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Abstract 

In this dissertation are reported the most relevant results obtained during my three 

years Ph.D. project. An open-air plasma source has been developed to treat plastic and 

metallic films typically used in food packaging manufacturing. Among others, the DBD 

configuration was chosen due to its many advantages such as high intensity and 

uniformity of the treatment, possibility of operating in ambient air as well as ease of 

scale up. 

Biological experiments were performed to assess the microbial reduction induced by 

the plasma treatment. Different operative conditions have been tested in order to 

identify the most efficient configuration and two distinct behaviours have been 

observed: low-power density treatment allowed to achieve microbial inactivation values 

below log 2 independently on treatment time; high-power density treatment where the 

microbial reduction grew with increasing treatment time. 

Subsequently, the plasma discharge has been characterized by means of three 

investigation methods: thermal, electrical and optical absorption spectroscopy (OAS) 

analysis. The thermal and electrical analyses were employed to identify the best 

dielectric materials for food packaging manufacturing purposes. Once defined the 

optimal DBD configuration, OAS was used to measure the absolute concentration of 

ozone and nitrogen dioxide. Results showed that at low-power density the chemistry 

is governed by ozone; while at high-power density ozone is consumed by the poisoning 

effect and only nitrogen dioxide is detectable. 

Lastly, a numerical simulation has been used to deeper investigate the chemistry 

governing the plasma discharge; by means of PLASIMO a global model and a fluid 

model were implemented.

 

 

 





Chapter 1 

Introduction 

 
“What should we call the main part of the discharge?” [1]. The Nobel prize winner 

Irving Langmuir asked and answered this question back in 1928; he was working in 

the General Electric Research Laboratory on the extension of lifetime of tungsten 

filament light bulbs and he was looking for a word to describe the gas discharge he 

was studying. As many know, he decided to use the word “plasma” due to the 

similarities he saw between that multicomponent, strongly interacting ionized gas and 

the blood plasma. 

More than 90 years have passed, and the term “plasma” is well accepted by the scientific 

community, however the definition of what is a plasma has been shaped through 

research in the last hundreds of years, starting from the Benjamin Franklin’s lightning 

experiment (1752) until now. 

Nowadays, we refer to plasma as the fourth state of matter: plasma is an ionized 

gas and consists of neutral, reactive and charged species. Ionization itself is an 

extremely wide concept and therefore we can say that more than 99% of visible matter 

in the universe is in the plasma state [2]. Plasma can be observed in nature as lightning 

or as Northern light in proximity of the poles; in the everyday life we are used to see 

plasma in neon lamps, besides from that plasma applications are spread all around the 

industrial world. 

“Ionized” means that at least one electron is not bound to an atom or molecule, 

converting the atom or molecule into positively charged ion [2]. A gas can be more or 

less ionized depending on the energy applied to it; therefore we can divide plasmas in 

two groups, weakly and strongly ionized: weakly ionized plasmas are those with a low 

ratio between ionized and non-ionized particles (ionization degree), usually this ratio 

is in the range 10-7–10-4. When the ionization degree is closer to unity, we have a 

completely ionized plasma [2]. An ionization degree is not the only characteristic that 

a gas should have to be called plasma; a plasma is a macroscopically neutral gas, which 

means that the balance of electrically positive and negative species must be almost 

null. 

As in any gas, temperature in plasma is determined by the average energies of its 

particles (neutral and charged) and their relevant degrees of freedom (translational, 

rotational, vibrational, and those related to electronic excitation). Thus, plasmas, as 

multi-component systems, are able to exhibit multiple temperatures [2]. Following this 

concept, plasmas can be divided in two other categories: equilibrium plasmas and non-

equilibrium plasmas. equilibrium plasmas are strongly ionized, and the temperatures 

of neutral species, ions and electrons are almost equal. Local Thermodynamic 

Equilibrium can be assumed (these plasmas are also known as LTE-plasmas), 

consequently the macroscopic temperature of the gas is high: 
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  Te ≈ Tn ≈ Ti ≈ Tg  

Where Te, Tn, Ti and Tg are temperatures of electrons, neutral species ions and gas 

respectively. Gas temperature may reach values of several eV (1 eV is about 11600 K); 

consequently, these plasmas are also called hot plasmas or thermal plasmas. 

Applications are typically conducted at atmospheric pressure and include cutting and 

welding of metals, thermonuclear plasma systems, waste destruction, nanoparticle 

synthesis, plasma spray and others. Although it is not known on a global scale, thermal 

plasmas are involved in each automotive and shipbuilding industries; moreover, one of 

the most exploited methods of production of optical fiber implies the usage of a hot 

plasma. 

Non-equilibrium plasmas (also known as cold, non-thermal or non-LTE plasmas) 

are plasmas in which the electron temperature is orders of magnitude greater than the 

temperature of any other species; as a result, there is no LTE and the macroscopic gas 

temperature is lower than in hot plasmas: 

Te » Tn ≈ Ti ≈ Tg 

Historically, cold plasmas were produced in low pressure environment and used for 

applications such as microelectronics manufacturing, ozone generation, light generation 

and surface functionalization. It’s worth reminding that most computer and smart 

phones hardware have undergone production processes relying on plasma technology 

[3]. 

In order to ionize a gas energy, either thermal or electrical, is needed; to generate 

non-equilibrium plasmas, usually a high electric field is applied to a gas by means of 

two electrodes; when the potential difference applied to the gas exceed the breakdown 

voltage some atoms and molecules are ionized. This breakdown voltage was described 

by Paschen [4] and depends on the product of the gas pressure and the distance 

between electrodes. These two parameters together define the distance that an electron 

will travel in the gas before colliding with another particle; this distance along with 

the electrical force applied to the electron give us information about the energy 

transferred in the collision: if this energy is higher than a certain threshold the affected 

 

Figure 1.1 Breakdown Paschen curves for different atomic and molecular gases. [5] 
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atom or molecule will be ionized. In order to reach that energy threshold value, the 

distance between two collisions cannot be too small; consequently, the voltage 

breakdown is higher for shorter inter electrode distances. On the other hand, an 

increase in pressure would lead to more frequent collisions, therefore a shorter distance 

travelled by electrons between collisions, hence a lower probability to successfully 

ionize an atom/molecule. Hence, the U shape for the breakdown graph that can be 

seen in Figure 1.1. 

In order to sustain a non-equilibrium plasma, a pulsed power supply is often used; 

in fact, if the voltage applied to the electrodes exceed the breakdown voltage for a long 

period, the ionization may reach a high degree changing the gas condition from non-

LTE to LTE. At low pressure, a stable plasma generation can be achieved imposing a 

low voltage over a gap of several centimetres; as the pressure raises also the breakdown 

voltage raises: at atmospheric pressure the breakdown value over a few millimetres gap 

is of several kV [5,6]. 

Plasma grants possibilities that are attractive for different applications in distinct 

fields: (1) the temperature of at least one of its component and energy density can 

significantly exceed those of conventional chemical technologies; (2) plasmas are able 

to produce very high concentrations of energetic and chemically active species (e.g., 

electrons, ions, atoms, radicals, excited states and photons); (3) plasma systems can 

essentially be far from thermodynamic equilibrium, keeping bulk temperature as low 

as room temperature. These plasma features allow significant intensification of 

traditional chemical processes and crucial increase of their efficiencies [5]. 

In recent years, a great effort has been made in cold plasma research to eliminate 

the constraint of working at low pressure ; there are mainly two reason behind this 

worldwide trend: first of all, working at atmospheric pressure implies freedom from 

vacuum systems which are expensive and extremely sensitive; moreover, working at 

high pressure allows treatment on living tissues, paving the way for medical 

applications,.  

Thanks to the work conducted by research groups and companies, the field of 

application of cold atmospheric pressure (CAP) is widening day by day; starting from 

assisted combustion [7], surface disinfection [8], tissue engineering [9] decontamination 

of thermosensitive material [10] food [11–13] and packaging sanitation[14–16] surface 

functionalization in implantology [17,18], treatment and deposition of polymers [19–

21]. Finally, the use of non-thermal plasmas has gained significant interest in the 

medical field [22–25], showing promising future applications in wounds healing [8,26,27] 

and cancer therapies [28–30]. 

1.1 This thesis 

The focus of my Ph.D. research was to study, design and optimize cold atmospheric 

pressure plasma processes for disinfection and sterilization purposes. The main core of 

the project was to find out if CAPs could be efficiently used for bacterial inactivation 

in a very specific application: disinfection of films used as food packaging. This task 
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required to study and understand which plasma source configuration could be used for 

such applications. 

A process optimization phase followed; this phase consisted in characterizing the 

plasma in order to better understand the behaviour of the discharge under various 

different operative conditions. The knowledge acquired during this investigation 

allowed to identify the plasma characteristics that are involved in microbial 

inactivation and how to maximize their production, enhancing the process efficacy; 

this improvement enabled to meet the requirements of the industrial process: short 

treatment time and high inactivation levels. 

Conclusions about the applicability and convenience of using plasma assisted 

decontamination processes are also given. 

1.2 Outline 

In this section an overview of the thesis will be given in order to help the reader to 

go through it without losing perspective on the final aim of the whole dissertation. 

After this brief introduction, which has the purpose to clarify the main goal of my 

research, the reader will find a more structured explanation of what can be found in 

literature about packaging disinfection. The aim of this second chapter is to underline 

the limits of applicability of conventional treatments and to highlight the main 

advantages of CAPs. At the end of this chapter a description of the plasma source 

used is presented. 

The third chapter is meant to explain the optimization approach followed during 

this project; an iterative approach was used which required to repeat the same steps 

over and over: design of the plasma source, biological test to assess the treatment 

efficacy, plasma characterization to link inactivation efficacy with operative conditions. 

Later in this chapter, a complete analysis of what are the traits of CAPs that may lead 

to inactivation is reported. On chapter 4 the biological protocol is shown along with 

the main bacterial inactivation results. 

Chapter 5 exposes every diagnostic technique used to characterize the plasma 

process. In this thesis are reported: temperature measurements, electrical 

measurements, UV analysis and chemical analysis of the gas phase by means of optical 

absorption spectroscopy (OAS). This last method of measurements is explained in 

detail being the most powerful one. 

On chapter 6 a different approach to the same problem is reported: numerical 

simulation. The plasma discharge was simulated by means of the code PLASIMO 

(https://plasimo.phys.tue.nl/); this kind of approach allows, after validation, to 

predict the whole chemistry of a process. Additionally, by changing input parameters 

the user can predict the behaviour of different discharges without performing every 

characterization test. 

The closing chapter goes again through the whole research project in order to 

underline the main results and conclusions achieved; moreover, an overview on future 

possible applications of disinfection plasma treatment is given, reporting those 

industrial sectors which may take advantage from this new method of sanitation. 

https://plasimo.phys.tue.nl/
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Chapter 2 

2.0 Bacterial inactivation 

 
Bacterial inactivation is a major concern both in the industrial and in the 

biomedical fields; scientists and researchers all around the world have been seeking for 

effective and reliable sterilization methods for hundreds of years.  

In the industrial field, a great effort was and still is devoted to find new and more 

efficient sterilization methods for the food packaging sector; in fact, packaging plays 

an important role in the food manufacturing process, to protect from microorganisms 

and chemical changes, preserving foods from external agents, hence lengthening the 

shelf life of products. One of the most used methods in the food processing industry is 

“aseptic packaging”; this method involves the filling and sealing of a microbiologically 

stable (i.e. commercially sterile) product into sterilized containers under conditions 

that prevent microbial recontamination of the product, the containers, and their 

closures [1]. 

The bacterial inactivation topic is crucial also in the biomedical field for different 

reasons: as shown by the World Health Organization in the “Prevention of hospital-

acquired infections” [2], 8.7% of hospital patients had nosocomial infections; at any 

time over 1.4 million people worldwide suffer from complications acquired in hospital 

due to bacterial infections. L.T. Curtis underlines that in the US alone, nosocomial 

infections cause about 1.7million infections and 99000 deaths per year; moreover, each 

nosocomial infection increased medical costs by $12,197 [3]. Bacteria are transmitted 

between patients through several pathways: direct contact between patients (hands, 

saliva droplets or other body fluids); in the air (droplets or dust contaminated by a 

patient’s bacteria); via staff contaminated through patient care (hands, clothes, nose 

and throat) who become transient or permanent carriers, subsequently transmitting 

bacteria to other patients by direct contact during care; via objects contaminated by 

the patient (including equipment); via the staff’s hands, visitors or other environmental 

sources (e.g. water, other fluids, food) [4]. 

With this basis, it is easy to understand why the pursuit of new, efficient, reliable 

and flexible bacterial inactivation methods is so interesting. 

2.1 Sterilization methods for packaging  

As reported by Ansari et alii in their “Overview of sterilization methods for 

packaging materials used in aseptic packaging systems” [1], there are several key factors 

that a sterilization method should have: 

• rapid microbicidal activity; 



 

 

• compatibility with treated surfaces, especially packaging material and 

equipment; 

• minimum residue, easily removed from surface; 

• present no health hazard to the consumer; 

• no adverse effect on product quality in the case of unavoidable residue or 

erroneous high concentration; 

• present no health hazard to operation personnel around the packaging 

equipment; 

• compatible with environment; 

• non-corrosive to surfaces treated; 

• reliable and economical. 

As can be expected, none of the common sterilization systems in use today fulfills 

all the request shown above. Conventional sterilization methods can be divided in three 

main categories: thermal, radiation and chemical treatments. 

2.1.1 Thermal treatments 

Traditionally, bacterial inactivation has been delivered through heating processes. 

Experience has shown that moist heat has a greater efficacy than dry heat to kill 

microorganisms; among others, spores present the highest thermal resistance and are 

often used as a benchmark to evaluate the efficacy of a sterilization process. “Dry heat 

produces microbial death as a result of dehydration followed by protein oxidation. 

Death by moist heat is caused by denaturation and coagulation of essential cell 

proteins” [5].  

The main drawbacks of thermal processes are long treatment times and the 

dependence on the material to be treated; the velocity of microbial destruction depends 

on how rapidly the heat is transferred to the cell from the thermal carrier. For these 

types of treatments, it is essential to consider the nature of the surface to be treated. 

Metal containers, with their high conductivity are easier to thermally sterilize than are 

carton and plastics packaging. Moreover, plastic materials have often a low thermal 

stability and cannot be exposed to high temperature for the time needed to achieve 

sterilization.  

On the positive side, thermal processes do not deposit any residues on the surface 

of the treated material and are environmentally friendly.  

Among thermal processes it is worth mentioning treatments with saturated steam: 

these methods use humid air with a temperature between 121°C and 165°C. Treatments 

are usually performed under pressure, with a highly variable timing related to the level 

of inactivation desired: from a few seconds to several tens of minutes. 

Other types of thermal processes are those using superheated steam and hot air; 

these treatments use dry heat and are less effective than those with humid air; 

consequently, higher temperatures are needed to achieve sterilization. Temperatures 

may vary between 145°C and 250°C. When materials susceptible to water are used, 

such as paper containers, treatments with hot air may be the only viable option. 
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The last thermal methods to be reported are those based on extrusion heating; these 

processes exploit the heat used to produce the packaging materials to deliver also the 

sterilization. Usually, this technology is used in form-fill-seal packaging systems. 



