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Preface

Type-checking in dependent type theories relies on conversion, i.e. testing given A-terms for
equality up to B-evaluation and a-renaming.

Computer tools based on the A-calculus currently implement conversion by means of
algorithms whose complexity has not been identified, and in some cases even subject to an
exponential time overhead with respect to the natural cost models (number of evaluation
steps and size of input A-terms).

This dissertation shows that in the pure A-calculus it is possible to obtain conversion al-
gorithms with bilinear time complexity when evaluation is carried following evaluation strate-
gies that generalize Call-by-Value to the stronger case required by conversion.
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Chapter 1

Introduction

11 Perspective

About 5000 years ago homo sapiens invented mathematics, a set of notations and instruc-
tions to gain mental control over concepts like number and form. Fast-forward to today: every
scientific discipline uses mathematical tools to justify its conclusions. But how are mathemat-
ical theories themselves justified? One answer lies in logicism (19th century) which advocates
to ground mathematics in logic, the discipline that studies the abstract laws of a form of rea-
soning called deductive. Logicism is quite appealing: in fact, the alliance between deductive
reasoning and mathematics dates back to the ancient Greece, and has been very successful
ever since. Take the Elements of Euclid, considered the most influential textbook of all times.
The Elements cover elementary geometry and number theory using a format that is still used
in mathematics today: the organization of the contents in definitions, axioms, theorems and
proofs.

Consistency first! More than two thousands years after the Elements, Alfred North White-
head and Bertrand Russell attempted to continue the program started by Euclid, by showing
that all mathematics of the time could also be reduced to some collection of axioms. Their
book Principia Mathematica was prompted by the discovery that set theory—the theory of
sets of real numbers motivated by the field of analysis—gave rise to contradictions due to
the naive and informal way it was formulated back then. The most famous such contradic-
tion is known as Russel’s paradox, and intuitively rules out the existence of a “set of all sets™
naive set theory was thought to allow the definition of such a universal set, making it inconsis-
tent, i.e. logically unusable. The contradiction arises directly from the principles used to form
sets (called comprehension axioms), which are too permissive. In order to make set theory
consistent again, one needs to include some limitation on the instances of comprehension
that can be used.

What's in a type? In response to Russel's paradox, philosophers proposed new candidate
theories to serve as foundation for mathematics. Some were based on Russel's own type
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theory, a class of formal systems that derive typing judgements about terms: such judgements
have the form¢: T, which reads “the term ¢ has type 1" These typing judgements are derived
according to axioms and inference rules in such a way that undesired, paradoxical objects
cannot be assigned any type. Types fundamentally provide a grammatical restriction over
terms: the term for the paradoxical Russel set is ill-typed in such type systems, and hence it
does not denote any usable object.

The most successful among type theories is the simply typed A-calculus , and was intro-
duced by Church in 1940 as a general theory of functions. The A-calculus is as expressive
as it is basic: one can only apply functions to arguments, and computation — i.e. function
invocation — is modeled by a single rule called (. It was only a few decades later, in 1969,
that William Alvin Howard formalized the analogy between the simply typed A-calculus and
a proof system for intuitionistic logic known as natural deduction. This analogy is known
as the Curry-Howard correspondence, and directly relates type theory and proof theory, i.e.
computer programs and mathematical proofs.

Alexa, check my proof. With the personal computer revolution, the idea that mathematical
proofs could be verified by a computer began to spread: among the first so-called proof
assistants was Automath, initiated by Nicolaas Govert de Bruijn in 1967. Automath was based
on type theory and was in a way a precursor of the Curry-Howard correspondence: in this
approach, one maps each mathematical statement ¢ to a type T@ in a suitable type theory,
such that ¢ holds if and only if there exists a term ¢ of type 1., i.e. such that ¢: T,,. The
role of a proof assistant is to facilitate a human user in writing down the term ¢, and then to
ensure that ¢ has type T,,. The operation of checking that?: T, is called type-checking, and
when observed through the Curry-Howard mirror it amounts to proof-checking, i.e. verifying
that a given term is a valid proof for a given statement.

The ambition of Automath was to handle all of mathematics, but to do so the theory of
simple types mentioned above was clearly inadequate: in fact the type theory of Automath
is much stronger and consists of a typed A-calculus with dependent types. Dependent types
are a feature of type systems that blurs the distiction between terms and types: terms may
occur in type expressions, i.e. types depend on terms. For instance, we may have the type
Prime(S) — where the term 3 occurs — corresponding to the mathematical predicate that
states that the natural number 3 is a prime number. By Curry-Howard, in order to prove that
3 is prime it suffices to provide a proof term ¢ such that ¢: Prime(3).

Like Automath, modern proof assistants such as Agda, Coq, NuPRL and Matita reduce
the problem of proof-checking to the problem of type-checking in a programming language
with dependent types. We are a long way from a logic utopia where all mathematical proofs
are computer-checked, even though a lot of effort has been made towards computer-verified
proofs up to a point where human cognition today cannot do without computer aids anymore.

OK Compute. The point of no return was crossed in 2005 with the formalization of the four-
color theorem in Coqg by Gonthier, 2007. The four-color theorem informally states that “four
colors are enough to color a map”, and as harmless as it may seem, it took many failed at-
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tempts and more than one hundred years to be proved on paper. But even after its proof the
solution did not fully convince all mathematicians, because it combined textual arguments
with computer code, that could not be checked easily by human inspection. The issue was
then settled with a more elegant revision of the original proof, and by Gonthier’s formalization
in a proof assistant. A further goal of that formalization was to explore the limits of formal
proof systems and investigate new techniques: a particularly useful one was so-called “com-
putational reflection”, which relies heavily on a feature of dependent type theories called
conversion . In fact, dependent type systems usually include an inference rule like the fol-
lowing:

Conversion rule
t: T T =3 T
t: T

(conv)

This is called conversion rule, and reads as follows: in order to prove that a term ¢ has
type T, it suffices to show that ¢ has type 1", if T" and T" are B-convertible. 3-convertible
means that after performing some 3 computation, T'and 7" become the same type. Basically,
the conversion rule lets computation happen transparently, without leaving any trace in the
proof term t.

Every formalized proof requires computation in some way. For instance, suppose we ob-
tained ¢: Prime(1 + 2): in order to conclude that 3 is a prime number, the term “1 + 2"
needs first to compute to “3”, so that Prime(1 + 2) =g Prime(3). In this example we
used the sum + of natural numbers because it is a really simple recursive function, but in
dependent type systems one can usually encode recursive functions of arbitrary complexity.
Let us get back to the formalization of the four-color theorem: by relying heavily on conver-
sion, one can reduce proofs with millions of cases to proof terms that are smaller but require
huge computations. Note that these computations, omitted from the final proof term, need
to be executed again whenever proof-checking.

As a consequence, proof-checking depends critically on conversion, and in order to imple-
ment proof-checking in an efficient way, one also needs to perform [3-conversion efficiently.
Investigating how to implement [3-conversion efficiently is the motivation behind this disser-
tation, which we will detail in the next section.

1.2 Motivation

As mentioned above, the guiding light of this dissertation is how to make 3-conversion in
proof assistants more efficient. Conceptually, conversion is made up of two components:

Conversion — Computation -+ Comparison

In order to check whether two terms (or types) t and s are convertible, one has to perform
both some computation , which inthe A-calculus amounts to 3-steps, and also comparison,
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which amounts to checking whether corresponding subparts of given terms are the same. (We
remain vague on purpose, as we will go into more details later.)

In order to be efficient, both Computation and Comparison must be efficient: this dis-
sertation explores the two parts separately, with computational complexity in mind.

Computation

In the A-calculus, Computation boils down to evaluation (as in evaluating an expression or
a program to its value). Like many proof assistants, also functional programming languages
(FPL) are based on the A-calculus. While a lot of effort has been put into devising efficient
interpreters and compilers for FPL, not all of these findings can be transferred verbatim to
proof assistants: the reason for this is that the kind of evaluation needed by proof assistants
is of a more general kind than the one required by FPL. Comparison, in fact, requires to
walk recursively over the structure of A-terms, forcing one to evaluate and compare also the
bodies of unapplied functions. We call this kind of evaluation “strong”, versus the “weak” kind
of evaluation required by FPL (that evaluate the instantiated body of a function only when
enough arguments are provided).

To study and improve the efficiency of implementation, one got to get their hands dirty
and get away from the tidiness of the formal definition of the A-calculus:

- Sharing: during evaluation, if previously evaluated terms are not recorded, one is forced
to perform repeated, unnecessary work that leads to huge inefficiency. The solution is
using a mechanism to share subterms, in such a way that multiple instances of pre-
viously encountered subterms count as a single, re-usable entity. A concrete, but still
idealized way to study shared evaluation — also by the point of view of complexity — is
by means of abstract machines, the devices that we employ in this dissertation.

- Open evaluation: abstract machines for weak evaluation have existed since the 1960's,
but strong machines are rare in the literature, because strong evaluation is much more
difficult than the weak one. Recently, the research on abstract machines has been fo-
cusing on an intermediate setting between weak and strong evaluation, called open or
symbolic evaluation, which is also the setting that we consider in this dissertation. One
can perform strong evaluation “by levels”, first weakly evaluating the term at top-level,
and then iterating weak evaluation in the bodies of functions. The difference between
weak and open evaluation is the following: when evaluating the body of a function, the
variable that is the formal parameter of that enclosing function behaves as “free” (not
being bound to any actual value) hence preventing subexpressions that contain that
variable to evaluate to usual values. Weak evaluation in presence of free variables is
called “open evaluation”, and as we will see it presents challenges of its own.

Comparison

If we visualize A\-terms as abstract syntax trees, comparing two A-terms means traversing their
syntax trees and at the same time checking that nodes in corresponding positions represent
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the same syntactical construct. Based on this description, the problem of Comparison looks
trivial, but there are at least two additional aspects to consider:

- Sharing. As discussed above, we need sharing to perform Computation in an efficient
way: therefore, after evaluation, A-terms are not plain A-terms but A-terms with sharing.
From the point of view of syntax trees, adding sharing to A-term roughly corresponds
to turning trees into directed acyclic graphs (DAGs), or A-graphs. Note that traversing
recursively a DAG may take exponential time in the size of the DAG, and similarly unfold-
ing the sharing to obtain back a A-tree is an exponential-time operation. In order to
show that A-graphs are just succint representations of A-terms that do not introduce
exponential-time blowups, we need to traverse the terms to be compared in a smart
way.

- Variable bindings. Like in usual programming languages, A-terms that only differ by the
renaming of bound variables must be considered equal: this notion of equality is called
«a-equality . As a consequence, A\-graphs are not simply term graphs, representing
first-order terms, but contain a notion of scoping that must be taken into account. For
instance, when comparing two functions, one proceeds to traverse their bodies but only
after recording in some way that their corresponding formal arguments are identified,
even if they have different names. Variable scopes also interact with sharing, making
efficient Comparison even more complex.

Conversion

As already mentioned, in this dissertation we will keep the problems of Computation and
Comparison unweaved, studying them separately. However, this separation does not actu-
ally occur in the implementation of proof assistants: to compare two A-terms, it is not nec-
essary to fully evaluate them first, and later compare their values. In real implementations
Computation and Comparison are interleaved, so that Conversion can fail earlier and be
more performant in practice. In fact, failing early is essential for the performance of proof
assistants: for instance, it is common for solvers to attack a proof goal by repeatedly apply-
ing various tactics, each requiring the proof assistant to perform convertibility checks and to
backtrack in case of failure.

Still, I believe a formal study of these separate issues is fundamental: proof assistants
are complex pieces of software, and their users must be able to trust their correctness. Since
Conversion is together with proof-checking the central operation performed by the kernel
of a proof assistant, it is important that all the underlying aspects are well-understood, and |
believe this dissertation works towards this goal. | thus leave interleaving Computation and
Comparison for future research, even though | will sketch my recommendations in the final
chapter.
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1.3 Methodology

Asymptotic complexity. Our focus is on the asymptotic complexity of the problems and
algorithms that we present, to which we provide upper bounds via the big O notation. We
strive for linear-time complexity: in the case of Computation, linear both in the size of
the A-term to be evaluated and in the number of [3-steps according to a fixed evaluation
strategy (Call-by-Value); in the case of Comparison, linear in the size of the shared terms to
be compared. Note that the current state-of-the-art implementations have either unknown
complexity, or do not possess the desired complexity.

We do not explore the average-case complexity of our solutions: as already mentioned,
in order to improve the average running time of Conversion it is fundamental to interleave
Computation and Comparison, so to fail earlier. We leave this to future research (see sec-
tion 15.2). We also do not to measure the running time of our algorithms on concrete instances
by means of benchmarks, mainly because there do not exist standard libraries or test suites
for Conversion so to compare different approaches.

Full proofs. We provide full and detailed proofs for the contributions presented in the main
technical parts. We decided to not include in the body of this dissertations the results for
which we do not have fully spelled out proofs: notably, our evaluation machine for Strong
Call-by-Value, which we outline in the part about future works, in section 15.1.

1.4 Outline

We now explain briefly the contents of each part of this dissertation.

Part I: Preliminaries

In the first part of this dissertation we provide the background for the topics covered in
the following parts: this part contains mainly already existing concepts and results, not new
contributions of this dissertation — even though | sometimes took the liberty of deviating a
bit from how things are usually presented .

As self-contained as | wish it were, this partis still quite synthetic and in no way exhaustive.
However, | tried to lay it out in such a way as to provide all the intuitions and notions that are
necessary to understand the following results. To do so, in some parts | provide more than
the strictly necessary information, in order to help understand the bigger picture or show
related concepts.

- In chapter 2 we provide a cut-to-the-bone introduction to the A-calculus, two syntaxes
(named and nameless), its evaluation semantics, and the shortest glossary of rewriting
theory.

- To evaluate A-terms one must choose an evaluation strategy: in chapter 3 we shortly
introduce the most common strategies for the A-calculus, then settle on Call-by-Value
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(CbV). We introduce historic Plotkin’s CbV A-calculus, which is however insufficient for
our goals because it is adequate only for the A-terms coming from programming lan-
guages, i.e. closed terms. For proof assistants, we need also to consider open A-terms,
i.e. terms with free variables: we introduce so-called fireball A-calculus, the simplest
presentation of Open ChV.

- In chapter 4 we discuss how to implement evaluation, abstractly. Naive implementa-
tions suffer from an exponential-time slowdown called size explosion, due to the textual
representation of A-terms: this issue is only solved by sharing, a mechanism to reuse
subterms during evaluation. We add explicit sharing (ES) to the syntax of the A-calculus.
Through sharing, we decompose the meta-level operations at work during evaluation
and progressively internalize them in the calculus: we walk through different calculi
with ES, finally reaching abstract machines. We discuss in what way abstract machines
simulate or implement a calculus, and the techniques to prove simulation. Finally, we
show how to extimate the asymptotic overhead of a machine by bounding the number
of machine transitions.

- In chapter 5 we introduce strong evaluation and explain why it is relevant. We show
one of the few existing abstract machines for strong evaluation, and explain how the
literature has optimized it. We then focus on the intermediate case between traditional
abstract machines and strong machines, i.e. machines for open evaluation.

- In chapter 6 we look at sharing in A-terms from a different perspective: when A-terms
are represented as syntax trees, sharing amounts to allowing the nodes of the tree to
have multiple parents, turning the A-tree into a A-graph. We will use A-graphs in part Il
to solve Comparison.

Part Il: Compute

In this part we focus on Computation. The goal of this part is to improve and simplify the
design of already existing abstract machines for Open CbV evaluation, in order to make them
more suitable to be generalized to the strong setting. To do so, we present an alternative rep-
resentation of A-terms enabled by explicit sharing, which we call crumbled. Crumbled terms
simplify both the enforcement of the CbV strategy, and the design of the abstract machines
implementing it.

- In chapter 7 we introduce crumbled forms, and show how to translate back and forth
from A-terms to crumbled terms. We also discuss some issues of related representa-
tions, such as administrative normal forms and continuation-passing style translations.

- In chapter 8 we introduce the Crumble GLAM, our abstract machine working on crumbled
terms. We show that it implements the CbV strategy with only a linear-time overhead.

- In chapter 9 we generalize the Crumble GLAM from the previous chapter to the case of
open terms, obtaining the Open Crumble GLAM. A benefit of our approach is that all the
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results about the Crumble GLAM scale smoothly to the Open Crumble GLAM: we show
that the Open Crumble GLAM implements Open CbV with only a linear-time overhead.

- Plot twist: the machines of chapter 8 and chapter 9 are not actual machines. In chap-
ter 10 we refine them, obtaining the real abstract machines, that we name Pointed
Crumble GLAM and Open Pointed Crumble GLAM.

- In chapter 11 we provide an OCaml implementation of the Pointed Crumble GLAMs of
chapter 10, together with a discussion of all the necessary data structures and low-level
implementation details.

Part lll: Compare

In this part we focus on Comparison. On A-terms with sharing, Comparison amounts to
what we call sharing equality, i.e. the problem of deciding whether two shared A-term are
equal up to the unfolding of the sharing. As already mentioned, unfolding the sharing is
an exponential-time operation; instead, we require sharing equality to be checkable in time
proportional to the size of the shared terms, in order to match the linear-time overhead of
evaluation.

- In chapter 12 we develop a theory of sharing equality which allows to decompose shar-
ing equality in two parts: a part that only manipulates the first-order structure of A-
terms, and a part that takes into account the higher-order nature of A-terms (binders
and variables).

- We turn to the algorithmic side of sharing equality. In chapter 13, we showcase problems
related to sharing equality, showing also their computational complexity.

- In chapter 14 we provide our linear-time algorithm for sharing equality, together with
full proofs of correctness, completeness, termination and linearity.

Part IV: Conclusions

To conclude, in chapter 15 we provide directions on how to extend the work of this disserta-
tion.

1.5 Contributions

We conclude this introductory chapter by anticipating the contributions of this dissertation:

Crumbling abstract machines. We introduce the crumbled representation of A-terms: by
decomposing nested application, we study how our crumbled representation of A-terms im-
pacts on the design and the efficiency of abstract machines for CbV evaluation. About the
design, it removes the need for data structures encoding the evaluation context, such as the
applicative stack and the dump, that get encoded in the environment. About efficiency, we
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show that there is no slowdown, clarifying in particular a point raised by Kennedy, about the
potential inefficiency of such a representation. Moreover, we prove that everything smoothly
scales up to the delicate case of open terms, needed to implement proof assistants. Along
the way, we also point out that continuation-passing style transformations—that may be al-
ternatives to our representation—do not scale up to the open case.

A theory of sharing equality. We develop a re-usable, self-contained, and clean theory of
sharing equality, independent of the algorithm that computes it. Some of its concepts are
implicitly used by other authors, but never emerged from the collective unconscious before
(propagated queries in particular)—others instead are new. A key point is that we bypass the
use of c-equivalence by relating sharing equalities on DAGs with A-terms represented in a
locally nameless way. In such an approach, bound names are represented using de Bruijn
indices, while free variables are represented using names—thus ai-equivalence collapses on
equality. The theory culminates with the sharing equality theorem, which connects equality
of A-terms and sharing equivalences on shared A-terms, under suitable conditions.

A linear-time sharing equality algorithm. We provide a linear-time algorithm for sharing
equality by adapting a linear algorithm for first-order unification by Paterson and Wegman
(PW) to A-terms with sharing. Our algorithm is actually composed by a two-levels, modular
approach:

- Blind check: a reformulation of PW from which we removed the management of meta-
variables for unification. Itis used as a first-order test on A-terms with sharing, to check
that the unfolded terms have the same skeleton, ignoring variables.

- Variables check: a straightforward algorithm executed after the previous one, testing
a-equivalence by checking that bisimilar bound variables have bisimilar binders and
that two different free variables are never equated.

The decomposition plus the correctness and the completeness of these checks crucially rely
on the sharing equality theory developed in the previous point.

Publications

The majority of the results have been obtained in collaboration with Claudio Sacerdoti Coen’,
Beniamino Accattoli”, and Giulio Guerrieri’.

The contributions of this dissertation are based on the following publications:
1. Andrea Condoluci, Beniamino Accattoli, and Claudio Sacerdoti Coen (2019). “Sharing

Equality is Linear”. In: Proceedings of the 21st International Symposium on Principles
and Practice of Programming Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019.

Thttps://www.cs.unibo.it/~sacerdot/
2 https://sites.google.com/site/beniaminoaccattoli/
3https://www.irif.fr/~giuliog/
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1.5. CONTRIBUTIONS 1

Note on skimming

Throughout the dissertation, we will use the following page-wide dashed line:

to separate the initial, central part of a section from the secondary part, containing technical
details that can be skipped at a first read.
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Chapter 2

The \-Calculus

The A-calculus is a quite minimal and elegant formal system (Church, 1941; Barendregt, 1984)
widely recognised as the foundation of functional programming languages (Landin, 1965). The
A-calculus is a very well-known theory, which usually does not need more than a couple of
paragraphs to be recalled. However, being an essential prerequisite for the rest of this thesis, |
have decided to still provide a less concise introduction, so to make this text as self-contained
as possible. Nevertheless, all readers with a basic knowledge of the A-calculus are welcome
and encouraged to skip right to the next chapter!

In the following, we briefly introduce its syntax (section 2.1) and reduction semantics (sec-
tion 2.2). In section 2.3 we provide a brief glossary of rewriting theory with notions that are
common to all the calculi in this dissertation. Finally, we present in section 2.4 an alternative
but standard syntax for A-terms where variables are represented by natural numbers instead
of usual named variables.

24 Syntax

The terms of the A-calculus are called A-terms, and their syntax is defined by the following
grammar

Named terms
tys,u,r = x| Xx.t|ts

We denote variables with x,y, 2z, w and assume an enumerable set of variable names
called V. As one can see, a A-term is either a variable, an abstraction A\x.t of a function
body t over a variable x, or the application ¢ s of two terms ¢ and s. Examples of A\-terms
are:

- Ax.x denotes a function which takes in input an argument x and then just returns it.
We call it 1 for “identity”.

To define the syntax of various objects we use the standard notation technique called Backus-Naur form.

15
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- A\x.\y.x denotes a function which takes in input two arguments x and y, and then re-
turns the first one. It is usually called “first projection”, whereas Ax.\y.y is the “second
projection”.

-y (Az.x) is the the term obtained by applying the identity to the variable y. Here the
variable y can be regarded as a symbol, with no given value nor any property other than
its identifier name.

Abstraction is a binding construct, hence it introduces a notion of scoping. The status
of a variable changes according to the scopes in which it occurs, and it can be either free or
bound. Intuitively, a variable occurrence is bound if it is inside the scope of an abstraction
that binds it, for instance, the z in Ax.\y.x; a variable is free in a term if not all occurrences
of that variable are bound, for instance the  in = (Ax.x). We can define formally the free
variables of a term as follows:

Free variables

Let ¢ be a A-term, and x be a variable. We say that z is free in ¢ if z € fv(t), where fv(t)
is the set of free variables of ¢ defined by structural induction on t:

fv(z) = {z}
fu(ts) = fv(t)Ufv(s)

fv(\x.t) = fv(t)\ {x}

Likewise, we can define by induction over t the set bv(t) of bound variables in ¢, and the
set vars(t) of all the variables occurring in t. We call a A-term ¢ closed if fv(t) = (), open
otherwise.

Closed vs open Closed A-terms are also called “programs”, because the source code of
programming languages cannot refer to variables that are not initialized, i.e. free variables.
We call “closed A-calculus” the case where A-terms are required to be closed: it is the ideal
setting to model functional programming languages, and it enjoys a simpler semantics. How-
ever, other tools based on the A-calculus—for example proof assistants—need to manipulate
also open A-terms. In chapter 5 we will discuss the additional challenges of the open setting.

Variable names The representation of A-terms that we have just provided is called named
because variables bear names, in the sense that they are identifiers named with x, y, . . .. As
we will see in section 2.4, providing names to variables is not strictly necessary: one could sim-
ply represent variables with natural numbers. Different representations have different pros
and cons, but the biggest point in favour of named A-terms is being quite human-friendly—in
fact every programming language uses named variables.

20r “combinators”, for historical reasons.
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The problem with named A-terms is that variables with different names are not exactly
different variables. Consider for instance the following two ways of writing down the identity:
Ax.x and Ay.y. These two terms clearly represent the same A-term, just with renamed bound
variables: thus the variable x in the first term is somewhat the same as the variable y in the
second one. If we instead consider the A-terms x and y by themselves (where x and y are
two different names), then the two are clearly different A-terms.

As a consequence, equality on named terms is not just syntactic equality, but what we call

a-equality °: we must identify terms up to the renaming of bound variables. Even though
«a-equality is conceptually a simple operation, providing a formal definition is not straight-
forward, which already suggests how complex is working with names explicitly.

In order to define ai-equality, we first specify what it means to rename a variable in a term:

Renaming

Let ¢ be a named term, and x, y be variables such that y ¢ vars(t). We define the
renaming of x for y in ¢, in symbols t{x<—y}, by structural induction on ¢:

- Same variable: x{z<=y} = y;

* Different variable: z{z<y} = zifx # z;

- Application: (t s){z<y} = (t{z<=y}) (s{z<=y});

- Abstraction (i): (Az.t){z+y} = Ax.t;

- Abstraction (ii): (Az.t){z<=y} = Az.(t{x<=y}) if z # .

The following definition of ci-equality is a variant of the one in Selinger, 2008:

a-equality =,

We define ai-equality as the smallest equivalence relation over named terms such that:
1. Application: t s =4 urift =, wand s =, 7;
2. Abstraction: \x.t =, \x.sift =, s;
3. Renaming: A\x.t =, \y.(t{z<=y}) ify ¢ vars(t).

Points 1 and 2 state that c-equality is compatible with the constructors of the A-calculus,
and Point 3 performs the actual renaming of a bound variable: the renaming of multiple
bound variables is obtained by transitivity, since =, is required to be an equivalence relation
(i.e. reflexive, symmetric, and transitive).

It is standard to identify A-terms up to a-equality: formally, one defines A-terms as the
quotient of named terms over the equivalence relation =,. The alternative, nameless syntax
for A-terms that we will introduce in section 2.4 actually avoids the problems of reasoning
up to a-equivalence classes.

3Usually called a-conversion.
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Substitutions. Before defining how A-terms “compute” we need to define the fundamental
operation of substitution. We extend the notation introduced for renamings in definition 2.2
to t{z<—s}, which is the term obtained from ¢ by replacing all free occurrences of x with
the term s. In presence of binders, substitution is not as simple as textual replacement (also
known as “grafting”): for instance, the result of (Az.y){y<—x} should not be Ax.z but Az.x
for any z # x. This kind of substitution is called “capture-avoiding”, because it substitutes
and at the same time renames the bound variables encountered in order to prevent capturing
the free variables of the term to be substituted.

Substitution

Let t, s be A-terms, and x be a variable. We define the substitution of x with s in ¢, in
symbols t{z<—s}, by induction on the size of ¢:

- Same variable: x{x<—s} = s;

- Different variable: y{x+s} =y ifx # y;

- Application: (t u){x<s} = (t{x<s})(u{x+s});

- Abstraction (i) (Ax.t){z<+s} = A\x.t;

- Abstraction (ii): (Ay.t){z<—s} = N/ .(t{y<=y' Hz<s}) if & # y for some v/
such thaty’ & {z} U vars(t) U fv(s).

We also define substitutions as objects per se, which we denote by o: they have the

form o = {x1<t1,...,xp¢tx} where xq, ...,z are distinct variables. In particular, if
k=0theno = {} called the identity or empty substitution. We define the domain of o as
dom(o) == {z1,..., 2}, and we say that o(x;) :== t; fori = 1... k. We denote by to the

simultaneous capture-avoiding substitution of o in ¢, which is standard and can be defined
in a similar way as in definition 2.4.

Operations on substitutions

Let o and o’ be substitutions such that dom(c) N dom(o’) = (. We define the compo-
sition o o ¢’ as follows:

goo’ = {x+ti0,... zptro’} U’
ifo = {x1¢t1,. .., cptr}.
We also define the union o U ¢’ as follows:
oUo = {wi¢ty, ..., mptp, Y1451, -, YnéSn}

if o' = {y1¢=s1,...,yn<5sn}.
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Size. We also define the size |7| of a A-term t as follows:

Size |t| of a A-term

We define the size |t| of a A-term ¢, by structural induction on ¢:

lz| = 0
lts| = 14t +|s]
Az.t] = 1+ |[t].

2.2 Evaluation

The behaviour of A-terms is usually described in terms of individual steps of computation,
approach called operational or small-step semantics. A computation step is traditionally
called reduction or evaluation, and it is defined in terms of rules: the classical A-calculus
encompasses only one reduction rule, called 8 and defined as follows.

[-rule (top-level)
(Az.t)s 5 t{xs}

Intuitively 8 performs a function call, executed as an atomic operation: (Az.t) s is called
a redex, and reduces in one step to t{x(—s} which is the function body ¢ where every free
occurrence of the formal parameter x is replaced by the argument s.

For instance, consider the term [ t where [ = Ax.x and t is any A-term: then I £ +>3
x{x<t} =t as expected. Another example:

Looping

Letd := Az.xx and A = 04. We call d the duplicator because it duplicates its argument
by applying it to itself, and we call A the looping combinator becase it reduces to itself:

A =0 =(Ar.xz)d —5 za{z0} =56 = A.

Note however that >3 can only act at top-level: if the redex is deep in the A-term, as
for instance in (I t) s, then >3 is not applicable. One way to push the effect of 3 inside
complex terms is by means of so-called reduction or evaluation contexts , technique known
as reduction semantics.

C:=(¢)|Ct|tC|I.C
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C<t> —8 O<S> ift’—)/BS

[-reduction

Evaluation contexts serve as a way to locate a precise subterm in a complex term, exposing
the desired redex. Such contexts are basically A-terms which contain exactly one occurrence
of a special constant (-) called the hole, which is a placeholder for a removed subterm.
We call the contexts described by the entry C'in fig. 21 “general” contexts because they can
reach any redex, no matter where it is located in a term. The basic operation on (whatever
notion of) contexts is the plugging C'(t) of a A-term ¢ for the hole (-) in C" simply the hole
is removed and replaced by ¢, possibly capturing variables.

Plugging

Let C' be a context and ¢ be a A-term. We define the plugging of ¢ in C, in symbols C'(t),
by structural induction on C"

(M) =t
(Cs)(t) = C(t)s
(sO)(t) = sC(t)

(Az.C){(t) = Iz.C(t).

Evaluation contexts can also be composed, by simply plugging one into the other:

Composition of contexts

Let C, C” be contexts. We define their composition C'(C") by induction on the structure
of C"

(-1(C") C’
(Cs)(C)y = C{C)s
(sC)(C") = sC{C")

(Az.C){(C") = Ix.(C(C")).

We can now define one-step B-reduction —3 as the closure of 3 under evaluation
contexts, as in fig. 2.1. Let us go back to the term (/ ¢) s mentioned above: it now holds that
(It) s =3t sbecause I t —4 t and by using the evaluation context C' := (-) s.

We will also call the relation —5 full or unrestricted -reduction. As we will see in
chapter 3, the grammar of evaluation contexts can be restricted in order to disallow the
reduction of redexes in certain positions of a term: in this way one can force an order of
reduction to redexes, i.e. an evaluation strategy .
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2.3 Glossary

Throughout this dissertations we will consider various variants of the A-calculus enriched
with different reduction rules. In this section, we introduce some terminology from rewriting
theory that is common to these variants: to define it uniformily, we parametrize each notion
with a “C” (for calculus) and “R” (for reduction). For instance, in order to specialize the follow-
ing definitions to the classical A-calculus, one can use the symbol “A” in place of C and “(3”
in place of R.

We denote by C-calculus a generic dialect of the A-calculus, whose terms we call C-terms.
Let —g be a reduction relation over the terms of the C-calculus, and let ¢ and s be C-terms.
Reduction

- “Contracting” or “firing” a redex are both synonyms of “reducing” a redex.

- We say that “¢ —§ s" if £ reduces to s in exactly n —g steps.

- We say that “¢ R-reduces to s, in symbols “t —g s", if ¢ reduces to s by zero or more
—r steps.

- We say that “¢ and s are R-convertible” if { =g s, where =g is the equivalence relation
over C-terms generated by —.”

- We say that “¢ is R-strongly normalizing” if there exists no infinite sequence (¢, ', ", .. .)
of C-terms starting with ¢ such thatt —g t/ —p ¢ —g - .

- — is strongly normalizing if every C-term ¢ is R-strongly normalizing.
- —g is deterministic if for every C-term t, ¢t —g s and t —g s’ implies s = 5.
- —g is confluent if for every C-terms ¢, s, s’ such that t —% sand t —} &', there exists
a C-term w such that s —} wand s’ —§ w.
Normal forms

- We say that “f is in R-normal form” if it does not R-reduce further, i.e. there is no C-term
t' such thatt —p .

- We say that “t has R-normal form s” if £ R-reduces to s, and s is in R-normal form. If a
term ¢ has a unique normal form, we denote it by nfg(%).

- —g has the unique normal form property if every C-term ¢ has a unique normal form.
We will omit the parameters C and R when clear from the context.

Properties. We quickly mention a couple of fundamental properties of the A-calculus. The
first property is the uniqueness of normal forms:

4The convertibility relation =g must also respect the relevant notion of a-equality for the C-calculus.
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Uniqueness of $-normal forms (Selinger, 2008)

Full B-reduction in the A-calculus is confluent, and hence it has the unique normal form
property.

We now have enough terminology to state “naive convertibility”, i.e. the fact that Computation
and Comparison can be unweaved as stated in the introduction:

Naive convertibility

Let ¢ and s be A-terms. If t and s are strongly normalizing, then ¢ =g s if and only if

nf(t) =, nf(s).

Proof. Since t and s are strongly normalizing, ¢ —7% nf(t) and s —7% nf(s). By the
definition of =4, ¢ =g s if and only if nf(¢) = nf(s). By the uniqueness of normal
forms (theorem 210), nf(t) =g nf(s) if and only if nf(¢) =, nf(s).

A consequence of theorem 2117 is that, in order to decide whether ¢ =4 s, one can:
1. (Computation) Reduce ¢ and s to their S-normal forms nf(t), nf(s).

2. (Comparison) Compare nf(¢) and nf(s).

2.4 Nameless

Named terms are the standard way of representing A-terms, but reasoning in presence of
names is cumbersome, especially names for bound variables as they force the introduction
of ai-equivalence classes.

Let us for a moment consider only closed A-terms, i.e. terms with no free variables. In
this setting the nameless approach is quite popular: by using so-called de Bruijn indices,
variables simply consist of an index, a natural number indicating the number of abstractions
that occur between the abstraction to which the variable is bound and that variable occur-
rence. For example, the named term Ax.Ay.x and the nameless term AA#1 denote the
same A-term. In the closed setting, substitution coincides with grafting (since capturing free
variables is not possible) and reduction simply becomes a first-order rewriting system.

The nameless representation can be extended to open A-terms by assigning de Bruijn
indices also to free variables, in such a way that free variables get indices that exceed the
number of enclosing abstractions: for instance, the named term y (Az.z y z) corresponds
to the nameless term #0 (A#0 #1 #2). But open terms cause various complications, for
example different occurrences of the same free variable unnaturally have different indices
(like the free variable ¥ in the term above that is assigned both indices #0 and #1). Also,
substitution is not grafting anymore, and one needs to introduce a notion of lifting to avoid
capture during substitution.
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Since in this dissertation we are forced to work with open terms (because proof assistants
require them) the most comfortable representation seems the locally nameless representa-
tion (see Charguéraud, 2012 for a thorough discussion). This representation combines named
and nameless, by using de Bruijn indices for bound variables (thus avoiding the need for
a-equivalence), and names for free variables. The syntax of locally nameless terms is:

Locally nameless terms

t,s = #ilx|ts| M (ieNzeV)

where #i denotes a bound variable of de Bruijn index ¢ (N is the set of natural numbers),
and x denotes a free named variable.

In this dissertation, we will use both the named and the nameless representations of A-
terms. Whenever discussing about A-calculus or evaluation, we prefer named terms because
they are much more human-friendly. However in section 6.1 we will represent A-terms as
graphs, or better as A-graphs: in order to relate A-graphs and A-terms we will use the locally
nameless representation, since in A\-graphs variables are represented simply as nodes, and
nodes naturally bear no name. As we shall see, to compare two bound variable nodes one
compares their binders, but to compare two free variable nodes one uses their identifier,
which in implementations is usually their memory address or a user-supplied string.

The benefits of the locally nameless approach will be unequivocal in part Ill, when we dis-
cuss sharing equality, i.e. the counterpart in A-graphs of a-equality in A-terms. By switching
to locally nameless terms and avoiding to reason explicitly on bound names and a-equality,
we will obtain much more elegant and shorter proofs.
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Chapter 3

Call-by-Value

As already mentioned, S-reduction is not deterministic, meaning that a A-term can poten-
tially reduce to multiple terms, one for each redex it contains. For instance, the term (Az.y) (I 2)
reduces in one step either to y (by using the evaluation context (-)) or to (Az.y) z (by using
the context (Az.y) (-)).

To consider the A-calculus as a programming language, one usually fixes an evaluation
strategy, i.e. a restriction of S-reduction that is deterministic. In fact, all programming lan-
guages use evaluation strategies to decide when to evaluate the arguments of a function, so
that the control flow is roughly predictable. This is because evaluating an expression with
different orders may in principle change the outcome, but in the full A-calculus this is not
the case since all S-normal forms reached by evaluation are equal (theorem 210). Different
strategies may require a different number of 5-steps, and some may even diverge: however
in this dissertation we study evaluation with proof assistants in mind, and in that settings all
terms are typed and thus strongly-normalizing.

Evaluation strategies for programming languages are called weak , meaning that they do
not reduce redexes inside the bodies of abstractions: only when arguments are supplied to a
function, the function is invoked and the body evaluated. Weak evaluation can be specified
in the A-calculus by a syntactic restriction of evaluation contexts in the following way:

Weak evaluation contexts

W= | Wt|tW

The only difference with respect to general contexts C' is that in the grammar for W the
production Az.W is omitted. We call weak A-calculus the calculus where reduction is the
contextual closure of =z under weak evaluation contexts.

The most common (families of) weak evaluation strategies discussed in the setting of
A-calculus are the following:

Call-by-Value (CbV) is probably the most common evaluation strategy, used by many pro-
gramming languages like C, OCaml, or Scala. In CbV, each argument of a function must

25
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be completely evaluated before the function is called; it is also known as “applicative
order” or strict evaluation, because it forces the evaluation of all function arguments.
By doing so it avoids some duplication of work: if an argument is used multiple times
in the body of a function, it will not be necessary to evaluate it again. The downside is
that CbV may perform useless computation in case the evaluated argument will never
be used.

As defined up to now, CbV is not yet a proper evaluation strategy, because we have
not fixed yet the order in which the arguments of a function should be evaluated: many
languages (such as Common Lisp, Eiffel and Java) evaluate arguments left-to-right, some
right-to-left, and others (such as Scheme, OCaml and C) leave the order unspecified.

Call-by-Name (CbN) is the strategy which does not evaluate function arguments before in-

voking it: the leftmost applied function is called at each step, and each unevaluated
argument is used in place of every occurrence of the formal parameter. CbN is some-
what dual to CbV in that it evaluates expressions only when actually used, but it may
instead perform redundant computation in case an argument is used multiple times.

CbN is obtained in the A-calculus by the following restriction on evaluation contexts,
called H for “head™

Weak head contexts

H:= ()| Ht

where the production t H is omitted because CbN does not evaluate the arguments of
applications.

CbN can be considered the weak version of the well-known strategy called “normal
order” or Leftmost-Outermost (LO), always reducing the redex that is the leftmost out-
ermost (= not contained in another redex) in the term. LO is a “strong” strategy (we will
discuss strong evaluation in chapter 5), and it has a special status in the A-calculus: it
is a normalizing strategy, i.e. whenever a A-term has a 3-normal form, then the normal
order strategy will reduce that term to normal form. LO evaluation can easily be de-
fined through a restriction on evaluation contexts, which can be found in definition 5.2
on page 68.

Call-by-Need (CbNeed) can be considered a cached version of CbN: functions are invoked

without first evaluating the arguments, but if an argument is later used and evaluated,
its value is stored for subsequent uses. It is also called lazy, because it does not
evaluate arguments unless necessary. CbNeed is supposed to represent the best of
both CbV and CbN: at a first approximation, CbNeed proceeds like CbN, evaluting a
function body without evaluating the argument; only when the moment arrives that the
value of a previous argument is needed, then CbNeed evaluates it like CbV would have.
This means that each argument is evaluated at most once.

CbNeed cannot be defined in the classical A-calculus as a straightforward restriction on
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contexts, but requires a shared' representation of A-terms (see e.g. Maraist, Odersky,
and Wadler, 1998). CbNeed is the strategy used by the Haskell language”.

Each evaluation strategy has its advantages and disadvantages. CbN is the easiest to
define and implement, but also the most inefficient, and in fact no real programming language
uses it. The debate CbV vs CbNeed (j.e. strict vs lazy) among functional programmers is,
historically, quite heated. In theory CbNeed should be more efficient, because it evaluates
any A-term using the same number or fewer [3-steps than CbV: CbNeed actually requires
the least number of 3-steps than any weak strategy (property called “weak optimality”, see
Balabonski, 2013).° There are however different aspects to consider:

- From a theoretical point of view, CbV has a neat definition in the A-calculus and an
harmonic theory (see section 3:1); expressing CoNeed in the A-calculus instead requires
either to add sharing or to extend the calculus with different reduction rules (Ariola and
Felleisen, 1997; Chang and Felleisen, 2012).

- From an implementation point of view, CbNeed evaluation may suffer an additional
overhead due to its mechanism of “thunks”: at each function invocation, CbNeed im-
plementations suspend the argument and allocate a new closure, i.e. a mapping asso-
ciating each variable used by the code of the argument with the correct reference at
the time the closure was created.” In case the data type of an argument is primitive,
for instance a boolean or a number, CbV would reduce it right away to its value, which
requires only one word in memory. Clearly allocating and managing a closure requires
more effort than simply handling an atom, hence CbNeed implementations may in the
end suffer higher computational constants. Another issue with CbNeed concerns mem-
ory management, and more precisely garbage collection, i.e. reclaiming the memory
occupied by objects that are no longer used: unevaluated thunks may artifically retain
objects in memory, marking them as alive even though they may not be actually needed
by evaluation.

- From programmers point of view, CbV has one additional advantage: it simplifies the
reasoning about asymptotic complexity of algorithms (Okasaki, 1999). In strict languages,
in fact, reasoning about the running time of a given program is relatively straightforward,
since one can predict when subexpressions will be evaluated just by looking at the
source code. On the contrary, in lazy languages it is very diffuclt to predict when a
given subexpression will be evaluated, if ever. This has implications that concern users,
for instance in the design and complexity analysis of data structures: strict languages
are well-suited for worst-case data structures, while lazy languages for amortized ones
(Okasaki, 1999).

1See section 4.2 and chapter 6.

2https://www.haskell.org/

3However a low number of 3 steps does not necessarily make a strategy efficient: it depends on the underlying
cost model. For instance, optimal reduction aims at minimizing the number of 3 steps, but only at the cost of huge
hidden computations required to achieve optimality, see also page 8s.

4A formal definition of closures is given on 48.
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Why CbV? As we will discuss in chapter 5, proof assistants require a different kind of eval-
uation than programming languages, called strong evaluation. In the strong setting of proof
assistants, different strategies do not actually affect the result of evaluation; in this disserta-
tion however we focus on the CbV strategy, mainly for the following reasons:

- Currently, the Coq proof assistant can perform evaluation either through an interpreter
or through compilation: the interpreter supports all the main strategies outlined above;
compilation (to bytecode or to native code) instead implements CbV and is much faster,
having performance somewhat comparable to that of the OCaml language (in the weak
setting). Some Coq libraries, like the aforementioned formalization of the four-color
theorem, crucially rely on the speed of the Strong CbV compiler. Performing efficient
CbNeed is very desirable, but as of today there simply do not exist efficient strong
machines for CbNeed.

- As already mentioned CbNeed evaluation requires a mechanism of thunks (to suspend
the evaluation of arguments until needed) and of update (to store the value of an ar-
gument after evaluation). Since a thunk may be shared in memory, i.e. multiple objects
may refer to it at the same time, updating it in place results in all objects referring in-
stead to its computed value: this can be seen as a way to share not only syntax, but also
computation. Traditional evaluation machines for ChV, instead, do not need to update:
arguments can be evaluated right away since computation is not shared. By avoiding
the need to update suspensions, one obtains simpler machines, and can thus rely on
simpler properties that are invariant under execution.

Note however that in the strong case, in order to be efficient it will be necessary to share
computation also when performing CbV (for more information, see the discussion on
page 219). Being conceptually similar to the update mechanism of CbNeed, we hope to
generalize our approach also to CbNeed in the future.

34 Plotkin’s CbV

In this section we restrict the A-calculus to the Call-by-Value strategy obtaining Apjot, Which
was first introduced and studied by Plotkin, 1975. As already mentioned, in CbV the arguments
to functions must be fully evaluated before the function is invoked: as we will see below, in
the setting of A-calculus this is obtained by restricting (3 to fire only when the argument of
the redex is a value.

The syntax and reduction semantics of Apjor are in fig. 3.1.

Terms t,s =wvlts
Values v oi=x | At
Right v-contexts R = {()|tR|Rv
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(Az.t) v =g/ t{rev}

R(t) =g/ R(s) if t =g s

Plotkin’s calculus Apjot

Syntax. The grammar for terms in fig. 3.1 produces the same terms as the terms of the
classical A\-calculus, but here variables and abstractions have a special status: we call them

“,on

values , and denote them by “v”. We implicitly reuse for Apjot the basic definitions from
chapter 2, like capture-avoiding substitutions, the set of free variables fv(o), and the notion

of open and closed terms.

Evaluation. As already mentioned, we restrict the 5 rule in such a way that it can be fired
only when the argument of the redex is a value: we thus obtain the top-level ﬁ/v rule.

The reduction relation is then obtained as usual by contextual closure: for Apjor We use
right evaluation v-contexts, denoted by the entry R in fig. 31. These contexts force an order
of evaluation called “right-to-left”: due to the production R v, one can reduce the left part
of an application only if the right part has already been reduced to a value. We could as well
work with left-to-right evaluation (but we won't) by using the following contexts:

Left v-contexts
L =={()|vL|Lt

Open A-terms. CbV evaluation is defined in Apjo; for all A-terms, even for those that do not
correspond to programs in a functional programming language: open A-terms (terms with
free variables) do not represent any program because in computers all variables are bound
at runtime to a value in memory. Actually, as we discuss in the next section, the operational
semantics that we have provided here is adequate only for closed A-terms. When restricted
to closed A-terms, Apjot is called Closed CbV : in this setting values cannot be variables, and
evaluation can fire a S-redex (Ax.t) s only if the argument s is a closed value, i.e. a closed
abstraction; and in the production R v of right v-contexts, v is always a closed abstraction. In
this dissertation we consider Apjot only for its Closed CbV setting; nonetheless, in accordance
to the original definition given by Plotkin (1975), we still say that a value is either a variable or
an abstraction. This choice is mainly for technical reasons, because for example in section 7.3
we will treat variables and abstractions in the same manner. Whether variables should or



30 CHAPTER 3. CALL-BY-VALUE

should not be considered as values may seem a pointless question, but its impact propagates
from the design of a calculus up to the complexity of evaluation: for a thorough discussion
of values vs variables, see Accattoli and Coen, 2014.

Properties. The key property of Plotkin’s Closed CbV is called harmony, and reads as follows:

Harmony of Apjot

A closed A-term is §/v-normal if and only if it is a (closed) value ie. a (closed) A-
abstraction.

Proof. Let t be a closed A-term. We prove separately the two directions of the double
implication:

(=) Let us assume that ¢ is 3/v-normal. We proceed by induction on the structure of ¢:

- Variable: t cannot be a variable, because t is closed by hypothesis.
- Abstraction: if t is an abstraction, then we conclude trivially.

- Application: t cannot be an application. To prove it, let us assume that t = su,
and derive a contradiction. Since t is by hypothesis closed and normal, then
also s and u are closed and normal, and thus by i.h. we obtain that they both
are closed abstractions. But then ¢ cannot be normal, because /v clearly is
applicable with evaluation context (-).

(<) If t is an abstraction, then clearly it is 3/v-normal by the definition of evaluation
contexts for Apjot.

Harmony expresses a form of completeness of values with respect to S-reduction: every
closed A-term will either diverge, or the term will evaluate to an abstraction, meaning that
every (weak) 3-redex will eventually become a 3 /v-redex and be fired.

As we will see in the next section, harmony is broken when allowing open A-terms: for
instance, the term zz is open and clearly in S-normal form, but it is not a value. This causes
some issues which will discuss in upcoming section 3.2.

Before turning to the next section, we prove a bunch of properties of Apjo: that will come
handy in later sections — the reader can skip them at a first read.

The first property is that v-contexts are closed under composition:

Composition of right v-contexts

Let R and R’ be right v-contexts. Then their composition R(R') is a right v-context.
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Proof. By induction on the structure of the right v-context R. Cases:
* Hole, ie. R :== (-): then, R(R') = R'is a right v-context by hypothesis.

- Right, i.e. R :== tR": then, R(R') = tR"(R’) is a right v-context because R"(R')
is a right v-context by i.h.

- Left,i.e. R := R"v:then, R(R') = R"(R')v is a right v-context because R"(R’)
is a right v-context by i.h.

The following proposition shows that values are closed under substitition: this is a neat
property of Apiot that unfortunately is not preserved in the open case (see page 36).

Closure under substitution

Let v and v’ be values. Then v{z<—v'} is a value. If moreover v is a A-abstraction, then
v{z<0v'} is so.
Proof. Since v is a value, there are only two cases:

- Variable, i.e. either v := x and then v{z<—v'} = v/ which is a value by hypothesis;
orv =y # x and then v{z<v'} = y which is a value.

- Abstraction, i.e. v = Ay.s and we can suppose without loss of generality that
y & fv(v) U {x}; therefore, v{z<v'} = Ay.(s{z<v'}) which is a A-abstraction
and hence a value.

Another neat property that will not be preserved in the open case is that the substitution
of values commutes with /v reduction:

Value substitutions and evaluation commute
Let t and s be A-terms, and v be a value. Ift =g/, s then t{zv} —3/, s{z<v}.
Proof. By induction on the definition of £ — 5/, s. Cases:

* Root-step, ie. t = (Ay.u)v' —3,, u{y+v'} = sand we can suppose without
loss of generality that y ¢ fv(v) U {x}. According to proposition 3.3, v'{z<v}
is a value. As a consequence, t{z<v} = (Ay.u{zv})(v'{rev}) =5/
u{y«v'{zv}} = u{y+v' Hr+v} = s{z+v}.

- Application right, ie. t = ur —pg, up =t s with r —g, p; by ih
r{x<v} =3/, p{x<v}, and therefore t{zv} = u{zv}(r{zv}) =4/
u{zv}(p{rv}) = s{xv}.

- Application left, ie. t = wv' —g,, ™' = swith u —g, 1 by ih,
u{z<v} —gs r{z<v}; according to proposition 33, v'{z<v} is a value
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and hence t{z<v} = u{x<v}(v'{z0v}) =50 r{zevi({zev}) =
s{z+wv}.

