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Abstract 

Hemianopic patients suffer for a loss of conscious vision in part of the visual field. The present 

work aimed to investigate the functionality of the visual system after lesions to visual cortices, 

by studying the spontaneous electrophysiological activity and the residual visual processing. 

The first three studies revealed the presence of alterations in the spontaneous alpha oscillatory 

activity during resting-state. Specifically, hemianopic patients showed a slowdown of the 

speed of alpha oscillations and a reduction of the amplitude of alpha activity in the lesioned 

hemisphere, resulting in an interhemispheric imbalance of the activity in the alpha range. 

Moreover, hemianopics showed also a reduction of alpha functional connectivity in the 

posterior regions of the lesioned hemisphere. However, the residual activity in the alpha range 

seemed functionally reactive, since hemianopics showed the typical alpha desynchronization 

in the transition from the eyes-closed to the eyes-open resting-state. More importantly, the 

spontaneous alpha activity predicted the visuospatial performance, suggesting that the resting-

state activity in the alpha range, might be a biomarker for the functionality of the visual 

system. Notably, oscillatory patterns were more severely impaired in hemianopics with right 

lesions, suggesting a central role of the right posterior cortices in coordinating the spontaneous 

oscillatory activity. In the last study, unseen distractors presented in the blind visual field were 

able to interfere with the execution of saccades toward seen targets presented in the intact 

field, suggesting the presence of an implicit visual processing for stimuli presented in the 

blind visual field. However, only left-lesioned hemianopic patients showed implicit 

processing for the unseen distractors, suggesting that the right hemisphere might also 

contribute to this interference effect. Overall, the post-lesional oscillatory patterns and the 

implicit visual processing in the absence of awareness seem to reflect an impaired but residual 

functionality of the visual system in hemianopic patients.   
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Chapter 1 

1.1. The organization of the visual system 

1.1.1. The retina 

The retina converts light in electrochemical signal due to the presence of two types of 

photoreceptors: the cones and the rods. In optimal lighting conditions, vision is mainly 

mediated by cones, whereas rods are more effective for night vision, i.e. the scotopic vision, 

due to their greater sensitivity to light. Moreover, cones show optimal response to different 

wavelengths of light, i.e. different colors, specifically, there are cones tuned to short (blue), 

middle (green) and long (red) wavelengths. Cones and rods are not equally distributed across 

the retina, in particular between the fovea and the periphery (Osterberg, 1935). The macula is 

located temporal to the optic nerve (diameter 5.5 mm), within the macula there is the fovea 

(diameter 1.5 mm), and within the fovea, the foveola (diameter 0.35 mm). There are about 15 

times more cones in the fovea than in the peripheral part of the retina, providing an excellent 

visual acuity (Hirsch and Curcio, 1989). On the contrary, rods are quite absent in the fovea. 

With increasing eccentricity, there are fewer cones and more rods, and therefore less visual 

acuity. From the photoreceptors, electrochemical signals go through bipolar cells to the 

ganglion cells. In the fovea, each bipolar cell receives input from a single photoreceptor, 

whereas in the peripheral part of the retina a bipolar cell receives the inputs from multiple 

photoreceptor cells, further supporting the higher spatial resolution of the fovea compared to 

the peripheral part of the retina. 

There are three types of ganglion cell: 80% percent of ganglion cells are P cells, 10% are M 

cells, and 10% are K cells. The different types of ganglion cells organize in segregated visual 

pathway, i.e. the parvocellular, the magnocellular and the koniocellular pathways (Polyak, 

1941; Kaplan and Shapley, 1986; Hendry and Yoshioka, 1994). This peculiar computational 

organization start from the ganglion cells of the retina and it is maintained through the entire 

visual system. P cells are highly concentrated in the fovea, indeed they show extremely small 

receptive field with specialization for high spatial acuity, color vision and fine stereopsis 

(Livingstone and Hubel, 1988). On the contrary, M cells are more concentrated in the 

peripheral part of the retina, indeed they show larger receptive field with specialization for 

low spatial resolution (Croner and Kaplan, 1995), motion detection, coarse stereopsis, but 
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blind to color differences (Livingstone and Hubel, 1988). Relatively little is known about K 

cells, because it has been difficult to study in isolation. However, K cells seem to be involved 

in color vision (Hendry and Yoshioka, 1994). The last type of ganglion cells is involved in 

the control of circadian rhythms, due to their sensitivity to changing in overall luminance 

level (Hattar, Liao, Takao, Berson, and Yau, 2002). The two optic nerves start from the optic 

disk of each eye’s retina and go to the optic chiasm. In the central part of the optic disk, i.e. 

the optic cup, there are no photoreceptors, which gives rise to the monocular blind spot 

(Mariotte, Pecquet, and Justel, 1668). Each optic nerve conveys information from the nasal 

and temporal part of the retina. Specifically, each nasal hemiretina receives visual information 

from the peripheral ipsilateral visual hemifield, whereas each temporal hemiretina receives 

information from the central contralateral part of the visual field. The optic chiasm is the 

structure where the axons from the two optic nerves decussate. Specifically, axons from nasal 

ganglion cells cross and join axons from temporal ganglion cells from the contralateral eye. 

In this way, each following optic tract will propagate information from only the contralateral 

hemifield, specifically the visual information from the ipsilateral temporal hemiretina and the 

contralateral nasal hemiretina. The two optic tracts deliver visual information from the optic 

chiasm to different subcortical nuclei. 

1.1.2. The subcortical nuclei 

The majority of axons from the two optic tracts targets the ipsilateral Lateral Geniculate 

Nuclei (LGN). The retinotopic organization is still preserved in the LGN (Kupfer, 1962). The 

LGN is divided in six layers, preserving the anatomical and functional segregation between 

the P, M and K pathways and between axons from the temporal and nasal hemiretinas 

(Chacko, 1948; Leventhal, Rodieck, and Dreher, 1981).  
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Figure 1. Connections from the eye to the visual cortex involving intermediate relays in LGN, Superior Colliculus and Pulvinar (taken 
from Tamietto and Morrone, 2016). 

 

The LGN is commonly seen as a relay station for the visual information travelling to and from 

the cerebral cortex. Indeed, the axons arriving from the retina are only the 5-10% of the total 

afferents to the LGN (Van Horn, Erişir, and Sherman, 2000). Specifically, the majority of 

afferent inputs to the LGN comes from the sixth layer of the visual cortex. Consequently, 

LGN has a pivotal role in the modulation and filtering of incoming visual information from 

the retina (Prasad and Galetta, 2011). From the LGN, visual information is sent to the primary 

visual cortex (V1) through the two optic radiations. Each optic radiation is divided in a 

temporal branch that convey visual information from the contralateral superior part of the 

visual field, and a parietal branch that convey the contralateral inferior part of the visual field 

(Van Buren and Baldwin, 1958). 

Part of the axons from the two optic tracts targets the ipsilateral thalamic Pulvinar nuclei. Like 

the LGN, Pulvinar nuclei receive massive modulation from the visual cortex, specifically 

from the fifth and sixth layer (Chalupa, 1991). The Pulvinar nuclei have widespread 

connections between very different subcortical and cortical areas, providing it a main role in 
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the modulation of brain activity based on requirements of spatial attention (Petersen, 

Robinson, and Morris, 1987; Rafal and Posner, 1987). 

Another part of the axons from the two optic tracts targets the ipsilateral Superior Colliculi 

(SC). The SCs are mainly involved in the programming and generation of orienting behaviors, 

specifically eyes and head movements toward salient stimuli. The SCs are anatomically and 

functionally divided in superficial and deep layers. The superficial layers of each SC are 

sensitive only to visual information, representing the contralateral visual field in a visuotopic 

criteria (Cynader and Berman, 1972). To the other side, the deep layers of each SC integrate 

sensory information from different modalities with a motor map to generate eyes and head 

orienting movements toward unexpected stimuli. Moreover, the representation of the foveal 

part of the visual field is magnified in the SC like in all the other part of the visual system. 

Both superficial and deep layers exchange information with several thalamic nuclei, first the 

Pulvinar, and also with the extra-striate visual cortices bypassing the LGN (Sommer and 

Wurtz, 2004a; 2004b). 

A small portion of the axons from the two optic tracts targets the Pretectal nuclei. The 

Pretectal nuclei are involved in the regulation of pupillary size. Moreover, the small portion 

of the axons from the two optic tracts that conveys information about the level of general 

luminance targets the Suprachiasmatic nucleus (Hattar et al., 2002). The Suprachiasmatic 

nucleus monitors the environmental luminance level in order to discriminate between day and 

night. The connection between the Suprachiasmatic nucleus to the Pineal gland provides the 

neural basis for the control of the circadian rhythms through melatonin release. 

1.1.3. The primary visual cortex 

The temporal branch of the optic radiations arrives in the inferior part of the primary visual 

cortex, whereas the parietal branch makes synapse with the superior part of the primary visual 

cortex. In this way, the visual field is fully represented on the primary visual cortex in an 

inverted way, both to the respect of the horizontal and vertical axes. All the axons that run 

inside the optic radiations are connected to the fourth layer of the primary visual cortex 

(Gennari, 1782). P and M pathways conserve their anatomical segregation also in the input to 

the fourth layer of the primary visual cortex, targeting respectively the 4Cb and the 4Ca 

sublayers (Hubel and Wiesel, 1962). Primary visual cortex neurons are organized in 
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dominance columns sensitive to specific orientations of luminance contrast, representing the 

basic step for the contours detection (Hubel and Wiesel, 1962). In addition, initial processing 

of color, brightness, and direction of motion is supported by the primary visual cortex neurons 

(Tootell, Hamilton, Silverman, and Switkes, 1988). The primary visual cortex then sends 

visual information to extra-striate cortices along the dorsal and ventral pathways of the brain 

cortex. 

1.1.4. The higher-order cortical visual regions 

The different extra-striate visual areas are organized into two anatomically and functionally 

segregated cortical streams. While the ventral stream seems to mediates visual recognition of 

objects, also called the “what” pathway, the dorsal stream is specialized for the processing of 

spatial relationships and manipulation of objects, also called the “where” or “how” pathway 

(Mishkin, Ungerleider, and Macko, 1983; Goodale, Milner, Jakobson, and Carey, 1991). 

Indeed, a lesion to the inferior temporal cortex, the higher-order region of the ventral stream, 

impairs severely the performance of macaques in visual discrimination tasks, specifically in 

objects recognition and in the discrimination on different colors, visual patterns or shapes. On 

the contrary, performance in visuospatial tasks, such as visually guided reaching and 

discrimination between different relative distances between objects, was not affected at all. 

To the other side, a lesion to the posterior parietal cortex, the higher-order region of the dorsal 

stream, produces the opposite behavioral pattern: a severe impairment in the performance to 

the same visuospatial tasks, whereas the performance to the visual discrimination tasks is not 

affected at all (Mishkin et al., 1983). 

The ventral stream begins in the P pathway layer 4Cb of the primary visual cortex. Then, the 

ventral stream continues to V2, V4 and finally to the inferotemporal cortex (Shipp and Zeki, 

1985; Sincich and Horton, 2002; Zeki, 1980). In parallel, the dorsal stream begins in the M 

pathway layer 4Ca of the primary visual cortex and continues to V2 and V3 (Shipp and Zeki, 

1985; Sincich and Horton, 2002). From V2 and V3 the dorsal stream reach the motion-

specialized extra-striate areas V5/MT, and finally the posterior parietal cortex (Boussaoud, 

Ungerleider and Desimone, 1990; Tootell, Reppas, Kwong, Malach, Born, Brady, Rosen, and 

Belliveau, 1995). The processing in the dorsal stream is faster compared in the ventral stream, 

indeed axons in the dorsal stream contain more myelin than in the ventral stream 
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(Schmolesky, Wang, Hanes, Thompson, Leutgeb, Schall, and Leventhal, 1998; Nowak and 

Bullier, 1997). The mechanisms of attention interact with processing of visual information at 

all stages (Desimone and Duncan, 1995; Treue and Maunsell, 1996; Reynolds, Pasternak, and 

Desimone, 2000). 

1.2. The visual system after a brain lesion 

1.2.1. The hemianopia syndrome 

Hemianopia involves the loss of conscious vision in a part of the visual field due to the lesion 

of the primary visual pathway. Specifically, any lesion along the pathway from the retina 

through the LGN to the primary visual cortex can lead to hemianopia. The loss of conscious 

vision in hemianopia affects all the daily living activities and may result in injuries due to 

falls or difficulties to avoid obstacles. Therefore, identifying and treat the hemianopia 

symptomatologic profile can have a significant positive effect on the quality of life of patients.  

Different etiologies can lead to hemianopia syndrome. In adults, the most common cause of 

hemianopia is the stroke, indeed hemianopia is found in 8-10% of stroke patients and in the 

52-70% of hemianopic patients the cause of hemianopia is a stroke (Zhang, Kedar, Lynn, 

Newman, and Biousse, 2006; O’Neill, Connell, O’Connor, Brady, Reid, and Logan, 2011). 

Moreover, the 14% of hemianopia cases are due to a traumatic brain injury whereas the 11% 

are due to a tumor (Zhang et al., 2006). On the contrary, the most common causes of 

hemianopia in children are tumor (27%–39%), brain injury (19%–34%), infarction (11%–

23%), and cerebral hemorrhage (7%–11%) (Kedar, Zhang, Lynn, Newman, and Biousse, 

2006; Liu and Galetta, 1997).  

The location of the brain lesion along the primary visual pathway directly produces different 

types of hemianopia. Specifically, a lesion to the optic tract produces a contralesional 

hemianopia, with the loss of conscious vision in the contralesional visual field. Moreover, a 

lesion to the temporal branch of the optic radiation produces a superior contralesional 

quadrantopia, with the loss of conscious vision in the upper contralesional quadrant of the 

visual field. On contrary, a lesion to the parietal branch of the optic radiation produces an 

inferior contralesional quadrantopia, with the loss of conscious vision in the lower 

contralesional quadrant of the visual field. Finally, lesions to the primary visual cortex 

produce different clinical outcomes. Since the entire visual field is represented in the primary 
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visual cortex, a lesion will affect the part of the visual filed corresponding to the lesioned site. 

However, the large macular neural representation in the occipital lobe often prevents the loss 

of the central 2-10° of the visual field after an occipital brain lesion. Indeed, the visual field 

is not equally represented through the occipital lobe, where the 10-30° of the central vision is 

represented by the 50-60% of the entire occipital lobe (Korogi, Takahashi, Hirai, Ikushima, 

Kitajima, Sugahara, Shigematsu, Okajima, and Mukuno, 1997; McFadzean, Brosnahan, 

Hadley, and Mutlukan, 1994). The sparing of macular field areas can also occur after a lesion 

of the optic tracts or the optic radiations (Zhang et al., 2006). Retro-chiasmatic lesions never 

impair visual acuity, whereas retinal conditions affect it severely. 

1.2.2. The hemianopia syndrome beyond the loss of conscious vision 

The loss of conscious vision in a part of the visual field seems not to be the only consequence 

of a retro-chiasmatic lesion, since also the higher-order visuospatial representation is affected 

as well.  

Most of the hemianopic patients shows impairment in the oculomotor scanning behavior in 

both the blind and the healthy visual fields, although the impairment is especially pronounced 

in the blind visual field (Zihl, 1995a; Ishiai, Furukawa, and Tsukagoshi, 1987; Chedru, 

Leblanc, and Lhermitte, 1973). In other words, a lesion of the primary visual pathway affects 

the visual scanning behavior in the entire visual field. Specifically, hemianopic patients show 

an abnormally high rates of repetition of scan paths and fixations, as well as hypometric 

saccades toward the blind field, that leads to a significantly longer search times compared to 

healthy participants (Zihl, 1995a; Passamonti, Bertini, and Làdavas, 2009; Ishiai et al., 1987; 

Zangemeister and Oechsner, 1996; Tant, Cornelissen, Kooijman, and Brouwer, 2002b). It can 

be hypothesis that hemianopic patients fail in comparing what is present in the current spatial 

location with what was present in the region inspected before. As a consequence, the ability 

to integrate different portions of the visual field into a higher-order global representation of 

space can be impaired, and visual exploration and continuous visual information processing 

are disturbed (Zihl, 1995a). 

The impairment in visuospatial abilities in hemianopia is showed also in line bisection tasks. 

When hemianopic patients are asked to cut in half a horizontal line, they usually show a bias 

toward the blind field. Several possible explanations have been proposed, even if the topic is 
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still debated. In the first hypothesis, bisection errors are consequences of the visual field loss 

(Nielsen, Intriligator, and Barton, 1999). However, bisection errors are still found when 

hemianopic patients are tested with lines little enough to be seen entirely without the need of 

eye-movements. A second explanation claims that the bisection errors arise from a long-term 

strategic adaptation to the visual field loss (Barton, Behrmann, and Black, 1998; Doricchi, 

Onida, and Guariglia, 2002). Specifically, several authors suggest that the increase in 

fixations towards their blind field can represent a compensatory mechanism that patients learn 

to overcome the visual field loss. However, bisection errors are present also in simulated 

hemianopia (Schuett, Dauner, and Zihl, 2011; Mitra, Abegg, Viswanathan, and Barton, 2010) 

and acute true hemianopia (Machner, Sprenger, Hansen, Heide, and Helmchen, 2009), 

therefore weakening the idea of a long-term compensatory and strategic adaptation 

explanation. In another hypothesis, authors suggest that an additional damage to the extra-

striate regions adjacent to the optic radiations or striate cortex can explain the visuospatial 

impairment (Zihl, Sämann, Schenk, Schuett, and Dauner, 2009). However, similar bisection 

errors are present also in simulated hemianopia (Schuett et al., 2011; Mitra et al., 2010), where 

participants without any brain lesion were tested. 

In a similar way, the impaired visuospatial performance in hemianopia are evident also in the 

Greyscales task (Mattingley, Bradshaw, Bradshaw, et al., 1994; Mattingley, Bradshaw, 

Nettleton, et al., 1994). The task requires participants to judge which of two identical left–

right mirror-reversed brightness gradients appears darker overall. Since the two stimuli are 

identical, any tendency to respond more to a side compared to another represents a 

visuospatial bias toward that visual hemifield. In particular, hemianopic patients show an 

anomalous and consistent tendency to judge darker the greyscale with the dark part in the 

intact visual field (Mattingley et al., 1994a; Mattingley, et al., 1994b; Mattingley, Berberovic, 

Corben, Slavin, Nicholls, and Bradshaw, 2004; Tant et al., 2002b; Tant, Brouwer, 

Cornelissen, and Kooijman, 2002a).   

Even if the causes are still debated, hemianopic patients show an impairment in visuospatial 

abilities and the allocation of spatial attention concurrently with the main loss of conscious 

vision in a part of the visual field. It is reasonable to think that the impairment in these higher-

order spatial representations further worsen the patients’ clinical condition, leading to both a 

perceptual and attentional shrinking of the visual field. 
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1.2.3. The impact of hemianopia in the everyday life 

The visual field defect, combined with visuospatial impairments, strongly affects several 

activities of the daily living, indeed patients often report difficulties avoiding obstacles, 

reading, driving and engaging in recreational activities, such as watching television 

(Goodwin, 2014; de Haan, Heutink, Melis-Dankers, Brouwer, and Tucha, 2015).  

Even if patients with hemianopia do not meet the legal driving requirements, some 

hemianopic patients continue to drive illegally (Alberti, Peli, and Bowers, 2014; Bowers, 

Tant, and Peli, 2012). Moreover, hemianopic drivers show impaired detection and reactivity 

to pedestrians on the side of their visual field defect (Alberti et al., 2014; Bowers, Ananyev, 

Mandel, Goldstein, and Peli, 2014; 2009). In particular, hemianopic patients make more but 

smaller head scans toward the blind visual field compared to healthy participants in a driving 

simulation. These aberrant scanning behavior leads hemianopic patients to detect virtual 

pedestrian less than half of the time compared to healthy participants (Bowers et al., 2014). 

Moreover, hemianopic patients show difficulties in controlling the vehicle position, in 

modulating the speed to the traffic condition and in reacting to unexpected events, when 

evaluated on real driving scenarios (Elgin, McGwin, Wood, Vaphiades, Braswell, DeCarlo, 

Kline, and Owsley, 2010).  

Hemianopic patients also show impairment in the reading ability, probably due to the reduced 

visual field and the aberrant eye scanning patterns. In particular, while left hemianopia can 

involve only difficulties in finding the subsequent line of text (Zihl, 1995b), right hemianopic 

patients show severe difficulties, because for an efficient reading 7-11 letters ahead in the 

right visual field are usually needed (Kerkhoff, 2000). Indeed, these patients are not able to 

find efficiently words in the blind visual field with eye-movements. Specifically, hemianopic 

patients show disorganized eye movement patterns, prolonged fixation time, reduced saccadic 

amplitude, and an increased number of regressive saccades (Zihl, 1995b). However, 

hemianopic patients with sparing of the macula part of the visual field tend to have less 

impairment in reading (Zihl and von Cramon, 1985; Papageorgiou, Hardiess, Schaeffel, 

Wiethoelter, Karnath, Mallot, Schoenfisch, and Schiefer, 2007). 

Hemianopic patients also show difficulties in the navigation in the everyday environment, 

resulting in disorientation, trouble crossing the street in traffic, bumping into objects, inability 
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to detect hazards, and increased risk of falling (Goodwin, 2014). Indeed, hemianopic patients 

show much longer search times during visual search tasks, because of the disorganized greater 

number of saccades toward the blind field (Zihl, 1995a).  

1.2.4. Residual visual abilities in hemianopia: blindsight patients 

Despite the absolute loss of conscious vision in a part of the visual field, in rare cases 

hemianopic patients are still able to detect, localize, and discriminate visual stimuli presented 

in the blind visual field above the chance level, a syndrome called “blindsight” (Pöppel, Held, 

and Frost, 1973; Weiskrantz, Warrington, Sanders, and Marshall, 1974). In order to verify the 

presence of such unexpected behavior, two different kind of approach are used, specifically 

direct and indirect approaches.  In direct approaches, participants are asked to guess about the 

presence/absence or between different features of stimuli presented in their blind visual field, 

by choosing between a limited number of options. The procedure to ask a participant to 

discriminate the feature of visual stimuli presented in their blind field between a limited set 

of alternative responses is commonly called alternative forced choice (AFC) procedure. In 

indirect approaches, participants are asked to respond to stimuli presented in the intact visual 

field while task-unrelated stimuli are presented in the blind visual field. Therefore, if the 

performance for stimuli presented in the intact visual field is modulated by the presentation 

of stimuli in the blind field, then unseen stimuli presented in the blind field must have been 

unconsciously processed. 

By using the AFC procedures for stimuli presented in the blind field, some hemianopic 

patients showed to be able to localize, by manual, verbal or eyes-movement response, the 

position of a stimulus presented briefly at different eccentricities in the blind field (Pöppel et 

al., 1973; Weiskrantz et al., 1974; Perenin and Jeannerod, 1975; Blythe, Kennard, and 

Ruddock, 1987). These patients showed also to be able to discriminate between the presence 

or absence of both stationary and moving stimuli when presented in the blind field (Stoerig, 

1987; Stoerig et al., 1985; Stoerig and Pöppel, 1986; Stoerig and Cowey, 1989; 1991; 

Magnussen and Mathiesen, 1989). Moreover, blindsight patients are able also to discriminate 

between two different stimulus orientations (Weiskrantz, 1990; Morland, Ogilvie, Ruddock, 

and Wright, 1996), stimulus displacements (Blythe et al., 1987; Blythe, Bromley, Kennard, 

and Ruddock, 1986), motion directions and different colors (Stoerig, 1987; Stoerig and 
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Cowey, 1991; Brent, Kennard, and Ruddock, 1994). Also, reliable shape discrimination was 

found in few hemianopic patients, demonstrated by how the reaching and grasping dynamics 

were appropriate with the particular shape presented (Perenin and Rossetti, 1996). Also, 

indirect approaches show residual blindsight abilities in some hemianopic patients. Faster 

reaction times were found for responding to stimuli presented in the intact visual field when 

an unseen stimulus was delivered concurrently in the blind visual field compared to when no 

unseen stimulus was delivered. In order to provide the behavioral enhancement, the unseen 

stimulus has to be presented within 100-200 ms before or after the presentation of the target 

stimulus in the intact visual field, in line with congruency effect usually found in healthy 

participants (Marzi, Tassinari, Aglioti, and Lutzemberger, 1986; Corbetta, Marzi, Tassinari, 

and Aglioti, 1990). However, not all kind of visual stimuli presented in the blind visual field 

are able to improve the behavioral performance for stimuli presented in the intact field. 

Whereas the presentation of a simple grey stimulus in the blind visual field improved both 

reaction times and pupillary responses for stimuli concurrently presented in the intact field, 

the presentation of a purple stimulus in the blind field failed to produce the same 

enhancements. Furthermore, the behavioral and physiological improvements for the unseen 

grey stimulus were paired with a selective activation in the SC that was not present when the 

purple stimulus was delivered. Since the SC is blind to purple color because of the absence 

of afferent fibers from retinal S-cones, a direct involvement of the SC in the visuomotor 

integration of grey stimuli presented between the two hemifields was suggested (Tamietto, 

Cauda, Corazzini, Savazzi, Marzi, Goebel, Weiskrantz, and de Gelder, 2010). In addition, 

also color information from the blind visual field can influence the color perception in the 

intact field. Specifically, the color of an afterimage perceived from the intact visual field of a 

blindsight patient was modulated by the surrounding color presented in the blind visual field 

(Pöppel, 1986). In another study, the perception of the direction of illusory motion was 

modulated by unseen stimuli presented in the blind visual field (Stoerig and Fahle, 1995). 

However, the influence of stimuli presented in the blind visual field can reveal also a higher 

level of unconscious processing. Specifically, unseen words presented in the blind visual field 

are able to bias the semantic interpretation of words presented in the intact visual field 

(Marcel, 1998), demonstrating that visual information delivered in the blind visual field can 

be sometime fully processed by blindsight patients. Overall, inside the blindsight phenomena 



15 
 

there are very different visual residual abilities that could broadly range from simple 

luminance detection to semantic processing.  

In addition to the above mentioned visual residual abilities, visual processing of emotional 

stimuli in the absence of awareness has received special attention in investigations on 

blindsight patients. For instance, one of the most studied blindsight patients, GY, shows 

performances above the chance level in different type of AFC tasks, when asked to guess 

about the emotional content of faces presented in his blind visual field. Specifically, GY was 

able to discriminate above chance level both in 2AFC and in 4AFC tasks, between happy, 

sad, angry and fearful faces (De Gelder, Vroomen, Pourtois, and Weiskrantz, 1999). 

