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ABSTRACT 

The efficiency of airport airside operations is often compromised by unplanned disruptive 

events of different kinds, such as bad weather, strikes or technical failures, which negatively 

influence the punctuality and regularity of operations, causing serious delays and unexpected 

congestion. The disruptive events affecting airport nodes make operations substantially deviate 

from the schedule, causing either the complete closure of an aerodrome as a whole (and 

consequently downing the capacity to zero) or the reduction of the system capacity (thus, 

increasing the flight delays). They may provoke important impacts and economic losses on 

passengers, airlines and airport operators, and consequences may propagate in the whole air 

network throughout different airports. In order to identify strategies to cope with such events 

and minimize the impacts on both passengers and service providers, it is crucial to understand 

how disruptive events affect airports’ performance. The research field related with the risk of 

severe air transport network disruptions and their impact on society is generally related to the 

concepts of “vulnerability” and “resilience”. In particular, vulnerability refers to the impacts of 

unexpected disruptive events that could undermine the whole system, while resilience describes 

the ability of a system to cope with such circumstances and recover from them. In recent years, 

the research concerning resilience has grown considerably and is nowadays a major challenge 

in system’s design. However, while resilience and vulnerability have been largely studied in a 

plethora of fields, little research has focused on airport airside operations.  

The main objective of this project is to provide a framework that allows to evaluate performance 

losses and consequences due to unexpected disruptions affecting airport airside operations, 

supporting the development of a methodology for estimating vulnerability and resilience 

indicators for airport airside operations. Such approach allows to estimate the consequences of 

a wide range of disruptions and could be used to predict the impacts cause by those events.   

The methodology proposed comprises three phases. In the first phase, airside operations are 

modelled in both the baseline and disrupted scenarios. The model includes all main airside 

processes and takes into consideration the uncertainties and dynamics of the system. In the 

second phase, the model is implemented by using a generic simulation software, AnyLogic, and 

validated by applying it to four known disruption cases. The effects caused by a disruption are 

evaluated by means of specific indicators, which are generally expressed in terms of delays and 

loss of capacity, and by computing resilience and vulnerability indexes. Specifically, 

vulnerability is evaluated in terms of equivalent cancelled flights, weighted by taking into 
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consideration the costs related to flight delays, cancellations and diversions. Besides, resilience 

is determined as a function of the loss of capacity during the entire period of disruption. The 

simulation model is then applied to a large number of real disruptions, obtaining a database 

with 135 cases in which different disruptive events hurt the performance of several European 

airports. In the third phase, the database obtained has been used to build a Bayesian Network 

in which uncertain variables refer to (i) airport characteristics, (ii) disruption features and (iii) 

parameters indicating the impact caused by the disruption on the system. The Bayesian Network 

expresses the conditional dependence among these uncertain variables and allows to predict the 

impacts of disruptions on an airside system, determining the elements which influence the 

system resilience the most.  

The contribution of this work can be summarized into three main points. First, the simulation 

model developed allows to evaluate knock-on effects – in terms of delays - of disruptive events 

on as a function of the available resources. Second, synthetic resilience and vulnerability are 

introduced which considers both the loss of airside capacity and the recovery time, as well as 

the costs related to flight delays; such metrics allows to compare the effects of different types 

of disruptions on different airports. Third, a Bayesian Network approach to resilience is 

proposed, which allows to determine the probabilistic dependence among variables of interest 

and to predict the consequences of airside disruptions. The framework proposed could be used 

to determine the elements most critical in the system and develop strategies and actions to 

mitigate the consequences of such events.  
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1. INTRODUCTION 

1.1. How to cope with disruptions? 

Air transport is a critical factor to the well-functioning of the world economy. In 2018, 

approximately 4.3 billion passengers used air transport scheduled flights, (+6.4 % on 2017), the 

number of departures reached approximately 38 million globally and 58 million tons of freight 

were carried by air transport (ICAO, 2018). The air traffic has been steadily growing in recent 

years, showing a growing demand and reliance on air transport in terms of both passengers and 

scheduled flights. 

 

 

Figure 1.1. Passengers carried by air transport in 2018. Source: https://data.worldbank.org 

 

The air transport system is composed of a high number of technological, humans and 

organizational elements which interact with each other and create a complex large-scale 

organism. The mobility of passengers is just the final result and it is clearly of high importance 

from a social point of view. The failure or inefficiency of one of those elements is likely to 

cause dramatic consequences and high economic costs.  

 

https://data.worldbank.org/
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Many recent events have shown that the air transport system is particular susceptible to airport 

disruptions. One well-known example is the eruption of Iceland’s Eyjafjallajokull volcano on 

April 13th, 2010, which produced a high plume of gases and ashes which spread over most 

Europe. This event caused several air spaces closures lasting for more than a week – between 

14 and 24 April – resulting in the cancellation of about two thirds of European flights and about 

180 transatlantic flights in a single day (Reichardt et al., 2018, 2019, ICAO, 2010). Both flight 

cancellation and delays propagated much broader, reaching Canada and Japan. The IATA 

(International Air Transport Association) estimated that the total cost of impacts for the global 

airline industry had been of about 1.7 $US billion. Some others remarkable examples are 

Hurricane Katrina (2005), the Haiti earthquake (2010) and the Pakistan floods (2010), which 

exposed the vulnerability of air transport and its weaknesses (O’Regan, 2011).  

The research field related with the risk of severe air transport network disruptions and their 

impact on society is generally related to the concepts of “vulnerability” and “resilience”. In 

particular, vulnerability refers to the impacts of unexpected disruptive events that could 

undermine the whole system, while resilience describes the ability of a system to cope with 

such circumstances and recover from them. The resilience of air traffic networks is therefore of 

great importance, in order to minimise the impacts on the stakeholders involved and the 

economic losses due to disruptive events. In recent years, the research concerning resilience has 

grown considerably and is nowadays a major challenge in system’s design.  

In the dynamic and large-scale system which is the air transport, airports represent the 

connection nodes between aircraft movements through the air network and passengers’ 

transport modal changes (de Neufville & Odoni, 2003). They rely on a complex architecture, 

in which various agents and facilities interact with each other (Ashford et al., 2013), creating a 

complex combination of interconnected components. Airports are usually a source of capacity 

constraints for the entire network; furthermore, given the increasing number of aircraft 

movements and the size of recent aircraft, airports are increasingly becoming bottlenecks for 

air traffic flow. Therefore, airports represent a fundamental element in air transport regarding 

safety, passenger experience and operations’ efficiency (Ashford et al., 2011).  

However, the efficiency of airport operations is often compromised by unplanned disruptive 

events of different kinds, such as bad weather, strikes or technical failures, which negatively 

influence the punctuality and regularity of operations, causing serious delays and unexpected 

congestion. These unplanned disruptive events may have different nature and impact, can be 

interrelated and occur simultaneously.  
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The disruptive events affecting airport nodes make operations substantially deviate from the 

schedule, causing either the complete closure of an aerodrome as a whole (and consequently 

downing the capacity to zero) or the reduction of the system capacity (thus, increasing the flight 

delays). Moreover, service disruptions at a particular airport – incident, failures and delays - 

may cause degradation in the whole air network by propagating throughout the different airports 

(Wu and Caves, 2004).  

For example, the Asiana crash at San Francisco airport in 2013 led to cancelations, delays and 

diversions at the airport and impacted the rest of the airspace with knock-on effects. On July 

6th, the instrument landing system vertical guidance on runway 28L was, as scheduled, out of 

service. In addition, in the morning, an aircraft crashed just short of runway 28L’s threshold. 

The crash resulted in a five-hour total closure of the runways at the airport, with the cancellation 

and diversion of all flights. Even after the airport reopened, its capacity was reduced by more 

than a half. Summing the results over four days, more than 660 arriving and 580 departing 

flights at San Francisco airport had either been cancelled or diverted (Marzuoli et al., 2016). 

Airport disruptions result in important delays, cancellations and rerouting of the affected 

aircraft, provoking important economic losses for airline and airport operators. Furthermore, 

delays have also a considerable impact also on airport passenger experience, customer 

satisfaction and system reliability (Cook et al., 2009). Disruptions are a key source of 

passengers’ dissatisfaction and their discontent - missed meetings, lost personal time, anxiety 

and stress - may eventually undermine customers' loyalty and lead to up to boycott the airlines, 

with inevitable loss of business. Moreover, there may be additional costs imposed on airports, 

airlines, and air passengers – which are potentially the most affected stakeholders - due to 

mitigating actions such as delaying, cancelling and rerouting.  

It is thus crucial to understand how disruptive events affect airports’ performance, and to 

identify strategies to cope with such events, minimizing the impacts on both passengers and 

service providers.  
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1.2. Aim and description of the project 

The scope of this thesis is to develop a framework to evaluate the impacts generated by 

unexpected airport disruptions. In particular, airport systems consist of two areas: landside and 

airside, with security control as boundary between the two (see figure 1.2). In this work, the 

analysis is focused on airside operations, indicated in red in Figure 1.2. 

 

Figure 1.2. Airport system 

 

Then, the aim of this project is to develop a methodology to determine airport airside 

vulnerability and resilience; such framework could be easily used to evaluate and predict the 

impacts generated by disruptive events affecting airside operations. The main aim is achieved 

by accomplishing three sub-objectives: 

1) determining the consequences of disruptive events affecting airport airside systems to 

evaluate the impacts on the main stakeholders involved - such as airports, airlines and 

passengers; 
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2) defining synthetic metrics capable of estimating the resilience and vulnerability of 

airports’ airside operations affected by an unexpected disruptive event.  

3) understanding the causal relationships between impacts, airport characteristics and 

disruption type, within a probabilistic approach.  

Towards this aim, the methodology proposed entails three main phases.  

In the first phase, the airside (apron - runway - taxiway) system is modelled. Most elements in 

such system are subject to uncertainties, making airside operations a stochastic phenomenon 

(Rodríguez-Sanz et al., 2018). The stochastic and time-varying nature of the operations create 

a set of dynamics which influence the way the system evolves and how airlines and airport 

service providers and operators manage their operations. This is even more emphasized in case 

of unexpected and uncontrollable disruptive events. The model developed in this thesis is 

capable of analysing the dynamics of each process and of the whole system, in order to better 

capture the consequences of disruptive events and potential knock-on effects. Moreover, 

constraints due to the limited amount of available resources will be considered. The proposed 

framework models an airport ground network in a comprehensive way by considering both its 

technical aspects (i.e. scheduled flights, runway configuration) and inherent system 

uncertainties. The model developed consists of two main systems, namely the landing and take-

offs processes and turnaround operations, and represents operations from the moment an 

aircraft approaches the local airspace to the take-off for departing flights. All main factors and 

processes are included in the analysis in order to make the model as realistic as possible.  

Then, a disruption is modelled which hurts airside operational performance. However, the 

disruptions affecting airside operations may be very different from each other and influence the 

performance in different ways. Thus, as a preliminary step to this phase, an historical analysis 

is performed of airport disruptions in recent years, and the different disruptions are then 

clustered depending on the airside process which is primarily affected. The clustering allows to 

model in the same way disruptions belonging to the same cluster. Once the disruptions have 

been identified, a disrupted model is built for each cluster.  

In the second phase, both the undisrupted and disrupted model are implemented by using a 

generic simulation software, AnyLogic. In fact, given the complex and stochastic nature of 

airside operations, and uncertainties related to the effects of disruptive events, simulation was 

reckoned to be the most proper tool in order to analyse and measure airport’s disrupted and 

undisrupted performance. The simulation model generates outputs of time-dependent measures 
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of performance at different levels. Models are validated by comparing simulations’ output with 

real data and the variation between the new state and the baseline state is measured as the change 

of selected performance indicators. Such gradient reflects the impact of disturbances and allows 

to identify the most critical processes. Specifically, impacts are evaluated in terms of flight 

delays and cancellations. Moreover, some indicators are defined to evaluate the vulnerability 

and resilience of the system.  

However, the simulation model provides information regarding the overall impact, without 

specifying how much each single element – process or variable – influence the resulting 

performance loss. In other words, the variation of certain elements may cause higher ripple 

effects on the successive operations, provoking more serious consequences on the functioning 

of the system. Then, in the third and last phase a Bayesian Network (BN) is developed. BNs 

are excellent tools for determining the probability of the impacts that a disruption of a certain 

type might cause on a generic airport, thus relating variables of interest related to both the 

disruption type and airport characteristics.   

Consequently, the main contribution of this work to the existing literature is manifold: 

• First, the methodological approach proposed is based on a simulation a simulation model 

that allows to evaluate knock-on delays as a function of the amount of the available 

resources.  

• Second, this thesis addressed the topic of resilience in airside operations and, despite the 

importance of the topic, it has been poorly addressed in the literature. 

• Third, resilience and vulnerability metrics are proposed for airside operations. While a 

plethora of qualitative definitions have been proposed in the last years, only a few studies 

propose metric to quantitatively evaluate it. 

• Moreover, a Bayesian Network approach is proposed to deal with the topic of resilience; 

this is a quite novel approach and only a few studies adopt it.  

The methodology is intended to provide a methodological framework which can be used to 

forecast and assess the consequences of disruptive events affecting airport systems and can 

support the identification of strategies that could mitigate the impacts of disruption.  
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1.3. Thesis outline 

The remaining of the thesis is structured as follows. 

In Chapter 2, the concepts of resilience and vulnerability are introduced and described. In 

Chapter 3, the literature related to resilience in the field of transportation is reviewed. In 

particular, a comprehensive review is provided of resilience and vulnerability studies in the 

context of air transport operations. The review is structured at three different level: the global 

air transport network, the airline level and the node (airport) level. Chapter 4 provides insights 

regarding airport disruptions. Specifically, the disruptions happened in the last four years (from 

2015 to 2018) have been analysed and clustered. In Chapter 5 the methodological approach 

adopted in this work is detailed and the airside operations models are described, both in the 

reference and in the disrupted scenarios. The methodology described has been implemented by 

using a generic simulation software. Chapter 6 provides the reasons of choosing a simulation-

based approach, then described the simulation software used (AnyLogic) and then how the 

model has been implemented. Then, the implemented model has been applied to four different 

disruption cases and results are presented in Chapter 7. Then, the simulation model has been 

used to simulate disruptions of the last five years, in order to build a database in which airport 

properties, airport characteristics and impacts are. The database is used to build a Bayesian 

Network (Chapter 7) which allows to predict and assess the dependencies among airport 

features and disruption’s characteristics. 
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2. BACKGROUND 

2.1.  Resilience interpretations 

Initially, the term resilience has been introduced in the field of mechanics and material testing 

by Hoffman (Hoffman, 1948). From that moment, the term resilience has attracted rapidly 

growing attention in different research domains and is nowadays an extremely popular term. 

To date, the topic is widely studied, and several books and papers have been published on 

resilience.  

The word resilience originates from the Latin verb “resilio”, which means to “spring back”. 

The Oxford dictionary (Stevenson, 2011) defined the term resilient as follows: 

“Resilient (adjective) 

- (of a substance or object) able to recoil or spring back into shape after bending, 

stretching or being compressed; 

- (of a person or animal) able to withstand or recover quickly from difficult conditions.” 

Therefore, the general use of this word indicates the ability of a system or entity to return to 

normal conditions after the occurrence of an event that disrupts its state. This can be the case, 

for example, of individuals who overcome a great trouble, or cities and communities recovering 

after a natural disaster (Henry & Emmanuel Ramirez-Marquez, 2012).  

In the scientific literature, the term has been interpreted in different ways depending on the 

research field. Among the diverse meaning and interpretations of the concept of resilience, three 

main forms of resilience can been identified which summarize previous literature (Filippone et 

al., 2016). 

The first form is referred to as “engineering resilience”. As specified in Hoffman (1948), this 

interpretation focuses on the stability near an equilibrium steady state, on the resistance to 

disturbance and on the speed of return to the equilibrium (Hoffman, 1948), following the 

removal of the disturbance factor. It can be stated that this form concentrates on efficiency, 

constancy and predictability and resilience is intended as the ability of a system or substance – 

or the time required - to return to an equilibrium state (Pimm, 1991). It should be noted that 

Hoffman describes this inherent ability of a substance by using the term “resiliency”; however, 

the word “resilience” indicates a wider property which considers also the size and shape of the 

object (Gluchshenko & Foerster, 2013).  
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The second form is denominated “ecological resilience”. Holling, in his most famous work 

(Holling, 1973), introduced the concept resilience for ecological systems. Here, resilience is 

defined as “the persistence of systems and their ability to absorb change and disturbance and 

still maintain the same relationships between populations or state variables” (Holling, 1973). 

After a few years, the same author re-examined the definition in order to place more importance 

on the preserved aspects instead of the disturbance. Resilience was thus redefined as “the ability 

of a system to maintain its structure and patterns of behaviour in the face of disturbance” 

(Holling, 1985). A third definition was provided in 1996 by Holling, which sharpens previous 

ones: “resilience is the buffer capacity or the ability of a system to absorb perturbations, or the 

magnitude of disturbance that can be absorbed before a system changes its structure by 

changing the variables and processes that control behaviour” (Holling, 1996b). Then resilience 

is intended here as the capacity of a system to absorb disturbance and reorganize, in order to 

retain still the same function and identity (Walker et al., 2004). This second interpretation of 

resilience focuses therefore on disturbances that can push a system into another equilibrium 

state and concentrates on persistence, change and unpredictability (Filippone et al., 2016).  

As specified in (Holling, 1996a), the first two forms of resilience address contrasting aspects: 

whereas engineering resilience focuses on maintaining efficiency of a function, ecological 

resilience focuses on maintenance of a function. Then, on one hand, ecological resilience would 

then reflect whether the system returns to the same state or function after some external shocks; 

on the other hand, engineering resilience refers to the rapidity of its recovery to the full level of 

function.  

A third form of resilience has been introduced by Hollnagel in 2006 (Hollnagel et al., 2006), 

which is referred to as “resilience engineering”. This interpretation is especially directed to 

socio-technical systems and includes a set of techniques to ensure resilience, i.e. “the intrinsic 

ability of a system to adjust its functioning prior to, during, or following changes and 

disturbances, so that it can sustain required operations under both expected and unexpected 

conditions” (Hollnagel, 2011), and also “a paradigm for safety management that focuses on 

how to help people cope with complexity under pressure to achieve success” (Hollnagel, 2016). 

It concentrates on the ability of a socio-technical system to deal with the unexpected in order 

to comply with reliability and safety objectives. Thus, resilience engineering aims at designing 

systems that are able to continue functioning even when facing with adverse events and it is 

considered as a discipline in the domain of safety and performance analysis. Differently from 
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the previous interpretations, this concept of resilience focuses more on proactive processes 

rather than reactive ones (Hollnagel et al., 2006).  

Afterwards, the term has generated a lot of interest in different scientific communities and is 

nowadays applied to a plethora of fields, including psychology (Dent & Cameron, 2003), 

ecology (Gunderson, 2000; Walker et al., 2004), biology (Orwin & Wardle, 2004), human 

organizations (Weick & Sutcliffe, 2013), economics (Rose, 2007), systems safety (Hollnagel et 

al., 2006), computer science (Nakayama et al., 2007) and many others.  

However, with the increased popularity of the topic, also confusion has grown about the 

meaning of the term. In fact, even if the common understanding of the concept is to recoil after 

being affected by a disruption, several definitions have been proposed, each one focusing on 

certain aspects more than others, and the label “resilience” has been used in multiple different 

ways. Then, it is not unambiguously clear how the concept of resilience is defined, and in recent 

years the need has arisen for an agreed and clear definition.   

In the following, the focus will be directed to the third form of resilience, the so-called 

“resilience engineering”. In fact, air transportation, as well as transportation systems in general, 

is a socio-technical system, and it belongs to the domain of resilience engineering. In the 

following, thus, we will focus on the third interpretation of resilience. 

 

2.2.  Resilience: qualitative definitions 

Due to its role in reducing the risks associated with the unavoidable systems’ disruption and 

economic importance, in recent years the interest in resilience engineering grew exponentially 

(Patriarca et al., 2018). 

Are contained within the resilience engineering domain all of that systems in which an 

interaction exists between technology and people, including, electric power networks and 

infrastructure systems such as, among others, the water distribution system and the 

transportation systems.  

In the last decade, following Hollnagel’s work (Hollnagel et al., 2006), several interpretations 

have been suggested of resilience engineering, and currently many definitions exist of 

resilience, creating confusion and preventing a common understanding of the term. Different 

efforts have been made to define and quantify it, with many more qualitative formulations that 

quantitative definitions being proposed. In the following, an overview will be provided of the 
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definitions present in literature from a qualitative point of view and, in the successive Section 

2.3, the principal quantitative metrics proposed. From now on, the term “resilience” will refer 

only to research within the framework of “resilience engineering”.   

Among all the definitions proposed, four main streams can be identified, which address 

different aspects of the concept (Haimes, 2009):  

1. Resilience is the ability of a system to absorb external and internal stresses; 

2. Resilience refers to the inherent ability and adaptive responses of systems that enable 

them to avoid potential losses; 

3. Resilience is a system capability to create foresight, to recognize, to anticipate and to 

defend against the changing shape of risk before adverse consequences occur (Deary et 

al., 2013); 

4. Resilience is the result of a system (1) preventing adverse consequences, (2) minimizing 

adverse consequences, and (3) recovering quickly from adverse consequences 

(Westrum, 2018). 

In the first stream, the definitions given interpret resilience as an inherent ability of a system to 

passively reduce harmful effects of an external disturbance. (Pregenzer, 2011) defines resilience 

as “the measure of a system’s ability to absorb continuous and unpredictable change and still 

maintain its vital function”. Another example can be found in the definition given by the 

American Society of Mechanical Engineers (ASME, 2009), according to whom resilience as 

the ability of a system to withstand external and internal disruptions without discontinuity in 

the correct functioning of the system or, if the function is disconnected, to rapidly recover to 

the full performance. Also the U.S. Department of Homeland Security (DHS) defined resilience 

as the “capability of an asset, system, or network to maintain its function during or to recover 

from a terroristic attack or other incident” (DHS, 2006).  

In the second group, an additional aspect is introduced which refers to the ability of a system 

to adaptively respond to stresses in order to reduce degradation. These definitions include bot 

passive mechanisms to absorb stress and active processes to adapt to the stress condition. (Rose 

& Liao, 2005) define resilience as “the inherent and adaptive response that enables firms and 

regions to avoid maximum potential losses”. In (Cutter et al., 2009), resilience is intended as 

the ability of a system “to respond and recover from disasters and includes those inherent 

conditions that allow the system to absorb impacts and cope with an event, as well as post-
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event, adaptive processes that facilitate the ability of the social system to re-organize, change 

and learn in response to threat”.  

In the third view, resilience is interpreted tightly connected to the concept of risk. This intimate 

relation is illustrated in a recent exchange between two researchers. In 2009, Haimes states that 

“resilience is the ability of a system to withstand a major disruption within acceptable 

degradation parameters and to recover within acceptable time and composite costs and risks” 

(Haimes, 2009). Improving a system’s resilience constitutes an advantage in managing risks; 

more explicitly, given the probabilistic nature of threats, given the occurrence of a class of 

threat scenarios, the outputs (consequences) are best represented with probability distribution 

functions, as well as the recovery time and composite costs. Resilience depends on the system’s 

state development over time.  In a parallel paper, (Aven, 2011) challenge the definition given 

by Haimes and states that the uncertainty dimension is not reflected as adequately as it should 

be, especially regarding the likelihood of the system’s state. In fact, after considering all the 

variables at a given point in time, a low probability of a system being endangered due to the 

event corresponds to high resilience of the system and vice versa. 

In the fourth and last category, three main aspects of resilience are highlighted: the ability to 

anticipate adverse events, of absorbing the impacts and to recover quickly to normal 

functionality. In these definitions, resilience derives not only from responding to adverse 

situations, but also from anticipating and monitoring, thus preventing negative outcomes. 

Moreover, in these group, more emphasis is put on the recovery aspect. The National 

Infrastructure Advisory Board (NIAC) defines infrastructure resilience as the “ability to reduce 

the magnitude and/or duration of disruptive events. The effectiveness of a resilient 

infrastructure or enterprise depends upon its ability to anticipate, absorb, adapt to, and/or 

rapidly recover from a potentially disruptive event” (NIAC, 2009). Similarly, (Cook et al., 

2015) suggest the following key properties for resilience: “resilience is an ability to respond to 

disruption through recovery; the response may be measured in terms of its magnitude, and its 

temporal and spatial extent. The magnitude may be expressed with respect to system 

performance targets”. (Vugrin et al., 2010) defines system resilience as follows: “given the 

occurrence of a particular disruptive event (or set of events), the resilience of a system to that 

event (or events) is the ability to reduce “efficiently” both the magnitude and duration of the 

deviation from targeted “system performance levels”. The two last definitions emphasize that 

a fundamental property of resilience is the “recovery effort”, which is the amount of resources 

expended during the recovery process.  
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Then, resilience engineering provides a socio-technical framework to cope with disruptions and 

threats through preparedness, response, recovery and adaptation (Worton, 2012). This is 

expressed in (Hollnagel, 2016) in terms of four cornerstones of resilience, i.e. four abilities that 

represents resilient systems (illustrated in figure 2.1):  

1. Knowing what to do (responding):  respond to threats and disturbances either by 

adjusting normal functioning or by implementing a prepared set of responses; 

2. Knowing what to look for (monitoring): monitor what may became a threat in the short 

time, both in the external environment and in the system itself, that is, its own 

performance. Knowing what to expect (anticipating): anticipate future threats, such as 

potential changes, disruptions, pressures, and their consequences.  

3. Knowing what has happened (learning): learn lessons from past experience, both from 

successes and failures.  

 

Figure 2.1. The four cornerstones of resilience. Adapted from (Hollnagel, 2016) 

 

Moreover, (Bruneau et al., 2003) outlines that a resilient system should have four main 

attributes, that were denoted as “4rs”: robustness is the ability to withstand a given level of 

stress; redundancy is the extent to which system’s failed element can be substituted without 

reducing the performance of the system; resourcefulness expresses the ability to mobilize 

resources when conditions exist that threaten to disrupt some element, system or other unit of 

analysis; rapidity is the ability to respond in a timely manner in order to contain losses and 

avoid future disruption. 

Recently, several reviews have been conducted which tries to summarize previous literature. 

An overview of the resilience concept and its various dimensions, mainly in the context of 

socio-economic systems, can be found in (Francis & Bekera, 2014). They conducted a survey 

of resilience definitions in various domains, including economic resilience, critical 
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infrastructure resilience, resilience as a safety management paradigm; organizational resilience 

and others. Similar reviews can be found in (Hassler & Kohler, 2014), (Hosseini et al., 2016), 

(Woods, 2015).  

In particular, among all definitions, Woods (Woods, 2015) identified four core concepts of 

resilience, recurring in all the different perspectives and disciplines. He classifies the diverse 

conceptual perspectives into four groups, denominated Resilience 1 to 4. The first concept 

(Resilience 1) is identified with the term “rebound” and focuses on how a system recoils from 

a traumatic event (or surprise) and returns to previous (normal) activities. Specifically, the 

attention is not focused on the period of rebound, but on what capabilities and resources were 

present before the disruptive event (Colvin & Taylor, 2012; Deary et al., 2013). In Finkel’s 

analysis (Finkel & Tlamim, 2011), evidence is provided which confirms that the ability to 

recover is not affected by what happens after a surprise, but depends on which capacities, 

present before the surprise, can be mobilized or deployed to deal with the shock. The second 

interpretation (Resilience 2) deals with the increased ability to absorb perturbations and tends 

semantically to the concept of “robustness”. An increased robustness helps expanding the set 

of disturbances the system can effectively deal with, without collapsing (Alderson & Doyle, 

2010; Doyle & Csete, 2011). However, this definition implies that, when the system is 

challenged by an event outside the current set, the system will experience a sudden failure, 

meaning that the system is brittle at its boundaries, which leads to the third concept of resilience. 

Moreover, recent studies pointed out that expanding the system’s ability to handle with some 

events often cause the system to be vulnerable to other kinds of events (Woods, 2017). The 

notions of “resilience” and “robustness” has been often confused and considered as 

overlapping, causing even more noise on the topic. The relation between resilience and 

robustness will be addressed more in detail in Section. Resilience 3 has been labelled with the 

term graceful extensibility. This interpretation understands resilience the ability to extend 

adaptive capacity when handling surprise, thus seeing it as the opposite of brittleness. 

Brittleness describes the rapidity of system’s performance degradation when it nears its 

boundaries, thus defining how a system behave near and beyond its boundaries. Differently 

from previous interpretations, this one focuses on how systems stretch to face surprises (Woods 

& Wreathall, 2008; Woods, 2017). Systems with high graceful extensibility are able to 

anticipate bottlenecks and failures. The fourth core concept refers to the ability to manage 

adaptive capacities of complex systems, and it is referred to as Resilience 4 – sustained 

adaptability. This interpretation asks the question: “what is the property of a layered network 
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that produces the ability to adapt to future surprises as conditions?” and explores methodologies 

to assess the sustained adaptability of a system as well as the techniques that would allow to 

design a system producing sustained adaptability.  

Even if the definitions illustrated above diverge on some aspects, several commonalities can be 

observed among all of them. The main aspects are summarized as follows:  

• Resilience is considered as a desirable and positive aspects that systems should have; 

• There is an initial disruptive event, which can be internal or external to the system, that 

causes a degradation in the system’s performance; 

• All definitions include aspects of withstanding a disruption; many of them focus on the 

capability of a system to “absorb” or to “adapt” to disruptive events; 

• Many definitions consider the rate of recovery as a factor contributing to resilience: 

considering the same context, a system is considered more resilient if it recovers faster. 

In many works, the recovery aspect is retained to be the critical aspect of resilience;  

• Some definitions emphasize that returning to a pre-disaster performance level is 

essential for resilient systems, instead in other interpretations it is necessary that the 

system returns to the steady state performance level (Gunderson, 2000); 

• Some definitions put stress on the ability to be prepare and anticipate disruptive events.  

 

It is therefore clear that, with the increased interest in the role of system resilience, also 

confusion about how to qualitatively assess resilience has grown. However, what emerges is 

that resilience is a conceptual framework composed of multiple dimensions, and literature 

seems to converge in the direction of a common definition of those dimensions. Specifically, a 

resilient system should have three main properties to respond to perceived or real shocks, in 

order to maintain its original functionality. These three properties, denoted in (Vugrin et al., 

2010) with the term “resilience capacities”, are absorptive capacity, adaptive capacity and 

restorative capacities (see figure 2.2):   

• Absorptive capacity is an endogenous property of the system and is defined as the 

degree to which a system can automatically absorb the impacts of system’s disruptions, 

minimizing consequences with little effort.  

• Adaptive capacity is the ability of a system to endogenously re-organize itself to return 

to pre-disruption performance levels.  
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• Restorative capacity is the ability of a system to restore its original functioning, or to 

restore to a completely new state. Differently from adaptive capacity, which usually 

includes actions that changes radically the structure of the system, the restorative one 

involves repairs to return at the original structure.  

• Last, but not less importantly, the system should be able to anticipate potential threats 

in order to pre-dispose pre-disruption preparatory actions.  

 

Figure 2.2. Resilience capacities 

 

2.3.  Resilience: quantitative metrics 

Along with the need of an agreed qualitative definition of resilience, it has been acknowledged 

that quantitative metrics are required to support resilience engineering. In fact, quantitative 

metrics provide direct measurement that can be used to assess disaster impact, mitigate them 

and undertake adaptive actions. Several attempts have been made in the past, but less than 

qualitative formulations. This section describes the main quantitative resilience assessment 

approaches developed in previous research.  

From the qualitative framework provided in the previous section, it emerges that a quantitative 

measure of resilience should consider the following factors:  

• there is an initial disruptive event which affect the correct functioning of the system; 

• resilience should measure how a system behave during and a after a disruption, that is 

how a disruption affects system performance and causes degradation in system’s 

productivity, with respect to a specific performance level; 

• the recovery depends on the amount of resources and on the structure of the system.  
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In literature, general measures of resilience provide quantitative metrics which determine the 

performance of the system, independently of the system’s characteristics. In these measures, 

resilience is assessed by comparing the pre-disruption performance with the performance 

during and after the disruption, without concentrating specifically on system’s structure. 

This approach has been adopted with similar underlying logic in different system contexts. 

Generally, resilience is assessed by considering as starting point the curve in Figure 2.3 (Wan 

et al., 2017). The curve shows a system’s hypothetical performance as a function of time, in 

normal and disrupted conditions. The horizontal one displays the time, while the vertical axis 

shows system’s performance, which is usually measured with operational metrics. 

Overall, the system’s performance when facing disruptions can be divided into three main 

phases, namely pre-disruption, disruption and post-disruption phases; moreover, the disruption 

stage is composed of a response and a recovery period: 

1) Pre-disruption phase, for t < t1 : in this stage, the system is in its normal state and it 

operates as planned. This period is dominated by reliability, which is defined as “the 

probability of a device performing its purpose adequately for the period of time intended 

under the operation conditions encountered” (Billinton & Allan, 1983). Reliability 

allows the system to provide the required service function without failing (Baroud et al.,  

2014; Zhou et al., 2019). Here, preparation should be included to enhance the 

resourcefulness and redundancy of a system.   

2) Response phase, for t1 < t < t2 : a disruptive event happens at time t1 which causes a 

degradation in system’s performance. The degradation continues until time t2, when the 

system’s performance reaches the lowest level. At this time, the negative effects are 

fully released. If the performance doesn’t drop below a minimum required level 

threshold, the system remains in the robustness domain. Otherwise, if the minimum 

acceptable performance level is crossed, the system is in the resilience domain and both 

robustness and redundancy influence the initial reduction in system’s performance.  

3) Recovery phase, for t2 < t < t3 : at t2, the negative effects of the disruption are completely 

released, and the system’s recovery begins. Immediately after the beginning of the 

disruption, the system responds in order to mitigate negative consequences and recovery 

strategies are adopted to regain system’s functionality as fast as possible. Different 

recovery actions might be taken, each one having different costs and thus influencing 
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differently the system. Here, rapidity emphasizes the speed of returning to the original 

state. The shape of the performance curve depends on the amount of resources available.  

4) Post-disruption phase, for t > t3 : after time t2, the system settles to a restored 

performance level. This new equilibrium could be either the one operated before the 

disruption event or a completely new state, i.e. an improved or partially recovered state. 

Experience from the previous disruption should contribute to the preparation of 

potential future disruptive events.  

 

The different phases of a time-dependent resilient system affected by a disruption are illustrated 

in Figure 2.3, which tries to provide a comprehensive view of the topic and to include all 

principal concepts.  

 

Figure 2.3. Performance of a resilient system affected by a disruption. Adapted from (Wan et al., 

2018) 

 

Each of these phases refer to a different resilience capacity, as shown in figure 2.4. The pre-

disruption phase refers to the capacity the anticipate potential threats (anticipation capacity), 

while the response and recovery phases refers, respectively, to the absorptive and restorative 

capacities. The adaptive capacity could manifest during the entire disruption phase. Last, the 

post-disruption stage becomes the anticipation phase for a possible future new disruptive event, 

where the anticipation capacity is enhanced by learning from the previous disruption. 
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Figure 2.4. Performance of a system affected by a disruption and resilience capacities 

 

Several attempts have been made in the last years to try to quantify resilience. Reviews can be 

found, for example, in (Hosseini et al., 2016), (Faturechi & Miller-Hooks, 2015) and (Wan et 

al., 2018). All the approaches proposed quantify resilience from one or both of the following 

two perspectives: 

1) The ability to maintain functionality under disruptions, and 

2) Time and resources required to restore performance levels after disruptions.  

