility location problem regards the definition of an adequate location (i.e.
latitude and longitude) to place a production node. The production plant
should be placed within an area where the costs are minimised. This type
of decision is highly prescriptive and guided by engineering models since it
is difficult to collect data on the previous realisation of this choice.

22.2.1 Model-driven methods (PS4)

The main underlying assumption of these models is that a plant should be
placed such that the costs linked with its location are minimised. Some
other crucial aspects connected with the facility location are:

• the cost of the direct labour of a location;

• the cost of the energy;

• the cost of the land and the building;

• the connection to distribution networks (e.g. rail/water)

• the availability of raw materials (e.g. sand)

• the transportation costs.

This problem can be solved using optimisation when all this information
is available for any alternative. When alternative locations are close to each
other, transportation cost may be the only significant variable to take into
account (and to minimise) in the definition of the facility location.
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In this case, the problem can be solved by using a kinematic model based
on the minimisation of the travelled distance. Let S, with s ∈ S, s = 1, ..., k
be the set of customers and suppliers of the production plant to place.
Each point s is characterised by its longitude and latitude (lons,lats), and
an estimate of the number of trips ws travelled between the production
node and s. To find the point minimising the distance, it is necessary to
transform the longitude and the latitude into cartesian coordinates. There
are many methods allowing to do that. Here the Mercator projection [9] is
used, where:

xs = R× lonRADs (22.3)

ys = R× ln

(1− e× sin
(
latRADs

)
1 + e× sin (latRADs )

) e
2

× tg
(
π

4
+
latRADs

2

) (22.4)

Where lonRADs and latRADs are the coordinates using radians, R =
6378.14 km is the equatorial radius, e = 0.0167 is the eccentricity of the
Earth. Given xs and ys for all s ∈ S, the problem is to find the coordinates
(x, y) to place the production plant, minimising:

z = min {d [(x, y) , (xs, ys)]× ws } (22.5)

Where d is an arbitrary distance function, for example:

• Rectangular (or city block) distance: |x− xs|+ |y − ys|;

• Euclidean distance:

√
(x− xs)2

+ (y − ys)2
; item Squared Euclidean

(or gravity) distance: (x− xs)2
+ (y − ys)2

.

The mathematical minimum can be found by minimising z [10]. Nev-
ertheless, it is almost impossible that this point coincides with a feasible
physical location for the plant. For this reason, a gradient approach re-
sults much more useful to support the decision-maker. Let define a set
Φ = (xf , yf ) containing the coordinates (using equations (22.3) and (22.4))
of a number of available locations f . By considering a broader geofence, con-
taining all the points in Φ and defining the value of z for any point within
the geofence, the gradient of z can be identified. This way, the decision-
maker could identify which direction is better to find an area for the new
production plant. Many alternative procedures to minimise z depending on
d can be found in [11].

Nowadays, due to the variability of the market demand and the short-
ness of the duration of the contract, the reliability of a static approach to
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solving the facility location problem may be reduced. As well as with time
series, which considers the evolution of an event over time, by repeating the
calculation of the optimal location with different time horizon it is possible
to define optimal location using a probabilistic approach. Let z∗ be the set
of optimal locations (x∗t , y

∗
t ) calculated on a time horizon T , where t ∈ T .

Then, the minimum of the function:

zπ = min

{∑
t∈T

d [(x, y) , (x∗t , y
∗
t )]

}
(22.6)

Identifies the optimal location over a time horizon T 2.

22.3 Auxiliary systems design (P4)

Auxiliary systems are any technological asset that does not directly add
value to the finished product, but it is necessary to perform tasks. Examples
of the auxiliary systems are:

• the lighting systems of the production site;

• the air conditioning system (i.e. heating and cooling);

• the systems for the production of energy (e.g. electricity/steam),

• the systems for the production of other technological fluids (e.g. com-
pressed air);

• the systems for the reduction of the noise.

All of these systems involve precise prescriptive design models based on
engineering models. These models cannot be validated before the realisation
of the system that is usually costly. For this reason, the whole design phase
relies on engineering procedure based on indices and coefficient belonging
to different knowledge domains that are not deeply analysed in this work
[12].

22.4 Technology and asset choice (P2)

This activity involves the determination of the proper technologies and level
of automation to perform production tasks. This is a technology assignment
problem since, given the features of the products and the demand, it is
necessary to identify the throughput THj for each resource and the lead
times LTe associated with the production cycles. Depending on the level
of automation and flexibility, it is possible to identify different production,
layout and automation paradigms (see Figure 22.4) [13].

2The package logproj provides method to deal with facility location problems here

https://github.com/aletuf93/logproj/blob/master/logproj/P6_placementProblem/facility_location_definition.py
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Figure 22.4: Flexibility-automation matrix for technology choice.

Three main layout configurations are identified:

1. the production line: all the resources necessary to transform raw ma-
terials into a finished product are placed in line.

2. cellular manufacturing: all the resources necessary to transform raw
materials into a limited set of finished products are placed together.
There is the possibility some tasks need resources outside the cell.

3. resources are organised per type (milling machines, lathing machines,
pressing machines).

There are four production paradigms connected to these layout config-
urations:

• continuous production: the production flow is continuous, with a fixed
cycle time;

• mass production: the production flow is fast but not continuous since
it requires small customisations (e.g. form-postponement, different
labelling) in the end-of-line;

• batch production: the production flow has major interruptions due to
the setup of machines (e.g. to change the die of a press);

• job-shop production: the production flow is slow and fragmented
among the different departments.
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The type of automation is different as well, since:

• fully automated production line works with robots allowing high ac-
curacy and modest cycle time, but with no flexibility to readapt the
production;

• collaborative robots may work together with human operators in many
applications (e.g. assembly lines) enhancing both the power of the
automation and the flexibility of the manual operations;

• manual operations have the highest degree of flexibility, but with lim-
ited cycle time and a significant probability of errors.

The decision-maker should choose the possibilities that maximise the
profit of the company within a pre-defined time horizon. In particular, it
is important to have reliable forecasts on the workload and information on
the investment cost for different technologies.

22.4.1 Model-driven methods (PS3)

Model-driven methods consider two metrics (already seen in section 22.1)
to identify an adequate technological configuration:

• the size of the product portfolio (i.e. the number of different parts i);

• the production volume QG,i (i.e. the number of items produced by
the plant G, for each type of part i).

By performing a Pareto analysis on the production volume for each part
(see Figure 22.5):

• few parts with high production volumes should be assigned to pro-
duction lines;

• the majority of parts with extremely low volumes should be processed
in the departments of a flow shop;

• cellular manufacturing, flexible manufacturing systems (FMS) and re-
configurable manufacturing systems (RMS) should be considered for
parts with an intermediate behaviour.

For each product, it is possible to identify the decoupling production vol-
ume THi (part/hours) corresponding to an economic convenience between
a production line and a job-shop production [14]. Let the saturation of a
resource j be:

Uj (THi) =
THi× tj

nj (THi)× 3600
(22.7)
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Figure 22.5: Classification of parts for technology and asset choice.

Where THi is the production throughput (parts/hours), tj is the pro-
cessing time per part (sec/part), nj(THi) the number of resources of type
j, necessary to reach a throughput THi, 3600 is the number of available
seconds per hour of resource j.

Considering a target saturation K for a production line (e.g. the 90%),
the decoupling production volume for a part i is THi : U(THi) > K, where:

U(THi) =

∑
j Uj × nj(THi)∑

j nj(THi)
(22.8)

Resources j are usually some tens. When they have a very different
investment cost CJ between each other, it is recommended to take into
account this cost by setting:

U(THi) =

∑
j Uj × Cj × nj(THi)∑

j CJ × nj(THi)
(22.9)

Once the function U(THi) is defined, the decision between production
line or job-shop should be made by setting THi equal to the demand takt-
time. If U (THi) > K, then there are good reasons to take into account
the design of a production line. Otherwise, other layout models (cellular
manufacturing or job-shop) should be considered.
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22.4.2 Data-driven methods (PS2)

The choice of the production technology and the assets can be seen as an
assignment problem where parts i need to be assigned to an adequate tech-
nology. Observations of parts belonging to different production models help
to identify the proper cluster. Classification models (see chapter 10) can
be used for the definition of the decision boundaries between the clusters.
Figure 22.6 illustrates a scatterplot identifying three different production
technology. Blue dots are processed within the departments of a job-shop
system. Red dots are products realised by machines organizes ad production
cells and flexible manufacturing systems (FMS). Green dots are processed
on manual workbenches able to perform any production task for any type
of product.

Figure 22.6: Classification of parts using the number of orders and the
number of produces quantities per day.

The definition of such clusters within the same production node allows
to immediately identify which layout configuration results suitable the most
in case of re-design. In addition, the design of a classification model (see
sectio 10), can help to design the production flow of new products depending
on the expectation of their market demand (i.e. the number of rows and
the order quantity).
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22.5 Definition of the number of assets (P5)

The definition of the number of assets identifies the power (i.e. the ca-
pacity) and the saturation of the resources. The utilisation Uj must be as
higher as possible for economic reasons, while the capacity Cj should be
enough to satisfy the market demand. Both these metrics impact the level
of service since capacity act as a buffer (higher capacity allow for processing
a production volume within a shorter time). As many power problems in
other engineering disciplines, this problem is prescriptive and lead by an
engineering model.

22.5.1 Model-driven methods (PS4)

Models to define the number of assets can be static or dynamic. When no
information about the time is available, a static model should be chosen.
Static models always work by considering:

• aj , the amount of time a resource j is available over a time span (e.g.
hours/day);

• bj , the expected amount of working time required by the parts i that
need to be processed on j (e.g. hours/day).

The minimum number of assets of type j can be statically calculated as:

nj =

⌈
bj
aj

⌉
(22.10)

When the decision-maker has time-based information as:

• the probability distribution fi(t) of the arrival of parts for each re-
source j;

• the probability distribution gij(t) of the working time of each resource
j.

A simulation approach can be used to identify the number of resources
virtually. Simulation is a complex task performed on commercial simulation
software. Each resource is associated with a queue where parts i are placed
when the resource is busy. By randomly generating parts i and processing
time (from f , and g) operations are virtualised, and the number of items
waiting in queue is estimated. Uj , Cj and LoSe can be estimated as well
by iterating instances of the simulation. The probability distributions of
the KPIs and the queue size suggest the decision-maker if the number of
assets in the simulated configuration is appropriate or should be modified.
By running different scenarios with a different number of assets, a satisfying
configuration can be obtained.
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22.6 Layout design (P6)

The layout design is a placement problem involving the definition of the lo-
cation on the plant layout for each resource j. It is a combinatorial problem,
usually solvable by a model-driven approach using optimisation.

