
Alma Mater Studiorum – Università di Bologna

Dottorato di ricerca in
Fisica

Ciclo XXXII

Settore Concorsuale: 02/A1
Settore Scientifico disciplinare: FIS/01

Study of the data acquisition network for the
triggerless data acquisition of the LHCb

experiment and new particle track reconstruction
strategies for the LHCb upgrade

Presentata da: Flavio Pisani

Coordinatore Dottorato Supervisore
Prof.ssa Silvia Arcelli Prof. Angelo Carbone

Esame finale anno 2020





i

Abstract

The LHCb experiment will receive a major upgrade by the end of February 2021.
This upgrade will allow the recording of proton-proton collision data at

√
s = 14 TeV

with an instantaneous luminosity of 2 ·1033 cm−2s−1, making possible measurements
of unprecedented precision in the b and c-quark flavour sectors.

For taking advantage of the increased luminosity provided, the data acquisition
system will receive a substantial upgrade. The upgraded system will be capable of
processing the full collision rate of 30 MHz, without any low-level hardware prese-
lection. This new design constraint poses a non-trivial technological challenge, both
from a networking and computing point of view.

A possible design of a 32 Tb/s data acquisition network is presented, and low-
level network simulations are used to validate the design. Those simulations use an
accurate behavioural model developed and optimised for this specific purpose.

It is mandatory to optimise the reconstruction algorithms using a computing
and physics approach, to perform the online reconstruction of the full 30 MHz pp
collisions rate. A new parametrisation of the charged particles’ bending generated
by the dipole of the LHCb experiment is presented. The accuracy of the model
is tested against Monte Carlo data. This strategy can reduce by a factor four the
size of the search windows needed in the SciFi sub-detector. The LookingForward

algorithm in the Allen framework uses this model.





iii

Contents

Acronyms vii

Introduction 1

1 The LHCb experiment at the LHC 5
1.1 The CERN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 The Large Hadron Collider . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The LHCb detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 The LHCb tracking system . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.1 VErtex LOcator . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Upstream Tracker . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4.4 Scintillating Fiber (SciFi) . . . . . . . . . . . . . . . . . . . . 16
1.4.5 Track reconstruction and performance . . . . . . . . . . . . . 18

1.5 Particle identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5.1 Ring Imaging Cherenkov (RICH)1 & RICH2 . . . . . . . . . 19
1.5.2 Calorimeter system . . . . . . . . . . . . . . . . . . . . . . . . 21
1.5.3 Muon system . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2 Interconnection networks 25
2.1 Terminology and basic concepts . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Network classification . . . . . . . . . . . . . . . . . . . . . . 25
2.2 Network topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.1 Channels and nodes . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.2 Cuts and Bisections . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.3 Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2.4 Symmetry and design considerations . . . . . . . . . . . . . . 31



iv Contents

2.3 Performance measurements: throughput and latency . . . . . . . . . 31
2.4 Router model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.5 Flow Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Data fragmentation . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.2 Bufferless flow control . . . . . . . . . . . . . . . . . . . . . . 35
2.5.3 Buffered flow control . . . . . . . . . . . . . . . . . . . . . . . 36
2.5.4 Buffer allocation and backpressure . . . . . . . . . . . . . . . 38

2.6 Routing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.6.1 Classification of Routing Algorithms . . . . . . . . . . . . . . 40
2.6.2 Formal definition of the routing function . . . . . . . . . . . . 41
2.6.3 Virtual channels . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6.4 Deadlock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.6.5 Livelock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3 Fast networks for the next generation LHCb Data Acquisition 49
3.1 The LHCb Event Building . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 High level description of the Event Building process . . . . . 50
3.1.2 The Event Building network . . . . . . . . . . . . . . . . . . 52

3.2 Event Building traffic generators . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Linear shifting scheduling . . . . . . . . . . . . . . . . . . . . 52
3.2.2 DAQPIPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.2.3 a2a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Network implementation . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3.1 Network technology . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Network topology . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3.3 Routing algorithms . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Event Building network simulation . . . . . . . . . . . . . . . . . . . 66
3.4.1 Simulation libraries overview . . . . . . . . . . . . . . . . . . 66
3.4.2 flit level InfiniBand simulation model . . . . . . . . . . . . . . 68
3.4.3 Model tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.4 Traffic injector implementation . . . . . . . . . . . . . . . . . 78
3.4.5 Fast model implementation . . . . . . . . . . . . . . . . . . . 80
3.4.6 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . 81

4 Parametric model of the LHCb magnet 91
4.1 Magnetic field effects and the pT -kick method . . . . . . . . . . . . . 92



Contents v

4.2 Parametrisation of the magnetic field . . . . . . . . . . . . . . . . . . 93
4.3 Test of the parametrisation . . . . . . . . . . . . . . . . . . . . . . . 98

Conclusions 107





vii

Acronyms

100GbE 100 Gigabit Ethernet

a2a All-to-All

ALICE A Large Ion Collider Experiment

ATAPC All-To-All Personalised Communication

ATLAS A Toroidal LHC ApparatuS

BU Builder Unit

CMS Compact Muon Solenoid

COTS Commercial Off-The-Shelf

CRC Cyclic Redundancy Check

DAQ Data Acquisition

DAQPIPE DAQ Protocol-Independent Performance Evaluator

EB Event Building

ECAL Electromagnetic Calorimeter

EDR Enhanced Data Rate

EM Event Manager

FCCL Flow Control Credit Limit

FCTBS Flow Control Total Blocks Sent

FIFO First In First Out



viii Acronyms

flit Flow Control Unit

FPGA Field Programmable Gate Array

GbE Gigabit Ethernet

GPL General Public License

HCA Host Channel Adapter

HCAL Hadronic Calorimeter

HDR High Data Rate

HEP High Energy Physics

HLT High Level Trigger

HPC High Performance Computing

IB InfiniBand

IBTA InfiniBand Trade Association

IP Impact Parameter

J-sim JavaSim

LAN Local Area Network

LC Link Controller

LFT Linear Forwarding Table

LHCb Large Hadron Collider beauty

LHC Large Hadron Collider

LPCRC Link Packet CRC

LS2 Long Shutdown 2

MaPMT Multi anode PhotoMultiplier Tube

MC Monte Carlo

MEP Multi Event Packet



ix

MFP Multi Fragment Packet

MPI Message Passing Interface

MS Multiple Scattering

MWPC Multi-Wire Proportional Chamber

ns-3 network simulator 3

OFA Open Fabric Alliance

OMNeT++ Objective Modular Network Testbed in C++

Op Operation

OS Operating System

PCIe Peripheral Component Interconnect Express

PFC Priority-based Flow Control

PID Particle IDentification

PSB Proton Synchrotron Booster

PS Proton Synchrotron

PTP Precision Time Protocol

PV Primary Vertex

QoS Quality of Service

RDMA Remote Direct Memory Access

RF Radio Frequency

RICH Ring Imaging Cherenkov

RoCE RDMA over Converged Ethernet

RU Readout Unit

SAF Store and Forward

SciFi Scintillating Fiber



x Acronyms

SPS Super Proton Synchrotron

UT Upstream Tracker

VCT Virtual-cut-through

VELO VErtex LOcator

VL Virtual Lane

WLS WaveLenght Shifter

WR Work Request



1

Introduction

The Large Hadron Collider beauty (LHCb) experiment will receive a major up-
grade by the end of a scheduled maintenance period of the Large Hadron Col-
lider (LHC), called Long Shutdown 2 (LS2) (Dec 2018-Feb 2021). During the third
run of the LHC (Run 3), this upgrade will allow the recording of proton-collision
data at

√
s = 14 TeV with an instantaneous luminosity of 2 · 1033 cm−2s−1. The

upgraded LHCb experiment is expected to collect at least 50 fb−1 in less than ten
years of operation, making possible unprecedented precision measurements in the b
and c-quark flavour sectors.

In order to take advantage of the increased luminosity provided during Run 3, it
is necessary to remove several limitations present in the current experiment. One of
the most challenging ones is the removal of the 1.1 MHz fixed latency readout rate
limit. In the current system, the full inelastic collision rate of 30 MHz is reduced by
a factor ∼ 30 by a fixed latency hardware trigger called Level-0. The inefficiencies
introduced by the Level-0 decision are the dominating factor in the entire chain, and
in order to take advantage of the luminosity that will be delivered during Run 3,
the Level-0 trigger will be removed.

Removing the Level-0 rate reduction requires that the full collision rate of 30 MHz
will be injected into the readout system, corresponding to a data-rate of 32 Tb/s.
This new design constraint requires an architectural change of the entire Data Ac-
quisition (DAQ) system of the experiment, from the low-level front-end detector
electronic to the complex algorithms needed to reconstruct in the data generated
by the pp collisions. This upgraded DAQ system poses a non-trivial technological
challenge, both from a networking and computing point of view.

The LHCb DAQ networking will be completely rebuilt in order to transfer the
full data-rate produced by the experiment. This task requires the use of the most
advanced network technologies available at the time of writing, and extensive plan-
ning and testing before the actual procurement of the system. In this thesis, multiple



2 Introduction

aspects of the problem will be discussed and analysed, such as the scheduling of the
traffic; the allocation and the management of mission-critical resources; the selec-
tion of the network technology and the global architecture of the network. Before
the commissioning of the system, an a priori quantitative evaluation of all the as-
pects mentioned above is almost impossible; therefore, as part of this thesis project,
a low-level network simulation framework has been developed. This powerful tool
provides quantitative predictions about the behaviour of real network infrastructure,
and how it reacts to the traffic generated by the data recorded from the pp collision
in the LHCb detector.

Transferring the data over the DAQ interconnection system is a necessary step
in the full DAQ process, but it is not the only one. In order to provide useful
data for the physics analysis, the full data-rate of 32 Tb/s has to be reconstructed
– i.e. the physical quantities have to be extracted from the data – and filtered –
i.e. the interesting collisions have to be selected. This process poses a non-trivial
computing challenge, which can be tackled both from a computer science and a
physics point of view. From the computer scientist’s point of view, the existing
code-base can be optimised to take advantage of newer capabilities provided by more
modern computing architectures. From the physicist’s point of view, it is necessary
to develop new algorithms and strategies in order to reduce the computing power
needed to achieve the same physics results. The second strategy has been followed for
the second part of this thesis project; in particular, a parametric description of the
charged particles deflection introduced by the LHCb magnet has been developed.
This particles’ trajectory description can be used to reduce the computing power
needed by the track reconstruction of the LHCb experiment. The LookingForward

algorithm in the Allen framework uses this model.
The organisation of the thesis is as follows. Chapter one gives an introduction

about the CERN accelerator complex and the LHCb experiment. The configuration
described is the one that will be used during Run 3 of the LHC.

Chapter two gives a theoretical introduction about interconnection networks; the
focus of this overview being all the aspects needed in the design on the LHCb DAQ
network.

Chapter three contains a detailed description of the networking infrastructure
needed by the upgraded LHCb experiment. The network constraints and the design
strategy are described in detail, together with the implementation details of the
low-level simulation model and the results from simulated systems.

Chapter four presents the magnetic field deflection model, including the deriva-



3

tion of the model itself and a quantitative test of the model’s prediction accuracy.
Finally, in order to conclude this thesis, there is a summary of the results and dis-
cussion over the conclusions.





5

Chapter 1

The LHCb experiment at the
LHC

1.1 The CERN

After the second world war, in Europe, the need for peace and cohesion was felt.
A significant number of distinguished scientists consider the possibility to build a
world-class atomic physic research laboratory to provide a force for unity in post-war
Europe and allow scientists all around the world to share the costs of an expensive
research facility; consequently in 1952 a provisional council was set up in order to
create this facility, that nowadays we know as CERN. Geneva was chosen for its
central Europe position, the presence of other international organisation, such as
the Red Cross and, last but not least, the neutrality of Swiss during WWII. 12
countries, including Germany, France and Italy, founded CERN; and the number of
member state increased over time and nowadays there are 23 member state and 7
associate member state, and this makes CERN the largest particle physics research
facility in the world and an actual meeting point for people from all the word and a
laboratory of peace. CERN is not just a symbol of a united Europe, but mainly a
cutting-edge laboratory for particle physics research. Several notable achievements
have been made trough experiments performed at CERN, they include:

• 1973: the discovery of neutral current with the Gargamelle bubble chamber [1];

• 1983: the discovery W and Z bosons with the UA1 and UA2 [2];

• 1989: the determination of the number of light neutrino families with ALEPH,
DELPHI, L3 and OPAL [3];



6 1. The LHCb experiment at the LHC

• 1995: the first creation of antihydrogen [4];

• 1999: the discovery of direct CP violation with NA48 [5];

• 2012: The discovery of Higgs boson with ATLAS and CMS [6, 7];

• 2015: the discovery of pentaquarks with LHCb [8];

• 2019: the discovery of CP violation in charm hadrons with LHCb [9].

1.2 The Large Hadron Collider

The Large Hadron Collider (LHC) is a particle accelerator and collider designed to
collide hadrons. It is installed in a 27 km tunnel located 100 m underground. The
LHC is designed to accelerate protons beams up to an energy of 7 TeV and then
to collide them with a centre-of-mass energy of 14 Tev, and accelerate heavy ions
beams, such as Pb and Xe, up to an energy of 1.4 TeV per nucleon and centre-of-
mass energy of 2.8 TeV per nucleon. The accelerator provides a peak luminosity of
1034 cm−2s−1 and 1027 cm−2s−1 when colliding protons and heavy ions respectively.
The LHC can achieve the aforementioned characteristic thanks to its state-of-the-art
design based on superconducting elements; including 1232 dipole magnets for beam
steering, and 392 quadrupole magnets for beam focusing.

The protons needed to generate the collisions in the LHC can be efficiently
produced from hydrogen atoms, by stripping off all the electrons from the atoms. In
order to reach the final collision energy from their quasi-rest condition, the protons
have to pass through a complex chain of accelerators, shown in Figure 1.1. The new
upgraded accelerator chain will start with a source of H− ions, right after the source,
the ions will be injected into Linac4, a linear accelerator which accelerates the H−

ions to 160 MeV. At this point, all the electrons are removed from the H− ions,
and the resulting protons are injected in the Proton Synchrotron Booster (PSB), a
set of four superimposed synchrotrons, which accelerate the protons to an energy
of 1.4 GeV. The next step in the chain is the Proton Synchrotron (PS), a 628 m
circular accelerator which brings the proton up to an energy of 25 GeV. Then, the
protons are transferred from PS to Super Proton Synchrotron (SPS); their energy
is boosted up to 450 GeV; this is the last step before being injected into the LHC.

Because the LHC has two beams circulating in opposing directions, the injection
takes place via two separate tunnels, one for every beam. The LHC is the filled



1.2 The Large Hadron Collider 7

Figure 1.1. Schematic view of the CERN accelerator complex as it will during Run 3.
Original image from CERN.

up with 2808 bunches of 1011 protons per ring1. When the filling is completed
the protons can be accelerated up their final energy of 7 TeV. In order to keep
the particles beams on the correct circular trajectory, the superconductive dipole
magnets have to generate a magnetic field of 8.34 T.

When the machine is ready to generate collisions the two beams collide at four
interaction points around the ring every 25 ns, generating a collision rate of 40 MHz;
around these four collision points, four experiments have been built:

• A Toroidal LHC ApparatuS (ATLAS): one of the two general-purpose detec-
tors; it was designed to find the Higgs boson and particles predicted by the
supersymmetry theory.

• Compact Muon Solenoid (CMS): the second general-purpose detector, ATLAS
and CMS have the same goals, but different design; this choice was made to
ensure that, on a given discovery, there was a double-blind response.

• A Large Ion Collider Experiment (ALICE): the heavy-ion detector. It was
designed to study the properties of quark-gluon plasma and antimatter, to
increase the insight into quantum chromodynamics.

1Those numbers refer to the design filling scheme of the LHC; the actual numbers may vary
according to the operation conditions of the accelerator and the experiments.



8 1. The LHCb experiment at the LHC

Figure 1.2. Integrated recorded luminosity by the LHCb experiment for each year. The
data was collected during Run 1 in the 2010-2012 period, and during Run 2 in the
2015-2018 one.

• Large Hadron Collider beauty (LHCb): the specialised heavy quark flavour
detector. The principal goal of LHCb is the determination of CP violation
parameters. A detailed description of the LHCb experiment will be given in
section 1.3.

The LHC has delivered excellent performance during Run 1 and Run 2, allow-
ing the LHCb experiment to record more than 9 fb−1 of integrated luminosity, as
depicted in Figure 1.2.

1.3 The LHCb detector

The LHCb experiment [10] was created to exploit the production cross-section of
bb̄ pairs in pp̄ collision at the LHC and to study the flavour physics using hadrons
containing b or c quarks. In fact, the cross-section values for bb̄ collisions are [11]:

σ(pp→ bb̄X)√s=7TeV = (72.0± 0.3± 6.8) µb

σ(pp→ bb̄X)√s=13TeV = (154.3± 1.5± 14.3) µb

Those characteristics allow LHCb to be an ideal experiment for the study of b
physics, but the same characteristics are optimal for the c physics as well; because



1.3 The LHCb detector 9

0
/4π

/2π
/4π3

π

0
/4π

/2π
/4π3

π  [rad]1θ

 [rad]2θ

1θ

2θ

b

b

z

LHCb MC
 = 14 TeVs

(a) bb̄ production angle
1

η
-8 -6 -4 -2 0 2 4 6 8

2η

-8

-6

-4

-2

0

2

4

6

8
LHCb acceptance

GPD acceptance

 = 14 TeVs
LHCb MC

(b) bb̄ production η

Figure 1.3. Production angles with respect to the beam direction and pseudorapitidy of
bb̄ pairs produced in pp collisions with

√
s = 14 TeV as obtained from fully simulated

events. The LHCb aceptance region is highlighted in red.

the cross-section of cc production is even bigger than bb̄ production [12, 13]:

σ(pp→ cc̄X)√s=7TeV = (1230± 190) µb

σ(pp→ cc̄X)√s=13TeV = (2369± 3± 152± 118) µb

There is a high asymmetry in the momenta of the two partons colliding in pp
collisions, the b and c quarks are produced strongly boosted along the direction
of the beam-line. Consequently, the angular distribution of the b and c hadrons
is prominently in a specific forward or backward region, and with a small-angle
within respect to the beam direction, as shown in Figure 1.3. For this reason, the
geometry of LHCb is entirely different from the other LHC detectors; instead of
having a cylindrical geometry, and therefore covering the full solid angle, it is a
forward spectrometer, as shown in Figure 1.4. The geometrical acceptance of LHC
is (10-300) mrad in the horizontal plane and (10-250) mrad in the vertical plane.
Given the spectrometer nature of LHCb the bending of charged particle is obtained
via a dipolar magnet that bends particles in the horizontal plane. The presence of
the magnet justifies the asymmetry in the angular acceptance between the horizontal
and the vertical plane. Therefore, the LHCb detector can detect particles that lie
in a pseudorapidity η range (1.8 - 4.9); where η is defined as:

η = −ln tan
(
θ

2

)
= 1

2 ln
|−→p |+ pL
|−→p | − pL



10 1. The LHCb experiment at the LHC

Figure 1.4. The LHCb detector layout in the configuration that will be used during Run 3.
From left to right all the different sub-detectors are shown: VELO, RICH1, UT, SciFi
tracker, RICH2, ECAL, HCAL and muons stations from M2 to M5.

where θ is the angle between the particle and the beam axis and pL is the longitudinal
momentum.

1.4 The LHCb tracking system

This section give an overview of the LHCb tracking system, as it will be during Run
3.

1.4.1 VErtex LOcator

The VErtex LOcator (VELO) is the closest sub-detector to the beam interaction
point. Its primary purpose is to locate Primary Vertices (PVs) produced by pp

collisions, identify tracks and assign them to the correct PV, and evaluate the Impact
Parameter (IP). The distance between the PV and the closest approach of the track
of the PV defines the IP. Because, at the LHCb production conditions, ground



1.4 The LHCb tracking system 11

Figure 1.5. PV resolution in x (left) and z (right) as a function of the number of recon-
structed tracks in the vertex. The current VELO is shown with black circles and the
upgrade VELO with red squares. The resolutions in x and y are similar. As presented
in [14].

state charm and beauty hadrons fly ∼ 1 cm before decaying, a good IP resolution
is fundamental for reducing the combinatorial background and a correct b and c

identification. The PV and IP resolutions are therefore crucial VELO performance
indicators. The plots in Figure 1.5 show the PV resolution in x and z as a function
of the number of tracks composing the vertex. Figure 1.6 shows the IP resolution
as a function of the pT of the track.

The key factor behind the excellent performances achieved by the VELO is in
the design of the detector itself. This silicon-based tracking device is made of 52
modules placed on the two sides of the beamline and perpendicular to the beam
itself. Each module is composed of 4 200 µm thick silicon sensors; the active area
of each module is 42.46 × 14.08mm2, and it is segmented in 55 × 55 µm2 pixels.
In order to maximise the PV and the IP resolutions, the sensors need to be as close
as possible to the beamline, in the upgraded VELO the distance of approach to the
LHC beams will be just 5.1 mm. Because the beam configuration changes from one
fill to the next one and from the injection phase to the collisions phase; the VELO
is divided into two retractable halves. Figure 1.7 shows a 3D rendering of the full
VELO detector in the closed position.

In order to reduce the material budget before the first sensors, the VELOmodules
are encapsulated in an isolated vacuum vessel. The first vacuum of the LHC is sep-
arated from the secondary vacuum of the VELO by the RF foil, a thin aluminium



12 1. The LHCb experiment at the LHC

]c-1 [GeV
T

p1/
0 1 2 3

m
]

µ
 r

es
ol

ut
io

n 
[

x
IP

0

10

20

30

40

50

60

70

80

90

100

LHCb simulation

Figure 1.6. IPx resolution for long tracks for VELO Upgrade, in red, compared to the ex-
pected performance of current VELO design in upgrade conditions, in black, as described
in [14].

Figure 1.7. X section of the VELO detector in the closed position. Credits of the image
to Freek Sanders.



1.4 The LHCb tracking system 13

66.8 mm 

13
38

 m
m

 

1528 mm 

1719 mm 
UTbX 

UTaU 

UTbV 

UTaX 

Y 

X 
Z 

Figure 1.8. Geometry of the UT detector, as presented in [15]. The four colours intensify
the silicon sensor used in every region.

foil which shields Radio Frequency (RF) interference produced by the circulating
beams. In order to dissipate heat produced by the detector and the detector elec-
tronics inside the vacuum vessel, an advanced CO2-based cooling system has been
implemented which is designed to dissipate 1000 W on each half of the detector.
More details about the physical implementation of the detector can be found in [14].