The first perspective relates to the performance loss during the response and recovery phases, 

from the happening of the disruption the moment in which performance returns to an 

equilibrium condition. It refers to the area between the undisrupted and disrupted curve, as 

shown in Figure. The second perspective relates to the recovery phase, considering both the 

time and resources necessary to restore the initial functionality. 

(Bruneau et al., 2003) introduce the concept of “resilience triangle”, illustrated in figure. The 

triangle includes both the robustness against the initial performance loss and the rapidity of the 

recovery process. They propose a deterministic static metric for evaluating the resilience loss 

(RL) of a community infrastructure in the aftermath of an earthquake:  

𝑅𝐿 = ∫ [100 − 𝑄(𝑡)]𝑑𝑡

𝑡1

𝑡0

 (Eq. 2.1) 

Where Q(t) denotes the quality of the infrastructure at time t, where quality could represent 

several kinds of performance measures, such as the reduction in power supply for an electric 
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power system. This metric quantifies the area of the resilience triangle, dashed in figure, and 

larger values indicate lower resilience values, and vice versa.  

 

Figure 2.5. The resilience triangle proposed in (Bruneau et al., 2003) 

(Henry & Emmanuel Ramirez-Marquez, 2012) propose a resilience metric as a time dependent 

function. The proposed metric considers system resilience as an attribute of a system’s delivery 

function. It describes how the system delivery function changes in face of a disruptive event 

and how the system returns to the normal state from such distress state. Given the performance 

of the system at a point in time φ(t), the resilience Я is evaluated as the ratio of recovery up to 

time t to the loss suffered by the system: 

Я𝜑(𝑡|𝑒𝑗) =
𝜑(𝑡|𝑒𝑗) − 𝜑(𝑡𝑑|𝑒𝑗)

𝜑(𝑡0) − 𝜑(𝑡𝑑|𝑒𝑗)
 (Eq. 2.2) 

Where the disruption starts at time t0, ends time te and causes performance degradation until 

time td. They apply their methodology to an illustrative example where loss is evaluated in terms 

of increased shortest path length, number of trips per day, overall health of the network. They 

also calculate the total cost of recovered systems as sum of the loss cost due to the inoperability 

of the disrupted system and the cost for resilience actions.  

(Enjalbert & Vanderhaegen, 2017) introduce a local and global resilience indicator, in the 

context of public transportation systems from a safety management perspective, defined as:  

𝑔𝑙𝑜𝑏𝑎𝑙 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 =  ∫ 𝑙𝑜𝑐𝑎𝑙 𝑟𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒
𝑡𝑒

𝑡𝑏

= ∫
𝑑𝑆(𝑡)

𝑑𝑡

𝑡𝑒

𝑡𝑏

 (Eq. 2.3) 

Where tb and te are the times when the disturbance effects start and finish, respectively. S(t) is 

a safety indicator measured as the sum of the effects of those factors which can affect system’s 

safety. 
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(Vugrin et al., 2010) develop a mathematical resilience cost measurement approach to 

determine the impacts of disruptions and the resilience costs associated with disruptions. their 

approach requires the quantitative definition of two indicators:  

1) the Systemic Impact (SI), which is the impact on systems’ productivity; it is evaluated 

as the difference between a targeted system performance and the actual one, following 

a disruption; 

2) the Total Recovery Effort (TRE), which refers to the efficiency with which the system 

recovers from a disruption, is measured as a function of the amount of resources 

expended during the recovery process.  

Resilience is then computed as a linear combination of SI and TRE, normalized through the 

total performance loss. 

In (Orwin & Wardle, 2004), a measurement metric is proposed which links the resilience with 

instantaneous and maximum disturbance: 

𝑅𝑒𝑠𝑖𝑙𝑖𝑒𝑛𝑐𝑒 = (
2 ∗ |𝐸𝑚𝑎𝑥|

|𝐸𝑚𝑎𝑥| + |𝐸𝑗|
) − 1 (Eq. 2.4) 

where Emax is refers to the maximum intensity of absorbable force without perturbing the system 

functioning, and Ej refers to the magnitude of the disturbance’s effect at time Tj. The highest 

resilience is obtained when Ej=0, i.e. when the impact is fully recovered. A limitation of this 

approach is that, as it does not consider the time to recover, two systems with different recovery 

times could have the same resilience value.  

In (Chen & Miller-Hooks, 2012), a different indicator is introduced in the context of transport 

systems. Resilience R is quantified as the expected fraction of demand that can be satisfied in 

the post-disaster network by using specific recovery costs:  

𝑅 = 𝐸 (
∑ 𝑑𝜔𝜔∈𝑊

∑ 𝐷𝜔𝜔∈𝑊
⁄ ) =

1

∑ 𝐷𝜔𝜔∈𝑊
𝐸 ( ∑ 𝑑𝜔

𝜔∈𝑊

) (Eq. 2.5) 

Where parameter dω is the maximum demand satisfied for origin-destination pair ω in the post-

disaster network, and Dω represents the satisfied demand for origin-destination pair ω in the 

pre-disaster network.  

(Francis & Bekera, 2014) propose a metric which, in addition to previous ones, incorporates 

also the recovery aspect. They incorporate the three resilience capacities (absorptive, adaptive 
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and restorative). The absorptive capacity is expressed as the proportion of the original 

functionality maintained at the end of the recovery phase: F0 /Fr, where F0 and Fr are, 

respectively, the initial and recovered performance levels. In order to describe the adaptive 

capacity, the authors suggest the ratio Fd /F0, which represents the capability of a system to 

absorb shocks without recovery action, and where Fd is the performance immediately after the 

disruption. The restorative capacity is incorporate in the factor Sp. then, resilience ρ for event i 

is evaluated as: 

𝜌𝑖 = 𝑆𝑝

𝐹𝑟

𝐹0

𝐹𝑑

𝐹0
 (Eq. 2.6) 

(Chang & Shinozuka, 2004) propose a probabilistic approach to evaluate resilience, where 

resilience is measured combining two elements: loss of performance and length of recovery. 

Resilience is then defined as: 

𝑅 = 𝑃(𝐴|𝑖) = 𝑃(𝑟0 < 𝑟∗ 𝑎𝑛𝑑 𝑡1 < 𝑡∗) (Eq. 2.7) 

That is the probability of the initial performance loss to be under the maximum acceptable loss 

r* and the time to fully recover to be shorter than the maximum acceptable disruption time t*.  

(Youn et al., 2011) defined resilience ψ including mitigation and contingency strategies. They 

interpret resilience as the sum of the passive survival rate (reliability) and an active response 

(restoration): 

𝜓 = 𝑅 (𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦) + 𝜌(𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛) (Eq. 2.8) 

Restoration is defined to be the degree of reliability recovery and is calculated as the joint 

probability of a system failure event, a correct diagnosis event, a correct prognosis event and a 

successive recovery action event. Differently from other works, this indicator account for 

reliability, which can be intended a part of the anticipation capacity of resilience. 

Several other indicators have been proposed in literature, similar to the ones mentioned above. 

A comprehensive review of resilience metrics can be found in (Hosseini et al., 2016), where 

such indicators are divided in deterministic and stochastic measures, each of which have been 

used to describe static or dynamic system behaviour. On one hand, uncertainty (e.g. probability 

of disruption) is not included into the metric in a deterministic performance-based approach; 

on the other hand, a probabilistic performance-based approach incorporates the stochasticity 

associated with system behaviour. Moreover, resilience metrics can be static, i.e. resilience 
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measures do not depend on time, or dynamic, meaning that the time-dependent behaviour of 

the system is considered. In the following, the principal metrics used will be described.  

 

From the definitions illustrated above and reviews, several comments can be drawn. First, also 

from a quantitative point of view, there is no agreeably accepted metric of resilience; this comes 

as a consequence of the fact that no consistent interpretation of resilience exists yet. 

Furthermore, the various different quantitative interpretations reflect the multiple aspects 

included in the concept of resilience. Each metric focuses on one aspect rather than others, 

many studies evaluate one or more resilience capacities, but no one includes them all in a 

comprehensive metric. In addition, the quantitative approaches available are quite specific and 

limited to the case for which they have been developed. Different disruptions may hurt the 

system in different ways, thus requiring different recovery actions. Moreover, the response 

strictly depends on the structure of the system. 

 

2.4.  Resilience, robustness and vulnerability 

The term resilience has been often erroneously confused with tightly connected concepts 

(Faturechi & Miller-Hooks, 2015). In particular, a high degree of ambiguity exists in literature 

between the words “resilience”, “robustness” and “vulnerability”. In the remaining of Section 

2.4, a differentiation between these three terms is provided.  

 

2.4.1. Resilience and robustness 

In several different domains, the relation between resilience and robustness has been discussed 

many times and, according to some authors, it can be stated that “ecological resilience” tends 

semantically to robustness (Brand & Jax, 2007; Gluchshenko & Foerster, 2013; Woods, 2015). 

According to the Oxford dictionary (Stevenson, 2011), an object (system or organization) is 

robust if it is “able to withstand or overcome adverse conditions”. (Gluchshenko, 2012) defines 

system’s robustness as “the ability to experience no stress since a disturbance has occurred”. 

Thus, a system is robust against a disturbance if it is remains within the boundaries of the 

reference state for a particular period of time. A robust behaviour is relative to a specific 

disturbance and to a particular reference state of a system. Differently, a resilient behaviour 

exhibits if the state of the system crosses the boundaries of its domain. However, both concepts 
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are defined by a performance reference state, a particular disturbance and a particular period of 

time. Robustness is a property which can increase system resilience. In fact, enhancements in 

system robustness decrease the impact of a disruption, thus contributing to the absorptive 

capacity of the system. Figure 2.6 illustrates the case of a disturbance which causes the 

degradation of the performance of a system. A system is robust (Figure 2.6b) if the stress 

remains within the boundaries of the reference state during the perturbation time.  

 

 

Figure 2.6. (a) Resilient and (b) robust behaviour of a system affected by a disturbance 

 

2.4.2. Resilience and vulnerability 

Parallelly to the recent increasing interest in resilience, also the concept of vulnerability recently 

attracted a growing attention in a wide range of different domains, including natural hazard and 

climate change (Neil Adger, 1999), psychology  (Riskind & Black, 2006) and transportation 

(Berdica, 2002). Similar to resilience, also the concept of vulnerability has been largely 

discussed and several definitions and measures have been formulated to describe it, without 

reaching an unambiguous conclusion. What is clear is that both resilience and vulnerability 

represent two related yet different approaches to understand the response of systems to 

disruptions. 

The word “vulnerability” is used in every-day language to express the sensitivity to attacks or 

injuries. In the context of socio-technical systems, the term ‘‘vulnerability’’ refers to the 

susceptibility of a system to experience severe performance impacts in consequence of 

exceptional disruptions (Mattsson & Jenelius, 2015; Malandri et al., 2018). (Haimes, 2009) 

offered the following definition of vulnerability: “Vulnerability refers to the inherent states of 

a given system (e.g. physical, technical, organizational and cultural) that can be exploited by 

an adversary to adversely affect (cause harm or damage to) that system”. According to, 



25 
 

vulnerability refers also the speed of the degradation of its performance (Wan et al., 2018). This 

definition emphasizes that there is an initial disruptive event, which affects the system ability 

to provide services to the users and that results in relevant adverse consequences. In a similar 

way, (Mattsson & Jenelius, 2015) define vulnerability as “society’s risk of transport disruptions 

and degradations”.  

Both vulnerability and resilience represent the capability of a system to withstand threats and, 

in principle, they were considered to be two sides of the same coin, vulnerability having a more 

negative connotation. However, recently some authors questioned this definition arguing that 

they refer to two slightly different features, and it would be a drastic simplification to treat 

resilience only as the opposite of vulnerability (Seeliger & Turok, 2013). In fact, vulnerability 

refer to the performance degradation of a system when affected by specific types of specific 

types and levels of magnitude of threats. However, vulnerability does not provide information 

about the recovery capacity of the system, while, on the other side, resilience also represents 

the ability of the system to return to the normal state within an acceptable time, costs and risks, 

having being presented a shock. Vulnerability can be considered as a part of resilience, namely 

the converse of the absorptive capacity, as shown in Figure 2.7. Referring to the framework 

proposed by (Hollnagel, 2016), it can be stated that vulnerability mainly deals with the 

resilience ability to “know what to expect” (Mattsson & Jenelius, 2015).  

 

 

Figure 2.7. System performance during a disruption to describe vulnerability 
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2.5. Summary 

In this Chapter, the topic of resilience has been introduced and the background context 

described. Research on resilience has gathered considerable momentum in the last years. 

Originally emerged in the context of materials’ testing, the concept of resilience generated 

interest in numerous scientific communities and is nowadays studied in a plethora of fields.  

With the increased popularity of the topic, also confusion has grown about the meaning of the 

term: several definitions have been proposed and the label “resilience” has been used in 

multiple different ways. What is common to all definitions, is that the general use of this word 

indicates the desirable ability of a system or entity to withstand events that disrupt its state, and 

to return to normal conditions after the occurrence such disruptions. However, it is not 

unambiguously clear how the concept of resilience is defined, and in recent years the need has 

arisen for an agreed and clear definition, as well as for quantitative metrics to evaluate it.  

In the context of socio-technical systems – such as air transportation - what emerges is that 

resilience is a conceptual framework composed of multiple dimensions. Recently, literature 

seems to converge towards the fact that a resilient system should have four main properties to 

respond to perceived or real shocks, in order to maintain its original functionality. These 

properties, denoted with the term “resilience capacities”, are: 

- preparation: the ability to anticipate and be prepared to potential threats; 

- absorptive capacity: the degree to which a system can adsorb disruptions’ impacts; 

- adaptive capacity: the ability of a system to re-organize itself; 

- restorative capacities: the ability of a system to return to pre-disruption performance.  

Some indices have been proposed which focus on one or more of such aspects of resilience, 

such as the recovery time or the performance loss in the wake of the disruption. However, a 

holistic quantitative metric or approach to include all these capacities is still missing, and more 

efforts are still required and hoped-for to establish a comprehensive framework.  

Moreover, the term resilience has been often erroneously confused with tightly connected 

concepts, thus increasing the confusion surrounding the topic. In particular, a high degree of 

ambiguity exists in literature between the words “resilience”, “robustness” and “vulnerability”, 

which however refer to different but cognate concepts. The term robustness indicates the ability 

to experience no stress since a disturbance has occurred. Thus, a system is robust against a 

disturbance if it is remains within the boundaries of the reference state for a particular period 
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of time. Differently, a resilient behaviour exhibits if the state of the system crosses the 

boundaries of its domain. Regarding the concept of vulnerability, it refers to the susceptibility 

of a system to experience severe performance impacts in consequence of exceptional 

disruptions. Then, vulnerability does not provide information about the recovery capacity of 

the system, while, on the other side, resilience also represents the ability of the system to return 

to the normal state within an acceptable time, costs and risks, having being presented a shock. 

Thus, vulnerability can be considered as a part of resilience, namely the converse of the 

absorptive capacity, and this is the interpretation that will be used in the remaining of this thesis. 

As a result, when talking of resilience, vulnerability is also taken into consideration. From the 

next section on, the focus will be directed to transportation systems, and in particular air 

transportation. 
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3. LITERATURE REVIEW 

3.1.  Transportation and resilience 

The well-functioning of societies largely relies upon a quantity of strategically critical 

infrastructure systems, which are defined by the European Commission as “an asset or system 

which is essential for the maintenance of vital societal functions” (European Commission, 

2018). They include, among other, water supply systems, electrical grids, communication and 

information networks, infrastructures and transportation. In the past decades, these systems 

have become gradually more complex and interdependent, which makes them more vulnerable 

to disruptions and difficult to recover. If one of these systems is damaged or disrupted, society 

can suffer extremely severe consequences in terms of economic and social losses.  

For this reason, the last years were disseminated by efforts to identify and minimize the impacts 

caused by critical infrastructure disruptions. For example, the European Commission states that 

“reducing the vulnerabilities of critical infrastructure and increasing their resilience is one of 

the major objectives of the EU” (European Commission, 2018). The interested in the resilience 

and vulnerability of critical infrastructures systems in the face of disruptive events and resulting 

consequences have awakened increasingly interest among researchers and planners, especially 

after the events of September 11, 2001 (Haimes et al., 2008).  

This is especially relevant for transportation systems, which is one of those critical 

infrastructure systems and it is vital for the safety and functioning of societies in developed and 

developing countries; moreover, transportation networks provide access to impacted areas 

supporting emergency response and long-term recovery after a disaster. For these reasons, the 

efficient functionality of transportation systems is significative from both economic and welfare 

perspectives.  

Transportation systems are often subject to disruptions, ranging from more common failures to 

large scale natural disasters, which are becoming more frequent as well as impactful. Natural 

disasters, including earthquakes, volcanoes eruptions and hurricanes, are the main causes of 

large-scale transportation disruptions, for example the Hurricane Katrina (2005), Tohoku 

earthquake and tsunami, and others. Moreover, the disruptive events usually affecting transport 

networks can be particularly bad weather (fog, heavy snowfall or rain), strikes of the transport 

staff, traffic incidents and terroristic attacks. Disruptive events may be more or less predictable 

and, sometimes, they can occur simultaneously and be interrelated. Stakeholders more likely to 
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be affected are usually the network operators (providers of transport services), their users 

(passengers) and goods receivers: when the service deteriorates, they are all usually imposed 

additional costs. 

(Murray-Tuite, 2006) is the first work which addresses explicitly the concept of resilience in 

the context of transportation systems, and not simply referring to general infrastructures. In his 

study, she affirms that transportation resilience has ten dimensions, namely redundancy, 

diversity, efficiency, autonomous components, strength, collaboration, adaptability, mobility, 

safety and the ability to recover quickly.  

Then, the literature related to resilience in the context of transport area has grown particularly, 

even if definitely more attention has been paid to vulnerability rather than resilience in transport 

networks. A plethora of studies have been conducted on transport resilience, focusing on 

different transportation modes, such as roadways (Jenelius & Mattsson, 2012), public (Malandri 

et al., 2017), freight (Chen & Miller-Hooks, 2012), maritime (Baroud et al., 2014), railway 

(Adjetey-Bahun et al., 2016) transportation systems. A recent review by (Zhou et al., 2019) 

shows that, up to 2018, the road network is the most studied transportation mode, (44%), 

followed by freight transportation (13%) and railway and metro systems (12%). Only a few 

focuses on maritime and air systems (8% each) and multi-modal transportation network (6%). 

Some works address the topic for a general transportation network (6%).  

Even if there is no universal description on what transportation resilience should be, the 

definitions of resilience given in the different transportation modes share the same underlying 

ideas, with some differences related to the characteristics of the specific transportation mode. 

Most of these studies determine resilience by considering one or both of the following aspects:  

system performance under abnormal conditions, and the speed and resources required for 

recovery to original functional states.  

To summarize the large amount of works dealing with this topic, some review articles have 

been published recently. A careful review of definitions is given in (Zhou et al., 2019). 

(Mattsson & Jenelius, 2015) and (Reggiani et al., 2015) put the emphasis on the relation 

between vulnerability and resilience. (Faturechi & Miller-Hooks, 2015) classified and analysed 

frequently used performance metrics for transportation disasters including resilience.  

According to (Reggiani et al., 2015) categorize approaches to resilience in general or specific. 

A general approach can easily be replicated in various context; in most cases, studies adopting 
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such a framework usually stay in the domain of complex networks. A specific approach belongs 

to a specific empirical context, e.g. road network infrastructures or air transport network.  

According to (Mattsson & Jenelius, 2015), in the increasing literature on transport resilience 

and vulnerability, two distinct approach traditions can be identified. The first one could be 

characterized as topological analysis and has its roots in graph theory. Transport network 

resilience and vulnerability have been often studied in terms of network topology; in these 

studies, the transport system is represented as an abstract graph where nodes, corresponding for 

example to stations or stops, are connected by links which represent roads or service segments 

(Berche et al., 2009; Von Ferber et al., 2009). The network could be directed or undirected, 

weighted or unweighted. The distance between any two pairs of nodes is defined as the shortest 

distance among all possible routes between the nodes.  

Disruptions are then simulated by removing graph’s elements (nodes or links) randomly or by 

means of ‘‘directed attacks’’, i.e. selecting and deactivating links or nodes according to different 

centrality measures, such as the highest degree or betweenness centrality (Holme et al., 2002). 

After each removal, resilience or vulnerability are evaluated in terms of the decrease in 

network’s performance, measured as the change of some selected topological and connectivity 

properties. Topological metrics used to evaluate the change in performance are, for example, 

average shortest paths and size of the giant component (Berche et al., 2009), betweenness 

centrality and network diameter (Aydin et al., 2018), network efficiency (Latora & Marchiori, 

2001), average node degree (Zhang et al.,  2015), clustering coefficient and redundancy (Testa 

et al., 2015). Although these metrics are defined in different ways, most of them compare the 

structure of the transportation network with the corresponding complete graph.  

The analysis of transport network resilience by using a strictly topological approach is very 

efficient, however it has considerable shortcomings. Such studies neglect a large number of 

factors, most importantly the interaction between supply and demand and their inherent 

stochastic processes are not captured in these models. Topological studies effectively assume 

that the removal of a link is equivalent to the network without this link to start with, with the 

remaining segments supposed to continue functioning independently. However, unplanned 

disruptions can cause adverse effects because service providers and users cannot adjust to them 

upfront (Malandri et al., 2018). Travel demand and in particular the effect on passenger 

rerouting and the number of affected users need to be explicitly considered. Moreover, the 

dynamics of transport system lead to the propagation of disturbances across the network due to 
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knock-down effects on infrastructure and rolling stock and spill-over effects due to the 

redistribution of travellers’ flows and capacity limitations.  

To overcome these limitations, recently some studies have been proposed which model the 

interaction between supply and demand, allowing the evaluation of additional important factors 

such as the level of congestion and delays (Cats et al., 2016; Rodríguez-Núñez & García-

Palomares, 2014). This second tradition, which could be called system-based analysis of 

transport networks, represents much more of the structure of the real transport system in the 

demand and supply models that are applied in the analysis. In this works, resilience metrics 

considers both structures of transportation systems and the traffic flow on them. (Zhou et al., 

2019) classify such metrics in attribute-based and performance-based.  

Generally, attribute-based metrics attempt to measure one or more properties of resilience 

transportation systems, i.e. robustness, redundancy, resourcefulness and rapidity (Bruneau et 

al., 2003), by evaluating the performance at specific periods. Most of them concentrate on the 

recovery phase and two principal metrics are used: recovery time - i.e. the time required for the 

system to return to an equilibrium state - and recovery efficiency, which includes the resources 

required for the recovery. The metrics used in literature include, among the others, the ratio 

between disrupted travel time and travel time in undisrupted conditions (Beiler et al., 2013), 

unaffected passenger flow (Hua & Ong, 2017), redundancy, i.e. availability of alternative routes 

(Yoo & Yeo, 2016).   

On the other side, performance-based metrics try to asses system’s resilience in a more 

comprehensive way. Differently from attribute-metrics, they are designed to measure system’s 

resilience based on their performance over the whole period affected by disasters. The most 

widely used performance-based metrics are: 

1) Degradation of system quality over time, in accordance with the definition proposed in 

(Bruneau et al., 2003) and mathematically formulated by means of Equation 2.1. The 

performance loss is evaluated by considering different indicators: for example, in 

(Bocchini et al., 2014), the quality of the system is quantified by means of a performance 

metric based on total travel time and total travel distance (Adjetey-Bahun et al., 2016); 

quantify the resilience of railway systems is evaluated in terms of passenger load and 

passenger delay; in the context of road and subway systems affected by hurricanes, (Zhu 

et al., 2016) evaluate the quality of the system as a function of the percentage of 

evacuees leaving the risk area by time.  
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2) Time-dependent ratio of recovery over loss, following the definition given by (Henry & 

Emmanuel Ramirez-Marquez, 2012) and described in Equation 2.2. This metric was 

used to study the resilience of inland waterway network (Baroud et al., 2014), marine 

transportation systems (Farhadi et al., 2016) and urban transportation (Liao et al., 2018). 

3) The third performance-based indicator was proposed by (Chen & Miller-Hooks, 2012) 

in the context of freight transportation systems. Resilience is defined as in Eq. 2.5 as the 

expected fraction of demand satisfied by the post-disaster network using specific 

recovery costs. This indicator was adopted in several studies in order to study, among 

the others, the resilience of metro networks (Jin et al., 2014), roadway networks 

(Faturechi & Miller-Hooks, 2014), air transport networks (Janić, 2015). 

 

Moreover, different measurement approaches have been used to provide the performance 

assessment of transportation systems for the calculation of resilience metrics. According to 

(Zhou et al., 2019), these approaches can be categorized in optimization models (Bocchini et 

al., 2014; Faturechi et al., 2014), topological models (Berche et al., 2009; Dunn & Wilkinson, 

2016), simulation models (Murray-Tuite, 2006; Osei-Asamoah & Lownes, 2014), probability 

theory models (Baroud et al., 2014; Hosseini & Barker, 2016), fuzzy logic models (Freckleton 

et al., 2012), and data-driven models (Belkoura et al., 2016; D’Lima & Medda, 2015). 

 

3.2.  Resilience and vulnerability of air transport systems 

Despite the large amount of works published in various domains regarding the concept of 

resilience, and in particular regarding the transportation field, the number of studies related to 

air transportation is quite limited in number.  

The air transport system is a complex socio-technical system in which a large number of 

elements – both human and technological – interact with each other and work together 

(O’Regan, 2011). In this complex system, different stakeholders interact at different levels. 

Specifically, the air transport system can be decomposed in three main layers: network, airlines 

and airports. Disruptions may affect the air transport system’s performance at one or more of 

these layers, and thus resilience could be evaluated at each of these levels.  
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In literature, air transport resilience studies mainly focus on the efficiency of the network as a 

whole, or of a part of it. There are handful of works which focus on the operations of individual 

carriers, or of alliances of airlines. Whilst, only few studies use measures to consider the 

resilience at the individual airport level.  

In this section, a comprehensive review of recent studied addressing the topic of resilience in 

air transportation systems is presented, comprehending published paper from 2005 to 2019. Are 

included in the analysis also the works dealing with vulnerability and robustness of air transport 

networks. This choice comes with the fact that vulnerability can be considered as a component 

of resilient, specifically referred to the absorptive capacity of resilience. Moreover, in many 

works, the distinction between vulnerability and robustness is not clear, and the two terms are 

often used interchangeably.  

The works are divided in three categories, depending on the level considered: network (Section 

3.2.1), airline (Section 3.2.2) or airport (Section 3.2.3). Moreover, some papers refer to 

resilience in the ATM (Air Transport Management) context (Section 3.2.4). A summary of the 

papers reviewed in given in Table 3.1. In the table, for each study it is specified the topic 

analysed (resilience, vulnerability or robustness); the level of analysis (airport, network, airline, 

ATM); the approach adopted (topological or system-based), in accordance with the description 

given in the previous Section 3.1; the resilience capacity discussed and the indicators used to 

quantify it.  

As a result of the review, it emerges that most of the research efforts concentrates on 

determining the resilience of air transport network in general (49%, see figure 3.1). Among 

those, only a few studies adopt a system-based approach, while the others base on complex 

network theory to deduct topological properties of the network. In the remaining studies, 

attempts are made to determine the resilience at the airline, or alliances, level (21%) and at the 

airport level (13%). In the latter group, only system-based approaches are adopted.  
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Figure 3.1. Level of analysis of studies related to air transport resilience 

 

3.2.1. Air network level 

The majority of studies related to resilience and vulnerability in the context of air transportation 

analyse the network as a whole. These studies generally adopt a topological approach and use 

graph theory to describe the topology of the network, before and after a disruption. Nodes 

represent airports and links between two nodes is created whenever it exists a direct flight 

between the two airports associated with the node. The network is naturally a directed graph 

where a link represents flights from the first node to the second one. Links are typically 

weighted, and the weight may be determined by considering the number of flights present 

between the two airports in the examined period of time, or otherwise evaluated in terms of 

number of air travellers on the link. Then, a disruption is simulated by removing nodes (closed 

airports) or links (closed routes) randomly or by following pre-determined “attack” strategies, 

for example by eliminating the most central nodes. Resilience and vulnerability are then 

evaluated by comparing diverse topological measures, such as connectivity measures, 

clustering coefficient, edge betweenness, and especially the size of the largest connected 

component, which is the most widely used. This methodology has been applied to several air 

traffic networks, including the European, Chinese, US, and others.  

For example, (Hossain et al., 2013) present a complex network approach for measuring the 

performance and estimating the resilience of an airport network, using the Australian Airports 

Network (AAN) as a case study. They remove central and random nodes, while links are 

removed randomly. Resilience is evaluated as a function of the average inverse geodetic length 

and of the connectivity between any pair on nodes.  

Network

49%

Airline

21%

Airport

13%

ATM 18%
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The topology of the Chinese airport network (CAN) is studied in  (Li et al., 2014), where 

resilience is evaluated against attacks by comparing changes in static properties such as the 

clustering coefficient, network diameter and efficiency. Similarly, (Agrawal et al., 2015) 

propose a graph analysis approach to identify the robustness of Indian Airport Network, 

considering the size of the largest connected component.  

Also the U.S. airport network has been widely analysed. (Yoo & Yeo, 2016) evaluate the 

resilience of the US air transportation network as the ability of an attacked node to be replaced 

by an adjacent node, thus analysing the redundancy of the network. In this study, based on 

percolation theory, the degree of adaptation is determined as the number of nodes required to 

replace the flow of the removed node. The cost of adaptation depends on the total distance of 

redistributed flights. (Cerqueti et al., 2019) consider resilience of an air network as its ability to 

absorb a shock. They study shock propagation along the patterns of connections among nodes, 

which is assumed to strongly depend on the weight of the arcs. Resilience is conceptualized as 

a weighted combination of the cardinality of the sets collecting the paths with different length. 

They test the proposed measure of resilience on two empirical networks extracted from the 

network US commercial airports. The U.S. airport network is studied also in (Clark et al., 2018), 

where it is evaluated the resilience of the network to perturbations localized on nodes (airports). 

The size of the giant component is chosen as variable of interest. With a methodology based on 

percolation theory, airports fully recover progressively with a priority list of restoration 

depending on various flow and topological metrics, including traffic volume, connectivity and 

network centrality measures. (Thompson & Tran, 2018, 2019) present a defender-attacker-

defender model to analyse the potential impacts of intelligent attacks and worst-case disruptions 

on the U.S. air transportation network. The two metrics of interest are the number of potentially 

impacted travellers for each of the attack scenarios, and how it is effective to increase the 

defence budget to reduce that impact. (Chandramouleeswaran & Tran, 2018) present a data-

driven approach for quantifying the resilience on the US air transportation network using 

publicly available data. The methodology relies on a statistical measure, the Mahalaobis 

distance, to detect atypical behaviour in the network. The parameters of interest are the total 

cancellations and average flight delays across all airports.  

In (Kim & Yoon, 2019), the air route network robustness of the Northeast Asia region is 

assessed, based on node criticality. Three variations of network are considered, namely 

unweighted, distance-weighted and demand-weighted. Two measures of vulnerability are 

proposed: (i) the relative size of the largest component, representing cohesiveness in terms of 



36 
 

connectivity, and (ii) the number of operable flights, representing the sustainability of flight 

operations in disrupted airspace.  

The work by (Sun et al., 2017) investigates the robustness global air transportation from a 

complex point of view. They apply different attacking strategies – degree, betweenness, 

closeness, eigenvector, Bonacich and damage targeted attacks - and measure robustness in 

terms of survived links, giant component. Moreover, they propose a novel notion of functional 

robustness which depends on the number of unaffected passengers with rerouting. (Yan et al.,  

2013) analyse the vulnerability of an air transportation network with 160 destinations by means 

of a normalized average edge betweenness and a multi-scale average edge betweenness. 

(Lordan et al., 2014) present a methodology for the detection of critical airports in the 

worldwide airport network, and network robustness is measured as the size of the giant 

component. In a related paper, (Soria et al., 2017) extend the definition of the air route network 

robustness by testing several heuristics to define selection criteria to detect critical nodes. 

Again, they analyse the evolution of the size of the component. (Roy et al., 2017) propose a 

flow-vulnerability metric for the air transportation system, using the Laplacian matrix of the air 

traffic network’s graph.  

Differently from previous mentioned works, (Wilkinson et al., 2012) investigate spatially 

coherent hazards affecting the European Air Traffic Network. The aim of their work is to 

evaluate whether the eruption of Eyjafjallajokull volcano in 2010 had a disproportionate effect 

on the European Air Transport Network.  The network was constructed by acquiring data 

regarding airport’s location and air routes. They simulate a spatially coherent disruption which 

change over time and lasts for more than one day. Vulnerability is evaluated by plotting the 

number of cancelled routes relative to the proportion of closed airspace, demonstrating that the 

European air transport network is vulnerable to spatial hazard. In a following work, (Dunn & 

Wilkinson, 2016) assess two strategies to improve the resilience of air traffic networks when 

subjected to a spatial hazard. One strategy “adaptively” modifies the topology of the network, 

the other “permanently” modifies the topology. They quantify the ability of these two strategies 

to increase the resilience of the European air transport network by considering the same 

indicator used in the previous work, i.e. by plotting the proportion of cancelled air routes against 

the proportion of closed airports. The consequences of the eruption of the Eyjafjallajökull 

volcano are discussed also in  (Reichardt et al., 2018, 2019), where the authors debate with 

aviation experts about crisis scenarios in case of volcanic ashes, as the event in 2010 

demonstrated that ash from volcanic eruptions can severely interrupt air traffic. The aim is to 
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identify opportunities for improvement of responses. Inspired by the work in (Wilkinson et al., 

2012), (Li et al., 2016) propose a new spatial vulnerability model which considers hazard 

location and area covered by the hazard. They propose an absolute and a relative spatial 

vulnerability index, which depends on the area covered by the hazard and the effective impacted 

node. 

In (Cardillo et al., 2013), a multiplex formalism is introduced, i.e. the European Air Transport 

Network (EATN) is modelled by considering flights operated by each airline as an independent 

network, in order to take into account for the presence of interactions at multiple levels which 

may negatively affect the resilience of the system. They analyse the resilience of the system in 

the passengers’ rescheduling process as a function of the probability of a link to be deleted and 

the fraction of tolerance that airlines assign to their connections.  

The examples of air transport resilience analysis based on a system-based approach are very 

limited. One example is the one provided in (Voltes-Dorta et al., 2017b), where the authors 

analyse the vulnerability of the European air transport network to major airport closures from 

the delays imposed to disrupted airline passengers. Passengers are re-located to minimum-delay 

itineraries and aggregate delays are used to rank the criticality of each airport to the network.  

Another interested work is the one presented in (Janić, 2015). The aim of such work is to 

determine the resilience and friability of a given air transport network affected by a large-scale 

event. Friability implies reducing the network’s existing resilience due to removing specific 

airports or air routes. Here, resilience is intended as “the ability to withstand and stay 

operational … during the impact of a disruptive event” and a resilience metric is proposed 

defined which takes into consideration the on-time flights as a proportion of the scheduled 

flights. The methodology is applicated to the U.S. transport network during Hurricane Sandy, 

in October 2012.  