22.6.1 Model-driven methods (PS1)

The combinatorial problem can be modelled using the quadratic assignment
problem as follows. Table 22.7 identifies the parameters of the problem.

Figure 22.7: Parameters of the quadratic assignment problem.

The model is as follows.

Xjk =

{
1 ifjassignedtokprocess
0 otherwise

(22.11)

min
∑
j∈C

∑
k∈L

∑
h∈C

∑
l∈L

cjkhl xjk xhl∑
j∈C

xjk = 1 , k = 1, . . . , n

∑
k∈L

xjk = 1 , j = 1, . . . , n

xjk integer

(22.12)

By setting cjkhl equal to the distance between control points k, and l,
times the number of trips exchanged between resources j, and h, the prob-
lem consists in finding the layout configuration which minimises the total
travelled distance. Unfortunately, the problem is quadratic and a solver may
take forever to find the configuration of decision variables xjk corresponding
to the minimum solution value. For this reason, a number of suboptimal
algorithms are introduced to find adequate configuration (without the war-
ranty of optimality). These algorithms are organized into:

• construction algorithms, to find a feasible solution starting from the
input data;

• local search algorithms, to improve an existing feasible solution.
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Construction algorithms

Construction algorithms split the problem of the layout configuration into
two different subproblems:

1. control points ranking;

2. control points placement.

Relevant methods are the total-closeness-rating, the ALDEP [15], the
CORELAP [16] and the relationship diagramming method [17]. All of
these have a ranking and a placement procedure.

Local search algorithms

The solution produced by a construction algorithm may be far from opti-
mality. For this reason, local search algorithms perform moves (i.e. little
modification of the incumbent solution) to improve the solution value.

Local search algorithms are the 2-opt, 3-opt exchange [18] and CRAFT
[19]. The 2-opt and 3-opt are general-purpose local search methods that
make exchanges between groups of 2 or 3 elements.

Regardless of the methodology used to solve the plant layout problem,
a graph G (V,A) of the system can be defined and visually investigated to
identify criticalities. The flows exchanged between control points can be
aggregated by arcs or nodes and represented by projecting G on the plant
layout (see Figure 22.8)3.

Figure 22.8: Visual representation of the material flows aggregated by arcs
(on the left) and by nodes (on the right).

22.7 Applications

This section illustrates two applications of plant and process design within
two different industrial sectors (food and automotive). The aim is to show
the generalisation of the methods proposed in the previous chapters, and

3The source code to deal with the representation of a from-to matrix is available here.

https://github.com/aletuf93/logproj/blob/master/logproj/P3_flowProblem/assessFlows.py
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the effect of the data-driven methods in applied design case studies. In
particular, the first case study is mainly model-driven, while the second is
more data-driven.

22.7.1 Plant Design of a food catering plant

This section applies the methodology to design a food catering plant from
scratch. The food catering industry is responsible for supplying warm, safe,
and tasty food to schools, hospitals, and nurseries, as well as to company
canteens. The production plant of a food catering industry is known as a
centralised kitchen (CEKI).

Typically, a middle-size CEKI can prepare, pack, and deliver more than
10.000 meals per day by working in a short-spanned time batch (e.g., from
5.00 AM to 11.30 AM for the lunch service); it provides food service within
a short-range, usually at distances under 30 km. The type of service is also
characterized by the temperature at which the meals are distributed. Three
alternative temperature profiles are possible:

• cook-warm: the product is cooked and maintained warm (above 65
◦C) until it is consumed;

• cook-chill: the product is cooked, blasted, and delivered to the cus-
tomer who re-warm it before service [20];

• cook-chill-re-warm: this is when cook-and-chill products are rewarmed
at the CEKI and delivered according to the cook-warm profile.

Among these profiles, cook-warm is the most critical for safety issues
because the product’s temperature must be maintained above the danger
zone (4–65 ◦C) at which bacteria propagate exponentially [21]. The cook-
warm meals should be conserved at conditions that are outside the dan-
ger temperature range to comply with safety rules and standards from the
time they are produced until their consumption and should be necessarily
subjected to continuous and expensive hazard analyses and critical control
points (HACCP), as well as monitoring and control of the processing tasks.

A CEKI can implement all these three production temperature profiles
leading to a more complex organisation of the operations. The assessment
of the current production environment is a fundamental step to properly
design a new plant. This procedure has already been illustrated in 21.4.1.

Clustering products into families

For analysing the extant production mix, the previous product families are
considered. Product families are based on the commercial class to which
a product belongs. Different families are defined for the components of a
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menu (e.g. main dish, side dish, fruit, dessert, vegetables, mineral water).
Figure 22.9 illustrates the relative importance of each product family by
using a Pareto analysis.

Figure 22.9: Histogram and Pareto chart of the product volumes within
each product family.

Figure 22.9 show that few product families generate the majority of the
product mix. This is a key metric to consider to improve the design in the
following steps.

Facility location

A similar profiling activity has been performed on the points of demand
to group them according to the temperature profile(s) they demand. This
activity leads to the decision of designing a CEKI able to realize products
belonging to all the three temperature profiles. Then, by considering the
number of trips to every single point of demand, it was possible to define the
optimal location. Euclidean distances have been used since empirical tests
showed that they were the most accurate estimate of the real distances in
this area. Figure 22.10 illustrates the output of the facility location investi-
gation identifying an optimal point for each time period (e.g. a week). This
analysis evidences that the network suffers changes of the flows intensity
exchanged between the plants and the nodes of the network.4

Auxiliary systems design, technology and asset choice, definition
of the number of assets and layout design

Due to the peculiarity of the catering industry, a wide number of profession-
als with various competencies and backgrounds were involved in the design
phase. To support the design of the new plant and to investigate how their
decisions affect each other, a comprehensive decision support system (DSS)

4The source code of Figure 22.10 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/PROD_01%20Facility%20location.ipynb
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Figure 22.10: Transition of the optimal location of the network considering
different time periods.

was developed [22]. The DSS simulates the production operations by us-
ing a Montecarlo approach. Decision-makers can change the value of the
decision levers regarding:

• the auxiliary energy system to use (electricity, gas or steam);

• the type of asset to use;

• the number of assets for each type;

• the position of the control point where resources are placed.

The relational database illustrated in section 20.2.1 is the input dataset
to feed the DSS. The DSS produces descriptive and visual analytics on the
results of the simulation as, for example, the spaghetti chart (see Figure
22.11), representing the intensity of the material flow exchanged between
control points.

Figure 22.12 proposes insights about the effect of decision-making on
the workload of the auxiliary systems for the production of energy and the
workload of a single workstation (i.e. a machine). The two analytics look
similar as they represent the expected utilization of the loading capacity
of a generic working station and power load required by the plant (i.e.,
the electrical or thermal energy expressed in equivalent kWh of energy or
gas) or gas loads over the timeline, respectively. The blue lines represent
the utilization coefficient of a resource. This coefficient is calculated as the
ratio between the volume of a product loaded on the resource to its loading
capacity. A value of utilization less than unity indicates when a working
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Figure 22.11: Spaghetti chart and material flow intensity chart.

station is underutilized, while values above unity indicate the theoretical
number of resources needed to avoid queues.

The energy workload chart identifies the power load for different en-
ergy types, estimating the size and capacity of the power supply system.
When different energy supplies are allowed for a given resource (i.e., triva-
lent oven), two alternative graphs are reported, and energy costs are quan-
tified accordingly to assess the most convenient energy source.

Figure 22.12: Representation of the workload and the energy profile of a set
of different resources of the CEKI.

To investigate the behaviour of the system depending on the number of
assets, the DSS implements three different rationales to identify the number
of assets [23]. The simulation can be set up using:
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• a single machine for each type (machine-based rationale), to identify
the workload curve of the machine;

• the minimum number of machine to avoid queues (recipe-based), to
identify the behaviour of the system without queues;

• an arbitrary number of machine defined by the decision-maker (layout-
based), to identify the performance of a given design alternative.

By using the DSS, managers can immediately investigate the logistic
effect of their decisions. Additional information on the expected production
time and costs are provided to identify which product may represent a
bottleneck for the production system (see Figure 22.13).

Figure 22.13: Dashboard identifying the cost and the schedule of each part
processed by the CEKI.

The DSS allows them to develop many different production scenarios
and to test their behaviour by using a simulation approach. This approach
presents a high bias since it cannot be generalised to any production nodes.
However, it gives the flexibility to the decision-makers of investigating how
the decisions belonging to their specific field of responsibility (e.g. archi-
tectural, power plants, layout design, asset choice) modify the operational
performance of the entire production system.

22.7.2 Plant Design of a 3PL packaging plant for auto-
motive spare parts

This section illustrates the methodology to design a 3PL packaging plant
for automotive spare parts from scratch.
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The new plant is designed to replace an existing plant processing end-
of-line tasks (e.g. picking, packing, placing, oiling, labelling) on more than
58.000 spare parts automotive supply chain. This type of processing plants
works as an intermediate stage of the automotive supply chain where incom-
ing products are collected, packaged and labelled according to the clients’
needs. The clients are production plants where cars or tractors are assem-
bled and prepared for shipping to the final user. Since these clients mainly
work Just-In-Time (JIT), the 3PL packaging plant has to absorb an unpre-
dictable demand in a very short time.

The plant delivers its service using three different due times (24, 48 and
72 hours) with an LoS of the 90% (i.e. 90% of the probability to deliver a
service within the given LoS). The operations of the 3PL packaging plant
consist of oiling, packing and labelling spare parts.

To properly design the new plant, it is necessary to assess the current
state of the system and predict future demand as illustrated in 21.4.2.

Clustering products into families

The first step for the design of the new production node is to define product
families [4]. As Figure 1 shows, the workload is highly variable. In addi-
tion, the quantity processed is variable too and slightly correlated with the
number of lines processed. For these reasons, the definition of product fam-
ilies can help the design and control of the production systems. Since the
production cycle is not available in the information system of the company,
the idea is to cluster parts based on their feature, assuming the produc-
tion cycle is similar. A correlation heatmap is built, considering the service
type, the size, volume, weight and type of package of the items, to check
this assumption. Figure 22.14 shows a heatmap built on about two millions
of orders for seven years.

Figure 22.14 reveals an obvious significant correlation between the di-
mensions of the package and the items. Besides, there are significant corre-
lations between the dimensions of packages and items and some service type.
This result suggests that there is the possibility to cluster item based on
the service type and assign them to specific workbenches in order to reduce
the complexity and the inventory of packages needed on each workbench.