3.2 Open Chv

As mentioned in the previous section, the harmony of CbV is lost on open A-terms: open
normal forms are not necessarily values, for instance the term zz. As a consequence, there
may be stuck [-redexes like (Ay.t) (zz) that will never be fired by — 3/, because their
argument is normal but it is not a value. The weakness of 3 /v-reduction is widely recognized
by the literature, and it manifests in various ways: we will present them in the following
paragraphs, and only later introduce the well-behaved Open CbV calculus that we use in this
dissertation.

The first issue of Apiot With open A-terms is of a syntactical nature: as already noticed
by Plotkin himself, the transformation of open CbV A-terms into continuation-passing style
(CPS) is incomplete. We will discuss further this point in section 7.4.

Secondly, stuck redexes can affect termination, impacting on the notion of observational
equivalence (a notion of equivalence that identifies terms exhibiting the same converge be-
haviour). Consider for example the following term:

Stuck B /v-redex

(A\y.0) (z2) &  where 0 = Az.xx.

Under CbN, the term diverges:

but in CbV it is in normal form, and as we explain below, one would expect it to behave
like the divergent term €2 := §9 also in CbV.

Solvability. Anotherissue with open termsis evident in the notion of solvability. Historically,
solvability was introduced in connection with the definability in the A-calculus of partial re-
cursive functions, but actually it is a pervasive tool in the semantic analysis of the A-calculus:
it underlies the notions of approximants, Bohm trees, separability, and sensible A-teories.

Solvable term

A \-term t is said solvable if there exists a head context H such that
H{t) —5 [

where [ is the identity, and head contexts are defined by the following grammar:”
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H:={()|Ht|\x.H.

Terms that are not solvable are called unsolvable (duh!), and they can be used to ade-
quately represent in the A-calculus the everywhere undefined function (Wadsworth, 1976).

To study CbV-solvability, one can restrict the reduction relation — g used in definition 3.6
to the one of Apiot, i.e. —>g/u: if Aplor Were well-behaved, then it should enjoy an internal
operational characterization of CbV-solvability. But this is not the case: let us consider for
instance as ¢ the stuck term from example 3.5. Whatever the context H, the term H (t)
either diverges or it remains stuck, hence ¢ is by definition unsolvable, even though it is
not divergent. This lack of an internal characterization of CbV-solvability shows an inherent
weakness in the rewriting of Apjot.

Adequacy. A further confirmation comes from denotational semantics. In that approach,
each A-term is assigned a denotation, which is a syntax-free mathematical interpretations
of that term. Well-behaved denotations intuitively guarantee that a calculus is independent
from its own syntax, showing that it is not ad-hoc (Accattoli and Guerrieri, 2018). A fundamen-
tal property of denotations is adequacy, which means that denotations correctly characterize
normalizable terms. As first noticed by Ronchi Della Rocca and Paolini, 2004, Apjet is not
adequate with respect to relational semantics, a well-known denotational semantics coming
from the linear logic interpretation of CbV (Ehrhard, 2012).

In order to fix the issues sketched above, the literature has explored and deeply studied
different presentations of open CbV, plus their rewriting, cost models, abstract machines, and
denotational semantics (Accattoli and Coen, 2015; Accattoli and Guerrieri, 2016; Accattoli and
Guerrieri, 2017; Accattoli and Guerrieri, 2018).

For instance, various calculi have been proposed to solve the issue of premature ChV
normal forms discussed above; one solution (Carraro and Guerrieri, 2014) extends the calculus
with shuffling rules, which commute stuck redexes in order to create new viable redexes. Let
us go back to the stuck term of example 3.5: in the shuffling calculus, the rightmost ¢ is
commuted inside the leftmost abstraction, and then the term does diverge because reduction
is allowed inside the body of an applied abstraction:

(Ay.9) (22) & —rshuttie (AY.06) (22) =5 (Ay.89) (22) =5 -+

Other solutions extend /3 /v-reduction with other rewriting rules or constructors, or even
go as far as changing the applicative structure of terms, as in the sequent calculus approach
of Curien and Herbelin, 2000. Accattoli and Guerrieri, 2016 compared different incarnations
of open ChV, proving that they are all equivalent from a termination point of view and hence
justifying the existence of a unique notion of Open CbV . We present Open CbV in the next
section.

5These head contexts are slightly more general than the ones introduced on page 26, which were weak: here their
grammar also includes the production “Az. H".
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The fireball calculus. In this section we introduce the fireball calculus Agre , the simplest
presentation of Open CbV. The fireball calculus was introduced without a name and studied
first by Paolini and Ronchi Della Rocca, 1999; Ronchi Della Rocca and Paolini, 2004. It has then
been rediscovered by Grégoire and Leroy, 2002 to improve the implementation of Cog, and
later by Accattoli and Coen, 2015 to study cost models, where it was also named. We present
it following Accattoli and Coen, 2015, changing only inessential, cosmetic details.

Fireballs f =uvli
Inerts i =xfrfn (n>0)
Right f-contexts R = ()|tR|Rf

(Azt)v =g tH{zev}
(Azt)i gy t{rei}

R<t> —B/v R<S> iftl—>[3/v8
R<t> —B/i R<S> iftl—>5/i8

—g/f = U =g

The fireball calculus Agre

The fireball calculus Agre is defined in fig. 3.2. The idea is to avoid stuck A-terms by gen-
eralizing the values of the CbV A-calculus—i.e. abstractions and variables— to fireballs °, by
extending variables to more general “inert” A-terms. Fireballs (noted f) and inerts (noted 7)
are defined by mutual induction (see fig. 3.2). For instance, x and Ax.y are fireballs as values,
while y (Az.z), zy, and z (Ax.x) (2z) (Ay.zy) are fireballs as inert A-terms.

Syntax. The main feature of inert A-terms is that they are open, normal, and that when
plugged in a context they cannot create new redexes, hence the name. Essentially, they are
the “neutral terms” of Open CbV. In the presentation of Grégoire and Leroy, 2002, inert A-
terms are called “accumulators” and fireballs are simply called values. Variables are, morally,
both values and inert A-terms. In Accattoli and Coen, 2015 they were considered as inert
A-terms, while here, for minor technical reasons we prefer to consider them as values and
not as inert A-terms.

6“Fireball” is a pun on “fire-able” i.e. an open, weak normal form, that can be fired by CbV.
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Evaluation. Evaluation is given by the “call-by-fireball” reduction — 3/ the [-rule can fire,
“lighting” the argument, only if the argument is a fireball. We actually distinguish two sub-
rules: one that “lights” values, noted —p/,, and one that lights inert A-terms, noted —8/i
(see fig. 3.2).

We endow the calculus with the right-to-left evaluation strategy, defined via right evalua-
tion f-contexts R (which we denote, by a slight abuse of notation, with the same letter R as
the right v-contexts introduced in the previous section). A more general calculus is defined
in Accattoli and Guerrieri, 2016, for which both left-to-right and right-to-left strategies are
shown to be complete. We omit details about the rewriting theory of the fireball calculus
because our focus here is on evaluation.

Let us have a look at an example of evaluation sequence in Afie:

Asire evaluation

Lett = (Az.z (y 2)) (Az.z). Then:

t = (M) (y (A\e.x)) =55 y (A\z.2)

where the final term y (Az.x) is a fireball (and 5/ f-normal).

Properties. As discussed in section 31, Closed CbV enjoys harmony, i.e. a closed A-term
tis ﬁ/v—normal if and only if it is an abstraction. The fireball calculus Age satisfies an
analogous property in the (more general) open setting by replacing abstractions with fireballs
(proposition 3.8/1). Moreover, the fireball calculus is a conservative extension of Closed CbV:
on closed terms it collapses on Closed CbV (proposition 3.8/2). No other presentation of
Open CbV mentioned above has these good properties.

Properties of Aire

Let ¢, s be A-terms:
1. Open harmony: t is B/ f-normal if and only if ¢ is a fireball.
2. Conservative open extension: if t is closed, t —g,¢ s ifand only if t =4/, s.

Proof. In Accattoli and Guerrieri, 2018.

In the rest of this section we provide a few properties of Age that the reader can skip
at a first read. In the next chapter, we will discuss how to implement evaluation, first in the
general case and then according to (Open) CbV.

The following proposition summarizes the key property of inert A-terms: substitution of
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inert A-terms does not create or erase ﬁ/f—redexes, and hence can always be avoided when
implementing 8/ f.

Inert substitutions and evaluation commute

Let t, s be A-terms, and ¢ be an inert A\-term. Then:
t =g/ s ifandonly if t{xi} =5/ s{zei}.
Proof. In Accattoli and Guerrieri, 2018.

Note that with general A-terms (or even fireballs) instead of inert ones, evaluation and
substitution do not commute, in the sense that both directions of proposition 3.9 do not hold:

- Direction <= is false because a substitution can create 3/ f-redexes, as in
(xy){xcAz.2} = (A\z.2) v.

Note that, for the same reason, direction <= is false also when considering 5-reduction
— g instead of — 5/, and general A-terms instead of inert ones.

- Direction = is false because a substitution can erase 3/ f-redexes, as in
(Az.z) (xx)){z+0d} = (Ax.2) (60)
where § == A\y.yy.

These counterexamples rely on the fact that fireballs are not closed under substitution (unlike
values, see proposition 3.3): the substitution of a value (which is a fireball) for a variable in
an inert A-term (which is a fireball) may yield a A-term that is not a fireball. However, the
following weaker variant of closure under substitution holds:

Semi-closure under substitution

Let v be a A-value, x1,...,T, be pairwise distinct variables, and fi,..., f, be fire-
balls. Then v{x1f1, ...,z fn} is a fireball. If moreover v is a A-abstraction, then
v{x1<f1,...,xo<fn} is a A-abstraction.

Proof. Let o = {xlefl, - ,xn<—fn}. Since v is a value, there are only two cases:

- Variable, i.e. either v := x; for some 1 < ¢ < n and then vo = f; which is a
fireball by hypothesis; or v := y # x; forall 1 <4 < n and then vo = y which is
a fireball.

- Abstraction, i.e. v = Ay.s and we can suppose without loss of generality that
y & Ui, tv(fi)U{z1, ..., z,}; therefore, vo = Ay.(so) whichis a A-abstraction
and hence a fireball.

As a consequence of semi-closure, we prove that §/v reductions are mapped by fireball
substitutions to 3/ f reductions. This is a property that our evaluation machines in part I|
will exploit in a crucial way.
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Substitution
Lett and s be A-terms, x1, . . ., x, pairwise distinct variables, and f1, ..., f, be fireballs.

Ift =g/ sthent{z1<f1,..., 2o fo} =a/r s{z1ef1, ..., 2o fo}

Proof. Let 0 = {1 f1,..., T, fo}. By induction on the definition of t —g3/, s.
Cases:

* Root-step, ie. t = (Ay.uw)v' g/, u{yv'} = s and we can suppose
without loss of generality that y ¢ |J,_, fv(fi) U {z1,...,2,}. According to
proposition 3.0, ¥'c is a fireball. As a consequence, to = (Ay.uo)(v'o) =gy
uo{y+v'oc} = u{y+v'}o = so.

- Application right, i.e. t := ur — g/, up = swith r —g,, p; by Lh. 1o —3/; po,
and therefore to = uo(ro) =g/ uo(po) = so.

- Application left, ie. t == uv' —5/, Tv" = s with u =g/, 7; by ih, uc —g/5 ro;
according to proposition 310, v'c is a fireball and hence to = uo(v'o) =45
ro(v'o) = so.

Moreover, it holds the following property of composition of f-contexts that corresponds
to proposition 3.2 in Apjet:

Composition of right f-contexts
Let R and R’ be right f-contexts. Then their composition R(R’) is a right f-context.
Proof. By induction on the right f-context R. Cases:
- Hole, ie. R == (-): then, R(R') = R'is a right f-context by hypothesis.

- Right,i.e. R =t R": then, R(R') =t R"(R') is a right f-context because R"(R')
is a right f-context by i.h.

- Left,ie. R == R" f:then, R(R') = R"(R') f is aright f-context because R"(R’)
is a right f-context by i.h.
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Chapter 4

Implementing Evaluation

Suppose we would like to implement [-reduction literally, exactly as defined through re-
duction semantics. The naive way is to implement [3-reduction as the iteration of single
B-reduction steps, where each reduction step t —3 s actually consists of three distinct
actions at meta-level (cf. the definition of reduction in fig. 21):

1. Unplugging: search the given term ¢ for a redex by decomposing it into an evaluation
context C' and a redex t’ such that t = C'(t').

2. Reduction: perform the 3-step ¢’ 5 .

3. Plugging: plug the reduced term s’ back into the reduction context C, obtaining the
term C(s') = s.

Let us have a look at the computational complexity of implementing each part:

1. Given a term ¢, searching for a redex requires to transverse t, which introduces an over-
head proportional to the size of £.

2. Due to substitution, performing t' 5 s’ requires time proportional to the square of
the size of t'.

3. Plugging back the reduced term requires time linear in the size of the context C.

As a consequence, implementing a sequence of n reduction steps ¢ —>g s inthe naive way
requires time proportional to |t]2", i.e. exponential in the number of 3-steps. This clearly col-
lides with the success of functional programming languages, for which efficient interpreters
and compilers have existed for a long time.

In this chapter, we will discuss how to reduce the implementation overhead caused by
the three operations outlined above. Note that the naive approach is inefficient for mainly
two reasons:

- The first reason is the need to (un)plug: at each [3-step, an intermediate term is con-
structed by plugging, and afterwards it is immediately decomposed by the subsequent
unplugging. A solution to this problem is not to discard the evaluation context at

39



40 CHAPTER 4. IMPLEMENTING EVALUATION

each step, instead transforming it into the next valid context according to the chosen
strategy—this process can be understood in terms of the refocusing technique of Danvy
and Nielsen, 2004. In section 4.3 we will introduce abstract machines, state-transitition
machines used to evaluate A-terms. A state of these machines includes the A-term
being evaluated plus auxiliary data structures, some of which encode the current eval-
uation context. The location of the current redex and which parts of the term have
already been evaluated are useful information that facilitates the search for the next
redex.

- The second reason, and the cause of the most dramatic inefficiency, is the implemen-
tation of 3 itself, or more precisely of substition. In section 41 we will show a phe-
nomenon called “size explosion”, caused by the literal implementation of substitution
and explaining the exponential overhead. The solution to this issue is to implement
substitution not as defined, but by recording the substitutions due to 3-steps without
actually carrying them, and then only performing them partially and on-demand. As
we will see, evaluation machines usually accomplish this by keeping a data structure
called “environment”, where to store such delayed substitutions. The decomposition of
[ and the delay of substitution are the topic of section 4.2.

Implementation in three steps. We are now going to set off on a journey from calculus
to implementation. This trip will walk us through increasing refinements of the reduction
semantics, for which we will employ the following terminology:

Calculus fora “small-step” semantics where both substitution and search for the redex
are meta-level operations;

Calculus with ES (section 4.2) for a “micro-step” semantics where substitution is de-
composed through explicit substitutions, but the search for the redex is still meta-level
and expressed via evaluation contexts;

Abstract machine (section 4.3) for a micro-step semantics where both substitution
and search for the redex are decomposed—search for redexes is handled via one or
more data structures called stack, dump, frame, and so on. Also, the management of
names is explicit, i.e. terms are not quotiented under ac-equivalence, and renamings
are performed manually.

Computational complexity. Finding what is the actual implementation cost of evaluation
is essential to analyse the computational complexity of programs written in the A-calculus.
Note that the A-calculus is Turing complete—i.e. it can encode any computable function—and
it is quite convenient as a programming language thanks to its higher-order nature, which
allows to specify algorithms in a quite abstract and succint way. For complexity analyses of
algorithms, one needs to fix a cost model for the underlying programming language, i.e. an
assignment of each language primitive to the actual work needed to effectively implement it.
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The most natural cost model for functional programming languages is the “unitary” cost
model, where the number of computation steps is taken as complexity measure. In the \-
calculus this translates to the number of 3-steps, or better the number of R-steps for a fixed
evaluation strategy —g. Under this model, implementing a reduction sequence like

t —r s

is supposed to have a cost that is proportional to the number n of R-steps. Unfortu-
nately this is not possible in the classical A-calculus: every legitimate strategy suffers from a
problem called “size explosion”, due to the representation of A\-terms itself. We discuss size
explosion in the next section, and provide a solution in section 4.2.

41 Size Explosion

Let us set aside the problem of plugging and unplugging for a moment, and consider [3-
reduction alone. In this section we will show that the ordinary way of representing A-terms—
strings where substitution is basically textual replacement—suffers from a problem called
“size explosion”, for which the size of A-terms may grow exponentially with the number of [3-
steps. This issue does not depend on any particular strategy of evaluation, hence it concerns
the representation of A-terms itself.

In order to do so, we define a family {tn}neN of A-terms, indexed on natural numbers,
such that each term t,, has size proportional to n, but its normal form has size exponential
inn:

Exploding family (Accattoli and Lago, 2014)
We define the family {¢,, }nen by induction on n:
to = S8
thr1 = (Azt,) s

where s '=y x x.

We also define the additional family {sn}neN of A\-terms, in such a way that s,, is the
normal form of ¢,, for each n € N, as we will prove in proposition 4.2.

So — S
Sn+1 = Y Sn Sn
Let us have a look on how the terms reduce:
tg =S5=35
thh=Aryzrz)s—gyss=s

ty = (A\z.t1) s =5 (Azdo) (y x x)){z—s} = (A\x.to) (y s 5)
=g to{ry s s} = $9
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Apparently each term t,, reduces in n [3-steps to the term s,,, which we prove formally in
the following proposition together with other properties on the size of the terms:

Properties of {¢,, }, and {s, }»
Let {t, }» and {s, }, be the families defined above. Then for every n € N:
1. t, r—>g Sn
2. S, isin B-normal form
3 |ta] =4n 42
L |8, =212 -2

Proof. Points 2, 3, and 4 can be proved by easy induction on n; we turn to prove Point 1.
The case n = 0 is trivial because ty = sg. In order to prove the case n > 0, we actually
prove the following more general statement: (Ax.ti) S; »—>%+1 Sivj4+1 foreveryi,j € N;
then, since t,+1 = (Ax.t,) So, it follows that ¢,,11 »—>g+1 Sn4041 = Sni1. We proceed
by induction on . Base case: (Az.tg) s; = (Ax.yxx) s; —5 ys;S; = S;j+1. Inductive
case: (Az.tit1) s; = (Ax.(Az.t;) ) s =5 (Aw.ty) s){zé—s;} = (Az.t;) (ys;s;) =
(Az.t;) s;11, and since by i.h. (Az.t;) sj41 »—>§;1 Sitj+2 we conclude.

Note thatin proposition 4.2 we used full (top-level) B-reduction to reduce the terms of the
exploding family; however, one can actually show that all usual evaluation strategies (like CbN
or ChV) reduce t,, to the same normal form in n steps, therefore size explosion is independent
of the chosen strategy. It follows that no efficient implementation of the A-calculus can use
the literal definition of A-terms and substitution.

Let us now understand the cause of this phenomenon. Basically, explosion is caused by
unnecessary duplication: the i-th 3-step causes the substitution {x<—s;} which duplicates
the term s; but it is not really needed. In fact, the terms s; are what we called inert terms,
meaning that they cannot create new redexes when substituted in any term (cf. proposi-
tion 3.9). Instead of carrying each substitution, we could delay it obtaining:

tn =y s{wes}---{a¢s}

R
n times

The idea to avoid size explosion is to reach a normal form without carrying out the sub-
stitutions that are not needed. In fact the expression s{x<—s} - - - {x<—s} can be seen as a
compact way of representing the normal form s,, at meta-level, which only takes space pro-
portional to n. In order to keep the representation of the output compact, common subterms
like s must be shared explicitly along the evaluation process. Sharing is the topic of the next
section.
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4.2 Explicit Sharing

As discussed in the previous section, all tools based on the A-calculus must use sharing to
circumvent the issue of size explosion.

The simplest way to extend the A-calculus with sharing is by adding to its syntax the
well-known “let” construct. A let-expression has the form let £ = s in ¢, reading “¢
where x stands for s”. let-expressions were used for the first time by Dana Scott in LCF,
his deductive system for computable functions introduced in 1969, and have been used ever
since in many functional programming languages as a mechanism for local definitions. A
definitional mechanism is basically a way to shorten aterm by recording once a subexpression
that is used multiple times, which simply amounts to sharing. As is customary, we write
t[x<—s] instead of let * = s in ¢, and call it ES for explicit sharing, or explicit subsitution.

It is important not to confuse the two terms t{z<—s} and t[z+s]. The first one is the
term obtained by substituting all the occurrences of « in ¢ with s: this kind of substitution is
the meta-level operation described in definition 2.4 through operations that are external to
the language of the A-calculus. The second one instead is a substitution internalized in the
language by the new constructor @ [ @ < @], and handled by specific reduction rules which
we will discuss below.

First of all, let us introduce formally the syntax of explicit substitutions:

A-calculus with ES
t,s =x | \x.t|ts|tfres]

Consider for instance the term (z x)[xz<I] where I := A\y.y. Here the variable z acts
as a sharing point, and I is shared by means of the ES [z« ]. The corresponding unshared
A-term is I I where I is occurs twice as a subterm.

Thanks to ES, we can decompose S-reduction into more atomic steps, decoupling func-
tion call and substitution. As a matter of fact, A-calculi with ES were first introduced exactly
to bridge the gap between the A-calculus and its implementations, or better between how
substitution is defined in the A-calculus and how evaluation machines actually perform it to
avoid size explosion. We will relate ES and machines in upcoming section 4.3; in the rest of
this section, we showcase different calculi with ES, obtaining a progressive decomposition of
substitution.

The simplest decomposition splits S-reduction in the following way:
(Ax.t)s —pes  tlres] —ow  t{a+s}.

The rule — ggs performs the function call but delays the actual substitution by means of
an ES. The rule —gup then performs the corresponding meta-level substitution. The resulting
calculus is called Asub and its reduction rules are in fig. 4.1.
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E = ()| E[z<t]
C =¢)|Ct|tC | z.C | Clz<t] | t{z<C]

E(Ax.t)s rrpes E(t[z<s])
t{xs] Hup {245}

C<t> —)/j}gs O<$> ift }_),BES S
C<t> ety C<S> ift > sub S

The Asub calculus

As usual, we define the reductions of Asub as the closure of some top-level rules under
evaluation contexts, denoted by C'in fig. 4.1: these C' contexts are the most general contexts
for terms with ES, and their grammar includes general contexts for classical A-terms (see
fig. 2.1) plus productions for reducing below and inside explicit subsitutions.

Note that the definition of — ggs requires an additional kind of contexts, denoted by £
for “environment context”: these contexts allow to append a sequence of ES to a term, so
that —>ggg Is applicable even if Az.t and s are inerspersed with explicit substitutions. We
say that —ggg “acts at a distance”.

It may seem that ES in Asub are somewhat redundant, since Asub introduces new explicit
substitutions but then it just executes them in one shot. On the contrary, this calculus already
(but partially) solves the size explosion problem outlined in section 41. Let us for example
consider the term t9 from the exploding family of example 4.1:

to = (Az.t1) s = prs ti[res] = (Ax.to) s [Ts] = prs to[res][res] = s[xes|[res].

Similarly, t,, reduces in n + pggs-steps to the term s[z<«s] - - - [z+s], which is a compact
representation of the normal form whose size is linear in n (go to page 163 for a discussion
on succint representations). Even though the term s[z+«s]| - - - [x<s] is not in actual normal
form — because we could perform the substitution of every ES [x<s] — performing these
substitutions is useless in this case because they only remove sharing without creating any
new redex.

Asub is a valuable tool to study the A-calculus: in fact, it has a crucial role in the proofs
of some results on A-calculus for which no other proof is known (see Accattoli and Kesner,
2012). However, traditional calculi with ES usually decompose further the rule — gy, Obtaining
a whole set of reduction rules that provide a more fine-grained control over substitution (see
Kesner, 2007 for a survey). In fact, the decomposition of substitution provided by Asub is
still insufficient to solve size explosion in a completely satisfactory way.
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Linear substitutions. Consider for example the term x y x - - - & [x«I]. The variable x oc-
curs at head position, thus we are forced to perform the substitution of I for x in order to
expose the redex [y that is present in its unfolding Iy I - - - I. However, applying the rule
—sup fOrces to substitute the identity many times, once for each occurrence of the variable x:
this is clearly unnecessary, as it suffices to substitute the identity just for the one occurrence
of x in head position.

A first refinement of the — ¢y, rule is to make explicit substitutions act on only one oc-
currence of a variable at a time: the resulting reduction rule is called —7gyp for “linear sub-
stitution”. Now we can reduce the term above as follows:

zyx---x[rel] e lyz---x|rel] —pes z[zey|a- - x [z

As we can see, performing additional substitution steps starting from the rightmost term
z[z<y|x - x [x<I]is useless, because its unfolding y I - - - I is already in normal form.
The idea to avoid a substitution unless necessary to create a redex is the core of the notion
of useful sharing (Accattoli and Lago, 2014), and it also motivates an important optimization
for evaluation machines called substituting abstractions on-demand, which we will discuss
on page 72.

The calculus obtained by replacing —gup With —1gup IS called ALsub or linear substitu-
tion calculus, and its reduction rules are in fig. 4.2.

EQAzt)s g E(tfr<s])
Clz)[zt] Prsw C(t)[zet]

C<t> _>5ES C(S) if }_),BES S
C<t> =Tl C(S) if ¢ >1sub S

The Alsub calculus

As one can see in fig. 4.2, also the definition of the the top-level rule +>gup requires
contexts, which are used to locate the exact variable occurrence that one desires to substitute.

Our main reasons for introducing Alsub is that it can uniformly represent many different
evaluation machines for the A-calculus present in the literature, as we will see in the next
section. Alsub was introduced by Accattoli (2012) as a slight variation over a calculus pro-
posed by Milner (2007), and as a simplification of the structural calculus Aj of Accattoli and
Kesner (2010). Apart from being well-behaved as a rewriting system (like the A-calculus, it has
a residual system, Accattoli et al.,, 2014), its main feature is a tight relationship with graphical
formalisms like linear logic proof nets (Accattoli, 2018). In fact, the reductions of ALsub can
be seen as cut-elimination steps in linear logic (Ariola, Bohannon, and Sabry, 2009; Accattoli,
Barenbaum, and Mazza, 20714a): — ggs corresponds to the “multiplicative” case, and —+15yp to
the “exponential” one, see also page section 6.2.
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Even though it will not be necessary in this dissertation, one can push the decomposition
of substitution to extremes, by removing the action at a distance and adding explicit reduction
rules to propagate the substitution inside the term, until variables are reached. The simplest
way to proceed is by adding a new reduction rule for each case of definition 2.4: this yields
the calculus Ax, whose rules are in fig. 4.3.

(Ax.t)s — tlzes]
x[res] — s
ylres] = y ifx #y
(tu)lres] = (tres]) (ulrs])
(Ay.t)[zes] — Ay.(tz<s]) if x # yandy & fv(s)

Reduction rules for Ax

Ax was introduced by Bloo and Rose, 1995; Rose, 1992, but the literature actually contains
many slightly different calculi of explicit substitutions, some using de Bruijn notation (Abadi
et al,, 1991; Gonthier, Abadi, and Lévy, 1992; Ferreira, Kesner, and Puel, 1996) or level notation
(Lescanne and Rouyer-Degli, 1995), some others using named variables like Ax. The pioneer
calculus with ES was Ao, introduced by Abadi et al. (1991). Shortly after, a counterexample by
Melliés (1995) showed that Ao behaved in an undesirable way, which sparked a quest for the
ultimate well-behaved calculus of explicit substitutions (Di Cosmo and Kesner, 1997).

As a final remark, we would like to point out that ES do not only allow to decompose (-
reduction, but have additional benefits. From an operational semantics point of view, ES allow
elegant formulations of subtle strategies such as CbNeed evaluation—various presentations
of CbNeed use ES (Wadsworth, 1971; Launchbury, 1993; Maraist, Odersky, and Wadler, 1998;
Ariola and Felleisen, 1997; Sestoft, 1997a; Kutzner and Schmidt-SchauB, 1998) and a particularly
simple one is by Accattoli, Barenbaum, and Mazza (2014a). From a rewriting point of view,
ES enable proof techniques that are not available within the A-calculus, see for instance
(Accattoli, 2012). Also, from a logical point of view, ES are the proof terms corresponding to the
extension of natural deduction with a cut rule (Barendregt and Ghilezan, 2000), and there is
almost a one-to-one correspondence between cut-elimination rules and the reduction rules
of calculi like Ax.

Instead of being scattered all over a term, ES can be grouped together in finite sequences
called environments . As we will see in the next section, abstract machines typically rely on
such environments.

4.3 Abstract Machines

Abstract machines are first-order state transition systems used to model the implementation
of programming languages. Their strength is to be abstract enough to leave out irrelevant
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implementation details, but otherwise concrete enough to approximate the core of realistic
run-time systems.

Abstract machines are a very convenient way to implement evaluation functions of \-
calculi (section 4.4) and study their implementation overhead (section 4.5). As we will see
below, a state of such machines has various components, in which the term to be evaluated
is decomposed in order to perform evaluation.

Evaluating a A-term t through an abstract machine consists of the following process:

t ——t= S() - S ——
enCOdlng - execution readback

S,

First, one injects or “encodes” the A-term t obtaining an initial state Sy of the machine; as
we will see, injection usually consists in taking £ as “code” and all other machine components
as empty. Then, an execution p is a sequence of transitions of the machine Sy —* & from
the initial state Sp—we call S a reachable state. Finally, one can perform the readback S¢
of a (final) state to a term: recall however that reading back to A-terms is an exponential
time operation (because of size explosion, as discussed in section 41), thus one is forced to
preserve the sharing when reading back in actual implementations.

Abstract machine

An abstract machine M is a labeled transition system whose initial states are obtained
from A-terms by an encoding function e.

Early reduction machines, like the GMD by Berkling (1974), implemented A-terms as strings
and the operation of substitution in a literal way, leading to size explosion. Striving for more
efficiency, the literature investigated mainly two classes of machines for the A-calculus, ac-
cording to what representation of A-terms they operate on: graph reduction machines and
environment machines.

- Graph reduction machines operate on A-terms represented as graphs, and perform eval-
uation by rewriting the term graph, i.e. the program itself. As we will see in section 61,
when A-terms are represented as graphs, sharing amounts to having multiple edges
that point to a same node: in this way, substitution steps can avoid to copy (the sub-
graph representing) the argument of a redex by simply reusing it as many times as the
number of occurrences of the formal argument. Even though graph reduction is quite
intuitive, efficient implementations are more complicated and less obviously correct
(Sestoft, 1997h), see for example the G-machine (Kieburtz, 1985; Jones, 1992). On the
other hand, graph reduction is well-suited to implement CbNeed evaluation: updating
an evaluated argument is obtained by altering imperatively the graph structure.

- Environment machines keep the A-term to be evaluated separate from the substitutions
originated by [3-steps: like with ES, substitutions are not performed right away but
delayed and stored in a separate data structure called “environment” (also: store, heap),
which is accessed as a kind of database (Curien, 1991).
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In order to present the main intuitions underlying evaluation through abstract machines,
in the rest of this section we showcase some well-known environment machines for closed
evaluation: the KAM (page 48) and the MAM (page 50) for CbN evaluation, and the GLAM
(page 5z4) for CbV evaluation. We will not present any machine for CbNeed, being slightly
more involved and out of the scope of this dissertation.

The KAM

Most of the literature on environment machines —on which we focus in this dissertation—
relies on so-called “local” environments, in which every piece of code in the machine is paired
with its own environment, forming a “closure”. A closure owes its name to the fact that all
the free variables of the term in the closure are bound in its environment: this approach
clearly works only for closed terms, i.e. computer programs. In this section we focus on
the evaluation of A-terms without free variables; only later, in chapter 5, we will generalize
machines to open terms.

The Krivine Abstract Machine (Krivine, 2007) is probably the most famous abstract machine
for the A-calculus using local environments (see fig. 4.4).

Environments e = €| [xc]::e
Closures ¢ == (t,e)
Stack m = €|cum
[tleln]
t = |t|ele
‘ Azt ‘ e ‘ € ‘
‘ts‘e‘ﬂ‘ — ‘t‘6‘<8,6>::7{"

App

‘ Azt ‘ e ‘ c::w‘ —_ ‘t‘ [z<c]::e ‘ 7T‘

/

x|e | - Lt]E|T ife(z) = (t,€)

The Krivine Abstract Machine (KAM)
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Syntax. A state of the KAM is composed of the term being evaluated (which we also call
“code”) plus its local environment (together forming a closure) and a data structure called
“applicative stack” or simply “stack” which is simply a list of closures. We denote by € the
empty list, and by :: the consing operation (we will sometimes omit the symbol :: to lighten
up the notation).

Execution. The stack component basically contains the arguments of the applications that
are encountered by “App” transitions: when evaluating an application of the form ts, the
argument s is stored in the stack together with the current local environment e, and the
machine proceeds to evaluate t. An “Abs” transition basically performs a [3-step, but delays
the substitution in the environment just like — ggs-reductions in Alsub (see 45). Finally, a
“Var” transition substitutes one occurrence of the variable x with the corresponding entry in
the environment just like a —;cup-reduction in Alsub. “var” transitions need to perform the
lookup e(x) of x in the environment ¢; in order to define it, we first introduce the domain of
e:

Domain of an environment

Let e be an enviroment. We define its domain dom(e) by induction on the structure of e:

dom(e) = {}
dom([z<c]:ze) = {z}Udom(e).

Lookup ¢(x)

Let e be an environment, and z € dom(e). We denote by e(x) the lookup of z in e,
defined as follows by induction on the structure of e:

c ife = [xec|ie

e(x) =

e(x) ife=[y<c|ue forx#£y

If z & dom(e), we say that e(x) is undefined.

Nameless. Usually local environments are employed in combination with nameless A-terms,
introduced in section 2.4: when variables do not carry a name, variables do not need to be
recorded in environment entries, and therefore the syntactic category of ES collapses to the
one of closures. Then an enviroment is a list of closures, and the operation of lookup in the
environment for a variable #¢ consists in taking the ¢-th entry from the environment, consid-
ered as a list. For a study of closures over nameless terms, see the calculus of closures Ap
by Curien (1991).

Kinds of environments. Most of the literature on abstract machines relies on local environ-
ments, however other styles of environments exist: in a recent work, Accattoli and Barras
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(2017) compare local, “global”, and “split” environments.

Global environments are used by a minority of works, and instead of coupling every
term with its own environment (forming a closure), they employ a single environment
that records the substitutions originated from all the pieces of code in the machine. In
this dissertation we prefer global environments over local ones, mainly for two reasons:
on the one hand, working with global environments is simpler because it avoids using
closures; on the second hand, global environments provide the same kind of sharing
as A-graphs, a graphical representation of shared A-terms that we will introduce in
section 6.1 and that we will employ in part II.

- Local environments actually enable faster machines but only in the case relevant for
programming languages (weak evaluation of closed terms), not in the general case of
proof assistants (open/strong evaluation, section 5.2); in addition, local environments
do not naturally account for sharing as it is needed for instance by CbNeed evaluation
(Accattoli and Barras, 2017).

- Finally, “split” environments are a style that combines the best of the two approaches,
but which we will not consider in this dissertation—we refer the reader to Accattoli and
Barras, 2017 for a comparison of the three styles, both from complexity and implemen-
tations point of view.

The MAM

The KAM defined in fig. 4.4 employs local environments, but we are now going to consider a
variant of the KAM with global environments; it is called Milner Abstract Machine (see Accattoli
and Barras, 2017), and its definition is in fig. 4.5.

Environments e = €| [z+t]::e
Stack m =€ | Otumw

t m e

to=[t]efel

‘)\x.t‘e‘e‘
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‘st‘w‘e‘ —pApp ‘S‘Dt::ﬂ"e‘

‘ Azt ‘ Os:m ‘ e ‘ —_ e ‘ [ ‘ s ‘ [x%<s]::e ‘

x| m|e -, [P ]T e ife(r) =t

The Milner Abstract Machine (MAM)

The main difference with respect to the KAM is that by using global environments the
separate syntactical category of closures disappears, collapsing on terms. A state of the MAM
has still three components: a A-term, a stack 7, and a global environment e. The global
environment is simply a list of explicit substitutions: each ES in the environment impacts on
both the first two components of the machine, and also recursively on the remaining part of
the environment on its left. The stack is basically a list of terms, used to store the arguments
encountered while evaluating a nested application term like in the KAM. However, in fig. 4.5
we defined the stack as a list of entries of the form “O¢": following Danvy et al. (2010), we call
these entries context frames , stack frames, or just frames.

Inside-out contexts. Since we will reuse the notion of frames in the abstract machines that
follow, let us now provide a general definition of frames and stacks. The stack component in
an abstract machine is a representation of the current evaluation context, but “turned inside-
out like a returned glove”' To understand what an inside-out context is, let us consider for
example the general context D ==t ((Az.(-)) s). D is built from the grammar of evaluation
contexts by using the production rules tC, C's, Az.C', and finally (-). Each use of a production
rule corresponds to a layer of the context, and a frame is simply a single layer of an evaluation
context. The grammar of context frames follows, with an entry for each production rule in the
grammar of general contexts (cf. fig. 41):

Context frames
f = 0Ot |t0| .0 | Ofz<t] | t{zr<O]

An inside-out context—which we denote by D—is then simply a list of context frames:

Inside-out contexts

O = ¢€l| fu:D

We call these contexts “inside-out” because they lay out frames in reverse order with
respect to a usual evaluation context. For instance, the inside-out context corresponding to
Dis Ax.O0::0Os::t0O::€

MAM components. Let us now go back to the components of the MAM:

A term together with an inside-out context is an example of the datatype known as zipper and due to Huet (1997).
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- The stack is an inside-out context composed only of frames of the form Ot and it is
therefore the inside-out version of weak head contexts H == (-) | Ht, correctly
suggesting that the MAM simulates CbN evaluation.

- An environment instead is a list of ES, where each entry [z«t] is basically a frame of the
form O[z«t]; hence an environment is the inside-out version of environment contexts
FE defined in fig. 4.

We can formalize the correspondence between classical contexts and inside-out contexts
by defining the following readback functions:

Readback of inside-out contexts

We define the readback O¢ of an inside-out context O to a usual context by using the
auxiliary function flip(C' | D), by induction on the structure of O:

o fip((-) | )
flip(C | €) = C

flip(C | Ot::D) = flip(Ct | D)
flip(C' | tO::0) = flip(tC | D)
flip(C | Az.0::0) = Aflip(A\zx.C | O)
flip(C | Ofz«t]::0) = fip(Clz<t] | D)
flip(C | tlxz<0O]::0) = Aflip(t[z<C] | D)

MAM decoding. We can now define the decoding of a MAM state to a term:

MAM decoding

Let S == (¢, m, e) be a state of the MAM. We define its decoding S| to a A-term with ES
as follows:

(t7 T, e)¢ = 6¢<7T¢<t>>.

As one can see, a state of the KAM corresponds to a term where the explicit substitutions
are only found at top-level. One can also decode a MAM state to a A-term without ES, by
turning each explicit substitution in the environment to an actual substitution. In order to
do so, we introduce the substitution induced by an environment:

Substitution of environment o,

We define the (simultaneous) substitution o, induced by an environment e, by induction

O = {}

Olgetle = {z+t} o oe.

over the structure of e:

The decoding of a MAM state (¢, 7, €) to a A-term is then simply 7 (t) .
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Defining a decoding function from machine states to A-terms is the first step to prove
that a given abstract machine simulates a strategy in a calculus; we will go into more details
in section 4.4.

Variable hygiene. Another difference between local environments and global environments
is the need for a-renaming. With local environments a-renaming is not necessary, because
eachterm is enclosed in its own closure which binds the local variables in a unambiguous way.
With global environments, we need to avoid the problem of variable shadowing by ensuring
that variable names that are bound in the environment do not get reassigned to a different
FS.” The following example shows an execution that does not perform a-renaming, leading
to an incorrect result:

Execution without ce-renaming

‘ x ‘ O6::0x::€ ‘ [z Az.z] ‘

—_ ‘ Ar.x ‘ 00::0x::€ ‘ [z Az.x] ‘

— e ‘ x ‘ Ox::e ‘ [z<d][zAz.2] ‘

The states and decode to the A-term 161 (having CbN normal form I), but the
state €)) decodes to the diverging A-term ¢ because the ES [z«d] has shadowed [z« I].

While in the classical A-calculus it is common to work implicitly modulo a-equality, for
abstract machines we will not consider terms up to «, because different ways of handling
a-equivalence characterize different approaches to abstract machines. In fact, a-renaming
a term concretely amounts to performing a copy of the term, which is not a constant time
operation as it requires time proportional to the size of the term that is being copied.

There are at least two alternative ways to enforce variable hygiene by performing a-
renaming:

1. One way is to a-rename at each f3 transition, which is the only transition that appends
a new ES in the environment: the variable that is being subsituted is refreshed in such
a way that clearly there cannot be multiple ES in the environment with the same vari-
able name. This is accomplished on the right-hand side of the “Abs” transition, where
we denote by % a fresh variable with respect to the current state, and by t* the term
t{x<=x*} obtained by replacing each free occurrence of = with . This option cor-
responds directly to the graph rewriting tradition, where the body of an abstraction is
copied right during a [3-rewrite step in order to avoid incorrectly altering all the shared
instances of an abstraction (see page 77).

2. Another way is to follow Barendregt's variable convention, enforcing that all bound vari-
ables are always distinct. This can be accomplished by a-renaming at each substitution

2Local environments actually allow to avoid renamings, but the simplification is an illusion because then an
added complexity pops up elsewhere—see Accattoli and Barras (2017).
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step: please have a look at the right-hand side of the “var” transition, where here we
denote by t% any term obtained from t by refreshing all its bound variables.

This option is more faithful to the A-calculus tradition, but is also justified by the oper-
ational semantics provided by the interpretation of the A-calculus in linear logic proof
nets: in that setting, the action of copy is performed only during so-called “exponential”
steps, that correspond directly to subsitution steps —>1gup in calculi with ES.

We denoted by e“ the operation of renaming: note that it is not actually necessary to
perform it in both transitions “Abs” and “var” (see fig. 4.5), one can choose either one of the
two according to the explanation above. In any case, it is fundamental to require that the
variables in the domain of the environment of an abstract machine are all distinct, and it will
be one of the invariants necessary to prove that a machine is correct:

Well-named environment

Let e = [z1¢t1] - - - [z«Tx] be an environment. We say that e is well-named if z; # x;
forallz # j.

In all the machines we consider in this dissertation, we will require the initial state to
be well-named, and well-namedness will then be proved to be preserved under machine
execution by a corresponding invariant.

The GLAM

Another well-known abstract machine is the SECD machine (SECD stands for Stack, Environ-
ment, Control, Dump) which was originally described by Landin, 1964, and can be considered
an ancestor of the Java Virtual Machine. The SECD machine implements left-to-right CbV; an
abstract machine which instead implements right-to-left CbV is the Leroy Abstract Machine,
introduced in Accattoli, Barenbaum, and Mazza, 2014b and inspired by Leroy’s ZINC Machine
(Leroy, 1990). We present the Leroy Abstract Machine with global environments (GLAM) in
fig. 4.6.

Environments e =€ | [z<v]::e
Stack m t=¢€|tOuw | Ovan
(tlm]e]

;::‘t‘e‘e‘
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‘ts‘w‘e‘ —;App ‘S‘tlj::ﬂ"@‘

‘ Azt ‘ Ovam ‘ e ‘ — e ‘ t* ‘ T ‘ [x¥<v]::e ‘

‘ Azt ‘ sdum ‘ e ‘ —_ ‘ s ‘ O(Az.t)am ‘ e ‘

(clnle] =y [Flrle] el =v

The Leroy Abstract Machine (GLAM)

The GLAM is usually presented in a slightly different way than how presented in fig. 4.6: the
stack is usually split in two data structures, a “stack” and a “dump”. Here instead we maintain
the two components “merged” (in the terminology of Accattoli, Barenbaum, and Mazza, 2014b)
and we reuse the notion of context frames defined on page 51.

Syntax. Asusual, a state of the GLAM includes a code, a stack, and an environment. The first
difference is that here an environment contains only values, because in CbV the arguments
must be fully evaluated to values before a redex can fire. Note that here values collapse to
abstractions, since we consider only closed evaluation.

It is easy to see that the GLAM stack is the inside-out version of a right v-context, defined
on page 28 by the grammar:

R:= ()| tR | Rv.

This correctly suggests that the GLAM implements right-to-left CbV, i.e. the Apot calculus
defined in section 31. As done previously, we define the decoding of machine states as

(t,m,e), = ey (m 1))

Execution. The “Abs” and “Var” transitions are exactly the same ones of the MAM (cf. fig. 4.5);
the difference is in the slightly different “App” transition, and the new “Val” transition. The
“App” transition focuses evaluation on the argument of an application (instead of focusing
in head position like the MAM), because it evaluates arguments right-to-left. The “val” tran-
sitions is applicable when the code — which originated from the right part of an application
— has been evaluated to a value, and the machine can move on to evaluate the left part of
that application.

That the GLAM correctly implements Apjot iS proven for instance in Accattoli and Coen,
2015; such a proof requires the tools that we outline in the next section.
4.4 Simulation

To prove that a given abstract machine correctly implements a calculus, one first defines a
decoding function from each machine state S to a term Si- The ideal would be that e is a
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strong bisimulation between the machine and the calculus, in such a way that each transition
of the machine corresponds to a reduction in the calculus, and viceversa:

S S,
S S,

Such a strong bisimulation almost never holds: the most evident mismatch is that not
every machine transition corresponds to some reduction in the calculus. Let us consider for
example the MAM from fig. 4.5, even though the same argument holds for the GLAM and the
other machines in this dissertation. We recall the transitions of the MAM below in fig. 4.7:

st|m e —;App ‘S‘Dt::ﬂ"@‘

‘ Azt ‘ gs:m ‘ e ‘ —_ e ‘ t* ‘ s ‘ [x¥s]::e ‘

.
(z]7]e] —y L] 7] e]
Transititions of the MAM
The MAM, like more complex abstract machines, contains three kinds of transitions:

search transitions, like the “App” transition of fig. 4.7: these transitions do not really al-
ter the underlying term being evaluated, but only change the current evaluation context
that is used to search the next redex;

beta transitions, like the “Abs” transition of fig. 4.7: these transitions perform a 5-step
but delay the actual substitution by appending a new ES to the environment;

substitution transitions, like the “Var” transition of fig. 4.7: these transititions replace
exactly one occurrence of a variable with its value in the environment.

In this setting, it comes handy the distillation methodology of Accattoli, Barenbaum, and
Mazza (2014a): while in a simulation every machine transition is required to be simulated by
some steps in a calculus, in a distillation only some of the machine transitions are simulated,
while the others are mapped to a structural equivalence = of the calculus.

Granularity. How to map machine transitions and what notion of structural equivalence to
use mainly depend on the choice of decoding:

- Decoding to A-terms with ES. In this case, the machine is distilled to some strategy
in Alsub, where beta transitions are mapped to —ggs reductions (not exactly, but
keep reading), substitution transitions are mapped to —4up reductions, and search
transititions are mapped to structural equivalence. Equivalent terms basically only differ
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for the position of ES: the structural equivalence = on terms with ES amounts to the
permutation of explicit substitutions around the term obtained by extending =, with
axioms like the following:’

(tlxeul)s = (ts)[x<u] ifz &fu(s)
t(slz—u]) = (ts)lx<u] ifz &fv(t)

Permutating ES in a A-term is required to reflect in the calculus the specific structure
of terms that is enforced by an abstract machine during execution. As we have seen,
the decoding of @ machine state corresponds to a term where the ES are never nested
and only found at top-level (i.e. grouped together to form the environment). Structural
equivalence ensures that this canonical shape is reflected in the calculus.

- Decoding to classical A-terms. In this case, the machine is distilled to some strategy
in the A-calculus without ES, where beta transitions are mapped to [3-steps, and both
search and substitution transititions mapped to equality, or more precisely a-equality

=,
Principal vs overhead transitions. We present the distillation technique in its more gen-
eral form. To prove that a A-calculus C “distills” an abstract machine M (or viceversa, that M
implements C), we first divide the transitions of the machine in two groups:

- Principal transitions. We call each reduction rule of the calculus C “principal”’, and we
denote principal rules with the letter “p”. We also assume that, for every p-rule of C, M
includes a transition rule corresponding to p (ideally, with the same label). Principal
transitions are the ones that correspond to reductions in the calculus.

- Overhead transitions: the transitions that are not principal are called “overhead”, and

w,n

are denoted by the letter “0”. These transition are the ones that will be mapped to
structural equivalence during distillation.

We proceed with the formal definition of an implementation system , obtained by blend-
ing the notion of “reflective distillery” by Accattoli, Barenbaum, and Mazza (2014a) with the
simpler definition of “implementation systems” by Accattoli and Guerrieri, 2017.

Implementation system

An implementation system (M, C, e, ‘i) is given by a machine M, a calculus C, an encoding
e from A-terms to machine states and a ®; decoding from machine states to C-terms,
such that:

1. Initialization: | =t for every A-term t.
2. Principal projection: if S —, &', then S| —,= &', for every principal step p.

3. Overhead transparency: if S —, &', then S| = &', for every overhead step o.

3See Figure 1in Accattoli, Barenbaum, and Mazza, 201za for a complete list of axioms for the structural equivalence.
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4. Determinism: both M and C are deterministic.
5. Equivalence: = is a strong bisimulation with respect to the reduction rules of C.

6. Progress: if S is reachable and S| —, t for some principal step p, then there exists
astate S’ suchthat S —f—, 8 and §') = t.

7. Overhead termination: —, terminates.

Let us explain briefly each requirement:
1. Initialization requires that the readback is a left inverse of encoding.

2. Principal projection requires that each principal transition of M is mapped to a principal
step in C (possibly up to =).

3. Overhead transparency requires that overhead transitions of M are mapped to the struc-
tural equivalence of C.

4. Determinism requires both that the transition function of M is deterministic, and that
reduction in C is a deterministic strategy.

5. Equivalence requires structural equivalence to commute with evaluation: this basically
means that equivalence can be postponed until a normal form is reached, and then
performed without compromising the result of evaluation.

6. Progress basically requires that M final states (to which no transition apply) decode to
normal terms of C.

7. Finally, Overhead termination requires that M cannot get stuck on an infinite sequence
of overhead transitions.

If all the requirements for an implementation system hold, then the given machine cor-
rectly implements the given strategy in the calculus, as stated in the following implementation
theorem:

Machine implementation

If (M, C, e, 'i) is an implementation system, then:

- Executions to derivations: for any M-execution p: t —* S there is a C-derivation
d:t —=*= Si'
- Derivations to executions: for any C-derivation d: t —* u there is a M-execution

p:t—*SsuchthatS; = w.

- Principal matching: in both previous points, for every principal step p, the number
|d| of reductions in d is exactly the same as the number |p|, of p-transitions in p.
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Proof. See Accattoli, Barenbaum, and Mazza, 2014a.

The first two points of theorem 412 state that to each machine execution corresponds a
derivation in the calculus, and vicecersa. The third point, instead, provides also some quanti-
tative information: it says that the number of principal steps is preserved by distillation. This
is a fundamental property for complexity analyses, which will be essential in the next section
that discusses the computational complexity of execution.

Before turning to the next section, we point out that we will use the machinery of dis-
tillation and the implementation theorem in part Il, in order to show that our “crumbling”
abstract machines implement respectively Apjor (theorem 8.16) and Age (theorem 916).

