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Abstract

The main contribution of this thesis is the proposal of novel space-variant regularization or
penalty terms motivated by a strong statistical rational. In light of the connection between
the classical variational framework and the Bayesian formulation, we will focus on the design
of highly flexible priors characterized by a large number of unknown parameters. The latter
will be automatically estimated by setting up a hierarchical modeling framework, i.e. introduc-
ing informative or non-informative hyperpriors depending on the information at hand on the
parameters.

More specifically, in the first part of the thesis we will focus on the restoration of natural
images, by introducing highly parametrized distribution to model the local behavior of the
gradients in the image. The resulting regularizers hold the potential to adapt to the local
smoothness, directionality and sparsity in the data. The estimation of the unknown parameters
will be addressed by means of non-informative hyperpriors, namely uniform distributions over
the parameter domain, thus leading to the classical Maximum Likelihood approach.

In the second part of the thesis, we will address the problem of designing suitable penalty
terms for the recovery of sparse signals. The space-variance in the proposed penalties, corre-
sponding to a family of informative hyperpriors, namely generalized gamma hyperpriors, will
follow directly from the assumption of the independence of the components in the signal. The
study of the properties of the resulting energy functionals will thus lead to the introduction
of two hybrid algorithms, aimed at combining the strong sparsity promotion characterizing
non-convex penalty terms with the desirable guarantees of convex optimization.
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Chapter 1

Preamble

The main goal of this thesis is the design of novel space-variant regularization terms to be used
in the framework of variational methods for signal restoration. As one would expect, the flexi-
bility of the proposed regularizers is mainly due to the presence, in their definition, of a number
of free parameters at least equal to the number of pixels. The estimation of the values of these
parameters is clearly crucial to make the aforementioned regularizers applicable in practice.
Hence, as a further contribution, we propose robust, efficient and, more importantly, automatic
parameter estimation strategies.
The probabilistic regularizers, as well as the parameter estimation procedures proposed, are
introduced in a Bayesian perspective, where the unknown quantities involved in the image
restoration problem, i.e. the unknown signal and all the unknown parameters, will be modeled
as random variables. The proposed regularization terms will be thus related to the probability
density functions (pdfs), encoding information or assumptions on the unknown signal that are
believed reasonable a priori, whence commonly called prior pdfs. Analogously, by adopting
a hierarchical modeling, a further layer of assumptions about characteristics of the unknown
solution will be introduced with the definition of hyperpriors, i.e. the pdfs of the unknown
parameters of the prior. The prior pdf and the hyperprior pdf will be coupled with a suitable
likelihood pdf, encoding information on the degradation model, in particular on the corrupting
noise, in order to obtain the analytical expression of the posterior pdf. The posterior pdf jointly
models the behavior of the signal and of the parameters once that the information available has
been exploited in light of the a priori beliefs. A classical Maximum A Posteriori (MAP) ap-
proach is then employed in order to approximate the posterior pdf with a single-point estimate.
This thesis is the result of the collaboration with two research groups, one affiliated to the
University of Bologna, where I joined the PhD program in Mathematics, and the other based
in Cleveland, Ohio, at Case Western Reserve University, where I have been twice as a visiting
PhD student. The dual approach that has characterized my research in the last three years is
reflected in the structure of the thesis. In fact, the proposed results are here presented divided
into two parts, namely Part II and Part III of this work. In fact, although the researches carried
out in both collaborations share a space-variant perspective and a statistical basis, they also
present significant differences that should be stated in advance. In terms of content, the focus
in Part II is on how the total variation (TV) prior can be modified, based on statistical assump-
tions, so as to integrate in the regularization local information about the gradient structure of
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the processed image. The main effort will thus consists in representing the images in terms
of suitable, space-variant, image regularizers. In Part III, on the other hand, we will consider
signals admitting a sparse representation in a given basis. Here, the space-variance comes di-
rectly from assuming the components of the unknown signal to be independently distributed as
zero-mean Gaussian random variables with different variances.
There are several dissimilarities arising in the discussion of these two topics, both from a mod-
eling and a conceptual point of view. The first one concerns the choice of the hyperpriors
modeling the behavior of the unknown parameters. In fact, whilst it can be easy to get an
intuition on the properties of the signal that we want to restore and design a prior accordingly,
making an assumption on the parameters can be challenging or even unfeasible. For this reason,
we will make a distinction between non-informative and informative hyperpriors; the former,
treated in Part II, are uniform pdfs over the parameters domain, while the latter encode more
substantial information and will be matter of discussion of Part III. In other words, in Part
II the hierarchical modeling coupled with non-informative hyperpriors is along the lines of the
classical Maximum Likelihood approach for the estimation of the parameters, that can be also
interpreted as an a posteriori estimation procedure. A priori information available on the un-
known space-variant parameters will be exploited only in Part III.
A further difference lies in the way one generally thinks at variational methods and at their
relation with the Bayesian framework. In Part II, variational models are the main actors and
the Bayesian framework will only provide a stronger rational basis behind their introduction. In
other words, the variational models proposed could be defined independently from any proba-
bilistic interpretation. In Part III, on the other hand, the variational models we will end up with
are inextricably related to the Bayesian framework, in particular to the choice of hyperpriors.
Clearly, such dissimilarity is not formal, since our focus will be the minimization of a functional
in both cases, but rather conceptual.
In addition, using the terminology from [67], in Part II we embrace the analysis approach, that
is we derive the pdf of the unknown signal by applying linear filters to the signal itself. More
in detail, we will make assumption on the behavior of the discrete gradient of the image. In
Part III, we will instead recover a vector representing the unknown signal in a given basis. This
framework goes under the name of synthesis approach. In the synthesis perspective, one usually
looks for a sparse representation of the signal. In fact, the focus of Part III will be on sparse
recovery.

1.1 Organization of the thesis

In Chapter 2, we will set the notations used throughout the thesis. We will introduce the degra-
dation model related to the image restoration problem. In particular, we will pay attention to
the ill-posedeness arising for such problem. Then, in Chapter 3, variational methods for image
restoration will be introduced, together with their interpretation within a Bayesian framework.
More in detail, we will highlight the connections between the regularization term of the varia-
tional functional and the prior pdf set on the unknown image. Moreover, we will derive some
of the classical variational models, such as Tikhonov-L2 and TV-L2 relying on the Bayesian
interpretation. A detailed analysis of the drawbacks arising when adopting a TV regularizer
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will be carried out in Chapter 4, together with a revision of the space-variant and directional
regularization terms already introduced in literature. As far as the problem of sparse recov-
ery is concerned, we will highlight some issues related to the convex and non-convex penalty
terms proposed so far. After the chapeau aimed at introducing the problems and motivating
the results discussed in the following chapters, in Chapter 5 a weighted TV regularizer [19] is
introduced. A generalization [110], obtained by adding a space-variant parameter tuning the
type of regularization, is then considered in Chapter 6. The last contribution of the first part
is proposed in Chapter 7, where the information on local orientations in the image are added
to the previously introduced regularizers [20]. Sparse recovery problem is discussed in the last
three chapters of the thesis. In particular, in Chapter 8, we consider the problem of recovering
a sparse signal on which a conditionally Gaussian prior with a generalized gamma hyperprior
is set [27]. In particular, we extend to more general settings a previous work [32], where the
gamma hyperprior has been considered. In Chapter 9, starting from the discussion carried out
in Chapter 8, we will thus propose two hybrid algorithmic schemes aimed at enforcing sparsity
while trying to preserve a convex regime. Finally, in Chapter 10, we consider an application
of the outlined framework to the recovery of a signal admitting a sparse representation in an
over-complete basis. In the computed examples, the space-variance perspective will arise again
and interpreted as using different bases to more efficiently represent different local features.

1.2 Related publications

A large part of the discussion reported in the thesis refers to upcoming works or works that
have already been published. In particular, the three chapters presented in the first part of the
thesis, namely Chapter 5 to 7 are based, respectively, on the following works:

• Calatroni, L., Lanza, A., Pragliola, M., Sgallari, F. Adaptive parameter selection for
weighted-TV image reconstruction problems. To appear on Journal of Physiscs: Con-
ference series.

• Lanza, A., Morigi, S., Pragliola, M., Sgallari, F. Space-variant generalised Gaussian reg-
ularisation for image restoration. Computer Methods in Biomechanics and Biomedical
Engineering: Imaging and Visualization, 7:490-503, 2019.

• Calatroni, L., Lanza, A., Pragliola, M., Sgallari, F. A Flexible Space-Variant Anisotropic
Regularization for Image Restoration with Automated Parameter Selection. SIAM Jour-
nal on Imaging Sciences, 12:1001-1037, 2019.

As far as the second part of the thesis is concerned, Chapter 8 refers to the following work:

• Calvetti, D., Pragliola, M., Somersalo, E., Strang, A. Sparse reconstructions from few
noisy data: analysis of hierarchical Bayesian models with generalized gamma hyperpri-
ors. Inverse Problems, 36, 2020.

Moreover, Chapter 9 and Chapter 10 will be further developed in future works.
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Chapter 2

A world of images (to be processed)

In the last few decades, images have become one of the most widespread way of communication.
The main reason behind this increasing diffusion is the variety of different applications involving
data that can be rearranged so as to be visualized as images, making visible what is not due to
its inaccessibility or because of the limits of human eyes. Typical examples are represented by
seismic imaging and astronomical imaging, focused on collecting information about subsoil and
celestial structures, respectively. Images can also be recorded from sources of radiations, as in
the case of PET (positron emission tomography) and MRI (magnetic resonance imaging) in a
medical scenario. From industrial applications to life sciences, we simply can not avoid dealing
with images.
The aim of image processing is to develop strategies for manipulating, efficiently transmitting
and even improving 2-dimensional (2D) signals, whose formation, in general, is carried out by
recasting indirect information, possibly coming from non-imaging modalities, meaning that the
measurement space differs from the image space. We can thus classify the generic imaging
problem as an inverse problem.

2.1 Inverse problems in imaging

An inverse problem arises every time that an unknown cause producing an observed data -
or effect - is investigated, provided that the cause-to-effect forward model is available. Moving
against causality implies taking some risks, that here mainly consist in the loss of well-posedness.
According to the definition given by J. Hadamard in the early 20th century, a problem is said
to be well-posed if:

(i) the problem admits a solution;

(ii) the solution is unique;

(iii) the solution depends continuously on the data.

Inverse problems may turn out to be ill-posed, that means that at least one of the properties
mentioned above is not satisfied. In general, the existence and the uniqueness of the solution are
easier to tackle. If the existence of the solution is not guaranteed, a possible strategy is relaxing
the regularity properties that we ask the candidate solution to satisfy. The non-uniqueness can
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be overcome by imposing a further condition on the solution, such as being the solution with
minimum norm. Therefore, the most challenging issue is the lack of continuous dependence on
the data, meaning that small errors in the data can lead to very large perturbations in the final
solution.
Before exploring the reason behind the occurrence of ill-posedness for imaging problems and
possible strategies to overcome this issue, we are giving a brief review of widely studied problems
in the field of image processing:

• Denoising, is the problem of removing noise from the image keeping the sensible in-
formation unchanged. The presence of noise can be related to the quantum nature of
electromagnetic radiation or to atmospheric distortions.

forward−−−−−→
inverse←−−−−

• Deblurring, is the enhancement of images corrupted by blur. The blur, as well as the
noise, can be an unavoidable consequence of the tool used for capturing the data - that
is the case of microscopic images - or can be due to the relative motion between the
object of interest and the camera, or still can be introduced by the device being out of
focus.

forward−−−−−→
inverse←−−−−

• Inpainting, is the task of filling parts of the image missing because of occlusions or other
damages.



2.1. Inverse problems in imaging 17

forward−−−−−→
inverse←−−−−

• Reconstruction, aimed at retrieving an image starting from physical data that do not
belong to the image space. This is a typical problem arising in medical imaging.

forward−−−−−→
inverse←−−−−

Mathematically, a continuous signal u can be modeled as a function in L1 (Ω)

u : Ω ⊂ Rd → Rs , (2.1)

where Ω is a compact set in Rd, with d ≥ 1 and s ≥ 1. When d = 1 and s = 1, u is a
one-dimensional signal, while d = 2, 3 for 2D and 3D images, respectively. In particular, when
s = 1, u is a gray scale image, or single-channel. For s ≥ 2, u is a color image, or multi-channel.
As an example, when s = 3, u assumes values on three color channels, as in the case of RGB
(red-green-blue) images. The continuous formulation provides a straightforward modeling of
the human acquisition process, based on the coupled action of eyes and brain. Moreover, some
image structures find their natural interpretation in continuous settings, as in the case of edges
that can be described as jump discontinuities in the image function.
A substantial literature has been devoted to the solution of imaging inverse problems of the
form

find u such that b = T(u) = N (A (u)) , (2.2)

where b is the observed image defined on Ω and T : Rs → Rs is a model of the measurement
process, which is typically the combination of a deterministic mapping A acting on u and a
random noise operator, modeled by operator N. We can also refer to the linear model in (2.2)
as the degradation model.
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All the problems listed above can be described by a linear degradation model. For image
denoising problems A is the identity operator, i.e. A(u) = u, while when dealing with image
deblurring, the transformation is of the form

A(u) =
ˆ

Ω
k(x, y)u(y)dy ,

with k denoting the blur kernel. In the case of image inpainting, A(u) = χC u, with χC

the indicator function of the subset C of the image domain Ω in which the information is
available, and, finally, in the image reconstruction framework, A is, e.g, the Radon or Fourier
transformation function - just to name a few - depending on the applications.

2.2 The inverse problem of interest: image restoration

In this thesis, we focus on the so-called image restoration problem, namely the problem of
recovering images corrupted by both blur and noise. In particular, we will consider gray-level
images. Thus, the continuous degradation model of reference is

b(x) = N

( ˆ
Ω
k(x, y)u(y)dy

)
, ∀x ∈ Ω , with b : Ω→ R , b ∈ L1 (Ω) . (2.3)

In the case of additive noise, which is the one considered in this thesis, the model in (2.3) takes
the specific form

b(x) =
ˆ

Ω
k(x, y)u(y)dy + e(x) , ∀x ∈ Ω . (2.4)

We remark that, at least in principle, the work presented here could be extended to the multi-
channel case and, in a non trivial way, to other kinds of inverse problems related to images, as
the ones mentioned above.

Discretization It is worthwhile to spend now a few words about how to make a continuous
image computer-readable, that is how the digitalization process is carried out [13]. The contin-
uous gray-scale image u is converted into a discrete image ud which is a matrix whose elements
are referred to as picture elements, or pixels. The action of transforming u in ud is also known
as sampling. Sampling may or may not lead to a loss of sensible information; this is, of course,
due to the resolution of the device used for the acquisition. We can interpret this operation
as approximating the continuous domain Ω, introduced in (2.1), with a discrete grid Ωd. In
Figure 2.1, a continuous image u and its sampled version ud, corresponding to a very rough
discretization grid, are shown.

Despite the pleasant properties of a continuous formulation highlighted above, here we are rather
adopting a discrete framework. The discrete version of the continuous degradation model in
(2.4) related to the image restoration problem thus reads as

bd = Kud + ed, (2.5)

where ud, bd and ed are the discretizations, in vectorized form, of the observed continuous
image b, of the continuous unknown u and of the additive corrupting noise e, respectively. In
particular, ud, bd, ed ∈ Rn and n = m × `, in case ud being originally discretized over an
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Figure 2.1: Original image u : Ω→ R with a superimposed uniform sampling grid (a), sampled
discrete image (b).

m × ` grid. The matrix K models the action of the blur on the unknown image. More details
about ed and K will be given in the next sections. Nonetheless, in the following, in order to
avoid heavy notations, we are denoting both the continuous and the discrete versions of the
quantities involved in (2.5) without subscriptions, with the caveat of specifying whether we are
in continuous or discrete settings.
In conclusion, the discrete ill-posed inverse problem of interest in this thesis reads:

find u ∈ Rn such that b = Ku+ e . (2.6)

2.2.1 Noise

In this section, we review some of the noise models that are commonly encountered in the
applications.

Additive noise. Consider the linear problem modeling the corruption of u by means of an
additive noise:

b = u+ e ,

where u, b and e are vectorized images, that is u, b, e ∈ Rn and n = m`, in case u being
originally discretized over an m × ` grid. In other words, the elements of the original u are
re-arranged so as to be ordered columnwise. The entries of the noise vector e can be interpreted
as realizations drawn from a fixed random variable.
A noise arising in many applications is the Additive White Gaussian Noise (AWGN)

e ∼ N(0,Σ) , with Σ = σ2In .

The property of whiteness implies that the entries of e are identically independently distributed
(i.i.d.) realizations of the given distribution - in the case of AWGN, for each i = 1, . . . , n, ei
is drawn from a zero-mean Gaussian distribution with standard deviation σ. This reflects in
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Figure 2.2: Gaussian (a) and Laplacian (b) pdf for different values of σ.

the covariance matrix Σ being a scaled identity. The independence of the entries also allows to
factorize the probability density function of e as follows,

P(e) = P(e1) P(e2) · · ·P(en) ,

thus giving

P(e) =
n∏
i=1

P(ei) =
n∏
i=1

1√
2πσ

exp
(
− e2

i

2σ2

)
= 1

(2πσ2)
n
2

exp
(
− ‖e‖

2
2

2σ2

)
.

One of the reason behind the wide use of the AWGN is the fact that, in general, the final noise
corrupting the acquired data is the result of the contribution of different sources, and, according
to the central limit theorem, it can be approximated with a Gaussian distribution. However,
we remark that usually the number of sources is not large enough to justify the application of
the central limit theorem. Therefore, often the adoption of AWGN is improper, but in most
cases it produces a reasonable and satisfying approximation of the observed noise.
As a further example of additive noise, we mention the Additive White Laplacian noise (AWLN)

e ∼ Laplace(0,Σ) , with Σ = σ2In ,

with each entry ei having variance equal to 2σ2. The pdf of e is defined as

P(e) =
n∏
i=1

P(ei) =
n∏
i=1

1
2σ exp

(
− |ei|

σ

)
= 1

(2σ)n exp
(
− ‖e‖1

σ

)
.

The AWLN results to be more impulsive than AWGN. This is a consequence of the heavy tails
of the Laplace pdf, which allow the occurrence of realizations that can be very far away from
the mean value with non-negligible probability. The shape of the Gaussian and Laplace pdf for
different values of σ are shown in Figure 2.2a-2.2b, respectively.
In Figure 2.3, an image corrupted by both AWGN and AWLN is shown.

Signal-dependent noise. Beside the additive case, noise observed in medical imaging prob-
lems is often signal-dependent, in the sense that the pdf, or, more specifically, the standard



2.2. The inverse problem of interest: image restoration 21

(a) Original (b) AWGN (c) AWLN

Figure 2.3: Additive noise. Original image (a) corrupted by AWGN (b) and AWLN (c) with
σ = 0.1.

deviation σ of the noise, depends on the intensity of the underlying noiseless signal. Here, we
only cite the Poisson noise, which is related to the inherent quantum nature of light, as in the
case of computer tomography (CT). At each pixel i, the observed intensity bi is the realization
of a Poisson random variable with mean value µi:

P(bi) = µbii e−µi
bi!

, i = 1, . . . , n.

The mean value µi, and, as a consequence, the noise standard deviation σi = √µi, increases
with the number of photons hitting the sensors. When the number of photons is sufficiently
large, the Poisson distribution can be approximated by a Gaussian distribution, but the noise
standard deviation depends on the number of photons. An image corrupted by Poisson noise is
shown in Figure 2.4b.

Impulse noise. Another common class of noise is the one of impulse noises, including, among
the others, the Salt-and-Pepper noise (SPN). Typically, SPN arises when the device used to mea-
sure the data presents some malfunctioning pixels, or when an error occurs in the transmission
of the data. According to [44], the degradation via salt and pepper noise can be modeled as
follows,

b = (1− s)u+ sc ,

with s, c ∈ {0, 1}n the realization of two independent binary random fields such that, for any
i = 1, . . . , n,

ci =
{

0 with probability 1
2

1 with probability 1
2

, si =
{

0 with probability p
1 with probability 1− p

,

where p ∈ [0, 1] controls the noise level, i.e. the number of corrupted pixels.
In Figure 2.4c, an image corrupted by SPN is shown.

2.2.2 Blur

Consider the following formulation of the continuous degradation model

∀x ∈ Ω , b(x) = b0(x) + e(x) , where b0(x) =
ˆ

Ω
k(x, y)u(y)dy (2.7)



22

(a) Original (b) Poisson (c) SPN

Figure 2.4: Signal-dependent and impulse noise. Original image (a) corrupted by Poisson (b)
and Salt & Pepper noises (c).

and where b is a noisy data corrupted by additive noise e. We refer to k as the blur kernel or,
as it is often called in microscopy imaging, point spread function (PSF). The latter definition
is motivated from the fact that the action of k on an image consisting of a point source would
lead to a spread of the intensity around the point.
The PSF k takes only real and non-negative values

k(x, y) ≥ 0 , ∀x, y ∈ Ω ,

and satisfies, ˆ
Ω
k(x, y) dy = 1 , ∀x ∈ Ω .

In particular, k usually has a compact support, or is at least absolutely integrable - see e.g.
[68, 13]. For simplicity, we focus on space-invariant blur, i.e. blur whose action is the same in
every point of the image and depends only on the difference between the two pixel locations.
In formula,

k(x, y) = k(x− y) .

In this case, the integral in (2.7) takes the form of a convolution product, that is,

b0(x) = (k ∗ u)(x).

The hypothesis of space-invariance can be easily relaxed, although it yields to computational
advantages, as it will be detailed later. When the PSF k is unknown, we refer to the problem of
solving the integral equation (2.7) as blind deconvolution problem. In our analysis, k is assumed
to be known.
As an example of space-invariant blur, we consider Gaussian blur

k(x− y) = C exp
(
− ‖x− y‖

2
2

2w2

)
,

where C is a normalizing constant and w is clearly related to the width or spread of the blur.
In Figure 2.5c, we show an image corrupted by a Gaussian blur of band = 9 and width = 2,
the latter parameters being the input arguments of the Matlab function fspecial. The band
parameter represents the side length (in pixels) of the square support of the kernel, whereas
width is the standard deviation (in pixels) of the isotropic bivariate Gaussian distribution
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defining the kernel in continuous setting. The Gaussian PSF is shown in Figure 2.5d. Notice
that one can think at the original image u as the convolution product of u itself by a very
narrow PSF whose limit can be modeled as a δ PSF, with δ denoting the Dirac function - see
Figure 2.5a-2.5b.

(a) Original (b) δ PSF

(c) Corrupted by Gaussian blur (d) Gaussian PSF

Figure 2.5: Original image (a) corresponding to the convolution of u with a δ PSF (b), test
image corrupted by Gaussian blur (c), generated by Gaussian PSF of band = 9 and width = 2
(d).

2.3 Ill-posedness

A possible strategy to solve problem (2.7) in case k being space-invariant and under periodic
boundary conditions consists in applying the convolution theorem - see e.g. [68], by which

F (s ∗ t) = F(s) · F(t) , ∀s, t ∈ L1(R2),

where
Ff(ξ, ψ) =

ˆ
R2
e−ξx−ψyf(x, y)dxdy ,

is the Fourier transform of the generic f ∈ L1(R2), and (ξ, ψ) is the pair of variables in the
frequency domain. We thus have:

F b0 = F (k ∗ u) = F k · F u ,

for all the frequencies (ξ, ψ) ∈ R2. Hence,

F u = F b0
F k

,

where the division is intended point-wise, and u can be obtained by applying the inverse Fourier
transform to F u. Nevertheless, we recall that k has a compact support and, for the Riemann-
Lebesgue Lemma, its Fourier transform goes to zero as the norm of the variables in the frequence
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space (ξ, ψ) increases. Nonetheless, usually b0 is not available and one has at disposal only a
noisy data b. As a consequence, a little perturbation in the data is amplified in the final solution.
This phenomenon determines the ill-posedness of the image restoration problem - because of
the lack of continuous dependence on the data - and makes necessary the design of different
methods to recover u.
By means of standard quadrature formulas, the integral in (2.7) can be discretized thus leading
to the discrete degradation model in (2.6). In particular, will refer to K ∈ Rr×n as the blur
matrix. Typically, K is a square matrix - when r = n - or a wide matrix - when r < n, that is
the case of an under-determined system.
The blur matrix K is typically a large and sparse matrix. Based on linear algebra considerations,
the previous discussion can be interpreted in terms of the spectral properties of K, that can be
decomposed via singular value decomposition (SVD) as

K = W Λ VT ,W ∈ Rr×r , Λ ∈ Rr×n , V ∈ Rn×n ,

where W and V are orthonormal matrices, and Λ is a diagonal matrix in case K being square,
and as close as possible to a diagonal matrix in case K being wide. In formulas,

Λ =


λ1 . . . 0

. . .
0 . . . λn

 if r = n and Λ =


λ1 . . . 0 0 . . . 0

. . . 0 0 . . . 0
0 . . . λr 0 . . . 0

 if r < n ,

with λ1 ≥ λ2 ≥ . . . ≥ λmin{n,r} ≥ 0 denoting the singular values of K. We can thus define
the condition number κ as the ratio between the largest and the smallest singular value, i.e.
κ := λ1/λn. The magnitude of κ is usually taken as an indicator of the ill-conditioning of the
matrix: the larger κ, the more likely K will be singular. When K is square and non-singular,
we can define K−1, whose SVD is inherited from the SVD of K. Namely,

K−1 = V Λ−1 WT . (2.8)

More in general, when K is not invertible, we can still consider the Moore-Penrose or pseudo-
inverse matrix K† and introduce its SVD. Starting from (2.8), one may thus think to solve the
linear system

Ku = b0 ,

by simply inverting K, i.e.

u = K−1 b0 = V Λ−1 WT b0 =
n∑
i=1

wTi b0
λi

vi ,

with wi, vi denoting the i-th column of W and V, respectively. Typically, the blur matrix K
presents very small singular values. This property can be interpreted as the discrete counterpart
of the absolute integrability of the blur kernel k arising in continuous settings. Clearly, small
singular values can lead to the amplification of small perturbations in the data. We thus expect
the condition number κ to be very large and K to be very ill-conditioned. As a consequence,
its inversion is not feasible and different strategies must be proposed to address the solution of
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the far from harmless linear system in (2.6).

Beyond the spectral properties of K, the structure of the blur matrix is determined by the
property of the continuous kernel k and by the fixed boundary conditions, the latter expressing
our assumption on the scene outside the acquired image. In fact, formally the blur acts on the
image via a convolution product. This means that on the boundary of the acquisition domain
the PSF overlaps the image border, “falling out” of it. As a consequence, what is outside the
image has an influence on the action of the blur inside the image. In Figure 2.6a, the blue line
represents the boundary of the acquisition domain. The compact support and space-invariant
PSF acts on the top of the boundary, partially outside the image domain. It is clear that, in
order to compute the convolution product, the image outside the blue box, which a priori is
unknown, must be fixed somehow.
Before going on with the description of popular choices of boundary conditions, we recall some
basic linear algebra definitions.

• The matrix A is said to be a Toeplitz matrix if the entries of A are constant on each
diagonal. In formula,

A =



a0 a1 a2 a3 a4

a−1 a0 a1 a2 a3

a−2 a−1 a0 a1 a2

a−3 a−2 a−1 a0 a1

a−4 a−3 a−2 a−1 a0


• The matrix A is said to be a circulant matrix if it is a Toeplitz matrix in which each

row (and column) is a periodic shift of its previous row (and column). Namely,

A =



a0 a1 a2 a3 a4

a4 a0 a1 a2 a3

a3 a4 a0 a1 a2

a2 a3 a4 a0 a1

a1 a2 a3 a4 a0


• The matrix A is said to be a Hankel matrix if its entries are constant on each anti-

diagonal, that is:

A =



a11 a1 a5 a8 a10

a1 a12 a2 a6 a9

a5 a2 a13 a3 a7

a8 a6 a3 a14 a4

a10 a9 a7 a4 a15


One of the simplest way of imposing boundary conditions is to assume the original image to
be 0 outside the image domain Ω. We refer to this choice as adopting zero or homogeneous
Dirichlet boundary conditions. Under the adoption of zero boundary conditions, the matrix K
is a block Toeplitz matrix with Toeplitz blocks. In general, Dirichlet boundary conditions may
result very artificial and lead to black artifacts at the boundary, unless the original image is
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(a) (b) (c) (d)

Figure 2.6: Original image with acquisition domain delimited by a blue line and PSF acting on
the boundary (a); zero-Dirichlet (b), periodic (c) and reflective boundary conditions (d).

naturally embedded in a black background.
Alternatively, one can think at u as infinitely repeating itself and periodic boundary conditions
can be set. The blur matrix K corresponding to periodic boundary conditions is a block circulant
matrix with circulant blocks. In this case, K can be diagonalized as follows

K = FHF∗ , (2.9)

where H is a diagonal matrix, F is the 2D Fourier transform matrix and F∗ is its adjoint. In the
following, it will be made clear how, on the algorithmic side, computations can take advantage of
property (2.9). Another choice consists in requiring the image u to have zero normal derivative
at the boundary, that is the case of Neumann homogeneous or reflective boundary conditions,
leading to a blur matrix K which is a Toeplitz-plus-Hankel matrix with Toeplitz-plus-Hankel
blocks and satisfying a property similar to the one in (2.9). Namely,

K = CHCT ,

where H, as before, is a diagonal matrix, and C is the 2D cosine transform matrix.
In Figures 2.6b-2.6d, we show how the north-west corner of the image in Figure 2.6a appears
under the adoption of the mentioned boundary conditions. Besides the revised cases, we also cite
other possible choices of boundary conditions more recently introduced, as the anti-reflective
boundary conditions [38] and the synthetic boundary conditions [69]. We remark that the choice
of suitable boundary conditions is far from being a negligible issue, since it may have a drastic
influence on the quality of the restored image.



Chapter 3

The art of regularizing

In Chapter 2, the compactness of the blur kernel k, in continuous settings, and the ill-conditioning
of the blur matrix K, in discrete settings, are two sides of the same coin explaining the insta-
bility of the image restoration problem. As a paradigm in this framework, we recall the linear
inverse problem we are interested in:

find u ∈ Rn such that b = b0 + e , b0 = Ku , (3.1)

with b, b0, e ∈ Rn and K ∈ Rn×n. The process of replacing the original unstable and ill-posed
problem with a nearby well-posed one goes under the name of regularization.
As already recalled in Section 2.3, the presence in the spectrum of K of relatively small singular
values, may lead to a highly perturbed naive solution

u∗ = K−1 b = V Λ−1 WT b =
n∑
i=1

wTi b

λi
vi .

To overcome this issue, the rank-1 matrices corresponding to the smallest singular values can
be neglected, thus leading to

u∗ = K̃−1 b = V Λ−1 WT b =
h∑
i=1

wTi b

λi
vi ,

with λ1, . . . , λh ∈ R+ being the h larger singular values in the spectrum of K. This strategy
goes under the name of truncated singular value decomposition (TSVD) [82] and it belongs
to the wider class of spectral filtering methods. The approximated, or filtered, solution of the
inverse problem in (3.1) via spectral filtering methods is given by

u∗ =
n∑
i=1

φi
wTi b

λi
vi , (3.2)

where φi are also referred to as filter factors. For the TSVD, they take the form

φi =
{

1 if i ≤ h
0 otherwise

.

Another popular choice for the filter factors is given by

φi = λ2
i

λ2
i + α

, with α > 0 . (3.3)
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It is easy to show - see [83] for more details - that under the adoption of (3.3), the filtered
solution (3.2) corresponds to the solution of the following minimization problem

u∗ = arg min
u∈Rn

{
‖Ku− b‖22 + α‖u‖22

}
, (3.4)

or, equivalently,

u∗ = arg min
u∈Rn

∥∥∥∥
(

K
√
αIn

)
u−

(
b

0

)∥∥∥∥2

2
.

What is interesting to remark here is that, when looking for the solution of (3.4) instead of
computing (3.2), our perspective is slightly changing. In fact, spectral filtering methods lead
eventually to a modification of the relationship between data and unknown, i.e. between effect
and cause. However, one could alternatively solve the original linear system (3.1) by simulta-
neously penalizing the unwanted solutions. Observe that, when solving problem (3.4), we are
trying to avoid solutions with large norm. It is possible to penalize different features of the final
solution, by simply considering the more general model

u∗ ∈ arg min
u∈Rn

{
‖Ku− b‖22 + α‖Lu‖22

}
, (3.5)

where L is a linear operator, which is set based on the properties that we ask u∗ to satisfy. A
possible choice consists in considering, for instance, the image gradient, that is,

L = D =
(

Dh

Dv

)
∈ R2n×n,

where Dh, Dv ∈ Rn×n are the finite difference matrices discretizing the horizontal and vertical
partial derivative operator, respectively. In case of Dirichlet boundary conditions they are
defined as

Dv = I√n ⊗ B , Dh = B⊗ I√n , with B =


1 0 . . . 0
−1 1 . . . 0

. . .
0 . . . −1 1

 ∈ R
√
n×
√
n, (3.6)

where “⊗” denotes the Kronecker product - note that the matrix B slightly modifies when
different boundary conditions are adopted. The action of the first order differential operator on
u highlights image structures, such as edges or texture, that should be preserved. On the other
hand, D also detects the spikes generated by the noise.
Imposing a penalization on the magnitude of Du will thus encourage solutions with few jumps,
favoring the removal of the corrupting noise. Note that the greater the α, the stronger is the
request of regularity.
Problem (3.5) is known as Tikhonov regularization model and, under certain assumptions, it
admits an unique solution [156, 157, 155]. In particular, the null spaces of K and L must have
trivial intersection, that is null(K) ∩ null(L) = {0n}. Tikhonov model belongs to the class of
variational methods for determining a regularized solution of inverse problems, whose detailed
analysis is addressed in this chapter.



3.1. Variational methods 29

3.1 Variational methods

At the core of variational methods there is the idea of substituting the ill-posed problem (3.1)
with a well-posed one, consisting of the minimization of a cost functional J : Rn → R+. In
formula,

u∗ ∈ arg min
u∈Rn
{J(u) := F(u; K, b) + αR(u)} , (3.7)

where u∗ is an approximation of the solution of the original problem. The regularization pa-
rameter α > 0 controls the trade-off between the two terms and its setting is usually a quite
delicate issue; the functionals F and R are commonly referred to as the data fidelity and the
regularization term, respectively. The F measures the ‘distance’ between the given image b and
u after the action of the operator K with respect to some norm corresponding to the noise
statistics in the data - see, e.g. [150] - while R encodes prior information on the desired image
u (such as its regularity and its sparsity patterns). Here, we are mainly interested in the design
of novel regularization terms with the purpose of driving the restoration taking into account
the local properties of the image.

In the following we are adopting a Bayesian approach for the derivation of variational models,
based on an interpretation of the data fidelity term and of the regularization term coming from
well-defined pdfs. Clearly, we do not necessarily need to invoke a Bayesian framework in order to
write down a generic variational model. That is, for instance, the case of Tikhonov model (3.5)
that has been derived by means of a pure deterministic approach. Nevertheless, the Bayesian
approach provides a rational basis for the choice of the functionals R and F. Moreover, the
adoption of a probabilistic framework allows to highlight the role of our beliefs on the solution
in the design of R. In other words, the art of regularization somehow involves our subjectivity.

3.2 Bayesian formulation

The first fruitful synergy between Bayesian formulation and inverse problems can be traced to
applications in the geophysical field. In particular, a first explicit formalization of this idea
can be found in the seminal works [151, 152]. As surveys extending the topic to other inverse
problems, such as image processing, we mention [102, 101, 29] and [31], where the authors
propose an interesting historical review of the relation between Bayesian approach and inverse
problems.
Recasting the generic image restoration problem into a Bayesian perspective requires to interpret
all unknown quantities involved in the model (3.1) as random variables. The goal here is to find
the distribution of u, combining the information encoded in the observed data b with a priori
beliefs or information that we may have on u.
More specifically, the discrete deterministic model (3.1) takes the following probabilistic form

B = KU + E , (3.8)

where B, U , and E are n-variate random vectors whose realizations are the ones denoted in the
deterministic model as b, u and e, respectively. Observe that here only the realization b of the
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random variable B is actually available and we introduce the pdf related to E

P(e) = P(b−Ku) = P(b | u). (3.9)

We refer to P(b | u) as the likelihood pdf, since it expresses the likelihood of different measure-
ment outcomes with U = u given. In the same fashion, we denote by P(u) the prior pdf of the
random variable U . The update of the prior based on the observed measurement b is given by
the posterior pdf, that is the conditional distribution P(u | b) and is related to the prior and
the likelihood via the Bayes’ formula

P(u | b) = P(b | u) P(u)
P(b) ∝ P(b | u) P(u) ,

where
P(b) =

ˆ
Rn

P(b | u) P(u) du ,

is called the evidence term.
In the following, we first review some popular and widespread choices for prior and likelihood
terms in image restoration. Then, we will focus on how to extract handful information from
the posterior pdf, once that its analytic expression is available.

