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Abstract

We study automorphisms of irreducible holomorphic symplectic (IHS) manifolds
deformation equivalent to the O’Grady’s sixfold (briefly of OG6 type). In recent
years the geometry of O’Grady’s manifolds has been studied in order to increase the
knowledge of them, but nothing was known, before this thesis, about automorphisms
of these deformation types.

In the first part we introduce the concept of induced automorphisms. O’Grady
introduced this IHS manifold in dimension six as the resolution of singularities of
the Albanese fiber of a moduli space of sheaves on an abelian surface. We show that
if the Picard lattice contains the class of the exceptional divisor of the O’Grady’s
desingularization, the O’Grady’s six type manifold has a geometric realization as
a moduli space of sheaves on an abelian surface. Moreover we show that an auto-
morphism is induced by the abelian surface, if some lattice theoretic conditions are
satisfied. In particular, we need that two copies of the hyperbolic lattice are con-
tained in the co-invariant sublattice with respect to the induced action on the second
integral cohomology lattice. We investigate also another notion of induced, which
is the notion of automorphisms induced at the quotient. There exists a birational
model for O’Grady’s six type manifolds realized as the quotient of a K3[3] type
manifold by a birational symplectic involution. Hence, we find a criterion to say if
an automorphism of prime order of the O’Grady’s sixfold lifts to an automorphism
of the K3[3] type manifold. We also provide an example of induced automorphism
which is induced at the quotient but not induced.

In the second part we classify non-symplectic automorphisms of prime order of
OG6 type manifold. In particular we study automorphisms which induced a non-
trivial action on the second integral cohomology, which has a lattice structure, as for
the other IHS manifolds. We classify, up to isometries, invariant and co-invariant
sublattices with respect to the induced action on the second integral lattice, and
we produce a list of non-symplectic automorphisms of prime order of OG6 type
manifold. We treat also the symplectic case and we use a similar approach as the
one used in the non-symplectic case. However, we do not find symplectic automor-
phisms, but just symplectic birational morphisms for reasons related to the presence
of some classes of divisors, the wall divisors, in the co-invariant sublattices.
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Introduction

This thesis deals with the study of automorphisms of a deformation class of ir-
reducible holomorphic symplectic manifolds (briefly IHS), which was discovered by
O’Grady [76] in 2000. These manifolds are sixfolds with second Betti number 8 and
are known in literature as manifolds of OG6 type. There are three types of “building
blocks” in the Beauville-Bogomolov decomposition [10, Theorem 2] of Ricci flat com-
pact Kähler manifolds, namely complex tori, Calabi-Yau varieties, and irreducible
holomorphic symplectic manifolds. By Yau’s proof of Calabi’s conjecture, having a
Ricci flat metric is equivalent to having trivial first Chern class. O’Grady’s sixfolds
are a deformation class in the last type of the Beauville-Bogomolov decomposition,
i.e. they are simply-connected compact Kähler manifolds carrying a holomorphic
symplectic form which spans H2,0. Irreducible holomorphic symplectic manifolds
have a double nature, in fact the holonomy of a Ricci flat Kähler metric is equal
to Sp(r), hence they are are hyperkähler manifolds (see [10]). For a while it was
thought that K3 surfaces are the unique example of irreducible holomorphic sym-
plectic manifolds. We needed to wait for Fujiki [36] and Beauville [10] to find exam-
ples in higher dimensions. However, the main issue about irreducible holomorphic
symplectic manifolds is the scarcity of the stock of examples, especially if we think
of the many examples of CalabiYau’s. For quite some time, every known irreducible
symplectic manifold is a deformation of one of the following varieties: the Hilbert
scheme parametrizing zero-dimensional subschemes of a K3 of fixed length [10],
and the generalized Kummer variety parametrizing zero-dimensional subschemes of
a complex torus of fixed length and whose associated 0-cycle sums up to 0 [10].
The keystone in finding new examples is due to the discovery made by Mukai [66]
of a symplectic form on moduli spaces of certain sheaves on symplectic surfaces.
This fact led to the hope that new irreducible holomorphic symplectic manifolds
could be found with these constructions and a good theory was developed by var-
ious mathematicians; for more detailed references about this, the reader can refer
to [47]. However it has been proved that all non-singular IHS manifolds obtained
in this way were a deformation of known examples and the singular ones had a
resolution of singularities which is IHS only in two cases, namely in O’Grady’s six
dimensional manifold [76] and in O’Grady’s ten dimensional manifold [77]. Briefly:
all known examples are deformations of a moduli space of semistable sheaves on a
surface with trivial canonical bundle or, as in the last two cases, of a symplectic
desingularization of such a moduli space. This new class of IHS sixfolds are usually
called OG6 type manifolds. They are not equivalent by deformation to K3[3] type
manifolds neither to K3(A) type manifolds, have second Betti number 8 and are the
main subject of our work. Manifolds in this class are obtained in two ways. The
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xii INTRODUCTION

first construction due to O’Grady is obtained by taking a generic abelian surface
and a Mukai vector w of square 2. As we will see in Section 1.3.1, the moduli space
of Gieseker semistable sheaves with Mukai vector 2w is a singular tenfold with ra-
tional singularities, whose Albanese fiber admits a crepant resolution that is an IHS
manifold in the family we are dealing with. O’Grady does this construction with
a specific Mukai vector, w = (1, 0,−1), but later the contribution given by many
authors, first by M. Lehn and Sorger and then by Perego and Rapagnetta, allows
to conclude that under the above assumption on w, the blow up of the Albanese
fiber of the moduli space along its singular locus always gives a crepant resolution
and these crepant resolutions are deformation equivalent, along smooth projective
deformations, to the original O’Grady’s example (see [87] and [80] for many details).

For what concern manifolds of OG6 type, interesting progress has been made
recently by Mongardi and Rapagnetta in [61]. In particular they showed that Clas-
sical Bimeromorphic global Torelli theorem holds for OG6 type manifolds, which
means that a necessary and sufficient condition to have a bimeromorphism between
two manifolds X and Y of OG6 type is the isometry of the integral Hodge struc-
tures H2(X,Z) and H2(Y,Z). We remark that the Classical Bimeromorphic global
Torelli theorem rather rarely happens to hold for deformation equivalence classes of
known IHS manifolds: it only holds (among known IHS manifolds) for K3 surfaces
and their Hilbert schemes of n points if n− 1 is a prime power. The theorem fails
for Hilbert schemes on K3 surfaces if n is not a prime power ([52, Section 9]) and
fails for O’Grady’s ten dimensional manifolds (see the counter example contained
in [59]). Moreover this result fails for generalized Kummer manifolds (refer to [69]
to see the counter example), as replacing the abelian surface, used to construct
the generalized Kummer manifold with its dual, does not change the second Hodge
structure, but the two Kummer manifolds are not birational. Due to this counterex-
ample and due to the role of an abelian surface in the construction of O’Grady’s
six dimensional manifolds, one could expect a similar failure of the global Torelli
theorem for O’Grady’s sixfolds. However, this is not the case, and an intuitive mo-
tivation of this, depends on the relation of OG6 type manifolds with A×A∨, where
A is the abelian surface involved in the construction of the moduli space, and with
the Kummer K3 surface A/±1 (see [62]).

When we have a new class of manifolds, one of the main aim is to know its
invariants, for this reason the study of automorphisms of irreducible holomorphic
symplectic manifolds has become a very active research field in the last years. The
global Torelli theorem for K3 surfaces, due to Šapiro and Šafarevič, allows to recon-
struct automorphisms of a K3 surface S starting from Hodge isometries of H2(S,Z),
which preserve the Kähler cone. This result, together with foundational papers of
Nikulin, namely [71] and [72], provided the instruments to investigate finite groups
of automorphisms on K3’s. The interesting point is that Huybrechts, Markman and
Verbitsky (see [45], [52] and [96]) formulated similar results of Torelli type for IHS
manifolds, and unexpectedly, also in these examples of higher dimension, the most
important role to study automorphisms is assumed by the second integral cohomol-
ogy. To be more precise automorphisms of IHS manifolds can be classified studying
the action of an automorphism on the second cohomology group with integer coeffi-
cients (which carries a lattice structure, provided by the Beauville-Bogomolov-Fujiki
quadratic form).
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The following is an overview of what we know about automorphisms of IHS
manifolds: many things we know about automorphisms of K3[2] type manifolds.
The symplectic case (i.e. automorphisms which preserve the symplectic form of
the manifold) is covered in [23] and [56]; moreover, the study of non-symplectic
automorphisms was started by Beauville [9] and was developed by many other
authors. We find these contributes in [16] and [13]. Another relevant paper about
automorphisms of K3[2] type manifolds is [25], and in [17] we find some interesting
remarks about the fixed locus of these automorphisms. Finally another remarkable
work about automorphisms of K3[n] type manifolds, where n ≥ 3, is the joint work
of Camere and Alberto Cattaneo that we find in [24]. Moreover we can find an
analysis of automorphisms of generalized Kummer manifolds in [94] and in [?].

Far less is known about O’Grady’s manifolds: automorphisms of OG6 type
manifolds are precisely the subject on which we focus in the thesis, whose core can
be divided into two parts, dealing with distinct aspects: on one hand we have the
intent to classify these automorphisms, on the other hand we define the concept of
induced automorphisms for OG6 manifolds and we find a criterion to characterize
them.

In Chapter 1 we provide the reader with an overview of the basic results about
irreducible holomorphic symplectic manifolds and we introduce the main tools to
approach the study of automorphisms, i.e. we give basic notions of lattice theory and
we recall the properties of the second cohomology for an IHS manifold. Moreover
we recall the construction of the O’Grady’s sixfolds. Manifolds in this family are
obtained in two ways. The first one, given in Section 1.3.1, is due to O’Grady and
it is obtained as a symplectic resolution of the Albanese fiber of a moduli space of
sheaves on an abelian surface. The second construction, described in Section 1.4.1,
was obtained in [62], by considering a principally polarized abelian surface A and its
Kummer K3 surface S. On a moduli space of sheaves on S, the authors construct
a non regular involution, whose quotient is birational to a manifold of OG6 type.
These two models are useful in the analysis of induced automorphisms.

We know that K3 surfaces are a toy model for IHS manifolds, and for this reason
in Chapter 2 we present a classification of non-symplectic automorphisms of order
8 on K3 surfaces, under some assumptions on the fixed locus. This study allows us
to become familiar with classification techniques of automorphisms which will be
useful in the case of OG6 manifolds. Given the low dimension of the K3 manifolds,
we obtain a classification just by studying the fixed locus of the automorphisms, as
we can find in Theorem 2.1.12.

The aim of Chapter 3 is to define the concept of induced automorphisms. As
we have seen in the first chapter, there exist two model for OG6 type manifolds and
for this reason we distinguish between induced automorphisms, and automorphisms
induced at the quotient. The easiest example of IHS manifolds which arises from a
symplectic surface, is the Hilbert scheme of n points on a K3 surface, constructed
by Beauville in [10]. This kind of construction allows us to produce several exam-
ples of automorphisms on irreducible symplectic manifolds, simply by taking a K3
surface with non-trivial automorphism group and considering the induced action on
its Hilbert scheme. These kinds of automorphisms are called natural in literature,
and were studied by Beauville [10], Boissière [12] and many others. A generaliza-
tion of the notion of natural automorphisms for moduli spaces is provided in [64].
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This notion appeared for the first time for moduli spaces of sheaves in [79], a work
inspired by the construction in [78, Section 5]. In [64] the authors extend the ideas
drastically using developments in the theory of stability conditions by Bridgeland
[22], and by Bayer-Macr̀ı (see [6][7]) and Yoshioka (see [100]). Inspired by these
recent works we adapt this notion for OG6 type manifolds. In reference to the con-
struction of O’Grady, we introduce the notion of induced automorphisms in order
to state a criterion to determine whether a given automorphism on a manifold of
OG6 type is, in fact, induced by an automorphism of the Abelian surface that we
use to define the moduli space. First of all, in Proposition 3.1.4 we find a sufficient
condition to know when a manifold of OG6 type is the symplectic resolution of the
Albanese fiber of a moduli space on an abelian surface, then we provide in Theo-
rem 3.2.6 a numerical criterion for the recognition of induced automorphisms. This
criterion is applied in Chapter 4, in the classification of non-symplectic automor-
phisms of OG6 type manifolds, and we will see that this criterion depends on the
lattice structure of the Neron–Severi group of the manifold, and of invariant and co-
invariant sublattices. Moreover this criterion, to be applied in the symplectic case
i.e. in Chapter 5, will have to be adapted since we will have to consider symplectic
birational automorphisms. We provide a numerical criterion for the recognition of
induced automorphisms.

Then, in Section 3.3 we refer to the other model of OG6, the birational one. In
Theorem 3.3.3 we prove that, if there exists a class E ∈ NS(X) such that E2 = −2
and div(E) = 2, then there exists a K3 surfaces S such that X is birational to
the quotient of S[3] by a birational symplectic involution i. After some auxiliary
Lemma, in Theorem 3.3.15, we find a criterion to say when an automorphism of the
OG6 type manifold lifts to an automorphism of the the Hilbert scheme, S[3], on S.

In Chapter 4 we have in aim to classify non-symplectic automorphisms of
prime order on OG6 type manifolds. We give classification results about families
of deformations of the pair (X,G) where X is a manifold of OG6 type and G ⊂
Aut(X) is a group of prime order and non-symplectic automorphisms of X. As we
have already said above, the second integral cohomology group H2(X,Z) of an IHS
manifold X, has a lattice structure, and it is an important tool to approach the
study of automorphisms. Moreover this lattice encodes most of the geometry of the
manifold, for more details we can refer to [43]. The strategy employed to classify
automorphisms of O’Grady sixfolds is related to the following representation map,

ν : Aut(X)→ O(H2(X,Z)).

From [65] we know that Ker(ν) = (Z/2Z)⊕8 and this is a deformation invariant.
One of the main questions about automorphisms is about the image of ν (see [43,
chapter 9]). In Proposition 4.0.9 we give an answer in this direction in the non-
symplectic and prime order case. We call effective an isometry which is the image
of ν. The idea to classify automorphisms from the second integral cohomology,
looks like the one used for manifolds of Kummer type (for n = 2 see [63]). In fact,
also in this case, the lattice of the second integral cohomology is not unimodular
as we can find in [81]. The strategy is to compute effective isometries to obtain
a classification of automorphisms that act non-trivially on the second cohomology.
The classification is resumed in Theorem 4.2.13.

The treatment of the symplectic case is more complicated and Chapter 5 is
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devoted to this. We are able to give results about the image of the following repre-
sentation map,

ν : Bir(X)→ O(H2(X,Z)),

where Bir(X) is the group of birational automorphisms. An element in the image
is called birational effective. To classify these birational maps we need to consider
wall divisors and prime exceptional divisors which are, roughly speaking, the walls
of the Kähler cone, and the walls of the birational Kähler cone, respectively (see
[52] for more details). If the co-invariant sublattice SG(X) of H2(X,Z) with respect
to a symplectic action contains wall divisors, then the isometry is not effective, if
it contains prime exceptional divisors, it is not birational effective. From [61] we
know that if X is of OG6 type, wall divisors are classes of square -2 and divisibility
1; on the other hand, prime exceptional divisors are classes of square -2 and divisi-
bility 2, and classes of square -4 and divisibility 2. We study the case in which the
induced action on the discriminant group AX ∼= (Z/2Z)⊕2 is trivial, and we obtain
in Theorem 5.1.6 a complete classification of birational effective isometries of the
OG6 lattice. We know from Theorem 5.0.8 that wall divisors are in the co-invariant
lattice of an OG6 manifold whenever the group is symplectic, and consequently
there is no way to find automorphisms using this strategy. We only obtain bira-
tional automorphisms that cannot be extended to regular automorphisms. Finally,
in Chapter 6, we provide an example of a birational symplectic automorphism
which is induced at the quotient but not induced. In Theorem 6.0.4 we find the ex-
plicit construction of this birational automorphism, starting from the co-invariant
sublattice with respect to the induced action on the second integral cohomology.
In general it holds that an induced automorphism is also induced at the quotient.
In fact, if an automorphism is induced we find the abelian surface A to define the
moduli space. If we can consider the Kummer surface of A, this is a K3 surface
S, and this is what we need to define the Hilbert scheme S[3], and to verify the
condition that allow us to say if it is induced at the quotient.
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Chapter 1

Preliminaries

1.1 Lattices

In this Section we give an overview of lattice theory and of finite quadratic forms,
recalling the fundamental definitions and results which we will use throughout the
thesis. The work [72] due to Nikulin, is the most important which we will refer to,
but there are also other classical sources, such as [29] and [46, Chapter 14].

Definition 1.1.1. A lattice Λ is by definition a free Z-module of finite rank together
with a symmetric bilinear form

( . ) : Λ× Λ −→ Z,

which we will always assume to be non-degenerate.

A lattice Λ is called even if

(x)2 = (x.x) ∈ 2Z

for all x ∈ Λ, otherwise Λ is called odd. The determinant of the intersection matrix
with respect to an arbitrary basis (over Z) is called the discriminant, disc(Λ). A
lattice Λ and the R-linear extension of its bilinear form ( . ) give rise to the real
vector space ΛR := Λ ⊗Z R endowed with a symmetric bilinear form. The latter
can be diagonalized with only 1 and -1 on the diagonal, as we assumed that ( . )
is non-degenerate. The signature of Λ is (n+, n−), where n± is the number of ±1
on the diagonal, and its index is τ(Λ) := n+ − n−. The lattice Λ is called definite
if either n+ = 0 or n− = 0 or, equivalently, if τ(Λ) = ± rk Λ. Otherwise, Λ is
indefinite. Finally, Λ is hyperbolic if n+ = 1. The divisibility div(l) of an element
l ∈ Λ is the positive generator of the ideal {(l.m)|m ∈ Λ} ⊂ Z. If t is a non-zero
integer, Λ(t) denotes the lattice of rank r = rk(Λ) and whose bilinear form is the
one of Λ multiplied by t.

If Λ,Λ′ are two lattices, their orthogonal direct sum is denoted by Λ ⊕ Λ′: it
is the lattice of rank rk(Λ) + rk(Λ′) on the free abelian group Λ ⊕ Λ′ such that if
l1, l2 ∈ Λ and l′1, l

′
2 ∈ Λ′ then (l1, l2) + (l′1, l

′
2) := (l1 + l′1, l2 + l′2).

If Λ is a lattice, a sublattice T of Λ is a subgroup T ⊂ Λ with the property that
the restriction of the bilinear form of Λ to T remains non-degenerate. For T ⊂ Λ
a sublattice, we define T⊥ := {l ∈ Λ | (l, t) = 0 ∀ t ∈ T}. It is easy to check that

1



2 CHAPTER 1. PRELIMINARIES

T⊥ is a sublattice of Λ, called the orthogonal sublattice of T . In particular, the
sublattice T ⊕T⊥ ⊂ Λ has maximal rank, i.e. rk(T )+rk(T⊥) = rk(Λ). A sublattice
T ⊂ Λ is called primitive if the quotient Λ/T is a free abelian group. The orthogonal
complement T⊥ of any sublattice T ⊂ Λ is primitive; moreover, (T⊥)⊥ ⊂ T is the
primitive sublattice of Λ generated by T (also called the saturation of T in Λ). If
Λ, Λ′ are two lattices, a morphism of lattices ϕ : Λ −→ Λ′ is a morphism of free
abelian groups such that (l1, l2) = (ϕ(l1), ϕ(l2)) for all l1, l2 ∈ Λ. Since the bilinear
form of any lattice is assumed to be non-degenerate, all morphisms of lattices are
injective. An isometry is a bijective morphism of lattices; we denote by O(Λ) the
group of isometries of a lattice Λ to itself. If two lattices Λ,Λ′ are isometric, we
write Λ ∼= Λ′. We will often use the term embedding to refer to a morphism of
lattices which is not necessarily surjective. An embedding i : Λ ↪→ Λ′ is primitive
if the image i(Λ) ⊂ Λ′ is a primitive sublattice. The dual lattice of Λ is Λ∗ :=
HomZ(Λ,Z), which admits the following equivalent description:

Λ∗ = {u ∈ Λ⊗Q : (u, v) ∈ Z ∀ v ∈ Λ}. (1.1)

Clearly Λ is a subgroup of Λ∗. Notice that, with respect to a basis {ei}i of Λ and the
dual basis {e∗i := (ei. )}i of Λ∗, the matrix which represents the inclusion Λ ↪→ Λ∗

is simply the intersection matrix of Λ, i.e. the intersection with respect to {ei}i.
Since Λ ⊂ Λ∗ is a subgroup of maximal rank, the quotient AΛ := Λ∗/Λ is a finite
group, called the discriminant group of Λ. We denote with det(Λ) the order of the
discriminant group AΛ, i.e. the index of Λ ⊂ Λ∗, which coincides with | disc(Λ)|.
Moreover the length, l(AΛ) is defined as the minimal number of generators of AΛ.

If AΛ = {0} the lattice Λ is said to be unimodular. If instead AΛ
∼=
(

Z
pZ

)⊕k
for

a prime number p and a non-negative integer k, then the lattice Λ is said to be
p-elementary, in this case l(AΛ) = k. Notice that the dual lattice Λ∗ is not actually
a lattice (it is not endowed with an integer valued bilinear form), however, using
the representation 1.1, we can extend the bilinear form on Λ by Q linearity to
(., .) : Λ∗ × Λ∗ −→ Q. In particular if we consider x1, x2 ∈ Λ∗ and l1, l2 ∈ Λ, we
have:

(x1 + l1, x2 + l2) = (x1, x2) + (x1, l2) + (x2, l1) + (l1, l2) ≡ (x1, x2) (mod Z) (1.2)

We recall the following definition

Definition 1.1.2. A finite bilinear form is a symmetric bilinear form b : A×A→
Q/Z where A is a finite abelian group. A finite quadratic form is a map q : A →
Q/2Z such that:

i) q(ka) = k2q(a) for all k ∈ Z and a ∈ A;

ii) q(a+ a′)− q(a)− q(a′) = 2b(a, a′) in Q/2Z, where b : A×A→ Q/Z is a finite
bilinear form (called the bilinear form associated to q).

A finite quadratic form q : A → Q/2Z is said to be non-degenerate if the
associated finite bilinear form b is non-degenerate, and by using b we define the
orthogonal complement H⊥ ⊂ A for any subgroup H ⊂ A. The isometry group
O(A) is the group of isomorphisms of A which preserves the finite quadratic form
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q. Looking at the expression 1.2 if Λ is a lattice, the bilinear form (with rational
values) on Λ∗ descends to a well-defined finite bilinear form AΛ ×AΛ → Q/Z.

In the case when the lattice Λ is even, we can associate to the bilinear form on
AΛ a finite quadratic form on qΛ, defined as

qΛ : AΛ → Q/2Z, qΛ(x+ Λ) := (x, x) (mod 2Z).

Notice that, for any two lattices Λ, Λ′ there exists a canonical isomorphism AΛ⊕Λ′
∼=

AΛ⊕AΛ′ , which is an isometry with respect to the finite quadratic forms qΛ⊕Λ′ and
qΛ ⊕ qΛ′ .
We recall the following result concerning finite quadratic forms.

Proposition 1.1.3. Let q be a finite quadratic form on an abelian group A and
H ⊂ A a subgroup. If q is non-degenerate, then |A| = |H||H⊥|. Moreover if the
restriction q|H is non-degenerate, then A = H ⊕H⊥ and q = q|H ⊕ q|H⊥

Proof. See [72, Proposition 1.2.1] and [72, Proposition 1.2.2].

We now provide a list of examples of lattices that we will use throughout the
thesis.