1.4.2 Upstream Tracker

The Upstream Tracker (UT) is placed right before the magnet in a region pervaded
by a fringe magnetic field. The detector is composed of four planes of silicon strips,
as depicted in Figure 1.8. The planes are divided into two stations separated by
315 mm and called UTa and UTb. In order to provide x/y coordinates and increase
the reconstruction efficiency, the strips in the planes have different orientations; in
particular the first and the last planes form a 0◦ angle with the y-axis, while the
second and the third layers are installed at a +5◦ and −5◦ angle respectively.

In every plane, the sensors are arranged into columns, called "stave". Four dif-
ferent sensors are installed in various regions of the detector, as shown in Figure 1.8.
All the sensors have a 250 µm thickness and an expected hit resolution of 50 µm.

The main purpose of the UT detector is to perform a fast estimation of p and
pT of charged particles using solely VELO and UT data. This first momentum



14 1. The LHCb experiment at the LHC

-110 1 10
0

5

10

15

20

25

30

 (GeV/c)
T

p

  
[%

]
T

) 
/ 
p

T
(p

σ

-1s-2cm
33

Inclusive b events, L=2x10

Current TT

Upgrade UT

Figure 1.9. pT resolution as a function of pT , the previous detector is shown with (black)
circles, the expected performance of the upgraded UT is shown in (red) triangles. As
presented in [15].



1.4 The LHCb tracking system 15

Figure 1.10. Scheme of the LHCb dipole magnet, as presented in [16].

estimation is essential to improve the online reconstruction quality of downstream
detectors and reduce the computation time needed by the online reconstruction
framework. The expected pT resolution is shown in Figure 1.9.

1.4.3 Magnet

The magnetic field needed to measure p and pT of charged particles is provided by a
warm dipole, which generates an integrated magnetic field of approximately 4 Tm.
The magnetic field is generated by two 25 tons identical coils symmetrically placed
inside a 1450 tons yoke, as depicted in Figure 1.10.

The main component of the −→B filed is directed along the y axis, and it generates
a bend in the charged particles trajectory on the x-z plane allowing measurement of
their momentum. In order to define the expected trajectory of a charged particle,
it is crucial to know the value over the space of the magnetic field −→B (x, y, z) to
integrate it along the track trajectory. Figure 1.11 depicts the magnetic field values
along a central track a one with a horizontal and vertical angle of 197 mrad.

During data-taking, the magnetic field polarity is frequently reversed to allow the
evaluation of any left-right asymmetry in the detector. Because oppositely charged
particles are bent in the opposite direction by the magnetic field, any difference in



16 1. The LHCb experiment at the LHC

Figure 1.11. Magnetic field −→B along a central track and one with a horizontal and vertical
angle of 197 mrad, as presented in [16].

the reconstruction efficiency between the left side and the right side of the detector
can affect the CP symmetry measurements.

1.4.4 Scintillating Fiber (SciFi)

The Scintillating Fiber tracker is between the LHCb dipole and the RICH2 as shown
in Figure 1.12. The tracker layout is arranged in three stations (T1, T2, T3) with
four layers each, as depicted in Figure 1.13.

Every layer uses 2.5 m long multi cladding wavelength shifting scintillating fibres
as an active material. The fibres in the first and the last layers in every station are
parallel to the y-axis (x-layers), while in the two middle layers they are tilted by
±5◦ (u-layers and v-layers). Every layer is built out of 12 modules, and a total of
144 modules are required to build the complete detector.

Thanks to the 250 µm fibres diameter, the modules provide a high granularity
active region. The position resolution will be better than 100 µm in the bending
plane. A higher resolution is not needed because the extrapolation of tracks from
the VELO is dominated by the multiple scattering effects in the detectors upstream
of the magnet.



1.4 The LHCb tracking system 17

Figure 1.12. 3D model of the three stations of the SciFi tracker, as presented in [15].

lvT
1819mm

30
40

m
m

455.6mm 455.6mm

226.4mm41.6mm 61.6mm 20.0mm

z

y

x

y=0

z=7948mm z=8630mm z=9315mm
z=7620mm

z=9439mm

T1 T2 T3
lvMonoLayer(0-3) lvMonoLayer(4-7) lvMonoLayer(8-11)

24
17

.5
m

m

Figure 1.13. The layout of the 12 detection layers within the full tracker volume, as
presented in [15].



18 1. The LHCb experiment at the LHC

VELO track Downstream track

Long track

Upstream track

T track

VELO
UT

T1 T2 T3

Figure 1.14. Reconstructed track type categorised by sub-detector, as shown in [15].

1.4.5 Track reconstruction and performance

The trajectory of the charged particles detected by the LHCb tracking system is re-
constructed using specific algorithms. The tracking process in the LHCb is divided
in two parts: pattern recognition and track fitting. The first part consists of combin-
ing individual measurements from various tracking into track candidates, in order to
combine data from multiple sub-detectors multiple specialised algorithms are used
and combined. The second part determines the optimal set of track parameters by
performing a Kalman filter based fitting [17].

The tracks reconstructed in the LHCb detector can be categorised according to
the sub-detectors in which they were reconstructed, as depicted in Figure 1.14. A
full description of the tracks’ categories follow:

• long tracks: these tracks are reconstructed in all the tracking sub-detectors.
They have an excellent spatial resolution close the PV, thanks to character-
istics of the VELO, and they have precise momentum information, thanks to
the combined track slope before and after the magnet; therefore these tracks
are the most important and the most used for physics analysis;

• upstream tracks: these tracks are reconstructed only in the VELO and in



1.5 Particle identification 19

the UT. They are usually associated with low momentum particles, which are
bent out of the SciFi geometrical acceptance area by the magnet. Thanks to
the fringe magnet field present in the UT area it is possible to estimate the
momentum with a resolution of σp

p ∼ 15 ÷ 20% . These tracks are used to
reconstruct low momentum particles and perform background-related studies
for the RICH sub-detectors;

• downstream tracks: these tracks are reconstructed only by the UT and the
SciFi. They are usually generated by long-lived particles decays which decay
outside of the VELO, such as K0

S and Λ. These tracks are important for the
reconstruction of the daughters of the aforementioned long-lived particles;

• VELO tracks: these tracks are reconstructed only by the VELO. They
usually generated by large-angle or backward particles. Backwards tracks are
essential for an unbiased reconstruction of the PVs;

• T tracks: these tracks are reconstructed only in the SciFi. They are not used
in physics analysis, but they can be used for RICH2 studies.

1.5 Particle identification

Particle IDentification (PID) in the LHCb experiment is provided by three sub-
detectors: Ring Imaging Cherenkov (RICH) system (RICH1 and RICH2), the calorime-
ter system (ECAL and HCAL) and the muon system. In this section, an overview
of the system, as it will be during Run 3, will be given. A full description can be
found in [18].

1.5.1 RICH1 & RICH2

Ring Imaging Cherenkov (RICH) detectors use the photons produced by the Cherenkov
effect to identify the nature of particles. Every time a charged particle is traversing
a dielectric medium with a velocity higher than the speed of light in the medium, it
emits photons. For a medium with a refractive index n and a particle with a velocity
relative to the speed of light β = β

c the photons are emitted in a cone at a specific
angle (θC):

cos θC = 1
nβ

(1.1)



20 1. The LHCb experiment at the LHC

(cm)

(cm)

Figure 1.15. RICH1 displays an example (Run 1 data). The photon detectors detect the
photons, and the rings are then reconstructed.

If nβ < 1, i.e. the particle does not have a velocity higher than the speed of
light in the medium, the effect is not observed; therefore different media can cover
different β ranges, and therefore different momentum ranges.

The primary purpose of the RICH system is to identify and discriminate: π, K,
e, µ and p, in different momentum ranges. The principle of operation is to use a
medium in which the photons are produced, called radiator, collect the photons an
arrange of mirrors and then detect the photons with high-efficiency photon detectors.
The light from the different particles will form rings, as depicted in Figure 1.15, by
measuring the radius of every ring (i.e. θC) it is possible to know the β of the
particle. The combinations of the β and p of the particle are then used to determine
its mass, i.e. its identity.

RICH1 is designed to operate in a momentum range of 1 GeV/c < p < 60 GeV/c
and it is located between the VELO and the UT. The radiator is C4F10 with a
refractive index of n = 1.0014. The light produced in the radiator is the reflected
by the mirror system and detected by an array of Multi anode PhotoMultiplier



1.5 Particle identification 21

250 mrad

Track

Beam pipe

Photon

Detectors

Aerogel

VELO
exit window

Spherical

Mirror

Plane

Mirror

C4F10

0 100 200 z (cm)

Magnetic

Shield

Carbon Fiber

Exit Window

(a) RICH1

120mrad

Flat mirror

Spherical mirror

Central tube

Quartz plane

Magnetic shieldingH
P
D

e
n
clo
su
re

2.4 m

300
mrad

CF
4

(b) RICH2

Figure 1.16. Schematic views of the two RICH sub-detectors. Side view of the RICH1
detector on the left. Top view of the RICH1 detector on the right.

Tubes (MaPMTs), as shown in Figure 1.16a.
RICH2 is designed to operate in a momentum range of 15 GeV/c < p < 100 GeV/c

and it is located downstream of the SciFi. The radiator is CF4 with a refractive in-
dex n = 1.0005, in order to quench scintillation 5% of CO2 is added to the gas. The
schematic representation of RICH2 is shown in Figure 1.16b. More details about
the RICH system can be found in [18, 19].

1.5.2 Calorimeter system

The calorimeter system achieves identification for photons, electrons and hadrons.
By measuring their energy. The LHCb experiment, during Run 3, will use a system
made of two sub-detectors an ECAL and a HCAL.

The ECAL is realised using a shashlik design, and it separated into indepen-
dent modules. The shashlik design implements a sampling structure of alternating
slices of absorber and scintillators; the layers are then penetrated perpendicularly
by WaveLenght Shifter (WLS) fibres. The WLS fibres guide the scintillating light
produced by the conversion of the energy deposited in the scintillating material to



22 1. The LHCb experiment at the LHC

(a) ECAL segmentation (b) HCAL segmentation

Figure 1.17. Segmentation of the ECAL on left, and of the HCAL on right, as presented
in [20].

a photon detector. Every module of the ECAL is made of alternating layers of lead
and scintillating tyles, the lead layers are 2 mm thick while the scintillating ones are
4 mm thick. The total number of alternating layers is 66 per module, resulting in a
total depth of 25 radiation lengths. All the modules are 120× 120 mm2 but the read-
out granularity changes in different regions of the detector, the segmentation schema
of the ECAL is shown in Figure 1.17a, in particular the cell size is: 40 × 40 mm2

in the inner region, 60 × 60 mm2 in the middle region and 120 × 120mm2 in the
outer region.

The HCAL has a sampling design made out of steel absorbers, and scintillating
tiles, the orientation of the sampling structure is parallel to the beamline. The
scintillating light is guided out of the detector by WLS fibres. The modular structure
is similar to the one of the ECAL with an absorber to scintillator ratio of 5.5 : 1
and a total depth of 5.6 interaction lengths. The readout granularity changes in
different regions of the detector, the segmentation schema of the HCAL is shown in
Figure 1.17b, in particular the cell size is: 131 × 131 mm2 in the inner region and
263 × 263mm2 in the outer region.

The energy resolution of the ECAL is σ(E)/E = ((8 ÷ 10)/
√
E
⊕ 0.9)%, while

the resolution of the HCAL is σ(E)/E = ((69± 5)/
√
E
⊕(9± 2)%.

More information about the calorimeter system can be found in [18, 20]

1.5.3 Muon system

Muons are present in the final state of several b-hadron decay modes, e.g. B0
s →

J/ψ(µ+µ−)φ, B0
(s) → J/ψ(µ+µ−)K0

s , B0
s → µ+µ−, etc. Moreover, high pT muons

are used by b tagging algorithms to identify the spectator b-hadron associated with
the signal one. For the aforementioned reasons, excellent muon identification capa-



1.5 Particle identification 23

1210                          1527      1647     1767     1887

Support structure for Muon Stations

1
6

 m
ra

d

2
5
8
 m

ra
d

z (cm)

Support structure for Muon Filter

M 1

M  2
M  3

M  4
M  5

M
u

o
n

 filte
r 1

80   40   80   40   80

R2

R3

R4

R1

y

z

M
u

o
n

 filte
r 4

 

M
u

o
n

 filte
r 3

M
u

o
n

 filte
r 2

C
A

L
O

R
IM

E
T

E
R

S

(a) Side view (b) Station layout view

Figure 1.18. (Left) Side view of the LHCb muon system, the M1 station will be removed
for Run 3. (Right) Station layout with the four regions R1-R4 indicated. As shown
in [18].

bilities are essential to the physics program of the LHCb experiment.
The muon system during Run 3 will be composed of 4 muon stations (M2-M5),

with an angular acceptance of ±300 mrad and ±300 mrad in the horizontal and
vertical plane respectively. Thanks to the high penetration capability of muons, the
stations can be located after the calorimeters, in order to reduce misidentification
probability. Figure 1.18a shows a lateral view of the muon system, the M1 station
located before the calorimeter system will be removed before the start of Run 3.
The active layers are interleaved with 80 cm thick iron absorbers to select high
momentum muons. The minimum momentum of a muon in order to pass all the M
stations is 6 GeV/c.

Every station is composed of Multi-Wire Proportional Chambers (MWPCs) filled
with a mixture of Ar/CO2/CF4 in with a 50:40:10 ratio. According to their geo-
metrical position, the chambers’ readout granularity varies, and in every station,
four regions are defined (R1-R4). Figure 1.18b depicts the stations layout in the
x/y plane, while the dimensions of the readout regions are listed in Table 1.1. The
different regions are designed to achieve the same occupancy in all the detector.

From the physics performance point of view, the global muon identification ef-
ficiency is above 96%, and the hadrons misidentification rates are usually less than
1%. More information about the muon system can be found in [18, 21].



24 1. The LHCb experiment at the LHC

Region M2 [mm2] M3 [mm2] M4 [mm2] M5 [mm2]
R1 6.6 × 31 6.7 × 34 29 × 36 31 × 39
R2 12.5 × 63 13.5 × 67 58 × 73 62 × 77
R3 25 × 125 27 × 134 116 × 145 124 × 155
R4 50 × 250 54 × 268 231 × 290 248 × 310

Table 1.1. Sizes of the logical pads in the LHCb muon system. The dimensions are
expressed as x-size× y-size.



25

Chapter 2

Interconnection networks

In this chapter an overview of different aspects of computer networks that are rel-
evant for High Energy Physics (HEP) DAQ systems will be presented. A compre-
hensive deep analysis of all the main aspects related to understanding and designing
networks, can be found in in [22, 23], which have been used as main reference for
the content of this chapter.

In particular the concepts of: network topology, performance metric, flow control
and routing will be explained in this chapter.

2.1 Terminology and basic concepts

An interconnection network is a programmable system made of a set of devices
called nodes interconnected together via interconnection media called channels. The
system purpose is to exchangemessages among a subset of the nodes called terminal-
nodes or simply terminals, the term messages refers to the data exchanged over the
network.

2.1.1 Network classification

The nature of the interconnection medium and the way the nodes are interconnected
can be used to classify the network itself. The proposed classification scheme is
based on the one presented in [24], and this classification is not fully exhaustive;
nevertheless, it provides all the context needed. Interconnection network can be
divided in four major categories: shared-medium networks, direct networks, indirect
networks and hybrid networks; a full description follows:



26 2. Interconnection networks

• shared-medium networks: every network that uses a shared medium to
interconnect the nodes is in this category. The main advantage of this ar-
chitecture is an easier deployment while the main drawback is that multiple
devices cannot send data at the same time. Most modern wireless network
technologies use a shared medium to communicate;

• direct networks: those networks use individual point-to-point links to inter-
connect the different terminal nodes without any other device on the communi-
cation path; because the communication medium is not shared multiple nodes
can send information at the same time. Because the number of the point-to-
point links available on a single terminal is limited the size of those networks
is usually small, in order to increase the number of nodes interconnected, it
is possible to add to the nodes the functionality of forwarding traffic towards
other nodes. Those networks are usually used in dedicated High Performance
Computing (HPC) clusters;

• indirect networks: those networks are similar to the direct ones because
the nodes are connected via independent point-to-point links, but the way
the terminal nodes are connected is different; terminals are not directly con-
nected among themselves, but they are interconnected via another node called
router or switch1. The addition of a network switch solves the problem of lim-
ited available point-to-point links on the terminals without adding any extra
functionality to the terminals themselves. This flexibility comes at the price
of the introduction of an extra class of devices. Ethernet-based Local Area
Networks (LANs) are usually indirect i.e. switch based networks;

• hybrid networks: any network that uses a mixture of the solutions mentioned
above is considered a hybrid network. For example, a modern usual campus or
domestic network combines shared medium networks like WiFi with indirect
networks like switched Gigabit Ethernet (GbE).

For the LHCb DAQ network the use of a shared network is not possible because
of the large number of nodes that need to send information at the same time, while
the use of a direct approach imposes strong constraints onto the nodes limiting
the possibilities in terms of available Commercial Off-The-Shelf (COTS) hardware;

1A description of the OSI model, is not needed for this overview. Therefore there is no distinction
between a layer2 device (switch) and a layer3 device (router), which can be threaded in the same
way at this level.



2.2 Network topology 27

therefore the LHCb Event Building (EB) network will be an indirect network based
on COTS switches.

2.2 Network topology

How the various nodes are interconnected is called topology, and it can be expressed
formally using the graph theory [23].

2.2.1 Channels and nodes

According to the previously introduced terminology a network is specified by a set
of nodes N interconnected via a set of channels C. Because the messages are only
originated and terminated in terminal nodes, it is useful to identify this subset
of nodes N∗ where N∗ ⊆ N . In a direct network, every node is a terminal node;
therefore, N∗ = N . Every channel, c = (x, y) ∈ C, connects a pair of nodes x, y ∈ N
called source and destination node respectively, the source and destination nodes of
a channel c are indicated with sc and dc respectively, if the interconnection between
two nodes is bidirectional it will be represented by two channels ci = (x, y) and
co = (y, x). The network topology is represented by a directed graph in which the
nodes are the N nodes of the network, and the edges are the channels in C.

Every channel c is characterised by two main characteristics: bandwidth and
latency.

• Bandwidth: this property of a channel expresses the maximum amount of
data that can be transported over the medium in a unit of time. Usually it
is indicated in bits per second or Bytes per second. This quantity is limited
by the physical interconnection used and should not be confused with the
throughput which indicates the actual amount of data per unit of time that
has been transferred over the link at a given time.

• Latency: this property of a channel expresses the amount of time needed to
transfer a bit from sc to dc, for wired interconnections it can be expressed in
terms of the propagation velocity v and the length of the interconnection lc in
this way tc = lc

v where tc is the latency. This quantity is the time needed to
transfer one bit over the link and should not be confused with an end-to-end
latency of a message from its source to its destination; the link latency does
not take into account the latency introduced by the nodes and the extra delay
introduced by other network traffic.



28 2. Interconnection networks

In a similar way it is possible to define three main characteristics for every node
n: degree, switching capacity and port-to-port latency:

• degree: this property is simply the number channels connected to a node and
it can be defined as: δn = |{c ∈ C|((sc = n) ∨ (dc = n))}|.

• Switching capacity: this property represents the total amount of data that
can be exchanged by the node per unit of time. Usually it is indicated in b/s
or B/s. It is important to note that a node of a given degree δ connected to
channels of throughput T does not have necessarily a switching capacity of
S = δT , in others words the switching capacity is not linked one-to-one with
the degree and the throughput of the channels.

• Port-to-port latency: this property indicates the amount of time needs to
transfer one bit from one input port to an output port. It should be noted
that the port-to-port latency does not include the delay introduced by other
traffic.

For every node n in the network, it is possible to define four sets of channels
according to the connectivity with the node itself:

• Input channels: all the channels with n as destination

CIn = {c ∈ C|dc = n}

• Output channels: all the channels with n as source

COn = {c ∈ C|sc = n}

• Connected channels: all the channels connected to n

Cn = COn ∪ CIn

• Not connected channels: all the channels not connected to n

Un = {C \ Cn}

Similarly, it is possible to define two sets of nodes using the same guide principles:



2.2 Network topology 29

• Neighbours: all the nodes with a direct connection with n

Dn = {x ∈ N |(COx ∩ CIn 6= ∅) ∨ (CIx ∩ COn 6= ∅)}

• Non neighbours: all the nodes without a direct connection with n

In = N \Dn

2.2.2 Cuts and Bisections

A cut of a network is a set of channels that divides the nodes into two disjoint sets,
N1 and N2. Therefore every channel in the cut, C(N1, N2) will have either its source
in N2 and its destination in N1, or vice versa. The total bandwidth of C(N1, N2)
will be the sum of all the bandwidths of all the channels in the cut itself.

B(N1, N2) =
∑

c∈C(N1,N2)
bc (2.1)

Bisection is a particular cut that divides the entire network nearly in half; more-
over, the terminal nodes are also divided nearly in half as follows:

|N2| ≤ |N1| ≤ |N2|+ 1 (2.2)

|N2 ∪N | ≤ |N1 ∪N | ≤ |N2 ∪N |+ 1 (2.3)

Among all the possible bisections the one with the minimum channel count is called
channel bisection, BC . In a similar way it is possible to define the bisection band-
width, BB as the minimum bandwidth over all the bisections.

BC = min
bisections

|C(N1, N2| (2.4)

BB = min
bisections

B(N1, N2) (2.5)

The bisection bandwidth is a fundamental metric for representing the bandwidth
characteristic of given network topology, and for estimating how it will perform with
traffic from different algorithms as shown in [25] and [26].



30 2. Interconnection networks

2.2.3 Paths

A path or route is defined as an ordered set of connected channels.

P = {c1, c2, · · · , cn} (2.6)

dci = sci+1 ∀ i ∈ [0 : n− 1] (2.7)

The source and the destination of a path are the source node of the first channel
and the destination node of the last channel respectively, using the aforementioned
notation they can be identified as sP = sc1 and dP = dcn . If all the terminal nodes of
the network have at least one path that connects them, then the network is connected.
It must be noted that if all the components of a full network are considered, the
routing function has to be take into account. The routing function is the algorithm
that selects which paths can be used when connecting a given source with a given
destination, therefore the set of path available on the network, for a given source
destination pair Pr will verify this relation Pr ⊆ P . From this simple relation it is
obvious that a non-connected topology cannot be connected at a routing function
level, while a connected topology can be made non-connected by adopting a different
routing function. A detailed description of routing function will be provided in 2.6.

If a path is connecting a pair of node with the minimal number of hops, then the
path is called minimal path. The length of the minimal paths from node x to node
y is indicated by H(x, y). The diameter of a network Hmax is the longest minimal
path available on the network.