3.2.1 Likelihoods

The choice of likelihood pdf is strictly connected to the statistical assumptions on the physical
acquisition processes for the problem of interest, that is on the noise in the measurements. Its
derivation is particularly straightforward in the case of additive noise - see (3.9).
Let E be a zero-mean Gaussian random variable, that is the original image is corrupted by a
zero-mean Gaussian noise. In formula, E ∼ N(0,Σ), where the covariance matrix Σ ∈ Rn×n

is a symmetric positive definite with possibly non-zero off-diagonal entries. We denote by θlkh

the possibly matricial parameters involved in the definition of the likelihood term, which in this
case reads as

θlkh = Σ .

When U and E are assumed to be independent random variables, we have

P(b | u, θlkh) =P(b−Ku | θlkh)

= 1
W

exp
(
− 1

2(b−Ku)TΣ−1(b−Ku)
)

= 1
W

exp
(
− 1

2‖S(b−Ku)‖22
)
, (3.10)

where W denotes the normalization constant and the matrix S in (3.10) is the lower-triangular
Cholesky factor of Σ−1, i.e. Σ−1 = STS.
In the specific case of an additive white Gaussian noise (AWGN), introduced in Section 2.2.1,
the covariance matrix Σ is a scaled identity, Σ = σ2In, and the pdf in (3.10) is of the form

P(b | u, θlkh) = 1
W

exp
(
− 1

2σ2 ‖b−Ku‖22
)
. (3.11)
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In this specific case, the parameter θlkh reduces to the standard deviation σ.
Let now e be a realization of a white Laplacian random variable, i.e. E ∼ Laplace(0,Σ), with
Σ = σ2In. The likelihood pdf now reads

P(b | u, θlkh) = 1
W

exp
(
− ‖Ku− b‖1

σ

)
,

where, as before, W is the normalization constant and θlkh = σ.

3.2.2 Priors

A priori assumptions may concern different properties of the image. The challenging aspect of
designing priors is the process of turning qualitative information into quantitative terms. For
instance, if the processed image is known to be piece-wise constant, then, recalling the finite
difference matrices definition in (3.6), we expect the vector with entries

‖(Du)i‖2 =
√

(Dhu)2
i + (Dvu)2

i ,

to be sparse, since it is reasonable to assume such an image to exhibit a few jumps. Consider
the image rectangles in Figure 3.1a and the gradient magnitudes of the pixels represented
in Figure 3.1b. As a further evidence of this, observe that the histogram in 3.1c exhibits a
bi-modal distribution. Clearly, we do not expect the same behavior for the gradient magnitudes
when considering a natural image presenting textures, as for image mandrill in Figure 3.1d. It
is easy to see that the gradient structure is much richer than in the previous case - see Figure
3.1e and Figure 3.1f.
More generally, typical priors for image restoration problems encode information on the distri-
bution of the gray levels within an image and the transition of gray-scale intensities between
different areas of the image. As stated in [76], pixel-gray levels can be viewed as states of atoms
in a lattice-like physical system. In this framework, it is very usual to model the unknown image
as a Markov random field (MRF), that can be basically interpreted as an extension of Markov
processes in more than one dimension. In other words, we ask that a selected feature at the
generic pixel i of u only depends on the behavior of u at pixels belonging to Ci, with Ci being
the index set of neighbors of ui. For instance, if the selected feature is the gray level, the 2-D
Markovian property at pixel i reads

P(Ui = ui | Uj = uj , j 6= i) = P(Ui = ui | Uj = uj , j ∈ Ci). (3.12)

The prior distribution for a MRF is the so-called Gibbs prior

P(u | θpr) = 1
Z

exp
(
−

n∑
i=1

VCri (u; θpr)
)
,

where Z is a normalization constant, VCri is also referred to as the Gibbs potential function
defined on a clique of pixels of radius r centered at pixel i, and θpr denotes the parameter
involved in the expression of the prior.
A very natural choice is to design priors based on the properties that we expect the discrete
gradient of the image Du to satisfy. When adopting a forward finite difference scheme, definition
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: First row. Test image rectangles (a), gradient magnitude (b), histogram of the
gradient magnitudes (c). Second row. Test image mandrill (d), gradient magnitude (e), his-
togram of the gradient magnitudes (f).

Figure 3.2: Pixels represented
as atoms in a lattice. The col-
ored ones belong to the clique
related to red atom. In particu-
lar, the blue atoms are involved
in the computation of the finite
forward difference for the red
atom.

(3.12) turns into

P(Ui = ui | Uj = uj , j 6= i) = P(Ui = ui | Uright = uright , Udown = udown). (3.13)

The configuration of the generic clique corresponding to this case is shown in Figure 3.2.
Condition (3.13) states that the generic Gibbs potential function VCri is defined on a discrete
set of cardinality 3, namely {ui, uright, udown}, which are the values involved in the computation
of the discrete gradient at pixel i. For instance, we may assume

DU = Φ , with Φ ∼ N(0,Γ) , Γ = γ2In. (3.14)
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Condition (3.14) is equivalent to assuming that the vertical and horizontal differences in the
image behave as white Gaussian random variables with standard deviation γ. This can be
expressed also as

P(u | θpr) = 1
Z

exp
(
−

n∑
i=1

1
2 γ2 ‖(Du)i‖22

)
= 1
Z

exp
(
− 1

2 γ2 ‖Du‖
2
2

)
, (3.15)

with θpr = γ. The pdf in (3.15), to which we can also refer as first-order smoothness prior,
is a Gibbs prior with VCri (u) = ‖(Du)i‖22 defined over a clique of radius r = 1. One can start
noticing a connection, that will be made explicit in the next, with the above defined prior and
the Tikhonov regularization term.
Another very popular prior for images modeled as MRF, is the total variation prior. For u ∈ Rn,
we define the isotropic total variation (TVI) as

TVI =
n∑
j=1
‖(Du)j‖2 =

n∑
j=1

√
(Dhu)2

j + (Dvu)2
j . (3.16)

Definition (3.16) can be slightly modified by considering the `1-norm instead of the euclidean
norm, thus getting to the anisotropic total variation (TVA),

TVA =
n∑
j=1
‖(Du)j‖1 =

n∑
j=1
|(Dhu)j |+ |(Dvu)j | .

Setting the Gibbs potential functions as

VCrj (u) = ‖(Du)j‖q , r = 1 , q ∈ {1, 2} , j = 1, ..., n ,

the corresponding TV prior can be expressed as

P(u | θpr) =


1
Z exp

(
− β

n∑
j=1
‖(Du)j‖2

)
= 1

Z exp(−βTVI(u))

1
Z exp

(
− β

n∑
j=1
‖(Du)j‖1

)
= 1

Z exp(−βTVA(u))
, (3.17)

where θpr = β > 0 and the two definitions depend on the isotropic/anisotropic definition of TV
above. In general, better performances are observed when TVI is adopted. Nonetheless, TVA
is a more suitable choice in presence of images presenting edges oriented only along the x and
the y axes. This is mainly due to the properties of the level curves of the two regularization
terms, reported in Figure 3.3. In fact, while the diffusion produced by TVI is the same in every
direction of the xy cartesian plane, the choice of TVA produces a more concentrated diffusion
along the axes. A key observation for the following discussion is that, as already highlighted
in [111], the adoption of a TVI prior and of a TVA prior, is equivalent to assuming that the
`2-norm and the `1-norm of the gradients of the image, respectively, distribute according to
an exponential or half-Laplacian distribution with scale parameter β. In fact, the pdf of an
univariate half-Laplacian random variable X takes the form

P(x) =
{
β exp (−βx) if x > 0 ,

0 otherwise
. (3.18)
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(a) (b)

Figure 3.3: Level curve of TVI (a) and TVA (b) regularization term.

Clearly, one could have at disposal information about the image or about its representation in
a given basis, rather than about its gradient structure. For instance, in the case of a sparse
signal, the pixels are all assumed to be close to 0, hence they can be modeled as independent
zero-mean Gaussian random variables. In particular, the potential functions VCri takes the form

VCri = u2
i

2γ2 , with r = 1 ,

and the corresponding Gibbs’ prior becomes

P(u | θpr) = 1
Z

exp
(
−

n∑
i=1

u2
i

2γ2

)
= 1
Z

exp
(
− 1

2γ2 ‖u‖
2
2

)
,

where θpr = γ and Z is the normalization constant. Adopting a white Gaussian prior as the
one in (3.2.2) is equivalent to set a Tikhonov prior on the image rather than on the magnitude
of its gradient. Analogously, one could set

VCri = β|ui| , with r = 1 ,

thus getting the `1-prior,

P(u | θpr) = 1
Z

exp
(
−

n∑
i=1

β|ui|
)

= 1
Z

exp (−β‖u‖1) ,

which is closely related to the TV prior.

3.2.3 Handling the posterior: MAP and CM single point estimates

Once both prior and likelihood terms have been set, based on reasonable assumptions on the
image and on the information available on the noise, respectively, Bayes’ formula is applied in
order to recover an expression for the posterior distribution. It is worth emphasizing here that
the goal of variational models, whose generic expression is given in (3.7), is to find an estimate
u∗ as accurate as possible of the original image u. In the Bayesian perspective, the solution
is not a single point estimate but a posterior probability distribution P(u | b). Therefore, the
main issue here is how to extract a single-point meaningful information from the posterior. To
this purpose, a popular choice is to use the mode of the posterior as a representative of the
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distribution. In other words, we are interested in finding the image u maximizing the posterior,
and thus presenting the highest occurrence probability. This procedure is known as Maximum
A Posterior (MAP) estimation approach. In the following, we are dropping off the dependence
from the parameters θlkh and θpr in order to avoid heavy notations. In formula,

uMAP ∈ arg max
u∈Rn

P(u | b) ∝ P(b | u)P(u) (3.19)

Note that the evidence term P(b) term in the Bayes’ formula can be omitted since the mini-
mization is with respect to u. Applying the negative logarithm to (3.19), we have

uMAP ∈ arg min
u∈Rn

{− log P(b | u)− log P(u)} , (3.20)

hence, the problem of finding the MAP single point estimate turns out to be an optimization
problem that, in several cases, ends up to be of the form of the generic variational model (3.7), as
we are going to show later. This is the reason why the Bayesian formulation is typically used as
a supporting machinery for the generation of new variational models. It must be remarked that
the solution of problem (3.20) may not exist or, if existing, it may not be unique. Nevertheless,
when the solution exists and it is unique, fast and robust optimization algorithm can be adopted
to address the minimization problem.
Instead of looking for the mode of the posterior distribution, a different single point estimate,
which is in general more informative than the MAP estimate, can be considered, namely the
conditional mean (CM), that is the mean of the posterior distribution P(u | b):

uCM =
ˆ
Rn
uP(u | b)du =

ˆ
Rn
u

P(b | u)P(u)
P(b) du . (3.21)

In order to quantify the precision of such estimate, one can explore the spread around the CM
value, by computing the covariance matrix

ΓCM =
ˆ
Rn

(u− uCM )(u− uCM )T P(b | u)P(u)
P(b) du. (3.22)

In very high dimensional settings, quadrature rules to compute the integrals in (3.21)-(3.22) can
not be applied, and one has to resort to other techniques, such as Markov Chain Monte Carlo
(MCMC) methods, in order to sample from the posterior and then computing both mean and
covariance matrix - notice that an additional issue is the computation of the evidence term P(b)
term that here, unlike in the MAP case, can not be omitted. Nonetheless, sampling methods
are usually very expensive in terms of computational costs.
In general, the MAP and the CM estimates are different. So, one has to make a choice between
the level of trust we put in the estimate and the algorithmic issues to face, keeping always
in mind that, independently from the final choice, approximating a whole distribution with a
single point estimate unavoidably leads to a loss of information.
As suggested from the mentioned parallelism between Bayesian approach and variational meth-
ods, here we summarize the posterior in terms of the the MAP estimate.
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3.2.4 Parameter dependence

It is clear that the choice of the parameters θlkh and θpr has a remarkable influence on the
distribution used to describe either the information available on the data or the assumption
stated on the unknown. Typically, the parameters θlkh involved in the analytical expression
of the likelihood term are related to the noise level, that here is assumed to be known - see
Section 3.4 - as in the case of the standard deviation σ in the definition of AWGN pdf (3.11).
On the contrary, the presence of possibly unknown parameters in the expression of the prior
pdf is a matter that is worth investigating. For instance, an interesting issue is how to set the
parameters θpr = γ and θpr = β in the Tikhonov (3.15) and TV prior (3.17), respectively, in
order to enforce the smoothness or the sparsity of the magnitude of the gradients in a way that
is in agreement with the properties of the original and unknown image u. A substantial part
of the thesis will be devoted to answering this question. For the moment, we start outlining
the main strategies that will be adopted in the following. We remark that, in general, we are
dealing with a vector of unknown parameters θpr ∈ Rq.

(i) In the absence of any intuition about the meaning of the vector θpr, a naive strategy
consists of tuning its entries manually. In general, this should be avoided, in particular
for q � 1.

(ii) In the case θpr being a scalar, it can be automatically estimated by imposing a constraint
on the set of the admissible solutions - see Section 3.3-3.4.

(iii) Alternatively, the unknown vector θpr can be modeled as a random variable Θpr, resort-
ing to the same approach already adopted for the unknown image u. This layering in
the process of knowledge acquisition is at the core of hierarchical modeling. We can thus
introduce a prior pdf P(θpr), also known as hyperprior, on the random variable Θpr. The
unknown to be estimated is now the coupled vector (u, θpr), and the joint prior takes
the form:

P(u, θpr) = P(u | θpr)P(θpr) .

Consequently, the MAP estimation problem reads as

(u∗, θ∗pr) ∈ arg max
(u,θpr)∈Rn×Rq

P(u, θpr | b)

= arg max
(u,θpr)∈Rn×Rq

{P(u, θpr)P(b | u, θpr)
P(b)

}
= arg max

(u,θpr)∈Rn×Rq
{P(u | θpr)P(θpr)P(b | u)}

= arg min
(u,θpr)∈Rn×Rq

{− log P(u | θpr)− log P(θpr)− log P(b | u)} , (3.23)

where

P(b | u, θpr) = P(b | u)

due to the conditional independence of the random variables B and Θpr given U . In this
thesis, problem (3.23) is addressed by resorting to iterative alternating sequential (IAS)
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algorithm [28]. Setting t ∈ N and providing an initialization for u(0) at t = 0, we have

θ(t)
pr ∈ arg min

θpr∈Cpr

{
− log P(u(t−1) | θpr)− log P(θpr)

}
, (3.24)

u(t) ∈ arg min
u∈Rn

{
− log P(u | θ(t)

pr )− log P(b | u)
}
, (3.25)

where Cpr ⊆ Rq is the eventual constraint set for the minimization problem with respect
to θpr. Observe that in case Cpr = Rq, the minimization problem (3.24) is unconstrained.
The IAS algorithm can be further detailed in two sub-cases:

(a) when an intuition on the behavior of θpr is not available, the hyperprior P(θpr)
can be set in order to be non-informative. To this aim, an uniform distribution
for the random variable Θpr is fixed:

P(θpr) =


1

µ(Cpr) , if θpr ∈ Cpr

0 , otherwise
,

where µ(Cpr) is the measure of the set Cpr. Moreover, assuming an uniform
distribution, the constrained minimization problem simplifies to

θ(t)
pr ∈ arg min

θpr∈Cpr

{
− log P(u(t−1) | θpr)

}
.

(b) In presence of crucial and sensible information available on θpr, an informative
prior can also be adopted. In this case, the alternating minimization scheme is
implemented as it stands in (3.24)-(3.25).

3.3 Deriving Tikhonov-L2 and TV-L2 models via MAP

We now look into the derivation of three variational models via Bayesian approach and MAP
estimation. Starting from the linear degradation model (3.8), let the random variable E model
an AWGN, i.e. E ∼ N(0, σ2In). Subsequently, as already observed in Section 3.2.1, the param-
eter in the expression of the likelihood term will simply be θlkh = σ.
First, we set a first-order smoothness prior (3.15) for U . We recall that, in this case, θpr = γ.
Neglecting the normalization constants, we have

P(u | b) ∝ P(u | θpr) P(b | u, θlkh)

= exp
(
− 1

2γ2

n∑
i=1
‖(Du)i‖22

)
exp

(
− 1

2σ2 ‖Ku− b‖
2
2

)

= exp
(
−
{ 1

2γ2

n∑
i=1
‖(Du)i‖22 + 1

2σ2 ‖Ku− b‖
2
2

})

= exp
(
−
{
α

n∑
i=1
‖(Du)i‖22 + 1

2‖Ku− b‖
2
2

})
, (3.26)

with α = σ2/(2 γ2). By plugging (3.26) in (3.19) and taking the negative logarithm, it follows
that

u∗ ∈ arg min
u∈Rn

{
α

n∑
i=1
‖(Du)i‖22 + 1

2‖Ku− b‖
2
2

}
, (3.27)
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that is the solution of the Tikhonov model (3.5) introduced previously.
As a second example, we consider the TV prior. In this case, θpr = β, and the posterior density
takes the form

P(u | b) ∝ P(u | θpr) P(b | u, θlkh)

= exp
(
− β

n∑
i=1
‖(Du)i‖2

)
exp

(
− 1

2σ2 ‖Ku− b‖
2
2

)

= exp
(
−
{
β

n∑
i=1
‖(Du)i‖2 + 1

2σ2 ‖Ku− b‖
2
2

})

= exp
(
−
{
α

n∑
i=1
‖(Du)i‖2 + 1

2‖Ku− b‖
2
2

})
, (3.28)

with α = β σ2. By plugging (3.28) in (3.19) and taking the negative logarithm, we end up with

u∗ ∈ arg min
u∈Rn

{
α

n∑
i=1
‖(Du)i‖2 + 1

2‖Ku− b‖
2
2

}
, (3.29)

that is the popular TV-L2 or TV-ROF model [137].
For the sake of completeness, we present the derivation of the variational model corresponding
to the choice of the TVA prior. We have

P(u | b) ∝ P(u | θpr) P(b | u, θlkh)

= exp
(
− β

n∑
i=1
‖(Du)i‖1

)
exp

(
− 1

2σ2 ‖Ku− b‖
2
2

)

= exp
(
−
{
β

n∑
i=1
‖(Du)i‖1 + 1

2σ2 ‖Ku− b‖
2
2

})

= exp
(
−
{
α

n∑
i=1
‖(Du)i‖1 + 1

2‖Ku− b‖
2
2

})
,

and the TVA-L2 variational model reads as

u∗ ∈ arg min
u∈Rn

{
α

n∑
i=1
‖(Du)i‖1 + 1

2‖Ku− b‖
2
2

}
,

where, again, α = βσ2. The three models derived in this section, are of the form

u∗ ∈ arg min
u∈Rn

{
αR(u) + 1

2‖Ku− b‖
2
2

}
, (3.30)

with
R(u) =

n∑
i=1
‖(Du)i‖22 , R(u) =

n∑
i=1
‖(Du)i‖2 , or R(u) =

n∑
i=1
‖(Du)i‖1,

depending on the case. Notice that model (3.30) can be reformulated equivalently as

u∗ ∈ arg min
u∈Rn

{
R(u) + µ

2 ‖Ku− b‖
2
2

}
,

with µ = 1/α playing, as well as α, the role of the regularization parameter, since it balances
the contribution of fidelity and regularization term in the functional.



3.4. Automatic estimation of the global regularization parameter 39

We remark that while the number of free parameters for each model is equal to 2, one coming
from the likelihood term - namely, the standard deviation σ - and one coming from the prior
term - i.e. γ for Tikhonov and β for TV, when setting

α = σ2

2γ2 or equivalently µ = 2γ2

σ2 for Tikhonov,
α = βσ2 or equivalently µ = 1

βσ2 for TV,

the 2 degrees of freedom reduces to 1. In Section 3.4, we will give some details on how the single
global parameter α, or µ, can be estimated solely from the information available on the noise.

Example In order to explore the influence of the prior on the final restoration and to make
clear how to set a reasonable prior based on the information available on the image, we compare
the performance of the above derived models (3.27) and (3.29) on the restorations of two test
images, namely square in Figure 3.4a and sinusoid in Figure 3.4e, with different properties:
square is a typical blocky image, with a sparse gradient structure, while sinusoid is charac-
terized by smooth gradients. The images have been corrupted by Gaussian blur and AWGN -
see Figure 3.4b and Figure 3.4f, respectively. For the moment, we do not test the performance
of the TVA-L2 model because we want to highlight the influence of different assumptions on
the gradients magnitude, while the TVI and TVA priors behave very similarly from this point
of view.
The minimizers u∗ of the Tikhonov and of the TVI variational models coupled with L2 fidelity
term are computed via Alternating Direction Method of multipliers (ADMM) [14] - see Ap-
pendix B. The regularization parameter α has been set so as to fulfill the discrepancy principle
[117] - more details about this will be given in the next section.
The restorations of square for the Tikhonov and the TVI model are shown in Figure 3.4d and
Figure 3.4c, respectively. The choice of a TVI prior is more reasonable and produces sharper
edges, while the restorations via Tikhonov model appears still blurred since the corresponding
prior does not naturally describe sparse gradient structures. On the other hand, the Tikhonov
prior is more suitable to describe images such as the test image sinusoid - see Figure 3.4h -
for which TVI is not capable of preserving the richness of the gradient structure. The main
drawback of the TVI is the staircase effect, due to the tendency of TVI prior to promote piece-
wise constant images; this typical downside that TVI regularization brings along will be more
deeply investigated in the next chapter.

3.4 Automatic estimation of the global regularization parame-
ter

A substantial literature related to inverse problems in imaging has been devoted to the derivation
of methods for automatically tuning the regularization parameter α - or, equivalently, µ. Overall,
those methods can be divided into two classes:

1. methods relying on the noise level, that can be either known or accurately estimated;

2. methods exploiting only the information encoded in the data b.
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(a) Original (b) Observed (c) TV (d) Tikhonov

(e) Original (f) Observed (g) TV (h) Tikhonov

Figure 3.4: First row. Test image square (a), observed image (b), TVI restoration (c), Tikhonov
restoration (d) Second row. Test image sinusoid (e), observed image (f), TV restoration (g),
Tikhonov restoration (h).

Typically, we refer to methods belonging to the second class as heuristic methods. Among the
heuristic methods, we mention the Generalized Cross Validation (GCV) [52] and the L-curve
method [22, 84]. Denoting by u∗α the solution of the variational model corresponding to a fixed
choice of α, the GCV choses the values of the regularization parameter that satisfies

α∗ ∈ arg min
α∈R+

‖Ku∗α − b‖22 .

Letting R denote the generic regularization term, the L-curve is defined as the plot of the norm
of the regularized solution ‖R (u∗α)‖2 versus the corresponding residual norm ‖Ku∗α − b‖2. The
regularization parameter is thus set as the one realizing a corner in the L-curve.
Both methods bring along some downsides, such as, just to name a few, the existence of a corner
in the L-curve and the feasibility of the computations in the GCV, especially when dealing with
large-scale problems - see [68] for a more extensive discussion - and non-quadratic regularizers.
A plethora of literature has been focused on developing strategies to overcome the limitations
of these classical methods [70, 128, 95, 134, 16].
As far as the methods exploiting the information available on the noise level are concerned, when
the corrupting noise is Gaussian, i.e. in the variational model a `2 fidelity term is adopted,
a classical approach is Morozov discrepancy principle [117]. At the core of the discrepancy
principle there is the idea that, typically, no benefit is expected when the problem is solved
more accurately than the accuracy in the data. Let the corrupting noise vector e ∈ Rn be a
realization drawn from a random variable E ∼ N(0, σ2In). Observing that

E
(
‖e‖22

)
= E

(
n∑
i=1

e2
i

)
= trace

(
E
(
eeT

))
= trace

(
σ2In

)
= σ2n ,

the noise level can be estimated as √
E(‖e‖22) = σ

√
n .
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The discrepancy principle thus consists in looking for a solution u belonging to the discrepancy
set, defined as

D :=
{
u ∈ Rn | ‖Ku− b‖2 < δ = τσ

√
n
}
,

where σ
√
n is the noise level and τ ≈ 1 is a parameter avoiding the under-estimation - for τ > 1

- and the over-estimation - for τ < 1 - of the noise. Theoretically, δ is an upper bound for
the noise level, hence one should only consider τ > 1. Nevertheless, it has been observed that,
in some circumstances, considering τ slightly less than 1 can improve the quality of the final
restoration. More results in this direction will be given in Chapter 5.
In the numerical examples of Section 3.3 we have adopted the discrepancy principle with τ = 1.
More specifically, the estimation of the regularization parameter has been carried out via the
adaptive parameter estimation (APE) procedure proposed in [89]. Due to its wide use in the
computational aspects of Part II, APE strategy will be discussed in details in the following
chapters.

3.5 Analysis versus synthesis

In Chapter 1, we mentioned that we will consider an analysis approach in Part II, while in Part
III a synthesis framework will be adopted. Here we present a brief outline of the two approaches;
further details and comparisons can be found in [61, 71].
In general, the priors introduced above encode information related to the action of an operator,
namely the finite difference operator D on the image u. Mathematically,

P(u | θpr) = f(Du; θpr) ,

where f : Rn → R is a scalar function parametrically depending on θpr. According to this
notation, the MAP estimation can be written as

(u∗, θ∗pr) ∈ arg min
(u,θpr)∈Rn×Rq

{− log P(b | u)− log P(θpr)− log f(Lu; θpr)} , (3.31)

for the generic operator L. In particular, L is known as an analysis operator, from which the
name MAP-analysis estimation - see [67] - to refer to the problem stated in (3.31).
Alternatively, the image u can be modeled as a combination of atom signals, i.e.

u = Tz , T ∈ Rn×h, z ∈ Rh ,

where T is a chosen basis and z is the vector of coefficients representing u in the basis given by
the columns of T. In this case, one can exploit the information available on z. In other words,
the prior takes the form

P(u | θpr) = g(z; θpr) ,

with g : Rh → R. Hence, the MAP estimate, also known as MAP-synthesis estimate, becomes

(z∗, θ∗pr) ∈ arg min
(z,θpr)∈Rh×Rq

{− log P(b | z, θpr)− log P(θpr)− log g(z; θpr)} .

The two approaches are equivalent when L is invertible and T = L−1. A detailed study of
the equivalence between MAP-analysis and MAP-synthesis in the one-dimensional case in more
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general settings is given in [67], where the authors also remark that neither approach is better
than the other, rather they are successful on different sets of signals.



Chapter 4

TV and sparse regularization: a
closer look

In this chapter, we will discuss the motivations at the core of our proposal, that, as already
remarked in the preamble, is twofold. First, we will review some of the downsides of TV,
which make necessary the introduction of novel regularizers holding the potential to distinguish
between local sparsity patterns of different nature in the gradient structure. TV regularization
shares its conceptual limitations with all the other regularizers existing in literature exhibiting
space-invariance and blindness to directionality, i.e. the inability to drive the regularization
along dominant orientations in the image. Hence, the strategies proposed in the next chapters
could be applied to improve the performances of other regularization terms, such as higher-order
regularizers, e.g. total generalized variation (TGV) [15], infimal-convolution total variation [43]
or the TV-TV2 proposed in [123].
Then, we are giving a closer look to the classical literature on sparse recovery, that is heavily
based on the adoption of `1-penalty terms. We will discuss the benefits and the limitations of this
approach, the latter motivating the growing interest in non-convex regularization. Moreover,
the advantages of considering a Bayesian framework instead of a strictly deterministic one will
be also explored.

4.1 A TV anamnesis

Since its introduction in 1992, the TVI-L2 model [137], which reads

u∗ ∈ arg min
u∈Rn

{
α

n∑
i=1
‖(Du)i‖2 + 1

2‖Ku− b‖
2
2

}
, (4.1)

has started a new very active field of research, aimed at studying both analytical properties and
computational challenges, and at characterizing its solutions. Most of the results found in the
literature concern the continuous model. Consider u ∈ L1(Ω), with Ω regular domain in R2.
The total variation of the function u is defined as

TV(u) = sup
{ˆ

Ω
u∇ · v such that v ∈ C1

c(Ω,R2) and v(x) ∈ B2(0) ,∀x ∈ Ω
}
, (4.2)
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where B2(0) is the closed Euclidean unit ball centered at the origin [5]. In particular, for
u ∈W 1,1(Ω), definition (4.2) can be expressed as

TV(u) =
ˆ

Ω
‖∇u‖2 dΩ .

It is worth remarking here that, when TV(u) < ∞, u is a bounded variation function, thus
belonging to BV(Ω) and

TV(u) = |Du|(Ω) ,

where |Du| is the total variation measure of the distributional gradient of u. The continuous
TV-L2 model can be written as

u∗ ∈ arg min
u∈BV(Ω)

{
αTV(u) + 1

2‖Ku− b‖
2
L2(Ω)

}
, (4.3)

whose well-posedness has been proved by Acar and Vogel in [2]. The TV prior is well suited
to describe discontinuities in images and it is particularly effective in the case of piece-wise
constant structures. In fact, in [5] the authors show that the solution u∗ ∈ BV(Ω) of problem
(4.3) is a bounded variation function whose gradient is the sum of an absolutely continuous part
and of a singular part, the latter allowing for jumps in the final restoration.
Moving from the continuous to the discrete formulation, a discretization strategy for the gradient
must be fixed. Many efforts have been made to propose finite difference schemes ensuring that
the analytical properties of the continuous model are satisfied in discrete settings also - see, e.g,
[160, 42, 51]. Here, we will not comment on the advantages of such sophisticated schemes and
consider the forward finite difference scheme described in (3.6), that has been used in a plethora
of works since it allows to extend the adjointness of the gradient operator with the divergence
operator from continuous to discrete settings. In fact, the discrete divergence operator is given
by the backward finite difference scheme [41].

Let us consider some typical artifacts encountered under the adoption of a TVI regularizer.
To fix the ideas, we perform the TVI denoising on a one-dimensional signal. In Figure 4.1a, a
test signal presenting both piece-wise constant and linear features is shown, while the observed
noisy signal is displayed in Figure 4.1b. Finally, the signal u∗ found by solving (4.1) is plotted in
Figure 4.1c and compared with the original one. A common side effect of TVI is the mismatching
between u∗ and the baseline of the original signal, which here mainly arises in the flat region;
in other words, TVI often leads to a loss of contrast in the final restoration. Moreover, the
restoration of the smooth part of the signal exhibits a staircasing effect, which reflects the
tendency of TVI to promote blocky structures; staircasing has been widely studied, for example,
in [120, 39, 135, 99].
When moving from 1D signals to images, the issues to address are the same, and an additional
one arises. Consider the piece-wise constant test image rectangles in Figure 4.2, which has
been sythetically corrupted by Gaussian blur with parameters band=5 and width=1 and AWGN
with standard deviation σ = 0.15 - see Figure 4.2b. Even if the distortion induced by the blur
is rather mild, the restored image in Figure 4.2c presents rounded corners, which is a typical
drawback when using TVI for the restoration of 2D signals. The effect is clearly visible in the
absolute error image shown in Figure 4.2d.
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Figure 4.1: Original signal (a), noisy signal (b) and restored signal (c).

(a) (b) (c) (d)

Figure 4.2: Original test image (a), observed image corrupted by Gaussian blur with band=5
and width=1 and AWGN with standard deviation σ = 0.15 (b), restoration via TVI-L2 (c),
absolute error (d).

In addition to the discussed unwanted effects already mentioned, the TVI regularizer suffers
from additional shortcomings, including the fact that it is global or space-invariant, i.e. its
functional shape and the local amount of regularization take the same form at each pixel,
without matching local image properties and structures. Furthermore, it does not adapt easily
to situations where clear local directional texture or edges may appear.
The visual and conceptual shortcomings of TVI reinforces the need for introducing regularization
terms able to model in a more flexible way the image features and, consequently, to adopt a
specific type of regularization for each feature. In order to give a glimpse of the possible benefits
of this kind of approach, we consider the TVA regularization term and test its performance on
a test image, namely qrcode in Figure 4.3a, presenting edges oriented along the x and y axes.
As remarked in Section 3.2.2, the TVI regularizer does not present any preferred diffusion
direction due to its circular level curves, while this is not the case of the TVA regularizer, from
which we expect a particularly effective regularization along the axes. This property makes the
TVA-L2 model more suitable for the restoration of qrcode. Figure 4.3b shows the observed
image b corrupted by Gaussian blur of band = 13 and width = 3, and AWGN with standard
deviation σ = 0.07. We compute the solution of both models by means of the ADMM algorithm.
The corresponding restorations are shown in Figure 4.3c and Figure 4.3d, respectively. Not
surprisingly, the corners in the solution via TVI-L2 are rounded, whereas the TVA-L2 model
returns an image with sharper corners and edges. The improvement achieved by considering
the anisotropic model is clear even by visual inspection.
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(a) (b) (c) (d)

Figure 4.3: Original test image qrcode (a), image corrupted by Gaussian blur of parameters
band = 13 and width = 3 and AWGN with standard deviation σ = 0.07 (b), restoration via
TVI-L2 (c), restoration via TVA-L2 (d).

Nevertheless, it is worth remarking at this point that, in general, the limitations arising for the
TVI regularizer, also arise for TVA. From now on, we are using the simplified acronym TV to
denote the isotropic total variation regularization term.

The last example motivates the need of including directional information in the design of
the regularizer. As we mentioned earlier, the global nature of TV can prevent from obtaining
high quality restorations. In fact, the presence of a single parameter α in the TV-L2 model
produces a homogeneous regularization that is expected to favor some regions of the image
while disadvantaging others. This can be clearly observed in Figure 4.4, where we compare
the distribution of the `2-norm of the gradients in the whole test image skyscraper and in
two sub-regions characterized by different properties, namely a constant region and a region
presenting texture. We recall again that the adoption of the TV regularizer is equivalent to
assume that the `2-norm of the gradients in the image follows a half-Laplacian (hL) distribution
- see (3.18). The green solid line thus represents the half-Laplacian distribution that best fits
the global histogram and it is super-imposed to the local histograms. It is clear how a global
representation does not return a sufficient accurate approximation of the local distributions.

Remark 1. In Figure 4.4, the pdfs fitting the histograms behaves as a zero-mean half Laplacian
distribution. This is an admissible approximation when considering the global histogram in
Figure 4.4b, since the samples are highly concentrated around zero. When going from a global
to a local perspective, we do not lose any information when the selected region is a constant
one - see Figure 4.4e. On the other hand, on texture regions, we do not expect the mass of the
distribution to be close to zero and the approximation looks less accurate than in the previous
cases. In spite of these observations, in the following we will only zero-mean distributions to
model the global and local behavior of the gradients and of their magnitudes. Preliminary tests
have shown that the heavy tail of the half-Laplacian distribution coupled with a non-zero mean
may lead to inconsistent results. A more detailed analysis will be object of future research.