However, it has been proposed that emotional faces present very peculiar features that can be 

learnt without the need to understand their emotional content. Therefore, GY might had 

simply discriminated between different patterns of visual stimuli, confirming his blindsight 

ability to discriminate above chance level between different shapes (Cowey, 2004). However, 

the same affective blindsight performance is showed by a patient with a bilateral lesion to the 

primary visual cortex, therefore suggesting that these patients are really processing emotion-

related information instead of simply discriminating between previously seen complex facial 

images (Hamm, Weike, Schupp, Treig, Dressel, and Kessler, 2003; Pegna, Khateb, Lazeyras, 

and Seghier, 2005). The affective blindsight discrimination abilities are not confined to facial 

expressions but occur also in the processing of emotional bodies. Specifically, patients GY 

and TN were able to discriminate above the chance level in a 2AFC task between angry and 

neutral emotion delivered by body postures (Van den Stock, Tamietto, Sorger, Pichon, 

Grézes, and de Gelder, 2011; Van den Stock, Tamietto, Zhan, Heinecke, Hervais-Adelman, 

Legrand, Pegna, and de Gelder, 2014). Similarly to the classical blindsight, the affective 

blindsight was investigated with indirect methods. Patients GY showed faster reaction time 

to responding for facial emotional expressions presented in the intact visual field when a 

congruent stimulus was presented concurrently in his blind visual field. Specifically, when a 

pair of congruent sad, fearful or angry faces were concurrently delivered in both the intact 

and the blind hemifields. The facilitatory effect on responses to emotional faces was evident 

both when two congruent emotional faces were presented simultaneously in both hemifields, 

and when two congruent right and left half of emotional faces were presented divided between 

the hemifields (de Gelder, Pourtois, van Raamsdonk, Vroomen, and Weiskrantz, 2001). 
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These unconscious visual abilities seem to be mediated by the activity of alternative visual 

pathways, which are usually spared after postchiasmatic lesions. Indeed, different pathways 

might subserve the wide range of blindsight abilities that could range from the simple motion 

detection to the discrimination of emotional facial expression. The SC seems to have a central 

role in determining blindsight responses driven by visually guided eye movements (Spering 

and Carrasco, 2015). Indeed, the SC is usually spared from lesions inducing hemianopia and 

it is involved in the programming and generation of saccadic eye-movements in healthy 

participants (Krauzlis, Lovejoy, and Zénon, 2013). Moreover, the SC seems also involved in 

the discrimination of motion stimuli presented in the blind field, because of its connections 

with several subcortical and cortical brain structures relevant for motion processing. 

Specifically, primate studies suggest the presence of connections between the SC and the 

V5/MT, a cortical areas specialized in the processing of motion stimuli (Sommer and Wurtz, 

2004a; 2004b). Indeed, primate V5/MT neurons still show burst of activity selective for 

different motion directions after the removal of V1 (Rodman, Gross, and Albright, 1989; 

1990; Girard, Salin, and Bullier, 1992; Azzopardi, Fallah, Gross, and Rodman, 2003). In 

addition, a direct pathway between LGN and MT (Ajina, Kennard, Rees, and Bridge, 2014), 

fibers connecting the Pulvinar and MT (Bourne and Morrone, 2017) projecting from the SC 

to MT passing through the Pulvinar (Tran, MacLean, Hadid, Lazzouni, Nguyen, Tremblay, 

Dehaes, and Lepore, 2019) has been also proposed to have a role in blindsight for motion 

processing. Moreover, the emotional processing in the absence of awareness seen in affective 

blindsight patients has been attributed to the sparing of the subcortical pathway that projects 

visual information from the SC to the Amygdala, via the inferior Pulvinar (Tamietto, Pullens, 

de Gelder, Weiskrantz, and Goebel, 2012; Rafal, Koller, Bultitude, Mullins, Ward, Mitchell, 

and Bell, 2015). 

1.2.5. Residual visual abilities in hemianopia: patients without blindsight 

Recently, a series of studies showed the presence of implicit visual processing also in 

hemianopic patients that do not show the expected performance in direct tasks, i.e. in 

hemianopic patients with performance at chance level in 2AFC tasks. A recent study, with 

hemianopic patients without the expected blindsight performance to AFC tasks, showed an 

alpha desynchronization selectively for motion stimuli compared to static stimuli when 

presented in the blind visual field (Grasso, Pietrelli, Zanon, Làdavas, and Bertini, 2018). Since 
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alpha desynchronization is commonly found reflecting visual cortex activation (Pfurtscheller, 

2001; Romei, Brodbeck, Michel, Amedi, Pascual-Leone, and Thut, 2008a) and visual 

processing (Pfurtscheller, Neuper, and Mohl, 1994), this electrophysiological activity seems 

to represent the presence of an implicit visual processing in the absence of awareness for 

motion stimuli in hemianopic patients without blindsight. The peculiar selectivity for motion 

stimuli in implicit visual processing suggests the involvement of a spared subcortical visual 

pathway particularly sensitive to motion. Indeed, authors suggested the involvement of the 

alternative pathway that links retinal input to the motion sensitive extra-striate MT areas 

through the SC, as the main candidate to sustain the implicit visual processing of motion 

stimuli in hemianopic patients without blindsight (Grasso et al., 2018). 

In a series of different studies, hemianopic patients without affective blindsight, i.e. who 

perform at the chance level in discriminating between different emotional facial expressions 

when presented in their blind field, demonstrated the presence of an implicit visual processing 

specific for fearful facial expressions presented in their blind visual field (Bertini, Cecere, and 

Làdavas, 2013; 2017; Bertini, Pietrelli, Braghittoni, and Làdavas, 2018; Cecere, Bertini, 

Maier, and Làdavas, 2014). Specifically, hemianopic patients without blindsight showed a 

reduction of response time to discriminate emotional faces presented in their intact visual field 

when fearful faces were concurrently presented in their blind visual field. In contrast, no 

response facilitation was found when the concurrent face presented in their blind visual field 

was happy or emotionally neutral (Bertini et al., 2013). In a subsequent ERP study, the 

presentation of fearful faces in the blind visual field was able to increase the N170 amplitude 

evoked by emotional faces presented in the healthy visual field (Cecere et al., 2014). Since 

N170 is a well-known ERP correlate of facial structure processing, results suggest that the 

presentation of fearful faces can facilitate the visual analysis of facial expression presented in 

the healthy visual field. Furthermore, the response facilitation from the presentation of fearful 

faces in the blind field can generalize also outside the facial domain, extending the same 

facilitation to the discrimination of simple Gabor patches presented in the healthy visual field 

(Bertini et al., 2017). This fear-specific implicit visual processing that induces a facilitation 

in the behavioral and electrophysiological responses to stimuli presented in the intact field 

(Bertini et al., 2013; Cecere et al., 2014; Bertini et al., 2017) suggests the presence of a 

mechanism able to prioritize the visual processing of the external environment, and has been 
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attributed to the activity of the subcortical circuit encompassing the SC, the Pulvinar and the 

Amygdala, spared after V1 damage (Tamietto et al., 2012; Rafal et al., 2015). In line with this 

hypothesis, the response facilitation found in these studies was absent in hemianopic patients 

with a lesion of the Pulvinar, suggesting that the Pulvinar plays a pivotal role in convey fear-

related visual information (Bertini et al., 2018).  

Overall, these findings show that visual processing for emotional stimuli in the absence of 

awareness is possible also in hemianopic patients without blindsight, i.e. hemianopic patients 

with performance at direct tasks at chance level. Moreover, these studies highlight many 

differences between the performance of hemianopic patients without affective blindsight 

(Anders, Birbaumer, Sadowski, Erb, Mader, Grodd, and Lotze, 2004; Anders, Eippert, Wiens, 

Birbaumer, Lotze, and Wildgruber, 2009; Bertini et al., 2013; 2017; Bertini et al., 2018; 

Cecere et al., 2014) and the performance of affective blindsight patients (De Gelder et al., 

1999; de Gelder et al., 2001). Indeed, affective blindsight patients are able to discriminate 

between different emotional faces above the chance level and they also show response 

facilitation for emotionally–congruent pairs of facial stimuli (De Gelder et al., 1999; de 

Gelder et al., 2001; Pegna et al., 2005), regardless the type of emotion. On the contrary, 

hemianopic patients without affective blindsight show chance level performance when they 

have to discriminate between different emotional faces and they show a response facilitation 

only when a fearful face is presented in their blind visual field (Anders et al., 2004; 2009; 

Bertini et al., 2013; 2017; Bertini et al., 2018; Cecere et al., 2014). These differences seems 

to suggest that the subcortical retino-SC-Pulvinar-Amygdala circuit which has been proposed 

to subserve the implicit processing for emotional stimuli (Tamietto et al., 2012; Bertini et al., 

2018) might be involved in mediating implicit visual abilities in both affective blindsight 

patients and hemianopic patients without affective blindsight. However, while the fear-

specific implicit processing in hemianopic without blindsight might mainly rely on the 

activity of this subcortical pathway, it is possible that the peculiar implicit visual abilities of 

patients with affective blindsight involve also the contribution of other reorganized spared 

cortices (Gerbella, Caruana, and Rizzolatti, 2019). In line with this reasoning, the evidence 

reported so far suggest that patients with blindsight and hemianopic patients without 

blindsight might represent two distinct neuropsychological profiles, supported by the activity 

of different neural substrates. Specifically, the implicit visual processing demonstrated by 
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hemianopic patients without blindsight has been reported to be evident only in indirect task 

and to be limited to specific categories of stimuli, such as motion and fear. These specific 

stimuli are greatly relevant from an evolutionary perspective, since they might signal the 

presence of potential danger in the environment. Therefore, the ability to process these 

specific categories of stimuli in the absence of awareness has a great adaptive value and might 

reflect a useful mechanism, enabling efficient defensive responses in the presence of potential 

threat. Importantly, the processing of these specific categories of stimuli seems to involve the 

subcortical circuits conveying visual information from the retina to the SC and then projecting 

to the Pulvinar and Amygdala, which are relevant for processing threat-related information 

(Ledoux, 1998), and to the dorsal extra-striate areas, which are known to play a pivotal role 

in motion processing (Albright, 1984; Huk and Heeger, 2002). 

On the other hand, in patients with blindsight that show evidence of implicit processing also 

in 2AFC and who demonstrate the ability of processing in the absence of awareness a wide 

range of different stimuli, these residual visual abilities seems to involve not only the 

contribution of the same subcortical SC-Amygdala and SC-dorsal extra-striate pathways 

proposed in mediating implicit abilities in patients without blindsight (Tamietto et al., 2012), 

but also the contribution of spared and functionally reorganized visual cortices. Such a 

peculiar functional reorganization might have different accounts, depending both on the 

etiology or the lesion site. 

Indeed, in patient GY, one of the most famous and tested blindsight patients, such a functional 

reorganization might be the result of plastic changes occurring due to the early onset of his 

lesion (Celeghin, de Gelder, and Tamietto, 2015), possibly involving also interhemispheric 

contributions (Celeghin, Diano, de Gelder, Weiskrantz, Marzi, and Tamietto, 2017; Celeghin, 

Bagnis, Diano, Méndez, Costa, and Tamietto 2019). Again, the slow growth of a tumor in 

another well-documented case, i.e. patient DB, has might allowed profound plastic changes 

and, therefore, might account for his blindsight abilities (Duffau, 2017). Finally, affective 

blindsight has been mainly reported in a series of single case studies investigating patients 

with cortical blindness following bilateral occipital disruption (Pegna et al., 2005; Solcà, 

Guggisberg, Schnider, and Leemann, 2015; Burra, Hervais-Adelman, Celeghin, de Gelder, 

and Pegna, 2019; Striemer, Whitwell, and Goodale, 2019). In these patients, the disruption of 

both visual cortices might have induced a more radical reorganization of the visual pathways 
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conveying visual information from the subcortical structures to the cortex, thus promoting the 

emergence of their striking visual residual abilities. Overall, although the functional 

neuroanatomy of the affective blindsight still remain elusive, post-lesional plastic changes 

occurring to the subcortical V1-independent pathways and their multiple connections with 

extra-striate cortical areas, both within the dorsal and the ventral stream (Tamietto and 

Morrone, 2016), might represent a plausible account for this phenomenon. In this perspective, 

it has been recently proposed that in affective blindsight patients, facial emotional visual 

information is conveyed from the SC to the Pulvinar, from which it is directly projected to 

extra-striate and temporal cortices, such as the Superior Temporal Sulcus, to finally reach the 

Amygdala (Gerbella et al., 2019). This suggests a significant contribution of extra-striate 

areas at least in mediating the above chance performance in discriminating emotional faces 

and the facilitatory effects for congruent pairs of emotional stimuli, typical of patients with 

affective blindsight.  

1.3. Cortical asymmetries in visuospatial abilities 

Neuropsychological findings regarding the behavioral consequences of brain lesions have 

provided evidence for the presence of cortical asymmetries in the visuospatial abilities. 

Specifically, in the spatial hemineglect syndrome patients fail to be aware of stimuli presented 

in the contralesional part of the visual field and show a distorted representation of the left part 

of space and objects. Spatial hemineglect is caused by lesions to frontal, parietal, or sub-

cortical structures, and it is more common and severe after a right lesion compared to a left 

lesion, suggesting the presence of a cortical asymmetry in the higher-order representation of 

the visual field (Bisiach and Luzzatti, 1978; Heilman, Valenstein, and Watson, 1984).  

Similarly to neglect patients, also healthy participants show a slight but consistent spatial bias 

toward the left visual field. The tendency to overestimate the left compared to the right part 

of the visual field in healthy participants is commonly called “pseudo-neglect” (Bowers and 

Heilman, 1980). Even if the pseudo-neglect magnitude is smaller than the severe rightward 

bias seen in neglect patients, the pseudo-neglect is found with consistency across individuals 

and different experimental tasks (Jewell and McCourt, 2000). Indeed, the pseudo-neglect was 

found in both line bisection and Greyscales tasks, therefore affecting both the perception of 

length (McCourt and Olafson, 1997) and brightness across the horizontal axis of the visual 

field (Nicholls, Bradshaw, and Mattingley, 1999). Moreover, also size and numerosity 
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perception are modulated by the field of presentation, specifically these features are 

overestimated when presented in the left compared to the right visual field (Nicholls et al., 

1999). Furthermore, neglect and pseudo-neglect seem to arise from the same neural 

organization, because same experimental modifications induce same modulation of the spatial 

bias. Specifically, both neglect and pseudo-neglect biases are modulated in the same direction 

by stimulus length, position along the horizontal and vertical midlines of the visual field and 

viewing distance (McCourt and Jewell, 1999; Riddoch and Humphreys, 1983; McCourt and 

Garlinghouse, 2000).  

The observed asymmetry in the visuospatial representation has long been related to the right 

hemisphere specialization in the control of spatial attention, but the mechanisms behind the 

asymmetry between right and left hemispheres have not been yet elucidated (Howseman, 

Zeki, and Mesulam, 1999; Gitelman, Nobre, Parrish, LaBar, Kim, Meyer, and Mesulam, 

1999). Two classical theories tried to interpret the strong asymmetry in the incidence of spatial 

hemineglect after right compared to left hemisphere lesions, the Heilman's hemispatial theory 

(Heilman and Van Den Abell, 1980; Heilman and Valenstein, 1979) and the Kinsbourne's 

opponent processor model (Kinsbourne, 1977). The Heilman's hemispatial theory claim that 

the right hemisphere is able to represent both the contra- and ipsi-lateral visual hemifields, 

whereas the left hemisphere is only able to represent the contralateral (Heilman and Van Den 

Abell, 1980; Heilman and Valenstein, 1979). Consequently, a lesion of the left hemisphere is 

expected not to compromise the representation of the entire visual field, due to the ability of 

the spared right hemisphere to represent both hemifields. On the contrary, a lesion to the right 

hemisphere is expected to impair severely the higher-order representation of the entire visual 

field, because the spared left hemisphere is not able to represent concurrently both the contra- 

and ipsi-lateral visual hemifield. To the other side, the Kinsbourne's opponent processor 

model claim that each hemisphere has a natural visuospatial bias toward the contralateral 

hemifield, and that the left hemisphere bias toward the right hemifield is stronger than the 

right hemisphere bias toward left hemifield (Kinsbourne, 1977). Consequently, the bias of the 

two hemispheres are in balance in healthy subjects, due to the reciprocal inter-hemispheric 

inhibition. However, when a brain lesion occurs, the spared hemisphere contralateral bias 

stops to be counterbalanced by the other hemisphere bias. Therefore, the impairment in the 

representation of one affected hemifield also results in the over activation of the spared 
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hemifield. A lesion of the left hemisphere is expected not to compromise strongly the higher-

order representation of the visual field, because the right hemisphere bias toward the left 

hemifield is not particularly remarkable. On the contrary, a lesion to the right hemisphere is 

expected to severely impair the higher-order representation of the entire visual field, because 

of the strong bias of the spared left hemisphere toward the right hemifield.  

In one of the more complete and investigated model, Corbetta and Shulman (Corbetta and 

Shulman, 2002; 2011) have proposed a functional and anatomical model of attentional control 

that accounts for the hemispheric asymmetries. Specifically, this model describe the 

attentional system as the interaction of two different networks: a bilateral dorsal fronto-

parietal network, which includes the Frontal Eye Field (FEF) and Posterior Parietal cortex, 

and a right-lateralized ventral fronto-parietal network, which includes the Temporo-Parietal 

junction and ventral Frontal cortex. The bilateral dorsal fronto-parietal network is involved in 

the endogenous shifts of spatial attention and the following top-down modulation of sensory 

areas. To the other side, the right-lateralized ventral fronto-parietal network is involved in the 

exogenous disengaging of spatial attention when a salient stimulus occurs. According to 

authors, the hemispatial neglect is expected to be caused by a lesion to the right-lateralized 

ventral fronto-parietal network, suggesting that the hemispatial neglect arise from the 

impairment of the attentional system involved in the exogenous reorienting of spatial 

attention. Because the ventral fronto-parietal network is right-lateralized, hemispatial neglect 

is expected to arise after a right lesion.  

The asymmetry found between the left and the right hemifields is well correlated with the 

asymmetry found between the right and left hemispheres in the representation of space and 

control of spatial attention. A transcranial magnetic stimulation (TMS) on the right parietal 

cortex or right FEF is able to induce a rightward bias in a line bisection task, whereas the 

same TMS pulse on the left parietal cortex or left FEF has no effect (Fierro, Brighina, Oliveri, 

Piazza, La Bua, Buffa, and Bisiach, 2000; Brighina, Bisiach, Piazza, Oliveri, La Bua, Daniele, 

and Fierro, 2002). Again, in a bilateral partial report paradigm, TMS to the right parietal 

cortex was able to decrease the accuracy to recall target presented in the left hemifield while 

increase the accuracy to recall target from the right hemifield. In a following study, the same 

spatial bias has found with the TMS of right frontal cortex. However, no TMS modulation 

was found after both left parietal or frontal stimulation (Hung, Driver, and Walsh, 2005; 
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2011). Asymmetry between right and left hemispheres are present also in common spatial 

orienting task, i.e. classical Posner tasks. A TMS during the delay between the spatial cue and 

the target presentation induces different modulation when is applied to the right compared to 

the left FEF. Specifically, a single pulse of TMS to the FEF is able to cancel out the common 

reaction time enhancement for valid compared to invalid trials, i.e. faster reaction times when 

the cue and target location are congruent than when they are incongruent. But if the TMS over 

the left FEF cancel out the enhancement only for target presented in the right contralateral 

hemifield, the TMS to the right FEF cancels out the validity effect for target presented in both 

hemifield (Grosbras and Paus, 2003; Chanes, Chica, Quentin, and Valero-Cabré, 2012; 

Duecker, Formisano, and Sack, 2013). Similar results were found with imaging data, 

specifically the right superior Parietal lobe was found responding with distinct responses 

when attention was directed to left and right visual field (Corbetta, Miezin, Shulman, and 

Petersen, 1993; Nobre, Sebestyen, Gitelman, Mesulam, Frackowiak, and Frith, 1997). The 

right dominance in the visuospatial representation is also supported by a DTI study, where 

the three main parieto-frontal white matter tracts were analyzed. First, a dorsal to ventral 

gradient of lateralization of the superior longitudinal fasciculi volumes was found, where the 

more dorsal fasciculus shows the same volume between the right and the left hemisphere 

while the more ventral shows a greater volume for the right branch compared to the left one. 

Moreover, only the volume of the right branch of the superior longitudinal fasciculi correlates 

with asymmetry in the behavioral performance to visuospatial tasks. Specifically, the volume 

of the right fronto-parietal fasciculi predicted the distribution of both the magnitude of 

pseudo-neglect in the line bisection task and the reaction times to left compared to right targets 

in a Posner task (de Schotten, Dell’Acqua, Forkel, Simmons, Vergani, Murphy, and Catani, 

2011). Overall, the right hemisphere shows a peculiar and strong dominance over the left 

hemisphere in the control of spatial attention and more general visuospatial representation 

that produces a small but consistent preference for the left compared to the right hemifield. 

This subtle but consistent phenomena in healthy participants is enhanced when a brain lesion 

targets the right hemisphere compared to the left one by resulting in the neglect syndrome. 

Due to the strict relationship between the visual perception and attention networks in building 

a coherent representation of the visual space, hemispheric asymmetries are important to be 

investigated.  
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1.4. Electrophysiological correlates of the functionality of the visual system 

Electroencephalogram (EEG) recordings might represent a useful tool to investigate the 

electrophysiological correlates of the functioning of the visual system after posterior brain 

lesions, inducing visual field defects. For instance, several studies have investigated 

electrophysiological activity evoked by stimuli presented in the blind field. However, the 

majority of these investigations focused on the study of visually-evoked potentials (VEPs) 

and failed in recording from the lesioned hemisphere robust and consistent VEPs responses 

evoked by the presentation of stimuli in the blind visual field (Bollini, Sanchez-Lopez, 

Savazzi, and Marzi, 2017; Dundon, Bertini, Làdavas, Sabel, and Gall, 2015; Grasso, Làdavas, 

and Bertini, 2016; Kavcic, Triplett, Das, Martin, and Huxlin, 2015). The lack of any VEPs 

response in the lesioned hemisphere for unseen stimuli is well documented in several studies 

that used simple flash stimuli or checkerboard pattern reversals (Brigell, Celesia, Salvi, and 

Clark-Bash, 1990; Celesia, Meredith, and Pluff, 1983; Onofrj, Bodis-Wollner, and Mylin, 

1982) both when stimuli were presented separately in one of the hemifields or in 

simultaneously in both visual fields (Biersdorf, Bell, and Beck, 1992; Brigell et al., 1990; 

Celesia et al., 1983; Ffytche, Guy, and Zeki, 1996; Korogi et al., 1997; Onofrj et al., 1982). 

The residual neural activity for the processing of stimuli presented in the blind visual field 

might be too weak and degraded to be able to evoke an electrophysiological activity 

synchronized and consistent across trials. Indeed, the averaging processing to extract VEPs 

cancels out the contribution of any electrophysiological activity that is not synchronized in 

time and phase between trials.  

Consequently, more recent investigations have exploited the oscillatory nature of the EEG 

signal by using visual stimulation that flicker at a brain-related frequency and by extracting 

from the EEG signal the different contribution of each brain-related oscillation. In this respect, 

the steady-state visually-evoked potentials (SSVEPs) are EEG responses to visual stimulation 

at specific frequencies and they are particularly useful because of the better signal-to-noise 

ratio and resistance to different kinds of artifacts (Di Russo, Teder-Sälejärvi, and Hillyard, 

2003; Vialatte, Maurice, Dauwels, and Cichocki, 2010; Ding, Sperling, and Srinivasan, 2006; 

Norton, Umunna, and Bretl, 2017; Sharon and Nir, 2018). Accordingly, in a recent work, the 

presentation of simple visual stimuli in the blind field that flicker at 12 Hz evoked highly 

reliable SSVEPs similarly to those found for cortical extra-striate areas in healthy participants 
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(Sanchez-Lopez, Pedersini, Di Russo, Cardobi, Fonte, Varalta, Prior, Smania, Savazzi, and 

Marzi, 2019). On the other hand, the event-related spectral perturbations (ERSPs) reflect 

perturbations of the spontaneous rhythmic activity of the brain after the presentation of a 

stimulus across time and are particularly useful because they can grasp a reliable signal also 

on a trial-by-trial basis (Cohen, 2011). Indeed, studies investigating oscillatory patterns in 

response to unconscious visual stimuli have found significant ERSPs both in patients with 

blindsight (Del Zotto, Deiber, Legrand, De Gelder, and Pegna, 2013; Schurger, Cowey, and 

Tallon-Baudry, 2006; Tipura, Pegna, de Gelder, and Renaud, 2017) and in patients without 

blindsight (Grasso et al., 2018) 

Interestingly, among all the spontaneous brain frequencies, alpha oscillatory activity (7-13 

Hz) seems to represent well the complex interaction between the visual and attentional system 

in shaping the visual perception. First, alpha oscillations are the natural frequency range over 

the posterior occipito-parietal regions (Rosanova, Casali, Bellina, Resta, Mariotti, and 

Massimini, 2009). Moreover, the modulations of alpha oscillatory activity are commonly seen 

for the processing of visual stimuli (Pfurtscheller et al., 1994) and the allocation of spatial 

attention (Thut, Nietzel, Brandt, and Pascual-Leone, 2006; Capilla, Schoffelen, Paterson, 

Thut, and Gross, 2014), thereby suggesting an active role in shaping visual perception and 

spatial attention (Klimesch, Sauseng, and Hanslmayr, 2007; Jensen and Mazaheri, 2010). 

Furthermore, the modulation of posterior alpha activity can predict the perceptual fate of 

forthcoming visual stimuli (Ergenoglu, Demiralp, Bayraktaroglu, Ergen, Beydagi, and 

Uresin, 2004; Hanslmayr, Aslan, Staudigl, Klimesch, Herrmann, and Bäuml, 2007; van Dijk, 

Schoffelen, Oostenveld, and Jensen, 2008; Busch, Dubois, and VanRullen, 2009; Mathewson, 

Gratton, Fabiani, Beck, and Ro, 2009) and reflect variations in the excitability of the visual 

cortices both within (Romei et al., 2008a; Dugué, Marque, and VanRullen, 2011) and between 

participants (Romei, Rihs, Brodbeck, and Thut, 2008b), suggesting an active causal role in 

shaping the visual perception. In line, the modulation of alpha oscillatory activity reflects the 

modulation of the confidence level in visual discrimination tasks (Samaha, Iemi, and Postle, 

2017; Benwell, Tagliabue, Veniero, Cecere, Savazzi, and Thut, 2017). Finally, the speed of 

alpha oscillations can account for the difference in the temporal resolution of the conscious 

visual experience across participants (Samaha and Postle, 2015).  
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In addition to the wide range of studies linking alpha oscillations to visual performance, 

oscillations in the alpha band (7-13 Hz) over occipito-parietal scalp regions are also the 

dominant frequency range of activity in the resting human brain (Berger, 1929) and alpha 

power at rest has been proposed to reflect the tonic and distributed synchronous activity of 

the underlying neurons (Klimesch et al., 2007; Sadaghiani and Kleinschmidt, 2016). 

Interestingly, the tonic alpha power measured during rest has been shown to be associated 

with subsequent task-related phasic changes in alpha activity and to be positively correlated 

to performance (Klimesch, 1997; Klimesch, 1999; Cecere, Rees, and Romei, 2015; 

Mathewson et al., 2009), therefore suggesting a link between efficient task execution and 

power in the alpha range during rest. This converging evidence suggest that alpha oscillations, 

also during resting-state, might represent a useful index of the functionality of the visual 

system.   
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Chapter 2: Posterior brain lesions selectively alter alpha oscillatory activity and predict 

visual performance in hemianopic patients 

2.1. Introduction 

Oscillations in the alpha band (7–13 Hz) over occipito-parietal scalp regions are the dominant 

frequency range of activity in the resting human brain (Berger, 1929, Rosanova et al., 2009). 

