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1. Introduction 
 
The background and the relevance of the research  
 

Worldwide, 55% of the global population is currently living in urban areas, 
and the present urban population is projected to increase from today’s 4 billion people 
to 6 billion by the year 2050 [1]. Mainly as a result of migration from rural areas, 
cities are growing in terms of inhabitants and urban area. Thus cities form new 
residential areas outside and/or further away from the city core. However, the speed 
of urbanization presents certain challenges, such as meeting the growing demand for 
transport infrastructure, transport energy consumption and the related costs, air 
pollution, global warming and congestion. Definitely, one of the recent growing 
global concerns is global warming. With the mankind facing the global warming, the 
Paris Agreement was drafted in 2015 with the aim to keep the global average 
temperature increase below 2 °C with respect to the pre-industrial levels. One year 
later, in 2016, a record-setting global mean surface temperature (GMST) was 
measured for the third year in a row [2]. Meanwhile, there is little doubt that the main 
reason for the global temperature change is anthropogenic, with transportation being 
one of the major contributors to global warming in terms of human activities. 
According to the International Energy Agency (IEA), the total global energy 
consumption for transport reached 28% of the total end-use global energy in 2010, of 
which, urban transportation accounted for approximately 40% [3, 4]. Furthermore, the 
transport sector in 2009 produced over 6,500 million tonnes of CO2-equivalent 
emissions (equal to 22.5% of the total energy-related CO2 emissions), of which, 
roughly 75% stem from road-based transportation [5]. Consequently, reducing 
transport-related energy consumption is one of the main objectives of transport 
planners with the aim to achieve more sustainable mobility. In addition, with the 
growing population, one of the major challenges for urban transportation is 
congestion. According to current estimations, citizens will be spending three times 
more than presently in traffic jams, which equals 106 hours per year by 2050 [6]. The 
costs of urban traffic congestion equal 557 million US$ per year in the United States 
(US) economy, and are estimated to equal £13 billion per year in the United 
Kingdom’s (UK) economy [7, 8]. Furthermore, the forecasted congestion costs will 
have reached £21 billion per year for the UK by 2030. The social costs of urban 
mobility in Beijing reached 7.5–15% of the city GDP as a combined impact of 
congestion, accidents and pollution [9].  
          Sustainable mobility can be defined as satisfying the current transport needs 
without sacrificing the ability of future generations to meet transport systems where 
social, environmental and economic accessibility can be sustained [10]. The level of 
satisfying objectives for these three dimensions represents the degree of sustainable 
mobility. Urban areas consist of the same components and their interrelations in which 
individual framing conditions make the difference regarding the characteristics of 
urban systems [11]. Urban zones take different user privileges and urban 
characterizations as a result of differences in terms of socio-technical factors: cultural, 
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educational, income level, the nature of demography, technologic, land use and 
infrastructure. As an example, in the US, people tend to live in low-density, single-
family houses and commute by car to work. In Japan by contrast, high-rise residential 
buildings dominate, and workers commute by public transportation (mostly rail-
based) [12]. Local governments and urban transportation planners want to know if the 
planned transport investments would be sustainable in the long term. Some major 
challenges highlighted above and the efforts towards enhancing sustainable mobility 
require integrated and strategic planning due to the fact that urban mobility bounds up 
with multi-dimensional factors. Local planning is necessary as each urban zone is 
under different socio-technical conditions. The following questions are presently 
addressed: How does the urban mobility system work under differently built 
environments and how do the system variants interrelate? In turn, which transport 
strategies would be sustainable and under which conditions? To answer these 
questions, each of the socio-technical factors should be examined systematically. In 
multi-dimensional analysis, a series of indicators and the interaction among them are 
identified by using logic architectures [10]. The correlations and internal relations 
between these factors, the question how these factors affect the users and the transport 
performance, and what all these relations will bring should be identified. In order to 
achieve this, worldwide analysis and a comparison of urban areas is necessary because 
it is of paramount importance in order to draft or reassess holistic transport planning. 
Holistic socio-technical analysis for urban mobility has not yet been traced in 
literature, and local analysis by itself cannot offer a holistic view of the topic. 
Examining similarities and differences within urban areas and the worldwide 
assessment of recent urban mobility strategies helps to understand whichever 
alternative sustainable system can be successful and under which socio-technical 
conditions success can be achieved. Also, understanding how cities are shaped by 
setting the appropriate transport priorities can help to achieve sustainable mobility 
objectives [13]. 

 
Aim of the research 
 

The aim of the research is to establish the role of socio-technical factors in 
enhancing sustainability of the urban mobility system; an associations scheme will be 
used to derive which transport strategies can minimize the socio-economic costs and 
the environmental footprint of the urban transportation system. 

   
Tasks: 
  

1. To provide multi-dimensional information which needs to be collected and 
processed for worldwide analysis through detecting the identified and missing 
associations among socio-technical factors and how the urban mobility system works 
under differently built environments during a systematic literature review.  

2. To perform worldwide analysis so that to identify correlations and quantify 
these relations by calibrating models based on socio-technical factors and transport 
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performance indicators, such as the travel modal split, congestion and transport energy 
consumption. 

3. To conclude, as a result of the discovered correlations, identified models, 
interrelations between factors and literature contribution, to identify an association 
scheme that can derive which transport planning strategies would be sustainable.   

Research object and research methodology details 
 

The research object is urban transportation. The research consists of 
systematic literature review and quantitative statistical analysis. The general approach 
of the present thesis is to collect, process, correlate and model. Worldwide analysis 
and comparison of urban areas requires a large and diverse multi-dimensional 
database. Open data is sourced from regional statistical offices, government sources, 
municipalities, and established studies. The Python software package OSMnx was 
used for the extraction and conversion of each transport infrastructure information for 
the desired urban locations as well as for performing some infrastructure design-
related calculations. An Excel database was created as a result of specific 
transportation data drilling, processing and collection. Also, the Excel database was 
used for the calculation of some urban indicators. Software IBM SPSS Statistics V25.0 
was used for the processing of statistical data.  

 
Scientific novelty and practical value 
 

This is the first systematic transport multivariate analysis using recent directly 
observable open source data from different urban areas around the world. An 
integrated and supportive socio-technical scheme was created based on the worldwide 
analysis and systematic literature review. The results of the present thesis and the 
developed supportive socio-technical scheme for urban mobility can be used by local 
governments, urban transportation planners, and policy makers to shape future urban 
strategies. 
 
Structure and contents of the thesis 
 

The dissertation consists of an introduction, literature review, methodology, 
six main chapters of analysis, conclusions and a list of references. The second section 
contains a systematic literature review of social and technical factors and how these 
factors influence the users and transport performance. The third section explains the 
employed method and specific transportation data drilling, processing and collection 
from respected open data sources. The sources, their collection method and the pre-
processing steps of all the necessary information are explained. In the fourth section, 
the following aspects are dealt with reference to the investigated city panel: (i) 
analysis of cultural dimensions in urban travel patterns, (ii) influence of the higher 
education level on the urban travel modal choice, (iii) multivariate analysis between 
socio-economic factors, land-use, transport infrastructure and performance, (iv) 
multivariate analysis between the transport infrastructure, the infrastructure design 
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and performance, (v) assessment of the yearly individual transport energy and 
individual CO2 emissions by means of the quantitative relationship between the 
population density, transport infrastructure and energy consumption for transport 
purposes, and (vi) a supportive socio-technical guide for urban mobility. To conclude, 
the main findings are summarized in the final section. 

2. Literature Review 
 

Urban areas are the ‘engine’ of the innovation, knowledge, economic 
development and employment; thus urban mobility systems possess vital 
importance to the economic functioning of cities and the welfare of the population 
by providing accessibility for work, goods and all social activities [14]. Urban areas 
serve transport services under two main infrastructure types: road-based systems 
and rail-based systems. Some cities, such as Tokyo, Berlin and Hong Kong, have 
adopted rail-based urban mobility while as some others (especially US cities) have 
adopted road-based urban mobility (car and bus-based systems). Especially cities 
in Denmark, the Netherlands and some other EU countries have matured their 
cycling infrastructure since 1970s. 

The socio-economic transformation of cities has been booming with the 
increasing urban sprawl, whereas the expansion of sustainable transport modes has 
not been happening at the same rate; in turn, the growth of private car ownership 
peaked [14]. This situation has developed along with the increasing social inequity, 
socio-economic costs and environmental impacts. Sustainable mobility requires 
environmental (air pollution and GHGs), social (accessibility, equity) and 
economic (costs) considerations factored into decisions affecting the mobility 
system [10]. To take action, the EC published its Urban Mobility Package in 2013 
where Sustainable Urban Mobility Plans (SUMPs) are given the main focus. The 
concept of SUMPs aims to create alternatives to car use and ownership and provide 
a shift towards cleaner and more sustainable transport modes through focusing on 
the people within a zone rather than directly on the transport while interacting urban 
functions and its surroundings [15]. Sociotechnical factors recognize the interaction 
between people and technical factors in complex systems which bound up multi-
dimensionally. Urban zones take different privileges and characterizations as a 
result of differences in terms of socio-technical components: cultural, educational, 
income level, nature of demography, technological, land use and infrastructure. The 
holistic understanding of urban mobility components is essential for the success of 
sustainable urban development strategies [11]. In this section, a systematic review 
is presented to understand how cities are shaped by socio-technical factors and how 
these factors in turn affect the transport users and transport performance worldwide. 
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2.1. Social factors 
 

2.1.1. Culture 
 

Culture is a very important indicator which reflects an inherent characteristic 
of societies. Culture is a common characteristic of a society in which artists and 
creative thinkers describe reality of their citizens with an “interpretation code” [16]. 
Reflection of common attitudes, values, beliefs and behaviors can be defined as 
culture [17]. Culture is accumulated, experienced and rooted in the DNA of a 
community not only as tangible items, but also as traditions of public life, rituals, food, 
conviviality, feasts, landmarks and symbols [16]. However, what exactly is meant by 
‘culture’ is still an open question; some works related to the explanation of the 
phenomenon of culture have been conducted with the science of genetics, shared 
heritage and social conditioning [17]. A Darwinian analysis of cultural change is 
proposed by Richard Dawkins (1976) in which ‘memes’ are analogous to genes [18]. 
Furthermore, Dawkins described memes as discrete replicators which can be worked 
on by natural selection. A robust cross-national correlation between the relative 
frequencies of variants in genes associated to social sensitivity and the relative degree 
of individualism–collectivism in societies is reviewed [19]. The results show that 
genetic variation can interact with ecological and social factors to influence psycho-
cultural differences. 

Two major global analyses based on cross-cultural variation by social 
scientists are worth mentioning those by: Geert Hofstede [23] and Ronald Inglehart 
[20]. Hofstede is known for six basic culture dimensions that come to terms with the 
society’s needs in order to organize itself; meanwhile, Inglehart’s work is focused on 
two main dimensions explaining the dynamic change of culture. Hofstede’s culture 
dimensions prevail in the analysis of cross-cultural psychology and international 
management, while Inglehart’s work is generally used in politics and sociology [21]. 
In this paper, we analyze the role of Hofstede’s culture dimensions due to the fact that 
travel behavior is more related to the human psychology whereas Hofstede’s culture 
consideration is multi-dimensional. Hofstede’s researches [22–26] were conducted 
with reference to a sample of one hundred thousand employees from IBM – a 
multinational corporation – coming from 50 different countries based on a specific 
global survey on the value associations. As a result of factor analyses aimed to 
examine the worldwide survey, Hofstede described six culture dimensions, such as 
power distance (POD), uncertainty avoidance (UNC), individualism versus 
collectivism (IND/COL), masculinity versus femininity (MAS/FEM), long-term 
orientation (LTO) and indulgence (INDG). Hofstede’s culture dimensions shed light 
on the embedded values of diverse cultures. Culture dimensions proposed in 
Hofstede’s works are described as follows. The IND/COL dimension of culture is the 
degree of interdependence which a society maintains among its members. Hofstede 
stated the IND/COL dimension to be the fundamental dimension of culture, called as 
patterns of the “me or we” sense. The fundamental issue addressed by the power 
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distance (POD) dimension in the community culture is a measure of the centralization 
degree of power where the higher power distance means high inequalities in the 
community. Cultures with a low POD would not admit inequalities as easily. 
IND/COL and POD are strongly correlated with each other. Collectivist cultures have 
a low POD. When the POD is high, a community can emphasize the citizens’ status. 
The fundamental issue addressed by the uncertainty avoidance (UNC) dimension is 
the level of built-in worry of the community culture. Communities with a high UNC 
have a high level of anxiety in an uncertainty situation. The MAS/FEM dimension 
demonstrates the level of competition in the community. A masculine culture would 
be less concerned with the quality of life. The long-term orientation (LTO) dimension 
shows the perceived importance of keeping links with one’s own past while dealing 
with the challenges of the present and the future. Lastly, the indulgence dimension 
(INDG) can be described as the degree of socialization or control over impulses and 
desires in a society.  

The national culture, as a subset of culture, while having been increasingly 
explored over the recent decades, was defined by Hofstede as “the collective 
programming of the mind that distinguishes the members of one national group from 
another” [27]. Different cultural conditions lead to different choice evaluations 
because of the varying ‘value associations’ [17]. Paulssen et al. [28] analyzed the role 
of Schwartz theory of human values on their travel mode choices. The results showed 
that the hierarchical value-based model of cognition brings a better understanding on 
how to increase public transport patronage for urban planners and policy-makers. One 
study tested Hofstede’s culture dimensions (HCD) in order to explain travel behavior 
differences on the perceptions of and the feelings about the security as well as how 
the actual experience affects people’s patronage of public transport [29]. The results 
demonstrated that HCD can be used to explain travel behavior differences based on 
the ethnicity background. Another research using Hofstede’s cross-cultural indices 
power differential and individualism in 14 cities from different nations investigated 
whether qualitative cultural differences influenced individual or group choices to 
procure and use hybrid and electric cars [27]. A recent research [30] examined the 
role of culture in the mode choice for various migrant groups within Auckland. The 
results showed that the national culture was a strong motivator regarding how public 
transport is perceived differently by different national groups within a city. 
 
2.1.2. Education level 

 
The education level can be called as an acquired characteristic of societies. 

Education is imparting, acquisition and construction of knowledge (e.g., know-what, 
know-why) including facts, representations, meanings and values as structured 
information about the world [31]. Education and learning are decisive factors shaping 
the society and its spatial forms in dynamic collective ways. Educating citizens is 
presented as one of the hopeful paths towards providing sustainable development in the 
United Nations final report: UN Decade of Education for Sustainable Development [32]. 
The report shows that teaching and learning such issues as the climate change, disaster 
risk reduction, biodiversity, poverty reduction, and sustainable consumption can 
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increase the awareness level in a society and, in turn, influence personal choices. A 
higher education level is an important proxy used in literature to assess the awareness 
level of societies with the current issues in a macroscopic way. Analysis was conducted 
in order to investigate the relationship between the public attitudes and the education 
level with a large cross-national database of the International Social Survey Program 
(ISSP) [33]. The obtained results indicate that the level of education is well-correlated 
with environmental concerns, even when other socio-demographic characteristics are 
controlled for. Also, a report  by OECD [34] showed that an increase in the average 
education level improves the overall care for health in a society.  

A research conducted within the Dutch National Travel Survey database 
demonstrated that the education level is positively correlated with the public transport 
mode choice for leisure trips [35]. Another study investigated how some characteristics 
in a society affect the travel mode choice in the Netherlands [36]. The results 
demonstrated that highly educated commuters show the highest propensity to travel by 
public transport (train) rather than by car. Car-sharing is one of the key strategies aiming 
at reducing car usage. A study analyzed the relationship between the membership 
potential of car-sharing programs and the socio demographic factors in Quebec City 
[37]. The obtained results indicated that car sharing was attractive only for specific 
segments of the population, such as highly educated people. Similar findings were 
observed in another study: individuals with a higher education level have a greater 
propensity to use car-sharing services [38]. A cross-sectional study in six cities was 
conducted in order to investigate social environment factors and individual attitudes 
regarding bicycle ownership and use [39]. The results showed that a higher education 
level has a positive effect on the regular usage of bicycles. 

 
2.1.3. Income level 
 

The income level is an important proxy shaping personal choices. A discrete 
choice modeling approach was employed including 112 medium-sized cities in Europe 
[40]. The results demonstrated that the share of the car mode increases with the car 
ownership and GDP per capita. Similar results were received during comparative 
analysis of travel behaviors in the urban areas of the US [41], and a meta-analysis was 
conducted in the United Kingdom [42]. Also, a negative relationship between the public 
transport usage and the income level was demonstrated for the United Kingdom [42], 
urban areas in the US [41], and the Sao Paulo metropolitan area [43]. However, this 
negative relationship was not found for 112 medium-sized cities in Europe [40]. Some 
results demonstrated that the public transport share decreases with the car ownership for 
US cities [44] and for Hong Kong [45]. Oppositely, a positive relationship between the 
car usage and the car ownership was demonstrated in a number of cities [42, 46, 47]. 
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2.1.4. Nature of demography 
 

The nature of demography is a complex structure referring to such factors as 
the distribution of gender, age, household composition, marital status and other 
variables in societies. These factors model the attitude towards physical conditions, 
housing, the value of time and responsibilities. Such attitudes as spending time with 
the life partner, taking care of the household members, different value orientation 
between men and women, willingness to lead a more comfortable life while ageing 
show differences in the priority and choice path but are hard to analyze in a consistent 
way. Many studies investigated the above listed factors. In a number of studies, the 
obtained results showed that women use less car with respect to men [35, 48, 49], and 
that married people tend to use the car more frequently than single people do [35, 50]. 
Furthermore, travelling with young children encourages travel by car [50–52]. Also, 
car usage increases with age [53], while the trip frequency and distance are reduced 
[54, 55].  

 
2.2. Technical factors 
 
2.2.1. Land use 

 
Such population density measures as ‘sprawl’ or ‘dense’ are used to define 

the land use conditions in literature [56–58]. The shortened travel distance and 
duration of the trip within the city and the increased accessibility to the public transit 
services were reported for the cities with a higher population density [59, 60]. Many 
studies demonstrated that cities with a higher population density tend to use public 
transport or active modes more [35, 36, 47, 61, 62].  Furthermore, the private vehicle 
is less preferred in denser zones [47, 63]. Also, residents of mixed-use designed cities 
with a high population density tend to drive much less than others [35, 64]. There are 
only two cases of empirical evidence in literature [65, 66] which demonstrate a 
particular relationship between the transport energy consumption and the population 
density.  Newman and Kenworthy [65] conducted early bivariate analyses in 1988 
demonstrating a robust relationship between the population density and the transport-
related fuel consumption for 32 cities worldwide. Their main result was 
disproportionately high transport energy consumption per person in cities with low 
population densities. Also Brownstone and Golob [66] estimated a joint model of 
residential density, vehicle use, and fuel consumption based on the California 
subsample of the 2001 U.S. National Household Travel Survey. Their main result 
demonstrated that a decrease in the density of 1,000 housing units per one square mile 
implies an increase of 1,200 miles driven per year and 65 more gallons of fuel used 
per household. 
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2.2.2. Infrastructure 
 

The three following sub-sections provide comparative evaluation of different 
infrastructure systems (private vehicles, public transit and non-motorized mobility) with 
worldwide comparison. 
 
2.2.2.1 Private vehicle  
 
 The results for the European Union (EU) for 2014 showed that cars are still the 
most common mode of daily transport (accounting for 54%), followed by public 
transport (19%), walking (14%), bicycle (8%) and others [67]. As far as the daily travel 
mode share in the US is concerned, the share of the private vehicle mode is over 85%, 
followed by 5.2% public transportation in 2015 [68]. There were approximately 258 
million passenger cars circulating on the roads of the EU-28 in 2016, i.e., on average 
506 passenger cars per 1,000 inhabitants [69]. In comparison, the US cities have 1.8 
cars per household [70]. A strong correlation between the road infrastructure expansion 
and the vehicle ownership growth were determined for 50 countries and 35 cities [71]. 
A positive relationship between highway expansions and car usage was shown between 
1982 and 2009 in the US [72]. A negative correlation between the transit ridership and 
the highway extension was found for the Montreal region, Canada [73]. A positive 
relationship was demonstrated between the car usage and the car ownership in a number 
of studies [46, 61, 74]. The integrated effects of ring roads and highways in Chinese 
cities caused 25% of central inhabitants to move to the surrounding zones [75]. The 
empirical estimates by Baum [76] show further that each highway expansion within an 
urban centre of the US metropolises causes an average 18% drop of inhabitants in the 
city centre. Analysis in Wisconsin State, US, during 1980–1990 demonstrated that 
highway expansions caused a population increase in the suburban areas thus booming 
the urban sprawl [77]. Similar results were shown for analyses in California between 
1980 and 1994 [78].  
 The EU spends annually €1,044 billion on private transportation, of which, the 
operation of personal transport equipment accounts for €523 billion, purchase of 
personal transport equipment accounts for €291 billion, and purchased transport 
services account for €230 billion [79]. The estimated annual budget of the average EU 
household for transportation is approximately €2,000. There are important societal and 
economic costs of road transportation. In 2015, approximately 26,000 people died on 
EU-28 roads, and a further 1.4 million people were injured (135,000 of whom were 
injured seriously) [80]. However, it was estimated that the number of road accident 
fatalities in the EU decreased by 40% between 2006 and 2015 as a result of 
improvements in the road safety [81]. It was reported that the external costs of road 
accidents in the EU, including Norway and Switzerland, accounted for 225 billion Euro 
and were estimated at 1.7% of GDP in 2008 [82]. The accident costs of passenger cars 
were €157 billion per year, which makes up the largest share (70%) of the total accident 
costs. The social costs of road crashes in high-income countries are about 2.7% of GDP 
and 2.2% of GDP in low- and middle-income countries worldwide [83]. 
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 The US is the leading country in terms of the release of transport-related CO2 
emissions in the world; 1,618 million tCO2-eq emissions (equal to 31% of the total 
energy-related CO2 emissions of the US, of which, 87% is related to road-based 
transportation), of which approximately 25% is global transport related CO2 emissions 
[5]. China is following with 503 million tCO2-eq emissions (72% from road-based 
transportation), of which, approximately 7% is related to the total energy-related CO2 
emissions. Overall, the external costs (excluding congestion) of transport in the EU, 
including Norway and Switzerland, were calculated to be more than 500 billion, i.e., 
4% of the total GDP in 2008 [82]. In addition, the annual congestion cost of road 
transport amounts to between €146 and 243 billion (‘congestion cost’ is the monetary 
equivalent value of the time spent in traffic jams), which is approximately 2% of GDP. 
The figure below (Fig. 2.1) sums up the results of the report in which the total external 
cost of passengers cars with reference to year 2008 is presented. 
   