Many contributions have been devoted to develop strategies for overcoming the limitations of
TV regularization. As far as the staircasing problem is concerned, generalizations of TV based
on higher order regularization have been proposed, e.g. TGV [15] and ICTV [43].
Keeping the focus on first order regularizers, in [111] the authors remark that the hL distribution,
which is strictly related to the TV regularizer, is characterized by a single free-parameter, namely
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(a) (b) Global histogram (c) close up

(d) constant region (e) local histogram (f) close up

(g) texture region (h) local histogram (i) close up

Figure 4.4: From top to bottom: histogram of the gradient magnitudes on the whole test image,
on a constant region and on a texture region, with the corresponding close-up(s).

the scale parameter β, which, by itself, is not sufficient to model the gradient structure of a
generic image. They thus assume that the `2-norm of the gradients distribute according to a
two-parameter half-Generalized Gaussian (hGG) distribution, leading to the TVp regularization
term

TVp =
n∑
i=1

β‖(Du)i‖p2 ,

where β is the scale parameter of the distribution and p is the additional shape parameter. Both
of them can be automatically estimated [144].
When a dominant global direction is detected in the image, the directional total variation
(DTV) is a natural choice. The discrete definition of DTV has been first proposed in [11] and
subsequently in [103] it has been extended to continuous settings to generalize the definition of
TV given in (4.2). Formally,

DTV(u) = sup
{ˆ

Ω
u∇ · v such that v ∈ C1

c(Ω,R2) and v(x) ∈ Ea,θ(0) , ∀x ∈ Ω
}
,

where Ea,θ(0) is an ellipse centered at 0 with minor semi-axes of length a and forming an angle
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θ with the x-axis. In [125], the directional approach is also extended to TGV.
From the local perspective, many contributions have been proposed, especially in continuous
settings. In [58], a TV-L2 model equipped with space-variant regularization parameters esti-
mated based on a local discrepancy principle, has been introduced. In the same fashion, local
regularization parameters can be estimated via computationally expensive bilevel-optimization
approaches, as suggested in [92, 93, 49].
Among the PDE approaches for image restoration, a reference model based on anisotropic
diffusion can be formulated as the following Cauchy problem

ut = div (Wλ,θ∇u) on Ω× [0,∞) ,

u(x, 0) = f(x) on Ω ,

〈Wλ,θ∇u,n〉 = 0 on ∂Ω× [0, T )

where n stands for the outward normal vector on ∂Ω, Ω is endowed with Neumann boundary
conditions and Wλ,θ is a symmetric and positive semidefinite anisotropic tensor. The tensor
Wλ,θ classically related to a structure-tensor modeling as in [159, 136, 140] or can stand for
space-dependent diffusivity matrix which can introduce non-linearities in the model [161]. In
search of additional benefits of a space-variant approach, in [48, 112] regularizers of the form

Rp(·)(u) :=
ˆ

Ω

1
p(x) |∇u(x)|p(x) dx,

have been considered, where the exponent function p : Ω→ [1, 2] is defined for every x ∈ Ω via
the following explicit formula.

p(x) = 1 + 1
1 + k|Gς ∗ ∇g(x)| , ς, k > 0,

where Gς is a convolution kernel of parameter ς and g is the given corrupted image.

4.2 Sparse recovery: from `1 to non-convex regularization

Let u ∈ Rn be the unknown image in the restoration problem and consider the matrix W ∈
Rn×n, whose columns form an orthonormal basis. We assume u to admit a sparse representation
in the basis given by the columns of W, i.e.

u = Wψ , ψ ∈ Rn and ψ is sparse .

The sparse recovery problem is the task of restoring the signal u starting from a corrupted and
possibly down-sampled observation. In the case of a linear inverse problem, it can be expressed
as:

find u ∈ Rn such that b = Aψ + e , A = KW ∈ Rm×n , m ≤ n

where A is the linear forward model operator. Moreover, in this framework, we refer to K ∈
Rm×n, as the measurement operator. When W is orthogonal, the sparse recovery problem can
be equivalently formulated in an analysis

u∗ ∈ arg min
u∈Rn

{
‖W−1u‖0 + µF (u; K)

}
, (4.4)
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or in a synthesis framework

ψ∗ ∈ arg min
ψ∈Rn

{‖ψ‖0 + µF (ψ; A)} . (4.5)

More specifically, in case of AWGN, the fidelity terms in (4.4) and (4.5) take the form

F(u; K) = 1
2‖Ku− b‖

2
2 and F(ψ; A) = 1

2‖Aψ − b‖
2
2 ,

respectively. In this thesis, we will adopt a synthesis framework. In many applications, matrix
W is not orthogonal and the sparsity constraint is rather expressed in terms of redundant and
over-complete dictionaries, namely

u = Wψ , with W ∈ Rn×N , ψ ∈ RN , N � n .

Clearly, an over-complete representation is helpful when the signal of interested can not be
represented in an orthonormal basis and it also provides several benefits in terms of artifacts
reduction [145, 147].
Efficient algorithms addressing the sparse recovery problem have been, and continue to be
actively pursued. In fact, many problems arising in geophysics, statistics and signal processing
can be formulated as (4.5) - see, e.g., [153, 154, 53, 54], and [98] for further references. In
this sense, significant contributions were mainly due to the increasing interest in compressed
sensing, which looks for the sparsest representation of an object and discards non-informative
data without running into a perceptual loss [59].
A possible strategy to overcome the NP-hardness of problem (4.5) - see [118] - is to rather
consider its convex relaxation

ψ∗ ∈ arg min
ψ∈RN

{‖ψ‖1 + F (ψ; A)} . (4.6)

Notice that in problem (4.6), which is also known as Basis Pursuit (BP) [60], the more general
over-complete formulation has been adopted. A substantial body of literature has been devoted
to propose effective algorithms for the solution of (4.6) - see, e.g, [36, 72, 53, 73]. One of the
reason for the popularity of the `1-penalty term is related to the following definition [37].

Definition 1. The linear forward model operator A satisfies the restricted isoperimetry property
(RIP) condition if, for each s-sparse signal ψ, i.e. ψ has at most s non-zero entries, the following
inequalities chain holds,

(1− δs)‖ψ‖22 ≤ ‖Aψ‖22 ≤ (1 + δs)‖ψ‖22 ,

with δs > 0 sufficiently small.

Among the matrices satisfying the RIP condition we mention sub-Gaussian matrices, partial
bounded orthogonal matrices [47] and randomly generated circulant matrices [97]. In [35], the
authors have shown that if the forward linear model operator satisfies the RIP condition, when
‖e‖2 < ε, model (4.6) can recover an estimate ψ∗ of the original representation vector which
satisfies

‖ψ − ψ∗‖2 ≤ C
(
ε+ ‖ψ − ψs‖1√

s

)
, (4.7)



50

with ψs denoting the vector consisting of the s largest (in magnitude) coefficients of ψ and zeros
otherwise. The error estimate in (4.7) is optimal. Moreover, when the representation vector is
s-sparse and there is no noise in the measurements, model (4.6) recovers ψ exactly.

However, in most applications the RIP condition is not satisfied. As a consequence, more
general `p regularization approaches, both with 1 ≤ p < 2 and 0 < p < 1, have also been
considered:

ψ∗ ∈ arg min
ψ∈RN

{‖ψ‖p + F (ψ; A)} , 0 < p ≤ 2 . (4.8)

While the regularizing properties of `p penalties, for 1 ≤ p ≤ 2, are quite well understood
from the theoretical and computational point of view - see e.g. [17, 81, 113, 133] - the design of
efficient methods for computing the corresponding regularized solution when p < 1 continues to
pose significant challenges and remains a very active field of research (4.6) - see e.g [45, 80, 166,
114] and [163] for a more detailed review. The challenges behind `p regularization with p < 1
are mostly the non-differentiability of the penalty term and the non-convexity of the functional
in (4.8). A large class of works has focused on the introduction of smoothed version of the
`p-norm in order to ensure the differentiability of the overall functional, such as [139, 109, 33]
and the iterative reweighted algorithm in [55, 46]. Although the mentioned methods succeeded
in outperforming the `1 regularization in terms of sparse recovery, the non-convexity is still
an issue which is worth to be further investigated. Finally, we mention that, as highlighted
in several works, some of them related to the optical imaging problem - see, e.g., [6] - the
signal-to-noise-ratio (SNR), defined as

SNR = ‖b‖
2
2

‖e‖22
,

produces a strong influence on the quality of the recovered signal. More specifically, under the
same noise corruption, a less sparse signal is more likely to be poorly recovered with respect
to a more sparse signal. One can easily notice that, as a matter of fact, the SNR does not
play a significant role in any of the mentioned regularization schemes. In order to take the
information encoded in the SNR into account in the restoration machinery, one could rather
adopt a Bayesian approach. A great contribution in this direction is given in [32], where the
authors present the sparse recovery as an inverse problem in the Bayesian framework, and
express the sparsity assumption via a suitable hierarchical modeling.

4.3 Contribution

The main contribution of this thesis is the proposal of novel space-variant regularization or
penalty terms motivated by a strong statistical rational. In light of the connection between the
classical variational framework and the Bayesian formulation, we will focus on the design of
highly flexible priors characterized by a large number of unknown parameters. The latter will
be automatically estimated by setting up a hierarchical modeling, i.e. introducing informative
or non-informative hyperpriors depending on the information at hand on the parameters.
From Chapter 5 to Chapter 7, the problem of restoring natural images will be addressed.
Starting from the half-Laplacian distribution modeling the behavior of the gradient magnitudes
and corresponding to the TV prior, we will consider more highly parameterized distributions,
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modeling the local behavior of the gradients and performing a pixel-wise tuning of the strength,
of the type and of the orientation of the regularization. We will highlight the contribution of
each space-variance, by detecting the one that eventually returns the more decisive improvement
in terms of the quality of the final restoration.
As far as the sparse recovery problem is concerned, in Chapter 8 we will first extend the study
proposed in [32] to a wider class of hyperpriors modeling the sparsity of the signal of reference.
In this context, the space-variance follows directly from the independence of the components
in the signal, each following its own parametrized distribution. The results on the analytical
properties of the energy functionals corresponding to the class of hyperpriors considered, will
motivate the introduction, in Chapter 9, of two hybrid algorithms. The first one is strictly
related to the definition of a novel convex penalty term holding the potential to outperform
the classic `1-penalty term in terms of sparsity promotion. The second scheme addresses a
possibly non-convex minimization problem, exploiting the benefits of a more suitably designed
initial guess. Finally, in Chapter 10, we will show how the outlined Bayesian framework can
be applied to the recovery of signals sparsely represented in an over-complete basis. This last
contribution is also aimed at providing a further interpretation of space-variance in a synthesis
framework. In fact, we will highlight how different local features of an image can be naturally
and sparsely represented by different bases.
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Non-informative hyperpriors
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Chapter 5

Space-variant strength regularization
tuning

In this chapter, we start our investigation aiming to design more and more flexible priors that,
in this part of the thesis, will be coupled with non-informative hyperpriors. The automatic
estimation of the parameters involved in the proposed priors will also be a matter of discussion.

We recall the discrete linear degradation model for the image restoration problem,

b = Ku+ e , E ∼ N(0, σ2In) , (5.1)

where K ∈ Rn×n is the blur matrix and u, b, e ∈ Rn are respectively the vectorized unknown
image, observed image and corrupting additive noise, the latter being drawn from a zero-
mean white Gaussian distribution with standard deviation σ. We have already remarked the
equivalence between

u∗ ∈ arg min
u∈Rn

{
α

n∑
i=1
‖(Du)i‖2 + 1

2‖Ku− b‖
2
2

}
(5.2)

and

u∗ ∈ arg min
u∈Rn

{
n∑
i=1
‖(Du)i‖2 + µ

2 ‖Ku− b‖
2
2

}
. (5.3)

We will indistinctly refer to µ and to α as regularization parameter. In fact, for small µ, or
equivalently, for large α, edges tend to be preserved at the expense of the smoothing of the
noise. On the other hand, the larger the µ, or the smaller the α, the stronger is the effort
of the regularization in removing the noise. As already discussed in Section 3.4, the setting
of the regularization parameter is a very delicate issue. In literature, several strategies have
been considered. When the noise level is known, a classical approach is based on the use of
the discrepancy principle [68], or of its adaptive version [89]. Besides the already mentioned
a posteriori estimation criteria, such as GCV and L-curve, more recently, in blind scenarios,
optimization techniques learning the optimal amount of regularization from training data have
also been used - see, e.g., [121, 94, 18].
Nonetheless, the presence in model (5.2) of the global parameter α prevents from tuning the
strength of the regularization on images presenting both fine-scale details, as textures, and
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piece-wise constant or smooth regions, whereas the global parameter µ in model (5.3) is not
suited for non-homogeneous noise corruption. To overcome these two issues, weighted versions
of the TV-L2 model have been proposed. In continuous settings they read

u∗ ∈ arg min
u∈BV(Ω)

{ˆ
Ω
α(x)|∇u|+ 1

2

ˆ
Ω
|Ku− b|2dx

}
, (5.4)

with α ∈ C(Ω̄), and

u∗ ∈ arg min
u∈BV(Ω)

{ˆ
Ω
|∇u|+ 1

2

ˆ
Ω
µ(x)|Ku− b|2dx

}
, (5.5)

with µ ∈ L∞(Ω), µ ≥ 0. Here, α and µ are two weight functions determining the local strength of
the regularization and of the fidelity term, respectively. The estimation of the α weight function
in (5.4) has been addressed by inferring local geometries [149] or by means of computationally
expensive bilevel-optimization approaches [92, 93], whereas in [58] the weight function µ in (5.5)
of the spatially adapted total variation (SATV) have been estimated based on the use of a local
discrepancy principle. We remark that the two locally-weighted (5.4) and (5.5) models do show
significant differences when used for image reconstruction problems, as it has been rigorously
studied in [91] in continuous settings.
In the following, we will address the problem of tuning the strength of the regularization in a
purely discrete setting. We thus introduce the weighted versions of the discrete models (5.2)
and (5.3), which read

min
u∈Rn

{WTV(u) + L2(u)} , WTV(u):=
n∑
i=1

αi‖(Du)i‖2, αi> 0 , i = 1, . . . , n ,(5.6)

min
u∈Rn

{TV(u) + WL2(u)} , WL2(u):=1
2

n∑
i=1

µi(Ku− b)2
i , µi> 0 , i = 1, . . . , n .(5.7)

5.1 The HWTV-L2 model

Our first contribution in a space-variant perspective has been introduced in [19] and consists of
a hybrid version of the two space-variant variational models (5.6) and (5.7) variational models,
with variable regularization parameters αi and global fidelity parameter µ, referred to as HWTV-
L2:

u∗ ∈ arg min
u∈Rn

{
J(u) := WTV(u) + µ

2 ‖Ku− b‖
2
2

}
, (5.8)

where HWTV stands for ‘hybrid weighted total variation’. We remark that the local parameters
αi describe local image scales in a statistical sense, as it will be explained in detail in the
following, while the global parameter µ codifies the discrepancy with respect to the given AWGN
level. The redundancy of such parameter is therefore only apparent in (5.8) as its value is
computed depending on the global noise statistics in comparison with the local regularization
strength encoded by the parameters αi.
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5.2 Model derivation via MAP

As already stated in (5.1), we assume the corrupting noise to be AWG with standard deviation
σ > 0. Hence, the expression for the likelihood term is given by

P(b | u) = 1
W

exp
(
− 1

2σ2 ‖Ku− b‖
2
2

)
.

Notice that, since θlkh = σ is supposed to be known, it has been omitted in the likelihood term.
For what concerns the prior, we recall that the underlying assumption is that the unknown
image u behaves as a Markov Random Field, thus admitting the following general expression,

P(u | θpr) = 1
Z

exp
(
−

n∑
i=1

VCri (u; θpr)
)
, (5.9)

with VCri being the i-th potential function defining on the clique Cri of radius r centered at pixel
i - see Section 3.2.2. Here, we consider the case in which the analytic form of the potential
functions is the same for any pixel i, whereas the set of parameters defining each VCri changes
as the current pixel changes. In other words, (5.9) turns into

P(u | θpr) = 1
Z

exp
(
−

n∑
i=1

VCri (u; (θpr)i)
)
. (5.10)

The adoption of a Gibbs prior of the form (5.10) implicitly states that we are now dealing with
a non-stationary Markov Random Field. Before going on with these statistical considerations,
let us go back for a moment to the expression of the TV prior,

P(u | θpr) = 1
Z

exp
(
− α

n∑
i=1
‖(Du)i‖2

)
= 1
Z

exp(−αTV(u)) , with θpr = α > 0 .

In Section 3.2.2, we have already pointed out that the adoption of the TV is equivalent to
assume that the `2-norm of the image gradients distribute according to a half-Laplacian or
exponential distribution

P (‖(Du)i‖2 | α) =
{
α exp (−α‖(Du)i‖2) if ‖(Du)i‖2 > 0

0 otherwise
,

where α > 0 is the scale parameter of the distribution.
To allow more flexibility, we propose a space-variant model where gradient norms distribute
according to a half-Laplacian distribution with locally varying scale parameter αi > 0. The
prior associated to such choice is then

P(u | θpr) = 1
Z

exp
(
−

n∑
i=1

αi||(Du)i||2

)
= 1
Z

exp (−WTV(u)) , (5.11)

with Z =
(

n∏
i=1

αi

)−1

. The WTV term in (5.11) is the regularizer defined in (5.6) and the

entries of θpr ∈ Rn+ are the scale parameters of the local distribution, i.e.,

θpr = α =


α1
...
αn

 ∈ Rn+ .
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(a) (b) Global histogram (c) close-up

(d) constant region (e) local histogram (f) close-up

(g) texture region (h) local histogram (i) close-up

Figure 5.1: From top to bottom: histogram of the gradient magnitudes on the whole test image,
on a constant region and on a texture region, with the corresponding close-up(s).

The introduction of the WTV prior in (5.11) is motivated by the behavior of the `2-norm of the
gradients in the whole image and in local regions, which shows significant different properties.
In Figure 5.1b, the green solid line represents the pdf of the half-Laplacian distribution that
best fits the histogram of the gradient of the image. Then, two small regions of the image
have been selected, namely an almost constant region, in the red box in Figure 5.1d, and a
region characterized by texture, in the cyan box in Figure 5.1g. The pdf returning the best
approximation of the magnitude of the gradients in the two sub-regions, namely the cyan solid
line for the constant region and the red line for the textured region, have thus been computed
and compared with the global green pdf, which has been super-imposed to the local histograms.
In Figures 5.1e-5.1h, and in the respective close-ups in Figure 5.1f-5.1i, it is easy to appreciate
the potential of a space-variant approach in terms of a more faithful and accurate description
of the local image features.

Once that the likelihood and, more importantly, the prior term have been set, they can be



5.3. Parameter estimation via non-informative hyperpriors 59

plugged in the MAP estimation formula for u, thus leading to the HWTV-L2 model

u∗ ∈ arg min
u∈Rn

{
J(u) :=

n∑
i=1

αi‖(∇u)i‖2 + µ

2 ‖Ku− b‖
2
2

}
,

with µ = 1/σ2 being the global regularization parameter. The above minimization problem can
be solved by means of the iterative scheme already introduced in Chapter 3 and based on the
alternating update of the image u and of the vector of unknown parameters θpr = α, in presence
of non-informative hyperprior. We can also refer to this procedure, outlined in Algorithm 1 in
the case of non-informative hyperprior, as outer scheme.

Algorithm 1: IAS with non-informative hypeprior for the HWTV-L2 model

input: observed image b ∈ Rn

output: restored image u∗

1. initialize: set u(0) = b

2. for t = 1, 2, . . . until convergence do:

3. · update α(t) ∈ arg min
α∈Rn+

{
− log P(u(t−1) | α)

}
4. · update u(t) ∈ arg min

u∈Rn

{
− log P(u | α(t))− log P(b | u, α(t))

}
5. end for

6. return: u∗ = u(t)

In the next sections, we will detail how the two update steps in the IAS Algorithm 1 are
performed.

5.3 Parameter estimation via non-informative hyperpriors

In order for the space-variant approach to be effective, an automatic way of estimating the
parameters defining the prior must be introduced as well. We remark that for the proposed
model (5.2) the number of unknown parameters equals the number of pixels. Thus, our focus
is first set on the solution of the α-update:

α(t) ∈ arg min
α∈Rn+

{
− log P(u(t−1) | α)

}
. (5.12)

A key observation here is that, in order to favor the space-variant nature of the prior and, at
the same time, to avoid the destroying action of the noise and blur corruption, the estimation
of the entries of α must be carried out by exploiting local information.
In fact, considering the expression for the prior given in (5.11), problem (5.12) can be reformu-
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lated as

α(t) ∈ arg min
α∈Rn+

{
− log

n∏
i=1

αi +
n∑
i=1

αi‖
(
Du(t−1)

)
i
‖2

}

= arg min
α∈Rn+

{
n∑
i=1

(
− logαi + αi‖

(
Du(t−1)

)
i
‖2
)}

.

Hence, problem (5.12), can be decomposed in n one-dimensional minimization problem of the
form

α
(t)
i ∈ arg min

αi∈R+

{
f(αi) := − logαi + αi‖

(
Du(t−1)

)
i
‖2
}
. (5.13)

The following result holds true.

Proposition 1. The function f : R+ → R in (5.13) is continuous and convex, hence it admits
a unique global minimizer.

In particular, since f is differentiable in R+, the solution of the i-th minimization problem (5.13)
can be found by imposing a first order optimality condition:

f ′(αi) = − 1
αi

+ ‖
(
Du(t−1)

)
i
‖2 , hence α

(t)
i = 1

‖
(
Du(t−1))

i‖2
. (5.14)

The update in (5.14) for the i-th scale parameter only involves the i-th pixel. As a consequence,
if the information at pixel i is damaged by the action of noise and blur, the low degree of
confidence in the estimate of the local scale parameters does not justify their use.
In order to overcome this issue, an ensemble of pixels close to pixel i is involved in the update
of αi. More in details, for any i = 1, . . . , n, we consider the set Si := {xi,j}Nj=1, with xi,j =
‖(Du(t−1))j‖2. The gradients (Du(t−1))j are computed in the pixels belonging to the square
neighborhood Cri centered at pixel i with side 2r + 1. We recall that the norm of the generic
gradient of pixels in Cri is here assumed to be drawn from a half-Laplacian distribution with
scale parameter αi. Therefore, we are interested in solving n minimization problems of the form

α
(t)
i ∈ arg min

αi∈R+
{− log P(Si | αi)} , (5.15)

where the i-th conditioned pdf P (Si | αi) reads as

P(S | αi) =
∏

xi,j∈Si

P(xi,j | αi) =
N∏
j=1

P(xi,j | αi) = αNi exp
(
−

N∑
j=1

αixi,j

)
. (5.16)

First note that the existence and uniqueness result in Proposition 1 still holds. Moreover,
observe that in order to allow the factorization of the pdf in (5.16), we need to assume the
independence of the samples in Si. The minimization of − log P (Si | αi) in (5.15) is equivalent
to the maximization of P(Si | αi), that is also known as likelihood function. In fact, the
hierarchical approach via non-informative hyperpriors is equivalent to the classical maximum
likelihood (ML) procedure. We recall that the ML returns the value for αi that most likely
produces the observed samples xi,j . From (5.16), we have

− log P(Si | αi) = −N logαi +
N∑
j=1

αixi,j .



5.4. Existence and uniqueness of solutions 61

By imposing a first order optimality condition on the objective function in problem (5.15) with
respect to αi, we obtain the closed formula

αi =

 1
N

N∑
j=1

xi,j

−1

, (5.17)

which can be handily updated along the iterations t ≥ 0 to estimate the local regularization
parameters α(t)

i at each pixel i = 1, . . . , n by taking as samples xi,j = ‖(Du(t−1))j‖2, j = 1, . . . , N
i.e. the norms of the image gradients in the neighborhood Cri . Note that, in order to avoid
degenerate configurations in the case of a neighborhood with null gradients, a small ε > 0 is
added to the local means in (5.17). We also remark that the selection of the pixels involved in
the estimates α(t)

i in (5.17) can be efficiently carried out based on 2D convolution (realized by
a fast 2D discrete transform) of the map of gradient norms with a square (2r + 1) × (2r + 1)
averaging kernel.
In Figure 5.2, the α-map corresponding to different test images are shown. As expected, the scale
parameters assume higher values on smooth or piece-wise constant regions, whereas lower values
are obtained in correspondence of edges and texture. In those areas, a weaker regularization
is preferable in order to preserve details. Note also that α-maps are sensitive to the choice of
radius r. When considering small values of r - see, for instance, Figure 5.2f - possibly small
artifacts due to image compression or resolution may appear. We do expect the same effect in
presence of noise. On the other hand, setting a large radius r, could make some details or finer
structures in the image less detectable, as in the case of Figure 5.2d, where some inner edges are
not visible in the map. A future work could certainly be focused on the design of an automatic
procedure for the selection of r, that, at the moment, in our experiments is hand-tuned.

5.4 Existence and uniqueness of solutions

In this section, we provide an existence and uniqueness result for the solution of the proposed
discrete HWTV-L2 variational model (5.8). We have that the following Proposition holds true.

Proposition 2. The HWTV-L2 functional J : Rn → R defined in (5.8) is continuous, bounded
from below by zero and strongly convex, hence it admits a unique global minimizer.

Proof. The proof comes from considering that the fidelity term, under the assumption of ana-
lytically non-singular blur matrix K, is strongly convex.

5.5 ADMM optimization

Once that an existence and uniqueness result for the u-update has been given, we now focus on
how to solve it.
The u-update step in Algorithm 1 is equivalent to the minimization problem in (5.8) reported
below,

u∗ ∈ arg min
u∈Rn

{
n∑
i=1

αi‖(Du)i‖2 + µ

2 ‖Ku− b‖
2
2

}
, (5.18)
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Figure 5.2: Test images with the corresponding map of scale parameters α for different values
of radius r.

where the entries αi of vector α are completely determined by the closed formula in (5.17).
Resorting to the ADMM algorithm, we start writing problem (5.18) in its equivalent constrained
form

{u∗, w∗, v∗} ∈ arg min
u,w,v

{
n∑
i=1

αi ‖vi‖2 + µ

2 ‖w‖
2
2

}
(5.19)

subject to w = Ku− b, v = Du.

with w ∈ Rn and v ∈ R2n being two auxiliary variables that are introduced to transfer the
discrete gradient operators (D · )i and the ill-conditioned blur operator K · out of the non-
smooth regularization terms ‖·‖2 and fidelity term ‖·‖22, respectively. We define the augmented
Lagrangian functional:

L(u,w, v; ρw, ρv;α, µ) :=
n∑
i=1

αi ‖vi‖2 + µ

2 ‖w‖
2
2 − ρTv (v −Du) + γv

2 ‖v −Du‖22

− ρTw(w − (Ku− b)) + γw
2 ‖w − (Ku− b)‖22, (5.20)

where γw, γv > 0 are scalar penalty parameters and ρw ∈ Rn, ρv ∈ R2n are the vectors of
Lagrange multipliers. The solution (u∗, w∗, v∗) of problem (5.19) is a saddle point for L in
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(5.20). Hence, the original problem can be recast as follows:

Find (x∗; ρ∗) ∈ X ×R

such that L(x∗; ρ;α, µ) ≤ L(x∗; ρ∗;α, µ) ≤ L(x; ρ∗;α, µ) ∀ (x; ρ) ∈ X ×R , (5.21)

where, for simplicity of notations, we set x := (u,w, v), ρ := (ρw, ρv), X := Rn ×Rn ×R2n and
R := Rn × R2n. Given an initialization for the vectors u(0), ρ(0)

w and ρ(0)
v , the t-th iteration of

the proposed ADMM-based iterative scheme applied to the solution of the saddle-point problem
(5.21) - minimization for the primal variables u,w, v, maximization for the dual variables ρw, ρv
- reads as follows:

v(t) ∈ arg min
v∈Rn

L(u(t−1), w(t−1), v; ρ(t−1)
w , ρ(t−1)

v ;α, µ) , (5.22)

w(t) ∈ arg min
w∈R2n

L(u(t−1), w, v(t); ρ(t−1)
w , ρ(t−1)

v ;α, µ) , (5.23)

u(t) ∈ arg min
u∈Rn

L(u,w(t), v(t); ρ(t−1)
w , ρ(t−1)

v ;α, µ) , (5.24)

ρ(t)
w ∈ ρ(t−1)

w − γw
(
w(t) − (Ku(t) − b)

)
, (5.25)

ρ(t)
v ∈ ρ(t−1)

v − γv
(
v(t) − Du(t) ) . (5.26)

Hence, we can alternate a minimization step with respect to the primal variables w, v, u with
a maximization step with respect to the dual variables ρv, ρw, in combination with an iterative
update of the space variant entries of α and µ, which hence will be denoted by α(t) and µ(t). In
particular, for what concerns α(t) we use the easy estimation strategy described in Section 5.3,
whereas for µ(t) we will rely on a global discrepancy principle.

5.5.1 Primal variables update.

The three primal sub-problems can be solved efficiently and in closed-form by simple projection
operators and linear system solvers. We are giving more details below.

Sub-problem for v Given the definition of the augmented Lagrangian functional in (5.20),
the minimization sub-problem for the primal variable v in (5.23) can be written as follows:

v(t) ∈ arg min
v∈R2n

{
n∑
i=1

αi ‖vi‖2 − 〈ρ
(t−1)
v , v −Du(t−1)〉 + γv

2

∥∥∥v −Du(t−1)
∥∥∥2

2

}

= arg min
v∈R2n

{
n∑
i=1

αi ‖vi‖2 + γv
2

∥∥∥∥v − (Du(t−1) + 1
γv
ρ(t−1)
v

)∥∥∥∥2

2

}

= arg min
v∈R2n

n∑
i=1

{
αi ‖vi‖2 + γv

2

∥∥∥∥vi − ((Du(t−1)
)
i
+ 1
γv

(
ρ(t−1)
v

)
i

)∥∥∥∥2

2

}
. (5.27)

Note that in (5.27) the minimized functional is written in explicit component-wise (or pixel-
wise) form, with

(
Du(t−1)

)
i
,
(
ρ

(t−1)
v

)
i
∈ R2 denoting the discrete gradient and the Lagrange

multipliers at pixel i, respectively. Solving the 2n-dimensional minimization problem in (5.27)
is thus equivalent to solve the n following independent 2-dimensional problems:

v
(t)
i ∈ arg min

vi∈R2

{
‖vi‖2 + (γv/αi)

2

∥∥∥vi − q(t−1)
i

∥∥∥2

2

}
, i = 1, . . . , n , (5.28)



64

with the constant vectors q(t−1)
i ∈ R2 defined by

q
(t−1)
i :=

(
Du(t−1)

)
i
+ 1
γv

(
ρ(t−1)
v

)
i
, i = 1, . . . , n .

Moreover, it holds,
v

(t)
i = prox αi

γv
‖·‖2

(
q

(t−1)
i

)
,

with ‘prox’ being the proximity operator defined as follows [124],

Definition 2. Let f : R →]−∞,+∞] be a lower semi-continuous convex function. For every
x ∈ R

proxf (x) := arg min
y∈R

{
f(y) + 1

2‖x− y‖
2
2

}
.

We refer to the operator
proxf : R→ R ,

as the proximity operator of f .

Hence, the solution of each one-dimensional separable problem is given by

v
(t)
i = qi max

(
1− α

(t)
i

γv‖q(t−1)
i ‖2

, 0
)
, i = 1, . . . , n. (5.29)

The overall computational cost of this subproblem is linear in the number of pixels n.

Sub-problem for w Recalling the definition of the augmented Lagrangian functional in (5.20)
and carrying out some simple algebraic manipulations, the minimization sub-problem (5.22) for
the primal variable w can be written as

w(t) ∈ arg min
w∈Rn

{
µ

2 ‖w‖
2
2 + γw

2
∥∥w − z(t−1)∥∥2

2

}
, (5.30)

with the constant (with respect to the optimization variable w) vector z(t−1) ∈ Rn given by

z(t−1) = Ku(t−1) − b + 1
γw

ρ(t−1)
w . (5.31)

Since µ ≥ 0, γw > 0, the cost function in (5.30) is strongly convex, hence it admits a unique
global minimizer. In particular, the unique solution w(t) of (5.30) can be computed, depending
on z, by means of the following closed-form formula:

w(t) =
(

γw
γw + µ

)
z(t−1) , (5.32)

which depends on the previous update of z.

Sub-problem for u For the solution of (5.24), imposing a first order optimality condition on
the augmented Lagrangian with respect to the primal variable u, leads to the following linear
system(

DTD + γw
γv

KTK
)
u = DT

(
v(t) − 1

γv
ρ(t−1)
v

)
+ γw
γv

KT
(
w(t) − 1

γw
ρ(t−1)
w + b

)
, (5.33)
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that can be solved, since

null
(

DTD + γw
γv

KTK
)

= null
(
DTD

)
∩ null

(
KTK

)
= null (D) ∩ null (K) = {0n}, (5.34)

i.e. the coefficient matrix has full rank. In our case, condition (5.34) is satisfied; in fact, K
represents a blurring operator, which is a low-pass filter, whereas the regularization matrix D is
a first-order difference operator and, hence, is a high-pass filter. Moreover, since γv, γw > 0, the
coefficient matrix in (5.33) is symmetric positive definite and typically highly sparse. Hence, the
linear system in (5.33) can be solved quite efficiently by the iterative (eventually preconditioned)
conjugate gradient method. Moreover, under appropriate assumptions about the solution u

near the image boundary, the linear system can be solved even more efficiently. We assume
periodic boundary conditions for u, so that both DTD and KTK are block circulant matrices
with circulant blocks and, hence, the coefficient matrix in (5.33) can be diagonalized by the 2D
discrete Fourier transform (FFT implementation). Provided that the penalty parameters γv,
γw are kept fixed during the ADMM iterations, the coefficient matrix in (5.33) does not change
and it can be diagonalized once for all at the beginning. Therefore, at any ADMM iteration
the linear system (5.33) can be solved by one forward 2D FFT and one inverse 2D FFT, each
at a cost of O(n logn).

5.5.2 Estimation of the global parameter µ

We remark that in Section 5.3, that was devoted to detail the parameter estimation procedure,
we did not mention how to deal with the estimation of the global parameter µ. The reason why
this topic has been postponed is that it is strictly connected to the update of u.
In fact, µ is updated along the iterations so as to fulfill the global discrepancy principle as
described in [88]: we ask each iterate u(t) to satisfy the condition

||Ku(t) − b||2 ≤ δ := τσ
√
n ,

where σ is the noise standard deviation and the parameter τ ≈ 1 is set a priori. In order to
avoid under-estimation or over-estimation of the noise level, τ can be set slightly grater or less
than 1, respectively. Moreover, as already mentioned in Section 3.4, here the µ-update is carried
out via APE [89]. Recalling the definition of z(t−1) given in (5.31), the update reads:

‖z(t−1)‖2 ≤ δ =⇒ µ(t) = 0, (5.35)

‖z(t−1)‖2 > δ =⇒ µ(t) = γw
(
‖ z(t−1)‖2/δ − 1

)
.

Once that both the α and u update step in the IAS outer scheme in Algorithm 1 have been de-
tailed, the pseudo-code of the ADMM-based procedure for the solution of HWTV-L2 model and
the embedded estimation of the space-variant and global parameters, is reported in Algorithm
2.

In Algorithm 2 both the local space-variant parameters αi and the global parameter µ
are updated along the iterations. This is a standard strategy for this type of optimization
problems (see, e.g., [88]), especially in the case of a cheap update of parameters adapting to
the image quality improvement. Despite the iterative change in the expression of the cost
functional corresponding to such update, we remark that we observed empirical convergence of
the algorithm. We are showing some results in this sense in the experimental section.
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Algorithm 2: ADMM-based algorithm for the HWTV-L2 model

input: b ∈ Rn, r > 0, τ ≈ 1, γv > 0,γw > 0

output: restored image u∗

1. initialize: set u(0) = b, ρ
(0)
w = 0n, ρ(0)

v = 02n

2. for t = 1, 2, . . . until convergence do:

update parameters

3. · α(t)
i by (5.17) for every i = 1, . . . , n

4. · µ(t) by (5.35)

update primal variables

5. · v(t) by (5.29)

6. · w(t) by (5.32)

7. · u(t) by solving (5.33)

update dual variables

8. · ρ(t)
w by (5.25)

9. · ρ(t)
v by (5.26)

10. end for

11. return: u∗ = u(t)
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Remark 2. The prior (5.11) leading to the HWTV-L2 model in (5.8) has been introduced as a
space-variant modification of the isotropic TV prior. Clearly, the anisotropic version of (5.11)
can be introduced as well. More in general, we have

P(u | θpr) = 1
Z

exp
(
−

n∑
i=1

αi‖(Du)i‖d

)
, with d = 1, 2 ,

and the corresponding model reads as

u∗ ∈ arg min
u∈Rn

{
n∑
i=1

αi‖(Du)i‖d + µ

2 ‖Ku− b‖2

}
, with d = 1, 2 . (5.36)

We also remark that, from the computational point of view, when considering d = 1, the ADMM-
based algorithm is not modified, except for the sub-problem for v. In fact, (5.28) turns into

v
(t)
i ∈ arg min

vi∈R2

{
‖vi‖1 + (γv/αi)

2

∥∥∥vi − q(t−1)
i

∥∥∥2

2

}
, i = 1, . . . , n .