Reduced alpha oscillatory amplitude have been observed during the processing of perceived 

(Pfurtscheller et al., 1994) and unperceived (Grasso et al., 2018) visual stimuli and the 

allocation of visuospatial attention (Capilla et al., 2014; Rihs, Michel, and Thut, 2009; Thut 

et al., 2006), suggesting an active inhibitory function of oscillatory amplitude in this 

frequency band in shaping visual perception and spatial attention (Jensen and Mazaheri, 2010; 

Klimesch et al., 2007). Accordingly, the posterior alpha amplitude has been reported to 

predict the perceptual fate of forthcoming visual stimuli (Dijk et al., 2008) and to reflect 

variations in the excitability of the visual cortices (Romei et al., 2008a; Romei et al., 2008b). 

On the other hand, the frequency of the oscillations in the alpha band has been proposed to 

reflect a mechanism of perceptual sampling, suggesting that the individual alpha frequency 

(IAF) might represent a measure of temporal resolution for information processing (Cecere 

et al., 2015; Klimesch et al., 2007; Valera, Toro, John, and Schwartz, 1981). Moreover, recent 

studies have related the IAF to the cyclic gating of visual perception, showing a direct link 

between IAF and visual sampling rate (Samaha and Postle, 2015). 

Thus, converging evidence show that alpha oscillatory frequency and amplitude represent 

indices of the posterior cortices' functionality and, hence, of the visual system even at rest 

(Bonnard, Chen, Gaychet, Carrere, Woodman, Giusiano, and Jirsa, 2016). Therefore, 

posterior brain lesions disrupting the neural circuits of the visual system and inducing visual 

field defects, shall result in altered alpha activity. Alterations in alpha oscillations have been 

previously described in a range of neurological and psychiatric disorders (Babiloni, Frisoni, 

Pievani, Toscano, Del Percio, Geroldi, Eusebi, Miniussi, and Rossini, 2008; Dunkley, Da 

Costa, Bethune, Jetly, Pang, Taylor, and Doesburg, 2015; Gawel, Zalewska, Szmidt-

Sałkowska, and Kowalski, 2009; Montez, Poil, Jones, Manshanden, Verbunt, van Dijk, and 

Brussaard, 2009; Sponheim, Clementz, Iacono, and Beiser, 2000). Yet, studies on brain-

lesioned patients have provided rather sparse evidence on the remapping of oscillatory 
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patterns following brain damage. Although a clear increase in low frequency (delta/theta) 

oscillatory activity has been described in perilesional areas, reports in the alpha range are 

rather inconsistent (Butz, Gross, Timmermann, Moll, Freund, Witte, and Schnitzler, 2004; 

Chu, Braun, and Meltzer 2015; Dubovik, Pignat, Ptak, Aboulafia, Allet, Gillabert, and 

Magnin, 2012; Laaksonen, Helle, Parkkonen, Kirveskari, Mäkelä, Mustanoja, Tatlisumak, 

Kaste, and Forss, 2013; Tecchio, Zappasodi, Pasqualetti, Tombini, Salustri, Oliviero, Pizzella, 

Vernieri, and Rossini, 2005; Visser, Wieneke, VanHuffelen, DeVries, and Bakker, 2001; 

Westlake, Hinkley, Bucci, Guggisberg, Findlay, Henry, Nagarajan, and Byl, 2012). 

The highly variable lesion profile (including anterior and posterior brain lesions) of the 

clinical populations tested in previous studies might account for such inconsistent evidence. 

Indeed, significant alterations in the alpha range shall be expected after damage of posterior 

(but not anterior) regions of the brain, given their prominent role as alpha generators 

(Bollimunta, Chen, Schroeder, and Ding, 2008; Thut, Veniero, Romei, Miniussi, Schyns, and 

Gross, 2011). In contrast, oscillations have been mainly studied in patients with lesions 

involving the territory of the middle cerebral artery (Chu et al., 2015; Dubovik et al., 2012; 

Laaksonen et al., 2013; Westlake et al., 2012), thus preventing investigations on the specific 

impact of posterior lesions on the alpha oscillatory patterns. To investigate whether lesions of 

the posterior (but not anterior) brain regions might specifically affect activity in the alpha 

range, we recorded EEG activity during eye-closed resting state in patients with posterior 

lesions, in a group of control patients with more anterior lesions and in a group of age-matched 

healthy controls. We hypothesize that posterior lesions only will affect oscillations in the 

alpha range with a reduction both in the alpha frequency peak and amplitude. Moreover, due 

to the prominent role of the right hemisphere in visuospatial processing and in balancing the 

interhemispheric inhibition (Kinsbourne 1977), lesions to the right posterior cortices might 

induce stronger alpha dysfunction compared to lesions affecting the left hemisphere. In 

addition, since increased theta oscillatory activity has been reported in perilesional areas (Chu 

et al., 2015; Dubovik et al., 2012), theta frequency was also analyzed as a control, to test 

whether brain lesions might induce alterations also in this frequency range. 

Finally, we investigated the link between alpha oscillations and visual performance using the 

Grayscales task (Mattingley, et al., 1994a; Mattingley et al., 2004), to test visuo-spatial 

representation in all participants. Crucially, we also tested whether alterations in alpha 
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oscillations could predict alterations in visual performance by using clinical measures of 

visual detection in the blind field of hemianopic patients (Bolognini, Rasi, Coccia, and 

Làdavas, 2005), both when patients were required to keep their gaze on a central fixation 

cross and when they were free to move their eyes to compensate for the visual field loss. Both 

in the Grayscales task and in clinical measures of visual detection we expect visual 

performance to correlate with indices of alpha activity, in line with a functional role of alpha 

oscillations in visual processing and visuo-spatial abilities. 

2.2. Methods 

2.2.1. Participants 

Four groups of participants took part to the study: eleven patients (8 males, mean age = 50.7 

years, mean time since lesion onset = 12.8 months) with visual field defect due to lesions to 

the left posterior cortices, ten patients with visual field defect due to lesions to the right 

posterior cortices (7 males, mean age = 56.1 years, mean time since lesion onset = 14.6 

months), a control group of twelve patients without hemianopia with lesions to fronto-central 

and fronto-temporal cortices up to the limit of the post-central gyrus and of the anterior part 

of the temporal lobe (5 males, mean age = 45.8 years, mean time since lesion onset = 20.4 

months). All the lesions of the patients in the control group spared the posterior cortices 

encompassing visually relevant areas. In addition, a control group of sixteen healthy 

participants (7 males, mean age = 54.1 years) was also tested. No differences between the 

groups were found relative to age (F3,45 = 1.53; p = 0.220) or time since lesion onset (F2,30 = 

0.70; p = 0.506). Clinical details are reported in Table 1. 

 

ID Sex Age Onset Lesion site Visual Field Defect Aetiology 

EMI01 M 69 5 Left Occipital Right hemianopia Ischaemic 

EMI02 M 45 7 Left Temporal Right hemianopia Hemorragic 

EMI03 F 57 28 Left Fronto-Temporo-Insular Right hemianopia AVM 

EMI04 M 50 7 Left Temporo-Occipito-Parietal Upper right quadrantopia Ischaemic 

EMI05 M 81 9 Left Occipito-Temporal Right hemianopia Ischaemic 

EMI06 M 51 5 Left Fronto-Temporo-Occipital Right hemianopia Abscess 

EMI07 M 41 2 Left Occipital Lower right quadrantopia Ischaemic 

EMI08 M 45 42 Left Fronto-Parieto-Temporal Right hemianopia Hemorragic 

EMI09 F 29 26 Left Temporal Upper right quadrantopia AVM 

EMI10 M 58 6 Left Temporo-Occipital Right hemianopia Ischaemic 

EMI11 F 32 4 Left Parieto-Occipital Right hemianopia Ischaemic 
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EMI12 M 56 3 Right Occipital Left hemianopia Ischaemic 

EMI13 F 38 13 Right Parieto-Occipital Left hemianopia Hemorragic 

EMI14 F 37 4 Right Occipito-Temporo-Parietal Left hemianopia Tumor 

EMI15 M 58 18 Right Temporo-Occipital Left hemianopia Ischaemic 

EMI16 M 81 7 Right Occipital Left hemianopia Hemorragic 

EMI17 M 51 4 Right Occipital Left hemianopia Tumor 

EMI18 M 60 29 Right Temporo-Occipital Left hemianopia Ischaemic 

EMI19 F 73 8 Right Temporo-Occipital Left hemianopia Ischaemic 

EMI20 M 77 6 Right Fronto-Parietal  Left hemianopia Hemorragic 

EMI21 M 30 54 Right Temporal Left hemianopia Hemorragic 

CON01 F 48 38 Left Fronto-Insular No hemianopia Ischaemic 

CON02 F 44 40 Left Frontal No hemianopia Tumor 

CON03 M 28 11 Left Fronto-Parietal No hemianopia Tumor 

CON04 F 45 39 Left Frontal No hemianopia Tumor 

CON05 F 46 12  Left Temporal Pole No hemianopia Hemorragic 

CON06 M 62 7 Left Temporo-Insular No hemianopia Abscess 

CON07 M 34 7 Left Frontal No hemianopia Tumor 

CON08 F 57 5 Right Fronto-Insular No hemianopia AVM 

CON09 M 42 59 Right Frontal No hemianopia Abscess 

CON10 F 42 19 Right Frontal No hemianopia Tumor 

CON11 M 51 3 Right Temporo-Insular No hemianopia Tumor 

CON12 F 51 5 Right Temporal No hemianopia Tumor 
Table 1. Summary of clinical data of all patients that took part to the study. Legend: M = Male; F = Female; AVM = Arteriovenous 

Malformation 

 

Mapping of brain lesions was performed using MRIcro. Lesions documented by the most 

recent clinical CT or MRI were traced onto the T1-weighted MRI template from the Montreal 

Neurological Institute provided with MRIcro software (Rorden and Brett 2000; Rorden, 

Karnath, and Bonilha 2007) with the exception of EMI7 and EMI19, whose MRI scans were 

not available. Lesion volumes were computed for each patient and the extents of the lesions 

were compared between the three patients' groups, revealing no significant differences (one-

way ANOVA, F2,28 = 0.97, p = 0.391) between hemianopic patients with left lesions, 

hemianopic patients with right lesions and control patients (see Fig. 2). Right-lesioned 

patients were screened for the presence of neglect using the Behavioral Inattention Test 

(Wilson, Cockburn, and Halligan 1987), to ensure performance was in the normal range. All 

patients showed normal or corrected-to-normal visual acuity. Patients were informed about 

the procedure and the purpose of the study and gave written informed consent. The study was 

designed and performed in accordance with the ethical principles of the Declaration of 
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Helsinki and was approved by the Ethics Committee of the Regional Health Service Romagna 

(CEROM; n.2300). 

 

 

Figure 2. Location and overlap of brain lesions of patients. The image shows the lesions of the hemianopic patients with left 
posterior lesions (A), hemianopic patients with right posterior lesions (B) and control patients with anterior brain lesions (C) 

projected onto four axial slices of the standard MNI brain. In each slice, the left hemisphere is on the left side. The levels of the axial 
slices are marked by white lines on the sagittal view of the brain. The color bar indicates the number of overlapping lesions. 

 

2.2.2. Experimental design 

All the participants completed the Grayscales Task (see below), then underwent an EEG 

recording session during eyes-closed resting-state. In addition, all hemianopic patients 

completed two clinical tasks examining visual field disorders. The first task assesses the 

extent of the visual field defect and the second the ability to compensate for the visual field 

loss by eye-movements (see below). In order to probe the significance of the observed 

electrophysiological pattern for the visuospatial abilities of participants, a correlation 

between behavioral performance (i.e., Grayscales Task score for all participants and the 
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visual detection tests accuracy for the hemianopic patients) and electrophysiological activity 

was verified. 

 

 

2.2.3. EEG during eye-closed resting-state 

EEG signal was recorded from all participants while they seated in a sound-proof room at rest 

with their eyes closed. Each participant underwent five sessions of one-minute recording, to 

avoid drowsiness and related alterations in frequency and power as a function of time 

(Benwell, London, Tagliabue, Veniero, Gross, Keitel, and Thut, 2019). EEG data were 

recorded with a BrainAmp DC amplifier (BrainProducts GmbH, Germany) and Ag/AgCl 

electrodes (Fast'nEasy Cap, Easycap GmbH, Germany) from 59 scalp sites (Fp1, AF3, AF7, 

F1, F3, F7, FC1, FC3, FC5, FT7, C1, C3, C5, T7, CP1, CP3, CP5, TP7, P1, P3, P5, P7, PO3, 

PO7, O1, Fp2, AF4, AF8, F2, F4, F8, FC2, FC4, FC6, FT8, C2, C4, C6, T8, CP2, CP4, CP6, 

TP8, P2, P4, P6, P8, PO4, PO8, O2, FPz, AFz, Fz, FCz, Cz, CPz, Pz, POz, Oz) and the right 

mastoid. The left mastoid was used as reference, while the ground electrode was positioned 

on the right cheek. Vertical and horizontal electrooculogram (EOG) components were 

recorded from above and below the left eye, and from the outer canthus of both eyes. Data 

were recorded with a band-pass filter of .01–100 Hz and digitized at a sampling rate of 1000 

Hz. The first 10 seconds of each one-minute recording session were excluded from the 

analysis, in order to avoid any confound due to the transition from the wakeful to the eye-

closed resting-state. Impendences were kept under 10 KΩ. EEG recordings were off-line pre-

processed and analyzed with EEGLAB (EEGlab version 4.1.1b; Delorme and Makeig 2004) 

and custom routines developed in Matlab (R2017a; The Mathworks Inc., USA). Data from 

all electrodes were re-referenced to the average of all scalp electrodes and filtered with a 

band-pass filter of 1–100 Hz. Continuous signals were segmented in epochs of 2 sec. After 

reducing data dimensionality to 32 components based on principal component analysis 

(PCA), components representing horizontal and vertical eye artifacts were visually identified 

and discarded. In order to compare the lesioned and intact hemispheres across participants, 

electrodes were swapped cross-hemispherically for patients with lesions to the right 

hemisphere. Thus, the data were analyzed as if all patients were left-lesioned. First, scalp 
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distribution of the mean alpha activity between 7 and 13 Hz, averaged across groups, was 

preliminarily visually inspected, revealing the highest alpha activity over parieto-occipital 

regions of the intact hemisphere and electrodes with the highest alpha power were selected. 

Specifically, six right parieto-occipital electrodes (P4, P6, P8, PO4, PO8, O2) were selected 

to represent the intact hemisphere (i.e., posterior region of the intact hemisphere). For the 

lesioned hemisphere, the corresponding homologue electrodes were selected (P3, P5, P7, 

PO3, PO7, O1; i.e., posterior region of the lesioned hemisphere). In addition, to test also for 

the oscillatory activity of anterior brain regions six fronto-central electrodes were selected for 

the intact (AF4, F2, F4, FC2, FC4, FC6; i.e., anterior region of the intact hemisphere) and 

lesioned hemisphere (AF3, F1, F3, FC1, FC3, FC5; i.e., anterior region of the lesioned 

hemisphere). The more anterior electrodes were excluded, to avoid contamination of the 

signal by the ocular artifacts. Moreover, electrodes on the sagittal and coronal midline were 

also excluded to provide a better segregation of the signal between the two hemispheres and 

between anterior and posterior regions. 

From the cleaned EEG signal, we measured the individual alpha frequency (IAF), the 

amplitude of alpha oscillations (alpha power) and the amplitude of theta oscillations (theta 

power), as a control, separately for each participant. Specifically, an automated alpha peak 

detection routine (Corcoran, Alday, Schlesewsky, and Bornkessel‐Schlesewsky, 2018) was 

first applied. The routine derived IAF for each channel in each region of interest. The routine 

was not able to identify the IAF in posterior regions for participants HEM02, HEM16, 

HEM17, CON05, HEALTHY15, HEALTHY16 and in anterior regions for participants 

HEM02, HEM16, HEM17, HEM18, CON03, CON05, CON06, HEALTHY06, 

HEALTHY09, HEALTHY12, HEALTHY13, HEALTHY15, HEALTHY16. This was 

probably due to the presence of low-powered peaks amid background noise (Corcoran et al., 

2018). In that cases, the IAF was identified by a rater, blind to the purpose of the study, by 

visually inspecting the spectrogram, separately for each electrode. The mean IAF across 

groups was 9.36 Hz (range 6.92–13.00 Hz; see Fig. 3A). 
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Figure 3. (A) Mean individual alpha frequency peaks in the posterior regions of interest during eye-closed resting state as measured 
in the lesioned (LES) and intact (INT) hemisphere are reported for each participant. (B–C) Spectrograms of the mean power across 

electrodes of the posterior region of interest in the lesioned and intact hemisphere. 

 

An FFT on the 2-sec epochs was then computed, with a frequency resolution of 0.5 Hz (see 

Fig. 3B and C). Amplitude of alpha oscillations was calculated as the average power (in dB) 

in the window ± 1 Hz around the IAF, in each electrode. In addition, amplitude in the theta 

frequency was also analyzed as a control. The theta amplitude was calculated as the average 

power (in dB) between 4 and 6 Hz in each electrode. The subsequent statistical analyses were 

performed on IAF and alpha and theta power averaged between electrodes of the four regions 

on interest. 

2.2.4. Grayscales Task 

In order to test the visuospatial representation abilities in hemianopic patients, control patients 

and healthy controls, all participants underwent the Grayscales Task, shown to provide a 

reliable marker of visuospatial bias both in the clinical and healthy populations (Mattingley 

et al., 1994a; Mattingley et al., 2004). Accordingly, patients with hemianopia typically show 

a perceptual ipsilesional bias (Tant et al., 2002b), while healthy participants exhibit a leftward 

bias (Mattingley et al., 1994a; Mattingley et al. 2004). This perceptual asymmetrical 

performance has been attributed to a pattern of hemispheric function asymmetry (Tant et al., 

2002b). In the Grayscales task, each stimulus consists of a pair of horizontal rectangles, one 

immediately above the other, presented on an LCD monitor. Each rectangle (height = 20 mm) 

was presented either in a short (width = 120 mm) and a long version (width = 260 mm), and 

was shaded continuously from black at one end to white at the other end. For each stimulus 

pair, one rectangle was darker at the right end and the other was darker at the left end (i.e., 

the two rectangles were mirror images of one another; see Fig. 6). Both rectangles within a 

pair had the same width. The entire task consists of 40 grayscale stimuli. The stimulus length 
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(long vs short) and orientation (left upper dark and right lower dark vs right upper dark and 

left lower dark) were evenly displayed. Stimulus presentation was pseudo-randomized and 

controlled by the experimenter. 

Participants seated in a sound-controlled room in front of a 24″ LCD monitor (refresh rate: 

60 Hz, 1920 × 1080 pixel resolution) at a viewing distance of 57 cm. Participants were asked 

to identify which of the two rectangles comprising each stimulus appeared darker overall by 

saying ‘top’ or ‘bottom’. Participants could use eye-movements to explore the entire stimulus 

display and could respond without time constraints. No feedback on accuracy was provided 

during testing. Responses to each stimulus were categorized as left-biased when the 

participant selected the left darker end or right-biased when the participant selected the right 

darker end. An asymmetry score was then calculated (ipsilesional choices/trials number –0.5) 

to quantify the direction and magnitude of any perceptual bias. This score was derived by the 

normalization of the number of ipsilesional side choices. Specifically, the perceptual bias 

score could vary between −0.5, indicating the maximum bias towards the contralesional 

hemifield and +0.5, indicating the maximum bias to the ipsilesional hemifield. For healthy 

participants, a score of −0.5 would indicate a maximum bias towards the right hemifield and 

+0.5 a maximum bias towards the left hemifield. A score of zero, would account for absence 

of bias in a particular direction. 

2.2.5. Visual detection tests 

In order to investigate the severity of the visual field defect and the ability to compensate for 

the visual field loss by using eye-movements, all left- and right-lesioned hemianopic patients 

underwent a visual detection test under two conditions (Bolognini et al. 2005; Dundon et al. 

2015; Grasso et al., 2016). In the Fixed-eyes condition, patients were not allowed to use eye-

movements, thus the severity of visual field defect could be quantified, whereas in the Eye-

movements Condition, patients were free to use eye-movements to detect visual targets, thus 

the ability to compensate for the visual field loss was measured. The apparatus for the visual 

detection examination consisted in a semicircular structure in which the visual stimuli were 

positioned. The apparatus was a plastic horizontal arc (height 30 cm, length 200 cm) fixed on 

the table surface. The visual stimulus consisted of the illumination of a red LED (luminance 

90 cd/m2 each), located horizontally at the subject's eye level, at an eccentricity of 8°, 24°, 
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40°, 56° in the blind and in the intact hemifield. A visual target was presented for 100 ms in 

different spatial positions, at 8°, 24°, 40° and 56° from either side of the central fixation point. 

Timing of stimuli was controlled by an ACER 711 TE laptop computer, using a custom 

program and a custom hardware interface (property of E.M.S. Medical. Details available at: 

http://www.emsmedical.net/applicazioni/medicina-fisica-riabilitativa/emianopsia). Two 

hundred trials were presented: 20 trials for each of the 8 visual positions and 40 trials in which 

no visual stimulus was presented, i.e., catch trials. The total number of trials was equally 

distributed in five blocks. Patients were instructed to press a response button after the 

detection of the targets and visual detection for each spatial position was recorded. D-prime 

(perceptual sensitivity) was calculated and used for the statistical analysis. 

2.2.6. Statistical analysis 

The oscillatory EEG patterns in the alpha and theta band during the eye-closed resting-state 

were analyzed. All the statistical analyses were performed using STATISTICA (StatSoft; 

Version 12.0; www.statsoft.com). To test whether posterior lesions might affect the 

oscillations in the alpha range, two separate ANOVAs for the IAF and alpha power were run. 

Each ANOVA had Region (posterior, anterior) and Hemisphere (intact hemisphere, lesioned 

hemisphere) as within-subject factors and Group (left-lesioned hemianopic patients, right-

lesioned hemianopic patients, control patients, healthy participants) as a between-subjects 

factor. The same ANOVA was also run to analyze the power in the theta range. The 

Grayscales Task scores were analyzed with a one-way ANOVA with Group as a between 

factor (left-lesioned hemianopic patients, right-lesioned hemianopic patients, control patients, 

healthy participants). Performance of hemianopic patients in the visual detection tests (Fixed-

eyes and Eye-movements conditions) was also analyzed. D-primes for each stimulus location 

of the blind field in the two visual detection tests were analyzed with two ANOVAs with 

Group as the between-subjects factor (left-lesioned hemianopic patients, right-lesioned 

hemianopic patients) and Position (8°, 24°, 40° and 56°) as the within-subject factor. When 

significant main effects or interactions were found, post-hoc comparisons were run with 

Tukey HDS test for unequal samples (Spjøtvoll and Stoline, 1973) and corrected p-values 

were reported. Further, we investigated the relationship between the participants' behavioral 

performance and alpha and theta activity with correlational analyses. Specifically, behavioral 

performance was correlated with the alpha parameters showing significantly different patterns 
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between groups, using Bonferroni-Holms corrections (corrected p-values are reported; Holm, 

1979; Gaetano, 2018). 

2.3. Results 

2.3.1. Individual alpha frequency (IAF) 

The overall ANOVA for the IAF revealed a significant Region x Hemisphere x Group 

interaction (F3,45 = 2.87, p = 0.047; see Fig. 4A). To explore this interaction, an ANOVA on 

IAF values over the posterior regions with Hemisphere (intact hemisphere, lesioned 

hemisphere) and Group (left-lesioned hemianopic patients, right-lesioned hemianopic 

patients, control patients, healthy participants) as factors was run. The ANOVA showed a 

significant main effect of Group (F3,45 = 6.84, p < 0.001) with slower posterior IAF both in 

left-lesioned (M = 9.05 Hz, p = 0.033) and right-lesioned (M = 8.62 Hz, p = 0.004) hemianopic 

patients relative to healthy participants (M = 10.29 Hz). In addition, the posterior IAF of right-

lesioned hemianopic patients was also slower compared to control patients (M = 9.91 Hz; p 

= 0.037). No other significant difference was found (all ps > 0.22). The main effect of 

Hemisphere (F1,45 = 14.17, p < 0.001) was also significant, with the posterior IAF of the intact 

hemisphere (M = 9.74 Hz) being generally faster relative to the IAF of the lesioned 

hemisphere (M = 9.42 Hz, p = 0.002). Finally, these main effects are further explained by a 

significant interaction effect between Group and Hemisphere (F3,45 = 3.43, p = 0.025). More 

precisely, both left-lesioned and right-lesioned hemianopic patients showed a reduction of 

IAF in the lesioned hemisphere, relative to both the left and right hemisphere of healthy 

participants (all ps < 0.022). However, hemianopic patients with left lesions had a more 

selective slowing down of alpha oscillatory activity within the lesioned hemisphere only (M 

= 8.70 Hz), relative to the intact hemisphere (M = 9.40 Hz, p = 0.028), while hemianopic 

patients with right lesions showed no difference in IAF between the lesioned (M = 8.3 Hz) 

and the intact (M = 8.95 Hz; p = 0.065) hemispheres, therefore suggesting a significant 

slowing down of alpha oscillatory activity in both hemispheres. No other significant 

difference was found (all ps > 0.12; see Fig. 4B). 
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Figure 4. Individual alpha frequency during eye-closed resting-state. (A) Scalp topographies represent the scalp distribution of the 
individual alpha frequency in hemianopic patients with left posterior lesions, hemianopic patients with right posterior lesions, 

control patients with anterior lesions and healthy participants. The speed of alpha is color-coded such that faster alpha is associated 
with red color and slower alpha with blue color. For patients with lesions to the right hemisphere, electrodes were swapped cross-

hemispherically, so that the lesioned hemisphere (LES) is represented on the left side. (B) Bar plots show mean alpha peak values in 
the posterior regions of the lesioned (LES) and intact (INT) hemispheres of patients and in the left and right hemispheres of healthy 

participants. Error bars represent SEM. Asterisks denote significant comparisons. 

 

These findings are in line with our prediction that lesions occurring to the right posterior 

cortices might induce stronger and more generalized alpha dysfunction compared to lesions 

affecting the left hemisphere, due to the prominent role of the right hemisphere in perceptual 

visuo-spatial processing (Kinsbourne, 1977; Nicholls et al., 1999). 

2.3.2. Alpha amplitude 

The overall ANOVA for the alpha power revealed a significant Region x Hemisphere x Group 

interaction (F3,45 = 12.86, p < 0.001; see Fig. 5A). A subsequent ANOVA considering the 

power over the posterior regions with Hemisphere (intact hemisphere, lesioned hemisphere) 

and Group (left-lesioned hemianopic patients, right-lesioned hemianopic patients, control 

patients, healthy participants) as factors was run to explore this significant interaction. The 

ANOVA did not show a significant main effect of Group (F3,45 = 0.33, p = 0.806), but a 
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significant main effect of Hemisphere (F1,45 = 31.06, p < 0.001), with higher posterior alpha 

power in the intact (M = 9.42 dB) relative to the lesioned hemisphere (M = 7.93 dB, p < 

0.001). Importantly, a significant Group x Hemisphere interaction (F3,45 = 9.50, p < .001) 

pointed to a reduced posterior alpha power for the lesioned relative to the intact hemisphere 

in both left- (M = 9.00 dB vs 11.075 dB, p = 0.050) and right- (M = 5.76 dB vs 10.13 dB, p 

< 0.001) lesioned hemianopic patients. By contrast, no significant difference was found 

between lesioned and intact hemisphere both in control patients (M = 8.62 dB vs 9.22 dB, p 

= 0.978) and healthy participants (left hemisphere: M = 8.034 dB vs right hemisphere: 7.99 

dB, p = 1.00; Fig. 5B). No other significant difference was found (all ps > 0.496). 