 
Figure 2.1 Total external costs of passenger cars in EU, 2008. 

 

 
Figure 2.2 Comparison of exhaust emissions by different passenger cars, 2016.
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          The total passenger car external costs amount to €314,310 million in EU-27, 
excluding Malta and Cyprus, but including Norway and Switzerland. The main cause 
of external costs is the road accidents, which is followed by climate change and air 
pollution. The emission factors of cars (CO, NMVOC, NOx, N2O, NH3, PM2.5) were 
calculated by considering the fuel types of different vehicle categories and their 
emission standards [84] summed up in Fig. 2.2. Hybrid vehicles emit the lowest amount 
of emissions; 8.99 g/100 km. LPG cars are the most polluting car type with a total 
amount of 89.49 g/100 km emissions followed by petrol cars. Diesel cars are the major 
NOx contributor. 
 
2.2.2.2 Public transit  
 
 Nelson et al. [85] found that Washington public transit systems reduce the total 
congestion by two person-minutes per transit passenger mile carried during peak times. 
It was measured that the average daily delay time increased by 47% during the non-
working period of the public transit services of Los Angeles after a sudden strike of 
public transit workers [86]. Transit-oriented communities drive 10–30% fewer miles 
than automobile-oriented communities do, and use alternative modes 2–10 times more 
frequently [87]. 
 There were significant rail infrastructure investments undertaken in the UK in 
the recent decades. As a result, the ridership on regional and urban rail services in 
London grew by more than a third in the last ten years; the growth was even more 
relevant in some cities, such as Huddersfield (by 91%), Wolverhampton (by 96%), 
Coventry (by 143%), Leeds by (71%), and Sheffield (by 96%) [8]. A sharp rise in the 
car ownership in cities with low railway intensity and, on the other hand, a relatively 
slow rise of car ownership in the cities with high railway intensity was highlighted for 
six Asian megacities located in China, Japan and Thailand [88]. The US cities with rail 
lines experienced heavy declines in car usage in comparison with cities without any rail 
infrastructure between 2000 and 2009 [89]. A study showed modal shift outcomes of 
the light rail transit (LRT) infrastructure build-up: 17–37% of former car drivers shifted 
their mode towards LRT in Nantes, 21% for the Blue Line LRT in San Diego, and 22% 
for the Super-tram LRT in Sheffield [90]. Similar mode shifts from car to rail systems 
are also highlighted in other works, such as a 19% mode shift to rail for Croydon 
Tramway [91], an 8–14% mode shift for Copenhagen Metro, and an 11% modal shift 
on average for 14 LRT systems in Europe [92]. In a worldwide comparison, it was found 
that a 10% increase in the subway network size causes an approximate increase of 6% 
in subway ridership [93]. The rail-bus infrastructure replacement resulted in a 
significant increase of transit ridership from 95% to 350% in the major corridors of Los 
Angeles [94]. Temporal and spatial analyses between 1992–2008 for the initial light rail 
service in Denver indicated that three light rail corridors in operation succeeded in 
lowering the level of traffic on highways within the rail transit influence zone comparing 
with the highways outside the influence zone [95]. The average travel time reductions 
of 21% resulted in an increased ridership of 15–20% for the Los Angeles metro system, 
with up to 33% for some corridors [96]. It was found that LRT investments alleviated 
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the road traffic congestion growth in some US cities after systems had started to operate, 
such as from 4.5% annual growth to 2.2% in Sacramento and from 2.8% to 1.5% in 
Baltimore [97]. 
           The urban rail transit has many advantages compared to road-based urban 
mobility. These advantages in comparison to the conventional bus systems lead to a 
considerable number of passenger capacity with a higher speed travel, a guaranteed 
travel time for passengers with the spatial isolation feature of the system, and lower 
transport-related emissions [98]. Furthermore, the accident rate is very low compared 
with the road-based systems. The net financial returns of the urban rail transit in Hong 
Kong equal approximately to $2.33 billion from 1980 to 2005 [99]. The results of 
another study demonstrated that the urban rail transit of Beijing could reduce 1,036,733 
tons of hydrocarbons (HC), 85,827 tons of CO, and 326,295 tons of NOx, which leads 
to over 8.56 billion Yuan savings every year [100]. Analysis based on an eight-year 
database of 43 cities showed that particulate matter dropped by 4% in a 10-km radius 
disk surrounding the city centre following subway system investments [101]. Rail 
transit-based cities, such as Hong Kong, Tokyo and Berlin, with high public transport 
(89%, 68%, and 61%, respectively) as well as non-motorized mode shares seem to be 
very successful in terms of the reduction of CO2 emissions comparing with other cities 
[102]. CO2 emissions as kg per capita per year are respectively 378 kg, 818 kg and 774 
kg for these cities. Furthermore, the road-dependent cities, such as Houston and 
Montreal, with low public transport and non-motorized mode shares (26% and 5%, 
respectively) exhibit 5,690 kg and 1,930 kg CO2 emissions in terms of kg per capita per 
year. European railways reduced 14% of CO2 emissions per passenger-kilometres from 
1990 to 2011 [103]. Chen and Whalley [104] estimated that there was a reduction of 
approximately 5–15% for CO and NO after subway investment in Taipei. In several 
studies, a positive impact of the rail network expansion was demonstrated regarding an 
increase in the population density near urban rail stations or tracks, thereby 
strengthening the compactness of urban areas [105–107]. A survey-based study was 
conducted to show the differences of transit users between rail-based and bus-based 
public transportation for Switzerland and Germany transit users [108]. The preference 
for rail-based services (75% for trams and 63% for regional trains) compared to bus 
services under equal service conditions was demonstrated. Some studies demonstrated 
the effects of urban rail investments on property values, such as an increase in property 
values in the vicinity of rail stops, e.g., the DART system in Dallas with an increase of 
10–25% [109], or the metro system in Phoenix with an increase of 25% [110]. The 
annual transportation cost savings (based on congestion, accidents, infrastructure-
related factors and parking) are $112 billion as a combination of the US cities with well-
established rail transit systems [111]. One study compared the noise impacts of light rail 
vehicles, conventional articulated diesel buses, and dual-propulsion (electric 
motor/diesel engine) articulated buses at 15 m (50 ft) and 56 km/h [112]. The results 
showed that diesel buses are noisier; light rail vehicles are slightly quieter, and electric 
buses are significantly the quietest. Estimations from Austroads showed that the urban 
traffic noise costs had averages at $1.81 for cars, $1.67 for buses and $1.55 for train 
travel per 1,000 passenger-kilometres [113]. 
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Table 2.1 Lifecycle assessment of energy, GHG and air pollution for all modes. 
 

Lifecycle 
Assessment 

Energy 
Consumptio
n 
(MJ/PMT) 

Greenhouse 
Gas 
Emissions  
(gCO2e/PMT) 

 
CO 
(mg/PMT
) 

 
SO2 
(mg/PMT
) 

 
NOX 
(mg/PMT
) 

 
VOC 
(mg/PMT
) 

 
PM10 
(mg/PMT) 

Buses-peak 
(diesel) 

 0.8  
(0.59) 

 79  
(61) 

 0.26 
(0.15) 

130 
 (18) 

530  
(500) 

82  
(17) 

51  
(20) 

Cars (gasoline 
Sedan) 

 4.6 
 (3) 

 360  
(230) 

  12 
 (12) 

480  
(72) 

1,000 
(640) 

1,300 
(770) 

780  
(81) 

Jeeps (gasoline 
SUV) 

 6.3  
(4.5) 

 430  
(280) 

  13 
 (12) 

470  
(16) 

1,000 
(590) 

1,300 
(760) 

720  
(73) 

Trucks 
(gasoline) 

 7.8  
(5.7) 

 500  
(330) 

 16  
(15) 

530  
(18) 

1,400 
(910) 

1,600 
(950) 

850  
(87) 

Buses off-peak 
(diesel) 

 6.4  
(4.7) 

 630  
(490) 

2.1  
(1.2) 

1,000 
(150) 

4,300 
(4,000) 

660 
(140) 

400  
(160) 

BART (heavy 
rail elevated 
and subway 
system) 

 2.2  
(1.1) 

150  
(84) 

520  
(43) 

740  
(450) 

290  
(32) 

200  
(9.6) 

130 
 (4.9) 

Caltrain 
(commuter rail 
line) 

 2.2  
(1.1) 

160  
(74) 

420  
(83) 

310 
 (11) 

1,600 
(1400) 

200  
(59) 

170  
(38) 

Muni (light rail 
system) 

 3  
(1.2) 

200  
(90) 

670  
(46) 

970  
(480) 

290  
(35) 

150  
(10) 

53  
(5.2) 

Greenline (light 
rail system) 

 2.3  
(0.87) 

220  
(120) 

720  
(140) 

1,200 
(730) 

410  
(160) 

130  
(9.3) 

65  
(7.4) 

CAHSR (high-
speed rail 
system) 

 1.6  
(0.43) 

130  
(32) 

770  
(16) 

490  
(170) 

360  
(12) 

250  
(3.7) 

62  
(1.8) 

 
 Vincent et al. [114] stated that the Brisbane Southeast BRT system reduced the 
overall travel times by up to 70%. The Metrobus BRT system in Mexico City was 
reported to have resulted in travel time savings of 40% [115]. Metrobus in Istanbul with 
a thorough implementation of BRT elements, including an almost fully segregated 
infrastructure, ensured travel time reductions of 65% [116]. The BRT infrastructure 
build-up increased the ridership by 10% one year after the opening and resulted in a 
decrease in the bus public transportation in Seoul [117]. Similarly, BRT expansion 
resulted in a 125% BRT ridership increase in Dublin [118], whereas, in Istanbul, 
Metrobus increased its ridership by 150% [112]. The BRT infrastructure build-up 
resulted in a 40% mode shift from car passengers to O-Bahn BRT in Adelaide [119]. 
Similar car–BRT modal shifts were demonstrated in other cities:  25% for Curitiba BRT 
[120], 29% for Nantes BRT [121], and 19% for Kent BRT [122]. 
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            Carrigan et al. [123] demonstrated the economic benefits of the BRT systems 
for TransMilenio in Bogota (Phases 1&2), Metrobus in Istanbul (Phases 1&4), Rea 
Vaya in Johannesburg (Phase 1A), and Metrobus in Mexico City (Line 3). The 
economic contribution of the travel time savings of BRT systems is calculated for some 
cities to be $1,830 million for the Bogota City economy, $6,369 million for Istanbul, 
$331 million for Johannesburg, and $142 million for Mexico City. Furthermore, for the 
same period, the benefits from carbon emission reductions were estimated as $239 
million for Bogota, $152 million for Istanbul, $18 million for Johannesburg, and $10 
million for Mexico City. It was found that the BRT infrastructure development was 
lower in price up to 4–20 times in comparison with LRT, and 10–100 times in 
comparison with metro systems [124]. The BRT system resulted in a 5–10% increase 
of property values near BRT stops in Seoul [117], as well as in a 16% increase for 
properties near the East Busway system in Pittsburgh [125]. It was also found that BRT 
was a more cost-efficient and effective mode comparing with LRT when the lines 
carried less than 1,600 passengers per hour [126]. BRT systems tend to increase unit 
costs, and the traffic signal priority of the system becomes ineffective for short 
headways above 2,000 passengers per hour, in which case, LRT systems are more cost-
efficient and effective. Both BRT and LRT are cheaper than the regular buses in terms 
of operation costs for passenger-kilometres. 
          Speed is one of the main factors determining the mode choices for passengers. 
Vuchic [127] surveyed the average operating speeds of the urban transit modes around 
the world. The highest speed is that of the rail-based modes, e.g., 37 mph for commuter 
rail, 26 mph for heavy rail, and 20 mph for light rail, followed by the road-based modes 
with 19 mph for BRT and 14 mph for the conventional buses. Chester and Horvath 
[128] made a life-cycle energy and environmental inventory of passenger transportation 
in the US for such modes as cars, jeeps, trucks, buses, light rail, heavy rail, passenger 
trains and plane types. The criteria for the rail-based life-cycle energy and the 
environmental inventory are available in this paper. A summary of the life cycle energy, 
GHG and air pollution inventories for all the modes is provided in Table 2.1 (values in 
parentheses are for one operation cycle). 
            The obtained results show that public transportation is energy efficient compared 
to the auto-based models, but the efficiency of the public transport depends on the load 
factor as seen by the lifecycle assessment of the conventional bus. The system is the 
least efficient during off-peak times within all the modes, while it is the most efficient 
mode for the peak times. The performance of the public transport in New York City, 
San Francisco, and Chicago is taken into account in this study, too, and these cities have 
around 60–80% private car mode share for commuting. However, if the high public 
transport mode shares of such cities as Tokyo, Hong Kong and Berlin  were analysed, 
the results would be more significant in terms of the efficiency of the system, since the 
load factor is a very important parameter for public transportation. Chester et al. [129] 
investigated new bus rapid transit and light rail lines in Los Angeles and assessed the 
near-term and long-term life-cycle impact. The obtained results demonstrated that 
ensuring the mode shifts of 20–30% of transit riders from automobiles would result in 
passenger transportation greenhouse gas reductions for the city, and the larger is the 
shift, the quicker is the payback. A case study about integrated transportation and land-
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use life-cycle assessment framework on the Phoenix light rail system demonstrated that 
marginal benefits from the reduced automobile use and potential household behavior 
changes exceeded the marginal costs of a new rail service [130]. A comparison of the 
life cycle emissions of BRT – TransMilenio – with the other modes in Bogota was 
conducted with the well-to-wheels approach on the OpenLCA software [131]. The 
results demonstrated that BRT produced the lowest emissions of CO2-eq, CO, NOx, and 
the lowest emissions of PM2.5 were achieved by an electric BRT and buses powered 
by natural gas.  
 
2.2.2.3 Non-motorized mobility  
 
 With the growing concerns over traffic congestion and pollution from 
motorized vehicles, a research focused on the cycling infrastructure indicated a positive 
correlation between the bicycle usage and the bicycle infrastructure expansion in 43 US 
cities as based on the data from Bureau of the Census [132] and in 13 European cities 
[133]. Estimations for  the US cities demonstrated that completing the sidewalk network 
of cities reduced automobile travel by 5% (from 22.0 to 20.9 vehicle miles) and 
increased non-motorized travel by 16% (from 0.6 to 0.7 miles per day) [134, 135]. 
Cycling increases the public transit accessibility of the Dutch cities where cycling is 
used by 10% as the egress mode [136]. Significant modal shifts from car to cycling have 
been stated for Denmark, the Netherlands and some other EU regions since the 1970s 
[137]. Dutch cities are among the most cycling places in the world: it was reported that 
Dutch residents make more than one-quarter of all trips (37% for leisure times, 24% for 
commuting to work, 20% for education purposes, 13% for shopping and 6% for others) 
by bicycle [138]. It was stated that the Netherlands (2015) had a 35,000 km total length 
cycle path, and approximately 1,000 km distance is cycled per person a year (on 
average, 2.9 km daily distance) [139]. The Netherlands have a growing population of 
17 million people, and all of them together own 22.5 million bicycles; as a result, on 
average, the Dutch own 1.3 bicycles per capita [140]. Amsterdam and Utrecht are 
leading in terms of bike usage in the country: 57% and 60% of daily trips, respectively, 
are made by bicycle [141, 142]. For example, Utrecht has the biggest bicycle-parking 
garage (for 12,500 bikes) in the world [141]. These cycling investments in the 
Netherlands came up with socio-economic and environmental benefits. Health benefits 
of cycling, such as a reduction of travel accidents, save 19 billion euro per year in the 
Netherlands, which is equal to 3% of the Dutch gross domestic product. Economic 
assessments of cycling were reported for the Netherlands, and cycling was stated to be 
the cheapest mode of transport with annual costs ranging between 175–300 EUR 
(compared to cars: €2,500–8,500) [138, 143]. Besides, the annual infrastructure cost per 
traveler kilometre is €0.03 for bicycles, €0.10 for cars, €0.14 for buses, and €0.18 for 
trains. Another point is space control; a bike takes only one-eighth in the space of a 
parked car, and much more than 50% of the public space is used for car parking [143].  
            Denmark is another country with a widely adopted cycling culture where cycling 
accounts for 17% of all trips and, specifically,  85% of trips shorter than 5 km [144]. 
Cycling trips are made for the following reasons: 34% for leisure activities, 12% for 



29 

going to work, 17% for educational purposes, and 17% for other purposes [145]. The 
cycling infrastructure in Denmark is very well established with more than 12,000 km of 
separated bike paths and bike lanes in cities and in the countryside [145]. Furthermore, 
the door-to-door strategy and bike-train-bike journeys are promoted in order to combine 
cycling with the public transport. Therefore, people have opportunities to bring bicycles 
onto trains [146]. As a result, approximately 27% of rail passengers cycle from their 
home to a train station, while 8% cycle from a train station to their final destination 
[147]. According to the report from the Capital Region of Denmark [148], the cycling 
residents save 30 million DKK of overall costs of noise pollution and 27 million DKK 
of overall costs of air pollution per year. Furthermore, cycling does not produce GHG 
emissions comparing with other modes which emit 115,000 tonnes of CO2 emissions 
per year (cars emit 101,000 t, buses emit 8,000 t, and trains emit 6,000 t) [145]. Studies 
showed that the cycling safety is greater in cities with higher levels of cycling, and that 
injury rates fall as the levels of cycling increase [149, 150]. For example, the cycling 
fatality rate in the US is five times higher than in Denmark and the Netherlands [151]. 
In Copenhagen, cyclists provide more revenue for shops in the city centre than cars, and 
estimations show that cyclists can provide €111 billion of economic profits every year 
in the EU cities [152]. 
          Also, a large increase in the sales of e-bikes has been observed, especially in Asia 
and Europe during the recent years due to megapolis residents considering their 
advantages of competitive travel speeds compared to the local public transport under 
conditions of rush-hour driving. This advantage of e-bikes increases the potential mode-
shift by car users and, in turn, alleviates the environmental impacts thus improving the 
public health [153]. A study investigated the factors affecting the e-bike share in 
Shanghai; the results highlighted that, compared to the conventional bike share usage, 
the e-bike share is less sensitive to the trip distance and weather conditions [154]. 
 

 
Figure 2.3 Economic benefits of cycling in the EU-28, 2016. 
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  Studies showed that a well-developed cycling infrastructure has a strong 
beneficial effect on the property value along traffic-calmed roads. The traffic volume 
and residential property values were modeled in the city of the Hague (the Netherlands), 
and the results demonstrated that, by decreasing the traffic volume by 50%, the housing 
prices increased by 1.4% on average [155]. An increase in the model share of cycling 
by 1% would increase the turnover of local retailers by 0.2%, or €87.6 million per year, 
in Austria [156]. A positive effect of the cycling infrastructure on employment was 
demonstrated by the findings of the European Cyclists Federation [157]. Their 
estimations suggest that there are 654,909 full-time jobs under the bike sector in the EU-
28. The employment effect of the cycling infrastructure is 1.28 times higher than the 
general transport infrastructure. A rise in the modal share of walking and cycling modes 
increased the gross domestic product (GDP) of German cities by 1.11% [158]. The 
travel mode shift from short distance car trips to cycling in the US has a potential of 
$3.5 billion savings that can even grow to $6–17 billion in the future with the increasing 
preference towards cycling and walking [159]. The overall amount that would be saved 
on gasoline expenditure is in the range of $10 to $35 billion annually. CO2 emissions 
were estimated for a car ride and a bus ride to be 271 g and 101 g per kilometre, 
respectively. The results of shifting one’s main daily travel mode (car or bus) to cycling 
(~10 km) can help to avoid emitting 715 and 266 kg of CO2 emissions per year, 
respectively [160]. The biking scheme in Barcelona avoided 960 t of CO2 emissions of 
the city compared to the situation before the system was applied [161]. Over 90,000 
inhabitants used the system during the six initial months of operation. A systematic 
classification of benefits of cycling was reported [152]. The results show that the overall 
economic benefits of EU cycling were €513 billion in 2016. The distribution of the 
overall benefits is presented in Fig. 2.3. 
            A complete life cycle assessment (LCA) was conducted in order to compare the 
modes of transportation including walking, cycling, and e-cycling to contribute to 
Chester & Horvath’s previous work (2008) [162]. The results show that the life cycle 
energy usage of the modes is 102 KJ/PMT (for walking), 319 KJ/PMT (for biking) and 
356 KJ/PMT (for e-biking). Besides, 33 kg GGE/PMT is calculated as the life cycle 
GHG emissions of non-motorized modes. That makes biking and walking the most 
energy efficient and environmentally friendly modes. Furthermore, electric bicycles 
emit 90% fewer pollutants per passenger mile traveled comparing with a bus operating 
off peak and use less than 10% of the energy required for a sedan car. 
 