4.5 Efficiency

Abstract machines for the A-calculus usually fall into the category of interpreters for program-
ming languages. Following Danvy, 2003a we can distinguish further between two classes of
abstract machines, according to the representation of A-terms that they operate on:

- Some machines, like Krivine’s machine (Krivine, 2007; Crégut, 1990), the CEK machine
(Felleisen and Friedman, 1986; Flanagan et al,, 1993), and the SECD machine (Landin,
1964) operate directly on the source syntax of A\-terms.

- Other machines, like the Categorical Abstract Machine (Cousineau, Curien, and Mauny,
1985) and the ZINC abstract machine (Leroy, 1990; Grégoire and Leroy, 2002), do not op-
erate on A-terms but have a different “instruction set”, and thus require a non-trivial
translation procedure (sometimes also called compilation). We call them “virtual ma-
chines”.

In principle, choosing between an abstract or a virtual machine does not impact directly
on the efficiency of the implementation, but more on the elegance and the clarity of the
design. To study the efficiency of any implementation, one has to take into account mainly
two factors:

1. The overhead of the abstract machine itself, i.e. the number (and cost) of evaluation
steps it takes the machine to evaluate a term ¢ vs the number of evaluation steps it
takes to evaluate ¢ in the A-calculus.

2. How the abstract machine is actually mapped onto real hardware.

We will discuss Point 1 below, in the subsection about asymptotic complexity. Point 2 is
much more intricate, as it forces to consider low-level details which may also depend on the
computer architecture, for instance memory allocation and management i.e. manipulating
the stack/heap, garbage collection, how to perform functions calls, etc.
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One way to mitigate the complications behind Point 2 is to implement the abstract ma-
chine directly as an interpreter, itself written in a high-level programming language. This is
the case for interactive theorem provers based on dependent types, which are always written
in functional languages themselves: abstract machines for proof assistants benefit from a
more high-level specification because they are much more complicated than the ones for
functional programming languages, as they require strong evaluation (see chapter 5). In this
way, the machine can rely on the features of the underlying language: for instance—as far
as we know—no abstract machine implemented in an interactive prover performs garbage
collection explicitly. In addition, being a first-order transition system, a machine can be im-
plemented by a tail-recursive function, which ensures that the space available to it is not
limited by the small size allocated for the execution stack, but by the whole size of the mem-
ory assigned to the process.

On the contrary, functional programming languages (which only handle the case where
terms are closed and evaluation is weak) provide also compilation to machine language, typi-
cally more efficient. Compilation however requires handling many additional low-level details
(Leroy, 1997; Jones, 1992), like how closures and datatypes are represented in memory, tagging
(attaching type information to data, required by type polymorphism), boxing (heap-allocating
complex data and handling it through a pointer), tail-call optimization (to save space in the
stack), and so on. In addition, the compilers of functional programming languages are very
complex pieces of software, whose optimizations may distort efficiency analyses. In this case
benchmarks are fundamental to ensure that the many aspects involved interact properly.

In this dissertation we will not discuss efficiency with respect to Point 2 above: we consider
machines only from an abstract point of view, and study their inherent efficiency by bounding
asymptotically the number and cost of their transitions with respect to other abstract models
of computation like Random Access Machines (RAMs). Asymptotic complexity is meant to
complement the use of benchmarking, by covering all possible cases, that certainly cannot be
covered via benchmarking. A downside is that complexity is discussed via the big O notation,
which ignores constant factors, but hidden constants do impact performance in practice.

The Asymptotic Study of Abstract Machines

Strangely, asymptotic bounds of abstract machines are an aspect largely neglected by the
literature—before Accattoli, Barenbaum, and Mazza (2014a) we are aware of only two inde-
pendent works on this topic, one by Blelloch and Greiner (1995) and the other by Sands, Gus-
tavsson, and Moran (2002). Bounding the overhead of abstract machines has then become
commonplace; according to this line of research, one should prove the machine overhead
to be polynomial or even linear in the number of 3-steps (Accattoli, Barenbaum, and Mazza,
2014a; Accattoli, Barenbaum, and Mazza, 2015; Accattoli and Coen, 2015; Accattoli, 2016; Accat-
toli and Guerrieri, 2017; Accattoli and Barras, 2017).

To begin with, an useful intermediate setting for complexity analyses is the linear substi-
tution calculus Alsub presented in section 4.2: by distilling an abstract machine to Alsub



4.5. EFFICIENCY 61

one can ensure that search transitions do not actually affect the complexity of evaluation
(Accattoli, Barenbaum, and Mazza, 2014a).

In this dissertation, however, we relate abstract machines directly to the A-calculus with-
out ES (even though distilling will be necessary in our future work presented in section 151).
By bounding the number (and the cost) of substitution and search transitions, i.e. “overhead”
transitions, we show that they do not actually affect the overall complexity of evaluation. As a
consequence, we will be able to bound the complexity of evaluation as a function of 3-steps
only (and the size of the initial term). As a side result, by the implementation theorem one
also obtains that the number of 3-steps according to the simulated strategy is a reasonable
cost model, as explained in the next paragraph.

Reasonable cost models. As already mentioned on page 40, in order to analyse the compu-
tational complexity of A-terms one needs first to fix a cost model, and the most natural one
for the A-calculus is taking as the cost of evaluation the number of 3-steps required to eval-
uate a term. Not every cost model is acceptable: the so-called invariance thesis states that,
in order to be reasonable, a time cost model must be polynomially related to the the cost
model of Turing machines. Whether the unitary cost model was invariant for the A-calculus
has been a long-time open problem, until Accattoli and Lago (2012) proved that it is indeed
invariant with respect to the A-calculus endowed with the Leftmost-Outermost strategy. We
will not stress too much about invariance in this dissertation, because the it is well-known
that the unitary cost model is invariant under (weak) CbV.

The recipe for complexity analyses. Following Accattoli and Guerrieri (2017), we provide the
three steps necessary to estimate the asymptotic complexity of an abstract machine M:

1. Number of transitions. First of all, one should bound the length of an execution p
by bounding the number |p|0 of overhead transitions in it. This step splits into two
subparts:

- Substitution vs beta: bounding the number |p|sub of substitution transitions in p
using the number |p|g of S-transitions;

- Search vs substitution: bounding the number | p|s Of search transitions in p using
the size of the initial state and |p|sub (and therefore the number of 3-transitions,
by the previous point).

2. Cost of single transitions. Secondly, one must bound the cost of concretely imple-
menting a single transition of M. In order to lay out costs, it is necessary to go be-
yond the abstractions level, and make some low-level assumptions on how codes and
data structures (stack and environment) are represented concretely in the implemen-
tation. The usual assumption is that the abstract machine is itself implemented on a
Random Access Machine (RAM), an abstract machine that is polynomially related to
Turing Machines. Search transitions are meant to have constant cost, because they do
not perform any copy. The cost of substitution and beta transitions instead depends
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on which one of the two transitions actually carries out the a-renaming. In any case,
their cost is at most linear in the size of the initial state thanks to a common invariant
of abstract machines called subterm property , having the following shape:

Subterm invariant

Let p: So —* S be the execution of an abstract machine with global environments.
That machine satisfies the subterm invariant if all abstractions that occur in S are
subterms of the initial state Sy (possibly up to variable renaming).

The subterm property ensures that only subterms of the initial term are duplicated
and substituted along an execution. The operation of copy is supposed to have cost
proportional to the size of the term to be copied.

3. Complexity of the overhead. Lastly, one obtains the total bound by composing the pre-
vious two points, i.e. by taking the number of each kind of transition, multiplying it by
the respective cost of implementing it, and summing over all kinds of transitions.

Low-level assumptions. Different assumptions on the low-level implementation of an ab-
stract machine lead to different complexity analyses: Accattoli and Barras, 2017 compare var-
ious ways of concretely implementing environment-based abstract machines, also showing
the impact on complexity.

A peculiarity of abstract machines based on global environments is that they blur the
historical distinction between environment-based machines and graph machines; more pre-
cisely, they easily allow either one between a traditional environment-based implementation,
and a graph-based implementation. We discuss the two options below, but we anticipate
the overall resulting complexity: a graph-based implementation is faster than a literal one,
because the latter has (at least) an additional logarithmic factor due to the lookup in the
sequential environment.

1. Traditional environments:

- Environment. The operations demanded to environments are to push (a new ES)

and to access an entry (when performing the lookup). The most literal way to
implement a global environment is by means of a linked list of ES: this however
makes the cost of the lookup in the environment linear in the size of the environ-
ment, which needs to be traversed in order to look up the desired variable. Since
the size of the environment is usually proportional to the number of 3-steps (be-
cause beta transitions extend the environment) this choice produces an overall
quadratic overhead.
Actually, more efficient data structures to implement global environment exist, for
instance balanced trees or random-access lists. However, they only reduce the lin-
ear factor to a logarithmic factor, resulting in a overall quasilionear time complexity
(see Accattoli and Barras, 2017).
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- Variables. A variable is implemented either as a name (for instance, a string) or as
a natural number (a de Bruijn index).

- Stack. The only operations demanded to stacks are to push and to pop; therefore
a simple linked list suffices, for which push and pop are O(l) operations. This
makes the cost of search transitions constant, as desired.

2. Implementation on A-graphs:

- Variables. A variable bound by an ES in the environment is implemented as an
indirection node, i.e. a memory location containing the address of another memory
location, in such a way that an environment entry [z«<t] means that the location
associated to x contains a pointer to (the encoding of) t.

- Environment. An environment e is not implemented as a data structure per se, but
is identified with the global, implicit mapping from memory locations to their con-
tents. In this way, e can be accessed in time O(1) by just following the reference
given by the variable occurrence that is being evaluated, with no need to access e
sequentially.

- Stack. Similarly, the stack component of an abstract machine does not need to
be implemented as a separate data structure either. Recall that the stack compo-
nent records the current evaluation context, which can be thought of the syntax
tree surrounding the term being evaluated, but turned inside-out. As already men-
tioned, the stack can be implemented by a zipper over the A-graph (Huet, 1997), by
reversing the parent-child pointers during the traversal. In this way, push and pop
are still O(1) operations, and can each be implemented by a single destructive
update of a node in the graph.

The implementation that we have just outlined is basically the same representation
of A-terms as A-graphs that we provide in chapter 6, where sharing simply amounts to
allowing a node (i.e. a memory location) to have multiple incoming edges. There is how-
ever one single mismatch, caused by the slight different representation of ES variables
as indirections instead of as simple directed edges. This mismatch is visible both in
our implementation (chapter 11) and in the implementations provided by Accattoli and
Barras, 2017, and consists in the following additional requirements for variable nodes:

(@) Explicit sharing: other than free or bound, variable nodes can also behave as “ex-
plicit sharing” or “indirection” nodes, i.e. nodes possessing a single directed edge
with endnode the node to be shared.

(b) Shared: variable nodes are the only kind of node that can be shared.
(c) Maximally shared: all nodes corresponding to the occurrences of a same variable

are merged together.

Nevertheless, we still consider A-graphs essentially the same representation induced
by the implementation on RAMs that we have provided above, with the only mismatch
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of explicit sharing nodes. When developing our theory of sharing equality in part Ill,
we will not consider explicit sharing nodes; however, one can translate in linear time
between that representation to A-graphs (and viceversa) by collapsing these “variables-
as-sharing” on their child, if they are the child of some other node. Our results could
be adapted to this other approach, but at the price of more technical definitions.

Garbage collection. As a final note: abstract machines ignore on purpose many details of
concrete implementations, such as garbage collection. A detailed study of garbage collection
is an orthogonal topic, that is not usually performed by existing abstract machines. In partic-
ular, garbage collection requires at most polynomial time, if not linear, and so its omission
does not hide harmful blowups in complexity.



Chapter s

Strong Evaluation

By strong evaluation we mean evaluating a term to its full S-normal form, which we call
here strong normal form . Terms in strong normal form are described by the entry t5 in the
following grammar:

Strong normal forms

tS o )\Jits ‘ is
Z’S = T | is ts

In general, we call “strong” any strategy able to contract redexes which are located inside
the bodies of abstractions, as opposed to weak startegies which are not (cf. chapter 3).

Usual programming languages do not perform strong evaluation: the body of a function
is never evaluated before enough arguments are provided. However, strong evaluation is
sometimes employed during compilation in order to optimise the compiled code.

Partial evaluation , for example, is a program transformation technique that specializes a
program with respect to part of its input (Consel and Danvy, 1993). Partial evaluation is useful
when a program contains many occurrences of a function that is invoked on the same “static”
arguments (i.e. available at compile-time): the optimization then consists in constructing
a specialized version of that function with fewer formal parameters. It follows that partial
evaluation must evaluate a function given the actual value of some formal parameters but
without evaluating the expressions that depend on data that is only available at run-time.

Note however that the kinds of strong reduction performed at compile time typically con-
sider only “linear” redexes, i.e. redexes where the body of the function uses the provided
argument exactly once: in the linear case, the act of reducing amounts to “permutating” the
code without any duplication, making the optimization safe as there cannot be any size or
time explosion.

Another setting which requires strong reduction is higher-order logic programming , for
instance the AProlog language. AProlog' is an extension of traditional Prolog where terms

Thttp://www.lix.polytechnique.fr/~dale/1Prolog/
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are not simply first-order terms but A-terms. In all kinds of Prolog, computation is initiated
by running a query over the relations defined in a program; these relations are specified
through rules called “clauses”, and the Prolog engine decides what rule to apply by trying to
unify the current goal with the head of all existing clauses, one by one. Classical Prolog uses
first-order unification to check if a rule is applicable, but AProlog uses pattern unification’, a
subset of the very powerful (undecidable) higher-order unification. Any algorithm for pattern
unification must not only check that given terms unify up to syntactical identity, but also
whether they are somewhat the same A-term, i.e. are convertible in the A-calculus. °

Finally, performing strong reduction is also required in implementations of proof assis-
tants or automated theorem provers based on dependent type theories. Such type theories
usually include a typing rule similar to the following, called conversion and mentioned in
the preface:

Lt T r=7=T
'kt: T

The conversion rule behaves like a subtyping rule, and states that whenever a term ¢ has
type T” in a typing context I', and if 7" is equivalent to the type T', then t has also type 7. In
the simplest case of pure type systems, the equivalence relation = is 3-convertibility =, but

(conv)

in more complex type theories like the one used by Coq is a much more complex subtyping
relation (see the part about future works on page 230 for more information on convertibility
in Coq).

In the rest of this chapter, we explain how the literature tackles the problem of strong
evaluation through abstract machines. In section 5.1 we show the only existing reasonable
strong abstract machine, which implements the Leftmost-Outermost strategy. In section 5.2
we study open evaluation, a subcase of strong evaluation that is simpler but non-trivial.

51 Strong Machines

The study of abstract machines for strong evaluation is extremely technical, because they
have more data structures and more transitions than the ones that we have introduced in the
previous chapter for the weak, closed case. In fact, for more than 25 years there has been only
one abstract machine for strong evaluation in the literature, the Normalizing Krivine Machine
(NK) by Crégut (1990). NK is an augmented version of the Krivine Abstract Machine (cf. fig. 4.4)
that does not only evaluate a A-term according to CbN, but also iterates evaluation inside
the bodies of abstractions producing the strong normal form of that term according to the
Leftmost-Outermost startegy.

In order to highlight the difficulty of the topic, we present in fig. 51 (a variant of) Crégut’s
machine: it was named “Strong MAM” by Accattoli, 2016 because reformulated with global
environments. Compare it with its weak version, the MAM in fig. 4.5.

2See also page 185 for more information on pattern unification.
3More precisely, in AProlog convertibility is required up to «, 8, and also n, i.e. the identification of ¢ with Az.(t =)

where z & fv(t), see also page 230.
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Syntax
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The Strong Milner Abstract Machine (Strong MAM) / Figure 5.

Syntax. Just like the MAM, a state of the Strong MAM includes a term ¢, a stack 7 which en-
codes the evaluation context, and a global environment e. Note that the original formulation
of the Strong MAM by Accattoli, 2016 includes an additional “frame” component, that here we
decided to merge with the stack component for the sake of simplication.

Compared to the abstract machines presented previously in this dissertation, the Strong
MAM has a new component ® called evaluation phase or simply phase: it can be either
“evaluation” <« or “backtracking” ». Intuitively, while in the evaluation phase the machine
proceeds to evaluate the code component; in the backtracking phase, instead, the code has
already been evaluated to full normal form, and the machine backtracks over the stack frames,
searching for the next subterm to evaluate. (Recall that 5 and ¢s denote terms in strong
normal form, where %5 is not an abstraction, see definition 51.)
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Transitions. As one can see, the Strong MAM requires more than double the number of
transitions than its ancestor the MAM. The transitions correspond exactly to the
transitions of the MAM, and are respectively a search, beta, and substitution transition. All
the other transitions are search transitions. Transition is executed when evaluating an un-
applied abstraction Az.t: in this case, evaluation is iterated inside the body ¢, and the entry
Ax.0O is appended to the stack, indicating that evaluation has entered the abstraction. Tran-
sition is executed when evaluating a variable x which is not bound in the environment
to any substitution:  may be a globally free variable, or a variable bound by an enclosing
abstraction, but in both cases the term x is in normal form; the phase is switched to back-
tracking, and the machine proceeds to evaluate the arguments of the variable (transition €&)).
When there are no more arguments to evaluate, transitions (7) and continue backtracking
by concluding the evaluation of respectively the argument of an application, or the body of
an abstraction.

Decoding. Like the weak machines in section 4.3, we can decode a state of the Strong MAM
to a term with ES in the following way: (¢, ®, 7, e), = e (m (t)). Note that, since the Strong
MAM implements LO evaluation, the stack is the inside-out version of LO contexts, described
by the entry C|g in the following grammar:

Leftmost-Outermost Contexts

CLO = )\I‘.OLO ‘ I|_o
[LO = <> | ?:5 CLO ‘ ILot

Complexity. The Strong MAM is not reasonable: in fact, it is subject to the size-explosion
phenomenon (see section 4.1) since it computes the full S-normal form of a given term.

Accattoli, 2016 developed an optimized version of the Strong MAM, called Useful MAM, with
only polynomial overhead. We will not provide the optimized version in this dissertation,
because it is quite involved and relies on an auxiliary abstract machine that is executed as a
subprocedure; we will however provide the basic intuition underlying the optimization.

Recall that size explosion is caused by unrestricted substitution: in fact, the substitution
transition does not distinguish between useful and useless steps, and always performs
the substitution of a variable with its content in the environment. The solution for efficiency
is to restrict transition to perform only those substitution steps that are useful, hence
obtaining the Useful MAM. Basically, a substitution step is useful if it exposes a new redex: a
term that contains a redex can always be substituted because the cost of substitution will be
compensated by a reduction, and otherwise a term without redexes can be substituted only
if it is an abstraction and it will be applied to an argument.

The Useful MAM decides usefulness in the following way. Whenever a new ES [z« s] is ap-
pended to the environment by a transition (2), the Useful MAM executes an auxiliary machine,
called “Checking Abstract Machine”, that establishes the usefulness of [a:<—s] by producing a
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label [. The label can be either: “redex’, if s contains a [3-redex, hence useful; “neutral’, if s
does not contain any redex and it is not an abstraction, hence useless; “abstraction” if s is
an abstraction, hence potentially useful if applied. The produced label is then attached to
the entry in the environment, obtaining [ZL‘<—S]Z‘ When later an occurrence of x is found by a
transition @), the Useful MAM replaces x with s only if the label [ on [xes]l says that it is
useful. Otherwise the machine backtracks using the transition

The proof that such Useful MAM implements Leftmost-Outermost evaluation with polyno-
mial overhead can be found in the aforementioned paper by Accattoli, 2016.

(No) Other machines. As the Strong/Useful MAM suggests, machines for strong evaluation
require many additional transitions, data structures, and delicate optimization. While for
CbN evaluation the situation is still manageable (Crégut, 1990; Garcia-Pérez, Nogueira, and
Moreno-Navarro, 2013; Accattoli, Barenbaum, and Mazza, 2015; Accattoli, 2016), for CbV and
CbNeed the situation becomes quickly desperate—it is not by chance that there is not a
single (reasonable) strong abstract machine for CbV/CbNeed in the literature.

Forinstance, the current evaluator for Coq by Bruno Barras employs a CbNeed-like strategy,
but it is not known whether it is reasonable. To clarify what CbNeed consists of in presence
of strong evaluation, a recent work by Balabonski et al,, 2017 introduced and studied a Strong
CbNeed calculus, also proving that it is conservative over classical CbNeed and that it follows
the “by need” spirit (in that arguments are only evaluated when needed and at most once).
Their approach is to define Strong CbNeed by iterating classical CbNeed (actually, CbNeed
adapted to the case of open terms, called “symbolic” CbNeed).

The same approach of obtaining strong evaluation by iterating weak evaluation had been
used previously by Grégoire and Leroy, 2002 for a CbV machine, again to improve the imple-
mentation of Coqg. Their machine proceeds by levels : it first evaluates a term at top-level (j.e.
outside of all abstractions), and then it is re-launched recursively under each abstraction.

Note thatin order to evaluate by levels, one cannot simply iterate one of the usual abstract
machines for functional programming languages (say, the MAM or the KAM from section 4.3):
when evaluating under an abstraction, the variable bound by that abstraction behaves as
free, and therefore the abstract machines must be adapted so to handle open A-terms.
Unfortunately, the naive handling of open terms with the techniques for FPL gives abstract
machines with exponential overhead (Accattoli and Coen, 2015; Accattoli and Guerrieri, 2017).
The open setting thus provides a non-trivial intermediate setting: it is close in spirit to the
strong case, but clearly easier to study. Nevertheless, it is strictly harder than the closed one.

The aforementioned work by Grégoire and Leroy, 2002, for instance, lacks an estimation of
the efficiency of their open CbV machine: in fact, it actually suffers of exponential overhead,
even if the authors then in practice implement a slightly different machine with polynomial
overhead.

The asymptotic study of the case of Open ChV is in Accattoli and Coen, 2015; Accattoli and
Guerrieri, 2017, and is the topic of the next section.
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5.2 Open Evaluation

As already mentioned, before the recent wave of abstract machines focused on complexity
analyses the literature mostly neglected the open setting, apart from few exceptions (Crégut,
1990; Grégoire and Leroy, 2002; Garcia-Pérez, Nogueira, and Moreno-Navarro, 2013) which
however did not address complexity. Nowadays, the literature contains abstract machines
that implement all the common strategies (CbN, CbV, CbNeed) in the open setting with only
bilinear overhead (Accattoli and Coen, 2015; Accattoli and Barras, 2017).

Since the focus of this dissertation in CbV, in this section we provide the example of an
efficient machine performing Open CbV evaluation. Note that naively extending the GLAM to
open terms leads to a machine with exponential overhead. Accattoli and Coen, 2075 introduce
two optimized versions of the Open GLAM, the GLAMOUr and the Unchaining GLAMOUTr: they
are actually sophisticated machines that rely on careful optimizations, which we will outline
in the rest of the section.

The Fast GLAMOUr. In the rest of this section we discuss the Fast GLAMOUr machine by
Accattoli and Guerrieri, 2017, an open and reasonable variant of the GLAM (cf. fig. 4.6).

Syntax

Environments e = €| [z<fle

Stack 7 =€ |tOum | Ofurw

State

[tlm]e]
[nitial states

¢ = [E[<e]e]
Final state

[fle]e]e]
Transitions
@ H[<[l:] — [s[<lm=le]
@ ‘/\x.t‘ ‘Dy::ﬂ‘e‘ — ‘t{x@y}‘ ‘71"6‘
(3] ‘)\x.t‘ ‘Df::w‘e‘ — ‘to“ ‘W‘[$a<—f]::6‘ if feV
(1) ‘)\:U.t‘ ‘SD::W‘&‘ — ‘s‘ ‘D()\:E.t)::w‘e‘
(5 ) ‘x‘ ‘Df::ﬂ‘e‘ —_ ‘va‘ ‘Df::w‘e‘ if e(x) is abs.
@ ‘x‘ ‘7‘("6‘ — ‘x‘ ‘7‘1"6‘ otherwise
@ [i[>[ofir]e] — [if|r]m]e]
® [F[rlswurle] — Gl[<[ohnle
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The Fast GLAMOUr

Syntax. Justlike the GLAM, a state of the Fast GLAMOUr includes a term ¢, a stack 7 which en-
codes the evaluation context, and a global environment e. Note that the original formulation
of the Fast GLAMOUr by Accattoli and Guerrieri, 2017 includes an additional “dump” com-
ponent, that here we decided to merge with the stack component for the sake of uniformity
with previous machines. Getting rid of the dump has the disadvantage that our reformulation
requires the notion of evaluation phase, like Crégut's machine, and it has more transitions.

The other main difference with respect to the GLAM of fig. 4.6 is that the syntactic category
of values has been replaced with the one of fireballs, as one would expect when moving from
Apiot €valuation to Age evaluation. Recall that f and ¢ denote respectively fireballs and inert
terms, as defined in fig. 3.2.

Transitions. As one can see, the Fast GLAMOUT is quite more complex than the its ancestor
the GLAM. A source of difficulty comes from the optimizations needed to make the machine
reasonable; we will discuss these optimizations below, in the section about complexity. The
transitions correspond exactly to the transitions of the GLAM, with the only
difference that the beta transition of the GLAM has been split in the two beta transitions

+ due to an optimization (see below): transition is applied when the argument of the
redex is a variable, and transition when the argument is any other fireball.

All the other transitions are search transitions and control the backtracking phase. Tran-
sition is applied when evaluating a variable x, and in two cases: when e(x) is not an
abstraction, meaning that x is either a globally free variable, or bound in the environment to
an inert term; or when e(ac) is an abstraction, but the stack 7w does not begin with an entry
of the form O f. We will discuss the reason for this side-condition below.

After a transition, the machine enters the backtracking phase and basically builds up
an inert term by repeatedly applying fireball arguments to the head variable. Transition
picks the fireball arguments from the stack and appends them to the inert 2. When there are
no more fireball arguments in the stack, a transition stores in the stack the inert that has
just been built — which is a right part of an application — and continues evaluation of the
left part of an application. In the original formulation of Accattoli and Guerrieri, 2017, the
transitions are merged in a single transition called “c3”.

Decoding. Like for all previous machines, we decode a state of the Fast GLAMOUTr to a term
with ES in the following way: (¢, ®, 7, e), == e (m (t)). Note that, since the FAST GLAMOUr
implements Agre evaluation, the stack is the inside-out version of f-contexts, described by
the entry R in the grammar on page 34.
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Complexity. The good complexity of the Fast GLAMOUTr relies critically on the following two
optimizations:

1. No substitution of variables. A potential performance issue comes from the seemingly
innocuous subsitution of variables. If variables are treated just like values, and can thus
be added to ES in the environment and substituted, then the overhead of the machine
becomes quadratic (this is what happens in the GLAMOUr machine of Accattoli and
Coen, 2075).

The cause for the quadratic overhead is the presence in the environment of chains of
ES like the following:

(x40 [xoems] - - - [T Ay 1]

This is a chain of variable substitutions ending up in an abstraction. Let us suppose
for instance that a machine is evaluating the code x1 with respect to the environment
above; then the machine needs to perform k substitution steps before substituting
the abstraction Ay.t: since k can be proportional to the number of 3-steps, this phe-
nomenon causes the number of substitution steps to become quadratic in the number
of B-steps. The relationship between substituting variables and a linear or quadratic
overhead is studied in-depth by Accattoli and Coen, 2014.

The Unchaining GLAMOUr machine by Accattoli and Coen, 2015 solves this issue by
adding labels and a further unchaining optimization. Another solution, which is the
one adopted for the Fast GLAMOUF, is to split a S-transition in two distinct transitions,
handling this situation with the new transition that renames the variable in a body
t without altering the environment. In this way, the Fast GLAMOUr disallows chains
of renamings like the one above by avoiding that ES substituting variables are ever ap-
pended to the environment. This latter solution is a known optimization in the literature
of abstract machines (Sands, Gustavsson, and Moran, 2002; Friedman et al., 2007; Wand,
2007).

2. On-demand substitution of abstractions. Recall that, for performance reasons, in Crégut’s
machine (fig. 51) the substition transition had to be restricted in such a way that only
useful terms could be substituted. In that case, checking whether a term is useful was
a non-trivial task that required an auxiliary subprocedure to scan the term and store a
label. The Unchaining GLAMOUr of Accattoli and Coen, 20175 uses a similar idea of label-
ing, which is however made unnecessary by the optimization in the previous point, and
by the stronger invariants that CbV evaluation provides. To check whether a substitu-
tion is useful in the Fast GLAMOUF, it suffices to check whether the variable x is bound
in the environment to an abstraction, and whether x is applied by checking the stack
(see transition ). In fact, the CbV strategy forces the environment to contains only
terms in normal form, i.e. fireballs, and by the optimization discussed above it cannot
contain variables that mask malicious chains. Therefore the check for usefulness of an
ES [x<—f] can be performed in constant time by simply checking that f is syntactically
an abstraction.
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The proof that the Fast GLAMOUr implements Agre evaluation with only bilinear overhead
can be found in the aforementioned paper by Accattoli and Guerrieri, 2017. Note that the
optimizations sketched above are fundamental to obtain bilinear complexity.

We have seen above that porting an abstract machine to the open case is a delicate task,
and it usually results in a machine that is quite more complex then the original, closed one.
In part Il we will revisit Open CbV evaluation by defining a new kind of abstract machines,
that we call “crumble machines” because based on an alternative compilation of A-terms
that we call “crumbling”. As we will see, open crumble machines are much simpler than the
existing machines for open evaluation: as a consequence, abstract machines for Strong ChV
evaluation become within grasp (see section 15.1).
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Chapter 6

Terms as Graphs

In section 4.2 we added sharing directly to the syntax of the A-calculus. In this chapter in-
stead we take a graphical approach: we are going to introduce A-graphs, a natural way of
representing shared A-terms as graphs. A-graphs are fundamental because they are both
the data structure that we implement our abstract machines on (part Il) and also the one
required by our sharing equality algorithm (part I11).

A-graphs are a pretty straightforward representation of shared A-terms, but before turning
to the next chapter we will also compare them to alternative or more complex graph-based
representations for sharing: vertical sharing, proof nets, and sharing graphs.

61 )\-graphs

One can see a A\-term as a syntax tree in a natural way: consider for example the following
tree, which represents the named A-term (Az.z (Ay.2)) ((A\y.2) 2).

App \
Abs x App
l N
App Absy Var z
<N !
Var x Absy Var z
!
Var z

Named A-tree

As expected, the syntax tree above contains three kinds of nodes, which are in a one-to-
one correspondence with the constructors of A\-terms: App, Abs, or Var nodes.

75
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More faithful to the (locally) nameless representation’ however is the following syntax
tree, which represents the same A-term:

/ App \
. Abs App
App v Abs fVarz
bVar Abs bVar® fVarz

fVar z

Locally nameless A-tree

In the syntax tree of fig. 6.2 free and bound variables are represented by different kinds
of nodes: free variable nodes (labelled by £Var) carry a name, while bound variable nodes
(labelled by bVar) do not carry a name but have a backward (dotted) edge towards the
abstraction node that binds them. This backward edge, which we call binding edge , is a way
of representing scopes that dates back to Bourbaki in Eléments de Théorie des Ensembles,
but also supported by the strong relationship between A-calculus and linear logic proof nets.

In the graphical setting we can realize sharing by simply allowing nodes to have more than
one parent, as for instance the highlighted abstraction node in fig. 6.3: in this way, the two
identical subgraphs presentin fig. 6.2 can now be represented by a single piece of graph. Note
that sharing can also happen under abstractions, e.g. the highlighted node is shared under
the other abstraction node: however, nodes in the scope of an abstraction are shareable only
when they respect a structural property that we will formally define in definition 6.8.

App
v
Abs\
~ hpp App
bVar , Abs
bVar fVar(z)

A-graph with sharing

Shared evaluation. Representing A-terms as graphs dates back to the PhD thesis of Wadsworth,
1971; in that same thesis, Wardsworth introduced the Call-by-Need evaluation strategy”, which

1See section 2.4.
4This bound variable node is not used, so it may be as well omitted.
5See page 26.
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afterwards became widespread. A-graphs are particularly suited to implement CbNeed be-
cause they can naturally express sharing and the destructive update necessary to cache eval-
uated arguments. Consider for example the graph reduction sequence in fig. 6.4 according to
the CbNeed strategy.

App — App = App =  Abs
() [N ol
.+ Abs App :n App _Abs bVar
! () () T |
App s Abs :m HAbs bVar
e il 7l

Example of graph rewriting sequence

The first A-graph in the sequence corresponds to the A-term (Ay.yy) (I I) where [ =
Az.x, or more precisely to the term with ES (Ay.yy) (z 2)[z«< ] where the sharing variable z
corresponds to the node m. We reduce each graph in the sequence by contracting the redex
corresponding to the highlighted node, rewriting the graph itself as to mimic [3-reduction.
The redex in the first graph is contracted without evaluating its argument n: the resulting
second graph corresponds to the term yy|y<zz|[z«1], and the node n occurs shared since
it is both the left and right child of the root. Then n is evaluated in place, being replaced by
m and yielding the third graph, which corresponds to the term yy[y«<I]. Finally we obtain
the fourth graph, whose root is the abstraction m and which is in normal form.

[ as a graph rewrite rule is depicted in fig. 6.5—cf. 5 in the A-calculus, page 19.

App (n) —, (n)
\ \/ \/ \ Ga

v Abs (1) 7 Abs

N

Graph [-rewriting

Essentially, 5 in fig. 6.5 replaces the highlighted node n with the root node of the subgraph
G“, a copy of G where every node labeled with bVar(I) has been replaced with the root node
of H. Note that all these nodes might be part of a bigger graph: | may as well be shared, i.e.
it may have parents other than r. Therefore one must copy (part of) the body GG of | before
instantiating bVar(l), in order to preserve sharing with other arguments.

Incidentally, the operation of copying a function body during a 5-step is totally analogous
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to what happens in the plain A-calculus. In linear logic proof nets — a generalization of A-
graphs that we mention in section 6.2 — a 3 step is instead decomposed in a finer way, and
the copy operation is performed by a dedicated reduction step, called “exponential”.

Correctness of binders. Not every graph corresponds to a valid A-term: consider for exam-
ple the graph in fig. 6.6.

App

'

A;bs
N

App

.bVar

Graph breaking domination

The highlighted bound variable is visible outside the scope of its binder: there is a path
from the root node to the variable node, that does not pass through the abstraction node
that binds the variable. At first sight one may say that the graph in fig. 6.6 represents the
term t == (Ax.zz) (xz), however this cannot be the case since x is free in xx but bound
in Ax.zx, hence the two occurrences in ¢ of the subexpression xx are totally different and
cannot be shared. Itis well-known that scopes corresponding to A-terms are characterized by
a property borrowed from control-flow graphs called domination , also called unique binding
by Wadsworth, 1971, and checkable in linear time (Alstrup et al., 1999; Buchsbaum et al., 1998;
Gabow, 1990).

Before defining formally the property of domination and the structural properties that
characterize A-graphs we introduce pre-A-graphs, graphs where we do not yet consider vari-
able nodes and scopes. We then formalize our notion of A-terms with sharing in definition 6.8.

pre-A-graphs
A pre-A-graph is a directed labeled graph such that:

- Applications: an application node is labelled with App and has exactly two children,
called left (v ) and right (). We write App(n, m) for a node labelled by App whose
left child is n and whose right child is m.

- Abstractions: an abstraction node is labelled with Abs and has exactly one child,
called its body (1). We write Abs(n) for a node labelled by Abs with body n. We
denote with |, I'; . . . generic abstraction nodes.
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Notations for paths. Paths are a crucial concept, needed both to define the readback to A-
terms and to state formally the properties of A-graphs of being acyclic and dominated. A path
in a graph is determined by a start node together with a trace, i.e. a sequence of directions:

Paths, traces
We define traces as finite sequences of directions:
Directions d = v | 1|
Traces 7 i=¢€|71-d

Let n, m be nodes of a pre-\-graph (G, and 7 be a trace. We define inductively the judge-
ment “7: n ~> m” which reads “path from n to m (of trace 7)":

« Empty: €: n ~» n.

+ Abstraction: if 7: n ~~» Abs(m), then (7 - 1): n ~» m.

- Application: if 7: n ~» App(m, p),then (T- v ):n~>mand (7- x): n~>p.

We just write 7: nif 7: n ~» m for some node m when the endpoint m is not relevant.

Acyclic pre-A-graph
We say that a pre-A-graph G is acyclic when for every node n in GG and every trace T,

T:n~snifandonlyif7 =€

Rootnodes. Pre-\-graphs (and later A-graphs) may have various root nodes. What is maybe
less expected, is that these roots may share some parts of the graph. Consider fig. 6.3, and
imagine to remove the root and its edges: the outcome is still a perfectly legal pre-A-graph.
We admit these configurations because they actually arise naturally in implementations,
where the space in memory which stores many A-terms can be seen as a single huge A-graph.

Roots
Let r be a node of a pre-A-graph G. r is a root if and only if the only path with endnode

r has empty trace.

Defining the property of domination requires the following two additional concepts:

Access path (Ariola and Klop, 1996)

An access path to a node n of a A-graph G is a path from a root node of G to n.
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Path crossing a node

Let n, m be nodes of a pre-A-graph, and 7 a trace such that 7: n. We define inductively
the judgment “7: n crosses m”:

- if 7: n~>m,then 7: ncrosses m

- if 7: ncrosses mand (7 - d): n,then (7 - d): n crosses m.

Domination

Let G be a pre-A-graph, and n, m be nodes of GG: we say that m dominates n when every
access path to n crosses m.

Recall fig. 6.6: the path highlighted in red is an access path to the bound variable node,
which does not cross the abstraction node. Therefore the abstraction node does not dominate
the bound variable node, and the pre-A-graph is not a A-graph according to the upcoming
definition.

A-graphs
A pre-\-graph G is a A-graph if it satisfies the following additional structural properties:

- DAG. GG is finite and acyclic (see definition 6.3).

- Variables. A A\-graph has exactly three kinds of nodes: abstraction, application, and
variable nodes. Variable nodes may be either free or bound:

- A free variable node has no children, and it carries a name z € V. A free
variable node of atom x is denoted by fVar(z).

- A bound variable node has exactly one child, called its binder (). We write
bVar(l) for a node labelled by Var with binder |.

- Dominated: each bound variable node bVar(l) of G is dominated by its binder I.

Note that the DAG requirement implies that there is a maximal length for paths, thus
providing an induction principle on A-graphs.

Readback of A-graphs to \-terms

The sharing in a A\-graph can be unfolded by duplicating shared sub-graphs, obtaining a
A-tree. We prefer however to adopt another approach. We define a readback procedure
associating a locally nameless A-term [r], (without sharing) to each root node r of a A-
graph G, in such a way that shared sub-graphs simply appear multiple times. The readback
needs to traverse recursively the children of the node to read back, but since we use de Bruijn
indices for bound variables, any node of the graph by itself does not uniquely identify a A-
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term: in fact, its readback depends on the chosen access path. That path determines the
abstraction nodes encountered, and thus the indices to assign to bound variable nodes.

We thus define formally index(l | 7: n)g, the index of an abstraction node | according
to a path 7: n crossing | (recall that |, I denote abstraction nodes):

index(l | 7: n)g

Let n, | be nodes of a A-graph GG, and 7: n a path crossing |. We define index(l | 7: n)
by structural induction on the derivation of the judgement “7: n crosses I

index(l | 7:n~1) = 0
index(l | (7-d): n~ 1) = dindex(l|7:n)+1 ifl £/
index(l | (7-d): n~>m) = index(l|7: n) otherwise.

Readback to A-terms [7: r ~~ n],

Let G be a A-graph. For every root r and path 7: r ~~ n, we define the readback
[7: r ~» n] of n relative to the access path 7: r ~» n, by cases on n:

-

. 7z r ~> vVar(l)] := #i where ¢ := index(l | 7: r).

N

7 as fVar(z)] ==
3 [r:r~ Abs(m)] = A[(7-1): r~ m].
4 [r:r~ App(ng,ng)] =[(7- v ):r~>n][(T- ~):r~ny].

We will usually omit G from [[7: r ~» n], when unambiguous. Also, we just write [r]
instead of [[e: r].

Some remarks about definition 6:10:

- The hypothesis that r is a root node is necessary to ensure that the readback [7: r] is
well-defined. In fact Point 1 of the definition uses index(l | 7: r), which is defined only
if 7: r ~» bVar(l) crosses |. When r is a root node, this is the case by the requirement
“domination” of definition 6.8.

- The definition is recursive, but it is not immediately clear what is the measure of termi-
nation. In fact, the readback calls itself recursively on longer paths. Still, the definition
is well-posed because paths do not use binding edges, and because A-graphs are finite
and acyclic (definition 6.3).

We will come back to A-graphs in part Ill, where we discuss how to decide whether dif-
ferent A-graphs represent the same A-term without actually performing the readback. The
central notion will be the one of “sharing equivalences”, relations on graphs which are roughly
bisimulations. Then we are going to prove that sharing equivalence correctly characterize the
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equality of the readback to A-terms, and provide our algorithm for sharing equality that runs
in time proportional to the A-graphs to be checked.

Before concluding this section on readbacks, we prove the following proposition that con-
nects readback and traces; it will be useful later, in section 12.3.

Readback vs. traces
Let r, ' be roots of a A-graph G. [r] = [[r'] holds if and only if, for every trace 7:
1. Trace Equivalence: T: r if and only if 7:
2. Trace Propagation: if 7: rand 7: ', then [7: r] = [7: r'].

Proof.
(=) We assume that [r] = [r'], and proceed by structural induction on 7:

- Empty Trace. Clearly €: rand €: r’. The fact that [e: r] = [e: r'] follows from
the hypothesis, since [e: r] = [r] and [e: r'] = [r'].

- Trace Cons. Let 7 := 7’ - d, and assume without loss of generality that 7: r.
We need to prove that 7: r" and that [7: r] = [7: '].
By inversion 7': r, and by i.h. 7z r"and [7': r] = [7": r']. We proceed by
cases on d:

*Case d = |. Necessarily 7: r ~» Abs(n) and 7': 1 ~»
Abs(m) for some n,m. By the definition of readback to A-terms,
[7:r~] = Alr:r~n]and [7": ¥ ~] = A[r: ¥ ~ m], which
imply [7: r ~» n] = [r: ¥ ~ m] by the definition of equality.

* Case d = «. Necessarily 7/: r ~-» App(ni,ny) and 7':r ~»
App(my, my) for some ny, ny, my, mo. By the definition of readback to
Aterms, [T r] = [rir~>n] (7' N):r~ny] and [7: F] =

[7: ¢ ~>m][(7"- ~): ¢ ~> my], which imply [r:r~>n] =
[7: ¥ ~» mq] by the definition of equality.

* Case d = .. Similar to the case above.

(<) The statement follows from the hypothesis Trace Propagation by taking 7 := €.

6.2 More Kinds of Sharing

The type of sharing present in A-graphs is also known as horizontal or subterm sharing:
it is essentially the same sharing mechanism available in calculi with explicit substitutions
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(section 4.2), environment-based abstract machines (section 4.3), or linear logic proof nets
(see below): the details are different but all these approaches provide different incarnations
of the same notion of sharing.

A-graphs can be tweaked slightly in order to express other kinds of sharing, for instance
“vertical” and “twisted” sharing (see Blom, 2001) which allow to encode infinite A-terms in a
finite way. Moreover, powerful generalizations of A-graphs exist, like linear logic proof nets
and sharing graphs. We sketch these alternative kinds of sharing in the following sections,
but we will not employ them further in this dissertation.

Vertical Sharing

Vertical sharing corresponds in functional programming languages to cyclic definitions, which
model recursive functions. We can add vertical sharing to the A-calculus by extending its
syntax with p-expressions, having the form “upx.t” where p binds the x in t. Consider for
instance the following p-term:

t = pfixe.fo

This term can be seen as representing an “infinite” \-term, obtained intuitively by continually
unfolding the p-expression using the rule px.s — s{x<—ux.s}, in an infinite process that
yields the term u := Az.(Ay. (- -+ ) y) x. The graphs corresponding to these terms are in
fig. 6.7, the graph for £ on the left and the one for its unfolding w on the right.

A‘tjsr '. Aljsﬂ,
App aop |
b\:‘/"ar ATS“- b(lar
app

<

bVar

Cyclic A-graph and its unfolding

Clearly the graphs in fig. 6.7 are not just plain A-graphs: to represent j-expressions we
need to relax the acyclicity requirement and allow cyclic subgraphs (fig. 6.7a), and to represent
unfoldings we need to allow infinite subgraphs (fig. 6.7b).

Twisted Sharing

Horizontal and vertical sharing can be combined by means of the 1letrec construct: the
expression “letrec x = ¢ in s” is basically equivalent to “let x = px.t in s". Twisted
sharing, instead, is an even more expressive combination of horizontal and vertical sharing. It
corresponds to the feature of programming languages to define blocks of mutually recursive
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functions: for instance the term “letrec z = gy andy = g x in f x y’", represented as
the cyclic A-graph in fig. 6.8.

Graph with twisted sharing

A A-calculus with such letrec-expressions having multiple mutual entries is called
“cyclic A-calculus” by Ariola and Klop, 1997, or Aietrec DY Grabmayer and Rochel, 2014.

Handling cyclic A-graphs is slightly more difficult than plain A-graphs because of addi-
tional subtleties. For instance, the usual notion of domination (see definition 6.7) does not
suffice to characterize Ajetrec-terms: it becomes necessary to add to the graph an explicit
concept of scope. To do so, Grabmayer and Rochel, 2014 assign to each node n a so-called
“abstraction prefix”, which is a list of the Abs-nodes in whose scope n resides. Enriching cyclic
graphs with abstraction prefixes is also necessary to define a correct notion of bisimulation
for Aretrec-graphs, which is otherwise ill-behaved as we will show on page 181.

Linear Logic Proof Nets

Linear logic was introduced by Jean-Yves Girard, 1987 and has had an immense impact on
computer science since then. The success of linear logic is due to its rigorous account of
sharing: not all objects are sharable, and duplicating an object is permitted only if that object
is equipped by the ! (read “bang”) modality. This allows to decompose computation in two
parts:

1. a linear process where each argument is used once and exactly once;

2. an explicit process of copying and discarding, in which linearity is broken but in a con-
trolled way.

To show how proof nets relate to A-graphs, let us first consider one of the simplest frag-
ments of linear logic: it is called MLL for multiplicative linear logic, and its connectives are
the multiplicative conjunction ® (read “tensor”) and disjunction %% (read “par”). MLL proof
nets are formed by the links in fig. 6.0.

L d
/N /N

MLL links
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Note that each type of link has a fixed number of connections, hence sharing is disallowed
altogether. Other than that, the nodes of A-graphs and the links of MLL are quite similar. The
links % and ® quite literally correspond respectively to Abs and App nodes in A-graphs. In
addition, MLL proof nets contain Ax and Cut links that do not have an exact counterpart in A-
graphs; however these links are simply “identity connections”, whose only role is to preserve
some structural properties of the net, and they can thus be safely ignored.

Unfortunately, MLL proof nets only represent “linear” A-terms, i.e. terms where each
bound variable occurs exactly once (and similarly, there cannot be multiple occurrences of
a free variable): in this way, no duplication or discarding can happen during reduction. To
recover the full expressive power of A-terms and exit the linear framework, it is necessary to
add to MLL the bang “exponential” link. In this way we obtain the logic MELL—which stands
for multiplicative exponential linear logic—whose nets are formed by the links of MLL plus
the ones in fig. 6.10.

\ / Weak | |

Contr | Der Bang

MELL links

A mismatch between MELL proof nets and A-graphs is that all nodes of a A\-graph can
be shared (variables included), while in proof nets only banged sub-nets can be shared, and
only by means of binary contractions. Moreover, a notion of boxes is necessary to delimit
the action of Bang links. This gap can be eliminated by tweaking the representation of proof
nets: a solution is to use so-called nouvelle syntaxe and introducing n-ary Bang links that
collapse contractions, weakenings, and derelictions (Regnier, 1992; Accattoli, Barenbaum, and
Mazza, 2014a).

In this way, A-graphs become essentially the same representation induced by the trans-
lation of A-calculus into linear logic proof nets: the only missing feature of \-graphs are
explicit sharing Bang links and boxes, where Bangs are basically the explicit sharing nodes
that we have discussed in the section on low-level implementation details, on page 64. For
more details on the correspondence between the A-calculus with sharing and proof nets, see
for instance Accattoli, 2018.

Sharing Graphs

Sharing graphs are a variant of A-graphs providing a much deeper form of sharing, and were
introduced by Lamping, 1990 to implement his algorithm for optimal reduction in the \-
calculus. The intuition behind optimal reduction is to perform reduction while strictly avoid-
ing any copying that could later cause a duplication of work. Optimal reduction cannot be
performed through usual sequential strategies, but requires a notion of parallel reduction
of all the redexes of a same family at the same time (Levy, 1978). This cannot be achieved
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with the sharing present in A-graphs, which merely allows to reuse the first-order structure
of subterms: it becomes crucial a form of higher-order sharing, where not only subterms are
shared but also term contexts, i.e. terms with holes that can be filled by each sharing instance
in a different way.

Higher-order sharing can be obtained by extending A-graphs with special sharing nodes
called fans, having three ports, two of which marked with o and e (note: the port marked
here by e is traditionally marked by ).

Fan link

Fans correspond more-or-less to contraction nodes in linear logic proof nets (cf. fig. 6:10)
and can behave in two ways. Fan-in nodes introduce sharing, and dually fan-out nodes
“unshare” each fan-out node is paired with a fan-in node, which delimites its scope and
annihilates its sharing effect. When reading back a A-term from a sharing graph, one visits
the graph on the proviso that after entering a fan-in node by a certain port, they have to exit
by its matching fan-out using the same port.

Consider for example the two sharing graphs in fig. 6.12, both denoting the same A-term
Az Ay z (zy):

jAbs HAbs
ATS .. A'bs<\O .....................
; App '%lx 5 Fan bVar
N L 7
App App\jF"an
N el
g Fan bVar bVar
bVar

Examples of sharing graphs

As we see in the sharing graph in fig. 612b, fan nodes enable certain kinds of cyclic struc-
tures: the shared part with highlighted root node contains a cycle, meaning that it is reusing
a different instance of itself. Cyclic sharing graphs can be totally valid sharing graphs, and
in fact the graph in fig. 6:12b can actually be obtained during reduction, even when starting
from an initial graph that is acyclic.
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Correct sharing graphs. Cyclicity complicates the question of how to establish the correct
pairing between fan-ins and fan-outs during reduction in a local way. Lamping’s algorithm
used a vague notion of enclosure to delimit the interaction of fans, which was then made
formal by Asperti® by means of levels: each node is decorated with an additional integer
number, which specifies the level at which the node lives and can interact with other nodes.
To operate on levels during reduction, one adds to sharing graphs two additional kinds of
nodes: croissants, which open or close a level, and brackets, which temporarily close a level
or restore a temporarily closed one. Like fans, brackets need to be paired as well, and one
needs additional structural constraints that we will not describe here.

Optimal reduction is not invariant. As we can see, the machinery of sharing graphs and
optimal reduction is quite involved, in contrast to A-graphs which represent A-terms straight-
forwardly. In this dissertation however we do not strive for optimal reduction, because we
are not interested in the efficiency of evaluation in the sense of finding the smartest or short-
est evaluation strategy: we study the asymptotic complexity of evaluation through abstract
machines, proving that their running time is proportional to the number of 3-steps required
by the fixed sequential strategy that the machine implements. In the case of optimal evalua-
tion, instead, the number of parallel [ steps—even thought less than the number of /3 steps
required by any sequential strategy—does not provide an invariant cost model’. As shown
by Asperti and Mairson, 1998, the definition of optimal reduction hides hyper-exponential
computations: the cost of reducing a A-term through an optimal reduction algorithm cannot
be bound by any elementary function of the number of parallel 5-steps.