Operators perform the tasks of a specific service type on manual work-
benches with no automation. All the operators on the 12 workbenches can
process any of the 58.000 products. This fact leads to a very low special-
isation of the operators, and unpredictable material flows since any of the
workbenches can request all the 1500 different types of packages. Besides,
some clients require a customised tertiary package structured as a shelf of
the dimension of a pallet. These shelves are placed directly to a worksta-
tion of the client’s assembly line. For this reason, the 3PL package plant has
to deal with high work-in-process (WIP) levels on the workbenches due to
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products, packages (with the size of a carton box) and customised shelves
(with the size of a pallet). To deal with this randomised material flows and
WIP of the 3PL plants, we applied the proposed methodology aiming at the
definition of a number of families. We start with an increasing number of
cluster (from two to ten) using different clustering techniques (see section
8.2). This value is, then, compared to an estimation of the real number of
workbenches with the application of the capacitated clustering algorithm.
Figure 22.15 presents the graphical results of the algorithms in the different
clustering scenarios and with a different number of clusters. Each dot is one
of the 58.000 products, while the axis of each subplot represents the first
two principal components of the input dataset. Different colours indicate
different product families.

The output of unsupervised clustering is compared with the capacitated
clustering algorithm (see algorithm 11). The capacitated clustering algo-
rithm considers a maximum allowable capacity that is fixed and equal for
all the cluster and an amount of demand required by each product. To
feed the algorithm with this data, we set a time and motion monitoring
campaign in order to identify an average processing time required by each
product. This data collection applied on a subset of the products (i.e. the
items belonging to the 95◦percentile of the total number of processed lines)
due to the very high number of items. The amount of time required by the
products with the highest workload defines the maximum capacity for each
cluster. The capacitated clustering produces 20 clusters. This number is
used to compare the performance with the best performing unsupervised
models: the Gaussian Mixture Model and the Complete Linkage Clustering
based on the Descriptions, setting the number of clusters k = 20.

Figure 22.16 illustrates the outcome of this comparison using a visual
analytics technique called t-SNE. This technique visually identifies clusters
based on the matrix X, n× p of the observation that is projected onto a 2-
dimensional space preserving the proximity of each observation according to
the t-distribution. The colours are associated accordingly with the cluster
assignment given by the algorithms. Figure 22.16 shows that it is difficult
to identify a topology of the cluster (as it happens in Figure 22.15) since
the number of clusters is high and the input data are scattered. On the
other side, analysing Table 22.1 it is possible to evaluate the performance
of the algorithm from a logistic point of view, identifying the variability of
the processes organised according to this clustering.

Table 22.1 illustrates the KPIs and compares their variance (using ab-
solute and relative value compared to the capacitated case) calculated on a
time horizon of 7 years. It is easy to check that the capacitated clustering
provides the highest balanced scenario with the lowest variance. The vari-
ance in workload (i.e. seconds) between the 20 clusters has an average of
180 hours per year per workbenches. This is a low gap, considering that the
variability in the number of products and packages is dramatically reduced
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compared to the other scenarios.
Gaussian Mixture Model provides a poorer result that has to be manu-

ally checked and assessed before a physical implementation since a couple
of clusters results extremely small in workload compared to the average of
the others. Nevertheless, it is important to remember that GMM provides
the uncapacitated result in short running time (i.e. about 5 minutes) com-
pared to a long runtime of the capacitated algorithm which needs around 20
hours of runtime on a computer equipped with 8Gb memory and a 2.7GHz
processor.

Facility location

Facility location has been studied by using a probabilistic approach, identi-
fying for each year of the input dataset the optimal location in three different
scenarios. The scenarios are defined by the distance metrics, i.e. euclidean,
rectangular and squared euclidean distance. Figure 22.17 identifies the re-
sults on the map where each row is a different distance scenario, and each
column identifies how the optimal location – according to the chosen dis-
tance – moves on the map. The bubbles identify the intensity of the yearly
aggregated flows exchanged with suppliers and customers.5

5The source code of Figure 22.17 is available here.

https://github.com/aletuf93/logproj/blob/master/examples/PROD_01%20Facility%20location.ipynb
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Figure 22.14: Correlation matrix of the features of the input dataset. Figure
from [4].
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Figure 22.15: Clustering of parts using different clustering algorithms, and
different nuber of clusters. Figure from [4].

Figure 22.16: Comparison of the topology of the cluster using the t-sne
algorithm. Colors identifies parts belonging to the same cluster. Figure
from [4].



Re
vi
ew
ed
Ve
rs
io
n

414 CHAPTER 22. PLANT DESIGN

Table 22.1: Comparison of the logistic impact between capacitated and
uncapacitated algorithms.

Figure 22.17: Comparison of the optimal location produced using different
distance metric (i.e. euclidean, rectangular, and gravity) and different time
periods.
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Process Design

Process design is a strategic activity aiming at choosing how a production
system should behave in production. In particular, all these activities have
a strong impact on the inventory level (i.e. the WIP) that, in general, must
be kept under control to avoid useless costs, as storage costs, damages costs,
cost of searching for materials, cost of the unalignment between physical and
information inventory. This chapter focuses on:

1. the design of the inventory policy of a production system;

2. the design of the material handling system;

3. the design of the workstations.

23.1 Inventory policy design (P7)

Storing goods has a cost. Any supply chain manual, despite its focus, pre-
scribe the zero inventory philosophy [1, 2]. Unfortunately, storage levels will
never reach zero due to the complexity of the supply chains, their global
extensiveness and the fluctuations of the market demand. Hopefully, the
right tools can help to set the inventory at an adequate level and to keep it
under control.

23.1.1 Model-driven methods (PS4)

The problem of the inventory design involves the definition of the storage
levels for raw materials, semifinished and finished products within the pro-
duction plant. This problem is addressable by using prescriptive methods
which defined the right storage level and the proper rules to replenish the

417
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storage (e.g. a re-order point), aiming at reducing storage costs. Storage
cost embeds many cost items that are often difficult to estimate. Let assume
hi = f(q, t) be a comprehensive storage cost function, defined as a function
of the storage quantity q, and the storage time t. The problem is to find a
policy to minimise the cost h, such that:

• the inventory level is under statistical control;

• the shelflife of items complies with regulations and customers’ expec-
tations;

• stockouts are minimised (i.e. the market demand is always satisfied).

The type of market demand suggests different prescriptive approaches
to the design of the inventory levels. First of all, a key metric to consider
is the lead time LTi necessary to obtain part i from the previous stage of
the supply chain (e.g. a supplier or the previous workstation). When LTi
is larger than the amount of time the following node of the supply chain
(e.g. a client) is willing to wait, inventory management should be based on
predictions. Otherwise, inventory management is deterministic since stock
levels can be maintained low by acquiring parts only when needed. Figure
23.1 illustrate a model identifying different inventory policies depending on
the position of the decoupling point. The decoupling point separates the
part of the supply chain where production is organised based on predictions
from the part where it is based on the orders. When customers’ willingness
to wait is null (e.g. supermarket) or significantly large (e.g. luxury goods as
a yacht), the model in Figure 23.1 can be stretched on the right (everything
is based on the forecasts) or on the left (everything is based on market
demand).

The demand pattern and the lead time are two typical drivers to choose
between stock models and market demand models. There are other drivers
as:

• the value of the part;

• the shared use of the part between many processed (e.g. oil or screws);

• the responsiveness and the lead time of the supply chain;

• the complexity of the supply chain.

In general, stable and erratic parts both have a high frequency of de-
mand. In this case, inventory management can be lead by market demand.
The inventory level is defined by making accurate predictions on the mar-
ket demand (see section 21.2). These predictions can be used to feed two
inventory management paradigms:
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Figure 23.1: Inventory management policies matched with demand patterns.

• the push paradigm;

• the pull paradigm (or Just-in-time JIT).

On the other side, when predictions are unreliable, the inventory level
should be oversized to meet unexpected demand and avoid stockouts. This
is the case of:

• lot sizing (economic order quantity and safety stock);

• spare parts management (e.g. for maintenance reasons).

The push paradigm

The push paradigm works by pushing finished products into the market. It
can be summarised into the statement: if you can produce a part i, then
produce i. In other words, when production capacity and raw materials are
available, production processes should go on.

Under these assumptions, inventory levels should always be enough to
feed the production. A standard method to feed production is the Material
Requirements Planning (well known as MRP). The MRP identify the order



Re
vi
ew
ed
Ve
rs
io
n

420 CHAPTER 23. PROCESS DESIGN

quantities for each part i and for each time period t (time is usually sampled
into weeks). This method does not keep the inventory level under control.
It only enables the production to satisfy the demand. The method works
by considering:

• an estimate of the average demand di,t of part i, for each time period
t;

• the quantities of raw materials ρ, semifinished φ and subassemblies σ
necessary to produce a part i;

• the production lead time LTi;

• the supply lead times LTρ, LTφ, LTσ;

• the current inventory levels WIPi,t, WIPρ,t, WIPφ,t, WIPσ,t.

The order quantity for a part i at time t is defined as the difference
between the demand di,t and the inventory level WIPi,t. This quantity is,
then, corrected to consider the supply and production lead times. Theo-
retically, the inventory level is out-of-control, but it is kept at a minimum
to satisfy the market demand always. In practice, MRP systems are fed
with inaccurate predictions and wrong lead times, leading to substantial
inventory levels.

The pull paradigm

The pull paradigm has the sole objective of keeping the inventory level under
control. The inventory level of a part i is set to:

WIPi = di × (1 + SS) (23.1)

Where SS is the percentage of safety stock and di is the average market
demand. When setting a pull system, it is essential part i has a stable
demand pattern; otherwise, SS will be high. SS depends on the ratio
between the supply and the production rate of the part. If storage is checked
once a day and an additional day is necessary to feed the production, SS
should be greater than 2 (given that di is expressed parts/days).

Usually, a kanban system is used to implement the pull paradigm. A
kanban is a label associated with a production order of a given quantity
that can be placed within a container with a fixed capacity q. The problem
is to set the number of kanban for each workstation. This can be calculated
as K =

⌈
WIPi
q

⌉
.
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Lot sizing & safety stock

Lot sizing aims at the definition of the optimal quantity Qi for an order to
run:

1. when a re-order point WIP ri is reached;

2. at uniform time intervals (e.g. each week).

Given that this inventory policy makes extensive use of the stock, two
costs are considered:

• the storage cost;

• the cost to send an order.

The cost model (EOQ-buy) is defined as follows.