2.2.3. Infrastructure design 
 

Transportation networks are complex dynamic systems which have been 
compared with the neural networks of the brain where neural cells distribute information 
by exchanging chemical transmitters between synapses [163]. Urban transportation 
networks are the distributors of cities for energy, materials and people to specific zones 
of the city, in the same way as a cardiovascular network distributes energy and materials 
to cells in an organism [164]. The term ‘complexity’ for transport networks results in 
rich behaviors arising from systems connections, interactions with subsets and the 
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dynamic processes (vehicles or people) acting on a network structure (pattern & 
configuration)  [165]. In recent years, understanding the structure and dynamics of urban 
transport networks has been improved through analyses of network topology measures 
by using the mathematical tools of graph theory [166]. The configuration of networks 
helps to detect the travel behaviors of inhabitants [167, 168], to evaluate transportation 
performance [163, 164], and to understand how cities are organized [163, 171]. 
Complex network analysis allows important feedback for urban modeling. It is also an 
effective evaluation tool since providing feedback to the system is important for 
correcting, improving or upgrading urban models before executive plans have been 
drafted [172]. Dynamic system variables, such as population and traffic volume, 
account for the state of the system as it changes over time [165]. On the other hand, one 
can evaluate cities through co-evolution, where humans shape their city and are shaped 
by the city, thus making topological measures an important proxy. Various concepts of 
the graph theory are used to describe the network features. The topology of a network 
can be described as the arrangement (centrality, clustering) and connectivity of a 
network [173]. Geometric variations of their structure, such as shape, density and 
circuity, become more visible when complexity is analyzed at a more macroscopic level. 

 Various indicators are identified in literature as a measure of network 
patterns. The quality of a transport system can be evaluated based on the intensity of 
connections between road segments through connectivity measures [174]. There are 
several indicators to evaluate the connectivity pattern of the networks, such as Alpha 
Index, Beta Index, Gamma Index and Eta Index [175]. The average node connectivity 
is a useful network proxy defined as the average over all the pairs of vertices of the 
maximum number of internally disjoint edges connecting a pair of vertices [175, 176]. 
It is a measure of network resilience: in the networks with low average connectivity, 
the network circulation is forced through low-permeability choke points, which 
increases the risk of traffic jams and network disruptions [165]. Another important 
indicator is the average circuity of a network (or its directness) which is the ratio of 
the shortest distance on the network over the Euclidean distance averaged over all the 
origin-destination pairs in the network [167, 168, 177]. The degree centrality is a local 
measure which offers a hierarchical view of the city where closeness centrality is 
mainly radial with a strong side effect. The average degree of centrality is described 
as an average connection of each road segment to all the segments in a network [178]. 
The average closeness centrality is the average distance of the shortest paths between 
any node and all other reachable nodes of the network [178]. This captures the notion 
of the accessibility of places in a city. The average clustering coefficient is a measure 
of the network structure of nodes defined as the average number of triangles between 
nodes in a network. The clustering coefficient is a measure of direct accessibility 
[172].  

Some studies analyzed the relationship between the network configuration 
and travel behaviors. The differences of the average network centrality among 
subzones of cities affect the inhabitant life and behaviors through various spatial 
factors [171]. Eighteen cities across the world were analyzed through multiple 
centrality assessment by primal geographic network graphs (degree, closeness, 
betweenness, straightness and information), and 1-square-mile network comparisons 
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were conducted [170]. The obtained results demonstrated that a set of different 
centrality indices allows capturing the skeleton of most central routes. They are 
determined by the city structure and subzones which appear to affect the spatial 
cognition and the collective dynamical behavior. Furthermore, hierarchical clustering 
analysis or the correlation between different centrality measures is able to characterize 
the classes of cities. It was demonstrated that clustering measures are important for 
rail networks: an average increase in triangle connections of a rail network can reduce 
transit circuity [172], [179]. Public transit networks are more circuitous than roads, 
which suggests that the shortest route is much longer than the line of sight. This is one 
of the reasons behind the preference of the private automobile over public transit 
[168]. The increase in the average circuity of public transit networks can drop the 
transit ridership and thus cause a mode shift towards road mobility. Network circuity 
is also used to explain the residential place choice of employers for commuting in US 
metropolitan cities [167].  

A few works investigated the role of the network configuration in 
transportation performance. A positive correlation was demonstrated between the 
delay time and the average circuity of networks, and a negative correlation was shown 
between the average circuity and the ‘treeness’ (disconnectivity) of the networks for 
48 cities in the United States [164]. Another paper compared the road transportation 
performance of the 50 largest metropolitan areas in the United States by comparing 
the hierarchy, connectivity and directness (circuity) of their road networks [169]. The 
results showed that a 1% increase in the network connectivity reduces the commuting 
time by 0.1%, a 1% increase in road accessibility reduces the average metropolitan 
commute times by 90 seconds, and a 1% increase in the ‘treeness’ reduces the auto 
mode share by 0.061%. The circuity of the network is an important measure of the 
transportation efficiency, and it is determined by the transport network configuration, 
transport planning, and the underlying terrain [166]. The circuity of transit networks 
was examined for 36 metropolitan areas (excluding the fringes and low accessibility 
zones) in the United States through maps generated by the OpenStreetMap System 
(OSM) [168]. The results showed that transit circuity exponentially declines as the 
travel time increases thus helping to understand the mode choices. Furthermore, the 
average circuity of transit networks is greater than the average road circuity in the 
cities, which demonstrates how public transit network systems expanded. Networks 
can be well-connected, but can be still poor in terms of directness. Therefore, 
connectivity and directness can be coupled effectively without impeding each other 
[180], and, in combination, they are important measures for road traffic. 
Centralization extremes of networks may reflect different travel behaviors according 
to the differences between small and large cities, and how the road infrastructure and 
traffic might change as cities are growing [164]. Study [181] demonstrated several 
scenarios aiming at reducing travel times, and it found that the necessary transfers 
could be provided by optimizing the closeness and the degree of centrality in cities. 
The obtained results showed that the closeness centrality is an important proxy to 
detect the overall accessibility of the system. 
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2.2.4. Technology and policies 
 

            Technological improvements play the key role in socio-technical 
transformations. There were significant improvements in terms of electrification and 
fuel efficiency in the recent years. Up to 49% of transport-related carbon emissions 
should be reduced by energy efficiency and technological improvements until 2030 
[182]. Furthermore, nowadays, e-vehicles as a combination of renewable energy 
integration and energy efficiency emit around 200–300 gCO2/kWh, with the 
predictions being zero with further technological improvements [183]. The energy 
conversion rate of electric vehicles (EVs) is 60% higher than that of internal 
combustion engines (ICEs), and 50% higher than that of hydrogen cars [184]. In 
addition, hybrid vehicles (HEVs) are 35% more fuel efficient compared to ICE 
vehicles [185]. Vehicle fuel efficiencies of car types (HEV, EV, FCV-fuel cell 
hydrogen vehicle) were compared, and projections have been made for 2020 and 2030 
[186]. The results show that baseline gasoline ICE vehicles with conventional drive 
trains can achieve a 50% increase in fuel efficiency with advanced technologies 
continuously improved up to 2050. Compared to BEVs, hydrogen vehicles that are 
able to travel more than 160 km are superior in terms of mass, volume, cost, initial 
greenhouse gas reductions, refueling time, well-to-wheels energy efficiency and life 
cycle costs [187].  
           There have been 50% improvements observed in vehicle fuel economy 
(MJ/km) in the recent years [188]. Comparing with more than 20 years ago, 
Americans have started to use 26% heavier vehicles with 107% more powerful 
engines, whereas the average fuel efficiency increased by more than 60%. The EU 
aims to increase vehicle fuel efficiency at 6% during their life cycle [189]. The 
electrification of bus systems delivered 37% of fuel economy [190]. Analysis shows 
that e-buses have the lowest noise pollution among the related types, while diesel 
buses are the noisiest. A shift from diesel to electricity for Bogota TransMilenio BRT 
buses would reduce CO2-eq emissions by 86% and PM2.5 emissions by 88% [131].  
           A complete LCA of different vehicle types was conducted [191]. The obtained 
results show that BEV has the lowest lifetime GHG emissions, followed by HEVs. As 
expected, for all types, when vehicles get larger, they generally have higher emissions. 
For the average EU electricity mix (a combination of renewable and non-renewable 
energy supplies), BEVs have less than a half of the life cycle emissions than ICE 
vehicles, and also feature lower operational costs for BEVs [193]. Due to the mass 
production of e-vehicle batteries recently, the price per kWh is expected to fall to 65% 
of the present level over the next years. Fig. 2.4 demonstrates BEV and PHEV sales 
shares of the leading countries shifting to e-vehicles and e-car registration within 
2010–2016 according to the International Energy Agency [194]. As the European 
Union has recently invested in the e-charging infrastructure for electric cars, such as 
a shift toward public options & away from home, the share of home charging will 
decline approximately to 75% until 2020 and to about 40% by 2030 in comparison 
with the date of the research [192]. Furthermore, in China, public e-charging will 
dominate in the nearest future; it is expected to be 55% to 60% in 2020 and 
approximately 80% by 2030. The UK government is shifting towards e-mobility 
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infrastructures. Highway England has come up with an innovative road infrastructure 
system that can recharge electric vehicles as they drive [193]. 83% of the entire 
network will be within 20 miles from a charger by the summer of 2019, and the re-
charging road infrastructure system will be completed within such a distance by 2020. 
The SolaRoad (2014) project built another innovative infrastructure in the cycle 
culture town Krommenie in the Netherlands, with energy harvesting cycleways to 
travelers [194]. The results of the six initial months showed that the path pulled more 
than 150,000 riders, and, more basically, delivered more than 3,000 kilowatt-hours, 
which is enough to power a house for a year. Recently, the SolaRoad project has 
created 9,800 kilowatt-hours of energy. As electrification is trending up, the most 
important part is the integration of renewable sources into energy production. 
Renewable sources are without operational emissions and have the lowest indirect life 
cycle emissions. The estimated/indirect emissions are 10–25 gCO2e kWh for wind 
and hydro energy, 30–100 gCO2e/kWh for solar photovoltaic energy, 10–130 
gCO2e/kWh for nuclear energy, and 600–1200 gCO2e/kWh for fossil fuel [183]. The 
idea of renewable combination is essentially of a high-voltage direct current (HVDC) 
electricity grid that connects all the major natural energy sources (solar, wind, hydro, 
bio and geo). According to the Desertec (2018) project, a combination of renewable 
sources in Europe, northern Africa and the Middle East, particularly with the 
integration of concentrated solar power (CPS) in deserts, can provide clean energy for 
90% of the world’s population [195].  
           The global smartphone ownership is a median of 72% across the developed 
countries, and the internet usage is a median of 87% in 2018 [197]. That renders 
intelligent transport applications into an important tool so that to help optimize urban 
mobility systems. A lack of synchronization between the modes induces differences 
between the theoretically quickest trip and the ‘time-respecting’ path; on average, in 
the UK, 23% of the travel time is lost in connections for trips with more than one 
mode [198]. The potential travel time reduction of BRT systems would be increased 
up to 69% by integration with intelligent transportation systems [199]. Intelligent 
transport services have important potential to contribute to GHG emissions reduction 
goals of the EU [196]. The function of some services and their benefits are evaluated 
in some studies [201–204]. The results are summarized in Table 2.2.  
            ICT is increasingly improving urban transport systems by enabling efficient 
and effective use of travel information and vehicle use, as well as improving the 
network management. A new distributed algorithm for controling traffic signals 
ensuring global optimality leads to the maximum network throughput proposed as an 
alternative to the other light timing systems as SCATS (founded in Sydney, used in 
25 countries) and SCOOT (founded in the UK and used in a few countries) [205]. A 
combination of modal shifts and optimal trip routing with successful limitation and 
pricing polices reduces car trips in cities [206]. Some policies aim to reduce the 
growth of vehicle fuel consumption by limiting the vehicle use or vehicle ownership. 
The limitation of vehicle ownership in Shanghai and the limitation of vehicle use in 
Beijing resulted in some differences between the cities, such as the number of 
passengers per vehicle, GDP per capita and vehicle type structure. As a result of the 
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policy effectiveness analysis of different policies, it is expected that the fuel 
consumption in Shanghai in 2020 will be reduced by 59.4% and in Beijing by 5.7%, 
which shows that the limitation of vehicle ownership is more viable in terms of 
reducing the fuel consumption [207]. 
 

 
Figure 2.4 Electric car sales, market share, and BEV and PHEV sales shares in selected 

countries, 2010–2016 (International Energy Agency, 2017). 
 
           A number of policies aiming at stressing such points as the reduction of carbon 
emissions and congestion can contribute to a modal shift towards public transport. For 
example, London’s congestion charge is an exceptionally conspicuous case of such a 
strategy [208]. Congestion charging resulted in the overall reduction of 11% in vehicle 
kilometres in London between 2002 and 2012. The urban traffic was improved with 
a 10% reduction of levels comparing the years 2013 and 2003; there was a 28% 
decline in car crashes, and the net revenues were calculated to be €123 million for 
2007 [204]. A congestion charging policy applied in Stockholm reduced 
approximately 20% of the traffic volume and GHGs emissions [209]. Bus priority 
applications brought some benefits to cities, such as 52% reduction of the average 
public transport waiting times at the traffic lights in Toulouse, an increase in the 
frequency of service from 10 min to 7.5 min in the same capacity and up to 4% 
punctuality of the system in Malmo [204]. In addition, there was a reduction in 
emissions, such as 33.3% of PM, 20% of NOx, 26% of CO, 4.1% of CO2 in Tallinn. 
A recent study reviewed shared mobility systems. It demonstrated that car sharing 
strategies concentrate on convincing transport users to adopt more conscious and 
sustainable behavior through referring the studies which demonstrate how shared 
systems mitigated traffic congestion and air pollution by dropping the number of 
vehicles in circulation in urban areas as well as by eliminating the need for parking 
spaces [210]. Furthermore, bike/e-bike-sharing systems are a more convenient 
connection to public transport while providing travel time reduction within city 
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centres and improving bodily health. The city of Copenhagen implemented mixed-
use regulations around public transport connections, station proximity, and parking 
management policies [211]. As a result of the successful implementation of a 
combination of policies, the passing times within modes are quite low, the PT 
accessibility is high, and the GHG emission was reduced. The potential of the city is 
to build approximately 1.3 million square metres of commercial space within 600 
metres of a station that corresponds to approximately 33,000 jobs for the plan period 
of 2015–2027. This plan will reduce a total of 95,000 tonnes of carbon emissions (i.e., 
the annual reduction of carbon emissions by approximately 0.7%) during the entire 
period compared with the scenario without station proximity.    
 
Table 2.2 Functions and benefits of intelligent transport services. 
 

Application Function Benefits 

Zipcar – London Car-sharing service 
Reduced car travel costs and miles by 42% per 
year. 

Zimride – USA Ride-share service 
Saves over £50 million in vehicle operating 
costs, such as fossil energy, insurance and 
maintenance. 

Sfpark – San 
Francisco Parking service 

Reduced congestion, 30% drop in GHG 
emissions. 

Suica smartcard – 
Tokyo Multi-modal smart ticketing 

Integrated payment across modes, time saving. 

SignalGuru – 
Cambridge and 
Singapore 

Green Light Optimal Speed 
Advisory 

20.3% saving on fuel consumption. 

*Moovit, Citymapper 
*TI system in 
Monza/IT 

Real-time journey planner 
-Modal-shift to PT and time savings 
-4.1% modal-shift to PT. 

Velib, Bicing Bike-sharing 
Reducing excessive demand on single mode 
for last mile connections. 

*TSC – in Aalborg 
(Denmark) 
*Across EU 

Adaptive traffic signal 
control system 

-Travel time decreased by 8.5% per trip (for 
peak times), and fuel consumption decreased 
by 2.5%. 
-Improvement 5–20% in the travel mean 
speed. 

 
2.3. Literature review conclusions 
 
 Social factors, such as culture, educational level, income level, and the nature 
of demography have been reviewed above. Their influence on the transport user 
patterns has been assessed. Culture is an interpretation code of societies which may 
explain common preferences in a certain location. Prediction of alternative transport 
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systems which could be adopted in a city can help urban transport planners and policy 
makers to adjust the urban environment in a more sustainable manner. However, 
social value associations and the impact of culture on travel behavior are denoted by 
a gap in literature that complicates the understanding of the connection between 
transportation and culture. At the moment, to the best of the knowledge of the author 
of the presesnt thesis, no research papers have been found to analyze the role of culture 
in urban travel patterns in a holistic way. Culture is an inherited characteristic of 
societies and a basement of user privileges. Some policy and urban transport strategy 
comparisons can be drawn by answering the question: which alternative transport 
systems can be sustained under which cultural conditions? In the next section, culture 
will be analyzed globally, and the influence of culture on transportation will be 
modeled. The education level can be referred to as an acquired characteristic of 
societies. Personal choices are changeable by educating citizens in societies. 
Education is a decisive factor that can shape societies dynamically in a collective way, 
and a higher education level is an important proxy to assess the awareness level of 
societies with the current issues. Meanwhile, there is also lack of holistic analysis 
comparing education and transportation in literature. Linking education and travel 
patterns can inspire future urban policies and strategies. In the next section, the effect 
of the educational level on the travel mode choices will be analysed globally to stress 
out the importance of education. The income level is an important proxy assessed in 
a number of works. Literature showed that societies with a higher income tend to own 
more cars and to drive more. The income level will be used in the next section under 
different analyses as a variant so that to understand the influence of the economic level 
on the user behavior and to detect the extent to which it impacts the infrastructure 
development at a global level. The nature of demography presents a complex 
structure: distribution of gender, age, household composition, marital status and other 
variables in societies. Literature demonstrated that the differences of users’ physical 
conditions, housing and time value, as well as some obligations due to responsibilities 
change people’s habits. Such factors as ageing, marriage, or having children, 
encourage users to use cars more frequently. The distribution of demography is an 
important criterion before drafting new strategies.  

Such technical factors as infrastructure, land use, network design, technology 
and policies have been reviewed above. Their influence on the user profile and 
transport performance with interaction between these factors was demonstrated at a 
worldwide level of detail. Technology and policies act as the system optimization 
tools intended to sustain urban mobility. In this context, infrastructure and land use 
are two major interconnected technical factors. It is outlined in literature that cities 
with high population density provide high accessibility to the public transport transit 
and active modes; meanwhile, people drive much less than in other regions; also, the 
public transit mode share of these cities is higher. Usage of public transit and non-
motorized systems can increase with the concentration of activities and proximity in 
cities by mitigating land segregation; in addition, this reduces transport-related energy 
consumption and costs. The relationship between the transport infrastructure 
expansion and population growth, spatial expansion and land-use change has been 
highlighted in many works. A tight relationship between transport and urban 
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development has been shown as well. Also, the relationship among the infrastructure, 
land use and travel mode choice has been demonstrated empirically in a number of 
studies referred to above. It is clearly outlined in literature that cities growing with an 
urban rail system and revitalization of urban fabric synchronously increased their 
economic growth and reduced car dependence [213]. Besides, cities with large and 
well established rail systems have significantly higher transit ridership per capita, 
lower average vehicle ownership per capita and annual mileage, less traffic 
congestion, lower traffic death rates, lower consumer expenditures on transportation, 
and higher transit service cost recovery than otherwise comparable cities with less or 
no rail transit service [111]. A consequence of these effects is a further increase in the 
transport infrastructure demand which is often referred to as the ‘induced demand’ 
[205]. Traffic congestion and car excess led bus-dependent public transport systems 
to slow down; the efficiency of urban public transport is decreasing and causing 
frequent traffic accidents that are threatening people’s safety and health [94]. 
Therefore, such currently existing bus-dependent road-based systems could neither 
meet the growing demand of the residents’ travel, nor the demand of the city’s 
economic development. Rail modes demonstrate the best performance through the 
modal shift and ridership. However, the BRT infrastructure looks more competitive 
than the rail modes with advantages of lower infrastructure costs and cost-benefit 
efficiency below 1,600 passengers per hour. Furthermore, the BRT infrastructure 
provides more significant travel time savings than the rail modes, but there is not 
enough evidence in literature showing that this system alleviates urban traffic. 
Especially, rail systems have been shown to achieve de-congesting effects in the 
literature. The BRT infrastructure is generally adopted by South American cities 
where lower economic conditions compared to the EU & the US are manifested. 
Cycling is highlighted above as an alternative to short car trips with advantages of 
contribution to physical and mental health, traffic alleviation, noise and exhaust 
emission reduction and affordable costs. Well-established alternative mobility 
systems save travel time; the modal shift from the private car to other means of 
transport in turn alleviates road congestion; thus, these are the positive effects on 
economic efficiency and environmental quality in cities. Also, increasing alternative 
transportation options to car mobility promotes social equity in urban areas.  