Hmax = max
x,y∈N∗

H(x, y) (2.8)

It is possible to define an average minimum path between the terminal nodes
Hmin as follows:

Hmin = 1
|N∗|2

∑
x,y∈N∗

H(x, y) (2.9)

The minimum source-destination latency can be calculated by combining the
latency number for all the individual nodes along the minimal path, assuming that
the port-to-port latency tp is the same for all the nodes and that the latency tc is
the same for all the channels:

t(x, y) = H(x, y) · (tc + tp) (2.10)



2.3 Performance measurements: throughput and latency 31

In order to estimate a global source-destination latency for a given network
topology either Hmax or Hmin can be used, to get the maximum or the average
latency respectively.

2.2.4 Symmetry and design considerations

A topology is vertex-symmetric if there is an automorphism that maps any node
into another node. This property can simplify the routing function because the
same local information can be used to route messages between nodes with the same
relative position.

A network is edge-symmetric if there is an automorphism that maps any channel
into another channel. This particular symmetry can mitigate load spikes across the
different channels of the network because there is no reason to prefer one channel to
another.

2.3 Performance measurements: throughput and latency

An interconnection network is a complex system with many different variables that
can be optimised; moreover the optimal working point of the system depends heavily
of the amount and the nature of the traffic that is injected into the network. It is
therefore crucial to use significative and universally defined metrics, that can be used
to evaluate the general performance level of the infrastructure. The two metrics that
are usually taken into account are latency and throughput.

Latency is the amount of time spent by a message into the network, from the
beginning of the transmission to the reception of the message at the destination
terminal. This time interval is constituted by two major contributes one introduced
by the network itself and one introduce by the network traffic. The first contribution
can be calculated a priori by adding all the contributions introduced by nodes and
channels that the message will pass through, and it provides a lover bound to the
achievable latency. The second contribution is difficult to estimate because it de-
pends on the evolution of the full traffic state of the system over time; therefore this
quantity is measured either on real systems or on simulated ones. Latency is a per
message quantity but it can be combined into a global quantity by either measuring
the average latency over time or by populating an histogram with the latency distri-
bution; Different network-based applications can be affected by latency in different
ways, and can be penalised more by an high average latency or by outliers in the



32 2. Interconnection networks

Figure 2.1. Internal structure of a generic router as the one described in [22]. From left to
right the diagram shows: the input channels with the input buffers, the switching fabric
with the switching and arbitration logic, the output buffers with the output channels.

latency distribution.
Throughput is the amount of information delivered by the network per unit of

time. Similarly to latency, throughput is affected statically by the characteristics
of the network and dynamically by the interaction with other messages. The static
contribution is defined, on the path taken by a specific message, by the channel with
the lowest bandwidth which provides an upper limit to the maximum achievable
throughput. Because the final throughput depends on the full traffic state usually it
is measured either on real systems or on simulated ones. According to its definition
throughput is a global quantity and it represents the total amount of data delivered
by the full system; nevertheless it is possible to define a subset of terminal nodes and
measure the throughput only on this subset, this metric can be used to determine
where the network is not delivering the expected performances.

2.4 Router model

Routers constitute the backbone of an indirect network, and they are responsible
for the actual dispatching of the messages from the source node to the destination
node. Figure 2.1 depicts the internal structure of a generic router model, providing
a logical representation of the inner components that provide the basic functionality
of a router; a detailed description of the internal components follows:

• I/O Buffers: First In First Out (FIFO) buffers are used for storing messages
in transit. The model in Figure 2.1 has buffers for input and output channels,



2.5 Flow Control 33

but alternative designs may have input or output buffers only.

• Switching fabric: This component constitutes the heart of the device itself,
providing a programmable interconnection that is used to forward the messages
from the input channel to the appropriate output one.

• Routing and arbitration unit: Those components constitute the brain
of the router: implementing the routing algorithm, selecting the appropriate
output channel for an incoming message and configuring the switching fabric
accordingly. If the same output channel is requested by multiple messages at
the same time, the arbitration unit must resolve the contention. The arbitra-
tion policy can vary for a simple round-robin to a complex priority algorithm.

• Link Controller (LC): This component is responsible for the data flow over
the channel.

Incoming messages will enter the device from the input channels via a point-to-
point link; then the information is stored into the input buffer until the Routing and
arbitration logic configures the switching fabric, allowing the data to flow towards
the right output channel. Before getting to the output channel, the data can be
buffered a second time in an output buffer.

In a real-world scenario hardware resources are limited, in particular, both the
switching capacity (i.e. how much data can be handled at the same time by the the
switching fabric) and the amount space available in the buffers are critical resources,
and they must be carefully managed. Every time the buffer of a specific channel is
full, it cannot accept any new messages. The behaviour of the LC when there are
no available resources will be discussed in section 2.5.

2.5 Flow Control

Flow control is responsible for managing and allocating the resources needed by
the different messages flowing through the network. The most critical resources in
network infrastructure are the I/O buffers and the channels. Flow control policies
cannot select which path is used by the messages to go from their sources to their
destinations, but they can enforce which message move forward and which message
should wait at any given time, and control which resources are reserved to which
message. The optimisation of the flow control strategy is crucial for achieving the
required performances in terms of throughput and latency.



34 2. Interconnection networks

Packet N

· · ·

footer headerpayload

Packet 1

phit
flit

Figure 2.2. Fragmentation of a message into packets, flits and phits.

2.5.1 Data fragmentation

Data sent over the network has been up to now referred to as messages, and no size
nor content limitations had been enforced. Handling efficiently multiple arbitrary
size data streams crossing each other using real-world hardware is complex and in-
efficient. Therefore messages are usually split into packets of a predefined maximum
size, as shown in Figure2.2. In order to have a deliverable packet it cannot only
be made of user-defined data, but it has to contain additional information like: the
source terminal address, the destination terminal address and additional data; this
collection of values is generally called protocol information. The addressing infor-
mation is used by the routing logic to select the appropriate path for the packet.
Therefore it is usually stored into the first Bytes of it; this part of the packet is called
header. In addition to the header most of the network protocols store some infor-
mation in the last Bytes of the packet, this portion of a network packet is referred
to as footer ; most protocols implement error detection or error correction strate-
gies, usually in the form of a Cyclic Redundancy Check (CRC). Because CRCs are
computed using all the packet data, it is convenient to store them in the footer. A
network packet is therefore composed of: an header, a portion of the message called
payload and an optional footer ; and it is the smallest structure that can be delivered
from one terminal to another.

The maximum payload size Msize is a key parameter that needs to be optimised,
because the size of the protocol information is fixed and it is contained in every packet
it is useful to define the data fraction of a packet fd and the effective bandwidth beff:

fd(Psize) = Psize
Sh + Psize + Sf

(2.11)

beff(Psize) = fd(Psize) · b (2.12)

Where: Psize is the payload size, Sh is the header size and Sf is the footer size. If a
message exceeds the maximum payload size, this must be fragmented into multiple



2.5 Flow Control 35

packets; consequently multiple headers and footers need to the transferred over the
network. From (2.12), it is possible to derive the effective bandwidth for a multi-
packet message:

fd(Tsize) = Tsize

(Sh + Sf ) ·
⌈
Msize
Tsize

⌉
+Msize

(2.13)

beff(Tsize) = fd(Tsize) · b (2.14)

Where Tsize is the total message size and dae represent the ceil operation. In both
cases, given a fixed Sh and Sf , the largest is the payload the more the packetization
is efficient; moreover because the overhead is fixed in size, the closest the message
size is to the maximum payload size the highest the effective bandwidth will be. On
the other hand, increasing the packet size negatively affects latency and increases
the hardware complexity of the nodes; therefore, in real systems, a tradeoff is made
on the maximum payload size.

As depicted in Figure 2.2 a packet can be subsequently divided in flits and phits,
which represents respectively units of flow control and physical units that can be
transferred in one iteration over one channel.

2.5.2 Bufferless flow control

A bufferless flow control method uses a very simplistic approach and only manages
the allocation of channels. It is remarkably essential to notice that the bufferless
property is only applied to the flow control and not necessarily to the routers; the
flow control system is unaware of the buffer status.

Every time a packet arrives into a router the flow control logic will try to reserve
the output channel selected by the routing algorithm, if one or multiple packets
already reserve the channel, an arbitration policy is used to balance the resources
among the different packets. Because the flow control is not aware of the status
of the destination node of the selected channel, it is possible to forward a packet
towards the input port of a router that cannot take any more packets. For example,
the aforementioned situation happens every time there is channel contention: if a
packet cannot be forwarded, because the requested channel is busy, consequently it
cannot free the input channel resources. Every time a router receives a packet and
has no resources available, it cannot be processed, and the router discards it. The
action of discarding packets is responsible for performance degradation impacting
both latency and throughput, and it causes data retransmission. If there is no



36 2. Interconnection networks

systematic resource contention, and therefore the fraction of dropped packets is
under control, a bufferless flow control provides an easy and efficient solution to a
complex problem; on the other hand in case of high resource contention the drop
rate can quickly go out of control resulting in massive performance degradation.

2.5.3 Buffered flow control

H P P

P

F

H PP

P

F

H P P P F

C
ha

nn
el

Time

(a) Store and Forward flow control

H P P

P

F

H PP

P

F

H P P P F

C
ha

nn
el

Time

(b) Virtual-cut-through flow control

Figure 2.3. Time-space diagrams showing different flow control used to send a five flit long
packet over three channels.

As previously mentioned flow control is responsible for managing which packet
can progress towards its destination using the channels assigned by the routing
function, and which packet should wait, if the algorithm that takes this decision
is aware of the I/O buffer status, then the flow control is buffered. Because every
packet can be split into several flits, flow control policies are divided into two major
categories: packet-based flow control and flit-based flow control. The first category
allocates resources to packets, and the latter allocates resources to individual flits.

The first and simpler buffered flow control strategy is called Store and Forward
(SAF) and it is completely packet-centric. Every time a packet is received on the
input buffer of a node the packet is stopped until the last flit of it is stored into the
buffer. After the packet is completely stored into the node the flow control logic
checks if the receive buffer of the output channel selected by the routing logic has
enough capacity to store the packet, if the buffer is not full the packet is forwarded
otherwise it is stopped until the resources are available. A SAF approach to packet
flow control simplifies the hardware implementation of the routers because all the
packets are treated as monolithic entities and no interruptions into the flow of a single
packet need to be handled. The main disadvantage of SAF concerns latency, because



2.5 Flow Control 37

the packet is forwarded only after it has been completely received the transmission
delay cannot be pipelined from one channel to the next, as depicted in Figure 2.3a.
The minimum latency of a single packet of n flits travelling over a distance d from
its source to its destination can be calculated in this way:

t(n, d) = tflitnd (2.15)

where tflit is the time needed to forward one flit from one channel to the next2.
The second buffered flow control strategy is called Virtual-cut-through (VCT)

and it tries to overcome the significant latency penalty introduce by a SAF approach.
A VCT flow control implementation is still a packet-based solution but it introduces
flit awareness into the process, making low latency transmissions possible. Every
time the first flits of a packet are received into the input buffer of a node, as soon as
the next channel has been selected by the routing unit, the flow control logic checks
if the receive buffer of the output channel has enough capacity to store the full
packet, if the buffer is not full the space is reserved and the packet is forwarded in a
flit-by-flit way. By forwarding the packet one flit at a time the transmission latency
can be significantly reduced by pipelining the transmission delays, as depicted in
Figure 2.3b. The minimum latency of a single packet of n flits travelling over a
distance d is:

t(n, d) = tflit · (n+ d) (2.16)

It is important to note that VCT is not a flit-based flow control strategy because
the smallest unit that can be controlled – i.e. the smallest unit that can the either
stopped or forwarded by the flow control – is a full packet and not an individual flit.
Individual flits can be pipelined. However, once the forwarding of a packet starts,
it cannot be halted, and all the buffer resources are allocated for entire packets and
not to individual flits.

The third buffered flow control strategy proposed is called wormhole flow control,
and it is flit-based. Wormhole uses the same flit pipelining technique used by VCT
flow control, but it controls the flow of individual flits requesting only a one flit
slot into the receiving buffer. Because the resource allocation is done on a per-flit
basis the I/O buffers inside the various nodes can be smaller and the buffer space
can be allocated in a more efficient and optimised way. The minimum latency can
be calculated using (2.16) because allocating resources in flits units rather than in

2In this simplistic model all channel are supposed to have the same transmission latency.



38 2. Interconnection networks

packets units does not change the minimum latency. However, more efficient resource
allocation can reduce the average latency when traffic is taken into account.

2.5.4 Buffer allocation and backpressure

All the aforementioned buffered flow control methods need to be aware of the buffer
status to stop the data transfer and prevent overflow in the receiving channel; the
term backpressure refers to this process. In order have an updated status of the
buffer occupancy, the two LCs need to exchange data periodically. The buffer status
information can be exchanged in several ways; two, in particular, will be examined:
Credit-based flow control and on/off flow control.

Credit-based flow control

In Credit-based flow control, the sending router keeps a count of the amount of buffer
available, in flit units, for every receiving channel. Every time the flow control logic
reserves some space in the receiving buffer, the appropriate available space counter
is decreased accordingly. When the counter goes below the size of a flit, for flit-
based flow control, or the size of the next packet, for packet-based flow control,
the buffer becomes unavailable, and the flow control pauses the transmission. In
order to increment the counter value, the sender needs to know how many flits have
been processed by the receiver, because resource contention can prevent a packet
from progressing on its path towards its destination, the sender router cannot make
any assumption about the number of flits processed. The only way for the sender
to update the receiver buffer status is to receive an update on the buffer status
called Credit. Because sending information between two nodes consumes available
bandwidth on the channels, it is crucial to optimise the Credit send frequency fC . If
the sender does not receive Credits before the counter reaches zero the flow control
has to stop the data transfer; on the other hand, sending too many Credits update
will reduce the available bandwidth causing performance degradation. The Credit
exchange optimisation is a time-sensitive problem; therefore, it is mandatory to take
into account both the latency of the channel and the time needed to generate and
process the Credit. In particular for a given: channel latency tc, channel bandwidth
in flit units bf and flow control process time tf the minimum amount of buffer needed
to operate the system at full speed is:

F ≥ (2tc + tf + 1
fC

)bf (2.17)



2.5 Flow Control 39

Therefore optimising a Credit-based flow control is a trade-off between buffer size
and Credit frequency, increasing the buffer size requires more hardware resources
while increasing the Credit frequency reduces the available channel bandwidth.

on/off flow control

In on/off flow control, the exchanged information between the sender and the receiver
is reduced to the minimum, a 1-bit state. The receiver will send an off-signal to the
sender every time the transfer should be paused, and it will send an on-signal when
it is ready to receive more flits. The buffer condition in the receiving channel triggers
the stop or start status. The flow control process is regulated via two thresholds Toff
and Ton. Every time the amount of available flit slots in the receiving buffer drops
below Toff an off-signal is sent and the transfer stops. When the free space in the
buffer is greater than Ton an on signal is sent and the transfer is restarted. The two
thresholds values are critical for the correct operation of the network.

If the Toff value is set too low then the transmission latency and process time of
the status can lead to a buffer overflow condition and consequently a data loss, on
the other hand; if the Ton is set too high then the receiver node can process all the
flits in the buffer before receiving new flits from the sender resulting in performance
degradation. Given the channel latency tc, the channel bandwidth in flit units bf
and the flow control process time tf maximum value for Toff is the following:

Toff ≥ (2tc + tf )bf (2.18)

Similarly, it is possible to calculate the minimum amount of flits F needed into
the receiving buffer needed to prevent performance degradation when the on signal
is sent:

F ≥ (2tc + tf )bf + Ton (2.19)

Relation (2.18) shows that the minimum buffer size needed for an on/off flow
control system to work without data losses (2tc + tf )bf . By adding the obvious
condition Ton ≥ Toff to (2.19) it is possible to define the minimum amount of buffering
needed to operate the system at full speed

F ≥ (2tc + tf )bf + Ton ≥ (2tc + tf )bf + Toff ≥ 2(2tc + tf )bf (2.20)

Therefore, with an adequate amount of buffering, an on/off flow control can
operate efficiently and with a limited amount of flow control information sent back



40 2. Interconnection networks

from the receiver to the sender.

2.6 Routing

Routing is the process of selecting which path a given message should use from
its source to its destination. The selection of the path is one of the critical factors
that determine how much of the network potential can be expressed. A good routing
algorithm will try to share the load on all the multiple channels in order to maximise
the bandwidth available to the traffic. The performance of a routing algorithm can
change drastically from one traffic pattern to another, making the optimisation of
the routing function a crucial and challenging task.

The minimum requirement for a routing algorithm is to exchange messages across
all the terminal nodes in a finite amount of time. In order to achieve this a routing
function must be connected, and it has to prevent the arise of deadlock and livelock
conditions; a routing function is connected if all the terminal nodes have at least one
routing path that connects them, deadlock and livelock are static and dynamic con-
ditions which prevent packets from being delivered and will be discussed in section
2.6.4 and 2.6.5 respectively.

2.6.1 Classification of Routing Algorithms

Different routing algorithm can be classified in many different ways according to
different properties, a classification based on the way routing algorithms select paths
from the set of all the possible paths Rxy from source node x to destination node y
is given. For a fully exhaustive taxonomy of routing algorithms refer to [27].

The first category of algorithms is the one of deterministic routing algorithms.
A routing function is deterministic if the selection of the path depends only on the
source and the destination of the message. The routing decision can be taken as
soon as the data enters the network or at every subsequent node, in the first case,
the algorithm performs source routing in the latter distributed routing. Because
a deterministic algorithm always uses the same path to connect any given pair of
nodes it usually tends to provide sub-optimal load balancing across the various
channels, on the other hand, the complexity required for the implementation of a
deterministic algorithm is usually lower and, especially for distributed algorithms,
the system provides better and easier scalability.

The second category is the adaptive algorithms one. An adaptive routing al-



2.6 Routing 41

gorithm selects different paths according to the status of the network. Adaptive
algorithms can be further divided into two sub-classes the fully adaptive algorithms
and the patrly adaptive algorithms; the first ones take into account all the possible
paths between the source and the destination nodes, while the ones in the second
sub category use only a subset of Rxy for the routing decision. The selection of
the optimal path through a given network can be a complex problem, especially for
large networks, and the complexity of the routing function itself can increase very
rapidly with the number of variables that are considered during the path selection
process. The tuning and optimisation of adaptive algorithm require a lot of expertise
and resources, but those algorithms can provide to the network a higher capacity of
delivering messages and better resiliency against faults.

The third category is the oblivious routing algorithm one. Oblivious algorithms
select their path among the ones in Rxy, but their decision is not on the network
status-based, and therefore should not be confused with adaptive algorithms. Those
algorithms require more resources than deterministic algorithms, but they provide
some of the load balancing capabilities of the adaptive ones. Oblivious algorithms
provide better scalability because they do not collect any information about the
network status and can be easily implemented in a distributed way.

If at every hop, the message gets closer to its destination the algorithm is called
minimal, on the other hand, a function that allows the message to be misrouted –
i.e. moved further away from its destination – is called nonminimal. By selecting a
path which is longer than the topological distance between source and destination,
it is possible to provide better traffic spreading and lower end-to-end latency.

2.6.2 Formal definition of the routing function

A routing algorithm can be split into to two distinct parts: the routing relation
R and the selection function ρ. R is responsible for returning a set of paths, and
ρ selects which path. This division allows disentangling problems related to the
algorithm itself from issues related to adaptivity. R can be defined in the following
way:

R : N∗ ×N∗ 7→ P(P ) (2.21)

where P(A) indicates the power set of the set X, allowing the routing function
to return multiple paths, the selection function will then select only one.

A generic routing algorithm routing a packet from x to y will select a path P

in the following way P = ρ(R(x, y)). A deterministic routing algorithm only selects



42 2. Interconnection networks

one path; therefore, R will return only the selected path, and ρ will be the identity
function.

A routing subfuction R′ can be defined in an analogous way by either reducing
the domain of the routing relation or reducing the subset returned:

R′ : S ×D 7→M (2.22)

where S ⊆ N∗, D ⊆ N∗ and M ⊆ R[N∗ × N∗]. If S = D = N∗ the routing
subfunction is connected, if the routing algorithm is deterministic the only connected
subfunction is R itself.

The routing relation defined in (2.21) returns a set of full paths, and it is partic-
ularly convenient when defining global properties of the algorithm, but it represents
only source routing algorithms because it calculates the entire path; therefore, it is
convenient to define a distributed version of the routing relation which can be used
to describe all the distributed algorithms:

R : N∗ ×N∗ 7→ P(C) (2.23)

It is possible to map a source routing algorithm into a distributed one. Therefore
the routing relation defined in (2.21) can be used to define global properties of
distributed routing.

2.6.3 Virtual channels

In a buffered flow control the critical resources while sending packet are the receiving
buffers, in order to optimise the channel usage and reduce the network congestion,
it is possible to use virtual channels. Virtual channels consist of a set duplicated
buffers multiplexed and demultiplexed into the same physical channel by the link
control logic. From the routing algorithm and the flow control point of view, there
is no difference between an extra physical channel and a virtual one because all the
allocated resources can be reserved independently, and the link controller handles all
the multiplexing onto the physical level. Adding a virtual channel is a cost-effective
way of increasing the number of channels in the network without adding the extra
cost and complexity of a new physical link.

All the virtual channels share the bandwidth of the physical link, and a predefined
policy assigns the shares, any non-uniform policy can be used to implement Quality
of Service (QoS) mechanisms providing different priority levels to different virtual



2.6 Routing 43

channels.
The next section will present a different use of the virtual channels in the design

of a deadlock-free routing algorithm.

2.6.4 Deadlock

Deadlock is a configuration of the network which contains packets that are indefi-
nitely blocked by the flow control and therefore cannot be delivered. A configuration
is a specific assignment of buffer resources to all the packets currently present in the
network. The packets blocked in a deadlocked configuration are waiting for resources
occupied by other blocked packets, resulting in network disruption.

A deadlocked configuration is canonical if all the packets are blocked. Because
any deadlocked configuration as a corresponding canonical one, only canonical con-
figurations will be discussed. In order to obtain a canonical deadlock configuration,
it is sufficient not to inject any traffic and wait for the configuration to become
static, i.e. to wait for all the non-blocked packets to be delivered.

This paragraph will analyse two different approaches to avoid deadlock: deadlock
avoidance and deadlock recovery. The first one consists of designing the routing
algorithm to be deadlock-free on the specific network topology, i.e. regardless of the
traffic no deadlocked configurations can be generated; the latter consists of detecting
a deadlocked configuration and free resources to break the stall.

Deadlock avoidance

In order to prevent deadlocked configurations from happening, it is possible to use a
deadlock-free routing function. Because this property must be granted regardless of
the traffic injected into the network, it is not trivial to verify if a routing algorithm
is deadlock-free. In order solve this problem it is possible to use some graph theory
and an interesting theorem.