 

 

2.1.2 Chemical treatments 

These methods use chemicals in the form of liquid or gas for bacterial inactivation; 

there is a wide variety of chemicals which can be used for this purpose: ethylene oxide, 

peracetic acid, beta propiolactone, alcohol, chlorine, ozone etc.  

Among others, hydrogen peroxide is the most interesting to be used for industrial 

applications; packaging is sprayed or dipped into an aqueous solution of 10-30% of 

hydrogen peroxide. This sterilizing agent has a slow effect on spore at low temperature; 

the efficacy of the treatment can be enhanced greatly increasing the temperature up 

to 60-90°C with hot air.  

Chemical packaging sterilization may be the only viable path when thermosensitive 

materials are used; on the other hand, there are several drawbacks that cannot be 

ignored. First, there is a major concern about the toxicity of the chemicals involved in 

the process: there are regulations stating the maximum concentration of residues that 

can be found on the product after treatment, in order not to harm the customer. For 

this reason, cleaning of the packaging after treatment is often needed. The safety of 

workers must be guaranteed. Finally, the chemical procurement is an expense which 

must be reported. 

2.1.3 Radiation treatments 

Several different electromagnetic radiations are used for sterilization. Radiations 

are characterized by frequency, wavelength, penetrating power and energy range; 

known biocidal radiation are infrared, ultraviolet and γ rays. As for thermal processes, 

the efficacy of a sterilization treatment is a function of the energy delivered to the 

substrate (i.e. type of radiation, intensity and exposure time).  

A huge advantage using these kinds of treatments is that radiation does not leave 

any residues on the treated surface, nor affect the surrounding environment. 

On the other hand, irradiation may affect part of the material properties, 

compromising its use; furthermore, all electromagnetic radiation is a line-of-sight 

technology, reducing its industrial applicability.  

The best known and used biocidal radiation is the UV which use rays with 

wavelengths between 200 and 315 nm [1]. The optimal effect of this treatment can be 

achieved using UV-C rays (250 – 280 nm). UV radiation is frequently also combined 

with chemical processes to enhance the sterilization effect and to minimize the quantity 

of chemicals involved in the process; resulting in a minor quantity of residues to be 

removed.  

Infrared rays lie in the waveband 0.8 – 15 µm; this kind of radiation is absorbed by 

the treated surface and converted into heat, increasing the material temperature. This 

method relies greatly on the geometry and physical properties of the package. 

Another excellent sterilizing method involve ionizing radiation; unlike the UV, this 

radiation penetrates deeply into objects. Among ionizing radiation, the most employed 

is the γ rays. Even if the efficacy of this technology is well known, it is not well spread 

in the industry field, due to several disadvantages that are worth mentioning: to avoid 
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any hazard for workers and the environment a heavy shielding must be used; moreover 

the initial installation cost is large. Finally, treated containers have to be moved from 

the sterilizing facilities to a location where they are filled with foods; it is difficult to 

ensure the packaging sterility during the phase. 

Lastly, short pulses of light can be used for sterilization purposes; this technology 

employs highly energetic broad spectra rays; materials are flashed from 1 to 20 times 

with exposure times between 1 µs to 0.1 s. This sterilization method acts only in line 

of sight, hence can be applied only on containers with a geometry which does not allow 

shadowing on the product. 

2.2.0 Plasma assisted treatments for bacterial 

inactivation 

Although plasma applications have been present in the industrial field for decades, 

the interest about plasma disinfection has grown only recently. Many research papers 

can be found in literature showing CAP applicability to the biomedical field; this wide 

emerging field (known as plasma medicine) includes large scale disinfection, wound 

healing, cancer treatment, tissue engineering and pharmacology [6].  

The knowledge of plasma medicine on interaction between plasma and 

microorganisms and disinfection methods to avoid infections can be used to study, 

design and implement CAP industrial applications for packaging materials 

sterilization. 

Many authors have investigated the possibility to kill microorganisms using plasma; 

the most relevant results are reported here: Pervin Basaran et alii obtained a log 5 

decrease of A. parasiticus on contaminated hazelnuts, peanuts, and pistachio nuts [7]. 

Deng et alii achieved a log 4 reduction on B. subtilis spores using an atmospheric-

helium plasma plume with 10 minutes of treatment [8]. Guimin et alii produced a log 

5.38 reduction on S. aureus with a treatment time of 90 s and a log 5.36 reduction on 

E. coli with 60 s of treatment using a coaxial dielectric barrier discharge plasma jet in 

argon [9]. Kirkpatrick et alii used an atmospheric pressure argon DBD and reached a 

log 5 reduction on E. coli with 20 minutes of treatment [10]. Klämpf et alii reached a 

log 6 reduction on C. albicans with 30 s of treatment using a cold atmospheric surface 

micro-discharge plasma [11].  

There are several key factors which make plasma extremely appealing for 

sterilization processes, the first of which is the high reactivity of plasma itself. Plasma 

is composed by several reactive components whose combined effects make it aggressive 

towards living organisms; this fact allows to achieve sterilization within short 

treatment times and consequently raises the interest for industrial applications. 

Another important trait that makes plasma a possible future alternative for 

disinfection treatments is the production of gaseous residues; so, there is no need for 

packaging cleaning after the disinfection treatment. The only precaution that the 

process designer must take is related to the flow of gases inside the machine. The 

absence of a washing phase improves the treatment in two distinct ways: economically, 



 

 

reducing both treatment times and the needed equipment; secondly, the risk of 

recontamination during the cleaning of the packaging is removed. 

Although plasma may not be the best option for any sterilization treatment, it is 

very appealing for treatment of thermo-sensitive materials. Nowadays materials science 

is chasing the possibility to avoid plastic materials preferring new environmental-

friendly materials; these materials have often low mechanical and thermal resistance; 

therefore, thermal sterilization is forbidden.  

There are several different plasma source architectures that can be used for 

sterilization purposes, any of which has a wide range of operative conditions; this large 

collection of sources and processes allows the treatment of almost any kind of material 

and geometry known. In 2002 Laroussi reported on the most promising plasma 

decontamination processes [12], later in 2008 Moreau et alii returned on this subject 

[13]. A brief review of the most relevant plasma sources for bacterial inactivation is 

reported here. 

2.2.1 Corona discharges 

This plasma source architecture consists in a high voltage pin electrode facing a 

ground electrode; the enhancement of the electrical field close to the sharp end of the 

pin induce the ionization the gas. This discharge is usually RF-driven to create plasma 

at atmospheric pressure; furthermore, a process gas is often needed, such as argon or 

helium. Nevertheless, an atmospheric pressure air plasma can be produced also by 

means of a kHz pulsed AC power supply. 

Siemens was the first to generate ozone in order to disinfect water supplies using a 

corona discharge [14]. A pulsed atmospheric pressure corona discharge inactivated 

microbial spores in less than 1 s [15].  

A more sophisticated architecture uses an array of multiple pins to create a large 

volume plasma; Mohamed et alii proposes the use of an atmospheric pressure large 

volume air plasma generated by a 100 ns, 1-kHz high voltage pulse for the sterilization 

of fruits [16]. 

 

Figure 2.1 Multipin-corona discharge treatment of grapes [17] 
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2.2.2 Atmospheric-Pressure Plasma Jets 

The atmospheric-pressure plasma jet is a capacitively coupled device consisting of 

two coaxial electrodes between which a gas flows; usually the central electrode is 

connected to the high voltage power supply while the external electrode is grounded. 

The electric field accelerates free electrons of the gas inducing ionization, ionization 

waves allow for electric field propagation in the gas flow. With this architecture plasma 

application (to the bio-interface) can be uncoupled from plasma generation. For this 

kind of plasma source, the most used process gas is helium; argon may be also 

interesting. 

 

Figure 2.2 Atmospheric pressure plasma jet treatment of liquids [18] 

Herrmann et alii reported a log 7 reduction of B. globigii in about 30 s of treatment 

with an atmospheric pressure plasma jet [19]. 

2.2.3 Resistive Barrier Discharges 

This type of plasma source is composed by two planar electrodes facing each other; 

at least one of these electrodes must be covered with a resistive layer, this layer limits 

the discharge current and therefore prevents arcing. power supplies for these devices 

can be both DC and low-frequency AC. Using ambient air as plasma gas, the gap 

between electrodes cannot exceed a few mm; using helium, plasma can be produced in 

larger volumes. 



 

 

Laroussi et alii [20] reported a log 4 reduction of vegetative B. subtilis cells in about 

10 min using a gas mixture of 97%–3% helium-oxygen. 

2.2.4.0 Dielectric Barrier Discharges 

 

Figure 2.3 Dielectric barrier discharge 

This family of plasma sources, also known as DBD, is similar to the resistive barrier 

discharge; it consists in two planar electrodes facing each other; at least one of these 

electrodes must be covered with a dielectric layer. One or both electrodes are powered; 

as soon as the voltage imposed to the gap overcomes the breakdown voltage of the gas, 

the discharge is ignited. After ignition, charged particles are collected on the dielectric 

surface. This accumulation of charge creates a voltage drop, which contrasts the 

applied voltage and therefore, induces a discharge current decrease and then the 

discharge extinguishment. During the second half cycle of the applied power, the 

voltage increases again, and the discharge reignites. This process is repeated during 

each period of the applied potential waveform. 

DBDs can be divided into two categories: volume discharge (VD) and surface 

discharge (SD). VD-DBDs consist in two electrodes facing each other, one of which 

must be covered with a dielectric layer. In VDs, plasma is generated in the 

interelectrode gap. SD-DBDs are composed by the same essential elements; however, 

the layout is different: high voltage and ground electrode are in contact by means of a 

dielectric layer, plasma is generated on the edge of the ground electrode. To maximize 

the plasma generation surface, the ground electrode has usually the shape of a mash. 

From a practical point of view VD- and SD-DBDs are very different one from 

another. The plasma generation gap of VD at atmospheric pressure never exceed a few 

mm; this implies that treated object cannot by thicker than that. This fact limits 

applications to gases, powders and films. On the other hand, the fact that plasma is 

well confined in the gap between electrodes maximize the quantity of reactive 

components that have an active role in the process: electrons, ions, chemical species, 

excited species, electromagnetic field, UV radiation, visible radiation and thermal 

radiation. 

2.2.4.1 VD-DBDs 

These devices can be operated both at low pressure (micro-electronics, light 

applications) and at high pressure (surface modification, ozone generation, wastewater 

treatment, exhaust gas control). At low pressure, the discharge is diffuse (also known 

as glow discharge), hence treatments are highly homogeneous. The low-pressure 

condition implies a low concentration of species (electrons, ions, atoms and molecules); 

ionization is easier to achieve but collisions between species and substrate are rarer 
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than those at high pressure. At high pressure, the discharge is filamentary: there are 

high intensity streamers (micro-discharges) that connect electrodes, these current 

channels are of short duration (1-10 ns [21]), which is inversely proportional to the gas 

pressure. Filaments have a radius of approximately 100 µm and appear to be randomly 

well distributed in the treatment volume.  

 

Figure 2.4 VD-DBD main layouts [22] 

Low pressure VDs are not the best option for sterilization for several reasons: first, 

the vacuum system is expensive, sophisticated and hard to handle. Treatment times 

are longer than those at atmospheric pressure to achieve similar results; there are two 

factors that explain this fact: vacuum systems need time to reach low pressure 

condition; particles are scarcely dense in low pressure plasmas, therefore bacterial 

destruction is rarer, hence slower. Moreover, low pressure reactors must be sealed 

during operation, this means that continuous treatments are forbidden. Finally, 

vacuum systems cannot (easily) be used for the treatment of living tissues. 

Some scientists tried to combine the high efficacy and convenience of atmospheric 

pressure VDs with the homogeneousness of glow discharges. One of the early examples 

of glow VD plasma at atmospheric pressure was reported by Donohoe et aalii, who 

used a large gap pulsed-barrier discharge in a mixture of helium and ethylene to 

polymerize ethylene [23]. Laroussi et alii [20] used of the glow discharge at atmospheric 

pressure to destroy cells of P. fluorecens. They obtained full destruction of 4*106/ml 

in less than 10 min. The reaction chamber was filled mostly with helium and an 

admixture of air.  

2.2.4.2 SD-DBDs 



 

 

SD-DBDs generate plasma on the ground electrode surface; therefore, there are no 

strong limitations to the possible geometries to be treated. The main disadvantage of 

this layout is that part of the plasma reactive agents is not involved in the treatment: 

electrons, ions and electromagnetic field are concentrated in proximity of the ground 

electrode; consequently, their direct effects on substrates are neglected. SD treatments 

rely mainly on chemical species produced in the plasma; consequently, the process 

efficacy is directly connected to the treatment volume and the diffusion velocity of 

those species. This fact makes an accurate process design mandatory in order to 

guarantee uniformity of treatment of substrates. 

 

Figure 2.5 SD-DBD main layout [22] 

2.2.4.3 IAP VD-DBD 

In this section the DBD designed, realized and used for experiments will be 

presented. The layout is that of a VD-DBD: two planar electrodes facing each other; 

the dielectric layer is attached to the high voltage electrode. The high voltage electrode 

has a circular shape with a radius of 19 mm; the grounded electrode is a stainless-steel 

square 80 mm wide. 
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Figure 2.6 IAP VD-DBD, a) top view of the cylindrical high voltage electrode 

embedded in the resin; b) bottom view of the high voltage electrode with glass 

dielectric; c) bottom view of the high voltage electrode with gres dielectric. 

4 different dielectrics with different thickness were tested; here is presented the 

material used for biological tests (test and results about dielectric material analysis 

will be presented on chapter 4). A ceramic material is used as a dielectric, with a 

thickness of 3 mm. The high voltage electrode is covered with an episodic resin to 

avoid free discharge. The interelectrode gap is set to 1 mm; there is no confinement of 

the treatment volume, therefore air may flow freely. 

The power supply used for the whole experimental campaign is the AlmaPULSE 

(AlmaPlasma srl, Italy). This AC current generator is specifically designed for cold 

atmospheric plasma applications. AlmaPULSE is a flexible tool for R&D and lab scale 

investigations. The AlmaPULSE allows to modify several parameters: maximum 

potential, pulses frequency, duty-cycle and treatment time. Changing the potential and 

the frequency input values AlmaPULSE, it is possible to adjust the power absorbed 

by the plasma source (hence the power delivered by the plasma to the substrate). 

 

Figure 2.7 AlmaPULSE (by AlmaPlasma srl) 

a b c 
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Chapter 3 

Process design and optimization 

 
The final aim of this project was to design, realize and optimize plasma sources for 

disinfection processes; this kind of research required an iterative approach. Starting 

from a literature analysis and previous experience, a plasma source was designed and 

realized; later biological tests were performed to assess the antimicrobial effect of the 

plasma treatment. Finally, the plasma was characterized by means of several 

techniques to find a relation between plasma parameters and microbial inactivation. 