CBUYi (Q) = C ′i

(
Yi
Q

)
+
hQ

2
(23.2)

Where CBUYi is the cost of setting the size of a lot to Q. C ′i is the cost
to run an order of part i, Yi is the total expected demand (e.g. parts/year)
while h is the storage cost per part. The model assumes a steady de-
mand rate; for this reason, the storage cost is estimated at h

2 . By setting

∂CBUYi (Q)
∂D = 0, then Q∗ =

√
2C′iY

h .
A similar model can be used to set the size of production lot by taking

into account:

• the storage cost;

• the cost of the setup of the machine to process part i.

The cost model (EOQ-make) is defined as follows.

CMAKE
i (Q) = C ′′i

(
Yi
Q

)
+
hQ′

2
(23.3)

Where CMAKE
i is the cost of setting the size of a lot to Q. C ′i is the

cost of the setup of a workstation to process parts i, Yi is the total expected

demand (e.g. parts/year), h is the storage cost per part, Q′

2 is an estimate

of the average inventory level of parts i, and Q′ = Q
(
X−Y
X

)
, where X is

the production quantity. By setting
∂CBUYi (Q)

∂D = 0, then Q∗ =

√
2C′′i Y

h ×√
X

X−Y .

In general, when the order quantity Q is set, orders can be sent when
a re-order point is reached, WIP ri = Y × LTi, where LTi is the supply
lead time for part i. Otherwise, in many practical applications, it results
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simpler to send an order at regular time intervals RI (e.g. every week or
every month): WIP ri = Y × (RI + LTi).

In practice, the storage cost of WIP ri is lower than the cost of a stockout.
For this reason, the storage level WIP ri is increased by a safety stock SSi.
The level of service (i.e. the probability of having a part i available to serve
an order) defines the value of SSi: Prob {WIP ri + SSi ≥ di} ≥ SLi.

Spare parts inventory management

When dealing with spare parts (lumpy and intermittent parts) the cost min-
imisation criterion is appropriate as well in the definition of the inventory
level for each part. A cost model can be defined by considering the sum
of the storage cost and the stockout cost for a part i. Let Bi the number
of parts required within the time interval considered and n the maximum
number of parts that can be stored.

CΛ
i (Q) =

h

Q∑
q=0

q × Prob {Bi = Q− q}+

+Cmd

 n∑
q=Q

Prob {Bi = Q− q}


(23.4)

Where h is the storage cost in e
part , Cm is the cost of the stockout of

a part, d is the average absorption rate parts
τ , and τ is the reference time

interval. The Prob{Bi = Q−q} indicates the probability of consumption of
a number of parts Bi within a time interval τ . An appropriate probability
distribution can estimate this value. For example, the Poisson distribution

introduced in section 6.3.4. By setting
∂CΛ

i (Q)
∂Q = 0 the amount of parts Q

corresponding to the minimum cost can be found.

23.1.2 Data-driven methods

The definition of the optimal inventory level Qi of a part i is deeply linked
with variables falling out of the control of the production node, as the supply
lead time, the demand variability, the service level, the reliability of supply
and customers and many other apparently unpredictable variables as global
trends, diseases, war and people subjective perceptions.

It clearly appears that there is no model able to identify and investigate
all these parameters producing a reliable Qi. Big data and the platform
economy can help to approach this problem from a different perspective.
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When supply chain players are willing to share their data using the same
logistic platform (see section 15.1.2), the amount of available information is
larger, faster and leads to more accurate predictions of the market demand.
Under these conditions, the players have robust information at their disposal
to set the values of Qi.

23.2 Handling design (P3)

The handling system allows exchanging material flows between the control
points of a production node. The choice of the handling system must be
coherent with the chosen inventory policy since it affects the level of WIP of
the storage node. Handling systems are characterised using two parameters:

• the capacity; i.e. the amount of good that can be transported simul-
taneously;

• the throughput; i.e. the number of goods transported in the unit of
time (e.g. parts per hour).

The choice of the handling technology is similar to the choice of the
processing technology, and the same classification of 22.4 is used. Figure
23.2 classified handling systems depending on their level of flexibility and
automation.

Figure 23.2: Flexibility-automation matrix for handling system choice.

Figure 23.2 identifies the most common handling solutions and their
position in the classification scheme. The solutions with a high degree of
automation help to keep a smooth flow of the production, but they have a
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fixed throughput that deeply depends on the fleet size or the space avail-
able on the plant layout. A conveyor between two working station is a good
strategy to fix the amount of WIP to the length of the conveyor; neverthe-
less, this is possible only if the layout has enough space to hold the conveyor.
On the other side, forklift and pallet truck are flexible and adaptable since
they only need operators to work. However, their flow is less controllable
and more likely to errors and avoidable material flows.

Model-driven methods (PS3)

The models to define the handling solution are essentially prescriptive. In
many plants, the constraints are so many that the choice of the handling
system barely has more than a single alternative.

The most common strategy is to define a matrix F with entries assessing
the flow of materials fjk exchanged between two workstations j, and k.
Given the graph G with the arcs connecting the workstations, G defines
distances djk with travel time tjk. The capacity Cv of a vehicle can be used

to define the number of trips trjk =
⌈
fjk
Cv

⌉ [
trips

unit of time

]
. The availability

of the vehicle a measured in units of times can be used to calculate the
minimum fleet size:

N =
trjk × tjk

a
(23.5)

N is the minimum number since it does not consider all the trips when
the vehicle is empty, and it does not consider the dynamics of the system.
In addition, it cannot be used for rigid systems as conveyors and pipelines
where the dimension of the fleet is represented by the length of the conveyor
(the problem is similar to the definition of the optimal inventory level Qi
between workstations j, and k).

For these reasons, discrete events simulation is preferred to assess han-
dling systems from a logistic point of view. All the aforementioned variable
are transformed into random variables by considering their probability dis-
tribution and the load of the system is simulated instance per instance
assessing:

• the average saturation of each vehicle, and

• the queues where parts wait to be loaded.

This information allows deciding if a solution is suitable from a logis-
tic point of view (i.e. if the throughout of the fleet is appropriate). The
final decision must consider multiple alternatives evaluating not only the
throughput but also the cost of the handling system. Investment costs are
the fixed costs for the equipment. Variable costs usually depend on the level
of automation:



Re
vi
ew
ed
Ve
rs
io
n

23.3. WORKSTATION DESIGN (P4) 425

• both the cost of direct labour and consumables (e.g. the energy) are
significant for manual handling systems;

• the cost of energy is significant for automated solutions.

The logistically feasible solution with the best economic compromise
should be chosen as the handling system.

23.3 Workstation design (P4)

The design of the workplace is often considered a minor activity from a sup-
ply chain perspective since it is highly peculiar, and guidelines are defined
in specific norms which differs depending on the type of work performed.
Nevertheless, this stage results relevant from an efficiency perspective since
the performance of the operator is enhanced by a well-designed working
place.

This activity is mainly prescriptive and sometimes related to ergonomics
regulations compliance.

23.3.1 Model-driven methods (PS4)

Here we introduce a method to assess the performance of different work-
station setting and support the choice between the alternatives [3]. Two
alternatives are usually a business-as-usual (AS-IS) scenario and a TO-BE
scenario where the configuration of the workstation changes. The model is
valid as well while considering different TO-BE alternatives to be compared.
The model identifies three groups of performance indicators:

• process parameters, aiming at the evaluation of the efficiency of the
workstation;

• ergonomic parameters, aiming at the evaluation of the ergonomic
workload on the operators of the workstation;

• economic parameters, aiming at the evaluation of the fixed and vari-
able costs of the workstation.

Figure 23.3 identifies these performance parameters. In addition, since
many of these choices involves the use of automation of collaborative au-
tomation on a workbench, the functional units of the automated scenario
are identified. It is important to remember that to perform this type of
improvement, together with the economic and technical feasibility, it is nec-
essary to find a high managerial commitment since operators are usually
not willing to change the way they are learnt how to work.
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Figure 23.3: A prescriptive model for workbench alternatives comparison.

The main drivers to lead the choice are identified by the performance
parameter. If a workstation is able to perform faster, the savings on the
hours of direct labour could be enough to support the initial investment.
On the other side, when the physical load is significantly reduced, such that:

• operators are more precise enhancing the quality of the finished prod-
uct, or

• operators have a lower risk of ergonomic disease.

The initial investment may result supported as well. The support and
the point of view of the operator are fundamental in this kind of choices to
assess whether a workbench configuration results adequate or not.

23.4 Applications

23.4.1 Process Design of a food catering plant

This section analyses the study and redesign of some production and pack-
aging processes in a food catering facility.

Inventory policy design

The design of the inventory policy of a food catering facility results deeply
linked with the degree of safety f the finished products. While the raw ma-
terials storage system follows a rigid first-expiring first-out (FEFO) policy,
the problem appears more complex for semifinished and finished products.
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In particular, a task of the production process becomes critical if attached
to a critical control point, according to the HACCP protocol. Since the tem-
perature of a food product must be outside the so-called danger zone (see
section 22.7.1), cook-warm products must be kept over 65 ◦C after cook-
ing. All the tasks performed after the cooking area of the plant must be
separated by hot-holder working as ovens set to a safe temperature (e.g. 85
◦C). Figure 23.4 illustrates the result of a monitoring campaign performed
on the temperature of the products leaving the cooking area. Each column
identifies a product family while rows identify the tasks performed after
cooking.

Figure 23.4: Temperature decay profiles of products after the cooking de-
partment.

The number of the hot-holders define their throughput THj and the
inventory levelQi between each working station of the end-of-line of a CEKI.
By considering the average processing time for each task, it was possible
to estimate the temperature decay and to simulate the effect on different
production lot. The output of the simulation identifies the adequate number
of hot-holder between workstations and between the consolidation area and
the shipping bays (for finished products). A minor investment in hot-holding
machine and additional space for the plant layout reduced the errors and
increased the quality of the finished product [4].
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Handling design

The design of the handling of a CEKI is static and relies on the high flexi-
bility of manual handling using roll containers. Roll dimensions compatible
with blast-chiller and ovens and entire lots can be cooked or refrigerated
without additional handling. In addition, the low throughput of the plant
does not identify the need for automation of the handling systems.

Workstation design

The activity on a packing workstation of a CEKI is highly repetitive with
many identical moves that may lead to errors (e.g. a product placed in the
wrong pack) when the operator is tired. For this reason, the technical and
economic feasibility of the implementation of automated collaborative tech-
nology in manual handling/production processes is studied [3]. The tech-
nical and economic assessment evaluate the placement of a cobot replacing
the human operator in charge of loading the plastic boxes containing the
finished products.

