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“Somewhere, something incredible is waiting to be known.” 

Carl Sagan 
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ABSTRACT 

Gait analysis allows to characterize motor function, highlighting deviations from normal 

motor behavior related to an underlying pathology. The assessment of abnormal gait contributes to 

differentiate between specific pathologies and to evaluate disease progression and therapeutic 

effects over time. Laboratory gait analysis, exploiting stereophotogrammetry and force platforms, 

has become, in the last decades, the de facto standard for motor quantitative assessment, although 

the evaluation of ecological gait, out of the laboratory would allow a better insight in the actual 

motor function in daily living conditions, and in how it is related to environmental conditions and, 

potentially, pathology. 

The relatively recent availability of wearable inertial sensors, suitable to quantify motion out 

of the laboratory, has opened the way to the evaluation of ecological gait, although a standard 

approach is not available yet. A variety of methodological approaches and algorithms have been 

proposed for the characterization of gait from inertial measures (e.g. for temporal parameters, motor 

stability and variability, specific pathological alterations such as freezing). However, no 

comparative analysis of their performance (i.e. accuracy, repeatability) was available yet, in 

particular, analysing how this performance is affected by extrinsic (i.e. sensor location, 

computational approach, analysed variable, testing environmental constraints) and intrinsic (i.e. 

functional alterations resulting from pathology) factors. This lack of information does not allow to 

define evidence-based criteria for the selection of the most appropriate protocol/algorithm to 

respond to specific clinical questions, preventing the definition of a standardised approach to support 

the reliability of the results for clinical application. 

The aim of the present project was to fill this gap, comparatively analyzing the influence of  

intrinsic and extrinsic factors on the performance of the numerous algorithms proposed in the 

literature for the quantification of specific characteristics (i.e. timing, variability/stability) and 

alterations (i.e. freezing) of gait. 
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Considering extrinsic factors, the influence of sensor location, analyzed variable, and 

computational approach on the performance of a selection of gait segmentation algorithms from a 

literature review was analysed in different environmental conditions (e.g. solid ground, sand, in 

water). In general, shank- and foot-based algorithms performed better than trunk-based ones, as well 

as angular velocity-based compared to acceleration-based ones, while the performance of different 

computational approaches varied depending on sensor positioning. Differences in algorithm 

performance were related to the repeatability of the stride pattern of the analyzed variable over trials, 

subjects and environmental conditions, leading to the proposal of an objective criterion to pre-

evaluate the suitability of an algorithm to the specific application. Moreover, the influence of altered 

environmental conditions (i.e. in water) was analyzed as referred to the minimum number of stride 

necessary to obtain reliable estimates of gait variability and stability metrics, integrating what 

already available in the literature for over ground gait in healthy subjects.  

Considering intrinsic factors, the influence of specific pathological conditions (i.e. 

Parkinson’s Disease) was analyzed as affecting the performance of segmentation algorithms, with 

and without freezing, showing results in line with what observed for the perturbed gait of healthy 

subjects. Based on these results a decision tree was proposed for the evidence-based selection of the 

most appropriate algorithm for specific operative conditions, and for possible algorithm 

optimization. Finally, the analysis of the performance of algorithms for the detection of gait freezing 

showed how results depend on the domain of implementation (frequency-based algorithms perform 

better than time and time-frequency based ones) and IMU position (shank- and foot-based 

algorithms perform better than trunk-based one). 

Without exhausting all the methodological issues to be addressed to define a standard 

approach for motion analysis using wearable sensors, the results of the present PhD project provides 

a significant contribution in the field, providing evidence and objective criteria for the evaluation of 

1) the most appropriate algorithm for gait segmentation, 2) the applicability of repeatability and 

stability metrics, 3) the choice of the most appropriate approach for the detection of gait freezing in 

perturbed gait conditions, overcoming the general limitation of reference data only from healthy 

subjects in unperturbed conditions, and addressing specific technical aspects (e.g. sensor 

positioning, analyzed variable, computational approach and domain) to support the design of more 

effective algorithms of ecological gait. 
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Nomenclature  

GE Gait Event 

GTP Gait Temporal Parameter 

HS Heel Strike 

TO Toe Off 

FC Foot Contact 

FO Foot Off 

AP Anterior Posterior 

V Vertical 

ML Medio Lateral 

PSD1 short term Poincarè Plots; PSD2 long term Poincarè Plots 

SD Standard Deviation of the stride time 

Avg Average Length of Diagonal Line 

Max Maximum diagonal line length 

Div Divergence 

rr Recurrence Rate 

Det Determinism 

RQA Recurrence Quantification Analysis 

MSE Multiscale Entropy 

SE Sample Entropy 

IMU Inertial Measurement Unit 

FIR Finite Impulse Response 

IIR Infinite Impulse Response 

WT Wavelet Transform 

Med Median 

Dmed Dispersion around median value 

ICC Intraclass correlation coefficient 

WDL walking on dry land 

WW walking in water 

PDP Parkinson’s disease patient 

FOG Freezing of Gait 

TA Tibialis Anterior 

GM Gastrocnemius Medialis 

GL Gastrocnemius Lateralis 
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Gait is a motor paradigm of human daily living, essential to sustain motor function and 

guarantee quality of life [1,2]. Gait assessment allows to identify deviations from the reference 

healthy behavior [1,3,4], providing information regarding the overall health status [5,6]. Assessing 

abnormal gait supports the evaluation of disease progression and therapeutic effects over time [7].  

Clinical motion analysis in laboratory conditions, using stereophotogrammetry, force 

platform, and other integrate tools [8], has become a de facto standard for the functional assessment 

of gait. On the other hand, its analysis in ecological conditions has raised increasing interest, 

especially in recent years; the analysis of ecological gait has the potential to actually assess how the 

analyzed subject walks during daily living, how different environmental constraints affect motor 

performance and control, how pathology alters gait in real life. The development and wide spread 

availability of inertial measurement units has given the chance to investigate gait in the afore 

mentioned ecological conditions [9], providing the potential to characterize motor performance in 

both healthy and pathological subjects out of laboratory constraints [10,11]. 

Although the suitability of the technology, the extensive use, and the numerous algorithms 

proposed for the assessment of different characteristics of gait (e.g. temporal parameters, motor 

stability and variability, specific pathological alterations of gait such as freezing), no standards have 

been defined yet for the use of inertial measurement units in gait analysis, not for laboratory testing 

conditions, even less for the assessment of gait in ecological conditions, and very little information 

is available regarding the performance of the different proposed algorithms and how testing 

conditions, environmental constraints, and pathological alterations affect their performance. 

The aim of the PhD project described in the present thesis was to fill this gap. The research 

was addressed to comparatively analyse the performance of different algorithms proposed for the 

assessment of gait characteristics, such as timing, variability, stability, and freezing, from inertial 

measurements. In particular, the influence of different implementation characteristics (e.g. sensor 
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location, analysed variable, computational approach, number of analysed strides) and of alterations 

resulting from extrinsic (e.g. different types of walking surface and environment) and/or intrinsic 

(e.g. gait alteration related to pathological conditions) factors. 

The present thesis includes one general background chapter and 2 sections describing the 

research activity and results: Section 1 focuses on the influence of extrinsic factors on the 

performance of the different algorithms for the characterization of gait timing, variability, and 

stability in healthy adults; Section 2 focuses on the influence of intrinsic factor, addressing how 

performance is affected by alterations associated to pathologic gait. Among several pathologies, 

Parkinson’s disease was chosen considering the effectiveness of the aquatic therapy in the 

rehabilitation and recovery, in order to assess the influence of intrinsic and extrinsic factors in gait 

alterations and to provide a starting point for future investigations of clinical implications. 

In particular: 

- The background chapter includes a description of: i) the methods for gait temporal 

segmentation available in the literature, ii) the non-linear metrics for the characterization of 

motor control during gait in healthy subjects, and iii) the existing methods for automatic 

detection of freezing of gait in people with Parkinson’s Disease. 

- Section 1: the first chapter, ‘Segmentation of gait on solid ground’, assesses the performance 

of the algorithms for gait timing estimation during walking of healthy people in controlled 

laboratory conditions. The second and third chapters, ‘Segmentation of gait in water’ and 

‘Segmentation of gait on a damping surface (sand)’, respectively, aim to quantify how the 

alteration of the gait pattern associated to walking in different environmental constraints 

affect the performance of the segmentation algorithms, designed for gait timing estimation 

on solid surface. The fourth chapter, ‘Non-linear metrics of gait in water’, aims to evaluate 

the minimum number of strides required for a reliable application of non-linear metrics 

during walking in water at different level of immersion.  

- Section 2 assessed methodological aspects of gait in Parkinson’s disease patients. The first 

chapter, ‘Segmentation of gait on solid ground’, aims to analyse the performance of gait 

segmentation algorithms during walking on solid ground. The second chapter, ‘Detection of 

freezing events during gait on solid ground’, assesses the performance of existing algorithms 

for automatic identification of freezing episodes. 

- Conclusions. 

 

Finally, a complementary chapter proposes a statistical approach for the analysis of muscle 

activation patterns in the gait of Parkinson’s disease patients. 



17 
 

- Appendix: a statistical method is proposed to effectively assess the variability of muscle 

activation patterns during walking on solid ground in people with Parkinson’s disease.  
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Overview 

 

In recent years, the need to analyse data outside the laboratory constraints and capture 

information about the human gait during everyday activities has led to the wide diffusion of 

wearable inertial sensors (IMU). Since they gained a widespread use, numerous methods for 

providing quantitative information about gait in healthy and pathological people using IMU have 

been promoted. In fact, numerous algorithms were proposed in clinical applications to assess 

different characteristics of gait, considering specific environmental constraints and pathological 

populations [10]. In particular, the assessment of specific characteristics of gait, i.e. temporal 

parameters, motor stability/variability, and pathological alterations of gait such as freezing are worth 

to be considered for assisting diagnosis and evaluating changes caused by treatments [2,12–14]. In 

this dissertation, the influence of extrinsic factors on the performance of algorithms for gait timing 

segmentation, and stability/variability of motor performance in healthy subjects was investigated 

considering gait in different environment constraints (i.e. dry land, water and sand). Then, among 

the various neurological disorders, the analysis of Parkinson's disease was considered as an intrinsic 

factor for the algorithms characterization for a pathological population, investigating 

methodological aspects that are specifically related to this pathology, i.e. assessment of algorithms 

for gait timing estimation and automatic identification of freezing of gait. Given the dataset acquired 

for PDPs, the evaluation of muscle activation during gait was performed. This aspect assumes an 

important role for the characterization of motor disorder in PDPs [15] and was assessed from a 

clinical point of view. Considering the main aim of the thesis and that no methodological 

characterization for the algorithms applied was performed, this part was inserted as additional 

material in the Appendix. 

 

In the following, an overview of the available methods for the quantification of gait in terms 

of segmentation timing and variability/stability in healthy people is proposed. Then, considering 

Parkinson’s disease, a general overview of the existing methods for the automatic identification of 

freezing of gait was reported. 
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1.1 Methods for gait timing estimation in healthy people 
 

As mentioned before, high relevance in the clinical context was represented by the 

assessment of gait timing, which requires appropriate gait segmentation methods [16]. In order to 

clarify the definition of gait events (GEs) and gait temporal parameters (GTPs), their description is 

proposed and reported here below. 

A complete gait cycle (Stride Time) begins at the heel strike (HS) of one foot and continues 

until the heel strike of the same foot [17]. Differently, Step Time is defined as the distance between 

initial contacts of the alternating feet [18]. The gait cycle consists of the stance phase and the swing 

phase. The stance phase, which comprises approximately 62% of the gait cycle, begins with heel 

strike of one foot and ends with toe off (TO) of the same foot. During this phase, the foot is weight 

bearing [19]. The remaining 38% of the gait cycle is represented by the swing phase, during which 

the foot is non-weight bearing as it moves from one step to another [19]. The stance phase of the 

gait cycle is further divided into different periods [18]: i) Initial contact occurs when foot contacts 

the ground, representing the first phase of double limb support. The aim of this phase is to stabilize 

the limb in preparation of the forward translation of body weight. ii) Loading response marks the 

beginning of the initial double limb stance and occurs after initial contact until elevation of opposite 

limb. The aim of Loading response is shock absorption, weight bearing stability and preservation of 

progression. iii) Mid-stance starts from elevation of opposite limb and lasts until both ankles are 

aligned in coronal plane. The body weight is fully supported on one leg. iv) Terminal stance begins 

when the supporting heel rises from the ground and continues until the opposite heel touches the 

ground; v) Pre-swing is the final phase of stance. The other limb has now begun a new stance phase 

and is in the initial contact phase. The limb is rapidly off loaded with a forward push to transfer the 

weight onto the opposite limb. Similarly, the swing phase is constituted by different periods [18]: i) 

Initial Swing starts when foot is lifted off the floor during the midstance phase of the other leg, and 

is completed when the off-loading limb is level with the leg in stance phase. ii) Mid-swing represents 

the moment when the limb swings forward of the body, the foot is clear of the floor. iii) Terminal 

swing starts from point when tibia is vertical and ends just prior the initial contact. Gait cycle phases 

are illustrated in Figure 1. 
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Figure 1. Functional divisions of the gait cycle according to Perry et al. [18]. 

 

 

 

In recent years, many algorithms were proposed for the estimation of GE and GTP using 

IMUs. These sensors measure linear acceleration (accelerometers), angular velocity (gyroscopes) 

and orientation (magnetometers) of the body segment in which they are placed.   

Gait events can be estimated by the recognition of specific features (e.g. peak identification 

and zero crossing) in the acceleration and angular velocity signals [20,20–22]. Alternatively, 

advanced methods for gait segmentation involving machine learning techniques, e.g. neural 

networks [23], hidden Markov models [24], Gaussian mixture models [25], were proposed in the 

literature. However, these methods are not usually implemented in commercially available packages 

and their implementation rely on self-determinant models, without considering the heuristic 

identification of specific signal features. Thus, they were not considered in the current dissertation. 

Most published works proposed and tested [9,14,20,26,27] the performance of one specific 

algorithm in the estimation of GEs and GTPs, rarely addressing a direct comparison with others. 

Most of all, each study validated the single algorithm on walking tasks of healthy subjects, without 

characterizing the influence of different implementation features and/or without considering 

different environmental constraints. In this dissertation, a systematic review of the current methods 

implemented and applied for GE and GTP estimation using IMUs was performed. Then, the selected 

algorithms were classified based on the implementation characteristics, i.e. IMU position, Target 

variable and Computational approach. 

 

Articles were searched in PubMed, Scopus and ISI Web of Knowledge until 20 November 

2017. Searches consisted of a combination of the following keywords: (1) assessment or estimation 
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or measurement; (2) wearable or inertial sensor or accelerometer or gyroscope or inertial 

measurement unit; (3) temporal or parameters; (4) gait or walking. Keyword search was performed 

to match words in the title, abstract, or keyword fields. Studies published in English as full papers, 

involving original methods for the estimation of GEs using accelerometer and gyroscope attached 

to the lower trunk, shanks and feet were included based on criteria summarized in Table 1. 

 

 

 

Table 1. Inclusion criteria considered for the systematic review. 

Criteria Definition 

Measurement instruments Wearable inertial sensors 

Body positioning of IMUs Trunk, both shanks and both feet 

Motor tasks Walking 

Areas of interest 

Gait events definition: Heel Strike and Toe Off 

Temporal parameters estimation 

Publication type Journal articles and papers in English 

Participants under investigation Healthy adults and able-bodied humans 

 

 

These positionings were identified based on the higher number of citation (>500) in 

comparison with others (i.e. heel, pelvis on the right side, thigh, lateral tibial condyle). Only healthy 

and able-bodied adult humans were considered. Articles were excluded for movement activities 

other than gait. Articles that did not involve living human subjects, such as animal studies and 

articles that did not involve primary research were excluded. 

The search yielded 271 (PubMed), 191 (Scopus), and 350 (ISI Web of Knowledge) results. 

All titles and abstracts of articles retrieved from the databases search were reviewed to exclude 

unrelated and duplicated articles. The full text was then retrieved and further reviewed for all articles 

that could not be excluded based on the title and abstract alone. After the application of inclusion 

and exclusion criteria a set of 36 articles were identified. Articles purposing the same 

implementation rules for GE estimation were grouped together and the first published and most 

cited ones were considered as original references for the algorithms, resulting in a final set of 17 

articles [7–23].  

The 17 articles resulting from the systematic review and the remaining 19 articles associated 

to the singular original article were reported here below in Table 2. 
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Table 2. Original algorithms selected for the study with position, relative number of citations, and the list of studies 

proposing algorithms that follow the same implementation rules, with relative number of citations. 

Original 

algorithms 

Position Number of 

citations 

Algorithms following the same implementation rules and relative 

number of citations 

Bugané et al., 

2012 [26] 

Trunk 59 M. Pau et al., «Clinical assessment of gait in individuals with multiple sclerosis using wearable inertial 

sensors: Comparison with patient-based measure», Mult. Scler. Relat. Disord., vol. 10, pagg. 187–191, nov. 

2016. 

7 

Lee et al., 2009 

[28] 

7 - 

McCamley et al., 

2012 [29] 

51 F. A. Storm, C. J. Buckley, e C. Mazzà, «Gait event detection in laboratory and real life settings: Accuracy 

of ankle and waist sensor based methods», Gait Posture, vol. 50, pagg. 42–46, 2016 

11 

 A. Godfrey, S. Del Din, G. Barry, J. C. Mathers, e L. Rochester, «Instrumenting gait with an accelerometer: 

a system and algorithm examination», Med. Eng. Phys., vol. 37, n. 4, pagg. 400–407, apr. 2015. 

36 

Gonzaléz et al., 

2010 [21] 

85 - 

Shin et al., 2011 

[30] 

26 - 

Zijlstra et al., 

2003 [31] 

384 E. Grimpampi, S. Oesen, B. Halper, M. Hofmann, B. Wessner, e C. Mazzà, «Reliability of gait variability 

assessment in older individuals during a six-minute walk test», J. Biomech., vol. 48, n. 15, pagg. 4185–4189, 

nov. 2015. 

10 

C. Little, J. B. Lee, D. A. James, e K. Davison, «An evaluation of inertial sensor technology in the 

discrimination of human gait», J. Sports Sci., vol. 31, n. 12, pagg. 1312–1318, 2013. 

9 

W. Zijlstra, «Assessment of spatio-temporal parameters during unconstrained walking», Eur. J. Appl. 

Physiol., vol. 92, n. 1–2, pagg. 39–44, giu. 2004. 

155 

R. Senden, H. H. C. M. Savelberg, B. Grimm, I. C. Heyligers, e K. Meijer, «Accelerometry-based gait 

analysis, an additional objective approach to screen subjects at risk for falling», Gait Posture, vol. 36, n. 2, 

pagg. 296–300, giu. 2012. 

43 

W. Johnston, M. Patterson, N. O’Mahony, e B. Caulfield, «Validation and comparison of shank and lumbar-

worn IMUs for step time estimation», Biomed. Tech. (Berl), vol. 62, n. 5, pagg. 537–545, ott. 2017. 

0 

A. Hartmann, K. Murer, R. A. de Bie, e E. D. de Bruin, «Reproducibility of spatio-temporal gait parameters 

under different conditions in older adults using a trunk tri-axial accelerometer system», Gait Posture, vol. 

30, n. 3, pagg. 351–355, ott. 2009. 

52 

X. Chen, S. Liao, S. Cao, D. Wu, e X. Zhang, «An Acceleration-Based Gait Assessment Method for Children 

with Cerebral Palsy», Sensors, vol. 17, n. 5, pag. 1002, mag. 2017. 

1 

I. González, J. Fontecha, R. Hervás, e J. Bravo, «Estimation of Temporal Gait Events from a Single 

Accelerometer Through the Scale-Space Filtering Idea», J. Med. Syst., vol. 40, n. 12, pag. 251, dic. 2016. 

4 

Lee et al., 2010 

[32] 

Shank 41 - 

Trojaniello et al., 

2014 [27] 

42 F. A. Storm, C. J. Buckley, e C. Mazzà, «Gait event detection in laboratory and real life settings: Accuracy 

of ankle and waist sensor based methods», Gait Posture, vol. 50, pagg. 42–46, 2016 

11 

Khandelwal et 

al., 2014 [33] 

8 - 

Catalfamo et al., 

2010 [34] 

60 P. C. Formento, R. Acevedo, S. Ghoussayni, e D. Ewins, «Gait Event Detection during Stair Walking Using 

a Rate Gyroscope», Sensors, vol. 14, n. 3, pagg. 5470–5485, mar. 2014. 

16 

D. Gouwanda e A. A. Gopalai, «A robust real-time gait event detection using wireless gyroscope and its 

application on normal and altered gaits», Med. Eng. Phys., vol. 37, n. 2, pagg. 219–225, feb. 2015. 

24 

Greene et al., 

2010 [35] 

77 B. R. Greene, D. McGrath, K. J. O’Donovan, R. O’Neill, A. Burns, e B. Caulfield, «Adaptive estimation of 

temporal gait parameters using body-worn gyroscopes», Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. 

Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf., vol. 2010, pagg. 1296–1299, 2010. 

15 
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W. Johnston, M. Patterson, N. O’Mahony, e B. Caulfield, «Validation and comparison of shank and lumbar-

worn IMUs for step time estimation», Biomed. Tech. (Berl), vol. 62, n. 5, pagg. 537–545, ott. 2017. 

0 

Salarian et al., 

2004 [20] 

276 S. Wüest, F. Massé, K. Aminian, R. Gonzenbach, e E. D. de Bruin, «Reliability and validity of the inertial 

sensor-based Timed “Up and Go” test in individuals affected by stroke», J. Rehabil. Res. Dev., vol. 53, n. 5, 

pagg. 599–610, 2016. 

3 

Aminian et al., 

2002 [36] 

396 - 

Jasiewicz et al., 

2006 [37] 

Foot 165 S. Sessa, M. Zecca, L. Bartolomeo, T. Takashima, H. Fujimoto, e A. Takanishi, «Reliability of the step phase 

detection using inertial measurement units: pilot study», Healthc. Technol. Lett., vol. 2, n. 2, pagg. 58–63, 

mar. 2015. 

5 

Sabatini et al., 

2005 [38] 

326 D. Hamacher, D. Hamacher, W. R. Taylor, N. B. Singh, e L. Schega, «Towards clinical application: 

repetitive sensor position re-calibration for improved reliability of gait parameters», Gait Posture, vol. 39, n. 

4, pagg. 1146–1148, apr. 2014. 

23 

Ferrari et al, 

2016 [39] 

14 - 

Mariani et al., 

2013 [40] 

76 - 

 

 

The 17 algorithms were revised and classified based on: 

i) IMU position (i.e. lower trunk shanks, feet) 

ii) Target variable (i.e. acceleration, angular velocity) 

iii) Computational approach: ‘peak identification’ and ‘zero crossing’, on raw or filtered target 

variable (i.e. finite impulse response, FIR, infinite impulse response IIR, wavelet transform, 

WT filtering). ‘Peak identification’ aims to identify specific peaks on the target variable, 

corresponding to specific temporal events: local maxima or minima of the vertical or antero-

posterior component for acceleration-based algorithms; local minima of the sagittal 

component for angular velocity-based algorithms. ‘Zero crossing’ aims to identify the 

instants of sign change in the target variable, corresponding to specific temporal events: in 

the antero-posterior component for acceleration-based algorithms; in the sagittal component 

for angular velocity-based algorithms 

 

Of the 17 algorithms, as summarized in Table 3: 

• 6 were trunk-based (of which only 2 provided both HS and TO [21,29], while 4 defined only 

HS [26,28,30,31]), all analysing acceleration, 3 using ‘peak identification’, of which 1 with 

IIR [26], 1 with FIR [28] and 1 with WT filtering (detecting HS and TO) [29], and 3 using 

‘zero crossing’ approach, of which one with raw signal [30], 1 with FIR filtering (detecting 

HS and TO) [21] and 1 with IIR filtering [31]; 

• 7 were shank-based, of which 3 analysing acceleration with ‘peak identification’, 1 with raw 

signal [27], 1 with IIR [32] and 1 with WT filtering [33], and 4 analysing angular velocity 
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with ‘peak identification’, 2 with raw signal [20,35], 1 with IIR [34] and 1 with WT filtering 

[36]; 

• 4 were foot-based, of which 1 analysing acceleration with ‘peak identification’ of raw signal 

[37], and 3 analysing angular velocity, 2 with ‘peak identification’, 1 adopting raw signal 

[39] and 1 with IIR filtering [40] and 1 with ‘zero crossing’ of IIR filtered signal [38].  

 

 

 

Table 3. Details of algorithms identified from the literature review classified according to the three criteria. 

Algorithms Sensor 

position 

Target Variable Computational Approach Analysed subjects 

Bugané et al., 2012 [26] Trunk Acceleration ‘peak identification’ (IIR) Healthy 

Lee et al., 2009 [28] Trunk Acceleration ‘peak identification’ (FIR) Healthy 

Hemiplegic after 

stroke 

McCamley et al., 2012 [29] Trunk Acceleration ‘peak identification’ (WT) Healthy 

Gonzaléz et al., 2010 [21] Trunk Acceleration ‘zero crossing’ (FIR) Healthy 

Shin et al., 2011 [30] Trunk Acceleration ‘zero crossing’ (Raw) Healthy 

Zijlstra et al., 2003 [31] Trunk Acceleration ‘zero crossing’ (IIR) Healthy 

Lee et al., 2010 [32] Shank Acceleration ‘peak identification’ (IIR) Healthy 

Trojaniello et al., 2014 [27] Shank Acceleration ‘peak identification’ 

(Raw) 

Healthy 

Hemiparetic 

Choreic 

Parkinson’s disease 

Khandelwal et al., 2014 

[33] 

Shank Acceleration ‘peak identification’ (WT) Healthy 

Catalfamo et al., 2010 [34] Shank Angular velocity ‘peak identification’ (IIR) Healthy 

Greene et al., 2010 [35] Shank Angular velocity ‘peak identification’ 

(Raw) 

Healthy 

Salarian et al., 2004 [20] Shank Angular velocity ‘peak identification’ 

(Raw) 

Healthy 

Parkinson’s disease 

Aminian et al., 2002 [36] Shank Angular velocity ‘peak identification’ (WT) Healthy 

Jasiewicz et al., 2006 [37] Foot Acceleration ‘peak identification’ 

(Raw) 

Healthy 

Spinal-cord injured 

Sabatini et al., 2005 [38] Foot Angular velocity ‘peak identification’ (IIR) Healthy 

Ferrari et al, 2016 [39] Foot Angular velocity ‘peak identification’ 

(Raw) 

Healthy 

Parkinson’s disease 

Mariani et al., 2013 [40] Foot Angular velocity ‘zero crossing’ (IIR) Healthy 

Parkinson’s disease 
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1.2 Methods for the assessment of variability and stability of 

gait in healthy people 

 

In recent years, several methods for quantifying motor control during gait have been 

proposed in the literature using IMUs [12]. In particular, signals collected from IMUs during 

walking on the solid ground have been used to calculate non-linear metrics, which demonstrated 

their effectiveness in the prevention of falls, especially among elderly subjects and pathologic 

individuals, allowing quantitative evaluations of prevention and rehabilitation procedures [41].  

 

In this context, the systematic review of the literature performed by Riva et al. [42] 

significantly contributed to the critical evaluation of the adoption of non-linear metrics in the field 

of biomechanics. Successively, lot of efforts were carried out to address methodological aspects 

related to the application of these metrics during walking in healthy people, evaluating the potential 

influence of testing conditions (i.e. environment and test protocol) [43], assessing the minimum 

number of strides to obtain a reliable application [44] and analysing the potential influence of 

reduced sampling frequency in the computation [45]. Also, analysis of the relationship between non-

linear metrics and i) clinical rating scales in a subacute stroke population [46], and ii) long- short-

term fall history [47] were performed. However, a lot of methodological aspects should be assessed 

concerning the applicability of non-linear metrics in relation to the environmental constraints (e.g. 

water or sand) and/or considering pathological populations. 

 

From a mathematical point of view, the angular velocity acquired from medio-lateral angular 

velocity of the shank was exploited to calculate short term and long term variability of the stride 

time estimated via Poincarè Plots (PSD1, PSD2) and standard deviation of the stride time (SD), 

while acceleration from trunk was used to calculate non-linear metrics (e.g. harmonic ratio, HR [48], 

recurrence quantification analysis, RQA [49] and multiscale entropy, MSE [50]), aiming to quantify 

variability, harmonicity, regularity and complexity of the gait pattern [44,46,51]. More specifically, 

HR involves decomposing the antero-posterior (AP), vertical (V), and medio-lateral (ML) 

acceleration directions signal into harmonics by means of discrete Fourier transform and then 

analyse their spectral components [48,52], provide the regularity and harmonicity of the employed 

signal. RQA [42,49] provides a characterization of the nature (i.e. chaos, stochastic, noisy signal) 

and the stability of the observed dynamic system, based on the local recurrence of data points in the 

reconstructed phase space. The first implementation step of RQA is the reconstruction of the phase 
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space by means of delay embedding [53]. An embedding dimension of 5 and a delay of 10 samples 

were used, based on previous studies [12,44,54]. A distance matrix based on Euclidean distances 

between normalized embedded vectors was then constructed; the recurrence points were obtained 

by selecting a radius of 40% of the max distance [44,55], and all cells with values below this 

threshold were identified as recurrence points. Several measures were extracted from RQA, namely 

Recurrence Rate (rr), Determinism (Det), Average Length of Diagonal Line (Avg), Maximum 

diagonal line length (Max) and Divergence (Div). RR is the number of recurrent points in the 

recurrence plot expressed as a percentage of the number of possibly recurrent points and gives an 

indication about how often a trajectory visits a similar location in the state-space.  Det is the 

percentage of recurrent points which fall on upward diagonal line segments and relates to how often 

the trajectory re-visits similar state space locations; the higher Det the more regular is the dynamic 

structure of the data [89,96].  Avg is the average upward diagonal line length, where the diagonal 

lines are defined following determinism definition. Avg is related to the velocity in the execution of 

the test (i.e. higher Avg is expected for slower gait), but this duration is not independent from the 

regularity of the pattern (i.e. the gait is slower because each stride on average is slower) [46,49].  