 

3.2.2. Airline level 

While the preponderance of works analyses the resilience of the global air network, there is a 

handful of studies which focus, rather than on the functioning of the air traffic network as a 

whole, on the resilience of individual air carriers or, in some cases, alliances of airlines. Also 

at the airline level, almost all works adopt a topological approach.  
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For example, (Wuellner et al., 2010) analyse the individual structures of the seven largest 

passenger carriers in the USA (by number of passengers flown). They examine the individual 

passenger carrier’s resilience to random edge removal. Edges are weighted with the total 

number of flights flown between the airports (nodes) connected and network’s performance is 

quantified as the size of the largest connected component and as a function of a global travel 

cost metric. They found out that networks with high interconnectivity are extremely resilient to 

both targeted removal of airports (nodes) and random removal of flight paths (edges); such 

networks stay connected and incur minimal increase in a heuristic travel time. in addition, they 

proposed rewiring schemes to enhance network resilience. (Sun & Wandelt, 2017) investigate 

the robustness of 24 Chinese airline networks under disruptions at their critical airports, i.e. its 

own dominating hub. Again, the robustness is evaluated in terms of the size of the giant 

component of the network. Similarly, the size of the giant component is used as robustness 

indicator also in (Lordan et al., 2016), where the topological robustness of individual airline 

networks are examined. They found out that the point-to-point flight networks of LCCs (low-

cost carriers) are more robust than the hub-and-spoke structures of traditional carriers.  

Instead, (Klophaus & Lordan, 2018) apply complex network theory to measure the vulnerability 

of the code-sharing network of Star Alliance, SkyTeam and Oneworld, respectively, to 

(potential) member exists. Vulnerability is measured using the concept of normalized average 

edge betweenness. In a similar work, (Lordan et al., 2015) also introduce an inverted adaptive 

strategy based on the network efficiency.  

Differently from the above mentioned works, (Janić, 2005) adopt a system-based approach to 

assessment of the economic consequences of large-scale disruptions of an airline single hub-

and-spoke network. He develops a model based on the theory of queuing systems in which the 

airline is the server, and the complexes of flights are customers. Consequences are expressed 

by the cost of delayed and cancelled complexes of flights. The same author, a few years later, 

models the resilience of an airline cargo network affected by a large scale disruptive event 

(Janić, 2019). A resilience index is defined as the average ratio of the area between the 

deteriorated curve and the area below the regular curve. The metric is adapted by the one 

formulated in (Chen & Miller-Hooks, 2012) (see Eq. 2.5). The resilience index is then evaluated 

for different performance indicators, as the author assumes that the different indicators of 

performance are differently sensitive to the impact of a given disruptive event. Specifically, the 

indicators of performance considered are the number of airline flights, the transport work, the 

airline profits, the value of time of air cargo shipments and the inventory cost of air cargo 
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shipments. Another example of system-based approach can be found in (Asgary et al., 2016), 

where agent-based simulation is applied to analyse the impact of airport closures on an airline 

route network, and different scenarios are simulated with different disruption durations. The 

model provides information about delayed and cancelled flights and passengers.  

 

3.2.3. Airport level 

In literature, also studies related to single airports’ resilience can be found, even if such works 

are very limited in number. In this case, analyses are mostly conducted by adopting a system- 

based approach: airport operations are modelled in a more or less comprehensive way and, in 

many cases, disruptions are simulated by means of simulation software.  

(Marzuoli, Boidot, Feron, et al., 2016) provide a case report for the Asiana crash in San 

Francisco International Airport in 2013 and analyse its repercussions on the multimodal 

transportation network in terms of delayed, diverted and cancelled flights. In a related work 

(Marzuoli, Boidot, Colomar, et al., 2016) the goal of the paper is to examine how to support 

better crisis management at the network level, from passenger-centric and flight-centric 

perspectives. They tackle mitigation strategies following the Asiana crash.  

(Voltes-Dorta et al., 2017a) analyse the ability of a tourism-oriented airport (Palma de Mallorca 

airport) to relocate departing passengers in the event of an unexpected airport closure. 

Passengers are relocated to minimum-delay itineraries. Aggregate delays and relocation rates 

are used to assess the impact of each scenario.  

In (Malandri et al., 2017), resilience aspects of transit systems accessing airport areas are 

discussed. They estimate the impacts produced by unplanned disruptions of transit systems 

serving an airport as a function of the system recovery time and increase in generalized travel 

cost.  

(Pejovic et al., 2009) identifies the vulnerabilities of operations at Heathrow airport to a short 

airport closure. The consequences of the disruption on system’s performance are assessed in 

terms of delays, flight rerouting and diversions to alternate airports, and flight cancellations. 

They also measure the impact in terms of CO2 emissions, by using the RAMS Plus simulator. 

A cost assessment is performed based on the average costs of air traffic delays, flight 

cancellation and diverted, estimated by EUROCONTROL.  
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Lastly, in a recent interesting paper, (Damgacioglu et al., 2018) define resilience as an airport’s 

ability to maintain an operational level as close to normal as possible during and immediately 

after the occurrence of a disruptive event. They develop a route-based simulation framework in 

order to analyse the adversarial impact of such disruptive events on an airport ground system. 

The model is implemented by using the programming language MATLAB. Two disruptive 

events, namely taxiway pavement damage and runway closure, are investigated in terms of their 

impact on taxi-in and taxi-out times for the case of LaGuardia airport ground system. 

Alternative strategies to reduce such flight delays under those events are investigated.  

 

3.2.4. ATM level 

In addition to the works mentioned above, some research efforts have been dedicated to the 

analysis of resilience in the ATM (Air Traffic Management) context. The ATM domain is an 

instance of a complex socio-technical system in which people must cooperate with each other 

and with technologies in order to achieve their goals. Given the complexity of the system, a 

system-based approach is required to include all principal aspects and stakeholders in the 

analysis.  

In a conceptual paper, (Gluchshenko & Foerster, 2013) present a framework that incorporates 

concepts of resilience and robustness, stress and perturbation. They suggest some qualitative 

and quantitative measures of resilience and robustness and provides structured approach for the 

investigation of both robustness and resilience. They divide the ATM system in two different 

dimensions: on the one hand, the stakeholders with the according systems and tools, on the 

other hand the physical movements of aircraft. The motion of the aircraft not only depends on 

the decisions made at the first level, but also on its performance characteristics. As a qualitative 

measure of resilience, propose the comparison of the time of deviation Td – defined as the time 

between the beginning of the disruption and the time in which the performance reaches the 

lowest level - with time of recovery Tr - defined as the time to return to the unperturbed state. 

Then, it is possible to distinguish among: 

• High resilience, if the time of deviation is considerably longer than the time of recovery; 

• Medium resilience, if the time of recovery and deviation are comparable; 

• Low resilience, if the time of deviation is particularly longer than the time of recovery.  

(Cook et al., 2015; Cook et al., 2016), as part of the “ComplexityCost” projects, define 

mechanisms to afford resilience for one or more stakeholders during disturbance. To each 
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mechanism, a monetary cost is assigned. The authors propose a cost resilience metric as a 

function of the tactical costs associated with each investment mechanism and the cost associated 

with a disrupted flight or passenger in presence and absence of a mechanism.  

In (Stroeve et al., 2013; Stroeve et al., 2011; Stroeve & Everdij, 2017), an agent-based approach 

is proposed to support a more systematic analysis of resilience in ATM. They use agent-based 

modelling and simulation to analyse the capability of the ATM system to deal with disturbances 

and performance variability. The model includes a set of model constructs, which represent key 

aspects of evolution of agents’ states and interactions. Their approach can represent a wide 

variety of performance variability in complex ATM scenarios and has the potential to 

systematically analyse risk and resilience.  

(Palumbo & Filippone, 2017) propose a novel methodology and approach for resilience 

engineering in ATM; the paper summarizes the results accomplished in a SESAR Long Term 

Research project, SAFECORAM (Filippone et al., 2016; Palumbo et al., 2015). Their approach 

attempts to develop an ATM performance measure which incorporates the 11 key performance 

areas defined by ICAO, and resilience is defined as the level of residual ATM global 

performance. However, their approach necessitates a number of quantitative models that have 

not been defined yet, thus their model is still far from being defined.  

 

3.3. Summary 

Transportation systems are often subject to disruptions, such as technical failures or large-scale 

natural disasters, which are becoming more frequent and impactful. Since the efficient 

functioning of transportation systems is vital for the safety and well-being of societies in 

developed and developing countries, in recent years much research efforts were devoted to 

identifying and minimizing the impacts caused by disruptions – such as technical failures or 

natural disasters - on transportation systems. The literature related to resilience in the context 

of transport area has grown particularly, even if definitely more attention has been paid to 

vulnerability rather than resilience. A plethora of studies have been conducted focusing on 

different transportation modes, such as roadways, public, freight, maritime, railway 

transportation systems. Most of these studies evaluate resilience by considering one or both of 

the following aspects: system performance under disrupted conditions, and the speed and 

resources required for recovery to original functional states. However, also in the transportation 
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sector, measures to determine comprehensively resilience in its multiple aspects are still 

missing. 

Despite the large amount of works published in various domains regarding the concept of 

resilience, and in particular regarding the transportation field, the number of studies related to 

air transportation is quite limited in number. A comprehensive review of past studies regarding 

air transport resilience shows that, in literature, resilience can be evaluated at three different 

levels: network, airlines and airports. Most of the research efforts concentrates on determining 

the resilience of air transport network as a whole; besides, handful of works focus on the 

operations of individual carriers, or of alliances of airlines. Whilst, only few studies estimate 

the resilience at the individual airport level.  

Among these studies, the majority evaluate air transport resilience by adopting a topological-

based approach. The analysis of air transport network resilience by using a strictly topological 

approach is very efficient, however such studies neglect a large number of factors, most 

importantly the dynamic interaction between supply and demand and their inherent stochastic 

processes are not captured in these models. On the other side, system-based approaches, despite 

being more computationally expensive, describe more in detail the structure of the real system 

and delays’ dynamic propagation.  

This thesis aims at contributing to the resilience research at the airport level, which is the least 

studied but not the least important. In fact, airport nodes constitute a crucial element in the air 

transport network where the majority of delays occur, often creating bottlenecks for the entire 

system. It is unlikely to determine disruptions impacts on the air transport network as a whole, 

if they are not completely understood at the airport level. In line with previous literature, a 

system-based approach is adopted, which allows to model system dynamics and interactions 

among different components of the airport system. However, while previous resilience studies 

at the node level mainly perform post-disruption impacts assessments, here a flexible 

framework is provided to determine resilience and vulnerability of a generic airport system in 

the wake of a generic disruption.   
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Indicator 

Kim and Yoon 2020 ●     ●     
 

●   Absorptive 
Number of operable flights and size of the 

largest connected component 

Cerqueti et al. 2019   ●   ●     
 

    Absorptive Ability to avoid shock propagation 

Janic 2019   ●     ●   
 

  ● Absorptive 
Percentage of performance loss, by considering 

five different indicators of performance 

Reichardt et al. 
2018 

2019 
  ● ● ●     

 
    Anticipation - 

Thompson and Tran 
2018 

2019 
  ●         

 
    

Absorptive 

Restorative 
Number of potentially impacted passengers 

Chandramouleeswaran 

and Tran 
2018   ●   ●     

 
  ● Absorptive Mahalobis distance 

Clark 2018   ●   ●     
 

●   
Absorptive 

Restorative 
Size of the giant component 

Damgacioglu et al. 2018   ●       ● 
 

  ● 
Absorptive 

Restorative 
Taxi in and taxi out times 

Klophaus and Lordan 2018 ●       ●   
 

●   Absorptive Normalized average edge betweenness 

Malandri et al. 2017   ●       ● 
 

  ● 
Absorptive 

Restorative 
Recovery time and generalized travel cost 

Roy et al. 2017 ●     ●     
 

●   Absorptive   

Soria et al. 2017 ●     ●     
 

●   Absorptive Size of the giant component 

Stroeve et al. 

2017 

2013 

2011 

 ●     ●  ● -  Human performance variability 

Palumbo and Filippone 2017  ●     ●  ● Absorptive ICAO Key Performance Indicators 
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Resilience 

capacity/aspect 
Indicator 

Sun and Wandelt 2017 ●       ●   
 

●   Absorptive Size of the giant component 

Sun et al. 2017 ●     ●     
 

●   Absorptive 
Giant component, unaffected passengers with 

rerouting, survived links 

Voltes-Dorta et al. 2017   ●       ●  
 

  ● 
Absorptive 

Restorative 

Average delays and passengers’ relocation 

rates 

Voltes-Dorta et al. 2017b ●     ●     
 

  ● 
Absorptive 

Restorative 
Aggregate delays 

Asgary et al. 2016 ●       ●   
 

  ● Absorptive Disrupted flights 

Cook et al. 2016  ●     ●  ● 

Anticipation 

Absorptive 

Restorative 

Costs of recovery mechanisms 

Dunn and 

Wilkinson 
2016   ●   ●     

 
●   Response 

proportion of cancelled air routes and closed 

airports 

Li et al. 2016 ●     ●     
 

●   Absorptive Hazard covered area and impacted nodes 

Filippone et al. 2016  ●     ●  ● Absorptive ICAO Key Performance Indicators 

Lordan et al. 2016 ●       ●   
 

●   Absorptive Size of the giant component 

Marzuoli et al. 2016   ●       ● 
 

  ● Restorative Arrival delay  

Marzuoli et al. (b) 2016   ●       ● 
 

  ● Absorptive Delayed, diverted and cancelled flights 

Yoo and Yeo 2016   ●   ●     
 

●   Adaptive 
Number of required nodes to replace the flow 

of the removed node 

Agrawal et al. 2015 ●     ●     
 

●   Absorptive Size of the largest connected component 
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Resilience 
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Indicator 

Cook et al. 2015  ●     ●   

Anticipation 

Absorptive 

Restorative 

Costs of recovery mechanisms 

Janic 2015   ●   ●     
 

  ● Absorptive Friability and costs 

Lordan et al. 2015 ●       ●   
 

●   
Absorptive 

Adaptive 

Normalized average edge betweenness and 

network efficiency 

Palumbo et al. 2015  ●     ●  ● Absorptive ICAO Key Performance Indicators 

Lordan et al. 2014 ●   ●   
 

●  Absorptive Size of the giant component 

Li et al. 2014 ●     ●     
 

●   Absorptive Clustering coefficient, diameter and efficiency 

Cardillo et al. 2013   ●   ●     
 

●   Adaptive Possibility of re-scheduling passengers 

Glushenko and 

Foerster 
2013   ● ●      ●   ● Restorative 

Recovery time relative to the duration of the 

disruption 

Hossain et al. 2013   ●   ●     
 

●   Absorptive inverse geodetic length and nodes connectivity 

Yan et al. 2013 ●     ●      ●   Absorptive Average edge betweenness 

Wilkinson et al. 2012 ●     ●     
 

●   Absorptive 
Proportion of cancelled routes relative to the 

proportion of closed airspace  

O’Regan 2011   ● ● ●          - -           

Wuellner et al. 2010   ●     ●   
 

●   Absorptive 
Size of the largest connected component; 

global travel cost  

Pejovic et al. 2009 ●         ● 
 

  ● Absorptive 
Delayed, cancelled, diverted flights, emissions, 

costs of delays 
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4. AIRPORT DISRUPTIONS 

4.1.  Introduction 

In the last decade, the proper functioning of airport operations all over the world have been 

often compromised by unexpected and severe disruptive events, such as extreme bad weather, 

natural disasters of failures of airport’s components. Such events are called “disruptions” and 

can vary in size, cause and impact (www.eurocontrol.int), often constituting a risk for peoples’ 

injuries and lives. Recent disruptions showed that the air transport system is extremely 

vulnerable to such kinds of events.  

For example, in January 2014, four weeks of extremely adverse weather affected the 

performance of U.S. North-Eastern airports: heavy snow, record-breaking cold temperature and 

two polar vortexes provoked a number of delays and cancellations. More than 300,000 flights 

were delayed and approximately 49,000 flights were cancelled, affecting 30 million of 

passengers. The delays and cancellations were estimated to cost between $75 and $150 million 

to industry, $2.5 billion to passengers (Clark et al., 2018).  

Generally, causes of disruptions may be internal or external to the airport system. In the latter 

case, disruptive events include failures of the airport’s infrastructure, such as runway’s or 

taxiway’s pavement, industrial actions of the airport staff, incidents/accidents or technical 

failures of airport’s components - for example radar or ground vehicles. External disruptive 

events are usually extreme bad weather, such as heavy snowfalls (such as the example above-

mentioned), strong winds, hurricanes, tornadoes, thunderstorms with flooding. Additional 

disruptive events include man-made disruptions, such as terroristic attacks and threats, and 

natural disasters, which includes volcanic eruptions, tsunamis and earthquakes, for example the 

Great East Japan Earthquake  (Janić, 2018; Trucco et al., 2014).  

The above-mentioned disruptive events generally occur unpredictably and randomly, both in 

space and time. Sometimes, different disruptions may occur simultaneously, and therefore their 

impacts may be interrelated. Minor events are dealt with throughout standard operational 

procedures. However, major disruptions such as man-made disasters - physical or cyber-attacks 

systems failure - or natural disasters - volcanic eruptions, severe adverse weather - might 

seriously jeopardize normal network operations.  

The aforementioned disruptive events usually cause significant and unexpected loss of airport’s 

capacity, implying that its current operations generally substantively deviate from the scheduled 

http://www.eurocontrol.int/
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ones. Such deteriorations generally produce important delays, cancellations and rerouting of 

the affected aircraft.  

Depending on the type of the event, the deteriorating planned performances may last from few 

hours to longer period of time – several hours or days.  

Because of the strong connection between incoming and outgoing flights, even if only one 

airport is directly affected, consequences may spread and undermine the regularity of operations 

at other airports. If flights depart late from the affected airport, arrival delays usually manifest 

at the at the unaffected airport; these delays, if not adequately reduced by spare buffer times, 

usually lead to departure delays. Certain disruptions are so serious that knock-on effects might 

affect flight operations in an entire region or country.  

Moreover, the deteriorated airport operational performance inevitably results in economic 

losses and social impacts at different levels, experienced by the stakeholders involved: airport 

operators, airlines and passengers (Janić, 2015). Airlines usually incur in profit losses caused 

by the cancelled or re-routed flights and, generally, this result in aircraft and crew being out of 

position with respect to scheduled itineraries. Moreover, they may be imposed the additional 

cost of providing alternative transportation, food and beverage and, depending on the amount 

of delay, money refund to compensate passengers’ inconvenience (Shavell, 2001). Passengers, 

which are usually the most affected stakeholders, are imposed direct cost of the lost time caused 

by the long delays or cancellations. They arrivals are delayed, and scheduled connections may 

be missed, thus provoking discontent and probably leading to a future boycott of the airline.  

In addition, impacts are especially magnified at hubs, which are generally congested airports 

and whose effective functioning depends on the ability of passengers are able to make scheduled 

connections. Moreover, whereas disruptions occur during peak hours, the effects are 

particularly dramatic.  

 

4.2.  Airport disruptions in Europe from 2015 to 2019 

During the last years, in Europe, several unplanned disruptions imposed capacity reductions at 

certain airports, causing serious delays and schedule inefficiencies. In 2018, “a record number 

of adverse weather events and industrial actions severely disrupted network operation" 

(EUROCONTROL, 2018). Also in 2019, disruption has seriously affected European airports’ 

operations. Up to September 2019, the average airport delay reached 22,725 minutes per day, 
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with an increase of 5% with respect to the previous year. The main causes of airport disruptions 

have been capacity related. As shown in the figure 4.1. below, the airport which has been the 

most affected is Amsterdam Schiphol, followed by Athens.  

 

 

Figure 4.1. Top 10 delayed European airports in 2019 (January-September). Source: 

https://www.eurocontrol.int/our-data 

 

In this section, statistics are reported regarding the types of disruptions that affected European 

airports during the last years, from 2015 to 2019. A disruption is defined as an unplanned 

disruptive event which affects airport operations provoking more than 1,000 minutes of ATFM 

(Air Traffic Flow Management) delay. Data are retrieved from EUROCONTROL’s 

publications, in particular from the “Annual Network Operations Report”, which is published 

every year (EUROCONTROL, 2015, 2016, 2017, 2018). From a few years, EUROCONTROL 

collects data regarding airport disruptions, specifying the date of the disruptive event and the 

airport affected and the total ATFM delay caused. However, information related to events 

before 2015 is quite sporadic and many data are missing. For this reason, in the following, we 

will consider only disruptions successive to January 2015. The data collected include a total 

number of 147 disruptions.  

The map in figure 4.2 displays the number of disruption occurrences in the period 2015-2018 

at European airports. Each airport affected is represented by a circle, whose radius is 

proportional to the number of occurrences. The colour scale is indicative of the airport’s number 

of movements per year: the darker the colour, the higher the number of movements.   

https://www.eurocontrol.int/our-data
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The most affected airport during the period of analysis is Amsterdam Schiphol followed by 

Lisbon airport, London Gatwick, Paris Charles de Gaulle and Paris Le Bourget. Generally, the 

airports which experienced the highest number of disruptions are the ones with the highest 

number of movements per year. However, there is not a definite relation between the size of 

the airport and the number of disruptions. In fact, the number of disruptions is strongly 

influenced also by external factors, such as environmental ones. For example, Catania-

Fontanarossa Airport has been frequently disrupted because of the vicinity to the active volcano 

Etna.  

 

 

Figure 4.2. European airports' disruptions between 2015 and 2018 

 

Six main groups of disruptions’ causes were identified: technical or infrastructural issues, 

extreme weather, incidents, industrial actions, security issues (evacuations/terroristic attacks). 

Moreover, other types of disruptions have occurred, including events such as festivals and 

military celebrations. Each of these groups includes several disruption types, which shown in 

Table 4.1.  
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Table 4.1. European airports' causes and types of disruptions (2015 - 2018) 

Disruption cause Disruption type 

Others Events 

Extreme weather Snow 

 Thunderstorm 

 Volcanic eruption 

Incident Aircraft incident 

 Aircraft on runway 

 Aircraft diversion 

 Drone incident 

 Emergency landing 

 Runway contamination 

 Security incident 

Industrial action ATC Industrial action  

 Ground personnel industrial action 

Infrastructural problem Runway maintenance/closure 

 Taxiway and/or apron improvements 

Security related Dangerous objects 

 Evacuation 

 Fire 

 Military activity 

 Terrorism 

Technical problem ATC system/communication issues 

 Ground operations issues 

 ILS issues 

 Lighting issues 

 Power issue 

 Radar issues 

 VOR issues 

 

The main causes of disruptions were technical problems (46%), followed by infrastructural 

problems (18%), industrial actions (11%) and security-related issues (See Figure 4.3). Less 

frequent have been extreme weather (2%), incidents (8%) and sporadic events (5%). The low 

percentage of extreme-weather related causes may seem strange, as weather is established to be 

the main cause of airport delays, as mentioned at the beginning on this Section 4.2; however, 



51 
 

here only disruptions which caused more than 1,000 minutes of ATFM delays are considered 

and, evidently, adverse weather usually do no cause that much delay at the same time. As shown 

in the graph in figure 4.4, among the disruptions caused by technical failures, the majority of 

problems is caused by radar issues (30%) and communication problems (22%). Other technical 

problems include power outages, lighting/ILS/VOR malfunctioning, or failures of ground 

operations equipment.  

 

Figure 4.3. Causes of disruptions at European airports (2015-2018) 

 

Figure 4.4. Types of disruptions caused by technical problems at European airports (2015-2019) 

 

Each disruption undermines airport operations in a different way. The disruptions were 

clustered in 4 groups depending on which airport operation is directly affected, i.e.: 

A. Reduced landing or take-off capacity (e.g. radar problems):  

B. Reduced runway capacity (e.g. broken aircraft on runway); 

C. Reduced ground operations capacity (e.g. staff strikes); 

D. Temporary closure of the airport (e.g. fires/volcanic eruptions). 
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In the first cluster (figure 4.5a) are included all those disruptions which cause a reduction in the 

approaching and landing capacity, as well as take-off and climbing capacity. Delays are thus 

provoked by unavailability of the slots necessary to land or take-off.  This is the case for 

example of radar problems and issues with the instrumental landing system, as well as 

thunderstorms. Cluster B (figure 4.5b) includes disruptions related to the availability of 

runways and taxiways. For example, if the runway is not available because of an incident, or 

because of holes on the runway or taxiway. In these cases, the runway/taxiway cannot be used 

and, thus, aircraft are re-routed to alternative ones, causing congestion and delays. Cluster C 

(figure 4.5c) refers to disruptions affecting ground operations, for example ground operators’ 

industrial actions or technical failures of ground equipment. The last cluster (figure 4.5d) refer 

to disruptions causing the complete closure of the entire airport for a certain time. This is the 

case of evacuations due to security alert or fires, or the case of power failure. Table 4.2. indicates 

types of disruptions included in each cluster.  

 

Table 4.2. Disruption type per cluster 

A  B 

ATC Industrial action  Aircraft incident 

ATC system/communication issues  Aircraft on runway 

Diversion  Drone incident 

Emergency landing  Runway contamination 

Events  Runway maintenance/closure 

ILS issues  Security incident 

Lighting issues 
 Taxiway and/or apron 

improvements 

Radar issues   

Snow  

Thunderstorm  

VOR issues   

   

C  D 

Ground operations issues  Dangerous objects 

Ground personnel industrial action  Evacuation 

Thunderstorm  Fire 

  Military activity 

  Power issue 

  Terrorism 

  Volcanic eruption 
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(a) CLUSTER A 

 

(b) CLUSTER B 

 

(c) CLUSTER C 

 

(d) CLUSTER D 

 

Figure 4.5. Disruptions' clusters 
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Figures 4.6a and 4.6b show the causes of disruption for each cluster. The majority of problems 

affecting airports’ landing or take-off capacity are technical-related, in particular radar failures. 

Cluster B is composed of infrastructural problems and incidents. In the third cluster, a half of 

the disruptions is caused by industrial actions, a half from technical problems. The last cluster 

includes principally security-related disruptions, such as evacuations or fires.  

 

 

 

 

 

Figure 4.6. Disruption cause per cluster, in percentage (a) and absolute value (b) 
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4.3.  Costs of disruptions 

As specified in Section 4.1, airport disruptions result in important delays, cancellations and 

rerouting of the affected aircraft, provoking important economic losses for service providers 

and passengers. EUROCONTROL, in a detailed report, provides estimates of the cost of delays, 

cancellations and diversions in Europe (EUROCONTROL, 2018).  

The cancellation cost is defined by EUROCONTROL (EUROCONTROL, 2018) as the average 

cost of cancelling a commercial scheduled flight on the day of operation. According to 

EUROCONTROL, the main causes of cancellations are industrial actions, political reasons (e.g. 

conflicts), natural disasters and technical failures. EUROCONTROL estimates the system-wide 

average flight cancellation cost COSTc to be: 

𝐶𝑂𝑆𝑇𝐶 = 17,650 € (Eq. 4.1) 

The value refers to cancellation on the day of operation and includes:  

• Loss of revenues; 

• Crew and catering costs; 

• Passenger compensation for denied boarding and missed connection (estimated on the 

application of the EU261/2004 regulation); 

• Luggage delivery costs.  

• Service recovery costs, including food and beverage, accommodation, passenger 

vouchers and telephone calls; 

• Loss of future value, i.e. passenger opportunity costs; 

• Operational savings (fuel, airport and navigation fees, maintenance, handling 

outstations, lounges outstations). 

 

Cost of diversion indicates the average cost of the diversion of a flight to an airport other than 

the one initially planned. EUROCONTROL estimated the cost of a diverted flight COSTd to be: 

𝐶𝑂𝑆𝑇𝑑 = 7,400 € (Eq. 4.2) 

As for the cost of delay, recently, much effort has been dedicated to the attempt to quantify the 

cost of one minute of delay (Cook et al., 2016; Cook et al., 2009; Cook et al., 2004).  
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EUROCONTROL provides the estimates of the average cost per minute of ground or airborne 

delay of a commercial passenger flight. EUROCONTROL estimates the network average cost 

of one minute of ATFM delay cost to be: 

𝑐𝑜𝑠𝑡𝑟 = 100 €/𝑚𝑖𝑛 (Eq. 4.3) 

Then, the average cost COSTr of a delayed flight is given by: 

𝐶𝑂𝑆𝑇𝑟 = 𝑐𝑜𝑠𝑡𝑟 ∗ 𝐷𝐸𝐿 = 100 ∗ 𝐷𝐸𝐿  € (Eq. 4.4) 

Where DEL is the delay experienced by the flight.  

The estimate is based on a study undertaken by the University of Westminster, in which a 

detailed assessment of the delay costs for 15 specific aircraft types and the average delay cost 

per minute in Europe are estimated (Cook & Tanner, 2015). The report is considered to be the 

reference document for European delays direct costs, both at the strategic and tactical stages. 

Cost assumptions include direct costs (fuel, crew, maintenance, etc.), the network effect (i.e. 

cost of reactionary delays) and airline related passenger costs (rebooking, compensation, etc.). 

Costs related to the EU emission trading scheme are not included.  
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5. METHODOLOGY 

5.1.  Overview 

After having described in previous Chapters the context of the scientific literature on resilience 

in air transportation, in which the present work is settled, and which is the aim of the present 

work, and the factors which lead to the development of this work, in this Chapter it is presented 

in detail the methodology used to perform the resilience analysis of airport operations and to 

reach the goals established.  

The main objective of this project is to provide a framework that allows to evaluate performance 

losses and consequences due to unexpected disruptions affecting airport operations, supporting 

the development of a methodology for estimating vulnerability and resilience indicators for 

airport operations. Towards this aim, the methodology adopted includes three phases.  

In the first phase, resilience and vulnerability indicators are defined and evaluated for a target 

airport affected by a certain type of disruption.  

To estimate the effects generated at a target airport by a disruption, a general approach is to 

describe both the reference – i.e. in the absence of disruptions - and disrupted scenarios and 

assess the difference in selected system performance indicators (see Section 2.3). This approach 

is adopted also here, and towards this aim, the first phase includes five main steps, summarized 

in figure 5.1. 

 

 

Figure 5.1. General five-steps methodology 
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In the first step, the operations at a generic airport A are modelled in a nominal situation, i.e. 

without disruptions, referred to as “baseline scenario”. The model includes all main processes 

which take place in the airport airside area, from the flights’ approaching to the take-off. All 

main factors are included in the analysis in order to make the model as realistic as possible, 

including inherent uncertainties in the system.  

The developed airside model consists of two hierarchical sub-systems. The first one describes 

the LTO (Landing and Take-Off) cycle from landing to take-off. Here, are taken into 

considerations all the features of the airport which influence the operations the most, such as 

the number of runways, of aircraft parking stands. The second system focuses on modelling 

aircraft turnaround operations, starting from the moment the aircraft reaches the parking 

position after landing. The model includes all relevant activities as a function of ground 

handling operator's availability. The model allows to take into consideration the dynamics of 

the airport system, in which airport are strictly connected and resources are limited. These two 

models will be described respectively in sections 5.2 and 5.3.  

In the second step, the performance in the reference scenario - referred to as “base performance” 

- is evaluated in terms a set of indicators which reflect the correct functioning of airside 

operations. The performance indicators measured, described in Section 5.4, are the average 

service rate, the total delay, and the average turnaround time.  

Once the baseline scenario has been modelled for the given airport, alternative scenarios can be 

explored, such as disrupted ones. However, every disruption is unique in itself and has different 

consequences on the airport system. In the third step, the disruption of interest is chosen and 

modelled based on the clustering presented in Chapter 4. The disruption causes a degradation 

of the system’s performance, as described in Section 5.5.  

In the fourth step (Section 5.6), the performance in the disruption scenario is assessed. Because 

of the dynamicity of the airport system, disruptions cause cascading failures on airport 

operations which; in the model presented in this works, such knock-on effects are taken into 

consideration. The base performance indicators are chosen as a basis for the analysis and the 

variation between the new state and the baseline state is measured. Such gradient will reflect 

the impact of the specific type of disruption on the target airport system.  

The fifth and last step of the analysis comprises the evaluation of vulnerability and resilience 

indicators. The vulnerability indicator should reflect the magnitude of the deviation of the afore-

mentioned indicators from the targeted system performance level. In the present work, 
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vulnerability is evaluated int terms of equivalent flight cancellations during the period of 

disruption. Besides, the resilience indicator should also include system’s ability to recover in 

the most efficient ways. Here, resilience is defined as “the airport’s ability, during and 

immediately after the occurrence of a disruptive event, to reduce efficiently both the magnitude 

and duration of the deviation from targeted operational performance levels”. Based on this 

definition, resilience is evaluated as a function of the loss of throughput capacity and of the 

total duration of the disruption. The indicators proposed will be described in Section 5.7.  

In the second phase (implementation phase), the model developed is implemented by using a 

generic simulation software, AnyLogic. Given the complexity and stochasticity of the 

operations modelled, simulation was found to be the most proper tool to evaluate airport’s 

performance.  

Once implemented the model, it is applied to four different disrupted scenarios, one for each of 

the clusters identified in Chapter 4. Both the disrupted and baseline scenarios are validated by 

comparing simulations’ output with real data. When the model is validated, it can be used to 

explore different scenarios. In this thesis, the simulation model is used to analyse the disruptions 

which affected European Airports between 2015 and 2018 (and described in Chapter 4).  

As third and last phase of the methodology, results obtained from the simulations have been 

used to build a Bayesian Network (BN). BNs are graphical model that represent the 

probabilistic dependence between variables. In this work, the BN is built by considering 

variables related to airport and disruption characteristics. The BN will allow to predict and 

assess resilience and vulnerability indicators as a function of a large number of variables.  

The diagram in figure 5.2 shows the main steps included in the methodology adopted in this 

work. The remaining of this Chapter will be devoted to describing the first phase of the 

methodology, referred to in grey in Figure 5.2. The implementation phase (represented in green 

in the same figure) will be illustrated in Chapter 6 and results will be shown in Chapter 7. The 

last phase, indicated in orange in the figure below, will be detailed in Chapter 8.  
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Figure 5.2. Methodological approach 
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5.2.  Airside operations modelling 

5.2.1. Logic flow of the model 

This section describes the main methodological steps undertaken to model airside airport 

operations in the current scenario, i.e. in the absence of disruptions. The scenario model 

includes all relevant dimension of the system that may influence the performance in face of a 

disruption.  

The developed airside model consists of two hierarchical sub-systems: the first layer (higher 

level) describes the landing and take-off cycles (LTO); in the second one (lower level) aircraft 

turnaround operations are modelled including all main activities as a function of ground 

handler's operators’ availability. A discrete event approach is adopted to build the model, as 

both the LTO cycle and aircraft ground handling operations can be viewed as an ordinate 

sequence of steps that each aircraft must undergo at the airport. The model, adapted from 

(Khammash et al., 2017), consists of five main steps: landing, taxi-in, turnaround, taxi-out and 

take-off. The second one (lower level) focuses on turnaround operations and all main activities 

are modelled as a function of ground handling operators’ availability. A turnaround model 

exists for each ground handler. 