Example 1.1.4. Let l ∈ 2Z, l 6= 0, we denote by 〈l〉 the rank one lattice L = Ze,
with (e, e) = l. It is positive definite if l > 0, negative definite otherwise. The
equivalence class e

l ∈ L⊗Q modulo L is a generator of AL ∼= Z
lZ , with qL( el +L) = 1

l .

Example 1.1.5. The lattice U is unimodular, hyperbolic lattice of rank two defined

by the matrix

(
0 1
1 0

)
.

Example 1.1.6. The E8-lattice is given by the intersection matrix

E8 :=



2 −1
−1 2 −1

−1 2 −1 −1
−1 2 0
−1 0 2 −1

−1 2 −1
−1 2 −1

−1 2


and it is, therefore, even, unimodular, positive definite (i.e. n− = 0) of rank eight
with discriminant equal to 1.

Lattices that are not unimodular and which are really important in this thesis
are the lattices associated to the Dynkin diagrams An, Dn, E6, E7 and E8. Only the
last one gives rise to a unimodular lattice as we have seen above.

To any graph Γ with simple edges the lattice Λ(Γ) associated to Γ has a basis
ei corresponding to the vertices with an intersection matrix given by (ei.ej) = 2 if
i = j, (ei.ej) = 1 if ei and ej are connected by an edge and (ei.ej) = 0 otherwise.
So, for example, A1 = 〈2〉. In fact, the graphs of ADE type as drawn below are
the only connected graphs for which the following holds: two vertices ei, ej of Γ
are connected by at most one edge and the lattice Λ(Γ) naturally associated with
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Γ is positive definite. From a geometric point of view, lattices of ADE type occur
as configurations of exceptional divisors of minimal resolutions of rational double
points. Recall that rational double points are described explicitly by the following
equations [46, Chapter 14]:

The exceptional divisor of the minimal resolution of each of these singularities
is a curve

∑
Ci with Ci ' P1, self-intersection (Ci)

2 = −2, and for Ci 6= Cj one
has (Ci.Cj) = 0 or= 1. The vertices of the dual graph correspond to the irreducible
components Ci and vertices are connected by an edge if the corresponding curves Ci
and Cj intersect. The dual graph is depicted in each of the cases in the last column.
Alternatively, rational double points can be described as quotient singularities C2/G
by finite groups G ⊂ SL(2,C). For instance, an An-singularity is isomorphic to the

singularity of the quotient by the cyclic group of order n generated

(
ξn 0
0 ξ−1

n

)
with ξn a primitive n-th root of unity, see [54, Chapter 4.6] for more details and
references. We also record the discriminant groups of lattices of ADE type, see [35]:

Example 1.1.7. For p prime, p ≡ 1(mod 4), let

Hp :=

(
(p− 1)/2 1

1 −2

)
.

It is a hyperbolic p-elementary lattice with AHp
∼= Z

pZ .

Example 1.1.8. For p prime, p ≡ 3(mod 4), let

Kp :=

(
−(p+ 1)/2 1

1 −2

)
.

It is a negative definite, p-elementary lattice with AKp
∼= Z

pZ . In particular K3 = A2.

Example 1.1.9. The K3-lattice

H2(K3,Z) ∼= E8(−1)⊕2 ⊕ U⊕3

is an even, unimodular lattice of signature (3, 19) and discriminant -1.
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1.1.1 Orthogonal sublattices and primitive embeddings

Let Λ,Λ′ be two even lattices, we say that they have isomorphic discriminant
forms (and we write qΛ

∼= qΛ′) if there exists a group isomorphism ρ : AΛ → AΛ′

such that qΛ(x) = qΛ′(ρ(x)) ∈ Q/2Z for all x ∈ AΛ. By [72, Theorem 1.3.1.], Λ
and Λ′ have isomorphic discriminant forms if and only if there exist unimodular
lattices V , V ′ such that L⊕ V ∼= L′ ⊕ V ′. Moreover by [72, Theorem 1.1.1(a)] the
signature (v+, v−) of a unimodular lattice V satisfies v+ − v− ≡ 0 (mod 8). Hence
the following definition is well-posed.

Definition 1.1.10. The signature modulo 8 of a finite quadratic form q is

sign(q) := n+ − n− (mod 8)

where (n+, n−) is the signature of an even lattice Λ such that qΛ = q.

If Λ1 ↪→ Λ has finite index, we have the following sequence of inclusions:

Λ1 ↪→ Λ ↪→ Λ∗ ↪→ Λ∗1,

such that the composition is just the canonical inclusion of Λ1 in its dual Λ∗1. Fix a
basis {αi}i of Λ1 and {βi}i of Λ, and denote by GΛ1 (respectively by GΛ) the Gram
matrix of the lattice Λ1 (respectively of Λ) with respect to the chosen basis. If W is
the matrix which represents the inclusion Λ1 ↪→ Λ, then the transposed matrix W t

represents Λ∗ ↪→ Λ∗1, therefore we conclude that GΛ1 = W tGΛW . The determinant
of W coincides with the index [Λ : Λ1], while the determinants of GΛ1 and GΛ are
the discriminant of Λ1 and Λ respectively, therefore

[Λ : Λ1]2 =
discr(Λ1)

discr(Λ)
=
|AΛ1 |
|AΛ|

.

In a more general setting, if Λ1 ↪→ Λ is a primitive sublattice of any rank, then
Λ1 ⊕ Λ⊥1 ⊂ Λ has maximal rank, which implies

[Λ : (Λ1 ⊕ Λ⊥1 )]2 =
discr(Λ1 ⊕ Λ⊥1 )

discr Λ
=
|AΛ1 ||A⊥Λ1

|
|AΛ|

.

By the sequence of inclusions

Λ⊕ Λ⊥1 ↪→ Λ ↪→ Λ∗ ↪→ (Λ⊕ Λ⊥)∗ ∼= Λ∗1 ⊕ (Λ⊥1 )∗

the quotient Λ/(Λ1 ⊕ Λ∗1) is isomorphic to the subgroup M ⊂ AΛ1 ⊕AΛ⊥1
, which is

isotropic (i.e (qΛ ⊕ qΛ⊥)|M = 0), thus M ⊂ M⊥ and M⊥/M ∼= AΛ. In particular
from the previous equality we have that |AΛ1 |⊕ |AΛ⊥1

| = |AΛ||M |2. The projections

pΛ1 : AΛ1 ⊕AΛ⊥1
→ AΛ1 , pΛ⊥1

: AΛ1 ⊕AΛ⊥1
→ AΛ⊥1

,

are such that M ∼= MΛ1 := pΛ1(M) and M ∼= M⊥Λ1
:= pΛ⊥1

(M) as groups. Moreover,
the composition

γ := pΛ⊥ ◦ (pΛ)−1|MΛ1
: MΛ1 →MΛ⊥1

is an anti-isometry, i.e. an isomorphism of groups such that qΛ1(x) = −qΛ⊥1
(γ(x))

for all x ∈MΛ1 .
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Lemma 1.1.11. Let Λ be a unimodular lattice and Λ1 ⊂ Λ a primitive sublattice.
Then, as groups,

AΛ1
∼= AΛ⊥1

∼=
Λ

Λ1 ⊕ Λ⊥1
.

Proof. Since |AΛ| = 1, we have |M |2 = |AΛ1 ||A⊥Λ1
|, hence MΛ1 = AΛ1 and MΛ⊥1

=

MΛ⊥1
. The projections, pΛ1 |M and pΛ⊥1

|M are therefore isomorphisms of groups.

We shall call two overlattices S ↪→ S′ and S ↪→ S′′ isomorphic if there exists
an automorphism of S extending to an automorphism of S′ with S′′. In order to
formulate the next result, we observe that an isomorphism ϕ : S1

∼−→ S2 extends to a
Z-module isomorphisms S∗1 → S∗2 (denoted by ϕ∗) and determines an isomorphism
ϕ : qS1

∼−→ qS2 of their discriminant forms. In particular, there is an induced
homomorphism O(S)→ O(qS) between the automorphism groups of S and qS .

Proposition 1.1.12. Two even overlattices S ↪→ S′ and S ↪→ S′′ are isomorphic
if and only if the isotropy subgroups HS′ ⊂ AS and HS′′ ⊂ AS are conjugate under
some automorphism of S.

Proof. For a proof see [72, Proposition 1.4.2].

The following fundamental result, proved by Nikulin in [72, Proposition 1.15.1]
describes primitive embeddings.

Theorem 1.1.13. Let S be an even lattice of signature (s(+), s(−)) and discrim-
inant form qS. Primitive embeddings i : S → L, for L an even lattice of sig-
nature (l(+), l(−)) and discriminant form qL, are determined by quintuples θi :=
(HS , HL, γ, T, γT ) such that:

• HS is a subgroup of AS,HL is a subgroup of AL and γ : HS → HL is an
isomorphism qS |HS ∼= qL|HL;

• T is a lattice of signature (l(+) − s(+), l(−) − s(−)) and discriminant form

qT = ((−qS) ⊕ qL)|Γ⊥/Γ, where Γ ⊆ AS ⊕ AL is the graph of γ and Γ⊥ is
its orthogonal complement in AS ⊕AL with respect to the finite bilinear form
associated to (−qS)⊕ qL;

• γT ∈ O(AT ).

The lattice T is isomorphic to the orthogonal complement of i(S) in L. Moreover,
two quintuples θ and θ′ define isomorphic primitive sublattices if and only if µ(HS) =
H ′S for some µ ∈ O(S) and there exists ϕ ∈ O(AL), ν : T → T ′ isometries such
that γ′ ◦ ν = ϕ ◦ γ and µ ◦ γT = γ′T ′ ◦ ν.

Another crucial result due to Nikulin is the following (see [72, Proposition 1.5.1]).

Proposition 1.1.14. A primitive embedding of an even lattice S into another even
lattice, with discriminant form q and orthogonal complement isomorphic to K, is
determined by a pair (H, γ), where H ⊂ AS is a subgroup and γ : H → AK is a
group monomorphism, while qK ◦ γ = −qS |H and

(qS ⊕ qK |(Γγ)⊥)/Γγ w q,
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where Γγ is the graph of γ in AS⊕AK . Two such pairs (H, γ) and (H ′, γ′) determine
isomorphic primitive embeddings if and only if H = H ′, and the injections γ and γ′

are conjugate via some automorphism of K, and they determine primitive sublattice
when there exist ϕ ∈ O(S) and ψ ∈ O(K) such that γ ◦ ϕ = ψ ◦ γ′.

1.1.2 Existence and uniqueness

A fundamental invariant, in the theory of lattices, is given by the genus.

Definition 1.1.15. Two lattices, L and L′ belong to same genus if sign(L) =
sign(L′) and L⊗Zp and L′⊗Zp are isomorphic (as Zp-lattices) for all prime integers
p.

Two lattices L and L′ have the same genus if and only if L ⊕ U ∼= L′ ⊕ U or
equivalently if and only if they have the same signature and discriminant quadratic
form:

Theorem 1.1.16. The genus of an even lattice L is determined by the triple
(l(+), l(−), qL) where (l(+), l−) is the signature of the lattice and qL is its discriminant
quadratic form.

Proof. See [72, Corollary 1.9.4].

Each genus contains only finitely-many isomorphism classes of lattices. It is an
interesting problem to determine whether there exists an even lattice with given
signature and discriminant quadratic form, and, if so, whether it is unique, up
to isometries. The main results which we will need, regarding uniqueness of an
indefinite lattice in its genus, are the following.

Theorem 1.1.17. Let L be an even lattice with discriminant quadratic form qL
and signature (l(+), l(−)), with l(+) ≥ 1 and l(−) ≥ 1. Up to isometries, L is the only
lattice with invariants (l(+), l(−), qL) in all of the following cases:

(i) l(+) + l(−) ≥ l(AL) + 2;

(ii) l(+) + l(−) ≥ 3 and discr(L) ≤ 127;

(iii) l(+) + l(−) ≥ 3 and L is p-elementary, with p odd;

(iv) L is 2-elementary.;

Proof. The statement combines [72, Corollary 1.13.3], [29, Chapter 15, Corollary
22], [15, Theorem 2.2] and [32, Theorem 1.5.2].

We need to mention the following lemma:

Lemma 1.1.18. Let R be a lattice, and let G ⊂ O(R), G finite. Then the following
hold:

- TG(R) contains
∑

g∈G gv for all v ∈ R.

- SG(R) contains v − gv for all v ∈ R and all g ∈ G.
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- R/(TG(R)⊕ SG(R)) is of |G|-torsion.

where TG(R) is the invariant lattice, i.e. the eigenspace with respect to the eigen-
value 1, and SG(R) is the co-invariant sublattice i.e. the orthogonal complement of
TG(R) in R.

Proof. It is obvious that
∑

g∈G gv is G-invariant for all v ∈ R. For w ∈ TG(R) we
have (w, v) = (gw, gv) = (w, gv) for all v ∈ R and all g ∈ G. Therefore v − gv
is orthogonal to all G-invariant vectors, hence it lies in SG(R). Let t ∈ R, we can
write |G|t =

∑
g∈G g(t) +

∑
g∈G(t−g(t)), where the first term lies in TG(R) and the

second in SG(R).

The following Lemma gives some restrictions for a lattice to have an action of
prime order:

Lemma 1.1.19. Let L be a lattice and G ⊂ O(L) a subgroup generated by ϕ of
prime order p. Then

m := rk(SG(L))
p−1

is an integer and

L
TG(L)⊕SG(L)

∼= (Z/pZ)a.

Moreover, there are natural embeddings of L
TG(L)⊕SG(L) into the discriminant group

ATG(L) and ASG(L), and a ≤ m.

Proof. See [63, Lemma 1.8].

Since TG(Λ) and SG(Λ) are p-elementary lattices, we will use the following clas-
sification results to find them.

The first theorem deals with the case p = 2. For 2-elementary lattices, signature
and length are not enough to determine the discriminant form. We need to introduce
an additional invariant.

Definition 1.1.20. Let q be a quadratic form on a finite abelian group A. We
define:

δ(q) =

{
0 if q(x) ∈ Z/2Z for all x ∈ A
1 otherwise

If L is an even lattice, we set δ(L) := δ(qL).

Theorem 1.1.21. An even, 2-elementary lattice L of signature (l(+), l(−)) is uniquely
determined by the invariants (l(+), l(−), l(AL), δ(L)), up to isometries. There exists
an even, 2-elementary lattice L with sign(L) = (l(+), l(−)), l(AL) = a ≥ 0 and
δ(L) = δ ∈ {0, 1} if and only if l(+) ≥ 0, l− ≥ 0 and the following conditions are
satisfied:
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

a ≤ l(+) + l(−);

l(+) + l(−) ≡ a (mod 2);

if δ = 0 then l(+) − l(−) ≡ 0 (mod 4);

if a = 0, then δ = 0 and l(+) − l(−) ≡ 0 (mod 8);

if a = 1, then l(+) − l(−) ≡ 1 (mod 8);

if a = 2, and l(+) − l(−) ≡ 4 (mod 8), then δ = 0;

if δ = 0, and l(+) + l(−) = a, then l(+) − l(−) ≡ 0 (mod 8).

Proof. See [32, Theorem 1.5.2].

And the second theorem deals with the case p 6= 2.

Theorem 1.1.22. An even hyperbolic p-elementary lattice of rank r with p 6= 2
with invariants (r, a) exists if and only if the following conditions are satisfied:

a ≤ r
r ≡ 0 (mod 2)

if a ≡ 0 (mod 2), then r ≡ 2 (mod 4)

if a ≡ 1 (mod 2), then p ≡ (−1)r/2−1 (mod 4)

if r 6≡ 2 (mod 8), then r > a > 0

Such a lattice is uniquely determined by the invariants (r, a) if r ≥ 3.

Proof. See [83, Section 1].

Since the classification theorem of p-elementary lattices with p 6= 2 above deals
only with hyperbolic lattices, we will need sometimes to split a lattice to study it.
This is done by the following theorem:

Theorem 1.1.23. Let L be an even lattice of rank r. If L is indefinite, and r ≥
3 + l(AL), then L ' U ⊕ L0 for some lattice L0.

Proof. See [72, Corollary 1.13.5].

The following theorems will also be useful along the classification:

Theorem 1.1.24. Let L be an even lattice with signature (r+, r−) and discriminant
form qL. If L is indefinite and l(AL) ≤ rk(L) − 2, then L is the only lattice up to
isometry with invariants (r+, r−, qL).

Proof. See [72, Theorem 1.13.3].

Proposition 1.1.25. Let L be a lattice with a non-trivial action of order p, with
rank p− 1, and discriminant dL, then dL

pp−2 is a square in Q.

Proof. See [14, Section 4].

Let me recall this important result:

Theorem 1.1.26. An even lattice with invariants (t+, t−, q) exists if and only if
the following conditions are simultaneously satisfied:
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1. t+ − t− ≡ sign q (mod 8)

2. t+ ≥ 0, t− ≥ 0, t+ + t− ≥ l(Aq).

3. (−1)t− |Aq| ≡ discrK(qp)(mod(Z∗p)2) for all odd primes for which
t+ + t− = l(Aqp).

4. |Aq| ≡ ±discrK(q2)(mod(Z∗p)2) if t+ + t− = l(Aq2) and q2 6= q
(2)
θ (2)⊕ q′2.

Proof. See [74].

1.2 Irreducible holomorphic symplectic manifolds

1.2.1 Basic facts and examples

Definition 1.2.1. An irreducible holomorphic symplectic (IHS) manifold is a com-
pact Kähler manifold X such that:

• π1(X) ∼= {1}

• H0(X,Ω2
X) = CωX

where ωX is an everywhere non-generate holomorphic two form.

The holomorphic form is referred to as the symplectic form of X. There are
some properties that we can deduce from the definition of irreducible holomorphic
symplectic manifolds (for more details, see for instance[43]).

Remark 1.2.2. In this remark we enumerate these properties:

(i) Since ωX induces a symplectic form on the tangent space Tx(X), for all x ∈ X,
the complex dimension of X is even.

(ii) If dimX=2n, then χ(X,OX) = n + 1, because for k ∈ {0, . . . , 2n} we have

H0(X,Ωk
X) =

{
Cωk/2X if k ≡ 0 mod (2);

0 if k ≡ 1 mod (2).

(iii) Since ωnX generates H0(X,Ω2n
X ) = H0(X,KX) and it is nowhere vanishing, it

provides a trivialization of the canonical bundle, therefore KX
∼= OX .

(iv) The two-form ωX defines an alternating homomorphism TX → Ω1
X , which is

bijective since ωX is everywhere non-degenerate. As a consequence TX ∼= Ω1
X

and thus H1(X,TX) = H1,1(X).

(v) Since X is simply connected, we have H1(X,Z) = 0 and therefore (by the
universal coefficient theorem) the second cohomology group with integer co-
efficients H2(X,Z) is torsion-free.

Since the canonical bundle is trivial, IHS manifolds have vanishing first Chern
class: they constitute one of the building blocks of compact kähler manifolds Z such
that C1(Z)R = 0, as we find in the following theorem.
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Theorem 1.2.3 (Beauville–Bogomolov decomposition). Let Z be a compact Kähler
manifold with c1(Z)R = 0. Z, up to an étale covering is isomorphic to

T ×
∏
i

Vi ×
∏
j

Xj

where T is a complex torus, Vi are Calabi-Yau manifolds and Xj are IHS manifolds.

Proof. For a proof see [10, Theorem 2].

We recall the definition of a K3 surface.

Definition 1.2.4. A K3 surface is a compact complex smooth surface Σ such that
KΣ
∼= OΣ and H1(Σ,OΣ) = 0.

We point out that every K3 surface is Kähler, even if this property is not explic-
itly requested in the definition (see [86]). All irreducible holomorphic symplectic
manifolds of dimension two are K3. Notice that abelian surfaces (i.e. algebraic com-
plex two-dimensional tori) are endowed with a non-degenerate holomorphic 2-form
and therefore are holomorphic symplectic surfaces however they are not IHS be-
cause they are not simply connected.

Examples in higher dimensions are extremely hard to construct. E.g. complete
intersections of dimension > 2 are never irreducible holomorphic symplectic. The
following examples are the known ones.

Example 1.2.5. Hilbert schemes of points on a K3 surface
Let S be a K3 surface and n ≥ 1 an integer. We will denote by S[n] the Hilbert
scheme of n points on S, that is the scheme parametrizing zero-dimensional sub-
schemes (Z,OZ) of the surface S of length n (i.e. dimCOZ = n). Notice that
S[n] is, in general, just a complex space, but it is a scheme (even projective) if the
K3 surface S is projective (see [10, §6]). The Hilbert scheme S[n] also arises as a
minimal resolution of singularities of the n-symmetric product S(n), via the Hilbert
chow morphism

ρ : S[n] → S(n)

[(Z,OZ)] 7−→
∑
p∈S

l(OZ,p)p

where l(OZ,p) is the length of OZ,p, which is zero outside the (finite) set of points
p in the support of Z. It was proved by Fogarty that ρ is the resolution of the
singularities of S(n) and that S[n] is smooth; it is also Kähler because S is Kähler
(see [95]). In his work [10], Beauville shows that S[n] is an IHS manifold of dimension
2n, whose symplectic form comes from the symplectic form of the underlying K3
surface S. Any irreducible holomorphic symplectic manifold which is deformation
equivalent to S[n], for some K3 surface S, is called a manifold of K3[n] type.

Example 1.2.6. Generalized Kummer manifolds
Let A be a complex two-dimensional torus and n ≥ 1 an integer. The Hilbert
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scheme A[n+1] is holomorphic symplectic, but it is not IHS since it is not simply
connected. We consider the summation morphism

s : A[n+1] → A

[(Z,OZ)] 7−→
∑
p∈A

l(OZ,p)p

and we define Kn(A) := s−1(0) where 0 is the zero of the torus. The fiber
Kn(A) is now an IHS manifold of dimension 2n, as proved by Beauville in [10], and
we refer to these varieties as generalized Kummer manifolds. In particular, K1(A)
is the Kummer K3 surface of the torus A, which is isomorphic to the blow up of
the quotient A/±1. Irreducible holomorphic symplectic manifolds which are defor-
mations of a generalized Kummer manifold are called IHS manifolds of Kummer
type.

Hilbert schemes of points on a K3 surface and generalized Kummer manifolds
provide two distinct ways to construct irreducible holomorphic symplectic mani-
folds in all even complex dimensions. Up to deformation, these are actually the
only known examples of IHS manifolds, except in dimension six and in dimension
ten, where we have two constructions (due to O’Grady) of irreducible holomorphic
symplectic manifolds which are neither of K3[n] type, nor of Kummer type. They
are called manifolds of OG6 and OG10 type. The main topic of this thesis concern
manifolds of OG6 type and its group of automorphisms.

1.2.2 Cohomology of IHS manifolds

One of the main properties of IHS manifolds is that their second cohomology
group with integer coefficients has a lattice structure since it is equipped with a non-
degenerate symmetric bilinear form, which generalizes the intersection product. The
following holds:

Theorem 1.2.7. Let X be an irreducible holomorphic symplectic manifold of dimen-
sion 2n and let ω be a symplectic form on X satisfying

∫
X(ω∧ω)n = 1. There exists

a canonically defined pairing (, )X on H2(X,C), which is the Beauville-Bogomolov
pairing, and a constant cX called the Fujiki constant, such that the following holds:

(α, α)X = cX

(
n

2

∫
X

(ω ∧ ω)n−1 ∧ α2 + (1− n)

(∫
X
ωn−1 ∧ ωn ∧ α

)(∫
X
ωn ∧ ωn−1 ∧ α

))
.

With respect to this intersection form, the signature of the lattice H2(X,Z) is
(3, b2(X) − 3) by [10, Theorem 5]. These lattices have been studied by Beauville
[10] for manifolds of K3[n] type and Kummer type, and by Rapagnetta for OG6 and
for OG10, in [81] and [82] respectively.