One of the objectives of the present analysis is to shed more light on the 
relations between the transport-socio-economic indicators and the transport 
performance indicators. The used data is thought to be comparable across all the 
selected cities thus allowing absolute global evaluation of the transport performance 
indicator. With respect to previous studies, the number of comparable cities is larger, 
and the data is more recent. Solid transport policies are addressed by answering the 
question: under which conditions can railways and superior bicycle infrastructure be 
used more thus reducing the congestion levels? Also, multivariate analysis connecting 
the land use and infrastructure is missing in literature. There are only two instances of 
empirical evidence in literature [65, 66] which demonstrate a particular relation 
between transport energy consumption and population density.  The cited works are 
early publications, and only bivariate perspectives have been considered, which 
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attracted some criticism. There is a need to update transport energy consumption of 
cities and to understand how it relates not only to the population density but also to 
the transport infrastructure. The main focus of the analysis will be to establish a 
quantitative relation among the population density, transport infrastructure and 
transport energy consumption. In the following section, the gap is filled with the 
connecting infrastructure and land use exploration in order to systematically 
investigate their internal relationship and how these factors affect the users and 
transport performance.  

Transport systems are complex systems; thus the functional properties of a 
transportation network can affect the user patterns in turn changing the network 
performance. Understanding the topology of transportation networks is important in 
order to upgrade the transport network design and to improve the transportation 
performance. Literature showed that the network design exerts influence on user 
preferences as less circuitous transport networks are preferred. Also, an increase of 
connectivity in the road network can alleviate traffic congestion. However, neglecting 
the effects of alternative transportation networks (railway and cycleway) is one of the 
limitations affecting the creation of general models through network analysis [170]. 
Also, focusing just on local analyses (within cities from the same country) would not 
demonstrate the global effect of the network design. In the next section, the influence 
of the network configuration of different layers (road, railway and cycleway) on the 
road congestion will be analyzed worldwide by merging infrastructure accessibility 
and network configuration. 

3. Methodology 
 

Worldwide analysis and comparison of urban areas is of paramount 
importance in order to draft or reassess a supportive and integrated socio-technical 
scheme. This is the first systematic multivariate transport indicator analysis using 
recent observable open source data from different urban areas around the world. 
Around 200 cities which are distributed over 55 countries are examined under 
different analysis patterns in the next section with the database presented in this 
section. The first chapter of the next section contains analysis of the effect of culture 
dimensions in the urban travel patterns in the investigated cities. This chapter 
attempts to investigate the role of Hofstede’s culture dimensions (HCD) in urban 
travel patterns in 87 urban areas and 41 countries. The relationship between HCD 
and some urban travel patterns, such as mode choices (individual transportation 
versus public transportation), car ownership and infrastructure accessibility (road 
infrastructure per capita) is demonstrated. Additionally, the relationship between 
culture and some demographic indicators (the population density and GDP per 
capita) which are closely associated with the travel choices are checked. The second 
chapter presents the analysis of the influence of the higher education level on the 
urban travel mode choice in the investigated cities. The objective of the chapter 
analyses is to evaluate the influence of the higher education level on the urban 
travel mode choices for 45 urban areas from 29 countries. The relationship between 
the higher education level and the urban travel mode choices is demonstrated. Also, 
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a higher education level is controlled with the population density and GDP per 
capita, which does significantly influence the travel behaviors. The third chapter 
contains the multivariate analysis of the relations within socio-economics, land use, 
transport infrastructure and transport performance of cities. This chapter attempts 
to determine important transport and socio-economic indicators from 151 urban 
areas and 51 countries based on comparable, directly observable open-source data 
such as the OpenStreetMap (OSM) and the TomTom database. The indicator road 
kilometres per person, sometimes cited as the infrastructure accessibility, is 
calculated by processing the OSM data. Information on the congestion levels was 
taken from the TomTom database and the socio-economic data from various 
publicly accessible databases. Relations between the indicators are identified 
through correlations, and regression models are calibrated while quantifying the 
relation between the transport infrastructure and performance indicators. Three 
sub-categories of cities with different population sizes (small cities, large cities and 
metropolises) are defined and studied individually. In addition, qualitative analysis 
is performed by putting five different indicators into relation. The fourth chapter 
contains the multivariate analysis on the relations within transport infrastructure, 
infrastructure design and transport performance of cities. This chapter attempts to 
determine the important network indicators, such as connectivity, centrality and 
clustering measures for different network types (road, rail and bike) from 86 urban 
areas and 32 countries based on comparable and directly observable open-source 
data such as the OpenStreetMap (OSM) and the TomTom congestion database. 
Relations between the indicators are identified through correlations, and regression 
models are calibrated while quantifying the relations of the infrastructure 
accessibility and network indicators with delay times. The indicator average road 
connectivity over average road circuity (RCRC) has not been studied before in 
literature, which is proposed in this section. Lastly, in the fifth chapter, estimates 
and analyses of the transport energy per person per year and transport-related CO2 
emissions per person per year with a large and diverse sample set are based on 
comparable, directly observable open-source data of 57 cities distributed over 33 
countries. The main focus of this section is to establish quantitative relation among 
the land use, transport infrastructure and transport energy consumption. 

The general approach of the present thesis is to collect, process, correlate 
and model the publicly available and comparable data from a large number of cities 
around the world offered by different analyses. In this section, the sources, the 
collection method, and the pre-processing steps of all the necessary information are 
explained. The worldwide analysis and comparison of urban areas requires a large 
and diverse multi-dimensional database. This research involves two years of labor 
with specific transportation data drilling, processing and collection from respected 
open data sources. Open data is sourced from regional statistical offices, 
government sources, municipalities, and respected studies. Around 200 cities 
which are distributed over 55 countries are examined under different strategies in 
Section 4 with the database being presented in this section. The present worldwide 
transport analysis requires socio-information of the population, the working 
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population, the annual growth rate (% increase in population), the income level 
(GDP per capita), the car ownership (cars per 1000 inhabitants), the higher 
education level (% post-secondary attainment), and the culture dimensions (POD, 
UNC, IND/COL, MAS/FEM, LTO). On top of that, the analysis requires technical 
information of the population density (spatial area in sq. km), the land area (sq. 
km), each infrastructure accessibility (infrastructure length per inhabitants), design 
parameters for each infrastructure (network circuity, network connectivity, network 
centrality, network clustering coefficient). User preferences are assessed through 
the collected transport mode usage (% share). Also, in order to assess the transport 
performance, specific data is used for the analysis as the transport mode usage (% 
share), congestion level (extra travel time per day with respect to the free-floating 
traffic scenario), traveled commuter distances by modes (km), specific energy 
consumption for different transport modes. The present annual transport energy 
consumption is calculated with the information of the population, working 
population and land area, the traveled commuter distances, the travel mode share 
and specific energy consumption for different transport modes in Section 4.5. 

Python software package OSMnx was used for the extraction and 
conversion of the infrastructure information for the desired urban locations as well 
as for performing some infrastructure design related calculations. Python is a high-
level multi-purpose programming language with dynamic semantics. Python as an 
object-oriented programming language which covers high-level built-in data 
structures with dynamic features of typing and binding. Python features many 
modules and packages that can be defined as a code library which includes 
functions, classes and variables in the desired fields. The main idea is to exploit the 
OSMnx which is a Python module in order to create a transport graph. The main 
features of OSMnx are network extraction/clean-up/simplification and node 
clustering, OSM to JSON extraction and conversion, and node elevation 
determination via Google API. The OSMNx package converts OSM data to a 
Networkx DiGraph object, and the Networkx converter generates a raw net from 
the Networkx DiGraph. This graph represents the transport network with edges, 
nodes and some attributes. OSMNx also produces a JSON file containing all the 
OSM attributes of ways and nodes of the converted area. 

 An Excel database was created as a result of specific transportation data 
drilling, processing and collection. Also, the Excel database was used for the 
calculation of some urban indicators. Software IBM SPSS Statistics V25.0 was used 
for the processing of statistical data to analyze and to model relationships within 
different factors. As the database was originally numeric, which shows normal 
distribution, the Pearson correlation was chosen to be used for correlation analysis, 
while the 95% confidence level over 0.2 correlation was taken into account. To 
understand the associations deeper, some statistical methods were used, and 
regression modeling was attempted. The statistical approaches used in the analysis 
section has its mathematical glossary part presented after the list of references.  

The IBM SPSS is advanced statistical software including a vast library of 
machine-learning algorithms. The software provides deep digging into big 
databases with multi-dimensional tools for data analysts. The programme enables 
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users to draw conclusions and make predictions with the appropriate modules. 
SPSS Statistics contains more than 20 different modules. Some of these modules 
are SPSS Regression, SPSS Advanced Statistics, SPSS Data Preparation, SPSS 
Forecasting, etc. The correlation and regression analysis was performed with the 
software IBM SPSS Statistics.  

 
3.1. Social data 
 

The data of at least two consecutive population censuses were extracted 
from City population [214]. Population estimations are used in cases when the local 
census data was not available. To calculate the annual population growth rate, we 
subtracted the past consecutive population census value from the current population 
census, then divided it by the past population census, and multiplied by 100 to 
express it as a percentage value. The commuting age population is justified by 
OECD as the population interval between 15–64 years of age [215]. The share of 
the 15–64 year old population of a prominent majority of cities was collected from 
the city population, and the commuting population was calculated for each city. In 
those cases when the commuting population data was available for the ages 18–64, 
the commuting population was calculated by adding the country population 
percentage from 15 to 19 of age, as collected from Statista [216], to the given 
commuting population percentages. 

The recent data of GDP per capita for each urban area was sourced from 
the Organization for Economic Cooperation and Development (OECD) database 
[217]. All the GDP values are expressed in American Dollars, with the average 
value of the years 2010–2014. The missing OECD data was completed [218–223]. 
Errors may occur by mixing the GDP data from the OECD database with the data 
from other sources. This error type concerns predominantly smaller cities. The 
actual car ownership data for cities was collected from the regional statistical 
offices and government sources [224–229] and was expressed as the car ownership 
per 1000 inhabitants. For US cities, the car ownership data was sourced as the car 
ownership per household from [230] and converted to the car ownership per 1000 
inhabitants while using the average household inhabitants database [221].  

The higher education level (EDU) data was used as post-secondary 
attainment among 24–64 years old inhabitants for the cities and collected from the 
sources [225, 225, 231–233] for cities. All the data is expressed as the percentage 
of post-secondary attainment among 24–64 years old inhabitants in cities. The 
quality of education is not considered in the analysis as it may cause errors. The 
value of five different culture dimensions (IND/COL, POD, UNC, MAS/FEM, 
LTO, INDG) of the researched countries based on Hofstede’s cultural dimensions 
theory is sourced from hofstede-insights.com [234] for 41 countries. HCD is scored 
on a scale of 0–100. Meanwhile, cities from the same countries showed similar 
travel patterns; the average value of variants is taken with summing the city data 
from the same countries. All the countries represent an average indicator value of 
their cities in terms of the availability of the data. 
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3.2. Technical data 
 

The administrative spatial area information of urban areas was extracted 
from the city population database [214]. The population density is calculated as the 
population per spatial area in sq. km by using the population and spatial area data. 
Uncertainties in the determination and comparison of population densities are due 
to the fact that the boundary definitions of urban areas are not unified. 

 Table 3.2 Lists of all the network indicator acronyms. 

Average road circuity: ARC 

Average train circuity: ATC 

Gamma Connectivity:  

Beta Connectivity:  

Alpha Connectivity:  

Eta Connectivity:  

Average Node Connectivity: ANC 

Average road connectivity over average road 
circuity: 

RCRC 

Average road closeness centrality: ARCC 

Average weighted train clustering coefficient: AWTCC 

Average cycleway closeness centrality: ACCC 

Road infrastructure m per 10 inhabitants: RIA 

Train infrastructure m per 10 inhabitants: TIA 

Cycle infrastructure m per 10 inhabitants: CIA 
 

This research will use the length of the transport infrastructure per person 
in order to quantify the amount of the available transport infrastructure. This term 
is known as ‘infrastructure accessibility’ [235]. The infrastructure accessibility (IA) 
is expressed as the infrastructure length per inhabitant (in meter infrastructure per 
10 inhabitants). The network infrastructure length is determined for each 
infrastructure type of a city from the OSM database by using the OSMNx software 
package [236]. OSM is a crowd sourced, unified and publicly available map of the 
world. The OSM infrastructure data looks trustworthy for many cities, although it 
still needs some improvements regarding micro-level details. The OSM data 
quality seems sufficient for macro-level analyses [237]. OSM consists of three 
basic components: nodes, ways and relations [238]. Each component has various 
characterizing attributes called tags, for instance, the way tags can be used to 
identify the type of infrastructure such as railway=monorail or highway=primary. 
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The Python software package OSMnx extracts and converts the OSM 
network data of the desired location into a directed transport graph (which is a 
graph object of the Python networkX package) and performs some topological 
corrections as well as node clustering simplification. The links of the graph retain 
the tag information of the ways. Clearly, it is possible to generate sub-graphs for 
each transport infrastructure (ordinary roads, cycleway and rail). OSMnx does 
provide options to generate and analyze each of the sub-graphs. 

Table 3.1 OSMnx output for Amsterdam City. 

Road Network 
Length in 
kilometres 

Passenger Rail 
Track Length in 

kilometres 

Passenger Rail 
Track Length in 

kilometres 

Tram Length 
in kilometres 

Separated 
Cycleway 
Length in 
kilometres 

Cycleway[as 
part of road] 

Length in 
kilometres 

1746.120 249.808 48.879 199.821 553.401 20.585 

 
The area of the retrieved transport graph can be specified by providing the 

polygon surrounding the area or through the name of the city. In the latter case, the 
administrative boundaries of the desired city are retrieved from OpenStreetMaps 
Nominatim database. In most cases, the official boundaries were available on 
Nominatim, and only in rare cases, manual boundaries had to be defined. The 
statistics module of the OSMnx was used to determine the length of each subgraph, 
e.g., the road length, the rail length, and the cycleway length. Roads, cycleways, 
sidewalks and busways links are represented in OSM by means of the highway tag 
of the way element. There are different network options (drive, bike, service, etc.) 
in OSMnx to filter the desired network types. The option ‘drive’ was used to extract 
the total drivable roads of each city. In OSM, the railways are represented by the 
railway tag of the way element.  The OSMnx package uses these OSM tags to 
extract a network graph for a specific infrastructure type. In particular, railway 
components have several associated tags: railway=subway, railway=tram, 
railway=rail (the latter is for passenger train tracks). In some cities, especially in 
the US, commuter trains, such as light rail systems, are declared with the OSM tag: 
light_rail.  Some examples may be listed: the RTD system in Denver (141 km), the 
DART system in Dallas (150 km), the MAX Light Rail in Portland (97km), the 
Valley Light Rail in Phoenix-Mesa (42 km), METRORail in Houston (38 km), etc. 
All the related tags were included in the filter to extract the entire rail network of 
each city area. Cycleways are represented in two OSM features: separate cycleways 
are indicated with the highway tag (highway=cycleway), and on-road bicycle lanes 
are specified with the tag (cycleway=*). OSMnx converts the road, rail and bicycle 
infrastructure into networkx graph after performing topological correction. The 
networkx graph is the universal graph manipulation package for the Python 
software. Finally, the infrastructure accessibility IA was determined for all the 
infrastructure types by using the population data. The BRT infrastructure length is 
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sourced from www.brtdata.org [239], and BIA is determined in mm per 10 
inhabitants. Errors of the infrastructure data are due to the incomplete OSM 
network or wrongly specified road attributes by volunteer contributors. As an 
example of the output from OSMnx, the results for Amsterdam City are shown in 
Table 3.1.  

The Python software package OSMnx was also used to calculate some of 
the design parameters for each infrastructure. The node and edge numbers of the 
networks in cities are calculated with the OSMnx stat module. The average node 
degree of cities is calculated by OSMnx and other connectivity measures (alpha, 
beta, gamma and eta indexes) as formulated in study [175] with the node and edge 
values provided by OSMnx. The average closeness centrality for roads, railways 
and cycleways (ARCC, ATCC, ACCC) and the average weighted railway 
clustering coefficient (AWRCC) are also calculated by OSMnx. A list of all the 
network indicator acronyms is presented in Table 3.2 above. 

 
3.3. Performance data 
 

One of the performance indicators used for this study is the congestion 
level in terms of the average daily extra travel time (ADETT) which is the extra 
travel time per day with respect to the free-floating traffic scenario averaged over 
all the monitored traffic participants of a distinct urban area. Comparable data on 
the congestion level is retrievable through the TomTom database [240]. TomTom is 
used by more than 6 million connected GPS devices, and traffic is monitored by 
many million GSM probes and millions of government-owned road sensors [241]. 
As TomTom’s methodology is sufficiently accurate and unified all over the world, 
it is a suitable data source for the present study. However, errors may occur due to 
several reasons: the TomTom data is not produced by a representative selection of 
the population; the special distribution may be non-homogeneous; finally, the 
coverage may differ from city to city and may also differ from the urban boundaries 
found in Section 3.2. 

The commuting mode choice for the cities was collected for a variety of 
different sources. The data for the private car mode share and the public transport 
mode share in percentage values was extracted from sources [224–226, 231, 242–
246] for cities between 2008 and 2016. The modal split data is extracted as the last 
national mobility survey from regional open sources, such as Eurostat for European 
cities, American Fact Finder for American cities, Development Bank of Latin 
America for Latin America cities, as well as some national statistic sources, such 
as Statistics Canada, Australian Bureau of Statistics, New Zealand Stats, etc. The 
data stemming from different years can lead to compatibility problems. However, 
this specific data is not available for the same years for such a large and diverse 
sample of cities. On the other hand, the travel behavior is not likely to change in 
short term periods as transformations of the urban form and infrastructure takes a 
long time. For this reason, it is assumed that the mobility data can be collected 
within an 8-year time period, without running into severe compatibility problems. 
The commuted distance of the majority of cities for the car and public transport 
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(PT) was collected from the World Bank database [247]. This database covers 144 
data items for 93 cities in 42 countries. The data items were collected from 
secondary sources and can be broadly classified into such categories as 
demographics, travel demand, the supply of urban transport infrastructure, energy, 
traffic safety, air quality, and macroeconomic data. Some of the cities where the PT 
commute distance was missing was completed from the Moovit commute distance 
database [248]. For some European cities, the commuted distance for private cars 
was completed from the Eurostat database [225]. For the City of Amsterdam, the 
country average from the Statistics Netherlands report [249] was used as the 
commuted distances. For Copenhagen, the commuted distances were extracted 
from the Cycling Embassy statistical report [250]. For Canadian and US cities, the 
commuted distance for private cars was extracted from the Canadian 
Governmental Database and the Brookings Institute Report [229, 251] as the 
Euclidian distance. In order to calculate the effective travel distance, the Euclidian 
distance was multiplied by the circuity of 1.417, which is the ratio between the 
travel distance and the line of sight distance averaged over US cities [252]. The use 
of common circuity for all cities works as an approximation which neglects the 
particular topology of the cities’ street network. The specific energy usage of 
private cars and public transport in MJ per passenger km were drawn from the 
World Bank database for each city to calculate transport related energy 
consumption [247]. For several cities from Latin America and Eastern Europe, the 
specific energies were missing, in which case, the region averages from 
Kenworthy’s study [253] were used. It needs to be emphasized that this type of 
hypothesis and simplifications is necessary if any specific data is missing, 
otherwise, the sample size would be sensibly reduced. Also, in order to calculate 
the environmental impact, the transport related kg CO2e per kWh as the country 
average value was extracted from the International Energy Administration [254] 
and was converted into MJ for each city. 

4. Analysis and Results of Sociotechnical Factors Affecting Urban Mobility 
 
In this section, various analyses are performed, and their results are discussed. 
  

4.1. Analysis and results of culture dimensions in urban travel patterns 
 

This section describes the analysis of culture dimensions pertaining to 
travel patterns in the investigated cities. In the first step, correlations between 
culture dimensions and mobility indicators were checked against the collected data. 
Thereafter, the travel patterns were modeled based on culture indicators. The 
worldwide distribution of the sample cities can be seen below in Fig 4.1. 
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Figure 4.1 Distribution of the analyzed cities 
 

4.1.1. Correlations 

Table 4.1 Pearson correlation coefficient between culture dimensions and urban 
indicators. 