 

 

Figure 5.3. Logic of the model 

 

At the higher level, the organization of the LTO operations copes with the urgency to both 

provide safe landing in both presence and absence of disruptions aircraft and speed up take-off 

for scheduled aircraft, in order to keep safety and efficiency at the airport and reduce delays as 

much as possible. At the lower level, turnaround operations should be organized in order to 

comply with LTO exigencies while re-scheduling aprons occupancy and handling operations 

under limited resource constraints. A discrete event approach is adopted to model LTO cycle 

and turnaround operations, which are both an ordinate sequence of steps that each aircraft must 

undergo at the airport (Postorino et al., 2019).  
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5.2.2. LTO cycle model 

Let A(R,S,M,CAP) be a generic airport composed of a number R of available runways and a 

number S of available aircraft parking stands. Airport A is operated by a number M of ground 

handlers.  

Airport A(R,S,M,CAP) has a maximum landing and take-off hourly capacity CAPA 

(movements/h), which depends on the runway system, the structure of the traffic, on the 

composition of airport’s infrastructure and may be limited because of environmental 

constraints, such noise pollution. Airport capacity refers to the ability of an airport to handle a 

given volume of traffic (EUROCONTROL, 2016). There are two commonly used definitions 

of airside hourly capacity: 

• Technical capacity: indicates the maximum number of movements that can be 

performed with a given infrastructure in one hour, thus complying with the separation 

requirements; 

• Declared capacity: indicates the maximum number of movements that can be 

accommodated by the airport in one hour, taking all elements of the operations chain 

into account (runway systems, terminal airspace, taxiways, environmental constraints). 

This value is usually 80-90% of the technical capacity (Senguttuvan, 2006).  

In this work, we assume that airport capacity CAPA is equal to the technical capacity, thus equal 

to: 

𝐶𝐴𝑃𝐴 = 𝐶𝐴𝑃𝐴,𝐷𝐸𝐶𝐿𝐴𝑅𝐸𝐷 ∗ 𝛼 [
𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

ℎ𝑜𝑢𝑟
] (Eq. 5.1) 

Where CAPA, DECLARED is the declared capacity of airport A(R,S,M,CAP) and  >1.  

Let KA be the set of aircraft due to land at airport A(R,S,M,CAP) in the period of analysis T. 

Each arriving aircraft kA (a,m,w) is operated by airline a, serviced by ground handler m and is 

of a specific type w, i.e. narrow or wide body. Arrivals and departures occur in the order of the 

flight schedule. The model starts at the beginning of the approaching phase. Aircraft kA (a,m,w) 

 KA approach the terminal manoeuvring area of the airport at time tak : 

𝑡𝑎𝑘 = 𝑆𝑇𝐴𝑘 − 𝑡𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ (Eq. 5.2) 

where STAk is the Scheduled Time of Arrival (STA) of aircraft kA (a,m,w) and tapproach is the time 

required for the approaching phase. At the end of the approaching phase, the aircraft is assigned 

to one of the runways r  R of airport A(R,S,M,CAP). If runway r is free, aircraft kA (a,m,w) 
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starts landing. If there are other aircraft waiting for landing, kA (a,m,w) queues following a FIFO 

scheme. Aircraft kA (a,m,w) lands with a constant deceleration given by: 

𝑑𝑘 =
1

2

(𝑣𝑙 − 𝑣𝑟)(𝑣𝑙 − 𝑣𝑟)

𝑥𝑟
 (Eq. 5.3) 

Where 𝑥𝑟 is the length of the runway, 𝑣𝑙 is the speed at the beginning of the landing phase and 

𝑣𝑟 is the aircraft speed at the end of the landing process, i.e. the aircraft speed on taxiways.  

After landing, the following sequential steps occurs: 

• Taxi-in: the aircraft leaves the runway and, following taxiways, moves towards its assigned 

stand s by using the shortest path. Stand allocation is not dynamic and it depends on a series 

of parameters and variables, including aircraft type and airline. If stand s is occupied, the 

aircraft moves toward the nearest free stand. The duration of the taxi-in phase is a function 

of the aircraft speed vtaxiin and of the distance between the runway r used for landing and 

the assigned stand s. 

• Turnaround operations: Once the aircraft arrives at stand s, ground handling operations 

are performed by the corresponding ground handler m. Here, all necessary operations are 

performed to prepare the aircraft for the successive departure. Turnaround operations’ 

duration depend on the duration of each single activity performed, as specified in the 

following Section 5.2.3, where the sub-model relative to turnaround operations. One sub-

model exists for each ground handler m.  

• Pushback: whether turnaround operations are completed, pushback operations start at 

STDk, i.e. the Scheduled Time of Departure (STD) of aircraft kh (a,m,w). Pushback 

operations have a duration tpushback and include tractor connection, proper pushback and 

tractor disconnection.  

• Taxi-out and Runway head line-up: after pushback, the aircraft is assigned a departing 

runway r, which may be the same used for landing or not. Then, taxi-out procedure is 

performed, and the aircraft arrives at the runway head, where it waits for runway clearance 

for a time tvortex, which is the time needed between two consecutive runway utilizations to 

allow aircraft tail-vortices to dissolve. The duration of the time tvortex depends on the type 

of the aircraft (narrow or wide body) of the previous runway utilization. The aircraft 

eventually queue if other aircraft is waiting for runway clearance. If the number of queuing 
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aircraft exceed a threshold number MAXqueue, the aircraft is held at the stand until the next 

take-off.  

• Take-off: After the time tvortex, the aircraft can start take-off. Additional waiting times at the 

runway head may be due to queue or expected landing of aircraft (approaching) within the 

next two minutes, because departing aircraft must give right-of way to landing ones. If the 

runway is available, the aircraft can take-off with an acceleration equal to: 

𝑎𝑐𝑘 =
1

2

𝑣𝑡
2

𝑥𝑟
 (Eq. 5.4) 

Where 𝑥𝑟 is the length of the runway and 𝑣𝑡 is the speed at the end of the take-off phase.  

The LTO steps modelled are shown in blue in the figure 5.4 below.  

 

 

Figure 5.4. Airside operations modelled 

 

Each aircraft undergoes the same sequence of events, from arrival to departure. Exceptions are 

made for first departures kA,FIRST (a,m,w) and the last arrivals kA,LAST (a,m,w), which are 

modelled slightly differently.  

Last arrivals kA,LAST (a,m,w) includes those aircraft which do not have other scheduled 

departures during the period of analysis T. These aircraft land in the same way of other aircraft, 

as described above. Once landed, they arrive at the assigned stand s, where turnaround 
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operations are performed. However, at the end of turnaround operations, the aircraft do not have 

to proceed towards the runway, instead it reaches a remote stand position where it is parked 

until the end of the period of analysis T. The LTO model for last arrivals is shown in figure 5.5 

(a).  

On the other hand, first departures kA,FIRST (a,m,w) include those aircraft which are already at 

the airport at the beginning of the period of analysis T. These aircraft do not land at the airport 

during the period of analysis, therefore they only have to undergo the second part of the LTO 

cycle. After turnaround operations, pushback is performed, and the aircraft proceed towards its 

departing runway for take-off. First departure’s LTO model is shown in figure 5.5. (b).  

Also turnaround operations are slightly different for these aircraft. The different turnaround 

models for first and last departures will be described in the following Section 5.2.3.   

 

 

Figure 5.5. LTO model for (a) last arrivals and (b) first departures 

 

5.2.3. Aircraft turnaround model  

Aircraft turnaround is a fundamental component of airport operations and it includes all 

necessary activities for preparing an aircraft for the next departure.  

The turnaround process begins at the so-called "on-bock time", when aircraft kA(a,m,w) reaches 

its parking position after landing and the chocks are placed in front of the aircraft wheels. Then, 

several activities i have to be performed, to handle the arriving aircraft and prepare if for the 

next departure. Because of regulations and physical restrictions, such as the limited amount of 

space around the aircraft, turnaround operations have to be performed in a precise chronological 
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order. Some activities have to be performed sequentially, some other can be performed 

simultaneously (Schmidt, 2017). They are performed in a way to achieve maximum turnaround 

efficiency, which has been defined as the ability to execute the required operations within the 

available time in order to enable a punctual flight departure (Wu & Caves, 2004).  

After chocks’ positioning, passengers’ stairs are positioned, or a boarding bridge is connected 

to the aircraft - depending on the stand position and the aircraft configuration - doors are 

opened. Then, passengers de-boarding starts together with baggage and cargo unloading. 

Concurrently, the potable water is replenished. According to hygienic standards, waste water 

servicing can begin only when potable water replenishment is finished (IATA, 2008). 

Refuelling activity usually begins after the completion of the disembarking process. As soon as 

the last passenger has de-boarded the aircraft, cleaning and catering activities are allowed to 

start and they are typically performed simultaneously. The cabin crew checks the aircraft’s 

condition and equipment and prepares the aircraft for the successive flight. Trolleys are 

substituted by the catering provider and the cabin interior is cleaned. Once the cleaning, catering 

and refuelling operations are completed, the passengers of the following flight are boarded and, 

in the meantime, the cargo and baggage are loaded. Finally, when all these operations are 

completed, chocks are removed. 

The activities modelled are shown in Figure 5.6. They must be performed in the order shown 

in the graph, where arrows express conditions necessary to perform the successive ones. If there 

is no arrow connecting two activities, they are independent of one another and therefore they 

can be performed simultaneously. Several service providers - ground handlers, fuel and catering 

suppliers - have to coordinate with each other in the best possible way to provide an efficient 

turnaround.  

In the model, the following assumptions are made:  

(1) refuelling takes place between disembarking and boarding, in the absence of passengers; 

(2) the duration of certain activities depends on the aircraft type (narrow or wide body), 

since more time is needed to service bigger aircraft.  

(3) no distinction is made regarding aircraft configuration (number of doors and hatches).  

Each generic activity i is composed of a series of sub-operations oi: for example, to allow 

passengers to disembark, stairs must be positioned near the aircraft and, at the end of the turn-

around process, taken off. Each sub-operation oi is completed in a time period toi, where toi is a 

stochastic variable with a known probability distribution. Table 5.1 shows all the operations 
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and sub-operations included in the model, as well as the number of operators and resources 

required to perform them and the service provider responsible for the activity. When all these 

activities are completed, chocks are removed at the "chocks-off time" and pushback operations 

start.  

 

Figure 5.6. Turnaround model (Malandri et al., 2019) 

 

Table 5.1. Turnaround operations and sub-operations modelled 

i Operation i Sub-operation oi N° operators j Resource Owner 

1 Chocks on - 1 Chocks 
Ground 

Handler 

2 Disembarking 

Stairs positioning 2 

Stairs 
Ground 

Handler 
Passengers disembarking - 

3 Cleaning Cleaning 2 - Cabin Crew 

4 Catering 

Catering truck connection 

2 
Catering 

Trucks 

Catering 

Company 

Departure catering loading 

Arriving catering unloading 

Catering truck disconnection 

5 Potable Water 

Water truck connection 

1 Water Truck 
Ground 

Handler 
Potable water replenishment 

Water truck disconnection 

6 Waste Water 

Waste water truck 

connection 

1 
Waste Water 

Truck 
 

Ground 

Handler 
Waste Water 

Waste water truck 

disconnection 
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7 
Baggage/Cargo 

Unloading 

Loader positioning 

3 
Bulk/Container 

loader 

Ground 

Handler 

Arriving baggage/cargo 

unloading 

Loader disconnection 

8 Refuelling 

Fuel truck connection 

1 Fuel Truck 
Fuelling 

Provider 
Refuelling 

Fuel truck disconnection 

9 
Baggage/Cargo 

Loading 

Loader positioning 

3 
Bulk/Container 

loader 

Ground 

Handler 

Departing baggage/cargo 

loading 

Loader disconnection 

10 
Passengers 

boarding 

Passengers boarding - 

Stairs 
Ground 

Handler 
Stairs removing 2 

11 Chocks off - 1 Chocks 
Ground 

Handler 

 

Additionally, for last arrivals and first departures, the turnaround model is slightly different.  

In fact, last arrivals kA,LAST (a,m,w) do not have another scheduled departure during the period 

of analysis T. For this reason, they do not require to be prepared for the successive departure 

Thus in these cases, after chocks are placed, only a subset of the activities need to be performed, 

specifically: disembarking of passengers and unloading of baggage, potable and waste water, 

cleaning, catering and refuelling. Figure 5.7 (a) shows the turnaround model for last arrivals.  

First departures kA,FIRST (a,m,w), on the other hand, only need to be prepared for the successive 

take-off. Thus, for these aircraft, the only activities to be performed are boarding of passengers 

and baggage loading. The turnaround model for first departures is shown in figure 5.7 (b). 
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Figure 5.7. Turnaround activities and operations included in the model 

 

Let Om be the set of operators of ground handler m in service. Available operators j are the ones 

contained in the grey pool in Figure 5.6. Each operation oi is performed by one or more 

operators j ϵ Om, where j=1, ..., Jm. Once the operation is performed, operator j returns available 

and can perform the subsequent operation. If an operation is due to begin and Om is empty, the 

operation is put on hold until one or more operators j needed to accomplish it are available. 

Similarly, resource rei - such as catering vehicles, fuel tank, stairs - have to be available to 

perform the operation i, as they are assumed to be limited in number.  

Turnaround time TATk(m|Jm) of aircraft kA serviced by ground handler m, with Jm available 

operators, is computed as the difference between the "chocks-off time" t2k (m|Jm) and "chocks-

on time" t1k (m|Jm):  

𝑇𝐴𝑇𝑘 (𝑚|𝐽𝑚) = ∑ 𝑡𝑜𝑖

𝑖

= 𝑡2𝑘 (𝑚|𝐽𝑚) − 𝑡1𝑘 (𝑚|𝐽𝑚) (Eq. 5.5) 

In the baseline scenario, daily operations are carried out as specified in the schedule and 

possible delay generally is not due to ground operations inefficiencies. In this scenario, 

turnaround time is the minimum time required to accommodate the aircraft and prepare it for 

the following flight. 
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In the present model, no personnel rotation is considered and the size of Jm is assumed to be 

constant over the entire day. This simplification derives from the assumption that criticalities 

appear during peak periods, when the maximum number of personnel is usually operating. 

During uncongested periods, some operators will remain idle as turnaround operations require 

anyway a minimum basic time which does not depend on the staff performing them.  

 

5.3.  Base performance evaluation 

In the absence of disruptions, daily operations are carried out exactly as specified in the 

schedule. The performance of the airport system in the base scenario is evaluated by examining 

three different indicators, namely:  

1) Number of flights departing late NL 

2) The total number of flights processed, NTOT 

3) Average Throughput Rate 

4) Average Turnaround Time 

The assumption is made that there is no arrival delay, which is defined as the difference between 

the Scheduled Time of Arrival (STA) in the flight schedule and the time the flight touches down 

in the simulation model (Actual Time of Arrival ATA):  

ATA = STA (Eq.5.6) 

In the absence of disruptions, daily operations are carried out exactly as specified in the 

schedule and no delay should occur. Therefore, the number of flights departing late (NL), or late 

departures, should be equal to zero.  

NTOT is the total number of flights processed by the airport A(R,S,M,CAP) during the period of 

analysis T, i.e. the total number of movements:  

𝑁𝑇𝑂𝑇 = 𝑁𝐷𝐸𝑃 + 𝑁𝐴𝑅𝑅 [𝑓𝑙𝑖𝑔ℎ𝑡𝑠] 
(Eq.5.7) 

Where NDEP is the number of departing flights and NARR is the number of arriving flights.  

The Effective Throughput ET of airport A(R,S,M,CAP) is defined as the number of effectively 

processed flights (arrivals and departures) during the hour t, i.e.: 

𝐸𝑇𝐴,𝑡 = ∑ 𝑛𝐷𝐸𝑃 + 𝑛𝐴𝑅𝑅

𝑡=1 ℎ𝑜𝑢𝑟

 [
𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

ℎ𝑜𝑢𝑟
] 

(Eq.5.8) 



71 
 

Where nDEP and nARR are, respectively, flights effectively departed and landed at the airport 

during the hour t. The effective throughput ETA,t takes the value of 0 when one hour is passed, 

and it is recomputed for the successive hour.  

In the reference scenario, the Effective Throughput is usually lower than or at most equal to the 

airport capacity CAPA. The graph in figure 5.8 shows the trend of the cumulative airport 

capacity CAPA (in red) and the effective airport throughput ETA (in blue, dashed) for a generic 

airport A during the period of analysis T. 

 

Figure 5.8. Service rate of a generic airport. Adapted from (Janić, 2015) 

The Effective Throughput Rate ETRA is then defined as:  

 𝐸𝑇𝑅𝐴,𝑡 =
𝐸𝑇𝐴,𝑡

𝐶𝐴𝑃𝐴
 

(Eq.5.9) 

Where 0 ≤ ETRA ≤ 1. 

The Average Throughput Rate ATRA is then defined as the average of the Effective Throughput 

Rate ETRA during the period of analysis T (in hours), i.e.:   

𝐴𝑇𝑅𝐴 =
∑ 𝐸𝑇𝑅𝐴,𝑡𝑇

𝑇
 (Eq.5.10) 

The indicators proposed above are indicative of the performance in terms of processed flights. 

However, inefficiencies should arise also at the turnaround level. Thus, also the average 

turnaround time of ground handler m over the period of analysis T is evaluated:  

𝑇𝐴𝑇̅̅ ̅̅ ̅̅  (𝑚|𝐽𝑚𝑃) =
1

𝐾𝐴
∑ 𝑇𝐴𝑇𝑘 (𝑚|𝐽𝑚𝑃)

𝐾𝐴

𝑘=1

 
(Eq.5.11) 

This indicator expresses inefficiencies at the level of turnaround operations, which may or not 

result in departure delays. In fact, delays in turnaround operations may be eventually adsorbed 
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by buffer times which are often included in the schedule (Malandri et al., 2019; Wu & Caves, 

2004).  

 

5.4.  Disrupted scenario model 

In the third step, the disruption scenario is modelled, in which a disruptive event undermines 

the correct functioning of airport operations.  

Airside operations can be (and have been) affected by unexpected disruptions very different 

from each other. From the analysis of airport disruptions described in Chapter 4, more than 100 

different disruptive events have been identified. Every disruption is unique in itself and affects 

airport operations in various ways. For example, an industrial action undertaken by ground 

handling operators is very different to model with respect to a problem with landing systems. 

Therefore, each disruption should be modelled differently.  

However, some disruptions’ clusters have been defined (see Chapter 4) depending on the 

operations is directly affected. Specifically, the disruptions have been clustered in 4 groups, 

i.e.: 

A. Reduced landing or take-off capacity (e.g. radar problems)  

B. Reduced runway capacity (e.g. broken aircraft on runway) 

C. Reduced ground operations capacity (e.g. staff strikes) 

D. Temporary closure of the airport (e.g. fires/volcanic eruptions) 

Disruptions belonging to the same cluster operate, even if intrinsically different, “hit” the same 

airport process. Thus, a disrupted model is built for each of the clusters, separately. The four 

models are described in the following Sections 5.4.1, 5.4.2, 5.4.3 and 5.4.4, respectively. 

In all four models, a disruption occurs at time t1, impacting the performance of the operations 

at airport A(R,S,M,CAP) in a specific way (see figure 5.9). The disruption is cleared at time t2. 

This is generally also the time in which the performance level is the lowest. The disruption - 

referred to as D(td) – has a duration td defined as the time between the occurrence of the 

disruptive event and the moment in which the disruption is cleared: 

𝑡𝑑 = 𝑡2 − 𝑡1 (Eq. 5.12) 

Then, the system requires an additional time to return to the original configuration and the 

system base performance is restored at time t3.  
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The time required to return to the original configuration, after that the disruption has been 

cleared, is referred to as recovery time tr: 

𝑡𝑟 = 𝑡3 − 𝑡2 (Eq. 5.13) 

Then, the time of deviation tt is defined as the total time from the occurrence of the disruption 

to the moment in which the system returns to the reference configuration (base scenario): 

𝑡𝑡 = 𝑡3 − 𝑡1 = 𝑡𝑑 + 𝑡𝑟  (Eq. 5.14) 

 

 

Figure 5.9. Disruption impacts and terminology 

 

Moreover, in all models, the following assumptions are made:  

i. if a flight kA (a,m,w), during the approaching phase, has to wait for more than tdiverted 

minutes for landing, but no slot is available, it is diverted to an alternate airport;  

ii. if a flight kA (a,m,w) experience a delay higher than tcancelled with respect to its STD, it 

is cancelled.  

 

5.4.1. Cluster A: reduced landing/take-off capacity 

The first cluster includes all those disruptions which cause a reduction in the approaching and 

landing capacity, as well as take-off and climbing capacity. This is the case for example of radar 

problems and issues with the instrumental landing system, as well as thunderstorms. 

When a disruption belonging to this cluster affect the operations at airport A(R,S,M,CAP), 

airport’s hourly capacity CAPA is reduced by a certain percentage RED (%).  

 



74 
 

Thus, and the airport’s hourly capacity under disrupted conditions CAPA,D becomes: 

𝐶𝐴𝑃𝐴,𝐷 = 𝐶𝐴𝑃𝐴 ∗ (1 − 𝑅𝐸𝐷) (Eq. 5.15) 

If the number of hourly movements, have reached the capacity CAPA of airport A(R,S,M, CAP), 

that is if: 

𝐸𝑇𝐴,𝑡 = 𝐶𝐴𝑃𝐴,𝐷 (Eq. 5.16) 

the airport cannot handle any other landing or take-off during the hour t. Thus, approaching 

aircraft have to hold on air until the next hour to land; similarly, departing aircraft have to wait 

until the successive hour to take-off.  

This means that the reduced capacity is too low to process the scheduled flights according to 

the schedule, and some delay will occur. Otherwise, if the reduced capacity is still enough to 

handle the traffic at the affected airports, no delay will be experienced, and departures will 

occur according to their schedule.  

 

5.4.2. Cluster B: Reduced runway capacity 

The second cluster includes disruptions related to the availability of runways and taxiways. For 

example, if the runway is not available because of an incident, or because of holes on the runway 

or taxiway.  

In this scenario, arriving and departing aircraft cannot use the disrupted runway r and they are 

all rescheduled to use different runways. Also in this case, delays are caused by capacity 

constraints. If the airport has a single runway, then aircraft cannot land neither depart until the 

end of the disruption.  

In this scenario, congestion on the remaining runways increase and may cause delays. In fact, 

aircraft have to wait clearance of the runway, including the time needed for vortices to dissolve 

(tvortex).  

 

5.4.3. Cluster C: Reduced ground operations capacity 

The third group refers to disruptions affecting ground operations, for example ground operators’ 

industrial actions or broken vehicles.  

The modeling of this cluster can be different strongly depends on the disruption type. Two main 

cases can present:  

1. Industrial action of ground handlers’ operators; 

2. Technical failure related to turnaround operations.  
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If the disruption is the case of an industrial action of ground handlers m’ operators, the number 

of available operators Jm is reduced of a certain percentage Pm,d and the number of available 

operators becomes: 

𝐽𝑚,𝑑 = 𝐽𝑚 ∗ (1 − 𝑃𝑚,𝑑/100) (Eq. 5.17) 

As a consequence, turnaround time may increase, propagating over the day and causing late 

departures. When industrial actions are called, usually not the entire staff agrees and the 

percentage of operators on strike may be different from strike to strike. 

Otherwise, if the disruption is caused by a technical failure, for example by the failure of a 

fueling vehicles or by the absence of the de-icing liquid, aircraft are not serviced until an 

alternative resource is available or until the disruption is cleared.  

Then, this cluster is modeled case by case.  

 

5.4.4. Cluster D: temporary closure of the airport 

In the last group, we refer to disruptions causing the complete closure of the entire airport for a 

certain period of time. This is the case of evacuations due to security alert or fires, or the case 

of power failure.  

In this all the operations are put on hold. Aircraft cannot land neither depart and turnaround 

operations are stopped. In this case, the airport’s hourly capacity under disrupted conditions 

CAPA,D becomes: 

𝐶𝐴𝑃𝐴,𝐷 = 𝐶𝐴𝑃𝐴 ∗ 0 = 0 (Eq. 5.18) 

 

5.5. Disrupted performance evaluation 

The disruptive event occurring at time t1 causes a degradation of the service from the standard 

baseline value. In the fourth step of the analysis, the impact caused by the disruption on airport 

airside operations is evaluate as the variation of selected performance indicators between the 

disrupted and base (reference) scenarios is evaluated. The higher the variation, the higher are 

the impacts of the disruptive events at the considered airport.  

In the context of airport operations, performance is usually evaluated in terms of delays. 

Therefore, the impacts generated by a given disruptions are evaluated in terms of: 

1) Total number of flights departing late NL 

2) Total and average departure delay 𝐷𝐸𝐿𝐷𝐸𝑃,𝑇𝑂𝑇 and 𝐷𝐸𝐿̅̅ ̅̅ ̅̅
𝐷𝐸𝑃 
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3) Total and average arrival delay 𝐷𝐸𝐿𝐴𝑅𝑅,𝑇𝑂𝑇 and 𝐷𝐸𝐿̅̅ ̅̅ ̅̅
𝐴𝑅𝑅 

4) Total number of cancelled flights NC 

5) Total number of diverted flights ND 

Moreover, the performance indicators computed for the base scenario (Section 5.3) are 

compared to the ones in the disrupted scenario. Thus, impacts are evaluated also in terms of:  

6) Variation in Average Turnaround Time  

5) Difference in Average Throughput Rate 

First of all, impacts are evaluated in terms of departure delay. It is assumed that a flight is 

departing late if its actual time of departure (ATDk) is higher than the scheduled "off-block" 

time, i.e.: 

𝐴𝑇𝐷𝑘 ≥ 𝑆𝑇𝐷𝑘 + 15 𝑚𝑖𝑛 (Eq. 5.19) 

The last term of Eq. (5.19) derives from the delay definition adopted, which is the one used by 

EUROCONTROL, according to which a delay occurs if any activity fails to begin within fifteen 

minutes after the expected start time (EUROCONTROL, 2018b). Then, the delay of the 

departing flight kA (a,m,w) is: 

𝐷𝐸𝐿𝐷𝐸𝑃,𝑘 = 𝐴𝑇𝐷𝑘 − 𝑆𝑇𝐷𝑘 [𝑚𝑖𝑛𝑢𝑡𝑒𝑠] (Eq. 5.20) 

The total number of flights departing late NL is given by the sum of all flights departing with a 

delay longer than 15 minutes during the entire period of analysis T: 

𝑁𝐿 = ∑ 𝑘𝐴 (𝑎, 𝑚, 𝑤|𝐷𝐸𝐿𝐷𝐸𝑃,𝑘 > 15)

𝑇

 (Eq. 5.21) 

The total and average departure delay, 𝐷𝐸𝐿𝐷𝐸𝑃,𝑇𝑂𝑇 and 𝐷𝐸𝐿̅̅ ̅̅ ̅̅
𝐷𝐸𝑃 respectively, are given by:  

𝐷𝐸𝐿𝐷𝐸𝑃,𝑇𝑂𝑇 = ∑ 𝐷𝐸𝐿𝐷𝐸𝑃,𝑘

𝑁𝐿

 (Eq. 5.22) 

𝐷𝐸𝐿̅̅ ̅̅ ̅̅
𝐷𝐸𝑃 =

𝐷𝐸𝐿𝐷𝐸𝑃,𝑇𝑂𝑇

𝑁𝐿
 (Eq. 5.23) 

Similarly to departure delays, a flight kA (a,m,w) is assumed to arrive late if its actual time of 

arrival (ATAk) is higher than the Scheduled Time of Arrival (STAk) of more than 15 minutes: 

𝐷𝐸𝐿𝐴𝑅𝑅,𝑘 = 𝐴𝑇𝐴𝑘 − 𝑆𝑇𝐴𝑘 > 15 𝑚𝑖𝑛𝑢𝑡𝑒𝑠 (Eq. 5.24) 

And the total (𝐷𝐸𝐿𝐷𝐸𝑃,𝑇𝑂𝑇) and average (𝐷𝐸𝐿̅̅ ̅̅ ̅̅
𝐷𝐸𝑃) arrival delays are:  



77 
 

𝐷𝐸𝐿𝐴𝑅𝑅,𝑇𝑂𝑇 = ∑ 𝐷𝐸𝐿𝐴𝑅𝑅,𝑘

𝑁𝐴𝑅𝑅,𝐿

 (Eq. 5.25) 

𝐷𝐸𝐿̅̅ ̅̅ ̅̅
𝐴𝑅𝑅 =

𝐷𝐸𝐿𝐴𝑅𝑅,𝑇𝑂𝑇

𝑁𝐴𝑅𝑅,𝐿
 (Eq. 5.26) 

Where NARR,L is the total number of flights arriving late at airport A(R,S,M,CAP) during the 

simulation period T: 

𝑁𝐴𝑅𝑅,𝐿 = ∑ 𝑘𝐴 (𝑎, 𝑚, 𝑡|𝐷𝐸𝐿𝐴𝑅𝑅,𝑘 > 15)

𝑇

 (Eq. 5.27) 

Moreover, disruptions generally cause flight cancellations or diversions, as specified in Section 

5.4. Then, impacts are evaluated also in terms of total number of cancelled flights NC and total 

number of diverted flights ND during the period of analysis T. The total impact TI is defined as 

the total number of flights impacted by the disruption, including delayed, cancelled and diverted 

ones:  

𝑇𝐼 = 𝑁𝐿 + 𝑁𝐷 + 𝑁𝐶  [𝑓𝑙𝑖𝑔ℎ𝑡𝑠] (Eq. 5.28) 

During the disruption period, usually a degradation of the scheduled system service rate is 

experienced and the Effective Throughput ETt,D of airport A(R,S,M,CAP) decreases during the 

deviation time tt. The disrupted Average Throughput Rate ATRA,D is computed according to 

Equation 5.10, considering as period of analysis the time of deviation td 

𝐴𝑇𝑅𝐴,𝐷(𝑡𝑡) =
∑ 𝐸𝑇𝑅𝐴,𝐷,𝑡𝑡𝑡

𝑡𝑡
 (Eq. 5.29) 

Where 𝐸𝑇𝑅𝐴,𝐷,𝑡 is the disrupted Effective Throughput Rate. Then, the variation is computed as 

the difference between the disrupted and baseline indicators during the deviation time, it is 

referred to as Capacity Loss CL:  

𝐶𝐿 = 𝐴𝑇𝑅𝐴(𝑡𝑡) − 𝐴𝑇𝑅𝐴,𝐷(𝑡𝑡) =
∑ 𝐸𝑇𝑅𝐴,𝑡𝑡𝑡

𝑡𝑡
−

∑ 𝐸𝑇𝑅𝐴,𝐷,𝑡𝑡𝑡

𝑡𝑡
 (Eq. 5.30) 

Similarly, the Average Turnaround Time 𝑇𝐴𝑇̅̅ ̅̅ ̅̅
𝐷 in the disrupted scenario is evaluated and 

compared to the one in the baseline scenario. The variation is referred to Turnaround Loss TL: 

𝑇𝐿 =
𝑇𝐴𝑇̅̅ ̅̅ ̅̅

𝐷 (𝑚|𝐽𝑚𝑃) − 𝑇𝐴𝑇̅̅ ̅̅ ̅̅  (𝑚|𝐽𝑚𝑃)

𝑇𝐴𝑇̅̅ ̅̅ ̅̅  (𝑚|𝐽𝑚𝑃)
 (Eq. 5.31) 

This last indicator allows to determine is disruptions affect or not turnaround operations. In the 

latter case, the turnaround time does not increase, and delays might be result from infrastructural 
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and capacity constraints; otherwise, if important delays show during turnaround operations, 

additional resources should be deployed to reduce inefficiencies at the ground operations’ level.  

5.6.  Resilience and vulnerability indicators 

In last step, indicators are proposed to determine both the vulnerability and resilience of the 

system at a specific disruption.  

As discussed in Chapter 1, the term ‘‘vulnerability’’ refers to the susceptibility of a system to 

experience severe performance impacts in consequence of exceptional disruptions. The 

vulnerability indicator should reflect the magnitude of the deviation of the afore-mentioned 

indicators from the targeted system performance level, that is the amount of performance loss.  

In the context of airport operations, performance loss is strictly related to the amount of delay. 

In general, the delayed flights impose important economic losses on airlines, airport operators 

and passengers. The significative impacts of disruptions have been discussed previously in 

Chapter 4. For this reason, flights delays, cancellations and diversions are assumed as indicators 

of performance for the airport operating under disruptive conditions. 

In particular, vulnerability V of airport A(R,S,M,CAP) to the disruption D(td) is evaluated as the 

weighted sum of delayed, cancelled and diverted flights: 

𝑉𝐴,𝐷 = 𝛽𝐿𝑁𝐿 + 𝛽𝐷𝑁𝐷 + 𝛽𝐶𝑁𝐶 (Eq. 5.32) 

and weights are evaluated with respect to the cost of a cancelled flight COSTC: 

𝛽𝐿 =
𝐶𝑂𝑆𝑇𝐿

𝐶𝑂𝑆𝑇𝐶
 (Eq. 5.33) 

𝛽𝐷 =
𝐶𝑂𝑆𝑇𝐷

𝐶𝑂𝑆𝑇𝐶
 (Eq. 5.34) 

𝛽𝐶 =
𝐶𝑂𝑆𝑇𝐶

𝐶𝑂𝑆𝑇𝐶
= 1 (Eq. 5.35) 

Where COSTL and COSTD are the costs of a delayed and diverted flight, respectively. This 

definition of vulnerability takes into consideration the costs of delays, cancellations and 

diversions (exposed in Section 4.3). In other words, vulnerability is evaluated as the number of 

equivalent cancelled flights during the period of disruption, where weights correspond to costs.  
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The loss is expressed in terms of the proportion of original system functionality (performance) 

retained immediately post-event, that is the percentage of impacted flights with respect to the 

scheduled one during the deviation time td. 

 

Besides, while the vulnerability indicator measures how far the quantity of interest deviates 

from typical values the resilience indicator should also include system’s ability to recover in 

the most efficient ways. Here, resilience is defined as “the airport’s ability, during and 

immediately after the occurrence of a disruptive event, to reduce efficiently both the magnitude 

and duration of the deviation from targeted operational performance levels”. Thus, resilience 

should consider both the magnitude of the deviation and how effective is the recovery phase is, 

i.e. how fast the system is capable or returning to the original configuration.  

Based on this definition, resilience is evaluated as a function of the Capacity Loss CL and of 

the total duration of the disruption, including the recovery time. Specifically, resilience is 

evaluated as the average loss of capacity normalized throughout the deviation time td:
 

𝑅𝐸𝑆 =
𝐶𝐿

𝑡𝑡
=

𝐴𝑇𝑅𝐴(𝑡𝑡) − 𝐴𝑇𝑅𝐴,𝐷(𝑡𝑡)

𝑡𝑡
 (Eq. 5.36) 

Specifically, the total impact is expressed as the unitary loss of capacity during the total 

disruption period tt.  
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6. IMPLEMENTATION 

6.1. Airport simulation 

Airport operations rely on a complex architecture, in which various agents and facilities interact 

with each other (Ashford et al., 2013), creating a complex combination of interconnected 

processes. Most elements in the network are subject to uncertainties, making airside operations 

a stochastic phenomenon (Rodríguez-Sanz et al., 2018). The stochastic and time-varying nature 

of the operations create a set of dynamics which influence the way the system evolves and how 

airlines and airport service providers and operators manage their operations. This is even more 

emphasized when the airport is operated within small limits of its capacity.  