Higher-order sharing equality. As a final remark, we point out that in part Il we will study
the problem of sharing equality, i.e. how to check whether two A-graphs represent the same
unshared A-term. This problem for A-graphs has a very low computational complexity, and
in fact we provide a linear-time algorithm for checking sharing equality. On the contrary, the
problem of sharing equality for sharing graphs has never been studied, and we doubt it is
solvable even in polynomial time. The reason of our pessimism is in the phenomenon called
superposition, the property of sharing graphs of representing succintly a super-exponential
number of entirely different A-terms (Asperti and Mairson, 1998).

6See e.g. Asperti and Guerrini, 1998.
7For “cost model”, see page 61.
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This part of the dissertation is about Computation, i.e. the efficient evaluation of A-terms.
We introduce crumbled forms , our alternative representation of A-terms which decomposes
nested applications. The focus of this part is on the impact of crumbled forms on the design
and asymptotic overhead of abstract machines for CbV evaluation. An interesting feature of
crumbling machines is that, unlike traditional abstract machines, the “mechanism” (i.e. the
machine components and transitions) is somewhat decoupled from evaluation strategy (e.g.
right-to-left vs left-to-right). As we will see, crumbled forms also induce abstract machines
with less data structures and less transitions, and the crumbling transformation does not
introduce any asymptotic overhead. Moreover, these facts smoothly scale up to open terms,
a more delicate setting as discussed in section 5.2.

Why studying crumbled forms. As already mentioned in the introduction, our ultimate goal
is to provide an abstract machine for Strong CbV evaluation, but as discussed in chapter 5
strong evaluation is much harder to implement than closed or open evaluation, expecially
with respect to strategies like CbV and CbNeed. One of the critical points is that a strong
machine requires further data structures, and managing these additional data structures
leads to a proliferation of machine transitions. This makes it daunting to even formulate a
tentative machine, let alone prove it correct or efficient.

We devised crumbled forms exactly to make the transition from Open CbV to Strong ChV
feasible, and in fact we have promising results that through crumbled forms one can success-
fully formulate an abstract machine for Strong CbV evaluation. We present our candidate
machine for Strong CbV in the conclusions (section 151) but leave its full technical develop-
ment for future research.

This part of the dissertation, instead, succeeds in exploring the subtleties of CbV in frame-
works that are well-understood, such as the closed and open cases, and show that there is
no slowdown in turning to a crumbled representation.

Conference paper. This part covers the results published in the article (Accattoli et al,
2019a), whose full proofs can be found in the accompanying technical report (Accattoli et
al, 2019b). In these papers we actually discuss a slightly more general case, i.e. crumbled
forms extended with booleans and the if e then e elsee construct, so to show that our
approach scales painlessly to calculi that bear more similarities with programming languages
and proof assistants. In this dissertation however we decided to present a version of these
results simplified to the pure A-calculus, because we believe that the slight complications
caused by these constructs are not particularly informative, if not of the fact that crumbled
forms are very flexible. Please refer to the aforementioned articles for the more general case.

Outline. This part is structured as follows:

- Chapter 7 is an introductory chapter that also provides the intuitions behind crumbling.
First, we define the syntax of crumbled forms, together with a translation function e
from A-terms and a readback e . We provide an operational semantics by introducing
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crumbled evaluation contexts, and prove some preliminary results that will be required
in the next chapters. Moreover, we compare crumbled forms to already existing transfor-
mations, i.e. administrative normal forms and continuation-passing style transforma-
tions. In addition, we clarify a point raised by Kennedy, about a potential inefficiency
of such representations: our approach does not suffer from Kennedy's slowdown.

- In chapter 8 we introduce an abstract machine evaluating crumbled forms, which we

call Crumble GLAM , and show that it implements Plotkin’s CbV calculus Apjot defined
in section 3.1. Moreover, we study the overhead of the machine, and show that it is
linear in the number of B-steps and in the size of the initial term, exactly as the best
machines for CbV executing ordinary A-terms. Therefore, the crumbling transformation
does not introduce any asymptotic overhead. The study is detailed and based on a
careful and delicate spelling of the invariants of the machine.

- In chapter 9 we lift crumbled forms and environments to the open case. The crum-

bling technique smoothly scales up to Open CbV: we provide an abstract machine, the
Open Crumble GLAM , implementing the fireball calculus Agre defined in section 3.2,
and we show that it only has a linear overhead as in the closed case. Two aspects of
this study are worth to be pointed out. First, the technical development follows almost
identically the one for the closed case, once the subtler invariants of the new machine
have been found. Second, the substitution of abstractions on demand, a technical op-
timisation typical of open/strong cases that we have discussed on page 72 becomes
superfluous, as it is smoothly subsumed by the crumbling transformation.

- In chapter 10 we introduce variants of the Crumble GLAMs from previous chapters, called

Pointed Crumble GLAMs . These machines refine the ones already provided in the pre-
vious chapter by also spelling out the search transitions, necessary to consider them
proper abstract machines; this is obtained by enriching crumbled environment with an
additional pointer, that indicates the environment entry that is currently being evalu-
ated.

- Lastly, we provide in chapter 11an OCamlimplementation of the Pointed Crumble GLAMs,

together with a discussion of the data structures required to respect the compexity
analyses carried in the previous chapters.



Chapter 7

Crumbled CbV

Adding explicit sharing to the A-calculus (see section 4.2) enables a special representation
of terms where every term constructor is associated with a new sharing point. Such a special
form — that is the topic of this part — is roughly obtained by (recursively) decomposing
iterated applications by introducing an ES in between any two of them. For instance:

Crumbling
Take the A-term ((Az.z (zz)) y) ((Az.2) y) y. Its crumbling is:

ay la=p] [B(Az. 26 [deaz]) y| [y=(A2.2) y]

where—for the sake of readability—we used the greek letters «, 3, 7, d to denote the new
sharing variables introduced during crumbling.

A few observations:

- The crumbling transformation affects function bodies: for example the abstraction
Az.x(zx) turns into Ax. zd[0«xx].

- ES are grouped together in environments, unless forbidden by abstractions.
- ES are flattened out, i.e. they are not nested unless nesting is forced by abstractions.

This chapter is devoted to the study of such a representation, which we call crumbled as
it “disintegrates” a A-term by means of ES. Our crumbling transformation closely resembles—
while not being exactly the same—the transformation into a(dministrative) normal form (ANF),
introduced by Flanagan et al,, 1993 (building on previous work by Sabry and Felleisen, 1993),
itself a variant of the continuation-passing style (CPS) transformation. We discuss similarities
and differences in section 7.4.

A delicate point is to preserve crumbled forms during evaluation. ES often come together
with commutation rules to move them around the term structure, like the ones shown in
fig. £.3. These rules are used to unveal redexes during evaluation or to preserve specific
syntactic forms, but they may introduce significant overhead that, if not handled carefully, can
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even lead to asymptotic slowdowns as shown by Kennedy, 2007. One of our contributions is
to show that crumbled forms can be evaluated and preserved with no need of commutation
rules, therefore avoiding Kennedy's potential slowdown (again, see section 7.4).

71 Crumbled Environments

In section 4.3 we showed how abstract machines typically rely on environments. Crumbled
forms also rely on packing ES together, as pointed out before, but depart from the ordinary
case because environments may appear also under abstractions.

The notion of environment induced by crumbled forms, named here crumbled environ-
ments, is particularly interesting. Crumbled environments indeed play a double role: they
both store delayed substitutions, as also do ordinary environments, but also encode evalua-
tion contexts. In ordinary abstract machines, the evaluation context is usually stored in data
structures such as the stack and the dump: roughly, they implement the search for the redex
in the ordinary applicative structure of A-terms. For crumbled forms, the evaluation context
is encoded directly in the crumbled environment, and so the other structures disappear.

Operations on crumbled environments. There are two subtle implementative aspects of
crumbled environments, that set them apart from ordinary ones.

1. Ordinary environments are presented with a sequential structure but they are only ac-
cessed randomly (that is, not sequentially)—in other words, their sequential structure
does not play a role. Crumbled environments, as the ordinary ones, are accessed ran-
domly, to retrieve delayed substitutions, but they are also explored sequentially—since
they encode evaluation contexts—in order to search for redexes. Therefore, their imple-
mentation has to reflect the sequential structure.

2. The second subtlety is that crumbled machines also have to concatenate environments,
an operation never performed by ordinary machines. Concatation has to be concretely
implemented as efficiently as possible, i.e. in constant time: the mentioned slowdown
of Kennedy, 2007 is due exactly to the concatenation of environments, and as we will
see it amounts to a quadratic overhead in evaluating terms in ANF.

To address these points, we provide in chapter 11 a prototype OCaml implementation
of crumbled environments, that can be compared with the one of global environments by
Accattoli and Barras, 2017 that does not concretely implement the sequential structure. In
particular, our implementation concatenates environments in constant time and does not
suffer from Kennedy's slowdown: essentially, Kennedy's slowdown amounts to the fact that
his implementation concatenates ANF environments in linear rather than constant time (see
section 7.4); this improvement is one of the contributions of this work.
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7.2 Introducing Crumbled Environments

In this section we provide an informal explanation of the crumbling transformation e of A-
terms into crumbles; the formal definition is in the next section.

Decomposing applications. The idea is to forbid iterated applications without loosing ex-
pressive power. To do so, one can write terms such as (¢s)w or t(su) respectively as (Az.(zu))(ts)
and (Az.(tzx))(su) where x is a fresh variable. It is usually preferred to use let expressions
rather than introducing -redexes, so that one would rather write let x = ts in (xu) and
let x = su in (tx) or, with explicit substitutions (a.k.a environment entries), rather write:

(xu)xts] and (tz)[xsul.

If the crumbling transformation e is applied to the whole A-term—recursively on ¢, s, and
u in our examples—then all applications have the form vv’, i.e. they only involve values. If
moreover CbV evaluation is adopted, then such a crumbled form is stable by evaluation, as
variables can only be replaced by values.

Simulation and no evaluation contexts. Let us now have a look at a slightly bigger example
and discuss the recursive part of the crumbling transformation. Let / = Ax.x be the identity
and consider the term ¢ :== ((Ay.yy) I) ((I1) I) whose right-to-left CbV evaluation is:

t =g (Myyy) I) (IT) =35 (Ayyy) I I =50 (I1) T =57, 1T =g, 1.

The crumbling transformation decomposes all applications, taking special care of grouping all
the environment entries together, flattening them out (that is, avoiding to have them nested
one into the other), and reflecting the evaluation order in the arrangement of the environ-
ment. For instance, the crumbled representation t of the A-term t above is

t = (w2)[w—(Ay.yy)I][z<axl][x11],

and evaluation takes always place at the far right of the environment, as follows:

Example of crumbled small-step evaluation

t =g (w2)we(Ayyy)l][zezl]jz<]] —ew (w2)|we(Ay.yy)l]|[z<I1]

=g (W2)[we(Ay.yy)I|[z<1] —ew  (WI)[we(Ay.yy) 1]
—ppw  (wI)[weIl] =0 (wI)[we]]
—>sub _I _>[3/v 1

In example 7.2 — g/, steps correspond exactly to steps in the ordinary evaluation of £ and
—>sub Steps simply eliminate the explicit substitution when its content is a value. Note how
the transformation makes the redex always appear at the end of the environment, so that
the need for searching for it—together with the notion of evaluation context—disappears.
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Let us also introduce some terminology. Values and applications of values are crumbled
terms. The transformation, called crumbling translation, turns a A-term into a crumbled term
plus an environment—such a pair is called a crumble .

Turning to Micro-Step Evaluation. [txample 7.2 covers what happens when the crumbling
transformation is paired with small-step evaluation. Abstract machines, however, employ
the finer mechanism of micro-step evaluation (the difference is discussed in section 4.3),
where the substitutions due to 3-redexes are delayed and represented as new environment
entries, and moreover substitution is decomposed as to act on one variable occurrence at a
time. In particular, such a more parsimonious evaluation never removes environment entries
because they might be useful later on—garbage collection is assumed to be an orthogonal
and independent process. To give an idea of how micro steps work in this setting, let us
focus on the evaluation of the subterm ¢’ == (wz)[w<(Ay.yy)I] of example 7.2 (because
micro-step evaluations are long and tedious), that proceeds as follows:

Example of crumbled micro-step evaluation

' =g (wz)|weyylly<I] —ew  (W2)[weyl][y]]
—1ew  (W2)[weIT][y<I] =g (w2)[wer][zI]ly<I]
—1ew  (W2)[wel]jzI][y<I] —1am [[2)[wel][x<I][y]]

Note that in example 7.3 now — g/, steps introduce new environment entries, and also
that the redex is not always at the end of the environment, but it is always followed on the
right by an environment whose entries are all abstractions, so that the search for the next
redex simply becomes a straightforward sequential visit from right to left of the environment—
the evaluation context has been coded inside the sequential structure of the environment.

Abstraction Bodies and the Concatenation of Environments. There is a last point to ex-
plain. We adopt weak evaluation, but the crumbling transformation is in a way strong, as it
also transforms the bodies of abstractions into crumbles. Let us see another example. The
crumbled representation of s := (Az.((zx)(zx)))(I1) then is:

s = ((Az.((y2)ly=wz][z—za])jw)w11].

Micro-step evaluation goes as follows:

s —=pp (A ((y2)lycvz][zeme]))w) wew'][w' ]
—1ew ((Az.((y2)ly—zz][zzz]) )w)[wT][w' <]
—1ew ((Az.((y2)ly—zz][zzz])) ) [weT][w' <I].
At this point, the reduction of the -redex (involving Axz) has to combine the crumble of
the redex itself with the body of the abstraction, by concatenating the environment of the
former (here [w«I][w’«1]) at the end of the environment of the latter ([y<zx|[z<xz]),
interposing the entry created by the redex itself [z« ], thus producing the new crumble:

(y2)ly—wa][zezz][rI]wI][w'<I].
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The key conclusion is that evaluation needs to concatenate crumbled environments, which
is an operation that ordinary abstract machines instead never perform.

7.3 The Crumbling Transformation

Now that we have the necessary intuitions about crumbling, we are ready to define formally
the language of crumbled forms and the crumbling transformation.

Crumbled forms. The syntax of crumbled forms is in fig. 71. Basically, A-terms are replaced
by crumbles, which are pairs of a bite and an environment, where in turn:

- a crumbled term is either a crumbled value (i.e. a variable or an abstraction over a
crumble) or an application of crumbled values, and

- an environment is a finite sequence of explicit substitutions of crumbled terms for vari-

ables.
Bites b = v | vw Crumbled values v,w =z | Ax.c
Environments e = [x1<by] - - - [xp<b] Crumbles ¢, d == (b, e)
Crumbled forms
Note that:

- By a slight abuse of notation, we denote crumbled values with the same letters that
denote values in the A-calculus. Nevertheless, the two are very different syntactic cat-
egories — see next point.

- Abstractions: the body of abstractions is itself a crumble—the forthcoming crumbling
transformation is indeed “strong”, as it also transforms the body of abstractions.

- Crumbles are not closures: the definition of crumbles may remind the one of closures
in abstract machines with local environments (cf. page 48), but the two concepts are
different. The environment e of a crumble (b, e), indeed, does not in general bind all
the free variables of the crumbled term b.

As one can see, the syntax for environments is slightly different than the one we provided
previously (cf. fig. 4.4): in this part we will freely consider environments as lists extendable
both on the left and on the right, and whose concatenation is obtained by simple juxtaposi-
tion. As usual, we denote by € the empty environment. We introduce the explicit operation
of appending “@Q”", but only use it between crumbles and environments:
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Appending @

Let (b, €) be a crumble, and €’ be a crumbled environment. The appending of € to (b, €)
is defined as:
(b,e) @¢e" = (b,ec).

Free variables, a-renaming, and all that. All syntactic expressions are not considered up
to a-equivalence. Free variables of crumbled forms are defined via the auxiliary notion of
domain of environments (this is motivated by the fact that global environment are used here):

Variables of crumbled forms

We extend the notions from chapter 2 of free variables fv(e) and domain dom(e) to
crumbled forms, as follows:

fv(z) = {z} fv(vw) = fv(v) U fv(w) fv(Az.c) = fv(c) \ {z}

fu(e) =0 fv(e[z<b]) = fv(e) \ {x} Ufv(D)
dom(e) == () dom(e[z«b]) = dom(e) U {z}
dom(b, e) = dom(e) fv(b, e) == fv(b) ~ dom(e) U fv(e)

As for all abstract machines based on global environments, we require that crumbled
forms are well-named to avoid variable shadowing:

Well-named

Let e = [x1¢bq] - - - [z bg] be an environment: we say that e is well-named if the x;'s
are all pairwise distinct. A crumble (b, e) is well-named if e is well-named.

A consequence of well-namedness is that the lookup of a variable in a crumbled environ-
ment is well-defined:

Lookup in a crumbled environment

Lete = [;E1<—b1] e [xkebk} be a well-named environment. We denote the lookup of x;
inebye(x;) = b, Ify & {x1,..., 2z}, we say that e(y) is undefined.

Crumbling. We are now ready to provide the formal definition of the crumbling translation
of A-terms to crumbled forms:
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Crumbling translation ¢

We transform a A-term into a crumbled term via the following crumbling translation e,
and using an auxiliary translation e :

z = (z,€) T =  (z,€)
Azt = (Axie) Azt = (Axte)
su = (oo ee) su = (z,[z<vt]ee) (%)

(x) wheres =: (v,e)andu =: (¢v/,€’), and z is globally fresh.

In the definition above, ® is an auxiliary translation function that handles separately the
case of nested applications. In fact, translating a value or the application of two values
simply results in a crumble with empty environment, since these terms do not contain nested
applications at toplevel - note however that the translation of an abstraction still performs
the translation recursively inside its body. The translation of an arbitrary nested application
su is more involved: when for instance w is an application too, the auxiliary translation
generates a fresh variable 2z to act as a sharing point in place of w.

To clarify definition 7.8, let us have a look at the following example:

Crumbling

Let § := Az.zx and [ := \z.x. Then:

5(5_] = (ZIb, [Z<—5b5b])
= (z(A\z.x,¢), [z Ax.22, ) (A\T.2T, €)])
dd(zx) = (2w, [2<0p0p|[wezx])

(zw, [z (Ax.22, €) (AT 22T, €) ]| [W2T]).
where
< Iy = dv.x = Mx.(z,€),
- 0p = \v.zx = Az.(xx, €),
06 = (2, [2¢008)) = (2, [z-(Dz.22, €) AT .2, €)]),
- TZ = (w, [wezz)).
Note that the crumbling translation e is not surjective, i.e. not every crumble is the trans-

lation of a A-term. For instance, the crumble ¢ := (xx, [z<y]) is not in the image of the
translation. This is a consequence of two facts:

1. The fresh variables introduced by the crumbling translation are linear, i.e. they occur
only once in the translated crumble; in the crumble ¢ provided above, instead, the vari-
able x occurs twice. Linearity is going to play a major role in the proof of an essential
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property of our abstract machines, namely the “contextual decoding” one (see proposi-
tion 7.26/5).

2. The crumbling environments induced by the crumbling translation do not contain “re-
naming” entries of the form [z«y]. This property does not have direct consequences
on the correctness of our crumbling machines, but will be crucial in the complexity
analyses of sections 8.3 and 9.3.

There is however a left inverse for the crumbling translation from A-terms to crumbles,
called readback and defined as follows:

Readback to A-terms ¢

We define the readback e, of bites and crumbles, by structural induction:

T, =T (Az.c)y = Az.c| (vw); = vjw,
(b,€), = by (b, e[z+bT]), = (b, e) {x<b's}
In order to prove that @ is a left inverse of @ (see proposition 7.17), we first need a number

of intermediate lemmas.
First, two structural properties of the readback:

Readback of application

(vw, e), = (v,e),(w,e), for every crumbled environment e and crumbled values v, w.
Proof. We proceed by induction on the structure of e:
- Ife = ¢ then (vw, e), = vw, = vyw, = (v,€) (w,€),.

If e = e[z<b], then (vw,e), = (vw,e’) {z<b}. By ih (vw,e), =
(v,€),(w,e’),, and therefore (vw, ') {z<b;} = ((v,€'), (w,€') H{zb } =
(v, €') {zb H(w, €) {z+b} = (v,e) (w,e),.

Readback of append

Let ¢, d be crumbles such thatc) = d;. Then (¢ @ e); = (d @ e), for every environment
e.

Proof. By induction on e:
- if e ;== ¢, then we conclude becausec @ e = candd Q e = d;

- ife = €[x<b], byih (c @e') = (d @ ¢)}, and we conclude because (¢ @Q
e)y=(c@Qé¢) {zb}and(dQe), =(dQé¢) {z<0b}.

The following remark simply states some evident properties of variables and the crum-
bling translation:
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Crumbling translation, readback, free variables, and values

For any A-term ¢, any A-value v, any bite b, and any crumble ¢
1. fv(t) = fv(t); in particular, ¢ is closed if and only if ¢ is so.
2. fu(cy) C fv(e).
3. The crumbling translation commutes with the renaming of free variables.

4. The readback maps crumbled values to values.
Proof.
1. We proceed by induction on the structue of ¢:

- Ift = x,thent = (x,¢) and clearly fv((x,€)) = {z} = fv(x).
- Ift = Azx.s, thent = (Az.s, €) and so fv(Ax.s,€) = fv(s) \ {z} = fv(s) \
{z} by ih.
- If t = su, then then t = (vw, ee’) where (v,e) = S and (w,€') = u. By
cases on s and w:
- If s and w are both values, thene = ¢ = ¢ ¢t = (vw,€) and t =
(z, [z<vw]). Then fv(t) = fv(v) U fv(w) = fv(s)) U fv(uy) by ih.
- If s and u are both applications, then e, e’ # ¢ and x € dom(e) and
y € dom(e’). By i.h. fv(e) = fv(s) and fv(e’) = fv(u).
Note that, by the definition of fv(e), fv(vw,ee’) = (fv(v) U fv(w) \
dom(e) Ufv(e)) \ dom(e’) U fv(e). By i.h. (fv(v) U fv(w) \ dom(e) U
fv(e)) \dom(e)Ufv(e") = (fv(v)Ufv(w)\dom(e)Ufv(s))\dom(e')U
fv(u), which is simply fv(s) U fv(u) because dom(e) and dom(¢’) are
disjoint since the crumbling variables are choosen as globally fresh during
crumbling, and s L ¢’ for the same reason, because dom( ) are fresh
crumbling variables
- The cases when only one among s and w is an application are similar to
the two cases proved above.

2. We prove at the same time the corresponding statement for bites, i.e. that fv(b;) C
fv(b). By induction on the structure of b:

- Ifb = x, then fv(x) = fv(z) = {z}.
- Ifb = Az.e, then fv((Az.e))) = fv(Az.e)) = fv(e)) \ {z}. By ih. fv(e)) C

fv(e), and we conclude.
- If b = vw, then fv((vw),) = fv(v)) Ufv(wy) C fv(v) U fv(w) by ih.

Let now ¢ = (b, €). We proceed by induction on the structure of e:

- If e = ¢ then fv(c;) = fv(b)) and fv(c) = fv(b). Conclude by i.h.
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If e = €'[zb], then ¢p = (b,€') {z«b'}. By the properties of sub-
stitution, fv((b,€') {z<=0'1}) C fv((b,e’)) \ {z} U fv(t/;). By ih
fv((b,€'),) C fv((b,e’)) and fu(b'y) C fv(b'), and we conclude because
fv(c) = fv((b,€')) \ {z} Ufv(b') by definition.

3. Obvious because the translation does not distinguish between free variables.

4. Follows trivially from the definition of readback.

Disjointedness. We introduce the new notion of disjoint forms, noted with the symbol _L
and fundamental to prove that readbacks of crumbled forms are somewhat independent

when their variables are also disjoint (see theorem 7.25).
To define _L uniformily over various kinds of crumbled objects, we use the generic symbol
P in the definition below to denote any kind of crumbled form introduced so far:

Disjoint forms _L

Let P and P’ be two crumbles or environments (contexts): PP and P’ are disjoint, in
symbols P L P’ if fv(P) N dom(P’) = (.

The following proposition further clarifies the aim of _L:

Readback vs disjointedness
For every crumble ¢ and environment e: if ¢ L e, then (¢ @ e); = ¢;.
Proof. By structural induction on e:
+Ife=¢ethenc @e = cand hence (c Q@ e); = .

- Otherwise e := €'[z«b]. By i.h.— which can be applied since ¢ L e implies ¢ L ¢,
because dom(e’) C dom(e) — (¢ @ €'); = ¢;. Ffrom ¢ L e it follows that
z ¢ fv(c) D fv(cy) (by proposition 713), so ¢ {z<=b;} = c,. Therefore, (¢ @
e)y=cQe¢ {z<b} =c{zb} =

The following two propositions are auxiliary properties that relate the readbacks of dis-
joint forms, and are necessary to prove the important theorem 7.25 below.

Decompositions of readback

Let ¢ be a crumble, b be a bite, e.e’ be environments, and  be a variable such that
x ¢ dom(e). Then:

1. (¢ @ [z<ble), = (c @ e) {z<(b,e) } when also x ¢ fv(e).
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2. (cQ [z<ble), = cy{z<(b,e), } whenalsox & fv(e)and c L e.
3. (z,elx<ble), = (b,€),.

Proof. 1. Let ¢ = (b', €¢’). We proceed by structural induction on e:
If e = ¢ then (bye), = b and (V/,€'[z<ble), = (U €[z<d]), =
(', ¢) {zby} = (U, €e) {z(b,€), }-
- Otherwise e = €”[2«0"] and then (b, e), = (b,€") {2¢-V"}}, s0

(¥, €weble), = (¥, € foeb)e ),
b, eleble) 2"}

(
= (
= (t,ee") f{w (¥, e") Hzeb" ) (1)
= (
= (

(9]

v, e'e”) {zb" Hoe (b, e") {2-0" 3} ()
v é'e) {z(',e), }

where

(a) by i.h., where z ¢ dom(e”) U fv(e”) follows from the hypothesis = ¢
dom(e) U fv(e) because dom(e”) C dom(e) and fv(e) = fv(e”) \
{z} Ufv(b").

(b) because x ¢ fv(b”}) C fv(b") by proposition 713 and the hypothesis that

x ¢ fv(e).

2. According to point 1,
(c @ [zeble), = (c @ e) {we(b,e),} = e {we(b,e) }
where the last equality holds by proposition 7.5, since ¢ L e.

3. By proposition 715, (x,€e); = (z,€); because z ¢ dom(e). By proposition 7:12,
(z,e[z<b]), = (z,[z<b]), = x{z<b} = b = (b,€);. Again by proposi-
tion 7.2, (z, e[x«ble’), = (b, €),.

Note that proposition 716/2 does not hold without the hypothesis ¢ L e. Indeed, take

c = (y,€) and e == [y<zz] with = # y: for any term b, one has (¢ @Q [z<ble), = 2z #
Y= Ci{‘rk(bv €)¢}.

As anticipated, we now prove that e is a left inverse of e:

Readback is a left inverse for crumbling translation

t, = tfor every A-term ¢.
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Proof. We prove the required statement mutually with the corresponding statement for
the auxiliary translation, i.e. that ﬂ = ¢ for every A-term t. We proceed by induction on
the structure of ¢

- Variable, ie. t == x;thent =t = (z,€), thus t, =z = tand ty=z=t

- Abstraction, ie. t = Aw.s; then,t = t = (A\z.s,€). By ih, 8, = s, hence
t, = Azr.s) = tand similarly ,.

- Application, ie. t = su; thent = (vv',ee’) and t = (z, [z<vv']ee’), where
(v,e) = §and (v,€) = w. By the definition of the crumbling transla-
tion, the variables in dom(e) and dom(e’) are choosen in such a way to be
globally fresh: it follows that (v,e) L €/, and v L e. By proposition 711,
(vt e€’); = (v,ee) (v, e€’);. By proposition 715, (v,ee’); = (z,e); and
(v',ee’)y = (v',€'),. We conclude using the i.h.. The case for the auxiliary transla-
tion is similar, and it follows from proposition 7.16/3.

Crumbled contexts. To evaluate crumbled forms we need two kinds of contexts, both for
environments and crumbles:

Environment contexts E = e[z« (-)] Crumble contexts C == () | (b, E)

Crumbled contexts

Note that the environment contexts defined in fig. 7.2 are completely different from the
environment contexts introduced for A-calculi with ES on page 44, even though we denote
them by the same letter £. We used the latter contexts to reduce a term in an environment,
while we will use the former to reduce inside the rightmost ES of a crumbled environment.
By means of C' contexts, instead, we can locate a sub-crumble of a given crumble: either the
whole crumble (with (-)) or a coda (with (b, E)).

Crumbles can be plugged into both notions of contexts. Let us point out that the following
definition of plugging is slightly unusual as it does a little bit more than just replacing the hole,
because simply replacing would not provide a well-formed syntactic object: plugging indeed
extracts the environment from the plugged crumble and concatenates it with the environment
of the context. Such an unusual operation—that may seem ad-hoc—is actually one of the key
technical points in order to obtain a clean proof of the implementation theorem for Crumble
GLAMs.
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Plugging in crumbled contexts

Let E = e[x«<(-)] be an environment context, C' be a crumble context, and ¢ = (', €’)
be a crumble. The plugging E{c) of cin E and the plugging C{c) of cin C' are defined

by
(e[z=(){(V', €)) = e[zt (He) =c (b E){c) = (b, E{c)).

Let us explain the definition of plugging by means of the following example:

Plugging

In example 7.9 we have seen that 001 = (21, [2<040p]) where [, = Ax.(z,€) and
O = Ax.(xx,€). Then, we have that 001 = C{c) with C' == (z1, [z<(-)]) and
C = ((5(,5(,, 6).

The basic notions for crumbled forms can be naturally extended to crumbled contexts:

- The appending of an environment context E to a crumble (b, €') is defined as (b, ') @
E = (b ¢'E).

+ The notions of fv(e) and dom(e) are extended to crumble contexts by:

fv((-)) =0 fv(b, e[z (-)]) = fv(b,e) \ {z}

dom({-)) =10 dom(b, e[z+(-)]) == dom(e) U {x}
- An environment context E = e[x«(-)] is well-named if e is well-named and = &
dom(e); a crumble context C' is well-named if C' := (-) or C' := (b, E) and E is

well-named.

We extend the definition of readback to crumble contexts as follows:

Readback of crumble contexts

Let C' be a crumble context. We define its readback C'| by cases:
(=0 (b, efz=()]), = (b, e) {we=() -

Note that the unfolding of a crumble context is not necessarily a context, because the
hole may be duplicated or erased by the unfolding. For instance:

Invalid context readback
Let C' := (z x, [x<(-)]). Then C| = (-)(-) is not a context.

However, the unfolding of contexts coming from the encoding of A-terms is always a valid
context: this property is called “contextual decoding”, and we will prove it in proposition 7.26/5
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together with other properties of crumbling. Now, instead, we provide a few technical proposi-
tions that are required by theorem 7.25, which relates readback with plugging and composition
of contexts.

Append inside plugging

For all crumble context C, crumble ¢, and environment e, one has C'(c) @ e = C'(c @
e).

Proof. By cases according to the definition of the crumble context C. If C' := (), then
Clc) @e=c@Qe=C(cQ e). Otherwise C' = (b, '[z(-)]); let c :== (¥, €"); then,
c@e = (b,e"e)and hence C(c) @ e = (b, e'[x<ble") @ e = (b, e'[xbe"e) =
(b, '[x<b]) Q@ e"e = C(cQe).

Readback of appended entry

For every crumble ¢:
1@ [wed], = e {veb)}.
2. ¢ Q@ [z()], = c{z ()}
Proof. Let ¢ i= (U, e): then, (', €) @ [zb], = (¥, elz<b]), = (V/, ), f{a=b,}.
similarly, (¥, €) @ [z—()], = (, ele=(-)]), = (¥, ) {w=()}.

Like contexts in the usual A-calculus, crumbled contexts can be composed:

Composition of crumble contexts
Itis also possible to plug a crumble context C” into another crumble context C, as follows:
C if ¢’ = (-)
c(c’y =< ¢ if C = ()
(b, efzte'ly—(-)]) ifC = (be[z()]) and C" = (V', €'[y()])

Readback vs crumble contexts

Let ¢ be a crumble and C, C’ be crumble contexts such that C'| and C’; are weak con-
texts.

1. Plugging: If C(c) is well-named, and C' L ¢, then C{c), = C{c).

2. Composition: If C{C") is well-named and C' L C", then C(C"), = C|{(C"}) and
it is a weak context.
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Proof.

1. We proceed by induction on the structure of C. If C' = (-), then C| = (:)
and so C{c); = ¢, = Cy{c). Otherwise C' = (b,e[z«<(-)]) with ¢ =
(0, €'); since C{c) = (b,e[z<b]e) is well-named by hypothesis, it follows
that ¢ dom(¢€'); together with C' L c¢ it implies that (b,e) L ¢; finally
Cle), = (be) {z+(¥',€);} = C\{c)) by proposition 716/2 and because by
hypothesis C' unfolds to a context.

2. First of all, note that the composition of two weak contexts is a context, thus
C\(C"}) is a context since C| and C’| are so by hypothesis. It remains to prove
that C(C"), = C|(C"}). We proceed by cases:

- IfC = (), then C) = () and C(C") = (", thus C(C") | = C" = C((C"y).
- IfC7 = (), then C") = (-) and C(C") = C, 50 C({C"), = C, = C(C"y).

- Finally, if C' == (b,e[z<(-)]) and C" = (¥, € [y<(-)]), then C(C") =
(b, e[x<b]e'[y«<(-)]) and so

C(C"), = (b,elr=b]e) {y()}
(b,e) {z(', ) Hy+(-)} (a)
= (bye) {z (¥, ¢) {y+()}} (b)
= Cl(C"))

where:

(a) by proposition 716/2, which is applicable because (b,e) L e/, by C' L C’,
x ¢ dom(¢’), and C(C") is well-named;

(b) becausey ¢ fv((b, e),), which follows from fv((b, €),) C fv(b, e) (propo-
sition 713/2), from y # x by the well-namedness of C'(C"), and from the
hypothesis C' L C".

Properties of translation. Proposition 7.26 below provides the properties of the translation
that are used to prove the invariants of the Crumble GLAM (propositions 8.8 and 9.8).

Properties of the crumbling translation

For every A-term t:
1. Freshness: t is well-named.
2. Closure: if t is closed, then fv(t) = (.

3. Disjointedness: t | t.
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4. Abstractions: every abstraction occurring in t is the translation of a A-term.

5

. Contextual decoding: if t = C{c), then C' is a right v-context.

Proof.

1

2.

. It follows immediately from the freshness condition in the definition of translation.
By proposition 713.

It follows immediately from the freshness condition in the definition of translation.
By induction on ¢ and by cases on the rules defining the translation.

We prove the required statement mutually with the corresponding statement for
the auxiliary translation, i.e. that C| is a right v-context whenever t = C'(c). We
proceed by induction on the structure of £. Cases:

- Abstraction, ie. t = Ax.s. Thent = (Ax.s,€) and so the only possible
crumble context C' such that t = C/(c) for some crumble cis C' = (-) and so
C| = (), which is a right v-context. The proof for ¢ is similar.

- Variable, i.e. t = x. Similar to the case above.

- Application, i.e. t = su. Thent = (vv', ee’) where (v,e) =5 and (v/,€') =
u. We discuss separately three subcases:

- Empty, ie. C = (-): trivial.

-C = (av,[xz<(-)])(C") where C" is a crumble context of s, ie.
s = C'{c) for some C". The readback of the crumble context C" =
(2, [z(-)]) is C") = x| {z<()} = ()v'}, which is a right v-
context because v’} is a A-value by proposition 713/4. By i.h, C'} is a
right v-context. By the freshness conditions in the definition of transla-
tion, C" L C”; according to theorem 7.25/2, Cy = O”<0/>¢ =C" (C"),
which is a right v-context since the composition of right v-context is a right
v-context (proposition 3.2).

- C = (vy,ely<(-)])(C") where C" is a crumble context of u, ie.
u = C'{c) for some C’. The readback of the crumble context C" =
(vy, ely<()]) is C"y = (v, ely<{-)]), (y, ely«<()]), by proposition 711.
Moreover, (v, ely<(-)]), = (v,e) {y{)} = s{y={)} = sby
proposition 717 and because y ¢ fv(s) since y is a fresh variable intro-
duced by crumbling; (y, ely<{-)]); = (v,e) {y< ()} = y{y<()} =
(-) because y & dom(e) since y and e are generated by independent re-
cursive calls of the translation function. Thus we obtain that C”| = s(-),
clearly a right v-context. By i.h., C"| is a right v-context. By the freshness
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conditions in the definition of translation, C” L C’; according to theo-
rem 7.25/2, Cy = C"(C"), = C" | {C"}), which is a right v-context since
the composition of right v-context is a right v-context (proposition 3.2).

The statement for the auxiliary translation ¢ can be proved in a similar way.

Size of crumbled forms. We naturally extend to crumbled forms the size defined for A-terms

in definition 2.6:

Size of crumbled forms |¢|

We define the size |e| of crumbled forms, crumbles and environments by structural in-

duction:

(b, €)] = [b] + |e] el =0 lefzb]| == 1+ [e] + [b]
lz| =0 |IAz.c| =1+ low| =1+ |v| + |w]

The following proposition shows that the translation ¢ of a A-term ¢ has size proportional
to the size of t: this fact will be useful in the next chapters, when we will need to bound the
size of the crumble being copied by machine transitions in order to study the complexity of

crumbled evaluation.

Bound on the size of translated
|t| < 2[t| for every A-term t.

Proof. We prove the statement mutually with the corresponding statement for the auxil-
iary translation, and by induction on the structure of ¢:

- Variable, ie. t :== x. Thent =t = (z,€), hence |z| = 0 < 2|z].

- Abstraction, ie. t == Ax.s. Thent =t = (A\z.s,€); by i.h,,
lt] =1+]s| <1+2s| <2(1+]s|) =2[¢|.

s| < 2|s| and hence

- Application, ie. t = su. Thent = (vv',ee¢’) and t = (z, [z<vv']ee’) with
(v,e) ==3and (v/,€¢) =w By ih [5| = |v]| + |e| < 2|s| and [u] = ||+ |¢/| <
2|u|. Therefore |t| = 14|v|+|v'|+|e|+]e/| < 142|s|4+2|u| < 2(1+]|s|+]|u|) =
2|t]. similarly, [t] = 2+]|v|+|v'|+|e|+|€'| < 242|s|+2|u| = 2(1+|s|+|ul)
2t
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7.4 Related Works

In this section we discuss some already existing transformations of A-terms that are related
to crumbling.

Both Administrative Normal Forms (ANF) and Continuation-Passing Style (CPS) are well-
known transformations, often applied to compilation in order to obtain desirable theoretical
properties. The ANF is a variant of the CPS; roughly, the difference is that the ANF transforma-
tion does not change the type of a term, when terms are typed (in this dissertation, however,
we work without types).

Historically, the discovery of the ANF had an immediate practical impact, to the point that
some compilers for functional languages dropped the CPS for the ANF transformation soon
afterwards—see the retrospective by Flanagan et al, 1993. However, the literature on ANF
is scarce. Beyond the already cited original papers, Danvy has also studied them and their
relationship to CPS translation, but usually calling them monadic normal forms (Danvy, 1994;
Hatcliff and Danvy, 1994; Danvy, 2003b) because of their relationship with Moggi’'s monadic A-
calculus (Moggi, 1991). That terminology however sometimes describes a more liberal notion
of terms, for instance the one by Kennedy, 2007. Kennedy's paper is also another relevant
piece in the literature on ANF, and we discuss it below.

Kennedy's slowdown. Kennedy, 2007 compares three different calculi: a monadic calculus
(with ES), a calculus of ANFs, and the image of a CPS transformation. ANFs are just canonical
shapes of monadic terms where the topmost term and the body of each abstraction is a
crumble, i.e. a term together with a list of explicit substitutions that map variables to terms
(instead of crumbles). Kennedy rightly observes that ANFs are not preserved by standard B/v—
reduction and thus, after every ﬁ/v-step, some “search” steps are required to reach the ANF
shape. In fact, in the monadic calculus 3 /v-redexes can be hidden by explicit substitutions
which need to be commuted to reveal the ﬁ/v—redex. Kennedy provides an example (see
example 7.29) where the number of commutations is not bounded linearly by the number of
[ /v-steps and blames the inefficiency of his compiler on that. In his example, the number of
commutations is quadratic in the number of 3 /v-steps, since the ith B /v-step isimmediately
followed by 7 commutation steps.

Kennedy's quadratic example

Here we show the example of evaluation in the monadic calculus by Kennedy, 2007 where
the number of commutation steps is quadratic in the number of /v-steps. Note: —
stands for the composition of i —-steps. The ¢t B /v-step is immediately followed by 4
commutation steps — et that just append two lists of substitutions moving one substitu-
tion at a time.
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t = (z2120) 21 A21.0y1 [Y1 2221 || [0 A2 by [Yya —23232]] . . . [2nATp DYy [Yn bz, ]]

—B/v U e D/

(z120)[21 A1 by [y1 < 201 ]| [20 = A2 bya [ya —2325] | - - .

e [Zn—i—1<—)\$n—i—1-byn—i—1[yn—i—lﬁzn—iiﬁn—i—lﬂ

e [anﬂ_)\wnfi'bynfi[ynfﬁ_bynfzﬁrl][yn7i+1<_bynfi+2] e [ynebxnfi“
—B/v

(z120)[21 A1 .by [y1 201 ]| [20 A2 bya [ya—2z325] ] - . .

oo [Znic1 e AT 1 DY

------ [yn—i—l(_byn—i[yn—ﬂ_byn—i—i-l][yn—i+1<_byn—i+2] e [?Jn*b-’ﬂn—i—l]]

(z120)[21 A1 .by1 [y1 < 201 ]| [20 = A2 bya [ya —2z325] | - . .

e [Zn—i—1<—)\$n—i—1-byn—i—1[yn—i—lebyn—i] [yn—i*byn—iﬂ] .

In the Crumble and Open Crumble GLAM instead, the commutation steps are integrated
in the beta rule simply by concatenating the two lists in constant time.

The quadratic example by Kennedy stands in the ANF fragment. Therefore Kennedy too
hastily concludes that the quadratic blowup also affects the ANF calculus.

However, Kennedy misses the fact that the explicit substitutions in ANFs form a list and
that the commutations steps altogether just implement the append function of two lists.
Since append can be implemented in constant time, the complexity of evaluation in the ANF
calculus is just linear (and not quadratic) in the number of 5 /v-steps; this is the same com-
plexity that we achieve for the Crumble and Open Crumble GLAM in the upcoming chapters.

Conditionals. Another problem with ANF pointed out by Kennedy, 2007 is the fact that the
ANF does not smoothly scale up when the A-calculus is extended to further constructs such
as conditionals or pattern matching. Essentially, the ANF requires conditionals and pattern
matching to be out of ES, that is, to never have an expression such as u[x «—ifvthentelse s].
Unfortunately, these configurations can be created during evaluation. To preserve the ANF,
one is then led to add so-called commuting conversions such as:

ulz < if vthentelse s] — if v then (u[x«<t]) else (u]z+s]). (CC-If)

Clearly, there is an efficiency issue: the commutation causes an undesirable duplication
of the subterm w. A way out is to use a continuation-like technique, which makes Kennedy
conclude that then there is no point in preferring ANF to CPS.
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This is where our crumble representation departs from the ANF, as we do not require
conditionals and pattern matching to be out of ES (see (Accattoli et al.,, 2019h)). First of all,
let us point out that Kennedy only studies the closed case, but we are interested in open and
strong evaluation with the final goal of improving the implementation of proof assistants. In
that setting, commutations of conditionals and pattern matching such as those hinted at by
Kennedy are not valid, as they are not validated by dependent type systems like those of Coq
or Agda. For example, adding the CC-If rule above when the conditional is dependently typed
breaks the property of subject reduction, as typed terms reduce to ill-typed terms. Consider
the term:

(x + 1)[z: (if true then nat else bool)«if true then 0 else false] : nat

that has type nat because the type of x is convertible to nat. By applying rule CC-If, we
obtain:

if true then ((z + 1)[z<0]) else ((z + 1)[z«false])

which is clearly ill-typed. But commuting conversions are malicious even without types: al-
though valid on closed untyped terms, on open terms they may alter the behaviour of pro-
grams, as they can create new redexes. For example, consider the following term in which
rule CC-If introduces a divergent subterm:

(xd) [z« (if y then [ else 0)] — if y then ((z6)[x<1I]) else ((xd)[z+d])

where I := A\z.z is the identity,  := A\z.xx is the duplicator, and the underlined subterm
reduces to the looping combinator 4. The problem in the open case is much more general,
as not even the CPS transformation would work: its properties do not naturally scale up to
open terms. We provide a counterexample to the simulation property in the open case in the
paragraph below.

To sum up, commuting conversions are notvalid in our framework, noris it possibleto do a
CPS transformation. Therefore, we accept that conditionals and pattern matching may appear
in ES (in contrast to Kennedy) and so depart from the ANF. Since these constructs do not play
any special role, we decided to omit them from this dissertation and stick to the ordinary
A-calculus. To handle these constructs, we simply treat them exactly as applications: we
add sharing points in between any two iterated constructs, but allow them to appear inside
ES. Therefore, our results immediately scale up to the case with conditionals and pattern
matching, as we show thoroughly in Accattoli et al., 2019b.

Inadequate CPS. Danvy and Filinski, 1992 show that their CPS transformation scales up to
open A-terms (their Theorem 2). On open A-terms, however, they consider Plotkin’s CbV oper-
ational semantics Apjot, Which is adequate only for closed terms, as discussed in section 3.2.
When one considers one of the equivalent adequate CbV semantics studied by Accattoli and
Guerrieri, 2016; Accattoli and Guerrieri, 2018 for the open case, for instance the fireball cal-
culus Agire, then the properties of the CPS no longer hold, in particular it does not commute
with evaluation, as the following example shows.
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Take the following open A-term ¢ := (Ax.Ay.y)(zz)v, where v is a value, say a distin-
guished variable. In Apjot the A-term ¢ is 5/v-normal, but in Afe we have:

= (A y.y)(z2)v =/ (A\yy)v =g v

Now, consider the CPS translation cps(t) of ¢, according to the definition in Danvy and Fil-
inski, 1992. We use \ for standard (“dynamic”, in Danvy’s terminology) abstraction, and A and
@ for “static” abstraction and application, respectively. If a generalized version of Theorem 2
in Danvy and Filinski, 1992 held in the open case, one would expect that Q(cps(t))[ (where
I = \z.z)evaluatestow, as v is a variable. But, even using an unrestricted 5-reduction that
goes under abstraction as evaluation, we obtain (by reducing all static redexes first, followed
by all dynamic redexes):

Q(cps(t))1

= (Ak.Q(Az.Q(Ay.Qy(Aw.Aa.Q(Ab.Qb(Ac.Ad.Q(Ae.Qec)(Ae.de)))(Ab.ab)))

(Ay.Q(Aw.@Q(Aa.Qaz)(Aa.Q(Ab.Qbz)(Ab.(ab)(Ac.Quwe)))) (Aw.(yw)(Aa.Qza))))
(Az.Q(Ay.Qyo)(Ay.(zy) (Aw.QKw)))) ]

—5 " (zz) Ax.(Ay. Aw.w(Aa.Ab.ba))z) (Ay.yv(Aw. Tw)))

s (22) )

where (22)(Az.v) is not even B-equivalent to v. The CPS translation—like Plotkin’s calculus—
gets stuck trying to evaluate zz, whereas the term reduces to v in Agire.

Summing up, Danvy and Filinski's CPS transformation does not fully scale up to open A-
terms: to prove scalability, one should use an adequate CbV evaluation for open A-terms
(such as the one of the fireball calculus), instead of Plotkin's one. It is worth noting that
this problem affects also other CPS translations, such as the ones defined by Plotkin, 1975
or by Lassen, 2005. Likely, this is the reason why Lassen, 2005 states his Theorem 4.6 (the
analogous of Theorem 2 in Danvy and Filinski, 1992) only for closed A-terms.

Static Single Assignment. Static Single Assignment (SSA) is yet another transformation,
used in compilers to represent flow properties of programs (Cytron et al., 1991). As the name
suggests, in SSA each variable can only assigned once; this means that if different branches
of a program need to assign to the same variable x, a new variable is introduced for every
occurrence of x, and then a new form of assigned called ¢-function is added at join points,
so to re-identify the different instances of x.

SSA can be viewed as ANF plus ¢-function to implement joint points: in this way, commut-
ing conversions are not necessary, and neither the consequent code duplication mentioned
above. The similarity between crumbled forms and SSA forms is that in both settings vari-
ables can be assigned only once, even thought the crumbled translation does not apply to
imperative programs. Moreover, crumbled environment do not need ¢-functions because no
variable can ever be assigned twice in different branches, due to the well-named requirement
(no duplicates in the domain of crumbled environments) that is enforced during evaluation.
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Chapter 8

Closed Crumbling Evaluation

In this chapter we will describe how to evaluate crumbled forms with a micro-step operational
semantics in order to implement Closed CbV.

An important aspect of crumbling evaluation is that it actually blurs the distinction be-
tween a linear calculus and an abstract machine that we have outlined on page 40: in fact, it
allows to use the sequential structure of the environment as the only data structure needed
to search for redexes. For this reason, the operational semantics for crumbled forms that
we present in the following sections is in the style of a linear calculus, because spelling out
the straightforward search for redexes is not really informative. Nonetheless, we do call it
an abstract machine, both because of the blurred distinction in the crumbled case and also
because we manage names explicitly. More precisely, we call it a crumble abstract machine,
namely the Crumble GLAM, that expresses its halfway status. In section 101 we also spell out
the actual abstract machine, by making search transitions explicit.

81 The Crumble GLAM

Evaluation. In order to define the Crumble GLAM, we need some new notations and ter-
minology. We introduce a restricted version of environments and crumbles, which we call
respectively A-environments and \-crumbles, because we require them to be only made up
of abstractions. They are formally defined and noted as follows:

A-crumbled forms

A-ENVIRONMENTS €y = € | ex[z<Ay.c] A-CRUMBLES ¢y = (Ay.c, €))

Essentially, a A-environment stands for the already evaluated coda of the environment de-
scribed in the paragraph about micro-steps in section 7.2, and A-crumbles are fully evaluated
crumbles, that is, the final states of the machine, as we show below.

The rewrite rules act on crumbles whose environments are A-environments. The root
steps are:
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(Az.c)v,en) g (c Q [z<v])* @ey
(z,ex) F>sub/v (ex(),ex) if z € dom(ey)
(wv,ex) Hsub/ieft (€x() v, ex) if v € dom(ey)

C(c) =, C(d) if ¢+, dforr € {f,sub/v,sub/left}

— = —3 U —eub
—?Psub  —  “Fsub/uv U —7sub)/left

Evalution of the Crumble GLAM

As usual, given a crumble ¢ we use c¢® for a crumble obtained by a-renaming the names

in the domain of ¢ with fresh ones so that ¢* is well-named. Actually, in rule —3 the a-

renaming of the root-step has to pick names that are fresh also with respect to the crumble

context enclosing it. This point may seem odd but it is necessary to avoid name clashes, and

it is trivially obtained in our concrete implementation, where variable names are memory
locations and picking a fresh name amounts to allocating a new location, that is of course
new globally. The evaluation for the Crumble GLAM is defined by:

— = B U —7sub/v U —7sub/left -

Let us explain the rules:

- Rule — g (let us forget about the a-renaming for the moment—see the next paragraph):
the rule basically does what is explained in the paragraph about abstractions in sec-
tion 7.2. Namely, the environment of the body ¢ of the abstraction and the external
environment ey are concatenated (via the appending operation @) interposing the en-
try [z+v] created by the redex itself.