MSE provides an assessment of the complexity of the signal at different time-scales [50]. It was 

implemented constructing consecutively more coarse-grained time series; this procedure implies 

averaging increasing numbers of data points in non-overlapping windows of length τ. Sample 

entropy (SE) [57] was then calculated for each coarse-grained time series to obtain entropy measures 

at different scales; SE quantifies the conditional probability that two sequences of m consecutive 

data points similar (distance of data points inferior to a fixed radius r) to each other will remain 

similar when one more consecutive point is included, thus reflecting the regularity of the time series 

[50]. MSE was calculated for values of τ ranging from 1 to 12, m = 4 and r = 0.2, as suggested by 

Pincus [58] and later applied by Richman and Moorman to biological time series [57]. Poincarè 

Plots address the variability of the analysed signal and have been widely applied for gait assessment 

[12,43,59]. In particular, they represent stride time data plots between successive gait cycles, 

displaying the correlation between consecutive stride times data in a graphical manner. Plots are 

used to extract indices, such as length, PSD2, and width, PSD1, of the long and the short axes 

describing the elliptical nature of the plots and hence the short-term and long term variability of 

stride time [60]. To characterize the variability of the stride time during the walking performance, 

its standard deviation (SD) is also used [61]. 
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1.3 Methods for the automatic detection of freezing of gait 

 

This dissertation focused on the influence of extrinsic and intrinsic factors  on gait analysis, 

and Parkinson's disease was considered as an example for the algorithm characterization of a 

pathological population, being one the most common gait disorders in the elderly [62,63]. 

It is a chronic, progressive neurodegenerative disorder results from lesions of the basal 

ganglia, affecting motor control and function bilaterally [64]. When the disease symptoms become 

more pronounced, the patient experiences difficulties with hand function and walking, and prone to 

falls [65]. Gait disturbances affecting PDPs include reduced stride length and walking speed, 

increased cadence and double support duration, decreased arm oscillation and trunk rotation [62,66]. 

Moreover, muscle rigidity and altered activation amplitude of lower limb muscles were observed 

[65,67]. Freezing of gait (FOG) and festination are features of more advanced Parkinson’s disease. 

 

In particular, FOG is defined as “an episodic inability (lasting seconds) to generate effective 

stepping” despite the intention to walk and represent one of the most debilitating motor symptoms 

in PDPs [62,68,69]. Accurate FOG detection is significant for PD diagnosis and is an important 

prerequisite to properly treat patients and reduce both disability burden and health care costs [70]. 

Usually, clinical evaluation of FOG in PDPs rely on clinical observation during a control visit 

performed by an expert operator or is based on patient’s daily reports, where motor symptom recall 

can be incomplete and inaccurate. These qualitative and subjective methods for FOG assessment do 

not allow a detailed and precise knowledge of the motor competences and their variation across 

time, hindering the opportunity to monitor response to therapy and motor complications, improve 

medical therapies, enhance surgical treatment decisions and improving rehabilitation interventions 

[70,71]. To achieve these goals, quantitative and objective assessments of FOG in PDPs in 

ecological conditions are needed. As underlined before, IMUs represent possible solutions based on 

wearable and non-obtrusive technologies that have been recently approached for automatic and 

reliable detection of FOG from inertial measures and many algorithms were implemented for the 

purpose [72]. Nevertheless, published works proposed and tested [72–74] the performance of one 

specific algorithm, never addressing a direct comparison with others. Algorithms proposed in the 

literature for FOG detection considered different body locations for IMU positioning and worked in 

different domains. In this dissertation, a systematic review of the current methods implemented and 

applied for FOG estimation using IMUs was performed. Then, the selected algorithms were 

classified based on the implementation characteristics, i.e. domain of implementation and IMU 

position. 
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A systematic search in the Web of Science, PubMed and Scopus databases was conducted 

until May 2019. These databases were chosen to allow both medical and engineering journals to 

be included in the search process. Searches consisted of a combination of the following keywords: 

“Freezing of gait”, “Parkinson’s disease”, “Wearable sensors”. A keyword search was performed to 

match words in the title, abstract, or keyword fields. To identify potentially eligible articles absent 

in the database, a search in the references of review articles and book chapters that appeared during 

the search was performed. Studies published in English, involving original and clearly explained 

methods to detect, measure or monitor FOG in PDPs using inertial wearable sensors located on 

trunk, shank and foot were included. Motor tasks involving straight walking with turning of 180° or 

360° and held in a closed environment were considered. Inclusion criteria are summarized in Table 

1. 

 

 

 

Table 1. Inclusion criteria considered for the systematic review concerning FOG 

detection using IMUs. 

Criteria Definition 

Subject Parkinsonian able to walk alone 

Measurement instruments Wearable inertial sensors 

Body positioning of IMUs Trunk, shank and foot 

Motor tasks Straight walking with turning of 180° or 360° 

Areas of interest Instrumental analysis of FOG of the lower limbs 

Participants under 

investigation 

Parkinson’s disease patients 

Publication type Journal articles and papers in English 

 

 

The search yielded 443 (PubMed), 69 (Scopus), and 52 (Web of Science) results. A critical 

examination of the titles and abstracts allowed to exclude unrelated and duplicated articles. Then, 

all studies i) assessing posture, balance, FOG of the upper limbs and the language; ii) focused on 

patients walking with an aid (e.g. canes) and/or helped by operators or physiotherapists during the 

motor tasks; iii) involving time up and go tests, going up and down the stairs, concerning double 

tasks (e.g. the subject walks and carries an object), and tests with auditory and/or visual stimulation 

were excluded. After the application of inclusion and exclusion criteria a set of 7 original articles 

were identified.  
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All studies considered the visual identification of the phenomenon as gold standard for FOG 

detection. 

The 7 algorithms were revised and classified based on: 

i) Domain (i.e. frequency, time-frequency, time) 

ii) IMU position (i.e. lower trunk, shank, foot) 

Of the 7 algorithms: 

- 5 were implemented in the frequency domain, exploiting acceleration from trunk ([75]), 

shank ([73,75–78]) and foot ([75,76]); 

- 1 was implemented in the time-frequency domain, exploiting angular velocity of the shank 

([79]); 

- 1 was implemented in the time domain, exploiting acceleration of the trunk ([80]) and the 

shank ([80]). 

The implementation of algorithms in frequency domain is based on the calculation of the 

Freezing Index (FI), defined as the quotient of the power spectral density (PSD) from 3 to 8 Hz 

(Freezing Band) and the PSD from 0.5 to 3 Hz (Walking Band) of the target variable, considering 

windows of variable length in relation to the implementation characteristics defined from each 

author. When the FI exceeds an identified threshold, a FOG episode is considered to have occurred. 

Most of the algorithms showed a different combination of Windows and Thresholds, that were 

reported together with details of implementation characteristics in Table 2. 

 

 

 

 

 

 

 

 

 



35 
 

Table 2. Details of algorithms identified from the literature review and classified according to 

the implementation characteristics (i.e. Domain, IMU position, Target variable); Windows and 

Thresholds adopted for the implementation. To assist the reader, details for Moore et al. 2013 

were reported below the table.  

Reference Domain IMU position Target variable (component) 
Window 

(in seconds) 
Threshold 

Moore et al. 2008 

[73] 
Frequency Shank Acceleration (V) 6 2.9 

Jovanov et al. 2009 

[76] 
Frequency 

Shank Acceleration (V) 
4 

Manual 6 

Foot Acceleration (V) 
4 

6 

Mancini et al. 2012 

[77] 
Frequency Shank Acceleration (AP) 5 2.9 

Morris et al. 2012 

[78] 
Frequency Shank Acceleration (V) 

4 2 

6 2 

10 2 

Moore et al. 2013 

[75] 
Frequency 

Trunk 

Acceleration (V) 
From 2.5 to 10 

with 2.5 increment 

From 0.5 to 7 

with 0.5 
increment 

Shank 

Foot 

Djiuric et al. 2014 

[79] 

Time - 

Frequency 
Shank Angular velocity (ML) - - 

Rezvanian et al. 

2016 [80] 
Time 

Trunk 

Acceleration (AP) 4 58.9 

Acceleration (ML) 4 59.1 

Acceleration (V) 4 66 

Shank 

Acceleration (AP) 4 58.9 

Acceleration (ML) 4 59.1 

Acceleration (V) 4 66 

 

Moore et al. 2013 

[75] 
Frequency Shank Acc (V) 

2.5 
0.5 

from 1 to 7 

5 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

5.5 

6 

6.5 

7 

7.5 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

from 4.5 to 7 

10 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

from 4.5 to 7 

2.5 
0.5 

from 1 to 7 
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Trunk 

5 

0.5 

1 

1.5 

2 

2.5 

3 

3.5-7 

7. 

0.5 

1 

from 1.5 to 7 

10 

0.5 

1 

1.5 

2 

2.5 

3 

3.5-7 

Foot 

2.5 

0.5 

1 

from 1.5 to 7 

5 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

4.5 

5 

from 5.5 to 7 

7.5 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

from 4.5 to 7 

10 

0.5 

1 

1.5 

2 

2.5 

3 

3.5 

4 

from 5 to 7 
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Synthesis of findings 

 

In the background, systematic searches concerning i) algorithms for gait segmentation, ii) 

metrics for stability/variability measures in healthy people, and iii) algorithms for freezing of gait 

identification on PDPs were conducted. 

Considering gait segmentation, a final set of 17 original algorithms were identified. Algorithms 

were differentiated considering sensor position (trunk, shanks and feet), analysed variable 

(acceleration and angular velocity), and computational approach (peak identification or zero 

crossing). 

Different metrics were identified to quantify stability, complexity, regularity and variability 

exploiting the acceleration and angular velocity measures provided from sensors attached to trunk 

and shank, namely RQA, MSE, HR and PSD1/2. 

Regarding the automatic identification of FOG in PDPs, 7 original algorithms were 

identified. They were grouped according to domain of implementation (i.e. frequency, time-

frequency, time) and sensor position (i.e. lower trunk, shank, foot). 
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2. 

SECTION 1 

 

INFLUENCE OF EXTRINSIC FACTORS 

ON THE PERFORMANCE OF 

ALGORITHMS IN ANALYSING THE GAIT 

OF HEALTHY ADULTS 
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Overview 

 

The adoption of inertial sensors for the assessment of gait analysis in ecological conditions 

has gained an important role in sports and clinical applications. In a supervised setting, as in a clinic 

or in a laboratory, the external environment is controlled, and participants are focused completely 

on performing a specific motor task. In an unsupervised setting, the presence of extrinsic factors 

directly related to the environmental constraints (e.g. poor lighting, uneven walking surfaces and 

different weather conditions) could lead participants to move differently and adopt specific gait 

strategies that are more typical of every-day life circumstances. The assessment of the influence of 

extrinsic factors is of primary importance when analysing movements in ecological conditions and 

can be adopted to support the selection of specific therapies and treatments, and to provide clinically 

important information on subject’s health status. 

In this section, the effect of different environmental constraints was analysed on the gait 

timing estimation and the motor control of healthy people during walking. Firstly, the gait 

segmentation algorithms identified from the systematic literature search (and previously explained 

in the Paragraph 1.1 of the Background) were applied to the gait on solid ground performed in 

controlled laboratory conditions. Then, the same approaches were extended to a dumping surface 

(i.e. sand) and in the water environment. Finally, considering this latter ambient, an evaluation of 

the minimum number of strides required for a reliable application of non-linear metrics during 

walking in the water at a different level of immersion was performed. 
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2.1 

 

SEGMENTATION OF GAIT 

ON SOLID GROUND 

 

 

 The content of this chapter has been published:  

i) as abstract in Proceedings of the ESB-ita 2017, Rome (Italy), and of the 3D Analysis of 

Human Movement Symposium 2018, Manchester (United Kindom), and of the WCB 

2018, Dublin (Ireland); 

ii) in Pacini Panebianco, Giulia; Stagni, Rita; Fantozzi, Silvia, ‘Comparative analysis of 12 

methods using wearable inertial sensors for gait parameters estimation during walking’, 

Gait & Posture 57s (2017), 21 

iii) as original paper in: G. Pacini Panebianco, M.C. Bisi, R. Stagni, S. Fantozzi, ‘Analysis of 

the performance of 17 algorithms from a systematic review: Influence of sensor position, 

analysed variable and computational approach in gait timing estimation from IMU 

measurements’, Gait & Posture. 66 (2018) 76–82 
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Introduction 

As highlighted in the Paragraph 1.1 of the Background, the quantification of gait temporal 

parameters (i.e. step time, stance time) is crucial in human motion analysis and requires the accurate 

identification of gait events. With the widespread use of inertial wearable sensors, many algorithms 

were proposed and applied for the purpose. Nevertheless, most published works proposed and tested 

[20,21,26,28–30,32,34,36–40,81,82] the performance of one specific algorithm, rarely addressing a 

direct comparison with others. Studies approaching the comparisons of different algorithms usually 

limited the analysis to the positioning of IMUs [28,81–83]. Storm et al. [82] and Ben Mansour et al. 

[81] assessed the accuracy of two and three algorithms, respectively, based on shank-worn and lower 

trunk-worn IMUs. Storm et al. [82] demonstrated that lower trunk method performed worse than 

shank one in GE detection, but GTP estimation resulted satisfactory with both. Ben Mansour et al. 

[81] showed that shank method, analysing angular velocity, was the most accurate in estimating 

both GEs and GTPs, followed by lower trunk acceleration for GEs and shank acceleration for GTPs. 

Trojanello et al. [83] tested the performance of 5 different methods for GE detection using a single 

IMU attached to the lower trunk, showing an acceptable accuracy, sensitivity and robustness of all 

the evaluated methods in determining GTPs requiring the identification of HS, while a worse 

accuracy was found in determining GTPs requiring also TO identification (e.g. stance duration). 

These findings highlight differences in the performance of the analysed algorithms as related to 

different parameters, potentially suggesting that the choice of the most appropriate algorithm can 

also depend on the specific research question. Moreover, the few available comparison studies 

analysed each algorithm as a whole, not addressing the influence of specific implementation 

characteristics, except for sensor positioning, and not providing a comprehensive overview of the 

numerous solutions proposed in the literature. Only few studies [37,81] compared the combined 

effect of positioning and target variable, considering either linear acceleration or angular velocity at 

different positions, but still neglecting the analysis of the computational approach adopted. To date, 

no comprehensive analysis has been published, investigating the performance of the available 

algorithms for GE detection as resulting from their specific implementation characteristics. The 

present study was designed to fill in this gap, starting from a systematic review of the available 

literature to identify the different proposed methods, aiming to provide relevant information for the 

selection of the most suitable algorithm for specific applications, and/or for the design and 

implementation of novel methods for GE detection. The performance of the algorithms was analysed 

in controlled conditions, to identify methodological intrinsic characteristics, without potential 

interferences of gait alterations.  
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Materials and Methods 

 

Participants: 

Thirty-five young healthy participants (17 females, 18 males; 26.0±3.8 years; 1.72±0.08 m; 

69.0±13.1 Kg) were recruited in the study. All participants were physically active and self-reported 

no musculoskeletal or neurological disorder. The Bioethics Committee of the University of Bologna 

approved the study on 12/6/2017 with protocol number 60193, and informed consent was signed by 

all participants. 

 

Data acquisition: 

Each participant walked for 2 minutes back and forth along a 10 m straight pathway at self-

selected speed (normalized gait speed: 0.41±0.06 [24]) wearing own comfortable footwear. 

Five tri-axial IMUs (Cometa, Milano, Italy sf=285 Hz; accelerometer: sensitivity 156,3 

mV/g, range ± 8g; gyroscope: sensitivity 1,3 mV/g, range ±1000°/s weighs less than 8 grams)  were 

attached to the trunk (at L5 level), shanks (about five centimetres above lateral malleolus), and feet 

(on the dorsal surface of each shoe) (Figure 2). 3D acceleration and 3D angular velocity were 

acquired from each sensor with a sampling frequency of 285Hz, higher than that in all referred 

works. Ground reaction forces were recorded (sampling frequency 1000Hz) by two force platforms 

(Kistler, Winterthur, Switzerland) mounted half-way along the path, assumed as gold standard 

reference for GE detection. A trigger signal was generated by IMU system at the beginning of each 

trial for synchronization.  The online version of this article contains the collected data. 

 

Figure 2. Attachment of IMU on the different body 

locations and relative axis orientations. 
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Data analysis: 

The 17 algorithms identified from the literature review and reported in detail in the 

Background Chapter were implemented in MATLAB (MathWorks 2017a, NATHSK, USA), and 

HS and TO were estimated from IMU data for each participant with each algorithm. A 20N 

threshold was applied to ground reaction force (GRF) vertical component for the automatic 

detection of HS and TO [84] for each participant. 

For each algorithm, the error (E) was calculated for GEs (EGE) and GTPs (EGTP) as follow: 

 

EGE = GEIMU - GEGRF          (1) 

 

EGTP = GTPIMU - GTPGRF          (2) 

 

Where GE subscripts denote methods of estimation.  

 

If an algorithm allowed identifying only HS, errors were calculated for HS and step time. 

 

Statistical analysis: 

12 contacts per participants were included in the statistical analysis. For each parameter (GEs 

and GTPs), a linear mixed model [85] was applied to test the dependency of error values on each 

implementation criterion, with a significance level of 0.05. First, the statistical analysis was 

performed to investigate the influence of IMU position and target variable, alone. Then, the 

influence of computational approach was investigated separately for each IMU position. Med of the 

error was calculated to characterize accuracy, and to characterize repeatability Dmed, calculated as 

75th percentile minus 25th percentile value of the error. Data processing was performed in 

MATLAB (MathWorks, Natick, USA), and statistical analysis using R software (R-Core Team., 

Vienna, Austria, version 3.4.3 2017). 

 

Results 

For each subject at least 12 contacts on the force platform were detected, for a total of 420 

analysed strides. No false positive or negatives were identified for all the analysed algorithms. 

Statistical analysis highlighted significant differences for all three implementation characteristics, 

although the magnitude of errors was comparable. 
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IMU Position 

For HS detection error, no significant difference was found between shank- and trunk-based 

algorithms (p=0.978), while significant differences (p<0.001) were found for foot-based algorithms 

with respect to the others. By analysing error results in detail, shank- and foot-based algorithms 

resulted more accurate and repeatable in HS detection than trunk-based ones. Foot-based algorithms 

showed comparable accuracy (Med 63 ms and 62 ms, respectively) and repeatability (Dmed 59 ms 

and 44 ms, respectively) to shank-based ones, while trunk-based ones resulted less accurate (Med 

70 ms) and less repeatable (Dmed 113 ms). For TO detection, statistically significant differences 

were found for all IMU positions (p<0.001). In particular, foot-based algorithms showed the highest 

accuracy and repeatability, with Med 2 ms and Dmed 57 ms; shank-based algorithms followed with 

Med -29 ms and Dmed 96 ms; trunk-based ones provided the worst performance with Med -66 ms 

and Dmed 164 ms. For step time estimation, results showed comparable accuracy and repeatability 

among all IMU positions (Med/Dmed: 6/41 ms, 6/32 ms, 2/47 ms, for trunk, shank, and foot, 

respectively). For stance time, foot-based algorithms showed the highest accuracy and repeatability 

(Med/Dmed -64/120 ms), followed by shanks-based (Med/Dmed -88/151 ms) and trunk-based ones 

(Med/Dmed -111/159 ms). 

 

Target variable 

For HS detection, algorithms exploiting angular velocity showed higher repeatability and 

comparable accuracy than those exploiting acceleration (Med/Dmed 65/40 ms and 60/111 ms, for 

angular velocity and acceleration, respectively). For TO detection, angular velocity-based 

algorithms performed significantly (p<0.001) higher than acceleration-based ones in terms of 

repeatability, with Dmed 68 ms, smaller than the 122 ms of acceleration-based ones, but a lower 

accuracy, with Med -25 ms versus 6 ms. Acceleration-based algorithms resulted more and equally 

accurate for stance and step time, respectively, but less repeatable than angular-velocity ones for 

both parameters (step time Med/Dmed: 7/34 ms and 2/43 ms; stance time Med/Dmed: -84/65 ms, -

69/106 ms, for angular velocity and acceleration, respectively). 

Error characteristics for HS and TO as related to IMU position and target variable are 

schematically depicted in Figure 3, and for step and stride time in Figure 4. Numerical values as 

related to IMU position and target variable are reported in Table 1 and 2, respectively. 
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Figure 3. Box plot (minimum, 25th percentile, median, 75th percentile, maximum values) for HS (a) and TO (b) 

estimation errors as related to IMU position and target variable (angular velocity contoured in dots, acceleration no 

contour) (* p<0.001). 

 

 

 

 

 

 
Figure 4. Box plot (minimum, 25th percentile, median, 75th percentile maximum values) for step time (a) and stance 

time (b) estimation errors as related to IMU position and target variable (angular velocity contoured in dots, acceleration 

no contour) (* p<0.001). 

 

 

 

 

 

 

 

 

s 
s 



49 
 

Table 1. Results of statistical analysis for IMU positioning: minimum, 25th quartile, median, 75th quartile, maximum 

value of estimation error for HS, TO, step time and stance time (* p<0.001). 

 

 

 

Table 2. Results of statistical analysis for Target variable: minimum, 25th quartile, median, 

75th quartile, maximum value of estimation error for HS, TO, step time and stance time (* 

p<0.001). 

 

 

 

 

 

 

 

 

Computational approach 

Considering the trunk-based algorithms, statistically significant differences were found 

between the two approaches (p<0.05). In particular, ‘peak identification’ approach with FIR filtering 

resulted to be the most accurate (Med 2ms) and repeatable (Dmed 16ms) in HS detection. The ‘zero 

crossing’ approach with FIR filtering resulted the most accurate (Med 26ms) in TO detection, while 

‘peak identification’ with WT filtering resulted to be the most repeatable (Dmed 54ms). For step 

time, no significant difference was found among different filtering for each approach (p>0.597 for 

all comparisons among filtering). For stance time, ‘zero crossing’ with FIR filtering resulted to be 

the most accurate, while ‘peak identification’ with WT filtering highlighted the highest repeatability 

(Med/Dmed: -22/186 ms, -159/32 ms, respectively). Shank-based algorithms exploited only ‘peak 

identification’ approach: WT filtering reported the highest accuracy and repeatability in HS 

detection (Med 47 ms and Dmed 36 ms), while raw data resulted to be the most accurate and 

repeatable in TO detection (Med -2 ms and Dmed 89 ms). Raw or filtered signals resulted to be 

equally accurate and repeatable in step time estimation; significant differences were found only 

between raw signal and IIR filtering, which showed comparable accuracy and repeatability 

Parameter Estimation of errors: IMU position (s) Level of significance 

Trunk Shanks Feet 

HS -0.287, 0.015, 0.070, 0.128, 0.282 -0.150, 0.037, 0.062, 0.081, 0.300 -0.191, 0.032, 0.063, 0.091, 0.246 Trunk – Shank 

Trunk – Feet * 

Shanks – Feet * 

TO -0.228, -0.097, -0.066, 0.067, 

0.284 

-0.262, -0.055, -0.029, 0.041, 0.250 -0.256, -0.027, 0.002, 0.030, 0.288 Trunk – Shank * 

Trunk – Feet * 

Shanks – Feet * 

Step Time -0.484, -0.013, 0.006, 0.028, 0.484 -0.421, -0.008, 0.006, 0.024, 0.230 -0.221, -0.021, 0.002, 0.026,  0.218 Trunk – Shank 

Trunk – Feet * 

Shanks – Feet * 

Stance 

Time 

-0.412, -0.145, -0.111, 0.014, 

0.456 

-0.400, -0.117, -0.088, -0.034, 0.224 -0.261, -0.090, -0.064, -0.030, 0.292 Trunk – Shank 

Trunk – Feet * 

Shanks – Feet * 

Parameter Estimation of errors: Target variable (s) Level of significance 

Angular velocity Acceleration 

HS -0.128, 0.043, 0.065, 0.083, 0.246 -0.287, 0.014, 0.060, 0.125, 0.300 Angular Velocity – Acceleration * 

TO -0.262, -0.051, -0.025, 0.017, 0.288 -0.256, -0.062, 0.006, 0.060, 0.284 Angular Velocity – Acceleration * 

Step Time -0.160, -0.006, 0.007, 0.028, 0.230 -0.484, -0.021, 0.002, 0.022, 0.484 Angular Velocity – Acceleration * 

Stance Time -0.251, -0.111, -0.084, -0.046, 0.228 -0.412, -0.117, -0.069, -0.011, 0.456 Angular Velocity – Acceleration * 
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(Med/Dmed: 8/33 ms and 2/31 ms, respectively). For stance time estimation, raw signal resulted to 

be the most accurate (Med -46ms), while WT filtering showed the highest repeatability (Dmed 

45ms). Considering foot position of IMUs, statistically significant differences (p<0.05) were found 

between the two computational approaches. In particular, ‘peak identification’ on raw signal 

resulted to be the most accurate (Med 44 ms) in HS detection, while ‘zero crossing’ with IIR filtering 

resulted to be the most repeatable both for HS and TO (Dmed 19 ms and 24 ms, respectively). 

Referring to the accuracy in TO estimation, ‘peak identification’ with IIR filtering (Med -1 ms) 

resulted the most accurate. For GTPs, ‘zero crossing’ with IIR filtering (Med/Dmed 1/17 ms) 

resulted the most accurate and repeatable in step detection. No statistically significant difference 

was found between approaches for stance time (p=0.676). Numerical values of error characteristics 

for GE and GTP as related to computational approach are reported in Table 3. Results are 

summarized in Figure 5. 

 

 

 

 

 

 

Figure 5. Estimated error for HS (a) and TO (b) as related to IMU position, target variable (angular velocity represented 

by triangles, acceleration represented by circles) and computational approach (zero crossing in grey and peak detection 

in black).  

 

 

 
 

Legend 

 

Target Variable: 

Acceleration (o) 

Angular velocity (^) 

 

Computational Approach: 

Zero crossing (grey) 

Peak identification (black) 
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Table 3. Results of statistical analysis for computational approach: minimum, 25th quartile, median, 75th quartile, 

maximum value of estimation error for HS, TO, step time and stance time (* p<0.001, ** p≤0.05) 

 

 

 

 

 

Discussion 

The present study analysed the performance of 17 published algorithms proposed for GE 

detection from IMU data. The algorithms were selected based on a systematic review and analysed 

with respect to the influence of IMU position, target variable and computational approach on 

estimated errors on GEs and derived GTPs. 

 

IMU position 

Trunk-based algorithms exhibited a worse performance than shank- and foot-based ones in 

GE detection. Taking into account the IMU sampling period of 3.5ms, minor differences between 

the latter two can be considered negligible for HS detection, while foot-based algorithms performed 

better than shank-based ones both in terms of accuracy and repeatability for TO detection. 

Generally, error bias resulted in a delay of HS (the largest for trunk-based algorithms, the lowest for 

IMU 

position 
Parameter 

Level of 

significance 

‘peak 

identification’ 

vs ‘zero 

crossing’ 

Estimation of errors: Filtering (s) 

Level of significance 

Filtering within ‘peak identification’ 

Level of 

significance for 

filtering within 

‘peak 

identification’ 

Filtering within ‘zero crossing’ 

Level of 

significance for 

filtering within 

‘zero crossing’ 

Trunk 

HS * 

FIR: -0.252, -0.007, 0.002, 0.009,0.252 

IIR: 0.006, 0.117, 0.136, 0.155, 0.245 

WT: -0.096, 0.033, 0.052, 0.071, 0.214 

FIR – IIR * 

FIR – WT * 

IIR – WT * 

Raw: -0.267,0.024, 0.111, 0.157, 0.282 

FIR: -0.268, 0.011, 0.039, 0.058,0.258 

IIR: -0.287, 0.092, 0.115, 0.141, 0.240 

FIR – IIR * 

FIR – Raw * 

IIR – Raw * 

TO * WT: -0.228, -0.107, -0.086, -0.053, 0.154 - 
FIR: -0.223, -0.077,0.026, 0.089, 0.284 

Raw: -0.365, -0.057,0.009,0.073,0.331 
FIR – Raw 

Step Time ** 

FIR: -0.484, -0.014, -0.001, 0.016, 0.484 

IIR: -0.428, -0.009, 0.005, 0.022, 0.155 

WT: -0.132, -0.002, 0.008, 0.021, 0.186 

FIR – IIR 

FIR – WT 

IIR – WT 

FIR: -0.237, -0.012,0.009,0.033,0.294 

Raw: -0.365, -0.057,0.009,0.073, 0.331 
FIR – Raw 

Stance Time * WT: -0.314, -0.159, -0.137, -0.105, 0.194 - FIR: -0.412, -0.119, -0.022,0.067,0.456 - 

Shank 

HS 

- 

Raw: -0.128, 0.038, 0.066, 0.079, 0.222 

IIR: -0.150, 0.050, 0.076, 0.163, 0.300 

WT: -0.112, 0.031, 0.047, 0.067, 0.218 

IIR – Raw * 

IIR – WT * 

Raw – WT * 

- 

TO 

Raw: -0.244, -0.047, -0.002, 0.042, 0.250 

IIR: -0.234, -0.017, -0.001, 0.017, 0.206 

WT: -0.262, -0.059, -0.048, -0.034, 0.178 

IIR – Raw * 

IIR – WT * 

Raw – WT * 

Step Time 

Raw: -0.140, -0.005, 0.008, 0.028, 0.212 

IIR: -0.280, -0.014, 0.002, 0.017, 0.186 

WT: -0.421, -0.008, 0.005, 0.023, 0.230 

IIR – Raw ** 

IIR – WT 

Raw – WT 

Stance Time 

Raw: -0.283, -0.118, -0.046, -0.018, 0.224 

IIR: -0.400, -0.116, -0.092, -0.058, 0.196 

WT: -0.240, -0.117, -0.099, -0.072,0.168 

IIR – Raw * 

IIR – WT 

Raw – WT * 

Foot 

HS * 
Raw: -0.191, -0.028, 0.044, 0.059, 0.203 

IIR: -0.076, 0.059, 0.080, 0.093, 0.246 
IIR – Raw * IIR: -0.111, 0.083, 0.095,0.102,0.246 

- 

TO * 
Raw: -0.256, -0.046, -0.024, 0.009, 0.229 

IIR: -0.234, -0.017, -0.001, 0.017, 0.206 
IIR – Raw * IIR: -0.186, 0.021,0.032, 0.045, 0.288 

Step Time ** 
Raw: -0.221, -0.087, -0.010, 0.011, 0.195 

IIR: -0.110, 0.016, 0.028, 0.045, 0.218 
IIR – Raw * IIR: -0.143, -0.008, 0.001, 0.009, 0.178 

Stance Time - 
Raw: -0.261, -0.093, -0.059, 0.001, 0.292 

IIR: -0.188, -0.096, -0.081, -0.045, 0.140 
IIR – Raw * IIR: -0.168, -0.075, -0.062, -0.042,0.228 
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shank- and feet-based algorithms) and an anticipation of TO (the smallest for foot-based algorithms, 

increasing moving towards shank and trunk) as illustrated in Figure 4. This behaviour justifies the 

trend observed in the analysed GTPs: step time estimate (derived from HS alone) does not result 

significantly affected by IMU positioning, while stance time (derived from HS and TO) resulted 

always underestimated, increasingly from the foot to the trunk. These results provide more detail 

but are in line with the literature [31,37,38,84]. 