In case of unexpected airport disruptions, it is likely that consequences with non-linear impacts 

arise (Damgacioglu et al., 2018). Because of the interconnectedness of arrivals, departures and 

the processes in the between, delay dynamics and their propagation constitute a core element 

when analysing airport’s performance. Because of the dynamic and stochastic nature of airport 

operations, delays propagate among operations with a non-linear behaviour, often causing spill-

over effects which spread throughout the entire air network.  

Given the inherent complexity of the airport system, its dynamic and stochastic behaviour, and 

the intrinsic variability of the delay propagation problem, simulation has been considered the 

most appropriate method for assessing the airport system’s time-varying performance and 

analysing the effects of unforeseen events.  

Simulation techniques provide the opportunity to combine a remarkable large variety of 

elements for expressing the behaviour of a sociotechnical systems, including performance 

variability of the interacting agents. By using simulation, the inherent complexity and 

stochasticity of the airport system can be comprehensively described in unravelled, thus 

providing tools and insights which may facilitate the design and assessment of strategies to 

reduce poor outcomes and to support the system’s full functioning.  

Simulation is nowadays used in a variety of fields and industries, often combined with 

optimization techniques, to deal with decision-making problems (Mota & Flores, 2018). It 

allows to cope with real-world problems safely and efficiently, by providing clear insights into 

complex systems.  

Simulation modelling offers a wide number of advantages with respect to traditional modelling 

techniques.  
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First, simulation models allow to analyse systems and find solutions where methods such as 

analytic calculation and linear programming fail. This is the case of complex systems where 

elements interact with non-linear behaviour.  

Second, simulation models have the ability to solve operational problems where stochasticity 

is a critical component, as uncertainty in operations can be easily represented.  

Third, simulation provides an environment for studying the dynamic behaviour of a system 

which operates under different uncertain conditions, by means of continuous, discrete or hybrid 

models. Differently from solver-based analytics, or spreadsheets, it allows to observe the 

behaviour of a system over time, by tracking entities and values within the level of abstraction 

chosen.  

Fourth, once developed, verified and validated, simulation models have proved to be useful for 

exploring and examining alternative operating scenarios and different system configurations. 

Potential changes can be simulated in order to answer a wide range of “what-if” questions and 

to predict the impact of such changes on the system’s performance. Simulation is useful also to 

support the system’s design phase and to study such systems before they are built. Furthermore, 

they provide a method of analysis that can be easily verified, communicated and understood.  

Hence, simulation techniques can be used both as an analysis tool for predicting the effects of 

changes to existing systems, and as design tool to predict the performance of new systems under 

varying sets of circumstances. 

Also in the aviation industry, simulation is an approach that several researchers and 

stakeholders have been recently exploring (Mota, 2015). Due to economic importance and 

complexity of airport operations, simulation technologies are becoming of fundamental 

importance and have been often used in airport daily operations management, planning and 

design. 

Over the last two decades, numerous studies have been proposed in the literature in which 

macroscopic and microscopic simulation models have been developed for studying airport 

airside operations and the interaction with existent infrastructure (Martinez et al., 2001). In fact, 

analytical models, despite being good in the planning stage, do not evaluate incorporated 

stochastic flight delays that usually incur in the case of real-time operations (Yan et al., 2002). 

Due to the aforementioned advantages, the simulation approach seems to be the proper to 

evaluate the performance of airport system’s in a close-to-reality-way, thus providing valuable 

support in the management and design.  
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A number of authors have developed various simulation models of the airport airside or, most 

often, of a particular subsystem present in it, for example the runway system or a specific 

ground handling operation. These models are usually used to analyse the operational efficiency 

of the system or assess the impacts resulting from different scenarios (Li & Chen, 2018).  

Some studies focus on the aircraft in the runway-taxiway-apron system inside the aerodrome, 

and the evaluation of the flight delay level, taxiing time, take-off and landing efficiency, and 

the ground operating capacity at an airport. For example, (Martinez et al., 2001) use discrete-

event simulation to model runway operations at airport, by using the simulation software 

STROBOSCOPE. (Bubalo, & Daduna, 2011) use the simulation tool SIMMOD to estimate the 

infrastructure workload of Berlin-Brandenburg International airport deriving from different 

demand time patterns and changing traffic mix. The same software is used (Schinwald et al., 

2016) to determine airport capacity and simulate the airport response to increasing air traffic 

demands. (Mota et al., 2014) use the discrete-event simulation software SIMIO to assess the 

potential capacity problems for a future airport. The work of (Zuniga et al., 2011) take the 

perspective of the air traffic controller for improving the throughput in the terminal 

manoeuvring area of an airport using simulation and optimization. Cheng (1998) proposed a 

network simulation model to solve pushback conflicts in apron taxiways. (Chen et al., 2015) 

developed a simple simulation model for strategic planning of the ground the ground network 

of an airport. (Yan et al., 2002) propose a simulation framework to analyse gate assignment. 

include the interrelationship between static gate assignment and real-time gate assignment 

affected by stochastic flight delays that occur in real operations. (Khammash et al., 2017) 

propose a micro simulation approach to assess aircraft ground movements and estimate taxi 

times; they use the generic simulation software AnyLogic. 

In addition, extensive research has been conducted to simulate ground handling operations. For 

example, Wu and Caves (2002) develop a model to simulate aircraft rotation in a multiple 

airport environment, including delays due to operational inefficiencies modelled as stochastic 

variables. (Wu & Caves, 2004) use of Markov chains together with Montecarlo simulation for 

investigating turnaround performance. Many works use simulation to deal with the resource 

allocation problem. For example, (Voulgarellis et al., 2005) propose an airport ground handling 

simulation model by using MATLAB to determine the amount of ground service equipment 

required for a specific flight plan. In (Vidosavljevic & Tosic, 2010), a model of the aircraft 

turnaround process at aprons is developed using a Petri nets approach, in order to investigate 

its sensitivity to arrival delays and to determine the number of required ground service 
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equipment. Generally, the modelling techniques adopted are microscopic models built by 

means of discrete event or agent-based simulation. For example, (Norin et al., 2012) use the 

commercial software Arena to model all processes from touch-down to taxi-out at Stockholm 

Arlanda airport, with a particular focus to the de-icing process. In (Adeleye & Chung, 2006), 

discrete event modelling is used for modelling and investigating bottlenecks in turnaround 

processes. Similarly, a detailed model of the turnaround operations at Lelystad airport was 

developed by (Mota et al., 2017) by using SIMIO. In (Bevilacqua et al., 2015) Delphi 

methodology and discrete event simulation are used to define and analyse the current state of 

the ground handling processes of an Italian airport and to design a future state of these processes 

focused on improving service quality and workflow. They use the simulation software ProSim.  

Most studied often focus on selected ground handling operations, which is indicative of the 

complexity of the process, such as cargo and baggage loading and unloading (Malandri et al., 

2018) or passengers’ boarding and de-boarding processes. For example, in (Schmidt et al., 

2016; Schmidt et al., 2017) a simulation model of the passenger boarding process is developed. 

The model allows to analyse different boarding scenarios and evaluated passenger congestion 

at the aircraft door, by taking into account different aircraft configurations and various types of 

separation while boarding.  

It is therefore evident that the advantages and potential of simulation techniques are 

increasingly recognized in the context of airport operations. Several models have been 

developed which analyse different airside operations, use various software and different 

modelling techniques. 

The principal modelling techniques which can be used in simulation modelling are described 

in the next Section 6.2.  

 

6.2. Simulation modelling techniques 

Nowadays, three different modelling techniques exists which can be used in simulation models, 

and each of them serves a specific range or abstraction level: System Dynamics (SD), Agent-

Based (AB) or Discrete-Event modelling (DE). Each method serves a specific range of 

abstraction level and is more suitable to model certain real-world system instead of others.  

System dynamics modelling represents the real-world processes in terms of stocks, e.g. 

knowledge, people, money, flows between these stocks and information that determines the 
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values of the flows. System Dynamics abstracts from single events and agents, focusing on an 

aggregate view. It is used for systems in which the state variables change continuously in time, 

which can be for example the level of a tank. This modelling approach is used mainly in long-

term, strategic models and assumes a high level of aggregation, in which single entities lose 

their individual properties, histories or dynamics.  

Agent-based is a relatively novel approach in which the power of computers is used simulate 

independent behaviour and decision making of the entities within a system. It can be described 

as decentralized, individual-centric approach to model design. With this modelling approach, 

each agent, put in a certain environment, has a determined behaviour and establishes 

connections with other agents. The system-level behaviour results from the interaction of many 

individual behaviours. The level of abstraction can vary from highly abstract models where 

agents represent governments or companies, to very detailed models where agents represent 

physical objects. 

Discrete Event modelling is a paradigm which suggests approximating real-world processes by 

considering only certain events – or “important moments” in the system lifetime. This 

modelling approach is suitable for analysing systems in which entities proceed along an 

identifiable sequence of processes interlinked between them. Variables’ states do not change 

continuously but, rather, they change at particular instants of time, based on the occurrence of 

events and the evolution of those processes. In a narrower sense, Discrete event is also to 

indicate “process-centric” modelling, in which the system is described as a flowchart. Discrete 

event modelling supports medium and medium-low abstraction.  

In figure 6.1, the relationship between each modelling approach and the corresponding level of 

abstraction is illustrated. 
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Figure 6.1. Level of abstraction of each modelling approach. Source: (Grigoryev, 2017) 

 

In the case of the airport airside system, it is appropriate to describe the behaviour of the system 

by considering the entities that populate the system – i.e. aircraft – as elements that passively 

undergo the appropriate sequence of operations, represented by events that succeed one another 

over time in the form of chains and sequences of processes. In other words, both LTO and 

turnaround operations can be considered as an ordinate sequence of steps that each aircraft 

undergo at the airport (Postorino & Mantecchini, 2020). Each entity (aircraft), proceeding 

through the system, reaches a process element, enters a queue, occupies a resource, if available, 

for a specific service time and, when the service is completed, the entity releases the resource 

and leaves the process element. For this reason, the Discrete Event modelling approach is 

considered to be the best tool for the representation of the system under analysis and it is 

adopted to model LTO cycle and turnaround operations. Moreover, with a DE modelling, 

simulations run faster with respect to the case of Agent-based modelling, which make DES a 

good approach for the development of the airside operation simulation model.  

 

6.3.  Software used for implementation 

The model described in previous Chapter 5 has been implemented by using the generic 

simulation software AnyLogic (www.anylogic.com), developed by The AnyLogic Company 

(former XJ Technologies). While commercial software provide a set of limitations regarding 
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the customization of a simulation model, the use of a general-purpose software allows to obtain 

an unlimited flexibility regarding the construction of the model. 

AnyLogic is a simulation tool which supports interactive 2D and 3D animation and which is 

widely used by a large number of industries in different fields, including transportation, supply 

chains, warehouse operations, manufacturing and others. It supports the three main simulation 

methodologies: 

• System Dynamics (SD) 

• Discrete Event Modelling (DE)  

• Agent Based Modelling (AB) 

In AnyLogic, it is allowed to combine these simulation approaches within the same model.  

The AnyLogic simulation language consists of four main items: 

• Flow and stock diagrams: are used when modelling with System Dynamics; 

• Process flowcharts: constitute the base of Discrete Event simulation. 

• Statecharts: are principally used in Agent-based modelling, but also for discrete-event 

simulations. They are used to define agents’ behaviour; 

• Action charts: are used to define algorithms; 

The software, developed in a Java environment, has an articulated graphical interface that 

facilitate the development of complex models and the interaction between different modelling 

techniques. In addition to the graphical modelling language, AnyLogic allows the user to 

implement additional java code to extend the simulation model.  

AnyLogic includes a series of libraries, which contain a set of predefined processes elements - 

called “objects” – used to represent the different types of processes. The presence of libraries 

facilitates and speeds up the programming, for example by providing specific tools for dealing 

with rail transport systems or for processing complex algorithms. Each object in the libraries is 

characterized by specific functions and properties and, to build processes, they are linked in the 

form of chains. The standard libraries provided by AnyLogic are: 

• The Process Modelling Library, which supports discrete event simulation;  

• The Pedestrian Library includes objects to simulate pedestrian flows in a physical 

environment; 

• The Rail Library is used for simulating operations of rail yard; 

• The Fluid Library allows to model storage and transfer of fluids; 
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• The Road Traffic Library supports the simulation of vehicle traffic roads and includes 

objects such as traffic lights, pedestrian crossing and parking lots; 

• The Material Handling Library assists warehouse and factories simulation.  

In the case of discrete event modelling, the model is specified graphically as a process flowchart 

where operations are represented by “blocks”.  

The flowchart typically starts with “source” blocks, in which entities are generated and injected 

into processes, and ends with “sink” blocks that remove them from the simulation environment. 

An entity – or agent - is a unit of model that can represent people or objects, such as clients, 

patients, physical and electronic documents, parts, products, pallets, vehicles, or many other 

things including projects, phone calls, ideas, organizations. Entities can have behaviour, 

memory, timing, contacts and so forth. The entities, once generated, will pass through the 

“blocks” of the flowchart, undergoing the different operations. For each block it is also possible 

to define, by means of appropriate commands, operations to be performed at the entrance and 

exit of the entity.  

Resources are objects that provide a service to the entities, imposing on them a time delay 

whose extension depends on the duration of the service used and the waiting time necessary to 

access the necessary resources. They may represent staff, doctors, operators, workers, servers, 

computer memory, transport and so forth. In classic discrete event tools, the entities are passive 

and can only have attributes that affect the way they are handled; besides, in AnyLogic, entities 

and resources can be modelled as agents with individual behaviour and state changes. Service 

times and entities arrival times are usually stochastic, and since they’re drawn from a 

probability distribution, discrete event models are themselves stochastic. In simple terms, this 

means a model must run for a specific amount of time or complete a specific number of 

replications before it produces meaningful output. To build the flowchart, the Process 

Modelling Library is used, which contains objects to model entities, processes and resources. 

Typical output expected from a discrete event model include: utilization of resources, time spent 

in the system or its part by an agent; waiting times; queue lengths, system throughput, 

bottlenecks.  
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As specified in previous Section 6.1, in this work the discrete event modelling approach is 

adopted. To implement the model, the principal objects used belong to the Process Modelling 

Library and include1: 

• Source: generate agents; 

• Sink: disposes incoming agents; 

• Delay: delays agents by the specified delay time, which can be deterministic, stochastic 

or defined by certain events during the simulation; 

• Queue: stores agents in the specified order; 

• Hold: blocks or unblocks the agents flow; 

• SelectOutput: forwards the agent to one of the output ports, depending on probabilistic 

or deterministic conditions; 

• Match: finds a match between two agents from different inputs, then outputs them.  

In addition, several other objects are used to implement the model. A comprehensive 

description of all elements used in the simulation model is provided in Appendix A.  

 

6.4. Description of the simulation model 

6.4.1. Airport layout and attributes 

As first step of the implementation phase, the layout of the airport airside area has to be detailed. 

Airports are very different from each other. They have different dimensions, runway 

configurations, different infrastructural features, different number of operators and resources 

and each characteristic influences the aerodrome performance.  

Each generic airport A(R,S,M,CAP) is characterized by the following attributes: 

- Airport airside layout 

- Number and configuration of runways; 

- Capacity CAP; 

- Number of aprons; 

- Number of parking stands (total and per apron); 

- Number of ground handlers; 

- Number of operators and resources per ground handler; 

 
1 Definitions retrieved from AnyLogic Simulation Software Help 
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The airport airside layout is implemented in the model as an image, over which the network of 

runways and taxiways are built. The airside network is composed of nodes, where operations 

effectively take place, and paths, which are used by entities to move from one node to another. 

Each path is attributed a length, which is the distance between the two connected nodes. In this 

model, each path can be unidirectional or bidirectional.  

The capacity of airport A(R,S,M,CAP) is evaluated in accordance to equation 6.1: 

𝐶𝐴𝑃𝐴 = 𝐶𝐴𝑃𝐴,𝐷𝐸𝐶𝐿𝐴𝑅𝐸𝐷 ∗ 𝛼 [
𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

ℎ𝑜𝑢𝑟
] (Eq. 6.1) 

Where  is assumed to be equal to 1.1. 

The runway path is considered to be unidirectional and with a limited capacity of 1, i.e. no 

simultaneous aircraft occupancy is allowed on the runway. Furthermore, if there are restrictions 

regarding the use of the runway, they are implemented. For example, the following restrictions 

may be present:  

• Some runways do not have the requirements to handle wide-body aircraft; then, only 

narrow-body aircraft are assigned to these runways;  

• At some airports, runways can be used only in determined directions for reasons related 

to various factors including environment, noise, security and others;  

• At some airports, certain runways cannot be used simultaneously; 

• At some airports, certain runways are used only for landing, while some others only for 

take-off; 

• Certain runways cannot be used during night periods. 

Aprons are implemented as nodes with a limited capacity equal to the corresponding number 

of stands. When an aircraft arrives at the apron occupies one stand, and the available capacity 

of the apron decreases. If all stands are occupied, the aircraft cannot enter the apron.  

 

6.4.2. Arrivals and departures schedule 

Aircraft are generated in the airport’s local airspace according to a schedule. To each arriving 

flight, a departure time is associated. Inbound and outbound movements are linked by matching 

the tail number of the aircraft, or aircraft registration number, which is unique to a single 

aircraft. By using the tail number, it is possible to model the rotation of the aircraft and 

determine the successive departures during the period of analysis T.  
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The schedule includes the following data: 

1. Arrival date and scheduled time of arrival STA 

2. Arriving flight number 

3. Airline a 

4. Ground handler m 

5. Arriving aircraft tail number 

6. Aircraft type w 

7. Type of flight 

8. Originating airport for the inbound flight 

9. Departure date and scheduled time of departure STD 

The parameter “Aircraft type” indicates if the aircraft is narrow or wide body. The parameter 

“Type of flight” is used to indicate if the flight has both scheduled arrival and departure during 

the period of analysis, of if otherwise it is a “first departure” or one “last arrival”. It the flight 

do not have any scheduled arrival before its STD, then it is a first departure and the parameter 

“Type of flight” assumes the value 1. If the flight does not have any other scheduled departure 

during the period of analysis, it is classified as “last arrival”, indicated with the number 3. 

Otherwise, “Type of flight” is equal to 2.  

Table 6.1. summarized the input parameters necessary to implement the model, regarding both 

the airport and the schedule, indicating also the type of parameter. 

Despite the peculiarity of each airport and schedule, the model should be as flexible as possible 

in order to adapt it in a fast manner to different airports. Therefore, several assumptions are 

made in order to increase the flexibility and ease of use of the model, while maintaining the 

integrity and accuracy of the results. Some of the major assumptions used in the model are listed 

below: 

(1) If certain runways are not adequate for handling wide-body aircraft, they are used for 

landing and take-offs of narrow-body aircraft; otherwise, aircraft are assigned randomly 

to runways;  

(2) Depending on the runway used for landing, aircraft are assigned to the nearest available 

apron; if the apron cannot receive wide-body aircraft, only narrow-body ones will use 

it; 

(3) Aircraft are assigned randomly to ground handlers; 

(4) Air traffic mix is restricted to scheduled airline services. 
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Table 6.1. Data input for the simulation model 

Airport  Schedule 

Parameter Type  Parameter Type 

Airport airside layout Image 
 Arrival date and scheduled 

time of arrival STA 
Date 

Number of runways Integer  Arriving flight number String 

Capacity CAP Double  Airline String 

Number of aprons Integer  Ground handler Integer 

Number of parking stands 

(total and per apron) 
Integer 

 Arriving aircraft tail 

number 
String 

Number of ground 

handlers 
Integer 

 
Aircraft type String 

Number of operators and 

resources per ground 

handler 

Double 

 

Type of flight Integer 

 
 

 Originating airport for the 

inbound flight 
String 

   Departure date and 

scheduled time of departure 

STD 

Date 

 

6.5.  Base scenario implementation 

As specified in Chapter 5, the developed model consists of two hierarchical systems. At the 

higher level, LTO operations are modelled, as described in Section 5.2. In this level, the agent 

of the model is the aircraft, which undergo a sequence of processes.  

Aircraft kA (a,m,w) are generated at the beginning of the approaching phase, in the sequence of 

the schedule. Arrivals are defined according to an arrivals database which specifies the 

schedule. Each aircraft, when generated, is assigned a series of attributed which are shown in 

the previous Table 6.1. Once arrived, aircraft start the approaching phase, during which the 



92 
 

aircraft approaches the airport for a time tapproach = Uniform (2,3)1 minutes. At the end of the 

approaching phase, aircraft kA (a,m,w) is assigned randomly to one of the runways of the airport.  

Once assigned the runway, the aircraft queue for landing following a FIFO priority scheme. If 

the runway is free, the aircraft can start landing and occupies the runway. Moreover, A 

minimum time tvortex must elapse between two subsequent runway utilizations. tvortex is assumed 

to be equal to 60 seconds after narrow-body aircraft, 90 seconds after wide-body ones, in 

accordance with the minimum separation standards (ICAO, 2007).  

The landing process when the aircraft occupies the runway and finishes when the aircraft leaves 

it towards to the taxiway. The runway occupancy time, i.e. the time an aircraft takes to utilize 

the runway, depends on the length of the runway and the deceleration of the aircraft. During 

the landing phase, the aircraft is assumed to have a speed of 145 knots. Then, the aircraft 

proceeds on the taxiway towards its assigned apron. Aircraft move on taxiways with a constant 

speed of 15 knots, ensuring a minimum safety distance of 60 meters from other aircraft. 

Taxiways and runways are represented with limited capacity and directional control.  

The number of aprons depends on the aerodrome to be modelled, as well as the capacity of each 

apron, where capacity is the number of stands. If the assigned apron is full, the aircraft goes the 

nearest one until it finds one stand free. If no stands are available, the aircraft queue at the initial 

apron by following a FIFO scheme, until one stand becomes available.  

When reached the stand, the aircraft exits from the top-level model to enter the turnaround 

model. One turnaround model exists for each ground handler operating at the aerodrome. The 

aircraft is sent to the turnaround model corresponding to its ground handler, which is specified 

in the attribute “ground handler”.  

At the turnaround operation level, the arriving aircraft kA (a,m,w) is handled by the operators of 

the corresponding ground handler, by using the resources available. Aircraft are serviced 

according to a FIFO priority scheme and, if all operators are busy, the aircraft waits (or the 

operation is put on hold) until some operators are available again. Since it was not possible to 

know exactly the number of operators and the amount of resources of the generic airport 

A(R,S,M,CAP), it assumed that Jm is the minimum number of workers necessary to perform 

turnaround operations without provoking delays in the base scenario; the same is assumed for 

 
1 The Uniform (min,max) distribution is used to represent a random variable with constant likelihood of being in 

any small interval between a minimum min and a maximum max. 
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resources. In order to make the model as flexible as possible, the duration toi of each turnaround 

activity is the same for all airports. These durations are stochastic and they have been 

determined according to previous literature (Bevilacqua et al., 2015; Mota et al., 2017; Schmidt, 

2017) and aircraft manuals (AIRBUS, 2017), and validated by experts’ opinions. The 

distributions used in the model are shown in Table 6.2.  

Table 6.2. Turnaround operations' time distributions 

i  Operation i Sub-operation oi toi 

1  Chocks on - 30 secs 

2 

 

Disembarking 

Stairs positioning TRIANGULAR1 (1.8, 2.3, 2 min) 

Passengers disembarking 20 pax/min 

3  Cleaning Cleaning TRIANGULAR (13, 19.5, 16.5 min) 

4 

 

Catering 

Catering truck connection TRIANGULAR (0.85, 1.2, 1.05 min) 

Departure catering loading TRIANGULAR (7, 9, 8 min) 

Arriving catering 

unloading 
TRIANGULAR (3, 5, 4 min) 

Catering truck 

disconnection 
TRIANGULAR (0.95, 1.3, 1.15 min) 

5 

 

Potable Water 

Water truck connection TRIANGULAR (0.65, 0.95, 0.8 min) 

Potable water 

replenishment 

TRIANGULAR (4, 6, 5 min) - Double for 

wide-body 

Water truck disconnection TRIANGULAR (0.45, 0.85, 0.6 min) 

6 

 

Waste Water 

Waste water truck 

connection 
TRIANGULAR (0.65, 0.95, 0.8 min) 

Waste Water 
TRIANGULAR (4, 6, 5 min) - Double for 

wide-body 

Waste water truck 

disconnection 
TRIANGULAR (0.45, 0.85. 0.6 min) 

7 

 

Baggage/Cargo 

Unloading 

Loader positioning TRIANGULAR (40, 80, 60 sec) 

Arriving baggage/cargo 

unloading 

TRIANGULAR (5, 9, 7 min) - Double for 

wide-body 

 
1 The Triangular (min, max, mode) distribution is a continuous probability distribution with lower limit min, 

upper limit max and mode mode. 
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Loader disconnection TRIANGULAR (40, 80, 60 sec) 

8 

 

Refuelling 

Fuel truck connection TRIANGULAR (0.7, 1.2, 0.9, min) 

Refuelling 
TRIANGULAR (7, 9, 8 min) - Double for 

wide-body 

Fuel truck disconnection TRIANGULAR (1.0, 1.4, 1.2 min)  

9 

 

Baggage/Cargo 

Loading 

Loader positioning TRIANGULAR (40, 80, 60 sec) 

Departing baggage/cargo 

loading 

TRIANGULAR (5, 11, 7 min) - Double for 

wide-body 

 Loader disconnection TRIANGULAR (40, 80, 60 sec) 

10 Passengers boarding 

Passengers boarding 12 pax/min 

Stairs removing TRIANGULAR (1.0, 1.6, 1.3 min) 

11 Chocks off - 30 secs 

 

When turnaround operations are completed, the aircraft returns in the higher-level model. If the 

serviced aircraft belongs to the “last arrivals” category, specified by the indicator “Type of flight 

= 2”, the aircraft moves to a remote apron and is removed from the simulation. Otherwise, it 

waits at the stand until its Scheduled Time of Departure (STD). Then, pushback operations can 

start, and they have a random duration tpushback of 3 to 5 minutes. Similarly to the taxi-in phase, 

during taxi-out aircraft move on taxiways with a constant speed of 15 knots. By using taxiways, 

the aircraft reaches the head of the runway, where it queues for landing according to a FIFO 

scheme. The runway is the generally the same runway used for landing, except from some 

runway utilization restrictions. If another aircraft is approaching the aerodrome, departing 

aircraft has to wait. If the runway is free, aircraft can take-off with an acceleration which 

depends on the runway length and aircraft speed (see Eq. 5.4), which is assumed to be equal to 

𝑣𝑡=135 knots. Regarding take-offs, runway occupancy is defined as the time from when the 

aircraft starts its departure roll until the moment in which its wheels leave the ground. Then, 

the runway is available for other utilizations.  
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6.6. Disrupted scenario implementation 

Once the base model has been implemented, the simulation model is ready to explore alternative 

scenarios, i.e. the disrupted ones. When the disruption starts at time t1, some parameters of the 

model change according to the type of disruption. When the disruption is cleared at time t2, the 

model’s parameters return equal to the ones in the base scenario.  

Input parameters to be changed are, depending on the disruption clusters:  

• If the disruption belongs to cluster A, the disrupted hourly capacity; if the hourly 

movements is equal to the capacity, approaching and departing aircraft have to wait 

until the successive hours; 

• In case of cluster B’s disruptions, one of the aerodrome’s runways (or taxiways) cannot 

be used, thus, for the duration of the disruption, aircraft cannot occupy the runway (or 

taxiway) path.  

• Regarding Cluster C, disruptions can manifest in two different ways: ground handlers’ 

operators or failure of ground equipment components. In the former case, the number 

of available operators has to be specified; in the latter situation, the reduced amount of 

resources.  

• For disruptions belonging to cluster D, the airport hourly capacity is reduced to zero, 

and aircraft cannot depart neither land.  

In the disruption scenarios, the following assumptions are made: 

a) If an approaching aircraft has to wait for a time more than tdiverted =45 minutes to land, 

the aircraft is diverted to another airport, and thus exits the simulation; 

b) If an aircraft has a delay tcancelled higher than 180 minutes (3 hours), it is considered as 

a cancelled flight and thus exit the simulation model. The delay is computed at two 

different stages, i.e. at the end of turnaround operations, when the aircraft is at the 

runway head waiting for take-off.  

Figure 6.2 shows the overall architecture of the simulation model in the form of a flowchart. 

The blocks outlined in red refer to the disrupted simulation mode. A detailed representation of 

the model as implemented in AnyLogic is shown Appendix A.  
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Figure 6.2. Architecture of the simulation model 
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6.7. Verification and validation 

Once the model has been implemented, it was necessary to check the goodness of the model by 

checking that: 

• the model is correctly implemented with respect to the conceptual model, i.e. that it 

matches specifications and assumptions made (verification); 

• the simulation represents the real system with high accuracy (validation).  

Verification is the process of determining that the implemented model accurately represents the 

developer’s conceptual description and specifications, without any bugs. The model has been 

debugged and verified, following an iterative procedure, for finding and eliminating all the bugs 

due to translation from the conceptual model to the AnyLogic one. Specifically, model 

verification has been performed by checking:  

• If the sequence of activities is consistent with actual airport operations; 

• If activities effectively occur during the simulation period; 

• In the disrupted scenarios, if results are logically consistent with actual performance 

under similar disruptions. 

To support the verification stage, the animated version of the model enables the user to verify 

that the simulated activity is appropriate for the chosen scenario and to adjust resources and 

operating rules to produce an accurate level of real operations’ representation. It illustrates the 

status of the airport at any point in the simulation time and shows movements of aircraft on the 

airfield.  

Once verified, the model has been validated. The validation process consists of determining 

how much a model is an accurate representation of the real world, considering the perspective 

of the intended use of the model. The model has been validated by using the comprehensive set 

of event logs of simulated activity during the simulation period produced by the AnyLogic 

model. They provide statistics regarding arrivals, delays and turnaround times, hourly or during 

the entire simulation period. These logs are analysed to obtain simulation details and 

performance summaries at several dimensions.  

Specifically, in order to validate the model, the STD was used to check the consistency between 

the simulated times and level of traffic, and to verify if everything happens exactly according 

to the schedule. Flight schedules, in terms of movements/hour, and arrivals and departures in 
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the simulation model (output) were expected to match. Furthermore, in order to understand the 

extent to which the model reasonably depicts true operations, validation includes the following 

checks:  

• If statistics for taxi-in, taxi-out and turnaround operations reflect real operations 

durations;  

• In the disrupted scenarios, delay statistics are examined to see if they are consistent 

with historical data. 

As a result, the conclusion was drawn that the model implementation represents with 

satisfactory accuracy the initial conceptual model (verification) and recreates the real system 

(validation).  
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7. APPLICATION AND RESULTS 

7.1. Introduction 

The methodology described in previous sections has been applied to four different disruptions, 

one for each of the clusters described in Chapter 4.  

For each of the disruption, the following data are known: 

• Duration of the disruption td (hours); 

• Start hour (time of the day); 

• For disruption belonging to clusters A and D, the reduction in capacity RED (see 

Section 5.3, Eq. 5.10); 

• For the disruption of cluster B, the number of runways closed; 

• For the disruption of cluster C, the percentage of operators on strike.  

Moreover, for each case, the total delay of the disruption was known and retrieved from the 

Network Operation Reports published very year from EURCONTROL (EUROCONTROL 

2017, 2018). The delay provided by EUROCONTROL was used as indicator to validate the 

disruption scenarios. The four disruptions scenarios are shown in Table 7.1. 

For each of the disruption scenarios, a simulation model has been implemented by using 

AnyLogic, as described in Section 6, and validated by comparing simulations’ output with real 

data. For the airports analysed, schedules were built by using data made available by the website 

Flightradar24 (https://www.flightradar24.com) and refer to the day of disruption (line 4 of 

Table 7.1), from 03:00 AM to midnight.  

Each simulation model is run for a period T of 35 hours, from 03:00 AM to 13:00 of the 

successive day. Even if scheduled flights end at midnight, an additional time is considered to 

allow potential delayed flights to complete airside processes and take-off inside the simulation 

period.  

Given the stochasticity of the model, multiple simulation runs are required in order to obtain 

accurate and reliable results. Then, for each of the simulation performed and described in the 

remaining of this Chapter, several replications have been carried out and model accuracy tested 

by determining the variability of turnaround time and departure delay. Results were considered 

valuable after 20 runs, obtaining an error lower than 5% for both quantities. In what follows, 

only average values will be reported.     
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Table 7.1. Disruptions used to validate the model 

CLUSTER A B C D 

Airport 
Amsterdam 

Schiphol 

Barcelona El 

Prat 
Berlin Tegel Hamburg 

Airport Code 

(IATA/ICAO) 
AMS/EHAM BCN/LEBL TEG/EDDT HAM/EDDH 

Disruption type Radar issues 
Aircraft on 

runway 

Ground service 

industrial action 
Power issues 

Date 01/02/2017 14/08/2018 08/02/2017 03/06/2018 

Td (h) 7 2.5 6 3 

Start 09:00 AM 12:00 AM 08:00 AM 10:00 AM 

 RED = 60 % 1 RWY Pm,d  = 40% RED = 0 % 

Delay 11,406 1,212 5,687 1,012 
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7.2. Cluster A: Amsterdam Schiphol Airport 

7.2.1. Airport and disruption description  

Amsterdam Airport Schiphol (AMS/EHAM), located 9 kilometres southwest of Amsterdam, is 

the main international airport of the Netherlands. It covers a total area of 6,887 acres (2,787 ha) 

of land and is the third busiest airport in Europe in terms of passenger volume and the second 

busiest in Europe in terms of aircraft movements (EUROCONTROL, 2018c). In 2018, 

Amsterdam Schiphol welcomed approximately 71.1 million passengers (up 3.7%) with 499,444 

aircraft movements and more than 1.72 million tonnes of cargo. In 2018, Schiphol was able to 

offer a total of direct connections to 327 destinations in 98 countries, scheduled by 108 different 

airlines. (Schiphol Group, 2018).  

AMS has six runways, one of which is used mainly by general aviation (3800 m., 3500 m., 

3453 m., 3400 m., 3300 m., 2014 m. respectively).  The airport is built as one large terminal (a 

single-terminal concept), with approximately 165 boarding gates including eighteen 

double jetway gates used for wide body aircraft (Schiphol Group, 2018).  The airside area 

comprises 6 aprons with a total of 94 stands. The main characteristics of AMS are shown in 

Table 7.2, while the layout of the airport is shown in figure 7.1. 

Table 7.2. Principal characteristics of AMS 

Number of 

runways 

Declared 

capacity1 
Mov/year2 

Average 

mov/day3 

Aircraft 

stands4 

Number of 

ground handlers5 

5 102 499,444 1366 94 3 

 

On 1st February 2017, malfunctioning radar systems led to dozens of flights cancelled and long 

delays. At around 9 AM (local time), “EUROCONTROL warned of a "critical systems issue" 

affecting Amsterdam Schiphol airport, and told pilots to "expect delays/diversions". The fault 

apparently occurred with radar correlation software, which compares and assesses 

information from primary and secondary radar” (www.independent.co.uk).  