The cobot has a kinematic that can be easily programmed and simulated;
for this reason, it is fast to extrapolate the expectation of the operative time
and motions (these values have the superscript α). These values have to
be compared with the human performance that is measured on-field in the
business-as-usual scenario (marked by the superscript β). The saving per
year is calculated as:

St =

((
tidle + tαpick

)
× lα +

(
tβpick + tβdepot

)
×
⌈
lα

vα,β

⌉
− ttrav

)
×l×d×c−cmaint

(23.6)

Where: tidle is the idle time of the operator waiting for packed meals
at the end-of-line (sec); tαpick is the time to label a primary package (sec);

lα is the number of primary packages per production lot; tβpick is the time
to pick an empty secondary package and put it into a filling buffer (sec);

tβdepot time to put a full secondary package into a tertiary package (sec);

vα,β is the number of primary packages per secondary package; ttrav is the
travelling time to supervise production tasks (sec); l is the number of lots
per working shift; d is the number of working shifts per year; c is the cost
of an operator for a working shift (e); cmaint is the maintenance cost of the
cobot per year.

Since the value of St increases rapidly year by year, the investment in
automation resulted convenient for the company.
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Case studies and discussion

This part introduces the details of three data-driven case studies developed
within the supply chain systems explored in this book (i.e. distribution
networks, storage systems and production systems).

Some parts of these case studies has already been introduced in the book
as applications of the data-driven methods organised following the decision
patterns (see 4.2). The scope of this part is to reveal the practical insights
of the data-driven applications within precise case studies to enlighten the
robustness of the approach, and its value in the practice of logistics and
operations.

24.1 Distribution Network Case Study

This section presents a real-world case study developed for a 4PL IT plat-
form operating in the port of Rotterdam. The platform collects transporta-
tion orders from barge operators and provides advanced booking options to
them, in return. They aim at providing a real-time allocation of containers
to barges.

The platform collects data around 5% of the containers transported in
the port area of Rotterdam through inland waterways. Barge operators
collect orders and assign those to multiple barges. Typically they do not
have complete visibility on the load of a barge, which is to the discretion
of the barge owner. For this reason, the data of the 4PL IT platform
are incomplete, and it is hard to say when the observations available to
the platform describe an entire load of a barge. The barge owner has full
visibility on the containers barge operators have allocated on his own plate,
but not for all the containers in the logistic network. The barge operators
have a full visibility on the containers they assign to different barge owner,

433
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but their orders are merged with the ones of other barge operators within
the same barge. It is always possible that some containers transported
by a barge are out of the visibility of the platform. For this reason, we
use our methodological framework to build the movement, inventory and
productivity functions, to improve the consistency of the data, and the
Kalman filter to predict the state of the system Λ, supporting container
assignment to barges.

The platform collects cargo data as single orders. The dataset is anonymised
and does not contain any personal data, recording seven months of activities
of the platform (June to December 2018). Each row of the dataset describes
the movement of a container from its origin to its destination. Table 24.1
identifies the attributes of the input dataset and the number of different
entities for each type of attribute.

Table 24.1: Attributes and size of the input dataset

Section 24.1.1 describes how the input dataset is processed to define the
movement, inventory and productivity functions; descriptive analytics are
used to investigate pattern and characteristics of the operations. Section
24.1.2 shows the implementation of the Kalman filter methodology to make
predictions on the state of the network Λ.

24.1.1 Definition of movements, inventory, and pro-
ductivity

The unit of analysis consists of the location of the movement function at the
origin terminal M i,v

o (t), and the destination terminal M j,v
o (t). The data is

split between origin and destination, is grouped for each terminal i visited
by a barge v, and is finally sorted by the planned visit timestamp ai. By
using this procedure, it is possible to define the values of M i,v

o (t), for each
terminal i. By grouping all the M i,v

o (t) on a barge v, sorting on the planned
visit timestamp ai, or the actual visit timestamp âi it is possible to obtain
an estimate of the planned or the actual route of v.
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Given the incompleteness of the data, the data may not capture stops at
all terminals. Nevertheless, the platform can take advantage of its multiple
data sources to test the accuracy of the route by checking whether patterns
in the barge routes exist, even when data are incomplete. The barge owners
tend to maintain a fixed route schedule for their barges, for this reason
we assume the provisional assignment of containers to barges are made
coherently with this assumption. Thus, the 4PL IT platform can check
the amount of information provided by each single data source, i.e. barge
operators who provide data to the platform. The parameter ηvk is introduced
to reflect the number of terminals visited by barge v to serve the orders of
the k-th barge operator whose destinations have not already been visited
to serve the barge operators k − 1, k − 2, ..., 1. ηvk identifies the amount
of additional information, in terms of visited destinations, provided to the
platform by the k-th barge operator, given all the destination known from
the barge operators up to k. Figure 24.1 compares the ηvk of three different
barges, i.e. barges 11, 7, 8, by showing the value of ηvk , and its cumulative
function on the y-axes, and the value of k, i.e. the number of the observed
barge operators on the x-axes. In the case of barge 11, the data of the
first 20% of the barge operators cover 100% of the visited terminals. By
observing the shape of the Pareto curve, it is improbable that an additional
barge operators provides a new destination for barge 11. For this reason,
the 4PL IT platform can assume having in its dataset all the destinations
of barge 11, whose route estimate is, then, robust. Route estimate on barge
7 is less, but still robust since data from 50% of the barge operators covers
100% of the visited terminals. Considering barge 8, the number of barge
operators is smaller, and 90% of the customers covers 100% of the visited
locations. In this case, there is a high probability that when an additional
k + 1-th barge operator provides data to the platform, the route estimate
of barge 8 changes.

Figure 24.1: Pareto curve of ηvk to evaluate the robustness of the route
estimates of three barges.

Since M i,v
o (t) functions have already been defined, equation (3.8) is used

to estimate the inventory position for each barge v. The direct application
of equation (3.8) may lead to negative values of Iv in the absence of em-
pirical observation of the inventory position. The platform can correct the



Re
vi
ew
ed
Ve
rs
io
n

436 CHAPTER 24. CASE STUDIES AND DISCUSSION

estimated barge inventory Iv by shifting all the points of the inventory func-
tion to positive values, Iv(t) ← Iv(t) −min(Iv(t)) when min(Iv) < 0. The
robustness of the estimate of the inventory position of a barge v depends
both on ηvk , and on the completeness of the dataset, i.e. the ratio between
the movements observed by the platform and the performed ones.The 4PL
IT platform cannot check when it has complete data. Nevertheless, it can
consider the peak value qv = max(Iv(t)) −min(Iv(t)) as the maximum ca-
pacity of the barge v, and check whether the value of the peak value is
compatible with the nominal capacity of the barge Qv, qv ≤ Qv. Figure
24.2 presents the estimates of the inventory position for barges 11, 7, and
8. The horizontal red line identify the peak value of the inventory qv. The
red vertical lines on the graphs identify the range where the inventory can
be considered accurate. Since the platform collects the order from barges
operators (and not the execution data from barge owners or termials), the
results obtained are censored by previous unknown orders (on the left) and
future orders still to be received (beyond the red line on the right, indicating
the last day of orders of the input dataset). The platform acquired data
from barge operators who assign containers to barge 11 only in the last few
months. For this reason the value of I11(t) is steady for the first period (for
lack of obsered movements). Barge 7 is frequently used, and its estimate is
robust both considered η7

k, and q7 = 200 TEU containers. Finally, barge 8
shows a slow change of the inventory, which may be due to longer trips with
a stable inventory or, considered η8

k, to few data available to the platform.

Figure 24.2: Definition of the estimate of the inventory position I(t) of three
barges.

While collecting data from the barge operator, the platform can take
advantage of its data inferring properties on terminals j and the entire
distribution network. The movement functions M j,v

o (t) are used accord-
ing to Theorem 1 to identify how fast the inventory Ij(t) changes. Since

both planned and actual time windows [aj , bj ] and [âj , b̂j ] are available, the
platform can impute both the theoretical and the actual productivity of
each terminal j. The theoretical productivity, P INj or POUTj , measured in
time over the number of handled containers, shows linearity traits, probably
linked to the capacity of the equipment of a terminal since a terminal, given
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the length of a barge, can use either one or two cranes to load or discharge
containers on a barge at the same time. Figure 24.3 identifies this pattern
by comparing it with the actual productivity obtained using the actual time
window. The x-axis identifies the number of containers handled, and the
y-axes the span of the time window. The actual productivity shows an er-
ratic behaviour, showing mostly randomly distributed observations. This
pattern reveals the frequent delays and re-planning that occur in practice.

Figure 24.3: Actual and planned productivity of a deep-sea terminal in the
dataset

The 4PL IT platform can use productivity data to identify when the net-
work is congested the most, according to

∑
t∈hn P

IN
j (τ) and

∑
t∈hn P

OUT
j (τ)

where hn is the span of the n-th hour of the day, e.g. h16: from 16.00 to
16.59. Figure 24.4 presents a stem graph based on the operations of all the
terminals of the network analysed per hour of the day. Similarly to Fig-
ure 24.3 it compares the planned and the actual workload of the terminals
processing barge calls in the port area. The incompleteness of the data
affects the absolute value on the y-axes (i.e. the total number of containers
handled). Nevertheless, the pattern identified by the shape of the platform
reveals when terminals are most likely to serve the barges and when the
network is congested the most.

These applications show that the platform can quickly get estimates of
the movement, inventory, and productivity functions by managing barge
operators data. This information allows determining the values of previous
states Λ of the distribution network.

24.1.2 Predictions of the inventory position of the barges

When the movement, inventory and productivity functions are defined and
updated real-time, the current state of the distribution system Λ can be
predicted Λ̃. A 4PL IT platform benefits from the knowledge of the state of
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Figure 24.4: Average port workload per hour of the day

the system, which permits them to allocate orders real-time, e.g. assigning
a last-minute order to a barge on its route having residual capacity. Such
an assignment can be interpreted as a feasible solution to the online version
of the VRP problem. The more accurate the estimator Λ̃, the larger the
probability that the platform is able to assign orders respecting the capacity
of the barges.

Predictions about the system state are perfectly accurate when Λ̃ = Λ,
if the platform has a complete data about the movements of a barge. In
general, however, information about barge movements is not complete, and
the predictions about the system state are imperfect. A possible way to
improve the quality of these predictions is to match the imperfect data about
barge movements with the terminal productivity. Below we demonstrate
how the Kalman filter can be applied to achieve this matching and enhance
predictive performance of the available data.