The quadratic form associated to the Bauville-Bogomolov pairing is the Beauville-
Bogomolov quadratic form which means that q(α) = (α, α)X . Moreover from the
definition of the form we deduce that

q(ω) = 0, q(ω + ω) > 0.
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Remark 1.2.8. When we will use the Beauville-Bogomolov quadratic form q on
H2(X,Z) for an IHS manifold, we will often write x2 instead of q(x), to denote the
value of q on an element x ∈ H2(X,Z).

We stress the fact that the Fujiki constant cX and the Beauville-Bogomolov
quadratic form are deformation and birational invariants. As a consequence, for
any IHS manifolds X ′ deformation equivalent to X we have a lattice isometry
H2(X,Z) ∼= H2(X,Z). Also notice that the Néron-Severi group

NS(X) := H2(X,Z) ∩H1,1(X)

is a sublattice of H2(X,Z) which can be identified with

NS(X) = H2(X,Z) ∩ ω⊥

because H1,1(X) is orthogonal to H2,0(X)⊕H0,2(X) inside H2(X,C).

Example 1.2.9. Let S be a K3 surface. Then the Beauville-Bogomolov quadratic
form is just the intersection form on H2(S,Z). The lattice H2(S,Z) is unimodular
and we have the following isometry:

(H2(S,Z), q) ∼= LK3 := U⊕3 ⊕ E⊕2
8 .

There exists a natural inclusion for any n ≥ 2 (see [10, Proposition 6]):

i : H2(S,Z) ↪→ H2(S[n],Z)

such that
H2(S[n],Z) = i(H2(S,Z))⊕ Zδ

where 2δ is the class of the exceptional divisor E of the Hilbert–Chow morphism
ρ : S[n] → S(n) (in particular, E is the locus in S[n] which parametrizes non-reduced
zero-dimensional subscheme of length n). Another property that holds on algebraic
classes is:

NS(S[n]) = i(NS(S))⊕ Zδ.

The class δ is such that q(δ) = −2(n− 1), thus, for any manifold of K3[n] type, we
have

(H2(X,Z), q) ∼= Ln := U⊕3 ⊕ E⊕2
8 ⊕ 〈−2(n− 1)〉.

In particular b2(S[n]) = rk(Ln) = 23 and sign(Ln) = (3, 20). The Fujiki constant is

c = (2n)!
n!2n .

Using the Beauville-Bogomolov quadratic form, one can obtain the Euler char-
acteristic of any divisor D ∈ H2(X,Z) (see [44, Example 23.19]):

χ(X,D) =

(
q(D)/2 + n+ 1

n

)
.

Example 1.2.10. Let X be an IHS manifold of Kummer type. Then the second
integral cohomology is a lattice endowed with the Beauville-Bogomolov quadratic
form and it hold that

(H2(X,Z), q) = U⊕3 ⊕ 〈−2(n+ 1)〉

and the Fujiki constant is c = (2n)!
n!2n (n+ 1). In particular b2(X) = 7.
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Example 1.2.11. Let X be an IHS manifold deformation equivalent to an O’Grady
sixfold. Then:

(H2(X,Z), q) ∼= U⊕3 ⊕ 〈−2〉⊕2,

and the Fujiki constant is c = 60. In particular, b2(X) = 8.

Example 1.2.12. Let X be an IHS manifold deformation equivalent to an O’Grady
tenfold. Then:

(H2(X,Z), q) ∼= U⊕3E⊕2
8 ⊕A2,

and the Fujiki constant is c = 945. In particular, b2(X) = 24, A2 =

(
2 −1
−1 2

)
.

It is interesting to notice that for the known IHS manifolds the second Betty
number points out the deformation type.

As for K3 surfaces there exists a projectivity criterion for all IHS manifolds,
which employs the Beauville-Bogomolov quadratic form.

Theorem 1.2.13. Let X be an irreducible holomorphic symplectic manifold. Then
X is projective if and only if there exists l ∈ H1,1(X)∩H2(X,Z) such that q(l) > 0.

Proof. See [44, Proposition 26.13].

An equivalent formulation of the projectivity criterion is that an IHS manifold
X is projective if and only if the Néron-Severi sublattice, NS(X) ⊂ H2(X,Z) is
hyperbolic.

1.2.3 General results from deformation theory

Let X be a compact complex manifold. A deformation of X consists of a smooth
proper morphism X → S, where X and S are connected complex spaces, and an
isomorphism X ' X0, where 0 ∈ S is a distinguished point. Usually, only the germ
of (S, 0) is considered. An infinitesimal deformation of X is a deformation with
base space S = Spec(C[ε])/ε2.

Proposition 1.2.14. The isomorphism classes of infinitesimal deformations of a
compact complex manifold X are parametrized by elements in H1(X,TX).

Proof. For a proof see [38, Proposition 22.1].

Definition 1.2.15. A deformation X → (S, 0) of X is called universal if any
other deformation X ′ → (S′, 0′) is isomorphic to the pull-back under a uniquely
determined morphism ϕ : S′ → S with ϕ(0′) = 0.

The universal deformation family is unique up to isomorphisms, it it exists. It
will be denoted by X → Def(X), where (Def(X), 0) is again considered as the germ
of a complex space.
The main result in general deformation theory of complex manifolds is the following
existence theorem which we will only state for manifolds without holomorphic vector
fields.
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Theorem 1.2.16 (Kuranishi). If X is compact complex manifold without global
holomorphic vector fields, i.e. H0(X,TX) = 0, then a universal deformation of X
exists. Moreover, the universal deformation is universal for any of its fibers.

The theorem readily applies to irreducible holomorphic symplectic manifolds.
Indeed, since tangent and cotangent bundle are isomorphic, global holomorphic
vector fields define global holomorphic one-forms, which do not exist on a simply
connected compact Kähler manifold. Thus, an irreducible holomorphic symplectic
manifold admits a universal deformation.
Moreover the following holds:

Proposition 1.2.17. Let X be a compact Kähler manifold and let X → S be any
deformation of X.

i) For t ∈ S close to 0 ∈ S, the fiber is a compact Kähler manifold.

ii) If KX is trivial, then KXt is trivial for t close to 0 and the dimension of
H1(Xt, TXt) is independent of t.

Proof. For a proof see [38, Proposition 22.4].

Lemma 1.2.18. Let X → Def(X) be the universal deformation of a compact com-
plex manifold X with H0(X,TX) = 0. For any t ∈ Def(X) close to 0 ∈ Def(X)
the Zarisky tangent space Tt Def(X) is naturally isomorphic to H1(Xt, TXt).

Proof. For a proof see [38, Lemma 22.5].

Definition 1.2.19. Let X be a compact complex manifold that admits a universal
deformation X → Def(X). We say that the deformation of X are unobstructed if
dim(T0 Def(X)) = dim(Def(X)).

In other words the deformations of X are unobstructed if Def(X) is smooth, or,
equivalently, if any infinitesimal deformation can be integrated over a small disk.
We know that for X an IHS manifold, dim(Tt(Def(X))) = dim(H1(Xt, TXt)) is
constant. If Def(X) is reduced this is enough to conclude that Def(X) is smooth, i.e.
that X has unobstructed deformations. As the base space Def(X) of the universal
deformation could, a priori, be non-reduced one has to argue more carefully to
obtain:

Theorem 1.2.20. If X is compact Hyperkähler manifold, the deformations of X
are unobstructed.

Proof. See [11].

Definition 1.2.21. Let X and X ′ be two IHS manifolds and let G ⊂ Aut(X),
G′ ⊂ Aut(X ′). Then (X,G) is deformation equivalent to (X ′, G′) if G ∼= H ∼= G′

and there exists a flat family X −→ B and two maps {a} → B, {b} → B such that
Xa ∼= X and Xb ∼= X ′. Moreover we require that there exists a faithful action of
the group H on X inducing fibrewise faithful actions of Hsuch that its restriction
to Xa and Xb coincides with G and G′.
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1.2.4 Moduli spaces and monodromy operators

Let X be an irreducible holomorphic symplectic manifold whose second coho-
mology lattice H2(X,Z) is isometric to a lattice L.

Definition 1.2.22. A marking of X is a choice of an isometry η : H2(X,Z) → L.
The pair (X, η) is called a marked irreducible holomorphic symplectic manifold.
Two marked IHS manifolds (X, η), (X ′, η′) are isomorphic if there exists a biregular
(i.e. biholomorphic) isomorphism f : X → X ′ such that η′ = η ◦ f∗.

We can quotient the set of marked IHS pairs (X, η) with H2(X,Z) ∼= L by the
isomorphism relation and we obtain:

ML := {(X, η)|η : H2(X,Z)→ L marking }/ ∼= .

The set ML can be endowed with a structure of compact analytic complex space.
We need to introduce the period map:

Definition 1.2.23. Let X be an irreducible holomorphic symplectic manifold and
η : H2(X,Z)→ L a marking. The period domain ΩL is a complex space:

ΩL := {k ∈ P(L⊗ C)|(k, k) = 0, (k, k) > 0}.

We know that ω satisfies, by definition of the Beauville-Bogomolov quadratic
form, the two properties (ω, ω) = 0 and (ω, ω) > 0. This implies that the choice of
a marking η of X determines a point P(X, η) := η(H2,0(X)) = η(Cω) in the period
domain ΩL. We can consider p : X → I a flat deformation of the IHS manifold
X = p−1(0). By Ehresmann’s theorem (see [49, Theorem 2.6]) if η : H2(X,Z)→ L
is a marking of X , then there exists an open neighbourhood J ⊂ I of the point 0
and a family of markings Ft : Xt → L over J such that eta is the family of marking
evaluated in 0. Then we define the map P : J → ΩL as

P(t) = Ft(H
2,0(Xt)).

When considering the universal deformation X → Def(X), the map P → ΩL is
called the (local) period map. We can now enunciate the following:

Theorem 1.2.24. (Local Torelli theorem) Let (X, η) be a marked irreducible holo-
morphic symplectic manifold. The period map

P : Def(X)→ ΩL

is a local isomorphism.

Proof. See [10, Theorem 5].

Using this local isomorphism, this universal deformations can be used as local
charts forML, which therefore is a compact non-Hausdorff complex space of dimen-
sion h1,1(X) = b2(X)− 2. There exists a holomorphic embedding Def(X) ↪→ML,
identifying Def(X) with an open neighbourhood of the point (X, η) ∈ ML. The
maps P : Def(X) → ΩL can be glued together and we obtain a period map
P : ML → ΩL which is a local isomorphism by the Local Torelli theorem. It
holds another meaningful result:
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Theorem 1.2.25. Let M0
L be a connected component of the moduli space ML.

Then the restriction of the period map P0 :M0
L → ΩL is surjective.

Proof. See [43, Theorem 8.1].

The natural following question is weather it holds a Global Torelli theorem for
IHS manifolds as in the case of K3 surfaces. This is false in general, as Debarre
shows in his counterexample (see [30]). However a weaker version of the global
Torelli has been proved by Huybrechts, Markman and Verbitsky.

Theorem 1.2.26. (Global Torelli theorem) Let M0
L be a connected component of

the moduli space ML. For each ω ∈ ΩL, the fiber P−1
0 (ω) consists of pairwise

inseparable points. If (X, η) and (X ′, η′) are inseparable points of M0
L then X and

X ′ are bimeromorphic.

Proof. See [52, Theorem 2.2].

We can formulate the Global Torelli also from a lattice-theoretic point of view.
We will use principally this formulation in the following sections. In order to give
this formulation we need to introduce the notion of monodromy operator.

Definition 1.2.27. Let X,Y be holomorphic symplectic manifolds. A lattice isom-
etry f : H2(X,Z) → H2(Y,Z) is a parallel transport operator if there exists a
smooth and proper family π : X → B and a continuous path γ : [0, 1] → B such
that X ∼= Xγ(0) and Y ∼= Xγ(1) and f is induced by parallel transport in the local
system R2π∗Z along γ.

A parallel transport operator f : H2(X,Z) → H2(X,Z) is called a monodromy
operator of X.

The following is a necessary condition for an isometry g : H2(X,Z)→ H2(Y,Z)
to be a parallel transport operator. Denote by CX ⊂ H2(X,R) the cone

{α ∈ H2(X,R) : (α, α) > 0}.

The H2(CX ,Z) ∼= Z and it comes with a canonical generator, which we call the
orientation class on CX . Any isometry g : H2(X,Z) → H2(Y,Z) induces an iso-
morphism g : CX → CY . The isometry g is said to be orientation preserving if g
is. A parallel transport operator g : H2(X,Z)→ H2(Y,Z) is orientation preserving
(see [52, Section 4]).

We denote by Mon2(X) ⊂ O(H2(X,Z) the subgroup of monodromy operators,
which is of finite index (see [52, Lemma 7.5]). In particular two marked pairs (X, η),
(X ′, η′) belong to the same connected component of ML if and only if η′ ◦ η−1 is a
parallel transport operator. As a consequence, the number of connected components
of ML is π0(ML) = [O(H2(X,Z) : Mon2(X)].

If X is an IHS manifold and η : H2(X,Z)→ L is a marking, we can define

Mon2(L) := {η ◦ ψ ◦ η−1|ψ ∈Mon2(X)} ⊂ O(L).

The group Mon2(L) ⊂ O(L), whose elements are still called monodromy operators,
is the same for any choice of a marked pair (X, η) in a connected componentM0

L ⊂
ML, but could a priori depend on M0

L. However, if the subgroup Mon2(X) ⊂
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O(H2(X,Z)) is normal then Mon2(L) is independent on the choice of the connected
component (see [52, Remark 7.2]).

The monodromy group has been studied and completely described for the most
part of known IHS manifolds. In the case of K3 surfaces it was computed by Borcea
(see [19]), in the case of manifolds of K3[n] type by Markman(see [52]), and in the
case of manifolds of Kn(A) type by Markman at first and by Mongardi. For O’Grady
sixfolds Mongardi and Rapagnetta recently computed the group (see unpublished
result). For O’Grady tenfolds very little is known, and the situation looks even
more difficult by the lack of examples of monodromy operators. In the OG6 case,
the authors used a construction of OG6 manifolds which relates these manifolds to
manifolds of K3[3] type, so they could use Markman’s results, but this methods
does not works in the OG10 case. Moreover, Markman himself made a conjecture
about their monodromy group, which was recently disproved by Mongardi; this
counter-example sheds no light on the problem though.

Example 1.2.28. Let S be a K3 surface. We denote by O+(H2(S,Z) the sub-
group of O(H2(C,Z) of orientation preserving isometries: it is a normal subgroup
of index two. Then Mon2(S) = O+(H2(S,Z) (see [19, Theorem A]), therefore the
moduli space MK3 of marked K3 surfaces has two connected components, which
corresponds to each other via the map (S, η)→ (S,−η).

Example 1.2.29. Let X be an IHS manifold of K3[n] type, then Markman in [52]
proved that Mon2(X) ⊂ O(H2(X,Z) is a normal subgroup and provided several
equivalent characterizations of monodromy operators of X, which we now recall.

Proposition 1.2.30. Let X be a manifold of K3[n] type. An isometry ψ ∈ O(H2(X,Z)
is a monodromy operator if and only if ψ is orientation preserving and it induces
the action ψ = ±id ∈ O(AH2(X,Z).

In particular the index ofMon2(X) as a subgroup ofO+(H2(X,Z)) is 2r−1 where
r = ρ(n− 1) is the number of distinct prime divisor of n− 1. As a consequence, if
n = 2 or n − 1 is a prime power, then Mon2(X) = O+(H2(X,Z)), exactly as for
K3 surfaces.

Example 1.2.31. Let X be an irreducible holomorphic symplectic manifold of
generalized Kummer type. Let O+(H2(X,Z)) be the group of orientation preserving
isometries and define the subgroup

W (X) = {g ∈ O+(H2(X,Z))|g acts as ± id on AX},

where AX is the discriminant group. Denote by χ : W (X)→ {±1} the correspond-
ing character. The following is a characterization of Mon2(X) due to Mongardi
(see [59, Theorem 2.3]).

Proposition 1.2.32. Let X be an irreducible holomorphic symplectic manifold of
Kn(A) type, then

Mon2(X) = {g ∈W (X)| det(g)χ(g) = 1}.
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Example 1.2.33. Let X be a manifold of OG6 type. We know from [61, The-
orem 5.4] that the Monodromy group for such a manifold is made by orientation
preserving isometries, i.e. Mon2(X) = O+(H2(X,Z)) , which means that

[O(H2(X,Z)) : Mon2(X)] = 2.

We can now state the Hodge-theoretic form of the global Torelli theorem.

Theorem 1.2.34. Let X, Y be irreducible holomorphic symplectic manifolds. If
there exists a parallel transport operator ψ : H2(X,Z)→ H2(Y,Z) which is also an
Hodge isometry, then X and Y are bimeromorphic. If, moreover, ψ maps a Kähler
class to a Kähler class, then there exists a biregular isomorphism f : Y → X such
that f∗ = ψ.

Proof. See [52, Theorem 1.3].

Since we know the Monodromy for manifolds of OG6 type, we can apply the
previous theorem and state the following result, which is a bimeromorphic global
Torelli Theorem for manifolds of OG6 type.

Theorem 1.2.35. Bimeromorphic global Torelli (in the strongest form) holds for
IHS manifolds of OG6 type, i.e. two IHS manifolds X and X ′ of OG6 type are
bimeromorphic if and only if there exists a Hodge isometry between H2(X,Z) and
H2(X ′,Z).

Proof. See [61, Theorem 5.4 (2)].

In the following we will denote by Mon2
Hdg(X) ⊂ Mon2(X) the subgroup of

monodromy operators which preserves the Hodge decomposition.

1.2.5 Kähler cone and wall divisors

Let X be an IHS manifold, the Beauville-Bogomolov quadratic form allows us to
define several cones which are helpful in the study of automorphisms groups. These
cones are contained in H1,1(X,R), or in its intersection with H2(X,Z). In general,
for a IHS manifold X these cones are subcones of the positive cone CX ⊂ H1,1(X,R).
The ample cone AX and the movable cone Mov(X) are dual in CX to wall divisors
and stably prime exceptional divisors respectively. The aim of this section is to
recall these cones and these divisors for manifolds of OG6 type.

Definition 1.2.36. Let X be an irreducible holomorphic symplectic manifold. The
positive cone CX is the connected component of {x ∈ H1,1(X,R)|(x, x) > 0} which
contains the cone of Kähler classes, KX .

Recall that, in the case of K3 surfaces, the Kähler cone coincides with the set
of real (1, 1)-classes which have positive intersection with all rational curves on
the surface. Boucksom (see [20, Theorem 1.2]) generalizes the result for any IHS
manifold X and we have:

KX = {α ∈ CX |
∫
C
α > 0 for all rational curves C ⊂ X}.
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Definition 1.2.37. A prime divisor on X is a reduced and irreducible effective
divisor E, and it is exceptional if it is of negative Beauville-Bogomolov degree.

Definition 1.2.38. A stably prime exceptional divisor is a divisor D which is prime
exceptional divisor in a generic deformation of the pair (X,O(D)).

Prime exceptional divisors are stably prime exceptional divisors (see [52, Propo-
sition 6.6 1]) but the converse does not hold in general. The easiest example of
a stably prime exceptional divisor which is not prime exceptional is given by a
reducible -2 curve on a K3 surface.

Definition 1.2.39. The fundamental exceptional chamber of X is the cone:

FEX = {α ∈ CX : (α,E) > 0, for every stably prime exceptional divisor E ⊂ X}.

By [52, Proposition 5.6], FEX is also the cone of classes x ∈ CX such that
(x,D) > 0 for any non-zero uniruled divisor D ⊂ X.

For this reason if S is a K3 surface, non-zero uniruled divisor are just rational
curves C ⊂ S and consequently FEX = KX . For IHS manifolds of higher dimen-
sions, the Kähler cone is, in general, strictly contained in FEX . We will see in the
following that the Kähler cone is actually a chamber of FEX , with respect to a
suitable decomposition.

Definition 1.2.40. let X be an IHS manifold. The birational Kähler cone is defined
in the following way:

BKX =
⋃

f :X99KX′

f∗KX′ .

where f : X 99K X ′ runs through all birational maps X 99K X ′ from X to another
IHS manifold X ′.

The following results due to Markman hold (see [52, Corollary 5.7]):

Proposition 1.2.41. Let X and Y be IHS manifolds, let g : H2(X,Z)→ H2(Y,Z)
be a parallel transport operator, which is an isomorphism of Hodge structures. Let
αX ∈ FEX , then g(αX) ∈ FEY if and only if there exists a birational map f : Y 99K
X such that g = f∗.

As a consequence of the following we have BKX ⊂ FEX ⊂ BKX (see [44,
Theorem 4.3] [21]).

By [52, Proposition 5.6], we also have the inclusion FEX ⊂ BKX ; as a conse-
quence, FEX = BKX . The positive cone is invariant under the action ofMon2

Hdg(X),
and we can consider the following chambers in it.

Definition 1.2.42. Let X be an irreducible holomorphic symplectic manifold.

(i) An exceptional chamber of CX is a subset of the form g(FEX), for an isometry
g ∈Mon2

Hdg(X).

(ii) A Kähler type chamber of CX is a subset of the form g(f∗(KY )), for an isometry
g ∈Mon2

Hdg(X) and a birational map f : X 99K Y
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We know from [52, Theorem 6.18], that the Hodge monodromy operators act
transitively on the set of exceptional chambers. Moreover, each exceptional chamber
(and in particular FEX) is the interior of a fundamental domain for the action of a
normal subgroup

WExc = 〈RE |E ⊂ X prime exceptional divisor〉 ⊂Mon2
Hdg(X),

where RE denotes the reflection with respect to the class E defined in the following
way:

RE(α) := α− 2
(E,α)

(E,E)
E.

Remark 1.2.43. If E is a prime exceptional divisor, RE ∈ Mon2
Hdg(X) by [52,

Proposition 6.2].

Let Mon2
Bir(X) ⊂ Mon2

Hdg(X) be the subgroup of monodromy operators in-
duced by bimeromorphic maps from X to itself. From Proposition 1.2.41 we know
that Mon2

Bir ⊂ Mon2
Hdg is the stabilizer of the fundamental exceptional chamber.

Moreover, from [52, Theorem 6.18] we know that the following equality holds:

Mon2
Hdg(X) = WExc oMon2

Bir(X)

Remark 1.2.44. The Kähler type chambers are the translations of the Kähler
cone, KX , by the Hodge monodromy operators. From Theorem 1.2.34 we know
that distinct Kähler type chambers are disjoint, while the closure of two adjacent
chambers intersect along a wall (since BKX = FEX).

By removing the orthogonal hyperplanes to stably prime exceptional divisors,
the positive cone CX is cut in a wall and chamber decomposition. One such chamber
is the closure of the Birational Kähler cone (see [[52], Section 5.2]) and its algebraic
part, i.e. BKX ∩H1,1(X,R), is called the movable cone.

All the cones we have introduced so far live inside H1,1(X,R); we now want
to study their intersections with the integral cohomology H2(X,Z). Recall that
the Néron–Severi lattice is defined as NS(X) = H1,1(X) ∩ H2(X,Z) and, since
H1(X,O(X)) = 0, the first Chern class c1 : Pic(X) → H2(X,Z) provides an
isomorphism Pic(X) ∼= NS(X).

Definition 1.2.45. A line bundle L ∈ Pic(X) is called movable if the codimen-
sion of the base locus of the linear system |L| is at least two. The movable cone
Mov(X) ⊂ NS(X)R := NS(X)⊗R is the cone generated by the classes of movable
line bundles.