* Rule —4up/.: the variable x is substituted by the corresponding crumbled value in the
environment ey, if any. In the closed case, a forthcoming invariant actually guarantees
that ey () is always defined.

* Rule —»sub/1efe: Similar to the previous case, it substitutes on the left part of an applica-

Note that, according to the definitions of plugging and root-steps, the rules =5, —sub/v

and —sub/efe IMpose a right-to-left evaluation, since the environment on the right of a re-

dex is a A-environment, i.e. it is only made of abstractions, which means that it has already
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been evaluated; this will be made evidentin the harmony property for Crumble GLAM, proposi-
tion 8.5 below. Adopting right-to-left evaluation implies that the Crumble GLAM does not need
a rule —sup/rigne Symmetrical to —sup /e, Whose root step would be (U:B, e,\) F>sub/right

(vea(x),ex) with z € dom(ey): indeed, if v is a variable then —gp/c5 applies to the
same redex (vz, ey), otherwise v is an abstraction and then — 5 applies to (v, ey).

Unchaining abstractions. The substitution performed by the rule —g.p/, may seem an un-
needed optimization; quite the opposite, it fixes an issue causing quadratic overhead in the
machine. The culprits are the malicious chains of renamings discussed on page 72, i.e. en-
vironments of the form [x1«xs|[To<x3] - - - [, Ay.c] substituting variables for variables
and finally leading to an abstraction. Accattoli and Coen, 2015 showed that the key to linear
overhead is to perform substitution steps while going through the chain from right to left,
which is exactly what the —g,p/,, rule does.

The cost and the place of ai-renaming. Abstract machines with global environments have
to a-rename at some point, as discussed on section 4.3. In our implementation renaming is
implemented as a copy function, whose computational complexity is under control because
of forthcoming invariants of the machine; this is all standard (Accattoli and Barras, 2017).
Often the burden of renaming/copying is put on the substitution rules. It is less standard to
put it on the beta rule, as we do here. In the closed case, the complexity does not change, as
our analysis below shows. It turns out, however, that in the open case having renaming on
the beta transition enables an asymptotically faster machine—see section 8.3.

Reachable crumble

We call a crumble reachable (in the Crumble GLAM) if it is obtained by a sequence of
evaluation steps starting from the translation ¢ of a closed A-term t.

Let us have a look at an example of evaluation in the Crumble GLAM:

Evaluation sequence

Consider the crumble §6 = (8 dp, €), where &, = Az.(zz, €). Then:

00 —p (v, [T0)) —7sub/left (0 x, [x=6p)) —5
_>5 (yy7 [y<—£C] [l’<—(5b]) _>sub/left (3/3/: [y<—§b] [l’<—(5b]) _>sub/left ce.

In example 7.9 we introduced the crumble 661 = (z Iy, [2¢0p 0] ) where I, = Az.(z, €);
in accordance with the crumble decomposition shown in example 719, we have:

001 —p (2 Iy, [z2ax][x0b]) —subjiesr (2 Ib, [20p x][T0p]) =
—B (Z I, [Z“_yy] [y‘_x] [5“_517]) —7sub/left (Z Iy, [z<—yy] [?J(_(Sb] [x(_éb]) —sub/left - - -

Consider now the open crumble ¢ = §d(xx) = (2w, [2<0p &) [wxzx]). The crumble ¢
is normal because its only possible decomposition of the form C'(b, ;) is for ey = € (as
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xx is not an abstraction), and no reduction rule applies to the rightmost entry [w«xx]
since x is globally free.

A famous key property of Closed CbV is harmony (proposition 31): given a closed A-term
t, either it diverges or it evaluates to a (closed) A-abstraction, i.e. ¢ is 3 /v-normal if and only
if t is a (closed) A-abstraction. The Crumble GLAM satisfies an analogous property (proposi-
tion 8.5) by replacing abstractions with A-crumbles.

Let ¢ = (b, ey) be a well-named closed crumble, and b have the following property: b is
an abstraction, or b is x or zv but x is not defined in ey. Then ¢ is a A-crumble.

Proof. Let ¢ = (b, ey) as above: it suffices to prove that b is an abstraction. This follows
easily from the hypothesis that ¢ is closed, since the cases where b is x or zv but x is
not defined in ey are impossible.

If the well-named closed crumble (b, ey) is normal, then it is an A-crumble.

Harmony for the Crumble GLAM
A closed crumble ¢ is normal if and only if it is an A-crumble.
Proof.

(=) Letc = (b, e) be well-named, closed, and normal. We proceed by structural induc-

tion on e:

- if e = ¢ then (b, €) is an A-crumble by corollary 8.4;

- if e = [z<b/]€/, then also the crumble (b',€’) is normal. By i.h. (¥, €) is an
A-crumble, and therefore e = [z«b']e is an A-environment. By corollary 8.4,
c=b,eisan A-crumble.

(<) Let ¢ = ¢y, we need to prove that ¢y is normal. Let ¢y = C{(v, ey)) for some
C, v, ey with v an abstraction. Clearly no reduction rule is applicable, because v is
not a variable or an application.

Before turning to the next section, we prove a technical proposition that will come handy
later.
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Readback to a value

For every crumbled value v and A-environment ey, one has that (v, e,\)¢ is a value. If
moreover v is an abstraction, then (v, e,), is a A-abstraction.

Proof. By induction on the length of ey. There are two cases, depending if v is an abstrac-
tion or a variable.

- Abstraction: If ey = ¢, then clearly (v, 6/\)¢ = v, is a A-abstraction and hence a
value. Otherwise ey = €\ [x<b] where b is an crumbled value (and hence b, is a
value): thus, (v,ex); = (v, €}) {z<b}; by ih, (v,€)), is a A-abstraction, thus
(v,ex)y is a A-abstraction (and so a value) by proposition 3.3.

+ Variable: If v == x ¢ dom(e,), then (v,ex); = x which is a value; otherwise
v = x € dom(ey) with ey = €} [z<Ay.clef, and then (z,e)); = (Ay.c,e),
(since z ¢ dom(¢€))) is a value by i.h., according to the previous point.

8.2 Implementation

To show that the Crumble GLAM correctly implements the right-to-left Closed CbV evalua-
tion, we apply the abstract approach described in section 4.4, which we reuse as well in the
following chapters for other crumble abstract machines and other calculi.

Recall that a “state” of a crumble machine is simply a crumble. We will show in theo-
rem 816 that the Crumble GLAM, the right-to-left Closed CbV evaluation — 3/, the crumbling
translation e, and the readback e form an implementation system: as a consequence, the
Crumble GLAM implements right-to-left Closed CbV strategy in the A-calculus.

To prove the implementation theorem (theorem 8:16) we are going to provide five of the six
sufficient properties that it requires; the sixth one, the termination of overhead transitions,
is subsumed by the much finer complexity analysis in section 8.3.

Execution invariants. The sufficient conditions, as usual, are proved by means of a few
invariants of the machine, given by proposition 8.8 below. These invariants are essentially
the properties of the translation in proposition 7.26 extended to all reachable crumbles. One
of them—namely contextual decoding—however, is weaker because reachable crumbles do
not necessarily have the same nice structure as the initial crumbles obtained by translation
of a A-term, as the next remark explains.

Not all crumble contexts unfold to contexts (example 7.21), but crumble contexts obtained
by decomposing crumbles translating A-terms do (proposition 7.26/5): this is the contex-
tual decoding property. Unfortunately, it is not preserved by evaluation. Consider the
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crumble ¢ == (Azr.z(zx)) I = ((A\z.(2y, [y<zx])) Ly, €) with I, = Az.(2,€). Clearly,
¢ = (-)((Az.z(xx)) I) where (-), = (-) is a context. After one 3 step, the crumble
c reaches (zy, [y<zzx][x<I]) = C((Ib,e)> for C' = (zy, [y—zz][x<(-)]). But C
unfolds to C, = (-)({-){+)), which is not a A-context.

Let us clarify the role of each invariant, that we prove below in proposition 8.8:

- Freshness and Closure are invariants about variable names, needed to ensure the basic
functioning of the machine.

- Subterm is the key invariant for complexity analyses, as it allows to bound the size of
duplicated subterms (that are always abstractions) using the size of the initial term.
Usually, it is only needed for complexity analyses, while here it is needed for the imple-
mentation theorem as well. Knowing that an abstraction comes from the initial term,
indeed, implies that it satisfies the strong contextual decoding invariant of proposi-
tion 7.26, fact that is used in the proof of its weak variant.

- The Weak contextual decoding invariant, finally, is essential to show that beta steps
project on 3-steps of Apjot.

Invariants for the Crumble GLAM

For every reachable crumble c in the Crumble GLAM:
1. Freshness: c is well-named.
2. Closure: fv(c) = (.
3. Subterm: every abstraction in ¢ is a subterm (up to renaming) of the initial crumble.

4. Contextual decoding (weak): for every decomposition C(b, ey) where b is not a
crumbled value, if C" is a prefix of C' then C”| is a right v-context.

Proof. By induction on the length of the reduction sequence leading to the crumble. The
base cases hold by proposition 7.26 (by noting that for point 4, proposition 7.26/5 implies
the weaker statement proposition 8.8/4). As for the inductive cases, we inspect each
reduction rule:

1. The substitution rules sub/v and sub/left do not change the domain of the crum-
ble, hence the claim follows from the i.h.. For the rule 3 the claim follows from the
side condition.

2. The rules sub/v and sub/left do not change the domain of the crumble and only
copy to the left a value from the environment, and the claim follows from the i.h..

The rule S copies to the toplevel and renames the body of an abstraction. By the
properties of a-renaming fv((c @ [x<v])¥) = fv(c @ [x+v]) = fv(Az.c), and
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since by i.h. fv(Az.c) C dom(ey), we can conclude with fv((c¢ @ [z«v])*) C
dom(ey).

3. The rules sub/v and sub/left introduce an abstraction, but it was already in the
environment, and the claim follows from the i.h.. The rule 3 copies and renames the
body of an abstraction that was already in the environment, and the claim follows
from the i.h. since the translation commutes with the renaming of free variables
(proposition 713/3).

L. Let b =" C'{((V,€y)) —a C{(b,ey)) (where b is not an abstraction). Cases of
the reduction step C'((¥, €3)) —o C((b, €,)):

- Case (: C'(((Az.c)v,ey)) —p C'(c™ Q ([z*<v]ey)).
Let C” be a prefix of C'. There are two sub-cases:

* C"is a prefix of C": by i.h. C" is a right v-context.

* C'is a prefix of C", ie. C" = C'{C") and ¢ = C"{(¢). By proposi-
tion 7.26/4 and proposition 8.8/3 c is the translation of a A-term, by propo-
sition 713/3 ¢ is so, and thus by proposition 7.26/5 C* is a right v-context.
By i.h., C"| is a right v-context as well. Since C"| = C’ (C") according
to theorem 7.25/2, we obtain that C”'| is a right v-context as composition
of right v-contexts (proposition 3.2).

- Case sub/v: it follows from the i.h. since C' is necessarily a prefix of C".

- Case sub/left: it follows from the i.h., since €} = ey and C' = C".

Implementation theorem. To prove the implementation theorem (theorem 816) we first
prove separately its requirements: determinism, transparency, projection, and progress.

Determinism
— is deterministic.

Proof. Assume that there exists a crumble that may be decomposed in two ways
C((b,ey)) = C'(V,€)) such that they reduce respectively C((b,ex)) —, C{c) and
C'{(V,e))) =, C'{d) with rules a,b € {3,sub/v,sub/left}.

We prove that it must necessarily be a = b, C = ', and ¢ = d (up to alpha). Three
cases:

+ C strict initial segment of C, i.e. C" = C(C") for some C” # (-). We show that
this case is not possible: in fact, it follows that ey = E((¥, €})) for some E, thus
(b, €)) is an A-crumble, and by proposition 8.5 it must be normal, contradicting the
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hypothesis that (I, €} ) and ¢ reduce with rule b.

- C' = (. By inspection of the reduction rules, a = b: in fact the rule 3 applies only
when b is the application of an abstraction to a crumbled value, the rule sub/v
only when b is a variable, and the rule sub/left only when b is the application
of a variable to a crumbled value. It remains to show that ¢ = d (up to alpha):
from the determinism of the lookup in the environment during sub/v and sub/left
reductions.

- " initial segment of C, i.e. C' = C'(C"). Symmetric to the first case.

To prove overhead transparency, we need the following two propositions that prove a
disjointness property of variables.

Free variables of left parts
Let ¢ = C(b, €) be a crumble. Then fv(b), fv(C) C dom(e) U fv(c).

Proof. By cases according to the definition of the crumble context C.

If C' := (-) then fv(C') = () C dom(e) U fv(c) and ¢ = (b, e), so fv(c) = (fv(b)
dom(e)) U fv(e) and hence fv(b) C (fv(c) \ fv(e)) Udom(e) C fv(c) U dom(e).
Otherwise C' = (b, €/[x<(-)]) and then fv(C) = fv(b') U (dom(e’) \ {z}) and
c = (s, [xble); therefore, fv(c) = fv(C) U (fv(b) ~\ dom(e)) U fv(e) and hence
fv(C') C dom(e) U fv(c) and fv(b) C dom(e) U fv(c).

In every reachable crumble C'(b, e) one hasb L C.

Proof. By proposition 810, proposition 8.8/1, and proposition 8.8/2.

Overhead transparency

Let ¢ be a reachable crumble, and let r € {sub/v,sub/left}. If ¢ =, d then ¢| = d,.

Proof. Let ¢ == C{((b,ey\)) —, C((V/,er)) = d, and let €}, €] such that ey, =
e\ [zex(z)]e}, noting that z does not occur in €y by proposition 8.8/1 and proposi-
tion 8.11. We first prove that (b, ex); = (V/, ex)y:

- Case sub/v, ie. b = x and ¥ = e\(x). By proposition 716/1,
(o, ehleen(@]el)y = (@, erel) {m(er(@), i} = (ex(e), ) as cis well
named (proposition 8.8/1). By proposition 811, fv(ex(x)) N dom(e} [z—ex(z)]) =
0, therefore (ex(z),€5); = (ex(x),er);, and we conclude with (z,ey); =

(ex(x), ex)y.
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- Case sub/left, ie. b = zv and i = ey(z)v. By proposition 711 (zv,ey); =
(x,ex) (v, ex)y, and we can use the point above to conclude.

We now prove that C((b,ex)), = C((V,ex)), under the hypothesis that (b, ey); =
(b',ex);. By cases on C: if C' = (-) just use the hypothesis. Otherwise
C = (V' elz<()]) and so (V' e[xz<blen), = (V' eer) {z(ber),} =
(0", eex) {z(V',er) } = (b”, e[x<b'ler), by proposition 716/1.

To prove (3 projection, we first prove the following property which is a direct consequence
of the fact that value substitutions and evaluation commute in Apjot, I.e. proposition 3.4.

B/v under A-environments

Let ¢,d be crumbles, and let ey be a A-environment. If ¢, —3/, d, then (c @
ex)y =/ (dQey)y.

Proof. By induction on the length of ey. If ey = e then (c @ ey); = ¢, =g/ d =
(d @ ey),. Otherwise ey = €\[r+v] where v is an abstraction (and hence v is a
A-abstraction); by ih., (¢ @ €\), —g/, (d @ €)), and hence (¢ @ ey), = (c @
eh)ifzu } =5 (d Qe€)) {z<v,} = (d @ ey), according to proposition 3.4,

[ projection

Let ¢ be a reachable crumble. If ¢ = d then ¢, — g/, dy.

Proof. Let us assume that C'((Az.c) v, ey)) —p5 C{(c Q [z<v])* Q e,). The crumble
context C' unfolds to a right v-context by proposition 8.8/4. Let ¢ @ [2/«v] = (¢ @
[z<v])®. We need to prove that C((Az.c) v, ex)), =g/ C{(c @ [z<v])* @ ey),. By
proposition 7.22 and proposition 813, it suffices to prove that C(((Az.c) v,€)); —5/
C(c' Q [7'«v)) :

C((Az.c)v,e)), = Ci{(Az.cp) vy) by theorem 7.25/1
=, C{(\'.d})vy) by proposition 7.23
—5/0 C(d {o'v, }) by proposition 8.8/4
Ci(c Q [z'«0] )
= C(c Q [z'«v]), by theorem 7.25/1
C{(e @ [reu])?),

- The first use of theorem 7.25/1 requires that C(((Ax.c) v, €)) is well-named, which
follows from proposition 8.8/1, and that C' L ((Az.c) v, €), which is obvious be-
cause dom(((Az.c)v,€)) = 0.

* The second use of theorem 7.25/1 requires that C (¢’ @ [z'<wv]) is well-named and
that C L (¢ @ [2/«v]) ie. that fv(C) Ndom(d @ [z'<v]) = (: both follow
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directly from the freshness condition about a-renaming in the (3 rule.

Progress
Let ¢ be a closed crumble. If ¢ is —-normal then ¢, is 5/v-normal.

Proof. Let ¢ be normal. By proposition 8.5, ¢ is a A-crumble. By proposition 86, c| is an
abstraction. By proposition 31, ¢} is ﬁ/v—normal.

We have now proved all the requirements of the implementation theorem for the Crumble
GLAM:

Implementation

Let ¢ be a reachable crumble in the Crumble GLAM.
1. Initialization: LL = t for every closed A-term ¢.
2. Beta Projection: if ¢ —g d then ¢y —g/, dj.
3. Overhead Transparency: if ¢ —¢p dthency = d,.
4. Determinism: evaluation — is deterministic.
5. Progress: if ¢is —normal then ¢ is 3/v-normal.
6. Overhead Termination: —,p terminates.

Therefore the Crumble GLAM, the right-to-left Closed CbV evaluation — g/, the crumbling
translation e, and the readback e form an implementation system.

Proof. First, note that cis closed by proposition 8.8/2. Each point is proved separately:
1. See proposition 717.
2. See proposition 8.14.
3. See proposition 8.12.
4. See proposition 8.9.
5. See proposition 8.15.
6. Immediate consequence of forthcoming proposition 817 (proved independently).

To conclude, apply theorem 4.12.
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8.3 Complexity

According to the scheme presented in chapter 4, performing a single transition — in the
Crumble GLAM consists of three operations:

1. Unplugging: locating the next redex, splitting the crumble to be reduced into a crumble
context C and a crumble ¢ that contains the redex to be fired;

2. Rewriting: applying a rewriting rule to the crumble ¢, obtaining a new crumble d;
3. Plugging: putting the new crumble back into the crumble context obtaining C(d).

The technical definition of plugging and unplugging of crumbles into a crumble context
is quite involved and, if implemented literally, has no constant time complexity. However,
this need not be the case: in section 101 we will introduce a slight variant of the Crumble
GLAM called Pointed Crumble GLAM that removes the need for plugging and unplugging, and
we show that the total cost of looking for the next redex on that machine is bilinear in the
number of beta steps and the size of the initial crumble.

The second operation—rewriting the crumble to a new crumble—is identical between the
two machines (the Crumble and the Pointed Crumble GLAM). In this subsection, we estimate
its cost, ignoring the cost of operations 1 and 3. We show that the total cost of rewritings is
also bilinear in the number of beta steps and the size of the initial crumble. The analysis
carries over to the Pointed Crumble GLAM machine, which is then proved to be bilinear as
well in section 10.1.

To estimate the cost of rewriting, we provide first an upper bound on the number of
substitution steps (|d|sub/v and |d|sub/ies) in a derivation d as a function of the number of
beta steps (|d|5) and the size of the initial crumble. Then we obtain the total cost by providing
an upper bound to the cost of implementing each kind of transition.

Estimation of the number of transitions Let d be a derivation (i.e. a sequence of reductions)
in the Crumble GLAM and let |d|g, |d|sub/v, |d|subjiess be the number of 3, sub/v, sub/left
steps in d, respectively. An easy observation is that an sub/left step can only be immediately
followed by a 3 step (since — is deterministic), and therefore |d|sub/iesr < |d|g + 1. To
estimate |d|sub/» We keep track of the number |c|var of crumbles (x, e) that occurs in ¢
outside abstractions and that will become sub/v redexes once e is evaluated to an a A-
environment. Formally:

|(b7 e)|var = ‘b|var + |€’var |€’var =0 |e[37<_b]|var = ‘€|var + |b’var

’$|var =1 |>\$-C|var =0 |le|var =0

The key observation is that |c|\,ar is decreased by one by sub/left steps and increased
only by /3 steps, that release a number of new [x«<y]| substitutions that is exactly |d|yar where
d is the body of the abstraction being reduced. Since all abstractions are a-renaming of
abstractions already present in the initial term by proposition 8.8/3, we obtain the expected
bilinearity result.
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More precisely, let K (¢) := sup{|d|var : Az.d occurs in ¢}. Then

Number of transitions for the Crumble GLAM
Let d: cg —* ¢ be a derivation in the Crumble GLAM. Then:
1. |d‘sub/left <|d|g+1
2. |clvar < |colvar — ‘d|sub/v +d|g - (K(co) +1) and thus ’d|sub/v < |colvar + |d|g -
(K(co) +1).
Proof.

1. If an sub/left step is followed by a reduction step, that step must be a 3 step.

2. By induction on the length of the derivation d. The base case (|d| = 0 and hence
co = c¢) is trivial. As for the inductive case, let ¢cg —* d — ¢ and reason by cases
on the reduction rules:

- sub/v: |¢|var = |d|var — 1 and the result follows by i.h..
- sub/left: |c|var = |d|var and the result follows by i.h..
- Biletd = C(((Az.e)v,ey)) =5 C((e Q [z«v])* Qey) = c.
Clearly |¢|var < |d|var + |€|var + 1; by proposition 8.8/3, Az.e is a subterm up

to renaming of co, and therefore |e|var < K(cp). Therefore |c|var < |d|var +
K(cp) + 1 and the result follows by i.h..

Cost of single transitions. As usual, we denote by |¢],
crumbles, environments and crumbled terms, respectively.

e| and |b| the size of A-terms,

’

- The cost of each (3 transition (that needs to perform a copy of the crumble in the ab-
straction in order cc-rename it) is bound by the size of the copied crumble. By proposi-
tion 8.8/3 the abstraction is the a-renaming of one the abstractions already present in
the initial crumble. Therefore the cost of a (3 transition is bound by the size of the initial
crumble or, more precisely, by M (co) 41 where M (c) := sup{|d| : Ax.d occurs in c}.

+ The cost of sub/left and sub /v transitions may change according to the choice of im-
plementation. Following our discussion about costs on page 62, we employ a A-graph
representation by assuming the global environment to be implemented as a memory
and variable occurrences to be implemented as pointers to memory locations, so that
lookup in the environment can be performed in constant time in a Random Access Ma-
chine (RAM). As for the cost of actually performing the replacement of  with ey (z) in
the sub/v and sub/left rules, it can be done in constant time by copying the pointer to
ex(x) instead of the whole term. This is possible because the actual copy, correspond-
ing to a-renaming, is done instead in the (3 step.
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Costof derivations. We first observe that the crumbling translation e never produces substi-
tutions of the form [z<«y] (i.e. a variable for a variable) and therefore the following property
holds:

For every A\-term t: M (t) < 2|t

,K(I) < 1, and |1_5|var <1

Proof. The inequality M (t) < 2t| follows directly from proposition 7.28. To prove the
remaining part of the statement, we also prove a corresponding statement for the auxil-
iary translation: for every t, K () < 1 and if(v, e) := t then |e|var = 0. We proceed by
induction on t:

- Variable, ie. t == z. Thent = t = (x,¢), hence [tlar = 1, |€]var = 0 and
K@) = K(t) =0

- Abstraction, ie. t = Ax.s. Thent = t = (A\x.s,€); by ih. |slar < 1 and
K(s) < 1and hence K(t) = K(t) = max{K(s),|s|var} < 1. Moreover,
|l_€|var = |€|Var = 0 by deﬁnItIOI’l

- Application, ie. t = su. Thent = (vv';ee’) and t = (z,[z<vv]ee)
where (v,e) = 35 and (v,e) = Kt = K@) =
max{ K (v), K(v'), K(e), K(e)} = max{K(3), K(u)}, and therefore K (t) <
1 follows from the i.h.. By i.h. it also follows that |e|yar = |€/|var = 0; therefore
|t|var = 0 and |e€|var = 0.

=|

Letd: ¢y —* ¢ be a derivation and let My := M (co) and Ky := K (cp). The cost |d| of

d is given by:

|d] < (|d]subso + |dlsubsiesr) + ] - (Mo + 1) < |colvar + [d]s - (Ko +2) + |d|s - (Mo + 1)
= ‘d‘ﬁ ) (MO + Ko + 3) + ‘CO’var-
The complexity is bilinear in the number of beta steps and the size of the initial A-term:

when the derivation d starts from ¢y = t for any A-term ¢, by proposition 818 we have
|d| <|d|s - (2|t] +4) + 1. Summing up:

The Crumble GLAM is bilinear

For any closed A-term ¢ and any derivation d: t —* ¢ in the Crumble GLAM, the transi-
tions in d cost all together O((|d|s + 1) - [t]) on a RAM.

Proof. By proposition 818, proposition 817, and the discussion above about costs.
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Chapter 9

Open Crumbling Evaluation

In this chapter we extend the Crumble GLAM defined in chapter 8 to the case of open terms,
implementing Open CbV i.e. the fireball calculus Afire (section 3.2): in this way we obtain the
Open Crumble GLAM . As we will see, the Crumble GLAM scales relatively easily to the open
case: this is quite surprising, since the open setting is usually much trickier and requires
many subtle optimizations (as discussed on section 5.2).

91 The Open Crumble GLAM

Evaluated environments. Before introducing the evaluation rules, we need to discuss the
environments under which evaluation takes place. In the open case, A-crumbles and A-
environments generalize to f-crumbles and f-environments, and are denoted as follows:

f-forms
f-crumbles: ¢ f-environments: ef

Recall that in the Crumble GLAM the already evaluated coda of the environment is made
out only of abstractions. Unfortunately, a syntactic characterization of f-environments (and
f-crumbles) is more involved than the simple definition of A-environments.

In the Crumble GLAM, to check whether an crumbled term b is in normal form with respect
to an environment ey, it suffices to check whether b is an abstraction. In the open case, look-
ing at the syntactic structure of the term is not enough: for example, the crumbled term y x
is normal with respect to the environment [z« ], but not with respect to the environment
[y«<1]. Because of this additional complication, we are going to define f-environments di-
rectly in terms of their semantics, i.e. of their readback to A-terms. Intuitively, fully evaluated
f-environments should correspond to substitutions of fully evaluated A-terms in Agre. And
since by harmony normal forms in Age are simply fireballs, it suffices to request that the
readback of every entry in a f-environment is a fireball.

Let us now define f-environments formally:

129
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Fireball crumbled forms

We say that ef is a f-environment (resp. ¢y is a f-crumble) if for any environment context
E (resp. any crumble context C') and any crumble ¢ such that e = E(c) (resp. ¢ =
C'(c)) the following two conditions hold:

1. Readback to fireballs: ¢, is a fireball, and

2. Unchaining abstractions: if ¢ is an abstraction, then ¢ = (v, e) for some abstrac-
tion v and some crumbled environment e.

Note that the second requirement is crucial for capturing the correct behaviour of the sub-
stitution rule —>sup 4, Which removes the malicious chains of substitutions that we discussed
in chapter 8.

Evaluation rules. The root rules of the Open Crumble GLAM are in fig. 9.1:

(Az.c)v,er) g (c Q [zev])* Q e
(x,er) Hsub/o (€r(T), €r) if e(z) is abstraction
(xv, ef) Hsub/iet (€f() v, ef) if ef(x) is abstraction

C(cy —, C(d) if cr, dforr € {8,sub/v,sub/left}

— = —3 U —sub
—sub  — “7sub/v U —7sub/left

The Open Crumble GLAM

The rules — 5, —>sub/v aNd —>sub/ier are then obtained, as usual, by closing the respective
root steps under crumble contexts. Evaluation in the Open Crumble GLAM is defined by:

— = =5 U —7sub/v U —7sub/left -

Rule — g is identical to the one in the closed case, and the comments about a-renaming
given on page 116 still hold. The only unfamiliar part is the slightly different side condition
of the rules —sub/» and —sup/iepe- In fact the condition requires not only that a variable is
defined in ef (like in the closed case), but also additionally that the corresponding term in
the environment is an abstraction.

Note that the substitution rules are conservative with respect to the corresponding rules
in the closed case: in fact in the closed case if a variable x is defined in ey then ey(x) is
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necessarily an abstraction, because ey consists of only abstractions. In the open case instead
ef may contain also crumbled terms that are variables or applications, but this terms are not
substituted by the substitution rules: this behaviour is justified by the property of A¢ie Stated
in proposition 3.9, i.e. the fact that the substitution of inert terms does not create or erase
redexes, and hence can be avoided. Besides, avoiding the substitution of inert terms is a
prerequisite for efficiency of the machine, that would otherwise be subjected to a substitution
overhead due to the problem of size explosion (see section 4.1).

The harmony between the evaluation rules and the syntactic definition of normal forms
is witnessed by proposition 9.6, but before that we provide some auxiliary propositions.

Propositions 9.2 and 9.3 capture an essential property of f-environments: (z, ef)¢ is an
abstraction if and only if ef(z) is an abstraction. This is a consequence of the unchaining
abstractions requirement, and shows that the usefulness of a substitution can be correctly
checked in constant time by a simple lookup in the environment.

Readback to fireball

For every crumbled value v and f-environment ey, one has that (v, ef), is a fireball. If
moreover v is an abstraction, then (v, ef), is a A-abstraction.

Proof. By induction on the length of e;. There are two cases, depending if v is an abstrac-
tion or a variable.

- Abstraction: If ey = ¢, then clearly (v, ef); = v, is a A-abstraction and hence a
fireball. Otherwise e; = ef[z«b] where b is an crumbled term such that by is a
fireball: thus, (v, er); = (v, ef) {z<b}; by ih, (v, e]’c)i is a A-abstraction, thus
(v, er), is a A-abstraction (and so a fireball) by proposition 3.10.

- Variable: If v == x ¢ dom(ef), then (v, er); = x which is a fireball; otherwise
v = x € dom(er) with ey = e;[z<blef, and then (z,¢er), = (b, ¢€f), (since
x ¢ dom(ef)) is a fireball by definition of f-environment, as the f-environment
[:z:<—b]e]’c’ = E{(b, e]’c’)) with B == [z<(-)].

Let ef well-named. If (z, ef), is an abstraction, then ef(x) is an abstraction.

Proof. Assume by contradiction that x is not defined in ef: then by proposition 715
(x,er), = (x,€), = x, contradicting the hypothesis that (z,ef), is an abstraction.
Therefore x must be defined in ef, ie. ef = e;[z<blef with b = es(). By the hy-
pothesis that e is well-named, = & dom(e;); therefore (z,er); = (b, €f) by propo-
sition 716/3. By the definition of ey, since (b, e]’c’)¢ is an abstraction, then also b is an
abstraction, and we conclude.

The following property relates f-environments and f-crumbles by means of a syntactical
condition:
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Let ¢ = (b, ef) be a well-named crumble, and let b have the following property: either b
is an abstraction, or b is z or zv but x is not defined in ef or ef(x) is not an abstraction.
Then cisa f-crumble.

Proof. Let ¢ = (b, ef) as above: it suffices to prove that (b, ef), is a fireball, and that if
(b, ef)¢ is an abstraction, then also b is an abstraction. By cases on the property about b
in the hypothesis:

+ Variable, ie. b = x for some x when x is not defined in e or ef(x) is not an
abstraction. (b, ef), is a fireball by proposition 9.2. Let us now assume that (b, er)|
is an abstraction, and show that it is not possible: in fact by proposition 9.3 ef(x)
must then be defined and an abstraction, contradicting the hypothesis.

- Abstraction: nothing to prove because (b, ef), is an abstraction by proposition 9.2
and thus a fireball.

- Application of a variable to a crumbled value, i.e. b = xv when z is not defined in
er or ef(x) is not an abstraction. Note that (b, ef); = (, ef) (v, ef),, where both
(x,er), and (v, ef), are fireballs by proposition 9.2. I (z, ef), is inert there is noth-
ing else to prove, because then (b, ef)¢ is a fireball, and clearly not an abstraction.
The case when (z, ef)i is an abstraction is not possible: again by proposition 9.3
ef(:p) should be defined and an abstraction, contradicting the hypothesis.

If the well-named crumble (b, ef) is normal, then itis a f-crumble.

Harmony for the Open Crumble GLAM
A crumble ¢ is normal if and only if it is a f-crumble.

Proof.

(=) Letc = (b, e) be well-named and normal. We proceed by structural induction on
e

- ife = ¢ then (b, €) isa f-crumble by corollary 9.5;

- if e = [x«b']€/, then also the crumble (¥, €’) is normal. By i.h. (b, ¢€’) is a
f-crumble, and therefore e = [x«<b']e’ is a f-environment. By corollary 9.5,
¢ = (b,e)isa f-crumble.

(<) Let ¢ = ¢y, we need to prove that ¢y is normal. Let ¢y = C((b, ef)) for some
C, b, e;. First of all, note that by the definition of ¢, (b, ef), is a fireball, and that if
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(b, er), is an abstraction, then also b is an abstraction. We prove that no reduction
rule is applicable to C'((b, ef)):

- Rule B can be applied only if b = (Az.b') v, but this contradicts the hypothesis
that (b, ef), is a fireball, since ((Az.b')v,ef); = (Az.b',er); (v,ef), and
(Az.b', er), is an abstraction by proposition 9.2.

- Rule sub can be applied only if b is some variable  and ef(x) is defined and
an abstraction. This contradicts the hypothesis that if (b, ef), is an abstraction,
then also b is an abstraction.

- Rule sub/left can be applied only if b = zwv for some z,v, and ef(z) is
defined and an abstraction. This contradicts the hypothesis that (b, ef), is a
fireball, since (zv, ef); = (x,ef) (v, er), and (x,ef), is an abstraction by
proposition 9.2 because ef(x) is an abstraction.

We provide an example of evaluation of an open crumble, showing that the Open Crumble
GLAM reduces a crumble that was instead stuck for the Crumble GLAM:

Recall that 0, := (Az.zx,€). In example 8.2 we noted that the (open) crumble dd(zx)

was stuck in the Crumble GLAM. Now instead it correctly reduces, never reaching a normal
form:

dd(zx) = (2w, [2<6 Op|[wezx]) =5 (2w, [2eyy][y<dp] [wezz))

—7sub/left (2w, [20p Y][y+0p) [wez]) — - - -

9.2 Implementation Theorem

As expected, we now call a crumble reachable if it is the target of a Open Crumble GLAM
evaluation starting from the translation ¢ of a possibly open A-term t.

The proof of the implementation theorem for the Open Crumble GLAM follows the same
structure as for the Crumble GLAM in section 8.2, relying on similar but subtler invariants.

Invariants for the Open Crumble GLAM

For every reachable crumble c:
1. Freshness: c is well-named.
2. Disjointedness: if c = C'((b,e)) thenb L C.

3. Subterm: any abstraction in ¢ is a subterm (up to renaming) of the initial crumble.
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4. Contextual decoding (weak): for every decomposition C'(b, ef) where (b, ef), is not
a fireball, if C" is a prefix of C' then C”| is a right v-context.

Proof. By induction on the length of the reduction sequence leading to the crumble c.
The base cases hold by proposition 7.26 (by noting that for point 4, proposition 7.26/5
implies the weaker statement proposition 9.8/4). As for the inductive cases, we inspect
each reduction rule:

1. The exponential rules sub/v and sub/left do not change the domain of the crum-
ble, hence the claim follows from the i.h.. For [ the claim follows from the side
condition.

2. The rules sub/v and sub/left do not change the domain of the crumble and only
copy to the left a value from the environment, and the claim follows from the i.h..

The rule 8 copies to the toplevel and renames the body of an abstraction. By the
properties of a-renaming fv((c @ [z+«v])*) = fv(c Q [z«v]) = fv(Az.c). If
the b is chosen to be in the crumble context (say C”') or in e; of the reduction rule,
then the claim follows from the i.h.. Let instead (¢ @ [x+v])* =: C'((b, €’)) with
C = C"(C"): then fv(C'{(b,€’))) = fv(Az.c) and fv(b) C dom(e’) U fv(Az.c).
dom(e’) Ndom(C) = 0 by the side condition of £, and fv(Az.c) Ndom(C') = ()
by i.h., therefore we conclude with fv(b) N dom(C) = (.

3. The rules sub/v and sub/left introduce an abstraction, but it was already in the
environment, and the claim follows from the i.h.. The rule 3 copies and renames the
body of an abstraction that was already in the environment, and the claim follows
from the i.h. since the translation commutes with the renaming of free variables
(proposition 713/3).

4 Letu — "C'((V, er)) —a C{(b, ef)) (where (b, er), is not an abstraction). Cases
of the reduction step C"((V, €})) —a C((b, e7)):

- Case B: C'{(((Az.c)v,e)) —p C'{c* Q ([z*v]er)).
Let C” be a prefix of C'. There are two sub-cases:

* C"is a prefix of C": by i.h. C"'| is a right v-context.

* C'is a prefix of C", ie. C" = C'{C") and ¢ = C"{(c). By proposi-
tion 7.26/4 and proposition 9.8/3 cis the translation of a A-term, by propo-
sition 713/3 ¢* is so, and thus by proposition 7.26/5 C* is a right v-context.
By i.h., C"| is a right v-context as well. Since C"| = C’ | (C") according
to theorem 7.25/2, we obtain that C”| is a right v-context as composition
of right v-contexts (proposition 3.2).

- Case sub/v: it follows from the i.h. since C' is necessarily a prefix of C".

- Case sub/left: it follows from the i.h., since e]’c =eand C =C"

To prove the implementation theorem (theorem 9.16) we first prove separately its require-
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ments: determinism, transparency, projection, and progress.

Determinism of crumbled reduction
— is deterministic.

Proof. Assume that there exists a crumble that may be decomposed in two ways
C((b,ef)) = C'((V', e;)) such that they reduce respectively C{(b, er)) —, C{c) and
C'{((V, ep)) = C'(d) with rules a, b € {3, sub/v,sub/left}.

We prove that it must necessarily be a = b, C' = C’, and ¢ = d (up to a-equivalence).
Three cases:

- C strict initial segment of C, i.e. C" = C(C") for some C” # (-). We show that
this case is not possible: in fact, it follows that ef = E((¥', e;)) for some E, thus
v, e}) isa f-crumble, and by proposition 9.6 it must be normal, contradicting the
hypothesis that (b', e;) and c reduce with rule b.

- C = (. By inspection of the reduction rules, @ = b: in fact 3 applies only when
b is the application of an abstraction to a crumbled value, sub/v only when b is a
variable, and sub/left only when b is the application of a variable to a crumbled
value. It remains to show that ¢ = d (up to alpha): this follows from the determinism
of the lookup in the environment during sub/v and sub/left reductions.

- (" initial segment of C, i.e. C' = C'(C"). Symmetric to the first case.

Overhead transparency
Let ¢ reachable and a € {sub/v,sub/left}. If c =, d then ¢, = d,.

Proof. Let ¢ = C((b,er)) —a C((V,er)) =t d, and let e}, €/ be such that ey =
e}[xeef(a:)]e]’/, noting that = does not occur in ef by proposition 9.8/1 and proposi-
tion 9.8/2. We first prove that (b, ef); = (b, ef),:

- Case sub/v, iee. b = 1z and ¥ = e(x). By proposition 716/1,
(z, ef[zeer(x)]ef)y = (z, eref) {ze—(er(z), €f )1} = (ef(z),€f)) as cis well-
named (proposition 9.8/1). By proposition 9.8/2, fv(es(x)) Ndom(ef [z +ef(z)]) =
0, therefore (ef(7),ef); = (ef(x),er)y, and we conclude with (z,e7); =
(e (x), er),-

- Case sub/left, ie. b = zv and b = es(z)v. Since (zv,er); = (z,er)(v,e€f),,
we can use the point above to conclude.

We now prove that C((b,er)), = C((V',€r)), under the hypothesis that (b, er), =
(b',ef);. By cases on C: if C' = (-) just use the hypothesis. Otherwise
C = (W epe(d) and so (Felvbley)y = (s eer){ze(b e} =
(0", eep) {z (', er), } = (V', e[zV]er), by proposition 7.16/1.
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To prove projection (proposition 9:14) we rely on the notion of substitution o, induced by
an environment, useful to factor out from a crumble the f-environment on its right.

Given an environment e, the simultaneous substitution o, associated with e is defined by
induction on the length of e as follows:'

oo ={} Ofget)e = {x4=(b,€e) } Uo,.

The substitution induced by a f-environment is a fireball substitution:

Substitution of fireballs

If e == [z1¢b1] ... [T,<by] is @ f-environment, then o, = {Z1¢51,...,Tpe5n}
where all the s;s are fireballs.

Proof. By induction on the length of e. If ey := ¢, then o, = {} and the statement is vac-
uously true. Otherwise ef = [z«ble} with €} == [T1¢b1] ... [T,+b,] and then o, =
{z4=(b, 7)1} U by ih. (since e} is a f-environment), oy = {T1¢51,. .., Tpe58,}
where all the b/s are fireballs; also (b, 5})¢ is a fireball by definition of f-environment, as
er = E((b,€')) with E == [x«(-)]; therefore, o, = {x+(b, €}),, T1¢51,. .., Tne8n}
satisfies the statement.

Readback vs append
For any crumble ¢ and f-environment ef, (¢ @ ef), = ¢, 0.

Proof. By induction on the length of e;. If ¢; = € then 0., = {} and hence (¢ @
er)y = ¢y = c{} = cyo,. Otherwise ey = [z<ble; where x ¢ dom(e;); by i.h.
(since e; is a fireball environment), ((¢ @ [z<b]) @ e}); = (c @ [z«b]) 0. and
(b,e)y = ((bye) @ e), = (by€)yoe, = bjog; by the definitions of append and
readback, (¢ @ [z+b]); = ¢ {x«b, }; therefore, (c @ e;); = ((c @ [zb]) Q ¢7); =
(c @ [z<b])yoy = (c{zbi})og = cy({z4biog} Uoe) = e {z<(b )} U
O'e; = C¢O'ef.

The following proposition lifts proposition 311 from Agre to the crumbled setting, and is
fundamental in the proof of beta projection: it basically states that /3 /v steps are transformed
to 5/ f steps under the influence of f-environments.

|fCJ, —8/v di' then (C @ €f)¢ —8/f (d @ 6f)¢.

Proof. According to proposition 911, g, = {Z1¢ f1,...,Tnefo} Where fi,..., f, are
fireballs. By proposition 912 and proposition 311, (¢ @ ef)y, = ¢,0,, —g/f AT, =
(dQe)y

1This definition of o is slightly different from definition 4.8 previously provided in this dissertation, but equivalent.
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Note that proposition 913 does not hold if we replace — 3/, with —5, in the hypoth-
esis. Indeed, take ¢ = ((Az.(z,€))y, [y—(22,€)]) and d = (y, [y<=2z]) and ef =
[z Az (z2, €)]: then, c) = (A\w.x)(22) =5/ 22 = d but(c Qer), = (A\z.2)(Av.22) \T.02) A/
(Az.xx)\r.xx = (d Q ef),. The problem is essentially due to the fact that fireballs, con-
trary to values, are not closed by substitution: this a notable difference between the closed
case (where the normal forms coincide with closed values) and the open case (where the
normal forms coincide with fireballs).

Beta projection

Let c be a reachable crumble. If ¢ =g d then c; —p/f d.

Proof. Let us assume that C'((Az.c) v, er)) =5 C((c Q [z<v])* Q ¢7). C unfolds
to a right v-context by proposition 9.8/s4. Let e @ [y«v] = (c @Q [z«v])*. Let us first
consider C{(Az.c) v, €)):
C{(Az.c)v,€)), = Ci{(Ax.c)) vy) by theorem 7.25/1
. CLlOgey) )
—ppw Cle{y<u})
= Cyle @ [yv] )
= C(e @ [y<v]), by theorem 7.25/1
=C{(c@ [x<—v])o‘>¢.
Note that using theorem 7.25/1 in the last step requires to show that C' L (e @ [y«<uv)),
which holds because the side condition in the (3 rule.

Therefore, C{((Az.c) v,€)), —r5/» C{e @ [y<v]), and, by propositions 7.22 and 913,
C{((Az.c)v, &)), =7 Cle @ [y<vler),.

Progress

If cis normal then ¢ is —>5/f—normal.

Proof. By proposition 9.6, if cis normal then itis a f-crumble i.e. ¢ = ¢f. By definition of
¢f, ¢y is a fireball. By harmony for Agire, ¢, is 5/ f-normal.

We have now proved all the requirements of the implementation theorem for the Open
Crumble GLAM:

Implementation
Let ¢ be a reachable crumble in the Open Crumble GLAM.
1. Initialization: Q =t for every A-term t.

2. Beta Projection: if c —5 dthenc) —g/; d,.
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3. Overhead transparency: if ¢ =gy, dthencp = d;.
4. Determinism: evaluation — is deterministic.

5. Progress: If ¢is —-normal then ¢| is 3/ f-normal.
6. Overhead termination: —,, terminates.

Therefore the Open Crumble GLAM, the right-to-left fireball evaluation — 4, ¢, the crum-
bling translation e, and the readback e form an implementation system.

Proof. Each point is proved separately:
1. See proposition 717.

2. See proposition 9.14.

W

. See proposition 9:10.

4B

. See proposition 9.9.
5. See proposition 9.15.
6. Immediate consequence of forthcoming proposition 917 (proved independently).

To conclude, apply theorem 4.12.

9.3 Complexity

The complexity analysis is identical to the one in section 8.3. Indeed, once the search for the
next redex is neglected, the two machines only differ by the side condition for substitution
steps —>sub/v ANd —Fsuby/ieft-

Recall that a derivation d is a sequence of reduction steps. Moreover, we use |d 8 d\sub/v,
|d|subyiest to count the number of respectively 3, sub/v, sub/left reduction steps in d.

Number of transitions for the Open Crumble GLAM

Letd: cg —* ¢ be a derivation in the Open Crumble GLAM. Then:
1 |dlsubjien < |d|p 41

2. |C|var < ’CO|var - ‘d|sub/v + |d|ﬂ : (K(CO) + 1) and thus ’d|sub/v < |Co‘var + |d|5 :
(K(co) +1).

Proof.

1. Ifan sub/left step is followed by a reduction step, that step must be a 3 step.
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2. By induction on the length of the derivation d. The base case (|d| = 0 and hence
co = c¢) is trivial. As for the inductive case, let cg —* d — ¢ and reason by cases
on the reduction rules:

- sub/v: |¢|var = |d|var — 1 and the result follows by i.h..

- sub/left: |c|var = |d|var and the result follows by i.h..

- Biletd = C(((Az.e)v,ef)) =5 C((e Q [z<v])* Qep) = c.
Clearly |c|var < |d|var + |€|var + 1; by proposition 9.8/3, Az.e is a subterm up
to renaming of co, and therefore |e|var < K(cp). Therefore |c|var < |d|var +
K(cp) + 1 and the result follows by i.h..

Cost of single transitions. The cost of each [3 transition (that needs to perform a copy of
the body of the abstraction in order a-rename it) is bound by M(co).

For the cost of sub/left and sub/v transitions we assume as usual that variables are
implemented as pointers, and therefore lookup and access in the environment can be per-
formed in constant time. For the cost of performing the substitution of the term from the
environment, we can assume that it amounts to the copy of a pointer, as in the closed case.
Therefore, the cost of the derivation is:

|d| < (ldlsubsv + |dlsubsicr) + dlg - (Mo +1)

<|colvar + |d|s - (Ko +2) + |d|g - (Mo + 1)
= |d‘/5 ) (MO + Ko + 3) + ‘C(J’var

Again, the complexity improves when starting from a A-term: by proposition 818, |d| <

|d|s - (2]t| +4) + 1. Summing up:

The Open Crumble GLAM is reasonable & efficient

For any derivation d: ¢ —* ¢ in the Open Crumble GLAM, the transitions in d cost all
together O((|d|g + 1) - [t]) on a RAM.

Proof. By proposition 818 (which is a property of the translation e, independently from
the abstract machine), proposition 917, and the discussion above about costs.
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Chapter 10

Pointed Crumbling Machines

As we have already discussed on page 115, we have been calling the Crumble GLAMs “ma-
chines” even though they do not satisfy the usual requirements for abstract machines. One
of these requirements is the presence of rules that guide evaluation to the next redex: in the
Crumble GLAMs we left implicit the search for the next redex in the evaluation rules, because
searching a redex simply corresponds to traversing the environment from right to left.

In orderto implement the Crumble GLAMs while respecting the complexity analysis that we
presented in sections 8.3 and 9.3, we introduce variants of the Crumble GLAMs called Pointed
Crumble GLAMs, where the search for the next redex is decomposed into O(1) transitions
called src (for search). The other machine transitions are in a one-to-one correspondence
with the ones of the Crumble GLAMs. Finally, we prove that the overall number of the search
steps is bilinear in the number of 3 steps and the size of the initial term, establishing bilin-
earity of the Pointed Crumble GLAMSs.

104 The Pointed Crumble GLAM

The key idea to turn the Crumble GLAM into the Pointed Crumble GLAM is to avoid plugging
and unplugging in the definition of transition rules: we obtain so by letting transitions act on
pointed crumbles, which are crumbles where the beginning of the evaluated coda is explicitly
marked using a pointer. For instance, the crumble (b, eey ) could be represented as (b, e «ey)
where <€ is the explicit separator that must be followed by A-environments only.

A pointed crumble (b, e[x<b'] < ey) is the machine state that is attempting to reduce
the crumble C' (I, e)) with respect to the evaluation context C' = (b, e[z<(-)]). If (I, ey)
is a Crumble GLAM r-redex (for some rule r € {3,sub/v,sub/left}), the Pointed Crum-
ble GLAM will transition according to the corresponding r-transition that also takes care of
setting (in O(1)) the pointer to the rightmost unevaluated crumble. Otherwise, by harmony
(proposition 8.5), b’ must be a crumbled value v and therefore the pointer is moved (in O(1))
one step to the left, looking for the next redex: (b, e[x<v] € e)) —gc (b, € € [z<v]ey).

Not all pointed crumble configurations are of the form (b, [x<V/] <« €y ): the configura-

141
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tions (b, € < ) must be also taken into account and reduced if b is not a crumbled value.
However, there is no simple way to describe machine transitions that act uniformly on both
configurations (b, € < ey) and (b, e[z« b'] «ey) without duplicating the rules or without re-
introducing a notion of contextual closure. To solve the issue, we abandon pointed crumbles
and adopt pointed environments instead.

A pointed environment ([a:<—b]e < e,\) is just a representation of a pointed crumble
(b,e «ey). The leftmost variable x in a pointed environment is a fresh variable that can
be understood as the name given to the machine output. It plays a role similar to the outer-
most A-abstraction introduced by CPS transformations, that binds the continuation that is fed
with the output of the evaluation. In particular, a normal pointed environment (€ <« [z<v]ey)
represents the normal crumble (v, ey).