 

Target variable 

Acceleration-based algorithms: i) resulted more accurate than angular velocity-based ones 

for TO detection, while differences in accuracy were negligible for HS detection; ii) resulted less 

repeatable for both HS and TO detection, as supported by the lower values of the intra-class 

correlation coefficient obtained for shanks and feet acceleration compared to the angular velocity; 

iii) provided always lower repeatability but better accuracy in stance time and similar accuracy in 

step time estimation. Jasiewicz et al. [37] found that either linear acceleration or angular velocity of 

IMUs attached to the foot performed equally in terms of accuracy in GE detection, while Ben 

Mansour et al. [81], comparing trunk and shank position, showed that shank angular velocity 

allowed better accuracy for both GEs and GTPs, followed by trunk and shank acceleration for GEs 

and GTPs, respectively. These differences can be justified considering that their analysis focused 

only on foot- or shank/trunk- based algorithms, neglecting the influence of different IMU 

positioning and/or computational approach. 

 

Computational approach 

Computational approach resulted to affect performance differently, depending on IMU 

position. For the computational approach, IMU position have to be taken into account. Considering 

trunk-based algorithms, ‘peak identification’ with FIR filtering showed the best performance in HS 

detection, due to the effectiveness of the filter in emphasizing the main acceleration peak associated 

to HS [28]. For TO detection, ‘peak identification’ with WT filtering resulted the most repeatable 

while ‘zero crossing’ with FIR filtering resulted the most accurate, in line with the literature [21,29]. 

No statistically significant difference was found in step time estimation, demonstrating that gait 

cycle duration can be estimated from the recording of a single IMU, independently from the 

computational approach [83]. Conversely, stance time was affected by the approach used as 

observed for TO identification. Considering IMUs positioned on the shanks, the best performance 

was obtained using ‘peak identification’ with WT filtering for HS and on raw signal for TO 

detection, in line with the literature [27,86]. Similarly to trunk-based algorithms, computational 
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approach did not influence step time estimation, while stance estimation varied significantly 

depending on signal pre-processing: estimation on raw signal resulted to be the most accurate, while 

a pre-processing with WT filtering provided the best repeatability. Regarding foot positioning, the 

best accuracy was obtained with ‘peak identification’ on raw and IIR filtered signal for HS and TO, 

respectively: this result could be expected, since sharp peaks in angular velocity or acceleration 

during HS and TO are the more empathized and easy to detect, the closer to the ground the IMU is 

located [27]. On the other hand, the best repeatability in GE detection was obtained from ‘zero 

crossing’ with IIR filtering, which represented a robust way for detecting gait cycles both in healthy 

and pathological populations [40]. The delay introduced by this approach in HS detection (positive 

Med), resulted compensated in step estimation (Med 1 ms), exhibiting the best accuracy and 

reproducibility in the parameter estimation. Conversely, no significant difference was found for 

stance time estimation between the two approaches. 

 

The potential concurrent influence of different factors was analysed and did not result to 

affect the performance at the same extent for all analysed factors. Eventual concurrent influence 

was reported where relevant (e.g. sensor position when discussing computational approach). Most 

of the algorithms (independently from IMU position, target variable and computational approach) 

showed comparable performance when estimating step time, while attention is needed for stance 

duration and GEs. Future studies will address different situations (e.g. ecological conditions, 

varying walking speed), different sensor type and sampling frequency, as well as populations 

characterized by altered gait patterns (e.g. children, elderlies, pathological populations) [27,36,87], 

and will include the assessment of algorithms’ specificity and sensitivity, as possible false 

positive/negatives may occur in these conditions. 

 

In conclusion, all analysed factors resulted to affect GE and GTP estimation. No proposed 

algorithm can be generally preferred over the others, but the reported results can support researchers 

in the choice of the most suitable algorithm/algorithms based on experimental condition (e.g. 

number/type/placement of sensors) and research question (e.g. mean/variability of the selected gait 

variable). Finally, these results can support future design of novel and more efficient detection 

algorithms. 
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2.2 

 

SEGMENTATION OF GAIT 

IN WATER 

 

 

 

 

 

The content of this chapter has been published in G. Pacini Panebianco, M.C. Bisi, A.L. Mangia; 

R. STagni; S. Fantozzi, Gait events estimation using inertial wearable sensors while walking in 

water, Gait & Posture, 66 (2018), Supplement 1, pp. 28 – 29 and has been submitted to Computer 

Methods and Programs in Biomedicine as full length article. 
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Introduction  

The water environment plays a relevant role in rehabilitation programs [88]. During aquatic 

therapy, the buoyancy, the drag force, and the pressure exerted by water reduce the gravitational 

load on joints, resist motion, and increase proprioception [89–92]. In recent years, Walking in Water 

(WW) has become extensively used for people with specific gait deviations [88] and represents one 

of the fundamental motor tasks performed during aquatic therapy [92]. It is recommended for 

developing and maintaining cardiorespiratory and muscular fitness [93], can be adopted to speed up 

recovery from minor orthopedic injuries [94], offers clear advantages over the land-based equivalent 

for populations with high risk of fall such as older adults and neurological patients [95], and can be 

practiced by individuals without swimming skills [96]. 

Assessment of motor performance during WW, based on quantitative motion analysis, would 

support the understanding of water-induced biomechanical modifications and the design and/or 

monitoring of WW based rehabilitation. 

In quantitative motion analysis, the assessment of temporal parameters is of primary 

importance and requires the correct identification of gait events (GEs, i.e. Foot Contact, FC and 

Foot Off, FO) [9,97]. Various technologies (i.e. force platforms, instrumented mats, footswitches) 

can be exploited for identifying GE when Walking on Dry Land (WDL), but no validated 

instrumentation is available for gait timing identification in the water environment, as highlighted 

by Matsumoto et al., 2008 [98], relying on video recordings for GE identification. Several studies 

analysing gait cycle in water exploited a camera-based approach [88,92,93,98], although its 

drawbacks: i) the limited field of view allowing to analyse only one/two consecutive steps; ii) the 

time-consuming set-up and post-processing [88,93]. 

In recent years, the widespread use of IMUs has led to the proposal and implementation of a 

large number of algorithms for gait segmentation for WDL [9,83]. A recent comprehensive analysis 

of the available algorithms for GE detection in healthy subjects during WDL [9], highlighted how 

the specific performance is significantly affected by sensor placement, analysed variable, and 

computational approach even in ideal conditions. Actually, the design of the available gait 

segmentation algorithms exploits the identification of specific features that can be identified in the 

gait pattern of healthy subjects during DLW. The mechanical characteristics of WW, as well as 

perturbed and pathological conditions, can alter these patterns [88]. Thus, WW can significantly 

affect the performance of such gait segmentation algorithms. On the other hand, no algorithm was 

proposed for the segmentation of WW. 

The present work was designed to quantify how the alterations of the gait pattern associated 

to WW affects the performance of 17 different algorithms, designed for GE estimation in WDL. 
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The results of the present study are meant to support the selection of the most appropriate available 

algorithm for GE estimation in WW, and to serve the possible design of more efficient ones. 

 

 

Materials and Methods 

Analysed algorithms 

17 algorithms for GE and GTP estimation which were reported in the Background for WDL, 

were here analysed for WW. Following the same approach [9], the algorithms were classified based 

on: 

i) IMU position (i.e. trunk, shanks, feet) 

ii) Target variable (i.e. acceleration, angular velocity) 

iii) Computational approach: ‘peak identification’ and ‘zero crossing’, on raw or filtered 

target variable (i.e. FIR, IIR, WT filtering). 

 

Experimental analysis 

Participants: 

Ten young adult healthy participants (5 females, 5 males; age 26.2±3.3 years; height 

1.71±0.07 m; weight 65.4±8.6 Kg) were recruited in the study. All participants were physically 

active and self-reported no musculoskeletal or neurological disorder. The Bioethics Committee of 

the University of Bologna approved the study on 13/07/2018 with protocol number 99412, and 

informed consent was signed by all participants. 

Data acquisition: 

Each participant walked 5 times back and forth along a 10 m straight pathway at self-selected 

speed in 2 conditions: i) WDL; ii) WW at 1.2m depth with water temperature of 28°C wearing water 

shoes and keeping the arms on the water surface. No device (e.g. metronome or timer) was used to 

control the walking speed, not to interfere with the natural walking pattern [99]. Before the WW 

analysed trial, participants performed an acclimatisation trial.  

Five tri-axial IMUs (Cometa, Italy, sf=285 Hz;  technical specifications were reported in 

Chapter 2.1) were attached to the trunk (at L5 level), shanks (about five centimetres above lateral 

malleolus), and feet (on the dorsal aspect of each shoe) (Figure 6). The walking tasks were also 
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filmed using a video camera (Hero4, GoPro, USA, sf=240Hz, 848x480 pixels resolution) for GE 

detection reference. IMU led flashing was video-recorded and used for time-synchronization of 

IMU and video recording. During WDL trails, ground reaction forces (GRF) were also recorded 

using two force platforms (Kistler, Winterthur, Switzerland, sf=1000Hz) mounted half-way along 

the pathway. A trigger signal was generated by IMU system at the beginning of each trial for 

synchronization with the force platforms. 

 

Figure 6. Attachment of IMU on different body location. 

 

 

Data analysis: 

Average gait speed was calculated from reference video during WDL and WW as the ratio 

between straight walked distance and time. 

For WDL, FCGRF and FOGRF were automatically identified applying a 20 N threshold to the 

vertical component of the GRF recordings [84]. FCGoPro and FOGoPro denoting the Foot Contact and 

Foot Off captured by GoPro videos were visually identified for each participant and trial. 

The measurement error of video-based assessment was estimated considering the GRF as 

reference: 

Eref = GEGoPro – GEGRF      (3) 

 

For WW, FCGoPro and FOGoPro were visually identified as for WDL, and FCIMU and FOIMU 

were estimated from IMU measurements using the selected 17 algorithms [9], implemented in 

MATLAB (MathWorks 2017a, USA). 

For each algorithm, the sensitivity in GE identification during WW was calculated, 

considering in this case the video as reference, as:  
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Number of GEs identified by algorithm

Number of all GEs as identified by video
                                                                                           (4) 

For each target variable of the 17 selected algorithms, ICC of the mean stride cycle over the 

whole sequence of each trial for WW and WDL was calculated to analyse the repeatability of the 

pattern over the trial in each condition.  

ICC of the mean WDL stride cycle over the WW sequence was calculated, to analyse the 

similarity of the pattern during WW with respect to the one during WDL, assumed as reference for 

the algorithm design. 

For each algorithm and each condition, coefficient of variation (CV) of the analysed target 

signal was calculated as:  

Difference between 75th and 25th percentile over the stride cycle

Abs(median of the median value over the stryde cycle)
                                          (5) 

Only the algorithms reporting a minimum sensitivity of 81% [83] were considered for further 

analysis. 

GTPs were calculated from GE. 

For each algorithm, the error was calculated for GE and GTP, considering the video as 

reference, as: 

EGE = GEIMU - GEGoPro     (6) 

EGTP = GTPIMU - GTPGoPro     (7) 

Statistical analysis: 

For each parameter (FC, FO, Stride Time, Step Time, Stance Time, Swing Time), a linear 

mixed model [3] was applied to test the dependency of error values on each implementation 

criterion, with a significance level of 0.05 using R software (R-Core Team 2017, Austria, version 

3.4.3). First, the statistical analysis was performed to investigate the influence of IMU position and 

target variable, alone. Then, the influence of analysed variable and computational approach were 

investigated separately for each IMU position. 
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Median value (Med) of the error was calculated to characterize accuracy, and the Dispersion 

around Med (Dmed, 75th percentile – 25th percentile values of the error) to characterize repeatability. 

 

Results 

Gait speed normalised according to Hof [100] resulted 0,33±0,06 for WDL and 0,17±0,08 

for WW. 

Maximum measurement error of video- versus GRF-reference resulted 0.05 s for both FC 

and FO. 

During WW, 32 FCs and FOs were identified and analysed for each participant, for a total 

of 320 FCs and FOs. 

No algorithm exploiting a sensor on the trunk passed the 81% sensitivity criterion, as well 

as well as no acceleration-based algorithm, independently from sensor placement, with the 

exception of two, both exploiting a sensor positioned on the shank and a peak identification 

approach: i) Khandelwal et al. [101] on WT signal; ii) Lee et al. [102] on a IIR transformed signal.  

After the sensitivity analysis, only algorithms exploiting a peak identification approach for 

shank positioned, and only angular velocity based for foot positioned sensor underwent further error 

analysis. 

Algorithms that passed the 81% sensitivity criterion showed an ICC for WW above or equal 

to 0.70, with an ICC of WDL stride cycle applied to WW ranging from 0.31 to 0.61. On the other 

hand, algorithms that did not pass the 81% sensitivity criterion showed an ICC for WW below 0.60, 

with an ICC of WDL stride cycle applied to WW ranging from 0.10 to 0.34, with the only exception 

of Trojanello et al. [8], showing an ICC for WW equal to 0.79 but an ICC of WDL stride cycle 

applied to WW of only 0.11.   

No trend was observed for the CV of the variable analysed by each algorithm. 

Sensitivity and ICC analysis results are summarised in Table 1. 
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Table 1: Details of the analysed algorithms classified according to the three criteria (i.e. IMU position, analysed variable 

and computational approach); sensitivity of algorithms in FC and FO identification; ICC, CV and plots with Median, 

25th and 75th percentile of the different target signals in relation to the implementation criterions defined on the 

normalized stride time and referred to (1) WDL, (2) WW, (3) WDL and WW (thicker lines for WDL plots). The field 

‘Algorithm information’ contains Reference, Imu Position, Target Variable (Direction), Computational Approach. 

 

Algorithm 

information 

Sensitivity 

(%) 
WDL WW WDL and WW 

FC 

FO 
ICC CV Plot ICC CV Plot ICC Plot 

Bugané et al., 2012  

• Trunk 

• Acceleration (AP) 

• peak identification 

(IIR) 

< 81 

0.79 

Min: 

1.34 

Medn: 

2.68 

Max: 

11.27  

0.33 

Min: 

3.29 

Medn: 

4.21 

Max: 

6.49  

0.24 

 

Lee et al., 2009 

• Trunk 

• Acceleration (AP) 

• peak identification 

(FIR) 

0.79 

Min: 

1.34 

Medn: 

2.65 

Max: 

11.10  

0.33 

Min: 

3.29 

Medn: 

4.21 

Max: 

6.49 
 

0.23 

 

McCamley et al., 

2012 

• Trunk 

• Acceleration (V) 

• peak identification 

(WT) 

0.90 

Min: 

1.81 

Medn: 

2.93 

Max: 

7.92  

0.37 

Min: 

164.87 

Medn: 

229.03 

Max: 

362.88  

0.10 

 

Gonzaléz et al., 2010 

• Trunk 

• Acceleration (AP) 

• zero crossing (FIR) 

0.82 

Min: 

1.47 

Medn: 

2.50 

Max: 

8.97  

0.34 

Min: 

3.12 

Medn: 

3.95 

Max: 

6.30  

0.23 

 

Shin et al., 2011 

• Trunk 

• Acceleration (3D) 

• zero crossing 

(Raw) 

0.76 

Min: 

731.96 

Medn: 

1063.6 

Max: 

3042.30  

0.19 

Min: 

4.47 

Medn: 

6.71 

Max: 

13.70  

0.15 

 

Zijlstra et al., 2003 

• Trunk 

• Acceleration (AP) 

• zero crossing (IIR) 

0.93 

Min: 

2.91 

Medn: 

5.28 

Max: 

8.30  

0.44 

Min: 

2.24 

Medn: 

3.02 

Max: 

4.28 
 

0.34 

 

Lee et al., 2010 

• Shank 

• Acceleration (3D) 

• peak identification 

(IIR) 

98,44 

99,69 
0.91 

Min: 

0.79 

Medn: 

2.17 

Max: 

6.73 
 

0.70 

Min: 

30.62 

Medn: 

154.97 

Max: 

490.01  

0.31 

 

Trojaniello et al., 

2014 

• Shank 

• Acceleration (AP) 

• peak identification 

(Raw) 

< 81 0.75 

Min: 

1.70 

Medn: 

5.40 

Max: 

35.28 
 

0.79 

Min: 

4.07 

Medn: 

6.12 

Max: 

13.78  

0.11 

 

Khandelwal et al., 

2014 

• Shank 

• Acceleration (3D) 

• peak identification 

(WT) 

97,50 

99,38 
0.91 

Min: 

2.08 

Medn: 

14.72 

Max: 

31.15  

0.76 

Min: 

4.54 

Medn: 

17.97 

Max: 

42.02 
 

0.56 
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Catalfamo et al., 

2010 

• Shank 

• Angular velocity 

(ML) 

• peak identification 

(IIR) 

98,13 

100 
0.97 

Min: 0.33 

Medn: 

1.08 

Max: 3.52 
 

0.86 

Min: 0.52 

Medn: 

1.43 

Max: 5.96 

 

0.61 

 

Greene et al., 2010 

• Shank 

• Angular velocity 

(ML) 

• peak identification 

(Raw) 

98,13 

99,69 
0.96 

Min: 0.34 

Medn: 

1.08 

Max: 3.45 

 

0.86 

Min: 0.50 

Medn: 

1.45 

Max: 5.96 

 

0.61 

 

Salarian et al., 2004 

• Shank 

• Angular velocity 

(ML) 

• peak identification 

(Raw) 

100 

100 
0.96 

Min: 0.34 

Medn: 

1.08 

Max: 3.45 

 

0.86 

Min: 0.50 

Medn: 

1.45 

Max: 5.96 

 

0.61 

 

Aminian et al., 2002 

• Shank 

• Angular velocity 

(ML) 

• peak identification 

(WT) 

98,13 

100 
0.96 

Min: 0.29 

Medn: 

1.08 

Max: 3.45 

 

0.86 

Min: 0.52 

Medn: 

1.41 

Max: 5.92 

 

0.61 

 

Jasiewicz et al., 2006 

• Foot 

• Acceleration (AP) 

• peak identification 

(Raw) 

< 81 0.76 

Min: 0.47 

Medn: 

1.57 

Max: 

15.07 
 

0.56 

Min: 5.73 

Medn: 

15.34 

Max: 

38.80 

 

0.19 

 

Sabatini et al., 2005 

• Foot 

• Angular velocity 

(ML) 

• peak identification 

(IIR) 

99,38 

100 
0.95 

Min: 1.23 

Medn: 

8.67 

Max: 

36.37 
 

0.82 

Min: 1.45 

Medn: 

4.56 

Max: 

12.34 

 

0.56 

 

Ferrari et al, 2016 

• Foot 

• Angular velocity 

(ML) 

• peak identification 

(Raw) 

93,44 

95,31 
0.94 

Min: 1.28 

Medn: 

9.13 

Max: 

41.38 
 

0.82 

Min: 1.58 

Medn: 

4.83 

Max: 

13.55 

 

0.54 

 

Mariani et al., 2013 

• Foot 

• Angular velocity 

(ML) 

• zero crossing (IIR) 

98,75 

99,69 
0.94 

Min: 1.31 

Medn: 

8.91 

Max: 

38.63 

 

0.82 

Min: 1.38 

Medn: 

4.39 

Max: 

11.72 

 

0.55 
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In general, FC and FO estimates resulted delayed, with this delay being compensated in 

Stride and Step time estimates, while Stance Time was under- and Swing Time over-estimated. 

 

In more detail, considering the different implementation characteristics: 

 

IMU Position 

For GE, significant differences were found between Shank- and Foot-based algorithms: 

Shank-based algorithms resulted equally accurate and repeatable in FC estimation (Med/Dmed: 

0.25/0.15 s for both Shank and Foot), but with different error distribution, and equally accurate and 

more repeatable in FO estimation (Med/Dmed: 0.20/0.20 s and 0.20/0.30 s, for Shank and Foot, 

respectively) than Foot-based ones.  

For GTP, no significant difference was found for Stride and Step time estimates, while 

Shank-based algorithms resulted equally accurate but more repeatable in Stance Time (Med/Dmed: 

-0.05/0.25 s and -0.05/0.35 s, for Shank and Foot, respectively) and less accurate but more 

repeatable in Swing Time estimation (Med/Dmed: 0.05/0.25 s and 0.00/0.35 s, for Shank and Foot, 

respectively) than Foot-based ones. 

Target variable 

For GE, Acceleration based algorithms resulted equally accurate but more repeatable for FC 

(Med/Dmed: 0.25/0.15 s and 0.25/0.20 s, for Acceleration and Angular velocity, respectively), and 

less accurate and equally repeatable in FO estimation (Med/Dmed: 0.30/0.20 s and 0.15/0.20 s, for 

Acceleration and Angular velocity, respectively) than Angular velocity-based ones. 

For GTP, no significant difference was found in Stride time and Step time estimation, while 

Acceleration-based algorithms resulted more accurate and equally repeatable in Stance time 

estimation (Med/Dmed: 0.00/0.25 s and -0.10/0.25 s, for Acceleration and Angular velocity, 

respectively), and Swing time estimation (Med/Dmed: -0.00/0.25 s and 0.10/0.25 s, for Acceleration 

and Angular velocity, respectively) than Angular velocity-based ones. 

Error characteristics for FC (a), FO (b), Stride- (c), Step- (d), Stance- (e) and Swing time (f) 

as related to IMU position and target variable are schematically depicted in Figure 7, while error 

distribution is reported in Table 2. 
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Figure 7: Box plot (minimum, 25th percentile, median, 75th percentile, maximum values) for FC (a), FO 

(b), Stride- (c), Step- (d), Stance- (e), and Swing time (f) estimation errors as related to IMU position and 

target variable. Acceleration-based algorithms are framed in dashes. (* p < 0.05) 
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Table 2: Results of statistical analysis for IMU positioning and target variable for WW: 25th 

quartile, median and 75th quartile of estimation error for FC, FO, stride time, step time, stance 

time and swing time (* p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

Computational approach 

Shank-based algorithms exploited only ‘peak identification’ approach. Raw and WT 

filtering performed equally (Med/DL: 0.30/0.15 s), but less accurate and repeatable than IIR 

(Med/DL: 0.25/0.10 s) in FC estimation, while IIR and WT performed equally (Med/DL: 0.20/0.20 

s), but equally accurate and less repeatable than Raw (Med/DL: 0.20/0.15 s) in FO estimation. 

Considering GTP, no significant difference was found among Raw, IIR and WT for Stride and Step 

time estimation in terms of accuracy, with decreasing (Med/DL: 0.00/0.20 s, 0.00/0.15 s, and 

0.00/0.10 s, for Raw, IIR and WT, respectively) and equal repeatability (Med/DL: 0.00/0.15 s, for 

all) for Stride and Step time estimation, respectively; on the other hand, Raw, WT and IIR showed 

and increasing accuracy, respectively, in Stance and Swing time estimation, but Raw and WT 

resulted more repeatable than IIR (Med/DL: -0.10/0.20 s, 0.00/0.25 s, and -0.05/0.20 s, for Raw, 

IIR and WT, respectively for Stance Time; Med/DL: 0.10/0.20 s, 0.00/0.25 s, and 0.05/0.20 s, for 

Raw, IIR and WT, respectively for Swing Time). 

Foot-based algorithms exploited both ‘peak identification’ (both Raw and IIR for filtering) 

and ‘zero crossing’ (only IIR for filtering) approaches, as applied to angular velocity. ‘zero crossing’ 

with IIR resulted more accurate in FC, but less accurate in FO estimate than ‘peak identification’, 

where IIR resulted equally accurate in FC estimate and less accurate in FO estimate than Raw, with 

comparable repeatability. No significant difference was found in Stride and Step time estimation for 

both computational approach and filtering technique. On the other hand, ‘zero crossing’ with IIR: 

Parameter 
Estimation of errors: IMU position (s) Level of significance 

Shanks Feet Shanks – Feet 

FC 0.20, 0.25, 0.35 0.15, 0.25, 0.30 * 

FO 0.10, 0.20, 0.30    0.05, 0.20, 0.35    * 

Stride Time -0.10, 0.00, 0.05    -0.10, 0.00, 0.05     

Step Time -0.10, 0.00, 0.05    -0.10, 0.00, 0.10     

Stance Time -0.20, -0.05, 0.05    -0.20, -0.05, 0.15    * 

Swing Time -0.05, 0.05, 0.20    -0.15, 0.00, 0.20    * 

Parameter 

Estimation of errors: target variable (s) Level of significance 

Acceleration Angular velocity 
Angular Velocity – 

Acceleration 

FC 0.20, 0.25, 0.35    0.15, 0.25, 0.35    * 

FO 0.20, 0.30, 0.40    0.10, 0.15, 0.30    * 

Stride Time -0.10, 0.00, 0.05    -0.10, 0.00, 0.05     

Step Time -0.10, 0.00, 0.05    -0.10, 0.00, 0.10     

Stance Time -0.10, 0.00, 0.15    -0.20, -0.10, 0.05    * 

Swing Time -0.15, 0.00, 0.10    -0.05, 0.10, 0.20    * 
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i) delayed and resulted more repeatable, while ‘peak identification’ anticipated Stance time; ii) 

anticipated and resulted less accurate, while ‘peak identification’ delayed’ Swing time. For both 

GTP IIR resulted more accurate than Raw. 

Error values and statistical analysis for computational approach are reported in Table 3. 

 

Table 3: Results of statistical analysis for computational approach during WW: 25th quartile, median and 75th quartile 

of estimation error for FC, FO, stride time, step time, stance time and swing time (* p<0.05). 

 

 

 

 

IMU 

position 
Parameter 

Level of significance 

‘peak identification’ vs 

‘zero crossing’ 

Estimation of errors: Filtering (s) 

Level of significance 

Filtering within ‘peak 

identification’ 

Level of 

significance for 

filtering within 

‘peak 

identification’ 

Filtering within ‘zero 

crossing’ 

Level of 

significance 

for filtering 

within 

‘zero 

crossing’ 

Shank 

FC 

- 

Raw: 0.20, 0.30, 0.35 

IIR: 0.20, 0.25, 0.30 

WT: 0.20, 0.30, 0.35 

IIR – Raw * 

IIR – WT * 

Raw – WT  

- 

FO 

Raw: 0.10, 0.20, 0.25 

IIR: 0.10, 0.20, 0.30 

WT: 0.10, 0.20, 0.30 

IIR – Raw * 

IIR – WT  

Raw – WT * 

Stride 

Time 

Raw: -0.10, 0.00, 0.10 

IIR: -0.10, 0.00, 0.05 

WT: -0.05, 0.00, 0.05 

IIR – Raw  

IIR – WT  

Raw – WT  

Step 

Time 

Raw: -0.05, 0.00, 0.10 

IIR: -0.10, 0.00, 0.05 

WT: -0.10, 0.00, 0.05 

IIR – Raw * 

IIR – WT  

Raw – WT * 

Stance 

Time 

Raw: -0.20, -0.10, 0.00 

IIR: -0.15, 0.00, 0.10 

WT: -0.15, -0.05, 0.05 

IIR – Raw * 

IIR – WT * 

Raw – WT * 

Swing 

Time 

Raw: 0.00, 0.10, 0.20 

IIR: -0.10, 0.00, 0.15 

WT: -0.05, 0.05, 0.15 

IIR – Raw * 

IIR – WT * 

Raw – WT * 

Foot 

FC * 
Raw: 0.15, 0.25, 0.35 

IIR:  0.20, 0.25, 0.35 
IIR – Raw IIR: 0.10, 0.20, 0.25 

- 

FO * 
Raw: -0.05, 0.05, 0.15 

IIR: 0.05, 0.15, 0.35 
IIR – Raw * IIR: 0.30, 0.40, 0.50 

Stride 

Time 
 

Raw: -0.15, 0.00, 0.10 

IIR: -0.05, 0.00, 0.05 
IIR – Raw  IIR: -0.05, 0.00, 0.05 

Step 

Time 
 

Raw: -0.15, 0.00, 0.15 

IIR: -0.10, 0.00, 0.05 
IIR – Raw  IIR: -0.05, 0.00, 0.05 

Stance 

Time 
* 

Raw: -0.35, -0.20, -

0.10 

IIR:  -0.20, -0.10, 0.05 

IIR – Raw * IIR: 0.10, 0.20, 0.30 

Swing 

Time 
* 

Raw: 0.10, 0.20, 0.30 

IIR: -0.10, 0.10, 0.20 
IIR – Raw * 

IIR: -0.35 -0.20, -

0.10 
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Discussion 

The analysis of temporal parameters is primary in quantitative gait analysis, therefore, in 

recent years, the wide spreading use of wearable inertial sensors lead to the design and 

implementation of a number of different algorithms for the temporal segmentation of gait. A recent 

paper [9] analysed the performance of these algorithms as applied to the gait of healthy young 

subjects on dry land. This is the ideal condition for the application of the addressed segmentation 

algorithms, which are designed to identify specific features in the reference gait pattern of the 

specific target variable. Still, the performance of the analysed algorithms resulted to be significantly 

affected by sensor position, target variable, and computational approach [9]. 