 
1 Data retrieved from https://ext.eurocontrol.int/airport_corner_public/EDDC 
2 Data retrieved from https://ec.europa.eu/eurostat/statistics-explained/index.php/Air_transport_statistics 
3 Computed as the number of movements/year divided by 365 

4 Data retrieved from https://www.routesonline.com/route-exchange/airports/ 

5 Data retrieved from https://www.businessairnews.com/hb_airports.html 
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Seven hours later, the fault was detected, and the disruption cleared, however 

EUROCONTROL reported that the system could remain unstable for the successive 

hours. EUROCONTROL estimated this disruptive event to have caused approximately 11,000 

minutes of ATFM delays (Network Operations report, 2017, EUROCONTROL).  

 

  

 

Figure 7.1. AMS airside layout, with detailed zoom of aprons. Source: ww1.jeppesen.com 
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7.2.2. Baseline scenario 

The simulation refers to the disrupted day, precisely the 1st February 2017. During this day, 

697 flights are scheduled to depart and 685 to land, with varied airlines and aircraft types - the 

fleet includes a mix of 20% wide body aircraft, with the remaining 80% of narrow-body ones. 

A simulation is run for the base scenario, and results confirm that no significant delays occur 

in the absence of disruptions. Table 7.3. shows output in terms of total number of arrivals 

(NARR), departures (NDEP) and the total number of movements (NTOT) during the simulation 

period and results precisely match the daily schedule. Turnaround operations have an average 

duration of 42 minutes, with a minimum of 38 and a maximum of 51 minutes; these results are 

consistent with real operations and in line with previous studies (Schmidt 2017), where similar 

average turnaround times are obtained by analysing real data.  

Table 7.3. Base scenario simulation's output 

 NARR NDEP NTOT  𝑻𝑨𝑻̅̅ ̅̅ ̅̅  (min) St. Dev. (min) 

N° of flights 685 697 1382  42.12 2.31 

 

The graph in Figure 7.2 shows aircraft arrivals (a) and departures (b) per hour during the 

simulation period (histogram in grey), in adherence with the real flight schedule (black line). 

From the graph it is evident that hourly aircraft movements (departures and arrival) occur in 

line with real ones. Figure 7.3. provides the scatter plot which compares the Scheduled Time of 

Arrival STA (horizontal axis) for each aircraft against the Actual Time of Arrival ATA (vertical 

axis) during the simulation. Similarly, figure 7.4. plots the Scheduled Time of Departure STD 

(x-axis) against the Actual Time od Departure in the simulation model (ATD, y-axis). By 

performing a simple linear regression, it results that, in both cases, data present very strong 

positive correlation and the value of the coefficient of determination R2 is very high (0.999). 

Thus, outputs confirm the goodness of the model and its capability of correctly reproducing 

real systems. In terms of arrivals, it is possible to notice two peak periods, between 07:00 and 

09:00 in the morning and between 18:00 and 20:00 in the afternoon, with more than 60 

movements per hour. Regarding departures, a higher number of departures occur between 08:00 

and 10:00 in the morning, from 12:00 and 14:00 and from 20:00 to 21:00.  
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Figure 7.2. (a) arrivals and (b) departures per hour in the baseline scenario 

 

      

Figure 7.3. Scatterplot of STA (schedule) and ATA (simulations’ output) in the base scenario 
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Figure 7.4. Scatterplot of STD (schedule) and ATD (simulations’ output) in the base scenario 

 

 

Figure 7.5. Effective throughput Rate during the simulation period 

 

In the baseline scenario, as expected, no flight is departing late. The histogram in figure 7.5 

shows the Effective Throughput ETA,t for the entire simulation period, where ETA,t has been 

computed in accordance with Eq. 5.8: 

𝐸𝑇𝐴,𝑡 = ∑ 𝑛𝐷𝐸𝑃 + 𝑛𝐴𝑅𝑅

𝑡=1 ℎ𝑜𝑢𝑟

 [
𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

ℎ𝑜𝑢𝑟
] (Eq. 7.1) 

The periods of maximum throughput are from 08:00 and 09:00 AM and between 19:00 and 

20:00 in the afternoon, with around 90 movements/hour. However, these values are amply 
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lower than the capacity of the airport CAP, equal to 112 movements/hour and shown in blue in 

the figure below. The Average Throughput Rate ATRA during the period of analysis is equal to:  

𝐴𝑇𝑅𝐴 =
∑ 𝐸𝑇𝑅𝐴,𝑡𝑇

𝑇
= 65% (Eq. 7.2) 

 

7.2.3. Disrupted scenario 

In the disrupted scenario, radar problems caused a reduction of in the arrival and departure 

capacity. The simulation is run considering a disruption with a duration Td = 7 hours, from 09:00 

in the morning to 16:00 in the afternoon. Airport capacity in the disrupted scenario becomes:  

𝐶𝐴𝑃𝐴,𝐷 = 𝐶𝐴𝑃𝐴 ∗ (1 − 𝑅𝐸𝐷) = 112 ∗ 0.4 = 45 𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠/ℎ𝑜𝑢𝑟 (Eq. 7.3) 

Thus, from the beginning of the disruption, delays occur and several flights arrive and depart 

late with respect to their schedule (see table 7.4). In particular, 31 flights depart late and 31 are 

diverted to alterative aerodromes (out of the simulation) and the total impact in terms of 

movements is equal to: 

𝑇𝐼 = 𝑁𝐿 + 𝑁𝐷 + 𝑁𝐶 = 162 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 (Eq. 7.4) 

The total departure delay obtained during the simulation period is equal to 10,813.00 minutes, 

with an average of 82 minutes approximately. This value is closely comparable to the delay 

information registered by EUROCONTROL (11,060 minutes, see Table 7.1), with a slight 

variation of only 2%. This result confirms the validity of the model and its capability of 

correctly reproducing the disrupted scenario.  

Table 7.4. Disrupted scenario simulation's output 

  Total Average St. Dev.  Impacted flights 

Departure delay (min) 10,813.00 82.72 23.47  NL 131 

Arrival delay (min) 815.71 31.37 6.43  NC 0 

Turnaround time (min) - 42.15 1.94  ND 31 
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In terms of turnaround, no significant increase has been experienced by the system; in fact, 

the disruption causes a reduction in the landing and take-off capacity, and do not influence 

ground operations. The Turnaround Loss TL is then equal to 0: 

𝑇𝐿 =
𝑇𝐴𝑇̅̅ ̅̅ ̅̅

𝐷 (𝑚|𝐽𝑚𝑃) − 𝑇𝐴𝑇̅̅ ̅̅ ̅̅  (𝑚|𝐽𝑚𝑃)

𝑇𝐴𝑇̅̅ ̅̅ ̅̅  (𝑚|𝐽𝑚𝑃)
= 0% (Eq. 7.5) 

Figure 7.6 illustrates the delay per hour of simulation (in grey). As long as the disruption 

progresses (in red in figure), delays increase because of accumulated congestion during airside 

operations and the maximum delay is reached at the end of the disruption (16:00). The 

accumulated departure delay during the simulation period T is shown in red in figure 7.7; in the 

same graph, bars indicate the hourly departure delay. When the disruption is cleared, systems’ 

performance requires an extra time to return at the reference level, where no delays occur. In 

fact, the presence of several flights with inherited reactionary lateness, accumulated during the 

disruption period, causes the airport system to need ad additional time (recovery time, in pink 

in figure) to return to the initial performance. Operations return fully functional at 19:00, 3 

hours after the end of the disruption. The total duration of the disruption is then equal to:  

𝑡𝑡 = 𝑡𝑑 + 𝑡𝑟 = 7 + 3 = 10 ℎ𝑜𝑢𝑟𝑠 (Eq. 7.6) 

 

 
Figure 7.6. Departure delay (in grey) 
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Figure 7.7. Cumulative departure delay 

Figure 7.8. Effective Throughput Rate 

 

Figure 7.9. Cumulative Effective Throughput Rate 
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The graph in figure 7.8 depicts the cumulative Effective Throughput Rate through the entire 

day of analysis in both the baseline (grey) and disrupted scenarios (blue). The figure below 

shows the same indicator, but on an hourly basis. In both graphs, it is evident a loss of capacity 

starting from the beginning of the disruption (09:00) and propagating for the rest of the day.  

Then, the Capacity Loss CL is evaluated as the difference between the baseline Average 

Throughput Rate ATRA and the disrupted Average Throughput Rate ATRA,D during the entire 

disruption period:  

𝐶𝐿 = 𝐴𝑇𝑅𝐴(𝑡𝑡) − 𝐴𝑇𝑅𝐴,𝐷(𝑡𝑡) =
∑ 𝐸𝑇𝑅𝐴,𝑡𝑡𝑡

𝑡𝑡
−

∑ 𝐸𝑇𝑅𝐴,𝐷,𝑡𝑡𝑡

𝑡𝑡
= 0.77 − 0.66

= 0.11 = 11% 

(Eq. 7.7) 

While previous results allow to comprehend the impacts of the disruption during the day from 

a broader perspective, resilience and vulnerability indicators are evaluated in order to obtain 

synthetic measures of the consequences of the disruptive event and compare them with other 

scenarios. Vulnerability is then evaluated according to Eq. 5.32: 

𝑉𝐴,𝐷 = 𝛽𝐿𝑁𝐿 + 𝛽𝐷𝑁𝐷 + 𝛽𝐶𝑁𝐶 = 0.47 ∗ 131 + 0.42 ∗ 31 + 1 ∗ 0 = 75 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 (Eq. 7.8) 

Were weights 𝛽𝑖 are evaluated with respect to the cost of a cancelled flight COSTC (see Chapter 

4):  

𝛽𝐿 =
𝐶𝑂𝑆𝑇𝐿

𝐶𝑂𝑆𝑇𝐶
=

100 ∗ 𝐷𝐸𝐿̅̅ ̅̅ ̅𝐷𝐸𝑃

17,650
= 0.47 

𝛽𝐷 =
𝐶𝑂𝑆𝑇𝐷

𝐶𝑂𝑆𝑇𝐶
=

7,400

17,650
= 0.42 

𝛽𝐶 =
𝐶𝑂𝑆𝑇𝐶

𝐶𝑂𝑆𝑇𝐶
= 1 

The resilience is then evaluated as the difference between the baseline and disrupted Average 

Throughout Rate, both referred to the deviation time: 

𝑅𝐸𝑆 =
𝐶𝐿

𝑡𝑡
=

𝐴𝑇𝑅𝐴(𝑡𝑡)

𝑡𝑡
−

𝐴𝑇𝑅𝐴,𝐷(𝑡𝑡)

𝑡𝑡
∗ 100 =

0.11

10
∗ 100 = 1.1 (Eq. 7.9) 
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7.3. Cluster B: Barcelona-El Prat Airport 

7.3.1. Airport and disruption description  

Barcelona-El Prat Josep Tarradellas Airport (BCN/LEBL), also known as El Prat Airport, is an 

international airport located 12 km from the centre of Barcelona, in Spain. It is the second 

largest and busiest airport in Spain, and the seventh busiest in Europe. In 2018, El Prat Airport 

handled more than 50 million passengers, with a growth of 6.1% with respect to previous year. 

Most of the traffic is domestic, and intercontinental connections have not generated a significant 

amount of traffic during the last year. The airport has 3 runways in service, two parallel 

(07L/25R and 07R/25L), and a cross runway 02/20. 

Table 7.5. BCN airport characteristics 

Number of 

runways 

Declared 

capacity1 
Mov/year2 

Average 

mov/day3 

Aircraft 

stands4 

Number of 

ground 

handlers5 

3 64 310,250 850 170 4 

 

 

Figure 7.10. BCN layout 

 

 
1 Data retrieved from https://ext.eurocontrol.int/airport_corner_public/EDDC 
2 Data retrieved from https://ec.europa.eu/eurostat/statistics-explained/index.php/Air_transport_statistics 
3 Computed as the number of movements/year divided by 365 

4 Data retrieved from https://www.routesonline.com/route-exchange/airports/ 

5 Data retrieved from https://www.businessairnews.com/hb_airports.html 
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On August 14, 2018, A Rossiya Boeing 747-40 from Moscow, around noon, landed on 

Barcelona’s runway 25R with about 500 people on board. It rolled out safely but was 

subsequently unable to vacate the runway due to a nose wheel steering fault. The aircraft 

stopped on the runway; the runway returned available almost 2 hours after landing.  

 

7.3.2. Baseline scenario 

The simulation is run referring to the disrupted day, i.e. precisely the 14th August 2018. During 

this day, 493 flights are scheduled to land at the airport and 516 to depart. The fleet includes a 

mix of 90% narrow body aircraft, with the remaining 10% of wide body ones. 

A simulation is run for the base scenario, and the output from the simulation prove that no 

significant delays occur in the reference scenario and no flight is departing late. The total 

number of arrivals (NARR), departures (NDEP) and the total number of movements (NTOT) during 

the simulation period match precisely the daily schedule, as shown in Table 7.6. Turnaround 

operations have an average duration of 42 minutes, as in the case of Amsterdam Airport: these 

results are consistent with real operations. 

Table 7.6. Base scenario output 

 NARR NDEP NTOT  𝑻𝑨𝑻̅̅ ̅̅ ̅̅  (min) St. Dev. (min) 

N° of flights 493 516 1009  42.72 2.31 

 

Figure 7.11 provides the scatter plot which compares the STA (horizontal axis) for each aircraft 

against the ATA (vertical axis) during the simulation. Similarly, figure 7.12 plots the STD (x-

axis) against the in the simulation model (ATD, y-axis). In both cases, data present very strong 

positive correlation and the value of the coefficient of determination R2 is very high (0.9999 

and 0.9996 respectively). Also in this case, outputs confirm the goodness of the model and its 

capability of correctly reproducing real systems. 
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 Figure 7.11. Scatter plot of STA against ATA  

 

Figure 7.12. Scatter plot of STD against ATD 
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Figure 7.13. Aircraft (a) arrivals and (b) departures 

 

 

Figure 7.14. Effective Throughput Rate during the simulation period 
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The graph in Figure 7.13 shows aircraft arrivals (a) and departures (b) per hour during the 

simulation period (histogram in grey), in adherence with the real flight schedule (black line). 

Regarding arrivals, the peak period is from 10:00 to 12:00, with a maximum of 38 landing 

aircraft. In terms of departures, the maximum number of aircraft is observed at 07:00 in the 

morning. The period of maximum throughput (figure 7.14) is between 10:00 and 12:00 in the 

morning, when it reaches 70 movements/hour. This value matches exactly the capacity of the 

airport CAP, equal to 70 movements/hour and shown in blue in the figure; it reasonable to 

assume that, in these periods, the infrastructure is used at almost its capacity and the most 

undesirable criticalities are expected.  

 The Average Throughput Rate ATRA during the period of analysis is equal to:  

𝐴𝑇𝑅𝐴 =
∑ 𝐸𝑇𝑅𝐴,𝑡𝑇

𝑇
= 76% (Eq. 7.10) 

 
 

7.3.3. Disrupted scenario 

In the disrupted scenario, one of the runways of the airport is unavailable because of an incident. 

Thus, arriving and departing aircraft have to use the remaining two runways. The simulation is 

run considering a disruption with a duration td = 2.5 hours, from 12:00 in the morning to 14:30 

in the afternoon.  

From the beginning of the disruption, delays occur and some flights arrive and depart late with 

respect to their schedule, as shown in figure, which illustrates the delay per hour of simulation 

(in grey). As long as the disruption progresses (in red in figure 7.15), delays increase because 

of accumulated congested airside operations and a maximum delay of 1,212 minutes is 

experienced during the last hour of the disruption (15:00 - 16:00). The accumulated departure 

delay during the simulation period T is shown in red in figure 7.16; in the same graph, bars 

indicate the hourly departure delay.  

When the disruption is cleared, systems’ performance requires an extra time to work off handle 

the accumulated congestion and return at the reference level, where no delays occur. A recovery 

time tr of 2.5 is necessary to make the operations return fully functional and the system is 

recovered at 18:00. The total duration of the disruption is then equal to:  

𝑡𝑡 = 𝑡𝑑 + 𝑡𝑟 = 2.5 + 2.5 = 5 ℎ𝑜𝑢𝑟𝑠 (Eq. 7.11) 
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Figure 7.15. Departure delay (in grey) 

 

Figure 7.16. Cumulative departure delay 

Table 7.7. Disrupted scenario output 

 Total Average St. Dev.  Impacted flights 

Departure delay (min) 1,412 83.09 33.32  NL 17 

Arrival delay (min) 64.49 16.12 5.94  NC 0 

Turnaround time (min) - 42.45 2.19  ND 0 
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The total delay experience results to be equal to 1,412 minutes, with an average of 83 minutes 

per flight. The total delay obtained from the simulation is 15% higher with respect to the one 

registered by EUROCONTROL (1,212 minutes, see Table 7.7), which can be considered a good 

approximation. During the entire disrupted period, 17 flights are delayed and forced to depart 

late (see table). In this case, the total impact is given by the late departures only:  

𝑇𝐼 = 𝑁𝐿 + 𝑁𝐷 + 𝑁𝐶 = 17 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 (Eq. 7.12) 

The total departure delay obtained during the simulation period is equal to 10,813.00 minutes, 

with an average of 82 minutes approximately. This value is closely comparable to the delay 

information registered by EUROCONTROL (11,060 minutes, see Table 7.1), with a slight 

variation of only 2%. This result confirms the validity of the model and its capability of 

correctly reproducing the disrupted scenario.  

Also in this case, turnaround operations are not affected by the disruption, and the turnaround 

time remains the same as in the baseline scenario. The Turnaround Loss TL is then equal to 0: 

𝑇𝐿 =
𝑇𝐴𝑇̅̅ ̅̅ ̅̅

𝐷 (𝑚|𝐽𝑚𝑃) − 𝑇𝐴𝑇̅̅ ̅̅ ̅̅  (𝑚|𝐽𝑚𝑃)

𝑇𝐴𝑇̅̅ ̅̅ ̅̅  (𝑚|𝐽𝑚𝑃)
= 0% (Eq. 7.13) 

The graph in figure 7.17 shows the cumulative Effective Throughput Rate through the entire 

day of analysis in both the baseline (grey) and disrupted scenarios (blue). The figure below 

displays the same indicator, but on an hourly basis. In both graphs, a loss of capacity can be 

observed from the beginning of the disruption (12:00) and propagating for the successive four 

hours (until 16:00).  

Then, the Capacity Loss CL is evaluated as the difference between the baseline Average 

Throughput Rate ATRA and the disrupted Average Throughput Rate ATRD during the entire 

simulation period:  

𝐶𝐿 = 𝐴𝑇𝑅𝐴(𝑡𝑡) − 𝐴𝑇𝑅𝐴,𝐷(𝑡𝑡) =
∑ 𝐸𝑇𝑅𝐴,𝑡𝑡𝑡

𝑡𝑡
−

∑ 𝐸𝑇𝑅𝐴,𝐷,𝑡𝑡𝑡

𝑡𝑡
= 0.85 − 0.73

= 0.12 = 12% 
(Eq. 7.14) 
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Figure 7.17. Cumulative Effective Throughput Rate 

 

 

Figure 7.18. Effective Throughput Rate 

 

As before, vulnerability and resilience indicators are computed to obtain synthetic measures of 

the consequences of the disruption. Vulnerability is then evaluated according to Eq. 5.32: 

𝑉𝐴,𝐷 = 𝛽𝐿𝑁𝐿 + 𝛽𝐷𝑁𝐷 + 𝛽𝐶𝑁𝐶 = 0.47 ∗ 17 + 0.42 ∗ 0 + 1 ∗ 0 = 8 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 (Eq. 7.15) 
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Were weights 𝛽𝑖 are evaluated with respect to the cost of a cancelled flight COSTC (see Chapter 

4):  

𝛽𝐿 =
𝐶𝑂𝑆𝑇𝐿

𝐶𝑂𝑆𝑇𝐶
=

100 ∗ 𝐷𝐸𝐿̅̅ ̅̅ ̅𝐷𝐸𝑃

17,650
= 0.47 

𝛽𝐷 =
𝐶𝑂𝑆𝑇𝐷

𝐶𝑂𝑆𝑇𝐶
=

7,400

17,650
= 0.42 

𝛽𝐶 =
𝐶𝑂𝑆𝑇𝐶

𝐶𝑂𝑆𝑇𝐶
= 1 

The resilience is then evaluated as the difference between the baseline and disrupted Average 

Throughout Rate, both referred to the deviation time: 

𝑅𝐸𝑆 =
𝐶𝐿

𝑡𝑡
=

𝐴𝑇𝑅𝐴(𝑡𝑡)

𝑡𝑡
−

𝐴𝑇𝑅𝐴,𝐷(𝑡𝑡)

𝑡𝑡
∗ 100 =

0.12

5
∗ 100 = 2.4 (Eq. 7.16) 
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7.4. Cluster C: Tegel airport 

7.4.1. Airport and disruption description  

Tegel airport (TXL/EDDT) is the main airport in Berlin, Germany. Located 8 km north-west 

from Berlin, it is currently the fourth busiest airport in Germany, with more than 20 million 

passengers handled in 201 and 22 million in 2018. It serves several European destinations and 

some intercontinental routes.  

It has two parallel runways (08L/26R and 08R/26L) with a length of 3,023 and 2,428 meters 

respectively. Runway 08L/26R is usually used for landings and wide-body aircraft take-offs, 

while runway 08R/26L is the main departure runway for narrow-body aircraft. A general night 

flight prohibition applies from 23:00 until 06:00. The airport building consists of 5 terminals, 

which share the same building. The main features of the airport are shown in Table 7.6. 

 

Figure 7.19. TXL layout 

Table 7.8. TXL characteristics 

Number of 

runways 

Declared 

capacity1 
Mov/year2 

Average 

mov/day3 

Aircraft 

stands4 

Number of 

ground handlers5 

2 52 167,900 460 50 1 

 
1 Data retrieved from https://ext.eurocontrol.int/airport_corner_public/EDDC 
2 Data retrieved from https://ec.europa.eu/eurostat/statistics-explained/index.php/Air_transport_statistics 
3 Computed as the number of movements/year divided by 365 

4 Data retrieved from https://www.routesonline.com/route-exchange/airports/ 

5 Data retrieved from https://www.businessairnews.com/hb_airports.html 
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On 8th February 2017, an industrial action of ground operators caused serious delays and 

plethora of cancellations of scheduled flights: “The walkout by staff of Berlin Tegel and 

Schoenfeld were to last from 8 AM local time (07:00 UTC) to around 14:00 on Wednesday, 

trade union Verdi said. Around 2000 ground staff-including those dealing with flight check-ins 

and baggage handling – were to take part in the strike, it added. Others involved in six-hour 

walkout were flights marshals and plane refuelling crews” (www.dw.com). 

At the end of the industrial action, delays continued throughout the day reaching a total of 5,687 

minutes of ATFM delays (Network Operations report, 2017, EUROCONTROL).  

 

7.4.2. Baseline scenario 

The simulation refers to the 8th February 2017, which is the day in which the industrial action 

takes place. During this day, his day, 260 flights are scheduled to depart and 262 to land (with 

a total of 522 movements), with different airlines and aircraft types. The fleet mix is constituted 

mainly by narrow body aircraft (98%), with only a 2% of wide body ones.  

After running the simulation for the base scenario, results show that no significant delays occur 

in the absence of disruptions, and all flights are departing on time. Table 7.19 shows output in 

terms of total number of arrivals (NARR), departures (NDEP) and the total number of movements 

(NTOT) during the simulation period and results precisely match the daily schedule. Also in this 

case turnaround operations have an average duration of 42 minutes, with a maximum of 50 and 

a minimum of 39 minutes; these results are consistent with real operations and in line with 

previous studies (Schmidt, 2017). 

Table 7.9. Base scenario outputs 

 NARR NDEP NTOT  𝑻𝑨𝑻̅̅ ̅̅ ̅̅  (min) St. Dev. (min) 

N° of flights 262 260 522  42.17 1.74 

 

The graph in Figure 7.10 shows aircraft arrivals (a) and departures (b) per hour during the 

simulation period (histogram in grey), compared to real flight schedule (black line). From the 

graph it is evident that hourly aircraft movements (departures and arrival) adhere to real data. 

Figure 7.11. provides the scatter plot which compares the STA (horizontal axis) for each aircraft 

against the ATA (vertical axis) during the simulation. Similarly, figure 7.12. plots the Scheduled 
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Time of Departure STD (x-axis) against the Actual Time od Departure in the simulation model 

(ATD, y-axis). These two graphs show that, in both cases, there is a very strong correlation 

between simulation daily output and real schedule (R2 = 0.9999 for arrivals, R2 = 0.9998 for 

departures). Thus, outputs confirm the goodness of fit of the model and its capability of 

correctly reproducing real systems. 

In terms of arrivals, the majority of departures occur from late afternoon to the end of the day, 

precisely at 16:00 and between 18:00 and 22:00. Regarding departures, during the morning the 

most part of flights is scheduled between 06:00 and 09:00, while in the afternoon a peak period 

is visible between 17:00 and 19:00 and at 21:00.  

 

 

Figure 7.20. Aircraft arrivals (a) and departures (b) during the simulation period T 
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Figure 7.21. STA against ATA 

 

Figure 7.22. STD against ATD 

 

Figure 7.23. Effective Throughput Rate 
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The periods of maximum throughput are from 08:00 and 09:00 AM and between 19:00 and 

20:00 in the afternoon, with around 90 movements/hour. However, these values are far below 

the capacity of the airport CAP, equal to 57 movements/hour and shown in blue in figure 7.23. 

The Average Throughput Rate ATRA during the period of analysis is equal to:  

𝐴𝑇𝑅𝐴 =
∑ 𝐸𝑇𝑅𝐴,𝑡𝑇

𝑇
= 54% (Eq.7.17) 

 
 

7.4.3. Disrupted scenario 

In the disrupted scenario, an industrial action of grand handler operators is simulated with a 

duration td = 8 hours, from 08:00 in the morning to 14:00 in the afternoon. of available operators 

Jm is reduced of a certain percentage Pm,d and the number of available operators becomes: 

𝐽𝑚,𝑑 = 𝐽𝑚 ∗ (1 − 0.4) (Eq.7.18) 

As a consequence, turnaround time increases and delays occur. Several flights depart late with 

respect to their schedule (see table 7.10). In particular, 50 flights depart late and 65 are diverted 

to alterative aerodromes (out of the simulation) and the total impact in terms of movements is 

equal to: 

𝑇𝐼 = 𝑁𝐿 + 𝑁𝐷 + 𝑁𝐶 = 115 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 (Eq.7.19) 

In this scenario, there is no significative arrival delay; in fact, industrial actions affect operations 

principally at the ground level, causing delays in departures more than arrivals. The total 

departure delay obtained during the simulation period is equal to 5,517.00 minutes, with an 

average of approximately 110 minutes. This value is closely comparable to the delay 

information registered by EUROCONTROL (5,687 minutes, see Table 7.1), with a slight 

variation of only 2%. This result confirms the validity of the model and its ability of correctly 

reproducing the disrupted scenario.  

In terms of turnaround, a significant increase can be observed during the industrial actions. In 

fact, in this case the most affected processes are the ones related to turnaround operations. It is 

evident from the graph in figure 7.25, where the turnaround time throughout the simulation 

period is shown. Specifically, the average turnaround time, which was equal to 42 minutes in 

the base scenario, more than doubles in the disrupted one, reaching the value of 89 minutes.  
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The Turnaround Loss TL is then equal to 0: 

𝑇𝐿 =
𝑇𝐴𝑇̅̅ ̅̅ ̅̅

𝐷 (𝑚|𝐽𝑚𝑃) − 𝑇𝐴𝑇̅̅ ̅̅ ̅̅  (𝑚|𝐽𝑚𝑃)

𝑇𝐴𝑇̅̅ ̅̅ ̅̅  (𝑚|𝐽𝑚𝑃)
= 112% (Eq.7.20) 

Table 7.10. Disrupted scenario outputs 

 

 

Total Average St. Dev.  Impacted flights 

Departure delay (min) 5,517.01 110.34 53.96  NL 50 

Arrival delay (min) 24.39 12.19 0.25  NC 65 

Turnaround time (min) - 89.79 72.99  ND 0 

 

 

Figure 7.24. Hourly average turnaround time 

 

Figure 7.26 below illustrates the delay per hour of simulation (in grey). From the beginning of 

the simulation, delays accumulate and propagate until the end of the day. The accumulated 

departure delay during the simulation period T is shown in red in figure 7.27. Even after the 

end of the industrial action (in red in figure) disruptions consequences last for a considerable 

amount of time. Operations return fully functional at 22:00, with a recovery time tr of 8 hours 

(in pink in figure). The total duration of the disruption is then equal to:  

𝑡𝑡 = 𝑡𝑑 + 𝑡𝑟 = 6 + 8 = 14 ℎ𝑜𝑢𝑟𝑠 (Eq.7.21) 
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Figure 7.25. Cumulative departure delay 

 

Figure 7.26. Departure delay 

 

The graph in figure 7.28 depicts the cumulative Effective Throughput Rate through the entire 

day of analysis in both the baseline (grey) and disrupted scenarios (blue). It is evident a loss of 

capacity from the beginning of the disruption (09:00) and propagating for the rest of the day.  

The Capacity Loss CL during the total disruption period is evaluated as the difference between 

the baseline Average Throughput Rate ATRA and the disrupted Average Throughput Rate ATRD 

during the total disruption period:  

𝐶𝐿 = 𝐴𝑇𝑅𝐴,𝐷(𝑡𝑡) − 𝐴𝑇𝑅𝐴(𝑡𝑡) == 0.56 − 0.48 = 0.08 = 8% (Eq.7.22) 
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Figure 7.27. Cumulative Effective Throughput Rate 

 

As before, vulnerability and resilience indicators are computed to obtain synthetic measures of 

the consequences of the disruption. Vulnerability is then evaluated according to Eq. 5.32: 

𝑉𝐴,𝐷 = 𝛽𝐿𝑁𝐿 + 𝛽𝐷𝑁𝐷 + 𝛽𝐶𝑁𝐶 = 0.63 ∗ 50 + 0.42 ∗ 0 + 1 ∗ 65 = 97 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 (Eq.7.23) 

Were weights 𝛽𝑖 are evaluated with respect to the cost of a cancelled flight COSTC (see Chapter 

4):  

𝛽𝐿 =
𝐶𝑂𝑆𝑇𝐿

𝐶𝑂𝑆𝑇𝐶
=

100 ∗ 𝐷𝐸𝐿̅̅ ̅̅ ̅𝐷𝐸𝑃

17,650
= 0.63 

𝛽𝐷 =
𝐶𝑂𝑆𝑇𝐷

𝐶𝑂𝑆𝑇𝐶
=

7,400

17,650
= 0.42 

𝛽𝐶 =
𝐶𝑂𝑆𝑇𝐶

𝐶𝑂𝑆𝑇𝐶
= 1 

The resilience is then evaluated as the difference between the baseline and disrupted Average 

Throughout Rate, both referred to the deviation time: 

𝑅𝐸𝑆 =
𝐶𝐿

𝑡𝑡
=

𝐴𝑇𝑅𝐴(𝑡𝑡)

𝑡𝑡
−

𝐴𝑇𝑅𝐴,𝐷(𝑡𝑡)

𝑡𝑡
∗ 100 =

0.08

14
∗ 100 = 0.57 (Eq.7.24) 
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7.5. Cluster D: Hamburg airport 

7.5.1. Airport and disruption description  

Hamburg airport (HAM/EDDH) is the international airport of Hamburg, the second-largest city 

in Germany. It is located 8.5 km north of the city centre and is the fifth-busiest of Germany's 

commercial airports in terms of handled passengers. In 2018, it counted more than 17 million 

passengers and approximately 150 thousand aircraft movements. In 2017, if featured flights to 

more than 130 European destinations and 3 long-haul routes.  

The runway system is composed on two crossing runways (05/23 and 15/33), with a length of 

respectively 3,250 and 3,666 meters. The main apron 320,000 m2 and features 54 aircraft 

parking stands. The principal attributes of the airport are show in Table 6.3. 

Table 7.11. HAM characteristics 

Number of 

runways 

Declared 

capacity1 
Mov/year2 

Average 

mov/day3 

Aircraft 

stands4 

Number of 

ground handlers5 

2 49 146,000 400 54 3 

 

 

Figure 7.28. HAM layout 

 

 
1 Data retrieved from https://ext.eurocontrol.int/airport_corner_public/EDDC 
2 Data retrieved from https://ec.europa.eu/eurostat/statistics-explained/index.php/Air_transport_statistics 
3 Computed as the number of movements/year divided by 365 

4 Data retrieved from https://www.routesonline.com/route-exchange/airports/ 

5 Data retrieved from https://www.businessairnews.com/hb_airports.html 
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On 3rd June 2018, a power issue caused the temporary complete closure of the airport, downing 

the capacity to zero: “A sudden power failure crippled Hamburg Airport on Sunday, forcing the 

cancellation of scores of flights and stranding thousands of travellers. Operations ceased when 

the blackout hit the airport in the northern German port city around 10 AM (08:00 GTM). (…). 

The source of the power failure had been identified as an electrical short” 

(www.dailysabah.com). Three hours later, the issue was solved, and the airport returned 

operative again. EUROCONTROL estimated this disruptive event to have caused 1,212 

minutes of ATFM delays (Network Operations report, 2017, EUROCONTROL).  

 

7.5.2. Baseline scenario 

The simulation’s schedule refers to the disrupted day, i.e. the 3rd June 2018. During this day, 

188 flights are scheduled to depart and 191 to land (a total of 379 aircraft movements), with 

varied airlines and aircraft types. The fleet mix is composed primarily of narrow body aircraft 

(98%) with the remaining 2% of wide-body ones. 

Running the simulation for the base scenario, results confirm that no significant delays occur 

in the absence of disruptions. Table 7.30. shows output in terms of total number of arrivals 

(NARR), departures (NDEP) and the total number of movements (NTOT) during the simulation 

period, which precisely match the daily schedule. Turnaround operations have an average 

duration of 43 minutes, with a minimum of 37 and a maximum of 50 minutes. 

Table 7.12. Base scenario output 

 NARR NDEP NTOT  𝑻𝑨𝑻̅̅ ̅̅ ̅̅  (min) St. Dev. (min) 

N° of flights 191 188 379  42.65 2.30 

 

The graph in Figure 7.31 shows aircraft arrivals (a) and departures (b) per hour during the 

simulation period (histogram in grey), in adherence with the real flight schedule (black line). 

From the graph it is evident that hourly aircraft movements (departures and arrival) occur in 

line with real ones. In terms of arrivals, it is possible to notice the majority of aircraft land in 

the late afternoon, with a peak between 18:00 and 19:00 and another between 21:00 and 22:00. 

Regarding departures, two peak periods can be identified: in the morning, between 06:00 and 

07:00, and I the afternoon, from 18:00 to 20:00.  

http://www.dailysabah.com/
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Again, to verify the compliance between simulations’ output and the real schedule, figure 7.32 

and 7.33 provides, respectively: (i) the scatter plot which compares the STA (horizontal axis) 

for each aircraft against the ATA (vertical axis) during the simulation; (ii) the plot of the STD 

(x-axis) against the ATD in the simulation model (y-axis). In both cases, data present very strong 

positive correlation and the value of the coefficient of determination R2 is very high (0.9999 for 

arrivals and 0.9996 for departures). Thus, outputs confirm the goodness of fitness of the model 

and its ability of correctly reproducing real systems. 