Pointed environments and readback. Pointed environments are defined as:

Pointed environments
cq:i—cac

where e and €’ are non-pointed environments such that either e or €’ is non-empty. The
environment on the left of the cursor « is the unevaluated part; the one on the right is the
evaluated part.

The encoding t(e) embeds crumbles into pointed environments:

Encoding ¢(e)
t(b,e) = [x<ble e

where x is any variable name fresh in b and e.
The left inverse of t(e) is the readback function (e)y from pointed environments to crum-
bles, defined as follows:
Decoding ()
(e «[z<ble)y = (bye) ([x<ble w )y = (b, ee).

Evaluation. The transitions of the Pointed Crumble GLAM are in fig. 10.1:

Environments e

Ex

el <]
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ut) = le| <€

€ €
‘ elx—(Ay.c) v] ‘ ‘ ex ‘ —_ ‘ elx<ble[z<v] ‘ ‘ ex ‘
Lelya] [ «[er | VR EENCIIRIEN
Lelyeav] | < e | =g Lelyce@v] | < e
‘ elx<b] ‘ ‘ ex ‘ — ‘ e ‘ ‘ [z<blex ‘

src

The Pointed Crumble GLAM

where
Az.(b, €') == (Ay.c)® such that (e[x<b]e'[z<v] 4 ey) is well-named.
if v € dom(ey).

if none of the other rules is applicable, i.e. when b is an abstraction or when b is x or
xv but x is not defined in e,.

Execution in the Pointed Crumble GLAM is then defined as:

— = B U —7sub/v U —7sub/left U —src -

Simulation. We prove that the Pointed Crumble GLAM simulates the Crumble GLAM, follow-
ing the standard schema introduced in section 4.4 and that we have already employed for
the Crumble GLAM in section 8.3. An important difference here is that principal transitions
do not only consist of (3 transitions, but also of sub ones (because they are the ones that we
want to simulate), while src transitions are overhead.

As usual, we call a pointed environment reachable if it is obtained through transitions
starting from the encoding ¢(c) of a well-named closed crumble c.

First of all, we prove some properties that are invariant under the execution of the Pointed
Crumble GLAM:

Invariants for the Pointed Crumble GLAM

Let e ( be a reachable pointed environment in the Pointed Crumble GLAM:
1. Freshness: e ¢ is well-named.
2. Closure: e 4 is closed.

3. Rightmost: € = (e | e)\) for some environment e and some A-environment ej.
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Proof. By induction on the length of the execution sequence leading to e 4. The base
cases hold by the definition of reachability and by the definition of L(.). As for the induc-
tive cases, we proceed by cases on the transitions:

1. For B the claim follows from the side condition. The rules in {sub/v, sub/left, src}
do not change the domain of the pointed environment, hence the claim follows from
the i.h.

2. Similar to the discussion in proposition 8.8.

3. The rules in {8, sub/v,sub/left} do not change the evaluated part, hence the
claim follows from the i.h.. As for the src rule, it suffices to prove that (b, ey) is an
A-crumble, knowing that the other rules in {3, sub/v, sub/left } cannot be applied:
this follows from proposition 8.3.

Directly from the “rightmost” property above it follows a notion of harmony for the Pointed
Crumble GLAM: final states are exactly those where the unevaluated environment is empty.

Harmony for the Pointed Crumble GLAM

A reachable pointed environment e ¢ is normal iff it has the form (e < ey) for some
non-empty A-environment ey.

Proof. The proof of the implication from right to left is trivial. Let us now prove the other
direction. Let e  a reachable normal pointed environment. By proposition 101, €  has
the form (e <« ey). e cannot be non-empty, because otherwise one of the transitions
in {8,sub/v,sub/left,src} could be applied, contradicting the hypothesis that e 4 is
normal.

The following two are small technical propositions needed in the proof of the implemen-
tation theorem below:

For every pointed environment (e[z«b] < e): (e[z<b] w€')y = C(b,€') where C'is:

O {() ife=c¢

(0, e"x(-)]) ife == [y<b]e” '

Proof. Easy by the definition of (e)y.

If [z<b]e is a A\-environment, then (b, ) is a A-crumble.
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Proof. Obvious from the definition of A-environment and A-crumble.

We have now proved all the requirements of the implementation theorem for the Pointed
Crumble GLAM:

Implementation

Let € ¢ be a pointed environment reachable by the Pointed Crumble GLAM.

1.

2.

Initialization: (t(c))y = c for every crumble c.

Principal Projection: if e 4 —, €' 4 then (e<)y —» (€'¢)y for any rule r €

{B,sub/v,sub/left}.
3. Overhead Transparency: if € « — s € (then (e @)y = (€/¢)y-
4. Determinism: evaluation — is deterministic.
5. Progress: if e 4 is normal then (e )y is normal.

6. Overhead Termination: —. terminates.

Therefore, the Pointed Crumble GLAM, the Crumble GLAM evaluation —, the injection ¢(e),
and the readback (')u form an implementation system.

Proof.

1. Let ¢ = (b, €): by the definitions, (¢(c))y = ([z<ble <€)y = (b, e€) = c.

2. By cases on the transitions:

- Case (: suppose e[z(\y.c) v] 4 ey —5 e[r<ble'[z<v] < ey. By proposi-

tion 103, (e[z—(Ay.c) v] wey)y = C{((Ay.c) v, ey)) and (e[z<Dble'[z<v] <
ex)y = C(be[z<v]ey) for some crumble context C. Clearly also

C{((Ay.c)v,en)) =5 C{(b, €' [z<v]ey)).

- Case sub/v: suppose e[y<x] € ex —sup/w e[y—ex(x)] € ex. By propo-

sition 103, (ely«x] wey)y = C(z,ey) and (e[y<er(z)] € er)y =
C((ex(x), ex)) for some crumble context C. Clearly also C((x, ex)) —>sub/o
C((ex(z), ex))-

- Case sub/left: suppose e[y«—xv] Aex —sub/iefr €[y—ex(x)v] wey. By propo-

sition 103, (e[y«<zv] 4 ey)y = C{(zv,ey)) and (e[y—exr(z)v] ey =
C{(ex(z)v, ey)) for some crumble context C. Clearly also C((zwv,ey))
—7sub/left C{(ex(r) v, en)).

3. By inspection of the rule src. We need to prove that (e[z«b] € ey)y = (e «

[z<bley)y. By cases on the structure of e: if e = ¢, then (e[xz<b] < ey)y =
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(b,ex) = (e «[z<bley)y. Ifinstead e = [y«b'le/, then (e[z+b] @ ey)y =
(b, €'[xblen) = (e «[z<Dley)y.

4. The rule src can be applied by definition only when the other rules cannot be ap-
plied. The rules {3, sub/v, sub/left} apply to a pointed environment of the form
(e[z<b] < ey) for distinct shapes of b, i.e. when b is respectively the application
of an abstraction to a crumbled value, a variable, and the application of a variable
to a crumbled value. In order to show that no single rule in {sub/v,sub/left}
can transition to different pointed environments, it suffices to remember that the
lookup of a variable in the environment is deterministic by the assumption that the
environment is well-named (proposition 10.).

5. By proposition 10.2, € 4 is normal iff it has the form (¢ < ey) for some non-empty A-
environmentey. Then (e )y = (e<ey)y whichisan A-crumble by proposition 10.z.
By proposition 8.5, (€ <)y is normal.

6. Immediate consequence of forthcoming corollary 10.8 (proved independently).

To conclude, apply theorem 4.12.

Complexity We reuse the complexity measures introduced in section 8.3. The only difference
here is that we need to bound also the number of src steps, which intuitively depends on
the length of the pointed environment that is being evaluated. We define the new measure
|®|ien on environments and crumbles, that simply counts the number of entries:

|b>€|len =1+ ‘eylen ‘dlen =0 ’€[$‘_b”len =1+ ‘eylen-

Note that after each [ step, the length of a pointed environment increases by the length
of the body of the abstraction that is being reduced. For every environment e, we also define
the constant L(e) that bounds the length of the bodies of abstractions occurring anywhere
ine:

L(e) =sup{|c|ien : Az.cine}.
We extend the definitions above to pointed environments and crumbles in the expected

way:

le €€|ien = |e€|ien L(e w¢') = L(ee) L(c) == L(i(c)).

For any crumble ¢ and A-term ¢: |¢|ien = |t(¢)ien, L(t) < |t| + 1 and [t]ien < |t]| + 1.

We denote by p an execution of the Pointed Crumble GLAM (as usual, a sequence of
transitions), and we use [p|3, |plsub/v, |P|subsiefts | Plsre to count the number of respectively
B, sub/v, sub/left, src transitions in p.
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By theorem 105, 3, sub/v and sub/left transitions are mapped one-to-one to corre-
sponding steps in the Crumble GLAM. As for the number of src transitions:

Number of src transitions

Let ¢ be a well-named crumble, and let p: t(c) —* e « = (e € ey) an execution of the
Pointed Crumble GLAM. Then |e|ien < |clien + |0+ L(¢) — |p]sre-

Proof. By induction on the length of p. In the base case |e|en = |c|ien and |p|p =
|plsre = 0. In the inductive case, use the i.h. and proceed by cases on the transitions.
The transitions sub/v, sub/left do not change the length of the environments. A src
transition decreases by 1 the length of the unevaluated part. A 5 transition increases the
length of the unevaluated part by a number bound by L(c).

As an easy consequence of remark 10.6 and proposition 10.7, we obtain the following
bound on src transitions:

Let ¢ be a A-term. For a normalizing execution p of the Pointed Crumble GLAM starting
from ¢(t), we have |plse < (|plg + 1) - (Jt] + 1).

Cost of evaluation. We already discussed the cost of /3, sub/v and sub/left transitions in
section 8.3. The cost of a src transition is clearly O(1).

The Pointed Crumble GLAM is reasonable & efficient

For any A-term ¢ and any execution p: t(t) —* e ¢ of the Pointed Crumble GLAM, the
transitions in p cost all together O((|p|g + 1) - |t|) on a RAM.

Proof. The cost |p| of p is the the total cost of 3, sub/v, sub/left transitions (which was
proved in section 8.3 to be bilinear in the number of 3 steps (plus one) and the size of
the initial crumble when starting from A-terms) plus the total cost of src transitions. The
cost of src transitions in p is big-O of the number of src transitions, and therefore by
corollary 10.8, again bilinear in the number of 3 steps and the size of the initial term

(both plus one).

OCaml implementation. An implementation in OCaml of the Pointed Crumble GLAM can be
found in chapter 11, together with the code that implements the crumbling translation. That
chapter also discusses in detail a parsimonious choice of data structures for the implemen-

tation of pointed environments.
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10.2 The Open Pointed Crumble GLAM

In this section we provide the Open Pointed Crumble GLAM, a machine for open terms that
decomposes the search for the next redex in commutative O(l) steps following the same
pattern as the Pointed Crumble GLAM in section 101 for the closed case. In particular, the
definitions of pointed environment, encoding ¢(e) (from crumbles to pointed environments)
and decoding (e)y (from pointed environments to crumbles) are the same. The transitions
of the Open Pointed Crumble GLAM differ from the ones of the Pointed Crumble GLAM exactly
as the transitions of Open Crumble GLAM differ from the ones of the Crumble GLAM.

Evaluation. The transitions of the Open Pointed Crumble GLAM are in fig. 10.2:

Environments e = € | e[x<]
— € ‘

ef z<bles

el < e

‘ elx—(Ay.c) v] ‘ ‘ ef ‘ - 4 ‘ elxble[zv] ‘ ‘ ef ‘
ely=al | <l — b Lyeg@] | < e |
Lelyeavl [ <fe | g [elyoerlap] [ < e |
Leloct] | <] e | . Lol <] [obley

The Open Pointed Crumble GLAM
where
Az.(b,€') == (Ay.c)® such that (e[z<b|e'[z<v] < €f) is well-named.
if € dom(ey) and ef(z) is an abstraction.

if none of the other rules is applicable, i.e. when b is an abstraction or when b is x or
xv but z is not defined in ef or ef(z) is not an abstraction.

As in the Open Crumble GLAM, then only difference with respect to the corresponding
closed machine is in the condition ), where we also require that ef(x) is an abstraction.



10.2. THE OPEN POINTED CRUMBLE GLAM 149

Again, we call a pointed environment reachable (in the Open Pointed Crumble GLAM) if it
is obtained through transitions starting from the encoding ¢(c¢) of a well-named crumble c.

First of all we prove the following invariants for the Open Pointed Crumble GLAM; the proof
proceeds like the one of proposition 10.1, with the only difference that we drop the property
of e ¢ being closed.

Invariants for the Open Pointed Crumble GLAM

Let e  be a reachable pointed environment:
1. Freshness: e ¢ is well-named;

2. Rightmost: e « = (e < ¢f) for some e and some f-environment e.

Proof. By induction on the length of the execution sequence leading to € . The base
cases hold by the definition of reachability and by the definition of L(O). As for the induc-
tive cases, we proceed by cases on the transitions:

1. For B the claim follows from the side condition. The rules in {sub/v, sub/left, src}
do not change the domain of the pointed environment, hence the claim follows from

the i.h.

2. The rules in {B,sub/v,sub/left} do not change the evaluated part, hence the
claim follows from the i.h.. As for the src rule, it suffices to prove that (b, ef) is a f-
crumble, knowing that the other rules in {3, sub/v,sub/left} cannot be applied:
this follows from proposition 9.4.

Also the Open Pointed Crumble GLAM enjoys a form of harmony:

Harmony for the Open Pointed Crumble GLAM

Let e ¢ areachable pointed environment in the Open Pointed Crumble GLAM: e ¢ is normal
if and only if it has the form (e | ef) for some non-empty f-environment er.

Proof. The proof of the implication from right to left is trivial. Let us now prove the other
direction. Let e  a reachable normal pointed environment. By proposition 10.10, € ¢ has
the form (e <« ef). e cannot be non-empty, because otherwise one of the transitions
in {B,sub/v,sub/left,src} could be applied, contradicting the hypothesis that e 4 is
normal.

It follows a technical proposition corresponding to proposition 10.4, which then leads to
the implementation theorem right below.

If [z<b]e is a f-environment, then (b, e) is a f-crumble.
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Proof. Let (t,e) = C{(V',¢e)) for some C, ¥, €. Then [z<ble = E(C(V/,¢')) for E =

[z<(-)]. The requirements for a f-crumble follow from the definition of f-environment

for [x<ble.

Implementation

Let e ¢ @ reachable pointed environment in the Open Pointed Crumble GLAM.

1.

2.

5.

6.

Initialization: (t(c))y = c.

Principal Projection: if e4 —, € (then (eq)y — (€')y for any transition

r € {B,sub/v,sub/left}

Overhead Transparency: if € 4 —>sc € ¢ then (e <)y = (€/¢)y-
Determinism: — is deterministic.

Progress: if e ¢ is normal, then (e 4)y is normal.

Overhead Termination: —>. terminates.

Therefore, the Open Pointed Crumble GLAM, the Open Crumble GLAM evaluation —, the
injection ¢(e), and the readback (e)y form an implementation system.

Proof.

1.

2.

3. By inspection of the rule src. We need to prove that (e[z«b] < ef)y = (e
[z+bler)y. By cases on the structure of e: ife = ¢, then (e[z«b] wes)y = (b, ef
(€ «[z<Dblef)y. Ifinstead e = [y«<b']e/, then (e[z«<b] wes)y = (V, € [x<Dles
(e «[zblef)y.

Let ¢ = (b, ): by the definitions, (¢(c))y = ([x<ble we€)y = (b,ee) = c.

By cases on the transitions:

- Case (: suppose e[z (Ay.c)v] € ef —p5 e[rt]e'[z<v] <. By proposi-

tion 103, (e[z(Ay.c)v] wer)y = C(((Ay.c)v, ef)) and (e[r<ble’[z<v] <
ef)y = C((b,€'[z<v]er)) for some crumble context C. Clearly also
C{(Ay-c)v, er)) =5 C{(b, €[zev]ey)).

- Case sub/v: suppose ely«<z]| € e —qup/y ely—es(x)] «ep. By proposi-

tion 103, (e[y<x] wer)y = C(z, er) and (e[y<—er(x)] wer)y = Clef(z), ef)
for some crumble context C. Clearly also C((x, ef)) —>sub/o C(er(2), €f).

- Case sub/left: suppose ely—zv] € e —>sub/ien ely—ep(x)v] < e By

proposition 10.3, (e[y«<zv] € ef)y = C{(zv,er)) and (e[y«—es(z) v] «
er)y = C((ef(z)v,ep)) for some crumble context C. Clearly also
C((zv, er)) —suw/ien C{(er(x) v, e7)).

I A

)
)
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4. The rule src can be applied by definition only when the other rules cannot be ap-
plied. The rules {3, sub/v, sub/left} apply to a pointed environment of the form
(e[x<b] < ef) for distinct shapes of b, i.e. when b is respectively the application
of an abstraction to a crumbled value, a variable, and the application of a variable
to a crumbled value. In order to show that no substitution can transition in two
different ways, it suffices to remember that the lookup of a variable in the envi-
ronment is deterministic by the assumption that the environment is well-named
(proposition 10:10).

5. By proposition 1011, € ¢ is normal iff it has the form (e<ef) for some non-empty f-
environment es. Then (e <)y = (€ <er)y which isa f-crumble by proposition 10.12.
By proposition 9.6, (€ <)y is normal.

6. Immediate consequence of forthcoming corollary 1015 (proved independently).

To conclude, apply theorem 4.12.

Complexity We reuse the measures | ® |en and L(c) introduced for the Pointed Crumble
GLAM on page 146. We also reuse the usual notations |p|g, | o]sub/v. |2|subjieft, | P]sre to count
the number of respectively (3, sub/v, sub/left, src transitions in an execution p of the Open
Crumble GLAM.

By theorem 1013, f3, sub/v and sub/left transitions are mapped one-to-one to corre-
sponding reduction steps in the Open Crumble GLAM. As for the number of src transitions:

Number of src transitions

Let p: t(c) —=* e « = (e «ef) an execution of the Open Pointed Crumble GLAM. Then
lelien < lclien + [plg - L(c) — [plsre.

Proof. By induction on the length of p. In the base case |e|en = |c|ien and |p|p =
\p\src = 0. In the inductive case, use the i.h. and proceed by cases on the transitions.
The transitions sub/v, sub/left do not change the length of the environments. A src
transition decreases by 1 the length of the unevaluated part. A 5 transition increases the
length of the unevaluated part by a number bound by L(c).

For a normalizing execution p starting from ¢(t), we have |plsre < (|plg + 1) - ([t] + 1).

Cost of evaluation. The cost of /3, sub/v and sub/left transitions was already discussed in
section 9.3. The cost of a src transition is clearly O(1).
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The Open Pointed Crumble GLAM is reasonable & efficient

For any execution p: L(z) —* e ¢ in the Open Pointed Crumble GLAM, the transitions in
p cost all together O((|p|g + 1) - |t]) on a RAM.

Proof. The cost |p| of p is the the total cost of 3, sub/v, sub/left transitions (which was
proved in section 9.3 to be bilinear in the number of 3 steps (plus one) and the size of
the initial crumble when starting from A-terms) plus the total cost of src transitions. The
cost of src transitions in p is big-O of the number of src transitions, and therefore by
corollary 1015, again bilinear in the number of 3 steps and the size of the initial term
(both plus one).

OCaml implementation. An implementation in OCaml of the Open Pointed Crumble GLAM
can be found in chapter 11. The OCaml code for the Open Pointed Crumble GLAM is identical to
the one for the Pointed Crumble GLAM but for three lines: two lines implement the additional
check for values in the substitution rule, and one considers also inert terms in the search
rule.



Chapter 11

OCaml Implementation

The goal of this section is implementing in OCaml the Pointed Crumble GLAM and Open
Pointed Crumble GLAM presented in sections 101 and 10.2. Before picking a concrete im-
plementation, we are going to describe the abstract requirements of the data structures. The
two machines share the same data structures and auxiliary functions, and only differ by three
lines of code.

Data structures. The machine works on pointed environments of the form (e < ey). The
two environments are subject to different requirements:

- the unevaluated part e is extended only on the right during the 3 rule by appending
an a-renamed unevaluated environment. Because a-renaming requires at least linear
time, appending does not need to be faster than O(n) where n is the length of the
environment to be appended.

Only the rightmost entry is inspected by every reduction rule. Finally, the src reduction
step removes the rightmost entry, moving it to the evaluated part. Therefore the uneval-
uated environment must implement the stack interface, allowing to perform push, pop
and topmost inspection in constant time.

- As for the evaluated part ey, reduction rules never exploit the sequential structure of
ex. On the contrary, the sub/v and sub/left rules need to access the entry associated
with a variable x in constant time. The only other operation required (by the src rule)
is to add an entry to it in constant time.

To satisfy lookup in constant time for ey, we implement ey as a store, thus ignoring its
list structure. In turn, this choice impacts on the data structure for terms, because it forces
(occurrences of) variables to be implemented as pointers to memory locations. More explic-
itly, an entry [x«<b] is represented as a node n which is a record containing a field content
holding b together with additional fields soon to be described. If « is the address of n, oc-
currences of x are represented in OCaml as Shared(n), which means a memory crumble
tagged as Shared and pointing to a.

153
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Occurrences of A-bound variables are instead presented as Var(v) where v is a unique
identifier for that variable. Thus the data structure for terms is:

and term =
| Var of var
| Lam of var * crumble
| App of term x term

| Shared of node

Because a variable can point both to a evaluated or unevaluated entry, the unevaluated
environment e must consist of nodes as well. The simplest implementation of a stack is a
linked list of nodes. Therefore we add to each node a field prev used to point to the previous
entry in the environment, and we identify e with the pointer to its first node. An additional
field copying and mutability of all fields are required to implement a-renaming in linear
time; we explain their use later. Therefore a node is:
type node =

{ mutable content : term
; mutable copying : bool

; mutable prev : node option }

Unreachable nodes can be garbage-collected by the runtime of OCaml. Because the eval-
uator holds a pointer to the unevaluated environment, only evaluated nodes can be garbage-
collected.

A crumble should be a term together with an unevaluated environment. For the same
reason of section 101, we implement the crumble (b, e) as the unevaluated environment

t(b,e) = [x<ble where x is a fresh variable. Therefore the crumble datatype is just an
environment, i.e. a pointer to a node:

and crumble = node

Finally, we implement the datatype of unique A-bound variable identifiers var as the
address of an OCaml record that holds no useful information. Thus comparing variables can
be achieved using pointer equality ==. Concrete implementations can add fields to the record,
for example to associate the name of the variable as a string.

type var = { dummy: unit } (* no empty records in OCaml x*)

A summary of the data structures can be found in fig. 11.1.

type var = { dummy : unit }
type node =
{ mutable content : term



155

; mutable copying : bool

; mutable prev : node option }
and crumble = node
and term =

| Var of var

| Lam of var * crumble

| App of term x term

| Shared of node

let mk _node content =
{ content ; copying = false ; prev = None }

let push n e =
n.prev <- Some e

Data structures

Implementation of reduction rules. The code that implements reduction in the closed and
open cases can be found in fig. 11.2. The evaluation functions eval_c/eval_o take in input
an unevaluated environment, i.e. a node n.

The code that implements the rule 3 for (Ay.e)b is the most complex because it must:

1. a-rename Ay.e to (Ay.e)® = A\y'.€. Lete’ = [yj<b)]. .. [y, <b.].

2. change the top of the unevaluated environment (stack) n to [n<b/] and append to it
[Ya=bh] - - [yp=by

3. push [¢/«b] on top of the unevaluated environment

To implement the previous steps efficiently, the code creates the node 3 pointing to b
and then calls a function copy_env y /' n e that performs at once steps 1and 2 in linear time,
returning the new unevaluated environment €’. Finally push 4/’ €’ pushes " on top of €.

The sub/left and sub/v rules just update the content of the top of the unevaluated
environment in the required way.

The src rule is implemented by the function pop that pops the top of the unevaluated
environment and calls evaluation on the new top, if present. Otherwise a normal form is
reached, and evaluation returns the term that, pointing to the evaluated environment, forms
the normal crumble. When a node is popped, its prev pointer is unset to facilitate garbage-
collection of unreferenced nodes.

Let us remark that the implementation is tail-recursive'; since OCaml optimizes tail-recursion,
the machine only consumes constant space on the process execution stack.

Twhen the pop function is inlined
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As a minor optimization to the expected code, our implementation merges execution of
rule sub /v with that of the src step which always follows the former. The merging is obtained

calling pop in place of eval_c/eval_o.

let rec eval ¢ n =
match n.content with
| App(Lam(y, e), t) ->
(x rule B x)
let y' = mk node t in
let e’ =
copy_envy y’' nein
push y’' e’;
eval c y’
| App
(Shared
{content=t1}
, t2) >
(# rule sub/left *)

n.content <- App(tl, t2);

eval_c n
| Shared
{content=1} ->
(* rule sub/v *)
n.content <- 1;

pop n

| Lam = ->
(* rule src x)
pop n
| var _ | App(Var _, )
-> failwith "Open"
| App(- ,App )
| App(App —,-)
-> assert false
and pop n =
match n.prev with
| None -> n.content
| Some p ->
n.prev <- None;

eval c p

let rec eval o n =
match n.content with
| App(Lam(y, e), t) ->
(x rule 8 x)
let y' = mk node t in
let e’ =
copy_envy y’' ne in
push y’' e’;
eval o y’
| App
(Shared
{content=(Lam _ as tl1)}
, t2) ->
(* rule sub/left *)
n.content <- App(tl, t2);
eval_o n
| Shared
{content=Lam _ as 1} ->
(* rule sub/v *)
n.content <- 1;
pop n
| Shared
| App(Shared , )
| var | App(var ., )
| Lam _ ->

(* rule src *)

pop n

| App(- ,App )
| App(App —,)
-> assert false
and pop n =
match n.prev with
| None -> n.content
| Some p ->
n.prev <- None;

eval o p

Evaluation: closed (left) vs open (right)

The complexity of each case is O(l), but for the multiplicative rule which requires a re-
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naming of environment (copy_env). It remains to see how this operation can be implemented
with linear complexity.

Implementation of a-renaming. We implement a-renaming of unevaluated environments
by creating a copy of the environment. The representation in memory of the environment is
a DAG because terms in the nodes of the environment contain occurrences of Shared nodes
defined in the same environment. Therefore we need to implement a copy algorithm over
DAGs that runs in linear time.

The algorithm consists in using the content field of nodes to perform the renaming. When
a node is being copied, it is temporarily put in the copying=true status, and its content
field is changed to point to the corresponding new node. Then, the rest of the environment
is copied recursively. When an occurrence of a node that is being copied is found in the term
being copied, it is replaced with the new node stored in the content field of the old one.
Finally, when the copy is over, the copying status of every node is reset to false and the
previous value of content is restored, yielding the original environment.

The auxiliary copying_node y y' ffunction, wherey is the node to be copiedtoy’, im-
plements the idea above by temporarily puttingy in copying=true status, until f is executed.

let copying node y y’' f =
let saved = y.content in
y.content <- Shared y' ;
y.copying <- true ;
let res = f () in
y.content <- saved ;
y.copying <- false ;
res

The copy_env y y’ n e function (fig. 11.3) not only implements the algorithm above by
copying e, but it also replaces occurrences of Var y (the bound variable in a —4 redex)
with Shared y’ (the new node pointing to the argument of the redex) and it reuses the
node n as the last node in the new environment. ie. let e = [xg<by). .. [Tg<bk]; then
copy_env y y' n e= [nebi]yheby] ... [y, <bL] where b := bi{yy' H{ai 2]} .. {zpal )}

let copy envy y’  ne =
let rec copy term = function
| Var v when v ==y -> Shared y’
| Shared {content; copying} when copying -> content
| Var | Shared as t -> t
| App(tl,t2) -> App(copy term t1,copy term t2)
| Lam(v,e) -> Lam(v,copy env_aux e)
and copy env_aux ?n e =
let rec map e =
let t' = copy term e.content in
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match e.prev with
| None ->
(match n with
| None -> mk node t’

| Some n’ -> n’.content <- t’ ; n’)
| Some p ->
let n’ = mk_node t’ in
let e’ = copying node e n’ (fun () -> map p) in
push n" e’ ; n’
in map e

in copy _env_aux ~n e

The copy_env function

The implementation of copy_env just calls map, that iterates over the environment copying
it. Only the last node is handled specially, to reuse the node n if provided. map is recursive with
copy_term, that iterates over terms and calls copy_env under abstractions without handling
the last element in a special way. The auxiliary function copy_env_aux is a technical trick
to use an optional argument ?n to factorize the code between the two handlings of the last
element of the environment (i.e. inside vs outside abstractions).

Crumbling. The code in fig. 11.4 takes an unevaluated environment and returns the corre-
sponding crumbled unevaluated environment. It generalizes the function e that translates
A-terms into crumbles.

It consists in three mutually recursive functions. The first two take in input this which is
the new environment being computed.

1. to_crumble this t computest = (¥, e), appends e to this and returns b'.
2. aux_crumble this t computes the auxiliary translation t = (v, €).

3. aux_env e creates a copy of e in crumbled form in linear time reusing the same trick
of the copying flag as in a-renaming.

let anf e =
() } in
let rec to crumble this = function
| Vvar — as t -> t, this
| App(tl, t2) ->
let t1l, this = aux crumble this t1 in
let t2, this = aux_crumble this t2 in
App(tl, t2), this
| Lam(v, e) -> let e = aux_env e in Lam(v, e), this

let dummy = Var { dummy
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| Shared n -> n.content, this
and aux_crumble this = function
| App ~ as t ->
let n = mk node dummy in
push n this;
let t, this’ = to crumble n t in
n.content <- t;
Shared n, this’
| Var — | Lam _ | Shared = as t -> to crumble this t
and aux_env e =
let n = mk node dummy in
let t’, last = to crumble n e.content in
n.content <- t’ ;
(match e.prev with
| None -> ()
| Some p ->
let e = copying node e n (fun () -> aux env p) in
push n e) ;
last

in aux_env e

The anf function
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This part of the dissertation is about Comparison, i.e. how to compare efficiently A-terms
with sharing.

As discussed in chapter 4, in order to perform evaluation in an efficient way it is fundamen-
tal to share subterms along computation. The notion of useful evaluation mandates that the
result of evaluation is a compact, shared representation of the normal form, which cannot be
unfolded without causing an exponential-time blow up known as size explosion (section 4:1).

Succint representations. Being a compact encoding of the unfolded normal form, one may
wonder if one can still perform on shared terms the usual operations (notably, compare them)
without introducing an exponential overhead.

In fact, a common problem for succint representations of data structures is that the
complexity of algorithms operating on them may increase dramatically (Papadimitriou, 1992):
even algorithms with low computation complexity on A-terms may become slow on their
compact encoding, simply because their running time is now considered as a function of the
length of the shared A-terms, which can be exponentially smaller.

Shared A-terms have been shown to be acceptable succint encodings of A-terms by Accat-
toli and Lago, 2014: terms with ES can be compared for equality in time quadratic in the size
of the shared terms, hence there is no blow up. However, in this dissertation we are focused
on linear-time complexity: our motivation is that we require our abstract machines to run
in bilinear time, i.e. linear in the size of the initial term to be evaluated and the number of
[-steps. When combining evaluation through abstract machines with a sharing equality algo-
rithm in order to obtain a bilinear Conversion algorithm, the complexity of sharing equality
has to match the complexity of evaluation: any sharing equality algorithm whose running
time is super-linear in the size of the evaluated terms spoils the resulting overall complexity,
which becomes not bilinear anymore.

In this part of the dissertation we provide our linear-time algorithm for sharing equality,
the first one with such low complexity in the literature. Our algorithm is based on the algo-
rithm by Paterson and Wegman, 1978 for first-order unification, which also runs in linear-time.
It is not at all evident whether an algorithm for first-order unification can be adapted to the
case of A-terms, which have a notion of scoping and binders that is not present in first-order
terms. One of our main contributions is to show that this is in fact possible: one can split the
problem of sharing equality in two subproblems, one which only accounts for the first-order
structure of a shared A-term, and the other also taking into account the binder structure.

A-graphs. In this part we use the representation of shared A-terms as A-graphs that we
have introduced in chapter 6. The reason for this is that Paterson-Wegman'’s algorithm op-
erates on a graph data structure, and cannot be reformulated easily in an algebraic way.
However, as discussed on page 62, we required the same underlying A-graphs representation
also for our abstract machines: in order to prove that abstract machines with global envi-
ronments can be implemented with bilinear-time complexity on a RAM, variables bound in
the environment must be implemented as pointers to the corresponding term in the environ-
ment entry, thus forcing a A-graph-Llike representation in memory. This is why our abstract
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machines basically output A\-graphs that can be compared for sharing equality by our up-
coming algorithm.

Outline. This part is structured as follows:

- In chapter 12 we develop our theory of sharing equality. We call sharing equivalences
the binary relations over a A-graph that capture the sharing equality of related nodes:
they are basically bisimulations plus an additional requirement for free variable nodes.
We focus on how to define and construct the smallest sharing equivalences, by means
of propagating a given input query over the structure of the \-graph.

- In chapter 13, we showcase problems related to sharing equality, showing also their
computational complexity.

- In chapter 14 we provide our linear-time algorithm for sharing equality, together with
full proofs of correctness, completeness, termination and linearity. We also show that
our sharing equality algorithm actually computes the smallest sharing equivalence over
a A-graph.

Conference paper. This part covers the results published in the article (Condoluci, Accattoli,
and Sacerdoti Coen, 2019), whose full proofs can be found in the accompanying technical
report (Condoluci, Accattoli, and Sacerdoti Coen, 2019).



Chapter 12

The Theory of Sharing Equality

In this chapter we study the theory of sharing equality, i.e. in what sense different A-graphs
can represent the same A-term.

A good first intuition is that two A-graphs describe the same unfolded A-term if they
present the same structural paths, just collapsed in a different way. Consider for example the
three equivalent A-graphs below:

App App App

(AN} )

App App App App
Ll (AN VAN [AN]
Abs Abs Abs Abs Abs
T T e i e

bVar bVar bVar bVar bVar

Sharing equivalent A-graphs

The most natural way of checking sharing equality then seems to test the given graphs
for bisimilarity: the expected outcome is that two nodes are bisimilar if and only if they have
the same readback to A-terms. For example, we may query whether the first two A-graphs of
fig. 121 are sharing equivalent by asking whether their roots nodes are bisimilar. We denote
queries visually by a curly blue wave:

e e [0
N [N
App App App
L L N\
Abs ébs ébs {\\bs
1l Tl T 1
bVar bVar bVar bVar

A query
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The simplest case is when there are only two roots, say n and m, and the query contains
only n @ m. However, since A-graphs may have multiple root nodes it is not necessary to
restrict the query to only two roots. Hence we give a more general definition of queries that
may relate any number of roots of not necessarily disjoint or even distinct A-graphs:

Query O

Let G be a pre-A-graph. We call query (over G) any binary relation Q over the root nodes'
of G.

Traditionally two nodes are said to be bisimilar if there exists a bisimulation that relates
them, but in our more general setting of a query Q the requirement is the existence of a
bisimulation that contains Q.

To define formally what a bisimulation is, we need two ingredients. First of all, bisimu-
lations can only relate nodes that are homogeneous, i.e. nodes with the same label: this
is justified from the perspective of A-terms, since nodes with different labels clearly cannot
have the same readback.

Homogeneous nodes (Paterson and Wegman, 1978)

Let n, m be nodes of a labeled graph G. We say that n and m are homogeneous (in GG) if
they have the same label.

In the rest of the chapter we will denote by R a generic binary relation over the nodes
of a A-graph G. We call R homogeneous if it only relates pairs of homogeneous nodes, i.e.
n R mimplies that n and m are homogeneous in GG.

The other requirement for a bisimulation is to be closed under the expected structural
rules over A\-graphs, which we provide in fig. 12.3.

- nRm nRm mRp
nRn T nRp
App(n1,nz) R App(my, my) App(n1,n2) R App(my, my)

ny R mq No R Mo
Abs(n) R Abs(m) bVar(n) R bVar(m)
nR m nR m

Sharing equivalence rules

We group the rules in fig. 12.3 in the following way:

- Equivalence rules: rules are the usual rules that characterize equivalence
relations, respectively reflexivity, symmetry, and transitivity.

0ne may wonder why restricting queries to root nodes only: see the discussion on page 176.
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- Bisimulation rules:

- Propagation rules: rules are downward propagation rules on the \-
graph. The rules and state that if two application nodes are related, then
also their corresponding left and right children should be related. The rule

states that if two abstraction nodes are related, then also their bodies should be
related.

= Scoping rule: the rule states that if two bound variable nodes are related, then
also their binders should be related.

We are now ready to define bisimulations formally:

Bisimulation

Let G be a A-graph, and R be a binary relation over the nodes of G. R is a bisimulation
(over GG) if and only if it is homogeneous and closed under the rules
of fig. 12.3.

However, the existence of a bisimulation is not sufficient to capture sharing equality: free
variable nodes must be handled separately, because we must take into account their attached
name. We thus introduce the new concept of open relations, relations that do not relate free
variable nodes with different names:

Open

Let R be a binary relation over the nodes of a A\-graph GG. We call R open when
fVar(z) R fVar(y) implies x =y v.

As we are going to show, open bisimulations characterize exactly sharing equality. How-
ever our sharing equality algorithm in chapter 14 computes what we call sharing equivalences,
which are open bisimulations and also equivalence relations.

Sharing equivalence

Let = be an equivalence relation over the nodes of a A-graph G. We say that & is a
sharing equivalence if and only if it is an open bisimulation.

Let us come back to the query Q from fig. 12.2: we provide below a sharing equivalence
containing Q. Sharing equivalences are equivalence relations, but in the figure we use an eco-
nomical representation with green (horizontal) waves, connecting nodes in the same equiva-
lence class by a green path, and omitting reflexive/transitive waves.
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Sharing equivalence (cf. fig. 12.2)

HBg A T
VAN (l
App App App
Ll Ll N
Abs Abs Abs Abs
] ) 7] T )
bVar bVar bVar bVar

Let us outline the development of the rest of this chapter. We delay until section 12.3 the
proof that sharing equivalences correctly characterize the equality of the read back A-terms.
We first focus on characterizing the smallest sharing equivalence containing a given query,
since our algorithm in chapter 14 computes exactly that smallest sharing equivalence. In
order to do so, we define two different closures of queries over a A-graph: propagations in
section 121, and spreadings in section 12.2. For both closures we prove universality, i.e. the
fact that they produce the desired relations whenever possible: the propagation of a query
is the universal (open) bisimulation containing that query, and similarly the spreading of a
query is the universal sharing equivalence containing that query. We conclude the chapter
with the sharing equality theorem (theorem 12.29).

121 Propagation |

In this section we study the problem of finding the smallest open bisimulation containing
a given query Q. To this aim, we first define the propagation Q¥ of Q, which amounts to
the closure of @ under the structural rules of the underlying pre-A-graph. Since propagation
does not distinguish bound variable nodes (i.e. the backward ¢) edges) it does not look like
a good candidate for a bisimulation, but this is not actually the case. In fact, the main and
surprising result of this section is the universality of QY theorem 1216: Q¥ is actually the
smallest (open) bisimulation containing Q, whenever any (open) bisimulation containing Q
exists at all.

We first define propagated relations, that are relations closed under the structural rules
of pre-A-graphs:

Propagated relation

Let R be a binary relation over the nodes of a pre-A-graph GG. We say that R is propa-
gated (over () if and only if it is closed under the rules | | of fig. 12.3.

We also define a weaker form of bisimulations, which we call pre-bisimulations. They are
to pre-\-graphs what bisimulations are to A-graphs:
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Pre-bisimulation
Let G be a pre-A-graph, and B be a binary relation over the nodes of G. We say that B
is a pre-bisimulation if and only if it is homogeneous and propagated over G.
In the rest of this dissertation we denote by 3 a generic (pre-)bisimulation.

We start with two auxiliary propositions that connect propagated relations and paths of
A-graphs. The first one shows that propagated relations are closed also under the iteration
of propagation rules, i.e. under traces:

Trace propagation

Let R be a propagated relation over a pre-A-graph G. Let n, m be nodes of GG such that
n R m, and let 7 be a trace such that 7: n ~ n"and 7: m ~» m’. Thenn’ R m’.

Proof. We prove that n’ /R m’ by structural induction on the trace 7:
- Case e. Clearly n” = nand m’ = m, and we use the hypothesis n R m.

- Case (7 ¢). Assume (T - v ):n ~ n"and (7- v): m ~» m’. By inversion,
there exist n””, m” such that 7: n ~» App(n’,n”) and 7: m ~» App(m’, m”). By
i.h. App(n’,n”) R App(m’, m”), which implies n” R m’ by

- Case (7 - ). Symmetric to the case above.
- Case (7 - 1). Assume (7 - 1):n ~> n"and (7 - 1): m ~» m’. By inversion,

7:n ~> Abs(n’) and 7: m ~» Abs(m’). By ih. Abs(n’) R Abs(m’), which
implies n” R m’ by

The second auxiliary proposition shows that whenever two nodes are related by a pre-
bisimulation, then they are start nodes of paths with the same traces:

Trace equivalence

Let R be a pre-bisimulation over a pre-A-graph GG. Let n, m be nodes of G such that
n R m. Then for every trace 7, 7: nif and only if 7: m.

Proof. Assume that n /R m holds. We proceed by structural induction on 7:
- Case e Clearlye: nand e: m.

- Case (7 - d). We assume without loss of generality that (7 - d): n, and prove that
(1-d): m.
By inversion, 7: n ~~ n’ for some n’, and by i.h. 7: m ~» m’ for some m’. From
proposition 12.8 we obtain n” R m’, where n” and m’ are homogenous because R
is a pre-bisimulation by hypothesis. We proceed by cases on d:

- Case d = |. Then m’ = Abs(m”) for some m”. Clearly (7 - 1): m ~» m".
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- Casesd = v ord = . Then m’ = App(m’, mj,) for some m’, m),. Clearly

(T-v):m~>mjand (7-\): m~> m.

We now turn to the definition of propagation. We define the propagation R of a relation
‘R as the smallest propagated relation containing R

Propagation 2./

Let R be a binary relation over the nodes of a pre-A-graph G. The propagation " of R

is obtained by closing R under the rules of fig. 12.3.

The following remark states that RY is the smallest propagated relation containing R:

Minimality of R¥

If R C R’ and R’ is propagated, then R¥ C R’

We can also rephrase the minimality of RY in terms of paths:

Inversion

Let R be a binary relation over the nodes of a pre-A-graph (&, and n, m be nodes of GG.
n R¥ mifand only there exists a trace 7 and nodes n’, m’ suchthatn’ R m/, 7: n’ ~ n,
and 7: m’ ~» m.

Proof. We prove separately the two directions of the “if and only if":

(=) Assume that n R¥ m. We proceed by induction on the inductive definition of the
derivation of “n RY m”:

Base case: n R¥ mbecausen R m. Conclude by consideringn’ = n,m = m’,

and 7’ =€
Case (): assume that n R¥ m because App(n,n”) RY App(m,m”) for
some n”;m”. By ih. there exists 7 such that 7: n’ ~» App(n,n”) and

7:m' ~» App(m, m”). Clearly (7- v ): n"~»nand (7- v ): m' ~> m.
Case . Symmetric to the case above.

Case (1) assume that n R¥ m because Abs(n) R¥ Abs(m). By i.h. there
exists 7 such that 7: n’ ~» Abs(n) and 7: m’ ~» Abs(m). Clearly (7T -
Lin’~mnand (7-1): m ~» m.

(<) Note that n R m implies n R¥ m, and conclude by proposition 12.8.

The following proposition is a fundamental property of bisimulations, required to prove

many upcoming results: it states that (pre-)bisimulations cannot relate both a node and
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their children. This is a weaker form of the fact that if we quotient a pre-A-graph over a pre-
bisimulation, the result is still a pre-A-graph, and in particular it implies that there cannot
be cycles in the quotient graph.

No triangles

Let G be a finite and acyclic pre-A-graph, and let B be a pre-bisimulation over GG. Let
n, m, m’ be nodes of (G, and 7 a non-empty trace. If n B m and 7: m ~» m’, then
n B m’ can not hold.

Proof. Assume that n B m’, and obtain a contradiction. Intuitively, we are going to show
that the trace 7 can be iterated arbitrarily many times starting from m, contradicting the
hypothesis that the input pre-A-graph is finite and acyclic.

The contradiction will follow by iterating the following construction:

- From the hypotheses that n B m and 7: m ~» m’ it follows from proposition 12.9
that7: n ~» n’ for some n’. From the hypothesis that n 3 m together with 7: n ~
nand 7: m ~» m’, it follows that n” B m’ by proposition 12.8.

- From the hypothesis that n B m’ and 7: n ~ n’ it follows from proposition 12.9
that 7: m’ ~» m” for some m”. From the hypothesis that n B m’ together with
7:n~>n"and 7: m' ~ m”, it follows that n’ B m” by proposition 12.8.

The construction above can be repeated by using the new hypothesesn’ B m’, 7: m’ ~
m”, and n” B m”. Iterating the construction arbitrarily many times yields a sequence of
nodesm, m’, m”, ...suchthat7: m~>m’,7: m" ~»m”, ..

This contradicts the hypothesis that GG is finite and acyclic.

We now turn to proving the universality of Q% (upcoming theorem 1216), but we first
need two auxiliary propositions. The first one is a simple remark about cutting a subpath in
correspondence of a crossed node.

Cutting a path

Let n, m, p be nodes of a pre-A-graph G, and 7 a trace such that 7: n ~» m crosses p.
Then there exists a trace 7’ such that 7/: p ~» m.

The following proposition is the fundamental property to prove universality. It is the in-
ductive variant needed in the proof of theorem 1216, showing how it is not necessary to
consider binding edges () when looking for the smallest bisimulation. It basically states
the following: take a bisimulation I3 containing a relation R, and two root nodes r, t’ related
by these relations. By walking down the graph, starting from the two nodes and using the
same trace, one may cross various abstraction nodes. The proposition states that 3 and RY
relate exactly the same pairs of abstraction nodes encountered.
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Propagation agrees with bisimulations

Let G be a finite and acyclic pre-A-graph, let B be a pre-bisimulation over GG, and let R
a relation such that R C B. Let n,m be nodes of GG such thatn R m, and 7 a trace
such that 7: n crosses | and 7: m crosses I. Then | B I implies | RY I'.

Proof. Assume | B I'. We proceed by structural induction over the derivations of “7: n
crosses I and “7: m crosses I'":

- CaseT:n~»land 7: m ~= I'. By proposition 1212 it follows that | R¥ ', and we
can conclude.

- Case 7:n ~ land 7: m ~» m’ # I": this case is not possible, i.e. we derive a
contradiction. Since 7: m ~» m’ crosses I, we obtain by remark 1214 a trace 7’ such
that 7/: I' ~» m’, that is non-empty because I' £ m’. Note that by proposition 1212
it holds that | R¥ m’, that implies | B m’ by remark 12.11. Obtain a contradiction
by proposition 1213, using | B, 7/: " ~ m’ and | B m'.

- Case7: n~>n"#land 7: m ~ |": symmetric to the case above.

- CaseT = (7'-d), (7"-d):n~n"#1land (7" - d): m ~ m’ # I'_ It holds that

7' ncrosses | and 7/: m crosses I, and we just use the i.h. to conclude.

We can finally prove the universality of Q¥:

Universality of Q¥

Let Q be a query over a A-graph G. Q¥ is an open bisimulation if and only if there exists
an open bisimulation containing Q.

Proof. Clearly if Q% is an open bisimulation then Q¥ is the required open bisimulation
containing Q. As for the other direction, let B be an open bisimulation containing Q. By
definition, Qu is closed under the rules ! | of fig. 12.3. In order to prove that
OVisan open bisimulation, it suffices to show that oY isalso open, homogeneous and
closed under

- Open: since Q¥ is contained in B by remark 1211, £Var(z) Q% fVar(z’) implies
fVar(z) B fVar(z’), and since B is open we obtain z = 2.

- Homogeneous: Q¥ is homogeneous because QY is contained in B (by remark 12.11),
and B is homogeneous.

+ Closed under (&) we need to show that | Q¥ I' whenever bVar(l) Q% bvar(l’).
Since QY is contained in B by remark 1211, bVar(l) QY bVar(l') implies
bVar(l) B bVar(l’), and since B is closed under (&8 we obtain | B I'.

From bVar (1) Q¥ bVar(I') and proposition 1212, there exists a trace 7 and nodes
n Q msuch that 7: n ~» bVar(l) and 7: m ~» bVar(l'). Since Q is a query,
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7:n ~» bVar(l) crosses | and 7: m ~~ bVar(l') crosses I by domination. We
conclude with | Q¥ I’ by proposition 12.15.

12.2 Spreading #

In this section, we lift the results of the previous section to relations that are also equiva-
lences. We define the spreading Q% of a query Q, which is similar to the propagation oY
but also an equivalence relation. The main result is the universality of O#, theorem 12.26:
O is the smallest sharing equivalence containing Q, whenever any sharing equivalence
containing Q exists at all.

Equivalence relations. First of all we introduce the equivalence closure of a relation:”

Equivalence closure

Let R be a binary relation over the nodes of a A\-graph G. We denote with R* the
reflexitive, symmetric, and transitive (equivalence) closure of R, i.e. the relation obtained
by closing R under the rules of fig. 12.3.

We can now lift the notions introduced in the previous section to the equivalence closure.
The equivalence closure preserves homogeneous relations:

Equivalence preserves homogeneity

Let R be a binary relation over the nodes of a A-graph GG. 'R is homogeneous if and only
if R* is homogeneous.

Proof. If R* is homogeneous, then also R is homogeneous because R C R*. For
the other direction, it suffices to note that the equivalence rules preserve
homogeneity.

And similarly open relations:

Equivalence preserves openness

Let R be an homogeneous relation over the nodes of a A-graph. R is open if and only if
R* is open.

Proof. If R* is open, then also R is open because R C R*. As for the other implication,
let us assume that R is open, and that n R* m for some free variable nodes n, m.
We need to show that n and m carry the same name. We proceed by induction on the

2Note that in this part we denote the equivalence closure with e*; the same symbol is used in other places to
denote the Kleene closure, which is not necessarily symmetric.
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derivation of n R* m. The base case and the cases oa are easy; let us discuss the

case e Assume that n R* m because n R* p and p R* m for some node p. Since
‘R is homogeneous, by proposition 1218 R* is homogeneous too, and therefore p is a
free variable node as well. By i.h. we obtain n = p and p = m, and we conclude with

n=m.

Preservation under equivalence rules of closure under structural rules requires instead
homogeneity:

Proposition 12.20 \ Closure preserved by equivalence closure

Let R be an homogeneous relation, and r € {Q,°,°, @} If R is closed under

r, then R* is closed under r.

Proof. We only consider the case when r is @; the proofs for the other rules are similar.
Assume that R is closed under 7, and let bVar(l) R* bVar(l'): we need to show that
| R* I'. We proceed by induction on the inductive definition of R*:

- Base case: bVar(l) R* bVar(l’) because bVar(l) R bVar(l’). By the hypothesis
that R is closed under @ it follows that | R I', which implies | R* I'.