Also in this case, v(t)
i is related to a proximity operator, namely,

v
(t)
i = prox αi

γv
‖·‖1

(
q

(t−1)
i

)
,

and again a closed-formula is available,

v
(t)
i = qi max

(
1− α

(t)
i

γv‖q(t−1)
i ‖1

, 0
)
, i = 1, . . . , n.

5.6 Computed examples

In this section we report some numerical results obtained by solving the image restoration
model (5.8) via the ADMM-based Algorithm 2, with stopping criteria based on the number of
iterations as well as on the iterates relative change, i.e. we stop iterating as soon as

t ≥ 1000 , or δu = ‖u
(t) − u(t−1)‖2
‖u(t−1)‖2

≤ 10−4 . (5.37)

Due to the automatic estimation procedure of the space-variant parameters αi and global pa-
rameter µ, the only parameters that need to be fixed in Algorithm 2 are the penalty parameters
γv and γw. We set γv = 20 and γw = 100, observing in our experiments that the convergence
properties of the algorithm are not affected by this choice, if not in terms of convergence speed.
The value r > 0 denotes the radius of the neighborhoods Cri defined in Section 5.3 and used to
estimate the space-variant parameters αi. Denoting by u ∈ [0, 1]n the ground-truth image, we
assess the quality of the reconstruction u∗ by means of the Improved Signal-to-Noise Ratio

ISNR(b, u, u∗) := 10 log10
‖b− u‖22
‖u∗ − u‖22

,

and in terms of the Structural Similarity Index (SSIM) [167]. We compare our results with the
ones obtained by the standard TV-L2 model in (4.1) model, the SATV approach [58] based on
coupling the (5.7) model with a local discrepancy-based procedure for automatically selecting
the parameters µi and the bilevel learning strategy used in [92, 93] to estimate the parameters
αi of (5.6) model via a nested optimization procedure.
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(a) Original u. (b) Corrupted b.

Figure 5.3: Original image (a) and observed image corrupted with AWGN with σ = 0.05 (b).

Image deblurring. We consider the skyscraper test image (256×256) corrupted by AWGN
of two levels σ = 0.02, 0.05, and Gaussian blur of band = 5 and width = 1. The ground-truth
image u and the observed image b for σ = 0.05 are shown in Figure 5.3a-5.3b, respectively.
In this test we highlight the improvements obtained by Algorithm 2 for our model (5.8) in
comparison to the TV-L2 model, solved by means of ADMM, and the SATV1. As mentioned
above, for the automatic adaption of the parameter µ along the iterations, a value for the
parameter τ needs to be chosen. For the three models considered, we observed that the value
of τ maximizing the ISNR does not necessarily correspond to the value maximizing the SSIM,
see Figure 5.4a. For the TV-L2 model the maximum SSIM is reached for τ ≈ 1, while the
ISNR achieves its maximum when τ ≈ 0.9, the latter being the case in which texture is better
preserved but noise is not completely removed. For SATV, the maximum ISNR and SSIM values
are reached approximately for the same τ . As remarked in [58], the SATV method is robust
with respect to the choice of the radius r of the neighborhoods used for the estimation. Thus,
we set such parameter as the default value r = 5 in our tests. We performed similar sensitivity
tests for our HWTV-L2 model for different (τ, r) values. Results are shown in Figures 5.4c-5.4d.
Larger values of ISNR are observed as r increases, while SSIM reaches its maximum for r ≈ 5.
In both cases, considering τ < 1 helps in improving the quality of the final restoration. For
each method, we then selected the parameter(s) yielding the maximum ISNR/SSIM values and
compared the results obtained. In Table 5.1 we report the achieved ISNR/SSIM values, whereas
in Figures 5.5-5.6 we show the associated restored images for the case of AWGN with σ = 0.05.
We observe that our HWTV-L2 method results in higher quality reconstructions if compared to
TV-L2 and SATV. Visual inspection confirms the effectiveness of our approach in distinguishing
between textured and homogeneous regions, see Figures 5.5i-5.6i.

The output α-maps in the two cases proposed are shown in Figure 5.7.
In Figure 5.8 and Figure 5.9, for the two cases proposed, we report the behavior along the
iterations of the relative changes in α and in u,

δα = ‖α
(t) − α(t−1)‖2
‖α(t−1)‖2

, δu = ‖u
(t) − u(t−1)‖2
‖u(t−1)‖2

,

and of the objective function J. We also plot in red solid line the estimated discrepancy value
1We used the MATLAB code available at: https://www.math.hu-berlin.de/~hp_hint/software/satv.

html.

https://www.math.hu-berlin.de/~hp_hint/software/satv.html
https://www.math.hu-berlin.de/~hp_hint/software/satv.html
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Figure 5.4: ISNR 5.4a and SSIM 5.4b values reached for different values of τ by applying TV-L2

and SATV to the restoration of skyscraper test image in Figure 5.3a. For the same image,
ISNR 5.4c and SSIM 5.4d values achieved by HWTV-L2 method for different values of τ and r.

σ = 0.02 σ = 0.05

TV SATV HWTV TV SATV HWTV
ISNR 3.4701 3.6625 4.3331 1.9433 2.0414 2.5408
SSIM 0.8733 0.8966 0.9007 0.7335 0.7797 0.8099

Table 5.1: Maximum ISNR/SSIM values achieved by TV-L2, SATV and HWTV-L2 on the
skyscraper test image in Figure 5.3a(top) corrupted by AWGN of two different levels.

δ̃ at each iteration,

δ̃ = ‖Ku− b‖2√
n

,

compared with the true discrepancy value, i.e. δ/
√
n = τσ, in black dashed line. In Figure

5.8, one can notice that, after the first iterations, the relative changes δα and δu decrease
monotonically, while the behavior of the objective function J is characterized by a global and
smooth decrease. For what concerns the plots in Figure 5.9, observe that the behavior are
approximately the same for all the quantities monitored, except for the relative change in α,
δα. In fact, when considering small radius, the update of the parameters can be more unstable,
even if this choice helps preserving finer details in the image.
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(a) b (b) TV-L2 (c) SATV (d) HWTV-L2 (e) original u

(f) close-up of (a) (g) close-up of (b) (h) close-up of (c) (i) close-up of (d) (j) close-up of (e)

Figure 5.5: ISNR optimization. First row: Corrupted image b (a), reconstruction of image
in Figure 5.3a by TV-L2 (τ = 0.91) (b), SATV (τ = 0.94) (c), HWTV-L2 (τ = 0.94, r = 14)
(d) and original image u (e). Second row: close-up(s).

(a) b (b) TV-L2 (c) SATV (d) HWTV-L2 (e) original u

(f) close-up of (a) (g) close-up of (b) (h) close-up of (c) (i) close-up of (d) (j) close-up of (e)

Figure 5.6: SSIM optimization. First row: Corrupted image (a), reconstruction of image in
Figure 5.3a by TV-L2 (τ = 0.98) (b), SATV (τ = 0.95) (c), HWTV-L2 (τ = 0.93, r = 6) (d)
and original image u (e). Second row: close-up(s).

Image denoising. We now consider the test image turtle2 (150×200) corrupted by AWGN
of level σ = 0.1 (see Figures 5.10a -5.10b) and focus on the quality and computational improve-
ments of our HWTV-L2 method in the case of anisotropic TV (TVA) - i.e. d = 1 in (5.36) -
in comparison to the alternative bilevel optimization strategy used [92, 93] for estimating the
space-variant parameters αi. After optimizing the HWTV-L2 method over τ as discussed above,
the maximum achieved value is SSIM = 0.7708 (for r = 40, τ = 0.86), while the restoration via
bilevel optimization strategy reaches SSIM = 0.7602. The reconstructions are shown in Figures
5.10c-5.10d. We remark that, in addition to the obtained SSIM and visual improvements, our

2Photo courtesy of K. Papafitsoros.
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Figure 5.7: Output map of parameters α for the restoration via HWTV-L2 maximizing the
ISNR (a) and the SSIM (b).
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Figure 5.8: ISNR optimization. Relative change δα (a), relative change δu (b) and objective
function J (c), estimated discrepancy (d) along the iterations.

approach exhibits a very high computational efficiency, whereas bilevel codes are known to be
computational expensive and hardly applicable to high-resolution images. For instance, in this
experiments the proposed ADMM Algorithm 2 for the HWTV-L2 model required only 40 sec-
onds on a standard laptop, compared to the 1429 seconds required by the bilevel algorithm [93].
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Figure 5.9: SSIM optimization. Relative change δα (e), relative change δu (f) and objective
function J (g), estimated discrepancy (h) along the iterations.

(a) Original u (b) Corrupted b

(c) Bilevel WTV (d) HWTV

Figure 5.10: SSIM optimization. Original image (a), observed image corrupted by AWGN
with σ = 0.1 (b), WTV reconstruction obtained by bilevel optimization of parameters αi as in
[92, 93] (SSIM = 0.7602) (c) and HWTV reconstruction (τ = 0.86, r = 40, SSIM = 0.7708)
(d).



Chapter 6

Space-variant type regularization
tuning

In the previous chapter, the problem of tuning the amount of regularization over the image in
order to take into account local features has been tackled. We now focus on the qualitative
way in which the regularization is carried out. Our goal is to adapt the type of the regulariza-
tion to different local structures in the image. In order to do that, we will consider a further
space-variant parameter to the already designed WTV regularizer in (5.6), with the purpose of
exploiting the additional flexibility provided by a second local degree of freedom.

We are still referring to the image restoration problem in (5.1). As already highlighted, the
adoption of the TVI prior is equivalent to implicitly assuming the gradient magnitudes to follow
a one-parameter half Laplacian distribution. Based on the observation that such distribution
is not sufficiently flexible, the authors in [111] proposed a generalization of the TV regularizer,
referred to as TVp. The TVp regularizer relies on the adoption of a space-invariant, two-
parameters half-Generalized Gaussian (hGG) distribution for modeling the distribution of the
`2-norm of the gradients:

P(‖(Du)i‖2; p, α) =


αp

Γ(1/p) exp (−(α‖(Du)i‖2)p) for ‖(Du)i‖2 ≥ 0

0 for ‖(Du)i‖2 < 0
,

where p denotes the additional parameter, namely the shape parameter of the hGG distribution,
and Γ denotes the Gamma function. This family of distributions covers a wider spectrum of
pdfs including half-Laplacian (p = 1) and half-Gaussian (p = 2). Some of them, corresponding
to different values of the shape parameter p and fixed scale parameter α = 1, are plotted in
Figure 6.1.
The presence of a second parameter p allows, in principle, for a better approximation of the
gradient magnitude distribution depending on the image at hand, and leads to the introduction
of the TVp prior [111]:

P(u) = 1
Z

exp
(
−α

n∑
i=1
‖(∇u)i‖p2

)
= 1
Z

exp (−αTVp(u) ) . (6.1)
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Figure 6.1: The hGG pdfs for different values of p and fixed α = 1.

The TVp prior has been proven to outperform the TV prior especially on images presenting
global properties resembling the local ones, such as piece-wise constant images. Nevertheless,
despite the flexibility gained with the introduction of a further parameter p, we do expect the
TVp regularizer to experience all the limitations that typically characterize global regularization
terms. In this chapter, we are investigating the motivation and the benefits of the introduction
of a new prior based on a space-variant modification of the TVp prior in (6.1).

6.1 The TVsv
p,α-L2 model

In [110], we proposed a further generalization of the TV-L2 model reading as,

u∗ ∈ arg min
u∈Rn

{
TVsv

p,α(u) + µ

2 ‖Ku− b‖
2
2

}
, (6.2)

where the new space-variant TVsv
p,α regularizer defined as

TVsv
p,α(u) :=

n∑
i=1

αi‖(∇u)i‖pi2 , αi ∈ ]0,+∞[, pi ∈ ]0, 2] ∀ i ∈ Ω , (6.3)

is coupled with a L2 fidelity term, since the noise is still known to be AWG. The proposed
regularizer in (6.3) is highly flexible as it is characterized by two per-pixel free parameters pi,
αi, such that local, space-variant properties of the target clean image u can be potentially
addressed. As in the case of the WTV regularization term, the usefulness of such a great
flexibility in the proposed regularizer is conditioned to the existence of effective procedures for
the automatic estimation of the pi and αi parameters. Hence, we also propose a suitable method
for the automatic estimation of such parameters from the observed image based, as before, on
a statistical procedure involving non-informative hyperpriors.
Besides the space-variant parameters, a global regularization parameter µ appears in model
(6.2), thus making also the TVsv

p,α-L2 a hybrid model. The estimation of µ is still based on a
discrepancy principle, similarly as described in Section 5.5.2.

6.2 Model derivation via MAP

The rational of our proposal is that the distribution of the gradient magnitudes of the unknown
clean image is space-variant and it is well modeled locally by a two-parameters Generalized
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Gaussian distribution. In Section 5.2, we remarked the connection between a space-variant
approach and the assumption according to which u can be modeled as a non-stationary Markov
Random Field, with prior

P(u | θpr) = 1
Z

exp
(
−

n∑
i=1

VNri (u; θpri)
)
,

where, as before, VNri is the i-th potential function defined on the clique Nr
i of radius r centered

at pixel i. Here, we consider a modified version of the TVp prior in (6.1) with the shape and
scale parameters of the hGG distribution changing at any pixel, thus leading to the following
prior

Pr(u | θpr) = 1
Z

exp
(
−

n∑
i=1

αi‖(∇u)i‖pi2

)
= 1
Z

exp
(
−TVsv

p,α(u)
)
, (6.4)

with

Z =

 n∏
i=1

 αipi

Γ
(

1
pi

)
−1

,

and

θpr =


θpr1

θpr2
...

θprn

 ∈ Rn×2 , θpri = (αi, pi) ∈ R2 .

In order to shed some light on the motivation behind the introduction of a second space-variant
parameter, we propose the same analysis carried out in Section 5.2. More specifically, we
consider the histogram of the gradient magnitudes of the global image, plotting with a solid
green line the hGG pdf returning the best approximation of the histogram - see Figure 6.2b and
the close up in Figure 6.2c. We then choose the same two regions selected in Figure 5.1, namely
a cyan-bordered constant one and a red-bordered textured one. In Figure 6.2e, the cyan solid
line represents the hGG pdf that best fits the local histogram for the constant region, whereas
the super-imposed dashed cyan line and green solid line represent the local half-Laplacian pdf
already plotted in Figure 5.1e and the global hGG pdf, respectively. The interpretation of the
lines in Figure 6.2h is analogous. In the case of the constant region, we can observe a slight
improvement in terms of a better modeling of the histogram behavior. The improvement is more
remarkable on the textured region, where the rich gradient structure is poorly approximated
by a one-parameter distribution.
After recalling the expression of the Gaussian likelihood

P(b | u) = 1
W

exp
(
− 1

2σ2 ‖Ku− b‖
2
2

)
,

we replace the latter and the proposed prior (6.4) in the MAP inference formula; dropping the
constant terms, we obtain our TVsv

p,α-L2 model in (6.5), that is in extended form:

u∗ ∈ arg min
u∈Rn

{
n∑
i=1

αi‖(∇u)i‖pi2 + µ

2 ‖Ku− b‖
2
2

}
, (6.5)

where µ = 1/σ2.
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(a) (b) Global histogram (c) close up

(d) constant region (e) local histogram (f) close up

(g) texture region (h) local histogram (i) close up

Figure 6.2: From top to bottom: histogram of the gradient magnitudes on the whole test image,
on a constant region and on a texture region, with the corresponding close-up(s).

6.3 Parameter estimation via non-informative hyperpriors

As already remarked, the effectiveness of a space-variant approach is also strictly related to the
derivation of an automatic estimation procedure for the unknown parameters involved in the
expression of the TVsv

p,α prior. Notice that here the number of parameters to set is twice the
number of pixels. Hence, the minimization problem in (6.5) represents only one of the two steps
of the outer scheme outlined in Algorithm 3.

In this section, we first focus on the parameter estimation step, adopting the same strategy and
notation already introduced in Chapter 5. For any pixel i, in order to estimate the parameters
defining the local hGG distribution from which the magnitude of the gradient ‖(Du)i‖2 is
assumed to be drawn, one has to solve

(α(t)
i , p

(t)
i ) ∈ arg min

αi∈R+, pi∈]0,2]
{− log P(Si | αi, pi)} . (6.6)
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Algorithm 3: IAS with non-informative hypeprior for the TVsv
p,α-L2 model

input: observed image b ∈ Rn

output: restored image u∗

1. initialize: set u(0) = b

2. for t = 1, 2, . . . until convergence do:

3. · update (α(t), p(t)) ∈ arg min
α∈Rn+, p∈]0,2]n

{
− log P(u(t−1) | α, p)

}
,

4. · update u(t) ∈ arg min
u∈Rn

{
− log P(u | α(t), p(t))− log P(b | u, α(t), p(t))

}
5. end for

6. return: u∗ = u(t)

We recall that we are denoting by

Si = {xi,j}Nj=1 , with xi,j = ‖(Du(t−1))j‖2 ,

the ensemble of gradient magnitudes computed at pixels belonging to the clique Nr
i of radius r

and side 2r+1. For what concerns the constrain set in the minimization problem (6.6), observe
that the local scale parameter αi is only required to be strictly positive, whereas we ask the
local shape parameter pi to belong to the interval ]0, 2]. From a theoretical point of view, we
could just impose pi > 0, but we do not expect any significant benefit in letting pi be greater
than 2.
Assuming the independence of the samples, the conditioned pdf P(Si | αi, pi), which has already
been recognized as the local likelihood function, takes the form

P(Si | αi, pi) =
N∏
j=1

P(xi,j | αi, pi) =
(

αipi
Γ(1/pi)

)N
exp

− N∑
j=1

(αixi,j)pi
 .

We thus have

− log P(Si | αi, pi) =−N logαi +N log 1
pi

+N log Γ
( 1
pi

)
+ αpii

N∑
j=1

xpii,j

=−N logαi +N log Γ
(

1 + 1
pi

)
+ αpii

N∑
j=1

xpii,j . (6.7)

Imposing a first order optimality condition on − log P(Si|αi, pi) with respect to αi, we thus get

∂

∂αi
(− log P(Si|αi, pi)) = −N

α
+ piα

pi−1
i

N∑
j=1

xpii,j = 0 ,

from which a closed formula for the update of the i-th scale parameter αi is derived:

αi =

 pi
N

N∑
j=1

xpii,j

− 1
pi

. (6.8)
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Figure 6.3: Maps of shape parameter p and scale parameter α computed on test image
skyscraper for different values of r.

After substituting the expression for αi in (6.7), the following minimization problem for the
update of pi is obtained

p
(t)
i ∈ arg min

pi∈(0,2]

Np log

 pi
N

∑
j

xpii,j

+N log Γ
(

1 + 1
pi

)
+ N

pi

 (6.9)

Problem (6.9) can be reformulated as a minimization problem over a compact constrain set,

p
(t)
i ∈ arg min

pi∈[ε,2]

f(pi) := N

pi
log

 pi
N

∑
j

xpii,j

+N log Γ
(

1 + 1
pi

)
+ N

pi

 . (6.10)

with ε being slightly greater than 0.

Proposition 3. Function f : [ε, 2] → R is continuous and admits a minimum in its compact
domain.

In Figure 6.3 the maps of local p and α values, obtained with neighborhoods of different sizes
starting from the original test image skyscraper are shown. The p-maps have been computed
by setting ε = 0.5, discretizing the compact interval [0.5, 2] with 50 grid values and performing
a grid-search. As the radius r increases, image features of increasing scale are highlighted,
but in any case the method associates very low p values with flat regions and higher values
with texture, while the strength of the regularization is expected to be again weaker on regions
presenting many details. It is worth remarking that in Section 6.6 numerical experiments have
been carried out by computing the p-map starting from the corrupted images. Before going on
with the numerical solution of model (6.3), we want to draw a connection between the p value
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Figure 6.4: Behavior of function | · |p for different values of p.

and the sparsity promotion properties of the regularization. The i-th term in the sum defining
the regularizer TVsv

p,α can be thought as a function of the form

φ(y) = |y|pi , where y = ‖(Du)i‖2 and pi ∈ (0, 2].

Function φ for different values of pi is graphed in Figure 6.4. It is clear how the estimation of
a value pi < 1 leads to a stronger sparsity promotion. On the other hand, letting the shape
parameter to assume value less than 1 can possibly make the model (6.3) non-convex.

6.4 Existence and uniqueness of solutions

In this section, we provide an existence and uniqueness - under certain condition - result for the
solution of the proposed TVsv

p,α-L2 variational model (6.3). We start recalling a general lemma
whose proof can be found in [50, Lemma 2.7.1], guaranteeing the existence of global minimizers.

Lemma 1. Let A1 ∈ Rm×n, m ≥ n, A2 ∈ Rq×n, q ≥ n, be two linear operators satisfying

null(A1) ∩ null(A2) = {0n} ,

and let f1 : Rm → [−∞,+∞] and f2 : Rq → [−∞,+∞] be two proper, lower semicontinuous
and coercive functions. Then, the function h : Rn → [−∞,+∞] defined by

h(x) := f1(A1x) + f2(A2x)

is lower semicontinuous and coercive.

We now apply this result to the TVsv
p,α-L2 model.

Proposition 4. The TVsv
p,α-L2 functional J : Rn → R defined in (6.3) is continuous, bounded

from below by zero and coercive, hence it admits global minimizers.

Proof. Let D ∈ R2n×n be the finite difference operator discretizing the image gradient, K be
the blur operator, and let f1 : R2n → R, f2 : Rn → R be the functions defined by

f1(y) :=
n∑
i=1

αi ‖(y2i−1, y2i)‖pi2 , y ∈ R2n,

f2(z) := µ

2 ‖z − b‖
2
2 , z ∈ Rn.

(6.11)
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Then, the TVsv
p,α-L2 energy functional in (5.8) can be written as

J(u) = f1(Du) + f2(Ku).

It holds: (
null(D) = span(In)

)
∩
(
null(K)

)
= {0n} ,

in fact constant images do not belong to the null space of the linear blur operator K. Further-
more, functions f1 and f2 in (6.11) are clearly continuous, bounded from below by zero and
coercive. It thus follows from Lemma 1 that the TVsv

p,α-L2 functional J in (5.8) is continuous,
bounded from below by zero and coercive, hence it admits at least one global minimizer.

In general, uniqueness of solution is not guaranteed. However, if the regularizer is convex,
assuming that K is analytically non-singular, then the following result holds true.

Corollary 1. Let J : Rn → R be the TVsv
p,α-L2 functional defined in (6.3). If pi ≥ 1 for every

i = 1, . . . , n, then J is strongly convex. Hence it admits a unique global minimizer.

6.5 ADMM optimization

We now focus on the u-update step in Algorithm 3, namely,

u∗ ∈ arg min
u∈Rn

{
n∑
i=1

αi‖(∇u)i‖pi2 + µ

2 ‖Ku− b‖
2
2

}
, (6.12)

where αi and pi are fixed. Similarly as before, we consider a variable splitting technique [3] and
introduce two auxiliary variables w ∈ Rn and t ∈ R2n, such that model (6.12) is rewritten in
the following equivalent constrained form:

{u∗, v∗, w∗} ∈ arg min
u,v,w

{ n∑
i=1

αi‖vi‖pi2 + µ

2 ‖w‖
2
2

}
, ,

subject to : w = Ku− b , v = Du , (6.13)

where D := (DT
h ,DT

v )T ∈ R2n×n and vi :=
(
(Dhu)i , (Dvu)i

)T ∈ R2 represents the discrete
gradient of image u at pixel i. We consider the augmented Lagrangian functional introduced in
Chapter 5

L(u, v, w; ρv, ρw) =
n∑
i=1

αi‖vi‖pi2 + µ

2 ‖w‖
2
2− 〈 ρv, v −Du 〉 + γv

2 ‖v −Du‖22

− 〈 ρw, w − (Ku− b) 〉 + γw
2 ‖w − (Ku− b)‖22 , (6.14)

where γw, γv > 0 are scalar penalty parameters and ρw ∈ Rn, ρv ∈ R2n are the vectors of
Lagrange multipliers associated with the linear constraints w = Ku − b and v = Du in (6.13),
respectively. As in the previous chapter, we look for the saddle point of the augmented La-
grangian. In other words, we set up an alternating chain of minimization problems for the
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primal variables u,w, v, and maximization problems for the dual variables ρw, ρv:

v(t) ∈ arg min
v∈Rn

L(u(t−1), w(t−1), v; ρ(t−1)
w , ρ(t−1)

v ) ,

w(t) ∈ arg min
w∈R2n

L(u(t−1), w, v(t); ρ(t−1)
w , ρ(t−1)

v ) , (6.15)

u(t) ∈ arg min
u∈Rn

L(u,w(t), v(t); ρ(t−1)
w , ρ(t−1)

v ) ,

ρ(t)
w ∈ ρ(t−1)

w − γw
(
w(t) − (Ku(t) − b)

)
,

ρ(t)
v ∈ ρ(t−1)

v − γv
(
v(t) − Du(t) ) .

The minimization problem with respect to w and u can be addressed as already done in Section
5.5. The global regularization parameter µ is updated along the iterations according to the
discrepancy principle, as detailed in Section 5.5.2. Thus we only need to give a closer look to
the minimization step with respect to the auxiliary variable v.

Minimization sub-problem for the primal variable v Given the definition of the aug-
mented Lagrangian functional in (6.14), the minimization sub-problem for the primal variable
v in (6.15) can be written as follows:

v(t) ∈ arg min
v∈R2n

{
n∑
i=1

αi ‖vi‖pi2 − 〈ρ
(t−1)
v , v −Du(t−1)〉 + γv

2

∥∥∥v −Du(t−1)
∥∥∥2

2

}

∈ arg min
v∈R2n

{
n∑
i=1

αi ‖vi‖pi2 + γv
2

∥∥∥∥v − (Du(t−1) + 1
γv
ρ(t−1)
v

)∥∥∥∥2

2

}

∈ arg min
v∈R2n

n∑
i=1

{
αi ‖vi‖pi2 + γv

2

∥∥∥∥vi − ((Du(t−1)
)
i
+ 1
γv

(
ρ(t−1)
v

)
i

)∥∥∥∥2

2

}
. (6.16)

Note that in (6.16) the minimized functional is written in explicit component-wise (or pixel-
wise) form, with

(
Du(t−1)

)
i
,
(
ρ

(t−1)
v

)
i
∈ R2 denoting the discrete gradient and the Lagrange

multipliers at pixel i, respectively. Solving the 2n-dimensional minimization problem in (6.16)
is thus equivalent to solve the n following independent 2-dimensional problems:

v
(t)
i ∈ arg min

vi∈R2

{
‖vi‖pi2 +

(γ/αi)
2

∥∥∥vi − q(t−1)
i

∥∥∥2

2

}
, i = 1, . . . , n ,

with the constant vectors q(t−1)
i ∈ R2 defined by

q
(t−1)
i :=

(
Du(t−1)

)
i
+ 1
γv

(
ρ(t−1)
v

)
i
, i = 1, . . . , n . (6.17)

The solutions of the n optimization problems in (6.17) can be obtained as:

v
(t)
i = ξi q

(t−1)
i , i = 1, . . . , n , (6.18)

In particular, the shrinkage coefficients ξi ∈ [0, 1], i = 1, . . . , n, are given by the following
proposition that has been proven in [111].

Proposition 5. Let β > 0, 0 < p < 2 and q ∈ Rm with m ≥ 1 be given constants. Then, the
proximal operator of the m-variate function f(x) = ‖x‖p2, x ∈ Rm defined as the m-dimensional
minimization problem

x∗ ∈ proxβf (q) = arg min
x∈Rm

{
‖x‖p2 + β

2 ‖x− q‖
2
2

}
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is given by
x∗ = ξ∗q , where ξ∗ ∈ [0, 1]

with

(a) ξ∗ = 0 if ‖q‖2 = 0 , ∀p

(b) ξ∗ = max {1− 1/γ, 0} if ‖q‖2 > 0 , p = 1

(c) ξ∗ unique solution in ]0, 1[ of :

pξp−1 + γ(ξ − 1) if ‖q‖2 = 0 , 1 < p < 2

(d)


ξ∗ = 0 if γ < γ̄

ξ∗ ∈
{

0, ξ̄
}

if γ = γ̄

ξ∗ unique solution in ]ξ̄, 1[ of
pξp−1 + γ(ξ − 1) if γ > γ̄

if ‖q‖2 > 0 , 0 < p < 1

where we set

γ =β‖q‖2−p2

γ̄ = (2− p)2−p

(2− 2p)1−p , ξ̄ = 21− p
2− p .

To summarize previous results, in Algorithm 4 we report the main steps of the proposed ADMM-
based iterative scheme used to solve the saddle-point problem and, at the same time, compute
the space-variant parameters.
As far as convergence of this algorithm is concerned, we remark that in convex settings numerous
convergence results have been established for ADMM as well as its varieties, see for example
[87] and references therein. In particular, when pi ≥ 1 ∀ i and step 3-4 in Algorithm 4 are only
performed for t = 1, i.e. α and p are not updated along the ADMM iterations, the convergence
results hold for the proposed TVsv

p,α-L2 model. However, in case that one or more pi < 1,
the ADMM may be under non-convex settings, where there have been a few studies on the
convergence properties. To the best of our knowledge, existing convergence results of ADMM
for non-convex problems is very limited to particular classes of problems [158] and under certain
conditions of the dual step size [96]. Nevertheless, the ADMM works extremely well for various
applications involving non-convex optimization problems, and this is a practical justification of
its wide use.

6.6 Computed examples

In this section, we evaluate experimentally the performance of the proposed model TVsv
p,α-L2

in (6.3), when applied to the restoration of gray level images synthetically corrupted by known
blur and by AWGN. In particular, the proposed model is compared with:

• the TV-L2 model;

• the TVp-L2 model, with 0 < p ≤ 2 [111];

• the HWTV-L2, introduced in Chapter 5.
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Algorithm 4: ADMM-based algorithm for the TVsv
p,α-L2 model

input: b ∈ Rn, r > 0, τ ≈ 1, γv > 0,γw > 0

output: restored image u∗

1. initialize: set u(0) = b, ρ
(0)
w = 0n, ρ(0)

v = 02n

2. for t = 1, 2, . . . until convergence do:

update parameters

3. · α(t)
i by (6.8) for every i = 1, . . . , n

4. · p(t)
i by (6.9) for every i = 1, . . . , n

5. · µ(t) by (5.35)

update primal variables

6. · v(t) by (6.18)

7. · w(t) by (5.32)

8. · u(t) by solving (5.33)

update dual variables

9. · ρ(t)
w by (5.25)

10. · ρ(t)
v by (5.26)

11. end for

12. return: u∗ = u(t)
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(a) Original u. (b) Corrupted b.

Figure 6.5: Original test image skyscraper (a) and observed image b (b) corrupted by Gaussian
blur and AWGN with σ = 0.05.

The alternating update of the maps of the parameters α and p as well as of the image u
is carried out via Algorithm 4. We point out that, the local scale parameters αi are updated
by means of the closed formula in (6.8), while the local shape parameters pi are sought as
minimizers of the objective function f(pi) in (6.10) over the compact set [ε, 2]. For each i,
problem (6.10) is solved by considering a k-points discretization of [ε, 2] - usually k = 5, 6 -
and computing the minimum of f(pi) over the grid. Thus, in order to improve the efficiency of
Algorithm 4, the maps of the parameters are updated at each 10 or 20 iterations.
Moreover, for all the ADMM-based minimization algorithms and for all the tests, the stopping
criteria detailed in (5.37) are adopted and the penalty parameters γv and γw are suitably set.

Example 1 We start proposing the same example reported in Section 9.2, namely the restora-
tion of the test image skyscraper in Figure 6.5a corrupted by AWGN with standard deviation
σ = 0.05 and Gaussian blur of band=4 and width=1 - see Figure 6.5b. In order to highlight the
effective contribution of the space-variance of the shape parameter p, we are first performing
the TVsv

p,α-L2 model in convex settings, that is 1 ≤ pi ≤ 2. Then, we are extending our analysis
to the case 0.5 ≤ pi ≤ 2.

In Figure 6.6, we compare the proposed model with the HWTV-L2 and the TVp-L2 models.
We remark that here the parameter τ as well as the radius r for the space-variant models have
been tuned in order to maximize the ISNR values, that are reported in Table 6.1, together with
the SSIM values.

It is worth noticing that, when pi ≥ 1, we do not observe significant improvements with
respect to the restoration via HWTV-L2 model. This is mainly due to the fact that on the
region where α assumes low values, namely the textured one, the contribution of p > 1 is not
relevant - see Figure 6.7a-6.7b. On the other hand, ISNR and SSIM values increase when we let
pi be less than 1. The quality of the restoration improves because lower value of p are preferable
on constant - or almost constant - regions, as in the case of the background in skyscraper.

Example 2 As a second example, we consider the restoration of test image bridge in Figure
6.8a corrupted by Gaussian blur of band=4 and width=1 and by AWGNwith standard deviation
σ = 0.05 - see Figure 6.8b. The restorations obtained via the compared models are shown in
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(a) HWTV-L2 (b) TVp-L2 (c) TVsv
p≥1,α-L2 (d) TVsv

p,α-L2 (e) original u

(f) close-up of (a) (g) close-up of (b) (h) close-up of (c) (i) close-up of (d) (j) close-up of (e)

Figure 6.6: ISNR optimization. First row: reconstruction of image in Fig.6.5a by HWTV-L2

(τ = 0.91) (a), TVp-L2 (τ = 0.94) (b), TVsv
p,α-L2 with local pi ≥ 1 (τ = 0.94, r = 14) (c),

TVp, αsv-L2 with local pi ≥ [0.5, 2] (τ = 0.95, r = 22) (d) and original image u (e). Second row:
close-up(s).
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Figure 6.7: First row: p-map (a) and α-map (b) with radius r = 14 and pi ∈ [1, 2]. Second row:
p-map (c) and α-map (d) with radius r = 22 and pi ∈ [0.5, 2].

Figure 6.9 and the corresponding ISNR and SSIM values are reported in Table 6.1. For all the
models, the parameter τ has been set equal to 1, while for the space-variant models, namely
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skyscraper bridge

HWTV TVp TVsv
p≥1,α TVsv

p,α Tv HWTV TVp TVsv
p,α

ISNR 2.54 2.42 2.57 2.98 4.54 5.17 5.09 5.50
SSIM 0.79 0.81 0.80 0.84 0.71 0.77 0.78 0.80

Table 6.1: ISNR and SSIM values achieved by the compared models on skyscraper and bridge
test images.

(a) Original u (b) Corrupted b

Figure 6.8: Original test image bridge (a) and observed image b corrupted by Gaussian blur
and AWGN with σ = 0.05.

(a) TV-L2 (b) TVp-L2 (c) HWTV-L2 (d) TVsv
p,α-L2 (e) original u

(f) close-up of (a) (g) close-up of (b) (h) close-up of (c) (i) close-up of (d) (j) close-up of (e)

Figure 6.9: First row: Restoration of bridge by TV-L2 (a), TVp-L2 (b), HWTV-L2 (r = 4)
(c), TVsv

p,α-L2 (r = 4) (d) and original u (e). The tests are all performed with τ = 1. Second
row: close-up(s).

the HWTV-L2 and the TVsv
p,α-L2 models, a radius r = 4 has been fixed. Moreover, for what

concerns the p-map estimation in the TVsv
p,α-L2 model, we look for pi ∈ [0.5, 2].

The test image is characterized by smooth regions, hence the TVsv
p,α mainly performs a

Tikhonov-type regularization, as also suggested by the output p-map in Figure 6.10a. In fact,
in this case the classical TV regularization, even if locally weighted, produces straircasing in
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Figure 6.10: Output maps of parameters with radius r = 4.

the background, since it not suited for the restoration of smooth regions.
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Chapter 7

Space-variant direction
regularization tuning

The space-variant regularizers WTV (5.6) and TVsv
p,α (6.3) have been designed in order to

overcome some of the shortcomings related to the adoption of a TV regularizer, mainly related
to both its global weighting at any pixel as well as its global smoothness, and furthermore to
its convexity, which is well-known to be easier to handle in practice, but on the other hand has
been shown to be uncapable to favor sparsity as non-convex regularizers may do. Nevertheless,
the regularization term proposed in Chapter 5 and Chapter 6, as well as TV, share a further
limitation that is the blindness to dominant local directionality in the image. In other words,
making an assumption on the distribution of the `2-norm of the gradients does not allow to
include in the model information concerning the spatial distribution of the gradients themselves.
In literature, several methods addressing this issue have been considered. Many of those are
based on a structure-tensor modeling [159, 148, 136, 140]. Directional information have also been
encoded in higher-order regularizer, such as TGV, see, e.g., [104, 126, 127]. Also, a plethora
of literature addressed the problem of detecting and exploiting directional information in a
multi-scale framework, where the restoration is driven by curvelets and shearlets [100, 108, 64,
86]. Nonetheless, the novelty of our contribution is represented by the statistical assumptions
motivating the introduction of the proposed regularizer.