 

Figure 7.29. Aircraft arrivals and departures 
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Figure 7.30. STA against ATA 

 

Figure 7.31. STD against ATD 

 

Figure 7.32. Effective Throughput Rate 
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The histogram in the figure above shows the Effective Throughput ETA,t for the entire 

simulation period, where ETA,t has been computed in accordance with Eq. 5.8: 

𝐸𝑇𝐴,𝑡 = ∑ 𝑛𝐷𝐸𝑃 + 𝑛𝐴𝑅𝑅

𝑡=1 ℎ𝑜𝑢𝑟

 [
𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡𝑠

ℎ𝑜𝑢𝑟
] (Eq. 7.25) 

The period of maximum throughput is between 18:00 and 19:00 AM, with approximately 35 

movements/hour. However, this value is pretty lower than the capacity of the airport CAP, equal 

to 54 movements/hour and shown in blue in the figure above. The Average Throughput Rate 

ATRA during the period of analysis is equal to:  

𝐴𝑇𝑅𝐴 =
∑ 𝐸𝑇𝑅𝐴,𝑡𝑇

𝑇
= 65% (Eq. 7.26) 

 

7.5.3. Disrupted scenario 

In the disrupted scenario, a power issue causes the complete closure of the airport for a period 

Td = 3 hours, from 10:00 in the morning to 13:00. During this period of time, the capacity of 

the airport is zero.  Thus, from the beginning of the disruption, flights cannot neither land or 

depart, causing several diversions (30 flights) and cancellations (5 flights) (see Table 7.13). 

When the disruption is cleared at 13:00 and operations start again, the flights which were not 

cancelled can take-off with some delays (10 flights). The total impact in terms of movements 

is then equal to: 

𝑇𝐼 = 𝑁𝐿 + 𝑁𝐷 + 𝑁𝐶 = 45 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 (Eq. 7.27) 

Table 7.13. Disrupted scenario output 

  Total Average St. Dev.   Impacted flights 

Departure delay (min) 987.58 98.76 22.38  NL 10 

Arrival delay (min) 314.65 28.60 7.48  NC 5 

Turnaround time (min) - 42.78 2.47  ND 30 

 

The total departure delay resulted from the simulation is equal to 987.58 minutes, with an 

average of almost 99 minutes. This value is in line with the delay information registered by 
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EUROCONTROL (1,012 minutes, see Table 7.1), with a slight variation of 3%. This result 

confirms the validity of the model and its capability of correctly reproducing the disrupted 

scenario. In terms of turnaround, no significant increase has been experienced by the and the 

Turnaround Loss TL is then equal to 0: 

𝑇𝐿 =
𝑇𝐴𝑇̅̅ ̅̅ ̅̅

𝐷 (𝑚|𝐽𝑚𝑃) − 𝑇𝐴𝑇̅̅ ̅̅ ̅̅  (𝑚|𝐽𝑚𝑃)

𝑇𝐴𝑇̅̅ ̅̅ ̅̅  (𝑚|𝐽𝑚𝑃)
= 0% (Eq. 7.27) 

  

 
Figure 7.33. Departure delay 

 

 
Figure 7.34. Cumulative departure delay 
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Figure 7.33 illustrates the delay per hour of simulation (in grey). During the closure (in red in 

figure), no delay is observed as the airport is closed and flights cannot depart. At the end of the 

disruption, flights start departing again and some delays are experienced. Knock-on delays are 

observable until 21:00, 8 hours after the end of the disruption, when the system returns to 

function normally. The total duration of the disruption is then equal to:  

𝑡𝑡 = 𝑡𝑑 + 𝑡𝑟 = 3 + 8 = 11 ℎ𝑜𝑢𝑟𝑠 (Eq. 7.28) 

The graph in figure 7.35 depicts the cumulative Effective Throughput Rate through the entire 

day of analysis in both the baseline (grey) and disrupted scenarios (blue). The figure below 

shows the same indicator, but on an hourly basis. From the latter figure, it is cleared that ET is 

equal to zero as long as the airport is closed. When operations start again, the Effective 

Throughout Rate is slightly higher than the baseline one, as aircraft (not cancelled nor diverted) 

that were scheduled to land or depart during the airport closure, at this point can perform such 

operations. The Capacity Loss CL is evaluated, as in the cases before, as the difference between 

the baseline Average Throughput Rate ATRA and the disrupted Average Throughput Rate ATRD 

during the entire simulation period:  

𝐶𝐿 = 𝐴𝑇𝑅𝐴(𝑡𝑡) − 𝐴𝑇𝑅𝐴,𝐷(𝑡𝑡) =
∑ 𝐸𝑇𝑅𝐴,𝑡𝑡𝑡

𝑡𝑡
−

∑ 𝐸𝑇𝑅𝐴,𝐷,𝑡𝑡𝑡

𝑡𝑡
= 0.46 − 0.35 = 

0.11 = 11% 

(Eq. 7.29) 

 

 

Figure 7.35. Cumulative Effective Throughput Rate 
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Figure 7.36. Effective Throughput Rate 

 

Also in this case, resilience and vulnerability indicators are evaluated to get synthetic measures 

of the consequences of the disruptive event and compare them with other scenarios. 

Vulnerability is then evaluated according to Eq. 5.32: 

𝑉𝐴,𝐷 = 𝛽𝐿𝑁𝐿 + 𝛽𝐷𝑁𝐷 + 𝛽𝐶𝑁𝐶 = 0.56 ∗ 10 + 0.42 ∗ 30 + 1 ∗ 5 = 23 𝑓𝑙𝑖𝑔ℎ𝑡𝑠 (Eq.7.30) 

Were weights 𝛽𝑖 are evaluated with respect to the cost of a cancelled flight COSTC (see Chapter 

4):  

𝛽𝐿 =
𝐶𝑂𝑆𝑇𝐿

𝐶𝑂𝑆𝑇𝐶
=

100 ∗ 𝐷𝐸𝐿̅̅ ̅̅ ̅𝐷𝐸𝑃

17,650
= 0.56 

𝛽𝐷 =
𝐶𝑂𝑆𝑇𝐷

𝐶𝑂𝑆𝑇𝐶
=

7,400

17,650
= 0.42 

𝛽𝐶 =
𝐶𝑂𝑆𝑇𝐶

𝐶𝑂𝑆𝑇𝐶
= 1 

The resilience is then evaluated as the difference between the baseline and disrupted Average 

Throughout Rate, both referred to the deviation time: 

𝑅𝐸𝑆 =
𝐶𝐿

𝑡𝑡
=

𝐴𝑇𝑅𝐴(𝑡𝑡)

𝑡𝑡
−

𝐴𝑇𝑅𝐴,𝐷(𝑡𝑡)

𝑡𝑡
∗ 100 =

0.11

11
∗ 100 = 1 

(Eq.7.31) 
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7.6. Discussion 

Different disruption scenarios have been simulated, each one belonging to one of the clusters 

considered in this work. The table below summarized the indicators obtained for each scenario, 

namely: (1) the duration of the disruption td; (2) the recovery time tr; (3) the total number of 

delayed, cancelled and diverted flights; (4) the total number of impacted flights; (5) the 

Capacity Loss CL; (6) the Turnaround Loss TL; (7) the vulnerability indicator and (8) the 

resilience indicator. 

Table 7.14. Results obtained for the four cases 

 
A B C D 

td [h]  7 2.5 8 3 

tr [h]  3 2.5 6 8 

tt [h] 10 5 16 11 

NL [flights] 131 17 50 10 

NC [flights]  0 0 65 5 

ND [flights]  31 0 0 30 

TI [flights]  162 17 115 45 

CL 0.11 0.12 0.08 0.11 

TL 0 0 1.12 0 

V [flights]  75 8 97 23 

RES 1.1 2.4 0.57 1 

 

Results show that each disruption impact in different ways. Specifically: 

• Only in the case of the disruption of Cluster C, turnaround operations are affected, 

while in the other cases operations are performed as in the base scenario; 

• The disruptions of cluster A provokes mainly delays and some diversion;  

• For the case of Cluster B, only a few flights are delays, and no cancellations and 

diversions occur; in this case, the remaining runways of the airport are capable of 

handling the scheduled traffic and reduce impacts.   
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• The disruption of cluster C cause principally cancellations; in fact, the increase in 

turnaround times is such that delays exceed the threshold of 3 hours considered in this 

work. This is also the scenario with the highest number of impacted flights; 

• Regardless of the cluster, in the four cases analysed the Capacity Loss, computed 

during the entire simulation period, is around 10%.  

In terms of vulnerability, the disrupted scenario with the highest value is the one of Cluster C 

(97), followed by the scenario of Cluster A (75). Recalling that the vulnerability indicator 

expresses the number of equivalent cancellations caused by the disruption, in these two 

scenarios monetary costs could be very high. The disruption of Cluster D, even if causing the 

complete temporary closure of the airport, have a vulnerability indicator quite lower (38). 

However, is would be highlighted that the vulnerability indicator expresses a quantity in 

absolute value and is not comparable with other cases; in fact, the number of impacted flights 

depend on the amount of traffic of the specific airport. For Cluster B, the vulnerability indicator 

is quite low (8), mainly because the number of impacted flights if quite low as well as the total 

delay, and no cancellations neither diversions occur.  

The different scenarios can be compared by means of the resilience indicators. The higher the 

value of the indicator, the higher the resilience of the airport system to the specific disruption. 

Among the four scenarios, the one with the highest value is Cluster B’s scenario, with a value 

of 2.4. In fact, this is the case with the lower number of impacted flights and the lower recovery 

time, especially if compared with the duration of the disruption. Conversely, the less resilient 

scenario is the one of Cluster C, with a value of 0.5. In this case, both the number of impacted 

flights and the recovery time is very high: the system takes 8 hours to recover, which is the 

same duration of the disruption. Regarding the remaining scenarios of Cluster A and Cluster D, 

the resilience indicator is approximatively the same – 1.1 and 1 respectively. Before it was 

stated that for Cluster D a relatively low value of vulnerability is obtained; however, impacts 

are quite spread among the day and the recovery time is very high (8 against the 3 hours of 

disruption). Thus, the resilience indicator takes into consideration also the recovery speed and 

in this case – due to both the type of disruption and the characteristics of the airport – is not too 

low. Specifically, it has the same value than Cluster A, which is one of the scenarios which 

experienced the highest delays and has the highest vulnerability value. 
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7.7. Simulation of disruptions from 2015 to 2018 

From the results presented above, it results that diverse disruptions affect different airport 

systems in certain ways. However, each case is particularly context-specific, and it is difficult 

to determine which variables influence resilience and vulnerability indicators. In other words, 

a high resilience may derive from the type of disruption or from the airport infrastructural 

characteristics, or from the number of operators and resources deployed. 

In order to look for a pattern in the trend of vulnerability and resilience indicators, the 

simulation model has been used to investigate additional disruptions and different airport. 

Specifically, the simulation model has been applied to all the airport disruption occurred from 

2015 to 2018 in Europe, and registered by EURCONTROL (see Chapter 4), which caused more 

than 1,000 minutes of ATFM delay.   

For each of the disruption, EUROCONTROL’s reports provide, in addition to the date and 

airport of the disruption, the total departure delay for the specific disruption. However, the 

following variables are necessary to use the simulation model: 

1) The duration of the disruption; 

2) The capacity reduction caused (depending on the Cluster) 

3) The time of the day in which the disruption starts. 

These data have been retrieved by searching online information regarding the specific 

disruption. In many cases, it was possible to find the necessary data. Once find the required 

input, the simulation model was validated by comparing the total departure delay obtained from 

the simulation with the total departure delay provided by EUROCONTROL.  

Sometimes, one or two of the three information were not available. In these cases, the 

simulation was run iteratively by changing the unknown variable, until convergence of the total 

departure delay from simulation’s output and EUROCONTROL’s reports. If none of the 

variable was known, the disruption has not been simulated.  

At the end, a total of 135 disruption events have been simulated, including disruptions of 

different types and more 50 different airports. Figure 7. Shows the scatter plot of the total 

departure delay obtained from the various simulations against the total departure delay provided 

by EUROCONTROL. By performing a simple linear regression, it results that data present a 

quite strong positive correlation and the value of the coefficient of determination R2 is 

acceptably high (0.9372). 
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Figure 7.37. Scatter plot of the total delay obtained from the simulations and data provided by 

EUROCONTROL 

 

By performing these disruptions’ simulations, it was thus possible to build a database which 

includes information about the airport (number of runways, stands, movements per year, 

number of ground handlers), information regarding the disruption (duration, type, cluster) and 

results obtained from the simulation (total impact, resilience and vulnerability indicator). Table 

6 above shows the characteristics included in the database.  

Table 7.15. Information contained in the database 

AIRPORT DISRUPTION SIMULATIONS’ RESULTS 

Name Type Total departure delay [min] 

Movements/year Cause Average departure delay [min] 

N° of runways Cluster NL, ND, NC 

N° of aircraft parking stands Reduced capacity TI 

Declared capacity td Vulnerability V 

N° of ground handlers  Resilience RES 

 

The graphs in figures 7.38 And 7.39 show the vulnerability and resilience indicators per cluster 

obtained from the 135 simulations. In the majority of cases, the vulnerability indicator is 

between 5 and 25 flights (more than 50%), while a few cases present a vulnerability very high 
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(higher than 100). Regarding the resilience, the most of scenarios have a resilience lower than 

1 (45%). The highest values of resilience are obtained for cluster D (in yellow in figure). The 

complete database, containing the afore-mentioned information, is provided in Appendix B.  

 

 

Figure 7.38. Vulnerability values obtained 

 

 

Figure 7.39. Resilience values obtained 
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8. DISRUPTIONS UNCERTAINTY: A BAYESIAN NETWORK 

APPROACH 

8.1. Introduction 

As mentioned before in Chapter 6, airport systems are characterized by intrinsic uncertainties 

and dynamics which makes airside operations a stochastic phenomenon. This stochasticity is 

even more emphasized when affected by unexpected disruptive events, which are not possible 

to predict and may negatively influence the performance in different ways.  

The methodology presented and detailed in previous Chapters, enabled to obtain vulnerability 

and resilience indicators for a large number of disruption cases, affecting different airports with 

different characteristics. The simulation model allows to take into consideration the inherent 

dynamics and uncertainties of the considered system and the propagation of delays throughout 

the operations. The methodology can be successfully used to determine the total performance 

loss over the entire disruption period, as well as the vulnerability of the system and the recovery 

time. However, in order to plan strategies to reduce such impacts, it should be advisable to 

determine which elements – processes and variables – in the system are the most critical, i.e. 

those causing the highest consequences on the overall functioning of the airside system. Those 

elements should be the ones to monitor the most, and over which deploy the highest number of 

(limited) resources. In order to determine such elements, it is fundamental to understand the 

causal relations between the variables and elements involved in the processes, related to both 

the disruption and the airport system.  

To fill this gap, a method was sought which could determine the probability of the impacts that 

a disruption might cause on a generic airport, depending on variables related to both the airport 

and the disruption type and duration. Given the uncertainty of airport operations and disruptions 

and the intrinsic stochasticity in the disruption management, the most effective method was 

found in Bayesian Networks. Thus, in the following, a quantification of airport vulnerability 

and resilience by using Bayesian Networks is proposed.  

Bayesian networks (BNs) are graphical probabilistic models which can deal effectively with 

various uncertainty problems. BNs are a type of probabilistic graphical models that aims at 

representing the interactions among a set of correlated variables in the form of conditional 

dependence (and often causation) by using Bayesian inference for probability computation. 

Structured on Bayes’ theorem, they are an excellent tool for computing the posterior probability 
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distribution of unobserved variables conditioned on some variables that have been observed, 

encoding both quantitative and qualitative information in a conditional probability format 

(Holmes & Jain, 2008). The structure of a Bayesian network graphically and intuitively 

represents problems where uncertain variables are modelled as nodes and edges between them 

represent their conditional dependence. Their construction allows to combine data and expert 

judgement and inference can be performed efficiently even in models with a large number of 

variables.  

Bayesian networks are effective tools for a wide range of tasks, including prediction, diagnostic, 

risk assessment, automated insight and, more in general and more importantly, for reasoning 

and decision making under uncertainty (Neil et al., 2005). They have found popularity in a 

plethora of disciplines including finance (Habrant, 1999), medicine (Lucas, 2001), law (Vlek 

et al., 2014), reliability engineering (Neil, 2014). They have been deployed in various studies 

regarding infrastructure system reliability (Kabir et al., 2015; Sutrisnowati et al., 2015). Several 

applications can be found in the context of accident analysis (Gregoriades & Mouskos, 2013; 

Mujalli & De Oña, 2011; De Oña et al., 2011).  

In the context of air transport operations, they have previously been applied to cope with 

different air transport issues, such as the airport operational saturation (Rodríguez-Sanz et al., 

2018b), efficiency of air navigation service providers (Bujor & Ranieri, 2016), delay 

propagation (Laskey et al., 2006) and safety (Morales et al., 2008); (Rodríguez-Sanz et al., 

2019) use BNs to assess airport arrivals and departures delays; (Liu et al., 2008) use BNs to 

explain how subsystem levels causes propagate to provoke system level effects. Despite the 

prominent popularity in a large variety of studies, BNs have found little application in resilience 

modelling. For example, (Hossain et al., 2019) utilize BNs to address a range of possible risks 

to the electrical power system and its independent networks. In (Hosseini & Barker, 2016), a 

quantification of resilience is proposed in the context of inland waterway ports.  

In this study, a Bayesian Network approach is employed to create a probabilistic graphical 

model which represent the relation between factors influencing airside vulnerability and 

resilience. By using BNs, it is possible to develop a probabilistic approach to manage 

uncertainty and assess decision-making, which is consistent with the treatment of stochastic 

processes.  

Bayesian Networks are considered to be an excellent method to assess the resilience of airport’s 

airside resilience for multiple reasons. First of all, BNs allows to model the causal dependencies 
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between the various variable involved and their related uncertainties, thus obtaining valuable 

insights about the interrelationships among all the factors influencing airside disrupted 

performance as well as vulnerability and resilience. Secondly, they allow to predict the 

probability of the consequences of a disruption, given specific evidences. In fact, BNs aggregate 

the uncertainty from multiple sources for the purpose of managing the system performance and 

predict the most probable outcome. In our study, the variables to be predicted are the disrupted 

performance and vulnerability and resilience indicators. Different disruptive scenarios can be 

simulated in a fast manner, and a sensitivity analysis of parameters can be performed.  

 

8.2. Reasoning under uncertainty 

The motivation for constructing a Bayesian network is typically to automate some recurring 

tasks involving reasoning and decision making under uncertainty, possibly involving extraction 

of information and knowledge from data.  

They are methods to quantify uncertainty by probability. It is quite important to understand the 

meaning of probability. There are three fundamental interpretations of probability: frequentist 

interpretation, propensity interpretation and subjectivist interpretation.  

In the frequentist interpretation, the probability of an event is defined as the limiting frequency 

of occurrence of this event in an infinite number of trials. For example, the probability of 

obtaining tails in a single coin toss is the proportion of tails in an infinite number of coin tosses.  

According to the propensity interpretation the probability of an event is determined by physical, 

objective properties of the object or the process generating the event (Popper, 1959). For 

example, the probability of tails in a single coin toss is determined by the physical properties 

of the coin, such as its two sides and its flat symmetric shape. 

The two above-mentioned views of probability are known as “objectivist” as they assume that 

the probability is an objective property of the physical world. In these interpretations, in order 

for probability to be a meaningful measure of uncertainty, processes are or have to be imagined 

as repetitive in nature. However, this is not practical for the majority of real-world applications 

and for sufficiently complex processes.  

The subjectivist interpretation overcomes these drawbacks: in this view, also known as 

Bayesian interpretation or approach, probability of an event is subjective to the personal 

measure of belief in that event occurring (Hájek, 2012).  
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In the subjectivist view, probability is interpreted as a measure of personal belief; it is thus 

legitimate to believe that the probability of heads in a single coin toss is 0.3, just as it is 

legitimate to believe that it is 0.5. Furthermore, this measure, a personal belief in the event, can 

vary among various individuals. Even if this interpretation seems to be too loose, this view 

comes with a rule – known as Bayes’ Theorem - for updating probability in light of new 

observations. It has been proved that if Bayes theorem is used for updating the degree of belief, 

this degree of belief will converge to the limiting frequency regardless of the actual value of 

the initial degree of belief. The subjectivist view makes it natural to combine frequency data 

with expert judgment. This is the interpretation in which Bayesian Networks trace their roots.  

 

8.3. Bayesian Networks 

Bayesian networks (also called belief networks, Bayesian belief networks, causal probabilistic 

networks, or causal networks) are directed acyclic graphs (DAG) in which nodes represent 

random variables and arcs represent direct probabilistic dependences among them (Pearl, 2011).  

The graph in figure 8.1 represent a generic of Bayesian network with four variables. The 

structure of the direct graph gives the qualitative part of the BN and indicates relationship 

between variables: if an arc exists going from variable X1 to variable X2, then the value of X2 

depends on the value of X1. Nodes from which arcs depart are called “parent” nodes, while 

nodes with edges directed into them are called “child” nodes. In the example network (figure 

8.1), there is an arc from node X1 to node X2, thus X1 is called parent of X2. Nodes without arcs 

directed into them are called “root” nodes (node X1 in the figure below), while nodes without 

a child are referred to as “leaf nodes” (node X4 in the same figure). Cycles in the graphs – i.e. 

directed paths that start and end at the same point – are forbidden.  

Although the graphical structure of the BN provides relevant information regarding the 

relations between variables, it does not tell much regarding its numerical properties.  

The quantitative part of the BN is given by the relations between variables and the 

corresponding states. The relations between variables are encoded in the form of conditional 

probability distribution matrices (equivalent to the factors in the factorized form), called 

conditional probability tables (CPTs), that are associated with the nodes. The Bayesian network 

then represents the joint probability distribution over the variables of the graph, by taking 

advantage of conditional independence.  
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Figure 8.1. Example of Bayesian Network 

 

Every joint probability distribution over n variables can be factorized in n! ways and written as 

a product of probability distributions of each of the variables conditional on other variables. For 

example, in a BN consisting of four variables X1, X2, X3, X4 the joint distribution of these four 

variables can be factorized in 4!=24 ways, for example: 

𝑃(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 𝑃(𝑋1|𝑋2, 𝑋3, 𝑋4) ∗ 𝑃(𝑋2|𝑋3, 𝑋4) ∗ 𝑃(𝑋3|𝑋4) ∗ 𝑃(𝑋4) (Eq. 8.1) 

𝑃(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 𝑃(𝑋2|𝑋1, 𝑋3, 𝑋4) ∗ 𝑃(𝑋1|𝑋3, 𝑋4) ∗ 𝑃(𝑋3|𝑋4) ∗ 𝑃(𝑋4) (Eq. 8.2) 

𝑃(𝑋1, 𝑋2, 𝑋3, 𝑋4) = 𝑃(𝑋3|𝑋1, 𝑋2, 𝑋4) ∗ 𝑃(𝑋1|𝑋2, 𝑋4) ∗ 𝑃(𝑋2|𝑋4) ∗ 𝑃(𝑋4) (Eq. 8.3) 

And so forth. Each of these factorizations can be represented by a Bayesian network, where 

arcs between variables represent each of the conditional probability distributions, i.e. arcs from 

X2 and X4 to X1 represent 𝑃(𝑋1|𝑋2, 𝑋4). It is worth noticing that there will always be root nodes 

in the network, i.e. nodes without predecessors. These nodes are characterized by their prior 

marginal probability distribution. Any probability in the joint probability distribution can be 

determined from these explicitly represented prior and conditional probabilities. 

For a generic Bayesian network with n nodes, the joint distribution of n variables can be 

expressed as:  

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛)

= 𝑃(𝑋1| 𝑋2, 𝑋3, … , 𝑋𝑛) ∗ 𝑃(𝑋2| 𝑋3, 𝑋4, … , 𝑋𝑛) ∗ …

∗ 𝑃(𝑋𝑛−1| 𝑋𝑛)𝑃(𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑋𝑖+1, … , 𝑋𝑛)

𝑛

𝑖=1

 

(Eq. 8.4) 
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Now, suppose that it is known that the variable X1 and X4 are independent of each other. 

Whereas an arc in a Bayesian Network denotes an influence, every independence between a 

pair of variables results in a missing arc; formally:  

𝑃(𝑋1| 𝑋4) = 𝑃(𝑋4) (Eq. 8.5) 

Using independencies to simplify the graphical model is a general principle that leads to simple, 

efficient representations of joint probability distributions, and is one of the key features of 

Bayesian Networks. Hence, Eq. 8.4 can be further simplified by knowing the parents of each 

node. In fact, only parents of Xi affect the occurrence of Xi: 

𝑃(𝑋1, 𝑋2, … , 𝑋𝑛) = ∏ 𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖))

𝑛

𝑖=1

 (Eq. 8.6) 

Where 𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖) denotes parent nodes of node 𝑋𝑖. That is, each node is associated with a 

probability function that takes as input a particular set of values for the node’s parents, and 

gives, as output, the probability distribution of the variable represented by the node.  

Consequently, a Bayesian network is a pair (G,P) where G is the DAG defined on a set of n 

nodes X1 and  

𝑃 = {𝑃(𝑋𝑖|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑖), … , (𝑋𝑛|𝑃𝑎𝑟𝑒𝑛𝑡𝑠(𝑋𝑛)} (Eq. 8.7) 

Is a set of n Conditional Probability Densities, one for each variable, expresses in the form of 

Conditional Probabilities Tables (CPT). In a CPT, the rows correspond to states of the random 

variable modelled by the node; each column corresponds to one combination of outcomes of 

the parents. An example of CPT is shown in Figure 8.2 for the Apple Jack network (Kjaerulff 

& Madsen, 2008).  

 

 

Figure 8.2. Example of CPT table. Source: (Kjaerulff & Madsen, 2008) 
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Although it is not necessary, a popular and convenient view of Bayesian Networks is that they 

mimic causal dependence between nodes of the modelled domain. Whereas the structure is 

causal, it may give valuable insights into the interactions among the variables that it models and 

allows for prediction of effects of external manipulation. In this perspective, BNs are causal 

graphs in which every arc represents a direct causal influence between the variable that it 

connects: a direct arc from X1 to X2 imply that X1 is a causal factor of X2. Lack of arcs between 

pairs of variables simply expresses the fact that there is no causal influence between them.  

 

8.4. Bayesian Inference 

Bayesian Networks, along with the conditional probability tables associated with their nodes, 

allow for probabilistic reasoning within the model, i.e. reasoning within the BN when an 

evidence is observed. A node that have been observed is referred to as “evidence” node, which 

means that its outcome is known with certainty. The evidence node has an impact and update 

on the states of other variables in the network, modifying the probability distribution of other 

nodes that are probabilistically related to the evidence.  

The impact can be evaluated by using Bayesian Inference, i.e. computing the impact of 

observing a value of a subset of the model variables on the probability distribution over the 

remaining variables. Bayesian inference, also referred to as Bayesian updating or belief 

updating, derives the posterior probability as a function of a prior probability and a “likelihood 

function”. Bayesian updating, to compute posterior probabilities, is based on a theorem 

proposed by Rev. Thomas Bayes (1702-1761) and known as Bayes theorem. Bayes theorem 

derives the probability of an event A based on prior knowledge, i.e.:  

𝑃(𝐴|𝐵) =
𝑃(𝐵|𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
 (Eq. 8.8) 

Where B is the evidence and P(B) its marginal probability, P(A) is the prior probability of the 

variable that may be affected by the new observation and P(B|A) is the conditional probability 

of B given A.  

Belief updating in Bayesian networks is computationally complex (Cooper, 1990). There exist 

several efficient algorithms, however, that make belief updating in graphs consisting of tens or 

hundreds of variables tractable. In general, Bayesian inference techniques can be classified in 

two different types: 
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1) Exact inference algorithms; 

2) Approximate inference algorithms.  

Exact inference algorithms try to derive the exactly posterior probability and they include, 

among others, the message-passing scheme proposed in (Pearl, 1986), the polytree algorithm 

(Pearl, 2011), the clustering algorithm (Dawid, 1992; Lauritzen & Spiegelhalter, 1988), the 

relevance-based decomposition (Lin & Druzdzel, 1997). Among those, the clustering algorithm 

is one of the faster exact algorithms. It works in two phases: first, a directed graph is compiled 

into a junction tree, then probability updating is performed in the junction tree. The clustering 

algorithm, like all of the algorithms for Bayesian networks, produces marginal probability 

distributions over all network nodes. 

However, for very complex graphical models, the time of exact inference becomes prohibitive. 

In such cases, efficiency can be improved by using approximate inference techniques, which 

are very effective for particular families of graphical models. Approximate inference includes 

stochastic simulation and sampling methods. 

Approximate algorithms are based on Monte Carlo simulation, in which the model is run 

through individual trials involving deterministic scenarios. The final result is based on the 

number of times that individual scenarios were selected in the simulation. Approximate 

algorithms include, among others, probabilistic logic sampling algorithm (Henrion, 1988); 

likelihood sampling (Fung & Chang, 1990); backward sampling (Fung & Favero, 1994); EPIS 

(Estimated Posterior Importance Sampling) sampling (Yuan & Druzdzel, 2003). 

Review of Bayesian inference algorithms’ can be found in (Henrion, 1990; Huang & Darwiche, 

1994; Lin & Druzdzel, 1997). 

 

8.5. Building a Bayesian Network 

As described above, a Bayesian network can be described in terms of qualitative components 

(DAG) and a quantitative component (CPTs).  

The construction of a Bayesian network model thus consists of the following steps. First, given 

the problem, the relevant variables have to be identified and the (causal) relations among them: 

the resulting DAG specified dependencies and independencies among variables. This phase is 

referred to as structure learning. In the second phase, given the structure of the BN, relations 
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between variables are described quantitatively, determining Conditional Probabilities Tables 

for each node. This process is called parameters learning. 

Both the structure and the numerical parameters of a Bayesian network can be elicited in 

different ways. BNs can be constructed manually or automatically from data, or through a 

combination of a manual and data driven process, in which information extracted from 

databases is blended with experts’ knowledge regarding both structure and parameters. Once 

constructed, parameters of the BN can be continuously updated in the light of new information. 

In this work, a preliminary Bayesian Network will be built from an external database, and then 

adjusted, based on model assumptions’ and expert knowledge, in order to induce a 

representative model of the underlying process.  

In the following Sections 8.5.1 and 8.5.2 the existing methods to learn both the structure and 

the parameters from data will be described.  

 

8.5.1. Structure learning from data 

Once relevant variables are identified and their domain established, the relations between the 

variables are elicited, obtaining a DAG. Structure learning from data is the task of inducing the 

graph – i.e. the structure – of a Bayesian network from a source of data (database).  

There exist different classes of algorithms for learning the structure of a Bayesian network, such 

as search-and-score algorithms and constraint-based algorithms, as well as combinations of 

both. The majority of algorithms are capable of structural learning only if all variables are 

discrete. In the following, the principal and most used algorithms are briefly described.  

The Bayesian Search structure learning algorithm is one of the earliest and the most popular 

algorithms used. It was introduced by (Cooper & Herskovits, 1992) (and follows a hill climbing 

procedure with random restarts. The algorithm produces the DAG that gives the maximum 

score, which is proportional to the probability of the data given the structure.  

The PC structure learning algorithm is one of the earliest and the most popular algorithms. It 

uses independences observed in data (established by means of classical independence tests) to 

infer the structure that has generated them (Spirtes & Meek, 1995). This is the only algorithm 

which allows for learning the structure when all variables are continuous. 

The Greedy Thick Thinning (GTT) structure learning algorithm is based on the Bayesian Search 

approach. GTT starts with an empty graph and repeatedly adds the arc (without creating a cycle) 
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that maximally increases the marginal likelihood until no arc addition will result in a positive 

increase (Chen et al., 1997). Then, it repeatedly removes arcs until no arc deletion will result in 

a positive increase in marginal likelihood.  

The Tree Augmented Naive Bayes (TAN) structure learning algorithm is a semi-naive structure 

learning method based on the Bayesian Search approach (Friedman et al., 1997). The TAN 

algorithm starts with a Naive Bayes structure (i.e., one in which a chosen class variable is the 

only parent of all remaining, feature variables) and adds connections between the feature 

variables to account for possible dependence between them, conditional on the class variable. 

However, it should be highlighted that none of the algorithms allows for learning from data 

with constant values or from a mixture of discrete and continuous variables, so if there is a 

discrete variable in the learning set, it is necessary to discretize all continuous variables. 

Moreover, only the Naive Bayes algorithm is capable of learning the structure of a model when 

there are missing values in the records.  

 

8.5.2. Parameters learning from data 

Parameters estimation in a BN is the task of estimating the conditional probability distributions 

for the given structure from a database. Parameter estimation is usually performed by using the 

Expectation-Maximization (EM) algorithm (Lauritzen, 1995). The EM algorithm calculate the 

maximum likelihood (ML) and maximum a posterior estimates (MAP) by iterating two steps: 

the expectation E-step and the maximization M-step. The premise of the Maximum Likelihood 

approach to find parameters that maximize the likelihood (or probability) of the observed data.  

The EM algorithm starts with randomly assigning an initial configuration 0 to the parameters 

of the system. The E-step consists of computing the expected value of the log-likelihood 

function of  with respect to the current set of observed data X and the current estimates of the 

parameters t: 

𝑄(𝜃|𝜃𝑡) = 𝐸𝑋,𝜃𝑡[log 𝐿(𝜃, 𝑋, 𝑍)] (Eq. 8.9) 

Then, the M-step computes the parameters that maximize 𝑄(𝜃|𝜃𝑡): 

𝜃𝑡+1 = argmax 𝑄(𝜃|𝜃𝑡) (Eq. 8.10) 

These two steps are repeated iteratively until convergence or until a maximum number of 

iterations is reached.  
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8.6. Construction of the Bayesian Network 

In this work, the Bayesian Network has been constructed by using the software GeNie1.  GeNie 

Modeler is a development environment for building graphical decision-theoretic models 

(https://www.bayesfusion.com/genie/). The software was created and developed by the 

University of Pittsburgh, between 1995 and 2015. GeNIe has been originally developed to be 

principally a teaching and research tool in academic environments; nowadays, because of its 

reliability and versatility, it has become very popular for both academic and commercial users.  

To build the Bayesian Network, a data-driven modelling approach has been adopted. The data-

driven process is composed of two phases. In the first one, the structure and parameters of the 

network are learnt from a source of data (database). In the second phase, the model is adjusted 

in accordance with model’s assumptions and expert knowledge. Once the network has been 

constructed and validated, some evidence can be propagated, and observations can be derived. 

The data-driven modelling approach is illustrated in figure 8.3.  

 

 

Figure 8.3. Phases of the BN modelling 

 

The first step in the construction of the Bayesian Network is to select the variables of interest, 

that will constitute the nodes of the BN. In this case, variables of interest are those which may 

influence the airside airport performance when affected by certain types of disruption and 

consequently the system’s vulnerability and resilience. The choice of the variables to be 

included in the Bayesian Network derives from several discussions with expert of the field, 

including both airport operators and academics.  