The input dataset counts 43 clients, i.e. barge operators, and nine barges
that have a significant number of movements in the input dataset. A sim-
ulation is run to evaluate the effectiveness of the Kalman filter and the
relative importanve of the information provided by the barge operators to
the platform. A function of complete knowledge Mχ

v (t) is defined, assuming
it contains all the movements of a barge v, and colletting all the records of
the input dataset. At each iteration of the simulation, a function M ε

v(t) is
generated, identifying a subset of data known to the platform. To study the
relevance of the incompleteness of the data, M ε

v(t) contains a percentage
πMv of the movements defined by Mχ

v (t). The value of πMv varies from 0.1
to 0.9 at each iteration of the simulation.

In addition, the simulation evaluates the relevance of the number of
barge operators providing order data to the platform. The simulation
varies the number of barge operators in the platform within the set πC ∈
{1, 2, . . . , 43} inserting in M ε

v(t) only the movements produced by the subset
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of barge operators considered.
The value of πC increases of at each iteration of the simulation, and the

value of the data of an additional barge operator of the 4PL IT platform
is assessed. The simulation repeats the prediction for each barge, with
different levels of completeness of the data πMv , and different amount of
information due to the number of barge operators observed by the platform
πC .

The simulation generates two predictors; Λ̃M generated using the move-
ment functions only, and Λ̃K , using the Kalman filter. Figure 24.5 compares
the performance of Λ̃M and Λ̃K . Each row of the table identifies a barge.
The column profile identifies Iv(t) for each barge v, similarly to Figure 24.2.

The orange trace represents Iv (t) estimated using Λ̃M , while the green trace
identifies Iv(t) obtained using the kinematic models Kj for each terminal
j. The main frame of Figure 24.5 evaluates the predictions of the Kalman
filters in different scenarios of the simulation. The columns of the table iden-
tify πMv , i.e. the different scenarios due to different level of completeness of
the dataset. Each frame shows the accuracy of the Kalman filter compared
with the empirical approach based on the movements. The x-axis identifies
the number of barge operators in the platform πC while the y-axis of each
frame compares the rooted mean squared error (RMSE) of Λ̃K , and Λ̃M ,

by plotting 1 − RMSE(Λ̃K)

RMSE(Λ̃M )
. Both RMSE values are calculated comparing

the predictors with the function of complete knowledge Mχ
v (t). The blue

zone highlights the area between the value of the accuracy function and the
x-axis. When the function has a positive value, Λ̃K outperforms Λ̃M . The
Kalman filter outperforms, on average, in the scenario identified by green
boxes. The Kalman filter does not always lead to an improvement of the
predictions, since the kinematic models Kj describing the operations of the
terminals have a low accuracy.This result reveals that adding the data of a
barge operator to the platform does not autonomously affect the accuracy
of the predictions.
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Table 24.2 presents the aggregated results of the simulation by showing
the absolute number of times (over a maximum of 43) when the proba-
bilistic approach implementing the Kalman filter outperforms the empirical
approach based on the movements. The table maps the number of move-
ments, the mean value, and the standard deviation of the inventory Iv(t)
for each barge. The simulation reveals that the empirical approach always
overcomes the Kalman filter when the completeness of the input dataset is
over 70%. When the completeness of the input dataset is low, and the vari-
ability of the inventory position is significant, the Kalman filter can provide
reliable predictions.

Table 24.2: Accuracy of the predictions of the Kalman filter compared to
the empirical approach

24.1.3 Discussion

This section discusses the relevance of the methods and the results from
the case study from a business perspective. We focus on the value of the
descriptive analytics to augment the knowledge of the stakeholder of a 4PL
IT platform, and predictive analytics to improve the performance of the
distribution network.

The methods presented in Section 3.3.1 identify three functions to organ-
ise the data provided by multiple actors of a distribution network. The core
of the movement, inventory and productivity functions is the description of
logistic processes. Descriptive analytics helps to understand the processes
of a distribution network, in particular when these processes are distributed
on a wide geographical area, and controlled by many actors. The case study
section illustrates that a 4PL IT platform can implement the M , I and P
functions to provide its customer with analytics describing the route of the
barges (1), the difference between the actual and planned route of a barge
(2), the probability distribution of the planned and actual productivity of
the terminal (3), the gaps between the actual and planned handling time
windows at the terminals (4), the planned and actual peak hours for each
terminal and the entire network (5).
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Barge operators can benefit from this information to improve the ef-
ficiency of their operations by identifying the level of service of different
barges connecting the same destinations. The barge operator can take ad-
vantage of this knowledge by adapting its price and customise the offer to
its clients.

The methods in part III identify a key variable in the state of the dis-
tribution network Λ. Two estimators of Λ are then presented; Λ̃M defined
using M , and Λ̃K defined by matching the two functions M and P . From
an academic perspective, the state Λ describes the inventory position of the
network; here, it is necessary to understand why accurate predictions on
the inventory position of a barge can lead to a higher performance of a 4PL
IT platform. At this purpose, we introduce a proof of concept based on a
numerical example.

We simulate the operations of a 4PL IT platform by measuring the
performance of the network using the transportation cost. The platform
has to assign a set of containers to transportation services using barges or
truck, where transportation of a container by truck costs 1.3 times more than
a barge. For simplicity, we consider a single barge sailing the distribution
network. The platform prefers to assign containers to the barge since it is
cheaper than the truck. For this reason, their objective is the maximisation
of the number of containers successfully transported by barge.

The platform uses a prediction model Π to forecast the inventory posi-
tion of the barge, defining the available capacity µpred of the barge in terms
of available container slots. The accuracy of the predicted available capac-
ity is measured using the standard deviation σpred. The true capacity is
represented by µtrue. The more accurate the prediction model Π, the lower
σpred. The platform assigns a container to a truck when there is no space
on a barge, based on its prediction µpred; or when the predicted capacity
appears lower than the true one: µpred < µtrue. The assignments performed
by the platform can be wrong due to bad predictions of the model Π. In
particular, a type I error is made when a container is allocated to barge
when the barge is already full (i.e. false positive prediction); a type II er-
ror is made when a container is allocated to a truck when the barge has
space (i.e. false negative prediction). Figure 24.6 identifies all the possible
outcomes of the prediction model Π.

We implemented a simulation to investigate the impact of the accuracy
σpred of the model Π on the performance of the platform, by measuring:

• the number of containers α assigned to the barge when µpred > µtrue

(i.e. the number of false positives);

• the number of containers β assigned to trucks due to wrong predic-
tions, when µpred < µtrue (i.e. the number of false negatives);

• the total cost of the transportation service;
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Figure 24.6: Definition of a confusion matrix of a predictive model Π tar-
geting the available capacity of a barge.

• the level of service, measured as the probability that the platform
successfully assign a container to a barge (i.e. the percentage of true
positives).

The simulation varies the accuracy of the predictions σpred in a range
from 0 to µtrue. Figure 24.7 illustrates the outcome of the simulation,

having on the x-axes the variation coefficient σpred

µtrue , and the number of false
positives α, and false negatives β, identified above on the y-axes. The graph
reveals that when the model Π has higher accuracy in the prediction of the
inventory position of the barge, i.e. the state Λ, the platform performs
better, with a lower number of false positives and false negatives.

A lower variability of the predictions of the model Π has a positive out-
come on the level of service of the platform, and on the total transportation
cost of the network, as presented in Figure 24.8.

This example shows that good prediction models targeting the inventory
position of a barge can improve the level of service of the platform itself, and
reduce the total transportation cost of a barge network. Differently from
single actors of the supply chain, 4PL IT platforms have the data and the
possibility to implement these methodologies. The service they can deliver
with this information is not only for their clients (e.g. the barge operators).
Other stakeholders like terminals, shipper, and port authorities, can benefit
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Figure 24.7: Classification errors (Number of false positives and false nega-
tives) varying the variability of the predictions of the barge capacity.

Figure 24.8: Costs and level of services associated with the variability of
the predictions of the model Π.

from the information produced by the platforms.

This approach mimics the role of the platform in the B2C industry.
It is, for example, the business model of UberPool that provides additional
passengers to taxi rides already assigned, improving the utilisation of the cab
and the revenues. The focus is not an optimal route, but the maximisation
of the revenues with fixed resources and route. The advent of 4PL IT
platform in the field of logistics and transportation has a slower development
compared to the platform economy in other sectors.

Nevertheless, logistics companies, operators and authorities should en-
courage the development of these new business models bases on the role of
big data collected by many stakeholders of a supply chain. These platforms
can create information and improve the performance of a supply chain by
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collecting the data of a subset of actors of the chain. The vaster the amount
of data they collect, the more accurate the information they provide tho
their stakeholders, and the more efficient the solution they provide to the
problems of their clients.

24.2 Storage system Case Study

In this section, the benchmarking and data-driven design methodologies are
applied considering 16 warehouse case studies with real operational data
provided by their companies (6 from distribution centres and 10 from third-
party logistic (3PL) companies), accounting for almost 15 millions database
records. These data come from different traceability systems and are in-
herently heterogeneous. We aim at proving that our benchmarking metrics
are generalisable and appliable to any storage system where the relevant
data (i.e. the data fields identified in Figure 18.1) are recorded. Table 24.3
maps the 16 datasets involved in this study identifying the type of ware-
house, the industrial sector and the number of SKUs stored. To identify the
responsiveness of the storage system, we calculate the percentage of SKUs
for each demand pattern based on the ADI, and CV 2 classification. It is
easy to observe that 3PL operators experience, on average, more lumpi-
ness (i.e. unpredictability of both the demand quantity and time interval of
their SKUs) than distribution centres. Table 24.3 reports a reference year
for each dataset, the number of recorded days, the number of movements
recorded and the presence of relevant data attributes as:

1. the inbound data (i.e. put-aways);

2. the outbound data (i.e. pickings);

3. the layout data (i.e. the ordinal number of rack, bay and level for each
storage location);

4. the layout coordinates (i.e. the (x, y, z) coordinates in space for each
storage location);

5. the volume data for each SKU;

6. the picking list data (i.e. an id for all the movements processed within
the same putaway or picking route).
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Table 24.3 indicates a number of sub-areas for each of the 16 warehouses
considered. A sub-area is a zone of the storage system, identified by a
combination of SS, an MHS, a SAS and a PP. Table 24.4 identifies the
details for each sub-area of the considered warehouse.

Table 24.4: Details of SS, MHS, SAS and PP for all the sub-areas of the
considered warehouses.

24.2.1 Case studies benchmarking

The benchmarking metrics identified in part IV are applied to the datasets of
the considered case studies. For the sake of legibility, this section illustrates
the graphic benchmarks of a single case study, while the figures with the
benchmarks of all the case studies are in the appendices of this paper. Figure
24.9 represents the SKU profile of each case study mapping the Pareto charts
of the Popularity, COI, Turn and OC indexes. When inbound data are not
recorded, Popularity and COI indexes are limited to the outbound data.
Similarly, the COI is not calculated when the SKU master file does not
contain the volume for each SKU.