In order to provide a formal description of the problem it is fundamental to
introduce the concept of channel dependency and the channel dependency graph:
channel i depends on channel j if the routing algorithm can forward a packet holding
resources on channel i to channel j; the channel dependency graph is a directed
graph which has all the unidirectional channels of network as vertices, and the edges
represent the dependencies between the channels. The following theorem provides a
necessary and sufficient condition for establishing if a routing algorithm is deadlock-
free [28].



44 2. Interconnection networks

0 1

23

a0

a1

a2

a3

(a) Network topology

a1

a0

a3

a2

(b) Channel dependency
graph

Figure 2.4. A four node circular network with its channel dependency graph.

Theorem 1 A connected routing function R for an interconnection network I is
deadlock-free if and only if there exists a routing subfunction R1 that is connected
and has no cycles in its channel dependency graph.

Theorem 1 is applicable to VCT and wormhole flow control, and it can be used to
generate deadlock-free routing algorithms as in the following example: the network
topology selected is a circular direct network of four nodes connected by unidirec-
tional channels, as the one depicted in Figure 2.4a. Because of the simplicity of this
topology, the only connected, deterministic and minimal routing function is the one
that forwards packets through the only available channel until they arrive at their
destination. The dependency graph for this algorithm is shown in Figure 2.4b and
it is not acyclic. Therefore the routing relation is not deadlock-free. In this trivial
example, it is straightforward to find a deadlocked configuration: any configuration
with all the buffers full and no packets arrived at their destination is deadlocked.

In order to make this network deadlock-free both the topology and the routing
function must be modified, the new topology is depicted in 2.5a and a distributed
version of a deadlock-free routing algorithm is shown in Listing 2.1.

This new routing function uses the extra channels for packets with a source index
smaller than the current node; this modification changes the channel dependency
graph into the one depicted in Figure 2.5b which is acyclic and therefore this new
network is deadlock-free. Because adding real channels to prevent deadlock from
happening is costly, it is common to use a virtual channel instead. The Independence
between virtual channel from the routing and flow control point of view makes them
a perfect and cost-effective candidate for breaking cyclic channel dependency graphs,
and designing deadlock-free algorithms.



2.6 Routing 45

0 1

23

a0

b0

a1 b1

a2

a3

(a) Network topology

a1 a0

a3

a2

b1

b0

(b) Channel dependency
graph

Figure 2.5. Modified deadlock-free circular network and channel dependency graph of the
proposed routing algorithm.

Listing 2.1. Pseudo-code implementation of a deadlock-free routing algorithm for the
topology shown in Figure2.5a.

1 if ( destination == current )
2 packet_delivery;
3 else if ( source < current )
4 reserve(a_i+1);
5 else
6 reserve(b_i+1);



46 2. Interconnection networks

Deadlock recovery

In order to prevent deadlocked configuration from persisting it is possible to utilise
deadlock recovery techniques and break the deadlock state. Because a deadlocked
configuration has a circular pattern in the resource dependency, it is sufficient to
free resources to one of the packets in the critical resource loop to restore normal
operation. From this first superficial analysis putting in place a deadlock recov-
ery strategy seems an easy task, it is sufficient to drop a single packet from the
main circular dependency; in reality this task is much more complex and it requires
several non trivial elements: detect a deadlocked configuration, identify the main
dependency loop and coordinates the nodes to drop the required packet.

Because deadlock is global status of the network it is not possible to establish if
a packet cannot be forwarded because of network congestion or deadlock; therefore a
fully deterministic deadlock detection is not feasible, on large network, and costly on
small ones. Nevertheless, it is possible to use an heuristic timeout-based system to
identify deadlock occurrence. As per any other heuristic implementation there will
be a certain probability of misidentifying heavy traffic with deadlock, resulting in
an higher number of packets dropped and transmitted. Increasing the timeout value
will result in a lover misidentification probability but it will increase the reaction
time to a real deadlocked configuration, therefore this value must be carefully tuned.

The next important step in deadlock recovery is selecting which packet should be
dropped, an heuristic time based solution can be followed by dropping first packets
that have been blocked for longer, because those packets have a greater probability
of being part of the main dependency loop.

In all the aforementioned solutions the selection of appropriate timeout values
is critical for the correct operation of the system. If the threshold is too aggressive
then the network will drop a considerable number of packets resulting in increased
latency and numerous retransmissions; on the other hand a too conservative value
will lead to a slow reaction time to a real deadlocked configuration.

Another aspect that has not yet been introduced is the deadlock frequency,
extensively studied in [29], which can be expressed in terms of normalised deadlocks
– i.e. the ratio between the average number of deadlocks over the number number
of delivered packets. This number is heavily influenced by: the network topology,
the routing algorithm and the injected traffic, and it complex to give an a priori
prediction. In any case if the reaction time of the deadlock recovery system is not
adequately fast it is possible to have a new deadlock loop forming before the previous



2.6 Routing 47

one has been broken, resulting in a constant pile-up of deadlocked configurations
which will cause a massive performance degradation.

2.6.5 Livelock

Livelock is misbehaviour of the routing function which forwards a packet in an in-
definite loop without delivering it to its destination terminal. Livelock conditions
impact the network in two ways: the packets affected are never delivered; therefore,
the basic functionality of delivering messages between terminal nodes is broken.
Moreover, the affected packets are continuously misrouted, wasting static and dy-
namic resources that cannot be used by other packets.

To be affected by livelock, a routing algorithm has to be non-minimal, because
minimal algorithms ensure packet delivery in a number of hops which equal to the
distance between the source terminal and the destination terminal. Any non-minimal
algorithm should include protection against livelock occurrence, a simple and effec-
tive way to avoid livelock is to limit the number of times that a packet can be
misrouted granting the delivery in a finite number of hops. Misrouting can be lim-
ited by either designing the algorithm in a way that prevents infinite misrouting
or by adding a misroute counter to the protocol information of the packet. The
first option is more suitable for centralised or source-based algorithms; the latter
is more suitable for distributed algorithms. The simplicity of adding a counter to
the protocol information comes with the price of adding more information into the
protocol section of the packet, because the effective bandwidth beff defined in (2.12)
is negatively affected by the size of the protocol information, adding this counter is
going to produce either lower effective bandwidth or larger packets and consequently
bigger buffers.

A fully adaptive algorithm, without any misrouting restriction, can be statisti-
cally livelock-free if it uses the approach described in [30] for the so-called deflection
routing algorithm. This algorithm uses the minimal path with a higher priority than
the non-minimal ones, because the probability of having all the minimal paths busy
decreases with the number of tries, the livelock probability goes to zero after a long
enough period. This method is weaker than a deterministic one, but it is the only
known one that is proven to be both deadlock and livelock-free without limiting the
number of misrouted steps.





49

Chapter 3

Fast networks for the next
generation LHCb Data
Acquisition

To reach the full 40 MHz event-building rate the event building (EB) network must
be capable of forwarding an aggregated peak throughput of 40 Tb/s between ∼ 500
end-points, therefore resulting in a single link throughput of ∼ 80 Gb/s. At the time
of writing, there are multiple COTS solutions that provide 100 Gb/s link bandwidth,
like InfiniBand (IB) Enhanced Data Rate (EDR) or 100 Gigabit Ethernet (100GbE).
Given those requirements and the technological constraints the EB network has to
connect ∼ 500 end-point with an average link utilisation of ∼ 80 %, moreover, the
EB traffic tends to generate heavily unbalanced instantaneous link load, resulting
therefore in network congestion and potential performance degradation.

In this chapter, an accurate description of the upgraded LHCb EB system is
given. The first section provides a detailed physical description of the system, a high-
level description of the EB process and the requirements and constraints imposed on
the network infrastructure. The second section describes in detail the two different
EB traffic emulators developed by the LHCb online team to evaluate the performance
of different systems. The fourth section describes in detail the simulation model used
to simulate the EB system including low-level tuning of the model to match, as much
as possible, the behaviour of the actual network hardware and EB traffic pattern.



50 3. Fast networks for the next generation LHCb Data Acquisition

Figure 3.1. The architecture of the upgraded LHCb readout system.

3.1 The LHCb Event Building

3.1.1 High level description of the Event Building process

As described in [31] the data flow of the LHCb detector is divided across ∼ 10000
optical fiber links terminated onto ∼ 500 custom FPGA-based readout readout
cards.

To collect data from all the different sub-detector channels, the EB process must
take place, and all the data fragments of a single event have to be collected and
assembled in the same place. Therefore all the different event fragments must be sent
over some interconnection network in an all-to-one communication. Three logical
units can be defined to provide a high-level description of this task: Builder Units,
Readout Units and the Event Manager; a functional description follows:

• Readout Unit (RU) collects the fragments from the Peripheral Component
Interconnect Express (PCIe)-based DAQ board and sends them to the Builder
Units (BUs)

• Builder Unit (BU) receives and aggregates the fragments into full events

• Event Manager (EM) assigns which event is built on which BU



3.1 The LHCb Event Building 51

RU BU

NODE 1

RU BU

NODE N

RU BU

NODE 2

EM

Figure 3.2. The logic representation of the LHCb EB process. The different arrows
represent the multiple fragments gathered by the BU while the black ones the control
messages to and from the EM.

Those functional units can be used to describe most of the modern HEP DAQ
systems, by either changing the communication pattern or the physical layout of
the units within the system. Figure 3.2 depicts the logical interconnection and the
physical layout of the logical units in the LHCb DAQ. All the EB nodes (i.e. the
servers that are hosting the required hardware and running the EB software) have
two units: one RU and one BU; because data always flows from the RUs to the
BUs, a "folded" structure can profit from the full-duplex nature of COTS network
technologies; and it leads to a reduction by a factor two in the number of physical
machines used. In the common communication schema, the traffic pattern of a
folded event builder can be mapped to an All-To-All Personalised Communication
(ATAPC) with different data size for every fragment.

The events produced by the upgraded LHCb detector will have a nominal event
size of 100 kB; therefore, the amount of data stored in every fragment will be
O(100B). Modern interconnection technologies are not designed and optimised to
transfer messages of a few hundred Bytes. To make the transfer more efficient
event fragments, and consequently, events, are grouped into Multi Fragment Pack-
ets (MFPs) and Multi Event Packets (MEPs). During Run 3 of the LHC, the event
packing factor of the LHCb experiment will O(103) events per MEP, generating
larger MFPs that can be efficiently transferred over the network.

In order to make the notation more natural to read, and because grouping frag-
ments from multiple events does not change the behaviour of the event building
network, the terms event and event fragment will be used instead of the acronyms
MEP and MFP when referring to the event building system.



52 3. Fast networks for the next generation LHCb Data Acquisition

3.1.2 The Event Building network

The interconnection network constitutes the heart of the EB system providing the
infrastructure for the intensive I/O activity performed by the aforementioned EB
logic units. By looking at the nature of the generated traffic, it is clear how it
can potentially be extremely challenging for the underlying network infrastructure.
Because data from multiple sources must be aggregated into a single destination,
this communication pattern naturally generates instantaneous overloading of specific
links, resulting in network congestion. If the buffers associated with the overloaded
channels do not have enough capacity to absorb the traffic peak; the link flow control
has to intervene by either reducing the effective injected throughput, or dropping
packets. The choice is led according to the nature of the flow control implemented
by the selected network technology.

Different strategies can be put in place to avoid performance degradation both
in the EB software and in the COTS network technology selected, the first strategy
will be discussed in section 3.2 and the latter in section 3.3.

3.2 Event Building traffic generators

Because the full EB system needs to be designed and optimised before the commis-
sioning of the detector, it is crucial to develop a traffic generator that replicates the
expected output from the detector. The LHCb online team has been working on
different traffic generators since 2014, producing different benchmark applications
and exploring different strategies to solve the problem of EB.

3.2.1 Linear shifting scheduling

In an EB scenario, all the data from one event has to be gathered in one terminal
node of the network. In a network with N data sources, all trying to send data with
a datarate r, this generates throughput towards the destination terminal of Nr. In
the foreseen scenario for Run-3, the LHCb experiment, the data rate will be 80% of
the channel bandwidth, and the number of nodes will be 500 resulting in a massive
channel oversaturation.

Because there are multiple data destinations, assuming an even distribution of
the events across all the BUs, every target node will receive a new event every N
events. Therefore the average input data rate for every BU will be r. The fact
that the sustained requested throughput does not exceed the terminal available



3.2 Event Building traffic generators 53

input bandwidth implies that it is possible to redistribute the traffic in a way that
generates no congestion.

Because of the ATAPC nature of the EB traffic it is possible to use take ad-
vantage of the extensive work performed on optimising an ATAPC by the HPC
community [32, 33, 34, 35, 36, 37, 38]. In order to schedule the communication, the
full all-to-all exchange must be considered, therefore in a balanced event builder with
N BUs and RUs the scheduling will consider N events in parallel. The rationale
behind reducing the network congestion introduced by an ATAPC is to divide the
full exchange into phases and schedule conflict-free communication between node
pairs. This technique is referred to as shifting, and it is widely used with differ-
ent shift patterns. The most straightforward pattern that can be used to produce
conflict-free scheduling is the linear shifting, which can be summarised as follows:

• In a folded event builder architecture every node needs to receive N − 1 frag-
ments from the other RUs via the network plus one extra additional fragment
from the RU located on the same node, therefore from the networking point
of view the exchange can be divided into N − 1 phases;

• In any phase, every RU sends data to one BU, and every BU receives data
from one RU;

• During phase n RU x sends to BU (n+ x)%N1;

• When a previously agreed condition is met all the units synchronously switch
from phase n to phase n+ 1.

The use of the aforementioned scheduling technique provides an easy way to
solve the destination conflict issue generated by the event building traffic. On the
other hand, it requires the processing of multiple events in parallel; some degree of
synchronisation among the nodes; and it does not guarantee end-to-end congestion-
free network traffic. In order to have the certainty of no resource contention, the
underlying network has to be nonblocking.

A network is non-blocking if it is always possible to establish a free path between
a pair of unused terminal nodes regardless of the other traffic. Because all the traffic
generated by a linear shifter is occurring between exclusively used pairs of ones, a
non-blocking network makes the full exchange conflict-free.

Because the traffic generated by a linear shifter is known a priori it is possible
to relax the non-blocking condition and to request the network to be rearrangeably

1The % symbol indicates the modulo operation



54 3. Fast networks for the next generation LHCb Data Acquisition

nonblocking, i.e. it is possible to establish a free path between any pair of unused
terminals regardless of the traffic by rearranging existing data flows. This condition
is equivalent to this one: it is always possible to have a specific set of paths which
allows connecting any number of terminal nodes pairs. Because only a specific set
of paths can be used, the routing algorithm must select the right combination of
channels for every phase.

Processing multiple events in parallel have an impact on the amount of buffering
needed in the event builder PCs. Every RU/BU needs to store 500 events to complete
all the phases of the linear shifting while receiving new data from the detector.
The last problem is the synchronisation between the nodes which can be solved
with different approaches [39]: full synchronisation, partial synchronisation and no
synchronisation.

• Full synchronisation: this method uses stable synchronisation between all
the nodes; this approach is the only one which is granted to provide a fully de-
terministic conflict-free scheduling. This strong alignment between the nodes
can be achieved by either sending synchronisation messages over the network or
by the occurrence of predefined external condition, for example, a time-based
phase shifting;

• Partial synchronisation: this method ensures synchronisation only between
a subset of the nodes reducing the overhead of a full synchronisation. The ra-
tionale behind a weaker phase alignment is that the network infrastructure can
handle a small degree of network congestion without a significant performance
drop;

• No synchronisation: this method removes the overhead thoroughly intro-
duce by nodes synchronisation by removing the synchronisation itself. The
idea is that, if all the nodes have to send the same amount of data, they will
keep the phase alignment by themselves because the amount of time needed
to complete one phase is uniform. This approach is less resilient and can lead
to phase skipping in case of unexpected issues.

3.2.2 DAQPIPE

DAQ Protocol-Independent Performance Evaluator (DAQPIPE) [40, 41, 42] is a
benchmark application that generates event building-like traffic; this software has
been developed by the LHCb online team to test the response of different network



3.2 Event Building traffic generators 55

technologies and scheduling techniques to the traffic generated by the LHCb DAQ
system.

The core of this project provides a C++ based implementation of all the logic
units needed to replicate the full data-flow of the event building system, including
a dummy data source that allows DAQPIPE to be run without the need of using
the real readout hardware. The software is designed with a modular structure that
allows an effective decoupling of the network layer from the rest of the code, provid-
ing an ideal framework for testing different communication libraries like OpenMPI,
LIBFABRIC, VERBS and PSM2.

DAQPIPE can be used either in a PUSH – i.e. the RUs push data towards
the BUs – or PULL – i.e. the BUs request data to the RUs – schema and it
supports different traffic shaping strategies to reduce network congestion, including
two different linear shifters and a random one. The linear shifting-like traffic pattern
can be generated either with or without a stable phase synchronisation. The first
scenario uses in-band message signalling to implement a barrier synchronisation
which keeps all the nodes phase aligned. The second scenario does not implement
any phase synchronisation technique within one event; nevertheless, the EM enforces
strong alignment on a per-event basis to prevent an excessive phase drifting over
time. The random shifter is useful in case of a network that does not provide
non-blocking behaviour, and it is not intended to be used in the real system. The
rationale behind the development of this particular scheduler was to quantify the
performance loss introduced by a sub-optimal network setup. The default scheduling
used is the unsynchronised linear shifter.

The lack of perfect traffic shaping leads to local short-living link contention by
different messages, which can potentially severely degrade the throughput delivered
by the full system. In particular, if the fragment processing is implemented in a fully
sequential way, the EM will not assign the next event until the slowest fragment is
delivered. In order to mitigate this effect, DAQPIPE introduces some parallelism
both in the number of fragments of the same events in flight towards a specific
builder unit and in the number of events processed in parallel by one builder unit.
Within the framework, the parallelism is configurable via two parameters named
credits and parallel sends with the following effect:

• credits: number of events processed in parallel by the BU;

• parallel sends: number of fragments of the same event in flight to the same
BU from the different RUs.



56 3. Fast networks for the next generation LHCb Data Acquisition

Every BU announces to the EM the selected number of credits; the EM will
then consume those credits by assigning specific events to the BUs, every time an
event is fully received by a BU a new credit will be announced to the EM. Every
credit is processed asynchronously from the others, following its linear shifting-like
scheduling. Processing multiple credits in parallel reduces the amount of network
starvation introduced by the communication delay between the event manager and
builder units, and waiting for the delivery of a specific fragment. The number of
parallel sends defines a sliding window mechanism on top of the barrel shifting
scheduling which has the purpose of absorbing extra communication delays between
the BUs and RUs because every credit is processed independently from the others
the number of parallels sends is per credit.

The parallelism, as mentioned above, has the side effect of inherently generating
some network congestion by breaking the ideal linear shifting traffic pattern. This
behaviour is acceptable because the application does not enforce, and it does not rely
on perfect scheduling. Nevertheless, the behaviour of the network in the presence
of channel oversaturation depends heavily on the specific implementation of the
flow control, in particular, bufferless flow control can drop a significant number of
packets resulting in a consequently high number of retransmissions. For this reason,
the traffic generated by DAQPIPE is more suitable for a network with buffered flow
control.

The amount of parallelism introduced, other than affecting positively or neg-
atively the aggregate throughput of the system, changes the minimum amount of
buffering needed in the readout units and the builder units. The minimum amount
of buffering needed can be easily calculated via the following model:

B(c, fsize) = mNcfsize (3.1)

Where c is the number of credits N is the number of RUs/BUs and fsize is the size
of a single fragment, the factor m is the safety margin and it is a natural number
greater than 1. Because the data from the experiment will continue flowing while
the event building process is taking place, the extra safety margin is needed in order
to store the next batch of data while the current one is being processed.

Selecting the optimal value for credits and parallel sends for a given network
infrastructure a priori is not a simple operation. It requires an accurate model of
the interaction between the traffic generated by the application and the flow control
system of the network, the results achieved by both running the application on



3.2 Event Building traffic generators 57

smaller-scale clusters and running a discrete event simulation of the system will be
presented in section 3.4.6.

3.2.3 a2a

All-to-All (a2a) is a micro-benchmark recently developed to test how a fully syn-
chronous linear shifter approach will perform in an event building scenario; therefore
a2a faces the problem from an opposite point of view compared to DAQPIPE. At
the time of writing this benchmark enforces robust phase synchronisation via a
time-based method, this strategy has been initially preferred to in-band signalling
to reduce the communication latency penalty.

The transmission pattern generated by a2a is shaped by using two parameters:
the transmission window and the idle window; the first parameter is the amount
of time in which every RU is allowed to send fragments to the target BU selected
according to the linear shifting scheduling; the second one is buffer time period in
which no RUs is supposed to send. The purpose of the idle window is to absorb any
desynchronisation that may occur between the various nodes preventing phase shift-
ing because the benchmark relies on a conflict-free communication it fundamental
to prevent node misalignment. The maximum achievable data-rate per RU using
a2a can be easily calculated:

da2a = beff
Tsend

Tsend + Tidle
(3.2)

Where: beff represent the effective bandwidth, as define in (2.12), calculated for the
average message size used; Tidle represent the idle period and Tsend the transmission
window period. In order to maximise da2a it is important to properly balance the two
time windows, in particular if Tsend � Tidle then the performance penalty introduced
by the idle period is negligible.

The calculation of the optimal values for the transmission and idle windows is
a complex problem and strongly depends on the underlying hardware and software
infrastructure, by introducing some approximations it is possible to understand how
changing those parameters interacts with the rest of the DAQ system. To a first
approximation Tidle and Tsend can be considered independent, under this condition
the value of Tidle will be calculated upon various considerations based on the final
implementation of the system, such as the amount of clock jitter between the nodes;
the Operating System (OS) kernel scheduler latency and granularity; the end-to-end



58 3. Fast networks for the next generation LHCb Data Acquisition

network latency; the standard deviation of the software stack processing time. Once
the value of Tidle is set the value of Tsend can be selected in order to meet the desired
throughput requirements.

The data-rate per RU in case there is an imperfection in the scheduling – i.e. two
or more RUs are sending to the same BU because the synchronisation mechanism
failed – is given by:

da2a = beff

(
Tsend − Tconf
Tsend + Tidle

+ 1
2 ·

Tconf
Tsend + Tidle

)
(3.3)

Where Tconf is the amount of time the scheduling conflict lasts – i.e. the amount of
time the misbehaving node will continue sending to the wrong destination after the
idle period. In presence of network conflicts having Tsend � Tconf helps reducing the
performance degradation introduced by a non-ideal scheduling.