Proposition 1.2.46. Let X be an IHS manifold. The interior of the movable cone
coincides with FEX ∩ NS(X)R. The group WExc acts faithfully on CX ∩ NS(X)R
and there is a bijective correspondence between the set of exceptional chambers of
X and the set of chambers of CX ∩ NS(X)R with respect to the action of WExc.
In particular, Mov(X) ⊂ CX is a fundamental domain for the action of WExc on
CX ∩NS(X)R.

Proof. See [52, Lemma 6.22].
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If X is projective, the ample cone AX (i.e. the cone in NS(X)R generated by
ample classes) is contained inside Mov(X); more specifically, AX = KX ∩NS(X)R.

The decomposition of the positive cone CX ⊂ H1,1(X,R) into exceptional cham-
bers can be adapted to the integral cohomology. In order to do so, we need to define
wall-divisors.

Definition 1.2.47. A wall-divisor on an IHS manifold is a primitive divisor D with
D2 < 0, such that for every monodromy operator g : H2(X,Z)→ H2(X,Z) that is
an Hodge isometry,

g(D⊥) ∩ BKX = ∅.

By using the natural lattice embedding H2(X,Z) ⊂ H2(X,Q), induced by
Bauville-Bogomolov-Fujiki form, a wall divisor is precisely a multiple of an extremal
rational curve, up to the action of monodromy Hodge isometries, see [48, Poposition
2.3]. Also orthogonals to wall divisors give a wall and chamber decomposition of the
positive cone (whence their name), and one of the open chambers is the Kähler cone.
In particular, if we restrict this wall and chamber decomposition to the birational
Kähler cone, we obtain the Kähler cones of all IHS birational models of X. Every
stably prime exceptional divisor is a wall divisor (or more precisely, its primitive
multiple is), but the converse does not hold and non-stably prime exceptional wall
divisors are the wall which cause the non connectedness of the birational Kähler
cone.

Notice that the movable cone Mov(X) is one of the connected components of

(CX ∩NS(X)R) \
⋃

E∈PEx

E⊥

where PEx s the set of prime exceptional divisors, while the ample cone AX is one
of the connected components of

(CX ∩NS(X)R) \
⋃

δ∈∆(X)

δ⊥

where ∆(X) is the set of wall-divisors.

As we already stated, wall-divisors are preserved under smooth deformations if
their Hodge type does not change and they are invariants under parallel transport
operator; in particular, we have the following result.

Theorem 1.2.48. Let (X, η), (Y, µ) be marked irreducible holomorphic symplectic
manifolds in the same connected component M0

L of the moduli space ML. If D ∈
NS(X) is a wall-divisor (or a stably prime exceptional divisor) of X and (µ−1 ◦
η)(D) ∈ NS(Y ), then (µ−1 ◦ η)(D) ∈ NS(Y ) is a wall-divisor (respectively a stably
prime exceptional divisor) of Y .

Therefore it suffices to determine the classes of stably prime exceptional and
wall divisors up to parallel transport.

Proof. See [58, Theorem 1.3].
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Due to results of Mongardi and Rapagnetta we have a numerical characterization
of wall divisors and prime exceptional divisors.

Lemma 1.2.49. Let X be a manifold of OG6 type. Let D ∈ Div(X) and let
[D] ∈ Pic(X) be its class. Then [D] is the class of a multiple of a stably prime
exceptional divisor if one of the following holds:

• [D]2 = −4 and div(D) = 2,

• [D]2 = −2 and div(D) = 2.

Proof. See [61, Lemma 6.4].

Lemma 1.2.50. Let X be a manifold of OG6 type. Let D ∈ Div(X) and let
[D] ∈ Pic(X) be its class. Then [D] is the class of a wall-divisor but not the class
of a multiple of a stably prime exceptional divisor if [D]2 = −2 and div(D) = 1.

Proof. See [61, Lemma 6.6].

1.3 O’Grady’s sixfolds

O’Grady’s sixfolds are a deformation class of IHS manifolds which was firstly
discovered by O’Grady [76]. Manifolds in this family are obtained in two known
ways. The first construction, is obtained by taking a projective abelian surface and
a Mukai vector w of square 2. The moduli space of Gieseker semistable sheaves with
Mukai vector 2w is a singular tenfold with rational singularities, whose Albanese
fiber admits a crepant resolution that is a IHS manifold in the family we are dealing
with. This was proven by O’Grady [76] for a special Mukai vector. Later M.
Lehn and Sorger [87] showed that, under our assumption on w, the blow up of the
Albanese fiber of the moduli space along its singular locus always gives a crepant
resolution and Perego and Rapagnetta proved [80] that these crepant resolutions
are deformation equivalent, along smooth projective deformations, to the original
O’Grady example.

A second construction was obtained in [62], by considering a principally polarized
abelian surface A and its Kummer K3 surface S. On a moduli space of sheaves on
S, the authors construct a non regular involution, whose quotient is birational to
a manifold of OG6 type. This last construction was used to compute the Hodge
numbers of manifolds of OG6 type.

1.3.1 O’Grady’s construction

O’Grady discovered in 2000 a new example in dimension six of irreducible holo-
morphic symplectic manifold as the symplectic resolution of a certain subvariety of
a moduli space of sheaves on an abelian surface A [76].
Now we refer to this construction and we take into consideration also the paper of
Perego and Rapagnetta about deformations of the O’Grady’s manifolds (see [80]).
Let A be an abelian surface, an element v ∈ H̃(A,Z) := H2∗(A,Z) will be written
as v = (v0, v1, v2), where vi ∈ H2i(A,Z), and v0, v2 ∈ Z. If v0 ≥ 0 and v1 ∈ NS(A),
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then v is called Mukai vector. Recall that H̃(A,Z) has a pure weight-two Hodge
structure defined as

H̃2,0(A) := H2,0(A), H̃0,2(A) := H0,2(A),

H̃1,1(A) := H0(A,C)⊕H1,1(A)⊕H4(A,C),

and a lattice structure with respect to the Mukai pairing (., .), which is defined in
this way:

(r1, l1, s1)(r2, l2, s2) := l1l2 − r1s2 − r2s1

In the following, we let v2 := (v, v) for every Mukai vector v; moreover, for every
Mukai vector v define the sublattice

v⊥ := {α ∈ H̃(A,Z|(α, v) = 0} ⊆ H̃(A,Z),

which inherits a pure weight-two Hodge structure from the one on H̃(A,Z). If F
is a coherent sheaf on A, we define its Mukai vector to be

v(F ) := ch(F )
√
td(A) = (rk(F ), c1(F ), ch2(F )).

Let θ be an ample line bundle on A, i.e θ ∈ Amp(A), where Amp(A) ⊆ NS(A)⊗R is
the ample cone of A. For every n ∈ Z and every coherent sheaf F , let F (nθ) := F⊗
OA(nθ). The Hilbert polynomial of F with respect to θ is Pθ(F )(n) := χ(F (nθ)),
and the reduced Hilbert polynomial of F with respect to θ is

pθ(F ) :=
Pθ(F )

αθ(F )
,

where αθ(F ) is the coefficient of the term of highest degree in Pθ(F ).

We need to recall the definition of v−genericity of a polarization, where v =
(v0, v1, v2) is a Mukai vector on A.

Definition 1.3.1. A polarization θ is v−generic if for every polystable sheaf E of
Mukai vector v and every direct summand F of E , we have v(F ) ∈ Q· v.

Let E be a θ−semistable sheaf with Mukai vector v, and let F ⊆ E a θ-
destabilizing subsheaf with Mukai vector u := (u0, u1, u2).

Definition 1.3.2. The divisor associated to the pair (E ,F ) is defined as follows:

1. if v0 > 0, it is the divisor D := u0v1 − v0u1;

2. if v0 = 0, it is the divisor D := u2v1 − v2u1.

The set of the non-zero divisors associated to all the possible pairs is denoted Wv(θ).

The characterization of v−genericity is the following:

Lemma 1.3.3. Let v = (v0, v1, v2) be a Mukai vector such that if v0 = 0, then
v2 6= 0. A polarization θ is v−generic if and only if Wv(θ) = ∅.

Proof. see [80, Lemma 2.3].
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Remark 1.3.4. O’Grady (see [76, Introduction]) formulates a technical assumption
which implies v−genericity in the case v = (2, 0,−2) and it consists in

There is no divisor D on A such that C1(D).θ = 0 and D.D = (−2). (1.3)

In the following this will be useful to check v−genericity of an ample class θ in the
case of O’Grady six dimensional manifolds.

We need also to mention the notion of v–walls and v–chambers: as these notions
depends on v0, we recall just the case v0 ≥ 2. If A is an abelian surface, let

|v| := v2
0

4
(v, v) +

v2
0

2
.

Notice that |v| depends only on (v, v) and v0, and as v0 ≥ 2, then |v| > 0. Hence it
makes sense to define

Wv = {D ∈ NS(A)| − |v| ≤ D2 < 0}.

By Theorem 4.C.3 of [47], we have Wv(θ) ⊆Wv for every θ ∈ Amp(A).

Definition 1.3.5. Let D ∈Wv. The v–wall associated to D is

WD := {α ∈ Amp(A)|D · α = 0}.

Notice that the v–wall associated to D ∈ Wv is an hyperplane in Amp(A). By
Theorem 4.C.2 of [47] the subset

⋃
D∈Wv

WD ⊆ Amp(A) is locally finite.

Definition 1.3.6. A connected component of Amp(A) \
⋃
D∈WD

WD is called a
v−chamber.

A v−chamber is then an open connected subcone of Amp(A). Now these
v−chambers are important as if a polarization is in a v−chamber, then it is v−generic
as shown in the following:

Lemma 1.3.7. Let v = (v0, v1, v2) be a Mukai vector such that v0 ≥ 2, and let C
be a v−chamber. If θ ∈ C, then θ is v−generic.

If θ is a v–generic polarization, then it is not necessarily contained in some
v−chamber. In general the moduli space Mv(A, θ) depends on the choice of θ. But
we know that Mv(A, θ) does not change when θ is v−generic polarization moving
in the closure of a v−chamber (see [80, Proposition 2.8]).

In the following we talk about stability conditions, where A is always a projective
abelian surface and θ an ample divisor on A. A torsion-free sheaf F on A is
θ–semistable if it is Gieseker semistable with respect to θ, i.e. for all proper subsheaf
E ⊂ F we have that

rk(F )χ(E (nθ)) ≤ rk(E )χ(F (nθ)), for al n� 0. (1.4)

If there exists E ⊂ F such that the inequality is an equality then F is strictly
semistable, otherwise it is stable. There is also the notion of slope–(semi)stability :
if for all E ⊂ F with 0 < rkE < rkF

µ(E ) :=
1

rkE
c1(E ) · θk−1 ≤ 1

rkF
c1(F ) · θk−1 := µ(F ), k = dimA,
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F is θ–slope semistable. It is θ–slope stable if the inequality is always strict. Writ-
ing out the polynomials appearing in 1.4 one shows that θ–semistability implies
θ–slope semistability, and θ–slope stability implies θ–stability. We recall that the
moduli space of semistable torsion-free sheaves parametrize S–equivalence classes
of such sheaves [G ]. To define S–equivalence one associates to a semistable sheaf
F a direct sum of stable shaves Gr(F ), and then declares that F1 is S–equivalent
to F2 if Gr(F1) ∼= Gr(F2). If rk(F )=2, we have Gr(F ) = F , if F is stable and
Gr(F ) = L ⊕ (F/L ), if F is strictly semistable, and L ⊂ F destabilizes. If F
is a semistable sheaf we let [F ] be its S–equivalence class.

Let θ be a v−generic polarization and v a Mukai vector on A. We write Mv(A, θ)
(resp. M s

v (A, θ)) for the moduli space of θ-semistable (resp θ-stable) sheaves on A
with Mukai vector v. In this setting we refer to the choice of Mukai vector due to
O’Grady, v = 2w where w2 = 2, w = (1, 0,−1) is a primitive Mukai vector on A. It is
known that if M s

v 6= ∅, then M s
v is smooth, quasi-projective, of dimension v2 +2 and

carries a symplectic form (see Mukai [66]). Since A is abelian, a further construction
is necessary: choose F0 ∈ Mv(A, θ), and define av : Mv(A, θ) −→ A × A∨in the
following way (see [98]): let pA∨ : A × A∨ −→ A∨ be the projection and P the
Poincaré bundle on A×A∨. For every F ∈Mv(A, θ), we let

av(F ) := (det(pA∨!((F −F0)⊗ (P − OA×A∨)), det(F )⊗ det(F0)−1).

Moreover we define Kv(A, θ) := a−1
v (0A,OA), where 0A is the zero of A.

We recall the following crucial result in the case v is a primitive Mukai vector:

Theorem 1.3.8 (Mukai, Yoshioka). Let A be an abelian surface, v a primitive
Mukai vector and and θ a v-generic polarization. Then Mv(A, θ) = M s

v (A, θ). If
v2 ≥ 6 then Kv(A, θ) is an irreducible symplectic variety of dimension 2n = v2 − 2,
which is deformation equivalent to Kn(A), the generalized Kummer variety of A,
and there is a Hodge isometry between v⊥ and H2(Kv,Z).

If v is not primitive, which is the case we are interested in, then Mv can be singu-
lar: in view of this result we search for a moduli space containing points parametriz-
ing strictly semistable sheaves, and singular at these points, admitting a symplectic
desingularization, in the hope that the desingularization is a new irreducible sym-
plectic variety. This is what was done to produce the new 10-dimensional O’Grady
example [77], the moduli space being that of certain sheaves on K3. For the six-
dimensional case we consider the moduli space of sheaves on an abelian surface,
describe as follows. Let C be a smooth irreducible projective curve of genus two
and J := Pic0(C). We set v := 2 − 2ηJ , where ηJ ∈ H4(J ;Z) is the orientation
class of J . Let Mv be the moduli space Mv(J ,Θ), where Θ is a Theta divisor.
Many of the results that we find in [77] for the moduli space Mv of torsion-free
semistable rank-two sheaves on a K3 with c1 = 0, c2 = 4, remain valid for Mv,
provided one makes the technical assumption established in equation 1.3

There is no divisor D on J such that D ·Θ = 0 and D ·D = (−2).

One such result says that the singular locus of Mv coincides with the set of S-
equivalence classes of strictly semistable sheaves, i.e. equivalent to Ip1⊗ξ1⊕Ip2⊗ξ2,

where pi ∈ J and ξi ∈ Ĵ (Ĵ := Pic(J )). Most importantly, the procedure of [77]
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carries over to give a symplectic desingularization π̃v : M̃v →Mv; we let ω̃v be the
symplectic form on Mv. The variety Mv is of pure dimension 10 (see [76, Theorem
2.1.4]). It is not symplectically irreducible: consider the following map

av : Mv → J × Ĵ

[F ] 7→ (
∑

c2(F ), [detF ]).

where
∑
c2(F ) (the Albanese map) is the sum of the points (with multiplicities)

of any representative of c2(F ) ∈ CH0(J ). Set ãv := av ◦ π̃v. As is easily checked
ãv is surjective, hence Mv is not symplectically irreducible. Hence we consider the
fiber

K̃v := ãv
−1(0, 0̂), ω̃ := ω̃v|K̃v .

The result of O’Grady is the following:

Theorem 1.3.9 (O’Grady). Keep assumptions as above, K̃v is a six dimensional
irreducible symplectic variety, i.e simply connected and with H2,0(K̃v) spanned by
the symplectic form ω̃. furthermore b2(K̃v) = 8. The deformation type of these
manifolds is called OG6.

1.4 Moduli space of stable objects

We need to recall basic definitions and facts about moduli space of sheaves and
Bridgeland stable objects on K3 and abelian surfaces. These results will be useful
in Chapter 3. For many details we can refer to the work of Bridgeland [22].

Let S be a projective K3 surface. Mukai defined a lattice structure on H∗(S,Z)
by setting

(r1, l1, s1)(r2, l2, s2) = l1 · l2 − r1s2 − r2s1,

where ri ∈ H0, li ∈ H2 and si ∈ H4. This lattice is referred to as the Mukai lattice
and we call vectors v ∈ H∗(S,Z) Mukai vectors. The Mukai lattice is isomorphic to
Λ24, the unique, up to isometry, even unimodular lattice of signature (4, 20).

Furthermore we may introduce a weight-2 Hodge structure on H∗(S,Z) by defin-
ing the (1, 1)-part to be

H1,1(S)⊕H0(S)⊕H4(S).

For an object F ∈ Db(S), we define the Mukai vector of F by

v(F) := ch(F)
√

tdS = (rk(F), c1(F), ch2(F) + rk(F))

It is of (1, 1)-type and satisfies

(1) Either r > 0

(2) or r=0 and l 6= 0 effective

(3) or r=l=0 and s > 0.

Definition 1.4.1. A non-zero vector v ∈ H∗(S,Z) satisfying v2 ≥ 2 and the con-
ditions above is called a positive Mukai vector.
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With this definition we can easily deduce the following lemma.

Lemma 1.4.2. Let v ∈ H∗(S,Z) be non-zero and of (1, 1)-type satisfying v2 ≥ 2.
Then either v or −v is a positive Mukai vector.

Let us now review some results on the birational geometry of moduli spaces of
bridgeland stable objects on a K3 surface. Let S be a projective K3 surface and
fix two classes β, ω ∈ NS(S)R. To these data, Bridgeland associates a stability
condition τ := τβ,ω on the derived category Db(S). The set of all such stability
conditions τβ,ω is denoted by Stab(S). Next, we fix a primitive positive Mukai
vector v ∈ H∗(S,Z) and assume that τ is generic with respect to v. The coarse
moduli space Mτ (v) of τ -stable objects of Mukai vector v is a projective manifold
of K3[n] type [7, Theorem 3], and we have an isometry of weight-2 Hodge structures

H2(Mτ (v),Z)
∼−→ v⊥ ⊂ H∗(S,Z).

Bayer and Macr̀ı studied the birational geometry of these moduli spaces: they
introduced a chamber structure in Stab(S). This fact is summarized in the following:

Theorem 1.4.3. (i) If τ and τ ′ are v-generic stability conditions then Mτ (v)
and Mτ ′(v) are birational.

(ii) There is a surjective map

l : Stab(S) −→ Mov(Mτ (v))

mapping every chamber of Stab(S) onto a Kähler-type chamber such that for
a generic τ ′ the moduli space Mτ ′(v) is the birational model of Mτ (v) corre-
sponding to the chamber containing l(τ ′).

Note that, for every positive Mukai vector, at least one chamber in Stab(S)
contains stability conditions τβ,ω whose stable objects are (up to a shift) stable
sheaves in the sense of Gieseker.

Let f : H2(Mτ (v),Z) → Λ be a marking, and denote by P the period map
(restricted to a connected component of the moduli space of marked manifolds).
The above theorem implies in particular, that every manifold in the fiber

P−1(P(Mτ (v),Z))

is again a moduli space of stable objects on S with the same Mukai vector v. We
even have the following stronger result.

Corollary 1.4.4. Let X and X ′ be Hodge isometric manifolds of K3[n] type. Then
X is a moduli space of stable objects on a K3 surface if and only if the same holds
for X ′.

Proof. See [64, Corollary 2.30].

At least we need to recall the remark 2.31 of [64].
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Remark 1.4.5. A very similar construction can be done in the case when A is
an abelian surface. Again, Mτ (v) is a projective manifold, and the fiber Kτ (v)
of the Albanese map Mτ (v) → A × A∨ is of Kummer type [100, Theorem 1.9].
Again, the second cohomology of Kτ (v) is Hodge isometric to v⊥, and we have
an analogous result as in Theorem 1.4.3. The only important difference is the
following: by [85, Lemma 3], for every 2-torus A there is a Hodge isometry g to its
dual A∨. Thus the moduli space of marked 2-tori has four connected components
(corresponding to (A, f), (A, f ◦ −Id), (A∨, f ◦ g) and (A∨, f ◦ g ◦ −Id), where f
is some marking of A). For every Mukai vector v = (r, l, s) ∈ H∗(A,Z), we define
its dual as v∨ := (r, g∗l, s). We see immediately that v is positive if and only ifv∨

is positive, and the corresponding Albanese fibers Kτ (v) and Kτ∨(v∨) are Hodge
isometric. (Here τ∨ is the dual stability condition on A∨ defined in the obvious
way). Note that in general Kτ (v) and Kτ∨(v∨) are not birational [69], but we,
again, see that the moduli space of marked manifolds of Kummer type has (at
least) four components. Summarizing, we can state that the above corollary holds
also for manifolds of Kummer n type if n + 1 is a prime power.

1.4.1 A birational model for O’Grady’s sixfolds

In this section we recall the construction of the birational model for manifolds of
OG6 type introduced in [62] to compute its Hodge numbers and its Chern numbers.
The Hodge diamond of OG6 type manifolds (see [62, Theorem 1.1]) is the following:

H0,0 = 1

H2,0 = 1 H1,1 = 6 H0,2 = 1

H4,0 = 1 H3,1 = 12 H2,2 = 173 H1,3 = 12 H0,4 = 1

H6,0 = 1 H5,1 = 6 H4,2 = 173 H3,3 = 1144 H2,4 = 173 H1,5 = 6 H0,6 = 1

H4,0 = 1 H3,1 = 12 H2,2 = 173 H1,3 = 12 H0,4 = 1

H2,0 = 1 H1,1 = 6 H0,2 = 1

H0,0 = 1

When A is a general principally polarized abelian surface, the moduli space
Mv(A,Θ) parametrizes pure 1-dimensional sheaves, and the IHS manifold K̃v(A,Θ)
is the image of a surjective dominant degree 2 rational map whose domain is an
IHS manifold of K3[n] type as we now recall. For more details we refer to [62].
Let Θ ∈ NS(A) be a principal polarization on A. the Mukai vector v0 = (0,Θ, 1)
satisfies v2

0 = 2, and hence, a natural support morphism Kv → |2Θ| = P3, realizing
Kv as a Lagrangian fibration. By definition of Kv, the fiber over a smooth curve C ∈
|2Θ| is the kernel of the natural morphism Pic6(C)→ A (which is also the restriction
of av to Pic6(C) ⊂Mv(A,Θ)).It is well known that the morphism associated to the
linear system |2Θ| is the quotient morphism A → A/ ± 1 ⊂ P3 onto the singular
Kummer surface of A. Let S → A/ ± 1 be the minimal resolution of A. It is well
known that S, the Kummer surface of A is a K3 surface. Notice that S comes
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naturally equipped with the degree 4 nef line bundle D obtained by pulling back
the hyperplane section of A/± 1 ⊂ P3. Consider the diagram

Ã S

A A/± 1

a

b p

q

where Ã is the blow up of A at its 16 2-torsion points or, equivalently, the ramified
cover of S along the exceptional curves E1, . . . , E16 of p. Consider the moduli space
Mw(S) of sheaves on S with Mukai vector w = (0, D, 1)that are stable with respect
to a choosen, sufficiently general polarization. This is an IHS manifold birational to
the Hilbert cube of S and it has a natural morphism Mw(S) → |D| = P3 realizing
it as the relative compactified Jacobian of the linear system |D| (also a Lagrangian
fibration).

The morphisms in diagram 4 induce a rational generically 2 : 1 map

b∗a
∗ = q∗p∗ : Mw(S) 99KMw(A,Θ).