The Popout index has a similar pattern for the automotive distribution
centres, having very few items producing the majority of pickings. A differ-
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Figure 24.9: SKUs profile of the case studies.
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ent behaviour is found in food, beverage and biomedical warehouses where
a wider number of SKUs determines the majority of the outbound activi-
ties. Specific patterns are determined in the popularity of the publishing
warehouses with a strong influence of the seasonality of the academic years
leading to a high turn index for some SKUs and complete immobility for
others. The OC index is connected to the length of the orders in each ware-
house. The automotive, beverage and manufacturing warehouses have many
SKUs ordered alone or ordered frequently. Orders tend to be more uniform
in food and biomedical warehouses. Turn indexes are differenced, depend-
ing on the operations. High Turn indexes are encountered in distribution
centres (that usually have cross-docking areas where SKUs transit fastly)
and different patterns in the 3PL, depending on the tasks the operators are
demanded to perform.

Figure 24.10 identifies the inventory profile of the case studies. The
inventory profile cannot be identified when the input data lack of inbound
records. Besides, when the volumes are not recorded, only the normalised
inventory function ÎS (t) is calculated. The ÎS (t) can be useful to identify
the warehouse saturation trend when the volumes recorded in the SKU
master file are not reliable. It is the case of the case study tp manu 2,
where the 3PL provider receives the volume of the SKUs from its client,
but this data are of bad quality.

The inventory profile is highly market-oriented and difficult to generalise
both in distribution centres, that have the role to absorb the variability of
the market demand by varying the inventory levels, and in 3PL providers
that frequently encounter inventory variability due to changes in the con-
tracts with their customers. The profiles of the distribution centres identify
positive or negative trends, while 3PL highlights a rapid growth (when the
client is acquired) followed by an almost stationary profile with stable part-
ners (e.g. tp manu 2, tp manu 3, and tp bio 2 ), or a rapid decrease with
strong seasonality (e.g. tp pub 2 ) or e-commerce services (tp cos).

Figure 24.11 identifies the workload profile of the analysed case studies.
The plots represent the workload on the plant of the warehouse system
or in the space by considering the coordinates of the storage locations.
The graphs are not represented when the input data does not provide the
coordinates of the storage locations. The graphs identify how the workload
is distributed in the different areas of the storage systems.
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Figure 24.10: Inventory profile of the case studies.
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In distribution centres, few areas host the majority of the workload, and
these areas are mostly placed in the lowest levels nearby the input/output
points. Differently, the 3PL provides have fewer locations and a randomly
distributed workload reaching the higher levels when picking activities are
performed using order pickers.

Figure 24.12 illustrates the benchmarking metrics of the layout of the
case studies. The case studies without layout data are omitted. The popu-
larity bubble chart and the popularity-distance bubble charts compare the
actual storage assignment policy (asis) with an assignment policy identified
by the ranking on the SKUs based on their popularity (tobe). The tobe
assignment policy ranks the locations based on their distance from the in-
put and output points. The smaller the distance of a storage location, the
higher the popularity of an SKU to be placed there.

The traffic charts identify an intense traffic on the front and back cor-
ridors when warehouses have picking missions with few stops (i.e. a small
number of lines) and the majority of the distance is travelled horizontally to
move from the input or output points to the aisles. Differently, the distances
are travelled vertically when having long orders or when the input and out-
put points are placed on two different sides of the storage plant (e.g. dc furn
and tp manu 3 ). The popularity bubble charts identify how the workload
should be transferred by passing from an asis to a tobe assignment given by
the popularity ranking. It is possible to identify that the workload tends to
be organised vertically when the input is placed on the opposite side of the
plant compared to the output; otherwise the workload concentrates around
the same side of the plant. The popularity-distance bubble charts confirm
the change from a distributed workload to an optimised workload where the
SKUs with higher popularity are placed in a location with a lower distance.

24.2.2 Model training for storage system design

The datasets of the industrial case studies are used to build the learning
tables X1, and X2 in the two scenarios identified by the methodology. Ta-
ble 24.5 identifies the number of observations (i.e. the rows) for both the
learning tables and the number of observations associated with each label.

Table 24.5 reports an important piece of information. The input datasets
in both the scenarios are skewed, i.e. the labels are not uniformly distributed
among the observations but some labels have more observations than others.
This fact may lead to an imbalance of the model and overfitting. For this
reason, we resample the dataset before training the machine learning model
to work with a similar number of observations for each of the target label.
The prediction of each design entity (i.e. SS, MHS, SAS, and PP) are made
on a learning table having a number ρ of observations randomly extracted
from the learning table X1 or X2, where ρ equals the minimum number
of observations having the same label (e.g. 183 in SS predictions within
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Figure 24.12: Layout profile of the case studies.

scenario 1, or 6359 in MHS predictions within scenario 1).

The obtained dataset is split into a training and testing set using the
66.7% of the observations to train the models, and the remaining 33.3% to
test the performance of the defined models. Hyperparameter tuning is done
using a grid search with 3-folds cross-validation for each model. Table 24.6
reports the precision of the predictions measured on the test set, keeping
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Table 24.5: Number of observation and associated labels for the scenarios
identified.

ony the best model for each class of models identified by the grid search.

Table 24.6: The precision of the best model (identified by the grid-search
with 3-folds cross-validation) of each family of models.

Ensemble and non-linear models outperform, on average the linear clas-
sifiers. The learning table of scenario 2 (having more observations, but fewer
attributes) leads to a higher precision score in 27 out of 44 (i.e. the 59%) of
the models identified by our empirical tests. In the remaining, the precision
score is comparable to the one obtained in scenario 1. This result indicates
that a limited amount of data (e.g. without the inbound information and
the volume information) is enough to support the design of a storage sys-
tem, using a data-driven approach. The prediction performance on the PP
and the SAS are higher compared to the ones on SS and MHS. This fact can
be linked to the fact that an SKU characterised by the same parameters can
be stored or handled differently, depending on the practices of a company.
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24.2.3 Interpretation of the results

To go deeper into the connections between the input features, and the out-
put of the prediction models, we only consider the models whose output is
interpretable regarding the learning table, i.e. the models identified in Ta-
ble, having parameters identifying the relative importance of the attributes.
The most performing interpretable model in almost all the design entities
and scenarios is the decision tree. A decision tree mimics the engineering
design approach by defining thresholds on the parameters, and if-then-else
statements based on these thresholds.

For the definition of the SS, the decision tree in scenario 1 considers
relevant the volume vi, the weight wi, and the standard deviation of the
inventory function σÎS(t). When working with the data of scenario 2, the

decision tree mostly considers C1
i , 1/C1

i , and Popouti .
To define the MHS, the decision tree focuses almost uniquely on the

volume vi in scenario 1; while it considers C1
i ,1/C1

i , the average inventory
¯ˆ
S (t)I, and the ADIi in scenario 2.

Regarding the SAS, the decision tree identifies as the most important
features the V oli, and the 1/C1

i in scenario 1. In scenario 2, where the
volume is not considered by the learning table, the 1/C1

i remains the most
relevant feature, slightly assisted by the Popouti .

The decision tree identifies the Popini as the most important feature to
predict the PP in scenario 1. When dealing with a limited amount of data,

the decision tree gives more importance to C1
i , the average inventory

¯ˆ
S (t)I,

and the Popouti . The reader will find the detailed reports and thresholds
of the decision trees, the parameters of the other interpretable models, and
the confusion matrix for all the models in the following research repository
available online.

24.2.4 Discussion

The proposed methodology and applications reveal an emerging role of data-
driven approaches in the field of engineering design. In particular, it is
possible to train models making strategic decisions based on previous real-
isations of those decisions. It is important to remark that these models do
not point to the optimal decision since they are not trained on optimal as-
signments. The labels attached to the learning tables indicate the strategic
design decisions based on previous observation, i.e. the industrial practices.
Industrial practices can be far from optimality but generally shows a very
high degree of feasibility.

Given this consideration, we expect that these models do not predict the
optimal storage systems given some estimated parameters (i.e. the tradi-
tional model-driven engineering approach), but provide a feasible solution
to complex strategic decisions given the current circumstances.
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This type of approach has relevant managerial implications since it
changes the way to model and solve strategic design problems. Among
all the warehouse operators, 3PL providers can benefit from a data-driven
approach when they are able to get the data of incoming customers. 3PL
providers continuously need for forecasts to deal with the unpredictability
of their customers’ demand. Other literature contributions evidence the
impact of prediction models to deal with the operations and the allocations
of order of a 3PL provider. To evaluate the impact of our methodology
for a 3PL provider we define a learning table X2

3PL limited to a number of
the datasets involved in the case study regarding the same 3PL provider
(i.e. tp bio 1, tp bio 2, tp cos, tp manu 1, tp manu 2, tp pub 1, tp pub 2 )
defined with the features of scenario 2, having the fewer attributes. Dis-
regarding the interpretability of the model, we are interested in design a
decision-support tool able to suggest how to select the SS, MHS, SAS and
PP, among the existing ones, for an incoming SKU (e.g. provided by a new
customer of the 3PL provider). We train the previously trained models plus
a deep neural network (NN) whose structure is identified differently for each
model, in Figure 24.13.

The performance of the predictions is evaluated, as already identified
in the methodology, by using the precision metric. The NN predictions
significantly outperform the ones of other models while predicting the SS.
When dealing with the other entities, the predictions of the other models are
similar or better than the ones of the NN. By using such a decision support
methodology a 3PL provider can be able to serve the incoming customers
by adapting the services operated on the new SKUs based on its current
practices, without a strong and impactful reorganisation of its assets. This
fact can help to identify appropriate customers, estimate a service level and
an operational organisation just looking at the customer’s historical data,
before the physical transfer of the SKUs.

The output data of the training of the NN are available in this research
repository, together with the learning table used in this study. Further re-
searches can base on this data and results enlarging the dataset or providing
additional metric to apply data-driven design methodologies in the field of
warehousing.

24.3 Production System Case Study

This section presents a real-world application of the methodology proposed
in part V in the automotive industry. The clustering algorithms are imple-
mented to define product families in a 3PL packaging plant processing more
than 58.000 different products. The processing plant works as an interme-
diate stage of the automotive supply chain where incoming products are
collected, packaged and labelled according to the clients’ needs. The clients
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Figure 24.13: Structure of the neural networks with the prediction perfor-
mance of the other models on the X2

3PL learning table.

are production plants where cars or tractors are assembled and prepared
for shipping to the final user. Since these clients mainly work Just-In-Time
(JIT) the 3PL packaging plant has to absorb an unpredictable demand in a
very short time. They offer three different levels of service (LoS) processing
products within 24, 48 or 72 hours. The operations of the 3PL packaging
plant consist of oiling, packing and labelling spare parts. Figure 24.14 illus-
trates the variability of the workload in terms of the number of processed
orders and processed quantities. Each colour in the figure indicates a dif-
ferent “service type,” i.e. the definition of the series of task to perform on
the product and the package to use.