- Case o: bVar(l) R* bVar(l’) because bVar(l) = bVar(l’). Then | = I, and we
conclude with | R* I by the rule o

- Case e: bVar(l) R* bVar(l') because bVar(l') R* bVar(l). By ih. I R* |, and
we obtain | R* I" by the rule e

- Case e: bVar(l) R* bVar(l') because bVar(l) R* nand n R* bVar(l') for
some node n. Since R is homogeneous, by proposition 1218 R* is homogeneous

too, and therefore n = bVar(l”) for some I”. By i.h. we obtain | R* I” and I” R* I',
and we conclude with | R* I by the rule e

Spreading. We now turn to introduce the spreading R* of a relation R:

Definition 12.21 \ Spreading R

Let R be a binary relation over the nodes of a A-graph. 27 is obtained by closing R

under the ruleso e e Q a ° of fig. 12.3.

Clearly (RY)* C (R#) for every relation R. The converse may in principle not hold, as
the equivalence rules may not commute with the rules of the spreading: for example, the
equivalence closure of a spreaded relation may not be spreaded in general. But surprisingly
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this is not the case, under the hypothesis that R¥ is homogeneous:

Spreading vs propagation
Let R be a binary relation over the nodes of a A-graph G. If RV is homogeneous, then
R* = (R@)*

Proof. Note that (R¥)* C (R#), and that (R%)* is closed under the rules
by the definition of @*. It remains to show that (R%)* is also closed under the rules

which follows from proposition 12.20.

We lift propositions 1218 and 1219 to R¥:

RY preserves homogeneity

Let R be a binary relation over the nodes of a A-graph. R is homogeneous if and only
if RY is homogeneous.

Proof. Clearly if R* is homogeneous, then also R is homogeneous because (T\’,U) -
(R#) For the other direction, assume that R¥ is homogeneous: by proposition 1218 it
follows that (RU)* is homogeneous, and we can conclude by proposition 12.22.

RY preserves openness
Let Q be a query such that Q¥ is homogeneous. Q¥ is open if and only if Q is open.

Proof. Clearly if R* is open, then also R¥ is open because (RY) C (R*). For the other
direction, assume that R¥ is open and homogeneous: by proposition 12.18 it follows that
(RY¥)* is homogeneous, and we can conclude by proposition 12.19.

The following theorem shows that QU and Q# are somewhat equivalent:

oY vs O#

Let Q be a query over a A-graph G. Q¥ is an open bisimulation if and only if Q7 is a
sharing equivalence.

Proof. Let Q be a query over (G. We prove separately the two directions of the double
implication:

(=) Assume that Q¥ is an open bisimulation; in order to prove that Q¥ is a sharing
equivalence, it suffices to show that Q# is open, homogeneous and closed under
. By proposition 12.22 we can discuss (Ru)* in place of R*. Then the require-

ments follow from proposition 12.20, proposition 12.23, and proposition 12.24.

(<) Assume that Q is a sharing equivalence. Then it is also an open bisimulation, and
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thus Q¥ is an open bisimulation by the universality of Q¥ (theorem 12:16).

And finally the universality of Q% easily follows:

Universality of Q7

Let Q be a query over a A-graph G. Q7 is a sharing equivalence if and only if there
exists a sharing equivalence containing Q.

Proof. The implication from left to right is trivial. The other implication follows from
theorem 1216 and theorem 12.25.

Queries and universality. The universality of Q% and Q7 is a neat result, but the hypothe-
ses may seem too restrictive: why requiring the relation Q to be a query, i.e. to only relate
root nodes? It turns out that universality does not hold for the closure of generic relations.
Consider for example the three relations shown in fig. 12.4 over the same \-graph:

Abs Abs Abs Abs Abs Abs
bVar bVar bVar bVar bVar bVar

Various relations over a A-graph.

Note that only the relation in fig. 12.4a is a query, but in all three cases there exists a shar-
ing equivalence containing that relation; such a sharing equivalence is depicted in fig. 12.4¢.
However the spreading of fig. 12.4b is (the reflexive closure of) fig. 12.4b itself, which is different
from fig. 12.4c and not a sharing equivalence.

12.3 Correctness

In this section we investigate the relationship between sharing equivalences over a A-graph
and the equality of the underlying A-terms. The main result is the sharing equality theorem
(theorem 12.29), showing that the existence of a sharing equivalence containing a given query
correctly characterizes the equality of the A-terms read back from that query.

First of all we prove the following auxiliary but fundamental proposition, which corre-
sponds directly to proposition 12.15 for relations. This proposition states that a bisimulation
can relate two abstraction nodes along a given trace if and only if their computed de Bruijn
indices coincide.
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de Bruijn indices agree with bisimulations

Let B be a pre-bisimulation over a A-graph G. Let n, m nodes of GG such thatn B m,
and 7 a trace such that 7: n crosses | and 7: m crosses I'. Then | B I if and only if
index(l | 7: n) = index(I' | 7: m).

Proof. Let 7: n ~» n’ and 7: m ~» m’. Note that by proposition 12.8 it follows that
n’ B m’, which implies that n” and m’ have the same label since B is homogeneous. We
proceed by structural induction on the trace 7, and following the cases of the definition
of index(l | 7: n) and index(l' | 7: m).

1. Case index(l | 7: n ~» 1) = 0 = index(l' | 7: m ~~ ). From proposition 12.8
we obtaine | BY I, and we can conclude.

2. Case index(l | (7-d):n ~ 1) =0 # 1+ index(l' | 7: m) = index(l’ |
(7 -d): m) with I # m’. It holds that | B¥ m, and from the fact that 7: m ~» m’
crosses I we obtain by remark 1214 a trace 7" such that (7" - d): I' ~ m’. From
proposition 1213 (using | B m"and (7/-d): I ~ m’) we obtain | 3 I" and conclude.

3. Case index(l | (7-d): n) =1+ index(l | 7: n) # 0 = index(l | 7: m ~» I')
with | # n’. Symmetric to the case above.

4. Case index(l | (7-d): n) = 1+ index(l' | 7: n) and index(I' | (7-d): m) =
1+ index(l' | 7: m) with | # n’ and I’ £ m’. Use the i.h. to conclude.

5. Case index(l | (7 - d): n) = index(l | 7: n) and index(l' | (7 - d): m) =
index(l" | 7: m): use the i.h. to conclude.

To prove the sharing equality theorem, we first consider the propagation Q¥: in this way,
we can temporarily set aside the equivalence rules and only consider the propagation rules
of an open bisimulation, which correspond pretty much to the strctural rules of equality on
(locally nameless) A-terms. Later, we lift this result to any sharing equivalence by means of
universality.

Correctness of Q¥

Let Q be a query over a A-graph G. QV is an open bisimulation if and only if [n] = [m]
for every nodes n, m such thatn @ m.

Proof. First note that Q¥ is an open bisimulation ifand only if Q% is open, homogeneous,
and closed under . We now prove separately the two implications of the statement of
the theorem:

(«<=) Assume [n] = [m] for every n Q m; we prove that Q¥ is open, homogeneous,
and closed under



178 CHAPTER 12. THE THEORY OF SHARING EQUALITY

- Open. Let fVar(x) Q% fVar(a’). By proposition 1212, 7: r ~» fVar(z) and
T: 1 ~» fVar(x) for some 7 and r Q r’. By proposition 611 [7: r ~] =
[7: r" ~~], and by the definition of readback to A-terms x = 2’ and thus
r=2a

- Homogeneous. Let n Q¥ m. By proposition 1212, 7: n’ ~» nand 7: m’ ~
m for some 7 and n’ @ m’. By proposition 611 [7: 0’ ~] = [r: m' ~].
Conclude by the definition of readback to A-terms.

- Closed under (€). Let bVar(l) Q¥ bVar(l'): we need to prove that | Q¥ I.
By proposition 1212, 7: n ~» bVar(l) and 7: m ~» bVar(l') for some 7 and
n @ m,and by proposition 611 [7: n ~» bVar(l)] = [r: m ~» bVar(l')]. By
the definition of the readback to A-terms, index(l | 7: n ~~) = index(l’ |
T: m ~=). Conclude by proposition 12.27.

(=) Assume that Qu is open, homogeneous, and closed under cand letn @ m. In
order to prove that [[n] = [m]), by proposition 611 it suffices to prove that for every
trace 7 the conditions Trace Equivalence and Trace Propagation hold:

- Trace Equivalence. Note that n @ m implies n Q% m, and conclude by propo-
sition 12.9.

- Trace Propagation. Assume 7: n ~» n’ and 7: m ~ m’. By proposition 1212,
n’ Q% m’. Note that n’ and m’ have the same label because Q% is homo-
geneous by hypothesis. By the property that the A-graph is finite and acyclic,
there exists a bound on the length of traces in the A\-graph, say B. The proof
that [n’] = [m’] proceeds by (course of value) induction on B — |7|, and
by cases on the labels of the nodes (that must be identical because Q“ is
homogeneous):

* Case fVar(z) Q% fVar(z’). From the hypothesis that Q¥ is open it
follows that z = 2/, and we conclude.

* Case bVar(l) QY bVar(l'). From the hypothesis that Q¥ is closed under

it follows that | Q¥ I". We need to show that [[7: n ~» bVar(l)] =
[7: m ~» bVar(l')], ie. index(l | 7: n ~» bVar(l)) = index(l’ |
7: m ~» bVar(l')). Since Q is a query, 7: n ~> crosses | and 7: m ~»
crosses I'. The thesis index(l | 7: n ~» bVar(l)) = index(l' | 7: m ~~
bVar(l')) follows from proposition 12.27.

* Case Abs. By ih. [(7-1):n~] = [(7-1): m~]. We conclude
by the definition of readback, since [7: n~»] = A[(7-1): n~~] and
[(7+1): m ] = A7 4): m~],

*Case App. By ih. [(r-v):n~] = [(r-v):m~] and
[(T-~):n~] = [(7-~): m~>]. We conclude by the definition
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of readback, since [T:n~] = [(7- v):n~][(T-x): n~] and
[rT:m~s]=[(7-v):m~][(7:~): m~].

We conclude this section with the sharing equality theorem: there exists a sharing equiv-
alence containing a given query Q if and only if the readbacks to locally nameless A-terms
of the nodes related by Q are equal.

Sharing equality

Let Q be a query over a A-graph G. There exists a sharing equivalence containing Q if
and only if [n] = [m] for every nodes n, m such thatn Q m.

Proof. By theorem 12.25, theorem 12.26, and proposition 12.28.

Correctness of Q#

Let Q be a query over a A-graph G. Q7 is a sharing equality if and only if [n] = [m]
for every nodes n, m such thatn Q@ m.

12.4 Up To Relations

Before concluding this chapter, we introduce the notion of relations that are propagated “up
to” another relation. This new concept will be necessary when formulating the invariants of
our sharing equality algorithm in chapter 14: since the algorithm constructs the required rela-
tions progressively, the invariants need to capture properties of relations that are temporarily
incomplete.

Propagated upto

Let R, R’ be binary relations over the nodes of a A-graph GG. We say that R is propagated
upto R’ when R is closed under the following rules (which are variants of the rules
in fig. 12.3):

App(ny, nz) R App(m;, my)
nq R/ my

App(ny, nz) R App(my, my)
Ny R mo

2.

Abs(n) R Abs(m)
nR' m

(Note the relation R in the conclusion of the rules.)
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When the relations R and R’ are the same, the concept of propagated upto coincides
with the usual concept of propagated:

Upto itself
If a relation R is propagated upto R, then R is simply propagated.

Two properties of upto relations follow. The first proposition shows that the property of
being propagated upto R’ is monotonous on R’.

Monotonicity of upto

Let R, R',R” be binary relations over the nodes of a A-graph G. If R is propagated
upto R/, and R’ C R”, then R is propagated upto R”.

Proof. Let R be propagated upto R/, and let R” be a relation such that R’ C R”. In
order to show that R is propagated upto R”, it suffices to check that it is closed under
the rules of definition 12.31. We show that it is closed under the first rule, the proof for

the other rules is similar. Let App(ny, n2) R App(my, my); since R is propagated upto
R/, it follows that n; R’ m;. Since R’ C R”, we conclude with n; R” m;.

The second proposition shows that the property of being propagated upto commutes with
the equivalence closure:

Upto vs equivalences

Let R be a binary relation over the nodes of a A-graph (G, and assume R to be homoge-
neous. If R is propagated upto R*, then R* is propagated.

Proof. Let’R be propagated upto R*. In order to prove that R* is propagated, by fact 12.32
it suffices to prove that R* is propagated upto R*. The rest of the proof is similar to the
proof of proposition 12.20.

Lastly, we extend the notion of upto to pre-bisimulations:

Pre-bisimulation upto

Let R, R’ be binary relations over the nodes of a A-graph GG. We say that R is a pre-
bisimulation upto R’ when R is homogeneous and propagated upto R'.



Chapter 13
Computing Sharing Equality

From now on we focus on the algorithmic side of sharing equality, i.e. the problem of effec-
tively deciding and computing it.

In chapter 14 we will provide a sharing equality algorithm (algorithm 4) based on the
Paterson-Wegman algorithm for first-order unification (algorithm 1). In this chapter instead
we discuss the literature on sharing equality, and other existing problems that are related to
it.

We are aware of very few works that consider the problem of sharing equality in presence
of binders:

- Oneis by Accattoli and Lago, 2012, where the authors present an algorithm with quadratic
running time based on dynamic programming. That algorithm proceeds by filling an
unfolding matrix with previous results of intermediate readbacks, so that it avoids re-
peating the same equality check many times leading to an exponential blowup. As a
matter of fact, the algorithm does not read back intermediate subterms completely—as
this would cause an exponential blowup too—but it uses “relative unfoldings” that take
into account the reused structure without constructing the complete readback.

- Another paper is by Grabmayer and Rochel, 2014, where the A-calculus is extended
with letrec-expressions, i.e. recursive 1let definitions introduced in section 6.2. In
the setting of cyclic A-graphs, the problem of sharing equality is much harder because
terms are to be compared not just up to ai-equivalence, but up to a-equivalence of their
infinite unfolding. This difference may seem harmless, but it creates much complexity
due to the interaction between cycles and scopes: as it turns out, bisimilarity is not
sufficient to capture sharing equality up to infinite unfoldings. Consider the two graphs
in fig. 13

181



182 CHAPTER 13. COMPUTING SHARING EQUALITY

Absr Ab_sr
App App .
Ny NG
Abs bVar Abs : bVar
App App
bVar bVa

t' = letrec f =Az.(\y. fy)x in f " = letrec f =Az.(\y. fz)x in f

Bisimilar Ajetrec-graphs

The two graphs in fig. 6.7 are bisimilar, however the corresponding Ajetrec-terms ¢’ and
t" are not equivalent: t' unfolds to u = Az.(Ay. (- -+ ) y) x defined in fig. 6.7 at fig. 6.7,
while t” unfolds to Ax.(Ay. (- - - ) ) x, clearly not a-equivalent.

To overcome this problem, the algorithm proposed by Grabmayer and Rochel, 2014 per-
forms a complex encoding of the terms in first-order graphs where additional nodes
are introduced to record information about scopes. Finally they employ a variant of
the algorithm by Hopcroft and Karp, 1971 to test equivalence of deterministic finite au-
tomata (DFA, see also below). The latter algorithm has quasi-linear complexity, i.e. it
runs in time O(n x a(n)) where a(-) is the inverse of the Ackermann function' and n
is the size of the graphs in input. However, when the reduction to first-order graphs is
considered, the final complexity of Grabmayer and Rochel's algorithm is O(n? X a(n)).

131 Related Problems

There are various problems that are closely related to sharing equality, and that are also
treated with bisimilarity-based algorithms. In the following subsections we are going to list
similarities and differences with respect to other problems (like DFA equivalence and unifica-
tion) and other techniques (like hash-consing).

Equivalence of DFA

A deterministic finite automaton is a finite-state machine that accepts or rejects strings of
symbols. Formally, it is a finite directed graph where nodes represent states, and edges repre-
sent state transititions, labelled by symbols from a given alphabet; a start state and possibily
various accepting states are provided.

The inverse Ackermann function is a function growing as extremely slowly as the Ackermann function grows
fast. It is used in computer science to provide time bounds of various algorithms, in this case the operations of the
union-find data structure.
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Automata do not have binders like A-graphs, and yet they are structurally more general
since they allow arbitrary directed cycles, not even dominated (cf. definition 6.8). As already
pointed out above, however, the best DFA equivalence algorithm (Hopcroft and Karp, 1971) is
only quasi-linear.

One may obtain from Hopcroft-Karp’s algorithm a quasi-linear time algorithm for sharing
equality by proceeding in a similar way as we are going to do in chapter 14: in fact, one can
see the nodes of a A-graph as states of a DFA, and each directed edge labelled with direction
d as a transition labelled by d. Hopcroft-Karp’s algorithm builds an equivalence relation over
the nodes of the DFA by using a union-find data structure to record the equivalence classes,
and it mainly consists of a loop over a todo queue that records the pairs of nodes that must
be checked and propagated. It is possible to prove that (in case of success) the algorithm
constructs the spreading O of the input query Q; one can then exploit the sharing equality
theorem (theorem 12.29) and perform the check for sharing equality in two phases, just as we
do in algorithm 3. The complexity of the resulting algorithm is then pseudo-linear, because
the operations on the union-find data structure can be performed in only almost constant
time (Tarjan, 1975). Such a quasi-linear algorithm based on Hopcroft-Karp may in practice run
faster than the linear-time algorithm that we provide in chapter 14, but as already mentioned
we are interested in linearity for theoretical reasons.

Alpha-equivalence

Clearly the closest problem to sharing equality is plain a-equivalence. Schmidt-SchauR, Rau,
and Sabel, 2013 discuss algorithms for a-equivalence extended with further principles (e.g.
permutations of letrec expressions), but not up to unfolding.

Hash-consing

As usual, we may circumvent the problem of ac-equivalence by switching to nameless A-terms.
In actual programming languages, instead of using A-graphs to represent sharing, one can
switch to plain terms with De Bruijn indices and exploit the implicit sharing in memory of
terms by reusing pointers to the same memory locations. A well-known technique is hash-
consing (Ershov, 1958; Goto, 1974), which allows to share purely functional data and is tra-
ditionally realised through a hash table (Allen, 1978). With hash-consing, to check that two
terms are sharing equivalent it suffices to compute their hash’, but first the terms have to
be recursively hash-consed (i.e. maximally shared), which requires quasilinear running time.
Another option is an eager approach to conversion of A-terms, in which one mantains all
terms hash-consed (i.e. maximally shared) at each reduction step, keeping trace in a huge
table of all the pairs of convertible terms previously encountered; however, computing a hash
and accessing a table at each reduction step may be quite inefficient.

2The hash of an object is computed by means of an hash function, mapping each object to a fixed-side value
that acts as key in a table.
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Higher-order unification

Unification problems are usually represented as systems of equations between terms contain-
ing metavariables. A A-graph itself can be encoded in linear time as a unification problem
of A-terms by using metavariables to represent common subgraphs. Take for example the
A-graph in fig. 132, that represents the unshared A-term (Az.(zz)(zx))(Az.(zz)(zx)):

App

L)

Abs

J

App

L )

App

‘bVar

Example of A\-graph

The most straightforward way to translate sharing to a system of unification equations is
by using a new unification metavariable for each (non-variable) node of the A-graph that has
more than one parent. As for the A-graph in fig. 13.2, we introduce two metavariables X and
Y corresponding respectively to the abstraction node and to the application node two levels
below it (highlighted). Then the root node of the A-graph is represented by the term XX
together with the system of equations {X = (Az.YY),Y = (xx)} where x is allowed
to occur in the substitution for Y. If one desires to check whether that A-graph is sharing
equivalent to another A-graph represented by the term ¢, it suffices to add to the system the
equation XX = t and check if the resulting unification problem is solvable: here solvable
means that there exists a substitution (a mapping from metavariables to terms) which makes
the left-hand and the right-hand sides of each equation in the system equal.

The most natural notion of unification in this setting seems higher-order unification, how-
ever this is clearly an overkill. Higher-order unification is in general undecidable (Huet, 1973),
and it unifies terms up to full a3-conversion, while we strictly require c-conversion only. In
the following sections, we consider decidable fragments of higher-order unification that are
closer to the problem of sharing equality.

Nominal unification. Nominal unification is unification up to a-equivalence of A-calculi ex-
tended with name swappings, in the nominal tradition. It was first studied by Urban, Pitts,
and Gabbay, 2003 and efficient algorithms are due to two groups, Calvés & Fernandez and
Levy & Villaret, adapting Paterson-Wegman and Martelli-Montanari first-order unification al-
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gorithms. Nominal unification is very close to sharing equality (which is a special case where
name swappings do not occur) but the known best algorithms (Calvés and Fernandez, 2010b;
Levy and Villaret, 2010) are only quadratic. Calvés, 2013 presents an abstract algorithm to
solve nominal unification problems, based on Paterson-Wegman and subsuming the two
best known algorithms. The key idea is to enrich Paterson-Wegman with an additional data
structure, called modality, that records freshness constraints and identification/swapping of
variables. Managing the modality has a cost: the two best algorithms do that in different ways,
but always with a linear overhead per operation, yielding the final quadratic complexity. Our
contribution of chapter 14 can be seen as showing that no explicit modality data structure is
required at all — and thus no overhead at all — to check sharing equality: the information
about identification of bound variables is already encoded by the equivalence class of their
binders.

Nominal matching. This is a special case of nominal unification. Calvés and Fernandez,
2010a present an algorithm for nominal matching that is linear, but only on unshared input
terms.

Pattern unification. Miller's pattern unification can also be stripped down to test sharing
equality. Pattern unification is a decidable fragment of higher-order unification where the
terms to be unified are so-called higher-order patterns, terms where metavariables must
be applied to distinct bound variables. For example, the A-graph of fig. 13.2 can again be
represented by the term X X together with the system of equations

{X=Mz.(Yz)(Yz)),Yz=(22)}.

Qian, 1993 presents a PW-inspired algorithm for pattern unification — claiming linear com-
plexity — that actually seem to work only on unshared terms. We have not investigated the
relation between the two linear-time algorithms, but we note that Qian’s algorithm is very
involved, requires a lot more code and more data structures and the overall algorithm would
surely have higher computational constants than ours. Moreover, according to Levy and
Villaret, 2010, “it is really difficult to obtain a practical algorithm from the proof described
by Qian, 1993".

First-order unification. The most elementary kind of unification is first-order unification,
where terms consist either of metavariables, constants, or functions applied to arguments. At
first sight, first-order terms do not seem to accommodate the higher-order nature of A-terms:
while globally free variables in A-terms can be safely mapped to first-order constants, bound
variables cannot be mapped to constants as they must be handled up to a-equivalence (first-
order unification fails when comparing the first-order terms Ax.A\y.x and Ay.Ax.y when
x and y are treated as constants). In addition, variables cannot be mapped to unification
metavariables because they cannot be instantiated with other terms during unification: uni-
fication succeeds when comparing the terms Ax. Ay.x and Ay.A\z.x when x and y are treated
as metavariables, but the two terms are not ac-equivalent. In this case even resorting to the
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(locally) nameless representations of A-terms to obtain a first-order structure does not solve
the issue, because then the sharing in A-graphs cannot be translated as easily to a unification
problem: shared subgraphs cannot be mapped to the same unification metavariable, since
the de Bruijn indices of the variables that occur in terms depend on the number of abstrac-
tion that are above them. For example, consider the A-term Az. (z z)(Ay. z x) where we
want to share all the occurrences of the subterm x x: without names the A\-term becomes
A.#0#0 (A. #1 #1), where the desired subterms have become different and cannot be
shared.

Even though in some way a higher-order problem, we can actually reduce sharing equality
to first-order unification (plus an additional test for variables). This follows from the theory
developed in chapter 12, where we reduced sharing equality to “first-order” bisimulations
over the A-graph, i.e. the propagation and the spreading of a given query Q. By universality
and the sharing equality theorem (corollary 12.30) it suffices to first compute one of these
first-order relations, say Q, and then simply check separately the conditions for free and
bound variables. Well-known first-order unification algorithms that use equivalences classes
compute exactly Q7 over a term graph.

There are basically two linear-time algorithm for first-order unification, Paterson and Weg-
man, 1978 (PW) and Martelli and Montanari, 1982 (MM). Both rely on sharing to run in linear
time. PW even takes terms with sharing as inputs, while MM deals with sharing in a less direct
way, except in its less known variant (Martelli and Montanari, 1977) that takes in input terms
shared using the Boyer-Moore technique (Boyer and Moore, 1972).

13.2 The Paterson-Wegman Algorithm

The Paterson-Wegman (PW) algorithm, we said, is the first-order algorithm that we will adapt
in the next chapter to obtain a sharing equality algorithm. PW was introduced by Paterson
and Wegman, 1978, and then refined by Champeaux, 1986.

Just for reference, we provide in algorithm 1 the original PW algorithm. We delay the
discussion about the algorithm to the next chapter, where we will also explain the required
data structures, and the differences between PW and our sharing equality algorithm.
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Paterson-Wegman Unification Algorithm
Data: a term graph G

N

Procedure Main(n, m)

// test n and m for unifiability

2 create undirected edge n ~ m

3 foreach function node n do Finish(n)

4 foreach meta-variable node n do Finish(n)
/] unified

5 Procedure Finish(n)

6 | if canonic(n) undefined then canonic(n) :=n
7 else FAIL

8 S :=new stack

9 pushnons

10 | while s is non-empty do

1 m :=pop s

2 if n,m have different function symbols then

13 | FAL

1% while m has some parent p do

- | Finish(p)

16 while there is an undirected edge m ~ p do

7 if canonic(p) undefined then canonic(p) :=n
18 else if canonic(p) # n then FAIL

19 delete undirected edge m ~ p

20 pushpons

2 if n # m then

2 if m is a function node with outdegree ¢ > 0 then
2 create undirected edges {jth child(n) ~ jth child(m) | 1 < j < ¢}
2 L delete m and directed arcs out of m

25 delete n and directed arcs out of n
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Chapter 14
Sharing Equality is Linear

In this chapter we provide our linear-time algorithm for sharing equality. By the universality
of spreaded queries (theorem 12.26), checking the satisfability of a query Q over a A-graph
G boils down to compute its spreading Q7 over G, and then checking that it is a sharing
equality: the fact that the requirements on variables are modular to the propagation require-
ments is one of our main contributions. Indeed it is possible to check sharing equality in two
phases:

1. Blind Check : building Q% and at the same time checking that it is a pre-bisimulation,
i.e. that it is an homogeneous relation;

2. Variables Check : verifing that @ is a sharing equivalence by checking the conditions
for free and bound variable nodes.

Of course, the difficulty is doing it in linear time, and it essentially lies in the Blind Check. The
fact that our algorithm first uses PW ignoring variable names, and only after checks that the
computed relation is a sharing equality is also a direct application of the “first-order nominal
link” of Calvés and Fernandez, 2010b.

The rest of this chapter presents two algorithms, the Blind Check (algorithm 2) and the
Variables Check (algorithm 3), with proofs of correctness and completeness, and complexity
analyses. The second algorithm is actually straightforward. Be careful, however: the Vari-
ables check algorithm is trivial just because the subtleties of this part have been isolated in
chapter 12.

141 The Blind Check

In this section we introduce the basic concepts for the Blind Check, plus the algorithm itself.
Our algorithm is an adaptation of Paterson and Wegman's, and it relies on the same key ideas
in order to be linear. With respect to PW’s original algorithm, our reformulation does not rely
on their notions of dead/alive nodes used to keep track of the nodes already processed; in
addition it is not destructive, i.e. it does not remove edges and nodes from the graph, hence

189
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it is more suitable for use in computer tools where the A-terms to be checked for equality
need not be destroyed. Another contribution of this part is a formal proof of correctness and
completeness, obtained via the isolation of properties of program runs.

Intuitions for the Blind Check. Paterson and Wegman'’s algorithm is based on a tricky, linear
time visit of the A\-graph. It addresses two main efficiency issues:

1. The spreaded query is quadratic: the number of pairs in the spreaded query Q¥ can be
quadratic in the size of the A-graph. An equivalence class of cardinality n has indeed
Q(nQ) pairs for the relation—this is true for every equivalence relation. This point is
addressed by rather computing a linear relation =, (same canonic, definition 1417)
generating Q% based on keeping a canonical element for every sharing equivalence
class.

2. Merging equivalence classes: merging equivalence classes is an operation that, for as
efficient as it may be, it is not a costant time operation. The trickiness of the visit of the
A-graph is indeed meant to guarantee that, if the query is satisfiable, one never needs
to merge two equivalence classes, but only to add single elements to classes.

More specifically, the ideas behind algorithm 2 are:

- Top-down recursive exploration: the algorithm can start on any node, not necessarily
a root. However, when processing a node n the algorithm first makes a recursive call
on the parents of n that have not been visited yet. This is done to avoid the risk of
reprocessing n later because of some new equality requests on n coming from a parent
processed after n.

- Query edges: the query is represented through additional undirected query edges be-
tween nodes, and it is propagated on child nodes by adding further query edges. The
query is propagated carefully, on-demand. The fully propagated query is never com-
puted, because, as explained, in general its size is quadratic in the number of nodes.

- Canonic edges: when a node is visited, it is assigned a canonic node that is a represen-
tative of its sharing equivalence class. This is represented via a directed canonic edge,
which is implemented as a pointer.

- Building flag: each node has a boolean “building” flag that is used only by canonic
representatives and notes the state of construction of their equivalence class. When
undefined, it means that that node is not currently designated as canonic; when true,
it means that the equivalence class of that canonic is still being computed; when false,
it signals that the equivalence class has been completely computed.

- Failures and cycles: the algorithm fails in three cases. First, when it finds two nodes in
the same class that are not homogeneous (line 26), because then the approximation
of Q% that it is computing cannot be a pre-bisimulation. In the two other cases (on
line 13 and line 17) the algorithm uses the fact that a canonic edge is already present to
infer that it found a cycle up to Q#, and so, again Q# cannot be a pre-bisimulation.
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The Blind Check Algorithm
Data: an initial state
Result: Fuil or a final state

1 Procedure BlindCheck()
2 for every node n do
3 t if canonic(n) undefined then BuildClass(n)

. Procedure BuildClass(c)
5 | canonic(c):=c
6 | building(c) := true
7 | queue(c) = {c}
s | while queue(c) is non-empty do
9 n := queue(c).pop()
10 for every parent m of n do
7 case canonic(m) of
1 undefined = BuildClass(m)
L ¢ = if building(c’) then FAIL

1% for every ~neighbour m of n do

5 case canonic(m) of

16 undefined => EnqueueAndPropagate(m, ¢)
17 L ¢ = if ¢ # cthen FAIL

i | building(c) = false

19 Procedure EnqueueAndPropagate(m, ¢)
20 case m, c of

7 Abs(m’), Abs(c’) = create edge m’ ~ ¢/
2 App(m1, m2), App(cy, c2) =

3 create edges my ~ ¢; and my ~ co

2 bVar(_), bVar(_) = ()

2 fVar(_), fVar(_) = ()

26 _,_ = FAIL

27 | canonic(m) =c¢

2 | queue(c).push(m)
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- Building a class: calling BuildClass(n) boils down to

1. collect without duplicates all the nodes in the intended sharing equivalence class
of n, that is, the nodes related to n by a sequence of query edges. This is done
by the while loop at line 14, that first collects the nodes queried with n and then
iterates on the nodes queried with them. These nodes are inserted in a queue;

2. set n as the canonical element of its class, by setting the canonical edge of every
node in the class (including n) to n;

3. propagate the query on the children (in case n is a Abs or a App node), by adding
query edges between the corresponding children of every node in the class and
their canonic.

4. Pushing a node in the queue, setting its canonic, and propagating the query on its
children is done by the procedure EnqueueAndPropagate.

- Linearity: let us now come back to the two efficiency issues we mentioned before:

- Merging classes: the recursive calls are done in order to guarantee that when a
node is processed all the query edges for its sharing class are already available, so
that the class shall not be extended nor merged with other classes later on during
the visit of the A-graph.

- Propagating the query: the query is propagated only after having set the canonics
of the current sharing equivalence class. To explain, consider a class of k nodes,
which in general can be defined by Q(kQ) query edges. Note that after canon-
ization, the class is represented using only £k — 1 canonic edges, and thus the
algorithm propagates only O(k) query edges—this is why the number of query
edges is kept linear in the number of the nodes (assuming that the original query
itself was linear). If instead one would propagate query edges before canonizing
the class, then the number of query edges may grow quadratically.

States. Asexplained, the algorithm needs to enrich A-graphs with a few additional concepts,
namely canonic edges, query edges, building flags, queues, and execution stack, all grouped
under the notion of program state.

A state S of the algorithm is either Jail or a tuple

(G,undir, canonic,building, queue, active)
where G'is a A-graph, and the remaining data structures have the following properties:

- Undirected query edges (~): undir is a multiset of undirected query edges, pairing
nodes that are expected to be placed by the algorithm in the same sharing equivalence
class. Undirected loops are admitted and there may be multiple occurrences of an
undirected edge between two nodes. More precisely, for every undirected edge between
n and m with multiplicty & in the state, both (n, m) and (m, n) belong with multiplicity
k to undir. We denote by ~ the binary relation over GG such that n ~ m iff the edge
(n, m) belongs to undir.
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- Canonic edges (c): nodes may have one additional canonic directed edge pointing to
the computed canonical representative of that node. The partial function mapping each
node to its canonical representative (if defined) is noted c(e). We then write ¢(n) = m
if the canonical of n is m, and c(n) = undefined otherwise. By abuse of notation, we
also consider c(e) a binary relation on G, where n ¢ m iff ¢(n) = m.

+ Building flags (b): nodes may have an additional boolean flag building that signals
whether an equivalence class has or has not been constructed yet. The partial function
mapping each node to its building flag (if defined) is noted b. We then write b(n) =
true | false if the building flag of n is defined, and b(n) = undefined otherwise.

- Queues (q): nodes have a queue data structure that is used only on canonic represen-
tatives, and contains the nodes of the class that are going to be processed next. The
partial function mapping each node to its queue (if defined) is noted g.

- Active Calls (active): a program state contains information on the execution stack of
the algorithm, including the active procedures, local variables, and current execution
line. We leave the concept of execution stack informal; we only define more formally
active, which records the order of visit of equivalence classes that are under construc-
tion, and that is essential in the proof of completeness of the algorithm. active is an
abstraction of the implicit execution stack of active calls to the procedure BuildClass
where only (part of) the activation frames for BuildClass(c) are represented. Formally,
active is simply a sequence of nodes of the A-graph, and active = [cq,. .., ck] if
and only if:

- Active: BuildClass(cy), ..., BuildClass(cg) are exactly the calls to BuildClass that are
currently active, i.e. have been called before &, but have not yet returned;

- Call Order: forevery 0 < 7 < 7 < K, BuildClass(c;) was called before Build-
Class(c;).

Moreover we introduce the following concepts:

- Program transition: the change of state caused by the execution of a piece of code.
For the sake of readability, we avoid a technical definition of transitions; roughly, a
transition is the execution of a line of code, as they appear numbered in the algorithm
itself. When the line is a while loop, a transition is an iteration of the body, or the
exit from the loop; when the line is a if-then-else, a transition is entering one of the
branches according to the condition; and so on.

- Fail state: JFail is the state reached after executing a FAIL instruction; it has no at-
tributes and no transitions.

- Initial state Sp: a non-Jail state with the following attributes:

- Initial ~edges: simply the initial query, i.e. ~ = Q.

- Initial assignments: c(n), b(n), and q(n) are undefined for every node n of G.
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- Initial transition: the first transition is a call to BlindCheck().

- Program run: a sequence of program states starting from Sy obtained by consecutive
transitions.

- Reachable: a state which is the last state of a program run.
- Failing: a reachable state that transitions to Juail.

- Final: a non-Jail reachable state that has no further transitions.

Details about how the additional structures of enriched A-graphs are implemented are
given in section 14.1.4, where the complexity of the algorithm is analysed.

In the following sections, we first show general properties of algorithm 2 (section 14.1.1);
then we prove that the algorithm is sound (section 141.2), complete (section 14.1.3), and that
it runs in linear time (section 141.4).

1411  General Properties

In this section we prove general properties of program runs, grouped according to the con-
cepts that they analyse: canonic assignment, BuildClass, EnqueueAndPropagate, enqueuing,
dequeuing, parents, ~neighbours (i—vii).

i Canonic assignment. The algorithm assigns a canonic to each node n: intuitively, c(n)
is the canonic representative of the equivalence class to which n belongs.

The following proposition is a key property required by many of the next results: it shows
that nodes cannot change class during a program run, i.e. once a node is assigned to an
equivalence class, it is never re-assigned.

Canonic assignment is definitive

Let n be a node. In every program run:
- c(n) is never assigned to undefined;
- c(n) is assigned at most once.

Proof. No line of the algorithm assigns a canonic to undefined, i.e. after c(n) is defined,
it remains defined throughout the program run.

In order to show that c(n) is never assigned twice, it suffices to show that, whenever a
canonic is assigned, it was previously undefined. A canonic is assigned only during the
execution of two lines of the algorithm:

- Line 5, during the execution of BuildClass(c) that assigns c(c) ‘= c. Note that only
lines 3 and 12 can call BuildClass, and both lines check beforehand whether the
canonic of ¢ is undefined.

- Line 27, during the execution of EnqueueAndPropagate(m, ¢) that assigns c¢(m) to
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c. Only line 16 can call EnqueueAndPropagate, and that line checks beforehand
whether the canonic of m is undefined.

The following proposition shows that the mechanism of canonic representatives is correct,
l.e. if cis assigned as canonic of an equivalence class, then c is itself a representative of that
class:

c(e) is idempotent

Let ¢, n be nodes, and S be a reachable state such that c(n) = ¢ Then c(c) is defined
and c(c) =

Proof. Let n be a node. It suffices to show that whenever c(n) is assigned to ¢, it holds
that c(c) = ¢; once true, this assertion cannot be later falsified because the canonic
assignment is definitive (proposition 141).

A canonic is assigned only during the execution of two lines of the algorithm:

- Line 5, during the execution of BuildClass(c). In this case n = ¢ and we conclude.

- Line 27, during the execution of EnqueueAndPropagate(m, c) that assigns c(m) to
c. Only line 16 of BuildClass(c) can call EnqueueAndPropagate(m, c), and that line
comes after line 5 which sets c(c) to c. Therefore c(c) = cin S as well, because
the canonic assignment is definitive (proposition 14.1).

During a program run, nodes are assigned a canonic i.e. temporary equivalence classes are
extended with new nodes. If the algorithm terminates successfully, the equivalence classes
cover the whole set of nodes, as the following proposition shows:

Canonic assignment completed

In a final state Sf, every node has a canonic assigned.

Proof. Let n be a node, and let us show that c(n) is defined in Sy. Since the algorithm
terminated, execution exited the main loop on line 2. That loop iterates on every node n
of the A-graph, therefore for every n there must exist a state S prior to Sy such that the
next transition is the execution of line 3 with local variable n. Line 3 first checks whether
c(n) is defined. If it is, it does nothing, and we can conclude because c¢(n) must be
defined in Sf too since the canonic assignment is definitive (proposition 14.1). If instead
c(n) is not defined in S, then BuildClass(n) is called; when BuildClass(n) is executed, n is
assigned a canonic (line 5), and again the canonic is still assigned in Sy since the canonic
assignment is definitive (proposition 141).

ii BuildClass. The procedure BuildClass(c) has the effect of constructing the equivalence
class of a node ¢, where ¢ is chosen as canonic representative of that class. When Build-
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Class(c) returns, the equivalence class of ¢ is finalised.

No multiple calls to BuildClass(n)
In every program run, BuildClass(n) is called at most once for every node n.

Proof. Only line 3 and line 12 can call BuildClass(n), and only if the canonic of n is unde-
fined. Right after BuildClass(n) is called, line 5 is executed, and a canonic is assigned to n.
Therefore another call to BuildClass(n) is not possible in the future, because ¢(n) cannot
be ever assigned again to undefined (proposition 14.1).

Anode ccan be assigned as a canonic representative only if BuildClass(c) has been called:

Only BuildClass(c) designates canonics

Let ¢, n be nodes, and S be a reachable state such that ¢(n) = ¢. Then BuildClass(c) has
been called before S.

Proof. cis assigned as a canonic only during the execution of two lines of the algorithm:
- Line 5, during the execution of BuildClass(c).

- Line 27, during the execution of EnqueueAndPropagate(m, c) that sets c(m) to c
Only line 16 of BuildClass(c) can call EnqueueAndPropagate(m, c).

ili EnqueueAndPropagate. The function EnqueueAndPropagate(m, ¢) adds the node m
to the equivalence class represented by ¢, and delays the processing of m by pushing it into

q(c).

No multiple calls to EnqueueAndPropagate(n, —)

In every program run, EnqueueAndPropagate(n, —) is called at most once for every node

n.

Proof. Only line 16 can call EnqueueAndPropagate(m, ¢), and only if the canonic of m is
undefined. After EnqueueAndPropagate(m, c) is called, line 27 is executed, and a canonic
is assigned to m. Therefore another call to EnqueueAndPropagate(m, —) is not possible
in the future, because c(m) cannot be ever assigned again to undefined (proposition 14.1).

iv Enqueuing. Two lines of the algorithm push a node to a queue: line 7, when g(c) is
created and ¢ pushed to it; line 28, when m is pushed to q(c). Intuitively, pushing a node to
q(c) results in delaying its processing by the algorithm; the node will be fully processed only
later, after being popped from the queue (from line 9 to line 17).



14.1. THE BLIND CHECK 197

Enqueue once
In a program run, every node n is enqueued at most once.

Proof. The algorithm enqueues a node only shortly after setting its canonic:
- on line 7, after assigning a canonic on line 5;
- on line 28, right after assigning a canonic on line 27.

Since the canonic of a node can be assigned at most once (proposition 141), it follows
that a node can be enqueued at most once.

The following lemma shows that each queue q(c) is a subset of the equivalence class

with canonic representative c:

Queue C Equivalence class
Let S be a reachable state, and n a node. If n € q(c), then c(n) is defined and c(n) = c.

Proof. Let n be a node. Since the canonic assignment is definitive (proposition 141), it
suffices to check that c(n) = ¢ whenever n is enqueued to q(c). A node is enqueued
only during the execution of two lines of the algorithm:

- Line 7 during the execution of BuildClass(c). In this case n = ¢, and the canonic of
c was just assigned to c itself on line 5.

- Line 28 during the execution of EnqueueAndPropagate(m, ¢). Line 28 is executed
right after line 27, which sets c(m) = c.

v Dequeuing. Nodes are popped from queues only on line 9. Once a node is dequeued,
the algorithm proceeds by first visiting its parents (line 10) and only then its ~neighbours

(line 14).

Dequeued nodes have correct canonic
Let S be a state reached after the execution of line 9 with locals ¢, n. Then c(n) is defined
and c(n) = c.

Proof. Let n be a node. n € q(c) in the state S’ right before the execution of line 9 with
locals ¢, n. Therefore c(n) = ¢ in &' by proposition 14.8. Conclude with ¢(n) = ¢in S
because the canonic assignment is definitive (proposition 141).

We introduce the following notion of “processed node”, meaning that the node has been
processed by the loop in the body of BuildClass.
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Processed node

In a reachable state S, we say that a node n has already been processed if Lines 9-17 with
locals ¢, n have already been executed (for some c).

In other words, a node n is processed after it is dequeued and its parents and
~neighbours visited.

After BuildClass(c) returns, all the nodes in the equivalence class of ¢ are processed:

Equivalence class processed

Let ¢, n be nodes, and S a reachable state such that BuildClass(c) has already returned.
If c(n) = ¢, then n is processed.

Proof. c(n) is assigned to c only during the execution of BuildClass(c) (proposition 1z.5).
First, note that shortly after c(n) is assigned to ¢ (line 5 or line 27), n is enqueued to q(c)
(resp. line 7 and line 28).

In both cases, n is enqueued to q(c) when the execution of the while loop on line 8
has not terminated yet: on line 7 before the beginning of the loop, on line 28 during the
execution of the loop, since EnqueueAndPropagate is called from line 16 which is inside
the while loop.

Note also that a node n is dequeued from g(c) only on line 9 during the execution of
BuildClass(c), and that BuildClass(c) can be called at most once (proposition 14.4).

In conclusion, n was enqueued to q(c) before the completion of the while loop on g(c)
on line 8, and since BuildClass(c) has already returned and the while loop terminated, at
some point n was dequeued from q(c) on line 9, and the body of the loop executed with
locals ¢, n.

Dequeue once
In each program run, line 9 is executed with local n at most once for every node n.

Proof. Executing line 9 with local n dequeues n, which cannot be enqueued twice by
proposition 14.7.

vi Parents. The loop on line 10 iterates on all the parents of a node, recursively building
their equivalence classes:

Parent classes built

Let ¢, n be nodes, and let S be a state reachable after the execution of the loop on line 10
of BuildClass(c) with local variables ¢, n. Then for every parent m of n:

- ¢(m) is defined, say c(m) = ¢;
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- BuildClass(c’) has been called and has already returned.

Proof. The loop on line 10 iterates on all parents of n. For every parent m:

- If m has no canonic assigned, BuildClass(m) is called (line 12). Since § is reached
after the execution of the loop, the call to BuildClass(m) has already returned. Note
that m was assigned itself as a canonic on line 5 of BuildClass(m), and ¢(m) = m
still in S (proposition 14.1).

- If m has some ¢ assigned as a canonic node, then line 13 enforces that
building(c’) = false. This means that line 18 of BuildClass(c’) has already been
executed, and therefore BuildClass(c’) has already returned.

vii ~neighbours. The loop on line 14 iterates on all the ~neighbours of a node. Note
that the loop does not remove ~edges after iterating on them: in fact, the algorithm simply
ignores ~edges that have already been encountered, as it calls EnqueueAndPropagate only
on ~neighbours that have not been enqueued yet (line 16).

~ Grows

During a program run, ~ monotonically grows.

Proof. Just note that no line of the algorithm removes ~edges.

After the parent classes of a node are built, the set of its ~neighbours is not going to
change during the program run:

Finalization of ~neighbours

Let ¢, n be nodes. No ~edge with endnode n can be created in any state S reached after
the execution of the loop on line 10 with local variables ¢, n.

Proof. Assume by contradiction that S is a state reached after the execution of the loop
on line 10 with locals ¢, n, and that the next transition creates a new ~edge with endnode
n. New ~edges may be created only on line 21 and line 23 during the execution of En-
queueAndPropagate(m, ¢’) for some nodes m, ¢’. Note that a ~edge with endpoint n may
be created by these lines only if n has either m or ¢ as a parent. We show that these
cases are both not possible:

- m cannot be a parent of n since c(m) is undefined because of the check on line 16
(the only line that may call EnqueueAndPropagate), while by proposition 1413 all
parents of n have a canonic assigned.

- In order to show that ¢’ cannot be a parent of n, note first that BuildClass(c¢’) has
not returned yet, since EnqueueAndPropagate(m, ¢’) is called only on line 16 of
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BuildClass(¢). Note also that c(¢) = ¢’ because line 5 of BuildClass(c’) has already
been executed. Therefore ¢’ cannot be a parent of n by proposition 1413.

The following lemma proves that, after the ~neighbours of a node n are handled by the
loop on line 14, the canonic assignment subsumes the relation ~ on n:

All ~neighbours visited

Let S be a state reachable after the execution of the loop on line 14 with local variables
¢, n. Then for every ~edge with endnodes n and m, n c* m.

Proof. Let S’ be the state priorto S in which execution is just entering the loop on line 4.
Note that both 8" and S are reached only after the execution of the loop on line 10 (with
locals ¢, n), and therefore in S’ and S are present the same ~edges with endnode n
(by propositions 1414 and 1415). The loop on line 14 iterates on all such ~edges with
endnodes n and m, and for each m it either:

- Line 16: calls EnqueueAndPropagate(m, c), which sets c(m) ‘= c before returning
(Line 27);

- Line 17: explicitly enforces that c(m) = .

In both cases, we obtain that ¢(m) = ¢ holds also in S (because S is reached after the
execution of the loop on line 14, and the canonic assignment is immutable by proposi-
tion 141). Note also that c(n) = ¢ in S by proposition 149, since S is reached after the
execution of line 9 which dequeues n from g(c). We thus obtain ¢(n) = c(m) = cin S,
ie.nc*m.

141.2 Correctness

The main result of this section is theorem 14.26, proving that whenever algorithm 2 termi-
nates successfully with final state Sf from an initial query Q, then Q# is homogeneous, and
therefore a pre-bisimulation. Additionally, the theorem shows that the canonic assignment
is a succint representation of Q#, i.e. that for all nodes n,m: n Q# m if and only if n and
m have the same canonic assigned in Sy.

Let us first introduce =, the equivalence relation that equates two nodes whenever their
canonic representatives are both defined and coincide:

Same canonic =,

In every reachable state S we define =, a binary relation on the nodes of the A-graph
such that, for all nodes nm: n =, m iff c(n) and c¢(m) are both defined and ¢(n) =

c(m).



14.1. THE BLIND CHECK 201

The most important properties to prove correctness are the following:
- Pre-bisimulation upto: in all reachable states, c is a pre-bisimulation upto (~ U =).

- Undirected query edges approximate the spreaded query: in every reachable state, @ C
~ C 9%,

- The canonic assignment respects the ~ constraints: in all reachable states, ¢ C ~*

- Eventually, all query edges are visited: in all final states, all query edges are subsumed
by the canonic assignment, ie. ~ C c*.

The lemmas above basically state that during the execution of the algorithm, =, is a pre-
bisimulation up to the query edges, and that ~ can indeed be seen as an approximation of
the spreaded query Q7. At the end of the algorithm, ~ and c actually represent the same’
relation =, which is then exactly the spreaded query. We now turn to prove the results that

we have just outlined.

First of all, let us show that =, is identical to c* in all final states: this allows to simplify
the following proofs, using the more familiar relation c instead of the new =..

=.V5¢C
Let Sf be a final state. Then for all nodes n,m: n =¢ m if and only if n c* m.
Proof. First note that in Sf all nodes have a canonic assigned by proposition 14.3.

(:>) Let n =; m, and let us prove that n c* m. By the definition of =, there exists ¢
such that ¢(n) = ¢(m) = ¢ Since n ¢ cand m ¢ ¢, then clearly n ¢* m because

c is functional.

(<) Letn c* m,and let us prove thatn =, m. We proceed by induction on the definition
of c*:

Base case. Assume that n c¢* m because n ¢ m, i.e. because c(n) = m. By
proposition 14.2, ¢(m) = m, and therefore n =, m.

Rule .Assume that n ¢* m and n = m. From the hypothesis it follows that
n has a canonic assigned, and therefore clearly n =, n.

Rule . Assume that n ¢* m because m ¢* n. By ih. m =, n, and we
conclude because = is symmetric.

Rule . Assume that n ¢* m because n ¢c* p and p ¢* m for some node p.
By i.h. n =, pand p =, m, and we conclude because =, is transitive.

In order to prove that =, equals O in Sy (proposition 14.25), we are going to prove
that ¢* is homogeneous and propagated (proposition 14.24). The following proposition is a
relaxed variant of that statement which holds for all reachable states: it collapses to the
desired statement in the final state because (~ U =) = (c*).

TUp to equivalence closure.
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cis upto
Let S be a reachable state. Then ¢ is a pre-bisimulation upto (~ U =).

Proof. We prove the statement by induction on the length of the program run leading to

S:
- In the initial state ¢ = (), and therefore the statement holds trivially.