7.1 The DTVsv
p -L2 model

In this Chapter, in order to address the linear inverse problem in (5.1), we propose a novel
regularization term that inherits the space-variant contributions presented by WTV and TVsv

p,α

regularization terms, and adds one more space-variant free parameter encoding the local orien-
tation of the gradients. We are referring to this regularizer as DTVsv

p . We define it as

DTVsv
p (u) :=

n∑
i=1
‖ΛiRζi (Du)i‖pi2 , pi > 0 , ∀ i = 1, . . . , n. (7.1)
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For every i = 1, 2, . . . , n, the weighting and rotation matrices Λi,Rζi ∈ R2×2 are defined respec-
tively by:

Λi :=

λ(1)
i 0
0 λ

(2)
i

 , λ
(1)
i ≥ λ

(2)
i > 0, Rζi :=

(
cos ζi − sin ζi
sin ζi cos ζi

)
, ζi ∈ [0, 2π), (7.2)

so that ζi has to be understood as the local image orientation, while the parameters λ(1)
i and

λ
(2)
i weight at any point the TV-like smoothing along the direction ζi and its orthogonal ζ⊥i ,

respectively.
We thus define the space-variant, anisotropic (or directional) and possibly non-convex DTVsv

p -L2

variational model for image restoration:

u∗ ∈ arg min
u∈Rn

{
J(u) := DTVsv

p (u) + µ

2 ‖Ku− b‖
2
2

}
, . (7.3)

The HWTV-L2 model (5.8) and the TVsv
p,α-L2 model (6.2) can be also interpreted as sub-cases

of the more general DTVsv
p -L2. In fact, the generic Λi matrix can be rewritten as

Λi = λ
(2)
i Λ̃i , where Λ̃i =

λ
(1)
i

λ
(2)
i

0

0 1

 .

The normalized matrix Λ̃i encodes the relative strength of the regularization along ζi and ζ⊥i ,
while λ(2)

i plays the role of a scaling factor. Hence, the DTVsv
p regularizer in (7.1) takes the

equivalent form

DTVsv
p (u) :=

n∑
i=1

αi
∥∥∥Λ̃iRζi (Du)i

∥∥∥pi
2
, with αi =

(
λ

(2)
i

)pi
. (7.4)

When ζi = 0, λ(1)
i = λ

(2)
i for i = 1, . . . , n, (7.4) reduces to the TVsv

p,α regularizer; if, in addition,
pi = 1 for i = 1, . . . , n, the WTV regularizer is obtained.
The DTVsv

p -L2 can be also classified as a hybrid model, due to the presence of a global regu-
larization parameter µ in its formulation. Moreover, in analogy with the TVsv

p,α-L2 model, in
model (7.3) the non-convexity can possibly arise whenever 0 < pi < 1.
The proposed DTVsv

p regularizer (7.1) is highly flexible as it potentially adapts to local smooth-
ness and directional properties of the image at hand, provided that a reliable estimation of the
parameters λ(1)

i , λ
(2)
i , ζi and pi is given. In comparison to the previously introduced regulariza-

tion terms, the DTVsv
p accommodates further local directional information, which can signifi-

cantly improve the restoration results in the case, for instance, of textured and/or high-detailed
images. The statistical rational of our approach relies on a prior assumption on the distribution
of the gradient magnitudes of the desired image u which we assume to be space-variant and
locally drawn from a Bivariate Generalized Gaussian Distribution (BGGD) [12, 144, 143].
As in the previous chapter, an effective estimation procedure for the estimation of the unknown
parameters involved in the expression of the DTVsv

p regularizer (7.1) will be discussed as well.
More specifically, we will propose a robust parameter estimation procedure based on a hier-
archical modeling and on non-informative hyperpriors, reducing dramatically the number of
parameters to estimate. As far as the estimation of the global parameter µ is concerned, we are
still resorting to the discrepancy principle.
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7.2 Model derivation via MAP

We start modeling the joint distribution of the two partial derivatives of the gradient vector
(Du)i at any pixel by a Bivariate Generalized Gaussian Distribution (BGGD) [12]. Namely, for
all i = 1, . . . , n we assume that

P((Du)i; pi,Σi) = 1
2π|Σi|1/2

pi
Γ(2/pi) 22/pi

exp
(
−1

2((Du)Ti Σ−1
i (Du)i)pi/2

)
, (7.5)

where Γ stands for the Gamma function, the covariance matrices

Σi =
(

(σ1)i (σ3)i
(σ3)i (σ2)i

)
∈ R2×2 , i = 1, . . . , n ,

are symmetric positive definite with determinant |Σi| and pi/2 is often referred to as shape
parameter. Note that when in (7.5) pi = 2 for every i = 1, . . . , n, then the BGGD reduces to a
standard bivariate Gaussian distribution with pixel-wise covariance matrices Σi. As suggested
in [144, 143, 129], it is possible to decouple the spread and the directionality of the BGGD by
introducing a further scale parameter m > 0, so that (7.5) takes the following form:

P(x; p,Σ,m) = 1
πΓ
(2
p

)
2

2
p

p

2m|Σ|
1
2
exp

(
− 1

2mp/2 (xTΣ−1x)p/2
)
,

where, for the sake of better readability, we continue using the symbol Σi to denote the scatter
matrix of the local distribution.

Proceeding similarly as in the previous chapters, we can then deduce the expression of the
corresponding prior under such assumption. It reads:

P(u) = 1
Z

exp
(
− 1

2

n∑
i=1

1
m
pi/2
i

(
(Du)Ti Σ−1

i (Du)i
)pi/2 ) (7.6)

The symmetric positive definite matrices Σi contain information on both the directionality
and the relative elongation of the elliptic level curves of the BGGD at pixel i. To see that
explicitly, we consider their eigenvalue decomposition:

Σi = VT
i EiVi, Ei =

(
e(1)

i 0
0 e

(2)
i

)
, e(1)

i ≥ e(2)
i > 0, VT

iVi = ViVT
i = I ,

where for every i = 1, . . . , n, e(1)
i, e

(2)
i are the (positive) eigenvalues of Σi and Vi is the or-

thonormal (rotation) modal matrix. We then rewrite the terms in the sum appearing in (7.6)
as (

(Du)Ti Σ−1
i (Du)i

) pi
2 =

(
(Du)Ti VT

i E−1
i Vi(Du)i

) pi
2 =

∥∥∥E−1/2
i Vi (Du)i

∥∥∥pi
2
,

whence by setting
Λi := E−1/2

i , Rζi := Vi, (7.7)

and after recalling the definition of the DTVsv
p regularizer given in (7.4), we observe that the

prior in (7.6) can indeed be expressed as:

P(u | θpr) = 1
Z

exp
(
− 1

2 DTVsv
p (u)

)
, (7.8)
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where Z is the normalization constant and m
−pi/2
i plays the role of the local regularization

weight αi in (7.4). The vector of unknown parameters defining the prior in (7.8) reads

θpr =


θpr1

θpr2

. . .

θprn

 ∈ Rn×4 , with θpri =
(
mi, pi, ζi, e

(1)
i

)
,

where observe that the angle ζi and the maximum eigenvalue e(1)
i uniquely determine the local

scatter matrix Σi when, a typical normalization constraint on the trace of Σ is imposed [144,
143, 129], namely

tr(Σi) = e
(1)
i + e

(2)
i = d = 2 ,

with d being the dimension of the ambient space. By plugging the expression of the Gaussian
likelihood and the BGGD prior (7.8) in the MAP inference formula (3.20) and after dropping
the constant terms, we finally obtain the DTVsv

p -L2 image restoration model (7.3) for blur and
AWGN removal by setting µ = 1/σ2.
Also in this case, for the solution of the minimization problem in (7.3) and for the combined
estimation of the unknown parameters, we are resorting to an alternated scheme as the ones
proposed in the previous chapters. The maps of the four space-variant parameters, namely
m, p, ζ and e(1), are updated and integrated in the model, so as to provide a more flexible
regularization in the u-update.

Algorithm 5: IAS with non-informative hypeprior for the DTVsv
p -L2 model

input: observed image b ∈ Rn

output: restored image u∗

1. initialize: set u(0) = b

2. for t = 1, 2, . . . until convergence do:

3. · update
(
m(t), p(t), ζ(t),

(
e(1)

)(t)
)
∈ arg min

{
− log P(u(t−1) | m, p, ζ, e(1))

}
,

4. · update u(t) ∈ arg min
u∈Rn

{
− log P

(
u | m(t),p(t), ζ(t),

(
e(1)

)(t)
)

− log P
(
b | u(t), p(t), ζ(t),

(
e(1)

)(t)
)}

5. end for

6. return: u∗ = u(t)

7.3 Automatic estimation of the DTVsv
p parameters

In this section, start addressing the parameter estimation problem, discussing in particular the
constraint set for the parameters that are going to be estimated by means of the introduction of
non-informative hyperpriors. We also remark that, unlike the previous cases, here the unknown
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entries of θpr will not be directly estimated but we will introduce some auxiliary variables.
More in detail, we start addressing the problem of estimating the local scale parameter mi, the
shape parameter pi and the entries of the scatter matrix Σi. By dropping for a moment the
subscription, we observe that the requirement for the scatter matrix Σ to be symmetric positive
definite means:

Σ =
[
σ1 σ3

σ3 σ2

]
with

 σ1 > 0

|Σ| = σ1σ2 − σ2
3 > 0

.

By imposing condition (7.2) on the trace of the scatter matrix, we easily get the following
expression of the constraint set Cpr for the parameters p,m, σ1, σ2, σ3 to be well defined:

Cpr :=



p > 0

m > 0

tr (Σ) = σ1 + σ2 = 2

σ1σ2 − σ2
3 > 0

−→ Cpr =


p > 0

m > 0

σ2
1 + σ2

3 − 2σ1 < 0.

(7.9)

The set Cpr is an open (unbounded) semi-cylinder in R4. After a change of coordinates which
shifts the center of the circle in the σ1−σ3 plane to the origin, we obtain the following expression
of Σ−1 expressed in the new coordinates,

σ̃1 := 1− σ1 −→ Σ−1 = 1
1− σ̃2

1 − σ2
3

[
1 + σ̃1 −σ3

−σ3 1− σ̃1

]
. (7.10)

To avoid heavy notation, we will still denote in the following by σ1 the same variable after this
change of coordinates.

7.3.1 Estimation of the BGGD parameters via non-informative hyperpriors

In order to estimate the local parameters m, p, σ1, σ3, or equivalently, θpri , we are adopting the
same strategy introduced in the previous chapter. For every i = 1, . . . , n, let Si = {xi,j}Nj=1 be a
set of N samples drawn from a BGGD. The samples xi,j ∈ R2 represent the gradients in pixels
belonging to a neighborhood Cri of radius r of pixel i. In formula, xi,j = (Du)j , with uj ∈ Cri .
For each i, we are interested in solving a problem of the form

(p(t), σ
(t)
1 , σ

(t)
3 ,m(t))←− arg min

θ ∈ Cpr
{F(θ;x) := − log P(S | θ)} ,

where we dropped the subscription for the sake of better readability. The local likelihood
function, under the hypothesis of independence of the samples in S reads

P(S | θ) =
∏
xj∈Cr

P(xj | θ) =
N∏
j=1

P(xj | θ)

=
[

1
|Σ|1/2

p

2πΓ
(2
p

)
22/pm

]N
exp

(
− 1

2mp/2

N∑
j=1

(xTj Σ−1xj)p/2
)
.
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By recalling the fundamental property of Gamma function Γ(z + 1) = zΓ(z) for every z ∈ R,
we deduce:

F(p, σ1, σ3,m;x) = −
[
N log

( 1
|Σ|1/2

1
πΓ
(2
p + 1

)
22/pm

)
− 1

2mp/2

N∑
j=1

(xTj Σ−1 xj )p/2
]

= N log
(
|Σ|1/2πΓ

(2
p

+ 1
)

22/p
)

+N logm+ 1
2mp/2

N∑
j=1

(xTj Σ−1 xj )p/2.

Note that F is differentiable on Cpr. Therefore, by simply imposing the first order optimality
condition for m, we get the following closed formula:

∂F

∂m
= N

m
− p

4m
p
2 +1

N∑
j=1

(xTj Σ−1xj)p/2 −→ m =
(
p

4N

N∑
j=1

(xTj Σ−1xj)p/2
) 2
p

. (7.11)

We now substitute this formula in the expression of F, thus getting:

F(p, σ1, σ3;x) = N log
(
|Σ|1/2πΓ

(2
p

+ 1
)

22/p
)

+ 2N
p

log
(
p

4N

N∑
j=1

(xTj Σ−1xj)p/2
)

+ 2N
p
. (7.12)

By making explicit the dependence of F on the entries of Σ, and recalling that σ2 can be
expressed in terms of σ1, we have that (7.12) turns into:

F(p, σ1, σ3;x) = N log
( 1
|Σ|1/2

πΓ
(2
p

+ 1
)

22/p
)

+ 2N
p

+ 2N
p

log p

4N (7.13)

+ 2N
p

log
( N∑
j=1

(σ2x
2
j,1 + σ1x

2
j,2 − 2σ3xj,1xj,2)p/2

)
.

We now study the behavior of F expressed as above as (p, σ1, σ3) approach the boundary of
the set Cpr defined in (7.9). Thanks to the formula for m derived in (7.11), we start noticing
that Cpr can be expressed in fact as a subset in R3 defined by the variables p, σ1 and σ3 only.
By further switching to polar coordinates in the σ1 − σ3 plane, we get:

(σ1, σ3) = %(cosφ, sinφ), 0 ≤ % < 1, φ ∈ [0, 2π),

so that the matrices in (7.10) take the following form:

Σ =
[
1− % cosφ % sinφ
% sinφ 1 + % cosφ

]
, Σ−1 = 1

1− %2

[
1 + % cosφ −% sinφ
−% sinφ 1− % cosφ

]
, (7.14)

and the functional F in (7.13) becomes:

F(p, φ, %;x) = N log
(

Γ
(2
p

+ 1
)

π√
1− %2

(
p

2N

)2/p )
+ 2N

p
+ 2N

p
log p

4N

+ 2N
p

log
[

N∑
j=1

((1 + % cosφ)x2
j,1 + (1− % cosφ)x2

j,2 − 2% sinφ xj,1xj,2)p/2
]
.(7.15)

As a conclusion, the local estimation problem we are interested in takes the form of the following
constrained optimization problem

(p(t), φ(t), %(t)) ∈ arg min
p∈(0,∞),
φ∈[0,2π),
%∈[0,1)

F(p, φ, %). (7.16)

Note that, since the problem (7.16) is formulated over a non-compact set of R3, the existence
of a solution is in general not guaranteed.
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7.3.2 Reformulation on a compact set

One possible way to overcome the problem of non-compactness consists in characterizing ex-
plicitly the configurations of the samples Cr for which the functional F in (7.15) does not attain
its minimum inside Cpr. To do so, let us first rename the last term in (7.15) as:

A(φ, %) := 2N
p

log
[
N∑
i=j

((1 + % cosφ)x2
j,1 + (1− % cosφ)x2

j,2 − 2% sinφ xj,1xj,2)p/2
]
.

For any p ∈ (0,+∞), if A(φ, %) is bounded as % → 1−, then the functional F in (7.15) tends
to +∞ and the minimum is necessarily attained in the interior of Cpr. However, if A(φ, %) is
unbounded as %→ 1−, nothing can be said about the behavior of F at the boundary and, as a
consequence, nothing can be said about its minima. In particular, in this situation there may
exist one or multiple configurations of the samples x1, . . . , xN ∈ Cr for which F tends to −∞ at
the boundary. In order to characterize such configurations, note that as % → 1− we have that
by continuity:

A(φ, %)→ 2N
p

log
[

N∑
j=1

(
√

1 + cosφ xj,1 −
√

1− cosφ xj,2)p
]
,

which tends to −∞ if and only if the argument of the logarithm tends to zero, i.e. when

xj,2 =
√√

1 + cosφ√
1− cosφ

xj,1, ∀j = 1, ..., N. (7.17)

This situation corresponds to the very particular case when the samples xj lie all on the line

passing through the origin with slope
√√

1+cosφ√
1−cosφ

.

A possible way to guarantee the existence of solutions of the problem (7.16) is to re-formulate
the problem over a compact subset of R3. Although this may sound a little bit artificial, note that
for imaging applications such assumption makes perfect sense for different reasons. Firstly, as
far as the range for the parameter % is concerned, the degenerate configurations (7.17) happening
as % approaches 1− are easily detectable in a pre-processing step and, in practice, very unlikely
for natural images since they would correspond to situations where gradient components are
linearly correlated for any sample j = 1, . . . , N . Therefore, provided we can perform such
preliminary check, the case % = 1 becomes admissible since no other possible configurations are
allowed under this choice.

Secondly, regarding the admissible values for p, we notice that the more we enforce sparsity
(i.e. the closer p is to zero), the more the BGGD will tend to a Dirac delta distribution, making
the estimation of local anisotropy in a neighborhood of the point considered impossible (see
Section 7.3 for more details). Hence, in analogy with Chapter 6, the exponent p is thought as
confined in the closed interval [ε, 2], with ε > 0.

After this observation, we can then reformulate the problem (7.16) as follows

(p∗, φ∗, %∗) ∈ min
p,φ,%

F(p, φ, %;x) (7.18)

s.t. p ∈ [ε, 2], 0 ≤ % ≤ 1, 0 ≤ φ ≤ 2π,
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where now the constraint set is compact, which, combined with the continuity of F, guarantees
that the minimization problem admits a minimum.

Summarizing, for each pixel i = 1, . . . , n, the triplet of estimated parameters (p∗i , φ∗i , %∗i ) is
involved in the computation of the matrices Λi,Rζi defining the regularizer in (7.1). Relying on
(7.14), the eigenvalues e(1)

i , e
(2)
i can be easily computed. Observe that, due to the normalization

condition on the trace introduced in (7.9), the minimum eigenvalue e(2)
i can be directly derived

by the maximum eigenvalue e(1)
i :

e
(1)
i = 1 + %i, e

(2)
i = 2− e(1)

i = 1− %i.

Therefore, recalling (7.7), the matrix Λi is obtained as follows:

Λi :=

λ(1)
i 0
0 λ

(2)
i

 =


1√
e

(1)
i

0

0 1√
e

(2)
i

 . (7.19)

Once e(1)
i is available, its corresponding eigenvector (v1)i, satisfying Σi(v1)i = e(1)

i(v1)i , can
be further calculated using the formula

(v1)i =

√
1 + cosφi

2

 sinφi√
1+cosφi

1

 .
As a consequence, the local angle ζi describing the local orientation is computed by

ζi = arctan
√

1 + cosφi
sinφi

,

and the rotation matrix Rζi is given as in (7.2).
In order to get a better insight on the space-variant and local flexibility of the proposed

regularizer, it is helpful to represent the estimated BGGD to visualize its shape in the plane
((Dhu)i, (Dvu)i). To draw the corresponding level curves, we only need the maximum eigen-
value e(1)

i and the rotation angle ζi. Such curves are the ellipses having semi-axes ai, bi, and
eccentricity εi given by:

ai :=
√
e(1)

i, bi :=
√
e

(2)
i , εi :=

√
ai2 − bi2

ai
=

√
e(1)

i − e(2)
i√

e(1)
i

.

An illustrative drawing of the anisotropy ellipses described above is reported in Figure 7.1.

7.4 Existence and uniqueness of solutions

By applying again the lemma proved in [50, Lemma 2.7.1], whose statement has been given in
Section 6.4, we will prove that existence of global minimizers for model (7.3) is guaranteed.

Proposition 6. The DTVsv
p -L2 functional J : Rn → R defined in (7.3) is continuous, bounded

from below by zero and coercive, hence it admits global minimizers.
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θ

Dh

Dv

v1v2

a

b

Figure 7.1: Representation of anisotropy ellipses describing BGGD level lines in the plane
Dh −Dv in terms of the eigenvalues and eigenvectors of the estimated matrix Σ.

Proof. Let A1 ∈ R2n×n be the matrix defined by

A1 = LD, L = diag (L1,L2, . . . ,Ln) , Li = ΛiRζi ∈ R2, i = 1, . . . , n, (7.20)

with Λi,Rζi ∈ R2 the full rank matrices in (7.2) and D ∈ R2n×n a finite difference operator
discretizing the image gradient, let A2 = K, and let f1 : R2n → R, f2 : Rn → R be the functions
defined by

f1(y) :=
∑n
i=1 ‖(y2i−1, y2i)‖pi2 , y ∈ R2n,

f2(z) := µ

2 ‖z − g‖
2
2 , z ∈ Rn.

(7.21)

Then, the DTVsv
p -L2 energy functional in (7.3) can be written as

J(u) = f1(A1u) + f2(A2u). (7.22)

As the block diagonal matrix L in (7.20) has full rank (all matrices Li have full rank), the linear
operator A1 has the same null space as the discrete gradient operator D. It follows that

(
null(A1) = null(D) = span(In)

)
∩
(
null(A2) = null(K)

)
= {0n} ,

in fact constant images do not belong to the null space of the linear blur operator K. Further-
more, functions f1 and f2 in (7.21) are clearly continuous, bounded from below by zero and
coercive. It thus follows from Lemma 1 that the DTVsv

p -L2 functional J in (7.22) is continuous,
bounded from below by zero and coercive, hence it admits at least one global minimizer.

Uniqueness of solutions is in general not guaranteed. However, under the assumption of
analytically non-singular blur matrix K, if the functional is strictly convex, this trivially holds.

Corollary 2. Let J : Rn → R be the DTVsv
p -L2 functional defined in (7.3). If pi ≥ 1 for every

i = 1, . . . , n, then J is strongly convex. Hence it admits a unique global minimizer.

Note, however, here we are more interested in the non-convex case, e.g. when there exists
at least one i ∈ {1, . . . , n} such that pi < 1, since in this better regularization properties
are enforced in DTVsv

p -L2. Therefore, in our applications uniqueness in general will not be
guaranteed and we will be generally dealing with the case of local minima.
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7.5 ADMM optimization

Consider the u-update step in the outer scheme in Algorithm 5,

u(t) ∈ arg min
u∈Rn

{
J(u) :=

n∑
i

‖ΛiRζi(Du)i‖pi2 + µ(t)

2 ‖Ku− b‖
2
2

}
,

where the parameters defining the local matrices Λi,Rζi and the local shape parameters pi are
considered fixed at iteration t, e.g. their iteration has already been performed.. Also here, we
resort to ADMM algorithm. First, we introduce two auxiliary variables w ∈ Rn and v ∈ R2n

and rewrite model (7.3) in the following equivalent constrained form:

{u∗, w∗, v∗} ← arg min
u,w,v

{ n∑
i=1
‖ΛiRζivi‖

pi
2 + µ

2 ‖w‖
2
2

}
,

subject to : w = Ku− b , v = Du , (7.23)

where D := (DT
h ,DT

v )T ∈ R2n×n and vi :=
(
(Dhu)i , (Dvu)i

)T ∈ R2.
The augmented Lagrangian functional is defined as follows:

L(u,w, v; ρw, ρv) : =
n∑
i=1
‖ΛiRζivi‖

pi
2 + µ

2 ‖w‖
2
2− 〈 ρv, v −Du 〉 + γv

2 ‖v −Du‖
2
2

− 〈 ρw, w − (Ku− b) 〉 + γw
2 ‖w − (Ku− b)‖22 , (7.24)

where γw, γv > 0 are the scalar penalty parameters, while ρw ∈ Rn, ρv ∈ R2n are the vectors of
Lagrange multipliers associated with the linear constraints w = Ku − b and v = Du in (7.23),
respectively. The scheme alternating the maximization with respect to the primal variables and
the minimization with respect to the dual variables reads as

v(t) ∈ arg min
v∈R2n

L(u(t−1), w(t−1), v; ρ(t−1)
w , ρ(t−1)

v ) , (7.25)

w(t) ∈ arg min
w∈Rn

L(u(t−1), w, v(t); ρ(t−1)
w , ρ(t−1)

v ) , (7.26)

u(t) ∈ arg min
u∈Rn

L(u,w(t), v(t); ρ(t−1)
w , ρ(t−1)

v ) , (7.27)

ρ(t)
w ∈ ρ(t−1)

w − γw
(
w(t) − (Ku(t) − b)

)
,

ρ(t)
v ∈ ρ(t−1)

v − γv
(
v(t) − Du(t) ) .

We notice that sub-problems (7.27) and (7.26) for the primal variables u and w admit solutions
based on formulas given in Section 5.5 for identical sub-problems. Moreover, for the update of
the global regularization parameter µ, we resort again to the discrepancy principle, as already
detailed in Chapter 5.

We thus focus on the minimization sub-problem for v in (7.25).

Sub-problem for v After simple algebraic manipulations, (7.25) can be re-written as follows:

v(t) ∈ arg min
v∈R2n

n∑
i=1

{
‖ΛiRζivi‖

pi
2 + γv

2

∥∥∥∥vi − ((Du(t−1)
)
i
+ 1
γv

(
ρ(t−1)
v

)
i

)∥∥∥∥2

2

}
.
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Solving the 2n-dimensional minimization problem above is thus equivalent to solve the n fol-
lowing independent 2-dimensional problems:

v
(t)
i ∈ arg min

vi∈R2

{
‖ΛiRζivi‖

pi
2 + γv

2

∥∥∥vi − q(t−1)
i

∥∥∥2

2

}
, i = 1, . . . , n , (7.28)

where the vectors q(t−1)
i ∈ R2 are defined explicitly at any iteration by

q
(t−1)
i :=

(
Du(t−1)

)
i
+ 1
γv

(
ρ(t−1)
v

)
i
, i = 1, . . . , n .

We observe that the solutions of the n bivariate optimization problems in (7.28) requires
the computation of a special proximal mapping-type operator, the only difference being the
possible non convexity considered. We dedicate the following Section 7.5.1 to carefully discuss
the solution of this optimization problem and show that it can be eventually re-written as a
one-dimensional optimization problem and thus solved efficiently.

7.5.1 A non-convex proximal mapping solving

In this section, we describe a novel result in multi-variate non-convex proximal calculus which is
crucial to solve efficiently the problem (7.28). Such problem can be interpreted as the calculation
of a non-convex proximal mapping, see [85]. We then start recalling its definition.

Definition 3 (proximal map for non-convex functions). Let f : Rn → R be a proper, lower
semi-continuous and possibly non-convex function and let γ > 0. The proximal map of f with
parameter γ is the set-valued function proxγf : Rn ⇒ Rn defined for any q ∈ Rn by:

proxγf (q) := arg min
v∈Rn

{
f(v) + γ

2 ‖v − q‖
2
2

}
. (7.29)

Note that under such definition the set proxγf (q) is in general not a singleton. Furthermore,
for some particular choices of γ > 0 it may also be empty.

We present in the following the results concerned with the computation of the proximal map
proxγf in (7.29), in the case when f : R2 → R is the function

f(v) :=
(
vTA v

)p/2
, v ∈ R2, A ∈ R2×2 symmetric positive definite, p > 0 . (7.30)

The ADMM sub-step (7.28) will then be a special instance of (7.29) under the choice of f as
above, γ = γv, v = vi, A = RT

ζi
Λ2
i Rζi , p = pi, and q = q

(t−1)
i , for i = 1, . . . , n and t > 0.

We now ensure that under the choice (7.30) above the minimization problem (7.29) admits
solutions. Then, assuming that A has condition number κ > 1 we show how the calculation
of the proximal map can be reduced to the solution of a one-dimensional problem, whose form
depends on the input q and the matrix A. Note that the case κ = 1 boils down to consider a
scalar and diagonal matrix A, which simplifies the problem and for which the results discussed
in [111] can be used.

Proposition 7. Under the choice (7.30), the optimization problem (7.29) admits at least one
solution.



100

Proof. Under the choice (7.30), both the terms in the objective function in (7.29) are continuous,
bounded from below by zero and coercive over the entire domain R2. It clearly follows that
the total objective function is continuous, bounded from below by zero and coercive, hence it
admits at least one global minimizer.

In the following, for v, w ∈ Rn we denote by v ◦ w, |v| and sign(v) the component-wise (or
Hadamard) product between v and w and the component-wise absolute value and sign of v,
respectively.

Proposition 8. Let p, γ > 0, q ∈ R2 and let A ∈ R2×2 be a symmetric positive definite matrix
with condition number κ > 1 and eigenvalue decomposition

A = VTΛV, VTV = VVT = I2, Λ = diag(λ1, λ2), λ1 > λ2 > 0. (7.31)

Let us further define

q̃ := Vq, s := sign(q̃), q̄ := |q̃|, γ := γ

λ
p/2
2

, Λ := diag(κ, 1), κ = λ1
λ2
. (7.32)

Then, any solution v∗ ∈ R2 of the problem

v∗ ∈ arg min
v∈R2

{
F (t) := (vTAv)p/2 + γ

2 ‖v − q‖
2
2

}
. (7.33)

can be expressed as
v∗ = V T (s ◦ z∗) , z∗ ∈ arg min

z∈H1
H(z) , (7.34)

where the objective function H : R2 → R and the feasible set H1 ⊂ R2 are defined by

H(z) :=
(
zT Λ z

)p/2
+ γ

2 ‖ z − q̄ ‖
2
2 , H1 := H ∩

([
0, q̄1

]
×
[
0, q̄2

])
, (7.35)

with H being the rectangular hyperbola defined by

H:=
{

(z1, z2) ∈ R2 : (z1 − c1) (z2 − c2) = c1c2, c1 = − q̄1
κ− 1 , c2 = κ q̄2

κ− 1

}
. (7.36)

Proof. We start noticing that the matrix Λ in (7.31) can be factorized as Λ = λ2Λ, where Λ is
defined in (7.32). By substituting such factorization into (7.31), we can reformulate problem
(7.33) as:

v∗ ∈ arg min
v∈R2

{
λ
p/2
2

(
vTVT ΛV v

)p/2
+ γ

2 ‖v − q‖
2
2

}
. (7.37)

After introducing the bijective linear change of variable

y := Vv ⇐⇒ v = VT y,

we have that problem (7.37) can be equivalently expressed as

v∗ = VT y∗ ,

y∗ ∈ arg min
y∈R2

{
G(y) :=

(
yT Λ y

)p/2
+ γ

2 ‖y − q̃‖
2
2

}
, (7.38)
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where γ and q̃ are defined in (7.32).
If q̃1 = q̃2 = 0 then one can trivially show that clearly y∗ = (0, 0) =⇒ t∗ = (0, 0). We can

then assume that q̃ ∈ R2 \{0} and exploit symmetries of the function G in (7.38) to restrict the
optimization problem to the case where q̃ lies in the first quadrant only. First, we notice that,
for any given a ∈ R and b ∈ R \ {0}, we have

a2 = (sign(b))2 a2 = (sign(b) a)2 , (7.39)

(a− b)2 = (a− sign(b)|b|)2 =
(

sign(b)
(

a

sign(b) − |b|
))2

= (sign(b))2 (sign(b)a− |b|)2 = (sign(b)a− |b|)2 . (7.40)

By now recalling definitions of function G in (7.38) and of matrix Λ in (7.32), and then using
(7.39)-(7.40), we can write

G(y) =
(
κy2

1 + y2
2

)p/2
+ γ

2
(
(y1 − q̃1)2 + (y2 − q̃2)2

)
=
(
κ (sign(q̃1)y1)2 + (sign(q̃2)y2)2

)p/2
+ γ

2
(
(sign(q̃1)y1 − |q̃1|)2 +

(
sign(q̃2)y2 − |q̃2|2

))
.

By setting S := diag (sign (q̃1) , sign (q̃2)) we can now set

z := Sy ⇐⇒ y = S−1z,

which is a linear bijective change of variable since q̃1, q̃2 ∈ R \ {0} =⇒ sign (q̃1) , sign (q̃2) ∈
{−1, 1}. Recalling the definition of s and q in (7.32), we thus get that the optimization problem
(7.38) is equivalent to

y∗ = s ◦ z∗ ,

z∗ ∈ arg min
z∈R2

{
H(z) :=

(
zT Λ z

)p/2
+ γ

2 ‖ z − q ‖
2
2

}
, (7.41)

where the vector q = (|q̃1|, |q̃1|) now lies in the first (open) quadrant (0,+∞)2.
We now prove that the solutions z∗ in (7.41) belong to the arc of hyperbola H1 defined in

(7.35). To this aim, we consider the following one-parameter family of ellipses depending on a
parameter R > 0:

ER :=
{

(z1, z2) ∈ R2 : zTΛz = R2
}

=
{

(z1, z2) ∈ R2 : κ z2
1 + z2

2 = R2
}

=
{

(z1, z2) ∈ R2 : z1 = z1(ζ;R)= R√
κ

cos ζ, z2 = z2(ζ;R) = R sin ζ, ζ ∈ [0, 2π[
}
(7.42)

and, as a start, we show that the minimizers of the restriction of the function H in (7.41) to
any ellipse ER in (7.42) lie on the hyperbola H in (7.36). In Figure 7.2 we show the hyperbola
H (magenta solid line) with its two orthogonal asymptotes, the arc H1 defined in (7.35) (red
solid thick line) and one ellipse ER (blue dashed line) as in (7.42).

Let us observe first that when restricted to an ellipse ER of the form in (7.42), the objective
function H depends only on ζ (R can be regarded as a fixed parameter). The restriction
HR : R→ R takes then the following form

HR(ζ;R) = Rp + γ

2

((
R√
κ

cos ζ − q1

)2
+
(
R sin ζ − q2

)2)
.
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Figure 7.2: Graphical representation for the bivariate minimization problem (7.41).

For any R > 0, the function HR above is clearly periodic with period 2π, bounded (from below
and above) and infinitely many times differentiable in ζ, hence the minimizers of HR can be
sought for among its stationary points in the interval [0, 2π). The first-order derivative of HR

is as follows:

H ′R(ζ;R) = γ

(
− R√

κ
sin ζ

(
R√
κ

cos ζ − q1

)
+R cos ζ (R sin ζ − q2)

)
= γ

κ− 1√
κ

(
(z1(ζ;R)− c1) (z2(ζ;R)− c2)− c1c2

)
(7.43)

where (7.43) follows after some simple algebraic manipulations from the parametrization in
(7.42), with c1, c2 constants defined in (7.36). Since γ > 0, κ > 1 by assumption, the scalar
quantity γ (κ− 1)/

√
κ in (7.43) is positive, hence we have

H ′R(ζ;R) = 0 (> 0, < 0) ⇐⇒ (z1(ζ;R)− c1) (z2(ζ;R)− c2)− c1c2 = 0 (> 0, < 0) . (7.44)

It thus follows that, for any fixed R > 0 (that is, for any ellipse ER in (7.42)), any stationary
point z(ζ∗R : R) of HR satisfies

(
z1 (ζ∗R;R) , z2 (ζ∗R;R)

)
∈ ER ∩ H ,

i.e. it belongs to the set of intersection points between the ellipse ER and the hyperbola H (see
the two intersection points in Figure 7.2). It also follows from (7.44) that the intersection point
in the first quadrant is the global minimizer for HR, whereas the one in the third quadrant is the
global maximizer. Since previous considerations hold true for any ellipse ER, then any global
minimizer z∗ of the unrestricted objective function H in (7.41) must belong to the restriction
of the hyperbola H in (7.36) to the first quadrant.

Finally, it is easy to further shrink the locus of potential global minimizers z∗ to the arc H1

defined in (7.35). Let us argue by contradiction and suppose there exists a global minimizer z̄
belonging to the restriction of the hyperbola H to the first quadrant but not to H1 - see Figure
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7.2. We have:

H(z̄)−H(q̄) =
(
z̄T Λ z̄

)p/2
−
(
q̄T Λ q̄

)p/2
︸ ︷︷ ︸

>0

+ γ

2
(
‖ z̄ − q ‖22− ‖ q − q ‖

2
2

)
︸ ︷︷ ︸

>0

> 0,

whence z can not be a global minimizer for the function H.