 Car 
Ownership 

Drive 
% 

Public 
Transport 

% 

Road 
Accessibility 

Population 
Density 

GDP 
per 

capita 
Individualism 0.65 0.62 -0.63 0.45 -0.35 0.67 

Power 

Distance 
-0.35 -0.47 0.59 -0.33  -0.50 

Masculinity   0.32    

Uncertainty 

avoidance 
 -0.33 0.56   -0.32 

 
The Pearson correlation coefficient calculated by IBM SPSS between 

different indicators together is shown in Table 4.1 and Table 4.2.  As seen from 
Table 4.1, some cultural dimensions exert high influence on the urban travel 
patterns. Correlations suggest that culture can be a valuable tool to understand why 
societies shape, use and interact with their environment in different patterns. There 
is a strong positive relationship between individualism and GDP per capita and a 
negative relationship between the population density and individualism at a 
moderate level. It can be hypothesized that individualist communities have a higher 
income and prefer to live in sprawling cities at moderate levels. There is also a 
positive moderate relationship between individualism and the road network 
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accessibility, which suggests that individualistic societies build more roads. 
Evidently, car ownership is higher in individualistic communities with a strong 
correlation (Pearson correlation coefficient = 0.65). Also, strong correlation 
between individualism and the urban travel mode choices was demonstrated for the 
driving mode (0.62), and the for public transit usage (-0.63). These findings suggest 
that individualistic societies prefer driving, while collective places tend to use more 
public transport services. 

Such countries as the US, Australia, Canada, Italy, New Zealand, and the 
UK exhibit the highest individualism, while they also have the highest car mode 
share percentage. Such countries as South Korea, Hong Kong, China, Thailand, 
Peru, Colombia and Brazil demonstrate the highest collectivism, yet they also have 
the highest public transport usage. However, it can be noticed that there are some 
incompatible countries, such as the Netherlands and Denmark, that also have high 
individualism but where driving and public transport mode shares are low 
compared to other countries. However, these countries have the highest bike usage 
among all the countries. Cycling can be called as an environmentally friendly 
individual travel mode that may explain why it is adopted in these nations as the 
main mode choice. Also, Hungary has high individualism, yet at the same time it 
has a high public transport mode share. We note that the uncertainty dimension is 
highly correlated with the public transport usage (0.56); Hungary has one of the 
highest uncertainty indices with the value of 82 among all the countries. As 
expected, the power distance negatively correlated with GDP at significant levels. 
Inequalities in the society may result in the decreasing overall welfare and thus 
affect people’s choices. Also, the power distance negatively correlated with car 
ownership, driving and road accessibility, and positively correlated with the public 
transport usage at a high level. We note that the power distance and individualism 
are negatively correlated here at a very high level with the value of -0.70 as stated 
in Hofstede’s works; thus we take into account the fundamental culture dimension, 
IND/COL for statistical models in the next section. LTO and indulgence 
dimensions did not show any significant correlation with any indicators. 

Table 4.2 Pearson correlation coefficient between travel mode choices and urban 
indicators. 

 Car 
Ownership 

Road 
Accessibility 

Population 
Density 

GDP 
per capita 

Drive % 0.69 0.89 -0.63 0.53 

Public Transport 
% 

-0.58 -0.83 0.60 -0.46 

 
Table 4.2 demonstrates the correlations between some transport associated 

indicators and the urban travel mode choices. As expected, there is a high positive 
correlation between GDP per capita and the drive mode share, while a negative 
correlation is seen between the public transportation usage and GDP per capita. 
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There is a strong correlation between the drive mode share and the individual 
transport needs (car ownership and road accessibility). Oppositely, a strong 
negative correlation between the public transport mode share and the individual 
transport needs is seen. Also, a strong correlation between the mode choices and 
the urban population density is demonstrated. These results suggest that 
communities not only shape their cities but also in turn are shaped by them. 
Presumably, the national culture could be the reason behind it. 

 
4.1.2. Statistical models 
 

 

 

Figure 4.2 Drive mode share over individualism/collectivism (IND/COL) dimension. 
 

As IND/COL dimension and individualistic transport indicators are well 
correlated, some statistical models were calibrated with the entire set of samples. 
The best fit between the drive mode share and the IND/COL dimension of all the 
samples was achieved with a linear function of the shape: 

 
                                                                     (1) 

 
The best fit between the car ownership and IND/COL & between RIA and 

IND/COL of all the samples was achieved with an exponential function of the 
shape: 
 
                                                                                                    (2) 
                   
                                                                                 (3) 
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However, the fitting errors with a linear model are only slightly superior. 
Also, the IND/COL dimension and the public transport share were negatively well 
correlated, and the public transport share was considerably correlated with the 
uncertainty dimension and moderately correlated with the masculinity as different 
from individual travel patterns. The best fit between the public transport mode share 
and IND/COL of all the samples was achieved with a linear function of the shape: 

 
                             (4)

  
These models were plotted together with the data points in Figs. 4.2–4.5, 

where regression analyses indicated a good fit. 
 
To better explain the public transport choice in societies, a further model 

was built with the entire set of samples, which includes individualism, 
uncertainty and masculinity that do have a significant effect on the public transport 
usage: 

 
            (5)

  
Coefficients d, e and f quantify the effects on public transport usage due to 

an increase/decrease in independent variables. Further tables (4.3–4.7) demonstrate 
quantifications as the results of t-tests for linear regression models. 

 

 

 

  Figure 4.3 Road network accessibility over the individualism/collectivism (IND/COL) 
dimension. 
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Figure 4.4 Car ownership over the individualism/collectivism (IND/COL) dimension. 

 

 

 

 

   Figure 4.5 Public transport mode share over the individualism/collectivism (IND/COL) 
dimension. 

 



52 
 
 

Table 4.3 Results of the linear function model Eq. (1). , sample size 
N=39. 

 Coef Std Err Beta T P>|t| 
C 16.429 4.834  3.399 0.002 

D 0.411 0.084 0.615 4.875 0.000 

Table 4.4 Results of the linear function model Eq. (2). , sample size 
N=39. 

 Coef Std Err Beta T P>|t| 
C 11.871 3.807  3.118 0.003 

D 0.209 0.066 0.450 3.143 0.003 

Table 4.5 Results of the linear function model Eq. (3). , sample size 
N=39. 

 Coef Std Err Beta T P>|t| 
C 158.878 42.551  3.734 0.001 

D 3.929 0.743 0.646 5.289 0.000 

Table 4.6 Results of the linear function model Eq. (4). , sample size 
N=39. 

 Coef Std Err Beta T P>|t| 
C 55.605 3.924  14.172 0.000 

D -0.336 0.067 -0.634 -4.984 0.000 

As seen from Tables (4.3–4.7), the IND/COL dimension exerts high influence in 
the urban travel patterns at perfect significance. The highest influence of 
individualism is seen in terms of car ownership. Communities with a high 
individualism shape their travel environment for individual transportation, and, in 
turn, these areas are developed by individualistic travel needs. A decrease in 
individualism means an increase in collectivism in the society. It is seen in Table 
4.5 that an increase in collectivism results in greater usage of the public transport. 
Table 4.6 demonstrates the results of the multiple linear regression model on the 
prediction of the public transport mode share.  is higher than linear function 
model Eq. (4), and all the coefficients are significant. Fig. 4.6 shows a normal P-P 
plot of the regression standardized residual for linear function model Eq. (5). The 
plot demonstrates that the residuals of multiple regression follow a normal 
distribution. The results of the model indicate that, in case of nations, an increase 
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in three culture dimensions is observed: collectivism, uncertainty and masculinity 
results in greater usage of public transport. The masculinity and uncertainty 
dimensions have a similar level of influence on the public transport usage, which 
is less than an increase in individualism which decreases the public transport usage. 

 

 

Figure 4.6 Normal P-P Plot of Regression Standardized Residual for model Eq. (4).  

Table 4.7 Results of linear function model Eq. (5). , sample size N=35. 

 Coef Std Err Beta T P>|t| 

C 32.018 8.155  3.926 0.000 
D -0.267 0.067 -0.504 -3.979 0.000 
E 0.154 0.072 0.249 2.147 0.039 
F 0.180 0.084 0.279 2.152 0.038 

 
4.2. Analysis and results of the influence of higher education on the travel 
mode choice 
 

This section describes the analysis of the influence of the higher education 
level on the urban travel mode choice in the investigated cities. In the first step, 
correlations between the higher education level and the mode choices were checked 
with the collected data. Thereafter, the mode choices were modeled based on the 
higher education level while controlling the population density and GDP per capita. 
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Table 4.8 Pearson correlation coefficient between the travel mode choices and 
urban indicators. 

 Education Level  Population 
Density 

GDP 
per capita 

Drive % -0.68 -0.63 0.37 
Public Transport%   0.62  0.59 -0.33 

Active %  0.51  0.73  
Cycling %  0.45  0.65  
Walking %  0.46  0,60 -0.41 

 

 
Figure. 4.7 Education level over the drive mode share. 

 
The Pearson Correlation Coefficient between different indicators is shown 

in Table 4.1. Software IBM SPSS 25 was used for the Pearson correlation analyses 
of variables. A strong negative correlation between the higher education level and 
driving is seen in Table 4.8. Also, the higher education level is positively correlated 
with the public transport usage at a high level. Furthermore, considerable positive 
correlation between the higher educational level and the active modes is shown in 
Table 4.1. These results confirm the previously mentioned findings between the 
education level and the mode choices with a larger sample size and more 
comparable data [28, 29 and 32]. One hypothesis could be that higher educated 
societies buy fewer cars, drive less, and use alternative mobility systems more due 
to environmental and health concerns.  

As expected, the land use has high influence on the travel mode choices: 
there is a high positive correlation between the population density and the public 
transport mode share. Also, a strong negative correlation between the population 
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density and driving is observed. The highest correlation with the population is 
shown for the active modes. Furthermore, the economic power is considerably 
correlated with the mode choices: cities with the higher GDP per capita drive more 
in a moderate level. However, there is no significant correlation between cycling 
and GDP per capita.  

Figure 4.7 demonstrates a scatter graph with city labels in which the drive 
mode share over the higher education level is presented. Also, Figure 4.7 displays 
a linear model as the linear line showed the best fit with considerable . A similar 
linear relationship is seen between the public transport mode share with a slightly 
lower . Following the strong correlation values, two calibrated multiple 
regression models are proposed below thus quantifying the relation between the 
mode shares, the education level (EDU), the population density (PD) and GDP per 
capita. 

                                               (6) 

                            (7) 

Table 4.9 Results of linear function model Eq. (6). , sample size N=44. 

 Coef Std Err Beta T P>|t| 
C 99.600 15.344  6.491 0.000 
D -1.372 0.313 -0.493 -4.382 0.000 
E -0.003 0.001 -0.315 -2.734 0.009 
F 0.000 0.000 0.232 2.347 0.024 

Table 4.10 Results of the linear function model Eq. (7). , sample size 
N=43. 

 Coef Std Err Beta T P>|t| 
C 3.700 13.368  -0.277 0.783 
D 0.919 0.278 0.430 3.308 0.002 
E 0.002 0.001 0.312 2.327 0.025 
F 0.000 0.000 -0.201 -1.762 0.086 
 
Coefficients d, e and f quantify the reduction in the mode shares due to an 

increase/decrease in independent variables in Table 4.9 and Table 4.10. As units 
are different, we take into account standardized Beta coefficients for assessing. The 
results of linear function model Eq. (6) demonstrate that an increase in the 
education level has the highest effect on dropping the drive mode share in cities, 
while an increase in the population density reduces the drive mode share more than 
an increase in GDP per capita boosts it.  is higher than the presented linear model 
in Figure 4.7, and the coefficients are significant. In addition, the public transport 
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mode share estimation resulted in a similar fit of the data, but the statistical 
significance is lower. 

 
4.3. Analysis and results of the transport indicators and comparison of 151 
urban areas 
 

 
Figure 4.8 Distribution of the analyzed cities (white = small cities, green = mature cities, 

red = metropolises). 
 

In this section, various analyses are performed, and their results are 
discussed below. Relations between the indicators are identified through 
correlations, and regression models are calibrated thus quantifying the relation 
between the transport infrastructure and performance indicators. Three sub-
categories of cities with different population sizes (small cities, large cities and 
metropolises) are defined and studied individually. In addition, qualitative analysis 
is performed thus putting five different indicators into relation. 

  
4.3.1. Correlations within city groups 
 

In order to render the city comparison more comparable, cities are divided 
into three sub-groups: cities with a population under 800,000 are defined as ‘small 
cities’ (51 cities), cities with a population between 800,000 and 3 million are 
defined as ‘mature cities’ (56 cities), and cities with a population over 3 million are 
defined as ‘metropolises’ (44 cities). The distribution of the considered cities with 
the respective group-type is shown in the world map in Fig. 4.8. 

The Pearson Correlation Coefficient between different indicators together 
with the number of samples is shown for different city sizes in Table 4.11. We note 
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that the indicator correlations of small cities are often low, probably due to their 
heterogeneous sizes, land-use and transport networks. 

The clearly positive correlation between the spatial city area and the 
population growth rate for metropolises, mature cities and all the cities is trivial as 
the number of newborns is proportional to the population size. Also, the fact that 
congestion levels (ADETT) increase with the higher population density is not 
surprising and confirms that cities are struggling to keep the transport infrastructure 
in pace with the increasing traffic intensity (trips per sq. km). It is of interest to note 
the negative relationship between the population density and GDP per capita, 
suggesting that economically weaker cities experience more congestions – this is 
particularly true for metropolises. The correlation between GDP per capita and the 
road infrastructure accessibility (IA) is strong for metropolises, and a little weaker 
for mature cities. The relationship between GDP per capita and rail IA and between 
GDP per capita and cycle IA is less pronounced. 

 
Table 4.11 Pearson correlation coefficient and the number of samples (N) between 
different indicators. 
 

 Metropolises Mature 
Cities 

Small 
Cities 

All 
Cities 

Spatial city area and annual 
pop. growth 

0.53 
(N = 44) 

0.52 
(N = 55) – 0.45 

(N = 150) 

Population density and 
ADETT 

0.52 
(N = 37) 

0.55 
(N = 55) – 0.50 

(N = 143) 

Population density and 
GDP per capita 

-0.53 
(N =42) 

-0.28 
(N = 56) – -0.40 

(N =139) 

GDP per capita and ADETT -0.51 
(N =36) 

-0.30 
(N = 55) – - 0.33 

(N=132) 

GDP per capita and road IA 0.71 
(N = 42) 

0.57 
(N = 56) – 0.56 

(N = 139) 

GDP per capita and rail IA 0.58 
(N = 38) 

0.48 
(N = 47) – 0.36 

(N = 124) 

GDP per capita and cycle 
IA 

0.47 
(N = 30) 

0.34 
(N = 43) – – 

ADETT and road IA -0.61 
(N =37) 

-0.75 
(N = 55) 

-0.59 
(N = 51) 

-0.66 
(N = 143) 

ADETT and train IA -0.63 
(N = 34) 

-0.34 
(N = 46) – -0.39 

(N = 127) 

ADETT and cycle IA -0.36 
(N = 27) 

-0.30 
(N = 43) 

-0.43 
(N = 42) 

-0.34 
(N = 112) 

The strong relationship between road IA and ADETT is clearly seen for all 
the city sizes. For metropolises, the increase of the rail infrastructure shows a 
similar de-congesting effect tho that of an increase in the road infrastructure, while, 
for small cities, the rail infrastructure is less correlated with congestions. One 
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hypothesis could be that smaller cities are less congested, and there is less pressure 
to change from the private car to rail. These results confirm the previously 
mentioned finding that the rail infrastructure has a relaxation effect on the road 
traffic for metropolises [95, 111], presumably by shifting from car trips to rail trips. 
Combining the relations between road/rail IA, the congestions and GDP per capita, 
it could be hypothesized that economically strong metropolises can afford to 
expand road, rail and bicycle infrastructure and are more successful in reducing 
congestions. 

 
4.3.2. Statistical models 
 

As IA and ADETT are generally well correlated, some statistical models 
were calibrated with the entire set of cities as well as on specific subsets. The best 
fit between the road infrastructure accessibility RIA and ADETT of all the cities 
was achieved with an exponential function of the shape: 

                                                                   (8) 

However, the fitting errors with a linear model are only slightly superior. 
The results of this calibration are shown in Table 4.12. Despite the high noise levels 
in the data, coefficient b is negative, which means decreasing congestions with the 
increasing road IA. This model was applied for the three city sub-groups and 
plotted together with the data points in Figs. 4.9, 4.10, 4.11. 

 
A further model is built which includes both the road infrastructure 

accessibility RIA and the train infrastructure accessibility TIA: 
 

                                         (9) 
 

As RIA and TIA have the same unit, coefficients d and e quantify the 
reduction in traffic congestions due to an increase/decrease in the road 
infrastructure or the train infrastructure, respectively. The interesting question is 
how coefficients d and e behave in cities with high and low population densities. 
Table 4.13 shows the calibration results of coefficients d and e for cities with a 
high population density (above 1500 per sq. km) while Table 4.14 shows the same 
calibration for cities with a low population density (below 1500 per sq. km). The 
population density division at 1500 per sq. km was chosen arbitrarily. The main 
idea was to isolate the extreme space oriented cities in the US and Australia. 
However, the division at 1500 per sq. km can be varied within reasonable bounds 
without changing the core message of the results, as detailed below. 

The results for high density cities in Table 4.13 show that e is significantly 
more negative than d (four times more negative), and that both coefficients are 
significant. This result means that the increase in the train infrastructure per person 
reduces more congestion than the increase in the road infrastructure per person. 
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One reason why rail lines combat congestion more effectively is probably due to 
the fact that the rail infrastructure was implemented primarily along the most 
congested corridors of the city. Therefore, the result of the model does not mean 
that extending the rail network beyond the main traffic corridors will continue to 
reduce the traffic congestion. 

Table 4.12 The calibration results of exponential function model Eq. (8) for all 
cities. R2 = 0.52, sample size N = 147 

Calibration 
results Coef std err t P>|t| [95.0% Conf. Int.] 

Log(a) 3.7734 0.037 100.773 0.000 3.699 3.847 

B -0.0101 0.001 -12.232 0.000 -0.012 - 0.009 

Table 4.13 Calibration results of linear function model Eq. (9) for cities with 
population densities above 1,500 per sq. km. R2 = 0.27, sample size N = 88 

Calibration 
results Coef std err t P>|t| [95.0% Conf. 

Int.] 

C 45.3582 2.122 21.375 0.000 41.139 49.577 

D -0.2386 0.083 -2.880 0.005 -0.403 -0.074 

E -0.9706 0.246 -3.950 0.000 -1.459 -0.482 
 

Table 4.14 Calibration results of linear function model Eq. (10) for cities with 
population densities below 1,500 per sq. km. , sample size N=39. 

 

Calibration 
results Coef std err t P>|t| [95.0% Conf. 

Int.] 

C 45.3582 2.122 21.375 0.000 41.139 49.577 

D -0.2386 0.083 -2.880 0.005 -0.403 -0.074 

E -0.9706 0.246 -3.950 0.000 -1.459 -0.482 

 
The situation for low density cities, as shown in Table 4.14, is less 

clear: e is only slightly more negative than d, and e is statistically not significant (a 
high P value). This means that railway building for low density cities appears less 
effective in reducing congestions with respect to the cities denoted by high density. 
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4.3.3. Multi-variant comparison 
 
In an attempt to pursue the holistic approach, the relations among five 

different indicators are shown in a bubble-type graph where each bubble represents 
a city: the x-axis represents Road IA, and the y-axis represents the ADETT, the fill 
color indicates Train IA, the bubble border color indicates Cycle IA, the color of 
the starred city labels indicates BRT IA. The color scaling is summarized in 
Table 4.15. The bubble graph was generated for each of the city groups: 
metropolitan cities in Fig. 4.9, mature cities in Fig. 4.10, and small cities in 
Fig. 4.11 For each city group, the model from Eq. (8) was calibrated, as the 
exponential curve showed the best fit. The regression curve and R2 are also 
indicated in each bubble graph. 

The regression analyses for all the city groups (Figs. 4.9–4.11) show R2 

values between 0.4 and 0.6, which indicates a good fit considering the many error 
sources mentioned in the Data collection and processing section and the diversity 
of street layouts, public transit service characteristics and mobility cultures. In the 
figures of all the three city groups, the cities can be divided in two groups at Road 
IA of approximately 35 m/(10Inh): most cities below this threshold have a higher 
population density comparing with the cities above this threshold. It is evident that 
many cities with low population densities built large road networks and succeeded 
in reducing congestion. On the other hand, cities with higher population densities 
appear to be facing space constraints and cannot extend their road network. 

Table 4.15 Scaling of multi-variant graphs in Figs 4.9–4.11. 

Urban Train IA [km railway per 10 
inh]: 

Bubble fill color: 
red=Train IA>1100  
orange =223 < Train IA<1100  
green = Train IA < 223 
non-color= absence of urban rail 

Cycle IA  [m cycleway per 10000 inh]: Bubble border color: 
red = Cycle IA > 1500  
orange =200< Cycle IA<1500 
green =10< Cycle IA<200 
blue = Cycle IA<10 

BRT IA   [m BRT per 10000 inh]: Starred  Marker (*)  color of city labels: 
red = BRT IA > 150  
green =  BRT IA < 150 

 
When looking closer at cities with higher population densities, it is 

apparent that the cities with a more extensive train network per person (the red and 
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orange colors) have generally lower congestion levels. This result is consistent with 
the models in the last section. However, there are also many exceptions: Dublin 
and Bucharest have high Train IA but also high congestion levels, while Madrid 
and Sao Paulo have low Train IA and low congestion levels. Furthermore, the small 
cities give a less clear picture regarding Train IA and congestions. Some of the 
small cities with a higher population density stand out for their low congestion level 
most likely due to the presence of a high level of cycling infrastructure; examples 
are Malmo, Zwolle and Fresno, but there are not enough example cities with a high 
level of cycling to show a general trend.  