In the two models proposed in (3.2) and (3.3) having a large value for Tsend
provides higher data-rates, unfortunately this performance improvement comes with
an implementation cost drawback: increasing the transmission window requires the
sender and the receiver to exchange a more significant amount of data in every slice.
In an event building scenario increasing the amount of data exchanged results in
more events to be processed in parallel and therefore requires buffer space in both
the RUs and the BUs, the amount of buffer needed as a function of Tsend is:

B(Tsend) = mNbeffTsend (3.4)

Where N is the number of BUs, and under the assumption that the average amount
of data injected from the detector into a RU is less than the average amount of data
that the network can ingest, if the last assumption is not verified then the full system
is overloaded and should be redesigned regardless of the buffer size. The factor m
represent a safety margin with the same purpose as the one introduced in (3.1).

In order to tune the two-time windows needed by a2a accurate measurements
of the possible jitter introduced by the system must be taken, and then a tradeoff
between cost and performance has to be made.

3.3 Network implementation

In this section, a detailed description concerning all specific implementation details
of the network will be given.



3.3 Network implementation 59

3.3.1 Network technology

The event building network of the LHCb experiment will be based on COTS hard-
ware capable of delivering a channel bandwidth of 100 Gb/s; moreover, in order
to reduce the amount of CPU and memory bandwidth used by the event building
application, the selected network technology has to support Remote Direct Memory
Access (RDMA) transfer.

Currently, several COTS network technologies can fulfil the requirements needed
by the LHCb event building system, in particular, three of them will be presented:
InfiniBand, OmniPath and RDMA over Converged Ethernet (RoCE).

InfiniBand

InfiniBand is a network communication standard designed for HPC applications,
and it provides high throughput and low latency connectivity. The underlying fab-
ric takes advantage of credit-based buffered flow control which prevents packet re-
transmission when congestion occurs. The standard is defined and promoted by
the InfiniBand Trade Association (IBTA), a multi-vendor consortium established in
1999. Since then multiple companies have joined and left the IBTA, but the de-
velopment of the InfiniBand technology never stop producing the two most recent
variants of it EDR and High Data Rate (HDR), providing a channel bandwidth
100 Gb/s and 200 Gb/s respectively.

The technology is based on RDMA, and the Open Fabric Alliance (OFA) devel-
oped a standardised Linux-based InfiniBand software stack. At the time of writing
the dominant vendor of InfiniBand-based solutions is Mellanox Technologies.

OmniPath

OmniPath is a network technology, developed by Intel Corporation, and it targets
low latency and high throughput HPC applications. Similarly to InfiniBand, this
communication standard takes advantage of RDMA and credit-based flow control,
to avoid the increased latency and lower throughput generated by frequent retrans-
missions. The current OmniPath generation is implemented using 100 Gb/s capable
point-to-point links. At the time of writing Intel has cancelled any plan for a future
200 Gb/s version of OmniPath.



60 3. Fast networks for the next generation LHCb Data Acquisition

RDMA over Converged Ethernet

RoCE is a network protocol defined in an supplement to the InfiniBand specifica-
tions [43, 44] and the rationale behind its introduction was the idea of porting the
advantages introduces by an RDMA transmission protocol to Ethernet – i.e. IEEE
802.3 [45] – installations.

The main disadvantage of this solution, compared to modern HPC-focused fabric
designs, is the lack of an efficient flow control system. The default operation of
an Ethernet-based network implements bufferless flow control, and allow congested
nodes to drop incoming packets every time an input port does not have enough buffer
space. In revision IEEE 802.3x of the Ethernet standard the concept of the pause
frame was introduced, making the Ethernet flow control buffer-aware. Pause frames
implement an on/off flow control similar to the one described in 2.5.4: every time a
node is experiencing congestion and cannot receive new data it sends a pause frame,
i.e. an off flow control message. Upon the reception of a pause frame, the sender
will immediately stop injecting new packets. The standard does not implement any
resume frame and the typical operation resumes after a predefined amount of time.

This approach to flow control was not designed with modern HPC in mind,
and it has been improved in the IEEE 802.1Qbb standard with the introduction
of Priority-based Flow Control (PFC). This improved flow control implementation
allows a node to send pause frames that target only a subset of packets, called
class. This addition to the standard allows a better granularity it the flow control
implementation.

The improved flow control capabilities provided by properly configured PFC-
capable network allow an Ethernet-based interconnection to meet the reliability
requirements imposed by the InfiniBand protocol, and therefore it is possible to
encapsulate an InfiniBand packet as the payload of an Ethernet one. This strategy
allows to transparently reuse all the software that uses the IB software stack and
all the advantages of RDMA over RoCE capable Ethernet networks. The main
drawback is that IB flow control is superior to the one provided by PFC.

At the time of writing RoCE-capable network cards are produced by several ven-
dors, and are available with different channel bandwidth from 25 Gb/s to 200 Gb/s.

3.3.2 Network topology

The selection of an appropriate network topology for the event building network
is crucial for the correct operation of the entire system. As mentioned in section



3.3 Network implementation 61

Figure 3.3. Example of a non blocking Clos network with: n = 3, r = 4 and m = 5. From
left to right, the switches are arranged into three layers: ingress layer, middle layer and
egress layer.

3.2.1, a linear shifting scheduling is a conflict-free solution to the ATAPC problem
only if the network is non-blocking; therefore, this will be an essential requirement.
Besides, the network has to be buildable out of COTS hardware; therefore, it has
to be a cost-effective composition of available network switches.

The mathematical investigation on the problem of designing cost-effective and
non-blocking switching systems started way before the HPC and large HEP experi-
ments era. In 1953 Charles Clos published a study [46] about non-blocking switch-
ing networks for telephone switching. The solution proposed by Clos consisted of a
three-stage switch-based network as the one depicted in Figure 3.3; the three layers
are called from left to right ingress layer, middle layer and egress layer. Today this
topology is referred to as Clos network after Charles Clos. The topology is com-
pletely defined by three integer numbers n, m and r: n is the number of terminal
nodes that are connected to every ingress or egress switch. r is the number of the
ingress or egress switches, which corresponds to half of the radix of the middle layer
switches; m is the number of middle layer switches which corresponds to the number
of ports in any of the ingress or egress switches connected the middle layer. In order
for the network to be either non-blocking or rearrangeable non-blocking relations



62 3. Fast networks for the next generation LHCb Data Acquisition

k-ary fat-tree k = 16 fat-tree
Number of terminals 2k2 512

Switch radix 2k 32
Number of leaf switches 2k 32
Number of spine switches k 16
Total number of switches 3k 38

Table 3.1. Characteristics of a generic fat-tree network and a specific topology with k = 16

Figure 3.4. Example of a folded Clos network with k = 2. This particular example
connects 8 terminal nodes via four leaf switches and two spine switches; the switch radix
is 4 for all the switches.

(3.5) or (3.6) respectively must be satisfied [46].

m ≥ 2n− 1 (3.5)

m ≥ n (3.6)

The topology proposed by Clos has been revisited to be more HPC-centric,
generating the folded Clos network topology, introduced in [47]. In the data centre
world, and by the authors of [47], this topology is often referred to as fat-tree.
This definition can be misleading because the term fat-tree has been already used
previously to define a different network topology designed to interconnect CPUs in
HPC systems, and introduced by Charles E. Leiserson in [48]. In this thesis, the term
fat-tree will be only used to specify folded Clos networks. As depicted in Figure 3.4,
the network topology is organised into two layers of switches: the ones in the bottom
layer are called leaf switches; while the ones in the top one are called spine switches.



3.3 Network implementation 63

Contrary to a typical Clos network topology a fat-tree is fully defined by only one
number k which defines the k-arity of the tree. All the leaf switches in the network
have 2k ports, half of them are connected to k terminal nodes and the other half are
connected to the k spine switches. A comprehensive view of the characteristics of a
fat-tree network, can be found in Table 3.1, together with a configuration which is
suitable for a LHCb event building scenario.

In order to be used as event building network, the topology must be at least
rearrangeable nonblocking. Because a folded Clos network can be mapped into a
normal Clos network it is sufficient to use (3.5) and (3.6). A fat-tree of a given arity
k can be mapped onto a Clos network in the following way:

m = 2k

n = k

r = k

Therefore a fat-tree network topology is rearrangeably non blocking, because it
verifies (3.6), but it does not satisfies (3.5).

In conclusion, a fat-tree network topology is a perfectly suitable solution for
building a folded event building network of 512 RUs/BUs with a linear shifting-like
traffic shaping, like the one needed by the new DAQ system of the LHCb experiment.

3.3.3 Routing algorithms

The selection of an appropriate routing algorithm is the next important step in de-
signing the 40 MHz DAQ for the LHCb experiment. As any fully working algorithm,
the one selected has to fulfil all the requirements presented in section 2.6, i.e. it must
be: connected, deadlock-free and livelock-free.

In order to ensure that the algorithm is livelock-free, it is possible to limit the
selection only to minimal algorithms. Because the traffic generated by a linear
shifter is predictable, it is possible to design an algorithm that performs a fair load-
distribution across the channels, without requiring non-minimal path to be included
by the routing function.

The implementation of the static distributed deadlock-free algorithm can be
done by using the up*/down* approach proposed in [49]. This class of algorithms
generates an acyclic channel dependency graph by splitting the channels into two



64 3. Fast networks for the next generation LHCb Data Acquisition

classes up channels and down channels. The attribution of a channel to a specific
class is based on the definition of a spanning tree of all the link and the following
rules:

• A channel belongs to the up class if moves packets closer to the root of the
spanning tree

• A channel belongs to the down class if moves packets farther away from the
root of the spanning tree

For a fat-tree topology, every channel that moves packets from the leaf switches
towards the spine ones will be in the up class. The channels that move a packet
from the spine switches towards the leaf ones will be in the down class2. To prevent
any cyclic dependency it is sufficient to ensure that in any of the path selected by
the routing function, the transition from a channel in the down class to a channel
in the up class is forbidden. This strategy is used to generate deadlock-free routing
algorithms on different topologies, e.g. an application on InfiniBand-based networks
is presented in [50].

In addition to those basic properties, in order to achieve a conflict-free direct
shifter routing, the algorithm has to select the right combination of paths, among
all the ones that can be selected using an up*/down* strategy. A specialised al-
gorithm for conflict-free routing on InfiniBand-based fat-tree based topologies has
been presented in [51]. This static distributed algorithm defines the Linear Forward-
ing Table (LFT), i.e. the local correspondence between an output channel and the
destination address of the packet, in a recursive way. This algorithm is designed
to work on a wide range of generalised fat-trees [52], and a full characterisation of
the algorithm can be found in [51], a specialised version designed to work on the
topology described in section 3.3.2 will be presented.

In order to spread the communication generated by the event building traffic it
is useful to introduce a channel usage counter, this counter represents the number of
times that the routing algorithm selects a specific channel, and it is used to generate
the LFTs.

The pseudo-code in Listing 3.1 describes the algorithm.
The presented algorithm distributes the up going traffic to a different spine switch

according to destination switch port used by the destination terminal. Figure 3.5
depicts the paths selected by the algorithm for the second phase of a linear shift.

2As mentioned in section 2.2, a bidirectional link is considered as two unidirectional channels.



3.3 Network implementation 65

Listing 3.1. Pseudo-code implementation of the fat-tree optimised routing algrithm pre-
sented in [51]

1 def assing_down_port_ascending(switch, addr)
2 local_port = find_least_used_ascending_port(switch)
3 set_lft on local_port−>remote_device addr to local_port−>

get_remote_port
4 local_port−>channel_usage_increase
5 assingn_up_port_by_descending(switch, addr)
6 assingn_down_port_by_ascending(local_port−>remote_device, addr)
7
8 def assing_up_port_descending(switch, addr)
9 for port in down_going_ports

10 if lft (addr) != port and port−>remote_device−>is_terminal
11 remote_port = port−>get_remote_port
12 set_lft on port−>remote_device addr to remote_port
13 local_port−>channel_usage_increase
14 assign_uo_port_descending(remote_port−>local_device, addr)
15
16 main_loop
17 for leaf_switch in leaf_switches
18 for terminal in leaf_switch−>get_terminals
19 set_lft on leaf_switch terminal−>get_addr to terminal−>

get_remote_port
20 assing_down_port_ascending(leaf_switch, terminal−>addr)

Figure 3.5. Example of the fat-tree optimised routing algorithm operating on 2-ary fat-
tree. The different colours represent the paths selected by the algorithm for different
packets.



66 3. Fast networks for the next generation LHCb Data Acquisition

For clarity sake, only half of the traffic is shown in the diagram in order to avoid
confusion over bidirectional links.

3.4 Event Building network simulation

This section will describe the development and the performance tuning of a Flow
Control Unit (flit) level behavioural network simulator. The network technology
targeted for the simulations will be InfiniBand, in particular, the 100 Gb/s version
of it – i.e. EDR. Moreover, an accurate model of the event building traffic will be
discussed.

3.4.1 Simulation libraries overview

The process of simulating network infrastructures steers an intense development
by the HPC community. In particular, many simulation frameworks have been
developed over the years. In order to ease the framework selection, developers
conducted several surveys such as the ones in [53, 54]. In particular, three of the
most used open-source frameworks will be discussed: ns-3, J-sim and OMNeT++.

J-sim

JavaSim (J-sim) is a component-based compositional simulation environment. In
order to ease the task of modelling complex hierarchical structures, the framework is
implemented using the autonomous component programming model. The simulator
software is written in Java, and many ready-to-use models are available. At the
time of writing the latest release of the software dates back to 2006; therefore, the
project seems to be abandoned.

ns-3

network simulator 3 (ns-3) is a discrete event simulator developed for educational and
research purpose. The codebase is written in C++, and it offers Python bindings.
A selection of pre-implemented, commonly used, network topologies are provided
to the user. Moreover, it is possible to implement custom ones via the provided
API in either C++ or Python. Similarly, behavioural models of commonly used
protocols are available, and not available ones can be implemented. At the time
of writing, there is no available model for the InfiniBand protocol, and the full
simulation engine seems to be more focused towards the simulation of internet-used



3.4 Event Building network simulation 67

protocols. In order to speed-up the simulation of large systems, this framework
provides a Message Passing Interface (MPI)-based parallel implementation.

OMNeT++

Objective Modular Network Testbed in C++ (OMNeT++) [55, 56] is a discrete
event simulation framework developed for modelling a wide spectrum of intercon-
nection networks from: telecommunication ones to distributes multiprocessor sys-
tems. The simulation library is written in C++ and, thanks to an extensible and
modular design, it can be used to implement any discrete event simulation. Given
that OMNeT++ is focused on network simulations, the simulation model is defined
via a hierarchical structure of modules interconnected via channels. Modules can
have two different nature: simple modules and compound modules.

Simple modules define the behaviour of the system, and they are implemented
in C++ as an object-oriented specialisation of a simple module base-class. Com-
pound modules are simple containers for an arbitrary number of simple or compound
modules.

In order to define how the modules are interconnected, and therefore the full
system topology, it is possible to use a topology description language called NED.
This tool is provided together with the rest of the simulation software, and it is fully
integrated with the software stack. The use of NED is not mandatory, and the user
can directly instantiate the modules and define the topology in C++.

OMNeT++ supports parallel distributed simulations via a MPI, and tools for
debugging the simulation model and collecting useful data from it.

This simulation framework is very well supported by both the open-source com-
munity and the industry, providing many models for multiple network protocols,
including a Mellanox contributed InfiniBand behavioural implementation.

Framework Selection

Among all the frameworks presented in the surveys [53, 54], and after all the con-
siderations expressed in the three presented in this section, OMNeT++ has been
chosen to be the one used to implement a simulation of the LHCb event building
network for the following reasons:

• it is an actively maintained project under constant development;



68 3. Fast networks for the next generation LHCb Data Acquisition

• it offers a powerful and modular architecture which can be easily customised
to add support for different network architectures;

• the scientific community and the industry widely use it;

• it offers a powerful topology description language;

• it provides support for parallel distribute simulation via MPI;

• There is an InfiniBand protocol model which can be used as a starting point.

3.4.2 flit level InfiniBand simulation model

In order to implement an OMNeT++-based simulation model, it essential to under-
stand the basic functioning of the framework.

Overview of the simulation engine

OMNeT++ is a discrete event simulator, therefore the simulated time advances from
one event to the next one. This approach is very convenient for behavioural network
simulation, because it allows to significantly reduce the amount of computing power
available by only executing code for components that are not idling. Events can be
scheduled at any time in the future and they are internally called messages. It must
be noted that the messages defined by OMNeT++ are generic entities used by the
simulation engine and they are not necessarily related with the network messages
defined in chapter 2.

The main loop of the simulation engine will therefore store all the messages in a
time ordered queue and implement the following steps:

1. pop the first message from the message queue

2. get the message scheduled simulation time and advance the simulation time
to the same value;

3. execute all the relevant message callback functions

4. update the message queue with all the new messages that may have been
generated by the callback functions

Within this framework the developer has to first identify which modules are
needed to implement the various functionalities, and subsequently implement a be-
havioural description of all of them. As previously mentioned, the only entry point



3.4 Event Building network simulation 69

used by the simulation engine to interact with the user defined code of the modules
is the message handling function. This function is called every time a message is
received by a specific module. The callback function code can include arbitrary user
defined tasks, like updating internal state variables or sending an arbitrary number
of messages to other modules, including self messages. In order to receive or send
messages modules need ports, an arbitrary number of input, output or input/output
port can be specified for every module.

The last piece needed to implement an interconnection network simulation is a
way of connecting the modules. In OMNeT++ this is done via the use of C++
object called channel. In the default operation mode the topology is defined via the
NED language, and the modules can only send messages to and receive message from
modules which are directly connected. This connection schema allows to implement
point-to-point connections. In order to simulate shared-medium networks it possible
either to model the behaviour of the shared-medium with a module or to leave the
ports unconnected, and send messages directly to the remote port of another module.

The channels implemented in OMNeT++ can be either ideal channels with infi-
nite bandwidth and no latency, or realistic ones with appropriate numbers for both
parameters. Ideal channels are useful to model the internal connection of complex
modules (like a switch), while realistic channels can be used to implement external
connection between network devices.

Mellanox contributed InfiniBand flit model

An OMNeT++-based InfiniBand flit level simulation model has already been devel-
oped by Mellanox technologies, and it has been released under the General Public
License (GPL) version 2 license. This model provides a behavioural description of
several features of the InfiniBand fabric including: credit-based flow-control, static
distributed routing based on LFTs, Virtual Lanes (VLs) arbitration3, packet gener-
ation and fragmentation and packet arbitration.

Unfortunately this behavioural model is no longer maintained by the original
developers and it has not been updated to support InfiniBand EDR. Moreover the
provided software does not replicate the behaviour of any existing hardware, and
several of the model parameters need to be set to realistic values in order to achieve
accurate simulation results.

In order to achieve meaningful results: the original simulation model has been
3A VL is the InfiniBand implementation of the virtual channel concept explained in section 2.6.3.



70 3. Fast networks for the next generation LHCb Data Acquisition

updated and improved; the relevant parameters has been directly on indirectly mea-
sured on the actual COTS hardware.

Modules implementation

Hereafter a detailed list of the implemented modules [57] will be given, including a
description of their behaviour:

• IBOutBuf: it can be used as an output buffer for the outgoing flits. In
addition to the buffer functionality this module implements the link controller
and the credit based flow control;

• IBInBuf: it provides a set of buffers for incoming flits. Every VL has a
dedicated buffer. Similarly to the IBOutBuf module this one implement link
and flow control features;

• IBVLArb: it implements arbitration among the different VLs and selects
which input channel should forward the next packet, if there are multiple
suitable input channels a round robin scheduling is applied;

• PktFwd: it simulates the routing logic by selecting which output port should
be used to forward the packet. This implementation is based on static dis-
tributed forwarding tables (LFTs) which are used to assign an output port
based on the destination address of the packet, like in the actual hardware.
Every instance of this module will load the routing information from a file;

• SwitchPort: it is a compound module that combines input and output buffers
with the VL arbitration logic;

• IBApp: it submits an InfiniBand Work Request (WR) [58] to the appropriate
Work Queue according to the selected traffic pattern. Multiple specialisations
of this class can be used to generate different traffic, and different applications
can be used at the same time;

• IBWorkQueue: it receives all the WRs from all the IBApps and it serves
them when the IBGenerator is ready to process a new message. The commu-
nication between this module and the IBGenerator can be delayed in order to
simulate the latency of the PCIe bus.



3.4 Event Building network simulation 71

(a) Switch port implementation.
The Internal Crossbar is not part
of the switch port but it has been
added for clarity.

(b) Terminal node implementation.

Figure 3.6. Internal structure of a switch port and a terminal node. The solid lines
represent the data path, the dashed lines represent propagation path for the link layer
flow control credits.

• IBGenerator: it pulls the WRs from the IBWorkQueue, and it fragments
the message contained into the WR, first into packets and then into individual
flits;

• IBSink: it receives the packets and notifies the IBApp module upon comple-
tion. This last feature is critical for simulating real world application because
it makes the IBApp aware of the inbound traffic, and therefore able to reply
to incoming messages

The aforementioned modules can be combined together to implement InfiniBand
network devices such as switches and terminal node, Figure 3.6 depicts the imple-
mentation of a switch port and a terminal node.

The implementation of modules required is a first step towards implementing
the simulation of a realistic system, but more software components are needed. In
particular, because the PktFwd module implements a LFT-based routing algorithm,
an automatic way of generating those tables has been implemented. Because the
aim of this thesis is to simulate event building traffic, the fat-tree optimised routing
algorithm [51] described in section 3.3.3 has been accurately implemented; moreover,
because it is interesting to simulate the behaviour of existing systems, a translation
layer that converts InfiniBand LFTs into the format used by the simulator has been
implemented. With this set of tools it is therefore possible to either implement any
routing algorithm or to replicate existing installation’s routing.



72 3. Fast networks for the next generation LHCb Data Acquisition

The last missing software component concerns the topology generation. The
creation of parametric versions of regular topologies, like the fat-tree described in
3.3.2, can be implemented using NED as shown in Listing 3.2. The code is split in
three part: parameters, submodules and connections; the first section contains the
definition of all the relevant parameters needed to specify a specific implementation
of a parametric topology, in this case the arity of the network plus some other values
derived from it; the second section defines the number and the type of the modules
used, in this case there switches and hosts – i.e. terminals; the last part defines the
interconnection between the modules, in this case there two blocks of connections,
the first one for the terminal/leaves connectivity, the second one for the leaves/spines
backbone.

Parametric NED-based topology descriptions are a powerful tool, but they are
not convenient for simulating a replica of an existing HPC cluster, taking into ac-
count: unavailable terminals, storage and login services, asymmetric additions of
terminal nodes and matching the addressing schema used by the routing algorithm.
In order to facilitate this task a script has been developed, this program can parse
the topology dump collected from an existing cluster, and generate a non parametric
NED-based description of the network topology. This tool, together with the one
that converts the LFTs, makes the simulation of a real world system possible. This
process allows the user to perform simulations before running benchmarks, resulting
in a more efficient use of the limited and precious time available on the cluster; more-
over it is possible to compare the results collected from HPC installations against
the ones collected from a simulation of the same system. This last operation is
crucial part of the model validation process.