Using the information gained, a new plasma source was designed, in order to optimize 

the characterized plasma process; subsequently, the whole procedure started again. 

 
The analysed process was a plasma assisted disinfection treatment of packaging 

film materials; these films were used in a form-fill-seal implant which realize food 

containers. Two different materials were treated: one polymeric and one metallic.  

Firstly, a DBD was realized using PMMA; the purpose of this plasma source was 

to verify if a VD-DBD was suitable for this kind of application. Biological tests were 

performed varying operative conditions in order to identify the optimum working 

condition; to modify the plasma dose delivered to the substrate 4 main parameters 

were changed: maximum voltage, pulse frequency, duty cycle and treatment time. 

Design of a new 
plasma source

Biological tests

Plasma 
characterization

Connection between 
plasma parameters 

and microbial 
inactivation



 

 

Different analyses were performed to evaluate the efficacy of each reactive components 

of the plasma. 

3.1 Plasma reactive components 

As already stated, plasma is a multicomponent mixture in a gaseous state. Lot of 

its components are highly energetic and reactive; the possibility to exploit one or more 

of these aggressive agents for different purposes widen the field of possible applications. 

A great effort has been devoted to study and understand how distinct plasma 

components act in disinfection and sterilization processes; in this section a 

comprehensive exposure of these components and their importance will be reported. 

As reported by Woedtke et alii [1], the main reactive components of a CAP are 

electrons, ions, reactive neutral species, excited species, UV-radiation, thermal 

radiation, electromagnetic fields and electric current. 

 

Figure 3.1 Plasma sterilizing agents [1] 
Reactive neutral species 

It is known that reactive species, generated in plasma through electron-impact 

excitation and dissociation, play an important role in disinfection treatment. This kind 

of species are produced and induced by the chemistry which regulates the plasma 

discharge. It is possible to modify the chemical kinetics of these species by varying 

operative conditions such as gas flow rate or input power; obviously, the main 

characteristic that affects the production of different neutral species is the choice of 

the process gas.  

Many studies and tests for medical applications involve the use of noble gases such 

as helium and argon; noble gases are easier to ionize, the voltage needed to ignite 

plasma is lower compared to the one needed to ignite plasma in air. The possibility to 

generate plasma at relative low voltage is extremely appealing for biomedical purposes; 



Chapter 3  31 

 

in the biomedical field in fact, the patient safety must always be guaranteed. On the 

other hand, these kinds of plasmas produce reactive neutral species only when the 

noble gases meet air; this fact implies that the concentrations of reactive neutral species 

are remarkably lower compared to those of air plasmas. 

For disinfection and sterilization of non-living materials it is more convenient to 

use air as process gas; air is drastically cheaper than helium or argon and leads to 

higher concentrations of reactive neutral species. 

Logically, for air plasmas, the main reactive species produced are those of oxygen 

and nitrogen (RONS). At low power densities, the chemistry is governed by ozone (a 

thorough chemistry analysis is reported on chapter 5) which interacts with 

(micro)organisms and therefore its maximum concentration in ambient air is regulated 

by law. At higher power densities, nitrogen species dominate the chemistry: NO has a 

high biocidal impact and it is short living; NO2 derives from NO but it is long living, 

therefore its concentration in the atmosphere is regulated by law, just as ozone. 

Herrmann et alii [2] experimentally proved that reactive oxygen species (ROS) have 

a strong germicidal effect; he compared the bacterial inactivation results obtained with 

and without oxygen using a plasma jet. This fact is associated with the presence of the 

metastable singlet state of oxygen (O•), and ozone (O3). 

Another strong disinfectant species is the hydroxyl radical (OH•); this molecule is 

produced only when water is present in the discharge. Kuzmichev et alii [3] studied 

moistened air treatment and concluded that “the best bactericidal effects are achieved 

in moistened oxygen and air.” 

UV-radiation 

UV light is used for sterilization process and for therapeutic applications such as 

induction of vitamin D production, treatment of psoriasis and vitiligo. Low quantities 

of UV radiation are emitted by plasmas; nevertheless, this radiation must be considered 

due to its high interaction with biomolecules. UV affects bacteria cells inducing the 

formation of thymine dimers in the DNA, inhibiting the bacteria’s ability to replicate. 

The capability of UV to inactivate cells depends on 2 factors: wavelength and dose. In 

fact, not all the UV light may damage microorganism; the wavelength germicidal range 

is 220-280 nm. Moreover, the dose of the radiation (expressed in watt*s/cm) in this 

range must exceed a certain threshold. 

As for many disinfectants UV light can be helpful to destroy bacteria, but it can 

also be harmful for users. Limits of exposure are set by the International Commission 

on Non-Ionizing Radiation Protection: 30 J m2 in the spectral region of 180–400 nm 

within an 8 h-period and 104 J/m2 in the region of 315–400 nm [4].  

Laroussi [5] assessed that UV radiation was not the main disinfectant agent by 

comparing the bacterial inactivation produced by a low-pressure mercury-vapor lamp 

and an atmospheric pressure cold plasma. Herrmann et alii [2] shown no substantial 

reduction in the initial concentration of B globigii exposed to a plasma jet with the 

plasma effluent blocked by a quartz window. The scarcely pronounced effect of plasma 

produced UV can be found in the low emissivity of CAPs in the germicidal range. Most 



 

 

gases used at atmospheric pressure do not emit any appreciable dose of UV radiation 

in the germicidal wavelengths. 

Electric current  

Electric current is present in most plasma discharges; the use of electricity in 

medicine has a long history and many therapeutic effects also in wound healing are 

reported and applied today. For biomedical applications, this current must be limited 

to be harmless; for treatment on non-living materials, the current must be limited to 

avoid damaging the substrate. 

Charged Particles 

In CAPs the bombardment of microorganism by charged particles should play no 

role in the destruction of cells; in fact, the average energy of ions is close to room 

temperature. Only electron average energy is in the eV range; nevertheless, their kinetic 

energies is low due to their light mass. Consequently, the majority of researchers 

neglect the role of ions and electrons in sterilization.  

Completely disagreeing with this approach, Mendis et alii [6] suggested that charged 

particles might play a very significant role in the rupture of the outer membrane of 

bacterial cells. This rupture is provoked by the electrostatic force caused by charge 

accumulation on the outer surface of the membrane.  

Thermal radiation 

Thermal radiation is known to have an impact on microorganisms; as shown 

previously, a great variety of conventional sterilization treatments rely on this energy 

vector to destroy bacteria. However, to achieve sterilization it has been shown that the 

temperature must be higher than 121°C for several minutes. Even if thermal radiation 

is a component of CAP, the temperature increase is usually in the rage of 20-30°C; 

that means that most of the treatments produce a macroscopic temperature of 50-

60°C. In this temperature range no bacteria can be eliminated by means of only thermal 

radiation; for this reason, most researcher neglect the role of temperature. 
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Chapter 4   

Biological tests 

 
In the biomedical field there is a clear distinction between the concepts of 

sterilization, disinfection and decontamination. In the frame of this project, a 

disinfection process has been developed: i.e. a process aimed to the elimination of 

most, if not all pathogenic microorganisms, excluding spores. There is no 

international standardization about the reduction level which must be achieved in a 

disinfection process; common values are around log 4-5 [1]. 

The most important feature of a disinfection process is the repeatability and 

reliability of the induced microbial inactivation.  

Disinfection is a complex task to accomplish; the life or death of microorganisms 

depends on many variables, some of which can be classified as process operative 

conditions (or inputs) and can be modified without any drawback, while others are 

fixed by industrial requirements. 

Operative conditions 

Dealing with an open-air VD-DBD, the main input parameter which may be 

varied is the electric power density, which is defined over the plasma generation 

surface; using the AlmaPULSE, this input may be adjusted manipulating 3 different 

factors: maximum voltage (kV), pulse frequency (kHz) and duty-cycle (%). To 

analyze how the power density affected the disinfection efficacy, two power density 

values have been used for the experiments. 

The treatment volume is also an important characteristic of a process; in this 

research this feature was kept constant to a cylinder (ϕ 39 mm, thickness 1 mm). A 

deeper investigation of this parameter and considerations on how it can affect 

applications will be given in chapter 5 (paragraph 5.3, electrical measurement).  

Finally, the choice of the dielectric material alters considerably the discharge. In 

this frame, the physical quantities which describe the behaviour of a particular 

material are the dielectric strength (MV/mm) and the thickness (mm); knowing 

these characteristics, the input potential needed to ignite plasma can be predicted. In 

addition, the choice of the dielectric material affects also the mechanical properties of 

the plasma source, which cannot be underestimated. In this chapter, results are 

shown for treatment performed using a ceramic dielectric; in chapter 5 the choice of 

this material is discussed. 

Industrial requirements 

There are several parameters which may vary from one application to another: 

considerations on this topic usually rely on economic analysis. As already 



 

 

highlighted, plasma technologies depend largely on the discharge gas and pressure. 

Although historically low-pressure processes have found extensive use, CAPs are 

more appealing when applicable. Regarding the process gas, it is obvious that air is 

the cheapest gas available, therefore the most convenient; in addition, the presence of 

oxygen and nitrogen is needed to enhance the antimicrobial effect of a plasma 

treatment. The adoption of air as process gas can also imply the presence of water 

vapor in the discharge; it has been proven that the presence of water in the discharge 

has a huge impact in the chemistry and in the decontamination efficacy of a CAP 

treatment (this topic is discussed in the next paragraph). Finally, using air at 

atmospheric pressure allows open-air configuration, which enables continuous 

treatment of material, a crucial aspect from a productivity point of view. In this 

work, each experiment was performed in open air. 

One of the most important characteristics of a disinfection process is the 

treatment time; this parameter is strictly connected the microbial inactivation rate 

and must be chosen accordingly with the desired level of disinfection. From an 

industrial perspective, the choice between two disinfection methods is done on an 

efficiency basis: for equal expenses and values of inactivation the shortest treatment 

time is the best choice. In this work, treatment times in the range 0.1 - 8 seconds 

were tested; 8 seconds was the maximum treatment time allowing a sufficient 

packaging production rate.  

Another key aspect with direct implications on the choice of the disinfection 

method is the packaging material. As mentioned in chapter 2, different materials 

require different process specifications; in this work two substrate were tested: a 

polymeric film and an aluminum one. 

Biological analysis starts with the selection of the microorganisms to be treated; 

this decision is made to better represent the real environment of the process, trying 

to simulate the most probable scenario. Later in this chapter, the choice of microbes 

to be treated is explained. 

4.1 Effect of water vapor  

In fundamental research, scientists usually try to find a connection between a 

varying parameter and the obtained results. To do this, they try to fix every other 

possible parameter to limit the variability of the system that they are studying. 

Following this concept, it is easy to understand why most scientific papers about 

plasma treatment are realized using a process gas different from air. Air is a very 

uncertain mixture; everybody knows that 78% of air is made of molecular nitrogen, 

21% of molecular oxygen, almost 1% of argon and smaller quantities of other gases; it 

is also known that water is present in air in the state of vapor and that the % of 

relative humidity changes constantly. Unfortunately, for plasma process, a small 

variation in the gas composition may lead to completely different results; the need 

for repeatable conditions is the reason why most researchers use synthetic air when 

dealing with air plasma. 
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When the research shifts from fundamentals towards applications, the urgency of 

investigating real industrial conditions cannot be ignored; many works studied the 

dependency of microbial inactivation from the relative air humidity. Here are 

reported the most relevant. 

Hähnel et alii studied the influence of air humidity on the reduction of Bacillus 

atrophaeus spores at atmospheric pressure using a SD-DBD; they varied the relative 

humidity from 0 to 70% in a controlled volume and came to the conclusion that the 

air humidity has a strong influence on the microbial reduction rate. They also 

highlighted that higher concentration of water vapor leads to higher killing rates of 

the microorganisms [2]. Hähnel explained the increase of reduction rate with the 

improved production of OH radicals; he also reported that LIF experiments are 

needed to investigate this phenomenon more deeply. 

Maeda et alii used an atmospheric pressure humid air plasma to inactivate E. coli 

[3], they studied the efficacy of the process varying the relative humidity from 0 to 

70%. They found that the best inactivation results could be obtained with a relative 

humidity of 43. 

Also Muranyi et alii studied the influence of relative gas humidity on the 

inactivation efficiency of a low temperature gas plasma [4]. They used a cascaded 

DBD fed with synthetic air against Aspergillus brasiliensis and Bacillus subtilis 

spores; they discovered that the efficacy of the process was not only connected with 

relative humidity, but also with the pathogen under investigation. More precisely, 

the best results against A. brasiliensis were obtained working with high humidity; on 

the contrary, to inactivate B. subtilis it was better working in low humidity 

condition. 

The last work worth mentioning is from Purevdorj et alii; they investigated the 

effect of feed gas composition of plasma on Bacillus pumilus spore mortality [5]. They 

tested a wide variety of feed gases at low pressure (50 Pa); the best inactivation 

results were obtained using air with a 0.05 molar fraction of water vapour. The great 

increase of efficacy obtained raising the molar fraction of water vapor in the feed gas 

from 0 to 0.05 allowed Purevdorj to assert that radicals are deeply involved in spore 

mortality. In fact, the presence of water in the gas discharge leads to the production 

of H and OH radicals by electron impact. 

From an industrial point of view, the fact that water vapor increases the efficacy 

of plasma assisted disinfection treatments is positive, since the use of dry synthetic 

air would have implied additional costs. Biological tests were performed in open air 

in the Langmuir bioplasma bacterial lab of DIN & CIRI-MAM departments of the 

Bologna University, where relative humidity lies normally in the rage 60-80%.  

4.2 Pathogen selection 

Disinfection process are always under investigation, the research for novel 

disinfection methods never stops. There are different international standards for 

validation and routine control of these processes, most of which require to test the 



 

 

biological effect of the treatment under examination against the most resistant 

microorganisms. 