 
1 Available free of charge for academic research and teaching use from BayesFusion LLC, 

https://www.bayesfusion.com/ 

https://www.bayesfusion.com/genie/
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As a result, three main groups of variables have been chosen. The first one is related to the 

airport characteristics and include; number of runways, declared capacity, movements per day, 

number of aircraft parking stands and ground handlers. The second group includes variables 

describing the disruption, i.e. the cluster, the cause, the duration and the capacity reduction 

imposed on the system. The last group of variables is related to the impacts caused by the 

disruption, namely the number of delayed, cancelled and diverted flights, the total departure 

delay and the Capacity Loss (CL) provoked. Moreover, two additional variables are considered, 

i.e. the vulnerability and resilience indicator. In this case, 17 variables have been chosen, and 

they are illustrated in Figure 8.4. 

 

 

Figure 8.4. Variables included in the Bayesian Network 

 

The database used to build the Bayesian Network in built from the disruption’s database 

described in Section 7.8, which was developed for the 135 disruptions which affected European 

airports in the last years. The database includes all the variables needed to build the network.  

Then, as second step, a correlation matrix has been generated for the variables involved, in 

order to assess the correlation between them. The correlation matrix can be seen in figure 8.5, 

where strong positive correlations are shown in green, while strong negative correlations are in 

red. The strength of the correlation is indicated by the length of the bar.  
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Figure 8.5. Correlation matrix 
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It is possible to notice that variables indicating airport characteristics (runways, 

movements/day, aircraft parking stands and declared capacity) are strongly positively 

correlated. Also the number of delayed flights NL strictly depends on the dimension of the 

airport (number of movements and capacity) and on the total delay, as it was reasonable to 

expect. Besides, the duration of the disruption td presents a strong negative correlation with 

respect to airport related variables. These information regarding the correlation between 

variables (or information regarding no correlation between variables) will be used while 

defining the structure of the Bayesian Network.  

Subsequently, a data-driven process was used to build the BN, by means of the Bayesian Search 

Algorithm (BS), which was described in previous Section. The BS algorithm produced a 

preliminary graph, which was then adjusted by means of expert’s knowledge. Then, parameters 

learning was performed by means of the EM algorithm (described in Section 8.5). In order to 

verify the goodness of the model, it was validated by using cross-validation. The network was 

iteratively refined until an acceptable level of accuracy was reached.  

The Bayesian Network obtained is shown in figure 8.6 and 8.7. Two different types or node are 

used. Chance nodes, drawn as circles or ovals (such as nodes Runways and Cluster) are random 

variables and they represent uncertain quantities that are relevant to the decision problem. They 

are quantified by conditional probability distributions. Equation nodes are continuous chance 

nodes, whose interaction with their parents can be described by means of an equation. Equation 

nodes are drawn as ovals with a wave symbol (such as node Resilience), denoting that they can 

take continuous values. Instead of a conditional probability distribution table, which describes 

the interaction of a discrete node with its parents, an equation node contains an equation that 

describes the interaction of the equation node with its parents. The equation can contain noise, 

which typically enters the equation in form of a probability distribution. 

Variables belonging to the same group are coloured the same: nodes referring to airport 

characteristics are all green, nodes related to the disruption are blue-coloured and nodes 

referring to the disruptions’ impact are in orange. The thickness of the edges symbolizes the 

strength of influence between the nodes that they connect. In figure 8.7, the strength of influence 

is evaluated by measuring the Euclidean distance between the conditional probability 

distributions of each pair of nodes.   
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Figure 8.6. Bayesian Network for resilience evaluation 

 

State1 10%

State2 26%

State3 32%

State4 25%

State5 7%

ï»¿RUNWAY

s01_below ... 5%

s02_17_27 15%

s03_27_34 3%

s04_34_46 17%

s05_46_57 14%

s06_57_72 11%

s07_72_86 10%

s08_86_98 8%

s09_98_116 14%

s10_116_up 4%

DECLARED_CAPAC...

s01_below ... 7%

s02_125_2... 18%

s03_215_3... 7%

s04_300_5... 14%

s05_505_7... 17%

s06_705_8... 7%

s07_825_9... 6%

s08_925_1... 6%

s09_1100_... 7%

s10_1250_... 12%

MOV_DAY

s01_below ... 1%

s02_10_34 19%

s03_34_58 9%

s04_58_87 11%

s05_87_121 31%

s06_121_1... 11%

s07_154_1... 5%

s08_182_2... 6%

s09_209_2... 4%

s10_261_up 4%

AIRCRAFT STANDS

State1 3%

State2 34%

State3 17%

State4 25%

State5 20%

GH

Extreme_w ... 4%

Incident 10%

Industrial_a... 8%

Infrastrucu ... 12%

Security_r ... 12%

Technical_ ... 54%

DISRUPTION_CAUSE

A 50%

B 21%

C 13%

D 16%

CLUSTER

s01_below ... 19%

s02_0_0 4%

s03_0_0 15%

s04_0_0 8%

s05_0_0 14%

s06_0_0 14%

s07_0_0 11%

s08_0_0 11%

s09_0_0 1%

s10_0_up 3%

REDUCED_CAPACITY

s01_below ... 11%

s02_01 17%

s03_015 14%

s04_02 11%

s05_025 9%

s06_03 10%

s07_035 8%

s08_04 7%

s09_045 6%

s10_05 9%

CL

s01_below ... 13%

s02_1850_... 11%

s03_2832_... 10%

s04_3824_... 9%

s05_4933_... 11%

s06_7100_... 9%

s07_7964_... 9%

s08_9561_... 9%

s09_12105... 9%

s10_19605... 10%

TOT_DELAY

s1_below _5 19%

s2_5_50 23%

s3_50_100 20%

s4_100_15020%

s5_150_up 18%

NL

s1_below _5 24%

s2_5_50 20%

s3_50_100 19%

s4_100_15018%

s5_150_up 19%

NC

s1_below _5 21%

s2_5_50 21%

s3_50_100 19%

s4_100_15020%

s5_150_20020%

ND

s01_below ... 17%

s02_1_2 17%

s03_2_4 16%

s04_4_6 18%

s05_6_8 16%

s06_8_up 16%

Tr

s01_below ... 17%

s02_3_6 17%

s03_6_9 16%

s04_9_12 16%

s05_12_15 16%

s6_15_up 17%

Td

0 20

5%

10%

10

TOTAL_IMPACT

0 40

5%

10%

10 20 30

Tt

0 700

5%

10%

100 200 300 400 500 600

VULNERABILITY

0 4000

10%
20%
30%
40%

1000 2000 3000

RESILIENCE



155 
 

 

Figure 8.7. Strength of influence in the BN 

 

Figure 8.8 shows two ROC Curves (Receiver Operating Characteristic) which expresses the 

quality of the model by plotting the true positive rate against the false positive rate at various 

thresholds. The best predictability is obtained when the curve reaches the upper left corner of 

the graph. However, points above the diagonal line represent good accuracy results. Above the 

curve, the Area Under the ROC Curve (AUC) is displayed, which is a simple indicator which 

expresses the quality of the model. Each ROC refers to one state of one variable. In the figure 

8.8, ROC curves are shown for predicting (a) the value of CL between 0.15 and 0.20 and (b) 

the value of the total departure delay between 7100 and 7964 minutes.   

Once built the Bayesian Network, it can be used as a decision-making tool for disruption 

management. It allows to predict resilience and vulnerability values by setting the probability 

of having a certain configuration.  
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Figure 8.8. ROC curves for specific states of (a) CL and (b) TOT_DELAY 
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9. CONCLUSIONS 

The efficiency of airport operations is often compromised by unplanned disruptive events of 

different kinds, such as bad weather, strikes or technical failures, which negatively influence 

the punctuality and regularity of operations, causing serious delays and congestion. The 

research field related with the risk of severe air transport network disruptions and their impact 

on society is related to the concepts of “vulnerability” and “resilience”.  

The aim of this work was to provide a framework that allows to evaluate the performance losses 

and consequences due to unexpected disruptions on airport airside operations and determine 

the resilience and vulnerability of the system. Resilience describes the ability of a system to 

cope with such circumstances and recover from them, while vulnerability refers to the impacts 

of unexpected disruptive events that could undermine the whole system. 

Resilience is a concept which has been largely addressed in the past few years, and several 

qualitative and some quantitative interpretations have been proposed, without reaching an 

unambiguous definition. Among all the different definitions, what is clear is that resilience 

consists of several capacities and properties which allows the system to cope with unexpected 

disruptions. Specifically, a resilient system has both the capacity of minimizing the impacts of 

a disruption and the ability to recover to the fully operational level within the shortest time 

possible. Regarding airport airside operations, resilience is a topic which has not been 

adequately addressed in the literature. Only a handful of studies tried to determine the impacts 

caused by an unexpected disruption on airside operations, however restricting the analysis to 

specific processes or disruptions.  

This thesis builds on existing literature by proposing a general framework to evaluate resilience 

and vulnerability indicators which considers in a comprehensive way all main airside processes, 

including their stochasticity and dynamics; such framework could be easily applied to airport 

with different characteristics and different types of disruptions. Resilience has been here 

defined as the “airport’s ability, during and immediately after the occurrence of a disruptive 

event, to reduce efficiently both the magnitude and duration of the deviation from targeted 

operational performance levels”, while vulnerability indicates the magnitude of the impacts 

caused by the disruption. In accordance with these definitions, resilience and vulnerability 

indicators has been defined which depend on the loss of capacity during the disruption. 

Vulnerability has been evaluated as the number of equivalent cancelled flights during the 

disruption, where delayed, cancelled and diverted flights have been weighted based on their 
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costs; besides, the resilience indicator is a function of both loss of runway throughput and the 

recovery time.  

Airside operations have been modelled as a function of the available resources and taking into 

consideration their stochastic and time-varying nature, which create a set of dynamics that 

influence the way the system evolves over time. Four clusters of disruptions have been 

modelled, depending on the operations directly affected. The impacts caused on airside 

operations are evaluated by using a stochastic simulation model that allows to determine the 

propagation of delays throughout the simulation period. The simulation model generates 

outputs of time-dependent measures of performance at different levels and allows to determine 

delays and the recovery time of the system. The vulnerability and resilience indicators obtained 

allow to compare different disruption scenarios and assess the difference among the responses 

of different airports with different characteristics.  

The simulation model can be successfully used to determine the total impact of a disruption as 

a function of time. However, in order to develop strategies to mitigate such negative 

consequences, it is essential to determine which processes are the most critical and causing the 

highest impacts on the overall performance. In this sense, it should be advisable to understand 

the causal relationships between the involved variables, in order to determine elements on 

which invest or to monitor the most.  

Thus, a quantification of airport vulnerability and resilience of airport airside operations by 

using Bayesian Networks is proposed, in order to determine the probability of the impacts that 

a disruption of a certain type might cause on a generic airport. The use of Bayesian Networks 

allows, on one side, to understand the causal relationships between the variables involved and 

the consequences of an unexpected disruption; on the other side, such tool can be used to predict 

the impacts of certain types on disruptions.  

Bayesian Networks allows to combine historical data and expert knowledge, using calculation 

of prior and posterior conditional probability. They provide a rigorous tool for handling decision 

making under uncertainty, which is the case of airport disruptions. Moreover, BNs have the 

advantage to graphically represent the dependences among the variables in the system. 

Although Bayesian Networks have proven to be useful in a number of fields, their application 

to quantify resilience is still limited. The Bayesian Network has been built by means of a data 

driven process, in which information extracted from databases is blended with experts’ 

knowledge regarding both structure and parameters. The variables included in the network 



159 
 

express airport features, disruption characteristics and parameters related to the impacts of the 

disruption, such as the total departure delay and the loss of capacity, as well as resilience and 

vulnerability indicators. Once built the Bayesian Network, it can be used as a decision-making 

tool for disruption management: it allows to determine the strength of influence of the different 

airport elements on the resilience/vulnerability of the system, and allows to predict (i.e. 

determine the effects) resilience and vulnerability values by setting the probability of having a 

certain configuration. Then, it can be used to determine the elements on which invest resources 

– which are limited in number – in order to increase the resilience of the system.  

Summarizing, the main contributions of this thesis to existing literature are the following: 

• First, the methodological approach proposed is based on a simulation model in which the 

uncertainty and stochastic nature of in airside processes is taken into consideration, thus 

allowing to evaluate knock-on delays as a function of the amount of the available 

resources;  

• Second, this thesis addressed the topic of resilience in airside operations which has not 

been adequately addressed in the literature, despite the importance of the topic; 

• Third, resilience and vulnerability indicators are proposed for airside operations which 

depends on both the vulnerability and the recovery time of the system; 

• Last, a novel approach to evaluate the resilience of a system has been proposed by using 

Bayesian Networks, which permit to determine the most influencing elements of the 

system and to predict the probability of having certain consequences.  

However, this work is not without limitations. First of all, the potential of the Bayesian Network 

has not been fully exploited yet. Several scenarios can be investigated to further understand the 

dependencies between variables and develop strategies to mitigate disruptions’ impacts. 

Moreover, the database used to build the Bayesian Network is limited in number. Even if there 

is no minimum number required to build BNs from an external database, a higher number of 

data should certainly increase the accuracy of the model.  

Lastly, this work paves the way for several lines of research. In fact, it might be valuable to 

include also passengers’ processes, as they are among the most affected stakeholders in case of 

disruptions. In addition, the analysis may be extended to landside operations, such as check-in 

and security control processes, in order to obtain a comprehensive model for the entire airport. 

Moreover, future research could explore different indicators of resilience and vulnerability, by 
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disaggregating the impacts on the specific stakeholders involved - namely passengers, airlines 

and airport operators.  
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APPENDIX A: AnyLogic simulation model 
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Symbol Block name Description 

 
Source Generates agents. 

 
Sink Disposes incoming agents 

 
Delay Delays agents by the specified delay time 

 

Queue Stores agents in the specified order. 

 
SelectOutput 

Forwards the agent to one of the output ports depending on 

the condition. 

 

SelectOutput5 
Routes the incoming agents to one of the five output ports 

depending on (probabilistic or deterministic) conditions 

https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/Source.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/Sink.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/Delay.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/Queue.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/SelectOutput.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/SelectOutput5.html
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Hold Blocks/unblocks the agent flow. 

 
Match 

Finds a match between two agents from different inputs, then 

outputs them 

 
Split 

For each incoming agent ("original") creates one or several 

other agents-copies 

 
Combine Waits for two agents, then produces a new agent from them 

 
MoveTo Moves an agent from its current location to new location 

 
ResourcePool Provides resource units that are seized and released by agents 

 
Enter Inserts agents created elsewhere into the flowchart. 

 
Exit Accepts incoming agents. 

 
TimeMeasureStart 

TimeMeasureStart as well as TimeMeasureEnd compose a 

pair of objects measuring the time the agents spend between 

them, such as "time in system", "length of stay", etc. 

This block remembers the time when an agent goes through. 

 
TimeMeasureEnd 

TimeMeasureEnd as well as TimeMeasureStart compose a 

pair of objects measuring the time the agents spend between 

them. 

For each incoming agent this object measures the time it 

spent since it has been through one of 

the corresponding TimeMeasureStart objects. 

 
SelectOutputIn 

Both with SelectOutputOut acts as two halves of large multi-

exit SelectOutput block. 

 
SelectOutputOut 

Both with SelectOutputIn acts as two halves of large multi-

exit SelectOutput block. 

 
Agent 

Drag the Agent element from the Agent palette on the 

diagram of the agent type where you want to create the 

population of agents 

 
Parameter 

Parameters are used for representing some characteristics of 

the modeled object. 

 
Variable 

Variables are used to store the results of model simulation or 

to model some data units or object characteristics, changing 

over time 

 
Collection 

A collection represents a group of objects, known as its 

elements 

 
Function 

Function will return the value of an expression each time the 

user calls it from the model 

 
Event 

Event is the simplest way to schedule some action in the 

model 

 

  

https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/Hold.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/Match.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/Split.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/Combine.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/MoveTo.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/ResourcePool.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/Enter.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/Exit.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureStart.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureEnd.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureEnd.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureStart.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/TimeMeasureStart.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/SelectOutputIn.html
https://help.anylogic.com/topic/com.anylogic.help/html/_ProcessModeling/SelectOutputOut.html
https://help.anylogic.com/topic/com.anylogic.help/html/agentbased/Creating_Agent.html
https://help.anylogic.com/topic/com.anylogic.help/html/data/Parameters.html
https://help.anylogic.com/topic/com.anylogic.help/html/data/Variable.html
https://help.anylogic.com/topic/com.anylogic.help/html/data/Collection%20Variables.html
https://help.anylogic.com/topic/com.anylogic.help/html/data/Function.html
https://help.anylogic.com/topic/com.anylogic.help/html/statecharts/Events.html
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APPENDIX B: Disruptions database 
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CTA 65700 1 25 26 4 Volcanic eruption Extreme_weather D 1640 0 2.5 1.5 1300 130 10 0 13 23 13 0.130 

33 
201

8 
RHO 36500 1 20 13 4 ground operations issues Technical_problem C 1167 0.8 15 1 1230 50 25 0 0 25 7 2.118 

34 
201

8 
KGS 16425 1 10 7 1 VOR issues Technical_problem A 754 0.4 19 0.25 811 58 14 0 6 20 7 

10.68

0 

35 
201

8 
PSA 36500 1 13 20 1 Fire Security_related D 800 0 19 0.25 700 19 63 0 19 82 15 5.153 

36 
201

8 
NTE 54750 1 20 27 3 

Taxiway and/or apron 

improvements 

Infrastrucural_proble

m 
B 1066 0 5 1 976 109 9 0 5 14 8 0.653 

37 
201

8 
ACE 54750 1 24 30 1 VOR issues Technical_problem A 1123 0.4 13 1 1196 50 24 0 7 31 10 1.336 

38 
201

8 
ACE 54750 1 24 30 1 

Taxiway and/or apron 

improvements 

Infrastrucural_proble

m 
B 700 0 2.5 5.25 778 111 12 0 7 19 10 0.045 

39 
201

8 
NTE 54750 1 20 27 3 Radar issues Technical_problem A 1000 0.2 10 1.25 1016 53 19 0 26 45 17 0.482 

40 
201

8 
STN 

17155

0 
1 50 110 2 Runway maintenance/closure 

Infrastrucural_proble

m 
B 1992 0 4 1 1900 135 14 22 44 80 51 0.078 
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41 
201

7 
AMS 

49859

0 
5 112 94 3 Radar issues Technical_problem A 

1140

6 
0.6 7 2.5 

1081

3 
83 131 0 31 162 75 0.038 

42 
201

7 
AMS 

49859

0 
5 112 94 3 Aircraft incident Incident B 

3132

1 
0.6 7.5 10 

2600

0 
92 280 0 4 284 148 0.005 

43 
201

7 
AMS 

49859

0 
5 112 94 3 ground operations issues Technical_problem C 8223 1 8 8.25 7500 64 116 0 0 116 42 0.023 

44 
201

7 
AMS 

49859

0 
5 112 94 3 ILS issues Technical_problem A 1851 0.7 6 1.5 2001 61 33 0 0 33 11 0.351 

45 
201

7 
AMS 

49859

0 
5 112 94 3 Radar issues Technical_problem A 1555 0.7 5.5 9.25 1409 59 24 0 0 24 8 0.074 

46 
201

7 
AMS 

49859

0 
5 112 94 3 ATC system/communication issues Technical_problem A 8581 0.6 5 5.75 8429 80 105 0 12 117 53 0.017 

47 
201

7 
CDG 

47450

0 
4 120 301 4 Radar issues Technical_problem A 1498 0.6 9 0.75 1634 61 27 0 0 27 9 1.286 

48 
201

7 
FCO 

29200

0 
4 90 131 5 Fire Security_related D 1316 0 1 1 1434 59 24 0 0 24 8 0.125 

49 
201

7 
BCN 

31025

0 
3 64 170 4 ILS issues Technical_problem A 1096 0.7 1 7.75 1500 47 36 0 0 36 10 0.013 

50 
201

7 
BCN 

31025

0 
3 64 170 4 ILS issues Technical_problem A 1165 0.6 1 5.25 1332 51 26 0 0 26 8 0.025 

51 
201

7 
HEL 

16790

0 
3 80 109 4 Runway maintenance/closure 

Infrastrucural_proble

m 
B 1459 0.6 6 6.25 1500 70 22 88 0 110 97 0.010 

52 
201

7 
BRU 

21900

0 
3 74 110 1 Lighting issues Technical_problem A 2106 0.4 11 2.25 2119 59 36 0 11 47 17 0.294 

53 
201

7 
ORY 

22630

0 
3 76 104 4 ATC Industrial action Industrial_action A 3945 0.2 4 11 4072 75 54 0 23 77 33 0.011 

54 
201

7 
ORY 

22630

0 
3 76 104 4 ATC Industrial action Industrial_action A 4664 0.3 13 5 4491 62 72 0 58 130 50 0.052 

55 
201

7 
IST 

43800

0 
3 80 111 1 ILS issues Technical_problem A 2014 0.5 5 1.25 2027 55 36 0 40 135 66 0.060 

56 
201

7 
LBG 54750 3 40 80 1 ILS issues Technical_problem A 739 0.4 12 1 737 57 13 0 13 26 10 1.244 

57 
201

7 
LBG 54750 3 40 80 1 ILS issues Technical_problem A 2658 0.1 15 1.25 2288 99 23 0 67 90 41 0.293 

58 
201

7 
LBG 54750 3 40 80 1 ILS issues Technical_problem A 1471 0.2 15 0.25 1446 63 23 0 49 72 29 2.087 

59 
201

7 
TXL 

16790

0 
2 52 50 1 Ground personnel industrial action Industrial_action C 5687 0.6 6 7 6700 170 39 96 0 135 134 0.006 

60 
201

7 
TXL 

16790

0 
2 52 50 1 Ground personnel industrial action Industrial_action C 2568 

0.2

5 
13 4 2900 122 24 220 0 244 237 0.014 

61 
201

7 
LIS 

20075

0 
2 39 71 2 ATC system/communication issues Technical_problem A 5386 0.5 5 2.5 5600 84 70 1 0 71 34 0.058 

62 
201

7 
LIS 

20075

0 
2 39 71 2 ILS issues Technical_problem A 1115 0.7 2.5 1 1200 61 20 0 0 20 7 0.362 

63 
201

7 
DUS 

21170

0 
2 47 107 4 Aircraft on runway Incident B 2734 0.5 5 2 2760 77 36 0 0 36 16 0.159 
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64 
201

7 
MAN 

19710

0 
2 61 94 4 Fire Security_related D 2056 0 3 1.75 2028 101 20 30 26 76 52 0.033 

65 
201

7 
MAN 

19710

0 
2 61 94 4 Evacuation Security_related D 1339 0 2 2.25 1365 85 16 14 22 52 31 0.029 

66 
201

7 
PMI 

19710

0 
2 44 96 3 Radar issues Technical_problem A 6177 0.4 11 0.5 6200 95 65 26 41 132 78 0.281 

67 
201

7 
BGY 83950 2 26 47 2 ATC Industrial action Industrial_action A 1911 0.4 6 1.25 1900 71 26 5 8 39 19 0.255 

68 
201

7 
MXP 

17155

0 
2 70 194 2 ATC Industrial action Industrial_action A 2302 0.4 5 1.25 2580 81 32 0 4 36 16 0.244 

69 
201

7 
BOD 54750 2 50 30 3 ATC Industrial action Industrial_action A 800 0.2 11 2.75 775 39 20 0 0 20 4 0.905 

70 
201

7 
BOD 54750 2 50 30 3 Power issue Technical_problem D 1032 0 2.5 5.75 1021 51 20 0 25 45 16 0.027 

71 
201

7 
HER 54750 2 22 14 4 VOR issues Technical_problem A 1876 0.4 8 0.25 1930 71 27 0 1 28 11 2.837 

72 
201

7 
LHR 

47450

0 
2 88 197 3 Aircraft on runway Incident B 2452 0.5 2 3.25 2651 63 42 0 41 83 32 0.019 

73 
201

7 
LHR 

47450

0 
2 88 197 3 ILS issues Technical_problem A 3346 0.6 2 6.25 3424 55 62 0 34 96 34 0.010 

74 
201

7 
SXF 91250 1 26 52 3 Ground personnel industrial action Industrial_action C 2568 

0.2

5 
13 2.25 3900 110 36 46 0 82 68 0.084 

75 
201

7 
CTA 65700 1 25 26 4 Volcanic eruption Extreme_weather D 1525 0 11 0.25 1527 94 57 27 0 84 57 0.767 

76 
201

7 
CTA 65700 1 25 26 4 Radar issues Technical_problem A 1173 0.2 8 3.25 1103 53 21 0 30 51 19 0.130 

77 
201

7 
IBZ 65700 1 28 29 2 Radar issues Technical_problem A 1253 0.2 10 1 1267 58 22 0 31 53 20 0.494 

78 
201

7 
CTA 65700 1 25 26 4 Radar issues Technical_problem A 1516 0.3 13 0.25 1499 50 30 0 28 58 20 2.569 

79 
201

7 
CTA 65700 1 25 26 4 Radar issues Technical_problem A 1845 0.1 15 1.75 1800 90 20 6 68 94 45 0.192 

80 
201

7 
TFS 65700 1 33 50 2 Aircraft on runway Incident B 1432 0 2 1 1498 94 16 0 0 16 9 0.235 

81 
201

7 
LCY 73000 1 39 18 1 ground operations issues Technical_problem C 5790 0.4 

10.

5 
3 5691 114 50 5 0 55 37 0.094 

82 
201

7 
RHO 36500 1 20 13 4 Radar issues Technical_problem A 1008 0.1 19 0.25 983 58 17 0 23 40 15 4.990 

83 
201

7 
PSA 36500 1 13 20 1 Radar issues Technical_problem A 2584 0.2 19 0.25 955 80 12 0 16 28 12 6.257 

84 
201

7 
NTE 54750 1 20 27 3 Terrorism Security_related D 1001 0 5.5 1 1300 121 11 0 5 16 10 0.571 

85 
201

6 
CDG 

47450

0 
4 120 301 4 dangerous objects Security_related D 2615 0 1.5 0.5 2493 80 31 0 26 57 25 0.120 

86 
201

6 
FCO 

29200

0 
4 90 131 5 ground operations issues Technical_problem C 3167 0.7 9 1 3119 57 55 0 0 55 18 0.507 
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87 
201

6 
ZRH 

23725

0 
3 66 100 1 Radar issues Technical_problem A 1024 0.6 5 1.25 1146 57 20 0 0 20 6 0.619 

88 
201

6 
FRA 

47450

0 
3 106 221 2 VOR issues Technical_problem A 2452 0.4 2 1 2688 62 43 0 13 56 21 0.097 

89 
201

6 
FRA 

47450

0 
3 106 221 2 VOR issues Technical_problem A 1295 0.6 3 1.5 1586 55 29 0 0 29 9 0.221 

90 
201

6 
FRA 

47450

0 
3 106 221 2 Evacuation Security_related D 2796 0 1 2.5 2699 54 50 0 10 60 19 0.021 

91 
201

6 
IST 

43800

0 
3 80 111 1 Terrorism Security_related D 2261 0 1 2.25 2276 54 42 0 16 58 20 0.023 

92 
201

6 
IST 

43800

0 
3 80 111 1 Radar issues Technical_problem A 6328 0.6 9 1 6005 63 95 0 69 164 63 0.143 

93 
201

6 
LBG 54750 3 40 80 1 ILS issues Technical_problem A 1654 0.2 15 1 1741 67 26 0 46 72 29 0.514 

94 
201

6 
LBG 54750 3 40 80 1 ILS issues Technical_problem A 2830 0.3 10 1.25 953 60 16 0 13 29 11 0.735 

95 
201

6 
TXL 

16790

0 
2 52 50 1 ground operations issues Technical_problem C 6483 1 2.5 

10.7

5 
3000 94 32 40 0 72 57 0.004 

96 
201

6 

WA

W 

16425

0 
2 40 100 3 Lighting issues Technical_problem A 1143 0.5 3 5.25 1100 59 18 0 0 18 6 0.095 

97 
201

6 
LIS 

20075

0 
2 39 71 2 Runway maintenance/closure 

Infrastrucural_proble

m 
B 1352 1 10 8.25 1500 58 26 0 0 26 9 0.142 

98 
201

6 
MAN 

19710

0 
2 61 94 4 Aircraft on runway Incident B 1228 0.5 3 3.25 1264 58 22 0 0 22 7 0.128 

99 
201

6 
MRS 91250 2 30 55 2 Fire Security_related D 3762 0 2 5 1800 91 20 6 0 26 16 0.025 

100 
201

6 
LGW 

27375

0 
2 55 146 1 Runway contamination Incident B 6235 0.5 13 0.5 6115 157 39 300 0 339 335 0.078 

101 
201

6 
LGW 

27375

0 
2 55 146 1 Runway maintenance/closure 

Infrastrucural_proble

m 
B 4040 0.5 3 3.5 4721 127 37 52 0 89 79 0.011 

102 
201

6 
LGW 

27375

0 
2 55 146 1 ground operations issues Technical_problem C 4203 0.6 13 2.25 4297 52 83 0 0 83 24 0.236 

103 
201

6 
VIE 

21900

0 
2 68 99 1 ATC system/communication issues Technical_problem A 2523 0.4 4 2.25 2543 64 40 0 13 53 20 0.089 

104 
201

6 
OSL 

24090

0 
2 80 71 2 ATC system/communication issues Technical_problem A 1248 0.4 2 1.25 1289 68 19 0 0 19 7 0.219 

105 
201

6 
LHR 

47450

0 
2 88 197 3 Emergency landing Incident A 1485 0.5 2 3 1488 62 24 0 39 63 25 0.027 

106 
201

6 
CTA 65700 1 25 26 4 Radar issues Technical_problem A 1644 0.3 12 0.25 1677 62 27 0 32 59 23 2.096 

107 
201

6 
LCY 73000 1 39 18 1 ground operations issues Technical_problem C 2041 0.3 12 1.75 1957 56 35 0 0 35 11 0.617 

108 
201

6 
LCY 73000 1 39 18 1 Lighting issues Technical_problem A 2182 0.1 12 1.25 2175 87 25 1 40 66 30 0.319 

109 
201

6 
CIA 36500 1 20 82 3 Ground personnel industrial action Industrial_action C 1352 0.5 8 1.5 1385 73 19 0 0 19 8 0.679 
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110 
201

6 
PSA 36500 1 13 20 1 Radar issues Technical_problem A 1090 0.2 15 4.25 800 80 10 0 14 24 10 0.339 

111 
201

6 
CAG 31025 1 14 16 1 Radar issues Technical_problem A 1209 0.2 19 0.25 983 58 17 0 23 40 15 4.990 

112 
201

6 
NTE 54750 1 20 27 3 Radar issues Technical_problem A 450 0.3 8 4.75 546 45 12 0 10 22 7 0.232 

113 
201

6 
SAW 

20805

0 
1 40 136 1 Radar issues Technical_problem A 6328 0.3 15 2 6203 105 59 18 51 128 74 0.101 

114 
201

5 
AMS 

49859

0 
5 112 94 3 

Taxiway and/or apron 

improvements 

Infrastrucural_proble

m 
B 2640 1 2 3 2400 60 40 0 0 40 14 0.049 

115 
201

5 
AMS 

49859

0 
5 112 94 3 Snow Extreme_weather A 3362 0.6 4.5 5 3653 66 55 0 4 59 22 0.040 

116 
201

5 
AMS 

49859

0 
5 112 94 3 ATC system/communication issues Technical_problem A 2369 0.4 2 2.5 2383 64 37 0 15 52 20 0.041 

117 
201

5 
AMS 

49859

0 
5 112 94 3 Power issue Technical_problem D 5428 0 2.5 2.75 5984 109 55 0 103 158 77 0.012 

118 
201

5 
CDG 

47450

0 
4 120 301 4 Security incident Incident B 2768 0.7 4.5 1.5 2893 83 35 0 0 35 16 0.182 

119 
201

5 
CDG 

47450

0 
4 120 301 4 Ground personnel industrial action Industrial_action C 5852 0.3 8 1.75 5606 59 95 0 0 95 32 0.144 

120 
201

5 
FCO 

29200

0 
4 90 131 5 Fire Security_related A 9156 0.2 15 1 8588 97 89 9 269 367 171 -0.005 

121 
201

5 
FCO 

29200

0 
4 90 131 5 Fire Security_related D 2449 0 2.5 1.25 2630 120 22 0 56 78 38 0.052 

122 
201

5 
AYT 

14965

0 
3 60 92 1 Runway maintenance/closure 

Infrastrucural_proble

m 
B 5126 0.7 19 0.5 5700 102 57 22 0 79 55 0.692 

123 
201

5 
AYT 

14965

0 
3 60 92 1 Runway maintenance/closure 

Infrastrucural_proble

m 
B 2935 0.7 11 0.25 3100 82 38 24 0 62 42 1.056 

124 
201

5 
AYT 

14965

0 
3 60 92 1 Runway maintenance/closure 

Infrastrucural_proble

m 
B 6157 0.5 13 3.25 6500 91 72 47 4 123 86 0.047 

125 
201

5 
ORY 

22630

0 
3 76 104 4 Runway maintenance/closure 

Infrastrucural_proble

m 
B 768 0.7 18 0.25 795 53 15 0 17 32 12 6.190 

126 
201

5 
ZRH 

23725

0 
3 66 100 1 ILS issues Technical_problem A 2285 0.4 5 3.25 2138 58 37 0 25 62 23 0.068 

127 
201

5 
FRA 

47450

0 
3 106 221 2 ground operations issues Technical_problem C 5196 0.7 8 1.5 5146 52 98 0 0 98 29 0.185 

128 
201

5 
IST 

43800

0 
3 80 111 1 Aircrft incident Incident B 4035 0.6 16 0.25 4283 56 77 0 78 155 57 1.120 

129 
201

5 
IST 

43800

0 
3 80 111 1 ATC system/communication issues Technical_problem A 3646 0.5 4 2.25 3468 63 55 0 30 85 32 0.055 

130 
201

5 
DUB 

21170

0 
2 48 62 2 Fire Security_related D 3407 0 1.5 2.5 3749 71 52 1 14 67 28 0.022 

131 
201

5 
LGW 

27375

0 
2 55 146 1 Thunderstorm Extreme_weather C 

1377

7 
0.2 16 0.75 

1321

0 
75 146 0 0 146 62 0.344 

132 
201

5 
LHR 

47450

0 
2 88 197 3 Security incident Incident B 

1264

7 
0.5 6 2.75 

1065

9 
82 130 0 201 331 145 0.015 
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133 
201

5 
PSA 36500 1 13 20 1 ILS issues Technical_problem A 2444 0.2 19 0.25 1000 77 13 0 14 27 12 6.585 

134 
201

5 
SAW 

20805

0 
1 40 136 1 ATC system/communication issues Technical_problem A 5488 0.3 12 1.25 5564 124 45 18 46 109 69 0.139 

135 
201

5 
SAW 

20805

0 
1 40 136 1 Thunderstorm Extreme_weather A 

1377

1 
0.3 14 1.5 

1053

4 
116 91 9 55 155 92 0.102 
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