On the other hand, while WW, the load discharge resulting from the thrust of Archimedes 

and the resistance and inertial effect provided by water determine mechanical conditions leading to 

an alteration of the gait pattern with respect to WDL [88], thus, potentially affecting the performance 

of the available segmentation algorithms. 

Accordingly, the present work highlighted a significant reduction in the sensitivity of the 

analysed algorithms for WW. Based on the values of the ICC, sensitivity still resulted over the 81% 

threshold when the gait pattern of the target variable was sufficiently repeatable (ICC for WW above 

or equal to 0.70), although differing from the WDL pattern (ICC of WDL over WW from 0.31 to 

0.61). On the other hand, sensitivity was below threshold when WW pattern was not repeatable 

enough (ICC for WW below 0.60), and when it differed too much from the reference WDL one, 

like for Trojanello et al. [27], showing a repeatable WW pattern (ICC for WW 0.79) but very 

different from WDL one (ICC of WDL over WW 0.11). According to the reported results, ICC 

analysis can provide an effective method for the objective preliminary evaluation of performance 

of a specific algorithm to the segmentation of an altered gait pattern. 

In particular, no Trunk-based algorithm passed the sensitivity criterion, while Shank- and 

Foot-based ones provided better performance, with Shank-based ones performing slightly better in 

terms of repeatability. The failure of Trunk-based algorithms is associated to the aforementioned 

drop in WW gait pattern repeatability, but also to the disappearing of the pendulum pattern 

characterizing the reference WDP pattern [103], while for the shanks and feet, ICC values of WDL 

pattern over WW result higher due to the still occurring alternate swing of the lower limbs, 

associated to bi-pedal progression. Nevertheless, due to the alteration of the pattern during WW, 

Shank- and Foot-based algorithms did no longer perform as differently as for WDL [9]. 
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Considering the influence of target variable, acceleration never passed the sensitivity 

criterion, with the only exception of 2 Shank-based algorithms [101,102]. Nevertheless, these two 

resulted slightly more repeatable in FC-, less accurate in FO identification, more accurate in Stance- 

and Swing-time estimates than Angular-velocity based ones. 

For computational approach, no final conclusion can be drawn, given that for Shank-based 

algorithms only peak identification approach was applied to both acceleration and angular velocity, 

while both peak identification and zero crossing resulted applied to only angular velocity for Foot-

based ones. Therefore, the analysis can hardly evaluate the performance of the computational 

approach independently from sensor location. 

The limited accuracy of the video-based reference for GE identification for WW can be 

considered a limitation of the present study. On the other hand, no other reference measure was 

available in the water environment, and the relevant minimal detectable difference was considered 

in the statistical analysis, supporting the reliability of the results. 

In conclusion, according to the results of the present research work: i) no available Trunk-

based algorithm is suitable to gait segmentation for walking in water, due to the disappearance of 

pendulum mechanics; ii) angular velocity based algorithms with sensor located on the shank and 

feet result more reliable in terms of sensitivity than acceleration based ones, but not in terms of 

accuracy and repeatability; iii) no final conclusion can be drawn regarding the computational 

approach, independently form sensor location and target variable. The results of the present work 

can support the selection of the most appropriate algorithm for specific research questions, and the 

design of novel segmentation algorithms, better addressing altered gait patterns. 

 

 

 

 

 

 

 

 



70 
 

 

  



71 
 

 

 

2.3 

 

SEGMENTATION OF GAIT ON 

A DUMPING SURFACE (SAND) 

 

Part of the content of this chapter has been published in Pacini Panebianco G., Bisi M.C., Mangia 

A.L., Stagni R., Fantozzi S. ‘Analysis of temporal gait parameters during walking on sand 

using inertial wearable sensors’ Gait & Posture 66 (2018), Supplement 1, pp. 29-30, and 

was submitted to Gait and Posture as full length article. 
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Introduction 

Walking on sand involves metabolic, functional, and biomechanical changes compared to 

walking on solid ground [104–107]. The energy cost of walking on sand is larger compared to grass 

[104] or firm surfaces [105]. In particular, walking on sand requires up to 2.5 times more mechanical 

work than does walking on a hard surface at the same speed [108]: the shifting nature of the soil 

[106] leads to reduced and variable stiffness [109] and reduced elastic response [110]. While 

walking on solid surface guarantees an equally distributed and reproducible plantar pressure, 

maintaining a fluid and regular walking pattern on sand requires an increased control and adaptation 

associated to increased muscles activity [107] [111] for stabilization and propulsion. The altered 

walking conditions tend to increase joint range of motion, to strengthen the muscles, to improve 

balance in injury safe training conditions[111]. Sand training was demonstrated to improve blood 

lipid profile and to reduce risk of fall in elderly women [106], as well as to improve gait pattern in 

individuals with multiple sclerosis [112], and to enhance gait endurance in chronic stroke patients 

[113]. Therefore, walking on sand represents an easily accessible, effective, safe, and inexpensive 

training and rehabilitative activity [106,112] that has raised significant interest in recent years, 

requiring a better understanding of its functional and biomechanical characteristics. 

Most of the studies assessing walking on sand were performed on the beach, investigating 

only energy consumption [108,114]. The quantitative analysis of joint kinematics and mechanical 

work was limited to laboratory controlled conditions using stereophotogrammetry and force 

platforms, with difficulties in the replication of the sand surface [107,112]. To date, no quantitative 

analysis has been published, investigating biomechanical aspects of walking on sand in ecological 

conditions. In this context, one of the fundamental aspects that should be addressed is the objective 

and quantitative estimation of gait temporal parameters (GTP). Specifically, the measurement of 

GTP is essential for the assessment of gait abnormalities, the quantitative evaluation of treatment 

outcomes [18] and the understanding and management of rehabilitation [61,97,115]. However, the 

quantification of GTP requires, first of all, to identify gait events (GEs, i.e. Foot Contact, FC, and 

Foot Off, FO)1. The correct identification of GEs and related GTP on sand could be adopted to 

design specific treatments and therapies for injured or pathological people. In this perspective, IMUs 

represent the optimal solution for the estimation of GEs out of the laboratory, thanks to their 

 
1 Beyond this point, FC and FO will be used instead of HS and TO, considering possible alteration 

in GEs due to different environmental constraints. 
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portability, low costs and limited invasiveness. In fact, a lot of algorithms were implemented and 

proposed for gait segmentation during over-ground walking using IMUs [9].  

To date, no standard methodology for gait segmentation specific for the beach environment 

is available. Thus, the aim of this work was to provide relevant information for the selection of the 

most suitable algorithm for estimation of GEs and GTPs from IMU measurements on the sand, 

starting from the ones proposed for gait segmentation on hard surface. 

 

Materials and Methods 

Analysed algorithms 

17 algorithms for GE and GTP estimation, previously selected and analysed by Pacini et al. 

[9] for WDL, were here analysed for WW. Following the same approach [9], the algorithms were 

classified based on: 

iv) IMU position (i.e. trunk, shanks, feet) 

v) Target variable (i.e. acceleration, angular velocity) 

vi) Computational approach: ‘peak identification’ and ‘zero crossing’, on raw or filtered 

target variable (i.e. FIR, IIR, WT filtering). 

Experimental analysis 

Participants: 

Seven healthy participants (3 females, 4 males; age 31,7±10,0 years; height 1,72±0,04 m; 

weight 66,9±7,8 Kg) were recruited in the study. All participants were physically active and self-

reported no musculoskeletal or neurological disorder. The Bioethics Committee of the University 

of Bologna approved the study on 9/10/2017 with protocol number 105554, and informed consent 

was signed by all participants. 

 

Data acquisition: 

Each participant walked barefoot 3 times back and forth along a 20 m straight pathway at 

self-selected speed in 3 conditions: i) hard surface (even concrete blocks); ii) wet sand; iii) dry sand. 

Measures of angular velocity and acceleration were collected using five tri-axial IMUs (Cometa, 

Italy, sf=285 Hz) located on the trunk (at L5 level), shanks (about five centimetres above lateral 

malleolus), and feet (on the dorsal aspect of each shoe) (Figure 8). The walking tasks were also 
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filmed using a GoPro (Hero4, USA, sf=240Hz, 848x480 pixels resolution) for GE detection 

reference. IMU led flashing was video-recorded and used for time-synchronization of IMU. 

 

 

 

 

Figure 8. Attachments of IMU on different body locations. 

 

 

 

Data analysis: 

For each condition, FCGoPro and FOGoPro were visually identified in the frame of the video by 

the same expert operator using Kinovea (Version 8.27), and FCIMU and FOIMU were estimated from 

IMU measurements using the selected 17 algorithms [9], implemented in MATLAB (MathWorks 

2017a, USA). 

For each condition and algorithm, the sensitivity in GE identification was calculated, 

considering the video as reference, as: 

 

For each target variable of the 17 selected algorithms, ICC of the mean stride cycle over the 

whole sequence of each trial for each condition (hard surface, wet sand and dry sand) was calculated 

to analyse the repeatability of the pattern over the trial in each condition (Single ICC). Furthermore, 

to analyse the similarity of the pattern during wet and dry sand with respect to the hard surface 

assumed as reference for the algorithm design, ICC of the mean stride cycle of hard surface over 

the wet sand and dry sand sequence was calculated (Combined ICC). 

GTPs, i.e. stride, step, stance and swing time were calculated from GE. For each algorithm, 

the error was calculated for GE and GTP, considering the video as reference, as: 

Number of all GEs as identified by video 

Number of GEs identified by algorithm   
(8) 



75 
 

EGE = GEIMU - GEGoPro      (9) 

EGTP = GTPIMU - GTPGoPro                  (10) 

 

Statistical analysis: 

For each parameter (FC, FO, Stride Time, Step Time, Stance Time, Swing Time), a linear 

mixed model [3] was applied to test the dependency of error values on each implementation 

criterion, with a significance level of 0.05 using R software (R-Core Team 2017, Austria, version 

3.4.3). First, the statistical analysis was performed to investigate the influence of IMU position and 

target variable, alone. Then, the influence of analysed variable and computational approach were 

investigated separately for each IMU position. 

To characterize accuracy and repeatability, median value (Med) of the error and the 

Dispersion around Med (Dmed, 75th percentile – 25th percentile values of the error) were calculated, 

respectively. 

 

Results 

For each condition, 40 FCs and 40 FOs were identified and analysed for each participant, 

for a total of 280 FCs and 280 FOs. 

The sensitivity in GEs identification resulted above 99% for all algorithms and conditions. 

For all conditions and independently from IMU positioning, Single ICC showed higher 

variability for acceleration-based algorithms, ranging from 0,83 to 0,97, while velocity-based 

algorithms showed values ranging from 0,94 to 0,97. A similar trend was observed for Combined 

ICC (wet and dry sand versus hard surface), exhibiting values from 0,80 to 0,97 for acceleration-

based algorithms and from 0,92 to 0,96 for angular-velocity based ones. Single and Combined ICC 

values are reported in Table 1. 
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Table 1. Details of the analysed algorithms classified according to the three criteria (i.e. IMU position, analysed variable 

and computational approach); Single ICC referred to hard surface, Wet Sand, Dry sand; Combined ICC referred to Hard 

Surface - Wet Sand, - Dry Sand. 

Reference  
Sensor 

position  
Target 

Variable  
Computational Approach  

Single ICC Combined ICC 

 Hard 

Surface  
Wet 

Sand  
Dry 

Sand  
Hard Surface - 

Wet Sand 

Hard Surface - 

Dry Sand 

Bugané et al., 2012 [26] Trunk Acceleration ‘peak identification’ (IIR) 0,83 0,87 0,88 0,80 0,80 

Lee et al., 2009 [28] Trunk Acceleration ‘peak identification’ (FIR) 0,83 0,87 0,88 0,80 0,80 

McCamley et al., 

2012 [29] 
Trunk Acceleration ‘peak identification’ (WT) 0,97 0,97 0,97 0,97 0,97 

Gonzaléz et al., 2010 [21] Trunk Acceleration ‘zero crossing’ (FIR) 0,89 0,90 0,90 0,84 0,82 

Shin et al., 2011 [30] Trunk Acceleration ‘zero crossing’ (Raw) 0,84 0,89 0,87 0,82 0,80 

Zijlstra et al., 2003 [31] Trunk Acceleration ‘zero crossing’ (IIR) 0,96 0,96 0,95 0,93 0,90 

Lee et al., 2010 [32] Shank Acceleration ‘peak identification’ (IIR) 0,93 0,95 0,94 0,94 0,90 

Trojaniello et al., 2014 

[27] 
Shank Acceleration 

‘peak identification’ 

(Raw) 
0,85 0,92 0,92 0,84 0,82 

Khandelwal et al., 

2014 [33] 
Shank Acceleration ‘peak identification’ (WT) 0,89 0,94 0,91 0,91 0,85 

Catalfamo et al., 2010 [34] Shank 
Angular 
velocity 

‘peak identification’ (IIR) 0,97 0,98 0,97 0,96 0,94 

Greene et al., 2010 [35] Shank 
Angular 

velocity 

‘peak identification’ 

(Raw) 
0,97 0,98 0,97 0,96 0,94 

Salarian et al., 2004 [20] Shank 
Angular 
velocity 

‘peak identification’ 
(Raw) 

0,97 0,98 0,97 0,96 0,94 

Aminian et al., 2002 [36] Shank 
Angular 

velocity 
‘peak identification’ (WT) 0,97 0,98 0,97 0,96 0,94 

Jasiewicz et al., 2006 [37] Foot Acceleration 
‘peak identification’ 

(Raw) 
0,85 0,89 0,93 0,84 0,80 

Sabatini et al., 2005 [38] Foot 
Angular 

velocity 
‘peak identification’ (IIR) 0,94 0,94 0,94 0,93 0,92 

Ferrari et al, 2016 [39] Foot 
Angular 

velocity 

‘peak identification’ 

(Raw) 
0,94 0,94 0,93 0,92 0,92 

Mariani et al., 2013 [40] Foot 
Angular 
velocity 

‘zero crossing’ (IIR) 0,94 0,94 0,94 0,93 0,92 

 

 

IMU Position 

For FC, all positioning highlighted higher accuracy on hard surface (showing the same value 

obtained by the video reference, with Med 0 ms) than on sand (Med 50 ms), with comparable 

repeatability among conditions for trunk- and foot-based algorithms (Dmed 200 ms). Shank-based 

algorithms showed lower repeatability on dry sand (Dmed 250 ms) compared to hard surface and 

wet sand (Dmed 200 ms in both cases). For FO, trunk-based algorithms resulted to be less accurate 

on hard surface and wet sand (Med of 100 ms and 50 ms, respectively) than on dry sand (Med 0 

ms), and less repeatable on hard surface and dry sand (Dmed 200 ms in both cases) compared to 

wet sand (Dmed 150 ms). For shank- and foot-based algorithms, hard surface showed the highest 

accuracy (Med 0 ms in both positions), while wet sand showed the highest repeatability (Dmed 150 

ms in both positions). In general, comparable accuracy and repeatability were found among different 

conditions in the estimation of Stride and Step Time, independently from IMU position. In relation 

to the Stance and Swing Time, a general agreement in accuracy and repeatability of Trunk-based 

algorithms among conditions was found (Med 10 ms and -10 ms, for Stance and Swing Time, 

respectively, and Dmed 50 ms in all cases). Instead, Shank- and Foot-based algorithms showed 
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higher accuracy with comparable repeatability in the estimation of these parameters on sand (Med 

0 ms, Dmed 100 ms) compared to hard surface (Med 50 ms, Dmed 100ms).  

 

Target Variable 

For GEs identification, the hard surface showed for both angular velocity- and acceleration- 

based algorithms the highest accuracy (Med 0 ms for FC and FO in both target variables) and 

repeatability (FC: Dmed 150 ms and 200 ms for angular velocity and acceleration, respectively, FO: 

Dmed 150 ms for both target signals) among different walking conditions. 

Independently from the condition, comparable results were obtained in the estimation of 

stride time in terms of accuracy and repeatability between Acceleration and Angular Velocity-based 

algorithms. Similarly, accuracy was comparable among different conditions in the estimation of 

Step Time, independently from the target variable (Med 0ms in all cases), while lower repeatability 

was observed for acceleration-based algorithms on hard surface and wet sand compared to Angular-

based ones (Dmed 50 ms for angular velocity and 100 ms for acceleration in both conditions). In 

general, wet and dry sand showed higher accuracy and comparable repeatability in Stance and 

Swing Time estimation for both Acceleration- and Angular Velocity-based algorithms (Med of 0 

ms for wet and dry sand and of 50 ms for hard surfaces, Dmed of 100 ms in all conditions). 

Error characteristics for FC, FO, Stride-, Step-, Stance- and Swing time as related to IMU 

position and target variable are schematically depicted in Figure 9, while numerical values of the 

errors are reported in Table 2. 
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Figure 9: Box plot (minimum, 25th percentile, median, 75th percentile, maximum values) for FC (a), FO 

(b), Stride- (c), Step- (d), Stance- (e), and Swing time (f) estimation errors as related to IMU position and 

target variable on hard surface (top), wet (centre) and dry (bottom) sand. Angular velocity-based algorithms 

are framed in dashes. 
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Table 2: Results of statistical analysis for IMU position and target variable: minimum, 25th quartile, median, 75th 

quartile and maximum of estimation error for FC, FO, stride time, step time, stance time and swing time (* p<0.05) 

across different walking conditions, i.e. hard surface (HSf), wet sand (WS) and dry sand (DS). 

 

 

Computational approach 

For all IMU positions, algorithms showed statistically significant differences between the 

two approaches in GEs, Stance and Swing estimation. Instead, the estimation of Stride and Step 

Time showed comparable accuracy and repeatability among different walking conditions, 

independently from IMU position and computational approach. Numerical values of error 

characteristics for GE and GTP as related to computational approach are reported in Table 3. 

 

 

 

Parameter 
Estimation of errors: IMU position (s) Level of significance 

 Trunk Shanks Feet 

FC 

HSf -0.50; -0.05; 0.00; 0.15; 0.30 -0.20; -0.05; 0.00; 0.15; 0.50 -0.20; -0.10; 0.00; 0.10; 0.50 Trunk-Shanks    HSf* WS* DS* 

Trunk-Feet            WS* DS* 

Shanks-Feet    HSf*         DS* 

WS -0.50; -0.05; 0.05; 0.15; 0.45 -0.25; -0.05; 0.05; 0.15; 0.55 -0.25; -0.05; 0.05; 0.15; 0.30 

DS -0.50; -0.05; 0.05; 0.15; 0.50 -0.30; -0.05; 0.05; 0.20; 0.50 -0.50; -0.05; 0.05; 0.15; 0.50 

FO 

HSf -0.25; -0.20; -0.10; 0.00; 0.45 -0.30; -0.10; 0.00; 0.10; 0.30 -0.25; -0.05; 0.00; 0.10; 0.25 Trunk-Shanks   HSf* WS* DS* 

Trunk-Feet      HSf* WS* DS* 

Shanks-Feet     HSf*         DS* 

WS -0.55 -0.10 -0.05 0.05   0.55 -0.20; -0.05; 0.05; 0.10; 0.40 -0.20; -0.05; 0.05; 0.10; 0.30 

DS -0.50 -0.10 0.00 0.10   0.50 -0.15; -0.05; 0.10; 0.20; 0.50 -0.50; -0.05; 0.05; 0.15; 0.40 

Stride 

time 

HSf -0.50; 0.00; 0.00; 0.00; 0.55 -0.45; 0.00; 0.00; 0.00; 0.50 -0.35; 0.00; 0.00; 0.00; 0.35 Trunk-Shanks 

Trunk-Feet 

Shanks-Feet     WS* 

WS -0.55; 0.00; 0.00; 0.00; 0.60 -0.45; 0.00; 0.00; 0.00; 0.35 -0.20; 0.00; 0.00; 0.00; 0.20 

DS -0.60; -0.05; 0.00; 0.05; 0.70 -0.50; 0.00; 0.00; 0.00; 0.50 -0.70; -0.05; 0.00; 0.00; 0.60 

Step 

Time 

HSf -0.55; -0.05; 0.00; 0.00; 0.15 -0.35; 0.00; 0.00; 0.05; 0.35 -0.35; 0.00; 0.00; 0.05; 0.30 Trunk-Shanks   HSf* WS* 

Trunk-Feet 

Shanks-Feet     WS* DS* 

WS -0.50; 0.00; 0.00; 0.05; 0.60 -0.25; 0.00; 0.00; 0.05; 0.75 -0.20; -0.05; 0.00; 0.05; 0.20 

DS -0.60; -0.05; 0.00; 0.05; 0.60 -0.55; 0.00; 0.00; 0.05; 0.45 -0.55; 0.00; 0.00; 0.05; 0.55 

Stance 

Time 

HSf -0.30; -0.15; -0.15; -0.10; 0.55 -0.35; -0.10; -0.05; 0.00; 0.20 -0.40 -0.05 -0.05 0.05   0.25 Trunk-Shanks   HSf* WS* DS* 

Trunk-Feet      HSf* WS* DS* 

Shanks-Feet     HSf* WS* DS* 

WS -0.60; -0.10; -0.10; -0.05; 0.45 -0.30; -0.05; 0.00; 0.05; 0.35 -0.25; -0.05; 0.00; 0.05; 0.40 

DS -0.65; -0.15; -0.10; -0.05; 0.80 -0.35; -0.05; 0.00; 0.05; 0.45 -0.55; -0.05; 0.00; 0.05; 0.55 

Swing 

time 

HSf -0.45; 0.10; 0.10; 0.15; 0.35 -0.20; 0.00; 0.05; 0.10; 0.45 -0.20; -0.05; 0.05; 0.05; 0.40 Trunk-Shanks   HSf* WS* DS* 

Trunk-Feet      HSf* WS* DS* 

Shanks-Feet     HSf* WS* DS* 

WS -0.45; 0.05; 0.10; 0.10; 0.55 -0.40; -0.05; 0.00; 0.05; 0.30 -0.40; -0.05; 0.00; 0.05; 0.30 

DS -0.70; 0.05; 0.10; 0.15; 0.65 -0.40; -0.05; 0.00; 0.05; 0.30 -0.60; -0.05; 0.00; 0.05; 0.60 

Parameter 
Estimation of errors: Target Variable (s) Level of significance 

 Angular Velocity Acceleration 

FC 

HSf -0.20; -0.05; 0.00; 0.10; 0.50 -0.50; -0.05; 0.00; 0.15; 0.50 
Angular Velocity - Acceleration 

HSf* WS* DS* 
WS -0.25; -0.05; 0.05; 0.15; 0.30 -0.50; -0.05; 0.05; 0.15; 0.55 

DS -0.50; -0.05; 0.05; 0.15; 0.50 -0.50; -0.05; 0.05; 0.20; 0.50 

FO 

HSf -0.30; -0.10; 0.00; 0.05; 0.25 -0.25; -0.10; 0.00; 0.05; 0.45 
Angular Velocity - Acceleration 

WS* 
WS -0.20; -0.05; 0.05; 0.10; 0.30 -0.55; -0.05; 0.05; 0.10; 0.55 

DS -0.50; -0.05; 0.05; 0.15; 0.40 -0.50; -0.05; 0.05; 0.15; 0.50 

Stride 

time 

HSf -0.35; 0.00; 0.00; 0.00; 0.35 -0.50; 0.00; 0.00; 0.00; 0.55 

Angular Velocity - Acceleration WS -0.20; 0.00; 0.00; 0.00; 0.20 -0.55; 0.00; 0.00; 0.00; 0.60 

DS -0.50; 0.00; 0.00; 0.00; 0.60 -0.70; -0.05; 0.00; 0.05; 0.70 

Step 

Time 

HSf -0.35; 0.00; 0.00; 0.05; 0.30 -0.55; -0.05; 0.00; 0.05; 0.35 

Angular Velocity - Acceleration WS -0.20; 0.00; 0.00; 0.05; 0.20 -0.50; 0.00; 0.00; 0.05; 0.75 

DS -0.55; 0.00; 0.00; 0.05; 0.55 -0.60; -0.05; 0.00; 0.05; 0.60 

Stance 

Time 

HSf -0.40; -0.10; -0.05; 0.05; 0.25 -0.35; -0.10; -0.05; 0.00; 0.55 
Angular Velocity - Acceleration 

HSf* WS* DS* 
WS -0.25; -0.05; 0.00; 0.05; 0.40 -0.60; -0.10; -0.05; 0.00; 0.45 

DS -0.55; -0.05; 0.00; 0.05; 0.55 -0.65; -0.10; -0.05; 0.05; 0.80 

Swing 

time 

HSf -0.20; -0.05; 0.05; 0.10; 0.45 -0.45; 0.00; 0.05; 0.10; 0.35 Angular Velocity - Acceleration 

HSf* WS* DS* WS -0.40; -0.05; 0.00; 0.05; 0.30 -0.45; 0.00; 0.05; 0.10; 0.55 

DS -0.60; -0.05; 0.00; 0.05; 0.60 -0.70; -0.05; 0.05; 0.10; 0.65 
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Table 3. Results of statistical analysis for computational approach: minimum, 25th quartile, median, 75th quartile and 

maximum of estimation error for HS, TO, stride time, step time, stance time and swing time (* p<0.05) across different 

walking conditions, i.e. Hard Surface (HSf), Wet Sand (WS) and Dry Sand (DS). 