Nowadays, the standard procedures for verifying the efficacy of sterilization 

methods are based on the inactivation of B. atrophaeus spores, B. coagulans spores, 

C. sporogenes spores and G. stearothermophilus spores [6]. 

Plasma assisted disinfection treatments require to be tested on a variety of 

microorganisms. In fact, plasma relies on several disinfecting agents to achieve 

microbial inactivation; these agents may have a different effect on specific types of 

pathogens due to their peculiar metabolic and morphologic properties [7]. As 

reported by Madigan et alii, the most relevant microbial properties that affect the 

efficacy of different disinfecting agents are the thickness of cell walls and their 

chemical composition, the structure of membranes, the DNA protection structures 

and the ability of aerobic or anaerobic respiration [8]. The international standard 

(ISO 14937) suggests the use of microorganisms that have a high resistance to the 

investigated disinfecting agent, that are usually present on the materials to be 

treated and in the environment in which the product is manufactured, and that cover 

a broad range of types (e.g. aerobic and anaerobic bacteria, spores, fungi, yeasts, 

parasites and viruses). The ISO standard requires also to check the efficacy against 

Gram-positive and Gram-negative vegetative bacteria. Regulatory guidelines specify 

the importance to check the efficacy against mesophilic bacteria and fungi that grow 

under aerobic conditions, which are commonly used as indicator of environmental 

conditions and microbial presence during packaging production process. For these 

reasons, in this work a Gram-positive (S. aureus) and a Gram-negative (E. coli) 

aerobic bacteria were tested. S. aureus has implications in hygiene control, and it is 

also a key cause of food poisoning, as it produces heat-stable enterotoxins. Its 

prevalence is widespread as it commonly found in the human mucous membranes 

and skin. E. coli is a noxious foodborne pathogen transmitted by water and different 

kinds of food; while most E. coli strains are a component of human intestinal 

microbiota and do not constitute a health risk, other strains represent a health 

problem because of their ability to survive under stress conditions and to secrete 

toxins that cause enterohemorrhagic gastroenteritis. Additionally, experiments were 

conducted using C. albicans and A. brasiliensis as indicator organisms for aerobic 

yeasts and moulds, respectively. Some yeasts and moulds produce toxic mycotoxins, 

most of which are heat-resistant, and they may represent a problem for packaging 

industries. Particularly, C. albicans is a polymorphic fungus that grows as yeast in 

normal environmental conditions; this ubiquitous microorganism can survive up to 

four months on inanimate surfaces. A. brasiliensis is a mould that produce black 

spores which are readily dispersed in the surroundings; it is ubiquitous in the soil and 

it is commonly reported as contaminant of indoor environments.  
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4.3 Biological protocol 

Microbial strains and growth conditions 

For microbiological experiments, Staphylococcus aureus ATCC 6538, Escherichia 

coli ATCC 11775, Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 

16404 (here referred to as S. aureus, E. coli, C. albicans and A. brasiliensis) were 

purchased from American Type Culture Collection (Manassas, VA, USA). S. aureus 

was grown on tryptic soy agar for 24 h, E. coli on nutrient agar for 24 h, C. albicans 

on sabouraud dextrose agar for 48 h and A. brasiliensis on malt extract agar for 48 h 

(Biolife Italiana, Milan, Italy). All strains were incubated at 37°C. 
 

Microbiological analysis 

The following biological protocol was used to perform disinfection tests in the 

Langmuir bioplasma bacterial lab of DIN & CIRI-MAM departments of the Bologna 

University. Every experiment was performed in triplicate. 

Colonies from agar plates were transferred in sterile 0,9% NaCl solution to reach a 

concentration of approximately 5x108 colony forming units (CFU) per mL reading 

the suspension turbidity with a McFarland Densitometer (Densitometer DEN-1B, 

Biosan SIA, Riga, Latvia). 

Disks of polymeric material (diameter of 27 mm, thickness of 300 µm) were used 

as germ carriers. The disks were washed with ethanol 70%, exposed to UV radiation 

for 1 h and placed into sterile petri dishes. 20 L of microbial suspension were 

dispensed in 20 drops on the food-contact surface of each disk to reach a microbial 

concentration of 106 CFU/cm2. Disks were dried for 15 min at 37°C to achieve 

complete evaporation of the saline solution. Four disks were plasma treated for each 

experiment (treatment times and plasma doses were varied and are reported in the 

next section with results); three control samples (no plasma treatment) were included 

in the experiment. To recover microorganisms from the surface of the disks and to 

obtain a uniform suspension, each disk was placed in a 50 mL centrifuge tube 

containing 5 mL of a PBS + 0,1% Tween 80 solution and then the tube was shaken 

by means of a vortex for 1 minute. This suspension was serially diluted and plated on 

agar plates. Plates were incubated at 37°C to evaluate the CFU formation by 

counting the colonies and the counted CFU were expressed as CFU/mL. Finally, the 

Log Reduction was calculated for each plasma treatment using the follow equation: 

Log R = Log10 N0– Log10 Nt 

where N0 and Nt are the microbial concentrations of the untreated and treated 

samples respectively. Standard deviation was calculated based on Log R values 

obtained for each plasma treatment. 



 

 

4.4 Biological results 

The experimental campaign lasted 3 years, several different plasma source 

architectures were tested; after identifying the VD-DBD as the most suitable plasma 

source, many different materials and operative conditions were investigated. For 

clarity of exposure, all the results that led to the final process configuration are left 

out.  

The plasma source used to produce these results is the IAP VD-DBD shown in 

paragraph 2.2.4.3. The treatment time was varied between 0.1 and 8 seconds. Two 

distinct power densities were used: 1.5 and 13.4 W/cm2, to produce these power 

densities the pulse frequency was kept constant at 20 kHz while the voltage 

amplitude of the input waveform varied. 

Experiments were performed on 2 different substrates: a polymeric film and an 

aluminum one; since results are extremely close, only results obtained with the 

polymeric film are presented here. 

The inactivation produced on S. aureus, E. coli and C. albicans followed the same 

trend; for sake of simplicity only results with S. aureus are shown here.  

In table 4.1 and 4.2, Log R values are reported for 1.5 W/cm2 and 13.4 W/cm2 

respectively.  
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Table 4.1 Log R obtained with a power density of 1.5 W/cm2 

 

Treatment 

time [s]

Initial bacterial 

concentration 

[CFU/mL]

Final bacterial 

concentration 

[CFU/mL]

LOG R

Experiment  

average Log 

R

Standard 

deviation

Operative 

condition  average 

Log R

Standard 

deviation

302000 0,55

332000 0,51

283000 0,58

303000 0,55

394000 0,35

302000 0,47

279000 0,50

315000 0,45

191000 0,28

185000 0,29

110000 0,52

143000 0,40

12100 1,78

18400 1,60

10600 1,84

22700 1,51

22100 1,61

25000 1,55

14900 1,78

60000 1,17

21900 1,74

18500 1,81

27900 1,63

73000 1,22

82000 0,96

72000 1,02

47000 1,20

58000 1,11

18600 1,68

13500 1,82

18600 1,68

7900 2,06

13200 1,44

29200 1,09

12300 1,47

88000 0,62

39000 1,49

57000 1,32

72000 1,22

66000 1,26

22000 1,62

30000 1,49

29000 1,50

37000 1,40

26000 1,56

23000 1,61

16000 1,77

83000 1,03

28000 1,50

21000 1,63

21600 1,61

50000 1,34

22900 1,67

21800 1,70

16100 1,83

48000 1,27

15100 1,77

12500 1,85

42000 1,32

1300 2,45

3100 2,07

5700 1,80

10200 2,26

12500 2,17

14500 2,11

16800 2,04

83000 1,37

71000 1,44

65000 1,48

86000 1,36

3,63E+05

8,87E+05

1,08E+06

1,34 0,36

8,97E+05

7,47E+05

8,87E+05

9,33E+05

9,27E+05

0,113,63E+05

8,87E+05

1,08E+06

1,20E+06

8,97E+05

0.1 0,55 0,03

0,46 0,100.1 0,44 0,06

0.1 0,37

1,60 0,220.5 1,53 0,26

0.5 1,60 0,27

7,27E+05

0,40

1 1,32 0,12

0.5 1,68 0,15

1,20E+06

3,63E+05

1 1,07 0,11

1 1,81 0,18

1

1,52 0,194 1,64 0,11

4 1,44 0,28

0,09

8 1,41 0,06

4 1,50 0,09

1,96E+06

1,85E+06

0,21

1,75 0,36

8 1,55 0,30

8 2,11 0,32

8

8 1,63

2,14

1,16



 

 

Table 4.2 Log R obtained with a power density of 13.4 W/cm2 

 

Treatment 

time [s]

Initial bacterial 

concentration 

[CFU/mL]

Final bacterial 

concentration 

[CFU/mL]

LOG R

Experiment  

average Log 

R

Standard 

deviation

Operative 

condition  average 

Log R

Standard 

deviation

137000 0,90

178000 0,78

116000 0,97

164000 0,82

101000 0,94

87000 1,01

165000 0,73

121000 0,86

46000 0,90

83000 0,64

118000 0,49

54000 0,83

3200 2,09

4400 1,95

4600 1,93

806 2,69

62000 1,08

53000 1,15

52000 1,16

83000 0,95

61000 1,17

123000 0,86

143000 0,80

75000 1,08

71000 1,18

78000 1,14

69000 1,20

109000 1,00

31000 1,48

21000 1,64

23000 1,61

37000 1,40

24000 1,59

9900 1,97

8100 2,06

10900 1,93

63000 1,15

57000 1,20

65000 1,14

55000 1,21

218000 0,93

95000 1,29

108000 1,23

62000 1,48

5700 2,14

98 3,90

330 3,37

171 3,66

981 2,92

142 3,75

510 3,20

188 3,63

1300 2,75

1900 2,58

379 3,28

35 4,32

1 6,08

10 5,08

1 6,08

94 4,11

1 6,27

1 6,27

1 6,27

1 6,27

1 6,29

7 5,45

22 4,95

1 6,29

8 1,96E+06 5,75 0,66

8 1,20E+06 5,34 0,95

5,78 0,728 1,85E+06 6,27 0,00

3,29 0,624 8,07E+05 3,38 0,39

4 7,27E+05 3,23 0,78

1 1,85E+06 1,23 0,23

4 7,81E+05 3,27 0,78

1,46 0,33

1 9,33E+05 1,89 0,21

1 8,97E+05 1,18 0,03

0.5 1,08E+06 1,13 0,09

1 9,27E+05 1,53 0,11

1,06 0,13

0.5 7,47E+05 1,09 0,09

0.5 8,97E+05 0,98 0,17

0.1 3,63E+05 0,71 0,19

0.5 3,94E+05 2,17 0,36

0.1 1,08E+06 0,87 0,08

0,82 0,150.1 8,87E+05 0,89 0,12
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4.5 Discussion 

Data from tables 4.1 and 4.2 were used to draw graphs. In graph 4.3, results are 

grouped according to power density; the group on the left shows the inactivation 

achieved with the lower power density (1.5 W/cm2, obtained by imposing a voltage 

on the current generator of 10 kV). The first thing that can be highlighted is that, in 

this condition the Log R never exceeded the value of 2, independently from the 

treatment time. Secondly, it is interesting to notice that for low power density, the 

bacterial inactivation is not related to the treatment time; whereas, for higher power 

density (13.4 W/cm2, obtained by imposing a voltage on the current generator of 20 

kV), the microbial inactivation increases with treatment time.  

Graph 4.4 reports on the inactivation results obtained for identical treatment 

times and varying power densities; it can be noticed that, for treatment shorter or 

equal to 1 s, there is no difference between the inactivation level reached using 

different power densities. The greater disinfection efficacy of the high-power process 

is appreciable only for treatment times of 4/8 s. 

Graph 4.5 shows the same results in a 2-D chart; consequently, it is possible to 

underline the time dependent trend of the Log R results. For the low-power process, 

it is difficult to find a trend which fits each result, the best approximating curve is a 

logarithmic trend (blue line): this trend reaches a plateau almost immediately and 

the value of Log R remains stable. For the case of high-power densities, the behavior 

is almost perfectly represented by a linear relation (orange line). 

A final remark has to be made about the maximum inactivation level achievable 

with this experiment: considering the fact that the Log R is calculated starting from 

the initial concentration of bacteria dispensed on the substrate, the maximum value 

of inactivation achievable is equal to the logarithm of that concentration. In this 

series of test, the order of magnitude of the initial concentration of bacteria was of 

106, consequently the best result achievable was close to Log R = 6.  

In addition, spores of A. brasiliensis have also been tested; as known spores are 

harder to destroy than vegetative cells. As expected, inactivation results for spores of 

A. brasiliensis are negligible, independently from operative conditions; consequently, 

those results are not reported. 

 



 

 

 

Graph 4.3 Log R results plotted grouping same power density treatment 

 

 

Graph 4.4 Log R results plotted pairing same treatment time 
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Graph 4.5 Log R results plotted over treatment time 

Ehlbeck et alii [9] published a review on low temperature atmospheric pressure 

plasma for microbial decontamination; they stated that to understand the relation 

between the microbial reduction and process parameters (e.g. exposure time, plasma 

characteristics), it is crucial to study the reduction factors. Following Ehlbeck’s idea, 

chapter 5 and 6 try to establish a connection between microbial reduction and 

process characteristics. 
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Chapter 5   

Process characterization 

 

In this chapter each diagnostic technique used to study the plasma processes will 

be discussed. As already said, CAP treatments are complex processes to analyse and 

develop; consequently, the optimization of a process of this kind is an interdisciplinary 

work.  

The first plasma source realized was intended to demonstrate the efficacy of VD-

DBD plasma treatment for disinfection purposes; materials involved were not meant 

for continuous operation, hence for an industrial application process. Later, a great 

effort was spent to create a robust plasma source: a device able to operate for several 

hours and also able to produce repeatable plasma conditions, hence repetitive results. 

For this purpose, two distinct analysis were needed: temperature measurements, to 

assess the heat produced during the treatment and to identify the maximum thermal 

resistance of the device; electrical measurement to evaluate the electrical power 

absorbed by the DBD, hence the power conveyed by the plasma to the substrate. These 

analyses allowed to choose the best layout for the DBD, in terms of structural and 

functional materials. 

Once fixed the plasma source, the chemical characterization of the plasma began 

with the aim of finding a correlation between biological results and the chemical 

kinetics of certain active species. Additionally, a correlation between process operative 

conditions and the chemistry of the treatment was found.  

The chemical analysis was performed by means of optical absorption spectroscopy 

(OAS), a powerful method which allows to measure the absolute concentration of a 

species in a gas. This technique is non-intrusive, calibration-free and provides results 

in real time; all factors that make it ideal for process investigation. One of the few 

drawbacks of OAS technique is that not every chemical species can be analysed and 

measured; that is the reason why OAS investigation was followed by another analysis: 

numerical simulation, a type of approach which allowed to assess the chemistry 

governing the plasma discharge. 

 



 

 

5.1 Proof of concept   

The first step of this entire project was to identify the most suitable plasma source 

to produce the most efficient antimicrobial treatment on a film (polymeric or metallic); 

this phase consisted mainly in a literature analysis of already known plasma processes. 

First of all, a non-equilibrium plasma was needed; in fact, plastic materials have low 

thermal resistance and cannot withstand high temperatures without being damaged.  

Following all the considerations made in chapter 2 about the characteristics of a 

convenient disinfection treatment, low pressure plasmas were excluded: vacuum 

systems are expensive and not suitable for a massive production of low-value goods 

such as food containers; on the other hand, low pressure plasmas are the best choice 

for the manufacturing of high-value goods, as in microelectronics.  

Among the various CAP sources, the VD-DBD was chosen as the most suitable due 

to several winning characteristics: 

• VD-DBD treatments exploit each biocidal agent present in CAP; not knowing 

which plasma agents was the most relevant, none could be left out. 

• From an industrial perspective, one of the most interesting features of DBDs 

is that they may be operated in an open volume, without the need of a vessel; 

this fact enables the possibility to perform non-stop treatments. 

• VD-DBD effective area is not limited to a small spot, unlike corona and jet 

discharges; this device can be scaled at will increasing the size of the 

electrodes, with the only drawback of a greater power consumption. In film 

process, an increase of electrodes areas corresponds to an increase of plasma 

dose given to the substrate. This dose growth leads to a disinfection 

enhancement. 