Since Mw(S) is simply connected, the image of this map lies in a fiber of av, giving a
2 : 1 morphism Φ : Mw(S) 99K Kv(A,Θ). On the smooth fibers, this map restricts to
the natural 2 : 1 pull back morphism Pic3(C ′)→ Pic6(C), whose image is precisely
ker[Pic6(C) → A]. Recall that

∑
iEi is divisible by two in H2(S,Z) and that the

line bundle η := OS(1
2

∑
iEi) determines the double cover q. It follows that the

involution on Mw(S) corresponding to Φ is given by tensoring by η and K̃v(A,Θ) is
a birational model of the ”quotient” of Mw(S) by the birational involution induced
by tensorization by η.
What it is shown in [62] is that, for any abelian surface A and for an effective Mukai
vector v = 2v0 with v2

0 = 2 on A, K̃v(A,Θ) admits a rational double cover from an
IHS manifold Y v(A,Θ) of K3[3] type. Recall that the singular locus Σv ⊂ Kv(A,Θ)
has codimension 2 and can be identified with A × A∨/ ± 1 (see [62, section2]).
Following [76], the symplectic resolution

K̃v(A,Θ)→ Kv(A,Θ)

can be obtained by two subsequent blow ups followed by a contraction: first one
blows up the singular locus of Σv, then one blows up the proper transform of Σv

itself (which is smooth); these two operations produce a manifold K̂v(A,Θ) that has
a holomorphic two form degenerating along the strict transform of the exceptional
divisor of the first blow up; contracting this exceptional divisor finally gives the
manifold K̃v(A,Θ) that has non-degenerate (hence symplectic) two form and a
regular morphism K̃v(A,Θ)→ Kv(A,Θ) which is, therefore, a symplectic resolution.
The inverse image Σ̂ of Σv in K̃v(A,Θ) is a smooth divisor, which is divisible by
two in the integral cohomology by [81]. In [62] the authors show that the associated
ramified double cover is a smooth manifold birational to an IHS manifold of K3[3]

type, Y v(A,Θ), and which is equipped with a birational symplectic involution.
This enable us to reconstruct K̃v(A,Θ) starting from Y v(A,Θ) and its birational

symplectic involution
τv : Y v(A,Θ)→ Y v(A,Θ).
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More specifically, Y v(A,Θ) contains 256 P3s, the birational involution τv is regular
on the complement of these P3s, and, moreover, this involution lifts to a regular
involution on the blow up Y v(A,H) of Y v(A,H) along the 256 P3’s. The fixed
locus of the induced involution on Y v(A,Θ) is smooth and four dimensional, hence
the blow up Ŷv(A,Θ) of Y v(A,Θ) along this fixed locus carries an involution τ̂v
admitting a smooth quotient Ŷv(A,Θ)/τ̂v. This quotient is K̂v(A,Θ) and Ŷv(A,Θ)
is its double cover branched over Σ̂v. Finally K̂v(A,Θ) is the blow up of K̃v(A,Θ)
along 256 smooth 3–dimensional quadrics.

1.4.2 The local covering

If we fix a primitive Mukai vector v0 ∈ H∗alg(A,Z) with v2
0 = 2 and we set v = 2v0,

and we consider a v-generic ample line bundle H on A (see Section 2.1 of [80]).
By [87, Theorem 1.1] the projective variety Kv := Kv(A,H) admits a symplectic
resolution K̃v which is deformation equivalent to O’Grady’s six dimensional example
by [87, Theorem 1.6(2)]. In this section we recall the description of the singularity
of Kv.

Since the singular locus Σv of Kv parametrizes polystable sheaves of the form
F1 ⊕ F2, with Fi ∈ Mv0(A,H), we have Σv = Kv ∩ Sym2Mv0(A,H). Since v2

0 = 2
the smooth moduli space Mv0 is isomorphic to A × A∨ and, as the Albanese map
alb is an isotrivial fibration, the singular locus Σv is isomorphic to A × A∨/ ± 1.
Since A has 16 two-torsion points, then the same holds for A∨, and consequently
wa have 16 · 16 = 256 singular points in the quotient A×A∨/± 1. For this reason
that the singular locus Ωv of Σv consists of 256 points representing sheaves of the
form F⊕2 with F ∈Mv0(A,H).

The analytic type o the singularities appearing in Kv is completely known. If
p ∈ Σv \Ωv, i.e. p represents a polystable sheaf of the form F1⊕F2 where F1 6= F2,
there exists a neighborhood U ⊂ Kv of p, in the classical topology, biholomorphic
to a neighborhood of the origin in the hypersurface defined in A7 by the equation∑3

i=1 x
2
i = 0 (see for example [1, Proposition 4.4] or [77, Proposition 1.4.1]), i.e. Kv

has an A1 singularity along Σv \ Ωv.
If p ∈ Ωv, the description of the analytic type of the singularity of Kv at p is

due to Lehn and Sorger and it is contained in [87, Theorem 4.5]. To recall this
description, let V be a four dimensional vector space, let σ be a symplectic form on
V , and let sp(V ) be the symplectic Lie Algebra of (V, σ), i.e. the Lie algebra of the
Lie group of the automorphisms of V preserving the symplectic form σ.

We let

Z := {A ∈ sp(V )|A2 = 0}
be the subvariety of matrices of sp(V ) having square zero. It is known that Z is

the closure of the nilpotent orbit of type o(2, 2), which parametrizes rank 2 square
zero matrices. Moreover, by Criterion 2 of [41], Z is also a normal variety.

By [87, Theorem 4.5] if p ∈ Ωv, there exists an euclidean neighborhood of p in
Kv, biholomorphic to a neighborhood of the origin in Z.

Let Σ be the singular locus of Z and let Ω be the singular locus of Σ. Let us
recall that dimZ = 6, dim Σ = 4, dim Ω = 0 and, more precisely,

Σ = {A ∈ Z| rk(A) ≤ 1}, and Ω = {0}.
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Let G ⊂ Gr(2, V ) ⊂ P(∧2V ) be the Grassmanian of Lagrangian subspaces of V ,
notice that G is a smooth 3-dimensional quadric and set

Z̃ := {(A,U)|A(U) = 0} ⊂ Z ×G.

The restriction πG : Z̃ → G of the second projection of Z × G makes Z̃ the total
space of a 3-dimensional vector bundle, the cotangent bundle of G. In particular Z̃
is smooth and the restriction

f : Z̃ → Z

of the first projection of Z × G, which is an isomorphism when restricted to the
locus of rank 2 matrices, is a resolution of the singularities. The fiber f−1(A) over a
point A ∈ Σ, is a smooth P1 parametrizing Lagrangian subspaces contained in the
3-dimensional kernel of A and the central fiber f−1(0) is the whole G. As Z has an
A1 singularity along Σ \ Ω and G has dimension 3 it follows that f : Z̃ → Z is a
symplectic resolution.

Now we are ready to recall Section 3 of [62] which is devoted to the local descrip-
tion of the double cover, branched along the singular locus, of O’Grady’s singularity.
It is known [26, Corollary 6.1.6] that the fundamental group of the open orbit o(2,2)
is isomorphic to Z/(2). We wish to extend this double cover to a ramified double
cover of o(2, 2) = Z.

To this aim let

W := {v ⊗ w| σ(v, w) = 0} ⊂ V ⊗ V, and ∆W = {v ⊗ v such that v ∈ V } ⊂W

be the affine cover of the incidence subvariety

I := {([v], [w])| σ(v, w) = 0} ⊂ P(V )× P(V ) ⊂ P(V × V ).

Since I is smooth, the singular locus Γ of W consist only of the vertex 0 ∈ V ⊗ V .
Moreover, since I ⊂ P(V ⊗ V ) is projectively normal, W is a normal variety.

Let

τ : W →W

be the involution induced by restricting the linear involution τV⊗V on V ⊗ V that
interchanges the two factors.

The following lemma exhibits W as the desired double cover of Z.

Lemma 1.4.6. The morphism

ε : W −→ Z

v ⊗ w 7−→ σ(v, .)w + σ(w, .)v

realizes Z as the quotient W/τ . In particular, ε is a finite 2 : 1 morphism, the
ramification locus of ε is ∆ and the branch locus of ε is Σ.

Proof. See [62, Lemma 3.1].
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1.5 Automorphisms

Let X be an IHS manifold, we denote by Aut(X) the group of automorphisms of
X (biholomorphic maps from X to X) and by Bir(X) the group of bimeromorphic
automorphisms. Clearly Aut(X) ⊂ Bir(X).

Theorem 1.5.1. Let X be an IHS manifold and let η : H2(X,Z)→ L be a marking.
For a very general point (X, η) ∈ML we have Aut(X) = Bir(X).

Proof. See [43, Proposition 9.2].

For all compact complex manifolds we have

dim(Aut(X)) = h0(TX)

and, if X is an IHS manifold, dim(Aut(X)) = h1,0(X) = 0, meaning that Aut(X)
is a discrete group. We also to recall that, from [18, Theorem 2], we know that if
X is projective, then Bir(X) is finitely generated. It is well defined the following
homomorphism:

ν : Bir(X)→ O(H2(X,Z))

f 7→ (f∗)−1

where f∗ : H2(X,Z) → H2(X,Z) is the pull-back of f . It preserves the Beauville-
Bogomolov quadratic form. We know the following properties about ν (see [43,
Proposition 9.1]):

(i) ν(Bir(X)) = Mon2
Bir(X) ⊂Mon2

Hdg(X);

(ii) ν(Aut(X)) = {g ∈Mon2
Hdg(X)|g(KX) ∩ KX 6= ∅};

(iii) ν−1(ν(Aut(X))) = Aut(X);

(iv) ker(ν) ⊂ Aut(X) is finite.

These properties are consequences of Theorem 1.2.34.

By result of Hasset and Tschinkel, [39, theorem 2.1], the kernel of the homo-
morphism ν is invariant under smooth deformations of the manifold X and it has
been computed for all known deformation types of IHS manifolds.

Theorem 1.5.2. Let X be a manifold of OG6 type. Then Ker(ν) = (Z/2Z)⊕8.

Proof. See [65, Thm 4.2].

In addition to the action on H2(X,Z), another important invariant of an au-
tomorphism f ∈ Aut(X) is its action on H0(X,Ω2

X), i.e on the generator of the
complex space H2,0(X), the symplectic form ωX of the IHS manifold X. Since f∗

is a Hodge isometry, and since H2,0 ∼= CωX , i.e. it is a complex space of dimension
1, the action is forced to be f∗(ωX) = ξωX where ξ ∈ C∗; moreover, if f is of finite
order m then ξm = 1.
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Definition 1.5.3. An automorphism f ∈ Aut(X) is called symplectic if f∗(ωX) =
ωX ; otherwise f is called non-symplectic.

Remark 1.5.4. From [10, Proposition 6], if there exists a non-symplectic f ∈
Aut(X), then the IHS manifold X is projective.

The following proposition is due to Nikulin:

Proposition 1.5.5. Let X be an IHS manifold, suppose G is cyclic and generated
by a non-symplectic element of maximal order m. Let φ be the Euler function. It
holds that φ(m) | rk(T (X)), i.e. rk(T (X)) = φ(m)n for some n ∈ N \ {0}. In
particular φ(m) ≤ b2(X)− rk(NS(X)).

Definition 1.5.6. Let f ∈ Aut(X) be an automorphism of finite order of an IHS
manifold. The invariant lattice of f is

Tf (X) = H2(X,Z)f
∗

= {u ∈ H2(X,Z)|f∗(u) = u}

and the co-invariant lattice of f is

Sf (X) = (H2(X,Z)f
∗
)⊥ ⊂ H2(X,Z).

Both Tf (X) and Sf (X) are primitive sublattices of H2(X,Z), since they can be
expressed as kernels of lattice isometries: in particular if m ∈ N is the order of f ,
we have

Tf(X) = ker(f∗ − id), Sf (X) = ker(id+ f∗ + . . .+ (f∗)m−1) (1.5)

We recall the following definitions of Neron-Severi and transcendental lattice.

Definition 1.5.7. The Neron-Severi lattice is the algebraic (1, 1)-part of H2(X,C)
i.e. NS(X) := H2(X,Z) ∩H1,1(X).
The transcendental lattice T(X) is the orthogonal complement of NS(X) in the sec-
ond integral lattice, i.e. T(X) := NS(X)⊥ and it is the smallest primitive sublattice
of H2(X,Z) such that

H2,0(X) ⊂ T (X)⊗Z C.

It holds that

H2(X,Z)⊗Q = NS(X)⊗Q⊕ T(X)⊗Q.

In the following we explain the relative positions of the lattices Tf (X), Sf (X), with
respect to T(X) and NS(X).

Proposition 1.5.8. Let X be an IHS manifold and let f ∈ Aut(X).

(i) If f is symplectic , then T(X) ⊂ Tf (X) and Sf (X) ⊂ NS(X) and Sf (X) is
negative definite.

(ii) If f is non-symplectic, then Tf (X) ⊂ NS(X), T(X) ⊂ Sf (X) and Tf (X) is
hyperbolic.

Proof. We consider the two cases separately.
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(i) If x ∈ Sf (X), from equation 1.5, we have

(
m−1∑
i=0

(f∗)i(x), ωX) =
m−1∑
i=0

((f∗)i(x), ωX) = m(x, ωX),

where we use the fact that f∗ is an isometry ofH2(X,Z) and f∗(ωX) = ωX . As
a consequence we have that (x, ωX) = 0 and for this reason x ∈ NS(X), since
we know that NS(X) = ω⊥X ∩H2(X,Z) ⊂ H2(X,Z); using the orthogonality
we have T(X) ⊂ Tf (X). It is easy to see that there exists an invariant ample
class, which is β :=

∑m−1
i=0 (f∗)i(w) where w ∈ KX is the Kähler class of X.

Therefore we have

CωX ⊕ CωX ⊕ Cβ ⊂ Tf (X)⊗ C ⊂ H2(X,C).

This means that there is a three-dimensional positive defined space in Tf (X)
and thus Sf (X) is negative definite.

(ii) If f is non-symplectic and f∗(ω) = ξω, ξ 6= 1, we have that for any x ∈ Tf (X)

(x, ω) = (f∗(x), f∗(ω)) = (x, ξω) = ξ(x, ω)⇒ (x, ω) = 0.

This means that Tf (X) ⊂ NS(X) and taking the orthogonal we have T(X) ⊂
Sf (X). As we already remarked, the existence of a non-symplectic automor-
phism implies that X is projective, hence NS(X) is hyperbolic by Theorem
1.2.13. Since the positive class β, defined in the symplectic case, is still con-
tained in Tf (X)⊗ C, we conclude that Tf (X) ⊂ NS(X) is also hyperbolic.

In our work, we will be mainly interested in automorphisms of manifolds OG6

type. In particular we will focus on automorphisms which act non-trivially on the
second integral cohomology. Moreover we will exhibit some results about induced
automorphisms, which means automorphisms that come from the Abelian surface
that we use to built OG6 as a moduli space (see Section 1.3.1 for more details) and
automorphisms induced at the quotient, i.e. automorphisms which come from an
automorphism of the K3[3] sixfolds that are used in the construction explained in
Section 1.4.1.

To study automorphisms which act non-trivially on cohomology we need the
following definitions:

Definition 1.5.9. Let ν be the homomorphism of groups:

ν : Aut(X) −→ O(H2(X,Z))
f 7−→ (f∗)−1

ϕ ∈ O(H2(X,Z)) is called effective if and only if ϕ ∈ Im(ν).

There is an analogous version of the Hodge theoretic Torelli theorem for abelian
surfaces. It is well known, essentially already contained in [85], that

Mon2(A) = SO+(H2(A,Z)),
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where the lattice structure on H2(A,Z) is given by the cap product. We recall
that the intersection form on H2(A,Z) is unimodular, even and of signature (3, 3),
hence, by the classification, there exists an isometry H2(A,Z) ∼= U⊕3 and we have
an isomorphism

Mon2(A) ∼= SO+(U⊕3).

Theorem 1.5.10. Let A be an abelian surface and let ϕ ∈ O(H2(A,Z)) be a mon-
odromy operator which is an isometry of Hodge structures, then ϕ is effective, i.e.
there exists an automorphism ϕ ∈ Aut(A) such that ϕ̃∗ = ϕ, if and only if a Kähler
class is preserved by ϕ.

Another main result due to Huybrechts is the following:

Theorem 1.5.11. If X and X ′ are birational projective irreducible holomorphic
symplectic manifolds, then:

• X and X ′ are diffeomorphic.

• For all k the weight-k Hodge structures of X and X ′ are isomorphic.

Definition 1.5.12. Let ν be the omomorphism of groups:

ν : Bir(X) −→ O(H2(X,Z))
f 7−→ (f∗)−1

ϕ ∈ O(H2(X,Z)) is called birational effective if and only if ϕ ∈ Im(ν).

We introduce the following convention: an automorphism of X is said to be an
automorphism of order n if the induced action on H2(X,Z) has order n.

Remark 1.5.13. if X is a manifold of OG6 type, then the second integral coho-
mology has a lattice structure and it holds that

H2(X,Z) ∼= U⊕3 ⊕ 〈−2〉⊕2.

Moreover the discriminant group associated to the second integral cohomology
is

AX = H2(X,Z)∗/H2(X,Z) = (Z/2Z)⊕2.

Lemma 1.5.14. Let X be a manifold of OG6 type, let ϕ ∈ O(H2(X),Z) be an
isometry such that the induced action on AX is trivial. Then there exists an em-
bedding

H2(X,Z) ↪→ Λ = U⊕5

and an isometry ϕ ∈ O(Λ) such that ϕ|H2 = ϕ.

Proof. Let [v1/2] and [v2/2] be two generators of AX such that v2
1 = −2 and v2

2 =
−2. We then have ϕ([v1/2]) = [v1/2] and ϕ([v2/2]) = [v2/2] i.e. ϕ(v1) = v1 + 2w1

and ϕ(v2) = v2 +2w2. Consider now a lattice of rank 2 generated by two orthogonal
elements x1 and x2 of square 2, its discriminant group is still Z/2Z × Z/2Z and is
generated by [x1/2] and [x2/2] with discriminant form given by q(x1/2) = 1/2,
q(x2/2) = 1/2 and (x1, x2) = 0. Notice that H2 ⊕ Zx1 ⊕ Zx2 has an overlattice
isometric to Λ which is generated by H2, x1+v1

2 and x2+v2
2 . We now extend ϕ on
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H2⊕ x1⊕ x2 by imposing ϕ(x1) = x1, ϕ(x2) = x2 and we thus obtain an extension
ϕ of ϕ on Λ, defined by the Q-linear extension, as follows:

• ϕ(e) = ϕ(e) ∀ e ∈ H2,

• ϕ(x1) = x1,

• ϕ(x2) = x2,

• ϕ(x1+v1
2 ) = x1+ϕ(v1)

2 ,

• ϕ(x2+v2
2 ) = x2+ϕ(v2)

2 .

Corollary 1.5.15. Let X be a manifold of OG6 type, and G ⊂ O(H2(X,Z)) a
finite group of isometries such that the induced action on AX is trivial. Then there
exists a primitive embedding

H2(X,Z) ↪→ Λ ∼= U⊕5

such that G extends to a group of isometries of Λ and SG(X) = SG(Λ) i.e. the
induced action on (H2)⊥ ⊂ Λ is trivial.

Proof. Let x1 and x2 be two vectors of square 2 and v1 and v2 two vectors of square
-2 in H2 such that (v1, H

2) = 2Z and (v2, H
2) = 2Z. Let Λ be the overlattice of

H2⊕Zx1⊕Zx2 generated by H2 and x1+v1
2 and x2+v2

2 and let us extend the action
of G to Λ as in Lemma 1.5.14. A direct computation shows that SG(H2) = SG(Λ).
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Chapter 2

A motivating example on K3
surfaces

The main goal of the thesis is to classify automorphisms of O’Grady six di-
mensional manifolds. The study of non-symplectic automorphisms of prime order
on irreducible holomorphic symplectic manifolds was completed by several authors:
Nikulin in [74], Artebani, Sarti and Taki in [2], [4] and [92]. These papers are re-
lated to automorphisms of K3 surfaces. As we know, these are the examples of IHS
manifolds in dimension 2. To classify automorphisms of IHS manifolds of higher
dimensions we need methods used for the classification of automorphisms of K3
surfaces. On them, non-symplectic automorphisms of prime order are already clas-
sified. If the automorphism is not of prime order the setting is more complicated.
Indeed, in this situation the ”generic” case does not imply that the action of the
automorphism is trivial on the Picard group [33, Section 11]. In the paper [93],
Taki studies the case when the order of the automorphism is a prime power and
the action is trivial on the Picard group. If we consider non-symplectic, non-trivial
automorphisms of order 2t, then by results of Nikulin we have 1 ≤ t ≤ 5. We can
find some other results about this in a paper by Schütt in the case of automorphisms
of a 2-power order [84] and in a paper by Artebani and Sarti in the case of order
4 [4]. Recently in [91] Al Tabbaa, Sarti and Taki completed the study for purely
non-symplectic automorphisms of order 16 and in [90] Al Tabbaa and Sarti studied
the case of order 8 under the assumptions that the fourth power of the automor-
phism is the identity on the Picard lattice and, if we denote the automorphism by
σ, Fix(σ4) contains an elliptic curve.
To begin to become familiar with these classification techniques, in this chapter
we classify non-symplectic automorphisms of order 8 on a K3 surface with certain
hypotheses on the fixed locus. This will be an illuminating example and will be
really useful to learn the method of classification. In particular, this chapter deals
with purely non-symplectic automorphisms of order eight on K3 surfaces under the
assumption that their fourth power σ4 is the identity on the Picard lattice. This
corresponds to the situation for the generic K3 surface in the moduli space of K3 sur-
faces with non-symplectic automorphism of order 8 and fixed action on the second
cohomology with integer coefficients, see [33, Section 10]. The fixed locus Fix(σ) of
such an automorphism σ is the disjoint union of smooth curves and points. We will

39
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deal with the case in which Fix(σ4) is not empty and contains only rational curves.

2.1 Non-symplectic automorphisms of order 8 on a K3
surface

2.1.1 Basic facts

For this part we will refer to [89]. Let X be a K3 surface and σ ∈ Aut(X) a non-
symplectic automorphism of order 8. We assume that σ∗(ωX) = ζ8ωX where ζ8 is a
primitive 8th root of unity. Such a σ is called purely non-symplectic, for simplicity
we just call it non-symplectic, always meaning that the action is by a primitive 8th
root of unity. We denote by kσ the number of smooth rational curves fixed by σ
and by Nσ the numbers of isolated points in Fix(σ). We denote by rσj , lσj ,mσj and
m1 for j = 1, 2, 4 the rank of the eigenspace of (σj)∗ in H2(X,C) relative to the
eigenvalues 1, -1, i and ζ8 respectively (clearly mσ4 = 0). We recall the invariant
lattice:

T (σj) = {x ∈ H2(X,Z)|(σj)∗(x) = x},

and its orthogonal complement

S(σj) = T (σj)⊥ ∩H2(X,Z).

Since the automorphisms act purely non-symplectically, X is projective, see [71,
Theorem 3.1], so that if we denote rkT (σj) = rσj , we have that rσj > 0 for all
j = 1, 2, 4 (one can always find an invariant ample class). On the other hand, one
can easily show that T (σj) ⊆ Pic(X) for j = 1, 2, 4 so that the transcendental lattice
satisfies T(X) ⊆ S(σj) for j = 1, 2, 4.

Remark 2.1.1. It is a straightforward computation that the invariants rσj , lσj ,mσj

and m1 with j = 1, 2, 4 satisfy the following relations:

rσ2 = rσ + lσ;
lσ2 = 2mσ;

2mσ2 = 4m1;

rσ4 = rσ + lσ + 2mσ;
lσ4 = 4m1;

We remark that the invariants lσ2 and mσ2 are even numbers.

The moduli space for K3 surfaces carrying a non-symplectic automorphism of
even order n, n 6= 2, with a given action on the K3 lattice is known to be a complex
ball quotient of dimension q − 1 where q is the rank of the eigenspace V of σ∗ in

H2(X,C) relative to the eigenvalues ζn = e
2πi
n , see [33, §11]. The complex ball is

given by:

B = {[w] ∈ P(V ) : (w,w) > 0}.