 

 

Figure 5. Alpha amplitude during eye-closed resting-state. (A) Scalp topographies represent the scalp distribution of the alpha power 
in hemianopic patients with left posterior lesions, hemianopic patients with right posterior lesions, control patients with anterior 

lesions and healthy participants. Alpha amplitude is color-coded such that higher alpha power is associated with red color and lower 
alpha power with green color. For patients with lesions to the right hemisphere, electrodes were swapped cross-hemispherically, so 

that the lesioned hemisphere (LES) is represented on the left side. (B) Bar plots show mean alpha power values in the posterior 
regions of the lesioned (LES) and intact (INT) hemispheres of patients and in the left and right hemispheres of healthy participants. 

Error bars represent SEM. Asterisks denote significant comparisons. 
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Since the interaction revealed an imbalance in alpha power in patients with posterior lesions, 

we measured the interhemispheric differences in alpha power (alpha power in the intact 

hemisphere minus alpha power in the lesioned hemisphere) to test whether lesions to the right 

hemisphere might induce a stronger interhemispheric alpha dysfunction. Indeed, right-

lesioned hemianopic patients revealed a higher interhemispheric difference in alpha power 

(M = 4.37 dB) relative to left-lesioned hemianopic patients (M = 2.07 dB, p = 0.046; one-

tailed t-test), in line with the hypothesis of a pivotal role of the right hemisphere in balancing 

interhemispheric inhibition. 

2.3.3. Control analysis: alpha oscillations 

Results so far have shown a selective slowing down of alpha oscillations together with a 

reduced amplitude of the alpha signal in the lesioned posterior sites of hemianopic patients 

only. Such parameters instead have been found unaltered in control patients when compared 

to healthy participants. However, it might still be the case that altered alpha activity might be 

dependent on the site of the lesion. If this was the case, alpha alterations could be found not 

only into hemianopic patients over posterior sites but also in the control patients’ group over 

more anterior sites. To test this alternative hypothesis we have measured alpha frequency and 

power specifically at the site of the lesion, by means of ANOVAs with Hemisphere (intact 

hemisphere, lesioned hemisphere) and Group (left-lesioned hemianopic patients, right-

lesioned hemianopic patients, control patients, healthy participants) as factors, in which we 

compared the alpha peak and power recorded over the electrodes of the lesioned regions in 

each group of patients (i.e., posterior regions in the left- and right-lesioned hemianopic 

patients and anterior regions in control patients). For the healthy controls group, the posterior 

regions were included in the analysis. In line with the previous results, the ANOVA on the 

IAF showed a significant main effect of Group (F3,45 = 6.51, p < 0.001), confirming that the 

alpha peak of both left- (M = 9.05 Hz, p = 0.029) and right- (M = 8.62 Hz, p = 0.003) lesioned 

hemianopic patients was slower compared to healthy participants (M = 10.29 Hz). In contrast, 

no significant difference was found between control patients (M = 9.42 Hz, p = 0.16) and 

healthy participants. More importantly, the interaction effect between Group and Hemisphere 

(F3,45 = 4.00, p = 0.013) was also significant, again showing that IAF was slower in the 

lesioned (M = 8.70 Hz) compared to the intact hemisphere (M = 9.40 Hz, p = 0.022) only in 

the left-lesioned hemianopic patients, but showing no difference between lesioned (M = 8.3 
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Hz) and intact (M = 8.95 Hz) hemisphere in right-lesioned hemianopic patients (p = 0.052) 

and control patients (M = 9.4 Hz vs 9.43 Hz; p = 1.00) or between the left (M = 10.29 Hz) 

and the right (M = 10.3 Hz) hemisphere in healthy participants (p = 1.00). 

Similarly, the ANOVA on the alpha power confirmed the previous results, showing a 

significant Group x Hemisphere interaction (F3,45 = 13.71, p < 0.001). Post-hoc comparisons 

revealed reduced alpha power for the lesioned relative to the intact hemisphere in both left- 

(M = 9.00 dB vs 11.075 dB, p = 0.033) and right- (M = 5.76 dB vs 10.13 dB, p < 0.001) 

lesioned hemianopic patients. Notably, considering the anterior region damaged in control 

patients, no significant difference was found between the lesioned and intact hemisphere in 

this group (M = 6.3 dB vs 5.65 dB, p = 0.95). Moreover, no significant difference was found 

between the left and right hemisphere in healthy participants (M = 8.027 dB vs 7.99 dB, p = 

1.00). No other significant difference was found (all ps > 0.457). 

Overall, these control analyses provided further support to the hypothesis that post-lesional 

changes in the alpha oscillatory patterns are specifically associated to posterior cortices' 

lesions. 

2.3.4. Control analysis: theta oscillations 

The previous analyses have shown that altered oscillatory patterns in the alpha range can be 

found after posterior but not anterior brain lesions. Since increased theta oscillatory activity 

in perilesional areas has also been reported in patients with brain damage (Butz et al., 2004; 

Chu et al., 2015; Dubovik et al., 2012; Laaksonen et al., 2013; Tecchio et al., 2005), enhanced 

theta power is expected both in patients with posterior and anterior brain lesions at the site of 

the lesion, therefore independently of whether the lesion is posterior or anterior. 

The overall ANOVA for the theta power revealed a significant main effect of Region (F1,45 = 

9.35, p = 0.004), explained by higher theta power in the posterior regions (M = 1.5 dB) than 

in the anterior regions (M = 2.73 dB; p = 0.002), and a significant main effect of Hemisphere 

(F1,45 = 35.75, p < .001), with higher theta power in the lesioned (M = 2.54 dB) relative to the 

intact hemisphere (M = 1.76 dB, p < 0.001). More importantly, the interaction Hemisphere x 

Group was also significant (F3,45 = 3.41, p = 0.025). Post-hoc comparisons showed a 

significant increase in theta power in the lesioned hemisphere relative to the intact hemisphere 

in left-lesioned hemianopic patients (M = 4.00 dB vs 3.05 dB; p = 0.047), in right-lesioned 
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hemianopic patients (M = 4.47 dB vs 3.13 dB; p = 0.002) and in control patients (M = 1.56 

dB vs 0.62 dB; p = 0.035). No difference in theta power between the left (M = 1.06 dB) and 

the right (M = 0.89 dB; p = 0.996) hemisphere was found in healthy participants. No other 

significant difference was found (all ps > 0.24). 

Overall, this analysis showed that theta power is systematically enhanced (and not reduced as 

in the case of alpha power) in the lesioned hemisphere. Such effect is independent on whether 

the lesion is posterior or anterior as it was instead the case for alpha power which was 

selectively reduced following posterior (but not anterior) lesions. 

2.3.5. Grayscales Task 

Next, we looked at whether indices of oscillatory activity (in the alpha and theta band) could 

account for visual performance. First, we explored behavioral differences between groups in 

the Grayscales task. The one-way ANOVA on the magnitude of bias score in the Grayscales 

Task showed a significant main effect of Group (F3,45 = 4.24, p = 0.010), but no post-hoc 

comparison reached significance (all ps > 0.07). However, on average, both left- (M = 0.31) 

and right-lesioned (M = 0.30) hemianopic patients showed a higher ipsilesional bias score 

compared to both healthy participants (M = 0.08) and control patients (M = 0.06; see Fig. 6). 

 

Figure 6. Grayscales task. The upper panel represents an example of stimuli used in the Grayscale task. The scatterplot in the lower 
panel shows the mean Grayscales task scores in each group. A score of −0.5 indicates the maximum bias towards the contralesional 

hemifield, while a score of +0.5 indicates the maximum bias to the ipsilesional hemifield. For healthy participants, a score of −0.5 
indicates a maximum bias towards the right hemifield and +0.5 a maximum bias towards the left hemifield. A score of zero accounts 

for absence of bias in a particular direction. 



43 
 

Further, we investigated whether there was a relationship between participant's visuospatial 

bias and alpha activity. We found a negative correlation between posterior IAF and the bias 

score (R49 = −0.34, p < 0.001), i.e., the lower the posterior IAF the higher the bias towards 

the ipsilesional intact visual field (Fig. 7A). Moreover, a positive correlation between the 

interhemispheric differences in posterior alpha power and the bias score (R49 = 0.51, p = 

0.034) was found, suggesting that the higher the interhemispheric imbalance of posterior 

alpha power towards the intact hemisphere, the higher the Grayscales Task bias towards the 

ipsilesional intact visual field (see Fig. 7B). Finally, in order to verify that only alpha activity 

is involved in visuo-spatial abilities, the relationship between participant's visuospatial 

representation and their oscillatory theta activity was also investigated. As expected, no 

significant correlation between the bias score and theta power imbalance was found (p = 

0.816). 

 

Figure 7. Upper panels depict correlations between the Grayscales task scores and individual alpha frequency (A) and the 
interhemispheric difference in alpha power (B). Lower panels depict correlations between mean perceptual sensitivity in the blind 

field in the Visual detection test in the Eye-movements condition (d-prime) and individual alpha frequency (C) and the 
interhemispheric difference in alpha power (D). 
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2.3.6. Visual detection tests 

Finally, we further tested in hemianopic patients whether altered oscillatory activity in the 

alpha band can account for their behavioral performance in visual detection tests routinely 

used in clinical evaluations (Bolognini et al., 2005; Dundon et al., 2015; Grasso et al., 2016). 

Considering the visual detection test in the Fixed-eyes condition, the ANOVA for the d-prime 

values of left- and right-lesioned hemianopic patients showed a significant main effect of 

Position (F3,57 = 7.80, p < 0.001). The post-hoc analysis showed that the d-prime for the 

stimuli presented at 8° (M = 1.09) was significantly greater compared to stimuli presented at 

40° (M = 0.62, p = 0.022) and 56° (M = 0.34, p < 0.001) No other significant difference was 

found (all ps > 0.055; see Fig. 8A). No main effect of Group nor interaction Group x Position 

reached significance (all ps > 0.642). 

 

 

Figure 8. Visual detection tests. Mean d-prime for each of the four stimulus locations in the blind field (8°, 24°, 40° and 56°) for the 
visual detection tasks in the Fixed-eyes condition (A) and in the Eye-movements condition (B). Error bars represent SEM. Asterisks 

denote significant comparisons. 

 

Next, the relationship between hemianopic patients' perceptual sensitivity in their blind field 

in Fixed-eyes condition and their posterior alpha activity was investigated to assess if 

posterior alpha activity measured for a given subject predicts the extent to which they show 
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an impairment in detection of visual stimuli when they were not allowed to move their eyes 

to compensate for the loss of visual field. No significant correlation between the mean d-

prime for all the positions in the blind field and posterior alpha peak (p = 0.423) or alpha 

power imbalance (p = 1.00) was found. Further, no significant correlation between perceptual 

sensitivity in their blind field in Fixed-eyes condition and theta power imbalance was found 

(p = 0.107). 

Relative to the visual detection test in the Eyes-movement condition, the ANOVA for the d-

prime values showed a significant main effect of Position (F3,57 = 70.37, p < .001). The post-

hoc analysis showed that d-prime for stimuli presented at 8° (M = 2.37) was significantly 

greater compared to stimuli presented at 24° (M = 1.89, p = 0.005), at 40° (M = 1.27, p < 

0.001) and 56° (M = 0.46, p < .001). Furthermore, d-prime for stimuli presented at 24° was 

significantly greater compared to stimuli presented at 40° (p < 0.001) and 56° (p < 0.001). 

Finally, d-prime for stimuli presented at 40° was significantly greater compared to stimuli 

presented at 56° (p < 0.001; see Fig. 8B). Again, no main effect of Group nor interaction 

Group x Position was significant (all ps > 0.38). As in the previous task, the relationship 

between the perceptual sensitivity in their blind field in the Eyes-movement condition and 

posterior alpha activity was investigated. The mean d-prime for all the positions in the blind 

field showed a significant positive correlation with posterior IAF (R21 = 0.53, p = 0.039; Fig. 

7C), suggesting that faster alpha is predictive of better performance, and a significant negative 

correlation with the posterior alpha power imbalance between hemispheres (R21 = −0.51, p = 

0.039), suggesting that the higher the alpha power imbalance, the lower the perceptual 

sensitivity in the Eyes-movement condition (see Fig. 7D). Finally, no significant correlations 

between the perceptual sensitivity in the Eyes-movement condition and theta power 

imbalance was found (p = 0.674). Thus, posterior alpha activity can predict performance in 

perceptual sensitivity when patients are allowed to use eye-movements to compensate for 

their visual field loss. 

2.4. Discussion 

Posterior brain lesions can selectively impair oscillatory activity in the alpha range at rest 

while lesions to anterior regions do not significantly affect alpha oscillatory patterns. The 

present findings reveal that hemianopic patients with posterior lesions show both a selective 
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reduction of the IAF and alpha amplitude. This suggests that both left and right posterior 

lesions disrupt the neural circuits of the visual system, impairing its global functioning in the 

alpha range. Specifically, after posterior lesions, the IAF in both the intact and the lesioned 

hemispheres is reduced, which might reflect a general slowdown of the speed of processing 

in the visual system. Moreover, hemianopic patients show a reduced alpha power in the 

lesioned hemisphere, resulting in an imbalanced oscillatory alpha activity between the two 

hemispheres, which suggests an altered interhemispheric functioning in the alpha range. 

Converging evidence show a central role of low-level visual cortices, such as V1 (Bollimunta 

et al., 2008), in coordinating and propagating alpha oscillations in the visual system (Hindriks, 

Woolrich, Luckhoo, Joensson, Mohseni, Kringelbach, and Deco, 2015). Specifically, it has 

been proposed that during resting-state, alpha oscillations propagate from lower to higher-

order visual areas, providing a default organization of the visual system (Hindriks et al., 

2015). This seems in line with the present observation that focal lesions to low-level visual 

cortices have detrimental effects on the organization and the interdependent and connected 

functioning of the visual system of the two hemispheres. In this perspective, oscillatory 

activity in the alpha range might reflect one of the functional mechanisms operating to keep 

the activity of the posterior cortices of the two hemispheres in balance. This is in agreement 

with influential models proposing that the posterior cortices of the two hemispheres 

competitively interact via interhemispheric inhibition to control visuospatial processing in the 

contralateral hemifields (Kinsbourne, 1977). 

Importantly, we found that damage to the right posterior cortices induces more severe 

alterations of the oscillatory activity in the alpha range, relative to damage to left posterior 

cortices, suggesting a functional asymmetry between the two hemispheres. Indeed, 

hemianopic patients with right lesions show a similar reduction of the IAF in both the intact 

and lesioned hemisphere, while in hemianopic patients with left lesions, the right intact 

hemisphere maintains a higher IAF, compared to the left lesioned hemisphere. Similarly, 

right-lesioned, relative to left-lesioned, hemianopic patients show a stronger interhemispheric 

imbalanced alpha power. This indicates that both right and left lesions to the posterior cortices 

globally affect activity in the alpha range, but right posterior lesions have more detrimental 

effects in reducing the speed of processing in the alpha range in both hemispheres and in 

altering the interhemispheric distribution of the alpha amplitude. This finding is in agreement 
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with longstanding theories proposing a dominance of the right hemisphere in spatial 

representation (Heilman and Van Den Abell, 1980) and in balancing the interhemispheric 

inhibition (Kinsbourne, 1977). Notably, evidence concerning the dominance of the right 

hemisphere are based on functional asymmetries observed in posterior parietal cortices and 

fronto-parietal networks (Corbetta and Shulman, 2002; 2011). In addition, the theories 

assuming a prominent role of the right hemisphere in visuospatial processing have been 

widely influenced by established clinical findings on the prevalence of spatial neglect after 

right hemisphere damage (Bisiach, Pizzamiglio, Nico, and Antonucci, 1996; Halligan, Fink, 

Marshall, and Vallar, 2003; Milner and McIntosh, 2005; Robertson, 2001). However, the 

lesions of the patients tested in this study involve mainly the occipito-temporal cortices and 

patients do not show clinical signs of neglect. This pattern of lateralized results suggests that 

lesions to low-level visual cortices might alter cortico-cortical connections with more 

lateralized parietal networks (Hari and Salmelin, 1997; Manshanden, De Munck, Simon, and 

da Silva, 2002), resulting in functional asymmetries showing a clear dominance of the right 

hemisphere. 

Crucially, oscillatory activity in the alpha range (i.e., the IAF and the difference in the alpha 

power between the two hemispheres), showed a direct link with visuospatial performance 

across all participants. Participants performed the Grayscales task, a simple perceptual task 

testing visuospatial representation, in which healthy participants typically exhibit a leftward 

bias (Mattingley et al., 1994a; Mattingley et al., 2004), while patients with hemianopia show 

an ipsilesional bias (Tant et al., 2002b). The present results showed that the typical bias 

towards the visual hemifield contralateral to the intact/dominant hemisphere in the Grayscales 

task (Mattingley et al., 1994a; Mattingley et al., 2004; Tant et al., 2002b) was negatively 

correlated with the IAF (i.e., the lower the IAF, the higher the bias in the Grayscales task) and 

had a positive correlation with the interhemispheric imbalance in power (i.e., the higher the 

imbalance in power in favor of the intact hemisphere, the higher the perceptual bias). These 

findings corroborate the hypothesis that the oscillatory pattern in the alpha range at rest 

reflects behavioral visual performance and might represent an index of the efficiency of the 

visual system. Converging evidence have demonstrated that posterior alpha oscillations 

reflect the excitability of the visual cortices (Dugué et al., 2011; Romei et al., 2008a) and that 

prestimulus oscillatory activity in the alpha band can predict visual performance and 
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awareness (Benwell et al., 2019; Busch et al., 2009; Ergenoglu et al., 2004; Hanslmayr et al., 

2007; Iemi and Busch, 2018; Limbach and Corballis, 2016; Samaha et al., 2017; Dijk et al., 

2008). However, the functional role of alpha oscillations at rest has been less extensively 

investigated. The present findings strongly support the notion that oscillations in the alpha 

range at rest, measured by means of indices such as the IAF and the power, are intrinsic to 

the visual system and reflect its default organization (Hindriks et al., 2015) and functional 

efficiency. This interpretation is in line with recent evidence suggesting a direct link between 

the IAF and the cyclic sampling of visual information (Cecere et al., 2015; Samaha and Postle, 

2015; Wutz, Muschter, van Koningsbruggen, Weisz, and Melcher, 2016; Wutz, Melcher, and 

Samaha, 2018) and an association between the amplitude of alpha oscillations and the 

efficiency of task execution (Klimesch, 1997; Klimesch, 1999; Mathewson et al., 2009). 

In keeping, our results show that in hemianopic patients, also the performance in clinical 

visual tests had a strong association with the pattern of functioning in the alpha range. Indeed, 

visual detection performance in the blind field, when compensatory eye-movements were 

allowed (Bolognini et al., 2005), was positively correlated with IAF and showed a negative 

correlation with the imbalance in alpha power in favor of the intact hemisphere. On the 

contrary, no association between alpha parameters and visual performance when eye-

movements were restricted was found. These findings suggest that alpha oscillatory activity 

after posterior lesions reflects visuospatial performance linked with spatial exploration and 

visual scanning behavior but is not associated to the size of the spared visual field. Yet, the 

visual detection task used in this study does not provide a fine grained measure of the visual 

field size (i.e., the stimuli are presented only at 8°, 24°,40° and 56°), therefore we cannot rule 

out the hypothesis that alterations in the activity in the alpha range might be linked also with 

visual detection abilities when eye-movements are not allowed. Thus, these findings show 

that the slowing down of alpha speed on the one hand and the strong interhemispheric 

imbalance in alpha activity after posterior lesions are suggestive of an overall impairment of 

the visual system which results detrimental for visual performance. 

In contrast with the oscillatory patterns in the alpha range, we did not find any difference in 

left- and right-lesioned hemianopic patients concerning the degree of altered behavioral 

performance, in keeping with previous findings showing similar visuospatial bias in the 

Grayscales tasks (Tant et al., 2002b) and performance in visual detection (Passamonti et al. , 
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2009) between hemianopic patients with left and right lesions. It is likely that the behavioral 

tasks used in the current study may not be sensitive enough to detect behavioral differences 

underpinned by different physiological indices. 

Notably, post-lesional changes were also observed in the theta range, represented by an 

increase of the amplitude in this frequency band over the lesioned hemisphere. However, 

these alterations were less consistent and, more importantly, were not linked to a specific 

lesion profile. Indeed, the increase of theta power was found at the site of the lesion both in 

patients with posterior and anterior lesions. This finding is consistent with previous 

observations on patients with stroke, showing increased low frequency (delta/theta) 

oscillatory activity (Butz et al., 2004; Chu et al., 2015; Dubovik et al., 2012; Laaksonen et al., 

2013; Tecchio et al., 2005). In contrast with the changes in the alpha range that are specific 

to posterior brain lesions and show a direct link with visual behavioral performance, the 

perilesional increase of low-frequency activity has been suggested to represent a lesion-

induced signal for anatomical reorganization within the adult brain (Carmichael and 

Chesselet, 2002; Rabiller, He, Nishijima, Wong, and Liu, 2015), occurring regardless of the 

lesion site. 
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Chapter 3: Posterior lesions induce changes in Alpha functional connectivity reflecting 

visual performance 

3.1. Introduction 

Cognitive functioning is a distributed and dynamic process, requiring functional interactions 

between multiple brain regions and, thus, involving specific interplay among neural 

populations widely distributed in cortical and subcortical networks. Such interactions between 

both local and remote brain regions have been effectively studied by functional neural 

connectivity, an electrophysiological marker measuring the statistical interdependencies 

between EEG rhythms in a condition of resting-state, between different pairs of electrodes 

(Stam, Hillebrand, Wang, and Mieghem, 2010; Aertsen, Gerstein, Habib, and Palm. 1989). 

This electrophysiological functional coupling is able to capture relationship among different 

brain regions, which are essential for brain functioning (Tononi and Edelman, 1998; Varela, 

Lachaux, Rodriguez, and Martinerie, 2001).  

Studies on the healthy brain have shown that EEG spontaneous fluctuations in the resting 

brain are typically highly organized and coherent (Greicius, Krasnow, Reiss, and Menon, 

2003). However, a variety of neurological (Rossini, Rossi, Babiloni, and Polich, 2007; 

Babiloni et al., 2008; Babiloni, Lizio, Marzano, Capotosto, Soricelli, Triggiani, Cordone, 

Gesualdo, and Del Percio, 2016) and psychiatric (Fingelkurts, Fingelkurts, Rytsälä, 

Suominen, Isometsä, and Kähkönen, 2007; Haig, Gordon, De Pascalis, Meares, Bahramali, 

and Harris, 2000; Dawson, 2004) conditions have been shown to alter the typical pattern of 

functional connectivity, suggesting that these indices might represent a reflection of neural 

integrity. In line, brain lesions have shown to induce changes in functional connectivity in 

different frequency bands. More specifically, an increase in the number (Castellanos, Paúl, 

Ordóñez, Demuynck, Bajo, Campo, Bilbao, Ortiz, del-Pozo, and Maestú, 2010) and the 

functionality (Castellanos et al., 2010; Dubovik et al., 2012) of the connections in the in low 

frequency bands (delta/theta) have been described in patients with acquired brain lesions, 

compared to controls. In contrast, in the alpha range, a post-lesional reduction of brain 

connectivity has been reported, especially in intrahemispheric connections in the ipsilesional 

hemisphere (Dubovik et al., 2012; Westlake et al., 2012; Castellanos et al., 2010; Wu et al., 

2011) and in interhemispheric interactions (Wu, Sun, Jin, Guo, Qiu, Zhu, and Tong, 2011). 
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However, also evidence of increased alpha connectivity has been provided in the 

contralesional hemisphere (Westlake et al., 2012) or in the intact regions of the lesioned 

hemisphere (Guggisberg, Honma, Findlay, Dalal, Kirsch, Berger, and Nagarajan, 2008; Wu 

et al., 2011). In addition, previous investigations have reported the presence of newly formed 

connections in the alpha range, both ipsilesional-to-contralesional and interhemispheric, in 

hemianopic patients with right lesions at the acute stage (i.e., within 3 months since onset;  

Guo, Jin, Feng, and Tong, 2014), but not in left-lesioned hemianopic patients (Wang, Guo, 

Sun, Jin, and Tong, 2012). Overall, similarly to the related studies on alpha parameters 

reported in the previous chapter, although alterations of the electrophysiological functionality 

of brain networks after brain lesions has been widely investigated, the results reported so far 

seems not fully consistent due to the variety of patients’ clinical and lesion profiles. In line, it 

is unclear whether specific lesion profiles might be selectively associated with alterations in 

functional connectivity in different frequency bands during resting-state.  

As extensively discussed in the previous chapters, the prominent oscillatory activity in the 

alpha range (7-13 Hz) observed during resting-state is mainly distributed over occipito-

parietal regions (Rosanova et al., 2009). In addition, activity in the alpha range has been 

reported to be linked to the excitability of the visual cortices (Romei et al., 2008a) and to be 

associated to visual processing (Pfurtscheller et al., 1994) and visuospatial attention (Capilla 

et al., 2014). In this perspective, oscillations in the alpha range have been suggested to reflect, 

even at rest, the activity of the underlying neural populations (Klimesch et al., 2007; 

Sadaghiani and Kleinschmidt, 2016) and, thus, the functionality of the visual system. In line 

with this notion, it can be hypothesized that lesions to posterior cortices, which have been 

proposed to have a pivotal role in generating alpha oscillations (Thut et al., 2011; Bollimunta 

et al., 2008), might specifically alter oscillatory patterns and functional connectivity in the 

alpha range.  

Accordingly, evidence provided so far in the chapter 2 has shown that posterior brain lesions 

in hemianopic patients can selectively reduce the alpha peak and power, while lesions to 

anterior regions do not alter alpha oscillatory patterns (Pietrelli, Zanon, Làdavas, Grasso, 

Romei, and Bertini, 2019). Interestingly, hemianopic patients with right lesions showed a 

more severe impairments of the oscillatory activity in the alpha range, with a more widely 

distributed reduction of IAF and a stronger interhemispheric imbalance in alpha power, 
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compared to hemianopic patients with left lesions, suggesting a functional asymmetry 

between the two hemispheres with a dominance of the right hemisphere in balancing 

interhemispheric inhibition (Pietrelli et al., 2019; Heilman and Van Den Abell, 1980; 

Kinsbourne, 1977). However, it is unclear whether hemianopic patients could show similar 

selective alterations also in functional connectivity in the alpha range. To test this hypothesis, 

EEG activity during eyes-closed resting-state was recorded in patients with left or right 

lesions to the posterior cortices, in control patients with left or right more anterior lesions and 

in a group of healthy controls. In addition, in line with previous findings suggesting a link 

between visual performance and altered alpha parameters in hemianopic patients (Pietrelli et 

al., 2019), visuospatial performance was measured with the Greyscales tasks (Mattingley et 

al., 1994a; Mattingley et al., 2004), to test whether connectivity in the alpha range might be 

predictive of the functioning of the visual system. 