• With the proper precautions, DBDs can be used to treat both dielectric and 

conductive materials; in the frame of this project, both plastic and metallic 

films were processed. 

• Finally, DBDs can be operated in air. this is which a crucial characteristic for 

disinfection efficacy, simplicity of operation and economical convenience. 

The first VD-DBD realized (figure 5.1) for this work was made of PMMA, a plastic 

material easy to work by mechanical machining but with low thermal resistance. The 

choice to use this material was made out of convenience reasons: fast machining, cheap 

and transparent; this last characteristic allowed to analyse the generation of plasma in 

terms of brightness (i.e. intensity) and homogeneousness. In order not to obstruct the 

view of the discharge, the high voltage electrode was made of salted water. 
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Figure 5.1 a) PMMA DBD; b) top view; c) side view: 1. High voltage electrical 

connection; 2. Salted water; 3. PMMA dielectric layer; d) plasma side view: 4. 

plasma 



 

 

In this configuration, PMMA simultaneously fulfilled the task of dielectric layer 

(mandatory in a DBD architecture) and water container; the thickness of the dielectric 

layer was varied between 3 and 5 mm, while the gap between electrodes was kept 

constant at 1 mm.  

AlmaPULSE was used as power supply and several operative conditions were varied 

to identify the working range of the DBD: maximum voltage, pulse frequency and 

duty-cycle.  

This device could generate plasma in a wide range of electrical conditions and the 

first results of microbial inactivation were promising; on the other hand, the 

disadvantages of this plasma source were consistent and could not be ignored. Firstly, 

due to the electrical power absorbed by the DBD, the water of the high voltage 

electrode was heated by the Joule effect; after tens of seconds, the water reached boiling 

temperature. Secondly, in order to guarantee the same electrical conditions at each 

test, the salted water had to be changed daily to avoid problems of evaporation or 

water-salt separation. Finally, the heating produced by the current flowing through 

the plasma warmed up the PMMA; after several minutes of (non-consecutive) 

operation, the layer between the high voltage water and the plasma region started to 

melt. This phenomenon was recognizable due to a change of colour of the PMMA. 

After proving the efficacy of CAP for microbial inactivation a better plasma source 

had to be made; in fact, even if decent levels of disinfection were achieved, no real 

application could be realized with those conditions. There are few characteristics that 

define a plasma source which can be implemented in the industrial field: the DBD must 

work continuously for a consistent number of hours; packaging machines work from a 

minimum of 8 hours a day to a maximum of 24 hours a day. The plasma source must 

produce the same discharge from ignition to the end of production (excluding the 

warm-up time). To create a DBD with these characteristics a different dielectric 

material had to be used; moreover, the high voltage electrode had to be changed with 

a more reliable one. Three distinct materials were tested, and the water electrode was 

substituted with an aluminium one; to analyse the performance of the new dielectrics 

temperature measurements and electrical measurements were performed.  

5.2 Temperature analysis 

The analysis about temperatures reached by the DBD was carried out in order to 

assess two phenomena: how the electrical input set of the power supply affected the 

final temperature reached by the DBD and how much power was transferred to the 

substrate during the plasma treatment. The first topic was interesting because it 

allowed to observe temperature trend of the dielectric material and to identify the 

electrical working range of the DBD; out of these limits, the electrical dissipation led 

to overheating and breakage. The second topic was directly connected to the 

disinfection: it is known that high temperature may lead to microbial death; it was 

therefore essential to measure the temperature of the process to evaluate if any 

inactivation effect was of thermal nature. 



Chapter 5  51 

 

Due to process characteristic and DBD layout, this measurement could not be 

performed online during treatment. Temperatures were measured by means of an 

Optris pyrometer (OPTCTL-LT-CF1, temperature range -50÷950°C): a pyrometer or 

infrared thermometer is a device for non-contact temperature measurement.  

 

The pyrometer measures the electromagnetic radiation radiated from an object and 

connects that to the temperature of the object. The electromagnetic radiation is focused 

and converted by an infrared detector into an electrical signal. The signal has to be 

multiplied by a proportional correction factor; this factor takes into account the 

emissivity, ε of the object: a dimensionless number, which may assume any value 

between 0 and 1. An object that emits a radiation equals to the radiation that it 

absorbed is called a black body, it is purely theoretical and it is considered to have an 

ε = 1. Real objects are considered grey objects and have an emissivity lower than the 

unity (0 < ε < 1); the value of ε is defined by the ratio between the radiation emitted 

from the grey object and the radiation emitted from a black object which has the same 

temperature of the first.  

The 3 tested materials were mica, gres and glass: for each material a different value 

of ε was found in literature [1]. Mica sheets were available only with a thickness of 2 

mm; two thickness of gres were tested (3 and 4 mm); glass was the easiest material to 

find and 4 thickness were tested (2, 3, 4 and 5 mm). 

The breakage of the dielectric layer usually was connected to the heating of the 

material; this heating is strictly connected with the current flowing in the system, 

therefore the limitations on operative conditions are linked to the maximum power 

density flowing through the discharge. 

Figure 5.2 Optris pyrometer 



 

 

Experiments consisted in treatment of 300 seconds; every 30 seconds, the plasma was 

switched off and the high voltage electrode was placed on a pedestal that had the task 

of maintaining the proper distance between the dielectric material and the IR probe. 

After sampling, the high voltage electrode was placed on the ground electrode and the 

power supply was switched on again. Several electrical input conditions were tested 

with each dielectric material to identify which was the maximum power density usable 

with each plasma source.  

Graph 5.4 is an example of temperature measurements obtained with the 

pyrometer: firstly, temperature trends shows a quick raise during the initial 60 seconds 

of treatment; after that, a temperature plateau is reached; secondly, the temperature 

never exceeds 80°C; this implies that the thermal factor cannot be the main cause of 

microbial inactivation, if ever. For treatment of this duration (maximum 8 seconds) a 

higher temperature would be needed to kill microorganisms. 

Figure 5.3 1. Top view of an aluminium high voltage electrode with stainless steel high voltage 

connection; the electrode is covered with resin to avoid free discharges; this electrode was 

coupled with different dielectric layers. 2-3-4 bottom views of the electrode paired with glass, 

gres and mica layer, respectively. 
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Graph 5.4 temperature trend of the dielectric material 

5.3 Electrical measurement 

AlmaPULSE is a current generator in which the amplitude and the frequency of 

the potential waveform can be varied; the current provided to the discharge is dictated 

by the plasma source configuration (geometry and material). So, the electrical power 

absorbed by the plasma source and the power involved in the discharge cannot be 

directly controlled from the power supply; it is necessary to measure the power 

absorbed by the plasma source for every different configuration (dielectric material and 

electrical input). 

From CAP literature, it is clear that there are mainly two methods to analyse 

electrically a plasma process: the first relies on the direct sampling of potential and 

current curve [2,3]; the second involves the design of an equivalent circuit to estimate 

the capacity of the discharge (Lissajous method) [2,4,5]. Although the second method 

is more precise, providing the real value of power of the plasma discharge, the first 

method is faster and easier to use. The big disadvantage of the first measurement is 

that it can calculate the electric power absorbed by the plasma source instead of the 

power of the discharge; the former is always greater than the latter. Nevertheless, this 

technique provides reliable and repeatable values of power which can be used to 

compare two different discharges. 

Measurements setup 

Three devices were needed to run the electrical measurements: a current probe, a 

high voltage probe and an oscilloscope. The setup can be seen in figure 5.5. Current 

was measured by means of a current probe (Pearson current monitor model 6585) on 



 

 

the high voltage cable; the voltage was also measured on the high voltage cable, by 

means a differential probe (Tektronix P6015A 1000X). Both probes were connected to 

a fast oscilloscope (Tektronix DPO4034) to monitor waveforms and to save data. Data 

were later processed through MATLAB to calculate the power absorbed by the DBD. 

 

Figure 5.5 Electrical measurements setup: 1. AlmaPULSE; 2. Oscilloscope; 3. Current 

probe; 4. High voltage probe; 5. High voltage cable; 6. High voltage electrode; 7. 

Dielectric layer; 8. Plasma; 9. Ground electrode. 

Graph 5.6 shows the voltage and current curves acquired during one complete 

period is reported (50 µs) using the 3 mm gres electrode; the potential amplitude was 

set to 20 kV while the pulse frequency was set to 20 kHz. At atmospheric pressure, the 

DBD source produces a streamer-like discharge consisting in thousands of fast micro 

discharges (1-10 ns); every streamer produces a spike in the current waveform. It can 

be noted that, during a single potential period there are four streamer-generation 

phases; these periods occur simultaneously with voltage gradients.  
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Graph 5.6 Voltage and current waveforms of a gres-DBD 

To calculate the electrical power absorbed by the plasma source a simple algorithm 

was used; after sampling, data series were trimmed in order to have only one pulse for 

each series of data; electrical power (P) was calculated using the following formula: 

𝑃 =
1

𝑇
∫ 𝑉 ∗ 𝐼 𝑑𝑡

𝑇

0

 

Where T is the period of a voltage pulse, V is the potential and I is the current. 

The current measured and used in this method includes both the discharge current 

and the displacement current. The power density was calculated dividing P for the 

surface of the high voltage electrode.  

5.4 Discussion on results and dielectric material choice  

To define which dielectric material was most suitable for the application under 

examination, temperature results had to be paired with electrical results; in fact, 

different materials and thicknesses led to different maximum temperatures; these 

temperatures are comparable only for equal power density. The goal of this 

investigation was to find the best compromise between plasma power density and 

heating.  

There are several insights that is worth highlighting with the aim of reaching a final 

choice of the dielectric material. Most of these remarks are connected to the concept 

of dielectric strength (DS): for a specific configuration of dielectric material and 

electrodes, the DS is the minimum applied electric field that results in breakdown. It 

is known that glass has a lower dielectric strength compared to mica and gres, which 

have similar DS. Remarks: 



 

 

• For a single material and electrical input, the power density was higher for 

thinner dielectric layer; simultaneously, the maximum temperature achieved 

by the dielectric was greater. Conversely, an increase in the thickness of the 

dielectric layer led to a lower value of power density, hence a lower heating 

of the DBD (i.e. maximum temperature).  

• For equal thickness and electrical input, the highest power density was 

associated to the glass-DBD; while mica and gres showed similar results. This 

fact implies that to achieve the same power density of the glass-DBD, both 

mica- and gres-DBD needed higher electrical input (or interelectrode 

potential). Again, this fact is strictly related to the concept of DS. 

• Higher values of power density led to a greater heating; hence higher 

maximum temperature reached. Nevertheless, this close connection between 

power density and heating does not follow the same trend for any materials: 

while gres and mica behave almost equally; for equal values of power density 

and thickness, glass reached drastically lower temperature. 

On this basis, glass-DBD showed the best results: higher power density achieved 

and lower heating during operation; unfortunately, glass proved to have poor 

mechanical properties and while the glass-DBD showed no problem during operation, 

the dielectric layer broke during the cooling phase (after treatment): the different 

thermal expansion factors plus the different thermal inertias of the glass layer and the 

aluminium electrode led to the formation of cracks in the glass layer. This fact forced 

to reduce the electrical input to the glass-DBD; doing so, the power density decreased 

together with the maximum temperature. Practically, in order to avoid breakage, the 

intensity of the plasma had to be reduced drastically; consequently, the glass-DBD was 

not the best choice for this particular application, not being able to produce discharges 

with the same power density of gres and mica DBD.  

Mica and gres showed a similar behaviour under almost every circumstance: DS, 

power consumption, heating, mechanical resistance. The choice between these two 

materials was made out of different considerations: gres is a ceramic material and 

shows almost no difference between the first to the hundredth treatment performed; 

on the other hand, mica consists in numerous thin layers packed together and showed 

visible damages after a few hours of treatment. In this frame, the gres-DBD was chosen 

as the most suitable and a 3 mm layer was preferred to a 4 mm one since no mechanical 

differences were reported between these two configurations; on the other hand, the 

power density absorbed for equal electrical inputs was greater for the thinner layer. 

Considering that the AlmaPULSE has a maximum voltage limit input, the thinner 

gres layer allows to reach higher absolute values of power density compared to the 4 

mm layer. 
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5.5 Cooling system  

Temperature analysis showed a constant heating by power dissipation to materials 

constituting the DBD; although this heating was not strongly affecting the discharge 

generation, it could not be neglected since a plasma assisted industrial processes must 

operate for several hours continuously.  

In this frame, the high voltage electrode was redesigned in order to allow the cooling 

of the metallic component. Practically, a U-shaped channel was drilled in the high 

voltage electrode to allow the flow of a cooling fluid. At first, compressed air was used 

to cool the electrode; but, due to the low heating exchange surface and the low heating 

exchange factor of air, the efficacy of this system was almost null. The same idea was 

followed using a cooling dielectric liquid (water and glycol); the efficacy of this system 

was extremely higher than the previous one and allowed to keep the temperature of 

the high voltage electrode constant at ⁓25°C (room temperature). 

Being purely metallic, the ground electrode had a higher heat exchange factor 

compared to the high voltage electrode (and a lower thermal inertia); therefore, the 

cooling effect of the ambient air was enough to allow continuous operation on a lab 

scale DBD. 

In figure 5.7 a rendering of the final DBD source is reported; in the sectional view 

the O-ring element needed to ensure the sealing of the cooling system is shown. 

 

Figure 5.7 Rendering of the liquid cooled DBD (top), section view (bottom): 1. Gres 

layer; 2. Resin; 3. O-Ring; 4. Cooling system connection; 5. High voltage electrode. 



 

 

Lastly, a schematic of the cooling system is reported; to pump the liquid in the 

electrode and to cool it, the Koolance EX2-755 was used. 

 

 

Figure 5.8 Cooling system 

5.6 Chemistry analysis 

Temperature and electrical investigations allowed to define the best performing 

DBD layout; once fixed the geometry and materials of the plasma source, research 

activities must look for the best plasma operative conditions. Starting from the 

inactivation results obtained earlier (reported in chapter 3), the aim was to find a 

connection between biological results and the chemistry involved in the process, 

parametrizing the operating conditions of the plasma process over treatment time and 

power density. 

This inquiry started from a literature analysis, to understand which were the most 

relevant chemical processes and physical parameters which lead to microbial 

inactivation; later, the chemical kinetics of biocidal reactive species were observed by 

means of Optical Absorption Spectroscopy (OAS). 

As soon as research showed interest in cold air plasmas, a lot of effort was made to 

study and understand the chemistry governing these processes; interest grew together 

with its industrial applications. Companies interested in producing ozone for 

disinfection purposes,  found in CAP a viable and efficient alternative; this is the reason 

why the greatest part of scientific papers of the last century dealing with the chemistry 

of air plasma were focused to ozone production and how to maximize it [6–9].  