If n is even V is the ζn eigenspace of σ∗ in S(σn/2)⊗C. This implies that the Picard
group of a K3 surface corresponding to the generic point in the moduli space equals
T (σn/2) see [33, Theorem 11.2].
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2.1.2 The fixed locus

We denote by Fix(σj), j = 1, 2, 4 the fixed locus of the automorphism σj such
that

Fix(σj) = {x ∈ X| σj(x) = x}.

Clearly Fix(σ)⊆ Fix(σ2) ⊆ Fix(σ4). To describe the fixed locus of order 8 non-
symplectic automorphisms we start recalling the following result about non-symplectic
involutions, see [74, Theorem 4.2.2].

Theorem 2.1.2. Let τ be a non-symplectic involution on a K3 surface X. The fixed
locus of τ is either empty, the disjoint union of two elliptic curves or the disjoint
union of a smooth curve of genus g ≥ 0 and k smooth rational curves. Moreover,
its fixed lattice T (τ) ⊂ Pic(X) is a 2-elementary lattice with determinant 2a such
that:

• T (τ) ∼= U(2)⊕ E8(2) iff the fixed locus of τ is empty;

• T (τ) ∼= U ⊕ E8(2) iff τ fixes two elliptic curves;

• 2g = 22− rkT (τ)− a and 2k = rkT (τ)− a otherwise.

Since T (τ) is 2-elementary its discriminant groupAT (τ) = T (τ)∨/T (τ) ' (Z/2Z)⊕a,
a ∈ Z>0. We introduce the invariant δT (τ) of T (τ) by putting δT (τ) = 0 if x2 ∈ Z for
any x ∈ AT (τ) and δT (τ) = 1 otherwise. By [72, Theorem 3.6.2], and [83, §1] T (τ)
is uniquely determined by the invariant δT (τ), rank, signature and the invariant a.
The situation is resumed in Figure 2.1 from [75, §4].

• δT (τ) = 1
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Figure 2.1: Order 2

We recall a result about non-symplectic automorphisms of order four on a K3
surface. This results are discussed in [3] and see also the Appendix of [91].

Theorem 2.1.3. Let X be a K3 surface and σ be a purely non-symplectic automor-
phism of order four on it with Pic(X) = T (σ2). If Fix(σ) contains a smooth rational
curve and all curves fixed by σ2 are rational, then the invariants associated to σ are
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as in Table 2.1. All cases in the table do exist (here m denotes the multiplicity of
the eigenvalue i).

m r l n k a

4 10 4 6 1 0

3 13 3 8 2 0
11 5 6 1 1

2 16 2 10 3 0
14 4 8 2 1
12 6 6 1 2

1 19 1 12 4 0
13 7 6 1 3

Table 2.1: The case g = 0

From now on, σ will be an automorphism of order eight.

Remark 2.1.4. For each pj , j ∈ {1, . . . , Nσ}, fixed point for σ, there exists i ∈
{1, . . . , t} such that pj ∈ R′i, where R′i is a fixed smooth rational curve for σ4.

With the notation of the remark we have

Lemma 2.1.5. The curve R′i is σ-invariant for all i ∈ {1, . . . , t} and R′i a smooth
rational curve in Fix(σ4).

Proof. First of all we notice that since R′i is fixed by σ4 then also σ(R′i) is fixed by σ4.
If R′i is not σ-invariant this means that R′i is sent to another rational curve σ(R′i).
We know by assumption that x ∈ R′i with x a fixed point, hence the intersection
R′i ∩ σ(R′i) is not empty. This is absurd in fact these two curves are fixed by σ4

and so they can not intersect since the fixed locus of an involution is smooth by
Theorem 2.1.2.

We further denote by Nσj , kσj , j = 1, 2, 4 the number of isolated points and
smooth rational curves in Fix(σj). We observe that Nσ4 = 0 since σ4 only fixes
curves or is empty as explained in Theorem 2.1.2. Recall [90, Proposition 2.2] :

Proposition 2.1.6. Let σ be a non-symplectic automorphism of order 8 acting on
a K3 surface X. Then Fix(σ) is never empty nor it can be the union of two smooth
elliptic curves. It is the disjoint union of smooth curves and Nσ ≥ 2 isolated points.
Moreover the following relations hold:

n2,7 + n3,6 = 2 + 4α, n4,5 + n2,7 − n3,6 = 2 + 2α, Nσ = 2 + rσ − lσ − 2α

where ni,j will be introduced in the following, after Remark 3.3.13.

Here we denote α =
∑

K⊂Fix(σ)

(1− g(K)).
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The fixed locus of an automorphism σ is then

Fix(σ) = C ∪R1 ∪ · · · ∪Rk ∪ {p1, . . . , pN} (2.1)

where C is a smooth curve of genus g ≥ 0 and Ri are rational curves.

We recall the following remarks and lemma which are important in the study of
the fixed locus of σ.

Remark 2.1.7. A non-symplectic automorphism σ of order 8 acts on a set of
smooth rational curves of X which are fixed by σ4 either trivially, i.e. each smooth
rational curve is σ-invariant or eventually pointwise fixed by σ, or it exchanges
smooth rational curves two by two, or finally σ permutes four rational curves be-
tween them. In fact each curve in the set of four permuted smooth rational curves
by σ has stabilizer group in 〈σ〉 of order 2, hence its σ-orbit has length four.

Lemma 2.1.8. Four cyclic permuted smooth rational curves by a non-symplectic
automorphism σ of order 8 on a K3 surface X, are either σ4-invariant (not point-
wise fixed), either pointwise fixed by σ4.

Proof. We can prove it simply as follows. Let Ci, i ∈ {1, . . . , 4} be four smooth
rational curves such that σ(Ci) = Ci+1, i = 1, 2, 3 and σ(C4) = C1, and assume
that C1 is invariant by σ4, then σ4(C2) = σ4(σ(C1)) = σ(σ4(C1)) = σ(C1) =
C2. In particular if C1 is pointwise fixed, then one proves in a similar way that
C2 is pointwise fixed. A similar proof holds also for C3 and C4, so we get the
statement.

We denote by 2aσ the number of exchanged smooth rational curves by σ and
fixed by σ2, and by 4sσ the number of smooth rational curves cyclic permuted by
σ and pointwise fixed by σ4 (and clearly they are interchanged by σ2 two by two).

Remark 2.1.9. Let aσ2 be the number of the pairs of rational curves interchanged
by σ2 and pointwisely fixed by σ4, then 2aσ2 = 4s and so aσ2 ∈ 2Z.

At a fixed point of σ the action can be linearized, see e.g. [71, Section 5]. We
can find z1 and z2 local coordinates in a neighborhood of a fixed point x such that
we can assume x = (0, 0). We know that the symplectic form ωX is an everywhere
non-degenerate 2-form and this allow us to write it in local coordinates as dz1∧dz2.
We know that σ∗(dz1 ∧ dz2) = ζ8(dz1 ∧ dz2) for this reason if we consider the local
action diagonalized we need that the product of the eigenvalues with respect to z1

and z2 is equal to ζ8. Since the automorphism is of finite order it can be locally
diagonalized as follows (up to permutation of the coordinates but this doesn’t play
any role in the classification):

A1,0 =

(
ζ8 0
0 1

)
, A2,7 =

(
i 0
0 ζ7

8

)
, A3,6 =

(
ζ3

8 0
0 ζ6

8

)
, A4,5 =

(
−1 0
0 ζ5

8

)
.

In the first case the point belongs to a smooth fixed curve, since we have an
eigenvalue which is equal to 1, and this means that the second coordinate z2 is
totally preserved by the action of σ. In the other three cases it is an isolated fixed
point. We say that an isolated point x ∈ Fix(σ) is of type (t, s) if the local action
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at x is given by At,s. We denote by nt,s the number of isolated fixed points by σ
with matrix At,s.
The following is a result about local actions of σ on a rational curve. With the same
notation of Remark 2.1.4 if R′i is σ-invariant (not pointwise fixed) each action of σ
on R′i has two fixed points. There are some restrictions about the possible actions
of σ, in particular if we have an action on one of the fixed points then the action
on the other point is determined. We state the following result which is inspired by
[31].

Proposition 2.1.10. Let σ be a non-symplectic automorphism of order 8 on a K3
surface X and suppose that the fixed locus of the involution σ4 is the union of smooth
rational curves R′i. Then if p1 is an isolated fixed point for σ and it is contained in
R′i, there exists another fixed point p2 for σ on R′i. If the local action in p1 is of
(7, 2)-type then the local action in p2 is of (3, 6)-type and vice-versa. If the action
in p1 is of (4, 5)-type then the action in p2 is of (5, 4)-type.

Proof. We know that the action of a finite automorphism which is not the identity
on a rational curve has two fixed points. Let p1 and p2 be the two fixed points on
R′i. The possible local actions for an automorphisms of order 8 are of type (1, 0),
(2, 7), (3, 6) and (4, 5). The action of type (1, 0) doesn’t happen since it means that
the fixed point belongs to a smooth fixed curve, but the point is an isolated fixed
point so we get a contradiction.
A morphism on a rational curve i.e. on P1(C) has this form:

σ([z0 : z1]) = ([γz0 + βz1 : αz0 + δz1]),

where γδ − αβ 6= 0.
We can suppose that the two fixed points are 0 and∞ which means that p1 = [1 : 0]
in homogeneous coordinates [z0 : z1] with z0 6= 0 and p2 = [0 : 1] in homogeneous
coordinates [z0 : z1] with z1 6= 0. Since the points p1 and p2 are points of the K3
surface which lie on the rational curve R′i, the local coordinate in p1, as a point
of the rational curve, is w := z1

z0
and the local coordinate in p2, as a point of the

rational curve is z := z0
z1

= 1
w .

We can consider a local analytic neighborhood on the K3 surface of p1 and we can
call these local coordinates z1 and z2 where z2 = z1

z0
since p1 ∈ {z0 6= 0}. If the

action is of (7, 2)-type this means that

σ((z1, z2)) = (ζ7
8z1, ζ

2
8z2).

In a local analytic neighborhood of p2 we have coordinates (z′1, z
′
2) where we can

choose z′1 = z1 and z′2 = z0
z1

since p2 ∈ {z1 6= 0}. Now we know that σ acts on the
second component in this way:

z′2 = 1/z2 7→ 1/(ζ2
8z2) = ζ6

8z
′
2

and this implies that
z′1 7→ ζ3

8z
′
1,

since we know which are the possible local actions of σ in a neighborhood of a fixed
point. We can conclude that in p2 we have an action of (3, 6)-type i.e

σ((z′1, z
′
2)) = (ζ3

8z
′
1, ζ

6
8z
′
2).
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We obtain in a similar way that a (4, 5)-type action in p1 determines a (5, 4)-type
action in p2.

An important remark about the local behaviour of σ2 in a neighborhood of a
fixed point is the following:

Remark 2.1.11. The isolated fixed points by a non-symplectic automorphism σ of
type (2, 7) and (3, 6), are also isolated fixed points in Fix(σ2). The points of type
(4, 5) in Fix(σ) are contained in a smooth fixed curve by σ2. In fact the action of

σ2 at such points is given by the matrix

(
1 0
0 ζ2

8

)
which implies that these points

belong to a smooth curve in Fix(σ2). For this reason we can say that if there exist
points of (4, 5)-type then kσ2 > kσ.

We denote by 2a the number of exchanged smooth rational curves by σ and
fixed by σ2, and by 4s the number of smooth rational curves cyclic permuted by σ
and fixed by σ4 (and clearly they are interchanged by σ2 two by two).

2.1.3 The classification

Our goal is to give a classification of non-symplectic automorphisms of order
eight under the assumption that the involution given by its fourth power fixes only
rational curves. Let σ be such an automorphism, then

Fix(σ4) = R′1 ∪ · · · ∪R′t
where R′i are smooth rational disjoint curves. This implies that:

Fix(σ) = R1 ∪ · · · ∪Rk ∪ {p1, . . . , pN}

which means that in the description of equation (2.1) we have g(C) = 0 and Ri are
smooth disjoint rational curves.

Theorem 2.1.12. Let σ be a non-symplectic automorphism of order 8 on a K3
surface X with Pic(X) = T (σ4). Suppose that Fix(σ4) is not empty and it is the
union of smooth rational curves. Then kσ ∈ {0, 1} and the invariants of σ are as
in Table 2.2

Proof. To prove this result we consider two cases, kσ ≥ 1 and kσ = 0.

kσ ≥ 1 Consider p1 a fixed isolated point for σ. Since it is an isolated point it is
not on a smooth rational curve of Fix(σ). From Remark 2.1.4 there exists a
smooth rational curves in Fix(σ4) such that p1 ∈ R′i. From Remark 2.1.5, R′i
is σ-invariant. Since a finite order automorphism of a rational curve has two
fixed points, there exists another fixed point for σ on R′i, we call it p2. We
deduce that Nσ is even. From what we know about the local behaviour of
σ in a fixed point, we deduce that if a fixed point is of (7, 2)-type then the
other fixed point on the same rational curve R′i is of (6, 3)-type (recall that an
action of (t, s)-type is equal to an action of (s, t)-type). If there is an action of
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(4, 5)-type on p1 then there is an action of (5, 4)-type on p2. By these remarks
we obtain:

n7,2 = n6,3

n4,5 ∈ 2Z.

Using Proposition 2.1.6 we obtain:

α = kσ ≥ 1,

n3,6 = n7,2 ≥ 3,

n4,5 ≥ 4.

At this point we can consider the classification in Table 2.1. Using Remark
2.1.11 the number of curves in Fix(σ2) is:

kσ2 = kσ +
n4,5

2
+ 2aσ.

In this setting kσ2 ≥ 3 so the possible cases are kσ2 = 3 and kσ2 = 4. But from
Remark 2.1.1 we know that mσ2 has to be even so checking again in Table
2.1, the only case is kσ2 = 3 and mσ2 = 2. If kσ2 = 3, since n4,5 ≥ 4, the only
possibility is kσ = 1, aσ = 0 and n4,5 = 4. Consequently n2,7 = n3,6 = 3. We
can conclude that the number Nσ = n4,5 + n3,6 + n2,7 = 10.
We can use Remark 2.1.1 and Proposition 2.1.6 to conclude that rσ = 13,
lσ = 3, mσ = 1, m1 = 1, rσ4 = 18 and lσ4 = 4. Moreover since aσ2 = 0
this implies that s = 0 and for this reason kσ2 = 3 and using Theorem 2.1.2
we conclude that kσ4 = 8. Using Table 2.1 we compute the invariants for σ2

which are (r,m, l,N, k, a) = (16, 2, 2, 10, 3, 0).

kσ = 0 By the same argument as in the previous case we deduce that n3,6 = n2,7 and
n4,5 is even. Then we can use Proposition 2.1.6 and we obtain:

α = kσ = 0,

n3,6 = n7,2 = 1,

n4,5 = 2.

In this case Fix(σ)={p1, p2, p3, p4}, i.e. Nσ = 4. Observe that σ2 is an auto-
morphism of order 4 and it contains a rational curve in the fixed locus since
two points of (4, 5)-type in Fix(σ) become a fixed curve for σ2. We can use the
classification in Table 2.1 and as in the previous case, using Remark 2.1.11,
the number of curves in Fix(σ2) is:

kσ2 = kσ +
n4,5

2
+ 2aσ.

In this setting kσ2 ≥ 1 and from Remark 2.1.1 we know that mσ2 has to be
even so using Table 2.1 we deduce that there are four possible cases.
If mσ2 = 4 then k2σ = 1. From the previous equation aσ = 0. In this case
the invariants for σ2 are (r,m, l,N, k, a) = (10, 4, 4, 6, 1, 0).
Ifmσ2 = 2 then k2

σ ∈ {3, 2, 1}. If kσ2 = 3 from the previous equation aσ = 1.
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In this case the invariants for σ2 are (r,m, l,N, k, a) = (16, 2, 2, 10, 3, 0).
If kσ2 = 2 from the previous equation aσ = 1

2 , which is not possible.
If kσ2 = 1 from the previous equation aσ = 0. In this case for σ2 the invari-
ants are (r,m, l,N, k, a) = (12, 2, 6, 6, 1, 2).

m1 mσ rσ lσ Nσ kσ aσ Examples

1 1 13 3 10 1 0 ?

2 2 6 4 4 0 0

1 1 9 7 4 0 1 ?

1 3 7 5 4 0 0

Table 2.2: Invariants of the automorphism

2.1.4 Elliptic fibrations

Definition 2.1.13. Let X be a complex surface. An elliptic fibration is a holo-
morphic map f : X −→ B to a smooth curve B such that the generic fiber is a
smooth connected curve of genus one. A jacobian elliptic fibration is an elliptic
fibration admitting a section π : B −→ X such that f ◦ π = IdB. The surface X is
called an elliptic surface. We denote by Fv the fiber f−1(v) over a point v ∈ B.
The Mordell-Weil group is the group of sections of the elliptic fibration.

The zero section of an elliptic fibration is a chosen section s : B −→ X and
we identify the map s with the curve s(B) on X. The point of intersection between
the zero section and a fiber is the zero of the group law on the fiber.
For K3 surfaces we have that B = P1 (see [55]) and, if the fibration is jacobian, it
admits a Weierstrass equation:

y2 = x3 +A(t)x+B(t), (2.2)

where A(t) and B(t) are two polynomials with t ∈ P1 with complex coefficients such
that deg(A(t))=8 and deg(B(t))=12. Here the zero section is t 7→ (0 : 1 : 0).
The discriminant of the fibration is a degree 24 polynomial:

∆(t) = 4A(t)3 + 27B(t)2. (2.3)

The equation (2.2) is associated to an elliptic fibration if and only if ∆(t) does not
vanish identically. Each zero of ∆(t) corresponds to a point v of the base P1 such
that Fv is a singular fiber of the fibration. There are at most finitely many singular
fibers. Let δ be the order of vanishing of ∆ in the point corresponding to the singular
fiber, by the Kodaira classification the possible singular fibers are recalled in Figure
2.2 where we denoted by Θ0 the component of a fiber meeting the zero section. The
first column in the Figure 2.2 contains the name of the reducible fiber according to
Kodaira classification, the second the Dynkin diagram associated to the fiber, the
last column contains the order of vanishing of ∆ in the point corresponding to the
singular fiber.
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Figure 2.2: Kodaira classification

A simple component of a fiber is a component with multiplicity one. In Fig-
ure 2.3 we describe the singular fibers of an elliptic fibration with the multiplicities
of the vertices of the extended Dynkin diagrams, and we list the components with
their multiplicities.
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Figure 2.3: Dynkin diagrams with the multiplicities of the components

The Nèron–Severi group of a surface admitting an elliptic fibration contains the
class of a fiber F (all the fibers are algebraic equivalent) and the class of the zero
section s. Since the fibers are all algebraic equivalent F · F = 0. The zero section
intersect any fiber in one point, so that F ·s = 1. The sections of an elliptic fibration
on K3 surfaces are rational curves and this implies that their self–intersection is
−2. Moreover, if X is a K3 surface that admits an elliptic fibration, then there is
an embedding of U in NS(X), where U is the two dimensional lattice

U =

{
Z2,

(
0 1
1 −2

)}
.

Observe that the lattice U is isometric to the hyperbolic plane U , where U is the
two dimensional lattice

U =

{
Z2,

(
0 1
1 0

)}
.

If f : X −→ P1 admits an n-torsion section sn of order n in the Mordell Weil
group then it induces an automorphism of the same order on X, which acts as the
identity on the base of the fibration and as a translation by the section on each
fiber hence this automorphism is a symplectic automorphism, see [46, chapter 15,
Lemma 4.4]
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2.1.5 Examples

In this section we give examples corresponding to the cases discussed in Theo-
rem 2.1.12. They are constructed using elliptic fibrations on K3 surfaces.

Example kσ = 1

The case kσ = 1 in Theorem 2.1.12 occurs, this means that we can find a
geometric example of a non-symplectic automorphism of order 8 on a K3 surface
X such that its fixed locus is consists of a smooth rational curve and 10 isolated
points and the fixed locus of σ4 is made by three smooth rational disjoint curves.
Consider the elliptic fibration X given as:

y2 = x(x2 + tp6(t))

with p6(t) := (a6t
6 + a4t

4 + a2t
2 + a0) = (t2 − α1)(t2 − α2)(t2 − α3), where

a6, a4, a2, a0, α1, α2, α3 ∈ C, and the order 8 automorphism acting on it:

σ : (x, y, t) 7→ (−ix, ζ8y,−t).

By [50, section 3] a holomorphic 2-form can be written as ωX = dt ∧ dx/2y so
that one computes

σ(ωX) = ζ8ωX

hence σ acts non-symplectically.

Moreover σ acts as an involution on the base P1 and it has order four on each
fiber of the fibration.

The discriminant is ∆(t) = 4t3(t2 − α1)3(t2 − α2)3(t2 − α3)3. Recall that t ∈ P1

so if we consider the homogenization of the polynomial in coordinates [t : u], we
obtain ∆(t, u) = 4t3(t2 − α1)3(t2 − α2)3(t2 − α3)3u3.
We take α1 = 0 and α2 = α3. In this hypothesis we have the elliptic fibration:

y2 = x(x2 + t(t2 − α2)2)

and ∆(t) = 4t9(t2 − α2)6 which is in homogeneous coordinates [t : u] equal to
∆(t, u) = 4t9(t2 − α2)6u3. For generic choice of the coefficient α2 the fibration has
3 singular fibers which correspond to the three zeros of ∆(t, u).
To be more precise the fibration has a fiber of type III∗ over 0, which corresponds
to the Ẽ7 Dynkin diagram, a fiber of type III over∞, which consists in two rational
curves meeting in a double point and two fibers of type I∗0 over ±√α2. The action
of σ on the base fixes two points, 0 and ∞ and so it preserves the fibers over these
two points, III and III∗, and it exchanges the two fibers of type I∗0 . If f : X −→ P1

is the elliptic fibration then Fix(σ) ⊆ f−1(0) ∪ f−1(∞). Observe that the fibration
has a two torsion section s2, given by t 7→ (0 : 0 : 1) = (x : y : z) and the zero
section s, given by t 7→ (0 : 1 : 0) = (x : y : z). These sections are preserved by the
action of σ and they have two fixed points on it which are contained in the union of
the fibers over 0 and ∞. These two sections are pointwise fixed on it by the action
of σ2.
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The sections s2 and s are simple sections which means that they meet one of the
components of III∗ of multiplicity one (not the same), they meet one of the two
components of III (not the same) in a non-singular point and they meet the fibers
of type I∗0 in one of the components of multiplicity 1 (not the same). We know that
the components are not the same since the fixed loci are smooth.

Now we can see that the two fixed points on each section are contained in III∗

and III. The fiber of type III consists in two tangent rational curves. Each of
these two rational curves has a fixed point which is not the double one. Moreover,
since a non-trivial finite order auto-morphism fixes two points on a rational curve,
we can conclude that the double point of the fiber III is fixed by σ. On the fiber
of type III∗ we have the two fixed points given by the intersections of the two
sections s ans s2 with this fiber. Since the sections s and s2 are not exchanged
then all components in III∗ are preserved. The only component of this fiber of
multiplicity four is preserved by σ and it contains three fixed points so it is point-
wise fixed. The component of multiplicity two which intersects the component of
multiplicity four contains then a fixed point and we know that there is another fixed
point on it. In conclusion Nσ = 10 and kσ = 1 as we expect. The invariants are
(m1,mσ, rσ, lσ, Nσ, kσ, aσ) = (1, 1, 13, 3, 10, 1, 0), by Proposition 2.1.6.