In the following corollary we exploit and complete the results stated in previous Proposition
8 by showing how the bivariate minimization problem in (7.34) can be reduced to an equivalent
univariate problem.

Corollary 3. The minimizers z∗ ∈ R2 in (7.34) can be obtained as follows:

z∗ =
(
z∗1 , c2

(
z∗1

z∗1 − c1

))
,

with c1, c2 ∈ R defined in (7.36) and z∗1 ∈ R the solution(s) of the following 1-dimensional
constrained minimization problem:

z∗1 ∈ arg min
ξ ∈ [0,q̄1]

{
h(ξ) := (h1(ξ))p/2 + γ

2 h1(ξ) − γ

2 h2(ξ)
}
,

h1(ξ) = ξ2
(
κ+ c2

2
(ξ − c1)2

)
, h2(ξ) = ξ (κ− 1)

(
ξ − 2c1 + 2 c2

2
κ(ξ − c1)

)
.

Proof. The proof is immediate by deriving the expression of z2 as a function of z1 from the
definition of the hyperbolaH in (7.36), then substituting this expression in the objective function
H in (7.35) and, finally, carrying out some algebraic manipulations.

To summarize, we report in Algorithm 6 the pseudocode of the proposed ADMM iterative
scheme used to solve the saddle-point problem (7.24).

7.6 Parameters estimation results

In this section, an extensive evaluation on the accuracy of the ML estimation procedure de-
scribed in Section 7.3 is carried out.

In order to assess the quality of the estimation, we introduce the following statistical notions.

Definition 4. Let ω > 0 be an unknown parameter of a fixed probability distribution pω and
for ` > 0 let ωj , j = 1, . . . , ` be estimates of ω obtained by a given estimation procedure. The
sample estimator ω̂ of ω is defined as the average:

ω̂ :=
∑`
j=1 ωj

`
.

We can then define the relative bias Bω̂, the empirical variance Vω̂ and the relative root mean
square error rmseω̂ of the estimator ω̂ as:

Bω̂ := E(ω̂ − ω)
ω

, Vω̂ := 1
`− 1

∑̀
j=1

( ωj − ω̂ )2, rmseω̂ :=

√
Vω̂ + B2

ω̂

ω
.
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Algorithm 6: ADMM-based algorithm for the DTVsv
p -L2 model

input: b ∈ Rn, r > 0, τ ≈ 1, γv > 0,γw > 0

output: restored image u∗

1. initialize: set u(0) = b, ρ
(0)
w = 0n, ρ(0)

v = 02n

2. for t = 1, 2, . . . until convergence do:

update parameters

3. · p(t)
i ,Σ(t)

i by solving (7.16) in terms of
(
p

(t)
i , φ

(t)
i , %

(t)
i

)
for every i = 1, . . . , n

4. · m(t)
i by (7.11) for every i = 1, . . . , n

5. · µ(t) by (5.35)

update primal variables

6. · v(t) as in Section 7.5.1

7. · w(t) by (5.32)

8. · u(t) by solving (5.33)

update dual variables

9. · ρ(t)
w by (5.25)

10. · ρ(t)
v by (5.26)

11. end for

12. return: u∗ = u(t)
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In the following, the accuracy and the precision of the estimator is evaluated by analyzing
its performance on the estimation of the parameters (p, e(1), ζ). As discussed in Section 7.3.2,

parameters e(1), ζ can be derived from %, φ and from (7.19), we recall that e(1) =
(

1
λ(1)

)2
. In

addition, we also consider how the quality of the estimation of (p, e(1), ζ) affects the estimation
of the scale parameter m, which is computed directly via the formula (7.11) as a non-linear
function of (p, φ, %) or, equivalently, of (p, e(1), ζ), as well as of the samples. The non-linearity
may affect the accuracy of its estimation.

7.6.1 Parameter estimation: accuracy and precision

We now perform some tests assessing the accuracy and the precision of the ML estimation
procedure proposed in Section 7.3 in terms of the quantities defined above. As a first test
we compare the results obtained by applying the ML procedure to estimate a BGGD of pa-
rameters (p̄, ē(1), ζ̄, m̄) = (1, 1.4, 45◦, 0.3). We run our tests for an increasing number N ∈{
10, 102, 103, 104, 105, 106} of samples drawn from the distribution. For each value of N , the

estimation procedure is run ` = 200 times. For any j = 1, . . . , ` we estimate the parameter
triple (p∗, φ∗, %∗)j and consider the corresponding estimators of the true parameters as defined
in Definition 4. The results are shown in Figures 7.3 - 7.5.
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Figure 7.3: Plots of relative bias for estimated (p∗, e(1)∗, ζ∗,m∗) in semi-logarithmic scale on
x-axis.

For all parameters (including the scale parameter m), the behavior of relative bias, variance
and relative root mean square error as the number of samples increases reveals good precision
and accuracy. In particular, low values of such error quantities are already obtained when
N ≈ 102.



106

10
2

10
4

10
6

N

10
-4

10
-2

V
a
ri
a
n
c
e
 p

10
2

10
4

10
6

N

10
-6

10
-4

10
-2

V
a
ri
a
n
c
e
 e

1

10
2

10
4

10
6

N

10
-2

10
0

10
2

V
a
ri
a
n
c
e
 

10
2

10
4

10
6

N

10
-4

10
-2

10
0

V
a
ri
a
n
c
e
 m

Figure 7.4: Plot of the empirical variance for estimated (p∗, e(1)∗, ζ∗,m∗) in semi-logarithmic
scale on x-axis.

7.6.2 Parameter estimation on synthetic neighbourhoods

We now test the ML estimation procedure on a simple synthetic image reported in Figure 7.6a.
Here, the goal is to evaluate the effectiveness of the estimation when discriminating between
different image regions such as edges, corners and circular profiles in terms of the functional
shape of the estimated BGGD. In the following test, we estimate the parameters of the unknown
BGGD in three different situations where a pixel surrounded by a 11×11 neighborhood is chosen
to lie on a vertical edge (Fig. 7.6), a corner (Fig. 7.7) and on a circular profile (Fig. 7.8). In
order to avoid degenerate configurations of the gradients, such as the ones described in (7.17),
we preliminary corrupt the image by a small Additive White Gaussian noise (AWGN) with
σ = 0.03.

Edge points In Fig. 7.6b, we report the scatter plot of the gradients of the edge points in the
red-bordered region countered in Figure 7.6a, which, as expected, shows its distribution along
the x-axis. The parameter estimation procedure of the BGGD at one of such edge points is
run by taking 121 samples of gradients in the 11× 11 neighborhood. The estimation procedure
results in the following parameters (p∗, e(1)∗, ζ∗, m∗) = (0.07, 1.60,−177.82◦, 2 ∗ 10−5). Note
that the low value of the parameter p leads to a very fat tail distribution, as shown in Fig. 7.6c.
The orientation and the eccentricity of the level curves are in line with the clear directionality
of the samples as it can be seen in Figure 7.6d.

Corner points For the corner example in Figure 7.7, the scatter plot of the gradients is re-
ported in Figure 7.7b. The ML procedure results in this case in the estimation (p∗, e(1)∗, ζ∗, m∗)
= (0.07, 1.08, 72.49◦, 3 ∗ 10−7). The estimated PDF is reported in Fig. 7.7c. Similarly as
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Figure 7.5: Plot of relative root mean square error for estimated (p∗, e(1)∗, ζ∗,m∗) in semi-
logarithmic scale on x-axis.
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Figure 7.6: 7.6a: BGGD Parameter estimation for a synthetic geometrical image. Test for edge
image pixel. 7.6b: Scatter plot of the gradients in the read-bordered region. 7.6c: PDF with
estimated parameters (p∗, e(1)∗, ζ∗, m∗) = (0.07, 1.60, −177.82◦, 2∗10−5). 7.6d: Level curves
of the estimated PDF.
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before, note that a very fat-tail distribution is estimated. On the other hand, since e(1)∗ ≈ 1, we
also have e(2)∗ ≈ 1 and the eccentricity of the ellipse ε ≈ 0. We can conclude that, in this case,
the distribution is almost isotropic and the angle ζ has a negligible influence on the orientation
of the level curves as it can be seen in Figure 7.6d.
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Figure 7.7: 7.7a: BGGD Parameter estimation for a synthetic geometrical image. Test for
corner image pixel. 7.7b: Scatter plot of the gradients in the read-boarded region. 7.7c: PDF
with estimated parameters (p∗, e(1)∗, ζ∗, m∗) = (0.07, 1.08, 72.49◦, 3 ∗ 10−7) . 7.7d: Level
curves of the estimated PDF.

Circle points Finally, we consider the ML parameter estimation procedure in correspondence
with a pixel lying on a circular profile, see Figure 7.8. In this case, the estimated parameters
are (p∗, e(1)∗, ζ∗,m∗) = (0.08, 1.44, 49.28◦, 2 ∗ 10−6). The values obtained for e(1)∗ and ζ∗ reflect
the spatial distribution of the gradients in Figure 7.8b.

7.6.3 Parameter estimation on synthetic images

Motivated by the good results above, we report in this section the numerical experiments
concerned with the estimation of the four parameters (p∗, e(1)∗, ζ∗,m∗) at any image pixel.
For the following estimations, we fix a neighborhood of 3× 3 pixels. It is worth remarking here
that the tests in section 7.6.1 have been computed on samples directly drawn from a BGGD. For
such example, we remarked on how a large number of samples reflects on a reliable estimation
of the BGGD parameters. When dealing with real images, however, our goal rather consists
in estimating the parameters of the BGGD of the local gradient from the surrounding ones,
since, clearly, one single sample is not sufficient to get a reliable estimate. However, the samples
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Figure 7.8: 7.8a: BGGD Parameter estimation for a synthetic geometrical image. Test on image
pixel lying on circular profile. 7.8b: Scatter plot of the gradients in the read-boarded region.
7.8c: PDF with estimated parameters (p∗, e(1)∗, ζ∗,m∗) = (0.08, 1.44, 49.28◦, 2 ∗ 10−6). 7.8d:
Level curves of the estimated PDF.

involved in the estimation procedure are in general not drawn from the same BGGD as their
parameters may be different. Thus, their number has to be limited in order to reduce modeling
errors as much as possible. In conclusion, the size of the neighborhood is a trade off between
the local properties of the image and the robustness of the estimate procedure, the former
requiring small neighborhoods, the latter requiring larger ones. In order to avoid degenerate
configurations, we corrupt the images by AWGN with σ = 0.03. Moreover, the search interval
for the shape parameter p is set equal to [0.1, 5]. We start considering the synthetic test image
used already in the experiment above, i.e. Figure 7.9a. Here we perform the estimation of the
parameters at any pixel and report the local parameter maps in Figure 7.9c, 7.9d, 7.9e and 7.9f.
Furthermore, we report in Figure 7.9b the anisotropy ellipses representing the level curves of
the estimated PDF, drawn as described in Section 7.3.2, whose orientation, given by the ζ-map
in 7.9e, is in line with what we expected and with the test proposed in the previous sub section
(see Fig. 7.6 - 7.7). One can also observe that the higher values in the e(1)-map are estimated to
be along the edges, describing the strong anisotropy of the level curves there, while the higher
values in the p-map are in the piece-wise constant regions. This can be explained by saying
that in these regions the estimation procedure detects a plain Bivariate Gaussian Distribution
characterized by a shape parameter p = 2. This is of course due to the presence of AWGN.

The same experiments are proposed for geometric test image in Figure 7.10a. Even though
such image presents edges displaced along different orientations and details on different scales,
the results showed in Figure 7.10b-7.10f confirm the robustness of estimator in distinguishing



110

between different image regions.

(a) Test image. (b) Anisotropy ellipses.
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Figure 7.9: Test on synthetic image.

(a) Test image. (b) Anisotropy ellipses.
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Figure 7.10: Test on geometric image.

Remark 3. In order to generate the samples used in the parameter map estimation above,
one has to choose a suitable discretization of the image gradient. Here, we considered central
differences schemes. Compared to standard forward/backward difference schemes, this choice
avoids the undesired correlation between the horizontal and the vertical components. As prelim-
inary numerical tests showed, such correlation may result indeed into a deviation between the
estimated ζ∗ from the one estimated above.
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σ TV-L2 TVp-L2 HWTV-L2 TVsv
p,α-L2 DTVsv

p -L2

0.02 2.46 3.14 3.20 3.23 3.61
0.03 1.74 1.99 2.12 2.14 2.79
0.06 1.59 2.02 2.11 2.13 2.90

Table 7.1: ISNR values for the barbara test image for decreasing σ = 0.02, 0.03, 0.06.

7.7 Computed examples

In this section, we evaluate the performance of the DTVsv
p -L2 image reconstruction model (7.3)

applied to the restoration of grey-scale images corrupted by (known) blur and AWGN.
The DTVsv

p -L2 model will be compared with the following ones:

• the TV-L2 model;

• the HWTV-L2 model in Chapter 5;

• the TVp-L2 model, with constant p ∈ (0, 2];

• the TVsv
p,α-L2 in Chapter 6.

As far as the update of the local parameters is concerned, we remark that a closed formula for
the scale parameters mi is available, while the local shape parameters pi, the local orientations
ζi and the local maximum eigenvalue e(1)

i are the solution of the minimization problem (7.18)
written in terms of auxiliary variables. Due to the large number of unknowns, here the maps
of the parameters will be computed only at the beginning of the iterations.
For the numerical solution of the DTVsv

p -L2 model we use the ADMM-based algorithm 6 where
for all tests we manually set the penalty parameters γv and γw.

Barbara image We start testing the reconstruction algorithm on a zoom of a high resolution
(1024 × 1024) barbara test image with size 471 × 361, characterized by the joint presence of
texture and cartoon regions. The image here has been corrupted by Gaussian blur of band= 9
and width= 2 and AWGN with different standard deviation σ = 0.02, 0.03, 0.06. The original
image and the observed image, as well as the four parameter maps, computed considering a
neighborhood of size 7× 7, are shown in Figure 7.11. In order to avoid inaccurate estimations
of the parameters due to the presence of possibly large noise, the parameter p∗ in the TVp-L2

model as well as the local maps of the parameters in the DTVsv
p -L2 have been computed after

few iterations (usually 5) of the TV-L2 model. Furthermore, as discussed in Section 7.3.2, the
p parameter has been computed by restricting the admissible range to [0.1, 2]. In Tables 7.1
and 7.2 the ISNR and SSIM values achieved by the TV-L2, the TVp-L2 (with estimated global
p = 0.92), the HWTV-L2, the TVsv

p,α-L2 and the DTVsv
p -L2 models for different values of σ

are reported. We note that the proposed model outperforms the competing ones. As shown in
Figure 7.12, the flexibility of the DTVsv

p regularizer strongly improves the reconstruction quality
mainly in terms of better texture preservation.
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Figure 7.11: Parameter maps for a zoom of the barbara test image. Image is corrupted by
Gaussian blur and AWGN with σ = 0.06.

Natural image As a second test, we compared the performance of DTVSV
p -L2 restoration

model on a 500×500 portion of a high resolution (1024×1024) natural test image characterized
by fine-scale textures of different types. As in the previous example, we similarly corrupt the
image by AWGN and Gaussian blur of band= 9 and width= 2 with σ = 0.02, 0.03, 0.06. The
original and the observed images, as well as the four parameter maps computed considering
neighborhoods of size 3× 3 are shown in Figure 7.13. Similarly as for the numerical test above
few preliminary iterations of TV-L2 are performed before computing the parameter maps. The
research interval for the p parameter has been set equal to [0.1, 2]. It is worth remarking that
the very small neighborhood size used for the parameter estimation is the one yielding the best
restoration results for this test. We believe that this is motivated by the very fine scale of details
in the test image. In Tables 7.3 and 7.4, the ISNR and SSIM values achieved by the compared

σ TV-L2 TVp-L2 HWTV-L2 TVSV
p,α-L2 DTVSV

p -L2

0.02 0.80 0.83 0.83 0.83 0.85
0.03 0.74 0.75 0.78 0.77 0.80
0.06 0.65 0.68 0.70 0.69 0.74

Table 7.2: SSIM values for the barbara test image for increasing σ = 0.02, 0.03, 0.06.
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(a) TV-L2. (b) TVp-L2. (c) HWTV-L2. (d) TVsv
p,α-L2. (e) DTVsv

p -L2.

(f) Zoom of (a) (g) Zoom of (b) (h) Zoom of (c) (i) Zoom of (d) (j) Zoom of (e)

Figure 7.12: Detail of reconstruction of barbara image 7.11. Texture components are much
better preserved by encoding directional information.

σ TV-L2 TVp-L2 HWTV-L2 TVsv
p -L2 DTVsv

p -L2

0.02 2.07 2.43 2.40 2.53 2.78
0.03 1.83 2.06 2.01 2.26 2.56
0.06 0.94 1.55 1.67 1.86 2.45

Table 7.3: ISNR values for the test image in 7.13 for σ = 0.02, 0.03, 0.06.

models for different values of σ are reported. Also in this case, the proposed model outperforms
the competing ones. Note that the improvement is actually more significant in correspondence
of higher noise levels. In Figure 7.14, a visual comparison between the reconstructions obtained
by the different models for σ = 0.06 is proposed.

σ TV-L2 TVp-L2 HWTV-L2 TVsv
p -L2 DTVsv

p -L2

0.02 0.78 0.79 0.79 0.80 0.81
0.03 0.76 0.77 0.78 0.78 0.79
0.06 0.70 0.72 0.74 0.74 0.76

Table 7.4: SSIM values for the test image in 7.13 for σ = 0.02, 0.03, 0.06.
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(a) Zoom of original u. (b) Zoom of g.
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Figure 7.13: Parameter maps for a zoom of a natural test image. Image is corrupted by AWGN
and blur for a σ = 0.06.

(a) TV-L2. (b) TVp-L2. (c) TVp-L2. (d) TVsv
p,α-L2. (e) DTVsv

p -L2.

(f) Zoom of 7.14a. (g) Zoom of 7.14b. (h) TVp-L2. (i) Zoom of 7.14d. (j) Zoom of 7.14e.

Figure 7.14: Detail of reconstruction of natural test image 7.13. Texture components are much
better preserved by encoding directional information.
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Chapter 8

Sparse reconstructions with
generalized gamma hyperpriors

Part III of the thesis is characterized by the adoption of informative hyperpriors in the hierar-
chical model for solving the signal restoration linear inverse problem. Here, we limit our analysis
to the case of signals admitting a sparse representation in a given basis. This assumption helps
in getting an easier intuition on the expected behavior of the unknown parameters. The frame-
work outlined in the following also applies to the case of sub-sampled data, where K is a wide
matrix, and of additive Gaussian noise, not necessarily white.

Sparse recovery has been a very active field of research in the last decades, especially due to
surge of interest in compressed sensing. Besides the classical references mentioned in Section 4.2,
in [32] the authors formulate the sparse recovery problem as an inverse problem in a Bayesian
framework, by modeling the components in the sparse signal as independent zero-mean Gaussian
random variables whose variances follow a gamma distribution. In this chapter, we extend the
analysis proposed in [32] to the case of generalized gamma hyperprior. In particular, we will
focus on the convexity properties of the resulting energy functionals.

8.1 Hierarchical Bayesian Models

Consider the linear observation model with additive Gaussian noise,

b = Kx+ e , e ∼ N(0,Σ), (8.1)

where K ∈ Rm×n is the blur matrix - typically, we consider the case m ≤ n - Σ ∈ Rm×m

is the noise symmetric positive definite covariance matrix that we assume to be known, and
x ∈ Rn is the unknown that we are interested in recovering. We remark that x can be either
a one-dimensional signal or a vectorized image, and this motivates the change of notation with
respect to Part II. Notice that here the noise is not necessarily scaled white Gaussian, since Σ
is not assumed to be a scaled identity; in any case, without loss of generality, we may assume
that Σ = I, since given a symmetric factorization Σ−1 = STS, noise can be whitened through a
linear transformation of K→ SK and b→ Sb.



118

After whitening, the likelihood distribution is of the form

P(b | x) ∝ exp
(
− 1

2‖Kx− b‖
2
)
.

We assume that, possibly after a change of variables, the unknown is represented in a basis
where the generative vector x is sparse; this also means that from now on a synthesis approach
will be adopted. The a priori belief that x is sparse is encoded by modeling its components as
independent random variables following a zero mean conditionally Gaussian distribution, i.e.,

xj ∼ N(0, θprj ) , θprj > 0 , 1 ≤ j ≤ n,

with unknown prior variances θprj . In the following, we are omitting the subscription for the
j-th variance and the vector of variances will be just denoted by θ. According to the Bayesian
paradigm, the unknown variances are also modeled as random variables, hence the expression
for the conditional Gaussian prior must take into account the portion of the normalizing factor
that depends on the variances,

P(x | θ) ∝ 1∏n
j=1

√
θj

exp
(
−1

2‖D
−1/2
θ x‖2

)
, Dθ = diag(θ1, . . . , θn).

In this manner, the a priori believed sparsity of x can be formulated as a property of the variances
of the components, with smaller variances promoting values closer to zero and encoded in the
hyperprior Phyper(θ). Recalling the framework outlined in Section 3.2.4, in the Bayesian setting,
where all unknowns are modeled as random variables, solving (8.1) is tantamount to estimating
x and θ, or more generally, to exploring their joint posterior distribution conditioned on b.
The joint prior distribution Pprior(x, θ) is the product of the conditional prior P(x | θ) and the
hyperprior. It follows from Bayes’ formula that the posterior distribution P(x, θ | b) is

P(x, θ | b) ∝ Pprior(x, θ) P(b | x) = P(x | θ) Phyper(θ) P(b | x).

The a priori believed sparsity of the signal at hand, to gather with computational consideration,
guides the choice of a prior for the hyperparameters θj . More specifically, we promote sparsity
of the signal by selecting the hyperprior from the parametric family of generalized gamma
distributions:

Phyper(θ) = Phyper(θ | r, β, ϑ) = |r|n

γ(β)n
n∏
j=1

1
ϑj

(
θj
ϑj

)rβ−1

exp
(
−
(
θj
ϑj

)r )
,

where r ∈ R \ {0}, β > 0, ϑj > 0; further restrictions on the parameters of the generalized
gamma may be necessary to guarantee finite mean and variance. Observe that the hyperprior
could be generalized further by letting each component θj have its own hyperparameter r and
β. This generalization is not considered here.

In this context, the Maximum A Posteriori (MAP) estimate of x in (8.1) is used to represent
the distribution. We are thus interested in solving the following problem:

(x∗, θ∗) = arg min
x∈Rn,θ∈Rn+

{
− log P(x, θ | b)

}
= arg min

x∈Rn,θ∈Rn+

{
F(x, θ)

}
, (8.2)
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where, with our choices of prior, hyperprior, and likelihood,

F(x, θ) = F(x, θ | r, β, ϑ)

=1
2‖Kx− b‖

2 + 1
2‖D

−1/2
θ x‖2 −

(
rβ − 3

2

) n∑
j=1

log θj
ϑj

+
n∑
j=1

(
θj
ϑj

)r
(8.3)

=1
2‖Kx− b‖

2 + P(x, θ | r, β, ϑ).

In the following, we will refer to P(x, θ | r, β, ϑ) as the penalty term in the MAP objective
function. Our aim in this section is to analyze hierarchical Bayesian models with generalized
gamma hyperpriors for different choices of the hyperparameters. In particular, we are interested
in shedding some light on

1. how the sparsity of the MAP estimate depends on the hyperparameters;

2. how, for some choices of the hyperparameters, the MAP penalty term approaches clas-
sical penalty terms;

3. the dependency of the convexity - or lack thereof - of the MAP objective function on
the hyperparameters;

4. the performance of the Iterative Alternating Sequential (IAS) minimization algorithm
for the computation of the MAP estimate, reviewed in the next subsection, with various
generalized gamma hyperpriors for the reconstruction of sparse signals from underde-
termined noisy data.

8.1.1 IAS Algorithm

Our algorithm of choice for the solution of the minimization problem (8.2) is an alternating
sequential scheme whose properties and performance for some choices of hyperparameters have
been analyzed in [23, 32, 25]. Given an initial θ(0) and setting t ≥ 1, the IAS algorithm proceeds
through a sequence of simple alternating updates of the form

x(t) = arg min
x∈Rn
{F(x, θ(t−1))}, θ(t) = arg min

θ∈Rn+
{F(x(t), θ)},

until a convergence criterion is met. As far as stopping criteria for IAS are concerned, two
natural convergence criteria can be utilized: either the relative change of the objective function
value is below a given threshold, or the relative change in the variable updates is below a
threshold. In the computed examples, both criteria are used.

Among the appealing features of the IAS scheme applied in this framework, we mention
the fact that both updating steps are particularly simple to implement, and that the algorithm
has been shown to converge [23], with a convergence rate at least linear [32] for some classes of
problems. We review the updating steps below.

Step 1: Updating x

Due to the structure of the objective function (8.3), the updating of x given θ reduces to solving
a quadratic optimization problem

x(t) = arg min
x∈Rn

{
‖Kx− b‖22 + ‖D−1/2

θ x‖22
}
, θ = θ(t−1) ,
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or, equivalently, to finding the solution of the linear system[
K

D−1/2
θ

]
x =

[
b

0

]
(8.4)

in the least squares sense. The latter is a well posed problem because θ ∈ Rn+; if x is of large
dimensions or K is not explicitly available, an iterative least squares solver may be the method
of choice to solve (8.4). Due to the well-posedness of the problem, the iteration will continue
until a sufficient reduction of the residual norm has been achieved. A computationally efficient
way to determine an approximation of the MAP solution that is particularly appealing when
the data vector is much lower dimensional than x, has been proposed in the cited articles on
IAS and further analyzed in [26]. After the change of variable,

D−1/2
θ x = w ∼ N(0, In),

which is equivalent to whitening x via a Mahalanobis transformation, the linear system (8.4)
becomes [

K̃θ

In

]
w =

[
b

0

]
, K̃θ = KD1/2

θ . (8.5)

It has been pointed out repeatedly in the literature that the Tikhonov regularized solution is
close to the approximate solution obtained by solving the linear system

K̃θw = b (8.6)

with an iterative linear solvers, equipped with a suitable early termination rule discussed below.
When the iterative solver employed for the solution of (8.6) is the Conjugate Gradient for Least
Squares (CGLS) method [90], the kth iterate satisfies

wk = argmin
{
‖b− K̃θw‖ | w ∈ Kk(K̃T

θ b, K̃T
θ K̃θ)

}
, xk = D1/2

θ wk, (8.7)

where
Kk(K̃T

θ b, K̃T
θ K̃θ) = span

{
(K̃T

θ K̃θ)`K̃T
θ b | 0 ≤ ` ≤ k − 1

}
,

is the kth Krylov subspace associated with the vector K̃T
θ b and the matrix K̃T

θ K̃θ. The quantity
b− K̃θwk whose norm is minimized is the discrepancy vector corresponding to wk; in the tradi-
tional inverse problems literature, the Morozov discrepancy principle states that the iterations
should be stopped right before the norm of the discrepancy falls below the noise level. Recalling
that the standard deviation of the m-variate white noise is

√
m, the Morozov stopping criterion

can be written as
‖b− K̃θwk‖ ≤

√
m.

On the other hand, letting

G(w) =
∥∥∥∥∥
[

KD1/2
θ

In

]
w −

[
b

0

]∥∥∥∥∥
2

= ‖b−KD1/2
θ w‖2 + ‖w‖2, (8.8)

denote the norm of the discrepancy of the original linear system (8.5), it follows that the least
squares solution of the original problem minimizes the functional G. It is therefore natural to
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monitor the behavior of G(xk) as the iterations proceed, and continue iterating only as long as
G(wk) keeps decreasing. While it is known that the norm of the discrepancy of (8.5) decreases
and ‖wk‖ increases with the number of CGLS iterations, we do not know a priori how the
increase/decrease rates are related to each other, so without further analysis, it is not clear if a
minimum is reached before the maximum allowed number of iterations.

In light of these observations, we propose the following approximation to the least squares
solution of (8.5) via the approximate solution of (8.6).

Definition 5. The reduced Krylov subspace (RKS) solution for the problem (8.5) is wk0 defined
by (8.7), with k0 chosen to be the first index k satisfying the criterion

(C ) : ‖b− K̃θwk+1‖ ≤
√
m, or G(wk+1) > τG(wk),

where τ − 1 = ε > 0 is a small safeguard parameter.

In the following, we refer to the IAS algorithm as approximate IAS when the minimization
of (8.8) is replaced by the RKS solution, as opposed to the original exact IAS.

Step 2: Updating θ

The update of the prior variance θ is based on the first order optimality condition. Since the
parameters θj are mutually independent, the update can be carried out separately for each
component. It follows from the form of the MAP objective function that the updated jth
component of θ must satisfy the algebraic equation

∂F

∂θj
= −1

2
x2
j

θ2
j

−
(
rβ − 3

2

) 1
θj

+ r
θr−1
j

ϑrj
= 0, xj = xt+1

j . (8.9)

There are combinations of the hyperparameter values for which the solution is available in closed
form. We derive a computationally efficient form for the general case in the ensuing discussion.

The IAS algorithm has a similarity to a class of a reweighted least squares methods [79, 56],
or fixed point iterative methods with lagged diffusivity [57], providing iterative algorithms to
compute `1-regularized solutions to inverse problems. For similar alternating iterative methods
in the Bayesian framework, we refer to [4, 8] applied to compressed sensing and imaging.

8.2 Scaling

The analyses of the IAS algorithm published in [23, 32], were limited to some specific hyperpriors
from the generalized gamma family. Before extending the analysis to the family of generalized
gamma hyperpriors, we reformulate the problem in non-dimensional form. To that end we
introduce non-dimensional parameters zj and ξj such that

xj = ϑ
1/2
j zj , θj = ϑjξj ,

and express the objective function in terms of these variables as

Φ(z, ξ) = 1
2‖K̂z − b‖

2 + 1
2

n∑
j=1

z2
j

ξj
−
(
rβ − 3

2

) n∑
j=1

log ξj +
n∑
j=1

ξrj , (8.10)
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where K̂ is a column-scaled version of K, that is,

K̂ =
[
ϑ

1/2
1 a(1), · · · , ϑ1/2

n a(n)
]

= K diag(ϑ1/2
1 , · · · , ϑ1/2

n ).

Column scaling the forward map is a common practice in some geophysics and biomedical
imaging applications, where it has been motivated by sensitivity considerations. Define the
sensitivity of the forward map x 7→ Kx with respect to the jth component xj as

sj =
∥∥∥∥∥∂(Kx)
∂xj

∥∥∥∥∥ = ‖Kej‖ = ‖a(j)‖,

where ej is the jth canonical unit vector in Rn and a(j) is the jth column of the matrix K.
Then, weighting the component xj by the corresponding sensitivity scalar can be seen as a way
to avoid favoring solutions with support concentrated near the receiver locations. While this
observation can be used as a guidance for selecting the value of the hyperparameters ϑj , in
the Bayesian framework this reasoning was considered problematic because the selection of the
prior should not depend on the observation model. A Bayesian justification for such choice of
ϑ in the case where r = 1 has been given recently in [32, 24]. The following theorem generalizes
the result to the case of general gamma hyperpriors. The result is formulated in terms of the
signal-to-noise ratio (SNR) of the inverse problem (8.1),

SNR = E{‖b‖2}
E{‖ε‖2} .

Theorem 1. (a) Assuming that a support set S ⊂ {1, 2, . . . , n} is given, the SNR condi-
tional to the unknown x being supported on S, denoted by SNRS, is given by

SNRS =
∑
j∈S ν(r, β)ϑj
trace(Σ) + 1, ν(r, β) = γ(β + 1/r)

γ(β) ,

provided that β > −1/r.

(b) Let pk = P{‖x‖0 = k} denote the probability that the support of the signal has cardinality
k, for k = 1, 2, . . . , n. Then the exchangeability condition (E ),

(E ) : SNRS = SNRS′ whenever S and S′ are of the same cardinality,

is satisfied if and only if ϑj is chosen as

ϑj = C

‖a(j)‖2
, C = (SNR − 1)trace(Σ)

ν(r, β)

n∑
k=1

pk
k
. (8.11)

Proof. The proof is a slight modification of that for the gamma hyperprior (r = 1, β > 3/2) in
[32] to account for the fact that if θj follows the generalized gamma distribution, then

E{θj} = ν(r, β)ϑj .



8.3. Variance updating: a closer look 123

An important corollary of the above theorem is that, under the stated assumptions, scaling
the columns a(j) by ϑ1/2

j is tantamount to making them all of the same norm
√
C. From the

point of view of linear inverse problems, this scaling renders the data equally sensitive to each
component of the unknown x.

Furthermore, as already pointed out in [32], the theorem provides a Bayesian argument
to choose the value of Tikhonov regularization parameter in linear inverse problems from an
estimated SNR and a priori belief about the cardinality of the support. The effect of the
sensitivity scaling, which has been first demonstrated in [32] by computed examples, will be
again highlighted in Chapter 10.

8.3 Variance updating: a closer look

In this section, we analyze in detail the process of updating the variance vector given an updated
estimate of the signal. After scaling the variables as described in the previous section to arrive
at a non-dimensional formulation, the algebraic relation (8.9) for the non-dimensional variance
ξj given the non-dimensional signal zj becomes

−1
2z

2 − ηξ + rξr+1 = 0, η = rβ − 3
2 , (8.12)

where we omit the subscript j to simplify the notation. Since the expression depends only on
the square of z, we restrict our discussion to the case where z assumes non-negative values, the
negative values being covered by symmetry.

The following result characterizes the variance as the solution of an initial value problem.

Lemma 2. If r < 0 and η < −3/2, or r > 0 and η > 0, formula (8.12) defines an implicit
function

ϕ(z) = ξ, ϕ : R+ → R+,

which is smooth and strictly increasing. Moreover, ξ is the solution of the initial value problem

ϕ′(z) = 2zϕ(z)
2r2ϕ(z)r+1 + z2 , ϕ(0) =

(
η

r

)1/r
. (8.13)

Proof. Starting from (8.12), we define the function

g(ξ) = ξ(rξr − η), 0 < ξ0 =
(
η

r

)1/r
≤ ξ <∞,

which is differentiable, with g′(ξ) = −η + r(r + 1)ξr. For r ≤ −1 and η < −3/2, the derivative
is always positive. For −1 < r < 0 and η < −3/2, the condition ξ > ξ0 implies that ξr < η/r,
and consequently, g′(ξ) > rη > 0, and for r > 0 and η > 0, we have ξr < η/r, and therefore
g′(ξ) > ηr > 0. Hence, the function g(ξ) is strictly increasing for ξ > ξ0. Furthermore,

g(ξ0) = 0, lim
ξ→∞

g(ξ) =∞.

Therefore the equation
g(ξ) = ξ(rξr − η) = 1

2z
2
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has a unique solution ξ = ξ(z) ∈ [ξ0,∞) for every z ≥ 0, hence the mapping from z to the
solution (8.12) defines a strictly increasing function ξ = ϕ(z). We have ϕ(z) = g−1(z2/2) and
by the implicit function theorem, the function g−1, as an inverse of a differentiable function is
differentiable, the function ϕ is differentiable. Substituting ξ = ϕ(z) in (8.12) ,

−1
2z

2 − ηϕ(z) + rϕ(z)r+1 = 0, (8.14)

and differentiating with respect to z, we get(
(r + 1)rϕ(z)r − η

)
ϕ′(z) = z,

or, equivalently,(
r2ϕ(z)r + 1

ϕ(z)
(
rϕ(z)r+1 − ηϕ(z)

))
ϕ′(z) =

(
r2ϕ(z)r + z2

2ϕ(z)

)
ϕ′(z) = z,

yielding the differential equation (8.13).

The outline of the IAS scheme with informative hyperprior is given in Algorithm 7.

Algorithm 7: IAS with informative hypeprior

input: observed signal b ∈ Rm

output: restored signal x∗

1. initialize: set θ(0) = ϑ

2. for t = 1, 2, . . . until convergence do:

3. · update x(t) by solving (8.5) in terms of w and rescaling, x(t) = D1/2
θ w

4. for j = 1, . . . n do:

5. · update θ(t)
j by solving (8.13) in terms of ξj and rescaling, θj = ϑjξj

6. end for

7. end for

8. return: x∗ = x(t), θ∗ = θ(t)

The characterization of ξ in terms of the differential equation (8.13) can be used to compute
effectively the values of the updates of the variances in the IAS algorithm, as we will show in the
computed examples. Moreover, Lemma 2 makes it possible to analyze the asymptotic behavior
of the variance parameter when the corresponding value of z is either close to zero or very large.