 

 
Figure 4.9 Multi variant diagram of metropolises. Congestion level (ADETT) over Road 

IA; the bubble size is proportional to the population density; the filled color indicates Train 
IA, the bubble border color indicates Cycle IA, the color of the starred city labels indicates 
BRT IA. For color scaling, see Table 4.15. The dotted line represents the fitted exponential 

curve from Eq. (8). 
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Figure 4.10 Multi variant diagram of mature cities. Congestion level (ADETT) over Road 
IA; the bubble size is proportional to the population density; the filled color indicates Train 
IA, the bubble border color indicates Cycle IA, the color of the starred city labels indicates 
BRT IA. For color scaling, see Table 4.15. The dotted line represents the fitted exponential 
curve from Eq. (8). 

 

  

Figure 4.11 Multi variant diagram of small cities. Congestion level (ADETT) over Road 
IA; the bubble size is proportional to the population density; the filled color indicates Train 
IA, the bubble border color indicates Cycle IA, the color of the starred city labels indicates 
BRT IA. For color scaling, see Table 4.15. The dotted line represents the fitted exponential 
curve from Eq. (8).  
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Figure 4.12 Multi variant diagram with a holistic view. Congestion level (ADETT) over 

Road IA 
 

Fig. 4.12 demonstrates a holistic view including all the cities. In the 
ADETT interval of 14–34 minutes, one can see a cluster of cities below the 
logarithmic trend line with a common characteristic: a medium level GDP per 
capita, high urban railway and cycleway infrastructure accessibility but relatively 
low road infrastructure accessibility. Within the same range of travel delays, there 
is also a cluster of cities above the trend line: these cities feature generally a higher 
GDP per capita, a high road infrastructure accessibility, and a low level of railway 
infrastructure accessibility or total absence of urban railways. All of the cities above 
the trend-line are also denoted by low population densities. In this ADETT interval, 
most cities under the trend line are European cities, while most cities above the 
trend-line are US cities. In the ADETT interval of 34–44 minutes, cities have a 
generally average GDP per capita, a lower road infrastructure accessibility and a 
lower cycleway infrastructure accessibility. In this ADETT interval, cities are in 
various regions of the world. The highest congestion delays with over 44 minutes 
of the average daily extra travel time show cities with a low network infrastructure 
accessibility, a low GDP per capita, and a low bicycle infrastructure accessibility 
(none of these cities is among the 25% of the cities with the highest cycleway 
accessibility). Most of the highly congested cities are located in Asia. It is 
surprising to see that the cities with a high BRT infrastructure accessibility are more 
frequent in the cluster in the 14–34 minutes ADETT interval and under the 
logarithmic trend line – in the cluster with the highest multi-modal infrastructure 
accessibility. Generally, the cities with a high BRT infrastructure accessibility are 
in South America. We note that Amsterdam has one of the lowest road 
infrastructure accessibility levels amongst cities, but it has the highest multi-modal 
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infrastructure accessibility and railways, cycleways and BRT lines, which appear 
to reduce congestion levels.

4.4. Analysis and results of the influence of the network design on the urban 
transportation performance

Figure 4.13 Distribution of the analyzed cities

This section strives to determine important network indicators, such as 
connectivity, centrality and clustering measures for different network types (road, 
rail and cycleway) from 86 urban areas and 32 countries, based on comparable, 
directly observable open-source data such as the OpenStreetMap (OSM) and the 
TomTom congestion database. Relations between the indicators are identified 
through correlations, and regression models are calibrated thus quantifying the 
relations of the infrastructure accessibility and the network indicators with the 
delay times. To the best of the author’s knowledge, the indicator average road 
connectivity over average road circuity (RCRC) has not been studied before, which 
is proposed in this research. In this section, different analyses are performed, and 
their results are discussed. The distribution of the considered cities is shown in the 
world map in Fig. 4.13.

4.4.1. Correlations 

The Pearson correlation coefficient among different indicators together 
with the number of samples is shown in Table 4.16 and Table 4.17. Software IBM 
SPSS 25 is used for the Pearson correlation analyses of variables.
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Significant negative correlations between ADETT and infrastructure 
accessibility types have already been shown in the previous section, and also 
regression models between ADETT & infrastructure accessibility have been 
presented. A considerable negative correlation between the road network 
connectivity indicators and ADETT is seen in Table 4.16. As expected, the 
reduction of choke points in the road networks can increase the continuity of traffic 
flows and in turn can reduce the traffic congestion. All the road connectivity 
indicators strongly correlated with each other at the similar level; thus only gamma 
connectivity is picked to show the inter-correlations between the connectivity 
measures. Only eta connectivity did not show any considerable correlation with 
any variants. The average circuity of road and rail networks (ARC and ATC) 
positively correlated with ADETT. As expected, the network connectivity 
negatively correlated with the network circuity for both network types. 
 
Table 4.16 Pearson correlation coefficient between congestion and infrastructure 
indicators. 

 
Pearson 

Correlation 
ADETT RIA TIA CIA Γ Β Α ANC ARC ATC 

ADETT  N=87 
-0.69 

N=85 
-0.41  

N=86 
-0.32 

N=87 
-0.49 

N=87 
-0.49 

N=87 
-0.49 

N=87 
-0.49 

N=87 
0.29 

N=87 
0.39 

Γ     N=87 
0.99 

N=87 
 0.99 

N=87 
0.99 

N=87 
0.95 

  

ARC N=87 
0.29 

   N=87 
-0.36 

N=87 
-0.36 

N=87 
-0.36 

N=87 
-0.36 

  

  
Table 4.17 Pearson correlation coefficient between congestion and distance-based 
network connectivity indicators. 

 
Networks can be well connected but at the same time be poor in terms of 

directness. This confirms that connectivity and directness are independent and can 
be coupled effectively as suggested in [180]. Table 4.17 demonstrates the relation 

Pearson Correlation RCRC ARCC AWTCC ACCC 

ADETT N=87 
-0.50 

N=87 
-0.39 

N=54 
-0.47 

N=29 
-0.45 

Γ N=87 
0.99 

N=87 
0.43 

  

ARC N=87 
-0.48 

N=87 
-0.40 

  

ATC   N=54 
-0.36 

 

RCRC  N=87 
0.46 
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between distance-based network connectivity measures (ARCC, ATCC and 
ACCC) and ADETT with some interrelations. The average closeness centrality is 
negatively correlated with ADETT for road and cycle networks (ARCC and 
ACCC). Another distance-based indicator proposed here as average road 
connectivity over average road circuity (RCRC) is correlated with ADETT with a 
coefficient of -0.50. As ARCC and RCRC are similar types of measures, they are 
strongly correlated with each other. Presumably, high average short distance 
accessibility of road networks decreases the low permeability choke points and 
distributes the road traffic more homogeneously, and consequently eases the road 
traffic. The average weighted clustering coefficient demonstrates distance-based 
directness of the network as it is evident that AWTCC correlates negatively with 
ADETT with a coefficient of 0.47 and negatively correlates with the average rail 
circuity. 

 
4.4.2. Comparative view  

  

 
 Figure 4.14 Road network connectivity maps of San Antonio and Washington 

D.C. 
 

 
Figure 4.15 Road network connectivity maps of Berlin and Marseille. 
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Figure 4.16 Road network connectivity maps of Manchester and Dublin. 

 

 
Figure 4.17 Road network connectivity maps of Belo Horizonte and Athens. 

 
Table 4.18 Comparison of the selected cities. 

 
Cities RIA TIA CIA ADETT  Population  

Density 
    ARC           ANC Γ RCRC 

San Antonio 60.309 2.613 0.387 26 1312 1.0216 5.887 0.9817 0.9609 

Washington 57.105 1.893 0.344 33 1446 1.0284 4.932 0.8225 0.7998 

Dublin 24.645 1.453 0.262 50 3716 1.0736 3.945 0.6579 0.6128 

Manchester 24.021 1.643 0.115 44 4236 1.0469 4.698 0.7832 0.7481 

Berlin 18.550 6.477 0.080 28 3700 1.0276 5.032 0.8392 0.8166 

Marseille 17.651 3.177 0.025 41 4040 1.0608 4.229 0.7050 0.6646 

Athens 20.243 0.878 0.062 34 7436 1.0154 4.388 0.7315 0.7203 

Belo Horizonte 19.398 0.194 0.010 30 7464 1.0229 4.834 0.8060 0.7879 
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Road network connectivity maps of some cities (50 km2 cores) are plotted 
with the dual graph approach where streets are represented as nodes, and 
intersections are represented as edges in Figs. 4.14–4.17. These pairs of cities were 
selected for comparison as each pair has similar peer sociodemographic and 
infrastructure indicators, as shown in Table 4.18. Their similarity allows to put in 
evidence regarding the influence of the network structure. Qualitative color maps 
increasing luminance through blue, purple, and yellow hues are produced to 
interpret the graphs more efficiently. As it is clearly seen in the plotted maps and 
in Table 4.18, cities with higher RCRC and higher road network connectivity 
achieve lower congestion.

4.4.3. Statistical models

Some statistical models were calibrated between ADETT and the distance-
based road connectivity measures (DBRC) with the entire set of cities. ADETT as 
a function of DBRC appears to be of the exponential shape:

                                                                                                 (10)

 
Figure 4.18 Scatter graph, average road connectivity over average road circuity (RCRC)
and congestion level (ADETT) of cities; the dotted line represents the fitted exponential 
curve from Eq. (10).
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However, the fitting errors with a linear model are only slightly superior. 
Fig. 4.18 demonstrates the exponential model which was calibrated from the 
exponential relation of Eq. (10). The best fitting exponential curve is also shown in 
Fig. 4.18. Even though  is not particularly high, it shows a reasonable 
goodness of fit, and parameters are statistically significant. We note that a similar 
reasonable fit was also achieved for ADETT as a function of ARCC. Considering 
the fact that many different network attributes influence the demand and road 
congestions, the quality of this fit is reasonable. The influence of DBRC on 
congestion is minor for cities with very high population densities, such as Bangkok 
and Mexico City (see Fig. 4.18). 

A question arises how the road-based coefficients behave in cities in the 
presence of different alternative infrastructures, such as railways and cycleways of 
different length and topology. Geometric variations of network structures, such as 
density and circuity, become more visible when the network complexity is at a 
maturated level. This makes the infrastructure density a good proxy when seeking 
to identify the level of the infrastructure maturity. Two subsets of cities were 
created based on the level of maturity of the alternative network systems. The rail 
infrastructure density division was set at 1km per km2, and the cycle infrastructure 
density division was set at 0.4km per km2. Both thresholds were chosen arbitrarily. 
The main idea was to isolate non-matured alternative network systems in cities. 
This will help to understand the network related factors of alternative network 
systems more accurately. All the cities possess a road network with a density over 
10km per 1km2. As IA and ADETT as well as DBC and ADETT are considerably 
correlated, some multiple linear regression models were attempted with the entire 
set of cities as well as on specific subsets (cities matured with railways – 53 cities, 
and cities matured with cycleways – 28 cities), while only the models with a P value 
below 0.2 for each attribute are shown in the tables below. Further models were 
built which include infrastructure accessibility indicators (infrastructure per capita) 
and DBC indicators: 
 

                                                                           (11) 
 

                                       (12)  
 

                                                             (13)  
 

Coefficients d, e, f and g quantify the reduction in traffic congestions due 
to an increase/decrease of the independent variables. As the units are different, 
standardized Beta coefficients are considered. The results of the linear function 
model from Eq. (11) demonstrate that an increase in the average road closeness 
centrality reduces congestion at a similar level as does an increase in TIA. This is 
a useful finding which demonstrates that the network design is as important as 
increasing the infrastructure length of alternative networks. The significance of e, 
f, g is less clear. However, the results of linear function model Eq. (12) demonstrate 
that an increase in AWTCC decreases the road congestion at a similar level as does 



70 
 
 

an increase in the average road closeness centrality. The results of linear function 
model Eq. (13) demonstrate that the influence of RIA on congestion stays slightly 
lower compared with model Eq. (12), and CIA exerts the highest influence on 
congestion alleviation compared with an increase in RIA and TIA while 
considering cities with over 0.4 km per km2 cycleway density. Furthermore, an 
increase in  decreases congestion more effectively than an increase in TIA. 
However the increase in  is slightly less effective in decreasing congestion 
than an increase in RIA. The influence of TIA is less significant in this model. 

 
Table 4.19 Calibration results of linear function model Eq. (11) for all the samples. 
R^2=0.53, sample size N=85. 

 
Calibration results Coef Std Err Beta t P>|t| 

C 68.192 10.034   6.796 0.000 

D -0.222 0.034 -0.556 -6.603 0.000 

E -0.682 0.312 -0.179 -2.186 0.032 

F -109818.3 46148.044 -0.193 -2.380 0.020 
 

Table 4.20 Calibration results of linear function model Eq. (12) for cities matured 
with railways. , sample size N=53. 

 
Calibration results Coef Std Err Beta t P>|t| 

C 71.287 16.076   4.434 0.000 

D -0.161 0.041 -0.488 -3.926 0.000 

E -0.847 0.423 -0.206 -2.002 0.051 

F -121553 72324.044 -0.180 -1.681 0.099 

G -1017.27 764.075 -0.164 -1.331 0.189 
 

Table 4.21 Calibration results of linear function model Eq. (13) for cities matured 
with cycleways. , sample size N=28. 

 
Calibration results Coef Std Err Beta t P>|t| 

C 46.366 2.803   16.163 0.000 

D -0.167 0.054 -0.461 -3.039 0.006 

E -0.684 0.393 -0.229 -1.571 0.130 

F -2.833 0.797 -0.472 -3.486 0.002 

G -20519.7 9563.210 -0.321 -2.127 0.044 
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4.5. Analysis and results of the transport-related energy consumption of 
urban areas  
 

This section describes the analysis of the transport energy consumption per 
capita of the investigated cities. In a first step, the transport energy of cities is 
calculated as precisely as possible from the collected data. Thereafter, the transport 
energy is modeled based on infrastructure accessibility and population density. 

 
  4.5.1. Transport-related energy consumption 

 

 
Figure 4.19 Transport related energy consumption per person in a year for commuting 
purposes, TE, over population density DPOP. For each city, also, the mode share of the 
private transport MSC (red), the public transport MSPT (blue), and the active mode share 
(MSA) are shown. The bubble size is proportional to the road infrastructure accessibility 
(RIA) of the respective city. The dashed lines represent different models which are derived 
in Section 4.5.2: The nonlinear model from Eq. (23) (dashed orange), the linear model with 
Box Cox back-transform from Eq. (24) (dashed light blue), and the nonlinear model with 
Box-Cox back-transformation from Eq. (25) (dashed magenta). 

 
             Considering the available data, the most precise estimate of the transport 
energy per person per year for commuting purposes  in city i the can be 
determined by:   
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          (14)    
               
where is the share of the working population in the total population, is the 
daily average commuting distance to work by a private car, is the daily 
average commuting distance to work by public transport, is the mode share 
of private car trips, is the mode share of trips with public transport, is 
the average energy consumption per person km for a private car, is the 
average energy consumption per person km for public transport, and one year 
corresponds to 261 working days. 
             Figure 4.19 shows the transport energy WT and mode share versus the 
population density for each city. The same figure contains the hyperbolic shape of 
WT which is similar to Newman and Kenworthy’s curve. A cluster of cities can be 
seen at low population densities between 1000–2500 persons/km2, where the 
majority are US and Canadian cities are positioned. These low population density 
cities are exhibiting a much higher transport related energy consumption comparing 
with the cities with a higher population density. Low population density cities are 
also characterized by a high road infrastructure accessibility (see the diameter of 
bubbles in Fig. 4.19), and a high car mode share (see the pie chart of bubbles in 
Fig. 4.20). What regards the mode shares of daily commuting in the US, the private 
vehicle mode share is over 85% of all trips, which is followed by 5.2% share of 
public transportation trips. Canadian, Australian and New Zealand cities, where car 
dependent mobility concepts are adopted, are denoted by on average a slightly 
lower road infrastructure accessibility and slightly higher public transport usage 
comparing with US cities. 
            A cluster with mainly European, Latin American cities and some Asian 
cities, such as Tokyo, can be seen at population densities between 2500–8000 
persons/km2 with medium level road infrastructure accessibility. The cities in this 
cluster consume noticeably less transport energy with respect to the first cluster. It 
is apparent that, in this cluster, the cities with the highest active mode share, such 
as Tokyo, Amsterdam and Copenhagen, consume the lowest transport energy. The 
cluster of the cities with population densities above 8000 persons/km2 are mainly 
Asian cities with a low road infrastructure accessibility and a high public transport 
share. 
              The particularly sharp rise in energy consumption for decreasing 
population densities calls for some reasoning. The non-linear model shown in Fig. 
4.19 is developed in the following section. 

 
4.5.2. Transport infrastructure, population density and transport energy 
consumption 
 

This section investigates how the transport infrastructure and population 
density determine transport energy consumption, as estimated in Eq. (14). The road 
infrastructure accessibility RIA and other infrastructure accessibilities (rail-track 
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infrastructure accessibility TIA and bike infrastructure accessibility BIA, which 
can be calculated with the OSM data) are assumed to have an impact only on the 
respective mode shares MSC, MSPT and MSA, not on the other variables in Eq. 
(14). The energy efficiency of private and public transport will not be part of the 
modeling. 

 

 
 Figure 4.20 Car mode share MSC over road infrastructure accessibility RIA. The blue 
bubbles represent the car shares from the city database, while the dashed orange line 
represents a linear regression model from Eq. (15) ( ). 

 
What concerns the MSC, the data shown in Fig. 4.20 suggests a linear 

relation between the road infrastructure accessibility RIA and the car mode share 
MSC. MSC was estimated with the equation: 

 
                                       (15)

   
where the parameters were estimated with linear regression, see Table 

4.22. The fit with  is relatively good considering the different error 
sources in the determination of RIA and MSC. The Harvey Collier test results in a 
p-value of 0.41, confirming that the null hypothesis that linear specification is 
correct should not be rejected. The skew is close to zero (0.198), and the p-value 
of the Jarque-Bera test is 0.62 thus indicating normally distributed residuals even 
though there are uncertainties due to the small sample size. However, the reason 
why the road length per inhabitant increases the car mode share in a proportional 
way is not clear. 

  



74 
 
 

 Table 4.22 Linear regression results for private car mode share in Eq. (15) 
 

 coef std err 
T P>|t| [95.0% Conf. Int.] 

     25.12 3.320 7.567 0.000     18.470   31.778 

       4.93 0.570 8.642 0.000      3.787   6.073 

 
What regards the public transport mode share MSPT, it is more difficult to 

establish a relation between the rail track length per inhabitant TIA and MSPT in 
the absence of more detailed information: the rail length represents only a part of 
all the public transport infrastructure, and, in any case, the rail usage is only a 
fraction of all the public transport trips. One interesting possibility is to test whether 
MSPT depends also on the road infrastructure. Indeed, the linear approach may be 
tested as: 

 
                                        (16)

   
with regression parameters and shown in Table 4.23. The 

results show that RIA is significant, and, as is negative, an increasing RIA 
decreases the public transport mode share as expected. With the fitting 
is less pronounced with respect to Eq. (15). The linear specification is correct as 
the p-vale of the Harvey Collier test equals 0.55, and it is likely that the residuals 
are normally distributed due to a skew close to zero and a Jarque-Bera p-value of 
0.26. 

 
Table 4.23 Linear regression results for PT mode share in Eq. (16) 

   
 coef std err t P>|t| [95.0% Conf. Int.] 

46.177 2.816 16.396 0.000      40.533  51.821     

-3.372 -6.971 0.484 0.000      -4.342  -2.403 
 
Further modeling showed that also the bike mode share is negatively 

correlated with RIA. 
The population density is assumed to influence the average daily 

commuting distances by car, DC, and the average daily commuting distances by 
public transport, DPT. The linear regression model is as follows: 

 
                                       (17)
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which shows that DC decreases with an increasing population density, the 
parameters are statistically significant, but the fit is very weak as , see 
Table 4.24. The linear specification is correct as the p-value of the Harvey Collier 
test equals 0.92. The residuals are likely to be normally distributed due to a skew 
close to zero (0.165) and because of a Jarque-Bera p-value of 0.77. Parameter  
has a relatively low absolute value, which means that the commuted distances are 
slightly sensitive to the population density. The influence of the population density 
on the PT commuting distance is not statistically significant for the present dataset. 

 
   Table 4.24 Linear regression results for average commuting travel distance in Eq. 
(17). 
 

 coef std err 
t P>|t| [95.0% Conf. Int.] 