IMU 

position 
Parameter 

Level of significance 

‘peak identification’ 

vs ‘zero crossing’ 

Estimation of errors: Filtering (s) 

Level of significance 

Filtering within ‘peak 

identification’ 

Level of 

significance for 

filtering within 

‘peak 

identification’ 

Filtering within ‘zero 

crossing’ 

Level of 

significance 

for filtering 

within ‘zero 

crossing’ 

Trunk 

HS 

HSf* 

WS* 

DS* 

HSf 

FIR:  -0.40; -0.10; 0.05; 0.15; 0.30 

IIR:  -0.40; -0.05; 0.10; 0.20; 0.30 

WT:  -0.45; -0.10; 0.00; 0.15; 0.20 

FIR – IIR* 

FIR – WT* 

IIR – WT * 

Raw: -0.50; -0.15; -0.05; 0.10; 0.20 

FIR: -0.45; -0.05; 0.05; 0.15; 0.25 

IIR:  -0.50; -0.15; 0.00; 0.10; 0.20 

FIR – IIR* 

FIR – Raw 

IIR – Raw 

WS 

FIR:  -0.20; -0.05; 0.05; 0.15; 0.25 

IIR:  -0.15; 0.00; 0.15; 0.20; 0.25 

WT:  -0.25; -0.05; 0.05; 0.15; 0.35 

FIR – IIR* 

FIR – WT* 

IIR – WT * 

Raw: -0.20; -0.10; 0.00; 0.10; 0.25 

FIR:  -0.50; -0.05; 0.10; 0.15; 0.45 

IIR: -0.25; -0.10; 0.00; 0.10; 0.15 

 

FIR – IIR* 

FIR – Raw* IIR 

– Raw 

DS 

FIR: -0.30; 0.00; 0.05; 0.15; 0.35 

IIR: -0.30; 0.00; 0.05; 0.15; 0.30 

WT: -0.40; -0.05; 0.10; 0.15; 0.35 

FIR – IIR* 

FIR – WT 

IIR – WT 

 

Raw: -0.15; -0.06; 0.05; 0.10; 0.25 

FIR:  -0.50; -0.05; 0.10; 0.20; 0.50 

IIR:  -0.30; 0.00; 0.05; 0.15; 0.30 

FIR – IIR * 

FIR – Raw* 

IIR – Raw 

TO DS* 

HSf WT -0.25; -0.20; -0.10; 0.00; 0.20 

- 

FIR -0.25; -0.20; -0.10; 0.00; 0.45 

- WS WT: -0.25; -0.10; 0.00; 0.05; 0.25 FIR:  -0.55; -0.10; -0.05; 0.05; 0.55 

DS WT:  -0.30; -0.10; 0.00; 0.10; 0.30 FIR: -0.50; -0.15; -0.05; 0.10; 0.50 

Stride time 

HSf 

WS 

DS 

HSf 

 

FIR -0.50; -0.05; 0.00; 0.00; 0.50 

IIR -0.10; 0.00; 0.00; 0.00; 0.55 

WT -0.15; 0.00; 0.00; 0.00; 0.15 

FIR – IIR 

FIR – WT 

IIR – WT 

FIR -0.20; 0.00; 0.00; 0.00; 0.15 

IIR -0.10; 0.00; 0.00; 0.00; 0.05 

Raw -0.10; 0.00; 0.00; 0.00; 0.05 

FIR – IIR 

FIR – Raw 

IIR – Raw 

WS 

 

FIR -0.40; -0.05; 0.00; 0.05; 0.40 

IIR -0.10; 0.00; 0.00; 0.00; 0.10 

WT -0.50; 0.00; 0.00; 0.00; 0.40 

FIR – IIR 

FIR – WT 

IIR – WT 

FIR -0.55; -0.05; 0.00; 0.00; 0.60 

IIR -0.10; 0.00; 0.00; 0.00; 0.10 

Raw -0.40; 0.00; 0.00; 0.00; 0.40 

FIR – IIR 

FIR – Raw 

IIR – Raw 

DS 

FIR: -0.60; -0.05; 0.00; 0.05; 0.60 

IIR -0.60; 0.00; 0.00; 0.00; 0.60 

WT -0.60; -0.05; 0.00; 0.05; 0.55 

FIR – IIR 

FIR – WT 

IIR – WT 

FIR -0.60; -0.05; 0.00; 0.05; 0.70 

IIR -0.15; -0.05; 0.00; 0.00; 0.15 

Raw -0.20; -0.05; 0.00; 0.05; 0.20 

FIR – IIR 

FIR – Raw 

IIR – Raw 

Step Time 

HSf 

WS 

DS 

HSf 

FIR -0.15; 0.00; 0.00; 0.05; 0.15 

IIR -0.55; 0.00; 0.00; 0.00; 0.10 

WT -0.15; -0.05; 0.00; 0.05; 0.05 

FIR – IIR 

FIR – WT 

IIR – WT 

FIR -0.15; -0.05; 0.00; 0.05; 0.10 

Raw -0.05; 0.00; 0.00; 0.00; 0.10 
FIR – Raw 

WS 

FIR -0.40; 0.00; 0.00; 0.05; 0.15 

IIR -0.05; -0.05; 0.00; 0.00; 0.10 

WT -0.50; 0.00; 0.00; 0.00; 0.25 

FIR – IIR 

FIR – WT 

IIR – WT 

FIR -0.50; -0.05; 0.00; 0.00; 0.60 

Raw:  -0.40; 0.00; 0.00; 0.00; 0.15 
FIR – Raw 

DS 

FIR -0.60; -0.05; 0.00; 0.05; 0.60 

IIR -0.60; -0.05: 0.00: 0.00; 0.60 

WT -0.55; -0.05; 0.00; 0.05; 0.35 

FIR – IIR 

FIR – WT 

IIR – WT 

FIR: -0.55; -0.05; 0.00; 0.05; 0.55 

Raw:  -0.10; -0.05; 0.00; 0.00; 0.20 
FIR – Raw 

Stance time 
HSf* 

WS* 

HSf WT -0.20; -0.15; -0.10; -0.10; 0.35 

- 

FIR -0.30; -0.15; -0.15; -0.10; 0.55 

- WS WT -0.60; -0.10 -0.10 -0.05   0.25 FIR -0.55; -0.15; -0.10; -0.10; 0.45 

DS WT -0.30; -0.15; -0.10; -0.05; 0.45 FIR -0.65; -0.15; -0.10; -0.05; 0.80 

Swing Time 
HSf* 

WS* 

HSf WT -0.40; 0.10; 0.10; 0.15;   0.30 

- 

FIR:  -0.45; 0.10; 0.15; 0.15; 0.35 

- WS WT -0.40; 0.10; 0.10; 0.15; 0.30 FIR:  -0.45; 0.10; 0.15; 0.15; 0.35 

DS WT -0.70; 0.05; 0.10; 0.15; 0.45 FIR: -0.70; 0.10; 0.10; 0.15; 0.65 

Shank 

HS 

- 

HSf 

Raw -0.20; -0.10; 0.00; 0.15; 0.25 

IIR -0.10; -0.05; 0.05; 0.20; 0.25 

WT -0.15; -0.05; 0.05; 0.15; 0.50 

IIR – Raw* 

IIR – WT 

Raw – WT* 

- 

WS 

Raw -0.25; -0.05; 0.05; 0.10; 0.20 

IIR -0.20; 0.00; 0.10; 0.20; 0.25 

WT -0.20; 0.00; 0.05; 0.15; 0.55 

IIR – Raw* 

IIR – WT 

Raw – WT* 

DS 

Raw -0.30; 0.00; 0.05; 0.15; 0.35 

IIR -0.30; 0.00; 0.05; 0.15; 0.30 

WT -0.40; -0.05; 0.10; 0.15; 0.35 

IIR – Raw* 

IIR – WT* 

Raw – WT* 

TO 

HSf 

Raw -0.30; -0.10; 0.00; 0.10; 0.25 

IIR -0.20; -0.10; -0.05; 0.05; 0.20 

WT -0.20; -0.05; 0.05; 0.10; 0.30 

IIR – Raw* 

IIR – WT* 

Raw – WT* 

WS 

Raw -0.20; -0.05; 0.05; 0.10; 0.30 

IIR -0.20; -0.10; 0.05; 0.10; 0.35 

WT -0.20; -0.05; 0.10; 0.20; 0.40 

IIR – Raw 

IIR – WT* 

Raw – WT* 

DS 

Raw -0.15; -0.05; 0.05; 0.15; 0.35 

IIR -0.15; -0.05; 0.05; 0.20; 0.50 

WT -0.10; 0.05; 0.10; 0.20; 0.50 

IIR – Raw* 

IIR – WT* 

Raw – WT* 

Stride time 

HSf 

Raw -0.15; 0.00; 0.00; 0.00; 0.20 

IIR -0.10; 0.00; 0.00; 0.00; 0.10 

WT -0.45; 0.00; 0.00; 0.05; 0.50 

IIR – Raw 

IIR – WT 

Raw – WT 

WS 

Raw -0.10; 0.00; 0.00; 0.00; 0.15 

IIR -0.15; 0.00; 0.00; 0.00; 0.15 

WT -0.45; -0.05; 0.00; 0.05; 0.35 

DS 

Raw -0.25; 0.00; 0.00; 0.00; 0.30 

IIR -0.35; -0.00; 0.00; 0.05; 0.35 

WT -0.50; -0.05; 0.00; 0.05; 0.50 

Step Time HSf 

Raw -0.20; 0.00; 0.00; 0.00; 0.15 

IIR -0.05; 0.00; 0.00; 0.00; 0.10 

WT -0.35; 0.00; 0.00; 0.05; 0.35 

IIR – Raw 

IIR – WT 

Raw – WT 
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WS 

Raw -0.15; 0.00; 0.00; 0.05; 0.15 

IIR -0.10; 0.00; 0.00; 0.05; 0.15 

WT -0.25; -0.05; 0.00; 0.05; 0.75 

 

DS 

Raw -0.10; 0.00; 0.00; 0.00; 0.25 

IIR -0.25; 0.00; 0.00; 0.05; 0.35 

WT -0.55; -0.05; 0.00; 0.05; 0.45 

Stance time 

HSf 

Raw -0.25; -0.05; 0.00; 0.05; 0.15 

IIR -0.20; -0.15; -0.10; -0.05; 0.15 

WT -0.35; -0.10; -0.05; 0.05; 0.20 IIR – Raw HSF* 

WS* 

IIR – WT HSF* 

WS* DS* 

Raw – WT 

WS 

Raw -0.10; -0.05; 0.00; 0.05; 0.35 

IIR -0.20; -0.10; -0.10; 0.00; 0.30 

WT -0.30; -0.05; 0.00; 0.05; 0.35 

DS 

Raw -0.30; -0.05; 0.00; 0.05; 0.25 

IIR -0.25; -0.10; -0.05; 0.05; 0.45 

WT -0.35; -0.05; 0.00; 0.05; 0.40 

Swing Time 

HSf 

Raw -0.10; -0.05; 0.00; 0.05; 0.45 

IIR -0.15; 0.05; 0.10; 0.15; 0.30 

WT -0.20; -0.05; 0.05; 0.10; 0.35 
IIR – Raw HSF* 

WS* 

IIR – WT HSF* 

WS* DS* 

Raw – WT HSF* 

WS* 

WS 

Raw -0.10; -0.05; 0.00; 0.05; 0.45 

IIR -0.15; 0.05; 0.10; 0.15; 0.30 

WT -0.20; -0.05; 0.05; 0.10; 0.35 

DS 

Raw -0.25; -0.05; 0.00; 0.05; 0.25 

IIR -0.40; -0.05; 0.05; 0.10; 0.25 

WT -0.40; -0.05; 0.00; 0.05; 0.30 

Foot 

HS 

HSf* 

WS* 

DS* 

HSf 

 

Raw -0.15; -0.05; 0.05; 0.15; 0.50 

IIR -0.15; -0.05; 0.05; 0.15; 0.25 

IIR – Raw WS* 

DS* 

IIR -0.20; -0.15; -0.05; 0.10; 0.15 

- 

WS 
Raw -0.25; 0.00; 0.10; 0.15; 0.30 

IIR -0.20; -0.05; 0.05; 0.15; 0.20 
IIR -0.25; -0.10; 0.00; 0.10; 0.15 

DS 
Raw -0.50; 0.00; 0.05; 0.20; 0.50 

IIR -0.50; -0.05; 0.05; 0.20; 0.50 
IIR -0.15; -0.10; 0.00; 0.10; 0.25 

TO 

HSf* 

WS* 

DS* 

HSf 
Raw -0.25; -0.10; 0.00; 0.10; 0.25 

IIR -0.15; -0.10; 0.00; 0.10; 0.20 

IIR – Raw 

IIR -0.25; -0.05; 0.05; 0.15; 0.25 

WS 
Raw -0.20; -0.05; 0.05; 0.10; 0.30 

IIR -0.20; -0.05; 0.05; 0.10; 0.30 
IIR -0.15; 0.00; 0.10; 0.20; 0.30 

DS 
Raw -0.50; -0.05; 0.05; 0.15; 0.40 

IIR -0.10; -0.05; 0.05; 0.15; 0.35 
IIR -0.10; 0.00; 0.10; 0.25; 0.40 

Stride time 

HSf 

WS 

DS 

HSf 
Raw -0.35; 0.00; 0.00; 0.00; 0.35 

IIR -0.10; 0.00; 0.00; 0.00; 0.10 

IIR – Raw 

IIR -0.10; 0.00; 0.00; 0.00; 0.10 

WS 
Raw -0.20; -0.05; 0.00; 0.05;0.20 

IIR -0.10; 0.00; 0.00; 0.00; 0.10 
IIR -0.10; 0.00; 0.00; 0.00; 0.10 

DS 
Raw -0.70; -0.05; 0.00; 0.05; 0.60 

IIR -0.50; 0.00; 0.00; 0.00; 0.55 
IIR -0.15; 0.00; 0.00; 0.00; 0.15 

Step Time 

HSf 

WS 

DS 

HSf 

 

Raw -0.35; 0.00; 0.00; 0.05; 0.30 

IIR -0.10; -0.05; 0.00; 0.05; 0.10 

IIR – Raw  DS* 

IIR -0.05; 0.00; 0.00; 0.05; 0.10 

 WS 
Raw -0.20; -0.05; 0.00; 0.05; 0.20 

IIR -0.10; -0.05; 0.00; 0.05; 0.10 
IIR -0.05; 0.00; 0.00; 0.00; 0.10 

DS 
Raw -0.55; -0.05; 0.00; 0.05; 0.55 

IIR -0.50; 0.00; 0.00; 0.05; 0.55 
IIR -0.10; 0.00; 0.00; 0.00; 0.15 

Stance time 

HSf* 

WS* 

DS* 

HSf 
Raw -0.40; -0.10; -0.05; 0.00; 0.10 

IIR -0.15; -0.05 -0.05 -0.05; 0.15 

IIR – Raw WS* 

DS* 

IIR -0.20; 0.05; 0.10; 0.10; 0.25 

 

WS 
Raw -0.25; -0.10; -0.05; 0.00; 0.30 

IIR -0.20; -0.05; -0.05; 0.00; 0.30 
IIR 0.00; 0.05; 0.10; 0.10; 0.40 

DS 
Raw -0.55; -0.10; -0.05; 0.00; 0.50 

IIR -0.55; -0.05; 0.00; 0.00; 0.55 
IIR -0.10; 0.10; 0.10; 0.15; 0.30 

Swing Time 

HSf* 

WS* 

DS* 

HSf 
Raw -0.10; 0.00; 0.05; 0.10; 0.40 

IIR -0.10; 0.05; 0.05; 0.05; 0.25 

IIR – Raw DS* 

IIR -0.20; -0.10; -0.10; -0.05; 0.20 

WS 
Raw -0.10; 0.00; 0.05; 0.10; 0.40 

IIR -0.10; 0.05; 0.05; 0.05; 0.25 
IIR -0.20; -0.10; -0.10; -0.05; 0.20 

DS 
Raw -0.55; 0.00; 0.05; 0.05; 0.60 

IIR -0.60; 0.00; 0.00; 0.05; 0.60 
IIR -0.30; -0.15; -0.10; -0.10; 0.10 
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Discussion 

The present study analysed the performance of 17 algorithms originally designed for GE 

detection in healthy people during walking on hard surface when applied to gait on dry and wet 

sand. In both conditions, all the algorithms showed over-threshold sensitivity, suggesting the 

possibility to extend their application in the marine context. The high sensitivity can be explained 

by the results obtained in the similarity of the gait pattern across different conditions, assessed by 

ICC. In the literature, ICC theory was already adopted for the analysis of multivariate categorical 

data [116] and later proposed by other authors to evaluate the reproducibility in the acceleration 

pattern of the trunk during walking [117]. In this work, Single and Combined ICC showed excellent 

reproducibility of signal features on wet and dry sand, alone, and also compared with the hard 

surface, adopted as reference for algorithm implementation. More in details, algorithms exploiting 

angular velocity of shanks and feet showed excellent reproducibility across different environments, 

with minimum value of Single and Combined ICC of 0.92. Also, good reproducibility was observed 

for the acceleration-based algorithms, independently from IMU position, with minimum value of 

Single and Combined ICC of 0.80. An example of reproducibility in the gait pattern within the 

single condition was reported in Figure 10, showing a representative signal derived from trunk 

acceleration during walking on (a) hard surface, (b) wet and (c) dry sand, with values of Single ICC 

of 0.83, 0.87 and 0.88, respectively. 

 

 

Figure 10. Plots with Median, 25th and 75th percentile of a representative target signals from trunk acceleration on the 

normalized stride time and referred to (a) hard surface, (b) wet sand, (c) dry sand. 

 

 

 

 

 

a) b) c) 



85 
 

Also, the similarity of the gait pattern on sand compared to the hard surface was represented 

in Figure 11, where specific features of the target signal were comparable among different 

conditions, with values of Combined ICC of 0.80 in both wet and dry sand versus hard surface. 

 

 

 

Figure 11. Plots with Medians of a representative target signals from trunk acceleration on the normalized stride time 

referred to hard surface, wet and dry sand. 

 

 

Different accuracy and repeatability were observed in the estimation of GE, Stance and 

Swing time across different walking conditions. Independently from different IMU position and 

target variable, hard surfaces and wet sand showed a general greater accuracy and comparable 

repeatability in GE estimation compared to dry sand. On the other hand, higher accuracy and 

comparable repeatability were highlighted in the estimation of Stance and Swing Time for wet and 

dry sand compared to hard surface (Table 2), suggesting that bias occurring during FC detection on 

sand tended to be compensated by bias introduced with FO more than in hard surface. Considering 

the computational approach, an indicatory conclusion can be hardly proposed, because different 

results were obtained in relation to the different sensor location. Across different conditions, all 

algorithms showed delay or anticipation in the estimation of FC compared to the Gold Standard 

(Figure 1). These biases were generally compensated in the estimation of Stride and Step time 

(derived from HS alone), thus these parameters resulted not to be significantly affected by different 

implementation characteristics and walking conditions. 

From these results, overall better performances were obtained in GE and GTP estimation for 

segmentation algorithms applied to wet sand both in terms of accuracy and repeatability. Since the 

original algorithms were implemented based on inertial data of people walking on solid surfaces 

and dressing comfortable shoes, wet sand might play the same biomechanical role associated to 
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footwear [118], possibly justifying the better results obtained for this latter condition. 

In conclusion, results of this study suggested that the physical characteristics of the sand 

terrains (i. e. shifting nature, reduced elastic response and different stiffness) did not substantially 

modify acceleration and angular velocity patterns derived from different IMU position during 

walking, thus assuring overall good performance of algorithms in the estimation of GEs and GTPs. 

The main limitation of the study is represented by the low number of participants. Thus, further 

analyses will extend the number of analysed subjects to provide consistent guidelines for the 

assessment of appropriate segmentation algorithms in the marine environment. 
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2.4 

 

NON- LINEAR METRICS OF 

GAIT IN WATER  

 

Part of the content of this chapter has been published in Pacini Panebianco, Giulia; Bisi, Maria 

Cristina; Giovanardi, Andrea; Stagni, Rita; Fantozzi, Silvia, ‘Gait performance of walking in or 

out of the water: Objective and interpretative observation using variability and stability indices’, 

Gait & Posture 49s (2016), 7 – 8, and was submitted to Gait and Posture as full length article. 
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Introduction 

The water environment has been promoted for rehabilitative motor activities of people with 

impaired locomotion [88,92]. Aquatic therapies are beneficial in the management of patients with 

musculoskeletal disorders, neurological problems and cardiopulmonary pathology [91]. More 

specifically, walking in water represents one of the most effective motor tasks in the rehabilitation 

programs and can be performed by individuals without swimming skill [88,92,96]. In this context, 

the selection of the proper level of immersion is essential for the effectiveness of the therapy. In 

fact, walking tasks in the aquatic rehabilitation should be performed at various water depths 

(progressing from deeper to shallower), in order to enable the removal of a proportion of body 

weight to facilitate optimal gait patterns, as needed [119]. Despite its recognised clinical relevance, 

a limited number of studies quantitively analysed the biomechanical and functional characteristics 

of gait in water [88,92,120,121], usually limiting the analysis to metabolic and physiological effects 

on the motor performance and considering fixed level of immersion [91,122–125]. Thus, it is still a 

challenge to explain and understand the reasons for the clinical efficacy of the walking therapy in 

this environment from a functional and biomechanical point of view. 

In recent years, the assessment of motor control during over-ground walking have been 

performed using specific parameters, such as variability of the stride time (PSD1, PSD2, SD) and 

non-linear metrics (e.g. RQA and MSE), proposed in the literature to quantify variability, regularity 

and complexity of the gait pattern [44,46,51] (see Paragraph 1.2 of the Background for more details). 

Some studies analysed methodological aspects related to the potential use of these metrics in the 

clinical practice and the development of the base research [43,46,51,126]. In particular, Riva et al. 

[44] investigated the minimum number of strides to assess the reliability of non-linear metrics 

calculation during over-ground walking. Due to the different motor pattern observed during gait in 

water (see Paragraph 2.2 of Section 1), the results obtained by Riva et al. [44] for over-ground 

walking cannot be extended to the water environment. In order to provide relevant information of 

motor control for rehabilitation in water and aquatic therapy, methodological aspects in relation to 

the implementation of the non-linear metrics during walking in the water at different levels of 

immersion were investigated. Thus, the aims of the present study were to i) assess the minimum 

number of strides required for a reliable application of non-linear metrics; ii) characterize the 

influence of different level of immersion. 

 

 

 



90 
 

Materials and methods 

 

Participants 

Fourteen healthy participants (8 females, 6 males; 23.4± 4.0 years; 1.7 ± 0.1m; 63.9 ± 11.8 

Kg) were recruited in the study. All participants were physically active and self-reported no known 

history of physical or mental impairments. The study was approved on 18/08/2018 with protocol 

number 1831 by The School of Education and Sport Ethics Sub-Committee of the University of 

Edinburgh and written informed consent was reviewed and signed by all participants. 

 

Data acquisition 

Each participant was measured during walking in water at three different levels of 

immersion, i.e. knee, pelvis and xiphoid process, with a temperature of 28°C. For each condition, 

participants walked barefoot back and forth along a 10 m straight pathway at self-selected speed for 

three minutes, after completing a three-minutes acclimatization trial. Although arm movement was 

not restricted, participants were not permitted to use their arms for propulsion. Two tri-axial 

synchronized IMUs (Cometa, Italy, sf=285 Hz) equipped with accelerometer and gyroscope were 

attached to the trunk (at the level of the fifth lumbar vertebra) and the right shank. 

Data analysis 

Stride time was estimated from shank angular velocities [20] and used to calculate variability 

metrics (i.e. SD and PSD1/PSD2) to quantify timing variability [44], while trunk acceleration 

measures were exploited to calculate non-linear variability and stability metrics (i.e. RQA and MSE) 

on vertical (V), medio-lateral (ML) and anterior– posterior (AP) directions to quantify pattern 

regularity and motor complexity [44,51]. 

 

Statistical analysis 

According to the literature [44], metrics were calculated on windows of decreasing length, 

from 150 to 10 strides, with 1 stride increment. Interquartile range, median value of variability and 

stability metrics were calculated for each number of strides over the analyzed subjects.  Then, 

percent interquartile range/median ratio (IMR) was calculated, starting from the 150 strides window, 

which gave the lowest ratio, and proceeding backwards [44]. Thresholds for the IMR were fixed at 

10%, 20%, 30%, 40% and 50%. The required number of strides was defined as the smallest one at 

which the ratio remained below the lowest possible threshold. The minimum number of strides was 

first calculated per index and per subject, then for each index the largest number of strides over 
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subjects was selected. Successively, the influence of different environments on non-linear metrics 

was tested with one-way ANOVA with minimum level of significance of 5%, considering 150 

strides per subject, since this was the maximum number of strides considered for the analysis. 

Median, 25th and 75th percentile values of non-linear metrics were hence calculated for each 

condition. 

 

 

 

Results 

All metrics required a number of strides higher than 105 across different level of immersion even 

for the 50% threshold. Comparable results with previous studies on dry land were obtained only for 

RQA (V Max, Div) that never reached steady values in the analysed range in any of the three 

conditions (Table 1). During walking in water, the same behaviour was observed also for ML and 

AP direction of RQA (ML and AP Max, Div) for all levels of immersion. On dry land, 10 strides 

were sufficient to reach a 10% threshold for MSE V (τ=1, …, 4) and RQA (AP rr, det, avg, ML rr 

and V rr, det, avg). Conversely, a number of strides higher than 145 was associated to all these latter 

metrics during walking in water, independently from the level of immersion. Detailed results are 

shown in Table 1.  
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Table 1. Number of required strides for each measure at each threshold as related to previous work on Dry Land (DL) 

and current analysis during walking in water at Knee (K), Pelvis (P) and Xiphoid Process (XP) level. 
 

Threshold 

10% 20% 30% 40% 50% 

  DL K P XP DL K P XP DL K P XP DL K P XP DL K P XP 

RQA V (rr) 10 144 147 146 10 138 145 145 10 137 142 141 10 131 131 137 10 124 127 134 

RQA V (Det) 10 149 146 143 10 148 144 133 10 142 139 125 10 138 136 122 10 135 132 120 

RQA V (Avg) 10 143 148 147 10 137 141 144 10 134 133 138 10 133 129 131 10 132 125 124 

RQA V (Max) 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 

RQA V (Div) 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 150 

RQA ML (rr) 10 149 146 145 10 148 140 140 10 143 133 131 10 135 128 127 10 120 124 126 

RQA ML (Det) 78 145 146 148 10 137 136 140 10 128 131 131 10 118 113 129 10 105 111 124 

RQA ML (Avg) 55 147 141 145 10 145 131 138 10 144 122 136 10 139 114 129 10 138 111 124 

RQA ML (Max) 136 150 150 150 129 150 150 150 73 150 150 150 29 150 150 150 29 150 150 150 

RQA ML (Div) 136 150 150 150 135 150 150 150 79 150 150 150 29 150 150 150 29 150 150 150 

RQA AP (rr) 10 146 148 149 10 143 146 142 10 141 145 140 10 137 143 138 10 129 140 137 

RQA AP (Det) 10 149 147 146 10 146 143 139 10 139 139 136 10 138 123 131 10 137 117 127 

RQA AP (Avg) 10 147 148 145 10 141 145 139 10 137 143 138 10 128 141 136 10 119 138 127 

RQA AP (Max) 121 150 150 150 75 150 150 150 74 150 150 150 37 150 150 150 36 150 150 150 

RQA AP (Div) 107 150 150 150 95 150 150 150 74 150 150 150 74 150 150 150 74 150 150 150 

SE V τ=1 10 145 146 147 10 139 143 145 10 139 139 134 10 139 135 134 10 139 105 134 

SE V τ=2 10 147 148 147 10 144 146 143 10 139 142 135 10 139 136 135 10 139 129 135 

SE V τ=4 10 149 147 148 10 140 141 142 10 136 139 135 10 134 136 135 10 131 133 135 

SE V τ=6 15 148 149 148 10 143 146 135 10 141 143 135 10 135 135 135 10 118 134 135 

SE V τ=8 - 147 148 149 - 144 143 144 - 138 141 138 - 129 136 135 - 125 134 135 

SE V τ=10 - 147 148 147 - 140 142 146 - 139 141 144 - 135 140 143 - 122 139 141 

SE V τ=12 - 146 146 145 - 136 141 139 - 132 138 135 - 125 136 135 - 121 135 135 

SE ML τ=1 10 146 146 146 10 143 144 145 10 141 141 140 10 139 135 133 10 115 121 123 

SE ML τ=2 30 148 148 146 10 144 146 142 10 140 144 135 10 136 140 131 10 131 137 128 

SE ML τ=4 31 147 149 144 10 144 148 136 10 132 147 130 10 122 146 128 10 113 145 111 

SE ML τ=6 32 148 146 147 10 147 142 145 10 122 136 140 10 121 134 134 10 120 133 121 

SE ML τ=8 - 147 146 146 - 141 144 144 - 139 141 142 - 132 136 131 - 129 132 128 

SE ML τ=10 - 144 145 144 - 133 144 142 - 128 140 141 - 126 126 131 - 124 119 129 

SE ML τ=12 - 147 148 148 - 141 140 145 - 135 137 137 - 125 136 133 - 120 131 132 

SE AP τ=1 19 147 148 148 10 136 145 139 10 128 142 136 10 123 138 131 10 122 131 131 

SE AP τ=2 19 147 148 147 10 145 145 140 10 144 142 139 10 139 138 138 10 129 131 138 

SE AP τ=4 15 148 149 146 10 143 148 142 10 140 135 136 10 136 131 133 10 127 129 133 

SE AP τ=6 17 146 148 146 10 136 146 136 10 128 135 135 10 123 133 135 10 118 131 134 

SE AP τ=8 - 148 148 148 - 141 144 140 - 135 140 135 - 129 133 134 - 122 130 134 

SE AP τ=10 - 148 146 146 - 137 141 139 - 131 119 133 - 129 114 132 - 126 113 131 

SE AP τ=12 - 148 143 143 - 146 137 136 - 146 129 133 - 145 120 132 - 144 116 130 

SD 125 148 145 147 59 143 142 143 20 138 141 129 15 136 140 124 10 131 139 119 

PSD1 127 143 148 149 52 142 145 147 16 142 143 145 15 141 132 142 10 140 131 139 

PSD2 120 146 146 149 106 143 142 147 74 138 141 146 25 132 141 139 19 121 140 129 

 

Considering 150 strides and comparing results among different levels of immersion, 

significant differences were observed between knee and pelvis for RQA V (rr, Det and Avg), and 
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between knee and xiphoid process for RQA V (rr, Det and Avg), ML (rr and Avg) and AP (rr and 

Avg), with increasing values from knee to xiphoid process level (Table 2). Figure 12 showed 

Median, 25th and 75th percentiles of RQA (V, ML and AP) in the three conditions. For SE (Figure 

13), a significant decreasing of values (Table 2) was observed between knee and xiphoid process in 

V direction (τ=4, 6, 8). In AP direction, differences were found both between knee and xiphoid 

process (τ=1, 2) and between pelvis and xiphoid process (τ=1), increasing from knee to xiphoid 

process (Table 2). All variability measures (Figure 14) significantly increased and tended to double 

from knee to xiphoid process, except for PSD2, that showed no difference between knee and pelvis. 

 

 

 

Figure 12. Median, 25th and 75th percentiles of RQA with asterisks indicating p_value < 5% for the three walking 

conditions (K, P and XP). 
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Figure 13. Median, 25th and 75th percentiles of SE with asterisks indicating p_value < 5% for the three walking 

conditions (K, P and XP). 
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Figure 14. Median, 25th and 75th percentiles of SD, PSD1 and PSD2 with asterisks indicating p_value < 5% for the 

three walking conditions (K, P and XP). 
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Table 2. Detailed values (median, 25th and 75th percentiles) of each parameter in all directions (V, ML and AP) as 

related to different level of immersion, i.e. Knee (K), Pelvis (P) and Xiphoid Process (XP). 