Lemma 3. The asymptotic behavior of ϕ when z is close to zero is

ϕ(z) =
(
η

r

)1/r
+ 1

2ηrz
2 + O(z4). (8.15)

whereas the asymptotics for z > 0 large is

ϕ(z) = κz2/(r+1) (1 + o(1)) , κ =
( 1

2r

)1/(r+1)
(8.16)
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Figure 8.1: Logarithmic plots of the updating functions with different values of the parameters
r, with η = 0.5 in each case. The asymptotics given by Lemma 3 as well as the initial values
ϕ(0) = (η/r)1/r are indicated in this figure.

when r > 0, and
ϕ(z) = κz2 (1 + o(1)) , κ = 1

2|η|
when r < 0.

Proof. The asymptotic behavior of ϕ for z near zero can be obtained from its Taylor expansion
at z = 0. It follows from (8.13) that ϕ(0) =

(η
r

)1/r, ϕ′(0) = 0, and differentiating (8.13) with
respect to z yields

ϕ′′(0) = 1
r2ϕ(0)r = 1

rη
.

The asymptotic estimate follows from the observation that the third derivative of ϕ vanishes at
z = 0.

To obtain the asymptotics of ϕ for large z and r > 0, observe that (8.14) implies

lim
z→∞

ϕ(z)→∞,

therefore, since (1 + o(1))−1 = 1 + o(1), for large z,

1
2z

2 = ϕ(z)r+1
(
r − η

ϕ(z)r
)

= rϕ(z)r+1 (1 + o(1)) ,

implying (8.16). Similarly, if r < 0, we write

1
2z

2 = ξ

(
|η| − |r|

ξ|r|

)
= |η|ξ (1 + o(1)) ,

completing the proof.

Figure 8.1 shows the updating functions in a logarithmic scale with selected values of the
parameter r.

The asymptotic behavior of the updating function is helpful for understanding the role of the
model parameters r and β. For this interpretation, we need the following theorem establishing
the equivalence of the IAS optimization of the objective function with respect to the pair (z, ξ)
in R2n and the optimization of the objective function along the manifold ξ = ϕ(z), with the
last equality to be understood as componentwise.
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Lemma 4. Let (z∗, ξ∗) be a local minimizer of the objective function Φ(x, ξ) given by (8.10).
Then, the point z∗ is a local minimizer of Ψ(z) = Φ(z, ϕ(z)). Conversely, if z∗ is a local
minimizer of Ψ(z), then (z∗, ϕ(x∗)) is a local minimizer of Φ(x, ξ).

Proof. If (z∗, ξ∗) is a local minimizer of Φ, then it must satisfy

∂Φ
∂ξj

(z∗, ξ∗) = 0,

implying that ξ∗ = ϕ(z∗). Let U = B1 × B2 ∈ R2n be a neighborhood of (z∗, ξ∗) such that
for any (z, ξ) ∈ U , Φ(z∗, ξ∗) ≤ Φ(z, ξ). Since ϕ is continuous, for each z in some neighborhood
B′1 ⊂ B1 of z∗, ϕ(z) ∈ B2, therefore Φ(z∗, ϕ(z∗)) ≤ Φ(z, ϕ(z)), that is, z∗ is a local minimizer
of Ψ.

Conversely, let z∗ be a local minimizer of Ψ. Then, there is a neighborhood B of z∗ such
that for any z ∈ B, Φ(z∗, ϕ(z∗)) ≤ Φ(z, ϕ(z)). However, for each z, θ = ϕ(z) is the unique
minimizer of θ 7→ Φ(z, θ), therefore

Φ(z∗, ϕ(z∗)) ≤ Φ(z, ϕ(z)) ≤ Φ(z, θ), (z, θ) ∈ B × R+,

implying that (z∗, ϕ(z∗)) indeed is a local minimizer of Φ.

It follows from the lemma that in order to study the sparsity promoting properties of the
various hyperpriors, one can consider the objective function Ψ(z) = Φ(z, ϕ(z)), and in particular,
the scaled penalty term

Π(z) = 1
2

n∑
j=1

z2
j

ϕ(zj)
− η

n∑
j=1

logϕ(zj) +
n∑
j=1

ϕ(zj)r.

We will use this observation together with the asymptotic forms of the updating function
to elucidate how the regularization properties of the penalty functions change with the hyper-
parameter values. Before addressing the general case, we consider some special choices of the
parameter values.

8.3.1 Special generalized gamma hyperpriors

There are hyperparameter combinations for which the updating function for the variances is
available in closed form. Some of these special cases have been used in numerical computations
in earlier works [30, 21].

Gamma distribution and `1 prior

The most thoroughly analyzed hyperprior in the context of the IAS algorithm is the gamma dis-
tribution, which is a generalized gamma with r = 1 and η > 0. With that choice of parameters,
equation (8.9) simplifies to

−1
2z

2 − ηξ + ξ2 = 0,

and can be readily solved for ξ, yielding

ξ = ϕ(z) = 1
2

(
η +

√
η2 + 2z2

)
.
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As pointed out in [25, 32], substituting ξj = ϕ(zj) in the MAP penalty function and letting η
go to zero yields

Π(z) =
n∑
j=1

{1
2
z2
j

ξj
− η log ξj + ξj

}
=

n∑
j=1

{
z2
j

η +
√
η2 + 2z2

j

−η log 1
2
(
η +

√
η2 + 2z2

j

)
+ 1

2
(
η +

√
η2 + 2z2

j

)}
→
√

2
n∑
j=1
|zj |, as η → 0+,

that is, in the limit, the penalty function approaches the `1-penalty. In [32], it was further shown
that the unique solution of the IAS algorithm converges to the solution with the `1-penalty, thus
recovering a compressible solution, if the data came from a sparse generative model. For further
results, we refer to [32].

Inverse gamma distribution and Student prior

The second special case is that of the inverse gamma hyperprior, corresponding to setting
r = −1. In this case, equation (8.9) becomes

1
2z

2 − ηξ − 1 = 0,

and the update formula is

ξ = ϕ(z) = 1
2k (z2 + 2), k = β + 3

2 .

As for the gamma hyperprior, substituting ξj = ϕ(xj) in the MAP penalty functional yields

Π(z) =
n∑
j=1

{
1
2
z2
j

ξj
+ k log ξj + 1

ξj

}
=

n∑
j=1

{
z2
j + 2
2ξj

+ k log ξj

}

= n(k − log 2k) +
n∑
j=1

log(z2
j + 2)k,

which corresponds to the prior model

Pprior(z) ∝ exp(−Π(z)) ∝
n∏
j=1

1
(z2
j + 2)k

,

We observe that as β → 0+, k → 3/2, and the distribution of the individual components zj
approaches the Student distribution,

St(z | ν) ∝ 1(
1 + z2

ν

)(ν+1)/2 ,

with parameter ν = 2, a prominently fat tailed distribution that favors outliers, thus promoting
sparsity.
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Generalized gamma and `p prior

The third special case that we consider here is rβ = 3/2, in which the update formula becomes

−1
2z

2 + rξr+1 = 0,

or
ξ = ϕ(z) = |z|2/(r+1)

(2r)1/(r+1) .

Substituting ξj = ϕ(zj) in the MAP penalty functional we get

Π(z) =
n∑
j=1

{
1
2
z2
j

ξj
+ ξrj

}
=

n∑
j=1

{
(2r)1/(r+1)

2 |zj |2−2/(r+1) + 1
(2r)1/(r+1) |zj |

2r/(r+1)
}

= Cr

n∑
j=1
|zj |2r/(r+1), Cr = r + 1

(2r)r/(r+1) .

and letting
p = 2r

r + 1 , 0 < p < 2,

yields

Π(z) = Cr

n∑
j=1
|zj |p, 0 < p < 2

The `p-penalties for 0 < p < 1 are known for their sparsity promoting properties, and have been
analyzed extensively in the literature. However, since are non-convex, they pose challenges
when it comes to computing the corresponding regularized solution.

8.3.2 General case: asymptotics

Consider now the penalty functional Π(z) =
∑
j=1 Πj(zj) in the general case with r > 0. From

Lemma 3 we see that if |zj | is large, the penalty function of the jth component can be written
as

Πj(zj) = 1
2

z2
j

ϕ(zj)
+ ϕ(zj)r − η logϕ(zj)

= 1
2κ |zj |

2−2/(r+1)(1 + o(1)) + κr|zj |2r/(r+1)(1 + o(1))

− 2η
r + 1 log(|zj |(1 + o(1)))

∝ |zj |p(1 + o(1)), p = 2r
r + 1 .

Similarly, for small values of |zj |, (8.15) yields the asymptotic estimate

Πj(zj) = 1
2

z2
j

a+ bz2
j + O(z4

j )
+ (a+ bz2

j + O(z4
j ))r − η log(a+ bz2

j + O(z4
j ))

= C1 + C2z
2
j + O(z4

j ))

with a = (η/r)1/r, b = 1/(2ηr), and C1 and C2 are some scalars. Therefore, for large |zj |, the
penalty behaves like an `p-penalty with p = 2r/(r+ 1) ∈ (0, 2), while for small |zj |, the penalty
is essentially Gaussian.
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Figure 8.2: Level set plots of the reduced penalty function Π(z) in two dimensions with different
values of r, corresponding asymptotically to `p-penalties with p = 2/5 (left), p = 1 (center) and
p = 8/5 (right). The corresponding `p-sphere is superimposed with dark blue. The boundary
of the convexity region (see Section 8.4) for r = 1/4 is marked by the red square.

Figure 8.2 shows the level curves of the function Π(z) in two dimensions for some parameter
choices. From these plots it is clear that for large values of ‖z‖, the level sets look like the `p
spheres, while for small values, the level curves become increasingly circular as predicted by the
asymptotic formulas.

8.4 Convexity

Our first goal in this section is to find out for which choices of the parameters (r, β) the objective
function Φ given by (8.10) is globally convex for all (z, ξ) ∈ Rn × Rn+, or, alternatively, convex
in a specified subset. The following theorem summarizes the results [27].

Theorem 2. Let β > 0 and r 6= 0, and let Φ(z, ξ) = Φ(z, ξ | r, β) be the objective function
(8.10) for the dimensionless formulation of the problem.

(a) If r ≥ 1 and η = rβ − 3/2 > 0, the function Φ(z, ξ) is convex everywhere.

(b) If 0 < r < 1 and η = rβ−3/2 > 0, or, if r < 0 and β > 0, the function Φ(z, ξ) is convex
provided that

ξj < ξ =
(

η

r|r − 1|

)1/r
.

Proof. Recall that the positive definiteness of the Hessian is a sufficient condition for the con-
vexity of the underlying functional. Consider the block partitioning of the Hessian of Φ,

H = H(z, ξ) =
[
∇z∇zΦ(z, ξ) ∇z∇ξΦ(z, ξ)
∇ξ∇zΦ(z, ξ) ∇ξ∇ξΦ(z, ξ)

]
,

where,

∇z∇zΦ(z, ξ) = D−1
ξ + K̂TK̂,

∇z∇ξΦ(z, ξ) = ∇ξ∇zΦ(x, θ) = diag
(
− zj
ξ2
j

)
,

∇ξ∇ξΦ(z, ξ) = diag
(
z2
j

ξ3
j

+ r(r − 1)ξr−2
j + η

1
ξ2
j

)
,
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Figure 8.3: Convexity regions in the (r, β) plane. The red shadowing denotes parameter choices
for which the MAP objective function is convex everywhere, and the blue shadowing parameter
choices for which the MAP objective function is only locally convex. The curve β = 3/(2r) marks
the parameter pairs for which the hierarchical model is an `p-penalty priors, with p = 2r/(r+1),
which are convex if p ≥ 1 or, equivalently, r ≥ 1. The vertical line r = 1 corresponds to the
family of gamma hyperpriors.

For any vector q =
[
u

v

]
∈ R2n, we have

qTHq =‖K̂u‖2 +
n∑
j=1

u2
j

ξj
+

n∑
j=1

(
z2
j

ξ3
j

v2
j + r(r − 1)ξr−2

j v2
j + η

v2
j

ξ2
j

)
− 2

n∑
j=1

zj
ξ2
j

ujvj

=‖K̂u‖2 +
n∑
j=1

1
ξj

(
uj −

zj
ξj
vj

)2
+

n∑
j=1

φj(ξj | r, β)v2
j , (8.17)

where
φj(ξj | r, β) = r(r − 1)ξr−2

j + η
1
ξ2
j

.

Note that the first two terms in (8.17) are always non-negative, so the positivity of the quadratic
form defined by the Hessian it is guaranteed if φj(ξj | r, β) > 0 for all j, 1 ≤ j ≤ n. The proof
for the different cases follows by enforcing this condition.

Figure 8.3 shows the regions in the r, β plane corresponding to hyperparameter choices
leading to convex or conditional convex MAP objective functions. Observe that the `p-penalty
corresponds to the boundary β = 3/(2r), with p = 2r/(r + 1). In particular, for p ≤ 1, the
generalized gamma family provides nearby penalty functionals that yield at leas a locally convex
objective function.

We define the convexity radius ρ = ρ(r, β) ≥ 0, by

ρ = ϕ−1(ξ),

that is, for ‖z‖∞ < ρ, we have ‖ξ‖∞ < ξ guaranteeing the convexity. If the objective function
is globally convex as in the case (a) of Theorem 2, we set ρ =∞

Figure 8.4 shows graphically the convexity radius as a function of the parameters r and η,
as well as the evolution of the level curves in two dimensions of the reduced objective function
together with the convexity spheres.
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(a) (b)

(c) (d)

Figure 8.4: The radius of the convexity region as a function of r and η for generalized gamma
hyperpriors with−3 ≤ r < 0 (a) and 0 < r ≤ 1 (b). The two panels on the bottom row show, for
different choices of (r, η) in the generalized gamma family, the level curves of the corresponding
functionals. In each tile, a red curve, if present, marks the boundary of the region inside which
the functional is convex. The absence of a red curve indicates that for that choice of (r, η) the
functional is always convex.

8.5 Stable convexity

Consider the IAS algorithm for computing the MAP estimate, and denote the current iterate
by (z(t−1), ξ(t−1)). The update of z requires the solution of the minimization problem

z(t) = arg min
z∈Rn

1
2‖K̂z − b‖

2
2 + 1

2

n∑
j=1

z2
j

ξ
(t−1)
j

 .
We say that Φ(z, ξ) is stably convex if there is a T > 0 such that, for t > T ,

‖z(t−1)‖∞ < ρ⇒ ‖z(t)‖∞ < ρ = ϕ−1(ξ̄),

where ρ is the convexity radius. Stable convexity is tantamount to guaranteeing that once the
IAS iterates (z(t−1), ξ(t−1)) enter the convexity basin they do not leave it, thus keeping the
optimization problem convex.
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To find a sufficient condition for stable convexity, we need an estimate of the `∞-norm of
the least squares solution of the system[

K̂
D−1/2
ξ

]
z =

[
b

0

]
, ‖ξ‖∞ < ξ.

In the following, we assume that the columns â(j) of K̂ have been scaled according to the
sensitivity and satisfy ‖â(j)‖2 = C1/2. The next lemma provides an estimate for the size of the
components of the updated z [27].

Lemma 5. Assume that ξj < ξ. Then the entries of the solution z of the normal equations,

(
K̂TK̂ + D−1

ξ

)
z = K̂Tb

satisfy
|zj | ≤

Cξj
1 + Cξj

(hCξ + 1)‖K̂Tb‖2, h = max
j

{∑
i 6=j
| cos](â(i), â(j))|

}
.

Proof: In terms of the quadratic forms associated with the symmetric positive definite
matrices, we have that

K̂TK̂ + D−1
ξ ≥ D−1

ξ ,

from which it follows that (
K̂TK̂ + D−1

ξ

)−1 ≤ Dξ,

establishing the following inequality for the induced `2-norms,

‖
(
K̂TK̂ + D−1

ξ

)−1‖2 ≤ ‖Dξ‖2 ≤ ξ,

and further, the estimate
‖z‖∞ ≤ ‖z‖2 ≤ ξ‖K̂Tb‖2.

Next we express the matrix K̂TK̂ as the sum of the two matrices CI and R containing, respec-
tively, its diagonal and off-diagonal entries,

K̂TK̂ = CI + R, Rij =
{
C cos](â(i), â(j)), i 6= j,

0, i = j.

Substituting this expression in the normal equations gives

diag(C + 1/ξj)z + Rz = K̂Tb,

yielding the following upper bounds for the components of the solution,

|zj | ≤
ξj

Cξj + 1
(
|(Rz)j |+ |(K̂Tb)j |

)
.

Furthermore, since

|(Rz)j | ≤ ‖R‖∞‖z‖∞ = maxk|
∑
i 6=k

Rik|‖z‖∞ = Ch‖z‖∞,
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replacing ‖z‖∞ with its upper bound and observing that ‖(K̂Tb)j | ≤ ‖K̂Tb‖2, we have

|zj | ≤
ξj

Cξj + 1
(
Ch‖z‖∞ + ‖(K̂Tb)‖2

)
≤ Cξj

1 + Cξj
(hCξ + 1)‖K̂Tb‖2

thus completing the proof. �
While not definitive, the previous lemma points to some of the factors that contribute to

the stable convexity. First, we observe that if |ztj | � 1, choosing the shape parameter η > 0
small implies that ξtj = ϕ(|ztj |) � 1. The above lemma suggests that in the IAS iterations,
small entries remain small, and therefore one can hope that they remain below the convexity
bound. On the other hand, if the columns of the matrix K̂ are almost orthogonal, h � 1 and
we have an upper bound close to the norm ‖K̂Tb‖2 for the entries |zj |. In that case, choosing
the parameters (r, β) so that ρ = τ‖K̂Tb‖2 for some safeguard factor τ > 1 guarantees stable
convexity of the objective function. The quantity h is closely related to the mutual coherence of
the matrix [61], and to the Welch bounds for frames, widely studied in frame theory and signal
processing literature [162].

Remark 4. In general, one may not have an a priori guarantee that the components of the
unknown are bounded by a constant smaller than the convexity radius. However, if we know a
priori that |xj | < M for some M > 0, we may choose the parameters (r, η) so that ρ ≥ M ,
guaranteeing global convexity and thus the existence of a unique minimizer. A natural question
that arises then is, how the IAS algorithm should be modified for a case in which a box constraint
is part of the prior. This question is addressed in the next chapter.

8.6 IAS with bound constraints

Consider the constrained optimization problem:

minimize Φ(z, ξ) subject to the constraints 0 ≤ z ≤ H,

for some H > 0. The minimizer corresponds to the MAP estimate under the belief that the
components of the solution are nonnegative and not larger than H. More general box contraints
can be treated in a similar way.

We begin by introducing the penalty function

G(z) =
{

0, when 0 < z ≤ H,
∞ otherwise,

and write the posterior density with the bound constraints as

P(z, ξ | b) ∝ exp (−Φ(z, ξ)−G(z)) = exp (−ΦG(z, ξ)) .

Following the ideas in [131, 62], consider the Moreau-Yoshida envelope of the objective function,

Φλ
G(z, ξ) = Φ(z, ξ) +Gλ(z),

where
Gλ(z) = minu∈Rn

{
G(u) + 1

2λ‖z − u‖
2
}
,
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with λ > 0 an auxiliary parameter. Its can be shown [116] that the Moreau-Yoshida envelope
is differentiable with respect to z, and its gradient is of the form

∇zΦλ
G(z, ξ) = ∇zΦ(z, ξ) + 1

λ
(z − proxλG(z)),

where the proximal operator is defined as

proxλG(z) = arg min
v∈Rn

{
G(v) + 1

2λ‖z − v‖
2
}

=
{
z, if G(z) = 0
Qz, if G(z) =∞

,

and Q is the orthogonal projector onto the feasible set [0, H]n. Since the derivatives of the ob-
jective function with respect to the parameters ξj are unaffected by the inclusion of the bounds,
a natural extension of the IAS algorithm for bound constrained problems can be obtained by
modifying the solution of the least squares minimization problem as follows:

Given the current ξt:

(a) Find z = z∗ by solving ∇zΦ(z, ξ(t−1)) = 0 in the least squares sense,

(b) Define z(t) = proxλG(z∗) as the projection of z∗ onto the feasible set.

Observe that, for the computation of the MAP estimate it is not necessary to specify the
auxiliary parameter λ, as the proximal operator is a projection regardless of the value of λ. It
was proved in [62] that, as λ→ 0+, the posterior distribution defined in terms of the Moreau-
Yoshida envelope converges in the sense of total variation towards the posterior distribution
augmented by the positivity constraint.

8.7 Computed examples

In this section, we present computed examples that illustrate how the choice of the hyperprior
from the generalized gamma family affects sparsity of the computed MAP solution.

Example 1 The first computed example is a one-dimensional deconvolution problem with an
Airy convolution kernel. The generative model is a piecewise constant signal f : [0, 1] → R,
f(0) = 0, and the data consist of discrete noisy observations,

bj =
ˆ 1

0
A(sj − t)f(t)dt+ εj , 1 ≤ j ≤ m, A(t) =

(
J1(κ|t|)
κ|t|

)2
,

where J1 is the Bessel function of the first kind and κ is a scaling controlling the width of the
kernel. We set κ = 40, yielding a kernel with FWHM = 0.08. We discretize the integral as

ˆ 1

0
A(sj − t)f(t)dt ≈

n∑
j=1

wkA(sj − tk)f(tk), 1 ≤ k ≤ n,

where tk = (k − 1)/(n − 1) and the wk’s are the trapezoidal quadrature weights. To generate
the data, we use a dense discretization with n = ndense = 1253, while the forward model
used for solving the inverse problem assumes n = 500. The observation points are given by
sj = (4 + j)/100, 1 ≤ j ≤ m = 91, and the noise added is assumed to be scaled white noise,
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Figure 8.5: The generative model (a), the blurred and noisy data vector b ∈ R91 (b), singular
values of the discrete blurring kernel K ∈ R91×500 used for the solution of the inverse problem
(c). Since only the first 30 singular values are significantly different from zero, the matrix is
numerically singular.

with standard deviation σ set to 1% of the maximum of the noiseless generated signal. We
denote xj = f(tj). Figure 8.5 shows the generative signal and the data.

To compute the update of the hyperparameter ξ given the current vector z, we first sort the
values of z so that 0 ≤ |zj1 | ≤ . . . ≤ |zjn |, and subsequently solve numerically the differential
equation (8.13) at these values. Observe that this solution is fast since the propagation needs
not to be restarted from zero, but rather we only need to propagate from |zj` | to |zj`+1 | to get
the next value. The integration was done using the RK45 solver of Matlab.

While the generative signal, a piecewise constant function, is not sparse, it admits a sparse
representation in terms of its increments zj = xj − xj−1 over the interval of definition. If we
assume that x0 = 0, then

z = Bx , B =


1 0 . . . 0
−1 1 . . . 0

. . .
0 . . . −1 1

 ∈ Rn×n, (8.18)

hence

x = C z with C = B−1 =


1 0 . . . 0
1 1 . . . 0
... . . .
1 . . . 1 1

 ∈ Rn×n.

Therefore our inverse problem is to estimate the vector z, assumed to be sparse, from the data
vector b, given the forward model

b = KCz + e, ε ∼ N(0, σ2I), Kjk = wkA(sj − tk).

To illustrate how the sparsity of the MAP estimate determined by the IAS algorithm is
affected by the choice of the hyperprior in the generalized gamma family, we show the results
with the hyperpriors corresponding to r = 3, r = 1 and r = 0.5, see Figure 8.6. The results
clearly demonstrate that with decreasing r, the sparsifying properties are strengthened. Observe
that the dramatic decrease of the CGLS iterations, compared to the numerical rank of the
matrix, makes the approximate IAS very attractive for large problems.
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Figure 8.6: Reconstructions of the signal x (left), the hyperparameter θ (center) and the count
of CGLS iterations per each IAS update when the approximate method is employed. In the top
row, the parameter values are r = 3 and η = 10−5, in the middle row, r = 1 and η = 10−5, and
in the bottom row r = 1/2 and η = 10−5. The results with both the exact and approximate
IAS are shown.
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Figure 8.7: The generative model (a), an impulse image of 50 point sources with variable
amplitude. The 64× 64 blurred and noisy observation, degraded by Gaussian blur and additive
while Gaussian noise, scaled so as to achieve SNR ≈ 25, corresponding to a standard deviation
of about 1.8% of the maximum noiseless signal (b).

Example 2 In the second example, we consider the problem of estimating a nearly black
two-dimensional object. The generating model is an impulse image, defined as a distribution
on Ω = [0, 1]× [0, 1],

dµ(p) =
J∑
k=1

akδ(p− pk)dp, pk ∼ Uniform(Ω), ak ∼ Uniform([1.5, 2]),

and we assume that the distribution is observed with a Gaussian convolution kernel,

A(p, p′) = 1
2πw2 e

−‖p−p′‖2/2w2
, w = 0.01, (8.19)

the discrete and noisy data being given at observation points qj ∈ Ω by

bj =
ˆ

Ω
A(qj , p′)dµ(p′) + εj =

K∑
k=1

akA(qj , pk) + εj .

To solve the inverse problem, we divide the image Ω in n = 128× 128 = 16 384 pixels, denoted
by Ω`, and discretize the kernel, approximating

ˆ
Ω
A(qj , p)dµ(p) ≈

n∑
`=1
|Ω`|A(qj , q′`)︸ ︷︷ ︸

=Kj`

x`, x` = 1
|Ω`|

ˆ
Ω`
dµ(p),

where q′` denotes the center point of the pixel Ω` and |Ω`| is its area. In this example, we assume
that the number of observation points ism = 64×64 = 3 844, hence the forward model is defined
by a matrix K ∈ Rm×n. The noiseless signal is then corrupted by scaled white Gaussian noise
with standard deviation approximately 1.8% of the maximum of the noiseless signal. In this
case, since the signal itself is sparse, no change of variable is needed. Figure 8.7 shows the
positions of the point masses in the true impulse image, as well as the noisy blurred image with
kernel width w = 0.01.

We consider three hyperpriors from the generalized gamma family, corresponding to r = 1,
r = 0.5, and r = −1. To promote sparsity of the first two cases se set η = 10−5, while in the
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Figure 8.8: Reconstructions of the impulse image from blurred noisy observation. The re-
constructed image is of size 128 × 128, and the hyperparameter values are, from left to right:
(r, η) = (1, 10−5), (r, η) = (1/2, 10−5), and (r, β) = (−1, 3). The images are in the same scale.

third case, where r = −1 and η does not have the same role as for positive values of r, we set
β = 3. We scale the hyperparameters by a constant value, setting ϑj = ϑ0 = constant, and to
make the results comparable, we select the parameter ϑ0 so that the lower bound for the scaling
parameters θj are equal,

ϑ0ϕ(0) = ϑ0

(
η

r

)1/r
= 10−9.

In this example, we consider only the approximate IAS algorithm.
The final reconstructions, shown in Figure 8.8 are almost identical, and the number of

iterations are comparable. The number of the CGLS inner iterations per outer iteration in each
case is low, no more than 15. To see a difference in the performance for the three parameter
choices, we show how the reconstruction of the hyperparameter θ proceeds. Figure 8.10 shows
logarithmic plots of the vector θ, rendered as a pixel image, after 2,4,8, and 16 iterations. The
first observation is that even if the lower bound for the parameter vector θ was set equal, each
choice of hyperprior has its charcteristic scale: The value r = 0.5 yields the lowest values, while in
the case r = −1 the interval is shifted to considerably higher values. Interestingly, however, the
ratio between the largest and smallest value is in the same range. This observation is important,
as the ratio informs us about the relative weights of each column of K in the scaling K→ KD1/2

θ .
The column scaling performs an effective model reduction, identifying the relevant columns of
K and suppressing irrelevant ones. Each hyperparameter selection in the end identifies the
same relevant columns, however the plots in Figure 8.10 show that the choice r = 1 is the
most conservative, while when r = −1 the suppression of irrelevant columns happens sooner.
Therefore one can argue that the parameter choices that correspond to less convex case pursue
more greedily the support, however, the lack of convexity also makes it possible that the support
corresponds to a local, rather than global minimum.
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Figure 8.9: The number of CGLS iterations in each outer iteration. The hyperparameter values
correspond to those in Figure 8.8.
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Figure 8.10: Logarithmic plot, top to bottom, of the estimate of θ for the three hyperpriors
corresponding to Figure 8.8 at the end of the outer iteration 2, 4, 8 and 16 (left to right).



140



Chapter 9

Hybrid solvers for hierarchical
Bayesian inverse problems

In Chapter 8, the analysis proposed in [32] on the convexity and sparsity promotion of the
Gibbs energy functional with gamma hypeprior, has been extended to the case of generalized
gamma hypepriors. In particular, we observed that the global convexity is in general lost when
using a generalized gamma hyperprior with r < 1, leaving open the possibility of stopping at a
local minimizer of the energy functional. Nevertheless, Theorem 2 in Section 8.4 states that it
is always possible to detect a region in which the Gibbs energy functional is convex.
With the purpose of getting a better trade-off between the sparsity promotion of the model and
the robustness of the optimization algorithm, several hybrid approaches have been investigated
in literature, some of them relying on `1-`2 [165, 115] or `2-`0 [63, 66] minimization problems
and mixed norms [105, 106]. In a Bayesian framework, the sum of `p-norms with different p,
e.g. p = 0, 1, 2, has been set as a regularizer in order to exploit the sparsity promotion and
convexity properties of the underlying norms [40]. There, the authors also consider a hierarchical
framework for estimating the unknown parameters in the variational model, whose number is
limited to 3, namely the three global regularization parameters weighting the contribution of
each norm in the regularizer.
Here, in this perspective, we show how the hyperpriors analyzed in Chapter 8 can be mixed in
order to couple the strong sparsity promotion of non-convex functionals with the convergence
guarantees of convex functionals.
We start recalling the expression of the energy functional corresponding to the adoption of a
conditionally Gaussian prior for x with a generalized gamma hyperprior:

F(x, θ | r, β, ϑ) = 1
2‖Kx− b‖

2 + 1
2‖D

−1/2
θ x‖2 −

(
rβ − 3

2

) n∑
j=1

log θj
ϑj

+
n∑
j=1

(
θj
ϑj

)r

= 1
2‖Kx− b‖

2 + P(x, θ; r, β, ϑ) . (9.1)

For the sake of completeness, we also quickly recall the statement of Theorem 2, Section 8.4, that
has been proven for the non-dimensional energy functional Φ(z, ξ) and can be easily extended
to F(x, θ):

(a) If r ≥ 1 and η = rβ − 3/2 > 0, the functional F(x, θ) is convex everywhere.
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(b) If 0 < r < 1 and η = rβ− 3/2 > 0, or, if r < 0 and β > 0, the function F(x, θ) is convex
provided that

θj < θ̄ = ϑj

(
η

r|r − 1|

)1/r
, j = 1, . . . , n .

Another remark which is useful to state in advance concerns the way in which the θ-update in
Algorithm 7 is formulated. In fact, in non-dimensional settings, Lemma 2 draws a connection
between the update of ξj and the solution of an ordinary differential equation, by stating that,

ϕ(zj) = ξj with ϕ solving (8.13) . (9.2)

The relation in (9.2) can be reformulated in terms of xj and θj as

θj = g(|xj | | r, β, ϑj) , (9.3)

with g : R+ → R+ being the counterpart of function ϕ in the physical space whose dependence
on the hyperparameters has been highlighted.
Finally, from now on we will refer to the approximate IAS algorithm introduced in Chapter 8
as IAS.

9.1 Hybrid IAS algorithms

From the point of view of optimization, the benefits of choosing r ≥ 1 guaranteeing the global
convexity are obvious. This, however, should be contrasted with the convergence rate and how
strongly each of the hypermodels promote sparsity. As a rule, moving away from global convexity
tends to increase the greediness of the algorithm in the sense that it promotes more strongly the
sparsity. In this section, we propose two different modifications to the IAS algorithm that aim at
taking advantage of the global convexity of the objective function corresponding to the gamma
hyperprior, r = 1, thus guaranteeing convergence, and the fast convergence of the hyperpriors
with r < 1 with only a locally convex objective function. In both proposed algorithms, the
gamma hyperprior model is used to initial convergence towards the unique global minimum,
after which a switch to locally convergent hypermodel is done. We refer to the two proposed
algorithms as local and global hybrid models: in the former one the hypermodel is switched
only for components entering in the convexity region of the model r < 1 with strong sparsity
promotion properties, while in the global model, the full objective function is switched. Both
algorithms are extensively tested with computed examples.

9.1.1 Local hybrid IAS

To define the local hybrid algorithm, consider the objective function F(x , θ | r, ϑ, β) with given
model parameters (r, β, ϑ) that the IAS algorithm seeks to minimize. Starting from (9.1), we
write the objective function as

F(x, θ | r, ϑ, β) = 1
2‖Kx− b‖

2
2 +

n∑
j=1

Pj(xj , θj | r, ϑj , β),
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where

Pj(xj , θj | r, ϑj , β) = 1
2
x2
j

θj
−
(
rβ − 3

2

)
log θj

ϑj
+
(
θj
ϑj

)r
.

In the IAS algorithm, we choose the parameters r, β and ϑ and keep them fixed during the
full iteration process. In the proposed hybrid algorithm, the model parameters are updated
dynamically for each component, the selection criterion being based on whether the component
pair (xj , θj) satisfies the convexity criterion given in Theorem 2, Section 8.4.

More precisely, consider two hypermodels, with parameters (r(1), β(1), ϑ(1)) and (r(2), β(2), ϑ(2)),
where r(2) < 1 ≤ r(1), r(2) 6= 0. We refer to these models as M1 and M2, respectively. We start
the IAS algorithm by using the model M1.

After t alternating minimization steps, let (x, θ) = (x(t), θ(t)) denote the current approxima-
tion of the IAS algorithm. For each coordinate xj , we now compute the θj update - see (9.3) -
corresponding to model M2,

θ
(2)
j = g(|xj | | r(2), β(j), ϑ

(2)
j ) = g(2)(|xj |).

If the value satisfies

θ
(2)
j < θj = ϑ

(2)
j

(
η(2)

r(2)|r(2) − 1|

)1/r(2)

,

we continue the updating of θj using the model M2. Observe that since the function g(2) is
strictly increasing, we may write the above condition in terms of xj ,

|xj | <
[
g(2)

]−1
(θj) = xj .

Let I ⊂ {1, 2, . . . , n} denote an index set such that

j ∈ I if and only if xj < xj ,

and denote by Ic its complement. We define a hybrid objective function,

F(x, θ | I) = 1
2‖Kx− b‖

2
2 +

∑
j∈Ic

Pj(xj , θj | r(1), ϑ
(1)
j , β(1)) +

∑
j∈I

Pj(xj , θj | r(2), ϑ
(2)
j , β(2)).

To guarantee the convexity of the objective function above, we impose a bound constraint

|xj | < xj for j ∈ I, (9.4)

as detailed in Section 8.6.
Before discussing further the algorithm, consider the selection of the model parameters, and

in particular ϑ. For model M1, the vector ϑ(1) can be chosen based on the sensitivity analysis as
suggested in Section 8.2. We choose the hyperparameter vector ϑ(2) using the following design
criterion: If xj = 0, the updating value for θj given by the IAS algorithm is the same regardless
of the choice of the hypermodel. We recall that the update of θj in the IAS algorithm is given
by (8.12). In particular,

g(0 | r, β, ϑj) = ϑj

(
η

r

)1/r
, η = rβ − 3/2,
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which leads to the scaling

ϑ
(2)
j =

(
η(1)

r(1)

)1/r(1) (
r(2)

η(2)

)1/r(2)

ϑ
(1)
j .

We summarize the proposed local hybrid IAS in an Algorithm 8.