- As for the inductive step, we only need to discuss the program transitions that alter
~ and c. But first of all, note that ~ can only grow (proposition 1414), and that
creating new ~edges (while keeping ¢ unchanged) does not falsify the statement
if it was true before the addition. Therefore we actually need to discuss only the
transitions that alter the canonical assignment, i.e. line 5 and line 27:

- line 5: by i.h., c was homogeneous and propagated upto (N @) :) before the
execution of the assignment c(c¢) = c¢. After the execution of that assignment,
c differs only for the new entry (¢, ¢). Clearly the new entry satisfies the ho-
mogeneous condition, and it satisfies the property of being propagated upto

- line 27, during the execution of EnqueueAndPropagate(m, ¢): by i.h., c was ho-
mogeneous and propagated upto (N U :) before the execution of the assign-
ment c(m) = c. After the execution of that assignment, c differs only for the
new entry (m, ¢). The new entry satisfies the homogeneous condition and the
property of being propagated upto ~ because of the code executed in Lines
20-26, which checked the labels of the nodes and created ~edges on the cor-
responding children of m, c if any.

The following proposition 14.20 and proposition 14.21 state properties that connect the
relations ¢, @, and ~. In a final state c* is exactly ~*, but in intermediate states the following
weaker property holds:

c is sound
In every reachable state S: ¢ C ~*.

Proof. We prove the statement by induction on the length of the program run leading to

S:
- In the initial state, ¢ = () and therefore the statement holds trivially.

- As for the inductive step, we only need to discuss the program transitions that alter
~ and c. But first of all, note that during the execution of the algorithm ~ can only
grow (proposition 14.14), and that creating new ~edges (while keeping ¢ unchanged)
does not falsify the statement if it was true before the addition. Therefore we ac-
tually need to discuss only the transitions that alter the canonical assignment, i.e.
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line 5 and line 27:

- line 5: by i.h, ¢ € ~* before the execution of the assignment c(c) = c¢. After
the execution of that assignment, ¢ differs only for the new entry (¢, ¢). Clearly
¢ ~* cbecause ~* is reflexive by definition.

- line 27, during the execution of EnqueueAndPropagate(m, c): by i.h., ¢ C ~*
before the execution of the assignment c(m) := c¢. After the execution of
that assignment, c differs only for the new entry (m, c). Note that Enqueue-
AndPropagate(m, c) is called from line 16 during the execution of BuildClass(c).
Because of the loop on line 14, m was a ~neighbour of n for some node n,
and it still is because ~ can only grow (proposition 1414). We are now going to
prove that n ~* ¢, which together with the fact that m is a ~neighbour of n,
will allow us to conclude with m ~* c.
line 16 is executed after line 9, therefore c(n) = ¢ (ie. n ¢ ¢) by proposi-
tion 14.9. By i.h. n ¢ cimplies n ~* ¢, and we are done.

During a program run, the relation ~ progressively approximates the relation o

~ approximates Q7

In every reachable state S: Q C ~ C Q7.

Proof. We prove the statement by induction on the length of the execution trace leading

to S:

- Base case. In the initial state (~) = Q and the statement clearly holds.

- Inductive step. First note that during the execution of the algorithm ~ can only grow
(proposition 1414), therefore the requirement @ C ~ follows from the i.h. In order
to prove that ~ C Q% we only need to discuss the program transitions that alter
~, i.e. those occurring on line 21 and line 23:

- line 21 during the execution of EnqueueAndPropagate(m, c). Because of the

check on the same line, m = Abs(m’) and ¢ = Abs(¢’) for some m’, ¢
Executing line 21 creates the new edge m’ ~ ¢. Since Q7 is propagated, in
order to show the new requirement m’ Q# c it suffices to show that m Q# C.
We are going to show that m ~* ¢ in the state prior to S: then by using the
i.h. we obtain m Q¥ ¢, and we can conclude.
Note that EnqueueAndPropagate(m, c) is called from line 16 during the execu-
tion of BuildClass(c). Because of the loop on line 14, m was a ~neighbour of
n for some node n, and it still is because ~ can only grow (proposition 14:14).
In order to prove m ~* ¢, it thus suffices to prove n ~* ¢. The latter follows
from proposition 14.20, by using the fact that line 16 is executed after line 9,
therefore c(n) = ¢
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= line 23 is similar to the previous case.

Corollary 14.22

In every reachable state, c* C Q7.

Proposition 14.23 \ All ~edges visited
In every final state, (~) C (c*).

Proof. LetSy be afinal state. By proposition 14.3,in Sy every node has a canonic assigned.
Let n be a node, and ¢ = c(n); we are going to prove that n ¢* m for every ~neighbour
m of n.

By proposition 14.5, BuildClass(c) was called before Sy. Since Sy is final, BuildClass(c)
must have returned, and therefore n has already been processed (proposition 14.11). After
the loop on line 10, the ~neighbours of n are finalized (proposition 1415), and after the
loop on line 1z, the ~neighbours of n are all visited (proposition 14:16).

The following two propositions lead directly to theorem 14.26, proving correctness.

Proposition 14.24
Let S a final state. Then c* is a pre-bisimulation.

Proof. By proposition 1419, ¢ is homogeneous and propagated up to (~ U =). We need
to show that c* is homogeneous and propagated.

- Homogeneous. It follows from proposition 12.18.

- Propagated. By proposition 14.23 and proposition 1418, (~) C (c*), which implies
that (~ U =) C (c*) because c* is reflexive. Therefore c is propagated up to c*
by proposition 12.33, and c* is propagated by proposition 12.34.

Proposition 14.25

Let S a final state. Then (c*) = (Q7).

Proof. By corollary 1422, (c*) € (Q%). In order to prove (Q#) C (c*), it suffices
to note that @ C (c*) (because @ C (~) by proposition 1421, and (~) C (c*)
by proposition 14.23), that ¢* is an equivalence relation (by definition), and that c¢* is
propagated (proposition 14.24).
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Correctness

In every final state Sy of algorithm 2:
- Succint representation: (=) = (Q%),
- Blind check: Q# is homogeneous, and therefore a pre-bisimulation.

Proof. By proposition 14.24 and proposition 14.25.

141.3 Completeness

In this section we prove completeness (theorem 14.31), i.e. that whenever algorithm 2 fails,
O is not a pre-bisimulation. Recall that the algorithm can fail only while executing the
following three lines of code:

- On line 13 during BuildClass, when a node n is being processed and it has a parent
whose equivalence class is still being built;

- On line 17 during BuildClass, when a node nis being processed and it has a ~neighbour
belonging to a difference equivalence class;

- On line 26 during EnqueueAndPropagate(m, ¢), when the algorithm is trying two relate
the nodes m and ¢ which are not homogeneous.

While in the latter case (line 26) the failure of the homogeneous condition is more evi-
dent, in the first two cases it is more subtle. In fact, when the homogeneous condition fails
on line 13 and line 17 it is not because we explicitly found two related nodes that are not
homogeneous, but because Q7 does not satisfy an indirect property that is necessary for
O to be homogenous (see below). In these cases the algorithm fails early, even though it
has not visited yet the actual pair of nodes that are not homogeneous.

To justify the early failures we use active, which basically records the equivalence classes
that the algorithm is building in a given state, sorted according to the order of calls to Build-
Class. Nodes in active respect a certain strict order: if active = [¢y,..., k], then
¢ < ca < ... = cg (proposition 14.28), where n < m implies that the equivalence class
of n is a child of the one of m in the quotient graph. The algorithm fails on line 13 and
line 17 because it found a cyclic chain of nodes related by <, basically finding a cycle in the
quotient graph. By proposition 1213, there cannot exist any pre-bisimulation containing the
initial query in this case.

First of all, let us define the staircase order < mentioned above:

Staircase order <

Let S be a reachable state, and n, m be nodes of the A-graph G. We say that n < m iff
there exist a direction d and a node p such that d: m ~» p (riser) and p ¢ n (tread).
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In every reachable state, the canonic representatives in active respect the staircase
order <:
Order of active classes
Let S be a reachable state such that active = [¢q, ..., ck|. Then ¢; < ¢;41 for every
0<i< K.

Proof. We proceed by induction on the length of the program run. In the base case, i.e. in
the initial state, the callstack is empty and therefore the property holds trivially.

As for the inductive step, we only need to discuss the program transitions that actually
alter the callstack, i.e. when BuildClass is called or when it returns:

- BuildClass returns. In this case, the last entry of the callstack is removed, and the

statement follows from the i.h.

- BuildClass(n) is called (line 3). Right before the call to BuildClass(n) the callstack is
empty, and right after the call active = [n], i.e. there is nothing to prove.

- BuildClass(m) is called (line 12). In this case m is a parent of n (i.e. there exists a
direction d such that d: m ~» n), and ¢ = ¢y before the call to BuildClass(m).
Note that line 12 is executed after line 9 with locals ¢, n, and therefore c(n) = ¢
(proposition 14.9).

After the call to BuildClass(m), active = [cy, . .., Ck, m]. The statement for i <
K follows from the i.h., and for the case ¢ = K we just proved thatd: m ~» n and

nccg.

A useful intuition is that in a program run, recursive calls to BuildClass climb a stair of

nodes in the A-graph. The algorithm fails when it encounters a step that was already climbed:
this is because the staircase order is strict when Q% is homogeneous and propagated.

L

Q7 respects staircase order

et S be a reachable state, and let ¢y, . . ., cx be nodes such thatc; < ... < ck. If Q7

is homogeneous, then ¢; o# cjifandonlyifz = j.

Proof. Ifi = j, then clearly ¢; Q ¢; because Q7 is reflexive.

F

or the other direction, assume by contradiction and without loss of generality that s < j

(since @ is symmetric). We are going to prove that there exist a non-empty trace 7 and
a node m such that 7: ¢; ~ mand ¢; Q# m: this, together with ¢; Q# cj, will yield a

C

ontradiction by proposition 12.13.

We proceed by inductionon j —7 — 1:

- Case ¢+ 1 = j. Obtain from proposition 14.28 a node n and a direction d such that
Ciy1 =d: ¢j ~» nandn c ¢;, and conclude because ¢; 0% m by corollary 14.22.

- Case 7 + 1 < j. By ih. there exist a non-empty trace 7 and a node n such that
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T:¢j ~ nand ¢ O n. By proposition 14.28, there exist a direction d and
a node m such that d: ¢;; ~ mand m c ¢ (and therefore ¢; Q% m by
corollary 14.22). From ci41 @7 nand d: ¢;1 ~» m, by proposition 12.9 there
exists a node m’ such that d: n ~ m’ and m Q% m’. We can conclude, since
T-d:¢; ~ m' and ¢ o# m'.

We are now ready to prove that the algorithm always fails correctly:

Failure is correct
If the algorithm fails, then O# is not homogeneous.

Proof. LetS be afailing state, i.e. a reachable state that transitions to fail. Letactive =
[c1,...,ck]inS. There are three lines of the algorithm in which failure may occur: line 13,
line 17, and line 26. We discuss these cases separately; in all cases, in order to prove that
Q# is not homogeneous, we assume Q# to be homogeneous, and derive a contradiction.

+ line 13. Let m be a parent of n such that ¢(m) = ¢ and building(c) = true.
Since building(c’) = true, the call to BuildClass(c’) has not returned before S,
and therefore ¢ = ¢; for some 0 < ¢ < K. By proposition 1428 ¢; < ... < Ck,
and therefore ¢ was already encountered in the stair of active classes. Note that
c(n) = cx = c(proposition 14.9), and therefore cx < m. Also, from c¢(m) = ¢; it
follows that m Q7 ¢; (corollary 14.22). The contradiction is obtained by noting that
by proposition 14.29 it cannot be the case that m o ci,sincecy < ... <cg <m.

- line 17. Let m be a ~neighbour of n such that c(m) = ¢’ # ¢. By proposition 14.9,
c(n) = ¢ Since c(m) = ¢/, BuildClass(c’) must have been called (proposition 14.5),
and there are two options:

- BuildClass(c’) has already returned. We show that this is not possible. In fact,

if BuildClass(c’) has returned before S, then m has already been processed be-
fore S (proposition 1411). Therefore n =, m (proposition 1416), contradicting
the hypothesis that ¢ # ¢’

- BuildClass(c’) has not yet returned. Therefore ¢/ = ¢; for some 0 < i < K.

* *

From c(n) = ¢ = ¢k and c(m) = ¢ obtain n ~* ¢k and m ~* ¢
(proposition 14.20). Since m is a ~neighbour of n, ¢; ~* ¢k, and therefore
C; o ck by proposition 14.21. This yields a contradiction by proposition 14.28

*

and proposition 14.29.

- line 26. Assume that ¢ and m do not respect the homogenity condition. We are
going to prove that ¢ @% m, which contradicts the hypothesis that Q7 is homo-
geneous. EnqueueAndPropagate(m, ¢) is called from line 16, and therefore m is a
~neighbour of n. line 16 is executed after line 9 with locals ¢, n, and therefore
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* *

c(n) = ¢ by proposition 14.9. By proposition 14.20, ¢ ~* n, and therefore ¢ ~

By proposition 14.21, we conclude with ¢ O m.

m.

As an easy consequence, algorithm 2 is complete:

Completeness

If algorithm 2 fails, then @ is not a pre-bisimulation, and therefore by the universality
of O, there does not exist any pre-bisimulation nor sharing equivalence containing the
initial query Q.

Proof. By theorem 1216 and proposition 14.30.

144.4 Linearity

In this section we show that algorithm 2 always terminates, and it does so in time linear in
the size of the A-graph and the initial query.

Low-level assumptions. |n order to analyse the complexity of the algorithm we have to spell
out some details about an hypothetical implementation on a RAM of the data structures used
by the Blind check.

- Nodes: since line 2 of the algorithm needs to iterate on all nodes of the A-graph, we
assume an array of pointers to all the nodes of the graph.

- Directed edges: these edges—despite being directed—have to be traversed in both direc-
tions, for instance to recurse over the parents of a node. The A\-graphs used for efficient
reduction as defined in chapter 6 miss these backward pointers. We then assume that
every node has an additional array of pointers to its parents, which can anyway be
constructed in linear time (Champeaux, 1986).

- Undirected query edges: query edges are undirected and are dynamically created; in
addition, the algorithm needs to iterate on all ~neighbours of a node. In order to obtain
the right complexity, every node simply maintains a linked list of its ~neighbours, in
such a way that when a new undirected edge (n, m) is created, then n is pushed on the
list of ~neighbours of m, and m on the one of n.

- Canonical assignment is obtained by a pointer to a node (possibly undefined) in the
data structure for nodes.

- Building flags are just implemented via a boolean on each node.

- Queues do not need to be recorded in the data structure for nodes, as they can be
equivalently coded as local variables.
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Let us call atomic the following operations performed by the check: finding the first node,
finding the next node given the previous node, finding the first parent of a node, finding the
next parent of a node given the previous parent, checking and setting canonics, checking and
setting building flags, getting the next query edge on a given node, traversing a query edge,
adding a query edge between two nodes, pushing to a queue, and popping an element off of
a queue.

Atomic operations are constant

The atomic operations of the Blind check are all implementable in constant time on a
RAM.

We prove termination and linearity of algorithm 2 via a global estimation of the number
of transitions in a program run. The difficult part is to estimate the number of transitions
executing lines of BuildClass, since it contains multiple nested loops. First of all, we note
that in every program run BuildClass is called at most once for each node. Also the body of
the while loop on line 8 is executed in total at most once for each node, because in every
program run each node is enqueued at most once. The loop on line 10 is not problematic
because the parents of a node do not change during a program run. Estimating the number
of iterations of the loop on line 14, which iterates over the ~neighbours of a node n, seems
much more involved because the code inside the loop may create new query edges; however
as already discussed the ~neighbours of n do not change after the parents of n are visited on
line 10. The last insight for linearity is to recall that the algorithm parsimoniously propagates
query edges only between a node and its canonic: as a consequence, in every reachable state,
lundir| is linear in the size of @ and the number of nodes in the A-graph:

Bound on undir

Let Q be a query over a A-graph G as in input to algorithm 2. In every reachable state S,
lundir| < 2 x |Q| 4+ 4 x |N| (where | N| is the number of nodes of G).

Proof. Proved by induction on the length of the program run leading to S. In the initial
state S, [undir| = 2 X | Q| because undir contains the same edges as Q (but undir
is also symmetric and a multirelation, hence each ~edge counts twice).

During a program run, new ~edges are created only by the EnqueueAndPropagate pro-
cedure, which may create at most two new ~edges per call (that count as four new en-
tries of the symmetric multirelation undir). By proposition 14.6, EnqueueAndPropagate
is called at most |N| times in each program run, hence we conclude with the bound
lundir| < 2 x |Q| +4 x |N|.

Let |G| denote the size of a A-graph G, i.e. the number of nodes | V| plus the number of
(directed) edges |E| of G. Let also #edges(~, n) be the number of ~edges with endnode
n’,and #parents(n) be the number of directed edges in £ with target n. Then:

2Recall that ~ is a multirelation.
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Linear-time termination

Let Sp be an initial state of the algorithm, with a query Q over a A-graph GG. Then the
Blind check terminates in a number of transitions linear in |G| and | Q).

Proof. Letusassume a program run with end state S (not necessarily a final state). We are
going to discuss the number of transitions in the program run in a global way. We group
the transitions in the program run according to which procedure they are executing a
line of. The procedure EnqueueAndPropagate contains no loops and no function calls;
therefore, there is a constant bound on the number of transitions that are executed by
this procedure each time it is called. We consider this procedure as if it were inlined in
BuildClass; we instead discuss separately the procedures BlindCheck and BuildClass.

1. Transitions executing lines of BlindCheck. The procedure BlindCheck is called ex-

actly once, in the initial state. The loop on line 2 simply iterates over all the nodes
of the A\-graph: hence the loop bound is just |N| Line 3 may call the procedure
BuildClass, but here we do not consider the transitions caused by that function, that
will be discussed separately below. Therefore, the total number of transitions that
execute lines of BlindCheck is simply O(|N).

2. Transitions executing lines of BuildClass. The discussion of the complexity of Build-

Class is more involved, because it contains multiple nested loops.

As a first approximation, the total number of transitions executing lines of BuildClass
is big-O of the number of calls to BuildClass plus the numer of transitions executing
lines of the loop on line & (i.e. Lines 8-17). The number of calls to BuildClass is < |N|
(proposition 14.4). As for the loop on line 8, in every program run the body of the
loop is executed at most once for every node n (proposition 1412).

The body of the while loop contains two additional loops: one on line 10, and the
other on line 14:

- The loop on line 10 (with locals ¢, n) simply iterates on all the parents of a
node, which is a fixed amount: therefore each time it is executed with local
variable n, it is responsible for O(#parents(n)) transitions.

- The discussion about the loop on line 14 (with locals ¢, n) is more involved: it it-
erates on all ~neighbours of a node n, but ~ changes during the execution of
the loop. In fact, the body of the loop may call EnqueueAndPropagate(m,c) on
line 16, which may create new ~edges. However, note that the loop on line 14
is executed only after the loop on line 10, which finalizes the ~neighbours of
n (proposition 14.15). Therefore the loop on line 14 iterates on a set of ~edges
that does not change afterwards during the program run, and is therefore re-

sponsible for O(#edges(~,n)) transitions (where the relation ~ is the one
inS).
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Therefore the total number of transitions executing Lines 8-17 is big-O of:

Z{#parents n) + #edges(~,n) + 1 | Line 9 is executed with local n}
< Z #parents(n) + #edges(~,n) + 1)

neN
= Z #parents(n) + Z #edges(~,n) + Z 1
neN neN neN

= |E| + Jundir| + |N|.

Note that [undir| € O(|Q|+|N|) by proposition 14.33. Therefore the total number
of transitions executing lines of BuildClass in a program run is O(|N| + | E| 4 |Q)).

In conclusion, we obtain the following asymptotic bound on the number of transitions in
a program run:

O(IN]) + O(IN]) + O(IN] + | E + [Q]) = O(IN] + | E] + [<])-

14.2 The Variables Check

Our second algorithm (algorithm 3) takes in input the output of the Blind check, that is, a
pre-bisimulation on a A-graph G represented via canonic edges, and checks whether the
variable nodes of (G satisfy the variables conditions for a sharing equivalence—free variable
nodes on line 4, and bound variable nodes on line s.

The Variables check is based on the fact that to compare a node with all the other nodes
in its equivalence class it is enough to compare it with the canonical representative of the
class: note that this fact is used twice, for the variable nodes and for their binders (line 4).
The check fails in two cases:

- When two distinct free variable nodes are related: in this case Q# is not an open
relation.

- When two related bound variable nodes have binders that are not related: in this case
O# is not closed under

Correctness & completeness of the Variables check

Let Q be a query over a A\-graph G passing the Blind check, and let ¢ be the canonic
assignment produced by that check.

- Completeness: if the Variables check fails then there exists no sharing equivalence
containing Q.
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Variables Check

Data: canonic(-) representation of Q%
Result: is O a sharing equivalence?

1 Procedure VarsCheck()

> | foreach variable node n do

3 case n, canonic(n) of

4 bVar(l), bvar(l') = assert canonic(l) = canonic(l’)
5 fVar(z), fVar(y) = assert z =y

6 _, _ = // impossible

- Correctness: otherwise, =. is the smallest sharing equivalence containing Q.

Moreover, the Variables check terminates in time linear in the size of GG.

Proof. First note that since the Blind check succeeded, both ¢ and =, are homogeneous
relations. We also use the fact that (=) = (c*) (proposition 1418).

- Completeness: If the Variables check fails on line 5, then ¢ is not an open relation,
and therefore also = is not open by proposition 12.19. If the Variables check fails on
line 4, then c is not a bisimulation upto =, and therefore = is not a bisimulation
(because ¢ C =), and therefore it is not a sharing equivalence.

- Correctness: Since also the Variables Check succeeded, ¢ is an open relation, and
closed under upto =.. In order to show that =, is a sharing equivalence, it

suffices to show that it is open, and closed under . = Is closed under by
proposition 12.20. = is open by proposition 12.19.

- Termination in linear time: obvious, since the algorithm simply iterates on all vari-
able nodes of the \-graph.

Finally, composing with the sharing equality theorem (corollary 12.30) one obtains that the
two provided algorithms indeed test the equality of the readbacks of the query, as expected:

Sharing equality is linear

Let Q be a query over a A-graph GG. The sharing equality algorithm obtained by combining
algorithm 2 and algorithm 3 runs in time proportional to the sizes of G and @, and it
succeeds if and only if there exists a sharing equivalence containing Q. Moreover, if it
succeeds, it outputs a concrete’ representation of the smallest such sharing equivalence.

Proof. By theorems 14.26, 14.31 and 14.35 and proposition 14.34.

3And linear (in space).
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14.3 Combined Algorithm

As a final remark, algorithms 2 and 3 can be combined back into a single algorithm. To do so,
one can simply inline the check on variables performed by algorithm 3 directly in the body
of EnqueueAndPropagate in algorithm 2. This results in algorithm .
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Sharing Equality Algorithm
Data: an initial state
Result: Fuil or a final state

1 Procedure SharingEqualityCheck()
2 for every node n do
3 t if canonic(n) undefined then BuildClass(n)

. Procedure BuildClass(c)
5 | canonic(c):=c
6 | building(c) := true
7 | queue(c) = {c}
s | while queue(c) is non-empty do
9 n := queue(c).pop()
10 for every parent m of n do
7 case canonic(m) of
1 undefined = BuildClass(m)
L ¢ = if building(c’) then FAIL

1% for every ~neighbour m of n do

5 case canonic(m) of

16 undefined => EnqueueAndPropagate(m, ¢)
17 L ¢ = if ¢ # cthen FAIL

i | building(c) = false

19 Procedure EnqueueAndPropagate(m, ¢)
20 case m, c of

7 Abs(m’), Abs(c’) = create edge m’ ~ ¢/

2 App(m1, m2), App(cy, c2) =

3 create edges my ~ ¢; and my ~ co

2 bVar(l), bVar(l') = assert canonic(l) = canonic(l’)
2 fVar(z), fVar(y) = assertx = y

26 _,_ = FAIL

27 | canonic(m) =c¢

2 | queue(c).push(m)




Part IV

Conclusions
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Recap

In this dissertation, we investigated how to improve the efficiency of 3-conversion in the pure
A-calculus. To do so, we decomposed Conversion in two subproblems:

1. Computation (part I1). This problem is solved for the Call-by-Value A-calculus in the
open case: the Crumble GLAMs that we present in part Il run in time linear in the size
of the term to be evaluated and the number of CbV 3-steps. The strong case required
by conversion can be obtained by iterating the Crumble GLAMs by levels, but we have
ongoing research into generalizing our crumbling machines directly to the strong case,
which is harder and still an open problem: in the next chapter, we outline our abstract
machine for Strong CbV evaluation, which — we believe — also runs in bilinear time
(of course, with respect to the number of Strong CbV [5-steps, see section 151). That
machine is much more involved than the Crumble GLAMs, requiring stronger invariants;
it also relies heavily on crumbling, and its proofs crucially rest upon the technical tools
that we have developed in part Il.

2. Comparison (part I11). We solved this problem by providing an efficient algorithm for
sharing equality, the first one running in time linear in the size of the shared terms to
be compared. Our algorithm is based on Paterson-Wegman's, but we also provide an
abstract and clean study of the theory of sharing equality, independent of the chosen
algorithm.

There is plenty of future work, also from the more practical or implementative points of view.
Like many before us, we tackled conversion with the ultimate goal of improving the perfor-
mance of the Coq proof assistant: therefore a necessary step is extending our results to Coq.
As we discuss in section 15.2, however, Cogq poses multiple challeges. First, conversion in Coq
is a more complex subtyping relation, and the complexity of Comparison in the presence of
subtyping is unknown. Second, as the Coq library is quite massive, bounding the complex-
ity of our abstract machines through the size of the initial term provides impractical upper
bounds, because the initial term usually depends on various Coq libraries which cause the
size of inital term to become as big as the whole library.

We conclude this dissertation with an outline for future research (chapter 15).
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Chapter 15

Future Research

154 Strong CbV Evaluation

In collaboration with Sacerdoti Coen and Accattoli, we have preliminary results on how to
generalize the Crumble GLAMs presented in part |l to the more difficult case of strong evalu-
ation.

In this section we sketch our machine for Strong CbV, which we call SCAM for Strong Crum-
bling Abstract Machine. The SCAM dates back to 2018, but at the time the technical back-
ground of crumbled forms was simply not developed enough to allow the clear formulation
of the machine invariants that we present in the following pages. The reader will note that
all proofs are elided: in fact, we leave the full development with complete proofs for a future
publication. Still, we decided to include here our preliminary results about the SCAM because
the theory on crumbled forms developed in part || makes us confident that they are indeed
correct.

Calculus. When looking for a machine to implement Strong CbV, clearly the first step is to
design a proper Strong CbV calculus. Unfortunately the fireball calculus Agre that we have
introduced in section 3.2 is not ready-for-use to perform strong reduction. In fact, naively
allowing fireball reductions under abstractions makes the calculus undesirably not confluent
(Accattoli and Guerrieri, 2016), as the following critical pair cannot be joined:

I g0 (Ny.d)6 g = (Ax.(Ay.D) (x2)) 6 =570 (Ay.) (08) —pg/p -

(Note that the term on the far left is the identity, while the one on the far right diverges.)

Another point against Agre comes from semantics. In fact, two of the properties of any well-
behaved denotational semantics are invariance under evaluation, i.e. that denotations are
stable under evaluation, and compositionality, i.e. that terms with the same denotation when
plugged in a same context still have the same denotation. The example above also shows that
no denotational semantics for Afre can have these properties: the term (Ay.I) (zz) reduces
by — 3/, to I, butin the context (Az.(-) )0 the first diverges and the second converges, hence
they should not have the same denotation.

219
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Denotational studies like the one by Accattoli and Guerrieri, 2018 show that the reduction
rule — g/; (the one substituting inert terms) is the one to blame. The problem is not only the
erasure of an inert term, like the inert xx in the example above. Their semantics via multi
types (that also provides quantitative analyses) forbids also the duplication caused by a B/@
step.

The solution by Accattoli and Guerrieri, 2018 is to modify the operational semantics of
Afire IN such a way that a ﬁ/i step consumes the redex without actually substituting the inert
argument: they accomplish this by using a A-calculus with ES where a term is accompanied
by a sort of environment made up of inert ES, whose only role is to provide composition-
ality to denotations. Clearly, this “inert garbage” is motivated by denotational semantics
but not so by implementations: for instance, since the A-terms of proof assistants are all
strongly-normalizing, one may get rid of the inert garbage without impacting on termination
and compositionality. However, we rather prefer a machine that implements a well-behaved
Strong CbV calculus. One can always simplify later the machine, adapting it to the strongly-
normalizing setting by garbage-collecting the “inert garbage”.

For the reasons discussed above, the Strong CbV calculus that we sketch here is a calculus
with ES that does not “recycle” inert garbage (it also is a fragment of the value substitution
calculus by Accattoli and Paolini, 2012):

Syntax
Terms t,s = x|wv|ts|t[zi]
Values v = Azt
Fireballs  f == w|i| flx<i]
Inert terms 4 x| if | ifzei]

The only difference with Agre is that here fireballs and inerts can contain ES of the form
[z<i] where i is an inert, justified by the fact that inert substitutions are harmless (see
proposition 3.9) and thus they can be explicitly recorded without firing them. The reductions
rules are:

Reduction rules (top-level)
E(Azt)E'(v) =g E(E({{z+v}))
EQzt)i =g E(tlz<i])

where E stands for environment contexts defined in fig. 41, i.e. reduction is at a distance.
As one can see, a B/Z step creates an inert ES which will never be actually substituted, while
values can be fired and substituted smoothly.

Since inerts are not substituted, the strong normal forms of this calculus are slightly dif-
ferent than the ones defined in definition 5.1; the only difference is in the presence of (strong)
inert ES.
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Strong normal forms

Strong values v, = Ax.f
Strong fireballs  fs = s | vs | fs[reiy
Strong inertterms s = X | isfs | is[wis)

Essential strategy. We formulate our Strong CbV calculus by means of an “essential strat-
egy”, in the terminology of Accattoli, Faggian, and Guerrieri, 2019. We define an essential
strategy —«s which is non-deterministic: the SCAM then implements a sub-strategy of —s.
Determinism is not actually required by our quantitative analyses, but it is fundamental the
property of —.s known as random descent, i.e. that all maximal —esreduction sequences
from a term have the same length (a consequence of confluence).

To define —, we first introduce rigid terms, a generalization of inert terms:

Rigid terms

Rigid terms 7,7’ == x| rt|r[zer’]

As we see, while inert terms consist of a variable applied to any number of fireballs (and
possibly interspered with inert explicit substitutions), rigid terms consist of a variable applied
to any number of terms (not necessarily fireballs), possibly interspered with rigid explicit
substitutions. Note that, like inert terms, rigid terms are closed under substitutions.

Strong evaluation contexts
Weak W o= () | Wt |[tW | W(x<t] | t{zr<W]
Strong S = ()| Ax.S|R| S[zer] | tjlx<R)
Rigd R == rS|Rt| R[z<r]|r[z<R)]

Essential strategy —es

t—,. s '
STy - sy o B

We also leave for future work a denotational study of this calculus via multi-types, on
which we are already collaborating with Accattoli and Guerrieri.

Machine. The SCAM evaluates crumbled forms that are a slight variant of the ones intro-
duced in chapter 7: here we need to push crumbling to extremes and disallow any nesting
of syntax constructs whatsoever. A bite is not anymore either a value or a value applied to a
value, but we only allow to apply variables to variables, as follows:
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Crumbled forms
Bites b == x| xy | Ar.e with e non-empty
Crumbles e = €| ez

The reason for this difference is that allowing abstractions inside applications increases
the number of machine transitions that are necessary to perform strong evaluation: for in-
stance, to strongly evaluate either one of the bites Az.e or y()\a:.e), there would be necessary
two different search transitions, one focusing in the body e of A\x.e, and another one focusing
on e on the right part ofy()\x.e). By using the crumbling 2y we can also get rid of the transi-
tion —rsub/left (that in Crumble GLAMs substitutes abstraction on the left of applications) by
simply merging it with — .

We assume a translation function ¢ from A-terms to crumbles. Note that, like in the
Pointed Crumble GLAMs of chapter 10, we identify crumbles with crumbled environments;
here we also use a dedicate name x for the leftmost variable of a crumbled environment.

Crumbling variables. Unlike in part I, here we partition variable names in two disjoint sets:
“crumbling variables” and “calculus variables”, ie. V = Vo, W V. Ver cOntains the variables
introduced by the crumbling transformation (and also x € V), and V_,ic the variables that
are either bound or introduced by -steps. We carry this distinction because the readback
procedure (from crumbled forms to A-terms with ES, see below) is more complex than the
one in part Il, as it needs to undo the crumbling: the readback turns to real substitutions
the ES due to the crumbling transformation, and leave as explicit substitions the ES due to
[ steps.
We now define the readback of crumbled forms to A-terms with ES:

Readback

The readback of a bite b and environment e are, respectively, the terms b¢ and e defined
by:

By &
($y)¢ = 2y
(Az.e), = Az.e
G\L = *
b} ifb= € Ver
Jotl, = {z<0b,} i vorx ‘

[z<b] otherwise

As mentioned, the readback handles each entry [x<b] of a crumbled environment in
different ways: if « is a crumbling variable we perform the actual meta-level substitution; if
instead x is a calculus variable, then if v is an abstraction we still perform the substitution
(because the calculus substitutes values), otherwise we leave the ES in the readback.
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Machine states. We now turn to define the states of the SCAM. A state S has the form K ([},
where K is a context and [ is what we call a “locus”, which stands for the subterm on which
the machine is focused.

Machine states

Contexts K = ()| K[z<b] | elx<y.K]
locus | = ec<4 | em
State S = K(I)

First of all, let us provide some intuitions about the execution of the SCAM. Like Pointed
Crumble GLAMs, the SCAM uses a pointer < that marks the ES that is being evaluated, scrolling
through the environment from right to left. Whenever the SCAM encounters an ES containing
an abstraction — say e[x<—/\y.e’] <« —the body €’ of that abstraction cannot be yet evaluated:
in fact, if the variable & occurs in e, the abstraction Ay.e’ may be need to be copied later,
and evaluating its body would break the fundamental subterm property. For this reason, the
SCAM operates by levels, alternating two phases, and the « phase simply ignores abstractions.
During the » phase, instead, the machine scans the environment again, but from left to right:
this time, when it encounters an abstraction like e B [x<Ay.€/], the SCAM can evaluate the
body €’ because it is sure that that abstraction will not need to be copied anymore.

Let us go back to the syntax. A locus is a crumbled environment together with one of
the symbols “«” or “»", denoting the phase of the machine. Note that we abuse slightly the
notation K () in the syntax of states: here K (l) does not denote the usual plugging but it
is more like a pair K, [. However if we remove the pointer from a locus, then the plugging is
correct and results in a crumbled form.

About K contexts, the production “e[z<Ay.K]" enables strong evaluation, because it
allows to evaluate inside the bodies of abstractions. Note that if one removes the production
“elr+MAy.K]" and only considers loci having left phase (i.e. of the form “e <«”) then the
syntax collapses to the one of Pointed Crumble GLAMs. In fact, K contexts generalize the
evaluated environments that are on the right of the pointer in Pointed Crumble GLAMs. It
follows that the notion of lookup of a variable in a context K is more involved than usual:

Lookup in K

We denote by K (z) the lookup of z in the environment induced by the context K, and
we define it as follows:

()(2) undefined
K[z<bl(z) = b
Klz<b](z) = K(z)ifz#2
elr y.K|(z) = K(2).

Transitions. We provide in fig. 15.1 the transitions for the SCAM.
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—7SCAM ‘= 78/ U —7B/i U —7sub/v U —7gc U —7src/1 U---u —7src/5

Klelzcyz] €) =g Klefz<ble{we2z} €
Kle[reyz] 4) —pu  Kle[zeble «[we2])
K(elzeyz] €4) —apjier K{e[r—yw] €
Klelze2] 4) —awyy Klelzew] <)
Kle[reb] €4) —gen  K{c € [zeb))
K(€) =z K(»)
K(ew [x<b]) —acs  K(e[z<b] »)
K{ew [zev]) —g K{e»)
K(ew [z=)y.]) —gcn  Kle[r=ly.e' <)
Kle[zXy.e' »]) —acs  K(e[z<y.e] »)

K(y)* = Mw.([x<b]e') and K(z) is a value
K(y)* = Mw.([x<b]e') and K(z) is not a value
if K(2z) = w (where w is a variable)

if none of the other rules is applicable, i.e. when

- bis an abstraction, or

- when bis y or yz, and K (y) is not a variable or an abstraction
if bis a variable or an application
ifx ¢ fv(e) and & # %
if z € fu(e)

Note: we require that a-equality can rename a name in Ver \ {*} (resp. Veaic) only with names in Ver \ {*} (resp.
Vealc), and x cannot be renamed.

Transitions of the SCAM

As already mentioned, the machine operates in two modes, noted by » and «:

- Left «: the transitions in this phase (3/v, 5/1, = sub/ieft, —*subjvs —src/1) correspond
tightly to the transitions of Pointed Crumble GLAMs, the only difference being that values
and inerts are handled by the distinct transitions /v, 8 /1.
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After a (local) crumbled environment has been weakly evaluated, a /2 transition
changes the phase to .

- Right »: the transitions in this phase are mainly search transitions that walk through
the environment entries on the right of the cursor. Unused abstractions are garbage-
collected by —4 transitions, and used abstractions are evaluated strongly by entering
the environment in their body and switching phase. Unused inert terms, instead, are
never garbage-collected because as discussed our Strong CbV calculus keeps the inert
garbage.

Garbage collection. The SCAM performs garbage collection, which is unusual for abstract
machines. In this case garbage collection is fundamental in order for the SCAM to simulate
the calculus that we have provided above. In fact, since the readback always substitutes
abstractions, an abstraction that is not used is erased during readback; therefore evaluating
the body of an unused abstraction would not correspond to any reduction in the readback,
breaking the simulation. Garbage collection is thus necessary to propagate the information
about what variables are actually used, so that the side-condition z € fv(e) can be checked
intime O(1).

Readback. The first step to prove that the SCAM implements the given calculus is defining
a readback from states to crumbled terms.

As usual, we define the substitution o induced by a context /&, seen as an environment.
Like for the readback of crumbled forms (definition 15.1), the following definition either fires
or discards each ES:

Induced substitution o g
Let K be a context. Then the substitution ok induced by K is defined by:
oy = {}

ogo{x<b} ifb=vorx eV
OK[zeb] — .
OK otherwise

Oclzedy. K] — OK-

We now provide the readback of states and related objects:
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Readback

The readback [}, K|, and S| of a locus [, a context K, and a state S are defined by:

ed;, = e
epr;, = e

(o= 0
- {z<b,} ifb=vorz €V,
Klo<tl, = K { [z<b]  otherwise
elredy. K], = ef{zeAy.K}

K<l>i = K¢<Z¢UK>

The readback of a state K(I) is defined as the readback of the context K in which we
plug the crumbled environment l¢aK: the substitution o captures the substitutions fired
during the readback of K and impacting the hole, that need to be re-applied to [ before
plugging it back in.

A crucial point of this definition is that the readback /| is not actually a context in the
usual sense: the hole of K may be duplicated or erased during readback, since it may be con-
tained in an ES that is fired during readback. (Consider for instance the case e[x<—)\y.K]i =
e {x<Ay.K |} where z occurs multiple times in e}, or none at all.)

Multi-contexts. We thus need to generalize the contexts S and R defined on page 221 to
the multi-contexts S and R, as follows:

Multi-contexts
Strong S = ()| t|Az.S|R|S[z<R]
Rigid R = z |RS|R[z<R]

A multi-context is basically a context where the hole <> may occur not only once but
multiple times (even zero times are allowed, but in this case we say that the context is not
proper). Plugging in a multi-context amounts to replacing all the occurrences of (-) with the
plugged term.

The notion of plugging in multi-contexts is conceptually the same as with usual contexts,
only in multi-contexts the plugging replaces all the holes present in the context (if any) with
the given term.

A consequence of the duplication of holes during readback is that to each beta step of
the SCAM may correspond multiple steps in the calculus, as stated by the property principal
projection of upcoming theorem 15.7. This means that not only subterms are shared along the
execution, but also computation. This is something that does not occur in usual weak/open
machines for ChV, being instead a feature specific to CbNeed. Clearly the SCAM contains an



15.1. STRONG CBV EVALUATION 227

element of the “by-Need” attitude, and this suggests that the SCAM could be also adapted to
the harder case of Strong CbNeed evaluation in the future.

Invariants. The invariants required to prove the implementation theorem include the usual
ones for Pointed Crumble GLAMs, like the subterm property (i.e. that bodies of abstractions
are sub-crumbles of the initial crumble), and well-namedness (to ensure that there are no du-
plicates among the variables in the domain of K contexts). The only fundamental difference
is that now the context decoding property is much harder:

Context decoding

Let K (I) be a reachable state. Then:
1. K is a proper strong multi-context,
2. ifl = e[z+b] dthen e[z« ()], = R for some right v-context R,

3. if = e » then e is a strong fireball compatible with 0.

Point 1 states that the readback of K should be a proper strong multi-context, defined
above. Point 2 of theorem 15.5 is exactly the old context decoding requirement of Crumble
GLAMs: the readback of the left part of a pointed environment should be a right v-context. This
shows that, during the « phase, the machine is basically performing Open CbV by simulating
Crumble GLAMs.

Point 3 basically states that during the B phase the crumbled environment e on the left of
the pointer should be in strong normal form. What it actually states is more precise: €| should
also be compatible with o, meaning that in some way the redexes caused by substitutions
caused by K have already been fully reduced. The formal definition of compatibility follows:

Compatibility with a fireball substitution

Let f, be a strong fireball. f, is compatible with a fireball substitution o if every variable
x such that o(x) = v does not have applied free occurrences in f.

Implementation. To prove thatthe SCAM implements the essential strategy introduced above,
we follow the distillation technique outlined in section 4.4:

Implementation system

Let t be a A-term, and let S be a reachable state.
1. Initialization: i_ﬁi =]/
2. Principal projection:

- if S =5/, S’ then S| E—)E/UE Sy,



228 CHAPTER 15. FUTURE RESEARCH

- ifS _>ﬁ/i S’ then Si E—>E/LE Sll,.

3. Overhead transparency: if S —, S’ then § = &' for every rule r €
{sub/v, srcy, srcy, srcg, srcy, srcs, gt

4. Determinism: the transition —gcam Is deterministic.
5. Confluence: the reduction —¢s is confluent.
6. Halt: if S is —scam-normal, then §| is —es-normal.

7. Overhead termination: —,. terminates for every rule r €
{sub/v, srcy, srcy, srcg, srcy, srcs, get.

(Note: = is the structural equivalence on terms with ES mentioned in section 4.4.)

There is however a mismatch: the notion of distillation (page 57) requires both the transi-
tion relation of the machine and the reduction of the calculus to be deterministic. Our case
is different, because the reduction —. is not deterministic: however — ¢ is confluent (re-
quirement 5 of theorem 15.7), thus it is necessary to generalize the notion of implementation
system from a deterministic strategy to a confluent one.

Complexity. To obtain an efficient implementation we assume exactly the same underlying
A-graph implementation required by Pointed Crumble GLAMs, so that for instance the lookup
in the environment can be performed in constant time.

As usual, the cost of each {—>5/1,, —>,3/7;} transition is proportional to the size of the initial
term: these transitions copy the body of an unevaluated abstraction, which by the subterm
property is a subterm of the initial term. The cost of search transitions is costant, because
they simply move/switch the pointer around the crumble. Each {—>S,c/4, —>gc} transition
needs to check whether a variable x is free in the evaluated environment on the left of the
» cursor: this is achieved in costant time by checking whether the list of parents of the node
corresponding to & in the A-graph is empty.

Merged version. We leave the whole technical development outlined above for future work
(actually, a paper in collaboration with Accattoli, Guerrieri, Leberle and Sacerdoti Coen about
Strong CbV and containing the machine above is currently under peer review). Before conclud-
ing, we provide a more “concrete” version of the SCAM (fig. 15.2) where the evaluation context
K is encoded inside-out, in a stack, as in the abstract machines of previous chapters. (The
side-conditions of the transitions are the same as in fig. 15.1.)
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Syntax
Crumbles e = €| e[x<b]
Frames f = Ofx<b] | e[z<Ay.O]
Stack w u=¢€| fum
Phase @ = “<«’|“»”
State
e T
Initial state
0 = [I[<]¢]
Final state
Le[>]e]
Transitions
| elzyz] | «| 7| - Celzblefwez] | @ T |
Leloeyz] | <[ 7| = e LelEemW)e] | <[ 7 |
Leloey] | < | 7| o  LelEem@) | <7
Lelet] | <] | = L6 <] Ot |
ERIES = e LEl> |7
‘ = ‘ ‘ D[QZ(—b]::TF ‘ _’src/s ‘ 6[1‘<—b] ‘ ‘ u ‘
‘ e ‘ ‘ Olz<v]m ‘ e e T
‘ e ‘ ‘ Ofz<Ay.e]am ‘ — /s ‘ e ‘ ‘ elx=Ay.O]:m ‘
‘ e ‘ ‘ elx=Ay.O]::m ‘ — /s ‘ elx<Ay.€] ‘ ‘ T ‘

15.2 Convertibility in pCiC

The SCAM (concrete version) / Figure 15.2

As mentioned in the introduction and in chapter 5, every proof assistant based on a depen-
dent type theory relies during type-checking on a subprocedure that decides whether two

given terms are convertible.

This dissertation provides evidence that obtaining an efficient algorithm for 5-convertibility
is already very difficult in the classical A-calculus, let alone in proof assistants whose type
theories are much richer. Let us consider for instance the Cog proof assistant, based on the
predicative Calculus of (Co-)Inductive Constructions (pCiC).
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In pCiC, convertibility is not simply B-convertibility. To start with, pCiC contains — other
than the usual 5 — the following additional reduction rules:'

t-reduction basically says that a destructor applied to an object built from a constructor
behaves as expected. This reduction regulates the interaction between (fully applied)
constructors, terms defined by (co)fixpoint, and pattern matching (natchewitheend).

Basically, ¢ can be seen as a generalization of the reduction rules for the if @ then e
else construct that we have already studied under crumbling in Accattoli et al., 2019b.

d-reduction expands the value of a defined costant. For instance, ¢ —; t if the current
global environment contains the definition “c := t".

(-reduction removes a local definition occurring in a term (i.e. a let-expression) by
replacing all the occurrences of the defined variable by its value:

letz:=uint —. t{z<u}.

n-expansion is the following rule:

7)-expansion
t =y, Ar(tx) ifx & fu(t)

which can be applied only if £ has functional type, and only lazily during the convertibil-
ity check because 7 as a standalone reduction is non-terminating. Note: the converse
rule, called n-reduction, is not allowed in pCiC, as it breaks a desirable property of the
type system called subject reduction (it does not preserve types).

Therefore the correct notion for conversion in Coq is [Std{n-convertibility ; this however is
still not the whole story, as we see in the next paragraph.

Cumulativity. The type theory of Coq features so-called sorts: Prop, Set, and a Type, for
each natural number ¢. Sorts are cumulative:

Prop < Set
Set < Type,
Type, < Type; (ifi <)

meaning that each term of type Prop is also of type Set, that each term of type Set is also
of type Type,, and that each term of type Type; is also of type Type,; when ¢ < j. The
cumulativity relation is also an order, thus reflexive and transitive.

Because of cumulativity, the correct notion to use during type-checking is not plain con-
vertibility but a subtyping relation that encompasses both conversion and cumulativity (see
Luo, 1990), obtained by closing < under the following additional rules:’

'See https://coq.inria.fr/refman/language/cic.html.
2Where T is a typing context.
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[t =gi¢n TFT =gy U TDoax:THt<u
I'Et<s I'EVe:T.t<Vzx:U.u

The rule on the left says that two convertible terms are always in the subtyping relation.
The rule on the right says that (Va: T'.t) is a subtype of (Vx: U.u) whenever T"and U are
convertible® and ¢ is a subtype of .

More features. Coq is a rapidly evolving software, and currently its type system contains
many more features than the ones scketched above: for instance, universe polymorphism,
variance for general inductive types, sort polymorphism, and more constructs (like primitive
record projections). All these features clearly require to extend the subtyping relation even
further.

Future work. As for Comparison, our sharing equality algorithm can be easily extended
to the additional syntactical constructs of Cog. We were not successful in extending shar-
ing equality to the case of cumulativity. The algorithm presented in this dissertation”, be-
ing based on Paterson-Wegman's algorithm, relies heavily on a mechanism of equivalence
classes in order to have linear-time complexity: in particular, it requires that the computed
relation is symmetric by considering query edges bidirectional. While convertibility is an
equivalence relation, the subtyping relation is not symmetric, therefore it is not evident how
PW could be adapted to this case.

As for Computation, it is not difficult to extend the abstract machines introduced in this
dissertation to the additional constructs present in CoC: see for instance Accattoli et al,, 2019b,
where we show that our crumbling machines scale effortlessly to a calculus with booleans
andthe ifetheneelse construct. We supervised a master student, Andrea Pasquali, which
investigated in his thesis how to extend evaluation to the additional constructs of Cog. One
of the challenges of our crumbling representation, which disallows iterated applications, is
to access in constant time to the n-th applied argument: this is necessary for instance for
fixpoints and pattern matchings, which can reduce according to the n-th applied argument.

Practical convertibility

What is difficult is interweaving Computation and Comparison while staying efficient with
respect to the chosen strategy. As already mentioned, proof assistants never evaluate terms
to their full normal form, but limit reduction as much as possible guiding it through finely
tuned heuristics: the impact of these optimizations is fundamental in practice for the per-
formance of these tools but not much studied. The basic behaviour to check convertibility
of given terms is to first compute their weak head normal form, which exposes the top-level
rigid structure of the normal form; only later, if the outermost structure of the types agree,
iterate the process over arguments and abstractions. A fundamental optimization is to limit
when possible the costly unfolding of definitions (), because each new unfolding forces

3To obtain contravariant subtyping one can require that U < T..
4See algorithm 4.
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Comparison to traverse again the definition: some heuristics of Coq delay the unfolding,
and only in case of failure (for instance when conversion fails due to universe constraints)
then the conversion test is performed again after unfolding. Another important mechanism
in Coq is the one of opaque definitions, which allow to block their unfolding, improving per-
formance.

Moreover, further research is necessary to refine the bounds on the asymtotic complexity
of our abstract machines: we bounded the cost of evaluation according to the size of the
initial term, but — if interpreted literally — in the case of Coq the initial term is the current
Coq library together with its complete dependecies, whose size is prohibitive.

Conversion, PW-style In order to interweave evaluation and sharing equality so to fail early,
we also investigated the extension of our sharing equality algorithm from part Il to an algo-
rithm for B-convertibility working directly on a A-graph and following a “Paterson-Wegman
strategy”. For the sake of clarity, let us call this potential algorithm “PWConversion”.

The basic idea is to allow as inputs of PWConversion A-graphs that are not necessarily in
[B-normal form. An initial query r Q r’ between two root nodes r, r' then should correspond
to requesting whether [r] =g [r']. PWConversion can proceed non-deterministically, by
iterating over all nodes, picking one that has not been processed yet, and calling a procedure
similar to BuildClass. Clearly at some point a node n which is being processed by BuildClass
will need to be evaluated, in order to expose what its true constructor is, so that it can be
compared to other possible nodes in the equivalence class. Following the PW strategy by first
evaluating the parents of a node n, and only later n (if necessary) seems to respect a property
similar to the subterm property, which in abstract machines is the key to bilinearity.

Unfortunately, the interplay between the mechanism of equivalence classes and PW'’s cy-
cle detection complicates the study of such an algorithm, and this is why we leave PWConversion
for future research.
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