The chemistry of air plasma consists mainly in oxygen and nitrogen-based reactions; 

consequently, the most produced species are those connected to these elements. In 

plasma processes there are three main types of species that are produced: excited 

species, radicals (and ions) and neutral reactive species. Excited species have usually 

low energy compared to other species; therefore, their reactions affect only marginally 

the discharge. On the contrary, radicals and ions are extremely energetic and reacts 

faster than any other species involved in the discharge. Radicals and ions have a strong 

impact on the plasma chemistry and are also known to have a strong biocidal effect. 

Due to their high energy and aggressiveness, radicals and ions are short-living species; 

consequently, their concentrations measurements are based on highly sophisticated 

methods which cannot be used in an industrial environment. Neutral reactive species 
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are long-living species (from minutes to hours), more stable than radicals; some of 

these species have a biocidal effect and it is interesting to measure their concentration. 

In air plasmas, excited species are mainly vibrational and rotational excited species of 

nitrogen and oxygen molecules; as it was already said, such species are not interesting 

in this frame. The most important radicals are atomic oxygen and the hydroxyl radical; 

both these species are known to have a huge biocidal effect. On the side of neutral 

reactive species, usually called RONS (reactive oxygen and nitrogen species), it is worth 

reporting: O3, NO, NO2, NO3, N2O, N2O3, N2O4 and N2O5. Among long-living species 

O3, NO and NO2 are known to have the stronger impact on microbial inactivation. 

A lot of work was put to describe minutely the chemistry of ozone production and 

the species governing this process were easily predictable; however, the dynamic of 

their production was not trivial to guess. Mainly thanks to the works of Kogelschatz 

et alii [7,8] we know that there are two different chemical regimes governing an air 

plasma discharge; moreover, he discovered that the chemical regime is defined by the 

power density involved in the discharge. To understand this fact, it is necessary to 

analyze the chain reactions describing this chemistry.  



 

 

 

Table 5.9 Main RONS reaction involved in air plasma discharge 

Ozone 

Production R1 O2+O+M→O3+M (10-21)    

       

Destruction 

R2 O3+e→O+O2
- (10-15) R7 O3+N→NO+O2 (10-21) 

R3 O3+H→OH+O2 (10-17) R8 O3+HO2→OH+2O2 (10-21) 

R4 O3+OH→HO2+O2 (10-19) R9 O3+NO2→NO3+O2 (10-23) 

R5 O3+O→2O2 (10-20) R10 O3+M→O2+O+M (10-32) 

R6 O3+NO→NO2+O2 (10-20)    

       
NO 

Production 

R10 O+HNO→OH+NO (10-16) R16 O+NO2→NO+O2 (10-17) 

R11 OH+HNO→NO+H2O (10-16) R17 HNO+O2→NO+HO2 (10-17) 

R12 N+O2→NO+O (10-17) R18 N+NO2→2NO (10-18) 

R13 H+HNO→NO+H2 (10-17) R19 N+O3→NO+O2 (10-22) 

R14 N+OH→H+NO (10-17) R20 2HNO2→NO+NO2+H2O (10-26) 

R15 N+HO2→NO+OH (10-17) R21 N+O+M→NO+M (10-45) 

       

Destruction 

R22 N+NO→N2+O (10-17) R26 NO+OH+M→HNO2+M (10-42) 

R23 NO+NO3→2NO2 (10-17) R27 O+NO+M→NO2+M (10-43) 

R24 NO+HO2→OH+NO2 (10-18) R28 NO+NO2+M→N2O3+M (10-46) 

R25 NO+HO2→O2+NO2 (10-19)    

       

NO2 

Production 

R29 NO3+O→NO2+O2 (10-17) R37 N2O4→2NO2 (10-20) 

R30 NO+NO3→2NO2 (10-17) R38 HNO+O2→NO2+OH (10-21) 

R31 NO+HO2→NO2+OH (10-17) R39 O+HNO2→NO2+OH (10-21) 

R32 NO3+OH→NO2+HO2 (10-17) R40 2NO3→NO2+O2 (10-22) 

R33 O+NO→NO2 (10-18) R41 HNO2+HNO3→2NO2+H2O (10-23) 

R34 OH+HNO2→NO2+H2O (10-18) R42 N2O5→NO2+NO3 (10-25) 

R35 O3+NO→NO2+O2 (10-20) R43 2HNO2→NO2+NO+H2O (10-26) 

R36 N2O3+HO2→NO2+NO (10-20)    

       

Destruction 

R44 NO2+H→OH+NO (10-16) R49 2NO2→N2O4 (10-20) 

R45 NO2+N→N2O+O (10-17) R50 NO2+NO→N2O3 (10-21) 

R46 NO2+NO3→N2O5 (10-17) R51 NO2+O→NO+O2 (10-21) 
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R47 NO2+O→NO3 (10-18) R52 NO2+O3→O2+NO3 (10-23) 

R48 NO2+OH→HNO3 (10-18)    

       

NO3 

Production 
R53 NO2+O→NO3 (10-18) R55 NO2+O3→NO3+O2 (10-23) 

R54 OH+HNO3→NO3+H2O (10-21) R56 N2O5→NO3 (10-25) 

       

Destruction 

R57 NO3+O→NO2+O2 (10-17) R60 NO3+OH→H2O+NO2 (10-17) 

R58 NO3+NO→2NO2 (10-17) R61 NO3+HO2→HNO3 (10-18) 

R59 NO3+NO2→N2O5 (10-17) R62 2NO3→NO3+O2 (10-22) 

 

Reactions in table 5.9 were found in papers published by different authors [7,8,10]; 

although their works differ in various details, a crucial concept can be found through 

them: the atmosphere generated by DBDs (e.g. ozonisers) is directly affected by the 

surface power density in case of a stationary process. Moreover, at low power density 

(<0.2W/cm2) CAP treatment produces an ozone enriched atmosphere; while at higher 

power density, the atmosphere shifts into a NOx regime, due to a phenomenon called 

ozone poisoning [6,7,10–17]. It has been observed that, the ozone poisoning is a time-

dependent effect occurring at high power density, and affect the kinetics of NOx (NO, 

NO2, NO3 and N2O5 molecules) concentrations in a time-dependent way. Many studies 

demonstrated the direct correlation between the ozone concentration and the 

antimicrobial efficacy of CAP treatment [10,15]; fewer authors analysed the efficacy of 

RONS in general [18,19]. 

For the sake of simplicity, low-power density regime will be called ozone-regime 

and the high-power density regime will be called NOx-regime. Above all, Shimitzu et 

alii [10] reported and explained the difference between these two regimes and the 

reasons of the ozone poisoning. In graph 5.10 they reported the ozone concentration as 

a function of time; they obtained several curves depending on the power density applied 

to a surface DBD. The authors highlighted that, increasing power density from 0 to 

0.10 W/cm2 (black lines) increased the ozone production rate; additionally, the 

maximum concentration of ozone increased as well. As soon as the power density 

reached a value of 0.25 W/cm2(blue line), a new phenomenon could be noticed: the 

ozone concentration reached a maximum after a few seconds of operation and then 

decreased, going below the sensibility of the instrument. This phenomenon (i.e. ozone 

poisoning) was faster and faster as power density increased.  

Shimitzu also gave an explanation to this behaviour which requires the analysis of 

the reactions of production and destruction of RONS. 



 

 

 

Graph 5.10 Ozone chemical kinetics in an air surface DBD [10] 

Ozone is mainly produced by reaction R1 between oxygen molecules and oxygen 

atoms.  O is formed by electron impact dissociation of O2; its formation is directly 

proportional to the power density, as Yagi and Tanaka showed in their study on air-

fed ozonisers [11]. This relation between the production of O and the power density 

explains the behaviour of ozone kinetics during the first seconds of plasma treatment, 

with ozone production rate increasing linearly with power density.  

There are several pathways which may cause the depletion of ozone; in air plasmas, 

as for air-fed ozonisers, the main contribution in the destruction of ozone is given by 

NOx molecules forming the catalytic cycle represented by R6 and R9 [7,11], which 

consume directly ozone and by R47 that reduces the density of O atoms, a reagent 

which is needed for O3 formation. Several studies on air ozonisers [6,11,12] describe 

this phenomenon as the ozone poisoning effect and suggest that it is caused by an 

increase of nitrogen oxides as NO and NO2. Increasing power density, reactions R33 

and R51 become faster than R1 and thus remove O atoms. 

Biological results show different inactivation levels and trends for the two power 

densities tested; in order to understand if the chemistry involved in the process was 
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effectively responsible for this behaviour, OAS measurements were performed. Ozone 

and nitrogen dioxide concentrations were analysed to assess which regime was 

governing the discharge: ozone or nitrogen oxides. 

5.6.1 OAS 

OAS is a technique relying on the Lambert-Beer (Johann Heinrich Lambert and 

August Beer)law that can be used to derive the absolute concentrations of several 

species, measuring the reduction of intensity of light passing through a certain volume 

of gas. This technique is non-intrusive and calibration-free; it can be on-line used 

during treatments to observe the kinetics of reactive species produced by CAPs [17,20]. 

The OAS set up used in this work is shown in figure 5.11; as light source: a 

deuterium-halogen lamp was used, characterized by a broadband spectrum from UV 

to NIR radiation. The light emitted from the lamp is directed to a fused silica lens 

through an optical fiber. This lens collimates the light beam travelling inside the 

plasma generation volume and reaches a second lens. This lens converges the light 

beam to another optical fiber that brought the signal to a 500 mm spectrometer (Acton 

SP2500i, Princeton Instruments). The grating of the spectrometer disperses the 

spectral components of impinging light at slightly varying angles and this allowed to 

separate photons reaching the target at different wavelengths; by means of an outlet 

slit only photons of selected wavelengths reached the detector. A photomultiplier 

(PMT - Princeton Instruments PD439) increased and converted the light output signal 

of the spectrometer to an electrical signal. The PMT amplification factor was kept 

constant for all acquisitions. In order to ensure equal gas initial conditions, the 

discharge chamber was opened and flushed for 30 seconds before every measurement. 

The signal could be monitored with a fast oscilloscope. 

https://it.wikipedia.org/wiki/August_Beer


 

 

 

Figure 5.11 OAS setup 

To quantitatively evaluate O3 and NO2 concentrations from absorption 

measurements, the Lambert-Beer law was used; this relation describes the light 

absorbed by a homogeneous medium as a function of the species density n in the 

medium: 

𝐼

𝐼0
= 𝑒(−𝐿𝜎𝑛) 

where I is the light intensity, I0 is the initial light intensity and σ is the absorption 

cross-section.  

In order to minimize the external influence on the treatment atmosphere during 

measurements, a case was created to contain the DBD (figure 5.12). The optical path 

of this reactor was of 8.0 cm. The reactor was made with 2 quartz windows to be 

transparent to any radiation (borosilicate glass blocks radiation with a wavelength 

lower than 300 nm); these windows were 7 cm wide to allow a spatial analysis of 

concentrations. Four different distances from the electrode were investigated, to 

analyse the diffusion of reactive species. 
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Figure 5.12 a) DBD reactor: 1. Cooling connection; 2. High voltage connection; 3. 

Gas inlet; 4. Gas outlet; 5. Quartz optical window. B) cross section of the DBD 

reactor rendering: 1. HV electrode; 2. Resin; 3. Gres; 4. Plasma; 5. Ground 

electrode; 6. Container bottom; 7. Container top.  

The wavelength range, specific for O3 and NO2 has been chosen according to 

Moiseev’s studies [17] and integrated with the spectral resolution of the 

instrumentations used in this work (1.2 nm). Values for the absorption cross-sections 

are found by averaging data from the MPI-Mainz UV/VIS Spectral Atlas database 

[21]. Absorption cross-sections are presented in table 5.13: 

a 

b 



 

 

Table 5.13 Ozone and nitrogen dioxide cross-sections 

Wavelength range [nm] O3 cross-section [cm2] NO2 cross-section [cm2] 

253 ± 1.2 (1.12 ± 0.02) E-17 (1.1 ± 0.3) E-20 

400 ± 1.2 (1.12 ± 0.08) E-23 (6.4 ± 0.2) E-19 

 

As reported by Moiseev, these two wavelength ranges are suitable for OAS 

investigation; in fact, as can be seen in graph 5.14, the cross-sections of O3 and NO2 

are at least two orders of magnitude greater than those of any other species; 

consequently the absolute concentrations may be calculated without making a 

significant error. 

 

Graph 5.14 Absorption cross-sections of main RONS [17] 

To make experiment faster and more repeatable a MATLAB code was written to 

allow real time kinetics analysis converting the oscilloscope signal to the concentration 

value of the species under examination within the acquisition time. Furthermore, the 

code could be easily adjusted for the analysis of different species and geometries.  

To allow a spatial analysis of O3 and NO2 kinetics, four distinct optical paths were 

used (as shown in figure 5.15). The first path used was located under the high voltage 

electrode, the second one, at the edge of the electrode; the third and fourth paths were 

placed outside the plasma generation volume to assess the diffusion of chemical species. 



Chapter 5  67 

 

 

Figure 5.15 Schematic of OAS optical paths 



 

 

5.6.2 OAS results and discussion  

Experiments were performed with 3 different values of power density to better 

understand the role of ozone poisoning in the process. Measurements were acquired 3 

times (and averaged) for each optical path. The DBD container was flushed with 

compressed air for 30 seconds before any measure; the relative humidity of the air was 

measured and found at 21%. Acquisitions lasted 400 seconds: 30 seconds of plasma 

discharge and 370 seconds of post discharge. 

Data were imported in Origin and plotted in 3D graphs reporting O3 and NO2 

kinetics as function of time and distance from the electrode. 

Ozone regime 

The first three graphs reported here show the ozone kinetic obtained with a power 

density of 0.13 W/cm2; the ozone concentration increased during the 30 seconds of 

plasma discharge and reached a peak value of 1880 ppm in correspondence of the 

electrode, at the end of the treatment, implying that higher concentrations could be 

reached for longer treatment time. After the switch off of the plasma there was a fall-

off of O3 both in space and time. After about 350 seconds the concentration was 

distributed fairly homogeneously in space; the average concentration under the 

electrode was of 32 ppm, whereas the rest of the chamber contained about 55 ppm. 

Furthermore, there was still an overall decline in concentration noticeable over the 

whole volume after 400 seconds, presumably caused by the leakages of the reactor. The 

data at the peak value had a standard deviation 2% of the mean concentration. The 

rest of the data points had a higher ratio of standard deviation to mean concentration, 

about 5-20%. 

Experiments were performed with the same power density to assess also the kinetic 

of nitrogen dioxide; no trace of NO2 was found in any condition.  

Both O3 and NO2 analyses described the behaviour of a low-power density 

discharge, a regime in which there was not enough energy for reactions involving NOx, 

hence only O3 was produced. The increase of O3 was stable during the discharge and 

tended to reach a plateau; this regime did not show any ozone poisoning effect. 

It must be underlined that; measured concentrations of ozone are significantly 

higher than maximum values permitted by law in atmosphere; this fact implies the 

obligation to use an exhaust gas disposal system when using DBDs for industrial 

applications. 
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Graph 5.16 Visual representation of ozone kinetic obtained with a power density of 

0.13 W/cm2: global behaviour (top); spatial evolution (bottom left); temporal 

evolution (bottom right). 