3.4.3 Model tuning

The simulation model described in section 3.4.2 provides a behavioural description
of an InfiniBand based network; in order to make software flexible and capable
of implementing both different generations of InfiniBand and different hardware
devices, all the low level details of the implementation are configured via parameters.
To achieve an high grade of realism, the parameters of the OMNeT++-based library
need to be set to the right value, as described in [57].

Model’s parameters can be divided into two main categories: protocol specific
and hardware specific. The first set contains quantities that are fully defined in the
InfiniBand architecture specification [59] therefore their values are fully fixed after



3.4 Event Building network simulation 73

Listing 3.2. Parametric description of a fat-tree network topology
1
2 network fat_tree
3 {
4 parameters:
5 int arity = default(18);
6 int num_spine = arity;
7 int nodes_per_leaf = arity;
8 int num_leaf = arity∗2;
9 int num_nodes = num_leaf∗nodes_per_leaf;

10 submodules:
11 switch[num_spine + num_leaf] : Switch {
12 parameters:
13 numSwitchPorts = arity∗2;
14 @display("i=abstract/router");
15 gates:
16 port[ arity ∗2];
17 }
18 hosts[num_nodes] : HCA {parameters: srcLid = −1;}
19
20 connections allowunconnected:
21 for i=0..(num_nodes − 1){
22 hosts[ i ]. port <−−> IB4XEDRWire <−−> switch[i/(

nodes_per_leaf)].port[i%(nodes_per_leaf)];
23 }
24
25 for sw=num_leaf..(num_leaf + num_spine − 1) , for p=0..(arity∗2 − 1)

{
26 switch[sw].port[p] <−−> IB4XEDRWire <−−> switch[p].port[sw−

nodes_per_leaf];
27 }
28 }



74 3. Fast networks for the next generation LHCb Data Acquisition

012345678910111213141516171819202122232425262728293031

Op FCTBS VL FCCL
LPCRC

Figure 3.7. InfiniBand flow control packet format, as defined in [59]

the selection of the specific InfiniBand implementation, such as: channel bandwidth,
maximum payload size, flit size, protocol overhead and flow control behaviour. Be-
cause the purpose of this thesis is to evaluate an implementation for the LHCb DAQ
system the protocol configuration has been set to match the EDR one. Hardware
specific are not specified in the protocol specification and they need to be estimated
performing real measurements and reverse engineering on the actual hardware.

The most important values for accuracy of the simulation model are: switch
buffer size, link layer latency and PCIe latency; the buffer size of the switch is critical
for a realistic behaviour of the InfiniBand flow control, an accurate modelling of the
latency is needed to reproduce the same link congestion as in a real system. In all the
tests describe in the following section the hardware tested was a Mellanox SB7700
EDR switch and Mellanox MT27700 ConnectX-4 Host Channel Adapters (HCAs),
unless explicitly specified.

Switch buffer measurement

The switch buffer size can be measured following two different approaches4: the
first one consists of analysing the flow control credits; the second one is based on
generating controlled network congestion and monitoring the congestion indicator5.

The first method proposed consists of extracting the buffer occupancy informa-
tion from the flow control packets. In order to extract this information it is crucial
to understand the anatomy of an InfiniBand credit. Figure 3.7 describes all fields
present in an InfiniBand flow control credit, a description of the field function follows:

• Operation (Op): this 4 bits value identifies the nature of the flow control
packet, a value of 0x0 indicates a normal credit, while a value of 0x1 indicates
a special one sent a the initialisation of the link;

• Flow Control Total Blocks Sent (FCTBS): this 12 bits counter contains
4The methodology described in this section is based on the presentation held by Qian Liu at the

OpenFabrics Software User Group Workshop in 2015.
5The congestion indicator is the PortXmitWait counter which indicates the time, expressed in

clock ticks, that the data transfer on a given port has been paused by the flow control.



3.4 Event Building network simulation 75

the number flits sent over the link;

• VL: this 4 bits value indicates the virtual lane involved by this specific credit

• Flow Control Credit Limit (FCCL): this 12 bits counter contains the sum
of the number of flits received over the channel plus the available space in the
input buffer;

• Link Packet CRC (LPCRC): this 16 bits CRC code is used to detect
transmission error and bit flips.

It is important to note that the buffer status information is encoded in an incre-
mental way; this encoding protects the system against data loss or data corruption
on the credit itself, because the flow control information is critical to the link oper-
ation the remote buffer status must be reconstructible after an arbitrary number of
missed credits. In order to extract the buffer size from the flow control information
it is needed collect a credit sent from each of the 2 devices sharing the channel; the
credit sent from the receiver A contains the buffer size information, while the credit
sent from the sender B contains the amount of data sent over the link. To disentan-
gle the available buffer space bfree from the number of sent flits this procedure it is
sufficient to subtract the relevant fields of the credit packets:

bfree = FCTBSB − FCCLA (3.7)

If the link has been idling for a sufficient amount of time and there is no con-
gestion on the network devices under test we can assume than bfree = bsize, and
therefore the the amount of buffering available can be measured.

This approach has two disadvantages: the first one is that according to the IB
specifications [59] the receiver should not announce more that 2048 available slots
in the buffer, regardless of the actual capacity; therefore any buffer size of more
that 128 KiB cannot be directly measured. The second issues is related to how the
flow control information can be analysed; because the flow control information is
only used by the link control hardware it is not possible to acquire this information
in software. The only way of monitoring the flow control information is to use a
low level InfiniBand protocol analyser: a low level hardware device which inspects
and decode all the packets send over a channel. At the time of writing there are
no EDR-capable protocol analysers on the market; therefor the second strategy was
put in place.



76 3. Fast networks for the next generation LHCb Data Acquisition

Host0 Host1 Host2

Figure 3.8. Setup used to generate congestion and estimate the switch buffer size. Three
terminals named Host0, Host1 and Host2 are interconnected via a switch. Host0 sends
data to Host2 at the maximum data rate possible, at the same time host1 sends packets
of different sizes to create controlled congestion.

The second strategy aims to create controlled network congestion and monitor
the status of the network devices. Figure 3.8 shows the network topology used to
create the controlled congestion, which is constituted by three terminal nodes and
one switch. The procedure to generate the controlled network congestion can be
summarised in the following steps:

1. Host0 sends continuously to Host2 at the maximum data rate possible, i.e.
trying to fully saturate the channel bandwidth;

2. Host1 sends to Host2 messages of increasing size at regular intervals, to create
congestion;

3. A monitoring program reads the PortXmitWait performance counter and logs
it together with the size of the message that were causing the controlled con-
gestion.

In order to estimate the buffer size it is possible to interpolate the time that the
link was stop by the flow control with the size of the the messages sent by Host1.
Following this procedure the estimated buffer size si 64 KiB per port per VL with 4
VLs enabled.



3.4 Event Building network simulation 77

0e+00

1e+05

2e+05

3e+05

4e+05

5e+05

6e+05

 700  720  740  760  780

C
o
u
n
ts

Latency [ns]

Application layer latency of the InfiniBand HCA

Figure 3.9. Application and PCIe latency of an InfiniBand EDR HCA.

Link-layer latency

In order to measure the link layer latency, i.e. the latency introduced by the channel
and the link controller, the hardware timestamping feature of the IEEE 1588-2008
standard [60] – i.e. Precision Time Protocol (PTP) – has been used.

PTP is a high precision time synchronisation protocol designed to achieve sub
microsecond precision. In order to achieve the synchronisation level required a PTP-
capable device has to precisely measure the link latency with the highest accuracy
possible. To perform this accurate measurement extra hardware onto the network
device which allow a low level timestamping of the synchronisation packets, and
therefore making possible to accurately measure the link-layer latency without using
a protocol analyser.

The path latency measure using PTP produced an estimation of 170 ns full
delay using a 3 m long direct attached copper cable, between two directly connected
MT27700 ConnectX-4 HCAs.

PCIe latency

The final missing parameter in this simulation model is a realistic model of the
combined latency introduced by the PCIe bus and the InfiniBand software stack;
because of the non-real-time nature of modern computing systems and software,
instead of developing a theoretical model of the system a phenomenological approach
has been taken.



78 3. Fast networks for the next generation LHCb Data Acquisition

The latency has been measured on the same test setup used for measuring the
link-layer latency. In order to perform the measurements the ib_write_lat bench-
mark has been used and the previously measured link layer latency has been sub-
tracted; therefore this measurement includes all the latency introduced from the
hardware and software chain before the link controller.

Figure 3.9 shows the histogram of the latency measurements, the simulation
model draws random number generated from this distribution to replicate latency
and jitter of the real system.

3.4.4 Traffic injector implementation

An accurate model of the interconnection network is not complete without a realistic
replica of the injected traffic. Because the target of this thesis is to evaluate solutions
for the LHCb event building network, the simulation of DAQPIPE and a2a generated
traffic is a strong requirement.

Simulated a2a

The traffic pattern generated by the a2a benchmark is a linear shifter with a through-
put limit; therefore the implementation of this traffic injector is extremely simple. If
the underlying network topology and routing algorithm provide conflict free paths
for every phase of the shift, then this traffic pattern will provided the target band-
width and there is no need of simulating it; on the other hand if the network is not
optimised for a linear shift or if the nodes lose their phase synchronism, a dynamic
simulated study of the network can provide a better understanding of the problem.

Simulated DAQPIPE

An accurate replica of the DAQPIPE benchmark has been implemented, this traffic
injector replicates all the major features described in section 3.2.2, including all the
configurable parameters that allow to change the traffic scheduling.

The traffic injector replicates the behaviour of the three logic units that im-
plement all the task required by the event building process; the functionality is
statically assigned to the terminal nodes at the beginning of the simulation.

Because the simulated application is part of a discrete event simulation, the flow
of the program has to be steered by the incoming messages. In order to achieve this
messages need to be tagged and identified according to their function. A list and
description of the different classes of messages follows:



3.4 Event Building network simulation 79

Listing 3.3. State machine of the DAQPIPE-like traffic injector
1 [. . .]
2 if (app_msg_kind == EM_EVENT_ASSIGN){
3 send_ru_requests();
4 } else if (app_msg_kind == RU_REQUEST){
5 send_event_fragment(p_msg);
6 } else if ((app_msg_kind == EM_REQUEST) && (event_manager_lid

== srcLid)){
7 send_event_assign(p_msg);
8 } else if (app_msg_kind == DATA){
9 handle_event_fragment(p_msg);

10 } else {
11 handle_error(p_msg);
12 }
13 [. . .]

• EM_REQUEST: this message emulates the announcement of a new available credit
sent by a BU;

• EM_EVENT_ASSIGN: this message is sent by the EM every time a new event is
assigned to a particular BU;

• RU_REQUEST: this message is the pull request sent by the BU to the RU;

• DATA: this message contains the actual event fragment.

When the simulation starts every BU sends to the EM a number of EM_REQUEST

messages equal to the number of credits configured. When the EM receives the
EM_REQUEST message it will reply with an EM_EVENT_ASSIGN one. When an event is
assigned to a BU will send a number of RU_REQUEST messages equal to the number of
parallel sends configured. The sends are scheduled in a linear shifter-like pattern, as
previously mentioned in section 3.2.2. This behaviour is implemented by the state
machine listed in 3.3.

This traffic injector is capable of matching the messages sent by DAQPIPE, and
together with the rest of the simulation model allows to study the performance of
the system and to find the optimal working point for any give network topology.



80 3. Fast networks for the next generation LHCb Data Acquisition

3.4.5 Fast model implementation

The simulation of a 100 Gb/s interconnection network with a flit-level accuracy
produces a high number of events in the simulation engine. The order of magnitude
of the event rate can be easily calculated from the channel bandwidth and the size
of a flit Sf :

Erate = b

Sf
(3.8)

An InfiniBand EDR network has a bandwidth of 100 Gb/s and a flit size of 64 B;
therefore according to (3.8) the rate of events generated in the simulation engine is
' 200 · 106 s−1 on every unidirectional channel.

The amount of events that can be processed every second by an OMNeT++-
based application depends heavily on the specific implementation of the code. For
this specific project event processing rate on a single core of a modern x86 CPU it
is ∼ 1 · 106 s−1, resulting in a simulation which is 200 times slower than realtime.

The full LHCb DAQ network is composed of ∼ 103 bidirectional links. Under
the hypotheses of linear increase in the number of events generated and a constant
event processing rate, the simulation will be 4 · 105 times slower than realtime. It
should be noted that this estimate is rather optimistic because it does not take into
account all the events generated by the internal components of compound modules,
and that the event processing time does not remain constant when the size of the
event queue increases.

From this preliminary estimation perform a full event building simulation for the
LHCb experiment, using a flit model, is highly demanding in terms of computing
power. Moreover, in order to find the optimal working point of the different applica-
tions, multiple simulations are needed with different: topologies, routing algorithms
and parameter configurations.

A first way of reducing the time needed is to take advantage of the parallelism of
modern compute architectures and distributed computing clusters. The OMNeT++
framework provides parallel processing via MPI, and therefore it would be possible
to run a single simulation on a distributed set of compute cores. An other approach
will be run all the multiple independent configurations in parallel, each running on
a single compute core. Because of the large number of simulations needed and the
perfect scaling provided by the second solution, for this project, the second strategy
has been chosen.

In order to further reduce the amount of compute power needed it is possible



3.4 Event Building network simulation 81

to reduce the amount of events generated by aggregating multiple flits into one
simulation event. This approach reduces the realism of the simulator, and the impact
on the final results and the speedup achievable will be evaluated in section 3.4.6.
Because InfiniBand implements a VCT flow control the global effect on the full
simulation should not be too severe. On the other hand, the amount of events
generated by every channel will be reduced by a factor equal to the flit aggregation.

3.4.6 Simulation results

In this section the results obtained with the previously mentioned simulation will
be presented and analysed, from the validation of the model itself to the simulation
of the full LHCb event building network.

Validation of the simulation model

In order to validate the simulation model it is crucial to compare the simulation
results against data gathered on real clusters.

The most complex event-building-like benchmark implemented in the simulation
framework is DAQPIPE therefore the validation of the model will be against a real
run of DAQPIPE on a HPC cluster.

The first step required for this validation is to build a simulated network with
the same topology and routing algorithm as the original one. In this specific case the
network topology is a fat-tree-like network with 64 terminals; this particular network
was not a one-to-one implementation of the one described in section 3.3.2, and there
were missing nodes and swapped cables. The routing algorithm implemented on the
network was not the one described in section 3.3.3 and therefore the selected paths
were sub-optimal for a linear shift traffic.

The decision of using this particular topology for the simulation validation was
driven by two major motivations:

• the network topology of this specific installation was well documented and the
all relevant information was provided by the administrators of the site;

• running the benchmark in a sub-optimal environment will generate higher lev-
els of network congestion, resulting in higher stress for the flow control system,
and providing a more challenging environment to the simulation model.

The metric used for this validation is the average effective event building through-
put, and the same criterion is applied to the tests on the real system and on the



82 3. Fast networks for the next generation LHCb Data Acquisition

2
8

4
4

20
8

16
4

2
4

10
2

1
2

20
4

8
4

12
8

16
8

10
8

4
1

1
8

8
1

8
8

8
2

4
8

1
1

12
4

2
1

2
2

4
2

10
4

0

20

40

60

80

100

Th
ro

ug
hp

ut
 p

er
 n

od
e 

[G
b/

s]

DAQPIPE measured data/simulation comparison
Measured data
Simulation

2
8

4
4

20
8

16
4

2
4

10
2

1
2

20
4

8
4

12
8

16
8

10
8

4
1

1
8

8
1

8
8

8
2

4
8

1
1

12
4

2
1

2
2

4
2

10
4

Credits
Parallel Sends

0.2

0.0

0.2

No
rm

al
ize

d 
di

ffe
re

nc
e

Figure 3.10. Comparison between measured and simulated DAQPIPE on an HPC cluster
of 64 nodes, as presented in [57]. The upper panel shows the average event-building
throughput rate, and the lower panel shows the difference between measured and simu-
lated throughput, normalised to the measured data.

simulated one.
A comparison of the simulated and the real DAQPIPE for different values of the

credits and parallel sends parameters is shown in Figure 3.10. From this comparison
it is possible to confirm that the simulation model is accurate, and that it can
reproduce the behaviour of an event building benchmark application on a given
network topology. The simulation can reproduce the throughput trend changing
the parameters, and the absolute throughput value within 30% error across the
full parameters space. In particular for the high throughput configurations the
simulation is well within 20% from the measured data. Given the complexity of
simulating such a complicated system, this simulation model provides an efficient
and powerful tool to evaluate the scalability of the system.

Sub-optimal network configurations

The main disadvantage of a linear shifting scheduling technique is the high sus-
ceptibility to changes in the network configuration; if the network topology and
the routing algorithm do not allow a perfect traffic balancing the resulting network
congestion will impact the full event building performance.The final system will be



3.4 Event Building network simulation 83

	50

	60

	70

	80

	90

	100

	0 	10 	20 	30 	40 	50 	60 	70

Th
ro
ug

hp
ut
	p
er
	n
od

e	
[G
b/
s]

Number	of	nodes

a2a	simulation	on	64	nodes	EDR	cluster	host	sorted

Simulated	a2a	80%	target	average
Simulated	a2a	80%	target	minimum

Simulated	a2a	90%	target	average
Simulated	a2a	90%	target	minimum

Figure 3.11. Simulation of the a2a benchmark on real HPC 64 nodes cluster. The plot
depicts the average and minimum node throughput for different configurations of the
application. The permutation used in the linear shift is based on the host names of the
terminal nodes.

designed to operate in optimal conditions with the appropriate network topology
and routing algorithm; nevertheless it is important to evaluate the impact potential
partial failures, and determine the impact on DAQPIPE and a2a.

The plots in Figure 3.11 and 3.12 show the simulation results for different con-
figurations. In all the tested scenarios a2a can reach the requested throughput if
the number of nodes stays below 64, i.e. the number of switches involved is lower,
because the probability of getting congestion introduced by the sub-optimal network
configuration is lower. When the number of involved nodes increases the performance
degradation becomes more severe and the average throughput drops by ∼ 10 Gb/s
while the minimum throughput drop by ∼ 20 Gb/s. Because a2a needs to keep a
strong phase alignment among the nodes, and because the event building needs to
build full events, the effective event building throughput of an a2a-like approach will
the throughput of the slowest node rather than the average one.

The different shape and magnitude of the minimum throughput drop between
Figure 3.11 and 3.12 shows how the particular node permutation affects the perfor-
mance. In particular the simulations depicted in Figure 3.11 are configured with a



84 3. Fast networks for the next generation LHCb Data Acquisition

	50

	60

	70

	80

	90

	100

	0 	10 	20 	30 	40 	50 	60 	70

Th
ro
ug

hp
ut
	p
er
	n
od

e	
[G
b/
s]

Number	of	nodes

a2a	simulation	on	64	nodes	EDR	cluster	LID	sorted

Simulated	a2a	80%	target	average
Simulated	a2a	80%	target	minimum

Simulated	a2a	90%	target	average
Simulated	a2a	90%	target	minimum

Figure 3.12. Simulation of the a2a benchmark on real HPC 64 nodes cluster. The plot
depicts the average and minimum node throughput for different configurations of the
application. The permutation used in the linear shift is based on the network address
of the terminal nodes.

	82

	83

	84

	85

	86

	87

	88

	89

	90

	91

	0 	10 	20 	30 	40 	50 	60 	70

Th
ro
ug

hp
ut
	p
er
	n
od

e	
[G
b/
s]

Number	of	nodes

a2a	simulation	on	64	nodes	EDR	cluster	throughput	target	90%

a2a	maximum	throughput	host	sorted a2a	maximum	throughput	LID	sorted

Figure 3.13. Simulation of the a2a benchmark on real HPC 64 nodes cluster. The plot
depicts the maximum node throughput for the host name-based configuration and the
network address based one.



3.4 Event Building network simulation 85

host-name-based permutation, which is unrelated to the network topology and the
routing algorithm. On the other hand the simulations shown in Figure 3.12 use a
network address-based one, which is strongly correlated with the network topology
and the routing algorithm. In particular the minimum throughput is more stable
when the permutation is address based and the minimum value for high node counts
is higher. In order to understand this behaviour it is useful to check the maximum
throughput for the two different nodes permutation, as depicted in Figure 3.13; the
analysis of the maximum throughput show how the network congestion affects the
nodes in a more predictable way when the scheduling is linked with the network
configuration. Resulting a lower number of nodes being affected by the network
congestion. On the other hand a network independent scheduling generates heavier
and less predictable congestion which affects all the nodes.

The a2a benchmark is therefore very stable when the network can provide a
conflict-free packet delivery; on the other hand it suffers from network congestion
introduced by non ideal-scheduling. In particular the results simulated on a 64 nodes
non conflict-free topology show significant performance degradation of ∼ 20 Gb/s.

Figure 3.14 depicts a performance comparison of the simulated DAQPIPE on two
different topologies: a clean fat-tree of 72 nodes and an HPC cluster of 64 nodes.
The performance degradation introduced by a non conflict-free scheduling is highly
dependant on the parameters of DAQPIPE, and can be as high as 50%; nevertheless
the bandwidth drop for the fastest configuration is 6%.

The effects of a non-ideal network infrastructure affect DAQPIPE’s performance
and makes it more unstable, the throughput degradation can vary significantly and
it is highly influenced by the configuration parameters and the topology itself. Con-
figurations with many parallel sends are affected in a more severe way because they
increase the number of nodes communicating at every phase, especially if in con-
junction with a high credit count, increasing the probability of local link congestion.

The DAQPIPE benchmark can absorb the performance degradation introduced
by a non conflict-free network by having an adequate number of message in flight.
On the other hand the parameter tuning is critical, and a misconfiguration of the
parameters can lead to severe throughput degradation.

Fast model validation and scaling

As mentioned in section 3.4.5 it is possible to aggregate multiple flits into a single
simulation event; this procedure should reduce the amount of compute time needed



86 3. Fast networks for the next generation LHCb Data Acquisition

2
8

4
4

20
8

16
4

2
4

1
4

20
2

12
1

16
1

8
4

1
2

20
4

10
1

12
8

10
2

16
8

10
8

4
1

12
2

1
8

16
2

8
1

12
4

10
4

4
8

1
1

8
8

2
1

2
2

4
2

8
2

20
1

0

20

40

60

80

100

Th
ro

ug
hp

ut
 p

er
 n

od
e 

[G
b/

s]

Clean fat tree/HPC cluster topology  comparison

Clean fat tree 72 nodes
HPC cluster 64 nodes

2
8

4
4

20
8

16
4

2
4

1
4

20
2

12
1

16
1

8
4

1
2

20
4

10
1

12
8

10
2

16
8

10
8

4
1

12
2

1
8

16
2

8
1

12
4

10
4

4
8

1
1

8
8

2
1

2
2

4
2

8
2

20
1

Credits
Parallel Sends

0.0

0.1

0.2

0.3

0.4

0.5

No
rm

al
ize

d 
di

ffe
re

nc
e

Figure 3.14. Comparison between simulated DAQPIPE on an HPC cluster topology of
64 nodes and on a fat-tree of 72 nodes,as presented in [57]. The upper panel shows
the average simulated event-building throughput rate, and the lower panel shows the
difference in simulated throughput between the clean topology and the topology available
on the HPC system, normalised to the throughput of the 72 nodes fat tree topology
cluster.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0  2  4  6  8  10  12  14  16
 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

E
xe

cu
ti

o
n
 t

im
e
 [

s]

S
p
e
e
d
u
p

flit aggregation factor

Application scaling vs flit aggregation factor

execution time speedup

Figure 3.15. Computational scaling of the fast simulation model as a function of the flit
aggregation factor. The execution time refers to the left y axis, while the computation
speedup refers to the right one.