Level of 

immersion 
K P XP 

Parameter Median 25th 75th Median 25th 75th Median 25th 75th 

RQA V (rr) 13,30 11,11 14,73 19,55 17,20 22,22 22,90 19,56 24,11 

RQA V (Det) 90,67 87,40 93,94 94,43 91,94 96,40 93,35 90,98 96,32 

RQA V (Avg) 15,26 13,34 18,73 22,38 21,27 25,21 24,49 23,14 31,45 

RQA V (Max) 5196,50 2333,00 10545,00 9293,00 4918,00 11982,00 7673,00 4540,00 10295,00 

RQA V (Div) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

RQA ML (rr) 11,37 10,60 14,89 13,24 12,25 15,38 19,14 16,41 22,18 

RQA ML (Det) 91,94 89,81 92,86 92,53 90,13 94,77 92,85 89,90 95,35 

RQA ML (Avg) 15,93 13,94 19,02 18,28 16,70 19,43 25,90 19,76 34,65 

RQA ML (Max) 5914,50 1951,00 7617,00 6496,00 3528,00 8143,00 7122,50 4521,00 9266,00 

RQA ML (Div) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

RQA AP (rr) 21,49 18,46 24,12 24,42 22,28 26,30 25,45 23,20 28,16 

RQA AP (Det) 92,55 91,40 93,91 91,98 90,50 93,92 90,37 86,86 92,74 

RQA AP (Avg) 19,63 17,36 21,70 22,62 19,71 25,95 25,65 20,29 28,70 

RQA AP (Max) 2698,50 1461,00 5684,00 2435,00 1568,00 3079,00 2921,00 1928,00 3534,00 

RQA AP (Div) 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 

SE V τ=1 0,28 0,23 0,30 0,26 0,24 0,30 0,29 0,23 0,33 

SE V τ=2 0,42 0,35 0,44 0,38 0,35 0,40 0,40 0,35 0,44 

SE V τ=4 0,65 0,57 0,70 0,58 0,55 0,66 0,58 0,53 0,63 

SE V τ=6 0,84 0,75 0,89 0,75 0,69 0,85 0,75 0,67 0,79 

SE V τ=8 0,98 0,88 1,05 0,90 0,82 0,98 0,89 0,78 0,93 

SE V τ=10 1,11 0,98 1,22 1,02 0,93 1,12 1,03 0,88 1,07 

SE V τ=12 1,22 1,09 1,32 1,12 1,02 1,24 1,16 0,97 1,21 

SE ML τ=1 0,29 0,27 0,33 0,29 0,27 0,35 0,30 0,27 0,38 

SE ML τ=2 0,45 0,39 0,49 0,45 0,39 0,47 0,42 0,38 0,48 

SE ML τ=4 0,73 0,63 0,77 0,70 0,65 0,76 0,64 0,58 0,72 

SE ML τ=6 0,96 0,83 1,03 0,91 0,87 1,02 0,83 0,71 0,92 

SE ML τ=8 1,14 1,03 1,25 1,11 1,08 1,27 1,01 0,84 1,12 

SE ML τ=10 1,32 1,21 1,44 1,30 1,24 1,45 1,17 1,00 1,30 

SE ML τ=12 1,46 1,38 1,65 1,47 1,41 1,62 1,33 1,13 1,48 

SE AP τ=1 0,23 0,20 0,30 0,29 0,23 0,38 0,39 0,30 0,50 

SE AP τ=2 0,33 0,31 0,36 0,38 0,33 0,49 0,45 0,39 0,51 

SE AP τ=4 0,48 0,44 0,53 0,55 0,47 0,60 0,53 0,52 0,68 

SE AP τ=6 0,61 0,56 0,71 0,67 0,57 0,73 0,65 0,61 0,76 

SE AP τ=8 0,71 0,66 0,85 0,76 0,68 0,85 0,77 0,67 0,85 

SE AP τ=10 0,79 0,75 0,94 0,87 0,77 0,97 0,87 0,73 0,93 

SE AP τ=12 0,86 0,80 1,02 0,97 0,86 1,07 0,95 0,80 1,02 

SD [s] 0,05 0,04 0,06 0,08 0,06 0,10 0,11 0,08 0,16 

PSD1 0,04 0,03 0,06 0,06 0,05 0,10 0,09 0,06 0,13 

PSD2 0,06 0,05 0,07 0,08 0,07 0,09 0,11 0,10 0,19 
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Discussion 

The gait pattern of young healthy adults was analysed during walking in water at different 

level of immersion (knee, pelvis and xiphoid process) to investigate the minimum number of strides 

to assess the reliability of non-linear metrics calculation during walking. Moreover, given the 

maximum number of available strides equal to 150, a characterization of the influence of water on 

gait performance at different level of immersion was performed. 

Overall discrepancy was found between the minimum number of strides identified by 

previous authors for walking over-ground [44] and the results obtained from the present study. In 

fact, the great majority of the parameters need more than 120 strides to obtain a reliable measure of 

variability measures and non-linear metrics, independently from the level of immersion. Instead, 

measures reached steady values for lower numbers of strides considering over-ground walking: less 

than 63 strides were sufficient for MSE in the three directions and RQA in V and AP directions, 

while variability measures (SD, PSD1 and PSD2) need more than 127 strides to obtained a reliable 

application. For healthy people, walking on dry land represented an automatic and well controlled 

task, which has been learnt from the firs years of life [127] and can be performed with minimal use 

of attention-demanding executive control resources [128]. On the contrary, the physical 

characteristics of the water introduced different testing conditions, that altered the traditional gait 

pattern and motor control, thus requiring the identification of new gait strategies to perform the 

walking task in this environment. As a consequence, the great number of strides might be justified 

with the need of making many attempts to familiarize with the environment, learn and automatize 

movements. These observations were confirmed by the fact that both variability measures, 

associated to the specific gait pattern, and the non-linear metrics (RQA and SE), related to the 

underlying motor control, exhibited a great number of strides to obtain reliable measures [43], thus 

resulting to be influenced the environment constraints. Possible limitations for the comparison 

between dry land and water are related to the differences in the length of walking path. In fact, 

previous analyses on dry land considered gait on 250 m long dead-end road (about 180 strides) [44]. 

In this work, only central strides of the walking tasks were considered, even if constraints related to 

pool length of 10 m might influence the calculation of non-linear metrics, in terms of acceleration 

and deceleration. 

 

Considering a fix number of 150 strides, no significant differences were found between 

pelvis and xiphoid process level among the analysed metrics, suggesting that gait patterns and motor 

control were not influenced by the presence of the water in the trunk region. Conversely, most of 

the metrics significantly varied between knee and the other level of immersions, suggesting that the 
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disappearing of the pendulum pattern characterizing the over-ground walking resulted to be more 

effective from the pelvis to higher level. In particular, the differences observed in SD between knee 

and the other level of immersions indicated that stride time variability changes significantly when 

water reached the pelvis level. This behaviour was further confirmed by PSD1 and PSD2 values: 

increasing trend from knee to xiphoid process highlighted how both short- and long-term variability 

of stride times should be interpreted with caution when analysing data from different environments, 

confirming the observations defined by previous authors [43]. Also, another factor that influence 

gait variability is represented by possible differences in the length of the path across different 

walking conditions, as suggested for older subjects [129] and healthy adults walking in different 

environments and testing conditions [43]. Increasing in RQA (rr) in all direction from knee to 

xiphoid process suggested that gait is more regular with the increasing of the level of immersion, 

and also slower, as highlighted by increasing values of RQA (Avg). In the literature, the complexity 

of gait on the sagittal plane was quantified by SE and provided relevant parameter for characterizing 

the maturation of gait [130]. In the current study, no differences were found among different 

condition for SE in ML direction, suggesting that the stability of trunk acceleration in the sagittal 

plane during gait in water is not influenced by different level of immersions in young healthy adults. 

Moreover, for all directions, higher SE values for increasing τ were observed. This trend is in 

accordance to those reported in the literature [43,130,131]. 

 

In conclusion, this study assessed the minimum number of strides to obtain a reliable 

calculation of non-linear metrics during gait in water at different levels of immersion. Higher 

number of strides (above 140) were observed in all conditions compared to results obtained by other 

authors on dry land where variable number of strides in relation to the considered measures were 

found (from 10 strides for RQA V and AP to more than 120 strides for SD, PSD1 and PSD2). These 

results suggest carefulness when drawing conclusions about gait variability and stability obtained 

from short walking trials in the water. In this environment, a number of strides coherent with the 

indications illustrated in Table 2 should always be considered. Moreover, water environment 

affected gait performance in terms of variability of the gait pattern and motor control response. In 

general, these results cannot be generalized to other populations, assuming that the physical 

characteristics of the water affected gait performance of elderly and/or pathologic subjects in the 

same way. 
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Synthesis of the findings 

 

In this section, the influence of extrinsic factors (i.e. different walking surfaces: solid ground and 

sand; different environment such as water) was assessed during gait of healthy people to evaluate 

the performance of gait segmentation algorithms and to determine the minimum number of strides 

for a reliable application of non-linear metrics in the water environment. 

All algorithms for gait segmentation applied during walking on solid ground in a controlled 

laboratory condition were able to correctly identify gait events and temporal parameters. Different 

accuracy and repeatability were found depending on the implementation characteristics, i.e. sensor 

position, analysed variable, and computational approach. High similarity in the gait patterns 

between solid ground and (wet and dry) sand was found for all the analysed variables, explaining 

the efficiency of algorithms for gait segmentation in the marine environment. On the other hand, 

gait patterns resulted to be different for walking in the water, especially for signals provided from 

the sensor attached to the trunk. This finding explained the failure of specific gait segmentation 

algorithms when applied to walking in water, mostly due to the disappearing of the pendulum 

mechanics. Moreover, the water environment influenced the motor control response, resulting in a 

greater number of strides for the application of non-linear metrics in this ambient compared to the 

results obtained for solid ground. 

 

 

 

 

 

 

 

 

 

 

 

 



101 
 

  



102 
 

 

3. 

SECTION 2 

 

INFLUENCE OF INTRINSIC FACTORS 

ON THE PERFORMANCE OF GAIT 

ALGORITHMS: ANALYSIS OF 

PATHOLOGICAL SUBJECTS 

(PARKINSON’S DISEASE) 
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Overview 

 

In addition to the extrinsic factors, several elements peculiar of the single person and 

independent from the environment constraints can affect gait pattern. These intrinsic factors include 

gender, muscle strength or muscle power, balance, peripheral sensation (proprioception, vibration 

sense, tactile sensitivity), cognition, and diseases. Although the analysis of the effect of the single 

factor on the gait performance could be of primary importance in sports and clinical contexts, it was 

barely reported in the literature, especially for gait in ecological condition. 

In this section, the effect of pathology on algorithms for gait segmentation and FOG 

automatic detection was assessed in PDP during gait on solid grounds. The gait segmentation and 

FOG detection algorithms were identified from two separate systematic literature reviews and 

previously explained in the Background. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



104 
 

  



105 
 

 

3.1 

 

SEGMENTATION OF GAIT ON 

SOLID GROUND IN PEOPLE 

WITH PARKINSON’S DISEASE 

 

 

 

 

 

 

The content of this chapter has been published as abstract in Proceedings of SIAMOC conference 

2019 (Bologna) and will be submitted to Gati and Posture as full length article. 
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Introduction 

Patients suffering from Parkinson’s disease (PDPs) manifest gait impairments that affect 

motor behaviour and compromise the quality of life [132]. Objective measures of the gait temporal 

parameters (GTPs) allow to define the level of impairment and to characterize functional gait 

performance, which can serve as a biomarker of mobility [14]. The computation of GTP requires 

the identification of the gait events (GEs), i.e. foot contact (FC) and foot off (FO). These parameters 

are typically estimated using inertial measurement units (IMUs)  given their reliability, limited cost, 

possibility to exploit in ecological conditions, and limited invasiveness [9]. A number of different 

algorithms have been proposed for the identification of FC and FO in healthy people, showing 

excellent sensitivity as well as high accuracy and repeatability when applied to the gait of healthy 

subjects in controlled laboratory conditions [9,82]. 

On the other hand, PDPs exhibited gait characteristics that are markedly different from 

healthy ones [133], such as: i) flat foot strike and toe-to-heel walking [134], ii) reduced foot lifting 

during the swing phase of gait [135]; iii)  higher relative loads in the forefoot regions combined with 

a load shift towards medial foot areas[136]. These PD specific characteristics of the gait resulted in 

alterations of the traditional signal patterns provided from IMUs [14,97]. In particular, some authors 

reported differences in the angular velocity and acceleration of the shank [86,137,138], the foot 

[39,97,138,139] and the trunk [140] between PDPs and healthy people. Such modifications of the 

gait signals involved a general degradation of the algorithm performance, highlighting higher error 

in the identification of GE in PDP [97,137]. Therefore, the algorithm performance for healthy gait 

cannot be generalized to PD population. Furthermore, a recent study assessed the performances of 

available algorithms for gait segmentation during walking of healthy people, highlighting 

differences in the identification of GE in relation to the implementation criterions, i.e. sensor 

placement, analysed variable, and computational approach [9]. Considering the altered signals 

pattern in PDP and the influence of the implementation characteristics on the accuracy and 

repeatability of the algorithms, a comprehensive evaluation of the performance specific to the 

pathology is necessary.  

The present work aimed to fill in this gap analysing the performance of 17 algorithms for 

GE estimation in PDP patients and taking into account the differences in the signal patterns with 

respect to healthy subjects for which the algorithms were designed for. The results were intended as 

the bases for the selection criteria of the most appropriate algorithm for the specific pathology under 

evaluation. 
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Materials and Methods 

 

Analysed algorithms 

Seventeen algorithms representative of the state of art in the estimation of GE and GTP for healthy 

subjects [9], were here analysed for PDP. As reported by the author in the original paper [9], the 

algorithms were classified based on: 

i) IMU position (i.e. trunk, shanks, feet) 

ii) Target variable (i.e. acceleration, angular velocity) 

iii) Computational approach: ‘peak identification’ and ‘zero crossing’, on raw or filtered 

target variable (i.e. finite impulse response (FIR), infinite impulse response (IIR), 

wavelet transform (WT) filtering). 

 

Experimental analysis 

Participants: 

The study population consisted of 20 PDPs (12 females ,8 males; 67.2±9.1 years old; 

1.65±0.12 m; 67.3±13.1 Kg) at Hoehn and Yahr stage III, of which 10 with a diagnosis of freezing. 

All patients were in the medication ON state and were able to walk without aids (e.g. canes) and/or 

helped by operators or physiotherapists. The study was approved by the local scientific committee 

and institutional review board (Comitato Etico Interaziendale delle Provincie di Lecco, Como, 

Sondrio) and was in accordance with the Code of Ethics of the World Medical Association 

(Declaration of Helsinki, 1967). A complete explanation of the study protocol was provided to the 

patients and written informed consent was obtained before their participation in the study. This trial 

was registered on ClinicalTrials.gov NCT03015714.  

 

Data acquisition: 

Each participant performed a six-minutes walking test along a 15 m straight pathway at self-

selected speed wearing own comfortable footwear. Five tri-axial IMUs (OPAL, Apdm, sf=128 Hz) 

were attached to the trunk (at L5 level), shanks (about five centimetres above lateral malleolus), and 

feet (on the dorsal surface of each shoe). The walking tasks were also filmed using a GoPro (Hero4, 

USA, sf=240Hz). Three IMUs impacts were video-recorded and used for time-synchronization of 

IMUs and video recording.  
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Data Analysis: 

Elaboration 1: Validation with respect to video without freezing episodes, limited to 12 central steps 

of straight walking. 

To test the performance of the algorithms in GE and GTP estimation against the video reference, 

only the central steps of the straight walking path were considered. Therefore, any freezing episode 

as well as turning, resting periods, first and last steps of each walked path were excluded. Finally, 

12 central steps of 4 straight walking paths were considered, for a total of 48 FC and 48 FO analysed 

for each patient. FCGoPro and FOGoPro were visually identified from the videos and used as reference. 

FCIMU and FOIMU were then estimated form IMU measurements using the selected 17 algorithms 

[9], implemented in MATLAB (MathWorks 2017a, USA). 

For each algorithm, the Sensitivity in GE identification was calculated as:  

 

Number of GEs identified by algorithm       (11) 
 

Number of all GEs as identified by video 

 

For both acceleration and angular velocity components, depending on the variable analysed by each 

of the 17 selected algorithms, ICC of the mean stride cycle over the whole sequence of the trial for 

each participant (Single ICCE1) was calculated to analyse the repeatability of the curves. 

GTPs were calculated from GE only for the patients reporting a minimum Sensitivity of 81% [83] 

for all algorithms. Then, the measurement errors for GE and GTP were estimated for each algorithm 

as follows: 

EGE = GEIMU - GEGoPro     (12) 

EGTP = GTPIMU - GTPGoPro      (13) 

Since in the original work the performance of the algorithms in GE identification was analysed 

considering ground reaction forces as reference, the maximum measurement error of video versus 

ground reaction force was estimated to be equal to 0,05s (see Paragraph 2.2 of Section 1). 

For each parameter (FC, FO, Stride Time, Step Time, Stance Time, Swing Time), a linear mixed 

model [85] was applied to test the dependency of error values on each implementation criterion, 

with a significance level of 0.05 using R software (R-Core Team 2017, Austria, version 3.4.3). First, 

the statistical analysis was performed to investigate the influence of IMU position and target 
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variable, alone. Then, the influence of analysed variable and computational approach were 

investigated separately for each IMU position. 

Median value (Med) of the error was calculated to characterize accuracy, and the Dispersion around 

Med (Dmed, 75th percentile – 25th percentile values of the error) to characterize repeatability. 

Elaboration 2: Performance comparison analysis with freezing episodes, considering 6 minutes 

walking without turnings. 

The signals acquired during the whole six-minute walking test were here considered. Turnings and 

resting periods were segmented and excluded from the analysis [43,137,141]. 

Average gait speed was calculated separately for each subject as the ratio between straight walked 

distance and time. 

GEs identified from the angular velocity around the medio-lateral axis of the leg adopting the 

algorithm by Salarian et al. [137] was used as a Gold Standard as it was already validated for GE 

detection of PDP [137] and exhibit excellent performance in gait segmentation of healthy subjects 

[9]. Sensitivity of the algorithms was then calculated as: 

Number of GE identified by algorithm 
 

Number of all GE as identified by Salarian 

 

ICC of the mean stride cycle over the whole sequence of the trial for each participant was calculated 

(Single ICCE2) to analyse the repeatability of the curves. ICC of the mean stride cycle of the signals 

exploited for the implementation of the algorithms over the curve representative of the gait pattern 

of healthy people (Combined ICCE2) was calculated to analyse the similarity of PDP curve with 

respect to the healthy ones, assumed as reference for the algorithm implementation. 
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Results 

Although 10 of the 20 patients were diagnosed with freezing, only 5 presented the symptoms during 

the experiment.  

Elaboration 1 

For 2 of the 20 patients, the visual identification of FC and FO was compromised because one foot 

covered the other during the whole walking test, thus they were not considered in Elaboration 1. For 

each of the remaining 18 participants, 48 FCs and FOs were identified and analysed during the six 

minutes walking test, for a total of 864 FCs and FOs. 

All the algorithms passed the 81% Sensitivity criterion for all the subjects, with the exception of 

one patient. In this case, algorithms that failed in GE detection exploited: 

i) angular velocity of the shank, i.e. Catalfamo et al. 2010 [34] and Greene et al. 2010 [35], 

and the foot, i.e. Ferrari et al. 2010 [39], showing Single ICCE1 values of 0.94, 0.93 and 

0.89, respectively; 

ii) acceleration of the shank, i.e. Khamdelwal et al. 2014 [33], and the foot, i.e. Jasiewicz 

et al. 2006 [37], reporting Single ICCE1 of 0,46 and 0,65, respectively. 

Results from Elaboration 1 of Sensitivity and Single ICCE1 are summarised in Table 1. 
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Table 1. Sensitivity (expressed as a percentage) as related to the estimation of GEs 

below 81% were punctually reported; Single ICCE1 (highlighted in light grey) of the 

different target signals in relation to the implementation criterions defined on the 

normalized stride time. Algorithms showing ICC below 81% are pointed out in dark 

grey. 

Algotithm 

Subject 

1 2 3 4 5 6 8 9 10 11 12 13 15 16 17 18 19 20 

Sensitivity FC/FO 

ICC 

Bugané et al. 2012 
>81 

0.81 0.95 0.91 0.97 0.95 0.89 0.97 0.92 0.95 0.97 0.88 0.85 0.90 0.96 0.94 0.86 0.98 0.95 

Lee et al. 2009 
>81 

0.88 0.93 0.87 0.97 0.92 0.85 0.96 0.87 0.93 0.96 0.85 0.80 0.86 0.95 0.92 0.83 0.98 0.94 

McCamley et al. 2012 
>81 

0.93 0.98 0.96 0.97 0.98 0.97 0.99 0.95 0.97 0.98 0.95 0.61 0.97 0.98 0.96 0.95 0.98 0.95 

Gonzalez et al. 2010 
>81 

0.93 0.97 0.93 0.98 0.97 0.92 0.98 0.94 0.97 0.98 0.91 0.88 0.95 0.97 0.96 0.89 0.98 0.96 

Shin et al. 2011 
>81 

0.86 0.93 0.93 0.96 0.95 0.92 0.98 0.87 0.96 0.97 0.91 0.64 0.86 0.96 0.94 0.87 0.97 0.94 

Zijlstra et al. 2003 

 

>81 

0.94 0.99 0.92 0.99 0.99 0.97 0.99 0.94 0.98 0.98 0.97 0.71 0.97 0.99 0.97 0.97 0.99 0.99 

Lee et al. 2010 
>81 

0.98 0.99 0.97 0.99 0.98 0.96 0.99 0.98 0.97 0.99 0.97 0.88 0.98 0.98 0.99 0.97 0.99 0.98 

Trojanello et al. 2014 
>81 89/73 >81 

0.84 0.82 0.79 0.87 0.94 0.82 0.96 0.81 0.73 0.88 0.91 0.46 0.71 0.93 0.9 0.6 0.91 0.92 

Khandelwal et al. 2014 
>81 

0.95 0.99 0.95 0.99 0.98 0.87 0.98 0.97 0.96 0.98 0.94 0.86 0.96 0.97 0.96 0.95 0.98 0.96 

Catalfamo et al. 2010 
>81 100/75 >81 

0.99 0,99 0.98 0.99 0.91 0.99 0.99 0.99 0.98 1 0.99 0.94 0.99 0.99 0.99 0.98 0.99 0.99 

Greene et al. 2010 
>81 60/58 >81 

0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.93 0.99 0.99 0.99 0.98 0.99 0.99 

Salarian et al. 2004 
>81 

0.99 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.93 0.99 0.99 0.99 0.98 0.99 0.99 

Aminian et al. 2002 
>81 

0.98 0.99 0.98 0.99 0.99 0.99 0.99 0.99 0.98 0.99 0.99 0.93 0.99 0.99 0.99 0.98 0.99 0.99 

Jasiewicz et al. 2006 
>81 75/81 >81 

0.93 0.90 0.89 0.95 0.93 0.84 0.96 0.90 0.83 0.85 0.92 0.65 0.89 0.93 0.93 0.78 0.94 0.92 

Sabatini et al. 2005 
>81 

0.98 0.99 0.97 0.99 0.98 0.98 0.99 0.99 0.97 0.99 0.97 0.92 0.98 0.99 0.99 0.96 0.99 0.99 

 

Ferrari et al. 2016 

>81 83/79 >81 

0.98 0.99 0.97 0.99 0.98 0.98 0.99 0.98 0.97 0.99 0.97 0.89 0.98 0.99 0.99 0.96 0.99 0.99 

Mariani et al. 2013 
>81 

0.98 0.99 0.97 0.99 0.98 0.98 0.99 0.99 0.97 0.99 0.97 0.92 0.98 0.99 0.99 0.96 0.99 0.99 
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The characterization of the errors in GE detection was conducted for all the patients that 

passed the 81% Sensitivity criterion. It is reported in more detail here below, considering the 

different implementation characteristics. 

 

IMU Position 

Considering GE, significant differences were found among different IMU position. In 

particular, FC identification resulted more accurate for Foot- and Shank- based algorithms than 

Trunk-based ones (Med 0.05 s for both Shank and Foot, 0.10 s for Trunk) and more repeatable for 

Shank-based algorithms, followed by Foot- and Trunk-based ones (DMed 0.05s for Shank, 0.10s 

for Foot and Trunk). As for FO, Foot-based algorithms showed the best accuracy, with Med 0.05s, 

while Shank-based highlighted the best repeatability, with DMed 0,05s. For GTP, similar 

performance was found for Stride and Step time estimates among the three IMU position, while 

Foot-based algorithms showed the best accuracy and repeatability for Stance and Swing time (Med 

of -0.05s and 0.05s for Stance and Swing, respectively, and DMed of 0.10s for both parameters).  

 

Target variable 

Angular velocity-based algorithms resulted equally repeatable but more accurate for FC 

(Med/Dmed: 0.05/0.10 s and 0.10/0.10 s, for Angular velocity and Acceleration, respectively), and 

less accurate and more repeatable in FO estimation (Med/Dmed: -0,05/0.05 s and 0.00/0.15 s, for 

Angular velocity and Acceleration, respectively) than Acceleration-based ones. For GTP, 

comparable results were found in Stride time, Step time and Stance Time estimation, while 

Acceleration-based algorithms resulted less repeatable and equally accurate in Swing time 

estimation (Med/Dmed: 0.10/0.15 s and 0.10/0.10 s, for Acceleration and Angular velocity, 

respectively).  

Error characteristics for FC (a), FO (b),  Stride- (c), Step- (d), Stance- (e) and Swing time (f) 

as related to IMU position and target variable are schematically depicted in Figure 1, while 

numerical values of the errors are reported in Table 2. 
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Table 2: Results of statistical analysis for IMU position and target variable: 25th quartile, 

median and 75th quartile of estimation error for FC, FO, stride time, step time, stance time 

and swing time (* p<0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Estimation of errors: IMU position (s) Level of significance 

Trunk Shanks Feet Shanks – Feet 

FC 0.05; 0.10; 0.15 0.05; 0.05; 0.10 0.00; 0.05; 0.10 Trunk - Shanks * 

Trunk - Feet * 

Shanks - Feet * 

FO -0.15; -0.10; -0.05 -0.05; -0.05; 0.00 -0.05; 0.00; 0.05 Trunk - Shanks * 

Trunk - Feet * 

Shanks - Feet * 

Stride Time -0.05; 0.00; 0.05 0.00; 0.00; 0.00 0.00; 0.00; 0.00 Trunk - Shanks 

Trunk - Feet 

Shanks - Feet 

Step Time -0.05; 0.00; 0.05 -0.05; 0.00; 0.05 -0.05; 0.00; 0.05 Trunk - Shanks * 

Trunk - Feet * 

Shanks - Feet 

Stance Time -0.25; -0.20; -0.15 -0.15; -0.10; -0.05 -0.10; -0.05; 0.00 Trunk - Shanks * 

Trunk - Feet * 

Shanks - Feet * 

Swing Time 0.15; 0.20; 0.25 0.05; 0.10; 0.15 0.00; 0.05; 0.10 Trunk - Shanks * 

Trunk - Feet * 

Shanks - Feet * 

Parameter Estimation of errors: target variable (s) Level of significance 

Acceleration Angular velocity Angular Velocity – Acceleration 

FC 0.00; 0.05; 0.10 0.05; 0.10; 0.15 * 

FO  -0.05; -0.05; 0.00 -0.10; 0.00; 0.05 * 

Stride Time 0.00; 0.00; 0.00 -0.05; 0.00; 0.05  

Step Time -0.05; 0.00; 0.05  -0.05; 0.00; 0.05  * 

Stance Time -0.15; -0.10; -0.05   -0.15; -0.10; -0.05   * 

Swing Time 0.05; 0.10; 0.15 0.05; 0.10; 0.20 * 
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Figure 15: Box plot (minimum, 25th percentile, median, 75th percentile, 

maximum values) for FC (a), FO (b), Stride- (c), Step- (d), Stance- (e), and 

Swing time (f) estimation errors as related to IMU position and target variable. 

Angular velocity-based algorithms are framed in dashes. 
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Computational approach 

GEs. 

Considering the trunk-based algorithms, ‘peak identification’ with WT and ‘zero crossing’ with IIR 

filtering resulted to be the most accurate and repeatable for FC identification, with Med/Dmed equal 

to 0.05s0.05s. Similar accuracy and repeatability were observed for FO detection among different 

computational approaches (Med/Dmed -0.10/-0.10s both for ‘peak identification’ with WT filtering 

and ‘zero crossing’ with FIR filtering). Shank-based algorithms exploited only ‘peak identification’ 

approach: Raw signal reported the highest accuracy and repeatability in FC detection (Med/Dmed 

of 0,05/0,05s) as well as the best repeatability in FO detection (Dmed 0.05s), while WT filtering 

showed the best accuracy (Med 0.00s). For Foot-based algorithms, independently from the 

computational approach and filtering, similar results were obtained for GE estimation in terms of 

repeatability (Dmed equal to 0.05s in all cases), while ‘zero crossing’ with IIR and ‘peak detection’ 

of Raw signal resulted the most accurate for FC and FO estimation, respectively, with Med of 0.00s.  

GTPs. 

In general, the estimation of Stride and Step time showed similar accuracy and repeatability 

independently from the implementation characteristics, while significant differences are observed 

among different computational approaches for Stance and Swing time. Error values and statistical 

analysis for computational approach are reported in Table 3. 

 

Table 3: Results of statistical analysis for computational approach: 25th quartile, median and 75th quartile of estimation 

error for FC, FO, stride time, step time, stance time and swing time (* p<0.05). 

IMU 

position 

Parameter Level of 

significance 

‘peak 

identification’ 

vs ‘zero 

crossing’ 

Estimation of errors: Filtering (s) 

Level of significance 

Filtering within ‘peak 

identification’ 

Level of 

significance 

for filtering 

within ‘peak 

identification’ 

Filtering within ‘zero crossing’ Level of 

significance 

for filtering 

within ‘zero 

crossing’ 

Trunk FC * FIR: 0.05; 0.10; 0.10 

IIR: 0.05; 0.10; 0.15 

WT: 0.05; 0.05; 0.10 

FIR – IIR * 

FIR – WT 

IIR – WT * 

Raw: -0.20; 0.15; 0.20 

FIR: 0.10; 0.10; 0.15 

IIR: 0.00; 0.05; 0.05 

FIR – IIR * 

FIR – Raw * 

IIR – Raw 

FO * WT: -0.15; -0.10; -0.05 - FIR: -0.15; -0.10; -0.05 - 

Stride - FIR: -0.05; 0.00; 0.05 

IIR: -0.05; 0.00; 0.05 

WT: -0.05; 0.00; 0.05 

FIR – IIR 

FIR – WT 

IIR – WT 

FIR: -0.05; 0.00; 0.05 

IIR: 0.00; 0.00; 0.05 

Raw: 0.00; 0.00; 0.00 

FIR – Raw 

FIR – IIR 

IIR – Raw 

Step - FIR: -0.05; 0.00; 0.05 

IIR:  -0.05; 0.00; 0.05 

WT: -0.05; 0.00; 0.05 

FIR – IIR 

FIR – WT 

IIR – WT  

FIR: -0.05; 0.00; 0.05 

IIR: -0.05; 0.00; 0.05 

Raw: -0.05; 0.00; 0.05 

FIR – Raw 

FIR – IIR 

IIR – Raw 

Stance * WT: -0.20; -0.15; -0.10 - FIR: -0.25; -0.20; -0.15 - 

Swing * WT: 0.10; 0.15; 0.20 - FIR: 0.15; 0.20; 0.25 - 

Shank FC - Raw: 0.00; 0.05; 0.05 

IIR: 0.05; 0.10; 0.15 

WT: 0.05; 0.10; 0.20 

IIR – Raw * 

IIR – WT * 

Raw – WT * 

- 
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Elaboration 2 

For each subject, a mean (±standard deviation, SD) of 195 (± 71) strides was obtained. 