3.2. Methods 

3.2.1. Participants 

The study included 5 groups of participants. Two groups included patients with visual field 

defect due to lesions to the left (n = 12, 8 males, mean age = 51.4 years, mean time since 

lesion onset = 12.7 months) and right (n = 12, 9 males, mean age = 58.0 years, mean time 

since lesion onset = 13.3 months) posterior cortices. Right-lesioned patients were screened 

using the Behavioral Inattention Test neglect assessment (Wilson et al., 1987) to ensure 

performance was in the normal range. Two control groups included neurological patients with 

left ( n = 7, 3 males, mean age = 43.9 years, mean time since lesion onset = 22.0 months) and 

right (n = 8, 4 males, mean age = 52.2 years, mean time since lesion onset = 23.6 months) 

anterior lesions without hemianopia. Finally, a control group included aged-matched 

participants without any neurological deficit (n = 16, 7 males, mean age = 54.1 years). No 

differences between the groups were found relative to age (F4,50 = 1.48; p = 0.222) or time 

since lesion onset (F3,35 = 1.02, p = 0.397). Clinical details are reported in Table 2. 

 

ID Sex Age Onset Lesion site Visual Field Defect Aetiology 

EMI01 M 81 9 Left Occipito-Temporal Right hemianopia Ischaemic 

EMI02 M 69 5 Left Occipital Right hemianopia Ischaemic 

EMI03 M 41 2 Left Occipital Lower right quadrantopia Ischaemic 

EMI04 M 45 42 Left Fronto-Parieto-Temporal Right hemianopia Hemorragic 
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EMI05 M 51 5 Left Fronto-Temporo-Occipital Right hemianopia Abscess 

EMI06 F 59 11 Left Temporal Right hemianopia AVM 

EMI07 M 58 6 Left Temporo-Occipital Right hemianopia Ischaemic 

EMI08 M 45 7 Left Temporal Right hemianopia Hemorragic 

EMI09 F 57 28 Left Fronto-Temporo-Insular Right hemianopia AVM 

EMI10 M 50 7 Left Temporo-Occipito-Parietal Upper right quadrantopia Ischaemic 

EMI11 F 29 26 Left Temporal Upper right quadrantopia AVM 

EMI12 F 32 4 Left Parieto-Occipital Right hemianopia Ischaemic 

EMI13 M 56 3 Right Occipital Left hemianopia Ischaemic 

EMI14 F 38 13 Right Parieto-Occipital Left hemianopia Hemorragic 

EMI15 F 37 4 Right Occipito-Temporo-Parietal Left hemianopia Tumor 

EMI16 M 58 18 Right Temporo-Occipital Left hemianopia Ischaemic 

EMI17 F 73 8 Right Temporo-Occipital Left hemianopia Ischaemic 

EMI18 M 81 7 Right Occipital Left hemianopia Hemorragic 

EMI19 M 51 4 Right Occipital Left hemianopia Tumor 

EMI20 M 60 29 Right Temporo-Occipital Left hemianopia Ischaemic 

EMI21 M 77 6 Right Fronto-Parietal  Left hemianopia Hemorragic 

EMI22 M 30 54 Right Temporal Left hemianopia Hemorragic 

EMI23 M 76 7 Right Occipital Left hemianopia Abscess 

EMI24 M 59 6 Right Temporo-Occipital Left hemianopia Ischaemic 

CON01 M 62 7 Left Temporo-Insular No hemianopsia Abscess 

CON02 M 28 11 Left Fronto-Parietal No hemianopsia Tumor 

CON03 F 45 39 Left Frontal No hemianopsia Tumor 

CON04 F 46 12  Left Temporal Pole No hemianopsia Hemorragic 

CON05 F 48 38 Left Fronto-Insular No hemianopsia Ischaemic 

CON06 F 44 40 Left Frontal No hemianopsia Tumor 

CON07 M 34 7 Left Frontal No hemianopsia Tumor 

CON08 M 42 59 Right Frontal No hemianopsia Abscess 

CON09 F 57 5 Right Fronto-Insular No hemianopsia AVM 

CON10 F 42 19 Right Frontal No hemianopsia Tumor 

CON11 M 51 3 Right Temporo-Insular No hemianopsia Tumor 

CON12 F 51 5 Right Temporal No hemianopsia Tumor 

CON13 M 52 6 Right Frontal No hemianopsia Tumor 

CON14 M 75 22 Right Temporo-Insular No hemianopsia Tumor 

CON15 F 50 70 Right Temporo-Fontro-Polar No hemianopsia TBI 
Table 2. Summary of clinical data of all patients that took part to the study. Legend: M = Male; F = Female; AVM = Arteriovenous 

Malformation; TBI = Traumatic Brain Injury  

 

Mapping of brain lesions was performed using MRIcro. Lesion documented by the most 

recent clinical CT or MRI were traced onto the T1-weighted MRI template from the Montreal 

Neurological Institute with MRIcro software (Rorden et al., 2007; Rorden and Brett, 2000) 

with the exception of EMI3, EMI17 and CONTROL13, whose MRI scans were not available. 

Lesions volumes were computed for each patient and the extent of the lesions were compared 

between the four patients’ groups with a one-way ANOVA, revealing no significant 
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differences between groups (F3,32 = 1.51, p = 0.232). All patients showed normal or corrected-

to-normal visual acuity. Patients were informed about the procedure and the purpose of the 

study and gave written informed consent. The study was designed and performed in 

accordance with the ethical principles of the Declaration of Helsinki and was approved by the 

Ethics Committee of the Regional Health Service Romagna (CEROM; n.2300). 

3.2.2. Experimental design 

All the participants completed the Grayscales Task (see below), then underwent an EEG 

recording session during eyes-closed resting-state. In order to probe the significance of the 

observed electrophysiological pattern for the visuospatial abilities of participants, a 

correlation between behavioral performance and electrophysiological activity was verified.  

3.2.3. Greyscales task 

In the Greyscales task (Mattingley et al., 2004), each stimulus consists of a pair of horizontal 

rectangles, one immediately above the other, presented on an LCD monitor. Each rectangle 

(height = 20 mm) was presented either in a short (width = 120 mm) and a long version (width 

= 260 mm) and was shaded continuously from black at one end to white at the other end. For 

each stimulus pair, one rectangle was darker at the right end and the other was darker at the 

left end (i.e. the two rectangles were mirror images of one another). Both rectangles within a 

pair had the same width. The entire task consists of 40 grayscale stimuli. The stimulus length 

(long versus short) and orientation (left upper dark and right lower dark versus right upper 

dark and left lower dark) were evenly displayed. Stimulus presentation was pseudo-

randomized. 

Participants seated in a sound-controlled room in front of a 24’’ LCD monitor (refresh rate: 

60 Hz, 1920 x 1080 pixel resolution) at a viewing distance of 57 cm. Participants were asked 

to identify which of the two rectangles comprising each stimulus appeared darker overall by 

saying ‘top’ or ‘bottom’. Participants were encouraged to examine the stimuli carefully, were 

permitted to respond without time constraints and were allowed to use eye-movements to 

explore the entire stimulus display. No feedback on accuracy was provided during testing. 

Responses to each stimulus were categorized as left-biased when the participant selected the 

left darker end or right-biased when the participant selected the right darker end. An 

asymmetry score was then calculated ((trials number – left choices)/trials number – 0.5)*2 to 

quantify the direction and magnitude of any perceptual bias. This score was derived by the 
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normalization of the number of left choices. Specifically, the perceptual bias score could vary 

between -1, indicating the maximum bias towards the left hemifield and +1, indicating the 

maximum bias to the right hemifield. A score of 0, would account for absence of bias in a 

particular direction. 

3.2.4. Resting-state EEG recording 

All participants underwent 5 blocks of 1-minute resting-state EEG recording in a quiet room. 

They were asked to close their eyes and remain awake, while EEG signals were recorded with 

a BrainAmp DC amplifier (BrainProducts GmbH, Germany) and 59 Ag/AgCl electrodes 

mounted on an elastic cap (Fast’nEasy Cap, EasyCap GmbH, Germany) according the 

standard 10-20 coordinate system (Fp1, AF3, AF7, F1, F3, F7, FC1, FC3, FC5, FT7, C1, C3, 

C5, T7, CP1, CP3, CP5, TP7, P1, P3, P5, P7, PO3, PO7, O1, Fp2, AF4, AF8, F2, F4, F8, 

FC2, FC4, FC6, FT8, C2, C4, C6, T8, CP2, CP4, CP6, TP8, P2, P4, P6, P8, PO4, PO8, O2, 

FPz, AFz, Fz, FCz, Cz, CPz, Pz, POz, and Oz). Four external electrodes were used to monitor 

eye-movements. Specifically, two electrodes were placed on the outer canthi of both eyes to 

record horizontal movements, whereas two electrodes placed respectively beneath and above 

the left eye was used to monitor vertical movements and blinks. Reference and ground 

electrodes were placed on the left mastoid and the right cheek, respectively. The impedance 

was kept below 10 kΩ at all electrodes and the recorded signal was band-pass filtered at 0.01-

100 Hz, digitized at a sampling rate of 1000 Hz and stored on a computer for subsequent off-

line analyses. 

3.2.5. EEG preprocessing 

EEG recordings were processed off-line using EEGlab (EEGlab version 14.1.2; Delorme and 

Makeig, 2004) and custom routines developed in Matlab (R2018a, The Mathworks Inc., 

USA). Data from all electrodes were re-referenced to the average of all scalp electrodes and 

filtered with a band-pass filter of 1-100 Hz. Continuous signals were segmented in epochs of 

1 seconds. Horizontal and vertical eye artifacts have been visually identified and corrected, 

after data dimension reduction by means of Principal Component Analysis (PCA). Data was 

down-sampled to 250 Hz and current source density (CSD) interpolation using spherical 

splines (Kayser and Tenke, 2015) was used to minimize confounding effects in inter-electrode 

synchronization due to volume conduction and electrical field spread (Cohen, 2014; van 

Diessen, Numan, van Dellen, van der Kooi, Boersma, Hofman, van Lutterveld, 2015). CSD 
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transformation was performed in Matlab using the open-source CSD toolbox (version 1.1; 

http://psychophysiology.cpmc.columbia.edu/). Time-frequency decomposition was 

performed for all EEG channels by using a multitaper method with digital prolate spheroidal 

sequence (DPSS) windows, implemented in Fieldtrip toolbox for EEG/MEG-analysis 

(Oostenveld, Fries, Maris, and Schoffelen, 2011). Complex Fourier coefficients were 

computed for the frequency band of interest (i.e., alpha band, 7-13 Hz) and for a control 

frequency band (theta band, 3-6 Hz). Finally, the weighted phase-lag index (wPLI; Vinck, 

Oostenveld, van Wingerden, Battaglia, and Pennartz, 2011) was computed for all possible 

pairs of electrodes and construct a 59x59 connectivity matrix for each participant and 

frequency band (i.e., alpha and theta). The wPLI is based on a consistent lag between the 

instantaneous phases of two electrodes and is less sensitive to zero-lag phase-relations typical 

for common sources (Bastos and Schoffelen, 2016; Hardmeier, Hatz, Bousleiman, Schindler, 

Stam, and Fuhr, 2014). The wPLI extends the PLI by weighting the contribution of observed 

phase leads and lags by the magnitude of the imaginary component of the cross-spectrum 

(Vinck et al., 2011). 

3.2.6. Functional connectivity analysis 

Since no standard procedures are currently available to assess similarities and differences in 

functional connectivity among groups and/or hemispheres (van Diessen et al., 2015), a multi-

step approach was used to investigate, separately for each frequency band, the effect of the 

posterior brain lesion on functional connectivity and resting-state network topology. 
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Figure 9. (A) The strongest Alpha connections (n = 171, 10% of total connections) in the five groups; (A) The strongest Theta 

connections (n = 171, 10% of total connections) in the five groups 

 

To test for differences in functional connectivity, wPLI were averaged across electrodes 

separately for each participant and 4 scalp regions (see Figure 10-11, left anterior [LA]: Fp1, 

AF3, AF7, F1, F3, F7, FC1, FC3, FC5, and FT7; right anterior [RA]: Fp2, AF4, AF8, F2, F4, 

F8, FC2, FC4, FC6, FT8; left posterior [LP]: CP1, CP3, CP5, TP7, P1, P3, P5, P7, PO3, PO7, 

and O1; right posterior [RP]: CP2, CP4, CP6, TP8, P2, P4, P6, P8, PO4, PO8, and O2). 

Differences among groups and scalp regions were assessed separately for each frequency 

band (i.e., alpha and theta) by means of a repeated-measures ANOVA with Group (left-

lesioned hemianopic patients, right-lesioned hemianopic patients, left-lesioned control 

patients, right-lesioned control patients, healthy participants) as between-subjects factor and 

Hemisphere (Left, and Right) and Region (Anterior, and Posterior) as within-subjects factors. 

Post-hoc comparisons were carried out using Duncan tests. Significance level was set at p = 

0.05. To assess the behavioral and clinical significance of changes in functional connectivity 

patters in the alpha and theta band, mean wPLI were correlates with Greyscales Task score 

for all participants. Pearson’s r and the relative p-value was computed for each correlation. 

Significance level was set at p = 0.05. 

 

 



58 
 

3.3. Results 

3.3.1. Alpha wPLI 

The overall ANOVA for the Alpha wPLI revealed a significant Group x Hemisphere x Region 

interaction (F4,50 = 5.32, p = 0.001). To explore this interaction, two ANOVAs on Alpha wPLI 

values with Hemisphere (left hemisphere, right hemisphere) and Group (left-lesioned 

hemianopic patients, right-lesioned hemianopic patients, left-lesioned control patients, right-

lesioned control patients, healthy participants) as factors were run separately for the posterior 

and the anterior regions (see Fig 10).  

 

Figure10. Scalp topography on the top left represents the scalp distribution of the four ROIs investigated. Bar plots show mean 

Alpha wPLI values in the posterior and anterior regions of the left and right hemisphere of the five experimental groups. Error bars 

represent SEM. Asterisks denote significant comparisons 

 

The ANOVA for the posterior region showed a significant Hemisphere x Group interaction 

(F4,50 = 6.16, p < 0.001). More precisely, in left-lesioned hemianopic patients the right-intact 

hemisphere (M = 0.46) showed a greater Alpha wPLI compared to the left-lesioned 

hemisphere (M = 0.38, p = 0.030). Similarly, in right-lesioned hemianopic patients the left-

intact hemisphere (M = 0.40) showed a higher Alpha wPLI compared to the right-lesioned 
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hemisphere (M = 0.27, p = 0.001). Furthermore, the Alpha wPLI was greater in the right-

intact hemisphere of left-lesioned hemianopic patients compared to the right hemisphere of 

the right-lesioned hemianopic patients (p = 0.006). No other significant effects were found 

(all ps > 0.45). The ANOVA for the anterior region showed no significant main or interaction 

effects (all ps > 0.41). Summarizing, these results suggest that Alpha functional connectivity 

is reduced in the lesioned hemisphere after both left and right posterior brain lesions.  

To further investigate the alpha functional connectivity pattern within the posterior ROIs, we 

also compared the Alpha wPLI of each electrode in posterior ROIs of hemianopic and control 

patients with healthy participants. To this aim, pairwise comparisons, using unpaired-samples 

t-tests, were conducted for each pair of posterior electrodes between healthy participants and 

both left- and right-lesioned hemianopic patients. Significance level was set at p = 0.01.  

The unpaired-samples t-tests on Alpha wPLI in posterior ROIs comparing left-lesioned 

hemianopic patients and healthy participants showed significant differences for several 

electrodes pairs in the right hemisphere (CP2-P2, P2-O2, P2-P8, P2-PO8, P2-PO4, CP2-PO4, 

CP2-PO8 and P4-P6). Specifically, in each significant electrodes pair of the right hemisphere, 

the Alpha wPLI was greater in the left-lesioned hemianopic patients compared to healthy 

participants.  

Similarly, the unpaired-samples t-tests on Alpha wPLI in posterior ROIs comparing right-

lesioned hemianopic patients and healthy participants showed significant differences for 

several electrodes pairs in the right hemisphere (O2-P8, O2-TP8, O2-P6, O2-CP6, PO8-P8, 

PO8-P6, PO8-CP6, PO4-P4, PO4-P6 and P6-TP8). However, contrary to left-lesioned 

hemianopic patients, in each significant electrodes pair of the right hemisphere, the Alpha 

wPLI was reduced in the right-lesioned hemianopic patients compared to healthy participants. 

The unpaired-samples t-tests on Alpha wPLI in posterior ROIs comparing left-lesioned 

control patients and healthy participants showed only one significant difference in the 

electrodes pair CP5-PO3 in the left hemisphere, and another in the electrodes pair TP8-P8 in 

the right hemisphere. Specifically, in both the right and left hemisphere electrodes pair found, 

the Alpha wPLI was lower in the left-lesioned control patients compared to healthy 

participants. Moreover, the unpaired-samples t-tests on Alpha wPLI in posterior ROIs 

between right-lesioned control patients and healthy participants showed no significant 
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differences between each electrode’s pairs in both the right-lesioned and left-intact 

hemisphere. 

3.3.2. Theta wPLI 

The overall ANOVA for the Theta wPLI revealed a significant Group main effect (F4,50 = 

5.46, p < 0.001; see Fig 11). More precisely, the right-lesioned hemianopic patients showed 

a greater Theta wPLI (M = 0.25) compared to all other groups (healthy participants M = 0.17, 

p = 0.004; left-lesioned hemianopic patients M = 0.19, p = 0.011; left-lesioned control patients 

M = 0.18, p = 0.005; right-lesioned control patients M = 0.15, p < 0.001). Furthermore, a 

significant Hemisphere x Group interaction (F4,50 = 3.61, p = 0.012) was found. Specifically, 

in right-lesioned hemianopic patients the right-lesioned hemisphere (M = 0.27) showed a 

greater Theta wPLI compared to the left-intact hemisphere (M = 0.23, p = 0.028). More 

importantly, the right-lesioned hemisphere of right-lesioned hemianopic patients showed also 

a greater Theta wPLI compared to both left and right hemisphere of all the other groups (all 

ps < 0.018). In addition, also the left-intact hemisphere in the right-lesioned hemianopic 

patients showed higher Theta wPLI, compared to the left-intact hemisphere (p = 0.002) of 

right-lesioned control patients and trends towards higher Theta wPLI compared to the left 

hemisphere of healthy participants (p = 0.073) and both the left-lesioned (p = 0.057) and right-

intact (p = 0.068) hemispheres of left-lesioned control patients. No other significant main or 

interaction effects were found (all ps > 0.160). Summarizing, results suggest that the Theta 

functional connectivity increases after a right posterior lesion, more strongly in the right-

lesioned compared to the left-intact hemisphere.  
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Figure11. Scalp topography on the top left represents the scalp distribution of the four ROIs investigated. Bar plots show mean Theta 

wPLI values in the posterior and anterior regions of the left and right hemisphere of the five experimental groups. Error bars 

represent SEM. Asterisks denote significant comparisons 

 

Similarly to the exploratory analysis on posterior ROIs Alpha wPLI, we also compared the 

Theta wPLI of each electrode in posterior ROIs of hemianopic and control patients with 

healthy participants. Therefore, a pairwise comparison, with unpaired-samples t-tests, was 

conducted for each pair of posterior electrodes comparing healthy participants and both left- 

and right-lesioned hemianopic and control patients. Significance level was set at p = 0.01.  

The unpaired-samples t-tests on Theta wPLI in posterior ROIs between left-lesioned 

hemianopic patients and healthy participants showed no significant differences between each 

electrodes pairs in both the right-intact and left-lesioned hemisphere. In contrast, the 

unpaired-samples t-tests on Theta wPLI in posterior ROIs between right-lesioned hemianopic 

patients and healthy participants showed four significant pairs of electrodes in the right-

lesioned hemisphere (CP6-P6, PO8-TP8, PO8-P8 and TP8-P8). Specifically, in each 

significant couple of electrodes in the right hemisphere the Theta wPLI was higher in the 

right-lesioned hemianopic patients compared to healthy participants. 
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The unpaired-samples t-tests on Theta wPLI in posterior ROIs comparing left-lesioned 

control patients and healthy participants showed only one significant difference in the 

electrodes pair P5-PO7 in the left hemisphere. Specifically, the Theta wPLI was lower in the 

left-lesioned control patients compared to healthy participants. Similarly, the unpaired-

samples t-tests on Theta wPLI in posterior ROIs between right-lesioned control patients and 

healthy participants showed only one significant difference in the electrodes pair P1-TP7 in 

the left hemisphere. Specifically, the Theta wPLI was lower in the right-lesioned control 

patients compared to healthy participants. 

3.3.3. Greyscales Task 

Next, we looked at whether posterior Alpha wPLI could account for visual performance. First, 

we explored behavioral differences between groups in the Greyscales task. The one-way 

ANOVA on the Greyscales Task score showed a significant main effect of Group (F4,50 = 

11.56, p < 0.001). The post-hoc analysis showed a significantly greater Grayscales Task score 

in right-lesioned hemianopic patients (M = 0.64) compared to all the other groups (healthy 

participants M = -0.14, p < 0.001; left-lesioned hemianopic patients M = -0.54, p < 0.001; 

left-lesioned control patients M = -0.32, p = 0.002; right-lesioned control patients M = 0.21, 

p = 0.004).  

Further, we investigated whether there was a relationship between the participant’s 

visuospatial bias and Alpha and Theta wPLI, which resulted altered in previous analysis. 

Specifically, Greyscales task bias score was correlated with Alpha wPLI within the posterior 

regions of the right hemisphere and Theta wPLI of both the right and left hemisphere. The 

results showed a negative correlation between right posterior Alpha wPLI and the Greyscales 

task bias score (R55 = -0.50, p < 0.001), i.e. the lower the right posterior Alpha wPLI the 

higher the bias towards the right visual field, whereas the higher the right posterior Alpha 

wPLI the higher the bias towards the left visual field. Concerning the results in the theta band, 

a positive correlation was found between right posterior Theta wPLI and the Greyscales task 

bias score (R55 = 0.45, p = 0.001), i.e. the lower the right Theta wPLI the higher the bias 

towards the left visual field, whereas the higher the right Theta wPLI the higher the bias 

towards the right visual field.  
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3.4. Discussion 

Hemianopic patients with posterior brain lesions show alterations in functional connectivity 

in the alpha range, while no significant alterations in alpha connectivity was found in control 

patients with more anterior lesions. Specifically, the present findings show that in the 

posterior regions of both hemianopic patients with left and right lesions the alpha connectivity 

was reduced in the lesioned hemisphere, compared to the intact hemisphere. Interestingly, 

this interhemispheric imbalance was mainly driven by the pattern of functional connectivity 

observed in the right hemisphere. Namely, in hemianopic patients with right lesions, 

functional connectivity in the right lesioned hemisphere showed a significant reduction 

compared to controls, while the left intact hemisphere does not show differences compared 

to controls. In contrast, in hemianopic patients with left lesions, the right intact hemisphere 

showed a significant increase in alpha connectivity, while no difference was found in the left 

lesioned hemisphere, compared to controls. In other words, lesions to the posterior cortices 

selectively induced changes in alpha connectivity, both in hemianopic patients with right and 

left hemispheric lesions. However, opposite patterns of functional connectivity were found in 

the right hemisphere between the two groups, which showed reduced connectivity when 

lesioned (i.e., in hemianopic patients with right lesions) and increased connectivity when 

intact (i.e., in hemianopic patients with left lesions). No difference in functional connectivity 

was found in the left hemisphere of hemianopic patients with left or right lesions, compared 

to controls. 

Alpha oscillations (7-13 Hz) are the dominant frequency range of activity of the resting human 

brain and their distribution is prominent over posterior cerebral regions (Rosanova et al., 

2009; Berger, 1929). Accordingly, posterior visual cortices have been demonstrated to be 

crucial in generating and propagating alpha oscillations in the visual system (Bollimunta et 

al., 2008; Hindriks et al., 2015). In addition, oscillations in the alpha range are linked to visual 

perception and visual cortex activity (Pfurtscheller et al., 1994; Romei et al., 2008a). This is 

in line with the present findings showing that lesions to posterior brain regions might alter 

alpha oscillatory patterns, reflecting the underlying functioning of the visual system. Previous 

evidence from the study in the chapter 2 has revealed the presence of a slowdown of the speed 

of processing in the alpha range and a reduction of alpha power in patients with hemianopia 

and posterior lesions (Pietrelli et al., 2019). Similarly, the present findings reveal that 
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posterior lesions reduce the functional connectivity in the alpha range. Long-range alpha 

synchronous activity has been shown to be relevant to promote communication between 

regions according to task demands (Palva and Palva, 2007; Doesburg, Green, McDonald, and 

Ward, 2009). In addition, alpha cortico-cortical interactions have been suggested to reflect 

top-down processing, subserving the ability to integrate local, bottom-up information (Stein 

and Sarnthein, 2000). Thus, functional connectivity in the alpha range during rest can 

represent an index of the structural and functional integrity of the visual system. Accordingly, 

converging evidence has shown impaired pattern of alpha functional connectivity in patients 

with visual loss due to pre-chiasmatic lesions (Bola, Gall, Moewes, Fedorov, Hinrichs, and 

Sabel, 2014) or retinal damage (Bola, Gall, and Sabel, 2015).  

Interestingly, the right hemisphere demonstrates different patterns of post-lesional changes in 

alpha connectivity, depending on the lateralization of the lesion. Namely, the alpha functional 

connectivity in the right hemisphere showed a reduction when the hemisphere is lesioned and 

an increase, when the hemisphere is spared (i.e., in the presence of lesions to left hemisphere). 

This suggests that posterior lesions to the right hemisphere have a more detrimental effect on 

the functional interactions in the alpha range. However, when posterior lesions involve the 

left hemisphere, the right intact hemisphere reveals an enhanced alpha functional 

connectivity, which can possibly represent a post-lesional compensatory mechanism. This 

seems to suggest a prominent role of the right hemisphere in distributing spontaneous alpha 

activity and in organizing alpha network interactions. Taking into account the functional role 

of alpha oscillatory activity in visual and visuospatial attentional performance (Romei et al., 

2008a; Capilla et al., 2014), these findings seem in line with the well-known dominance of 

the right hemisphere in spatial representation (Heilman and Van Den Abell, 1980) and in 

balancing interhemispheric activity (Kinsbourne, 1977).  

Notably, right hemisphere alpha functional connectivity was associated with behavioral 

performance in visuospatial tasks. Visuospatial performance was tested with the Greyscales 

task (Mattingley et al., 1994a; Mattingley et al., 2004), a simple perceptual task in which 

healthy participants typically show a leftward bias, while hemianopic patients exhibit an 

ipsilesional bias (Pietrelli et al., 2019; Tant et al., 2002b). The results showed a negative 

association between alpha functional connectivity in the right hemisphere and the bias 

towards the right hemifield, i.e. the higher the right posterior connectivity the higher the bias 
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toward the left hemifield and the lower the right posterior connectivity the higher the bias 

toward the right hemifield. Therefore, the visuospatial bias toward the hemifield contralateral 

to the intact/dominant hemisphere, usually found in the literature, is entirely described by the 

alpha functional connectivity only in the right hemisphere, regardless to the side of the lesion. 

This is in line with previous findings showing a link between perceptual bias in hemianopic 

patients and oscillatory alpha activity (i.e., IAF and alpha power; Pietrelli et al., 2019) and 

corroborate the hypothesis that alpha pattern at rest might reflect an index of the efficiency of 

the visual processing.  