3.4 Event Building network simulation 87

 72

 72.5

 73

 73.5

 74

 74.5

 75

 75.5

 76

 76.5

 77

 0  5  10  15  20  25  30  35

A
v
e
ra

g
e
 E

B
 t

h
ro

u
g
h
p

u
t 

[G
b

/s
]

flit aggregation

flit aggregation parameter scan

Simulated DAQPIPE

Figure 3.16. Comparison of different DAQPIPE simulations with different values for the
flit aggregation parameter.

to perform a given simulation task. The computational scaling of a DAQPIPE
simulation is depicted in Figure 3.15; the plot shows a significant speedup of the
application of up to a factor 9. The fast simulation model can therefore reduce the
amount of compute power needed to simulate the LHCb event building network by
an order of magnitude.

The coalescing of multiple flits into a single simulation event reduces the realism
of the simulation model; therefore a validation against the normal model is needed.
Figure 3.16 shows a comparison between different simulations of DAQPIPE with
different values of the flit aggregation parameter; this comparison shows how the
variation in the average EB throughput is modest over the full parameter range, in
particular if the flit aggregation factor is limited to 16 the average EB throughput
difference is 2.4 Gb/s.

The fast simulation model provides a significant reduction the the computing
resources needed, and it introduces a small deviation in the overall accuracy of the
simulation.

Full scale simulations

The ultimate objective of the simulation model is to provide performance figures
for untested systems; and in particular to perform simulations of large scale sys-



88 3. Fast networks for the next generation LHCb Data Acquisition

	0

	20

	40

	60

	80

	100

	0 	50 	100 	150 	200 	250 	300 	350 	400 	450 	500 	550

Av
er
ag
e	
EB

	th
ro
ug
hp
ut
	[G

b/
s]

Number	of	nodes

Multiple	size	fat-trees	EDR	DAQPIPE	simulation

parallel	sends:	1,	credits:	1
parallel	sends:	1,	credits:	16

parallel	sends:	8,	credits:	1
parallel	sends:	8,	credits:	16

Figure 3.17. Average EB throughput of simulated DAQPIPE vs number of nodes. All
the network topologies tested are full fat-trees, the different node count is achieved by
changing the number of terminal nodes on every leaf switch.

tems. Because simulating large systems requires a significant amount of computing
resources, the fast model will be used with an aggregation factor of 16.

Among the two available benchmarks DAQPIPE is the most interesting to sim-
ulate for the following reasons: the performance variation introduced by a change
in the number of credits or parallel sends are highly unpredictable; the application
can generate non trivial congestion patterns that need to be evaluated in simula-
tion. On the other hand a2a produces a more predictable traffic pattern, and it can
be negatively affected by two factors: node desynchronisation and conflicts in the
routing paths. The simulation of the first phenomenon requires a low level imple-
mentation of the OS scheduler and the interaction between various processes inside
the terminal node, introducing an high grade of non-reproducibility into the model.
The conflicts in the routing paths have been previously analysed on smaller scale
systems, and they can be studied on larger scale with a static path analysis.

The scalability of the simulated DAQPIPE has been tested in two different sce-
narios: the first one was a test run on different fat-tree topologies with different



3.4 Event Building network simulation 89

	0

	20

	40

	60

	80

	100

	0 	50 	100 	150 	200 	250 	300 	350 	400 	450 	500 	550

Av
er
ag
e	
EB

	th
ro
ug
hp
ut
	[G

b/
s]

Number	of	nodes

512	nodes	fat-tree	EDR	DAQPIPE	simulation

parallel	sends:	1,	credits:	1
parallel	sends:	1,	credits:	16

parallel	sends:	8,	credits:	1
parallel	sends:	8,	credits:	16

Figure 3.18. Average EB throughput of simulated DAQPIPE vs number of nodes. The
network topology tested is a 512 nodes fat-tree, the different node count is achieved by
changing the number of leaf switches with active nodes connected.

number of terminal nodes; the second one was simulation of a 512 nodes fat-tree
with different number of active terminals. In order to keep the two configurations
tested conflict-free, in the second scenario nodes were added but the leaf switches
population was kept homogeneous – i.e. the number of active nodes per leaf switch
was either zero or the arity of the fat-tree.

The graph in Figure 3.17 presents the results obtained simulating the first of
the two aforementioned scenarios. The simulations were executed with different
parameter configurations, in order to test the behaviour of DAQPIPE under different
conditions. The configurations with 16 credits show solid performance in term of
scaling and throughput, with the best configuration delivering more than 80 Gb/s in
most of the tests. On the other hand the configurations with only one credit suffer
from the lower number of fragments being transferred in parallel, and the higher
latency in the communication path with the EM; in particular the configuration
with 1 credit and 8 parallel sends delivers high throughput in small systems, and
experiences performance degradation in larger ones.



90 3. Fast networks for the next generation LHCb Data Acquisition

The plot in Figure 3.18 shows the results obtained simulating the second of the
two aforementioned scenarios. The results under those different testing conditions
show a more irregular behaviour, with a high throughput variability especially in
the 16 credits 8 parallel sends configuration. This behaviour can be explained by the
fact that DAQPIPE does not operate in congestion-free condition, and in particular
the number of parallel sends generates inter-RU resource contention. Because the
two topologies are different it is not surprising that the behaviour under congested
conditions is different. It is important to note that the particular particular perfor-
mance drop, i.e. the one that affects the 8 parallel send 16 credits configuration,
it is not easily predictable by a static traffic analysis. When the number of nodes
increases the difference between the two topologies becomes more and more negli-
gible and the average EB throughput tends to the same value. On the other hand
the configuration with 16 credits and 1 parallel send show a consistent and above
80 textGb/s throughput, and it experiences only a small performance penalty when
running with a very low number of terminal nodes.

In conclusion the simulations show that the scalability of DAQPIPE is solid and
that the application can deliver more than 80 Gb/s at the scale required by the
LHCb DAQ system.



91

Chapter 4

Parametric model of the LHCb
magnet

In order to reconstruct long tracks in the LHCb detector, it is possible to prop-
agate the tracks found in the downstream sub-detector to the upstream ones. In
particular, tracks reconstructed in the VELO can be extrapolated to the UT and
the SciFi. This method consists of extrapolating the track in the next sub-detector,
and then defining a region, called search window, in which possible matching hits
are searched. The hits found inside the search window are then processed by the
tracking algorithm, which can add the hits to the track or reject them accordingly.
The width of the search window has to take into account several effects like deviation
in the track trajectory introduce by Multiple Scattering (MS), detector resolution
effects and approximated particle propagation models.

The SciFi detector is located downstream respect to the LHCb magnet and there-
fore charged particles are bent by the interaction with the magnetic field. In order
to ensure a proper matching by the tracking algorithm, either the track extrapola-
tion or the search window has to take into account the curvature introduced by the
magnet. The first method requires a fast parametric description of the interaction
between the magnet and a charged particle of a given momentum, and particle mo-
mentum estimation; the latter requires wider search windows, and therefore a more
significant number of hits to be tested.

In this chapter, a parametric description of the interaction between charged
particles and the magnet of the LHCb experiment will be introduced. This model can
be used to predict the trajectory after the magnetic field region, reducing the size of
the search windows used in the SciFi. Because the momentum of the particle affects



92 4. Parametric model of the LHCb magnet

the magnitude of the curvature, an estimation of it has to be provided as an input
to the model; in particular, in the SciFi sub-detector, the momentum estimation
provided by the UT can be used. It is important to note that the momentum
resolution provided UT is σ(p)/p ∼ 15÷ 20 %.

4.1 Magnetic field effects and the pT -kick method

The trajectory of a charged particle of momentum −→p , charge q and velocity −→v in a
static magnetic field −→B (−→x ) is given by:

d−→p
dt

= q−→v ×
−→
B (−→x ) (4.1)

To solve the differential equation (4.1) requires a local description of the magnetic
field, and calculating the resulting integral can be computing intensive depending
on the magnetic field functional expression; therefore, High Level Trigger (HLT)
tracking algorithms use approximated models to describe the interaction of a charged
particle with the magnetic field. In particular, the effect of a magnet between two
detectors region can be approximated with the pT -kick method.

The pT -kick method consists of assuming the deflection of the particle as an
instantaneous change to the momentum of the particle, called kick. This change in
the particle’s trajectory is applied at the centre of the magnet, and its value ∆−→p is
given by:

∆−→p = q

∫
L
d
−→
l ×
−→
B (4.2)

Where L is the trajectory of the particle. Because in the LHCb magnet By � Bx,
and Bz is directed alongside the flight direction of the particle, the equation can be
reduced to:

∆px = p

 tx,f√
1 + t2x,f + t2y,f

− tx,i√
1 + t2y,i + t2x,i

 = q

∫
L
|d
−→
l ×
−→
B |x (4.3)

Where tx and ty are the slopes of the the tracks in the x and y direction re-
spectively. This equation allows calculating the momentum of a charged particle
knowing the deflection due to the magnetic field.

In order to predict the trajectory of the particle after the magnet, equation (4.3)



4.2 Parametrisation of the magnetic field 93

Station CB [(MeV/c)−1]
T1 1171.1± 0.2
T2 1214.7± 0.3
T3 1238.6± 0.2

Table 4.1. Measurement of CB from 5000 MC events, selecting long track of non leptonic
particles with p > 2 GeV/c and pT > 300 MeV/c

can be approximated by:

∆s = tx,f − tx,i '
q

p

∫
L
|d
−→
l ×
−→
B |x (4.4)

The last piece of information requires the integration of the magnetic field itself.
As previously mentioned, for HLT track reconstruction purposes, it is not feasible to
integrate the exact values of Bx along the track; therefore, a parametric description
needs to be produced.

4.2 Parametrisation of the magnetic field

In this section, a parametric description of the action of the magnet in the region
between UT and SciFi will be given. The following model has been developed using
Monte Carlo (MC) data. In a first approximation, it is possible: to consider −→B as a
perfect dipole, to ignore the fringe fields effects and to neglect the length difference
of the various tracks. Under those conditions the magnetic field contribution can be
expressed as: ∫

L
|d
−→
l ×
−→
B |x ' B(∆z)L(∆z) (4.5)

Where B(∆z) is the integral of the magnetic field between zf and zi, L is the
average track length and ∆z = zf − zi. From this point onward B(∆z)L(∆z) will
be called CB(∆z).

To determine the magnitude of CB a sample of 5000 MC events has been used,
and only the long tracks of non leptonic particles1with p > 2 GeV/c and pT >

300 MeV/c particles were considered. The value of ∆s has been calculated between
the VELO tx and the SciFi tx and it has been normalised over the q

p of the MC
generated particle. The combined values of CB are shown in Table 4.1 for every
SciFi station.

1Due to the energy loss introduced by bremsstrahlung radiation, this approximated model cannot
describe leptonic particles.



94 4. Parametric model of the LHCb magnet

(a) Station 1 (b) Station 2

(c) Station 3

Figure 4.1. CB versus tx and ty of the incoming VELO track.

The aforementioned magnetic field approximated model is too simplistic, and
it does not describe the behaviour of a particle in the real magnetic field of the
LHCb experiment. In particular, the assumption of a magnetic field description
which is independent of the particle trajectory is too strict and leads to an incorrect
description of the magnetic field bending.

In order to analyse the dependencies of CB from the VELO trajectory’s parame-
ters, (i.e. tx,i and ty,i) a bi-dimensional study has been conducted, and it is shown in
Figure 4.1. The 2-D plots show an evident and non-trivial dependency between the
normalised ∆s and the track parameters; any model that does not take this effect
in consideration will produce a biased prediction of the particle trajectory, and it
will, therefore, result either in a lower reconstruction or computational efficiency.

In order to include the tx,i and ty,i dependency into the model, a bi-dimensional
polynomial fit has been performed on the 2-D distributions presented in Figure 4.1.



4.2 Parametrisation of the magnetic field 95

(a) Station 1 (b) Station 2

(c) Station 3

Figure 4.2. CB versus tx and ty of the incoming VELO track.



96 4. Parametric model of the LHCb magnet

(a) Station 1 (b) Station 2

(c) Station 3

Figure 4.3. CB along the tx and ty axes.

The fit model is a fourth degree polynomial in tx and ty:

∆s · p
q

= CB =
4∑
i=0

4∑
j=0

ci,jt
i
xt
j
y (4.6)

Where ci,j are the fit parameters which can be represented as a 5 × 5 matrix C.
Figure 4.2 shows the full model after the fit; Figure 4.3 depicts the fitted model and
the CB calculated from the MC tracks along the tx and the ty axes; Figure 4.4 shows
the 2-D distribution of the residuals of the fit2. This improved model replicates with
high fidelity the general structure of the tx and ty dependency of CB.

The model described in (4.6) has 25 free parameters but, by looking at their
statistical significance, most of them are compatible with zero. Table 4.2 shows all

2The residuals are defined as ydata−f(x)
σ(ydata) , where: ydata represents the data points, σ(ydata repre-

sents the uncertainty on the data points and f(x) is the fit model



4.2 Parametrisation of the magnetic field 97

(a) Station 1 (b) Station 2

(c) Station 3

Figure 4.4. Fit residuals versus tx and ty of the incoming VELO track.

(1.1711± 0.0002)× 103 −4± 4 (6.82± 0.03)× 103 (3.9± 3.0)× 102 (−1.54± 0.03)× 105

6± 4 (−1.2± 0.9)× 102 (−0.2± 1.0)× 103 (1± 5)× 104 (0.3± 5.0)× 104

(7.64± 0.07)× 103 (0.5± 1.0)× 103 (−2.5± 0.2)× 105 (−4± 7)× 104 (3.4± 0.8)× 106

(−2± 3)× 102 (6± 5)× 103 (2± 8)× 104 (−6± 2)× 105 (0.4± 3.0)× 106

(−3.0± 0.3)× 104 (−1± 5)× 104 (−1.1± 0.5)× 106 (1± 3)× 106 (6± 3)× 107

Table 4.2. Fit parameters on station 1. The values of ci,j are expressed in [(MeV/c)−1] and
they are presented in a matrix were the row and columns indicate i and j respectively.



98 4. Parametric model of the LHCb magnet

station 1 station 2 station 3
c0,0 (1.1715± 0.0003)× 103 (1.2147± 0.0002)× 103 (1.2387± 0.0002)× 103

c2,0 (7.58± 0.07)× 103 (7.51± 0.08)× 103 (7.23± 0.08)× 103

c4,0 (−2.9± 0.2)× 104 (−4.2± 0.3)× 104 (−4.7± 0.3)× 104

c0,2 (6.75± 0.08)× 103 (7.09± 0.09)× 103 (7.25± 0.09)× 103

c0,4 (1.51± 0.04)× 105 (−1.64± 0.03)× 105 (−1.64± 0.03)× 105

c2,2 (−2.5± 0.2)× 105 (−3.1± 0.2)× 105 (−3.1± 0.2)× 105

c2,4 (3.8± 0.7)× 105 (5.0± 0.8)× 106 (4.8± 0.8)× 106

Table 4.3. Fit parameters for the reduced model on all the SciFi stations. All the values
are expressed in [(MeV/c)−1].

the values of the 25 fit parameters with their uncertainties for the fit on Station
one. The other stations have similar results; therefore, it is possible to reduce the
number o free parameters from 25 to 7 and to simplify the model proposed in (4.6):

CB = c0,0 + c2,0t
2
x + c4,0t

4
x + c0,2t

2
y + c0,4t

4
x + c2,2t

2
xt

2
y + +c2,4t

2
xt

4
y (4.7)

Table 4.3 contains all the parameter values on all the SciFi stations.

4.3 Test of the parametrisation

The parametric model described in section 4.2 can be used to predict where a charged
particle will hit on the SciFi stations. In order to make this prediction possible
several conditions must be met:

• The track of the particle has to be reconstructed by the VELO;

• The momentum and charge of the particle has to be known;

• All the model’s parameters have to be determined from MC events.

If all the conditions above are verified, then, assuming the validity of the pT -kick
model, the trajectory of the particle can be written as:

x(z) =

x0 + tx,vz : z < zm

x0 + tx,vzm + tx,s(z − zm) : z > zm
(4.8)

y(z) = y0 + ty,vz (4.9)



4.3 Test of the parametrisation 99

Where: tx,v(ty,v) is the slope of the x(y) coordinate calculated from the VELO
track; tx,s is the slope of the x coordinate inside the SciFi and zm is z coordinate of
the kick point. The value of tx,s can be calculated by inverting equation (4.6):

tx,s = CB ·
q

p
+ tx,v (4.10)

The accuracy of the model can be measured by executing this procedure on
MC-generated events:

1. The selection is restricted to long tracks from non leptonic patricles with
p > 2 GeV/c and pT > 300 MeV/c;

2. The VELO track parameters are calculated;

3. The projection of the particle onto the different SciFi stations is computed

4. The quantity x error (i.e. the difference between the predicted x position and
the MC truth x position) is calculated

The plots in Figure 4.5 show the distribution of x error on a set of 5000 MC
event, when the real momentum of the particle is used. Because curvature of the
track is proportional to 1

p the distribution of x error is not expected to be flat in p,
the plots in Figure 4.6 show the p dependency of x error, the results are obtained by
grouping the particles in momentum bins and calculating a 1σ interval in x error,
which corresponds to the half-width of a search window that includes 68% of the
tracks. This model can, therefore, predict the trajectory of a charged particle with
a x error of less than 50mm for low momentum particles and less than 5mm for
the high momentum ones.

In a real SciFi tracking scenario, the only momentum estimation available is the
one provided by the UT; therefore the evaluation as mentioned above of the para-
metric model has been conducted by applying a 15 % Gaussian resolution model for
the particles’ momentum. The x error distribution and the momentum-binned one
are shown in Figure 4.7 and 4.8 respectively. Under those more realistic conditions,
the accuracy of the model’s prediction is lowered by a factor four.

In order to quantify the reduction in the search window size introduced by the
track model described in (4.8), it is useful to evaluate the x error distribution when
a linear model is used. The plots in Figure 4.9 show the deflection introduced by
the magnet field on positively charged particles. The plots in Figure 4.10 show the
p dependency of the deflection; because the deflection in the momentum bins is



100 4. Parametric model of the LHCb magnet

(a) Station 1 (b) Station 2

(c) Station 3

Figure 4.5. Distribution of x error on the first x layer of every station. The momentum is
extracted from the MC truth.

non-Gaussian, in order to provide numbers that are comparable with the ones in
Figure 4.6 and 4.8, the half-width of an asymmetric window which includes 68% of
the tracks has been calculated.

In conclusion, the model, as mentioned earlier, allow for a reduction by a factor
4 in the size of the search windows needed to reconstruct long tracks in the SciFi
sub-detector.



4.3 Test of the parametrisation 101

(a) Station 1 (b) Station 2

(c) Station 3

Figure 4.6. The x error vs the momentum of the track on the first x layer of every station.
The light blue histogram represents the momentum distribution of the particles. The
momentum is extracted from the MC truth.



102 4. Parametric model of the LHCb magnet

(a) Station 1 (b) Station 2

(c) Station 3

Figure 4.7. Distribution of x error on the first x layer of every station. The momentum is
extracted with an unbiased 15 % resolution from the MC truth.



4.3 Test of the parametrisation 103

(a) Station 1 (b) Station 2

(c) Station 3

Figure 4.8. x error vs the momentum of the track on the first x layer of every station.
The light blue histogram represents the momentum distribution of the particles. The
momentum is extracted with an unbiased 15 % resolution from the MC truth.



104 4. Parametric model of the LHCb magnet

(a) Station 1 (b) Station 2

(c) Station 3

Figure 4.9. Distribution of x error on the first x layer of every station for a linear extrap-
olation from the VELO, for positive particles.



4.3 Test of the parametrisation 105

(a) Station 1 (b) Station 2

(c) Station 3

Figure 4.10. x error vs the momentum of the track on the first x layer of every station for
a linear extrapolation from the VELO, for positive particles. The light blue histogram
represents the momentum distribution of the particles.





107

Conclusions

This thesis presents two technological problems introduced by the working conditions
of the LHCb experiment during Run 3: the higher throughput required by the DAQ
network infrastructure, and the higher compute power needed to process the full
collision rate produced.

The challenging design aspects of a 32 Tb/s DAQ system are analysed. Possible
solutions are proposed via extensive use of the linear shifting traffic scheduling, and
by requiring more sophisticated flow control capabilities in the network. A low-
level simulation model is developed to test the performance of the system before the
actual procurement. Measurements conducted on real systems validate this model,
and the simulation results can replicate the measured data with a 20% accuracy.
Full-scale simulations of the DAQPIPE event building benchmark show that it is
possible to achieve the required throughput of 80 Gb/s per node. Simulations of the
a2a benchmark show a perfect scalability under the optimal network configuration.
In conclusion, both strategies can be used to implement the event building network
of the LHCb experiment.

To lower the computing power needed to perform the track reconstruction at
the full 30 MHz pp collision rate, a new parametric description of the interaction
between charged particles and the magnet of the LHCb experiment is given. This
fast model derived from MC generated events can be used to predict the particle
trajectory in the SciFi sub-detector. The accuracy of the model is tested against
MC data under different conditions. If the real momentum of the particle is used
the model can predict the particle trajectory with an error of less than 50 mm for
low momentum particles and less than 5 mm for the high momentum ones. If the
momentum estimation provided by the UT is used the accuracy of the simulation
model is lowered by a factor 4. A comparison between this model and a linear ex-
trapolation from the VELO shows a potential reduction by a factor four of the search
windows needed to reconstruct long tracks in the SciFi sub-detector. This model is



108 Conclusions

successfully used by the LookingForward algorithm used in the Allen framework.



109

Bibliography

[1] F. J. Hasert et al. “Observation of Neutrino Like Interactions Without Muon
Or Electron in the Gargamelle Neutrino Experiment”. In: Phys. Lett. 46B
(1973), pp. 138–140. doi: 10.1016/0370-2693(73)90499-1.