 31.0955 1.697 18.326 0.000     27.695  34.496 
 -0.0006 0.000 -2.917 0.005     -0.001  -0.000 
 
Considering solely the road infrastructure accessibility RIA and the 

population density DPOP as independent variables, the transport energy estimate 
of a generic city shall be estimated by substituting the estimates of models 

from Eq. (15), Eq. (16) and Eq. (17) in the energy equation of Eq. (14). The 
resulting energy estimate can be presented in the shape of: 

 
                  (18) 

 
where the following parameters are assumed to be constant and 

independent from DPOP and RIA: 
 

 
 

 
 

 
 

 
 
We note that city index i of the various parameters in Eq. (14) was dropped, 

and the respective quantities were replaced by average values. The beta parameters 
in Eq. (18) are determined by linear regression instead of using the above listed 
equations because doing so would lead to multiplicative errors. The regression 
results are presented in Table 4.25. This estimate fits well with the energy data 
as , and the signs of the parameters meet expectations. However, 
parameter  related to DPOP is not statistically significant and takes positive 
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values within the 95% confidence interval. In addition, the independent variables 
are not homoscedastic as the p-value of the Breusch-Pagan Lagrange Multiplier test 
is low, i.e., . The Box-Cox transformation of the model with the optimal 
lambda value of -0.036 is not able to improve this condition.  

 
  Table 4.25 Linear regression results for transport energy consumption per person 
per year of Eq. (18) 
 

 Coef std err T P>|t| [95.0% Conf. Int.] 

 5.077e+06 1.32e+06 3.854 0.000   2.43e+06   7.72e+06 

 -3.628e+05 1.16e+06 -0.312 0.757   -2.7e+06    1.97e+06 

 1.196e+05 1.62e+04 7.402 0.000   8.72e+04  1.52e+05 

 -1.788e+05 6.98e+04 -2.562 0.013   -3.19e+05  -3.88e+04 

 
If dropping the explicit dependency on DPOP from Eq. (18), one ends up 

with the simple transport energy estimate: 
 
                                       (19) 
 
with parameters  and  to be calibrated. Yet, as demonstrated 

below, RIA does depend on DPOP. The regression results in Table 4.26 
demonstrate that both parameters are significant, with , which is only 
slightly worse than the model in Eq. (18). The linear specification is correct as the 
p-value of the Harvey Collier test equals 0.30. However, the residuals are unlikely 
to be normally distributed as the skew is different from zero (0.712), and the Jarque-
Bera p-value is 0.012, which is below 0.05.  

 
Table 4.26 Linear regression results for average commuting travel distance in Eq. 
(19). 
 

 coef std err t P>|t| [95.0% Conf. Int.] 

 1.91e+06    7.58e+05 2.519 0.015     3.9e+05 3.43e+06 

 1.24e+05 1.3e+04 9.520 0.000    9.79e+04     1.5e+05 
 
Attempts to include the rail-track infrastructure accessibility or the bike 

infrastructure accessibility in the transport energy estimation resulted in a better fit 
of the energy data, but statistical significance is still lacking. 
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4.5.3. The relation between population density and transport energy consumption 
 

 
Figure 4.21 Road infrastructure accessibility RIA over population density DPOP. 

The orange dashed line represents the non-linear function of Eq. (20) with a goodness of fit 
of =0.64. The light blue dashed line represents the back transformed Log model from 
Eqs. (21) and (22) with a goodness of fit of =0.69. 

 
It remains to be explained why the transport energy per person shown in 

Fig. 4.19 is increasing so sharply for a low population density. The previous section 
shows that the average travel distance DC is slightly sensitive to DPOP.  Therefore, 
it must be the private car mode share MSC that increases in a non-linear fashion as 
DPOP approaches zero. However, if MSC increases linearly with RIA, as 
demonstrated in Section 4.5.1, then the relation between DPOP and RIA is 
necessarily of the non-linear nature. In fact, Fig. 4.21 shows that the RIA of the 
cities is rapidly decreasing as DPOP is increasing, similarly to the transport energy 
curve in Fig. 4.19. 

The following approximations are an attempt to explain why the road 
length per person tends to increase so dramatically for cities with a low population 
density: we assume a city with a squared layout with side length L and a grid-like 
road network where all streets are W meters apart, as shown in Fig. 4.22, where the 
number of roads is in each coordinate and the total road length is 

. 
Assuming further that the population is evenly spread over the city, then 

the population density is  and the total population becomes 
 As the road infrastructure accessibility is defined 

by , RIA is obtained by replacing W with : 
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                                                          (20)

Figure 4.22 A simplified squared city with a street grid of roads in x-direction 
and the same amount of roads in y-direction. In each sub-square of size , there are
N residents.

where can be seen as a constant to be calibrated. Clearly, this 
equation determines the road length of cities with a varying population density, 
while limiting the road circuity constant to , which is a typical value for 
US cities. We note that RIA is dropping sharply for the increasing DPOP, as 
expected from the city data. Applying an ordinary linear regression on the city data 
with DPOP in inhabitants per m2, the term is found to be statistically 
significant and within 0.256 and 0.316 when using the 95% confidence interval. 
The average value of . Despite the simplicity of the grid-road model 
city, the estimate shows a goodness of fit with even though the residuals 
are unlikely to be normally distributed as the skew is different from zero (0.856),
and the Jarque-Bera p-value is far below 0.05. The linear specification is correct as 
the p-value of the Harvey Collier test equals 0.92.

It is worth mentioning that the estimate fits well because the calibration is 
determined by US cities with a large RIA at low population densities and by Asian 
cities with a low RIA and high population densities. The dominant US cities are 
the ones best represented by the regular road grid which was assumed in the above 
model.

The results of Eq. (20) shall be verified by calibrating a non-linear model 
with a generic exponent of the shape

                                      (21)

and by comparing with exponent 0.5 in Eq. (20). With a log 
transformation, this problem can be transformed into a linear estimation problem 
of the form

                             (22)
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where  and . The regression results of the 
log-model in Eq. (22) are shown in Table 4.27. The linear specification is correct 
as the p-value of the Harvey Collier test equals 0.24. However, the residuals are 
unlikely to be normally distributed as the skew is different from zero (-0.945), and 
the Jarque-Bera p-value is well below 0.05.  

 
  Table 4.27 Linear regression results for road infrastructure accessibility in Eq. 
(22). 
 

 coef std err 
T P>|t| [95.0% Conf. Int.] 

 -3.1318 0.408 -7.668 0.000     -3.950 -2.313 
 -0.7890 0.073 -10.797 0.000    -0.935 -0.643 
 
Apparently, exponent = 0.78 from Eq. (21) is different from the 

exponent value of 0.5 in Eq. (20), which represents the square root. Also, = 0.44 
is different, but in the same order of magnitude as  from Eq. (20). 
The goodness of fit of the model in Eq. (21) with  is marginally higher 
with respect to the model in Eq. (21). These minor differences are not surprising 
given the simplifying assumptions made during the derivation of Eq. (20). The 
results of the two models are plotted in Fig. 4.21. 

As the derived model in Eq. (20) reasonably explains the RIA of cities, Eq. 
(20) is substituted into the energy estimate of Eq. (19), which leads to a transport 
energy model as a nonlinear function of the population density. The shape of this 
transport energy estimate becomes 

 
                      (23) 

 
with parameters  and  to be calibrated with the transport energy 

data. The linear regression results in Table 4.28 indicate that both parameters are 
significant, the value of  is positive, as expected, and the fit is reasonable with 

.  The linear specification is correct as the p-value of the Harvey Collier 
test equals 0.24. The residuals are likely to be normally distributed due to a skew 
close to zero (-0.128) and a Jarque-Bera p-value of 0.41. This estimate explains the 
sharp rise of transport energies for low density cities as previously shown in Fig. 
4.19. 

In order to judge whether the particular non-linear shape of the model in 
Eq. (23) is a reasonable fit, two other modeling attempts were investigated: first, a 
linear Box-Cox model of the form 

   
                                       (24) 
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was calibrated with an optimal . The parameters from Eq. (24) 
are shown in Table 4.29. The outcome of the linearity test and the normal 
distribution test are equivalent to the results of the non-linear model from Eq. (23). 
After a back-transformation of Eq. (24), the obtained goodness of fit equals 

.  
 

Table 4.28 Linear regression results for transport energy in Eq. (23) 
 

 coef std err 
T P>|t| [95.0% Conf. Int.] 

 -2.735e+06    1.12e+06 -2.439 0.018   -4.98e+06    -4.88e+05 

 5.983e+08 5.93e+07 10.082 0.000    4.79e+08     7.17e+08 

 
  

Table 4.29 Box-Cox linear regression results for transport energy in Eq. (24). 
 

 coef std err T P>|t| [95.0% Conf. Int.] 

 -2.735e+06   1.12e+06 -2.439 0.018   -4.98e+06    -4.88e+05 

 5.983e+08 5.93e+07 10.082 0.000    4.79e+08    7.17e+08 

 
In a second attempt, a Box Cox transformed model with a non-linearity in 

 was calibrated, similar to the one in Eq. (23): 
 
                                    (25) 
 
With the previously optimized  , the parameters from Eq. (25) 

are shown in Table 4.30. The outcome of the linearity test and the normal 
distribution test are again identical to the non-linear model from Eq. (23). After a 
back-transformation, the goodness of fit showed results in . 

 
 Table 4.30 Linear regression results for transport energy in Eq. (25) 
 

 coef std err 
T P>|t| [95.0% Conf. Int.] 

 -2.735e+06   1.12e+06 -2.439 0.018   -4.98e+06    -4.88e+05 
 5.983e+08 5.93e+07 10.082 0.000    4.79e+08     7.17e+08 

 
Apparently, the model in Eq. (23) fits best with the measured energy data. 

All the three models of the transport energy estimation are shown in Fig. 4.19.  
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4.5.4. Transport-related CO2 emissions of cities  
 
           The final attempt is to shed light on how the analyzed cities’ CO2 emissions 
levels are varied by different urban indicators, such as the travel modal split, the 
population density, and the infrastructure accessibility. Considering the available 
data, the most precise estimate of the CO2 emissions per person per year for 
commuting purposes CE (T,i) in city i can be determined by: 
 

   (27) 
 
where is the share of the working population in the total population, is 
the daily average commuting distance to work by private car, is the daily 
average commuting distance to work by public transport,  is the mode share 
of private car trips ,  is the mode share of trips with public transport,  
is the average energy consumption per person km for a private car, is the 
average energy consumption per person km for public transport, and  is kg 
CO2e per MJ. 
 
                                                    (28)
   

 
Figure 4.23 CO2 emissions kg per person per year for commuting purposes, CE, over road 
infrastructure accessibility, RIA. The bubble size is proportional to the population density; 
the filled color indicates the share of sustainable modes. The dotted line represents the fitted 
linear line from Eq. (28). 
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             Figure 4.23 demonstrates CO2 emissions CET, the population density and 
the mode share versus the road infrastructure accessibility RIA for each city. The 
bubble colors represent the total percentage of the non-motorized mode share and 
the public transport mode share in cities. The filled bubble colors indicate, 
respectively: red=sustainable transport mode usage>70%, orange= 
35%<sustainable transport mode usage<70% and yellow=35%<sustainable 
transport mode usage. The same figure contains the linear shape of CET as the linear 
line showed the best fit with a considerable . A cluster of cities can be seen at 
low road infrastructure accessibility between 0–20 m/10 inh., where the majority 
are Asian cities. These low road infrastructure accessibility cities are showing much 
lower transport-related CO2 emissions per capita compared to the cities with a 
higher road infrastructure accessibility. This cluster consists of cities with the 
highest population density, and these cities are also denoted by the highest 
sustainable usage of the modes. Another cluster of cities can be seen at medium 
road infrastructure accessibility between 20–60 m/10 inh., where the majority are 
European and South American cities. This zone consists of cities with a slightly 
lower population density and a lower alternative mode usage compared to the 
previous cluster, therefore, the transport-related CO2 emissions are higher than 
average. There is also one more cluster at the high road infrastructure accessibility 
over 60 m/10 inh., where the majority are US, New Zealand and Australian cities. 
This zone consists of the cities with very high car usage and very low population 
density compared to the two previous clusters. The cities in this cluster emit 
noticeably the highest amounts of CO2 gases with respect to the previous clusters. 
Holistically, Figure 4.23 indicates that an increase in the road infrastructure 
accessibility catalyzes the urban sprawl and boosts the car usage – in turn, the 
transport-related CO2 emissions peaked in this segment. 
 

4.6. Evaluation of the results  
 

As stated in the EC mobility targets [14], focusing on people first rather 
than on the technical aspects was taken into account. Therefore, our analysis deeply 
investigated the mode choice under different socio-technical conditions so that to 
understand how to provide a shift towards cleaner and more sustainable transport 
modes. The modal shift is a very important piece of the chain since a prominent 
increase of the public transit and cycling significantly reduces the transport related 
energy consumption and traffic congestion, and, in turn, the air pollution level, 
emissions and the transport-costs would be lightened. When focusing on the 
technical part, our analysis deeply investigated two major technical factors: the 
infrastructure and the land use in order to understand how to create an accessible 
system providing social equity and how to minimize the socio-economic and 
environmental impact of urban mobility. The internal relationship between these 
two major factors and their relation with the other factors is investigated by 
questioning how these associations influence the modal shift, the congestion level 
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and the transport-related energy consumption. The following paragraphs evaluate 
the findings based on the above mentioned investigations.   

 The limited literature availability focusing on the analysis of the culture 
effect on the travel behavior brings along a gap. In the past, to the best of the 
author’s knowledge, no macroscopic analysis on the relationship between national 
culture and urban travel patterns has been conducted. In the present thesis, 87 cities 
distributed over 41 countries were analyzed in Section 4.1. The relationship 
between culture dimensions and urban travel patterns was investigated. Also, the 
relationship between culture and some demographic indicators (the population 
density and the GDP per capita) closely associated with the travel choices was 
demonstrated. Additionally, the relations between the urban travel mode choices 
(driving versus public transport) and some transport-associated indicators were 
shown as well. 

Some countries showed very high individualism and very low driving, 
specifically, the Netherlands, Denmark and Hungary. The Netherlands and 
Denmark have already been focusing on biking for urban transportation for a long 
time. Cycling can be called an environmentally friendly individual travel mode. 
This may suggest that urban planners and policy makers should consider adaptation 
of the biking infrastructure so that to reduce car-dependent transportation in the 
countries with high individualism. Culture may potentially explain why public 
transportation is unsuccessful on patronage in places with high individualism. 
However, the study did not cover quantitatively the role of cycling and the bicycle 
infrastructure as the bike share was not available for most cities, which impedes 
drawing a certain conclusion. Hungary has one of the highest uncertainty levels 
among all the countries with high usage of public transport. Uncertainty is denoted 
by the second highest influence on the public transport usage after collectivism. 
This result suggests that investments in public transportation can be a good option 
for the places with high collectivism and high uncertainty so that to prevent car-
dependent mobility. 

One limitation of the presented models is certainly the use of culture at a 
country level. Describing culture at a country level is the only choice for now, while 
there is no culture scale for cities. Errors may occur due to possible issues related 
to group effects where several cities from the same country are included, thus this 
situation impedes more refined analysis. Also, errors may happen should a 
representative selection of the population be diverse in terms of the nation as some 
cities are denoted by a multinational community. Compatibility problems related 
to data stemming from different years and mixing data from several open sources 
are other relevant limitations. 

Considering the many error sources and limitations listed above, good 
correlation values have been obtained between Hofstede’s fundamental culture 
dimensions: IND/COL and the travel patterns were demonstrated with a reasonable 
goodness of fit. The analysis showed that the countries with a higher individualism 
score built a more individualistic transport-related environment, which, in turn, 
results in more driving. On the other hand, collective nations tend to use more 
public transportation. It is also noticeable that uncertainty and masculinity culture 
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dimensions have a considerable effect on the public transportation usage. There is 
significant evidence that, in case of nations, there is an increase in three culture 
dimensions: collectivism, uncertainty and masculinity results in the greater usage 
of public transport. However, the highest influence on the public transportation 
usage is made by the IND/COL dimension. Lastly, Section 4.1 demonstrated that 
culture could be a key tool in urban transportation planning. If we can predict which 
alternative transport systems could be adopted in a city at peace, we can achieve 
sustainability in urban transportation. 

The influence of the higher education level on the urban travel mode 
choices was examined with a large and diverse open data collection for 45 urban 
areas from 30 countries in Section 4.2. Also, a higher education level is controlled 
with the population density and income level which exert significant influence on 
travel behaviors. The main result demonstrated that an increase in the education 
level has the highest effect on dropping the drive mode share in cities, while an 
increase in the population density reduces the drive mode share more than an 
increase in GDP per capita boosts it. The result of this study clearly identified that 
the higher education level considerably affects the travel mode choices in cities. 
Presumably, one hypothesis could be that higher educated societies buy fewer cars, 
drive less, and use alternative mobility systems more due to environmental and 
health concerns. In summary, Section 4.2 demonstrated that educating citizens is 
an important path to the reduction of car dependence. 

In the past, the limited availability of comparable data on socio-economics, 
transport infrastructure and transport performance of cities prevented holistic 
analysis with many indicators due to the lack of variety. These limitations were 
hereby overcome by analyzing the OSM data, the TomTom data, and the data from 
centralized internet databases in Section 4.3. To date, to the best of the author’s 
knowledge, no systematic worldwide infrastructure analysis based on the OSM 
data has been performed. By using Python package OSMnx, it was possible to 
extract different network-types from the OSM data as downloaded from different 
urban areas of the world. The 151 analyzed cities are distributed over 51 countries 
in Section 4.3. The cities were analyzed as a whole and within subgroups of cities 
with distinct population sizes (small cities, mature cities and metropolises). The 
relationships between the socio-economic indicators, infrastructure accessibility 
and congestion level were investigated. 

Good correlation values between the infrastructure accessibility, socio-
economic indicators, and congestion levels were demonstrated with a reasonable 
goodness of fit. The clearly positive correlation between the spatial city area and 
the population growth rate for metropolises, mature cities and all the cities is trivial 
as the number of newborns is proportional to the population size. It is of interest to 
note the negative relationship between the population density and the GDP per 
capita suggesting that economically weaker cities experience more congestions – 
this is particularly true for metropolises. Also, the fact that congestion levels 
(ADETT) increase with a higher population density is not surprising, and it 
confirms that cities are struggling to keep the transport infrastructure in pace with 
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the increasing traffic intensity (trips per sq. km). However, a highly positive 
correlation between the population density and the public transport, cycling, and 
walking mode shares was shown in Sections 4.1 and 4.2 suggesting that the denser 
cities are more successful in terms of the reduction of automobile dependence. The 
analyses further showed that cities with higher GDP built more infrastructure, 
which, in turn, results in lower congestion levels. The relation between the 
infrastructure accessibility and the congestion levels was quantified by using 
regression models. For cities with a low population density (below approximately 
1500 inhabitants per sq. km), more roads per inhabitant lead to lower congestion 
levels. Metropolises and mature cities with a high population density have in 
general lower congestion levels where the rail infrastructure per person is higher. 
There is significant evidence that, in the case of high density cities, an increase in 
the train infrastructure accessibility is more decongestionating than an increase in 
the road infrastructure accessibility. Also, any rise in the cycle infrastructure per 
person alleviates the congestion significantly in 42 worldwide small cities below 
800,000 inhabitants. 

In the past, only limited holistic analysis was attempted to investigate the 
influence of the urban network topology on the transportation performance mainly 
due to lack of diversity in the data from alternative network types. We analyzed the 
influence of the topological indicators with multi-network layers on the network 
performance in Section 4.4. The 86 analyzed cities show sufficient diversity as they 
are distributed over 32 countries.  

 The relationships between network topology indicators and congestion 
levels were investigated. Good correlation values between topological variants and 
congestion levels were demonstrated. Multiple linear regression models were 
attempted with the entire set of cities as well as for specific subsets (cities with 
mature railways – 53 cities and cities with mature cycleways – 28 cities). Calibrated 
regression models were proposed thus quantifying the relation between the 
transport infrastructure, topology and performance indicators. 

Some useful relationships between congestion and network indicators were 
identified. Open source data-related errors and data limitations were outlined and 
clarified. Some pre-assumptions were made as a result of the findings. The core 
message of the study is to demonstrate the influence of the network-design related 
factors on the road traffic performance. In the light of the findings, it is evident that 
short distance connectivity of the road network is important for reducing the traffic 
congestion. Another hypothesis is that distance-based connectivity of alternative 
networks does influence the travel mode choices, which, in turn, changes the road 
traffic volume. One particular question was addressed with regard to urban 
planning: what is more effective in terms of congestion alleviation in the light of 
sustainability to build well-connected road networks with low circuity or to build 
well-connected alternative networks with low circuity? Public transit networks are 
more circuitous than roads, which is one of the reasons behind the preference of 
auto usage over public transit [168]. The increase in the average circuity of public 
transit networks can drop the transit ridership and thus cause a mode shift towards 
road mobility. As alternative network systems become mature, road-based 
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infrastructure indicators and DBC indicators have a lower impact on congestion. 
Presumably, it is due to the fact that in cities with a mature public transit or bike 
network, fewer people use cars, which lessens the importance of the road 
infrastructure. These useful findings suggest that the short distance connectivity of 
alternative network systems, such as railways and cycleways, may attract more car-
drivers towards alternative modes. With the available average daily travel distance 
data for each mode, the study could be further exploited to determine the 
relationship between the DBC indicators and the travel distance. 