Interestingly, although previous reports have documented post-lesional increased 

connectivity in low frequencies (delta-theta; Castellanos et al., 2010; Dubovik et al., 2012), 

the present findings do not show systematic alterations in the connectivity in theta range in 

patients with posterior or anterior lesions. More precisely, only patients with posterior lesions 

to the right hemisphere showed enhanced functional connectivity in the theta range, in the 

right lesioned hemisphere. We can speculate that this finding might represent a compensatory 

mechanism for the loss of alpha functional connectivity after right posterior lesions. 

Accordingly, observations on neurological patients with thalamic dysfunctions have shown 

that, when activity in the alpha range is absent, typical alpha functional changes (i.e., 

desynchronization upon opening of the eyes) can, in turn, be shifted to theta frequency 

(Sarnthein, Morel, von Stein, and Jeanmonod, 2005). However, a significant correlation 

between functional connectivity in the theta range in the right hemisphere and visual 

performance has been observed in the current findings, thus suggesting that the theta 

oscillatory alteration observed in right-lesioned hemianopic patients might reflect a possible 

additional dysfunction in the connectivity pattern. 

In this perspective, it can be argued that hemianopic patients with right lesions report a more 

pervasive alteration in functional connectivity. Indeed, they show both reduced connectivity 

in the alpha range and increased connectivity in the theta range. Since alpha oscillatory 

activity has been proposed to reflect widespread cortical networks’ activity, regulating focal 

processes in non-alpha frequency bands (Doesburg et al., 2009; Barry and Blasio, 2017), the 

altered connectivity pattern in hemianopic patients with right lesions suggests that a post-

lesional reduction in alpha connectivity in the right hemisphere induce also impairments in 

local processes in lower-frequency bands. This strengthens the hypothesis of the role of alpha 
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oscillations in orchestrating oscillatory activity in different frequency bands (Hindriks et al., 

2015) and suggest that the right hemisphere might have a pivotal role in this mechanism. 

Overall, the present results suggest that functional connectivity in the alpha range can be 

altered after posterior lesions, indicating that this measure might represent the integrity of the 

underlying visual system. In addition, alterations in the alpha range in the right hemisphere 

might induce related dysfunctions also in lower frequency bands. 
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Chapter 4: Alterations in alpha reactivity in eyes-closed and eyes-open resting-state in 

hemianopic patients 

4.1. Introduction 

Alpha rhythm (7-13 Hz) is the dominant EEG pattern during eyes-closed resting condition in 

healthy awake individuals (Berger, 1929; Rosanova et al., 2009). Synchrony of alpha 

oscillations at rest has been traditionally linked to a sort of a standby state (Palva and Palva, 

2007). This idea of alpha oscillations as the brain “idle rhythm“ was supported by early 

observations of increased alpha power during relaxed wakefulness with eyes-closed 

(Bazanova and Vernon, 2014), as well as by studies that described a dominant alpha pattern 

during meditation (Travis and Wallace, 1999) and some states of coma (Ben-Simon, 

Podlipsky, Arieli, Zhdanov, and Hendler, 2008; Niedermeyer, 1997). However, more recent 

perspectives have proposed an association between alpha power and the tonic and distributed 

synchronous activity of the underlying neurons (Klimesch et al., 2007; Sadaghiani and 

Kleinschmidt, 2016). In keeping with this idea, alpha power during eyes-closed resting state, 

recorded over occipito-parietal electrodes, might index active suppression of neural 

predictions in the visual system (Sadaghiani and Kleinschmidt, 2016), reflecting an active 

engagement of the neurons of the underlying neural population.  

A typical observation in studies on relaxed wakefulness with eyes-closed is the decrease of 

alpha amplitude at the opening the eyes (Barry, Clarke, Johnstone, Magee, and Rushby, 2007; 

Ben-Simon et al., 2008). The decrease of alpha amplitude induced by eyes opening, known 

as alpha desynchronization or alpha suppression (Berger, 1929) is a consistent effect observed 

prominently over the posterior areas of the brain (Ben-Simon, Podlipsky, Okon-singer, 

Gruberger, Cvetkovic, Intrator, and Hendler, 2013; Marx, Stephan, Nolte, Deutschländer, 

Seelos, Dieterich, and Brandt, 2003), but occurring all over the scalp without evident 

topographical changes (Barry et al., 2007; Barry and De Blasio, 2017). In addition to alpha 

suppression, the opening of the eyes also induces changes in non-alpha frequency bands, 

which, however, typically show a more focal distribution (Barry et al., 2007; Barry and De 

Blasio, 2017). The widespread alpha suppression at the opening of the eyes has been also 

reported to be positively correlated with increase in skin conductance levels, possibly 

reflecting large cortical arousal changes induced by merely opening the eyes (Barry et al., 

2007). The complex of this global and local oscillatory changes at the opening of the eyes 
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might reflect increased visual system activity (Barry and De Blasio, 2017), which has been 

linked to widespread cortical and subcortical-cortical interactions (Klimesch, 1999; Başar, 

1999). Accordingly, oscillatory reactivity to the opening of the eyes has been attributed to 

uncoupling of thalamo-cortical connections (Klimesch, 1999). However, functional 

connectivity in cholinergic pathways linking the basal nucleus of Meynert to visual cortex 

(Wan, Huang, Schwab, Tanner, Rajan, Lam, Zaborszky, Li, Price, and Ding, 2019) and 

ascending projections from the Reticular Activating System (Gale, Coles, and Boyd, 1971; 

Härdle, Gasser, and Bächer, 1984; Volavka, Matoušek, and Roubíček, 1967; Garcia-Rill, 

Kezunovic, Hyde, Simon, Beck, and Urbano, 2013) have been also proposed to have a role 

in alpha suppression in the transition from eyes-closed to eyes-open resting state. 

EEG reactivity induced by eyes-opening is  maintained across life-span in healthy participants 

but tends to be reduced with age (Barry et al., 2007; Barry, Clarke, Johnstone, and Brown, 

2009; Barry and De Blasio, 2017). However, investigations on alpha reactivity on clinical 

populations are limited. Altered alpha reactivity induced by eyes-opening was found in 

dementia (van der Hiele, Bollen, Vein, Reijntjes, Westendorp, van Buchem, Middelkoop, and 

van Dijk, 2008) and schizophrenia (Colombo, Gambini, Macciardi, Bellodi, Sacchetti, Vita, 

Cattaneo, and Scarone, 1989), but little is known about how brain lesion impacts on EEG 

reactivity caused by eyes-opening. 

The study presented in the chapter 2 (Pietrelli et al., 2019) on patients with posterior brain 

lesions and hemianopia, demonstrated that lesions of the posterior cortices result in a 

pathological alpha oscillatory pattern during eyes-closed resting-state, with a slowdown of 

the individual alpha frequency peak (IAF) and a reduction of the amplitude in the lesioned 

hemisphere, which was more pronounced in hemianopic patients with right lesions, compared 

to hemianopic patients with left lesions. In addition, evidence reported in the previous chapter 

also showed that connectivity in the alpha range is altered after posterior brain lesions. This 

observation suggests that alpha oscillations might reflect the functionality of the posterior 

cortices and represent an electrophysiological fingerprint of the functioning of the visual 

system. In line, a wide range of evidence converge on the notion that different alpha 

parameters are linked to visual and attentional processes (Ben-Simon et al., 2008; 

Pfurtscheller et al., 1994; Capilla et al., 2014). 
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The evidence showing that posterior lesions alter alpha oscillatory parameters (Pietrelli et al., 

2019) raise the question whether the residual alpha recorded in hemianopic patients during 

eyes-closed resting-state can retain the typical reactivity to the opening of the eyes. More 

precisely, it can be hypothesized that damage to posterior cortices results in disrupted or 

altered alpha desynchronization in the transition from the eyes-closed to the eyes-open 

resting-state. To test this hypothesis, a group of hemianopic patients with posterior left 

lesions, a group of hemianopic patients with posterior right lesions, a control group of patients 

with more anterior lesions and a control group of healthy participants were tested, recording 

EEG during rest, both during eyes-closed and eyes-open conditions. 

4.2. Methods 

4.2.1. Participants 

Four groups of participants took part to the study: one group of twelve patients with visual 

field defect due to lesions to the left posterior cortices (9 males, mean age = 52.3 years, mean 

time since lesion onset = 12.4 months), one group of twelve patients with visual field defect 

due to lesions to the right posterior cortices (9 males, mean age = 58 years, mean time since 

lesion onset = 13.3 months), a control group of twelve patients without hemianopia with 

fronto-temporal lesions sparing the posterior cortices (6 males, mean age = 48.2 years, mean 

time since lesion onset = 26 months), and a control group of twelve age-matched healthy 

participants (6 males, mean age = 58 years). No differences between the groups were found 

in terms of age (F3,44 = 1.10; p = 0.363) or time since lesion onset (F2,33 = 2.41; p = 0.105); 

(for clinical details, please see Table 3).  

 

ID Sex Age Onset Lesion site Visual Field Defect Aetiology 

HEMI01 M 69 5 Left Occipital Right hemianopia Ischaemic 

HEMI02 M 45 7 Left Temporal Right hemianopia Hemorragic 

HEMI03 F 57 28 Left Fronto-Temporo-Insular Right hemianopia AVM 

HEMI04 M 50 7 Left Temporo-Occipito-Parietal Upper right quadrantopia Ischaemic 

HEMI05 M 81 9 Left Occipito-Temporal Right hemianopia Ischaemic 

HEMI06 M 51 5 Left Fronto-Temporo-Occipital Right hemianopia Abscess 

HEMI07 M 41 2 Left Occipital Lower right quadrantopia Ischaemic 

HEMI08 M 45 42 Left Fronto-Parieto-Temporal Right hemianopia Hemorragic 

HEMI09 F 29 26 Left Temporal Upper right quandrantopia AVM 

HEMI10 M 58 6 Left Temporo-Occipital Right hemianopia Ischaemic 

HEMI11 F 32 4 Left Parieto-Occipital Right hemianopia Ischaemic 
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HEMI12 M 69 8 Left Temporo-Occipital Right hemianopia Hemorragic 

HEMI13 M 56 3 Right Occipital Left hemianopia Ischaemic 

HEMI14 F 38 13 Right Parieto-Occipital Left hemianopia Hemorragic 

HEMI15 F 37 4 Right Occipito-Temporo-Parietal Left hemianopia Tumor 

HEMI16 M 58 18 Right Temporo-Occipital Left hemianopia Ischaemic 

HEMI17 M 81 7 Right Occipital Left hemianopia Hemorragic 

HEMI18 M 51 4 Right Occipital Left hemianopia Tumor 

HEMI19 M 60 29 Right Temporo-Occipital Left hemianopia Ischaemic 

HEMI20 F 73 8 Right Temporo-Occipital Left hemianopia Ischaemic 

HEMI21 M 77 6 Right Fronto-Parietal Left hemianopia Hemorragic 

HEMI22 M 30 54 Right Temporal Left hemianopia Hemorragic 

HEMI23 M 59 6 Right Temporo-Occipital Left hemianopia Ischaemic 

HEMI24 M 76 7 Right Occipital Left hemianopia Abscess 

CON01 F 48 38 Left Fronto-Insular No hemianopia Ischaemic 

CON02 F 44 40 Left Frontal No hemianopia Tumor 

CON03 M 28 11 Left Fronto-Parietal No hemianopia Tumor 

CON04 F 45 39 Left Frontal No hemianopia Tumor 

CON05 F 57 5 Right Fronto-Insular No hemianopia AVM 

CON06 M 42 59 Right Frontal No hemianopia Abscess 

CON07 M 62 7 Left Temporo-Insular No hemianopia Abscess 

CON08 F 42 19 Right Frontal No hemianopia Tumor 

CON09 M 34 7 Left Frontal No hemianopia Tumor 

CON10 M 51 3 Right Temporo-Insular No hemianopia Tumor 

CON11 F 50 70 Right Temporo-Fronto-Polar No hemianopia TBI 

CON12 M 75 22 Right Temporo-Insular No hemianopia Tumor 
Table 3. Summary of clinical data of all patients that took part to the study. Legend: M = Male; F = Female; AVM = Arteriovenous 

Malformation  

 

Mapping of brain lesions was performed using MRIcro. Lesions documented by the most 

recent clinical CT or MRI were traced onto the T1-weighted MRI template from the 

Montreal Neurological Institute provided with MRIcro software (Rorden et al., 2007; 

Rorden and Brett, 2000), with the exception of HEMI8 and HEMI20 whose MRI scans were 

not available. Lesions volumes were computed for each patient and the extents of the 

lesions were compared between the three patients’ groups, revealing no significant 

differences (one-way ANOVA, F2,31 = 0.77; p = 0.472) between hemianopic patients with 

left lesions, hemianopic patients with right lesions and control patients. In patients with 

right lesions the presence of neglect was screened using the Behavioral Inattention Test 

(Wilson et al., 1987), to ensure performance was in the normal range. All patients showed 

normal or corrected-to-normal visual acuity. Patients were informed about the procedure 

and the purpose of the study and gave written informed consent. The study was designed 
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and performed in accordance with the ethical principles of the Declaration of Helsinki and 

was approved by the Ethics Committee of the Regional Health Service Romagna (CEROM; 

n.2300). 

4.2.2. Experimental design 

Participants comfortably seated at rest in a sound-proof room in front of a 24’’ LCD monitor 

(refresh rate 60 Hz) at a viewing distance of 57 cm. EEG signal was recorded in five sessions 

of one-minute for each of the two resting conditions: eyes-closed and eyes-open resting-state. 

During the eyes-open resting-state, participants were asked to fixate a white central fixation 

cross (0.5°) against a black background on the monitor. Each one-minute session of recording 

was alternated between the two resting conditions. EEG data was acquired through a 

BrainAmp DC amplifier (BrainProducts GmbH, Germany) and Ag/AgCl electrodes 

(Fast’nEasy Cap, Easycap GmbH, Germany) from 59 scalp sites (Fp1, AF3, AF7, F1, F3, F7, 

FC1, FC3, FC5, FT7, C1, C3, C5, T7, CP1, CP3, CP5, TP7, P1, P3, P5, P7, PO3, PO7, O1, 

Fp2, AF4, AF8, F2, F4, F8, FC2, FC4, FC6, FT8, C2, C4, C6, T8, CP2, CP4, CP6, TP8, P2, 

P4, P6, P8, PO4, PO8, O2, FPz, AFz, Fz, FCz, Cz, CPz, Pz, POz, Oz) and the right mastoid. 

The left mastoid was used as reference electrode, while the ground electrode was placed on 

the right cheek. Vertical and horizontal electrooculogram (EOG) components were recorded 

from above and below the left eye, and from the outer canthus of each eye. Data was recorded 

with a band-pass filter of 0.01–100 Hz and digitized at a sampling rate of 1000 Hz, while 

impendences were kept under 10 KΩ. Raw EEG signal was off-line pre-processed and 

analyzed with EEGLAB (EEGlab version 4.1.2b; Delorme and Makeig, 2004), using custom 

Matlab routines (R2017a; The Mathworks Inc., USA). Data from all electrodes were re-

referenced to the average of all scalp electrodes and filtered with a band-pass filter of 1-100 

Hz. The first 10 seconds of each one-minute recording session were excluded from the 

analysis, in order to avoid any contamination of the signal related to the transition from eyes-

closed to the eyes-open resting condition. Continuous signal was segmented in epochs of 2 

seconds. Data dimensionality was reduced to 32 components based on principal component 

analysis (PCA) and horizontal and vertical eye artifacts were visually identified and 

discarded. On the cleaned EEG signal, an FFT was computed on the 2-sec epochs, with a 

frequency resolution of 0.5 Hz. Then, the amplitude of alpha and theta oscillations was 

calculated as the average power (in dB) in each electrode between 7 and 13 Hz and 4 and 6 
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Hz, respectively. In order to compare the lesioned and intact hemispheres across participants, 

electrodes were swapped cross-hemispherically for patients with lesions to the right 

hemisphere (i.e., the data were analyzed as if all patients were left-lesioned).  

Then, regions of interests (ROIs) were selected to perform statistical analysis on alpha and 

theta power. Specifically, the more anterior electrodes were excluded from the analysis, to 

avoid contamination of the signal by the ocular artifacts. Moreover, electrodes on the sagittal 

midline were also excluded to provide a better segregation of the signal between the two 

hemispheres. Thus, six right parieto-occipital electrodes (P4, P6, P8, PO4, PO8, O2) were 

selected to represent the posterior ROI of the intact/right hemisphere and the corresponding 

homologue electrodes (P3, P5, P7, PO3, PO7, O1) were selected to represent the posterior 

ROI of the lesioned/left hemisphere. In line, visual inspection of the scalp distribution of the 

mean alpha activity between 7 and 13 Hz, averaged across the two resting conditions and 

across groups, showed the highest alpha activity over these electrodes of the parieto-occipital 

regions. Additionally, seven centro-parietal electrodes (C2, C4, C6, CP2, CP4, CP6, P2)  were 

selected to represent the parietal ROI of the intact/right hemisphere, and the corresponding 

homologue electrodes (C1, C3, C5, CP1, CP3, CP5, P1) to represent the parietal ROI of the 

lesioned/left hemisphere. Finally, six more anterior electrodes (AF4, F2, F4, FC2, FC4, FC6) 

were chosen for representing the anterior ROI of the right/intact hemisphere, and their 

homologues (AF3, F1, F3, FC1, FC3, FC5) for representing the anterior ROI of the 

left/lesioned hemisphere.  

To test whether posterior brain damage might affect modulation of alpha and theta power 

induced by eyes opening, the oscillatory EEG power in both frequency bands was analyzed 

with separate ANOVAs with Condition (eyes-closed, eyes-open), Hemisphere (lesioned, 

intact) and ROI (posterior, parietal, anterior), as within-subject factors and Group 

(hemianopic patients with left lesions, hemianopic patients with right lesions, control patients 

with anterior lesions and healthy participants) as between-subjects factor. Post-hoc 

comparisons were performed with Tukey HSD (Spjøtvoll and Stoline, 1973). 
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4.3. Results 

4.3.1. Alpha frequency band 

The overall ANOVA on alpha power revealed a significant main effect of Condition (F1,44 = 

128.63; p < 0.001), with higher alpha power in eyes-closed condition (M = 3.90 dB) compared 

to the eyes-open condition (M = -0.55 dB; p < 0.001) and a significant main effect of Region 

(F2,88 = 68.08; p < 0.001), explained by higher power in posterior regions (M = 2.84 dB), 

relative to parietal regions (M = 0.97 dB; < 0.001) and anterior regions (M = 1.22 dB; p < 

0.001; see Fig 12). On the contrary, no significant main effect of Group (F3,44 = 0.48, p = 0.69) 

nor significant main effect of Hemisphere (F1,44 = 128.63; p = 0.216) were found. In addition, 

the ANOVA showed significant Condition x Group (F3,44 = 4.53; p = 0.007), Hemisphere x 

Group (F3,44 = 2.94; p = 0.043), Region x Group (F2,88 = 2.30; p = 0.040) and Condition x 

RegionxGroup (F6,88 = 3.40; p = 0.004) interactions and, more importantly the Condition x 

Hemisphere x Group (F3,44 = 3.68; p = 0.018) interaction was also significant. This significant 

interaction was explored, collapsing alpha power across Regions, performing separate 

ANOVAs on each group of participants, with Condition (eyes-closed, eyes-open) and 

Hemisphere (lesioned, intact) as factors, to compare alpha desynchronization at the opening 

of the eyes between the hemispheres, independently within each group.  

The ANOVA performed on the left-lesioned hemianopic patients revealed a significant main 

effect of Condition (F1,11 = 23.93; p < 0.001) with higher alpha power in the eyes-closed 

condition (M = 4.29 dB) relative to the eyes-open condition (M = 0.86 dB; p = < 0.001), while 

no significant main effect of Hemisphere (F1,11= 0.05; p = 0.824) was found. In addition, a 

significant Condition x Hemisphere (F1,11 = 6.30; p = 0.028) interaction was found, pointing 

to a higher alpha power in the eyes-closed condition, compared to eyes-open condition in both 

the lesioned (eyes-closed condition M = 2.63 dB; eyes-open condition M = 0.22 dB; p < 

0.001) and the intact hemisphere (eyes-closed condition M = 3.29 dB; eyes-open condition 

M = 0.06 dB; p < 0.001). Similarly, the ANOVA on the right-lesioned hemianopic patients 

revealed a significant main effect of Condition (F1,11 = 24.66; p < 0.001) with higher alpha 

power in the eyes-closed condition (M = 2.96 dB) relative to the eyes-open condition (M = 

0.10 dB; p < 0.001), while no significant main effect of Hemisphere (F1,11= 0.65; p = 0.439) 

was found. In addition, a significant Condition x Hemisphere interaction (F1,11 = 7.18; p = 

0.021) revealed higher alpha power in the eyes-closed condition, compared to the eyes-open 



74 
 

condition in both the lesioned hemisphere (eyes-closed condition M = 4.17 dB; eyes-open 

condition M = 1.03 dB; p < 0.001) and the intact hemisphere (eyes-closed condition M = 4.39 

dB; eyes-open condition M = 0.70 dB; p < 0.001 ). The ANOVA performed on control 

patients with anterior lesions revealed a significant main effect of Condition (F1,11 = 25.54; p 

< 0.001) with a higher alpha power in the eyes-closed condition (M = 4.15 dB) compared to 

the eye-open condition (M = -0.78 dB; p < 0.001) and a significant main effect of Hemisphere 

(F1,11 = 9.77; p < 0.001) pointing to a higher alpha power in the lesioned hemisphere (M = 

2.01 dB) compared to the intact hemisphere (M = 1.36 dB; p = 0.009), while the Condition x 

Hemisphere (F1,11  = 2.44; p = 0.14) interaction was not significant. Last, the ANOVA on 

healthy participants revealed a significant main effect of Condition (F1,11 = 62.98; p < 0.001) 

with a higher alpha power in the eyes-closed condition (M = 4.20 dB) compared to the eyes-

open condition (M = -2.38 dB; p < 0.001), while the main effect of Hemisphere (F1,11 = 0.32; 

p = 0.57) and the Condition x Hemisphere (F 1,11 = 1.09; p = 0.317) interaction were not 

significant. 

These results suggest the occurrence of a significant alpha power desynchronization induced 

by eyes opening in each group. Nevertheless, to compare the magnitude of the alpha reactivity 

to the opening of the eyes, we further calculated an index of alpha reactivity by subtracting 

the mean power in the eyes-open condition to the mean power in the eyes-closed condition 

(alpha reactivity = mean alpha power eyes-closed minus mean alpha power eyes-open) in both 

the lesioned and the intact hemisphere separately, for each group of participants. Paired t-tests 

were run, to compare the alpha reactivity indices of each group of patients to the group of 

healthy participants, separately for the lesioned and the intact hemisphere. Bonferroni 

correction was used, with significant threshold set at p = 0.0167. Left-lesioned hemianopic 

patients showed a significant reduction of alpha reactivity, compared to healthy participants 

both in the lesioned (lesioned hemisphere M = 3.14 dB vs left hemisphere M = 6.66 dB; p = 

0.001) and in the intact hemisphere (intact hemisphere M = 3.69 dB vs right hemisphere M = 

6.49 dB; p = 0.010). Similarly, right-lesioned hemianopic patients showed significantly 

reduced alpha reactivity, relative to healthy participants, both in the lesioned (lesioned 

hemisphere M 2.41 = dB vs right hemisphere M = 6.49 dB; p < 0.001) and in the intact 

hemisphere (intact hemisphere M = 3.30 dB vs left hemisphere, M = 6.66 dB, p = 0.002).On 

the contrary, no significant differences in alpha reactivity were found between the control 



75 
 

group of patients with anterior lesions and the healthy participants both in the lesioned 

(lesioned hemisphere M = 4.80 dB vs left hemisphere M = 6.66 dB; p = 0.024) and in the 

intact hemisphere (intact hemisphere M = 5.08 dB vs right hemisphere M = 6.49 dB; p = 

0.099). 

Since the overall ANOVA showed also a significant Condition x Region x Group (F6,88 = 

3.40; p = 0,004) interaction, we further explored the pattern of alpha reactivity, collapsing 

alpha power across hemispheres and performing four separate ANOVAs for each group of 

participants, with Condition (eyes-closed, eyes-open) and Region (posterior, parietal, 

anterior) as factors, to test alpha desynchronization at the opening of the eyes between the 

regions, independently within each group. 

The ANOVA on left-lesioned hemianopic patients revealed a significant main effect of 

Region (F2,22 = 18.03; p < 0.001) with higher alpha power in posterior regions (M = 3.90 dB), 

relative to parietal regions (M = 2.08 dB; p < 0.001) and anterior regions (M = 1.74 dB; p < 

0.001) and a significant main effect of Condition (F1,11 = 27.93; p < 0.001) with higher alpha 

power in the eyes-closed condition (M = 4.87 dB) compared to the eyes-open condition (M = 

0.86 dB; p < 0.001). The Condition x Region (F 2,22 = 1.85; p = 0.180) interaction was not 

significant. The ANOVA on the right-lesioned hemianopic patients showed a significant main 

effect of Condition (F1,11 = 24.66; p < 0.001), with higher alpha power in the eyes-closed 

condition (M = 2.96 dB) compared to the eyes-open condition (M = 0.11 dB; p < 0.001) and 

a significant main effect of Region (F2,22 = 9.68; p < 0.001 with higher alpha power in posterior 

regions (M = 2.44 dB), relative to parietal regions (M = 0.98 dB; p < 0.001) and anterior 

regions (M = 1.89 dB; p < 0.001). In addition, a significant Condition x Region (F 2,22= 3.73; 

p = 0.04) interaction was observed. Post-hoc comparisons showed a significant higher alpha 

power in the eyes-closed condition compared to the eyes-open condition in posterior regions 

(eyes-closed M = 3.55 dB; eyes-open M = -1.33 dB), parietal regions (eyes-closed M = 2.69 

dB; eyes-open M = -0.73 dB) and anterior regions (eyes-closed M = 2.65 dB; eyes-open M = 

-0.28 dB). In addition, in the eyes open condition, a significant higher alpha power was found 

in posterior regions compared to parietal regions (p < 0.001) and anterior regions (p < 0.001). 

For the group of control patients with anterior lesions, the ANOVA showed a significant main 

effect of Condition (F1,11 = 25.54; p < 0.001), with higher alpha power in the eyes-closed 

condition (M = 4.15 dB), compared to the eyes-open condition (M = -0.78 dB; p < 0.001) and 
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a significant main effect of Region (F2,22 = 32.70; p < 0.001) with higher alpha power in 

posterior regions (M = 3.26 dB), compared to parietal regions (M = 0.63 dB; p < 0.001) and 

anterior regions (M = 1.15 dB; p < 0.001). No significant Condition x Region (F2,22 = 1.16; p 

= 0.330) interaction was found. Last, the ANOVA on healthy participants revealed a 

significant main effect of Condition (F1,11 = 68.89; p < 0.001), with higher alpha power in the 

eyes-closed condition (M = 4.20 dB) compared to the eyes-open condition (M = -2.37 dB; p 

< 0.001) and a significant main effect of Region (F2,22= 14.53; p < 0.001), with higher alpha 

power over posterior regions (M = 1.74 dB), relative to parietal regions (M = 0.18 dB; p < 

0.001) and anterior regions (M = 0.80 dB; p = 0.010). Also, a significant Condition x Region 

(F2,22 = 41.45; p = < 0,001) interaction was found. The subsequent post-hoc comparisons 

showed significantly higher alpha power in the eyes-closed condition compared to the eyes-

open condition in posterior regions (eyes-closed M = 4.36 dB; eyes-open M = -0.87 dB, p < 

0.001), in parietal regions (eyes-closed M = 4.21 dB; eyes-open M = -3,84 dB, p < 0.001 ) 

and anterior regions (eyes-closed M = 4.02 dB; eyes-open M = -2.41 dB; p < 0.001). In 

addition, in the eyes-open condition, alpha power in posterior regions was significantly higher 

than in parietal regions (p < 0.001) and anterior regions (p < 0.001).  