As Figure 24.14 shows, the workload is highly variable and it depends
on the service type. In addition, the quantity processed is variable too and
slightly correlated with the number of lines processed. Figure 24.15 shows
a heatmap built on about 2 millions of orders over a period of 7 years,
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Figure 24.14: Workload trend over the last 7 years.

identifying the correlation between the parameters of the orders:

• the dimensions, volume and weights of the items;

• the dimensions, volume and weights of the packages;

• the code of the service pack associated with an order.
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Figure 24.15: Correlation matrix between items, packages and service types
(coded by two or three letters). Figure from [1].
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The matrix shows an obvious significant correlation between the dimen-
sions of the package and the items. In addition, there are significant correla-
tions between the dimensions of packages and items and some service type.
This result suggests that there is the possibility to cluster item based on
the service type and assign them to specific workbenches in order to reduce
the complexity and the inventory of packages needed on each workbench.

Operators perform the tasks of a specific service type on manual work-
benches with no automation. All the operators on the 12 workbenches can
process any of the 58.000 products. This fact leads to a very low special-
isation of the operators, and unpredictable material flows since any of the
workbenches can request all the 1500 different types of packages. Besides,
some clients require a customised tertiary package structured as a shelf of
the dimension of a pallet. These shelves are placed directly to a worksta-
tion of the client’s assembly line. For this reason, the 3PL package plant has
to deal with high work-in-process (WIP) levels on the workbenches due to
products, packages (with the size of a carton box) and customised shelves
(with the size of a pallet).

To deal with this randomised material flows and WIP of the 3PL plants,
we applied the proposed methodology aiming at the definition of a number
of families. We start with an increasing number of cluster (from two to
ten). This value is, then, compared to an estimation of the real number of
workbenches with the application of the capacitated clustering algorithm.

Figure 24.16 presents the graphical results of the algorithms in the differ-
ent clustering scenarios and with a different number of clusters- To graph-
ically compare all the methods at a glance, each dot is one of the 58.000
products while the axis of each subplot represents the two PCs of the sizes
and weight input dataset (even in the clustering based on the product code
and description where PCA is not applied). Different colours indicate dif-
ferent product families. In the scenario generated by the weights and size
input dataset, points closer in the graph are clustered together (having the
same colour). This is not always true in case of package- or description-
based clustering. The dashboard of KPIs is introduced to assess the logistic
performance of clustering.

Table 24.7 illustrates the top ten most performing scenarios, according
to the lowest standard deviation of the KPIs indicated in the dashboard.

Table 24.7 evaluates the performance of the algorithm from a logistic
point of view measuring the variability of the process in each clustering sce-
nario. While thinking about the variability of the process, it is necessary
to remember that the actual process is completely random, and it results
totally out of control since no assignment rules have previously been devel-
oped. To compare the performance of these clustering algorithms with a
logistic benchmark, we compare the two top algorithms of Table 24.7 with
the outcome of the capacitated clustering algorithm.

The capacitated clustering algorithm considers a maximum allowable
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Figure 24.16: Comparison of the clustering algorithms. The algorithm with
the highest logistics performance are marked in red. Figure from [1].

capacity that is fixed and equal for all the cluster and an amount of demand
required by each product. To feed the algorithm with this data, we set
a time and motion monitoring campaign in order to identify an average
processing time required by each product. This data collection applied on
a subset of the products (i.e. the items belonging to the 95◦percentile of
the total number of processed lines) due to the very high number of items.
The amount of time required by the products with the highest workload
defines the maximum capacity for each cluster. The capacitated clustering
produces 20 clusters. This number is used to compare the performance with
the Gaussian Mixture Model and the Complete Linkage Clustering based
on the Descriptions, setting the number of clusters k = 20.
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Table 24.7: Most Performing Clustering Algorithms

Figure 24.17 illustrates the outcome of this comparison using a visual
analytics technique called t-SNE. This technique visually identifies clus-
ters based on the matrix X, of the observation that is projected onto a
2-dimensional space preserving the proximity of each observation according
to the t-distribution. The colours are associated accordingly with the cluster
assignment given by the algorithms. Figure 24.17 shows that it is difficult
to identify a topology of the cluster (as it happens in Figure 24.16) since
the number of clusters is high and the input data are scattered. On the
other side, analysing Table 24.8 it is possible to evaluate the performance
of the algorithm from a logistic point of view, identifying the variability of
the processes organised according to this clustering.

Figure 24.17: Comparison between capacitated and uncapacitated cluster-
ing using t-SNE. Figure from [1].

Table 24.8 illustrates the KPIs and compares their variance (using ab-
solute and relative value compared to the capacitated case) calculated on a
time horizon of 7 years. It is easy to check that the capacitated clustering
provides the highest balanced scenario with the lowest variance. The vari-
ance in workload (i.e. seconds) between the 20 clusters has an average of
180 hours per year per workbenches. This is a low gap, considering that the
variability in the number of products and packages is dramatically reduced
compared to the other scenarios.

Gaussian Mixture Model provides a poorer result that has to be manu-
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Table 24.8: Comparison between capacitated and uncapacitated algorithms.

ally checked and assessed before a physical implementation since a couple of
clusters results extremely small in workload compared to the average of the
others. Nevertheless, it is important to remember that GMM provides the
uncapacitated result in short running time (i.e. about 5 minutes) compared
to a huge running time of the capacitated algorithm which needs around 20
hours of runtime on a computer equipped with 8Gb memory and a 2.7GHz
processor.

24.3.1 Discussion

The case study highlights the effects of the use of clustering algorithms to
balance the material flows of a 3PL packaging plant. Grouping products
into families with a similar workload leads to:

• a static number of packages/pallet-shelves on the workbenches;

• a levelled and more predictable workload on the workbenches;

• higher efficiency due to the specialisation of the operators (i.e., a lower
time to perform the tasks).

Also, a more efficient organisation of the plant layout is possible since
the families generating the highest material flows can be assigned to the
workbenches placed near the inbound/outbound area of the plant leading
to a smart plant layout design.

From a mathematical point of view, it is interesting to remark that algo-
rithms producing a higher number of clusters outperform the others. This
fact was predictable since a higher number of clusters allows to partition the
workload into more levelled subsets. Nevertheless, it is essential to note that
the Gaussian Mixture Model (GMM) clustering outperforms the methods
based on the process (i.e. package code and product description). GMM
clustering is based only on the features of the products, but it produces the
higher logistic performance even without considering the production cycles
(i.e. the service type) as an input data. This is a great value of the data-
driven approach since a good clustering model can be built upon the data
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which are always available to any 3PL provider without other assumptions
or data collections. Besides, it is highly generalizable since the type of data
is incredibly simple to be collected and are always available to any 3PL
provider working in the packaging sector.

From a logistic point of view, capacitated clustering remains the most
reliable choice since it provides more robust results and a lower variance
among the WIP. Nevertheless, when capacitated clustering is too hard to
solve, data-driven approaches provide interesting results within a short run
time. In addition, these approaches are extremely valuable for 3PL providers
that process many materials and receives many data connected to them, but
they barely can analyse this data and organise their operations efficiently.
In this case study, the 3PL provider benefits from the clustering approach
since the business-as-usual scenario is completely out-of-control. The lack of
assignment of parts and packages to workbenches produces chaos in the daily
operations with the impossibility to precisely analyse the process, allocate
costs or make it leaner. It is true that clustering may produce a little
imbalance in the workload assigned to each workbench, but it opens to a
scientific analysis of the WIP allowing to implement a lean organisation by
controlling the inventory level and the workforce needed.
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Conclusion

This book focuses on analytics and methods for logistic design and oper-
ations management. Methods have been the most largely used technique
by engineers and scholar to approach logistic design and operations man-
agement. In this book, we introduced, together with engineering methods,
the analytics proper of the statistics field. Analytics tools are leading the
revolution of data, i.e. the fourth paradigm of research where discoveries
come from the acquisition and processing of huge amount of data.

This book illustrates the theory of the analytics (see part II), and pro-
vides methods to collect logistic data and to make it consistent (see chapter
3) [2] to address the decision patterns in the field of logistic design and
operations management (see chapter 4) [3].

Methods and analytics are, then, explored within each supply chain sys-
tem: distribution system (see part III), warehouse systems (see part IV)
and production systems (see part V). A vast amount of code is supplied
together with the theoretical description to support engineers and scholars
who want to implement what they can read in this book. These three sec-
tions illustrate a wide number of applications to taste the fine line between
engineering methods and analytics.

The management of distribution network pass through a wise design
of data architectures [4] allowing for traceability [5] and development of
decision support tools for the design [6] and control of the flows of material
[7, 8].

The comparison between models and analytics have been explored with
specific reference to the vessel routing problems. A traditional optimisation
approach based on linear programming [9] is compared with a real-time
approach based on the predictions of a Kalman filter [3].

Warehouse management systems generate tons of useful data for the de-
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sign and control of storage systems. These data can be used to diagnose and
benchmark the performance of an existing storage system [10], and to eval-
uate its evolution by generating management scenarios based on different
policies [11]. Methods and analytics have been demonstrated to be comple-
mentary in the design of a storage system, especially when data scarcity is
experienced [12]. A pure data-driven approach to select the design variable
has been discovered to be proficient when large datasets are available [13].

Production system presents the widest variability in terms of data struc-
tures [14]. The acquisition and processing of data have a key role in the
definition of productivity benchmarks and for the control and evaluation of
the performance of the operations [15]. The design of a production plant
follows a hierarchical structure where a bunch of engineering methods are
cascaded [16].

Engineering methods are largely used to support management activities
like the design of workbenches [17], the scheduling of the jobs [18], the man-
agement of the bill of materials and the production cycles [19]. Decision sup-
port systems embedding these methods and providing control dashboards
are still the most used approach in the field of production [20]. The opti-
misation is used to evaluate the impact of different strategic configurations
while re-designing the offer of a production plant [21].

This book provides a number of data-driven approaches that can be
used together with engineering models, especially when a manufacturing
execution system is used to record the production data. These approaches
are discussed comparing two different case studies in the field of automotive
and food identifying the decision patterns addressed by analytics or methods
in a production supply chain system [1].
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