Gait speed normalised according to Hof [100] ranged from 0.03±0.01 to 0.49±0.05.  

In 3 subjects, some of the algorithms for GE identification showed values below 81% Sensitivity. 

In particular, algorithms that failed in GE detection exploited: 

i) angular velocity of the shank, i.e. Catalfamo et al. 2010 [34], and the foot, i.e. Ferrari et 

al. 2010 [39] and Mariani et al. 2013 [40]. Single ICCE2 values were between 0.83 and 

0.94 for the shank, and between 0.68 and 0.88 for the foot, while Combined ICCE2 values 

were between 0.50 and 0.69 for the shank, and between 0.17 and 0.51 for the foot. 

ii) acceleration of the shank, i.e. Khandelwal et al. 2014 [33], and the foot, i.e. Jasiewicz et 

al. 2006 [37], reporting Single ICCE2 from 0.64 and 0.67 for shank and of 0.56 for foot. 

Combined ICCE2 values were between 0.12 and 0.35 for the shank, and 0.37 for the foot. 

Results of average Gait speed, Sensitivity, Single and Combined ICCE2 for the single subject are 

summarised in Table 4. 

FO Raw: -0.05; -0.05; 0.00 

IIR: -0.10; -0.05; 0.00 

WT: -0.05; 0.00; 0.05 

IIR – Raw * 

IIR – WT * 

Raw – WT * 

Stride IIR: 0.00; 0.00; 0.00 

Raw: 0.00; 0.00; 0.00 

WT: 0.00; 0.00; 0.00 

IIR – Raw 

IIR – WT 

Raw – WT  

Step Raw: 0.00; 0.00; 0.00 

IIR: -0.05; 0.00; 0.05 

WT: -0.05; 0.00; 0.05 

IIR – Raw 

IIR – WT 

Raw – WT * 

Stance Raw: -0.10; -0.05; 0.00 

IIR: -0.20; -0.15; -0.10 

WT: -0.15; -0.15; -0.10 

IIR – Raw * 

IIR – WT 

Raw – WT * 

Swing IIR: 0.10; 0.15; 0.20 

Raw:  0.00; 0.05; 0.10 

WT: 0.10; 0.15; 0.15 

IIR – Raw * 

IIR – WT 

Raw – WT * 

Foot FC * Raw: 0.05; 0.05; 0.10 

IIR: 0.05; 0.05; 0.10 

IIR – Raw * IIR: 0.00; 0.00; 0.05 - 

FO * Raw: -0.05; 0.00; 0.00  

IIR: -0.05; -0.05; 0.00 

IIR – Raw * IIR: 0.00; 0.05; 0.05 

Stride - IIR: 0.00; 0.00; 0.00  

Raw: -0.05; 0.00; 0.05 

IIR – Raw IIR: 0.00; 0.00; 0.00 

Step - Raw: -0.05; 0.00; 0.05 

IIR: 0.00; 0.00; 0.05 

IIR – Raw IIR: -0.05; 0.00; 0.05 

Stance * Raw: -0.15; -0.10; -0.05 

IIR: -0.10; -0.10; -0.05 

IIR – Raw IIR: 0.00; 0.05; 0.05 

Swing * IIR: 0.05; 0.10; 0.10 

Raw: 0.05; 0.10; 0.15 

IIR – Raw IIR: -0.05; 0.00; 0.00 



118 
 

Table 4. Sensitivity (expressed as a percentage) as related to the estimation of GEs; Single and Combined ICCE2 (S- 

and C-ICC, highlighted in light grey) of the different target signals in relation to the implementation criterions defined 

on the normalized stride time. Algorithms showing ICC below 81% are pointed out in dark grey. 

 Subject 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Gait speed/ 

Algorithm 

Mean 0.22 0.49 0.31 0.47 0.45 0.29 0.07 0.40 0.41 0.41 0.45 0.21 0.11 0.03 0.44 0.43 0.27 0.36 0.46 0.37 

Std 0.01 0.05 0.06 0.05 0.03 0.01 0.02 0.03 0.03 0.02 0.04 0.02 0.08 0.01 0.04 0.03 0.02 0.03 0.04 0.04 

Bugane et 

al. 2012 

FC/FO >81 

S-ICC 0,83 0,97 0,87 0,97 0,93 0,87 0,77 0,97 0,94 0,97 0,93 0,88 0,72 0,79 0,96 0,97 0,92 0,93 0,98 0,94 

C-ICC 0,56 0,65 0,71 0,65 0,66 0,66 0,39 0,79 0,68 0,86 0,71 0,48 0,58 0,5 0,83 0,65 0,79 0,8 0,88 0,87 

Lee et al. 

2009 

FC/FO >81 

S-ICC 0,77 0,95 0,83 0,95 0,9 0,83 0,76 0,96 0,92 0,96 0,91 0,86 0,67 0,73 0,94 0,95 0,89 0,92 0,97 0,93 

C-ICC 0,53 0,59 0,68 0,59 0,6 0,64 0,39 0,77 0,66 0,82 0,68 0,48 0,57 0,5 0,79 0,6 0,77 0,79 0,86 0,85 

McCamley 

et al. 2012 

FC/FO >81 

S-ICC 0,80 0,99 0,97 0,99 0,98 0,97 0,82 0,99 0,97 0,99 0,97 0,92 0,32 0,74 0,99 0,99 0,94 0,98 0,99 0,98 

C-ICC 0,17 0,93 0,95 0,87 0,61 0,65 0,08 0,69 0,77 0,85 0,85 0,23 0,09 0,09 0,93 0,93 0,65 0,85 0,88 0,89 

Gonzalez et 

al. 2010 

FC/FO >81 

S-ICC 0,89 0,98 0,9 0,98 0,96 0,90 0,80 0,98 0,95 0,98 0,95 0,91 0,77 0,81 0,97 0,98 0,94 0,95 0,98 0,96 

C-ICC 0,63 0,73 0,85 0,68 0,87 0,66 0,34 0,85 0,83 0,89 0,86 0,51 0,58 0,44 0,91 0,73 0,71 0,74 0,89 0,80 

Shin et al. 

2011 

FC/FO >81 

S-ICC 0,86 0,95 0,92 0,95 0,93 0,91 0,66 0,97 0,93 0,97 0,93 0,89 0,47 0,51 0,93 0,95 0,89 0,95 0,97 0,93 

C-ICC 0,19 0,48 0,77 0,52 0,58 0,58 0,13 0,72 0,49 0,72 0,74 0,41 0,02 0,13 0,73 0,48 0,75 0,6 0,75 0,81 

Zijlstra et 

al. 2003 

FC/FO >81 

S-ICC 0,92 0,99 0,89 0,99 0,97 0,96 0,92 0,99 0,94 0,98 0,97 0,96 0,65 0,85 0,98 0,99 0,97 0,98 0,99 0,98 

C-ICC 0,59 0,83 0,69 0,92 0,78 0,86 0,4 0,91 0,55 0,9 0,84 0,5 0,32 0,57 0,81 0,83 0,84 0,79 0,97 0,93 

Lee et al. 

2010 

FC/FO >81 

S-ICC 0,97 0,99 0,97 0,99 0,98 0,97 0,82 0,97 0,99 0,98 0,98 0,97 0,75 0,82 0,99 0,99 0,96 0,98 0,99 0,98 

C-ICC 0,88 0,91 0,86 0,93 0,88 0,86 0,39 0,91 0,92 0,85 0,91 0,83 0,58 0,61 0,94 0,91 0,83 0,94 0,96 0,89 

Trojanello 

et al. 2014 

FC/FO >81 89/58 >81 90/67 >81 

S-ICC 0,94 0,97 0,86 0,96 0,95 0,91 0,75 0,97 0,97 0,95 0,94 0,95 0,68 0,69 0,96 0,97 0,93 0,96 0,97 0,94 

C-ICC 0,75 0,65 0,67 0,7 0,77 0,7 0,53 0,59 0,78 0,74 0,74 0,82 0,65 0,56 0,68 0,65 0,79 0,72 0,89 0,86 

Khandelwal 

et al. 2014 

FC/FO >81 71/100 >81 92/49 >81 

S-ICC 0,94 0,98 0,95 0,98 0,96 0,91 0,67 0,98 0,98 0,98 0,95 0,95 0,64 0,63 0,98 0,98 0,91 0,97 0,98 0,94 

C-ICC 0,64 0,72 0,61 0,68 0,69 0,35 0,12 0,6 0,75 0,59 0,58 0,44 0,35 0,24 0,69 0,72 0,41 0,66 0,62 0,45 

Catalfamo 

et al. 2010 

FC/FO >81 92/80 >81 100/69 96/77 >81 

S-ICC 0,99 0,99 0,98 0,99 0,99 0,99 0,94 0,99 0,99 0,99 0,99 0,99 0,83 0,87 0,99 0,99 0,98 0,99 0,99 0,99 

C-ICC 0,82 0,98 0,94 0,97 0,97 0,97 0,57 0,94 0,97 0,97 0,97 0,87 0,50 0,69 0,95 0,98 0,96 0,98 0,98 0,98 

Greene et al. 

2010 

FC/FO >81 

S-ICC 0,99 0,99 0,98 0,99 0,99 0,99 0,94 0,99 0,99 0,99 0,99 0,99 0,83 0,87 0,99 0,99 0,98 0,99 0,99 0,99 

C-ICC 0,82 0,97 0,94 0,97 0,97 0,97 0,57 0,94 0,97 0,97 0,97 0,87 0,5 0,69 0,95 0,97 0,96 0,98 0,98 0,98 

Salarian et 

al. 2004 

FC/FO Gold Standard 

S-ICC 0,99 0,99 0,98 0,99 0,99 0,99 0,94 0,99 0,99 0,99 0,99 0,99 0,83 0,87 0,99 0,99 0,98 0,99 0,99 0,99 

C-ICC 0,82 0,97 0,94 0,97 0,97 0,97 0,57 0,94 0,97 0,97 0,97 0,87 0,50 0,69 0,95 0,97 0,96 0,98 0,98 0,98 

Aminian et 

al. 2002 

FC/FO >81 

S-ICC 0,99 0,99 0,98 0,99 0,99 0,99 0,94 0,99 0,99 0,99 0,99 0,99 0,83 0,87 0,99 0,99 0,99 0,99 0,99 0,99 

C-ICC 0,82 0,97 0,94 0,97 0,97 0,97 0,57 0,94 0,97 0,97 0,97 0,87 0,5 0,69 0,95 0,97 0,96 0,98 0,98 0,98 

Jasiewicz et 

al. 2006 

FC/FO >81 69/73 >81 

S-ICC 0,92 0,93 0,89 0,96 0,87 0,86 0,78 0,97 0,93 0,96 0,93 0,91 0,56 0,75 0,93 0,93 0,86 0,95 0,95 0,89 

C-ICC 0,83 0,67 0,81 0,73 0,77 0,77 0,46 0,71 0,85 0,76 0,81 0,72 0,37 0,53 0,78 0,66 0,79 0,83 0,87 0,83 

Sabatini et 

al. 2005 

FC/FO >81 

S-ICC 0,97 0,99 0,97 0,99 0,98 0,97 0,88 0,99 0,99 0,99 0,99 0,97 0,69 0,79 0,99 0,99 0,98 0,99 0,99 0,98 

C-ICC 0,8 0,92 0,92 0,93 0,96 0,91 0,34 0,87 0,97 0,93 0,94 0,7 0,17 0,52 0,92 0,92 0,93 0,95 0,96 0,97 

Ferrari et 

al. 2016 

FC/FO >81 21/21 >81 67/65 62/61 >81 

S-ICC 0,97 0,98 0,96 0,99 0,98 0,97 0,88 0,99 0,99 0,99 0,98 0,97 0,69 0,78 0,99 0,98 0,97 0,99 0,99 0,98 

C-ICC 0,81 0,92 0,9 0,93 0,96 0,9 0,32 0,88 0,97 0,93 0,94 0,7 0,18 0,51 0,9 0,92 0,92 0,95 0,95 0,96 

Mariani et 

al. 2013 

FC >81 64/100 >81 81/99 79/100 >81 

S-ICC 0,97 0,98 0,97 0,99 0,98 0,97 0,88 0,99 0,99 0,99 0,99 0,97 0,68 0,79 0,99 0,98 0,98 0,99 0,99 0,98 

C-ICC 0,8 0,92 0,91 0,93 0,96 0,9 0,33 0,87 0,97 0,93 0,94 0,7 0,17 0,52 0,92 0,92 0,92 0,95 0,96 0,97 
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Discussion 

The present study analysed the performance of 17 algorithms originally designed for GE detection 

in healthy people when applied to the inertial data collected from six-minutes walking test in PDP. 

More specifically, the influence of the implementation characteristics (IMU position, target variable 

and computational approach) on the accuracy was investigated. Furthermore, a performance 

comparison between the algorithms was exploited taking into account the specific altered signal 

pattern of the pathologic population under analysis. 

 

In order to characterize the performance of the algorithms in term of accuracy and repeatability in 

GE and GTP detection and considering the video-camera as reference, only central strides of straight 

paths were considered. In these conditions, all the algorithms showed over-threshold Sensitivity, 

with the exception of one subject, that was not considered in the error characterization. According 

to the results obtained from previous analysis on healthy subjects [9], performance of algorithms in 

GE detection, Stance and Swing time estimation significantly depends on the implementation 

characteristics, i.e. sensor position, analysed variable and computational approach. In particular, 

Shank- and Foot-based algorithms resulted to be preferable than Trunk-based one. This behaviour 

was already observed in healthy people [9], and then confirmed in pathological populations [97]. In 

fact, as a general rule, the closer the sensor is to the point of impact the higher are the chances of 

correctly detecting the GE [142]. In relation to the analysed variable, angular velocity-based 

algorithms performed slightly better than Acceleration-based one. This trend might be associated to 

the general lower repeatability in the gait pattern of algorithms exploiting accelerations compared 

to angular velocities, showing minimum Single ICCE1 of 0.46 and 0.89, respectively. Considering 

the computational approach, an indicatory conclusion can be hardly proposed, because different 

results were obtained in relation to the different sensor location. On the other hand, any bias 

introduced in FC detection was compensated in Stride and Step time estimation, resulting unaffected 

by different implementation criterions. Then, to identify algorithms suitable for possible 

applications in ecological settings, e.g. routinely clinic evaluation or daily walking at home, an 

uninterrupted walking trial of six minutes was considered. 

 

The vast majority of the algorithms showed over-threshold Sensitivity in GE identification, with the 

exception of three subjects, reporting a Sensitivity lower than 81% for both Acceleration and 

Angular Velocity of Shank- and Foot-based algorithms (i.e. Trojanello et al. [97], Khamdelwal et 

al. [33], Catalfamo et al. [34], Jasiewicz et al. [37], Ferrari et al. [39], Mariani et al. [40]). In these 

cases, the features associated to the single target variable resulted to be pretty reproducible (Single 
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ICCE2 ranging from 0.56 to 0.94), although substantially differing from the reference gait pattern of 

healthy subjects (Combined ICC E1 ranging from 0.17 to 0.69). 

Relying on previous findings, to characterize the suitability of algorithms for GE detection in PDP, 

a decisional flow-chart based on Sensitivity, Single and Combined ICC values can be defined 

(Figure 2). In particular, Single and Combined ICC were evaluated for each patient to test the 

repeatability of the gait pattern over the walking trial as excellent (0.8 < ICC < 1), good (0.6 < ICC 

< 0.8), fair (0.4 < ICC < 0.6), poor (0.2 < ICC < 0.4), and bad (ICC < 0.2). This classification was 

firstly proposed by Landis and Koch [116], and later adopted by other authors in the evaluation of 

the repeatability of trunk acceleration during gait [117]. 

 

 

 

Figure 2. Decisional flow-chart based on Sensitivity and ICC values for the assessment of suitable 

algorithms in GE detection of PDP. 

 

 

 

 

Single ICC values of the target variable for algorithms that showed Sensitivity below the threshold 

was evaluated: values lower than 0.6 denoted fair reproducibility of the gait pattern during the six 

minutes walking test, suggesting the absence of repetitive features in the specific target variable. In 

this case, the algorithm resulted to be unsuitable for gait segmentation in PDP. In case Single ICC 

resulted greater than 0.6, but Combined ICC did not, the target variable was sufficiently repeatable 
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within the same walking trial, although differing from the gait pattern of healthy people, assumed 

as reference for the implementation of the segmentation algorithms. In this case, possible alternative 

features in the gait pattern should be defined, in order to design subject-specific algorithms. On the 

other hand, Single and Combined ICC above threshold suggested that the gait pattern of the target 

variable was sufficiently repeatable both within the same subject and compared to the reference gait 

pattern of healthy people. In this case, possible adaptation of existing algorithms should be 

considered. For example, considering the algorithm proposed by Catalfamo et al. [34], Subject 14 

reported a Single ICCE1 of 0.87 and a Combined ICC of 0.69 (Figure 3). In this case, features 

characterizing the specific target variable, i.e. angular velocity of the shank in the medio-lateral 

direction, are repeatable both within different strides of the walking trial and also similar to the 

healthy reference pattern, suggesting a possible adaptation of specific thresholds for a reliable GE 

detection. 

 

 

 

Figure 3. Plots with i) Median, 25th and 75th percentile as related to Subject 14 (thin solid lines) 

and ii) Median as related to reference pattern of healthy subjects (thick dashed line) of Angular 

velocity from Shank on the medio-lateral direction defined on the normalized stride time. 

 

 

 

The algorithm proposed by Salarian et al. [137] and adopted as gold standard for the identification 

of GE represents a possible limitation of the study. However, in order to establish an operator-
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independent criterion for the assessment of algorithm suitability when walking in ecological 

condition, the video-reference should be replaced by a sensor-based approach. In this context, the 

algorithm implemented by Salarian et al. [137] represent a possible solution because it exhibited 

excellent performances in gait segmentation of heathy subjects [9] and was already validated in PDP 

[20]. Moreover, it was recently adopted as reference by other authors to validate a GE detection 

algorithm in children with cerebral palsy [143]. 

 

In this work, all patients were tested in the medication ON state, thus the outcomes of the study 

should not be extended to PDP during OFF state of medication, neither to different pathological 

populations. 

 

In conclusion, considering the error assessment, all analysed factors resulted to affect GE and GTP 

estimation, as previously observed in healthy people. Given inertial measures of six minutes 

walking, Sensitivity and ICC analyses represent possible solutions for the selection of the most 

suitable algorithm for gait segmentation in PDP. Moreover, the assessment of these parameters will 

allow future studies to adapt existing algorithms, if possible, and/or support the design of novel and 

more efficient detection algorithms in PDP. 
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3.2 

 

DETECTION OF FREEZING EVENTS 

DURING GAIT ON SOLID GROUND IN 

PEOPLE WITH PARKINSON’S 

DISEASE 
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Introduction 

FOG is a disabling symptom for PDP [144]. It is defined as a unique and disabling clinical 

phenomenon characterised by brief episodes of inability to step or by extremely short steps that 

typically occur on initiating gait or on turning while walking [145]. The correct identification of 

FOG episodes is of primary importance for understanding the causes of the motor impairments and 

personalizing the treatment [146]. Usually, FOG is observationally assessed by expert operators 

during medical examinations in a clinical context. This type of assessment is characterizes by low 

reproducibility and operator-dependent evaluation [147], but also by how little the behaviour of the 

patient during clinical observation represents FOG manifestation in real life conditions. To 

overcome the limited reliability of subjective observation, several quantitative instrumental methods 

for FOG assessment were proposed, using EMG, stereophotogrammetry, force platforms, 

goniometers and footswitches [67,148,149]. More recently, with the purpose of going towards 

quantitative ecological evaluation, automatic detection of FOG from wearable inertial sensors has 

been proposed, allowing the monitoring of FOG episodes during daily life of PDPs: several 

published works proposed and tested [72–74] the performance of specific algorithms, exploiting 

different sensor placement, processing signals in different domains with different approaches, but 

no work addressed the direct comparison of the performance on these algorithms.  

This study was designed to fill in this gap, aiming to comparatively analyse the performance 

of algorithms proposed for the automatic identification of FOG in gait, addressing the influence of 

the different implementation characteristics, to provide information to support the selection of the 

most suitable algorithm for specific applications. 

 

Material and methods 

 

Participants 

Ten PDPs with a diagnosis of freezing (5 females, 5 males; 68±6 years old; 1.69±0.1 m; 

69.4±15.1 Kg; Hoehn-Yahr stage III) were enlisted in this study. The study was approved by the 

local scientific committee and institutional review board (Comitato Etico Interaziendale delle 

Provincie di Lecco, Como, Sondrio) and was in accordance with the Code of Ethics of the World 

Medical Association (Declaration of Helsinki, 1967). A complete explanation of the study protocol 

was provided to the patients and written informed consent was obtained before their participation 

in the study. This trial was registered on ClinicalTrials.gov NCT03015714.  
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Data acquisition: 

Each participant performed a six-minute walking test along a 15 m straight pathway at self-

selected speed wearing own comfortable footwear. Five tri-axial IMUs (OPAL, Apdm, sf=128 Hz; 

technical specifications were reported in Chapter 3.1) were attached to the trunk (at L5 level), shanks 

(about five centimetres above lateral malleolus), and feet (on the dorsal surface of each shoe). The 

walking tasks were also filmed using a GoPro (Hero4, USA, sf=240Hz, 848x480 pixels resolution). 

Three impacts on IMU sensors were video-recorded and used for time-synchronization between the 

two measurement systems.  

 

Data analysis 

FOG episodes were visually detected by one trained operator for each subject using Kinovea 

(Version 8.27). Then, the 7 algorithms derived from a literature review and reported in detail in the 

Paragraph 1.3 of the Background were classified based on: Domain (i.e. frequency, time-frequency, 

time) and IMU position (i.e. lower trunk, shank, foot) 

Of the 7 algorithms: 

- 5 were implemented in the frequency domain, exploiting acceleration from trunk ([75]), 

shank ([73,75–78]) and foot ([75,76]); 

- 1 was implemented in the time-frequency domain, exploiting angular velocity of the shank 

([79]); 

- 1 was implemented in the time domain, exploiting acceleration of the trunk ([80]) and the 

shank ([80]). 

The 7 algorithms were implemented in MATLAB (MathWorks 2017a, NATHSK, USA) and 

FOG events were estimated from IMU data for each participant with each algorithm. 

 

Sensitivity and Specificity were calculated as following: 

 

Sensitivity = 
Number of FOG correctly identified by algorithm

Number of all FOG as identified by video
 *100     (14) 

Specificity = 
Number of all FOG identified by algorithm−Number of all FOG as identified by video

Number of all FOG as identified by video
 *100 (15) 
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Results 

Most of the algorithms showed a different combination of Windows and Thresholds, as resulting 

from the specific implementation rules, driving to different results in terms of Sensitivity and 

Specificity. According to the literature, algorithms showing a Sensitivity below 78% and a 

Specificity above 20% were not considered for further analyses [73]. Details of implementation 

characteristics, Sensitivity and Specificity of algorithms are reported in Table 2. 

Table 2. Details of algorithms identified from the literature review and classified according to the implementation 

characteristics (i.e. Domain, IMU position, Target variable); Windows and Thresholds adopted for the implementation; 

results for Sensitivity and Specificity in FOG detection as related to each algorithm. Algorithms showing a Sensitivity 

above 78% and a Specificity below 20% were highlighted in light grey. To assist the reader, results obtained for Moore 

et al. 2013 were reported below the table.  

Reference Domain IMU position Target variable (component) 
Window 

(in seconds) 
Threshold Sensitivity Specificity 

Moore et al. 2008 

[73] 
Frequency Shank Acceleration (V) 6 2.9 12 0 

Jovanov et al. 2009 

[76] 
Frequency 

Shank Acceleration (V) 
4 

Manual 

78 0 

6 71 0 

Foot Acceleration (V) 
4 78 0 

6 83 0 

Mancini et al. 2012 

[77] 
Frequency Shank Acceleration (AP) 5 2.9 58.5 0 

Morris et al. 2012 

[78] 
Frequency Shank Acceleration (V) 

4 2 63 0 

6 2 24.1 0 

10 2 19 0 

Moore et al. 2013 

[75] 
Frequency 

Trunk 

Acceleration (V) 
From 2.5 to 10 

with 2.5 increment 

From 0.5 to 7 
with 0.5 

increment 

* Shank 

Foot 

Djiuric et al. 2014 

[79] 

Time - 

Frequency 
Shank Angular velocity (ML) - - 100 25 

Rezvanian et al. 

2016 [80] 
Time 

Trunk 

Acceleration (AP) 4 58.9 100 54 

Acceleration (ML) 4 59.1 100 55 

Acceleration (V) 4 66 100 57 

Shank 

Acceleration (AP) 4 58.9 100 52 

Acceleration (ML) 4 59.1 100 46 

Acceleration (V) 4 66 100 59 

 

* Window 2.5 5 7.5 10 

Threshold 

0.5 

from 

1 to 
7 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 0.5 1 1.5 2 2.5 3 3.5 4 

from 

4.5 
to 7 

0.5 1 1.5 2 2.5 3 3.5 4 

from 

4.5 
to 7 

Sensitivity 2.5 0 100 95 63 32 24 19.5 17 14.5 14.5 14.5 9.8 7.3 7.3 7.3 68 54 37 17 9.8 7.3 7.3 7.9 0 63 54 29 12 9.6 9.6 2.4 2.4 0 

Specificity 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Window 2.5 5 7. 10 2.5 5 

Threshold 

0.5 

from 

1 to 

7 

0.5 1 1.5 2 2.5 3 
3.5-

7 
0.5 1 

from 

1.5 

to 7 

0.5 1 1.5 2 2.5 3 
3.5-

7 
0.5 1 

from 

1.5 

to 7 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

from 

5.5 

to 7 

Sensitivity 2.4 0 71 68 9.75 7.3 7.3 4.5 0 77 44 0 58.5 39 7.3 4.8 2.4 2.4 0 100 37 0 24 97.5 100 80 100 19.5 12 7.3 4.9 4.9 4.9 

Specificity 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46 0 0 0 0 2.4 0 0 0 0 0 0 0 0 
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Window 7.5 10 

Threshold 0.5 1 1.5 2 2.5 3 3.5 4 from 4.5 to 7 0.5 1 1.5 2 2.5 3 3.5 4 from 5 to 7 

Sensitivity 36.5 100 100 100 83 56 44 44 0 22 34 46 29 17 7.3 2.4 2.4 0 

Specificity 0 4.7 44.5 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

Among the 7 algorithms, only two passed the Sensitivity and Specificity criterion, i.e. 

Jovanov et al. 2009 [76] and Moore et al. 2013 [75], with some specific combinations of Windows 

and Thresholds (Table 2). In Jovanon et al. [76], comparable results were obtained for the windows 

of 4 seconds, both for shank and foot, with 78% of Sensitivity and no false positive events 

(Specificity 0%). Instead, Windows of 6 seconds provided 83% of Sensitivity for foot position, but 

only 71% for the shank, with no false events in both cases. For Moore et al. [75], preliminary results 

showed that window of 5 seconds provided the best results both for shank (Sensitivity of 100% and 

95%, and Specificity of 11% and 0% for threshold of 0.5 and 1, respectively) and foot position of 

IMU (Sensitivity of 97.5% and 100%, and Specificity of 0% for threshold of 1 and 2.5, respectively). 

Concerning specific implementation characteristic, only algorithms implemented in the 

frequency domain passed the Sensitivity and Specificity criterion, while both time and time-

frequency domains showed values of Sensitivity of 100% in all cases, but also Specificity always 

greater than 25%. 

In relation to the positioning, trunk-based algorithms reported no false positive events, but 

Sensitivity always lower than 78%. Among algorithms that passed the Sensitivity and Specificity 

criterion, preliminary results showed similar values of these measures for Shank- and Foot-based 

algorithms (Table 2). 

 

 

Discussion 

This study aimed to assess the performance of 7 published algorithms proposed for FOG 

detection from IMU data. The algorithms were selected and implemented after a systematic 

literature review and then analysed based on Sensitivity and Specificity values with respect to the 

influence of the domain of implementation and IMU position. 

Preliminary results showed that only two algorithms resulted to be suitable for FOG 

identification in the considered population, both implemented in the frequency domain and 

exploiting acceleration from Shank and Foot positioning. Independently from implementation 

characteristics, values of Windows and Threshold resulted to be relevant in the assessment of the 

performance of the single algorithm. More specifically, acceptable performances were obtained with 
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Widow sizes varying from 4 seconds to 7 seconds and Threshold varying from 0.5 to 2.5 or manually 

set, according to previous studies [73,75]. In fact, window sizes should be at least of the same time 

length of the FOG episodes, but shorter than 10 seconds, to avoid a low pass filter effect that tended 

to average short FOG events [73]. 

Preliminary results showed that Shank and Foot positionings obtained both better 

performance than trunk-based algorithms. This result is in agreement with a previous study by 

Moore et al., who demonstrated that objective FOG identification based on the frequency 

characteristics of lower body motion can achieve a strong correspondence with the clinical 

assessment [75]. 

In general, frequency-based algorithms seemed to provide better results than time and time-

frequency based ones. This behaviour might be explained with the reported high correlation between 

the identification of FOG episodes and FI index, on which frequency domain algorithms are based 

on [73,75,76]. However, more effort should be performed to explain the failure of most of the 

algorithms proposed in this study. 

These results should be interpreted as preliminary. In fact, previous authors underlined that 

the reliability of clinical video assessment was not robust in the identification of FOG events across 

multiple Parkinson’s disease centres [78], suggesting that visual observation introduced low 

objectivity and reliability, also among clinicians. In this study, each subject was analysed by one 

single trained operator: next analyses will extend the identification of FOG episodes from videos to 

a larger number of trained operators, to improve the reliability of the gold standard identification. 