[2] G. Arnison et al. “Experimental observation of isolated large transverse en-
ergy electrons with associated missing energy at s=540 GeV”. In: Physics
Letters B 122.1 (Feb. 24, 1983), pp. 103–116. issn: 0370-2693. doi: 10.1016/

0370-2693(83)91177-2. url: http://www.sciencedirect.com/science/

article/pii/0370269383911772 (visited on 10/30/2019).

[3] D. Decamp et al. “A Precise Determination of the Number of Families With
Light Neutrinos and of the Z Boson Partial Widths”. In: Phys. Lett. B235
(1990), pp. 399–411. doi: 10.1016/0370-2693(90)91984-J.

[4] G. B. Andresen et al. “Trapped antihydrogen”. In: Nature 468.7324 (2010),
pp. 673–676. issn: 1476-4687. doi: 10.1038/nature09610. url: https://

doi.org/10.1038/nature09610.

[5] J.R Batley et al. “A precision measurement of direct CP violation in the decay
of neutral kaons into two pions”. In: Physics Letters B 544.1 (Sept. 2002),
pp. 97–112. issn: 0370-2693. doi: 10.1016/s0370-2693(02)02476-0. url:
http://dx.doi.org/10.1016/S0370-2693(02)02476-0.

[6] Georges Aad et al. “Observation of a new particle in the search for the Standard
Model Higgs boson with the ATLAS detector at the LHC”. In: Phys. Lett. B716
(2012), pp. 1–29. doi: 10.1016/j.physletb.2012.08.020. arXiv: 1207.7214

[hep-ex].

[7] Serguei Chatrchyan et al. “Observation of a New Boson at a Mass of 125 GeV
with the CMS Experiment at the LHC”. In: Phys. Lett. B716 (2012), pp. 30–
61. doi: 10.1016/j.physletb.2012.08.021. arXiv: 1207.7235 [hep-ex].

https://doi.org/10.1016/0370-2693(73)90499-1
https://doi.org/10.1016/0370-2693(83)91177-2
https://doi.org/10.1016/0370-2693(83)91177-2
http://www.sciencedirect.com/science/article/pii/0370269383911772
http://www.sciencedirect.com/science/article/pii/0370269383911772
https://doi.org/10.1016/0370-2693(90)91984-J
https://doi.org/10.1038/nature09610
https://doi.org/10.1038/nature09610
https://doi.org/10.1038/nature09610
https://doi.org/10.1016/s0370-2693(02)02476-0
http://dx.doi.org/10.1016/S0370-2693(02)02476-0
https://doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://arxiv.org/abs/1207.7214
https://doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235


110 Bibliography

[8] LHCb Collaboration. “Observation of J/ψp Resonances Consistent with Pen-
taquark States in Λ0

b → J/ψK−p Decays”. In: Phys. Rev. Lett. 115.7 (Aug. 12,
2015), p. 072001. doi: 10.1103/PhysRevLett.115.072001. url: https:

/ / link . aps . org / doi / 10 . 1103 / PhysRevLett . 115 . 072001 (visited on
10/30/2019).

[9] Roel Aaij et al. “Observation of CP Violation in Charm Decays”. In: Phys.
Rev. Lett. 122.21 (2019), p. 211803. doi: 10.1103/PhysRevLett.122.211803.

[10] The LHCb Collaboration et al. “The LHCb Detector at the LHC”. In: Journal
of Instrumentation 3.8 (2008), S08005.

[11] LHCb Collaboration. “Measurement of the b-Quark Production Cross Section
in 7 and 13 TeV pp Collisions”. In: Phys. Rev. Lett. 118.5 (Feb. 3, 2017),
p. 052002. doi: 10.1103/PhysRevLett.118.052002. url: https://link.

aps.org/doi/10.1103/PhysRevLett.118.052002 (visited on 10/13/2019).

[12] LHCb collaboration. “Prompt charm production in pp collisions at sqrt(s)=7
TeV”. In: Nuclear Physics B 871.1 (June 2013), pp. 1–20. issn: 05503213.
doi: 10.1016/j.nuclphysb.2013.02.010. arXiv: 1302.2864. url: http:

//arxiv.org/abs/1302.2864 (visited on 10/13/2019).

[13] LHCb collaboration. “Measurements of prompt charm production cross-sections
in pp collisions at

√
s = 13 TeV”. In: J. High Energ. Phys. 2017.5 (May 2017),

p. 74. issn: 1029-8479. doi: 10.1007/JHEP05(2017)074. arXiv: 1510.01707.
url: http://arxiv.org/abs/1510.01707 (visited on 10/13/2019).

[14] LHCb Collaboration. “LHCb VELO Upgrade Technical Design Report”. In:
(2013).

[15] LHCb Collaboration. LHCb Tracker Upgrade Technical Design Report. CERN-
LHCC-2014-001. LHCB-TDR-015. Feb. 2014. url: https://cds.cern.ch/

record/1647400.

[16] LHCb Collaboration. LHCb magnet: Technical Design Report. Geneva: CERN,
2000. url: https://cds.cern.ch/record/424338.

[17] Rudolph Emil Kalman. “A New Approach to Linear Filtering and Prediction
Problems”. In: Transactions of the ASME–Journal of Basic Engineering 82
(Series D 1960), pp. 35–45.

[18] LHCb Collaboration. LHCb PID Upgrade Technical Design Report. CERN-
LHCC-2013-022. LHCB-TDR-014. Nov. 2013. url: https://cds.cern.ch/

record/1624074.

https://doi.org/10.1103/PhysRevLett.115.072001
https://link.aps.org/doi/10.1103/PhysRevLett.115.072001
https://link.aps.org/doi/10.1103/PhysRevLett.115.072001
https://doi.org/10.1103/PhysRevLett.122.211803
https://doi.org/10.1103/PhysRevLett.118.052002
https://link.aps.org/doi/10.1103/PhysRevLett.118.052002
https://link.aps.org/doi/10.1103/PhysRevLett.118.052002
https://doi.org/10.1016/j.nuclphysb.2013.02.010
http://arxiv.org/abs/1302.2864
http://arxiv.org/abs/1302.2864
http://arxiv.org/abs/1302.2864
https://doi.org/10.1007/JHEP05(2017)074
http://arxiv.org/abs/1510.01707
http://arxiv.org/abs/1510.01707
https://cds.cern.ch/record/1647400
https://cds.cern.ch/record/1647400
https://cds.cern.ch/record/424338
https://cds.cern.ch/record/1624074
https://cds.cern.ch/record/1624074


Bibliography 111

[19] LHCb Collaboration. LHCb RICH: Technical Design Report. Technical Design
Report LHCb. Geneva: CERN, 2000. url: https://cds.cern.ch/record/

494263.

[20] LHCb Collaboration. LHCb calorimeters: Technical Design Report. Technical
Design Report LHCb. Geneva: CERN, 2000. url: https://cds.cern.ch/

record/494264.

[21] LHCb Collaboration. LHCb muon system: Technical Design Report. Technical
Design Report LHCb. Geneva: CERN, 2001. url: https://cds.cern.ch/

record/504326.

[22] Jose Duato, Sudhakar Yalamanchili, and Ni Lionel. Interconnection Networks:
An Engineering Approach. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2002. isbn: 1-55860-852-4.

[23] William James Dally and Brian Patrick Towles. Principles and Practices of In-
terconnection Networks. Elsevier, Mar. 6, 2004. 582 pp. isbn: 978-0-08-049780-
8.

[24] Ni. “Issues in designing truly scalable interconnection networks”. In: 1996 Pro-
ceedings ICPP Workshop on Challenges for Parallel Processing. 1996 Proceed-
ings ICPP Workshop on Challenges for Parallel Processing. Aug. 1996, pp. 74–
83. doi: 10.1109/ICPPW.1996.538592.

[25] Clark David Thompson. “A Complexity Theory for VLSI”. PhD thesis. Pitts-
burgh, PA, USA: Carnegie Mellon University, 1980.

[26] The MIT Press. Complexity Issues in VLSI. The MIT Press. url: https://

mitpress.mit.edu/books/complexity-issues-vlsi (visited on 09/10/2019).

[27] P.T. Gaughan and S. Yalamanchili. “Adaptive routing protocols for hypercube
interconnection networks”. In: Computer 26.5 (May 1993), pp. 12–23. issn:
0018-9162, 1558-0814. doi: 10.1109/2.211888.

[28] J. Duato. “A necessary and sufficient condition for deadlock-free routing in cut-
through and store-and-forward networks”. In: IEEE Transactions on Parallel
and Distributed Systems 7.8 (Aug. 1996), pp. 841–854. issn: 1045-9219, 1558-
2183, 2161-9883. doi: 10.1109/71.532115.

[29] S. Warnakulasuriya and T. M. Pinkston. “Characterization of deadlocks in
interconnection networks”. In: Proceedings 11th International Parallel Pro-
cessing Symposium. Proceedings 11th International Parallel Processing Sym-
posium. Apr. 1997, pp. 80–86. doi: 10.1109/IPPS.1997.580852.

https://cds.cern.ch/record/494263
https://cds.cern.ch/record/494263
https://cds.cern.ch/record/494264
https://cds.cern.ch/record/494264
https://cds.cern.ch/record/504326
https://cds.cern.ch/record/504326
https://doi.org/10.1109/ICPPW.1996.538592
https://mitpress.mit.edu/books/complexity-issues-vlsi
https://mitpress.mit.edu/books/complexity-issues-vlsi
https://doi.org/10.1109/2.211888
https://doi.org/10.1109/71.532115
https://doi.org/10.1109/IPPS.1997.580852


112 Bibliography

[30] S. Konstantinidou and L. Snyder. “The Chaos router”. In: IEEE Transactions
on Computers 43.12 (Dec. 1994), pp. 1386–1397. issn: 0018-9340, 1557-9956,
2326-3814. doi: 10.1109/12.338098.

[31] LHCb Trigger and Online Upgrade Technical Design Report. CERN-LHCC-
2014-016. LHCB-TDR-016. May 2014. url: https://cds.cern.ch/record/

1701361.

[32] D. P. Bertsekas et al. “Optimal communication algorithms for hypercubes”. In:
Journal of Parallel and Distributed Computing 11.4 (Apr. 1, 1991), pp. 263–
275. issn: 0743-7315. doi: 10.1016/0743- 7315(91)90033- 6. url: http:

/ / www . sciencedirect . com / science / article / pii / 0743731591900336

(visited on 10/05/2019).

[33] Naijie Gu. “Efficient indirect all-to-all personalized communication on rings
and 2-D tori”. In: J. Comput. Sci. & Technol. 16.5 (Sept. 1, 2001), pp. 480–
483. issn: 1860-4749. doi: 10.1007/BF02948967. url: https://doi.org/10.

1007/BF02948967 (visited on 10/05/2019).

[34] Vassilios V. Dimakopoulos and Nikitas J. Dimopoulos. “A Theory for Total
Exchange in Multidimensional Interconnection Networks”. In: IEEE Trans.
Parallel Distrib. Syst. 9.7 (July 1998), pp. 639–649. issn: 1045-9219. doi: 10.

1109/71.707541. url: http://dx.doi.org/10.1109/71.707541 (visited on
10/05/2019).

[35] S. H. Bokhari. “Multiphase complete exchange: a theoretical analysis”. In:
IEEE Transactions on Computers 45.2 (Feb. 1996), pp. 220–229. doi: 10.

1109/12.485374.

[36] Yu-Chee Tseng et al. “Bandwidth-Optimal Complete Exchange on Wormhole-
Routed 2D/3D Torus Networks: A Diagonal-Propagation Approach”. In: IEEE
Trans. Parallel Distrib. Syst. 8.4 (Apr. 1997), pp. 380–396. issn: 1045-9219.
doi: 10.1109/71.588613. url: https://doi.org/10.1109/71.588613

(visited on 10/05/2019).

[37] Christina Christara, Xiaoliang Ding, and Ken Jackson. “An Efficient Transpo-
sition Algorithm for Distributed Memory Computers”. In: High Performance
Computing Systems and Applications. Ed. by Andrew Pollard, Douglas J. K.
Mewhort, and Donald F. Weaver. The International Series in Engineering and
Computer Science. Boston, MA: Springer US, 2000, pp. 349–370. isbn: 978-0-

https://doi.org/10.1109/12.338098
https://cds.cern.ch/record/1701361
https://cds.cern.ch/record/1701361
https://doi.org/10.1016/0743-7315(91)90033-6
http://www.sciencedirect.com/science/article/pii/0743731591900336
http://www.sciencedirect.com/science/article/pii/0743731591900336
https://doi.org/10.1007/BF02948967
https://doi.org/10.1007/BF02948967
https://doi.org/10.1007/BF02948967
https://doi.org/10.1109/71.707541
https://doi.org/10.1109/71.707541
http://dx.doi.org/10.1109/71.707541
https://doi.org/10.1109/12.485374
https://doi.org/10.1109/12.485374
https://doi.org/10.1109/71.588613
https://doi.org/10.1109/71.588613


Bibliography 113

306-47015-8. doi: 10.1007/0-306-47015-2_38. url: https://doi.org/10.

1007/0-306-47015-2_38 (visited on 10/05/2019).

[38] Young-Joo Suh and Sudhakar Yalamanchili. “All-To-All Communication with
Minimum Start-Up Costs in 2D/3D Tori and Meshes”. In: IEEE Trans. Par-
allel Distrib. Syst. 9.5 (May 1998), pp. 442–458. issn: 1045-9219. doi: 10.

1109/71.679215. url: https://doi.org/10.1109/71.679215 (visited on
10/05/2019).

[39] A. Faraj, X. Yuan, and P. Patarasuk. “A Message Scheduling Scheme for All-
to-All Personalized Communication on Ethernet Switched Clusters”. In: IEEE
Transactions on Parallel and Distributed Systems 18.2 (Feb. 2007), pp. 264–
276. issn: 1045-9219. doi: 10.1109/TPDS.2007.19.

[40] D. H. Cámpora Pérez, R. Schwemmer, and N. Neufeld. “Protocol-Independent
Event Building Evaluator for the LHCb DAQ System”. In: IEEE Transactions
on Nuclear Science 62.3 (June 2015), pp. 1110–1114. issn: 0018-9499. doi:
10.1109/TNS.2015.2428891.

[41] Flavio Pisani, Daniel Hugo Cámpora Pérez, and Niko Neufeld. “High-speed
zero-copy data transfer for DAQ applications”. In: Journal of Physics: Con-
ference Series 608.1 (2015), p. 012029. url: http://stacks.iop.org/1742-

6596/608/i=1/a=012029.

[42] Adam Otto et al. “A first look at 100 Gbps LAN technologies, with an emphasis
on future DAQ applications.” In: Journal of Physics: Conference Series 664.5
(2015), p. 052030. url: http://stacks.iop.org/1742-6596/664/i=5/a=

052030.

[43] InfiniBand SM Trade Association. InfiniBand Architecture Specification Annex
A 16: RoCE. 2010.

[44] InfiniBand SM Trade Association. InfiniBand Architecture Specification Annex
A 17: RoCEv2. 2014.

[45] 802.3-2018 - IEEE Standard for Ethernet - IEEE Standard. url: https://

ieeexplore.ieee.org/document/8457469 (visited on 10/10/2019).

[46] C. Clos. “A study of non-blocking switching networks”. In: The Bell System
Technical Journal 32.2 (Mar. 1953), pp. 406–424. doi: 10.1002/j.1538-

7305.1953.tb01433.x.

https://doi.org/10.1007/0-306-47015-2_38
https://doi.org/10.1007/0-306-47015-2_38
https://doi.org/10.1007/0-306-47015-2_38
https://doi.org/10.1109/71.679215
https://doi.org/10.1109/71.679215
https://doi.org/10.1109/71.679215
https://doi.org/10.1109/TPDS.2007.19
https://doi.org/10.1109/TNS.2015.2428891
http://stacks.iop.org/1742-6596/608/i=1/a=012029
http://stacks.iop.org/1742-6596/608/i=1/a=012029
http://stacks.iop.org/1742-6596/664/i=5/a=052030
http://stacks.iop.org/1742-6596/664/i=5/a=052030
https://ieeexplore.ieee.org/document/8457469
https://ieeexplore.ieee.org/document/8457469
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x


114 Bibliography

[47] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. “A Scalable,
Commodity Data Center Network Architecture”. In: Proceedings of the ACM
SIGCOMM 2008 Conference on Data Communication. SIGCOMM ’08. event-
place: Seattle, WA, USA. New York, NY, USA: ACM, 2008, pp. 63–74. isbn:
978-1-60558-175-0. doi: 10.1145/1402958.1402967. url: http://doi.acm.

org/10.1145/1402958.1402967 (visited on 10/11/2019).

[48] C. E. Leiserson. “Fat-trees: Universal networks for hardware-efficient super-
computing”. In: IEEE Transactions on Computers C-34.10 (Oct. 1985), pp. 892–
901. doi: 10.1109/TC.1985.6312192.

[49] M. D. Schroeder et al. “Autonet: a high-speed, self-configuring local area net-
work using point-to-point links”. In: IEEE Journal on Selected Areas in Com-
munications 9.8 (Oct. 1991), pp. 1318–1335. doi: 10.1109/49.105178.

[50] Xuan-Yi Lin, Yeh-Ching Chung, and Tai-Yi Huang. “A multiple LID routing
scheme for fat-tree-based InfiniBand networks”. In: 18th International Parallel
and Distributed Processing Symposium, 2004. Proceedings. 18th International
Parallel and Distributed Processing Symposium, 2004. Proceedings. Apr. 2004,
pp. 11–. doi: 10.1109/IPDPS.2004.1302913.

[51] Zahavi Eitan et al. “Optimized InfiniBandTM fat-tree routing for shift all-
to-all communication patterns”. In: Concurrency and Computation: Practice
and Experience 22.2 (), pp. 217–231. doi: 10.1002/cpe.1527. url: https:

//onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1527.

[52] S. R. Ohring et al. “On generalized fat trees”. In: Proceedings of 9th Interna-
tional Parallel Processing Symposium. Proceedings of 9th International Paral-
lel Processing Symposium. Apr. 1995, pp. 37–44. doi: 10.1109/IPPS.1995.

395911.

[53] Elias Weingärtner, Hendrik Vom Lehn, and Klaus Wehrle. “A Performance
Comparison of Recent Network Simulators”. In: Proceedings of the 2009 IEEE
International Conference on Communications. ICC’09. event-place: Dresden,
Germany. Piscataway, NJ, USA: IEEE Press, 2009, pp. 1287–1291. isbn: 978-
1-4244-3434-3. url: http : / / dl . acm . org / citation . cfm ? id = 1817271 .

1817510.

[54] Atta ur Rehman Khan, Sardar Muhammad Bilal, and Mazliza Othman. “A
Performance Comparison of Network Simulators for Wireless Networks”. In:
CoRR abs/1307.4129 (2013). url: http://arxiv.org/abs/1307.4129.

https://doi.org/10.1145/1402958.1402967
http://doi.acm.org/10.1145/1402958.1402967
http://doi.acm.org/10.1145/1402958.1402967
https://doi.org/10.1109/TC.1985.6312192
https://doi.org/10.1109/49.105178
https://doi.org/10.1109/IPDPS.2004.1302913
https://doi.org/10.1002/cpe.1527
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1527
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1527
https://doi.org/10.1109/IPPS.1995.395911
https://doi.org/10.1109/IPPS.1995.395911
http://dl.acm.org/citation.cfm?id=1817271.1817510
http://dl.acm.org/citation.cfm?id=1817271.1817510
http://arxiv.org/abs/1307.4129


Bibliography 115

[55] András Varga et al. “The OMNeT++ discrete event simulation system”. In:
Proceedings of the European simulation multiconference (ESM’2001). Vol. 9.
sn, 2001, p. 65.

[56] András Varga and Rudolf Hornig. “An Overview of the OMNeT++ Simulation
Environment”. In: Proceedings of the 1st International Conference on Simu-
lation Tools and Techniques for Communications, Networks and Systems &
Workshops. Simutools ’08. event-place: Marseille, France. ICST, Brussels, Bel-
gium, Belgium: ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2008, 60:1–60:10. isbn: 978-963-9799-20-2.
url: http://dl.acm.org/citation.cfm?id=1416222.1416290.

[57] Tommaso Colombo et al. “Flit-Level InfiniBand Network Simulations of the
DAQ System of the LHCb Experiment for Run-3”. In: IEEE Transactions on
Nuclear Science 66.7 (July 2019), pp. 1159–1164. issn: 0018-9499, 1558-1578.
doi: 10.1109/TNS.2019.2905993.

[58] Paul Grun. “Introduction to infiniband for end users”. In: White paper, Infini-
Band Trade Association (2010).

[59] InfiniBand SM Trade Association. InfiniBand Architecture Specification Vol-
ume 1 and 2. 2015. url: http://www.infinibandta.org/content/pages.

php?pg=technology_public_specification.

[60] “IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems”. In: IEEE Std 1588-2008 (Revision of
IEEE Std 1588-2002) (July 2008), pp. 1–300. doi: 10.1109/IEEESTD.2008.

4579760.

http://dl.acm.org/citation.cfm?id=1416222.1416290
https://doi.org/10.1109/TNS.2019.2905993
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification
http://www.infinibandta.org/content/pages.php?pg=technology_public_specification
https://doi.org/10.1109/IEEESTD.2008.4579760
https://doi.org/10.1109/IEEESTD.2008.4579760

	Acronyms
	Introduction
	The LHCb experiment at the LHC
	The CERN
	The Large Hadron Collider
	The LHCb detector
	The LHCb tracking system
	VErtex LOcator
	Upstream Tracker
	Magnet
	Scintillating Fiber (SciFi)
	Track reconstruction and performance

	Particle identification
	RICH1 & RICH2
	Calorimeter system
	Muon system


	Interconnection networks
	Terminology and basic concepts
	Network classification

	Network topology
	Channels and nodes
	Cuts and Bisections
	Paths
	Symmetry and design considerations

	Performance measurements: throughput and latency
	Router model
	Flow Control
	Data fragmentation
	Bufferless flow control
	Buffered flow control
	Buffer allocation and backpressure

	Routing
	Classification of Routing Algorithms
	Formal definition of the routing function
	Virtual channels
	Deadlock
	Livelock


	Fast networks for the next generation LHCb Data Acquisition
	The LHCb Event Building
	High level description of the Event Building process
	The Event Building network

	Event Building traffic generators
	Linear shifting scheduling
	DAQPIPE
	a2a

	Network implementation
	Network technology
	Network topology
	Routing algorithms

	Event Building network simulation
	Simulation libraries overview
	flit level InfiniBand simulation model
	Model tuning
	Traffic injector implementation
	Fast model implementation
	Simulation results


	Parametric model of the LHCb magnet
	Magnetic field effects and the pT-kick method
	Parametrisation of the magnetic field
	Test of the parametrisation

	Conclusions