 

 

NOx regime 

Graphs reported in this section show the nitrogen dioxide kinetic measured with a 

power density of 5.79 W/cm2. In this condition, the discharge was extremely intense 

and bright; in particular an intense radiation was emitted at 400 nm due to nitrogen 

reactions. Due to this fact, it was impossible to measure the concentration of NO2 in 

the plasma discharge (under the electrode during the discharge time); the N2 emission 

in that wavelength range covered the absorption of NO2. Consequently, the graph 

reported here shows no results for optical path 1 and 2 during the first 30 seconds of 

acquisition (discharge time). 

After the plasma switch-off, the NO2 concentration started to decrease; although 

we do not have any idea of the build-up trend, there must have been an increase in 

NO2 concentration during the discharge time. The peak value reached from NO2 was 

of 700 ppm and could be found at the end of the treatment time in correspondence of 

the electrode. 

After about 350 seconds form the beginning of the treatment, the NO2 concentration 

was distributed fairly homogeneously in space with an average of 65 ppm. This fact is 

remarkable, considering that in ozone regime, O3 peak concentration was higher, while 

its final concentration was lower compared to the one measured in O3 regime.  

Standard deviation as a percentage of the mean concentrations ranged from 2% at 

the peak value, up to 60% for some data points 5 cm away for the electrode. 

Experiments were performed with the same power density to assess also the kinetic 

of ozone; no trace of O3 was found in any condition. The presence of NO2 and the 

absence of O3, may lead to the conclusion that the plasma under examination was in 

a strong NOx regime. In this condition the ozone poisoning is extremely fast and 

forbade O3 measurement. 
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Graph 5.17 Visual representation of nitrogen dioxide kinetic obtained with a power 

density of 5.79 W/cm2: global behaviour (top); spatial evolution (bottom left); 

temporal evolution (bottom right). 



 

 

Transition regime 

Results obtained at low- and high-power densities were interesting but non-

conclusive; no poisoning effect was observed. To highlight ozone quenching and to 

assess if there was a relation between the poisoning effect and the NO2 production, a 

new series of acquisitions has been made. The power density used was of 0.85 W/cm2; 

results are shown in graph 5.18. 

The plot has a shorter time interval than previous figures as the focus was on the 

kinetics of ozone quenching by nitrogen dioxide, which takes place during the 

treatment time. The plasma in the transition mode emitted a low intensity light at 

400 nm; therefore, nitrogen dioxide and its concentration could have been investigated 

during the discharge time. This was done by adding a constant to the light intensities 

during the treatment time, equal to the emission of the plasma. For some data points 

at the beginning and at the end of the treatment, adding a constant was not possible 

as these measures were partly affected by the emission of the plasma. Therefore, those 

points have been excluded.  

Ozone concentration grew for the first seconds of the plasma treatment and reached 

its peak after 7 seconds. The growth in concentration decreased when relatively small 

concentrations of nitrogen dioxide started to form. This was followed by a steep fall-

off of ozone when a relatively small amount nitrogen dioxide was present. After 30 

seconds the ozone was depleted. Ozone reached its peak concentration considerably 

faster in the transition mode, when compared to the ozone regime. The production rate 

of ozone is higher in the transition mode, due to the higher power density. However, 

in transition mode, ozone reached a lower peak concentration, as it was quenched. 

Nitrogen dioxide in the transition mode reached its peak at the end of the discharge 

time; this peak value was almost two time lower than the peak reached with the highest 

power density. In the post discharge phase, only nitrogen dioxide remained, with a 

lower concentration compared to the results in the NOx regime.  

The standard deviation as a percentage of the mean concentration of ozone and 

nitrogen dioxide is up to 4% and 12% for the peak values, respectively. 
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Graph 5.18 Visual representation of nitrogen dioxide and ozone kinetics obtained 

with a power density of 0.85 W/cm2: global behaviour (top); temporal evolution 

under the high voltage electrode (bottom). 

Finally, another graph is reported plotting together the ozone kinetics obtained in 

ozone mode and in transition mode; observing the ozone evolution under the electrode, 

there are mainly two remarks that is worth highlighting. Firstly, the ozone production 



 

 

rate was greater in the transition mode, i.e. with the higher power density applied to 

the discharge. On the other hand, the peak concentration was almost double with the 

low-power density regime; this fact was related to the ozone poisoning effect, which 

started to quench the ozone a few seconds after the beginning of the discharge. 

These trends are in perfect agreement with what showed by Moiseev [17]. 

 

Graph 5.19 Visual representation of ozone kinetics obtained in ozone mode (blue 

curve) and in transition mode (green curve)  

O3 and NO2 data were also used to evaluate the diffusion inside the plasma reactor, 

which was thought to govern the distribution of species. The time needed for a species 

to diffuse over a certain length can by estimated by: 

𝑡~
𝐿2

𝐷
 

in which t is the time, L the distance and D the diffusion coefficient which depends 

of pressure (0.15 cm2/s for ozone and 0.17 cm2/s for nitrogen dioxide at atmospheric 

pressure[10]). Approximately, the time it took for the bulk of the ozone and nitrogen 

dioxide to travel 4 cm was 107 and 94 seconds respectively. In previous results, it was 

observed that it took about 100 seconds to reach a maximum in concentration 5 cm 

away from the centre of the electrode (which was about 4 cm from the edge of the 

electrode, the nearest place where species were produced). This rough estimation 

showed that, the movement of the species were dominated by diffusion. The 

approximation gave a close estimation but did not fully cover the propagation of 

species, as it neglected the concentration gradient. 
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5.7 Process characterization conclusions 

The characterization phase of this project relied mainly on three types of 

investigation: temperature, electrical and OAS measurements. 

The thermal analysis along with electrical measurements was fundamental to 

identify the optimal design of the DBD plasma source. In the frame of this work, four 

different materials have been tested as dielectric layer: PMMA, glass, mica and gres. 

PMMA was excluded due to its low thermal resistance for long treatment. Glass was 

found unusable in the conditions involved in this project: the glass layer broke after 

few minutes of operation due to thermal expansion. Although mica and gres showed 

similar results, both from a thermal and an electrical point of view, gres was chosen 

due to its better mechanical properties.  

Electrical measurements were essential in two contexts: firstly, to measure the 

power density while trying different dielectric materials and thicknesses, hence the 

power conveyed from the plasma to the substrate. Later, electrical measurements were 

implied to parametrize on plasma conditions; in the frame of this work the plasma dose 

was defined by two quantities: treatment time and power density. By means of the 

electrical analysis the power density was calculated and used to compare different 

operative conditions. 

OAS was by far the most sophisticated and useful characterization technique used. 

By analysing the absolute concentrations of ozone and nitrogen dioxide and their 

evolution, the chemistry involved in the discharge was studied. According to what was 

found in literature, two different chemical regimes were identified: a low-power density 

regime, in which the main reaction governing the chemistry was the one of production 

of ozone. This regime (called ozone regime) was described by a power density of 0.13 

W/cm2; a stable production of ozone and no trace of nitrogen dioxide. On the contrary, 

at high power density (5.79 W/cm2) no trace of ozone were detected, while a consistent 

production of nitrogen dioxide was observed; this condition was called nitrogen oxides 

regime. Finally, a transition regime was studied in between low- and high-power 

density regimes (0.85 W/cm2); this analysis allowed to recognize the ozone poisoning 

effect. This phenomenon relies on two factors: the first is that, the ozone production 

rate grows increasing the power density applied to the discharge; secondly, if the power 

density exceed a certain threshold, the ozone concentration reaches a maximum level 

and starts to decrease after a precise time length; this time length is shorter for greater 

power densities.  

The observation of this double chemistry, together with biological results reported 

in chapter 4, led to the conclusion that a NOx enriched atmosphere has a greater 

biocidal effect if compared to a O3 enriched atmosphere. 
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Chapter 6 

Numerical simulation 

 

The analysis of the processes reported in chapter 5, together with biological results 

showed in chapter 4, highlighted that the efficacy of the DBD treatment under 

examination was strongly linked to the chemistry governing the process. A direct 

relation was found between the concentration of NOx species and the biocidal effect of 

plasma. 

Anyway, it was not fully clear was if NOx were directly killing microbes or else if 

NOx were just the marker of a strong antimicrobial process; some other agents being 

responsible for microbial inactivation s. From literature, it is known that fast reacting 

species (radicals and ions) have a strong effect on microbial inactivation [1–3]; 

moreover, some authors mentioned a possible biocidal effect of free electrons [4–6]. 

Unfortunately, these characteristics of plasma are not easy to detect and analyse; this 

is the reason why numerical simulation was involved in the final part of this work. 

Numerical simulation allows, after validation, to assess the physical and chemical 

behaviour of a discharge by means of a model. “A model in physics is a system of 

mathematical equations that are adapted, combined and solved to describe some 

aspects of reality. The solution of the model equations is intended to reproduce 

observed and measured phenomena, thus explaining these in terms of fundamental 

physics” [7]. Furthermore, a model can be used to predict the behaviour of a discharge, 

favouring experimental procedures. 

Depending on the research field, several different models can be used; in the frame 

of this work two of them were implemented: a grand model and a specific model. A 

grand model (or global model) simulates the plasma discharge as a whole. The input 

of the model consists in the set of plasma control parameters such as materials and 

geometry, gas composition, gas mass flow and pressure, electrical power. The output 

of the model is formed by plasma properties and characteristics: electron density and 

temperature, density of chemical species. Outputs can later be used to calculate other 

secondary quantities, such as the heat flux or the emitted light. On the other hand, a 

specific model deals with the relation between internal quantities.  

In the frame of this project, models were implemented in PLASIMO; the PLASIMO 

platform developed by Plasma Matters (https://plasimo.phys.tue.nl/) can be seen as 

a toolkit that facilitates the construction of specific and grand models. The greater 

part of plasma models is built upon the Boltzmann equation together with the Maxwell 

equations. These equations cannot be solved without making significant simplifications. 

There are mainly two methods for solving the Boltzmann equation: the kinetic 

approach and the fluid approach.  

https://plasimo.phys.tue.nl/


 

 

Kinetic models are time and spatially resolved; these models (e.g. Monte Carlo 

models) give kinetic information by following the trajectories of a large number of 

individual particles; consequently, this approach is extremely expensive in terms of 

computational cost, limiting dimensionality. 

The alternative is to use a fluid model, which describes plasma species in terms of 

average quantities like the particle, momentum and energy densities. Fluid models 

solve the moments of the Boltzmann equation in time and space. The fluid approach, 

although being less accurate than the kinetic method, requires shorter computational 

effort. That allows higher dimensionality (2D, 3D).  

The PLASIMO code was initially created by Hagelaar [8] and later developed by 

Van Dijk and Brok [9]. The code has been used for many different plasma modelling 

studies, such as DBD discharges [10], the plasma needle for biomedical applications 

[11], and simulations of plasma breakdown of a parabolic electrodes configuration [12]. 

In this thesis, two models are presented: a global model aimed to simulate the 

chemistry governing the plasma discharge and a fluid model to assess the fluid 

dynamics involved in the process. 

6.1 Global model 

This model is based on the solution of the particle balance equation for each species 

p included in the parameter definition: 

∂𝑛𝑝

∂t
+ ∇ ∙ Γ𝑝 = 𝑆𝑝 

Where Γp=npup is the flux density of the species p; np is the density of the same 

species; up is the average velocity 𝒖𝑝 = 〈𝒗〉𝑝; Sp is the net source term. However, in 

the global model the flux density term is neglected; therefore, the density of species 

relies only on the reaction occurring in the discharge: 

 𝑆𝑝 = ∑ 𝑐𝑝,𝑟𝑅𝑟
𝑟

 

Where cp,r is the net stoichiometric number of particles of species p created in the 

reaction r; cp,r is positive in reaction which leads to the production of the species p, 

negative if the reaction leads to the destruction of p. Rr is the reaction rate and is 

proportional to the densities of reacting particles, this proportionality depends on the 

nature of the reaction (one, two or three body reactions). 

The models of this kind are aimed to the evaluation of the chemistry governing a 

discharge, without considering the fluid dynamics of the process; this simplifies both 

the input parameters required to run the model and the solution of the model itself, 

hence reducing the computational effort.  
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6.1.1 Input parameters 

In this paragraph the input parameters used to run the global model in PLASIMO 

will be presented; these inputs can be divided in two groups: gaseous and electrical 

parameters. 

Gaseous parameters were the most complex to define and included:  

• Initial gas composition: dealing with an open-air application, initial gas 

composition was defined by means of three main species nitrogen, oxygen and 

water (78%, 21% and 1% respectively, 1% of water correspond approximately 

to a 30% or relative humidity at 25°C). 

• Species definition: at the beginning, more than 200 species were included in 

the model and this fact led to extremely long simulation. For this reason, 

several species were left out of the simulation, after verifying their hopefully 

negligible impact on the overall chemistry. The final set consisted of 48 

species, including nitrogen, oxygen and hydrogen derivatives. 

• Reaction list: the set of reaction occurring in the process had to be defined 

along with their reaction constants. These values where taken mainly from 

the Plasma kinetic in atmospheric gases [13], while other chemical parameters 

came from the NIST chemistry webbook [14].  

The electrical input was defined as a constant volumetric power density defined 

over the plasma discharge volume (W/m3); this input was varied in different 

simulations to assess the ozone poisoning effect. DBD discharge is composed by 

streamers with drastic pressure and temperature gradients; consequently, assuming the 

electrical power as a constant is a strong approximation, however an initial step had 

to be taken. Three distinct results are reported here: ozone and nitrogen dioxide 

concentrations are shown as function of time; these results were obtained with three 

different power density inputs, here defined as: low, medium and high power. Treatment 

time was kept constant at 10 seconds to assess the ozone poisoning effect. 

6.1.2 Global model results 

The first graphs reported, show O3 and NO2 kinetics at low power density: the 

ozone concentration showed a constant increase over the 10 seconds of treatment. NO2 

concentration grew as well; however, the final concentration reached was order of 

magnitude smaller; this fact is in good agreement with what has been observed with 

the OAS analysis. During the first tenths of second a spike is present in the NO2 trend; 

this fact cannot be explained with any reaction path, probably that spike relates to 

miscalculation connected to the beginning of the simulation. 



 

 

 

Graph 6.1 O3 and NO2 evolution at low power density  

The second set of results was obtained with a medium power density; O3 kinetics 

showed the poisoning effect: after an initial raise in the concentration, the ozone density 

started to decrease. The NO2 concentration showed a steady growth; moreover, its 

concentration was higher than the one calculated for the low power density case; this 

fact, along with the ozone trend, confirmed the qualitative agreement between 

simulation and measurements. 
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Graph 6.2 O3 and NO2 evolution at medium power density 

Finally, results at high power density are reported in graphs 6.3. There are two 

facts in these kinetic behaviours  that need to be highlighted: first, the ozone quenching 

was faster than the one observed when using the medium power density; moreover the 

intensity of the ozone poisoning was also greater: as it can be seen the density dropped 

of more than one order of magnitude in about 2 seconds. A second interesting remark 

has to be made regarding the NO2 concentration: NO2 density raised for almost 2 

seconds and then maintained that value until the end of the simulation; this behaviour 

is in good agreement with what reported in the chemistry analysis of chapter 5. NO2 

raised faster for greater power density; moreover, as soon as ozone was depleted the 

NO2 density stabilized.  