Moreover, despite all 10 subjects reported a clinical history of FOG, only 5 experienced freezing 

during the six-minute walking task, possibly due to the controlled environment of a research study 

that may have reduced the likelihood of FOG episodes [73,150]. Thus, further study should assess 

the performance of the proposed algorithms in a greater number of PDP. 

Since the automatic detection of FOG assumes a fundamental role in the prediction of falls 

[146], the current study sets the stage for a conscious choice of the proper algorithm for the specific 

patient and situation. Moreover, it supports the effectiveness of IMUs for the health-professionals’ 

evaluation of PDP symptoms, improving treatment, and augmenting self-management of patients 

[151].  
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Synthesis of findings 

In this section, the assessment of algorithms for gait segmentation and FOG detection in 

PDPs was provided. 

In accordance with the results obtained for healthy people, implementation characteristics 

(i.e. sensor position, analysed variable and computational approach) affected the performance of 

algorithms in gait timing estimation. Indicatory conclusions for the selection of subject-specific 

algorithm were proposed based on the similarity between gait pattern of healthy individuals, adopted 

as reference for algorithms implementation, and PDP ones. 

The performance of the algorithms for FOG automatic detection varied depending on 

different implementation domain (frequency, time and time-frequency) and sensor position (trunk, 

shanks, feet). According to the literature, frequency-based algorithms seemed to provide better 

results than time and time-frequency based ones. 
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Conclusion 
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In recent years, the widespread use of inertial wearable sensors has opened the possibility 

for the quantitative assessment of gait in ecological conditions, for the objective characterization of 

specific gait patterns, with the aim to support and guide clinical decision and treatment definition. 

The significant interest in finding effective methods for the quantification of specific 

parameters for clinical led to a proliferation of novel methods for gait analysis. Most of these 

methods were partially tested on the gait of healthy subjects and/or of specific pathologic 

populations in laboratory conditions, without considering the influence of intrinsic or extrinsic 

factors altering the reference gait pattern. Therefore, the aim of the present project was to 

comparatively analyze the influence of said extrinsic (e.g. walking surface and environment) and 

intrinsic (i.e. gait alterations related to pathological conditions) factors on the performance of the 

numerous algorithms proposed for the quantification of specific characteristics (i.e. timing, 

variability/stability) and alterations (i.e. freezing) of gait. 

Section 1 addressed the assessment of the influence of extrinsic factors on algorithms for the 

quantification of gait timing and of non-linear metrics of gait variability/stability on healthy 

subjects. First, the performance of the algorithms available in the literature for gait timing estimation 

were assessed during walking of healthy people in controlled laboratory conditions, to analyse the 

influence of different implementation characteristics (i.e. sensor position, target variable and 

computational approach). Then, the same evaluation was performed in ecological conditions, 

considering different environmental constraints, i.e. walking in water and on sand. 

Analyzing the gait of healthy subjects on solid ground, which represents the reference gait 

pattern for the implementation of the analyzed algorithms, significant differences were found in the 

estimation of gait timing in relation to the implementation characteristics. In general, shank- and 

foot-based algorithms performed better than lower trunk-based ones, as well as angular velocity-

based algorithms compared to the acceleration-based ones, while the performance of different 

computational approaches varied depending on sensor positioning. Analyzing gait in water, no 

trunk-based algorithms as well as no acceleration-based one, with the exception of two exploiting a 

shank positioned sensor, rose above the required minimum Sensitivity threshold of 81%, thus 

resulting unsuitable for gait event detection; this ineffective performance was associated to 

significant differences in the pattern of the specific variables during walking in water as compared 
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to walking on dry land. In fact, sensitivity was below threshold when walking in water pattern was 

not repeatable enough (ICC for walking in water below 0.60), and when it differed too much from 

the reference WDL one (ICC of walking on dry land over walking in water below 0.31). Analyzing 

the sand environment, all algorithms resulted suitable for gait events identification, with threshold 

of Sensitivity above 81% for all algorithms and conditions, as the pattern of the specific variables 

did not change significantly with respect to the reference condition. From a comparison with solid 

ground walking, considered the reference pattern for algorithm implementation, ICC values were 

always greater than 0.8, both in wet and dry sand. Independently from the environmental constraints, 

delays/anticipation in gait events estimation were found in relation to the specific implementation 

characteristics, with a general lower accuracy and repeatability on dry sand compared to hard 

surface and wet sand, leading to a compensation of this error in the estimate of Stride and Step time, 

and a general underestimation/overestimation of Stance- and Swing-time, respectively.  

These works allowed to identify reference values of comparative performance in terms of 

sensitivity, accuracy and repeatability of the different algorithms in different operative conditions, 

supporting: 1) the selection of most appropriate algorithm for specific applications; 2) the 

development/optimization of more effective algorithms. In this context, future studies should 

investigate the performance of algorithms for gait segmentation based on innovative and advanced 

machine learning techniques e.g. neural networks, hidden Markov models, and Gaussian mixture 

models [23–25], adopting the datasets provided by the current dissertation. 

The application of non-linear metrics to walking in water requires the identification of 

reference criteria for a reliable implementation, thus the evaluation of the minimum number of 

strides was assessed among different level of immersion (i.e. knee, pelvis and xiphoid process), 

showing higher number of strides in all conditions (above 140) also for the 50% threshold compared 

to results obtained by other authors on dry land. 

Section 2 addressed the assessment of the influence of intrinsic factors, i.e. pathological 

condition in Parkinson’s disease patients, on algorithms for the quantification of gait timing and 

automatic identification of freezing events. The gait segmentation algorithms, already tested in 

Section 1 for extrinsic factors, are firstly evaluated excluding turnings, rest periods and freezing 

episodes, resulting to be suitable in the identification of gait events (Sensitivity above 81%) for all 

the analysed subjects with the exception of one patient. The characterization of the errors showed 

comparable accuracy and repeatability in the estimation of Stride and Step time, independently from 

the implementation characteristics. Conversely, GEs, Stance and Swing time resulted 

underestimated or overestimated, depending on the implementation rules. 
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Then, whole walking tasks were considered, including possible freezing episodes. In this 

case, some of the algorithms exploiting angular velocity and acceleration of the shanks and the feet, 

showed Sensitivity below the 81% for 3 of the 20 considered subjects. To define possible rules for 

a reliable application of gait segmentation algorithms during walking of PDPs, reproducibility of 

the target variable within the single walking task (Single ICC) and compared to the gait pattern of 

healthy subjects (Combined ICC) was evaluated. In particular, when the single target variable 

presents repetitive features (Single ICC greater than 0.6) and is sufficiently similar to gait pattern of 

healthy people (Combined ICC greater than 0.6), the application of existing segmentation 

algorithms should be considered. Otherwise, possible definition of new methods or adaptation of 

the existing ones should be considered. 

Finally, the performance of the available algorithms for freezing of gait detection was 

investigated starting from a systematic review to identify the different proposed methods. The aim 

was  to provide relevant information for the selection of the most suitable algorithm for specific 

applications in relation to the implementation characteristics (i.e. implementation domain and IMU 

position). Preliminary results showed that frequency-based algorithms perform better than time and 

time-frequency based ones, and algorithms exploiting signals from shanks and feet are preferable 

than trunk-based ones. 

Even though not exhaustive, these results provide essential methodological reference for the 

reliable adoption of IMU for the characterization of biomechanical and functional aspects of gait 

across different environments and surfaces, both in healthy and pathological people. Future 

developments will extend the same methods to different environmental constraints and populations, 

in order to overcome the main limitations of this dissertation, namely the possibility to generalize 

(when and if possible) the obtained results to other populations. 

In conclusion, the present Thesis outlines a systematic approach for the assessment of the 

performance of algorithms proposed for the quantification of specific characteristics of gait from 

inertial measures, taking into account and highlighting the influence of intrinsic and extrinsic 

influencing factors. The results provide relevant information for the evidence-based selection of the 

most appropriate approach, if available, for the specific application, and for the development of 

more effective algorithms for the assessment of ecological gait in healthy and pathologic subjects. 
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Appendix 

MUSCLE ACTIVATION DURING 

WALKING IN PARKINSON’S DISEASE 

PATIENTS 

 

 

 
 

 

The content of this chapter has been published in G. Pacini Panebianco, M. Fonsato, G. Frazzitta, 

R. Stagni, S. Fantozzi, ‘EMG activation during walking in Parkinson’s disease patients’, Gait & 

Posture 74 (2019) S1–S39 
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Introduction 

During gait, gastrocnemius (GS) and tibialis anterior (TA) play a fundamental role in 

forward progression [152,153]. Perry et al. reported different phases of activation in the gait cycle 

for  these antagonist muscles, i.e. GS active from loading response to terminal stance, and TA from 

pre-swing to the following initial contact [18]. However, a recent assessment by Di Nardo et al. 

[154] of the activation patterns of gastrocnemius lateralis (GL) and TA during gait showed large 

variability in the number of activations, in their occurrence rate, and in the on-off timing, over 

different strides of the same gait trial. For each muscle, the assessment of the different patterns of 

activation allowed to identify a scheme, allowing to characterize the behaviour of muscles during 

normal gait, improving the interpretation of EMG signals in physiological and pathological 

conditions. In particular, the pattern of GL activation was centred in two phases of the gait cycle: 

the transition between flat foot contact and push-off and the final swing. Similarly, two phases 

characterized EMG pattern of TA: from pre-swing to following loading response, and the mid-

stance [154]. In recent studies, the same authors also addressed the quantification of the asymmetric 

behaviour of ankle-muscle recruitment during walking in type I hemiplegic children, in order to 

describe control strategies and support clinicians and physical therapists in planning treatment 

approaches [155] and the assessment of the co-contraction patterns of gastrocnemius ad vastus 

lateralis in healthy people to better understand their role in controlling joints mechanics [156]. 

In the last decades, the analysis of the muscle activation has assumed considerable 

significance in the diagnosis, prognosis and monitoring of neuromuscular pathologies [157]. In 

particular, it represents a fundamental aspect in the evaluation of motor disorders in people with 

Parkinson’s Disease (PDPs) [158]. Gait dysfunctions in PDP are often associated with abnormal 

muscular activaty [67], as demonstrated by the quantification of the rhythmicity and variability of 

the EMG pattern during gait in PDP in general, and as associated to freezing in particular 

[67,150,159]. Studies concerning EMG assessment of PDP during walking on a treadmill showed 

reduced GM activity, overactivation of TA [151] and greater co-activation of antagonist leg muscles 

during the support phase [152] compared with healthy controls. Analyses performed on walking on 

solid ground highlighted muscle activity asymmetry between right and left leg [160], premature and 

relatively prolonged activity of GS [150], anticipated activity and reduced or absent push-off peak 

in GM, absent or reduced activity around ground contact phase in TA [155]. Moreover, Nieuwboer 

et al., [150] demonstrated that overall reciprocity between GS and TA was preserved during walking 

on solid surfaces. 

Although of primary importance in the clinical context to design subject-specific treatments, 

the assessment of different activation patterns of GM and TA in pathologic gait has not been 
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addressed yet. The aim of the present study was to provide a methodological assessment of the 

variability of muscle activation during walking on solid ground in PDP, analysing: i) the symmetry 

in the activation modalities of muscles between right and left leg, ii) the different activation patterns 

(number and timing within each stride per muscle), and iii) the co-activation of antagonist muscles. 

 

 

 

Materials and Methods 

 

Participants: 

Twenty PDPs (12 females ,8 males; 67.2±9.1 years old; 1.65±0.12 m; 67.3±13.1 Kg; Hoehn-

Yahr stage III, 10 with diagnosis of freezing) participated in this study. All patients were in the ON 

state of Levodopa treatment during the experiment. The study was approved by the local scientific 

committee and institutional review board (Comitato Etico Interaziendale delle Provincie di Lecco, 

Como, Sondrio) and was in accordance with the Code of Ethics of the World Medical Association 

(Declaration of Helsinki, 1967). A complete explanation of the study protocol was provided to the 

patients and written informed consent was obtained before their participation in the study. This trial 

was registered on ClinicalTrials.gov NCT03015714.  

 

Data acquisition: 

Each participant performed a six-minutes walking test along a 15 m straight pathway at self-

selected speed wearing own comfortable footwear. Angular velocities of the shanks were collected 

using two tri-axial sensors (OPAL, Apdm, sf=128 Hz) and EMG signals of TA and GM were 

acquired using wireless electromyograph, provided with embedded accelerometers (Cometa, Italy, 

sf=2000Hz), following SENIAM guidelines [161]. Three peaks were recognizable both in sensors 

and EMG accelerometers and used to synchronize the two systems. 

 

Data Analysis: 

Only strides walked along straight paths were considered, thus excluding turnings and 

freezing episodes. Gait events were identified from the angular velocity around the medio-lateral 

axis of the shank [20]. EMG data were band-pass filtered at 20–450 Hz [162,163] and then 

processed by a double threshold statistical detector to provide the onset and offset time instants of 

muscle activity in a completely user-independent way [164]. This technique [164] consists of 

selecting a first threshold ζ and observing m successive samples: if at least r0 out of successive m 
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samples are above the first threshold ζ, the presence of the signal is acknowledged. In this approach, 

the second threshold is represented by r0. Thus, the behaviour of the double-threshold detector is 

fixed by three parameters: the first threshold ζ, the second threshold r0, and the length of the 

observation window m. Their values are selected to jointly minimize the value of false-alarm 

probability and maximize probability of detection for each specific signal-to-noise ratio (SNR). A 

minimum value of 10 was considered for SNR [164]. The setting of the first threshold, ζ, is based 

on the assessment of the background noise level, as a necessary input parameter. Furthermore, the 

double-threshold detector requires to estimate the SNR in order to set the second threshold, r0. The 

values of the background noise level and the SNR, necessary to run double-threshold algorithm, is 

estimated using the statistical approach proposed by Agostini et al. [165]. The length duration of the 

observation window was set to 30 ms, as it is considered a suitable value for the study of muscle 

activation in gait analysis [164]. 

Muscle activation intervals were first normalized with respect to each gait cycle duration, 

and, successively, the number of times when muscle activates within a single gait cycle were 

calculated (n-activation modality).  

 

Symmetry 

Only patients showing a SNR greater than 10 for GM and TA in both limbs were considered 

for the symmetry investigation between right and left leg. Firstly, kinematic symmetry was 

analysed. For each subject, a paired-sampled t-test was performed on the stride times of right and 

left leg, showing that they were normally distributed. A one-way ANOVA with minimum level of 

significance of 5% was performed to compare the stride time values obtained from right and left 

leg. Then, the muscle activation modality of the single stride of one leg was compared with the 

corresponding previous and next one of the contralateral leg. In this manner, any symmetry in the 

number of muscle activations in the gait cycle between the two limbs was investigated. 

 

Frequency and timing of different activation modalities 

Including the gait cycles of all subjects, muscle activations were grouped according to the number 

of activations detected, i.e. relatively to the modalities of activations detected. Finally, timing of 

on/off instants were averaged for each specific modality of activation and relative standard errors 

(SE) were computed.  

 

Co-activation 

For each subject and activation modality, muscle activations were grouped according to the number 
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of myoelectric bursts, i.e. relative to their activation modality. On/off time instants were summed 

and normalized against the total number of walked strides. Then, resulting squared curves were 

summed across different subjects. Co-activation periods were computed as the overlapping epochs 

among activation intervals of the considered muscles [166]. 

 

Matlab R2018a (MathWorks BV, USA) was used for data analysis. 

 

 

Results 

Symmetry 

Five subjects showed a SNR greater than 10 for GM and TA of both legs. None of them exhibited 

differences for stride time between right and left leg, with median values ranging from 0.96s to 

1.17s (Figure 1). 

 

Figure 1. Box plot (minimum, 25th percentile, median, 75th percentile, maximum values) for Stride 

time estimation as related to right and left leg of the five subjects showing a SNR greater than 10 

for GM and TA of both limbs. 

  

 

Considering the comparison between the activation modalities of one leg with the contralateral one, 

no recursive pattern was found in the number of muscle activations between the two limbs. An 

example of this behaviour was reported in Table 1, where no recursive modalities of activation were 

found in the previous and next stride of the left leg compared to the corresponding stride of right 

leg. 
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Table 1. A representative example of the occurrence of each modality of activation resulting from 

the comparison of the strides of the right leg, selected as reference, with the corresponding previous 

and next strides of the contralateral leg for GM (a) and TA (b). 

a) GM Right Leg 

N=1 N=2 N=3 N=4 

Left Occurrence in % of 

activation modality 

previous stride 

N=1 54% 41% 50% - 

N=2 38% 46% 25% 

N=3 8% 10% 25% 

N=4 - 3% - 

Occurrence in % of 

activation modality 

next stride 

N=1 42% 54% 25% 

N=2 49% 31% 50% 

N=3 8% 6% 25% 

N=4 1% - - 
 

b) TA Right Leg 

N=1 N=2 N=3 N=4 

Left Occurrence in % of 

activation modality 

previous stride 

N=1 - - - - 

N=2 10% 20% 25% - 

N=3 78% 59% 50% 85% 

N=4 22% 21% 25% 15% 

Occurrence in % of 

activation modality 

next stride 

N=1 - - - - 

N=2 22% 25% 12% 15% 

N=3 66% 57% 56% 77% 

N=4 22% 18% 29% 8% 

 

 

Since all subjects showed symmetrical kinematic behaviour and in order to strengthen the statistical 

power of the analysis, muscle activation was considered together for right and left leg. 

 

 

Frequency and timing of different activation modalities 

Sixteen subjects for GM and thirteen for TA showed a SNR greater than 10 and were 

considered for the analysis. For each muscle, a mean (±standard deviation, SD) of 230 ± 96 strides 

was considered. 

The most recurrent modality of activation for GM (Figure 1) consisted of two activations (2-

activation modality), observed in 42.9 ± 0.8% of total strides. The first activation occurred for all 

patients in the transition between flat foot contact and push-off phase. Most of the subjects presented 

the second activation at the turn of pre- and initial swing. However, in some cases the second 

activation occurred during terminal stance (Subjects 17 and 18), at initial swing (Subject 4) or during 

mid-swing (Subjects 2, 10, 15, 20). The second most recurrent modality of activation showed a 

similar timing to the 2-activation modality for all patients, but with no activation during the swing 
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phase. This 1-activation modality was observed in 28.0 ± 1.0% of total strides. In a further 21.0 ± 

0.9% of total strides, three activations were observed for GM (3-activation modality). The first two 

occurred by the end of terminal stance in all cases, with the exception of few subjects, showing the 

second activation from the terminal stance until the initial swing (Subject 2) and during the swing 

phase (Subject 10 and 15). The third activation occurred during initial and mid-swing phases for 

most of the subjects, with minor exceptions. The remaining 7.5 ± 0.6% and 2.5 ± 0.4% of total 

strides was characterized by four and five activations, respectively, with great variability in the 

on/off activation patterns (4-activation modality). 

 

Figure 1. Gastrocnemius medialis: mean (+SE) percentage frequency of each of the different 5 

modalities of activation patterns. 

  

 

Figure 2. Mean (+SE) activation intervals in relation to the percentage of gait cycle for the 

modalities with 1 (a), 2 (b), 3 (c) and 4 (d) activations, detected in GM during walking. The toe off 

is used to determine the beginning of the swing phase and is represented by a red asterisk. 
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For TA (Figure 4), the most recurrent modality of activation during gait cycle consists of 

three activations (3-activation modality), observed in 39.5 ± 0.7% of total strides (Figure 3): the first 

occurs at the beginning of the gait cycle (Subjects 1,3,6,11,15,16,17,18) or during the mid/final 

stance (Subjects 5,8,9,12,20), the second around stance-to swing-transition in the majority of the 

subjects, and the third in the terminal swing, with the only exception of one subject (Subject 16), 

showing an anticipation of this activation to the initial swing phase. The modality with 2 activations 

was reported in 17.9 ± 1.0% of the strides. The first activation occurred in the interval of the gait 

cycle from the final stance to the initial swing in the majority of the participants (Subjects 

3,5,8,9,16,20) and, in few cases, during the initial stance (Subjects 6 and 16) and during the mid-

stance (Subjects 1,15,18) phase, while the second activation generally occurred during the mid- or 

final swing, apart from a couple of participants (Subjects 6 and 16), showing this activation during 

the initial swing. In a 28.7 ± 0.9% and 9.8 ± 0.6% of total strides, 4- and 5-activation modalities 

were observed, respectively. Both modalities showed similar timing in muscles activation: the first 

activation occurred during the initial contact, the last activation during the final swing, the central 

activations showed great variability, occurring from mid-stance to final swing. Finally, the 3.0 % ± 

0.4 % of total strides was characterized by 1 activation, comparing only in a small portion of patients 

(Subjects 1,3,5,9,12,18). 

 

 

Figure 3. Tibialis anterior: mean (+SE) percentage frequency of each of the different 5 modalities 

of activation patterns. 
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Figure 4. Mean (+SE) activation intervals in relation to the percentage of gait cycle for the 

modalities from 1 to 5 activations, detected in TA during walking. The toe off is used to determine 

the beginning of the swing phase and is represented by a red asterisk. 
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Co-activation 

All activation modalities of GM (from N=1 to N=4) showed an overlapping period with TA arising 

from the initial contact to the loading response, and another in the pre-swing phase (Figure 1). When 

GM presented 3- and 4- activation modalities, the overlapping period during pre-swing lasted until 

mid-swing (Figure 4 c and d). In the 2-, 3- and 4-activation modalities of GM (Figure 4b, c and d), 

another co-activation occurred during the terminal swing.  

 

Figure 4. Normalised activation intervals of TA (continuous lines) detected in those strides where 

GM (dotted lines) showed 1- (a), 2- (b), 3- (c) and 4- (d) activation modality. Co-contractions 

intervals are highlighted in grey. 
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Discussion 

In the present study, EMG signals of GM and TA were analysed during gait of 20 PDP, in 

order to assess different methodological aspects of muscle activation. The considered muscles 

showed different modalities in the number of activations and in the timing of signal onset and offset, 

as previously reported by other authors for healthy people [154]. This supports the need to consider 

not only the typical activation patterns reported in the literature for GM and TA during gait [18,167], 

but also the number and the timing of the muscle activation intervals in the single gait cycle. 

 

The assessment of the stride time resulted in a kinematic symmetry between right and left 

leg. On the other hand, considering one leg at a time, the analysis of the number of activations in 

the previous and next stride of the contralateral limb did not show a recurrent pattern. Thus, no 

direct association between the modalities of activation of the right and left leg was found and the 

high degree of muscular variability reported also in previous studies [154,166,168], was confirmed. 

Both results support the successive analysis were no distinction was applied between the two limbs. 

 

In general, comparable percentages in the frequency of different number of activation 

modalities were obtained for PDP both in GM and TA compared to healthy people. On the other 

hand, differences were found in the timing of activation for both muscles. 

Previous authors [169] reported that the activity of GL is centred mainly in two regions of 

the gait cycle: between flat foot contact and push off and in the final swing. Accordingly, the activity 

occurring in the stance phase is observed in all patients across different activation modalities (N 

from 1 to 4) and is interpreted as the active participation in the dorsiflexion of the foot during the 

forward progression [18,167]. However, results from the current study showed slight differences in 

the timing of activations for N=3 compared to the healthy subjects. In particular, the first activation 

was generally shorter and delayed in PDP, comparing during foot flat and mid-stance phases instead 

than in early stance. This phenomenon might be associated to the reduced GM activity during the 

stance phase in PDP already shown when walking on treadmill and might be associated to the 

impaired proprioceptive feedback from extensor load receptors [170].  

In PDP, the second region of activity mainly occurred during the push off (N=2), or early- 

and mid-swing (N=2,3,4) and almost never in the final swing (N=4), thus anticipating the traditional 

activation timing observed during the final swing in healthy people. In particular, for N=2 results 

showed that the second activation generally occurs just before or during the push-off phase, instead 

than on the mid-swing as in healthy people. These finding might be associated to the inadequate 

propulsion and reduced vertical ground reaction forces to propel the body forward in people with 
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Parkinson disease [171]. Similarly, a general anticipation of the activation for N=3, 4 was observed 

in PDP, occurring during pre- and mid-swing instead than in final swing as happened in healthy 

subjects. 

Independently from the activation modality, results showed great variability across subjects 

in timing activation of GM during the swing phase. This augmented variability was reported also 

by di Nardo et al. [169], even if differed from the results obtained by Millet et al. [160], who showed 

reduced variability in GM activation of PDP. However, they considered the whole activation of the 

muscle, without distinguishing different modalities of activation.  

For TA, the muscular activity of healthy people resulted to be centred mainly in two regions 

of the gait cycle. The first region occurred from the pre-swing to the following loading response, 

comparing in all the activation modalities (from N=2 to N=5), while the second occurred in the mid-

stance. Conversely, in the N=2 and N=3 activation modalities of PDP, the activity at the beginning 

of the stride cycle was absent or delayed from initial contact to mid-stance and pre-swing phase, 

showing alterations of the normally contributes to foot positioning at the touch down [172]. These 

results were in agreement with Ferrarin et al., that reported absent or reduced activity of TA around 

ground contact, suggesting reduced foot clearance typical of the shuffling parkinsonian gait [172].  

In healthy subjects, all the activation modalities showed muscle activity during the final 

swing phase. Comparable results were obtained for PD Patients, with the exception of one patient 

(Subject 16). In this case, both GM and TA activations were always confined before or in 

correspondence of mid-swing, and never lasted until the end of the swing phase. This behaviour 

confirmed the reported reciprocity of antagonist muscles and could be associated to the reduced foot 

lifting during the swing phase of gait in PDP, which produced smaller clearance between the toes 

and the ground [135]. 

Even if most of the subjects presented muscle activity during the late swing phase for all 

activation modalities as healthy people [169], these activations were generally shorter in time 

duration, especially for the N=2 and N=3 modalities. These observation might be confirmed by 

earlier studies of EMG profiles during normal walking and gait initiation in Parkinson's disease 

which reported a tendency of reduced TA activity compared with healthy controls [15,173], 

suggesting an altered dorsiflexion of the ankle during swing for foot clearance and placement. 

Moreover, this behaviour might also justify the anticipation observed in the activation of GM during 

the swing phase (N=2, 3, 4), thus compensating the shorter duration in TA activation in the same 

phase, according to the antagonist nature of GM and TA. In fact, other authors underlined that EMG 

changes in the posterior and anterior leg muscles of PD patients usually fail to affect reciprocity 

between antagonist groups [150,171,172,174]. 
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The activation observed in healthy subjects for N=4 and N=5 modalities during mid-stance 

also occurred in PDP, but with greater variability, with difficulties in drawing conclusions about 

possible alteration of EMG pattern. However, these modalities represent about 35% of the total 

strides, thus influencing less the global assessment of muscle activation. 

As deducible from the results described above, GM resulted mostly active during the stance 

phase of gait and TA at the beginning and at the end of the gait cycle. However, the high degree of 

muscular variability (Figure 1 and 3), reported also in previous studies [166,168,169], led to identify 

several co-activations throughout the gait cycle. Three co-activation periods between GM and TA 

were recognized in a single gait cycle (Figure 4). The first co-activation lasted from heel strike to 

the mid-stance phase. In the first half of this time period, the concomitant muscle activation could 

be attributable to the impulsive loading response of the ankle during the heel strike, where a greater 

risk of instability occurred and thus an optimal control was needed [175]. The second half of this 

first co-activation arose during the foot-contact phase (about at 20% of the gait cycle), when GM 

restrained the tibia rotation over the talus through the dorsiflexion control and decelerated the 

forward movement of the lower limb [18,156,166]. TA activation can be associate to the 

stabilization of the tibia after the weight acceptance, when the contralateral limb swing begins and 

thus almost the entire body weight is transferred to the ipsilateral lower limb. The second co-

contraction occurred from the pre- to the initial swing phase. Previously [166], this concomitant 

activation of GM and TA was not considered as a proper co-contraction, since the two muscles acted 

on different joints.  TA acted to stretch the tendinous tissue at the highest speeds, presumably to 

contribute to rapid dorsi-flexion of the foot during swing phase to enable foot clearance [176], while 

GM activity is commonly related to the plantar-flexion needed for the heel raising [2]. Conversely 

to healthy people, in PDP this co-contraction resulted longer and lasted until mid-swing in about 

30% of the strides, when GM showed N=3 and N=4 activation modalities. The last overlapping 

period was identified in late swing, when GM adopted its 2-, 3- and 4-activation modality. This 

behaviour was in line with previous observations on healthy subjects [166]: the co-contraction in 

swing was due to a GM activity overlapping the simultaneous TA activation as ankle dorsi-flexor 

and was likely related to the GM foot-invertor function [154], to properly positioning the foot for 

the next heel strike. [18,166]. 

 

In this study, the comparison between muscle activation modalities were carried out between 

GL and GM, which may be considered a limitation. However, they represent different heads of the 

same muscle and concurred in the generation of plantarflexion moments during walking [177], 

without any reported difference in the biomechanical function. Moreover, some authors assessing 
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muscle activation during gait, did not specified the positioning of EMG channels in the lateral or 

medial head, and generally consider only ‘Gastrocnemius’ [150,173]. 

 

In conclusion, according to the results obtained in the present study: i) no recursive pattern 

was observe in the activation modalities of right and left leg, ii) the activation of GM during stance 

occurred with the same modalities as healthy people, suggesting active role of muscle in forward 

propulsion; iii) reduced/absent TA activity during initial contact due to the alterations of the normal 

contributes to foot positioning at the touch down; iv) anticipation of GM activation and reduced 

duration of TA activity during swing, highlighting reciprocity between the two muscles; v) co-

contraction of GM and TA was observed during the early stance, push off and terminal swing 

phases. 

 

In the future, differences in the activation modalities of GM and TA between freezers and 

non-freezers PDPs should be investigated, also considering the muscle activation in the strides 

leading up a freezing episode in an increased number of patients. 
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