The square of the automorphism σ2 : (x, y, t) 7→ (−x, iy, t) preserves each fiber
and acts as an automorphism of order four on it. Moreover σ2 fixes two points on
the generic smooth fiber, these two fixed points are contained in the two sections s
and s2. This gives that kσ2 ≥ 2.
Since lσ2 = 2mσ = 2 and mσ2 = 2m1 = 2 using Table 2.1 for the classification of
non-symplectic automorphisms of order 4, we know that the invariants for σ2 are
(rσ2 ,mσ2 , lσ2 , Nσ2 , kσ2 , aσ2) = (16, 2, 2, 10, 3, 0).
The curves fixed by σ2 are the curves fixed by σ and the two sections s and s2. The
points fixed by σ2 are 10 but they are not the same fixed points by σ, in fact the 4
fixed points for σ on s and s2 now lie on fixed curves (the curves s and s2) and they
do not give any contribution, but we add exactly 4 other points on the two fibers
I∗0 . For this reason the number of fixed points remains the same.

Consider the curve defined by y = 0. From the equation of the elliptic fibration
we obtain x = 0, which gives the zero section, and the curve C: x2 +t2(t2−α2)2 = 0
which has a 2:1 morphism to P1 and has ramification points where t2(t2−α2)2 = 0.
These points lie on the four singular fibers III, the two of type I∗0 and III∗ (one
over 0, one over

√
α2, one over −√α2 and one over ∞) and in fact C meets these

fibers in points with double multiplicity. In particular C meets III in the double
point, I∗0 in the two components of multiplicity one and III∗ in the component of
multiplicity two.

Recall that the Riemann-Hurwitz formula applied to a 2 : 1 morphism from a
curve C to the projective line P1 is given by:

2g(C)− 2 = 2(0− 2) +
∑
p∈C

(ep − 1)

where the sum runs over the ramification points which are two points in this case,
the point on the fiber over 0, i.e. on III∗ and the point on the fiber over ∞ i.e
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on III and ep is the ramification index at a ramification point p. In this case is
ep = 2. By using the formula we can compute in an easy way the genus of the curve
C ⊆ Fix(σ4) which is g(C) = 0 (i.e. the fixed curves by σ4 are all rational) and
then the curve C contains two fixed points, one of them of (2, 7)-type and the other
of (6, 3)-type.

The rank of the invariant sublattice of the involution σ4 is rσ4 = rσ+ lσ+2mσ =
18 and using the tabular of Proposition 2.1.2 we see that 2(kσ4 − 1) = 18− 4 = 14
which means that kσ4 = 8. In fact in this example we have the following fixed
rational curves: three components of the fiber III∗, two sections s and s2, the
curve C and two other rational curves which are fixed on the two fibers of type I∗0 .

Example kσ = 0

The case kσ = 0 in Theorem 2.1.12 do exist when kσ2 = 3. We can consider the
same elliptic fibration of the previous example, and we fix α1 = 0 and α2 = α3 as
before. As we have already observed the fibration has a two torsion section given by
t 7→ (0 : 0 : 1) = (x : y : z). Denote by τ the symplectic involution associated to this
two torsion section. As we have observed before, this involution is symplectic since
it acts as a translation on each fiber and as the identity on the base of the fibration.
The involution exchanges the zero section s and the two torsion section s2. We
cannot find fixed points for τ on the generic fiber since it acts as a translation,
but we know (see [46]) that a symplectic involution has 8 fixed points on a K3
surface. Consequently the 8 fixed points for τ are on the singular fibers of the
elliptic fibration, which are: the fiber over zero of type III∗, the two fibers over
±√α2 of type I∗0 and the fiber over ∞, of type III (see the Kodaira classification
in Figure 2.2). On each of the two fibers of type I∗0 we have two fixed points on the
component of multiplicity two since the sections s and s2 are exchanged. On the
fiber of type III∗ we have three fixed points, two of them are on the component of
maximal multiplicity and the other is on the component of multiplicity two which
intersects the component of maximal multiplicity. On the fiber of type III the two
rational curves are exchanged and so we have a fixed point for τ which is the double
point.
We consider σ◦τ which is an automorphism of order eight. It is non-symplectic since
in local coordinates we can write ωX = dx∧dt

2y . Since τ is symplectic, σ◦τ(ωX) = ζ8ωX
which means that σ ◦ τ is non-symplectic. Now the fixed point for τ on III is also
a fixed point for σ. As a consequence it is a fixed point for σ ◦ τ . The fibers I∗0 are
exchanged by σ so we cannot find fixed points for σ◦τ on them and two of the three
fixed points on III∗ are on a fixed curve for σ so they contribute to Fix(σ ◦ τ). The
last fixed point by τ on the component of multiplicity two is fixed also by σ so it is
a fixed point for σ ◦ τ . Finally we conclude that Fix(σ ◦ τ) = {p1, p2, p3, p4} where
one of them is the double point of III and it is of (2, 7)-type, the other three are
on the fiber III∗; two of them are of (4, 5)-type and one of (3, 6)-type, according
with the result in Theorem 2.1.12.

Since σ, τ commute (σ ◦ τ)2 = σ2 and the behaviour of the order four automor-
phism is the same as it is described in the previous example.



Chapter 3

Induced automorphism groups

This chapter deals with several questions concerning irreducible holomorphic
symplectic manifolds of OG6 type and their automorphisms.

The easiest example of IHS manifolds that arises from a symplectic surface is the
Hilbert scheme of n points on a K3 surface, constructed by Beauville in [10]. This
kind of construction allows us to produce several examples of automorphisms on
irreducible symplectic manifolds, simply by taking a K3 surface with non-trivial au-
tomorphism group and considering the induced action on its Hilbert scheme. These
kinds of automorphisms are called natural in the literature, and were studied by
Beauville [8], Boissière [12] and many others. Very few examples of non-natural
automorphisms are known, such as those constructed in [79], and a numerical cri-
terion to distinguish between natural and non-natural automorphisms is available
only in special cases, as we can find in [18], and [57]. A generalization of the notion
of natural automorphisms for moduli spaces of sheaves on a K3 surface is provided
in [64]. This notion appeared the first time for moduli spaces of sheaves in the pa-
per [79], a work inspired by the construction in [78, Section 5]. In [64] the authors
extend the ideas drastically using developments in the theory of stability conditions
by Bridgeland [22] and by Bayer-Macr̀ı (see [6][7]) and Yoshioka (see [100]). Inspired
by the recent works we re-adapt this notion for manifolds of OG6 type and we show
a criterion to determine weather a given automorphism is induced or induced at the
quotient in the sense we are going to explain in greater detail in the following.

Moreover, as we have seen in section 1.4.1, there exists a birational model for
OG6 manifolds which has been introduced for the first time in [62]. This model
is obtained considering a principally polarized abelian surface A and its Kummer
K3 surface S. On the Hilbert scheme of three points on S, S[3] the authors of [62]
construct a non-regular involution, whose quotient is birational to a manifold of
OG6 type.

Taking into consideration the birational model for OG6 manifolds, the notion
of induced automorphisms can be re-adapted also in this different contest. We
introduce the notion of automorphisms induced at the quotient, in order to find a
criterion to establish when an automorphisms of the birational model of an OG6

manifolds lifts to an automorphism of the S[3] manifold, where S is the K3 surface
appearing in the birational model. We will find a criterion for automorphisms of
prime order and we will prove that in the non-symplectic case almost all the cases are
covered, on the other hand this is not true in the case of symplectic automorphisms,
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as we will see in Chapter 5.
At the end of Chapter 5 we will show that all the induced automorphisms are

induced at the quotient, but the opposite implication does not hold. In fact, in the
last chapter of our work we will construct an example of an automorphism induced
at the quotient but not induced.

3.1 A criterion for being a moduli space

This section is devoted to answering the following question: How can we deter-
mine if a given manifold of OG6 type is the symplectic resolution of the Albanese
fiber of a moduli space of stable objects on an abelian surface? We state a nec-
essary and sufficient criterion entirely in terms of Hodge theory. In the following
Λ8 := U⊕4 and Λ10 := U⊕5.

Definition 3.1.1. Let X be a projective manifold of OG6 type. Let σ ∈ H2(X,Z)
be a class of square -2 and divisibility 2 and let i be a primitive lattice embedding
of σ

⊥H2(X,Z) ∼= U⊕3 ⊕ 〈−2〉 ↪→ Λ8. It is possible to endow the latter with the
(unique) Hodge structure, making i an embedding of Hodge structures such that
the complement of the image of i is of type (1, 1). We call X a numerical moduli
space if there exists σ ∈ NS(X) s.t. σ2 = −2 and div(σ) = 2 and, through the
previous embedding, Λ1,1

8 contains a copy of the hyperbolic lattice U .

Lemma 3.1.2. Let X be a projective manifold of OG6 type. Consider the embedding
i : H2(X,Z) ↪→ Λ10, and endow Λ10 with the (unique) Hodge structure such that
the complement of the image of i is of (1, 1)-type. X is a numerical moduli space
if and only if there exists σ ∈ NS(X) such that σ2 = −2 and div(σ) = 2 and there
exists the following primitive embedding U⊕2 ↪→ Λ1,1

10 .

Proof. For the ’only if’-part we can consider those embeddings of Hodge structures
σ⊥ ∼= U⊕3 ⊕ 〈−2〉 ↪→ Λ8 ↪→ Λ10 such that the complement of the images of these
embeddings are of (1, 1)-type. Since U ∼= (Λ8)⊥ ⊂ Λ10, and since X is a numerical
moduli space, we know that U ↪→ Λ1,1

8 and consequently U⊕2 ↪→ Λ1,1
10 .

For the other direction we know that H2(X,Z) ∼= U⊕3 ⊕ 〈−2〉⊕2, thus it holds that
σ⊥ ∼= U⊕3 ⊕ 〈−2〉 ↪→ Λ8 ↪→ Λ10. Since Λ8 ↪→ Λ10, we thus obtain Λ1,1

10
∼= Λ1,1

8 ⊕ U .

By our hypotheses we know that U⊕2 ⊂ Λ1,1
10 , therefore U ⊂ Λ1,1

8 and we are done.

Remark 3.1.3. In [64, Remark 5.6.], the conjectured condition on X to say that it
is the desingularization of the Albanese fiber of a moduli space of stable objects on
an abelian surface is different from what we state here, since the authors of [64] ask
only two copies of U in Λ1,1

10 as direct summand. In that case, since they start from
X ∼ OG6 which is the desingularized Albanese fiber of a moduli space of stable
objects on an abelian surface then there exists a class σ ∈ NS(X) s.t. σ2 = −2 and
div(σ) = 2. Actually this class is the exceptional divisor of the blow up of the fiber
of the moduli space.

For the following proposition we refer to Section 1.4 when we consider moduli
spaces of stable sheves in the derived category Db(X) where X is an abelian or a
K3 surface.
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Proposition 3.1.4. Let X be a manifold of OG6 type which is a numerical moduli
space. Then there exists an abelian surface A s.t. X is birational to the desingu-
larized Albanese fibre of a moduli space of stable objects of Db(A) for some stability
condition θ ∈ Stab(A).
More precisely X is birational to K̃u(A, θ), where K̃u(A, θ) −→ Ku(A, θ) is the
symplectic resolution and Ku(A, θ) := alb−1((0, 0)) where the Albanese map is

alb : Mu(A, θ) −→ A×A∨

F 7→ (Alb(c2(F )), det(F )⊗ det(F0)−1),

where F0 ∈Mv(A, θ) and Alb : CH0 → A is the Albanese homomorphism.

Proof. Let σ ∈ NS(X) s.t. σ2 = −2. We have an Hodge embedding σ
⊥H2(X,Z) ∼=

U⊕3⊕〈−2〉 ↪→ Λ8 where the complement is defined to be of (1, 1)-type. Let w be the
orthogonal complement of σ⊥ in Λ8, w2 = 2. Notice that sgn(σ⊥) = (3, 4) and, since
X is projective sgn(NS(X)) = (1, ∗). Since σ ∈ NS(X) has negative square, the
positive part of the signature of (U⊕3 ⊕ 〈−2〉)1,1 is the same of the positive part of
the signature of NS(X). Thus we get Λ1,1

8 ⊗Q = ((U⊕3⊕〈−2〉)1,1⊕〈w〉)⊗Q and this

implies that sgn(Λ1,1
8 ) = (2, ∗). By hypotheses we know thatX is a numerical moduli

space, so U ↪→ Λ1,1
8 . By a result of Shioda, [85, Theorem 2], there exists an abelian

surface A such that Λ1,1
8
∼= U ⊕ NS(A). Let θ be a w-generic stability condition,

u = 2w and alb : Mu(A, θ) −→ A × A∨, we define K := Ku(A, θ) = alb−1(0, 0).
Using Remark 1.4.5 there exists an Hodge isometry

H2(Ku(A, θ),Z)
∼=−→ w⊥ ⊂ Λ8. (3.1)

Since there exists an isomorphism of Hodge structures w⊥ ∼= U⊕3⊕〈−2〉, we con-
clude that H2(Ku(A, θ),Z) ∼= U⊕3⊕〈−2〉 [80, Theorem 1.7(2)]. The fiber Ku(A, θ)
admits a symplectic resolution and K̃u(A, θ) −→ Ku(A, θ) is such that the excep-
tional divisor of the blow up is E where E2 = −2 and E ∈ NS(K̃u(A, θ)) (see [81,
Corollary 3.5.13]). Furthermore K̃u(A, θ) is a manifold of OG6 type, see Theorem
1.3.9, so we have H2(K̃u(A, θ),Z) ∼= H2(Ku(A),Z)⊕ Z · E. Thus we get

ϕ : H2(K̃u(A, θ),Z) −→ U⊕3 ⊕ 〈−2〉 ⊕ E ∼= H2(X,Z).

The monodromy group for a manifold of OG6 type is maximal, as we have seen in
Example 1.2.33, which means that Mon2(OG6) ∼= O+(H2(X,Z)) ⊂ O(H2(X,Z)),
where O+(H2(X,Z)) are the orientation preserving isometries. Since we have an
Hodge isometry ϕ, we can say that ±ϕ is an orientation preserving Hodge isome-
try. For this reason we can conclude using Theorem 1.2.34 that X is birational to
K̃u(A, θ).

3.2 Automorphisms induced from an abelian surface

In this section we would like to know when an automorphism of a manifold
of OG6 type comes from an automorphism of the abelian surface. We need the
following definition.
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Definition 3.2.1. Let X be a manifold of OG6 type and let G ⊂ Aut(X). We say
that G is an induced group of automorphisms if there exists an abelian surface A
with G ⊂ Aut(A), a G-invariant non-primitive Mukai vector u = 2w, u ∈ H∗(A,Z)G

and a u-generic stability condition θ, which is G-invariant, such that X is birational
to K̃u(A, θ), and the induced action on K̃u(A, θ) coincides with the given action of
G on X.

Definition 3.2.2. Let X be a manifold of OG6 type and let G ⊂ Aut(X). Let i
be a primitive embedding of H2(X,Z) in Λ10. Let Λ10 be endowed with the unique
Hodge structure induced by H2(X,Z) in a way such that the orthogonal complement
of the embedding is of (1, 1) type. Then the group G is called numerically induced
if the following hold:

(1) The group G acts trivially on the discriminant group AX ; the action can be
extended to the lattice Λ10 with SG(Λ10) ∼= SG(X).

(2) There exists σ ∈ NS(X), such that σ2 = −2 and div(σ) = 2 and σ is G-
invariant, such that H2(X,Z) ↪→ Λ10 is a Hodge embedding such that the
(1, 1)-part of the lattice TG(Λ10) contains U⊕2 as a direct summand.

Moreover we ask that for all g ∈ G, det(g∗) = 1.

Remark 3.2.3. The last condition about the determinant of the isometry depends
on the monodromy of abelian surfaces. As we have said in Section 1.5,

Mon2(A) = SO+(H2(A,Z)),

where H2(A,Z) ∼= U⊕3.

Remark 3.2.4. The second condition in Definition 3.2.2 is equivalent to require
that there exists σ ∈ NS(X) such that σ2 = −2 and div(σ) = 2. Moreover we ask
that σ⊥ ↪→ Λ8 is a Hodge embedding such that the (1, 1)-part of the lattice TG(Λ8)
contains U as a direct summand.

Proposition 3.2.5. Let X be a manifold of OG6 type. Let G ⊂ Aut(X). If G is
an induced group of automorphisms, then G is numerically induced.

Proof. If G ⊂ Aut(X) is induced, by definition, there exists an abelian surface A
such that X is the resolution of the Albanese fiber of the moduli spaces Mu(A, θ).
For this reason we conclude that there exists in the Nèron-Severi group of X the
class of the exceptional divisor, which corresponds to the resolution of the fiber,
i.e. there exists σ ∈ NS(X), σ G-invariant, such that σ2 = −2 and div(σ) = 2.
Moreover it holds the following embedding

H2(A,Z) ↪→ Λ10.

We can extend the action of G on Λ10 trivially on the orthogonal complement of
the embedding. By construction, the embedding is G-equivariant, which means
that SG(A) ∼= SG(Λ10). Therefore, SG(Λ10) ⊂ H2(A,Z) ∼= U⊕3 and this prove that
U⊕2 ↪→ TG(Λ10).
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We need to show that the action on AX := AH2(X,Z) (referring to the definition
in Section 1.1) is trivial. To do this we recall the embedding in equation 3.2, which
is an Hodge isometry

H2(Ku(A, θ),Z)
∼=−→ w⊥ ⊂ Λ8. (3.2)

Since by hypothesis the Mukai vector u, where u = 2w, is preserved by G, the action
on Aw is trivial. Moreover H2∗(A,Z) ∼= H0(A,Z)⊕H2(A,Z)⊕H4(A,Z) ∼= Λ8 is a
unimodular lattice, therefore the action on Aw⊥ is trivial. The exceptional divisor
σ such that σ2 = −2 and div(σ) = 2, is invariant under the action of G and as a
consequence the action is trivial also on the class of the discriminant group given
by the σ divided by two and this show that the action on AX is trivial. Moreover it
holds (2) of the definition of numerically induced since, the orthogonal complement
of H2(A,Z) ∼= U⊕3 in Λ10 is isomorphic to U⊕2, and it is of (1, 1)-type and in
TG(Λ10) by construction. For this reason the condition (2) is verified. Finally
since the group of automorphism is induced, by definition G ⊂ Aut(A) and this
implies that the induced action of g ∈ G on H2(A,Z) is a monodromy operator (see
Theorem 1.2.34) and this means that det(g∗) = 1 (see Remark 3.2.4).

Theorem 3.2.6. Let X be a manifold of OG6 type, and let G ⊂ Aut(X) be a
numerically induced group of automorphisms. Then there exists a projective abelian
surface A, with G ⊂ Aut(A), a G-invariant non-primitive Mukai vector u = 2w,
and a u-generic stability condition θ such that X is birational to K̃u(A, θ) and G is
induced.

Proof. First of all let us consider the case G symplectic. Then we have SG(X) ⊆
NS(X). Since G is numerically induced, we can write TG(Λ10) = U⊕2⊕T . We then
have that SG(X) embeds in the second integral cohomology lattice of an abelian
surface, i.e. in H2(A,Z) ∼= U⊕3, and its orthogonal is T , where the action of G is
trivial. We give to this lattice the Hodge structure induced by Λ10, and we denote by
A the corresponding abelian surface. By proposition 3.1.4, X is the desingularized
Albanese fiber of a moduli space of stable objects on A. We have that G acts on
H2(A,Z) via Hodge isometries. We have that G is a group of orientation preserving
Hodge isometries on A therefore G ⊂ Aut(A), and the induced action on H2(X,Z)
is the action we started with. Now let us suppose that G is a non-symplectic
group. This implies TG(X) ⊂ NS(X). Without loss of generality, we can suppose
TG(X) = NS(X). We have TG(Λ8) = U ⊕ T and let A be the abelian surface
associated to the Hodge structure on U⊥ inside Λ8. By proposition 3.1.4, X is
birational to the desingularized Albanese fiber of the moduli space Mu(A, θ), in the
previous notation K̃u(A, θ), and G is a group of Hodge isometries of A preserving
T = NS(A). Therefore G ⊂ Aut(A) and its action on X coincides with the induced
one.

Corollary 3.2.7. If X ∼ OG6, G = 〈ϕ〉 ⊂ Aut(X) is an induced group of prime
order, automorphisms and |G| = 2, then rk(SG(X)) is even.
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3.3 Automorphisms induced at the quotient

Let MOG6 be the moduli space of marked manifolds OG6 type. We know from
[62] that the odd Betty numbers are zero, and the Hodge diamond was presented in
Section 1.4.1. In this case, since h1,1(X) = 6,MOG6 has dimension 6. We know that
there exists a sublocus of MOG6 which represents the manifolds of OG6 type that
can be realized as we have described in Section 1.4.1 as a quotient of an irreducible
holomorphic symplectic manifold of K3[3] type by a birational symplectic involution

i : K
[3]
3 99K K [3]

3 . We will see later in the following the dimension of the locus of
MOG6 in which a manifold of OG6 type is birational to this model built starting
from a K3[3] type manifold. Moreover I will analyze the reciprocal behavior of this
locus and of the locus in which an OG6 type manifold is a numerical moduli space
(see Section 3.1 for the definition).

Before starting with a crucial theorem, we need to make the following remark
about the invariant and the co-invariant sublattice of H2(K3[3],Z) with respect to
the symplectic birational involution.

Remark 3.3.1. We know from [8] that

H2(K̃3[3]/i,Z)(2) ∼= H2(K3[3],Z)i ⊕ E,

where E is an exceptional divisor and K̃3[3]/i is the desingularization of the quotient
K3[3]/i. Since we know H2(OG6,Z) ∼= U⊕3⊕〈−2〉⊕2 is a rank 8 lattice of signature
(3, 5), and E is an exceptional divisor such that E2 = −2 and div(E) = 2, then
H2(K3[3],Z)i ∼= Ti(K3[3]) is a rank 7 lattice of signature (3, 4) which is isomorphic
to U⊕3 ⊕ 〈−2〉.

Remark 3.3.2. As we know from Proposition 1.5.8, since i is symplectic, the co-
invariant sublattice is negative definite. In this remark Λ is the Leech lattice, i.e. the
unique (up to isometry) even unimodular negative definite lattice with no elements
of square -2. We know that rk(Λ) = 24 and that the induced action of i on ASG(K3[3])

is trivial. This is true since ASi(K3[3]) is 2-elementary and the action of i on this
group is −Id which is actually the identity on 2-elementary lattice (each element
has order 2 hence it coincides with its opposite). For this reason it is possible to
consider an i-equivariant primitive embedding

Si(K3[3]) ↪→ Λ,

and to extend the action of i trivially on the orthogonal complement in a way such
that Si(K3[3]) = Si(Λ). We can find in [60, Proposition A.13] a classification of the
co-invariant sublattices of Λ with respect to involutions. Since we have a birational
model of OG6 as a quotient of K3[3] by the symplectic involution i, we know that
the cohomology which survives in the quotient is the invariant part, Ti(K3[3]), and
this means that rk(Ti(K3[3])) = b2(OG6) = 7, where OG6 is the O’Grady’s sixfold
before the blow up of the singular locus (see Remark 3.3.1). The second Betti
number of a manifold of K3[3] type is 23 and hence rk(Si(K3[3])) = 23− 7 = 16.
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Checking through the list of [60, Proposition A.13], we find only one co-invariant
lattice of rank 16, and we have

Si(K3[3]) ∼= BW16(−1),

where BW16 is the Barnes-Wall lattice. It has the following Gram matrix that we
take from [70]:

BW16 =



4 −2 0 0 0 0 0 0 0 0 0 0 0 1 1 0
−2 4 −2 2 0 0 0 0 0 0 0 0 −1 0 0 1
0 −2 4 0 0 2 0 0 0 0 0 0 2 1 1 0
0 2 0 4 2 2 0 0 0 0 0 0 0 1 1 2
0 0 0 2 4 2 0 0 2 1 0 0 0 0 0 2
0 0 2 2 2 4 2 2 1 2 0 0 1 1 2 2
0 0 0 0 0 2 4 2 0 2 0 0 0 −1 1 0
0 0 0 0 0 2 2 4 0 2 0 0 1 0 2 1
0 0 0 0 2 1 0 0 4 2 0 0 0 0 0 2
0 0 0 0 1 2 2 2 2 4 2 2 1 1 2 2
0 0 0 0 0 0 0 0 0 2 4 2 2 1 1 0
0 0 0 0 0 0 0 0 0 2 2 4 1 2 2 1
0 −1 2 0 0 1 0 1 0 1 2 1 4 0 2 0
1 0 1 1 0 1 −1 0 0 1 1 2 0 4 2 2
1 0 1 1 0 2 1 2 0 2 1 2 2 2 4 2
0 1 0 2 2 2 0 1 2 2 0 1 0 2 2 4


Consequently we compute the orthogonal complement:

Ti(K3[3]) = Si(K3[3],Z)⊥ ∼= U(2)⊕3 ⊕ 〈−4〉.