These latter results were in line with the results of the analysis performed to explore the 

Condition x Hemisphere x Group interaction and confirmed the presence of a significant 

reduction of alpha power in the three regions of interest within each group of participants with 

the eyes opening.  
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Figure 12. Scalp topographies represent the scalp distribution of the alpha power averaged across each group in the frequency 
window 7-13 Hz, in the eyes-closed condition (A) and in the eyes-open condition (B). For patients with lesions to the right 

hemisphere, electrodes were swapped cross-hemispherically, so that the lesioned hemisphere is represented on the left side. (C) Bar 
histograms show the modulation of mean alpha amplitude in the eyes-closed and the eyes-open conditions, relative to the 

lesioned/left and the intact/right hemisphere, within each group. Error bars represent standard error; asterisks depict the significant 
comparisons. 

4.3.2. Theta frequency band 

The overall ANOVA on theta power revealed a significant main effect of Group (F3,44 = 4.16; 

p = 0.011), with higher theta power in right-lesioned hemianopic patients (M = 3.12 dB) 

relative to the control patients with anterior lesion (M = -0.24; p = 0.049; see Fig 13) and to 

the healthy participants (M = -0.28; p = 0.037). A significant main effect of Hemisphere (F1,44 

= 40.76; p = < 0.001), with higher theta power in the lesioned hemisphere (M = 1.66 dB) 

compared to the intact hemisphere (M = 0. 89 dB; p = 0.001) and a significant main effect of 

Region, with higher theta power in posterior regions (M = 1.87 dB), compared to parietal 

regions (M = 0.33 dB; p < 0.001) and anterior regions (M = 1.50 dB; p < 0.001), were also 

found. In contrast, no significant main effect of Condition (F1,44 = 3.89; p = 0.055) was found. 

Furthermore, the ANOVA revealed a significant Hemisphere x Group (F3,44= 3.88; p = 0.015) 
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interaction, a Hemisphere x Region x Group (F6,88 = 2.48; p = 0.016) interaction and more 

importantly, a significant Condition x Region x Group (F6,88 = 2.88; p = 0.028) interaction. 

This latter significant interaction was explored, collapsing theta power across hemispheres 

and performing separate ANOVAs on each group of participants, with Condition (eyes-

closed, eyes-open) and Region (posterior, parietal, anterior) as factors, to test theta changes at 

the opening of the eyes among these regions, independently within each group.  

The ANOVA on left-lesioned hemianopic patients did not show a significant main effect of 

Condition (F1,11 = 1.97; p = 0.188 ), but a significant main effect of Region (F2,22 = 13.28; p < 

0.001) with higher theta power in posterior regions (M = 3.23 dB) compared to parietal region 

(M = 1.34 dB; p < 0.001) and anterior regions ( M = 2.50  dB; p = 0.013) and a significant 

Condition x Region (F2,22 = 4.66; p = 0.020) interaction. Post-hoc comparisons revealed 

significantly higher theta power in the eyes-closed condition compared to the eyes-open 

condition in parietal regions  (eyes-closed M = 2.37 dB; eyes-open M = 0.32 dB; p < 0.001) 

and in anterior regions (eyes-closed M = 3.37 dB; eyes-open M = -1,62 dB; p = 0.003) but 

not in posterior regions (eyes-closed M = 3.43 dB; eyes-open M = 3.02 dB; p = 0.900). In 

addition, theta power in the eyes-open condition was significantly lower in parietal regions 

compared to anterior (p = 0.039) and posterior regions (p < 0.001). The ANOVA on right-

lesioned hemianopic patients did not show a significant main effect of Condition (F1,11 = 0.29; 

p = 0.600), but a significant main effect of Region (F2,22 = 6.98; p < 0.001) with higher theta 

power in posterior regions (M = 3.92 dB) relative to parietal regions (M = 2.30 dB; p = 0.003) 

and a significant Condition x Region (F2,22 = 8.58; p = 0.002) interaction. Post-hoc 

comparisons on this interaction did not reveal any significant difference in theta power in the 

eyes-closed condition compared to the eyes-open condition in parietal regions (eyes-closed 

M = 2.43 dB; eyes-open M = 2.17 dB; p = 0.535) and in anterior regions (eyes-closed M = 

3.30 dB; eyes-open M = 2.96 dB; p = 0.983). On the contrary, a significant lower theta power 

in the eyes-closed condition (M = 2.80 dB) compared to the eyes-open condition (M = 5.05 

dB; p = 0.002) was found in posterior regions. In addition, theta power in the eyes-open 

condition was significantly higher in posterior regions than parietal regions (p = 0.005) and 

anterior regions (p = 0.005). In the control patients with anterior lesions, no significant main 

effect of Condition (F1,11 = 0.85; p = 0.37) was found. In contrast, a significant main effect of 

Region (F2,22 = 11.24; p = 0.004) was evident, with significantly lower theta power in parietal 
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regions (M = -1.35 dB) compared to posterior (M = 0.40 dB; p = 0.001) and anterior regions 

(M = 0.21 dB; p = 0.024). The Condition x Region (F2,22 = 2.56, p = 0.045) interaction was 

also significant. Post-hoc comparisons revealed a significant higher theta power in the eyes-

closed condition relative to the eyes-open condition in parietal regions (eyes-closed M = -

0.54 dB; eyes-open M = -2.16 dB; p < 0.001). However, no significant difference between 

the eyes-closed condition and the eyes-open condition was found in both posterior (eyes-

closed M = 0,41 dB; eyes-open 0.40 dB; p = 1.00) and anterior regions (eyes-closed M = 0,89 

dB; eyes-open M = 0.45 dB; p = 0.073). The ANOVA on healthy participants showed a 

significant main effect of Condition (F1,11 = 5.40; p = 0.040) with higher theta power in the 

eyes-closed condition (M = 0.07 dB) compared to the eyes-open condition (M = -1.32 dB; p 

= 0.040), a significant main effect of Region (F2,22 = 13.88; p < 0.001) with significantly lower 

theta power in parietal regions ( M = -0.95 dB) relative to posterior (M = -0.07 dB; p = 0.002) 

and anterior regions (M = 0.16 dB; p < 0.001) and a significant Condition x Region interaction 

(F2,22 = 55.25; p < 0.001). Post-hoc comparisons on the Condition x Region interaction 

revealed significantly higher theta power in the eyes-closed condition compared to the eyes-

open condition in parietal (eyes- closed M = 0.82 dB; eyes-open M = -2.73 dB; p < 0.001) 

and anterior regions (eyes-closed M = 1.78 ; eyes-open M = 1.14 dB; p < 0.001 dB), but no 

significant difference between the two conditions was found in posterior regions (eyes-closed 

M = -0.31 dB; eyes-open M = 0.17; p = 0.583). In addition, theta power in the eyes-open 

condition was lower in parietal regions than in anterior regions (p < 0.001). 

Overall, these results suggest differences between groups in modulations of theta power 

induced by eyes opening in the three regions examined. More specifically, no changes 

between the eyes-closed and the eyes-open conditions were found in the posterior regions in 

all groups, with the exception of right lesioned hemianopic patients, who showed an atypical 

increase in theta power at the opening of the eyes, compared to the eyes-closed condition. 

Looking at the parietal regions, on the contrary, all groups, except for right-lesioned 

hemianopic patients, showed a significant desynchronization at the opening of the eyes. 

Therefore, to compare the magnitude of theta desynchronization, an index of theta reactivity 

at the opening of the eyes was calculated (theta reactivity = mean theta power eyes-closed 

minus mean theta power eyes-open) in the parietal regions, for left-lesioned hemianopic 

patients, control patients with anterior lesions and healthy participants. Paired t-tests were 
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performed to compare the reactivity index of each group of patients with the healthy 

participants group. No difference on the magnitude of theta reactivity was found between 

groups (all ps > 0.132). Finally, in anterior regions, only left-lesioned hemianopic patients 

and healthy participants showed a significant desynchronization, while no change in theta 

power at the opening of the eyes was found in right-lesioned hemianopic patients and control 

patients with anterior lesions. Therefore, theta reactivity index (theta reactivity = mean theta 

power eyes-closed minus mean theta power eyes-open) was calculated only in left-lesioned 

hemianopic patients and healthy participants. Paired t-test revealed no significant difference 

in the magnitude of theta reactivity (p = 0.179). 



81 
 

 

Figure 13. Scalp topographies represent the scalp distribution of the theta power averaged across each group in the frequency 
window 4-6 Hz, in the eyes-closed condition (D) and in the eyes-open condition (E). For patients with lesions to the right hemisphere, 
electrodes were swapped cross-hemispherically, so that the lesioned hemisphere is represented on the left side. (F) Bar histograms 
show the modulation of mean theta amplitude in the eyes-closed and the eyes-open conditions, relative to posterior, parietal and 

anterior ROIs, within each group. Error bars represent standard error; asterisks depict the significant comparisons. 
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4.4. Discussion 

The present study compared eyes-closed and eyes-open resting-state conditions in patients 

with posterior brain lesions with visual field defects and age-matched control groups of 

patients with more anterior lesions and healthy participants. The results showed that all groups 

presented a significant desynchronization of alpha power at the opening of the eyes, across 

all scalp regions. Specifically, decreased alpha power during the eyes-open condition 

compared to the eyes-closed condition was found in posterior, parietal and anterior sites, in 

both the left and the right hemispheres. Nevertheless, alpha reactivity induced by eyes-

opening was reduced in both the lesioned and the intact hemisphere of left- and right-lesioned 

hemianopic patients. This is in line with the study reported in the chapter 2 demonstrating that 

left and right posterior brain lesions selectively impair alpha oscillatory parameters during 

eyes-closed resting state, resulting in a slowdown of IAF and an interhemispheric power 

imbalance, in favor of the intact hemisphere (Pietrelli et al., 2019). Importantly, this result 

shows that, regardless alterations to the baseline alpha oscillatory activity due to posterior 

lesions, hemianopic patients retain a residual reactivity in the alpha range to the opening of 

the eyes, which is evident, but reduced after damage to the posterior cortices. This residual 

alpha oscillatory reactivity seems also in agreement with previous reports showing that 

hemianopic patients can retain stimulus-related alpha modulations, induced by the 

presentation of stimuli in the blind field (Grasso et al., 2018; Sanchez-Lopez et al., 2019). 

Importantly, the reduced alpha reactivity seems independent from the reduced visual input, 

consequent to the presence of visual field defect. Indeed, alpha desynchronization has been 

consistently reported also at the opening of the eyes in complete darkness (Ben-Simon et al., 

2013) and in blind individuals (Hüfner, Stephan, Flanagin, Deutschländer, Stein, Kalla, Dera, 

2009).  

Converging evidence report that eyes-closed and eyes-open conditions correspond to distinct 

neurophysiological states and functional connectivity patterns (Jao, Vértes, Alexander-Bloch, 

Tang, Yu, Chen, and Bullmore, 2013; Xu, Xiong, Xue, Tian, Peng, Zhang, Li, Wang, and 

Yao, 2014). More precisely, eyes-closed resting state has been linked to a state of greater 

network integration, with reduced modularity and increased global efficiency (Bianciardi, 

Fukunaga, van Gelderen, Horovitz, de Zwart, and Duyn, 2009; Xu et al., 2014). In contrast, 

eyes-open resting-state has been associated with greater modularity, which is thought to 
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facilitate increased local efficiency, subserving task-dependent processing (Xu et al., 2014; 

Allen, Damaraju, Eichele, Wu, and Calhoun, 2018). In this perspective, the typical alpha 

desynchronization in the transition from the eyes-closed to the eyes-open condition might 

represent a widespread cortical activation, supporting the focal decreases in non-alpha bands, 

related to local processing aiming at gathering visual information (Marx et al., 2003; Barry et 

al., 2007; Barry and De Blasio, 2017). 

Notably, in the current findings, lesions to posterior cortices similarly affect alpha reactivity 

in both hemianopic patients with left and right lesions. This is in contrast with previous 

findings on hemianopic patients showing that posterior right lesions led to more severe alpha 

oscillatory impairments, with stronger IAF reduction and interhemispheric power imbalance, 

relative to posterior left lesions (Pietrelli et al., 2019). However, in the present findings, a 

peculiar pattern of reactivity at the opening of the eyes in hemianopic patients with right 

lesions was found in the theta frequency range. More precisely, while healthy participants 

demonstrated a typical desynchronization in the theta range over centro-anterior regions at 

the opening of the eyes (Barry et al., 2007; Barry and De Blasio, 2017), right-lesioned 

hemianopic patients revealed no significant change over parietal and anterior regions of the 

scalp and an atypical increase of theta power over posterior regions, in the transition from 

eyes-closed to eyes-open resting state. On the contrary, hemianopic patients with left lesions 

showed a regular pattern of theta desynchronization, just like healthy participants. 

Alterations in the theta range after brain damage has been consistently reported in eyes-closed 

resting state. Specifically, increased theta power in perilesional areas has been described in 

patients with stroke (Butz et al., 2004; Chu et al., 2015; Dubovik et al., 2012; Laaksonen et 

al., 2013; Tecchio et al., 2005), likely reflecting reorganization of the lesioned cortices 

(Carmichael and Chesselet, 2002; Rabiller et al., 2015). Previous reports comparing 

hemianopics patients and control patients with anterior lesions also showed that post-lesional 

theta power increase is evident after lesions both to posterior and anterior cortices (Pietrelli 

et al., 2019). However, the current findings show that theta reactivity to the opening of the 

eyes seems selectively compromised after posterior right lesions. Interestingly, in patients 

with anterior lesions, theta power showed a global desynchronization. However, over the 

lesion sites (i.e., over anterior regions), theta power showed no significant desynchronization. 

This seems to suggest that patients with anterior lesions retain reactivity to the opening of the 
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eyes in the theta range, but they show a local impairment in desynchronizing theta power over 

the site of the lesion. Notably, theta power has been associated with distributed sources in 

fronto-temporal and fronto-central cortices (Iramina, Ueno, and Matsuoka, 1996; Ishii, 

Shinosaki, Ukai, Inouye, Ishihara, Yoshimine, Hirabuki, 1999). These distributed theta 

sources suggest that lesions to anterior cortices might focally impair theta reactivity, sparing 

theta desynchronization over non-lesioned sites. In contrast, hemianopic patients with right 

posterior lesions showed a widespread alteration in theta reactivity at the opening of the eyes, 

which adds to their reduced alpha reactivity. This result seems in line with the finding reported 

in chapter 3, showing that right posterior lesions selectively reduced functional connectivity 

in the alpha range, while increasing functional connectivity in the theta range during eyes-

closed resting state. The dysfunctional reactivity in the theta range observed in the present 

study might reflect the disruption of the typical focal oscillatory changes occurring at the 

opening of the eyes, which have been associated with stimulus processing and, hence, to low-

level unstructured responses to visual stimuli during eyes-open resting state (Barry and De 

Blasio, 2017; Gevins, Smith, McEvoy, and Yu, 1997; Grillon and Buchsbaum, 1986).  

The combination of impairments in the alpha and the theta range observed in hemianopic 

patients with right lesions suggests the presence of a stronger impairment in functional 

reactivity to the opening of the eyes, compared to hemianopic patients with left lesions, 

involving both global and local processes. Indeed, right posterior lesions, on the one hand, 

weaken the reduction of alpha power, reflecting the widespread cortical activation, which 

gates and controls visual inputs at the opening of the eyes, facilitating visual processing; on 

the other hand, right posterior lesions also impair focal theta reduction, which is linked with 

modular processing and local cortical activations (Barry and De Blasio, 2017; Gevins et al., 

1997; Grillon and Buchsbaum, 1986). This seems in line with the notion that alpha oscillations 

propagating from posterior visual cortices to higher-order cortical sites, might play a special 

role in coordinating widespread oscillatory activity and orchestrating focal processing in non-

alpha frequency bands, which might support visual processing at the opening of the eyes 

(Barry and De Blasio, 2017). The observation that this mechanism is more severely impaired 

after posterior lesions to the right hemisphere might be in line with the previously mentioned 

(see chapters 2 and 3) theories that posit a dominance of the right hemisphere in spatial 
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representation (Heilman and Van Den Abell, 1980) and in balancing the interhemispheric 

inhibition (Kinsbourne, 1977). 

Overall, the present findings corroborate the hypothesis that neural oscillations in the alpha 

frequency band are intrinsic of the posterior cortices and that posterior brain damage have a 

considerable impact on neural mechanisms supporting alpha power reactivity. Indeed, alpha 

reactivity to the opening of the eyes was shown to be reduced in hemianopic patients with 

both left and right lesions to posterior cortices. This may indicate that hemianopic patients are 

characterized by reduced task-independent activation of the visual system. 
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Chapter 5: Unseen distractors delay saccadic latency in left-lesioned hemianopic 

patients 

5.1. Introduction 

Although hemianopic patients, after lesions to the primary visual pathway, do not demonstrate 

conscious vision in the half of their visual field contralateral to the lesions, the ability to 

discriminate above the chance level the presence or the features (e.g., shape, color and 

emotion) or to localize (by pointing or performing saccades) stimuli presented in the blind 

field in forced choice tasks has been reported in a limited number of patients with visual field 

defect and has been defined “blindsight” (Blythe et al., 1987; Perenin and Jeannerod, 1975; 

Lawrence Weiskrantz et al., 1974; Pöppel et al., 1973). However, blindsight seems to 

represent a peculiar phenomenon, since hemianopic patients do not typically show above 

chance performance when guessing about the presence or the features of stimuli presented in 

their blind field. Nevertheless, brain lesions commonly found in hemianopic patients without 

blindsight usually spare subcortical and cortical structures, independent from the primary 

visual pathway, that are relevant for visual processing and might mediate residual visual 

abilities (Tamietto and Morrone, 2016). In line, previous evidence showed that hemianopic 

patients without blindsight could show implicit visual processing for specific categories of 

unseen stimuli. For instance, alpha desynchronization in posterior visual cortices has been 

observed for the presentation of unseen motion stimuli, whereas no alpha desynchronization 

was found with unseen static stimuli (Grasso et al., 2018). In addition, hemianopic patients 

without blindsight showed behavioral (Bertini et al., 2013; Bertini et al., 2018; Bertini et al., 

2017) and electrophysiological (Cecere et al., 2014) evidence of implicit visual processing 

when unseen fearful faces were presented in their blind visual field, but not for the presence 

of happy or neutral faces. The specificity of the residual abilities observed in hemianopic 

patients without blindsight suggests that spared subcortical visual pathways, which retain the 

ability of processing these categories of stimuli without awareness, might be involved in the 

implicit visual processing of these unseen stimuli. Specifically, these implicit visual abilities 

have been attributed to the visual pathways conveying visual information from the retina, to 

the Superior Colliculus (SC) and then projecting to subcortical (i.e., the Pulvinar and the 

Amygdala) and cortical (dorsal extra-striate areas) structures, responsive to visual stimuli, 
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usually spared in hemianopic patients (Bertini et al., 2013; Bertini et al., 2018; Bertini et al., 

2017). 

In addition to its role in mediating implicit visual processing, a wide range of evidence report 

the relevance of the SC in the generation and programming of saccadic eye-movements 

related to both covert and overt attention (Krauzlis et al., 2013).As a consequence, due to the 

shared neural circuits subserving both implicit visual processing and saccadic eye-

movements, it is possible that hemianopic patients without blindsight could show implicit 

processing for simple unseen visual stimuli in tasks requiring the implementation of saccades, 

and, therefore, involving the activity of the SC.  

Evidence on healthy participants have revealed a pivotal contribution of the SC and other 

relevant oculomotor structures independent from V1, such as FEF (Dorris, Olivier, and 

Munoz, 2007; Sommer and Wurtz 2004a; 2004b), in mediating a remote distractor effect 

(RDE; Walker and Benson, 2013; Walker, Deubel, Schneider, and Findlay, 1997; Walker, 

Mannan, Maurer, Pambakian, and Kennard, 2000; Walker, Kentridge, and Findlay 1995; 

Findlay and Walker 1999) during a saccadic localization task. RDE refers to the observation 

that saccadic latency towards targets is delayed when concurrent distractors are presented in 

the opposite hemifield (Walker and Benson, 2013; Walker et al., 1997; 2000; Walker et al., 

1995; Findlay and Walker, 1999). This effect has been attributed to distractor-related 

interference in saccade planning (Findlay and Walker, 1999; Walker et al., 1997; Ludwig, 

Gilchrist, and McSorley, 2005). More precisely, it has been proposed that mutually inhibitory 

mechanisms between the fixation and saccade initiation subpopulations of the buildup 

neurons of the SC might account for the RDE (Findlay and Walker, 1999; Walker et al., 1997; 

Gandhi and Keller, 1999). Alternatively, RDE has been explained as a mechanism of long-

range lateral inhibition between neural populations encoding target and distractor positions 

either within the SC (Dorris et al., 2007; Ludwig et al., 2005) or within the FEF (Dorris et al., 

2007; Sommer and Wurtz 2004a; 2004b).  

Although the RDE effect has been widely documented in healthy participants, evidence of 

delayed saccadic latencies in the presence of distractors in the blind field in hemianopic 

patients have been inconclusive (Rafal, Smith, Krantz, Cohen, and Brennan, 1990; Walker et 

al., 2000; Van der Stigchel, Zoest, Theeuwes, and Barton, 2008). Therefore, the present study 
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aimed to test whether unseen visual distractors presented in the blind field can be processed 

in the absence of awareness in hemianopic patients without blindsight and can delay saccadic 

initiation towards targets in the intact field, thus demonstrating the presence of an RDE effect.  

In addition, since the FEF has a critical role in the generation and planning of saccadic eye-

movements and seems to participate in mediating the RDE (Dorris et al., 2007; Sommer and 

Wurtz 2004a; 2004b) possible hemispheric differences should be taken into account. Indeed, 

the right hemisphere has reportedly a prominent role in visuospatial abilities (Kinsbourne, 

1987; Heilman and Valenstein, 1979; Heilman and Van Den Abell, 1980; Corbetta and 

Shulman, 2011) and left and right FEF and PPC show strong asymmetries in spatial 

representation and attentional allocation (Duecker and Sack, 2015).  

To this aim, two groups of hemianopic patients with left or right posterior lesions were 

separately tested in a saccadic localization task, in which they had to make saccadic eye-

movements toward simple visual stimuli presented in their intact visual field while visual 

distractor stimuli could be presented in the blind visual field. 

5.2. Methods 

5.2.1. Participants 

Two groups of participants took part to the study: eight patients (5 males, mean age = 50.1 

years, mean time since lesion onset = 11.9 months) with visual field defect due to lesions to 

the left posterior cortices, nine patients with visual field defect due to lesions to the right 

posterior cortices (8 males, mean age = 55.8 years, mean time since lesion onset = 12.0 

months). No differences between the groups were found relative to age (F1,15 = 0.79; p = 

0.389) or time since lesion onset (F1,15 = 0.00; p = 0.989). Clinical details are reported in Table 

4. 

 

ID Sex Age Onset Lesion site Visual Field Defect Aetiology 

EMI01 F 57 28 Left Fronto-Temporo-Insular Right hemianopia AVM 

EMI02 M 69 5 Left Occipital Right hemianopia Ischaemic 

EMI03 M 51 5 Left Fronto-Temporo-Occipital Right hemianopia Abscess 

EMI04 M 45 42 Left Fronto-Parieto-Temporal Right hemianopia Hemorragic 

EMI05 M 41 2 Left Occipital Lower right quadrantopia Ischaemic 

EMI06 F 32 4 Left Parieto-Occipital Right hemianopia Ischaemic 

EMI07 F 55 3 Left Fronto-Temporo-Parieto-Occipital Right hemianopia Ischaemic 
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EMI08 M 51 6 Left Temporo-Parietal Right hemianopia AVM 

EMI09 M 56 3 Right Occipital Left hemianopia Ischaemic 

EMI10 M 30 54 Right Temporal Left hemianopia Hemorragic 

EMI11 M 43 1 Right Parieto-Occipital Left hemianopia AVM 

EMI12 M 76 7 Right Occipital Left hemianopia Abscess 

EMI13 M 57 17  Right Fronto-Temporo-Parietal Left hemianopia Ischaemic 

EMI14 F 70 15 Right Temporo mesial Left hemianopia Hemorragic 

EMI15 M 59 6 Right Temporo-Occipital Left hemianopia Ischaemic 

EMI16 M 67 2 Right Parieto-Occipital Left hemianopia Ischaemic 

EMI17 M 44 1 Right Front-Occipital Left hemianopia TBI 
Table 4. Summary of clinical data of all patients that took part to the study. Legend: M = Male; F = Female; AVM = Arteriovenous 

Malformation; TBI = Traumatic Brain Injury  

 

Mapping of brain lesions was performed using MRIcro. Lesion documented by the most 

recent clinical CT or MRI were traced onto the T1-weighted MRI template from the Montreal 

Neurological Institute with MRIcro software (Rorden and Brett, 2000; Rorden et al., 2007) 

with the exception of EMI05, EMI07, EMI08, EMI11, EMI13, EMI14, EMI16 and 

EMI17whose MRI scans were not available. Lesions volumes were computed for each patient 

and the extent of the lesions were compared between the two groups, revealing no significant 

differences (one-way ANOVA, F1,7 = 1.45; p = 0.267) between left- and right-lesioned 

hemianopic patients. Participants showed normal or corrected-to-normal visual acuity. 

Patients were informed about the procedure and the purpose of the study and gave written 

informed consent. The study was designed and performed in accordance with the ethical 

principles of the Declaration of Helsinki and was approved by the Ethics Committee of the 

Regional Health Service Romagna (CEROM; n.2300). 

5.2.2. Experimental procedure 

Participants sat in a dark and sound-attenuated room, in front of a semi-circular experimental 

apparatus at a distance of 70 cm from the center of the apparatus (see below), with their chin 

on a chinrest and wearing the head-mounted unit of the Chronos Eye-Tracking Device (C-

ETD, Chronos Vision GmbH, Germany, www.chronos-vision.de). All the participants 

performed two two-alternative forced-choice tasks to test the presence of blindsight and a 

saccadic localization task (see below).  
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5.2.3. Experimental apparatus 

The experimental apparatus was a black semi-circular structure, with five LED lights placed 

at the eye level. Specifically, one green LED light was placed at the center, while four red 

LED lights were placed at 8° and 24° of eccentricity to the left and right of the central green 

LED light. Stimulus presentation was controlled by a custom routine on MATlab.  