Algorithm 8: Local hybrid IAS

input: observed signal b ∈ Rm

output: restored signal x∗

1. initialize: set t = 0, θ(0) = ϑ(1), I = ∅

2. for t = 1, 2, . . . until convergence do:

3. update x(t) by solving (8.5) in terms of w and rescaling, x(t) = D1/2
θ w

4. project components x(t)
j , j ∈ I, to [−x, x]

5. for j = 1, . . . , n

6. if θj ≥ θ

7. update θ(t)
j = g(|x(t)

j | | r(1), β(1), ϑ
(1)
j )

8. else

9. update θ(t)
j = g(|x(t)

j | | r(2), β(2), ϑ
(2)
j )

10. update I = I ∪ {j}

11. endif

12. end for

13. x∗ = x(t), θ∗ = θ(t)

Before discussing a modification of the above algorithm, a comment on the projection on
convexity interval (step 4) is of order. The projection step is included in the algorithm to
ensure that the index set I of components being updated using the hypermodel M2 is monoton-
ically increasing, which, in general, is not automatically guaranteed. In other words, once that
(x(t)
j , θ

(t)
j ) enters the convexity basin, it can not be ensured that it remains therein at the next

IAS iteration, unless the hybrid objective function F(x, θ | I) is stably convex. The definition
of stable convexity has been given in Section 8.5, together with Lemma 5 that suggests a few
conditions under which stable convexity is achieved. However, even if in the proposed numerical
examples the conditions in Lemma 5 will not be checked, results show that the projection step
is in practice not necessary, and the bound constraint |xj | < x is not active.

9.1.2 Global hybrid IAS

We remark that, in order for the convexity of the energy functional to be guaranteed, the hybrid
scheme summarized in Algorithm 8 may result to be a very cautious choice: it is expected to give
a substantial contribution in terms of background sparsification, but it may fail in enhancing
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sudden discontinuities in the signal. Hence, one could take the risk of minimizing a non-convex
objective function, rather focusing on finding an initial guess sufficiently close to the global
minimum.

In the proposed Algorithm 9, we run the IAS algorithm first with model M1 corresponding
to a conservative parameter choice with guaranteed convergence towards a global minimum, and
after a fixed number t of iterations, we switch to hypermodel M2 lacking the global convexity,
but with strong sparsity promotion. We refer to this scheme as global hybrid IAS, since the
change of distribution involves all the variances θj unlike in the local version where only selected
components followed the model M2.

Algorithm 9: Global hybrid IAS

input: observed signal b ∈ Rm

output: restored signal x∗

1. initialize: set θ0 = ϑ(1)

2. for t = 1, 2, . . . until convergence do:

3. update x(t) by solving (8.5) in terms of w and rescaling, x(t) = D1/2
θ w

4. for j = 1, . . . , n

5. if t < t

6. update θ(t)
j = g(|x(t)

j | | r(1), β(1), ϑ
(1)
j )

7. else

8. update θ(t)
j = g(|x(t)

j | | r(2), β(2), ϑ
(2)
j )

9. endif

10. end for

11. x∗ = x(t), θ∗ = θ(t)

In the description of the algorithm above, the selection of the switch value t is defined as an
input. A natural modification is to run the model M1 as long as the variances θ keep changing
significantly. Since in general, we have little information of the nature of the minima of the
objective function when r < 1, a definitive automatic switching rule is not easy to justify. In
the following section, we consider the performance of the algorithm in the light of computed
examples.

9.2 Computed examples

In this section, we evaluate the performance of the proposed local and global hybrid IAS. In
particular, we will turn off the bound constraint in (9.4) and monitor the behavior of the
variances along the iterations of Algorithm 8, tracking the ones entering the convexity region to
check whether they remain therein or not. In addition, in order to assess the robustness of the
global hybrid IAS, we will record the variances in the convexity region at the switching iteration
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(a) (b)

Figure 9.1: The generative model (a), the blurred and noisy data vector b ∈ R91 (b).

t̄ and at the final iteration of Algorithm 9. This analysis is aimed at detecting the areas of the
signal where the non-convexity may lead to undesirable effects.
In the following examples, the generative distributions for the hybrid schemes are the gamma
(r(1) = 1) and the inverse gamma hyperpriors (r(2) = −1). The performance of local and
global hybrid IAS is thus compared with the one of the plain gamma and plain inverse gamma
hyperprior. In the global case, the iteration number at which we switch to the second non-convex
hyperprior is t̄ = 10.

Example 1 As a first example, we consider a one-dimensional deconvolution problem. The
generative model as well as the observed data, corrupted by an Airy convolution kernel, have
been generated according to the procedure detailed in Example 1 of Section 8.7. Here, we use
a dense discretization with n = ndense = 1253 points, while the forward model used for solving
the inverse problem assumes n = 500. The number of observation points is m = 91, and the
noise added is assumed to be scaled white noise, with standard deviation σ set to 2% of the
maximum of the noiseless generated signal. Figure 9.1 shows the generative signal and the data.

The generative signal is not sparse, but it admits a sparse representation in terms of its
increments zj = xj − xj−1 over the interval of definition

z = Bx ,

with B defined as in (8.18). Therefore our inverse problem is to estimate the vector z, assumed
to be sparse, from the data vector b, given the forward model

b = KBz + e, e ∼ N(0, σ2Im).

The restoration results, together with the final variance vector θ and the CGLS steps per
IAS iteration, are shown in Figure 9.2. One can notice that the first increment is not easy to
detect due to the level of corruption in the signal. In fact, it is not sharply restored when a
plain gamma hyperprior is adopted, while it is not detected at all in the case of a plain inverse
gamma hyperprior. More specifically, the non-convexity of the MAP objective function for the
inverse gamma hyperprior drives the IAS solution towards a local minimum; in fact, the first
increment is sharply detected but at the wrong position. In the third row of Figure 9.2, the
results obtained via the hybrid local hyperprior are shown. The components of θ plotted in blue
follow the inverse gamma distribution at the last iteration of IAS, while the red ones distribute
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according to a gamma distribution. The action of the inverse gamma helps in sparsifying the
background. Finally, the global hybrid hyperprior returns a sharp restoration and detects the
five jumps at the original positions. It is also worth remarking that, in all the cases performed,
the number of CGLS steps per each IAS iteration equals the number of increments detected.
This reflects again the capability of IAS of quickly determining the cardinality of the support.

We now want to give a closer look to the behavior of θ for the hybrid IAS. In Figure
9.3a we show the variances following a gamma distribution (yellow) and the variances switching
distribution (green). One can notice that when θj enters the convexity region, it remains therein.
In other words, once that a distribution switch is performed, it is never reversed. This means
that, the activation of the bound constraint (9.4) would have not given any contribution.
Then, as far as the global strategy is concerned, we examine the θ vector at iteration t̄ − 1,
that is the last iteration of the global hybrid IAS in which a gamma hyperprior is adopted - see
Figure 9.3b. The entries of θ below the convexity bound, plotted in blue in Figure 9.3b, are the
ones such that the switch to the inverse gamma distribution can be considered safe. Then, the
same analysis is proposed for all the iterations of global hybrid IAS, as shown in the right panel
of Figure 9.3c, whence one can notice that after the switch the decrease of variances proceeds
at a higher rate.

Example 2 In the second example, we consider an image restoration problem. We consider a
Gaussian convolution kernel as in (8.19) of width w = 0.015. The image domain is discretized
using a n × n grid, n = 136, whereas the number of observation points is m = 68 × 68. The
noiseless signal is corrupted by scaled white noise with standard deviation approximately 2% of
the maximum of the noiseless signal. Also in this case, the original image is not sparse in the
standard coordinate basis, but it is sparse in terms of its vertical and horizontal increments:

z = Lx , L =
[
Dv

Dh

]
∈ R2n2×n2

with Dv,Dh given in (3.6).
The original image, the observed data and the vector of increments z computed on the

original image are shown in Figure 9.4. Note that, due to the binary nature of the image, all
the algorithms are performed by constraining xj in [0, 1], 1 ≤ j ≤ n2, , while the constraint
(9.4) is still not active in the local hybrid IAS.

The restored images for the plain IAS with Gamma and Inverse Gamma hyperprior and for the
Local and Global IAS are shown in the first column of Figure 9.5. As a further analysis, in
Figure 9.6 we also report the logarithmic plot of variances θj and the profile of the restorations
along the black dashed cut, compared to the corresponding profile of the original image, reported
in red. As expected, the restoration via Gamma hyperprior presents rounded corners, while the
adoption of an Inverse Gamma hyperprior returns artifacts along the edges. Both these effects
are mitigated in the restorations obtained by means of a hybrid approach, especially in global
settings.

In Figure 9.7, the number of CGLS steps per outer IAS iteration for the four models is
shown.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 9.2: Reconstruction of the signal via gamma, inverse gamma, local hybrid and global
hybrid hyperprior (left), the hyperparameter θ (center) and the CGLS iterations per each IAS
iteration (right). For the gamma hyperprior in the top row the parameter values are η = 10−2

and ϑ = 10−5, for the inverse gamma hypeprior in the second row η = −4.5 and ϑ = 10−5. The
hybrid hyperpriors in the bottom rows inherit the parameters from the generative hyperpriors.
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(a) (b) (c)

Figure 9.3: Indices of variances switching from a gamma to an inverse gamma hyperprior at
each local hybrid IAS iteration (a), variances in the convexity region plotted in blue at iteration
t̄− 1 (b) and along all the iterations of global hybrid IAS (c). Figure (a) demonstrates that the
index set I is monotonically increasing, indicating stable convexity without the need to force
the bound constraint (9.4).

(a) (b) (c) (d)

Figure 9.4: Original test image x ∈ R136×136 (a), observed data b ∈ R68×68 corrupted by
Gaussian blur and additive Gaussian noise (b), sparse vector of vertical (c) and horizontal
increments (d) computed on the original image.

Figure 9.5: From left to right: restored images via gamma, inverse gamma, local hybrid and
global hybrid hyperprior. For the gamma hyperprior the parameter values are η = 10−4 and
ϑ = 10−3, for the inverse gamma hypeprior η = −6.5 and ϑ = 10−4. The hybrid hyperpriors in
the bottom rows inherit the parameters from the generative hyperpriors.
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Figure 9.6: From top to bottom: logarithmic plot of variances corresponding to vertical and
horizontal increments and one-dimensional profiles extracted from the restorations in Figure 9.5
for the gamma, inverse gamma, local hybrid and global hybrid hyperprior.
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(a) (b)

(c) (d)

Figure 9.7: Number of CGLS steps per outer iteration for gamma (a), inverse gamma (b), local
hybrid (c) and global hybrid hyperprior (d).

Finally, in Figures 9.8a-9.8d we show the indices of the variances of horizontal and vertical
increments that at the last iteration of local hybrid IAS follow a gamma (yellow) and an inverse
gamma (green) distribution. Figures 9.8b-9.8e and Figures 9.8c-9.8f show the indices behavior
at the switching iteration t̄ and at the last iteration of global hybrid IAS.

Example 3 In the third example, we consider the problem of estimating again the nearly
black two-dimensional object. The generating model is obtained as in Example 2 in Section 8.7.
In this example, we assume that the number of observation points is m = 64× 64 = 4 096. The
noiseless signal is then corrupted by scaled white noise with standard deviation approximately
1.8% of the maximum of the noiseless signal. Figure 9.9 shows the original impulse image
characterized by k = 80 non-zero points, as well as the noisy image also corrupted by Gaussian
blur with kernel width w = 0.015. The restored images are shown in Figure 9.10, together
with the number of outer IAS iterations. The differences in the four algorithms is highlighted
by estimate of the variance θ and by the one-dimensional profiles along the super-imposed
black dashed lines. The weak sparsity promotion performed by gamma hyperprior leads to
a loss of contrast in the image. On the other hand, the inverse gamma hyperprior returns a
sharper restoration which is also more greedy; in fact, the second star of the local profile is
not recovered. When considering hybrid hyperpriors, the intensity level increases for the local
case when compared with the plain gamma IAS, whereas in global settings the both stars are
sharply recovered.

Finally, in Figure 9.11 the behavior of the variances in terms of distribution is shown for the
local hybrid case - at the final IAS iteration - and for the global hybrid case - at the switching
and final IAS iteration.
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(a) (b) (c)

(d) (e) (f)

Figure 9.8: Image of the variances θj for vertical (top) and horizontal increments (bottom) with
color coding indicating if θj < θ̄ (green) or θj ≥ θ̄ (yellow). Figures (a)-(d) represent the final
iteration of the local hybrid algorithm, (b)-(e) the iteration t̄− 1, right before the switch of the
global hybrid algorithm, and (c)-(f) the final iteration of global hybrid algorithm.
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Figure 9.9: Original test image (128 × 128) (a), the 64 × 64 blurred and noisy observation,
degraded by Gaussian blur and additive white Gaussian noise (b).
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Figure 9.10: Restoration via gamma, inverse gamma, local hybrid and global hybrid hyperprior
(first column), corresponding variances (middle column) and horizontal profiles (last column).
For the gamma hyperprior in the top row the parameter values are η = 10−5 and ϑ = 10−4, for
the inverse gamma hypeprior in the second row η = −4.5 and ϑ = 10−6. The hybrid hyperpriors
in the bottom rows inherit the parameters from the generative hyperpriors.
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(a) (b) (c)

Figure 9.11: Image of the variances θj with color coding indicating if θj < θ̄ (green) or θj ≥ θ̄
(yellow). Figure (a) represents the final iteration of the local hybrid algorithm, (b) the iteration
t̄− 1, right before the switch of the global hybrid algorithm, and (c) the final iteration of global
hybrid algorithm.



Chapter 10

Space-variance and overcomplete
basis

In this chapter, the hierarchical Bayesian framework outlined so far will be applied to the recov-
ery of sparse signals expressed in a redundant or over-complete basis. Many classical results in
the compressed sensing field hold for signals which are sparse in the standard coordinate basis
or sparse with respect to some other orthonormal basis. Nonetheless, in many cases the signal of
interest cannot be sparsely represented in an orthonormal basis. The adoption of over-complete
basis is also typically preferred since it leads to the reduction of artifacts that may arise dur-
ing the reconstruction procedure - see [145, 147]. As a consequence, a huge effort has been
done in order to extend the consolidated theory on orthonormal basis representation to more
general settings [34, 107]. From the algorithmic point view, `1-based optimization approaches
[132, 138, 164] and greedy approaches [130, 77] have been studied. Significant contributions
have been also given within a Bayesian framework [10, 9, 141, 142].

A key role in our approach is played by the sensitivity scaling, first proposed in [32] for a
gamma hyperprior and then extended to the wider class of generalized gamma distributions.
In fact, scaling the columns of an over-complete basis by the sensitivities will prevent from
favoring one representation instead of the others. In other words, we expect this procedure to
compensate for a possible bias due to the nature of the bases forming a redundant dictionary.
We also remark that the sensitivities, that are automatically set as in (8.11), are strictly related
to the SNR, the latter encoding information that can be crucial in terms of quality of the final
restoration - see discussion in Section 4.2.

10.1 Problem statement

Let x ∈ Rn be a signal and W ∈ Rn×N , N � n, an over-complete basis. We denote by ψ ∈ RN

a vector representing x in the redundant basis given by the columns of W, the latter being the
concatenation of k bases:

x = Wψ = [W1 W1 . . .Wk]


ψ1
...
ψk

 ,
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where

Wj ∈ Rn×sj , ψj ∈ Rsj and
k∑
j=1

sj = N .

The linear degradation model of reference thus reads

b = KWψ + e , e ∼ N(0,Σ),

where K ∈ Rm×n, m ≤ n, is the blur operator and Σ ∈ Rm×m is the symmetric positive definite
covariance matrix of the additive Gaussian noise that we assume to be known.

The numerical experiments will be performed under the adoption of a global hybrid IAS,
i.e. the energy functional of reference will be

F(ψ, θ | r(1), ϑ(1), β(1)) = 1
2‖KWψ − b‖22 +

n∑
j=1

P
(1)
j

(
xj , θj | r(1), ϑ

(1)
j , β(1)

)
,

with r(1) ≥ 1 in the first t̄ iterations, and it will be changed into

F(ψ, θ | r(2), ϑ(2), β(2)) = 1
2‖KWψ − b‖22 +

n∑
j=1

P
(2)
j

(
xj , θj | r(2), ϑ

(2)
j , β(2)

)
,

with r(2) < 1, afterwards. Before presenting the experimental results that constitute the main
part of the chapter we remark that here our point of view is dual. Namely, we address the
problem in a compressed sensing perspective, that is, we are looking for the basis, or the bases,
more sparsely representing a signal of which only few measurements are available. In addition,
the same framework could be performed on image decomposition problems, also representing
a very active field of research [146, 7, 122]. Hence, one could interpret again the problem in
a space-variant perspective; in other words, when restoring an image, we look for the basis
returning the sparsest representation of each local feature.

10.2 Computed Examples

In the following examples the generative hyperpriors for the global hybrid IAS are the gamma
hyperprior, r(1) = 1, and the generalized gamma hyperprior with r(2) = 1/2, while the switching
iteration t̄ is set equal to 20. We are denoting by,

η(1) = r(1)β(1) − 3
2 , η(2) = r(2)β(2) − 3

2
the hyperparameters corresponding to the generative hyperpriors. Moreover, as already re-
marked, we will make extensive use of sensitivities.
In the first example we will consider a one-dimensional deconvolution problems, where the sig-
nal of interest can be naturally represented in one of the two bases forming the over-complete
dictionary. In Example 2, two natural bases for a blocky image will be considered and we will
test the performance of the proposed algorithm in detecting the basis allowing for the sparsest
representation. Finally, in the third example, we will address the task of restoring an image
presenting different local features. We will thus look for the sparsest representation of each
feature in one of the three bases forming the dictionary.
Furthermore, in the last two examples, the global hybrid IAS is performed with bound constraint
according to the original image scale.
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(a) Original x. (b) Corrupted b.

Figure 10.1: The generative model (a) and the blurred and noisy data vector b ∈ R46 (b).

Example 1 In the first example, we consider the following over-complete representation for
signal x ∈ Rn:

x = Wψ = [W1 W2]
[
ψ1

ψ2

]
,

where the entries of ψ1 ∈ Rn represent the increments of signal x, i.e., W1 is the inverse of the
increment matrix introduced in (8.18), while ψ2 ∈ Rn represents x in the basis given by the
columns of W2 that here is the transpose of the cosine transform matrix.
The generative model shown in Figure 10.1a has been obtained via the procedure detailed in
Example 1, Section 8.7, using a dense discretization of the interval [0, 1] of ndense = 1253 points.
The signal has been corrupted by Gaussian blur of width w = 0.02 and additive scaled white
Gaussian noise with standard deviation σ set to 2% of the maximum of the noiseless generated
signal. Moreover, the number n of points in [0, 1] for the solution of the inverse problem has
been set equal to 500 , while the number of observation points m is 46. The corrupted and
down-sampled signal b is shown in Figure 10.1b.
The staircase signal x is naturally described by the increment basis. As a consequence, we do
not expect ψ2 to give any significant contribution in the representation of the final restoration.
The restoration result obtained via the global hybrid IAS algorithm is shown in Figure 10.2a.
The contributions of the two bases are encoded in the vectors W1ψ1 and W2ψ2, shown in
Figure 10.2b-10.2c, respectively. In Figures 10.2e-10.2f, we also report the output variances
corresponding to vectors ψ1 and ψ2 scaled by the sensitivities, i.e.

ξj = θj

ϑ
(2)
j

.

According to the different order of magnitudes, we can conclude that, despite the high level of
corruption and down-sampling in the observed data b, the hypermodel has detected the basis
that can more sparsely and naturally describe the original signal. Finally, in Figure 10.2d,
we show the number of CGLS iterations, whence one can again observe a connection between
the dimension of the Krylov subspace generated by CGLS and the effective cardinality of the
support of vector ψ.

Example 2 In this example, we are testing the outlined framework on the recovery of a blocky
image admitting a natural sparse representation both in the basis of the vertical and horizontal
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(a) (b) (c)

(d) (e) (f)

Figure 10.2: Restoration via global hybrid IAS (a), contribution of the increment basis (b)
and of the cosine transform matrix (c), number of CGLS steps per outer iteration (d), scaled
variances corresponding to ψ1 (e) and ψ2 (f). The global hybrid CGLS has been performed with
parameter η1 = 10−4 and η2 = 10−3.
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(a) Original x.
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(b) Corrupted b.

Figure 10.3: The original image (a) and the blurred and noisy image b (b).

increments. In formula,

x = [W1W2]
[
ψ1

ψ2

]
with x ∈ Rn

2
, ψ1, ψ2 ∈ Rn

2 and W1 = D−1
v , W2 = D−1

h ∈ Rn
2×n2

,

where Dv and Dh are defined as in (3.6). The original blocky image x in Figure 10.3a rearranged
as a 67× 67 image has been corrupted by Gaussian blur of width w = 0.01 and additive scaled
white Gaussian noise with standard deviation set as the 2% of the maximum of the noiseless
image. The observed data b is shown in Figure 10.3b.

Notice that the representation via vertical increments is more sparse.
The restoration via global hybrid IAS is shown in Figure 10.4a, together with the contribution
given by the vertical and horizontal increment bases in Figure 10.4b-10.4c, respectively. As
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Figure 10.4: First row: restored image (a), contribution of W1ψ1 (b) and W2ψ2 (c) in the final
restoration. Second row: number of CGLS steps per outer iteration (d), scaled variances corre-
sponding to ψ1 (e) and ψ2 (f). The global hybrid CGLS has been performed with parameters
η(1) = 10−3 and η(2) = 10−2.

expected, the image is almost completely restored starting from the information encoded in
the vertical increment representation. As a further evidence, we also report the output scaled
variances corresponding to vectors ψ1 and ψ2 - see Figures 10.4e-10.4f - as well as the number
of CGLS steps per outer iteration of the hybrid IAS - see Figure 10.4d.

Example 3 In this third example, we are finally addressing the restoration of an image
presenting different local features, each of them admitting a sparse representation in one of
the three bases forming the over-complete dictionary. More specifically, the original vectorized
image x, shown in Figure 10.5a rearranged as 100× 100 image, can be expressed as follows:

x = [W1 W2 W3]


ψ1

ψ2

ψ3

 , with x ∈ Rn
2
, ψj ∈ Rn

2
,

where W1 = In, W2 is the transpose of the discrete cosine transform matrix and W3 = Dh.
Clearly, the smooth part of the image, i.e. the cloud, admits a sparse representation in the cosine
transform basis, the blocky moon can be sparsely represented in the increment basis, while the
stars are sparse in the standard coordinate basis. The original image has been corrupted by
Gaussian blur of width w = 0.006 and additive scaled white Gaussian noise with standard
deviation set as the 2% of the maximum of the noiseless image - see Figure 10.5b.

The restoration via global hybrid IAS is shown in Figure 10.6a, while the contributions given
by the representation in the sub-bases of the over-complete dictionary are shown in Figures
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Figure 10.5: The original image (a) and the corrupted data (b).
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Figure 10.6: Final restoration (a), contribution of W1ψ1 (b), W2ψ2 (c) and W3ψ3 (d) in the same
scale. The global hybrid IAS has been performed with parameters η(1) = 10−3 and η(2) = 10−2.
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Figure 10.7: Output scaled variances corresponding to ψ1 (a), ψ2 (b) and ψ3 (c).

10.6b-10.6d. The output variances scaled by the sensitivity factors are shown in Figure 10.7.



Conclusions

In this work, we introduced statistically-inspired and high-parametrized regularization terms for
the restoration of natural and sparse signals. The flexibility of the proposed regularizers, i.e. of
the prior from which they are derived, is coupled with automatic procedures for the estimation
of the large number of parameters involved in their definition. Such procedures are based on the
introduction of non-informative and informative hyperpriors that have been explored in Part II
and Part III of the thesis, respectively.

In Part II, we proposed different space-variant regularizers, by sequentially adding a further
degree of freedom in the distribution modeling the local behavior of the gradients in the image.
This increasing generalization allowed us to analyze the contribution of each space-variance
related to the local strength, type and orientation of the regularization. In order to determine
which one influences the most the final restoration, one has to take into account the trade-off
arising between benefits and computational costs. In this perspective, the HWTV-L2 model
presents two main advantages. Firstly, the convexity model, even if not ensuring the overall
convergence of ADMM, prevents from hand-tuning the penalty parameters γv, γw whose setting
is instead crucial for non-convex problems. Secondly, the local scale parameters in the WTV
regularizer can be updated via a closed-formula that can thus be performed at each iteration of
ADMM. When introducing a second space-variant parameter p in the expression of the TVsv

p,α

regularizer in Chapter 6, a non-convex minimization problem has to be addressed. In addition,
updating the parameters at each iteration of the ADMM-based algorithm would slow down the
computations, since no-closed formula is available for the p. The same considerations stand for
the DTVsv

p -L2 model in Chapter 7. Hence, we can conclude that the last two models would
certainly take advantage from a faster parameter estimation procedure, based, for instance,
on the detection of patches in the image sharing the same properties, see e.g. [119], or on a
shrinkage of the parameter domain inspired by the properties of the image of interest. More-
over, as a future study, we also plan to extend the proposed models, as well as the estimation
procedure, to address other inverse problems in image processing, such as image reconstruction
and inpainting, that can certainly benefit from a space-variant and directional approach.
In Part III, we proposed a detailed analysis of the behavior of the energy functional in the MAP
estimation problem when different hyperpriors selected from the family of generalized gamma
distributions are adopted. Starting from the results discussed in Chapter 8, we introduced two
hybrid algorithms that have been designed with the purpose of combining the strong sparsity
promotion of non-convex penalty terms with the guarantees of convex settings. Finally, the
outlined framework has been applied to sparse recovery problems for signals represented in a
redundant dictionary. In the future, we plan to answer to some of the questions that have
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been left open, concerning the convergence of the hybrid schemes proposed in Chapter 9 and
the derivation of less restrictive conditions ensuring the stable convexity of the hybrid energy
functional.
Moreover, motivated by the encouraging results shown in Chapter 10, we believe that the pro-
posed model and algorithms are especially suited to deal with real worlds problems, such as
medical imaging or surveillance problems, where meaningful information has to be extracted
from degraded, down-sampled data, in which artifacts, possibly admitting a sparse representa-
tion in a given basis, may arise.



Appendix A

Probability preliminaries

Definition A.1. Let Ω be a given set and F a nonempty collection of subsets of Ω. Then, F is
a σ-algebra on Ω if

(i) Ω ∈ F;

(ii) F ∈ F;⇒ F = Ω\F ∈ F

(iii) {Fn}n ⊂ F ⇒
⋃∞
n=1 Fn ∈ F.

The pair (Ω,F) is a measurable space.

F ∈ Ω such that F ∈ F is called F-measurable or event.

We recall the following definition of probability introduced by Kolmogorov:

Definition A.2. A function,
P : F → [0, 1]

is a probability measure on a measurable space (Ω,F) if,

(i) P(F ) ≥ 0, ∀F ∈ F;

(ii) P(Ω) = 1;

(iii) denoting by {Fn}n a collection of mutually disjoint sets in F, it holds P
( ∞⋃
n=1

Fn
)

=
∞∑
n=1

P(Fn).

We refer to the triple (Ω,F,P) as a probability space.

For sake of completeness, it is worth remarking that, beside the Kolmogorov definition, there are
different ways to introduce the concept of probability. Other definitions proposed in literature
are listed below:

1. Classical probability: The probability of an event is the number of favorable cases
divided by the number of all possible cases (relative frequency of the event), in the
hypothesis that each event is equally possible.
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2. Frequentist probability: The probability of an event is the limit of its relative fre-
quency in a large number of trials.

3. Subjective probability: The probability of an event is the level of confidence that an
individual has about its occurrence. It depends on the knowledge and on the beliefs of
the specific individual.

In particular, in the Bayesian framework, a subjective point of view is adopted.

Definition A.3. Given U, a family of subsets of Ω, we call σ-algebra generated by U the smallest
σ-algebra containing U, i.e. the intersection of all the sigma-algebras built on U

σ(U) =
⋂
{F : F is a σ-algebra on Ω, U ⊂ Ω} .

If Ω is a topological space, the σ-algebra generated by the family of open sets in Ω is called the
Borel σ-algebra on Ω and each B ∈ B is a Borel set.

Let (Ω,F,P) be a probability space and consider a function

Y : Ω→ Rn .

Y is said to be F-measurable if

Y −1(U) = {ω ∈ Ω : Y (ω) ∈ U} ,

for all U open sets in Rn.
We can now give the definition of random variable, which will play a central role in our discussion.

Definition A.4. Let (Ω,F,P) be a probability space, we say that a function

X : Ω→ Rn ,

is a (multivariate) random variable if X is F-measurable. Function X assigns to each element
ω ∈ Ω a vector x = X(ω) ∈ Rn, with x being a realization of X.

Definition A.5. Let X be a multivariate random variable and B a Borel set. The function

µX : Rn → [0, 1] ,

such that
µX(B) = P(X ∈ B) ,

is called probability distribution of X. Under the hypothesis of absolutely continuity of µX with
respect to the Lebesgue measure, we can define the probability density function PX :

P(X ∈ B) = µX(B) =
ˆ
B
dµX(x) =

ˆ
B

PX(x)dx .

The integral of πX over a generic Borel set B is a probability measure, and
ˆ
Rn
πX(x)dx = 1 .
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Given two random variables X,Y : Ω→ Rn, we can define the joint probability distribution as

µXY (A,B) = P(X ∈ A, Y ∈ B) .

If µX is absolutely continuous with respect to the Lebesgue measure over Rn × Rn, we have

µXY (A,B) =
ˆ ˆ

A×B
PXY (x, y)dxdy .

From the joint probability density π(x, y), we can compute the marginal density of X and Y :

P(x) =
ˆ
Rn

P(x, y)dy , P(y) =
ˆ
Rn

P(x, y)dx .

Two random variables X and Y are said to be independent if their joint probability distribution
and joint probability density can be factorized as follows:

µ(x, y) = µX(x)µY (y) , P(x, y) = πX(x)PY (y) .

Given X and Y , we are interested in finding the probability density of X assuming that a
realization for Y = y is known. We have to define the conditional probability density:

P(x | y) = P(x, y)
P(y) .

The roles of X and Y are clearly symmetric so:

P(x | y)π(y) = P(y | x)P(x) .

Consider n random variables X1, . . . , Xn. We can formulate the analogous of the compound
probability law in terms of probability density:

P(x1, . . . , xn) = P(x1 | x2, . . . , xn)P(x2 | x3, . . . , xn) · · ·P(xn−1 | xn)P(xn) .

One of the most useful tool in the following discussion is the Bayes’ formula, which is an
immediate consequence of the conditional density definition and the symmetry identity:

P(x | y) = P(y | x)P(x)
P(y) , P(y) 6= 0 .

Let X be a random variable. If ˆ
Ω
|x|dµ(x) <∞ ,

we can define the mean or expectation of X as

E(X) = x =
ˆ

Ω
xdµ(x) =

ˆ
Ω
xP(x)dx .

Clearly, E is a linear operator:

E[aX + bY ] = aE[X] + bE[Y ] .

The variance of X : Ω→ R is defined as

var(X) = E[(X − x)2] =
ˆ
R

(x− x)2P(x)dx .
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The variance measures how far each value taken on by the random variable is from the mean x.
The covariance of X,Y : Ω→ R is defined as

cov(X,Y ) = E[(X − x)(Y − y)] = E[XY ]− E[X]E[Y ]

Consider now a multivariate random variable X : Ω → Rn. The covariance matrix of X is
defined as

cov(X) =
ˆ
Rn

(x− x)(x− x)TP(x)dx ,

or, using a component-wise notation

cov(X)ij =
ˆ
Rn

(xi − xi)(xj − xj)P(x)dx .

In particular cov(X)ii = var(Xi), ∀i = 1, .., n.
The covariance matrix is symmetric and positive semi-definite: this guarantees its invertibility.
In the following, we show the semi-definiteness, for any v ∈ Rn, v 6= 0:

vT cov(X)v = vT
( ˆ

Rn
(x− x)(x− x)TP(x)dx

)
v

=
ˆ
Rn
vT (x− x)(x− x)T vP(x)dx

=
ˆ
Rn

[vT (x− x)]2P(x)dx ≥ 0 ,

due to the non-negativity of P.



Appendix B

ADMM

The Alternating Direction Method of Multipliers (ADMM) is a popular algorithm, which is
well-established in the field of convex optimization. Moreover, in light of recent convergence
results, it has started to be widely used to address also non-convex problems. ADMM was first
introduced by Glowinski and Marrocco [78] and by Gabay and Mercier [75]. Nonetheless, it is
closely related to many other algorithms, such as the Douglas-Rachford splitting method.
At the core of ADMM there is the idea of splitting the original problems into smaller ones that
are easier to handle. The solution of the smaller sub-problems thus coordinate in order to find
a solution for the large problem.
Here, we quickly recall the general form of ADMM for convex problems and mention some of
the most remarkable results in terms of convergence. For further details, one can refer to the
surveys [14, 124] and the references therein.

Let f, g : Rn → R ∪ {+∞} be two closed proper convex functions and consider the following
minimization problem,

min
x,z
{f(x) + g(z)} (B.1)

s.t. Ax+ Bz = c ,

where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, B ∈ Rp×m, c ∈ Rp. Notice that f and g are not required to be
differentiable. Furthermore, their being extended-valued functions allows to consider the case
in which they are indicator functions, which is a typical configuration is several applications.
We thus introduce the Augmented Lagrangian associated with problem (B.1) :

L(x, z, λ;β) = f(x) + g(z)− λT (c−Ax− Bz) + β

2 ‖Ax− Bz − c‖22,

where we refer to β as the penalty parameter. The ADMM algorithm consists of the following
steps:

x(k+1) =arg min
x

L(x, z(k), λ(k);β) (B.2)

z(k+1) =arg min
z

L(x(k+1), z, λ(k);β) (B.3)

λ(k+1) =argminλL(x(k+1), z(k+1), λ;β) , (B.4)
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that can be made explicit as follows:

x(k+1) =arg min
x

{
f(x) + λ(k)Tx+ (β/2)‖x− z(k)‖22

}
(B.5)

z(k+1) =arg min
z

{
g(z) + λ(k)T z + (β/2)‖x(k+1) − z‖22

}
λ(k+1) =λ(k) − β(c−Ax− Bz). (B.6)

Observe that the update in (B.4) reduces to a gradient ascent iteration with step-size equal to
penalty parameter β in the Augmented Lagrangian. It is also worth remarking that the role of
x and z almost symmetric; as a matter of fact, the inversion of the two updates in (B.2) and
(B.3) may influence the convergence rate.
From (B.5)-(B.6), one can immediately derive the proximal formulation of ADMM, reading

x(k+1) =prox 1
β
f(·)

(
z(k)−λ(k)))

z(k+1) =prox 1
β
g(·)

(
x(k+1) + λ(k)

)
λ(k+1) =λ(k) − β(c−Ax− Bz).

Adopting the proximal interpretation, it is clear the ADMM is very suitable when addressing
problems such that the proximal operator of f + g is difficult to obtain while the proximal
operator of function f and g, separately, can be computed easily.

The convergence of ADMM in convex settings has been proved in [74, 65]:

Theorem B.1. Let f : Rn → R ∪ {∞} and g : Rm → R ∪ ∞ be closed, proper and convex.
Moreover, assume that the unaugmented Lagrangian,

L(x, z, λ;β)− β

2 ‖Ax−Bz − c‖
2
2

admits a saddle point. The iterative schemes (B.2)-(B.4) ensures that:

• the residual r(k) = Ax(k) +Bz(k) − c→ 0 as k →∞;

• the objective converges to its minimum f(x(k)) + g(z(k))→ f(x∗) + g(z∗), as k →∞;

• the dual variables converges λ(k) → λ∗, as k →∞.

In the image restoration field, ADMM is usually applied to problems of the form,

u∗ ∈ arg min
u
{R(u) + µF(u)} .

When both F and R are convex and µ > 0 is set, the convergence result in Theorem B.1 can be
applied. In Chapter 5-7, we consider possibly convex models, namely when pi ≥ 1. Nevertheless,
theorem B.1 can not be applied since in the designed models the regularization terms includes
parameters updated along the iterations of the ADMM. Here we do not provide any convergence
result, but we remark that in [89] the authors provide a proof of the convergence of ADMM
when the regularization parameter µ is iteratively adapted along the iterations. As far as the
non-convex case is concerned, we mention that a proof of the convergence of ADMM under
certain assumptions of the objective function has been given in [158]. However, the convergence
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result in non-convex settings can not be applied here. Nevertheless, we experienced that the
empirical convergence of ADMM is strictly related to the choice of suitable penalty parameters.
In fact, their settings contribute to driving ADMM towards a local minimum or not. Hence,
after a not trivial hand-tuning, we observed empirical convergence also in the non-convex case.
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