 

 

 

Graph 6.3 O3 and NO2 evolution at high power density 

The global model allowed to define the chemistry governing the process; the set of 

inputs used with this model were included in the fluid model used to spatially analyse 

the plasma discharge.  
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6.2 Fluid model 

As the global model, the fluid model relies on the iterative solution of the particle 

balance equation; unlike the global model, the flux density is not neglected. The most 

common definition of the flux density of a species p is here reported: 

Γ𝑝 = 𝜇𝑝𝐄𝑛𝑝 − 𝐷𝑝∇𝑛p
 

Where Γ is the flux density, E is the electrical field, n is the density, µ is the 

mobility and D is the diffusion coefficient. The first term at the right-hand side of this 

equation represent the flux due to the electric field (drift); while the second term 

represent the flux connected to the density gradients (diffusion). Accordingly, this type 

of model is also known as drift-diffusion model. The transport coefficients can be 

explained: 

𝜇𝑝 =
𝑞𝑝

𝑚𝑝0𝑣𝑝0
     𝐷𝑝 =

𝑘B𝑇𝑝

𝑚𝑝0𝑣𝑝0
 

 

Where mp0 and vp0 are the mass and the velocity of the buffer gas respectively; kB 

is the Boltzmann constant and Tp is the temperature of the species p. Rearranging the 

transport coefficients, the Einstein relation can be derived: 

𝐷𝑝 =
𝑘B𝑇𝑝𝜇𝑝

𝑞𝑝
 

This relation can be used to deduce the diffusion coefficient from the mobility; 

consequently, to solve the flux density equation, it is required to know the mobility of 

each species included in the model. Mobility data are reported in literature as a 

function of the reduced electric field (E/N); moreover, the mobility of a certain species 

is measured over a buffer gas; here is reported the equation to calculate the mobility 

of a species in a mixture: 

1

𝐾
= ∑

𝑋𝑗

𝐾𝑗
+𝑗

1

2
 ∑

𝑋𝑗

𝐾𝑗
(1 − ∆𝑗)

𝑑ln(𝐾𝑗)

𝑑ln(
𝐸

𝑁
)

× [1 +
𝑑ln(𝐾𝑗)

𝑑ln(
𝐸

𝑁
)

]

−1

𝑗  

Where K is the mobility coefficient over a buffer mixture, Kj is the mobility 

coefficient over a buffer gas and Xj is the molar fraction of the species j over the buffer 

gas. Although this equation is not particularly difficult to solve, mobility data are rare 

to find in literature; additionally, available data are defined over a small range of E/N 

and often approximations must be taken. The most consistent work in this field was 

carried out by Ellis et alii; their measurements were widely used in this project [15–

18].  

 



 

 

6.2.1 Input parameters 

The only change in the definition of the mixture, switching from the global model 

to the fluid model, was the inclusion of the mobility coefficient; these coefficients are 

needed only for ions; in fact, only charged species are affected by the electrical field 

(assumed as Laplacian). While the global model is a dimensionless model, the 

implementation of a drift-diffusion model required the definition of a geometry; a one-

dimensional geometry was chosen. The DBD configuration under examination was not 

a highly complex one; therefore, a mono-dimensional approximation could be used 

without compromising similarity with the reality. The definition of the geometry in 

PLASIMO is done by individual squared blocks; thus, the size of the block must be 

consistent with the smallest dimension which allows to represent the geometry of the 

plasma source. In this case, the smallest dimension is the one of the interelectrode gap 

(1 mm); consequently 3 blocks are needed to describe the gres layer and two blocks 

are needed to represent walls (i.e. the electrodes). 

 

Figure 6.4 Schematic of the mono-dimensional geometry used for the fluid model 

implementation 

Finally, the fluid model requires the definition of electrodes potential, differently 

from the global model which required the power density of the whole process. For this 

reason, a look-up table has been drawn with the potential measurements of the high 

voltage electrode; while the potential of the ground electrode was set to zero. 
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6.2.2 Fluid model results 

In graph 6.5 a comparison between electrical measurements and numerical 

simulation results is shown; the orange line represents the potential waveform, which 

was measured and later used as input in the fluid model. The blue lines represent the 

current flowing through the high voltage electrode: a good similarity can be seen 

between measurements and calculated values. It must be underlined that, the orders 

of magnitude of the two current waveforms are extremely different. This fact can be 

explained introducing how PLASIMO deals with mono-dimensional simulation. 

PLASIMO must assume standard values to simulate a 3-D process. In the mono-

dimensional model, equally shaped squares are defined; the software assigns to each 

square a cross-section of 1 m2. Consequently, in this model, electrodes were defined 

with a generating surface of 1 m2; however, in realty electrodes had an active area of 

0.0011 m2. This surface discrepancy must be considered and can be solved using a 

scaling factor. In this case, the scaling factor was 0.0011. Multiplying current results 

by this factor, the order of magnitude of measurements and simulation results coincide.  



 

 

 

Graph 6.5 comparison between electrical measurements and numerical simulation 

using the drift-diffusion model 

 

6.3 Conclusions 

A global model was created, and simulations of the plasma treatment under 

development were performed by means of PLASIMO. In this model, a complex mixture 

was defined consisting in 48 species derived from nitrogen oxygen and hydrogen; a set 

of hundreds of reactions was implemented to describe the, chemistry governing the 

plasma discharge. The O3 and NO2 kinetics were observed using three different levels 

of power density. With the lowest power density input no ozone quenching was 

observed: O3 concentration raised steadily in the whole simulation. Increasing the 

power density, the ozone poisoning effect was noticed: ozone concentration raised to a 

maximum and then started to decrease. The ozone poisoning effect was paired with an 

increase in NO2 concentration values. With the highest power density input, the ozone 

quenching was completed in about 2 seconds; the depletion of ozone led to a plateau 

in NO2 concentration. 
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The chemistry defined for the global model was expanded and implemented in a 

drift-diffusion model; by adding mobility data for charged species, the fluid dynamics 

of the plasma discharge could be modelled in a 1-D simulation. Although further 

investigation must be performed, preliminary results are promising: the electrical 

current of the discharge was calculated starting from electrodes potential waveforms 

with a good level of approximation.  

In the frame of this project, numerical simulation of DBD air discharge was used 

to study the plasma process; although this investigation showed promising results, a 

lot of effort still has to be put in this analysis. Final results from the fluid model are 

not achieved yet; moreover, there are some traits of plasma that should be analysed 

more deeply. In the current model, only the temperature of the electrons is calculated, 

while the temperature of any other species is fixed. Considering that the temperature 

of the process is not constant, a parametric study about heating effect onto the 

chemistry of the discharge should be performed. Furthermore, the investigation 

performed so far included only ozone and nitrogen dioxide, while many other species 

are present in the model. An analysis on the kinetics of different species should be 

performed as well: starting from fast reacting species, such as nitrogen oxide, the 

hydroxyl radical and atomic oxygen.  

Once refined the model, simulation should be used to identify the set of operating 

conditions that maximize the production of defined species; this work would lead to a 

deeper understanding of which chemical agents are connected with the microbial 

inactivation, and later with the optimization of the process. 
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Chapter 7 

Conclusions 

 

In this 3 years Ph.D. project, a CAP process for microbial inactivation of packaging 

materials has been developed. During the first year of work, a thorough study of state 

of the art of standard disinfection treatments and plasma processes has been done, 

with the aim of identifying the most suitable plasma-assisted disinfection process in 

the framework examined. 

The goal was to develop a process able to reduce the microbial load present on films 

used in food packaging procedures. Materials involved were both plastic and metallic; 

consequently, the temperature of the treatment had to be controlled, in order not to 

induce damage to the substrate. Additionally, treatment times were dictated by the 

particular type of industrial application and could not exceed ten seconds of duration.  

Literature analysis, together with first biological results, showed that an open air 

DBD treatment would have been the best choice. After proving the feasibility of this 

concept using a PMMA DBD, a complete set of disinfection experiments was performed 

varying the process operative conditions. Biological results showed two different trends 

of microbial reduction for two distinct electrical input sets to the process; in particular, 

using a lower power density the influence of treatment time on microbial inactivation 

was almost negligible; additionally, the microbial reduction never exceeded the log 2. 

On the contrary, using a higher power density, the microbial inactivation showed a 

linear growing trend with increasing treatment time. 

After biological tests, the characterization of the plasma discharge was 

accomplished; the aim of this phase of the project was to understand which reactive 

agents of the plasma were responsible for the antimicrobial effect of the treatment. 

These activities led to assess the most efficient operative conditions and later to an 

optimization of the process. To analyse the plasma discharge, three different methods 

have been used: thermal, electrical and OAS analysis.  

Thermal and electrical analysis were involved mainly to study the behaviour of 

different materials used to realize the DBD source. Gres was found to be the best 

material to use as dielectric layer in the DBD layout; its electrical and mechanical 

properties were judged better than those of PMMA, glass and mica under stress tests. 

OAS analysis was used to gain information about the chemistry governing the 

plasma discharge; in this frame, the concentration ozone and nitrogen dioxide were 

measured during treatments. In good agreement with literature, two distinct regimes 

were observed; the crucial parameter which allowed to switch from one regime to the 

other is the power density. At lower power density the O3 concentration grew steadily 



 

 

while no trace of NO2 has been detected. On the contrary, at higher power density no 

trace of O3 has been detected while NO2 grew steadily. Finally, a medium-power 

density was used to investigate a transition regime; in this condition the poisoning 

effect was observed: the concentration of O3 raised quickly as soon as the discharge 

was ignited; after a few seconds, the O3 reached a maximum and its concentration 

started to decrease; the complete depletion was achieved in 30 seconds. On the other 

hand, NO2 concentration started to rise a few seconds after the ignition of the 

discharge; its growth reached a plateau in correspondence of the O3 depletion.  

OAS and biological results together led to the conclusion that the atmosphere 

produced by a high-power density has a stronger biocidal effect compared to the 

atmosphere produced by a low-power density one. Although OAS analysis led to the 

definition of the most efficient discharge regime, it was not clear which reactive agents 

of the plasma was directly responsible for the disinfection; consequently, numerical 

simulation has been involved to evaluate the behaviour of the different biocidal species 

of the treatment. 

Two distinct models were created in PLASIMO: a global model and a fluid model. 

The global model was used to define the chemistry involved in the plasma discharge; 

this type of model neglects the importance of the drift and the diffusion of species 

allowing 0-D fast simulations. By means of this model, the chemical behaviours of both 

lower and higher power density discharges were assessed; furthermore, the ozone 

poisoning effect was observed. A fluid model was also created (using the chemistry 

defined for the global model) to assess the fluid dynamics governing the discharge. 

Conclusive results could not be achieved in the frame of this project; preliminary results 

obtained from simulations are promising since the electrical behaviour of the discharge 

was modelled almost perfectly; further investigation is needed to evaluate the different 

roles of reactive species present in the plasma. 

7.1 Further investigations 

An efficient open-air DBD disinfection process has been developed and further 

investigations are needed to optimize it treatment. Although the biocidal effect of the 

discharge was found to be linked with the chemistry involved in the process, there is 

still no direct relation between the microbial disinfection and the concentration of a 

reactive species. It would be interesting to identify new operative conditions able to 

maximize the presence of single reactive species (e.g. NO, OH, O, NO2) and to perform 

biological experiment to assess the efficacy of those species. To do this, a more 

extensive use of numerical simulation must be involved; in fact, only this type of 

investigation may analyse the behaviour of each reactive species. 

It would be interesting to analyse the efficacy of plasma in combination with 

another disinfection treatment such as ethylene oxide. 

Finally, a lot of effort must be spent in order to realize each new industrial 

application; although at the moment the process is efficient on a lab scale, many 

changes have to be done to be able to use this technology on an industrial level. DBD 

dimensions must be scaled to allow a reasonable production rate; additionally, the 
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power supply has to be redesigned to satisfy the needs of an industrial process. 

Moreover, a gas flow system must be designed; species involved in the plasma discharge 

are toxic if reach a certain threshold; therefore, their use cannot be underestimated. 

7.2 About disinfection treatment 

In the frame of this project, an open-air DBD disinfection treatment has been 

developed. The efficacy of this process was already highlighted; however, in the 

industrial field several different disinfection treatments can be used and it is important 

to understand when it is worth to use a plasma assisted one instead of a conventional 

one. Plasma has several advantages compared to other inactivation methods: fast 

antimicrobial activity, moderate temperature reached during operation, easily 

removable gaseous resides.  

Thermal disinfection methods are the most used, when applicable, due to their cost 

effectiveness. It is clear that this kind of methods cannot be involved in the disinfection 

of thermo-sensitive materials; applications that involve low thermal resistant material 

usually rely on chemicals or electromagnetic radiation to achieve disinfection. In this 

frame the plasma technology could be the best choice; using plasma instead of 

chemicals gives great advantages from the point of view of operation safety and 

environment concern. At the same time, the costs associated with electromagnetic 

radiation treatment are higher compared to those of a plasma assisted process. 

To summarize, CAP disinfection treatments showed promising results both in terms 

of microbial reduction and of productivity rate; moreover, this technology could be the 

best disinfection method when materials with low thermal resistances are involved. 





Abstract 

In this dissertation are reported the most relevant results obtained during my three 

years Ph.D. project. An open-air plasma source has been developed to treat plastic and 

metallic films typically used in food packaging manufacturing. Among others, the DBD 

configuration was chosen due to its many advantages such as high intensity and 

uniformity of the treatment, possibility of operating in ambient air as well as ease of 

scale up. 

Biological experiments were performed to assess the microbial reduction induced by 

the plasma treatment. Different operative conditions have been tested in order to 

identify the most efficient configuration and two distinct behaviours have been 

observed: low-power density treatment allowed to achieve microbial inactivation values 

below log 2 independently on treatment time; high-power density treatment where the 

microbial reduction grew with increasing treatment time. 

Subsequently, the plasma discharge has been characterized by means of three 

investigation methods: thermal, electrical and optical absorption spectroscopy (OAS) 

analysis. The thermal and electrical analyses were employed to identify the best 

dielectric materials for food packaging manufacturing purposes. Once defined the 

optimal DBD configuration, OAS was used to measure the absolute concentration of 

ozone and nitrogen dioxide. Results showed that at low-power density the chemistry 

is governed by ozone; while at high-power density ozone is consumed by the poisoning 

effect and only nitrogen dioxide is detectable. 

Lastly, a numerical simulation has been used to deeper investigate the chemistry 

governing the plasma discharge; by means of PLASIMO a global model and a fluid 

model were implemented.





 

 

Appendix 

In this section are reported the data sheets of pathogens used in this dissertation and 

data sheets of materials used for the production of plasma sources. 



 

 

 



 



 

 

 



 

 



 

 

 



 

 



 

 

 



 

 



 

 

 
 