In the saccadic localization task, the position of the left and right eye was monitored online 

and recorded by the Chronos Eye-Tracker Device, which tracks horizontal and vertical eye-

movements at 400 Hz. Two infrared cameras are mounted on a headset, pointing on two semi-

reflective mirrors. Specifically, only infrared light is reflected by the mirrors, whereas visible 

light can pass throughout without any problem. In this way, participants can freely see all the 

visual field while the two side cameras can record eye-movements. A calibration procedure 

was performed before the saccadic localization task. During the calibration procedure, each 

participant had to fixate in a sequential order the central green LED light and four points 

placed ten degrees to the left, right, above and below of the green LED light. In this way, the 

eye-tracking device was able to provide a coordinate system independent from the participant 

head position.  

5.2.4. Two-alternative forced choice tasks 

In order to verify that patients had no awareness of the stimuli presented in their blind field 

and no ability to detect them above chance, i.e. they had no form of blindsight, they underwent 

two separate two-alternative forced choice tasks (2AFC), where they were asked to detect, by 

guessing, the presence of stimuli presented in their blind field. Specifically, in the first 2AFC 

task participants have to guess the presence of stimuli randomly presented or not at 8° in their 

blind field, whereas in the second 2AFC task they were asked to guess the presence of stimuli 

randomly presented or not at 24° in their blind field. Before each trial, the central green LED 

light was turned on and the experimenter verified that the patients’ gaze was on the central 

green LED light. When patients’ gaze was aligned to the green LED light, the experimenter 

started the trial. At the beginning of the trial, the central green LED light was turned on for a 

variable time between 50 and 150 ms. Then, it was turned off and, after a variable time interval 

between 100 and 300 ms, the red LED light was turned on for 100 milliseconds, at 8° or 24° 

in the blind visual field, in the first and second 2AFC task, respectively. In half of the trials a 
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stimulus appeared, while in the remaining half no stimulus was presented. Participants had to 

guess the presence or absence of visual stimuli and to provide their response verbally, always 

keeping their gaze on the central green LED light. For each target locations, patients 

performed two blocks (80 trials per block).  

The number of correct responses, for each target position, was computed and was compared 

to the chance level (50% correct responses) using a binomial test. Statistical validity of the 

patient's performance was established by computing the two-tailed probability value of the 

number of correct responses on the binomial distribution. 

5.2.5. Saccadic localization task 

In the visual localization task, patients had to maintain their gaze on the green central LED 

light and move their gaze, as fast and as accurate as possible, toward target red LED lights 

presented in their intact field, while ignoring distractors presented in their blind field. After 

each saccadic eye-movement, patients had to move their gaze back to the central green LED 

light.  

At the beginning of each trial, the central green LED light was turned on and the experimenter 

verified that the patients’ gaze was on the central green LED light. When patients’ gaze was 

aligned to the green LED light, the experimenter started the trial. At the beginning of each 

trial, the central green LED light stayed on for a variable time between 50 and 150 ms. Then, 

the central green LED light turned off and, after a time interval between 100 and 300 ms, a 

red LED light was turned on for 100 ms at 8° or 24° in the intact visual field (target). Each 

target, could be presented alone (unilateral target), or coupled with a concurrent red LED light 

in the blind visual field presented at 8° (8° distractor) or at 24° (24° distractor). This resulted 

in six possible stimuli combination, i.e., 3 with the target at 8° in the intact field (unilateral 

target at 8°, target at 8° and distractor at 8°, target at 8° and distractor at 24°) and 3 with the 

target at 24° in the intact field(unilateral  target at 24°, target at 24° and distractor at 8°, target 

at 24° and distractor at 24°). In addition, catch trials were also presented (i.e., no red LED 

lights were turned on) to avoid anticipatory saccades. Specifically, hemianopic patients failed 

to inhibit the start of a saccadic eye-movement only on the 5.5% of the catch trials (left-

lesioned hemianopic patients = 5%, right-lesioned hemianopic patients = 6%). 
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The task consisted of 6 blocks of 40 trials each. For each target position, each block consisted 

of 5 unilateral target trials, 5 trials in which the distractor was presented at 8° and 5 trials in 

which the distractor was presented at 24°. In addition, 10 catch trials were also presented in 

each block. Trials’ order was randomized. 

5.2.6. Data processing and statistical analysis 

Eye gaze position over time was extracted from the infrared videos with the build-in Iris 

software. Saccadic eye-movements were then identified from the eye-gaze position data as 

changes in position faster than 60°/sec for more than 20 ms and that lead to more than 3,5° of 

displacement. Saccadic eye-movements starting from more than 3,5° away from the central 

green LED light and eye movements towards the blind field were excluded from the analysis. 

Saccadic latency was then calculated as the time interval between the target onset and the 

starting time of the saccadic eye-movement. Saccades with a saccadic latency below 80 ms 

or above 1000 ms were discarded, reflecting an anticipatory or not related to stimulus 

presentation saccadic eye-movement. Finally, only saccadic eye-movements with saccadic 

latency between two standard deviations from the average were included in the analysis (11% 

of the total trials were discarded). 

Saccadic latencies were analyzed with STATISTICA 11 software (StatSoft; Version 12.0; 

www.statsoft.com). Repeated measure ANOVAs were run for each of group separately, with 

Target Position (8° and 24°) and Condition (unilateral target, 8° distractor, 24° distractor) as 

within-subject factors. Post-hoc comparisons were then analyzed with the Newman-Keuls 

test.  

5.3. Results 

Results relative to the 2AFC tasks revealed that no patient showed significant above chance 

level responses in discriminating the presence of a visual stimulus either at the 8° or at the 

24° in the blind field (all ps > 0.075). 

Concerning the saccadic localization task, the ANOVA on the saccadic latencies on left-

lesioned hemianopic patients showed a significant effect of Condition (F2,14 = 15.91, p < 

0.001). Specifically, saccadic latency was significantly slower when a distractor was placed 

at 8° (M = 275 ms) compared to the condition in which no distractor was presented (M = 264 
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ms, p < 0.001) or to the condition in which a distractor was presented at 24° (M = 267 ms, p 

= 0.002). Finally, no significant difference was found in the saccadic latency when a distractor 

was presented at 24° compared to when no distractor was presented (p = 0.099). Both the 

main effect of Target Position (F1,7 = 1.44, p = 0.269) and the interaction Condition x Target 

Position (F2,14 = 2.12, p = 0.157) were not significant. Therefore, left-lesioned hemianopic 

patients showed a significantly slower saccadic latency for saccades toward the intact field 

when a distractor in the blind field was presented at 8° compared to when no distractor was 

presented (see Fig. 14). 

 

Figure 14. Bar plots show mean reaction times values for the three stimulation conditions averaged across the two targets condition 

in the left-lesioned hemianopic patients’ group. Error bars represent SEM. Asterisks denote significant comparisons 

 

On the contrary, the ANOVA on the saccadic latency for the right-lesioned hemianopic 

patients showed no significant main effect of Condition (F2,16 = 0.38, p = 0.690) or interaction 

between Condition and Target Position (F2,16 = 0.12, p = 0.890). Moreover, also the main 

effect of Target Position was not significant (F1,8 = 0.84, p = 0.387). These findings suggest 

that right-lesioned hemianopic patients showed no significantly slower saccadic latency for 

saccades toward the intact field when a distractor in the blind field was presented compared 

to when no distractor was presented. 
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5.4. Discussion  

Hemianopic patients without blindsight with left and right lesions showed a different pattern 

of saccadic responses in the saccadic localization task with unseen distractors. More precisely, 

left-lesioned hemianopic patients showed the presence of a RDE, with delayed latencies for 

saccades towards targets in the intact visual field, when concurrent unseen distractors were 

presented in the blind field at the 8°, compared to the condition where no distractor was 

presented. On the contrary, right-lesioned hemianopic patients showed no modulation of the 

presentation of unseen distractors on saccadic latencies for saccades toward targets in the 

intact visual field.  

The presence of RDE in left-lesioned hemianopic patients without blindsight reveals that 

simple visual stimuli presented in the periphery of the blind visual field can be processed in 

the absence of awareness and can interfere with saccadic initiation towards stimuli in the 

intact visual field. Since RDE has been attributed to inhibitory mechanisms within the SC 

(Findlay and Walker, 1999; Walker et al., 1997; Gandhi and Keller, 1999) and a widely 

distributed subcortical and cortical network involving FEF (Dorris et al., 2007; Sommer and 

Wurtz 2004a; 2004b), spared activity in this circuit might account also for the implicit visual 

processing for unseen distractors, observed in left-lesioned hemianopic patients in these 

findings. In line, implicit abilities in processing specific categories of unseen stimuli in the 

absence of awareness has been previously described in hemianopic patients without blindsight 

and has been related to the activity of spared subcortical circuits involving the SC and 

subcortical and cortical structures relevant in visual processing (Bertini et al., 2013; Bertini 

et al., 2017; 2018; Cecere et al. 2014; Anders et al., 2004). 

Notably, previous studies using similar experimental paradigms on patients with visual field 

defects, failed to find any consistent remote distractor effect for unseen distractors on saccades 

towards targets in the intact visual field (Rafal et al., 1990; Walker et al., 2000; Van der 

Stigchel et al., 2008). While RDE was first demonstrated in three left-lesioned patients by 

Rafal (1990), subsequent studies testing wider samples of hemianopic patients did not find 

any interference effect of unseen distractors (Walker et al., 2000) or reported RDE only in a 

few cases (i.e., two out of six patients tested; Van der Stigchel et al., 2008). Different reasons 

can account for the incongruence between current and previous results. First, previous studies 
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used small sample sizes and did not take into account possible differences between left- and 

right-lesioned hemianopic patients, which have been proven relevant in this study in 

demonstrating RDE. For instance, in the study by Walker (Walker et al., 2000) only two left-

lesioned hemianopic patients were tested and this might account for the lack of any consistent 

RDE. In addition, several methodological differences might explain previous inconsistent 

findings. For instance, saccadic latency might be affected by the nature of the targets 

(Liversedge, Gilchrist, and Everling, 2011) by the task instructions (i.e., by focusing more on 

speed or accuracy; Reddi and Carpenter, 2000), by stimulus probability (Carpenter and 

Williams, 1995) and stimulus spatial frequency (Ludwig, Gilchrist, and McSorley, 2004). In 

line, a possible mechanism explaining differences in the present and the previous findings is 

related to stimulus duration. Indeed, in previous studies targets and distractors lasted between 

500 and 1000 ms, whereas in the current study they had a duration of 100 ms. It is reasonable 

that a shorter duration of the stimuli might lead to a raw processing of visual stimuli, 

increasing the time for the oculomotor system to resolve the competition between the target 

and the distractor stimuli and, thus, inducing a delay in saccade initiation. Furthermore, in the 

current paradigm a variable time interval between fixation offset and target presentation was 

used to ensure attentional disengagement. This reduced mean saccadic latencies, avoiding 

possible ceiling effects which could mask the presence of RDE.  

In the present findings, RDE was found for saccadic eye-movements towards targets in the 

intact visual field only when a distractor was presented at 8° in the opposite blind visual 

hemifield. This is in line with previous evidence showing a reduction of RDE, at the increase 

of the eccentricity of the distractors (Walker et al., 1997; Honda, 2005; Findlay and Walker, 

1999). 

Notably, the present findings did not reveal any RDE for hemianopic patients with right 

lesions, thus suggesting a contribution of the right hemisphere in mediating the interference 

of a distractor on saccadic initiation. This seems in line with the widely documented 

dominance of the right hemisphere in spatial representation (Heilman and Van Den Abell, 

1980) and in balancing interhemispheric activity (Kinsbourne, 1977). Interestingly, the FEF, 

which are involved in programming saccadic eye-movements and play a critical role in RDE, 

reportedly shows a strong left-right asymmetry in the control of the visual field (Hung et al., 

2011; Grosbras and Paus, 2003; 2002; Chanes et al., 2012). More specifically, it has been 



96 
 

shown that the right FEF seem to mediate attentional shifts to both contra- and ipsi-lateral 

hemifields, whereas the left FEF mediate attentional shift only to the contralateral hemifield 

(Grosbras and Paus, 2003; Chanes et al., 2012; Duecker et al., 2013; Duecker and Sack, 2015). 

This is in line with a possible contribution of the right FEF on RDE in hemianopic patients. 

More specifically, the present findings show that only when the right hemisphere is intact 

(i.e., in left-lesioned hemianopic patients), unseen distractors in the blind right visual field 

interfere with saccades towards the intact left visual field, in line with the hypothesis that right 

FEF might retain spatial representation of both targets in the left intact visual field and 

distractors in the blind right visual field (Duecker and Sack, 2015), thus contributing in RDE. 

In contrast, when the right hemisphere is lesioned, the spared left hemisphere, which retains 

spatial representation limited to the contralateral visual field, seems to be insufficient to 

demonstrate RDE.  

Overall, the RDE for unseen stimuli observed in the present study corroborates the hypothesis 

that hemianopic patients without blindsight might demonstrate implicit visual processing in 

the absence of awareness, for stimuli encoded by alternative visual circuits independent from 

V1. Although the SC seems to play a pivotal role in mediating both the effects of a distractor 

in delaying saccadic latencies and the visual processing of unseen stimuli, the contribution of 

cortical structures participating to the oculomotor networks, such as FEF and PPC, might be 

relevant for the occurrence of RDE. 
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Chapter 6: General discussion 

All primates, including humans, depend heavily on sight. Several parts of the brain are 

involved in the processing of visuospatial information, both in subcortical and cortical brain 

areas. A way to better understand the functionality of the human visual system is the study of 

patients with hemianopia. In hemianopia, patients lose the conscious vision in a part of the 

visual field due to the lesion of posterior visual cortices. Consequently, hemianopic patients 

represent a perfect neuropsychological model to investigate the functionality of the visual 

system. Furthermore, investigating how the visual system works in hemianopic patients can 

help to characterize deficits and residual abilities after posterior brain lesion. In the previous 

chapters, four studies have been presented, in which the functionality of the human visual 

system after posterior brain lesions has been investigated in hemianopic patients, exploring 

both the electrophysiological patterns of post-lesional activity and the residual implicit visual 

processing. 

In previous literature, the electrophysiological correlates of the functionality of the visual 

system after a posterior lesion were investigated by recording the visual-evoked potentials 

evoked by the presentation of stimuli in the blind visual field, but with poor results. In recent 

studies, the oscillatory nature of the brain’s electrophysiology was exploited to record the 

electrophysiological oscillatory activity induced by the presentation of stimuli in the blind 

field (Grasso et al., 2018; Bollini et al., 2017; Sanchez-Lopez et al., 2019). Among all the 

brain frequencies, oscillatory activity in the alpha band (7-13 Hz) over occipito-parietal 

regions is the dominant frequency of the visual system (Rosanova et al., 2009) and shows an 

active role in shaping visual perception and spatial attention in healthy participants (Klimesch 

et al., 2007; Jensen and Mazaheri, 2010). In addition, the spontaneous alpha activity recorded 

during the resting-state, i.e. without any stimulus presentation, is able to predict the behavioral 

performance in visuospatial task in healthy participant (Klimesch 1997; Klimesch, 1999; 

Cecere et al., 2015; Mathewson et al., 2009; Samaha and Postle, 2015), therefore suggesting 

that it might reflect the functionality of the visual system.  

In the study presented in chapter 2 EEG oscillatory activity was recorded during eyes-closed 

resting state, left- and right-lesioned hemianopic patients showed a slowdown of the speed of 

alpha oscillation in both the intact and the lesioned hemisphere and a reduction of the 
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amplitude of alpha oscillations in the lesioned hemisphere, resulting in an interhemispheric 

imbalance of the alpha oscillatory activity. In contrast, no significant alterations were found 

in patients with anterior lesions. The presence of an impairment of alpha oscillatory activity 

after a posterior lesion, but not after an anterior lesion, suggests that posterior cortices might 

have a central role in coordinating alpha oscillations through the visual system. This finding 

is in line with the notion of posterior cortices as one of the main source of alpha oscillatory 

activity, coordinating and propagating alpha oscillations in the entire visual system from 

lower to higher-order visual areas (Bollimunta et al., 2008; Hindriks et al., 2015). Crucially, 

the alpha oscillatory activity recorded during the resting-state well predicted the visuospatial 

performance across all participants and the visual detection impairments in hemianopic 

patients, therefore supporting the idea of spontaneous alpha oscillatory activity as an 

electrophysiological correlate for the functionality of the visual system (Dugué et al., 2011; 

Romei et al., 2008a; Hindriks et al., 2015; Cecere, Rees, and Romei, 2015; Samaha and Postle, 

2015; Wutz et al., 2018; Wutz et al., 2016; Klimesch, 1997; Klimesch, 1999; Mathewson et 

al., 2009). Moreover, right posterior lesions caused a greater interhemispheric imbalance in 

the oscillatory alpha activity, suggesting that lesions to the right posterior cortices have a more 

severe impact on alpha oscillatory activity. This finding is in line with prominent theories 

about the dominance of the right hemisphere over the left hemisphere in spatial representation 

(Heilman and Van Den Abell, 1980) and in balancing the interhemispheric inhibition 

(Kinsbourne, 1977). Consequently, the dominant role of the right hemisphere in coordinating 

and propagating the spontaneous alpha oscillatory activity found in the current study might 

reflect the dominant role of the right hemisphere in the representation of space. 

Although the results of the first study revealed alterations of spontaneous alpha parameters 

after posterior brain lesions, they did not provide any evidence about the integrated oscillatory 

activity in different and spatially separated brain regions. Indeed, a coherent visual 

representation of the entire space need the complex integration between the top-down spatial 

attentional networks and the bottom-up visual processing networks (Desimone and Duncan, 

1995; Treue and Maunsell, 1996). Therefore, the study of the functional connectivity during 

the resting-state might represent a reliable tool for testing the information flow within 

widespread neural networks (Westlake et al., 2012; Greicius et al., 2003). In line, in the study 

presented in chapter 3, in which EEG oscillatory activity was recorded during eyes-closed 
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resting state and functional connectivity was measured, patients with a posterior lesion 

showed alterations of alpha functional connectivity only in the posterior right hemisphere. 

Specifically, the right hemisphere showed reduced connectivity when lesioned (i.e., in 

hemianopic patients with right lesions) and increased connectivity when intact (i.e., in 

hemianopic patients with left lesions). In line with the study presented in chapter 2, this 

finding corroborate the idea that posterior regions might have a central role in coordinating 

and propagating alpha oscillations through the visual system, and further suggests a prominent 

role of the right hemisphere in control the information flow within the functional networks of 

the visual system. Moreover, patients with a posterior right lesion showed also an increased 

theta functional connectivity in the right-lesioned hemisphere, suggesting the presence of an 

additional dysfunction in the oscillatory connectivity pattern after a posterior lesion. This 

further corroborates the idea of a dominance of the right hemisphere in the visuospatial 

processing (Heilman and Van Den Abell, 1980; Kinsbourne, 1977) and the role of alpha 

oscillatory activity in coordinating also the activity in different frequency bands (Hindriks et 

al., 2015). Crucially, the alterations of alpha functional connectivity were directly linked to 

the visuospatial performance across all participants, in line with the findings reported in 

chapter 2 and corroborating the hypothesis that alpha dynamics at rest might reflect an index 

of the efficiency of the visual processing. 

Overall the findings of the studies in chapters 2 and 3 demonstrated that patients with a 

posterior lesion showed a consistent impairment in the spontaneous alpha oscillatory activity, 

reflecting an impairment in the functionality of the visual system. However, these results do 

not reveal if the observed spontaneous alpha oscillatory activity reflects impaired but 

functional neural processing or only residual activity without any functional role. In the study 

in the chapter 4, the functionality of the spontaneous alpha oscillatory activity was 

investigated after a posterior lesion by the study of the typical alpha suppression found for the 

transition from the eyes-closed to the eyes-open resting-state (Ben-Simon et al., 2008; Barry 

et al., 2007). The results revealed that, similarly to healthy participants, hemianopic patients 

showed the presence of a suppression of the alpha oscillatory activity in the transition from 

eyes-closed to eyes-open resting-state. However, alpha suppression in hemianopic patients 

was reduced compared to the reactivity of alpha oscillatory activity in the healthy participants. 

These findings suggest that after posterior lesions, although activity in the alpha range is 
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altered and reduced, residual alpha oscillatory activity is not fully impaired, therefore 

suggesting some sparing of the functionality of the visual system. Moreover, right posterior 

lesions also altered the reactivity pattern of theta oscillatory activity. Specifically, an increase 

in theta power at the opening of the eyes was found in right-lesioned hemianopic patients, 

whereas theta amplitude showed a typical decrease in all the other groups. Accordingly, the 

typical suppression of theta oscillatory activity at the opening of the eyes has been generally 

associated with local cortical activation underlying visual processing. Thus, the lack of theta 

suppression in hemianopic patients with right lesions suggests that damage to right posterior 

cortices are more detrimental for visual reactivity (Barry et al., 2007). In line, previous studies 

have proposed that alpha oscillatory activity might reflect the activity of widespread cortical 

networks, regulating the local processing in non-alpha frequency bands (Doesburg et al., 

2009; Barry and De Blasio, 2017). Consequently, the altered theta oscillatory activity found 

in the studies in the chapter 3 and 4 suggests that the impairment of the alpha oscillatory 

activity after a right posterior lesion might also induce an impairment of local processing in 

lower frequency bands. Therefore, these converging findings suggest a central role of the right 

posterior cortices in coordinating and propagating the spontaneous alpha oscillatory activity 

and in regulating the spontaneous lower frequency oscillatory activity, possibly reflecting the 

central role of the right hemisphere in shaping a coherent visual representation of the entire 

space. 

The results from the studies in chapters 2, 3 and 4 suggested that some degree of functionality 

of the spontaneous alpha oscillatory activity is spared after a posterior brain lesion, probably 

reflecting the presence of a residual functionality of the visual system after a posterior lesion. 

Indeed, posterior brain lesions usually spare subcortical and cortical structures which might 

sustain residual visual processing (Tamietto and Morrone, 2016; Tamietto et al., 2012). For 

instance, the SC is a pivotal subcortical structure which has been demonstrated to be involved 

in mediating implicit visual processing in the absence of awareness after posterior brain 

lesions (Tamietto et al., 2010; Spering and Carrasco, 2015; Rodman et al., 1989; 1990; Girard 

et al., 1992; Azzopardi et al., 2003; Tran et al., 2019; Tamietto et al., 2012; Rafal et al., 2015) 

and is typically intact after cortical lesions inducing visual field defects. In addition, the SC 

has also a prominent role in programming and generating eye-movements (Munoz and Wurtz, 

1995a; 1995b; Krauzlis et al., 2013). In this perspective, the study in chapter 5 investigated 
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whether patients with posterior lesions might retain the ability of implicitly processing stimuli 

in the blind field, using a saccadic localization task. The results showed that left-lesioned 

hemianopic patients, but not right-lesioned hemianopic patients, showed a delay in the 

initiation of saccades toward targets presented in the intact field when a concurrent distractor 

was presented in the blind field. The interference of the unseen distractor on the saccadic 

response toward a seen target suggests that hemianopic patients can process unseen visual 

stimuli presented in their blind field in the absence of awareness. Classical studies on patient 

with visual field defects with blindsight have reported residual abilities to discriminate above 

the chance level the presence, the features or the location of visual stimuli presented in the 

blind field in forced choice tasks (Blythe et al., 1987; Perenin and Jeannerod, 1975; 

Weiskrantz et al., 1974; Pöppel et al., 1973). However, blindsight seems to represent a rare 

neuropsychological condition which might arise from a peculiar reorganization of the visual 

system. Indeed, hemianopic patients usually do not show above chance level discriminative 

abilities for visual stimuli presented in the blind field. Nevertheless, the present findings 

demonstrate that also hemianopic patients without blindsight can process some categories of 

stimuli in their blind visual field. This is in line with the recent findings on hemianopic 

patients without blindsight showing the presence of residual visual processing for very 

specific categories of stimuli, i.e. motion stimuli and fearful faces, presented in the blind 

visual field (Grasso et al., 2018; Bertini et al., 2013; Bertini et al., 2018; Bertini et al., 2017; 

Cecere et al., 2014). These implicit visual abilities, which seems selective for certain stimuli, 

has been attributed to the involvement of the visual pathways conveying visual information 

from the retina, to the SC and then projecting to subcortical and cortical structures, relevant 

in processing these specific categories of stimuli (Bertini et al., 2013; Bertini et al., 2018; 

Bertini et al., 2017). The same pathway might subserve also the saccadic interference effect 

with unseen stimuli observed in the present study. Indeed, in healthy participants the 

interference of a distractor presented in one hemifield on the saccadic response toward target 

presented in the other hemifield has been attributed to inhibitory mechanisms within the SC 

(Findlay and Walker, 1999; Walker et al., 1997; Gandhi and Keller, 1999) and the interplay 

between the SC and the higher-order cortical region for the control of eye-movements FEF 

(Dorris et al., 2007; Sommer and Wurtz 2004a; 2004b). These evidences suggest that the 

residual visual processing observed in chapter 5 might be mediated by the SC and the 



102 
 

interplay between the SC and the FEF. The presence of a residual visual processing only in 

left-lesioned patients is in line with the literature about the cortical asymmetry in the 

representation of space, in which the right hemisphere shows a dominant role compared to 

the left hemisphere (Heilman and Van Den Abell, 1980; Kinsbourne, 1977; Corbetta and 

Shulman, 2002; 2011; Duecker and Sack, 2015). Indeed, the FEF, a cortical region that 

contribute together with the SC to the programming of saccades, shows in several studies a 

strong asymmetry in visuospatial abilities, where the right FEF is able to represent both the 

contra- and ipsi-lateral hemifields and, on contrary, the left FEF is able to represent only the 

contralateral hemifield (Grosbras and Paus, 2003; Chanes et al., 2012; Duecker et al., 2013; 

Duecker and Sack, 2015). 

In conclusion, in the present work the functionality of the visual system has been investigated 

after lesions of posterior visual cortices. Evidence demonstrating the presence of visual 

processing in the absence of awareness in hemianopic patients without blindsight has been 

provided, suggesting that subcortical structures spared after lesions inducing visual field 

defects might mediate implicit visual abilities. Moreover, electrophysiological evidence have 

been also provided, corroborating the notion that  spontaneous alpha oscillatory activity might 

be a reliable biomarker for the functionality of the visual system, opening up the future 

possibility to predict the visuospatial impairment of hemianopic patients before the use of any 

behavioral test. More importantly, the tight relationship between alpha oscillatory activity and 

the functionality of the visual system suggests that active modulation of alpha oscillatory 

activity might ameliorate the functionality of the visual system in patients with visual field 

defect. Accordingly, in healthy participants it has been reported that both oscillatory activity 

and visual performance can be temporarily enhanced by a rhythmic transcranial magnetic 

stimulation at alpha frequency (Thut et al., 2011; Romei, Gross, and Thut, 2010), by a 

flickering visual stimulation at alpha frequency (Mathewson, Prudhomme, Fabiani, Beck, 

Lleras, and Gratton, 2012; de Graaf, Gross, Paterson, Rusch, Sack, and Thut, 2013) and by 

training individuals to alter their brain activity oscillatory activity via neurofeedback 

(Twemlow and Bowen, 1977; Angelakis, Stathopoulou, Frymiare, Green, Lubar, and 

Kounios, 2007). Therefore, future studies should focus on the development of stimulation 

protocols able to induce long term plastic changes in the impaired alpha oscillatory activity 
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after a posterior lesion, in order to improve the spared functionality of the visual system of 

hemianopic patients.  
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