Quality open source data from centralized databases allowed more 
consistent and complete analysis of transport networks from many cities around the 
world in Section 4.5. Up-to-date information on the urban area, population, average 
commuting distances for private and public transport, specific energy consumption 
and modal splits was obtained from various databases. Still, it was challenging to 
obtain homogeneous data from a sufficient number of cities. City boundaries, 
sampling dates, and calculation methods of certain quantities were not 
homogeneous. Instead of eliminating a large quantity of cities due to insufficient 
data, it was decided to estimate the missing data from alternative sources even 
though this may have distorted the obtained results. It was specified which data was 
estimated by with which method and for which particular city. The attributed 
extensive information on the transport infrastructure provided by OpenStreetMap 
(OSM) was used to extract the road length, rail length and bikeway length of the 
city’s transport networks by means of the open source software OSMNx. From the 
collected city data, the transport related energy was calculated, which is an 
important sustainability benchmark of the city transport system. The transport 
energy consumption essentially depends on two quantities: the modal split and the 
the average commute distances. 

The main focus of the analysis was to establish a quantitative and 
statistically significant relation between the population density, the transport 
infrastructure and the transport energy consumption. A particularity previously 
highlighted by Newman and Kenworthy [61] was investigated: the cities with a low 
population density from the USA, Canada and Australia are denoted by 
extraordinarily high transport energy consumption (2–4 times higher than the 
medium density European or Asian cities). The result of the present study clearly 
identified the high private car mode share as the main cause of the high transport 
energy usage of such cities, while the longer average commuting distance in the 
low population density cities exerts more modest influence on their transport 
energy consumption. 

Two quantities were investigated which can significantly influence the 
transport energy of cities, see Eqs. (14, 15): the modal split and the average 
commuting distance. From the present city dataset, there is statistical evidence that 
private commuting travel distance is linearly decreasing with the population 
density, see Eq. (17). The model shows a ratio of approximately 50% between the 
commuting distance of cities with the highest and lowest population densities. 
However, the errors of this distance model are fairly large.  
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With regard to the modal shares, a significant linear relationship was found 
between the road infrastructure accessibility (RIA) and the car mode share (MSC), 
see Eq. (15). In this case, the ratio between the MSCs of cities with the lowest and 
the highest RIA is approximately 400%. This result means that RIA exerts a much 
stronger influence on the mode share than the population density has on the 
commuting distance. The public transport infrastructure can only be represented by 
the rail length extracted from the OSM data for each city. This information proves 
to be insufficient to establish a relation between the public transport infrastructure 
and the public transport mode share MSPT as rail constitutes only a part of all 
public transport trips. Instead, it was possible to demonstrate that MSPT is 
decreasing linearly with RIA. The linear relations between RIA, MSC and MSPT 
were only demonstrated empirically, and a model to explain this relation 
quantitatively was not found in literature. Nevertheless, as RIA does determine 
significantly both shares, i.e., MSC and MSPT, the transport energy was estimated 
with a linear regression that depends only on RIA, see Eq. (19).  The failure of the 
attempts to include the rail infrastructure accessibility (TIA) or the bike 
infrastructure accessibility (BIA) in the transport energy estimation was probably 
due to the fact that either the OSM data is insufficiently precise or incomplete in 
order to explain the public transport or active mode share, respectively. However, 
including the rail and bike infrastructure accessibility reduces the errors in the 
model. Further tests revealed that TIA actually increases proportionally with the 
rail mode share (for 17 cities, ), and that BIA is proportional to the bike 
mode share (for 32 cities, ). These findings support the relationship 
between the usage and alternative infrastructures expansion presumably by shifting 
car trips to alternative modes, as demonstrated in [8, 90, 92] for rail and in [132, 
133] for cycling. Better fits can be obtained when concentrating on a particular 
area: for example, the relation between BIA and the bike mode share has a better 
fit when using only European cities with respect to cities from all the countries 
available in the database. Still, the active mode share includes walk-trips and walk 
infrastructure; however, it is difficult to assess the values with the OSM data as 
footpaths are generally insufficiently modeled in OSM. 

In Section 4.5.2, a non-linear function between the population density and 
RIA was derived based on simplifying the road-grid model, see Eq. (20). This 
calibrated model fits well with the empirical population density and the RIA data 
and shows a marked rise of RIA as the population density approaches zero. This 
model was verified by calibrating a more generic model whose parameters relaxed 
to the values similar to the derived model of Eq. (20). When combining the function 
in Eq. (20) to compute RIA from the population density with the linear relation 
from Eq. (19) which estimates the transport energy, it was possible to calibrate a 
statistically significant model that estimates the transport energy as a function of 
the population density, see Eq. (23). This model can explain the marked rise in the 
transport energy for cities with a low population density, as already established by 
Newman [65]. Nevertheless, there are some cities which do not fit well with the 
estimated energy curve: Hamilton, New Zealand, has a high car mode share (94%), 
but a relatively low energy use for its low population density. The reason is 
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Hamilton’s relatively low average commuting distance. Also, Ho Chi Minh City 
has short commuting distances and therefore relatively low transport energy 
consumption. Wellington has low energy consumption for its population density, 
but, as the metropolitan area was used, the population density might be 
underestimated as most of the population lives in Wellington City. The Spanish 
cities Madrid, Seville and Barcelona demonstrate relatively high transport energy 
consumption despite a low car mode share due to an exceptionally high commuting 
distance. 

Attempts to include the average commuting distance as a linear function of 
the population density resulted in a slightly improved fit of the transport energy, 
but the parameters became statistically insignificant and are not suited to explain 
the phenomenon. 

Also, transport-related CO2 emissions of urban areas were assessed to 
stress the environmental impacts. A linear model for transport-related CO2 
emissions of urban areas was presented. The linear model demonstrates that CO2 
emissions increase with an increasing RIA where an increase in RIA catalyzes the 
urban sprawl and boosts the car usage; in turn, the transport-related CO2 emissions 
peak. 

Cities with a low population density must provide a disproportionately high 
road length per inhabitant in order to cover the area and to limit longer detours with 
respect to the line of sight. This may suggest that line-oriented public transport 
cannot match the connectivity of the road network in low population density cities. 
In order to reduce the energy consumption in low density cities, either the energy 
efficiency of cars must increase, for example, by battery electric vehicles, or new 
forms of demand-responsive public transport systems need to become competitive 
in low density settlement areas. 

One limitation of the presented models is surely the sole use of the 
population density and road infrastructure length to explain the transport energy 
consumption in cities.  Such a simplification may hide the fact that transport energy 
consumption in cities with the identical population density can vary considerably. 
Some examples were discussed where cities with a low population density have a 
low energy density due to short commuting distances. Another limitation is the use 
of non-homogeneous data, particularly, the city boundaries are critical. The 
different criteria how city boundaries are drawn introduce large errors into the 
population density thus impeding more refined analysis. 

Cities with medium to high population densities feature either a substantial 
public transport mode share, or a high active mode share, or both. This fact leads 
on average to lower energy consumption with respect to the cities with a low 
population density. The study did not cover quantitatively the role of cycling and 
the bicycle infrastructure as the bike share was not available for most cities. 
However, almost all cities with the lowest transport energy consumption have a 
high share of the active modes including cycling.  

A systematic literature review and worldwide multivariate analysis of 
transport indicators was conducted above. The obtained results were evaluated and 
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presented as a summary of the results of worldwide analysis and comprehensive 
literature review: interrelations among the socio-technical factors, their influence 
on the users and transport performance were presented in scheme Fig. 4.24 with a 
holistic and integrated view. In multi-dimensional analysis, a series of indicators 
and the interaction among them are identified through by using logic architectures 
[10]. The arrows in the developed scheme demonstrate how an increase in any 
socio-technical factor has influence on the following indicators with plus and minus 
signs. The first step of sustainable transport planning should be ‘focusing on user 
profiles’ in order to identify how to enhance the modal shift towards sustainable 
modes for any investigated city. The scheme is user-centered where transport user 
profiles are presented in the rectangle at the center of the scheme, such as private 
vehicle, public transport, and non-motorized. The main transport-performance 
indicators, such as the congestion level and the transport energy consumption, are 
presented on top of the scheme with their connection to the GHGs emission level, 
air pollution and transport costs. The outgoing arrows from the user preferences 
indicate that cities with well-established public transit or/and cycling infrastructure 
succeed in achieving lower transport-related costs, air pollution and emission 
levels; meanwhile, car-dependent cities are facing high socio-economic and 
environmental costs. The socio-composition in a city is vital when planning how 
to enhance the modal shift towards more sustainable modes. The left square in the 
scheme demonstrates the social factors in which the outgoing arrows show the 
influence of these factors on user mode preferences and technical factors in turn 
highlighting how these relations indirectly affect the transport related costs, air 
pollution and CO2 emissions. The scheme demonstrates that the social variation in 
the urban areas shapes the travel mode choices along the factors such as ‘culture’, 
creates a general user profile, ‘nature of demography’ enforces transport users to 
undergo a modal shift, ‘education level’ changes the travel mode choices, and 
‘income level’ can manipulate the travel mode choices. The right square in the 
scheme demonstrates technical factors. The outgoing arrows show that the 
technical factors induce the travel mode choices towards the factors such as: land 
use conditions, infrastructure accessibility, infrastructure design and innovations 
that directly affect the transport related costs, the air pollution and the GHGs level. 
Technology and policies act as system optimization tools. The arrows show that 
any change of infrastructure catalyzes the land area growth; therefore, these factors 
should be considered together in urban transport planning. The arrow associations 
demonstrate that cities getting sprawled and having low alternative network 
accessibility result in very high car usage, which in turn causes significant socio-
economic and environmental costs.  
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5. Conclusions 
 
1. The present thesis demonstrated how to minimize the socio-economic 
(inequity and travel costs) and environmental (transport-related energy 
consumption, CO2 emissions and air pollution) impacts of urban transportation. 
Examination of similarities and differences within worldwide cities and 
understanding how these cities are shaped by socio-technical factors demonstrated 
which mobility strategies could be sustainable under which socio-technical 
conditions.  

2. User preference is vital since the travel mode shift towards public transit and 
non-motorized modes is one of the key paths to minimize socio-economic and 
environmental impacts. Understanding which alternative travel mode can be 
sustainable under specific socio-technical conditions and how to attract travel users 
towards the sustainable modes is the first step of sustainable transportation planning. 
The conclusions related to the first step of sustainable transportation are outlined as 
follows: 
*     The results showed that culture can be a key tool in urban transportation 
planning. Countries with higher individualism built a more individualistic transport-
related environment which, in turn, results in more driving. On the other hand, 
collective nations tend to use public transportation more. Also, some countries with 
high individualism show a tendency to adapt to biking. Notable examples are the 
Netherlands and Denmark, where driving and public transport mode shares are low 
compared to other countries, but the individualism indexes are high with the values 
of 82 and 74, respectively. 
*         Additionally, Hungary is denoted by high individualism indices with the value 
of 80 and at the same time Hungary demonstrates a high public transport mode share 
with the value of 45%. It was noted that the uncertainty dimension is highly 
correlated with the public transport usage, and that Hungary has one of the highest 
uncertainty indices with the value of 82 among all countries. 
*        There is significant evidence that the presented multiple regression model Eq. 
(5) ( = 0.55) demonstrated, in case of nations, an increase in three cultural 
dimensions: collectivism, uncertainty and masculinity results in a greater usage of 
the public transport. Prediction of alternative transport systems which could be 
adopted in a city at peace is important in order to bring down car dependence in a 
more sustainable manner. 
*        The results demonstrated that educating citizens is an important path towards 
reducing car dependence through creating awareness with the current issues. The 
linear function model Eq. (6) ( = 0.62) demonstrated that an increase in the 
education level has the highest influence on dropping the driving habits in cities 
comparing to the land use and income level factors. The influence of the education 
level on dropping the car usage level is approximately 2 times higher than an increase 
in GDP per capita in terms of boosting the extent of driving.  
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*     The obtained results demonstrated a negative correlation between the public 
transportation usage and GDP per capita while cities with a higher GDP per capita 
tend to drive more to a considerable extent. However, there is no considerable 
correlation between the income level and the non-motorized modes, especially for 
cycling. The implementation of a biking infrastructure would offer a sustainable 
service for the places with high income. 
*    A significant linear relation = 0.58) was found between the road 
infrastructure accessibility (RIA) and the private car mode share: the car mode share 
increases with an increasing RIA, which is reasonable for entire cities. Further tests 
revealed that TIA actually increases proportionally with the rail mode share (for 17 
cities, = 0.54), and CIA is proportional to the biking mode share (for 32 cities, 

=0.27). An increase in any network accessibility results in an increase of its usage, 
while an increase in the population density results in higher public transport and 
active modes usage. Also, the results showed that well-connected alternative 
networks with short direct routes can trigger a mode shift from car to rail or bike, 
thus the resulting shift may lighten the road traffic volumes. 

3. Understanding under which technical conditions an urban transport system 
can minimize its socio-economic costs and environmental impacts is the second step 
of sustainable transportation planning. Two key factors – land use and transport 
infrastructure and their interrelation – were demonstrated with details so that to 
explain the transport-related energy consumption, the CO2 emission and the 
congestion level in the cities. Additionally, the effect of the infrastructure design on 
the congestion level was shown. The conclusions related to the second step of 
sustainable transportation are outlined as follows: 
*        The results showed that, in particular for the cities with a low population 
density (below approximately 1500 inh. per sq. km), more road accessibility (roads 
per inhabitant) leads to lower congestion levels; cities with a high population density 
(above approximately 1500 inh. per sq. km) have, in general, lower congestion levels 
if the rail infrastructure per person ratio is high. Furthermore, these cities, by 
increasing the railway accessibility (railways per inhabitant), become more effective 
in reducing congestions than by increasing the road length per person (approximately 
4 times more). Also, small cities increasing cycleways per person alleviate 
congestion considerably. 
 *      The role of the network design was assessed in terms of the congestion 
performance with the controlling infrastructure accessibility and network density. 
The results demonstrated that an increase in the average short distance connectivity 
of road networks (average closeness centrality and RCRC) eases down road 
congestion, most likely because the road traffic is distributed more homogeneously 
over a network with fewer low permeability choke points.  
*       Furthermore, an increase in the average short distance connectivity of 
alternative network systems (the average weighted rail clustering coefficient, the 
average cycle closeness centrality) alleviates road congestion. In particular, for cities 
with a mature cycleway network (cycleway density greater than 0.4 km per km2), an 
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increase in cycleway closeness centrality decreases congestion with nearly the same 
effectiveness as an increase in the road infrastructure accessibility. 
*         A simplified phenomenological model was developed in order to explain the 
non-linear relation between the population density and RIA. RIA is dropping with 
one over the square root of the population density. Indeed, RIA acts as a catalyser 
for urban land. Based on the relationship between the population density and the 
infrastructure accessibility with their influence on the modal split and the average 
travel distances, a hyperbolic function ( = 0.65) between the population density 
and the transport energy was calibrated, which explains the rapid increase of the 
transport energy consumption of cities with low population densities.  
*     Transport-related CO2 emissions of urban areas were calculated to assess 
environmental impacts. A linear model ( = 0.57) for transport-related CO2 
emissions of urban areas was calibrated where CO2 emissions increase with an 
increasing RIA. The cities clustered in the highest RIA zone produce, on average, 
4–5 times more transport-related CO2 emissions comparing to the other city clusters. 
*       The graph analysis also showed that an increasing RIA catalyzes the urban 
sprawl and boosts the car usage simultaneously; in turn, transport-related CO2 
emissions peak. This association is the main factor affecting the transport-related 
CO2 emission levels in cities.  As an example, Hong Kong is in the cluster of cities 
that have the lowest RIA, meanwhile, they also have the highest sustainable modes 
usage and the highest population density. The city emits around 4,500 kg per capita 
of transport-related CO2 emissions per year compared to Philadelphia City, which is 
in the cluster of cities that are singled out by the highest RIA, the highest car usage 
and the lowest urban density and emits around 40,200 kg per capita, which is 
approximately 9 times more. 

Recommendations 
 
1.          Social point of view: When focusing on people, a transportation system 
must serve diverse demands. Looking through cities’ demographical composition 
and culture values, we can detect the socio-economic condition(s) of cities and the 
social acceptance levels of alternative systems. The socio-economically 
disadvantaged people are the major part of the societies where geological and climate 
conditions are varied, while increasing the accessibility by alternative modes of 
transport promotes social equity. This means that the system should be multi-modal. 
To plan multi-modal systems, we should focus firstly on the people rather than on 
the transport systems so that to optimize the anatomy of trips and to minimize the 
travel costs and environmental impacts. Cities based on well-planned and suitable 
alternative mobility systems will result in travel mode shifts from car users, which, 
in turn, alleviates road congestion, travel costs and environmental impacts. The 
social influence will be higher in the cities where multi-transport services are fully 
integrated, and the travel time is minimized. The high social acceptability of rail-
transit systems comes up with the faster mode shift from private vehicle users than 
other alternative systems may do, especially for dense cities. The user preference of 
the public transit and non-motorized systems increases with the concentration of 
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activities in the proximity. The densification of urban areas increases the 
functionality of the alternative systems. To further encourage the modal shift from 
car use, alternative networks should be designed with highly connected paths and 
less circuity so that to provide high-speed accessibility to the final destination and 
allow a reduction of the traffic volume. 

2.          Technical point of view: Especially for mature cities and metropolitan areas, 
high car usage in turn increases the traffic congestion and reduces the functionality 
of the conventional bus systems. The current situation suggests that building 
alternative mobility systems based on separated tracks is vital since rail transit and 
bus rapid transit systems provide high-speed accessibility. The use of different 
modes in combination can vary depending on the city size and geographical 
conditions; however, in order to provide optimal mobility, the system should offer 
high public transit accessibility or/and high cycling infrastructure accessibility, and, 
on top of that, the system should have high integration within its networks. Mature 
cities and metropolitan areas with high level rail infrastructure accessibility achieve 
high public transport ridership, lower car ownership, less traffic congestion, and 
lower environmental impacts. Also, cities with high level BRT infrastructure 
accessibility succeed in achieving high public transport ridership and significant 
travel time savings with the advantages of lower infrastructure costs comparing to 
railways. There is less pressure to change from private cars to public transit for small 
cities since they are less congested. Therefore, the adoption of the cycling 
infrastructure for small cities should be considered as the first option if the 
geographic and climate conditions are suitable. Provided a city is small, this situation 
allows an opportunity to grow its urban transportation within proximity areas based 
on the cycling mode. Small cities with high cycleway infrastructure accessibility 
achieve very low congestion levels and a high cycling share. Cycling is the most 
energy efficient mode; therefore, an increase in cycling usage considerably reduces 
the socio-economic and environmental impacts. The densification of urban areas 
increases the energy efficiency of urban transit systems. Mitigating land segregation 
towards increasing sustainable infrastructures accessibility is suggested critically 
since this is an important path towards reducing transport-related energy 
consumption; in turn, that will alleviate the CO2 emissions and the travel costs 
considerably. There were significant shifts towards e-mobility in the leading 
countries over the recent years. The electrification of mobility systems appears to be 
the best choice in terms of energy efficiency and environmental impacts compared 
to other currently available technologies. Urban mobility systems should be 
supported with intelligent transportation systems so that to enable effective use of 
the travel information and vehicle use and to improve the network management. 
Integration of ICT systems increases the functionality of multimodality. Improved 
real-time monitoring systems, optimized timetables, integrated ticketing systems and 
reliable planning applications provide network usage optimization. Shared mobility 
schemes as well as limitations, pricing and proximity regulations significantly help 
to alleviate congestion while increasing the effectiveness of a public transit system. 
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Mathematical Glossary 
 

Pearson correlation  A number between -1 and 1 that demonstrates 
bivariate linear association between two 
variables X and Y for numerical variables. 

Regression An important tool for modeling and analyzing 
datasets. There are many types of regression. 
Shortly, it is used to predict the behavior of a 
dependent variable based on the behavior of 
independent variables. 

Linear function Linear functions are those whose graph is a 
straight line. 
f(x) = a + bx. 

Non-linear function The variables containing at least 
one equation that is not linear which contain a 
slope that varies between points. 

Exponential function A function whose value is a constant raised 
to the power of the argument where the 
constant is e.  f(x) = ex 

Logarithmic function An inverse of exponential function. y=logbx 
Hyperbolic function A function of an angle demonstrates a 

relationship between the distances from a 
point on a hyperbola to the origin and to the 
coordinate axes.  

The P-P Plot of Normality Test The cumulative probability plots of residuals 
are used to judge whether the distribution of 
variables is consistent. 

Box-cox transformation A method to transform non-normal 
dependent variables into a normal shape. 

Harvey Collier Test A statistical test for linearity intended to test 
whether recursive residuals have mean 0. 

Jarque–Bera test  A goodness-of-fit test checking whether the 
dataset is normally distributed. 

Breusch-Pagan Lagrange Multiplier test This method is used to test for 
heteroscedasticity in a linear regression 
model. 
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