Theorem 3.3.3. Let X be a manifold of OG6 type. If there exists E ∈ NS(X) such
that E2 = −2 and div(E) = 2, then there exists a K3 surface S, such that

X
bir∼ Y.

Here Y is the resolution of singularities of S[3]/i i.e. the blow up of the singular
locus of S[3]/i, where i : S[3] 99K S[3] is a birational symplectic involution and S[3]

is the Hilbert scheme of 3 points on S.

Proof. If X ∼ OG6, then H2(X,Z) ∼= U⊕3 ⊕ 〈−2〉⊕2. By hypothesis we know that
there exists E ∈ NS(X) such that E2 = −2 and div(E) = 2. We can consider
H2(X,Z) ⊃ E⊥ =: L ∼= U⊕3 ⊕ 〈−2〉 with the induced weight two Hodge structure.
From Remark 3.3.2 we know that Si(S

[3]) = BW16(−1) and Ti(S
[3]) = U(2)⊕3 ⊕

〈−4〉, respectively. Moreover we have L(2) = U(2)⊕3 ⊕ 〈−4〉. We can embed
BW16(−1) in the (1,1) part of the second integral cohomology of a manifold of
K3[3] provided with a weight two Hodge structure. Moreover we can embed L(2)
with its weight two Hodge structure in the orthogonal complement of BW16(−1)
in H2(S[3],Z). Then we have (U(2)⊕3 ⊕ 〈−4〉 ⊕ BW16(−1)) ↪→ H2(S[3],Z). Due
to this embedding it is possible to define on H2(S[3],Z) ∼= U⊕3 ⊕E8(−1)⊕2 ⊕ 〈−4〉
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a compatible Hodge structure. For the surjectivity of the period map in [45], we
know that there exists a manifold of K3[3] type with this Hodge structure in the
second integral cohomology. Since we know that BW16(−1) ∼= Si(S

[3]) and i is a
birational symplectic involution, then BW16(−1) does not contain prime exceptional
divisors. In this way the birational symplectic involution is well defined and we
can consider the quotient S[3]/i. The cohomolgy of the quotient is the invariant
lattice with respect to the action of the involution, i.e. Ti(S

[3]), which means that
H2(S[3]/i,Z)(2) ∼= Ti(S

[3]) ∼= U(2)⊕3 ⊕ 〈−4〉. The multiplication by a factor 2
depends on the fact that the involution is a 2:1 map. We can desingularize the
quotient S[3]/i, more precisely there exists a map

Y −→ S[3]/i

such that the class of the exceptional divisor is a -2 class. This means that

H2(Y,Z)(2) ∼= H2(S[3]/i,Z)⊕ 〈−2〉 ∼= U⊕3 ⊕ 〈−2〉⊕2 ∼= H2(X,Z).

The two varieties X and Y have the same Hodge structure, and since Mon2(Y ) =
O+(H2(Y,Z)), we can say that, if ϕ is an isomorphism between H2(X,Z) and
H2(Y,Z), then ϕ or −ϕ is a Hodge parallel transport operator, which implies that
X and Y are birational (see Theorem 1.2.34).

Remark 3.3.4. Before starting the analysis about automorphisms induced at the
quotient, it is important to remark that the birational models of sixfolds of OG6

type taken into account can be defined in loci of codimension ≤ 2 in the moduli
space of marked manifolds of OG6 type, and I would like to highlight if and when
a manifold of OG6 type admits both models, since it is relevant to the rest of the
paper.

As we have noted above, if X is a manifold of OG6 type, it is birational to the
resolution of the fiber of the map alb, as we have described it in Proposition 3.1.4,
if X is a numerical moduli space which means that X has to be projective and
has to have a class of square −2 and divisibility 2 in the Nèron–Severi group. This
implies that, in MOG6 , which is the moduli space of marked OG6 type manifolds,
the locus of the X birational to K̃u(A, θ) has codimension 2; if we consider the
polarized manifold of OG6 type, i.e. manifolds in which we have fixed a polarization,
i.e. manifolds which are projective, they have codimension 1. On the other hand,
if X is a manifold of OG6 type, it admits as birational model the resolution of
singularities of the quotient of a manifold of K3[3] type by a symplectic involution
if it admits a class of square −2 and divisibility 2 in its Nèron–Severi group. This
means that the codimension of the locus of manifolds of OG6 type that admit this
second birational model is 1. The codimension is equal to one, even If we consider
the codimension in the locus of polarized manifolds of OG6 type.

Moreover it holds the following inclusion

{X ∼ OG6 s.t. X
bir' K̃u(A, θ)} ⊆ {X ∼ OG6 s.t. X

bir' K3[3]/i},

in fact if we take X
bir' K̃u(A, θ) we know that K̃u(A, θ) is a resolution of singularities

of Ku(A, θ), and the exceptional divisor is a smooth divisor divisible by two in the
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integral cohomology by results of Rapagnetta [81]. There exists consequently an
associated ramified double cover which is a smooth manifold birational to an IHS
manifold of K3[3] type [62], which we denote by Y v(A, θ) which is equipped with
a birational symplectic involution i. This manifold Y v(A, θ) is the Hilbert cube of
S where S is the Kummer surface of A, and A is the one that we have used to
define K̃u(A, θ). This means that Y u(A, θ) = S[3]/i. Up to deformation of the pair
(S[3], i), the quotient S[3]/i is birational to X.

Conjecture: If X is a polarized manifold, the previous inclusion is an equality.

This section is devoted to investigate automorphisms of manifolds of OG6 type
when this manifold is realized as a quotient of a manifold of K3[3] type. The
main question that we would like to answer is about the existence of a criterion to
determine when an automorphism of OG6 manifold lifts to an automorphism of the
manifold of K3[3] type that is involved in the birational model.

This definition will be useful in the following:

Definition 3.3.5. Let X be a manifold of OG6 type and S a K3 surface such that
X 99K S[3]/i is a bimeromorphic map. Let ϕ ∈ Aut(X), ϕ is induced at the quotient
if ϕ can be lifted to an automorphism ϕ̃ ∈ Aut(S[3]) such that the induced action
on the quotient coincides with ϕ.

For this part we refer to the construction made by Mongardi, Rapagnetta, Saccà
in [62]. From now till the end of this section we will use the notation of section 3.3.3.

The objects that we use in this section depend on a non-primitive Mukai vector
v, but we omit this dependence to avoid cumbersome notation. In Y v(A, θ) that we
have mentioned above, there are 256 copies of P3 and every one of these involutions
is not defined on al least one of these 256 copies of P3 [62]. We will briefly denote
Y v(A, θ) by Y in the following. The only involution which is not defined on every
one of the 256 copies of P3 is i, that is well defined on a contraction of Y . The
contraction is denoted by Y and it is such that the resolution of Y/i = K is a
manifold of OG6 type.

Recall thatMK3[3] is the marked moduli space of manifolds of K3[3] type which
has dimension 21 = h1,1(K3[3]). The manifold Y is of K3[3] type and i is a birational
involution defined on it. This involution i is symplectic so Si(Y ) ⊆ NS(Y ).

Hence ωY ∈ P(Ti(K
[3]
3 )⊗C), which is a six dimensional space. Since ωY is a period,

which means that ωY ωY = 0, we need to verify a quadratic equation in a space of
dimension six, which means that

{X ∼ OG6 s.t. X
bir' K3[3]/i} ⊆ MOG6

is a subloci of codimension 1 in the moduli space of marked manifolds of OG6 type,
which is a six dimensional space.

Let Y and Y be as above. In [62] the authors show that i is well defined out of
the 256 copies of P3, so we can consider Y which is a singular manifold made by con-
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Y ′

BlΓY

Y

Y

K̃ ∼ OG6

K
bir∼ Y/i

mi

h1

h2

i

i

ε 2:1

Figure 3.1: Main diagram

tracting the P3’s. We know that the P3’s are contractible using Nakano’s contraction
theorem [68]. This contraction is described in more details in [62, Proposition 5.3].

The second cohomology of Y is

H2(Y ,Z) ∼= U⊕3 ⊕ E8(−1)⊕2 ⊕ 〈−4〉.

Since i is defined on Y , there is a regular morphism Y
2:1−−→ Y/i. We can consider

the following diagram: Here Γ is the singular locus of Y which is composed by 256
points. K is a singular manifold of dimension 6 and the map

K̃ −→ Y/i = K

is the blow up of the exceptional divisor E where E2 = −2 .
When we consider the contraction of the 256 copies of P3, we know by a straight-
forward computation about homology classes, that the second cohomology is mod-
ified. In particular the classes of lines in these copies of P3’s are the generators of
the Barnes wall lattice, (see [29, Section 6.5, Proposition 11]), and we know that
BW16(−1) ∼= Si(Y ) . Therefore in the contraction Y → Y , this lattice is contracted
and hence it holds that [62, Lemma 6.5 (2)]

H2(Y,Z) = H2(Y ,Z)i ∼= Ti(Y ) ∼= H2(K,Z)(2)

∼= (U⊕3 ⊕ 〈−2〉)(2) ∼= U(2)⊕3 ⊕ 〈−4〉.

The manifold K̃ in the previous diagram is of OG6 type and it is the blow up
of the singular locus of K. The class that we add in the second cohomology of K̃ is
the class of the exceptional divisor E, where E2 = −2 and div(E) = 2.

If ϕ ∈ Bir(Y ) commutes with i, then ϕ preserves the locus on which i is not
defined on Y , and consequently ϕ preserves the singular locus of Y and the singular
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locus of K, which consists of the exceptional divisor E. This assures that E ∈
Tϕ(K).
Then there is an embedding of finite index Ti(Y )⊕ Si(Y ) ⊆ H2(Y ,Z), where these
are the invariant and co-invariant sublattices with respect to i on the second integral
cohomology. Moreover

(Sϕ(Y ) ∩ Ti(Y ))⊕ (Tϕ(Y ) ∩ Ti(Y )) ⊆ Ti(Y ),

(Sϕ(Y ) ∩ Si(Y ))⊕ (Tϕ(Y ) ∩ Si(Y )) ⊆ Si(Y ).

The same holds for Y .

Remark 3.3.6. Since K̃ is a blow up, the exceptional divisor E is preserved by
ϕ, i.e. E ∈ Tϕ(K̃), thus we have H2(K̃,Z) = H2(K,Z) ⊕ E. In addition Tϕ(Y ) ∩
Ti(Y ) = Tϕ(K)(2) and Tϕ(K̃) = Tϕ(K)⊕ E.

Remark 3.3.7. When we consider the map Y
2:1−−→ Y/i ∼= K, the second integral

cohomology lattices behaves in this way H2(K,Z)(2) = H2(Y,Z)i ∼= Ti(Y ).

Starting from this, we will answer the question: which conditions are necessary
for an automorphism of a manifold of OG6 type to be induced at the quotient?

In the previous notation:

Proposition 3.3.8. Let K̃ be a manifold of OG6 type and let ϕ̃ ∈ O(H2(K̃,Z))
be an Hodge isometry such that ϕ̃ ∈Mon2(K̃). Suppose ϕ̃ preserves a Kähler class
and there exists E ∈ Tϕ̃(K̃) such that E2 = −2 and div(E) = 2. Then there exists

a contraction K̃ → K, ϕ̃ is effective (Definition 1.5.9) and there exists ϕ : K → K
such that ϕ̃|K = ϕ.

Proof. From Theorem 1.2.34, ϕ̃ is effective. Since E is a prime exceptional divisor
[61, ] we can contract it. Hence we can define ϕK\Sing(K) = ϕ̃

K̃\E

In the notation of the commutative diagram 3.1 we have

Theorem 3.3.9. Let K̃ be a manifold of OG6 type. Let ϕ̃ ∈ Aut(K̃) such that
there exists E ∈ NS(K̃) such that ϕ̃∗(E) = E with E2 = −2 and div(E) = 2. Then
ϕ̃ lifts to an automorphism ψ : Y → Y .

Before starting to prove this theorem, let me recall the notation that we find in
[62] to refer to these maps. The morphism ε : Y −→ K is a finite 2:1 morphism,
the ramification locus of ε is ∆ ⊆ Y and the branch locus of ε is Σ ⊆ K.

Remark 3.3.10. The locus Σ coincide with the singular locus of K. The resolution
of this locus is the exceptional divisor E in K̃.

To prove Theorem 3.3.9 we need two results.

Lemma 3.3.11. Let K̃ be a manifold of OG6 type. Let ϕ̃ ∈ Aut(K̃) such that
there exists E ∈ NS(K̃) ∩ Tϕ̃(K̃) with E2 = −2 and div(E) = 2, then ϕ̃ lifts to an

automorphism ψ̃ : Y \ ∆ −→ Y \ ∆.
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Proof. Since E ∈ NS(K̃) we have from Theorem 3.3.3 that K̃
bir∼ K3[3]/i. Since

E ∈ Tϕ̃(K̃), from Proposition 3.3.8 we have that ϕ : K −→ K is well defined and
ϕ̃|K = ϕ. From [62, Remark 3.2, Theorem 4.2], we know the behaviour of the double
cover ε : Y −→ K and hence ε−1(K \ Σ) = Y \ ∆. Since the real codimension of
∆ is greater than 2, then the map π1(Y \ ∆)� π1(Y ) is surjective. We have that
π1(Y \ ∆) = 0 and ε : Y \ ∆ −→ K \ Σ is an étale cover. We can consider the
following diagram:

Y \ ∆ Y \ ∆

K \ Σ K \ Σ

ψ̃

ε 2:1 ε 2:1

ϕ

From [40, Proposition 1.33] we know that if ϕ(ε(π1(Y \ ∆))) ⊆ ε(π1(Y \ ∆))
then ϕ lifts to an automorphism ψ̃ : Y \ ∆ −→ Y \ ∆.

Now we would like to extend this ψ̃ : Y \ ∆ −→ Y \ ∆ to an automorphism of
Y . To do this we need the following result.

Lemma 3.3.12. In the previous notations, let ε : Y −→ K be a finite map and
ϕ an automorphism of K. Suppose there exists an open subset U of K such that
ϕ|U : U → U lifts to ψ̃ : ε−1(U) → ε−1(U), then ψ̃ extends to a regular morphism

ψ : ε−1(K) −→ ε−1(K) such that ψ|ε−1(U)
= ψ̃.

ε−1(U) ⊆ Y ε−1(U) ⊆ Y

U ⊆ K U ⊆ K

ψ̃

ε 2:1 ε 2:1

ϕ

Proof. From hypothesis we know that ϕ : K −→ K is regular.
If we denote Γϕ ⊂ K ×K the graph of the morphism, then it is well known that

p1 : Γϕ
∼=−→ K is an isomorphism. For the same reason we have the graph

Γ
ψ̃
⊂ ε−1(U)× ε−1(U)

and the isomorphism p1 : Γ
ψ̃

∼=−→ ε−1(U). We have that

Γ
ψ̃
⊂ ε−1(U)× ε−1(U) ⊆ Y × Y

where the last is an inclusion in a compact. We can consider the Zariski closure of
the graph, that we denote with Γ

ψ̃
. The closure Γ

ψ̃
lies in a specific closed subset

of Y × Y , which is the fiber product over K. To be more precise the fiber product
is Y ×ε,ϕ◦ε Y ⊂ Y × Y .

Γ
ψ̃

Y ×ε,ϕ◦ε Y Y × Y

Y Γϕ ∼= K K ×K

ξ
' ε

ε
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In this commutative diagram ε := ε × ε is finite, Γ
ψ̃

is a subset of Y ×ε,ϕ◦ε Y
and

Y ×ε,ϕ◦ε Y
∼=−→ Γϕ

is an isomorphism by construction. For this reason ξ : Γ
ψ̃
−→ K is a finite morphism

and consequently Γ
ψ̃
−→ Y is a finite morphism. Now by hypothesis we have that

the previous map is injective on an open subset. Since Y is a normal variety we
can conclude that Γ

ψ̃
−→ Y is an isomorphism, which implies that ψ : Y −→ Y is

a regular morphism, where ψ is such that ψ|ε−1(U)
= ψ̃.

Proof. (of Theorem 3.3.9)
Using Lemma 3.3.11 and Lemma 3.3.12, where U = K \ Σ, we can conclude.

So far we have shown under which conditions we can lift a morphism on K̃ ∼
OG6 to a regular morphism on Y , that is a singular manifold birational to an IHS
manifold of K3[3] type [62, Lemma 5.2, Proposition 5.3]. Now we need to recall
some results of [62] to know when this ψ : Y −→ Y , defined on a singular variety
birational to an Hilbert scheme parametrizing 0-dimensional subscheme of lenght 3
on a K3 surface, lifts to a map on Y which is a smooth manifold of K3[3] type. The
diagram is the following:

Y ′

Γ ⊂ BlΓY

Y

Y

K̃ ∼ OG6

K
bir∼ Y/i

mi ψ

g

h1

h2

i

i ψ

2:1 εϕ̃

ϕ

Here Γ is the singular locus of Y and it is consists of 256 singular points. We
have that ψ(Γ) = Γ. In general this does not mean that each singular point is
mapped in itself, there could be the possibility that these points are permuted. It
is a classical result that the morphism ψ : Y −→ Y extends in a direct way on
the blow up of these singular points, which means that ψ : BlΓY −→ BlΓY is well
defined. In fact one of these singular points is mapped in another singular points
(for simplicity we assume that it is mapped in itself). So we are in the following
hypothesis:

Let p be a singular point of Y then ψ(p) = p. (3.3)
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We already know the behaviour of ψ in a neighborhood of this point, and for
this reason we know the behaviour of ψ on the normal bundle in this point. Hence
we can define ψ on the blow up of Y . What we need to find is a sufficient condition
to extend this automorphism on Y , the manifold of K3[3] type. If we find this
condition, we will be able to state when an automorphism of a manifold of OG6 type
is induced at the quotient (see Definition 3.3.5). As we have recalled in Section 1.4.2,
g−1(Γ) = Γ is the exceptional divisor of BlΓ(Y ) and consists of 256 copies of the
incidence variety; every incidence variety is indicated by Ii and Ii ⊂ P(V )×P(V )∨,
where V is a 4 dimensional vector space, as we have described in Section 1.4.2.
The incidence variety Ii ⊂ P(V ) × P(V )∨ has two natural P2 fibrations given by
the projections onto P(V ) and P(V )∨. For any i, let pi : Ii −→ P(V ) be one of the
two projections. We know that Y is locally analytically isomorphic to the cone W ,
the normal bundle of Ii in BlΓY has degree -1 on the fibers of pi. Therefore by
applying Nakano’s contraction Theorem ([68]), there exists a complex manifold Y
and a morphism of complex manifolds h : BLΓY −→ Y whose exceptional locus is
Γ and is such that the image Ji = h(Ii) of any component Γ is isomorphic to P3.
Moreover the restriction of h to Ii equals pi and h realizes BlΓY as the blow up of Y
along the disjoint union J = h(Γ) of the J ′is. The complex manifold Y is a projective
IHS manifold that is deformation equivalent to the Hilbert scheme parametrizing
0-dimensional subschemes of length 3 on a K3 surface. By construction Y has a
regular birational morphism to Y contracting J to Γ which is made by 256 singular
points. Since we would like to find a condition to extends the map ψ to a map
ψ : Y −→ Y , it is important to recall the Remark 5.4 in [62] which explains why

the involution i can not be extended to a regular involution on Y .

Remark 3.3.13. ([62, Remark 5.4]) Since the involution i : BlΓ(Y ) −→ BlΓ(Y )
sends the exceptional divisor of the blow up, Γ, to itself, so for sure it descends to a
rational involution i : Y −→ Y restricting to a regular involution on the complement
Y \ J on the union of the projective spaces Ji in Y . Since, by definition of i (this
depends on the local structure), the involution i exchanges the two P2 fibrations on
Ii, the indeterminacy locus of i is J . Finally, since BlΓ(Y ) ' BlJY , the rational
involution i may be described as the composition of a Mukai flop along J and an
isomorphism outside of this locus.

In this setting it is obvious that ψ is well defined outside J which is made by
the disjoint union of 256 copies of P3, but we would like to explain under which
conditions it is possible to extend this map on these P3’s. To do this we need to focus
on a fiber of a singular point p of Y , g−1(p) ' Ii, which is a divisor of BlΓY . The
preimage g−1(p) ' Ii is the incidence variety, and we know that this is a fibration
with basis P3 and fiber P2, for this reason Ii ' P5 and by the local structure of this
singularity described in [62], we obtain the following diagram.
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P3 ⊂ Y ′

P3 × P3 ⊃ I1 ' I2 ⊂ BlΓY

P3 ⊂ Y

Mukaiflop

p1

p2

For the sake of notation, we call the incidence variety I := I1
∼= I2. Since

BlΓY ∼= BlJY , we have the following result.

Proposition 3.3.14. I ∼= P(ΩP3) and Pic(I) ∼= Pic(P3 × P3) ∼= 〈H1, H2〉 where
H1 = p∗1(OP3(1)) and H2 = p∗2(OP3(1)).

Proof. Y is an IHS manifold of six dimension and P3 is a lagrangian subspace of Y .
The symplectic form σY gives a duality between TP3 and ΩP3 , but σY on the tangent
bundle is zero, this duality is the one that sends NP3|Y to ΩP3 which are isomorphic.
We know that the exceptional locus of this blow up is I ∼= P(NP3) ∼= P(ΩP3). We
define OP3(1) � OP3(1) := p∗1(OP3(1)) ⊗ p∗2(OP3(2)). Since on I are defined two
P2 fibrations, if we call H1 = p∗1(OP3(1)) and H2 = p∗2(OP3(2)) we can say that
Pic(P3 × P3) is generated by OP3(1) � OP3(1). By Lefschetz’s Theorem for the
Picard group, we know that Pic(I) = Pic(P3 × P3) = 〈H1, H2〉, where H1 comes
from the first fibration and H2 comes from the second fibration.

In the following theorem we find that a sufficient condition for an automorphism

ψ defined on BlΓY to descend to an automorphism on Y ∼ K
[3]
3 is that it doesn’t

exchange the fibers of the two P2 fibrations. In Remark 3.3.13 we find that the
involution i defined on BlΓ(Y ) exchanges the fibers of the two fibrations and for
this reason we can’t extends i to an isometry on Y , but we can define just a birational
isometry i on it.

Theorem 3.3.15. Let X be a manifold of OG6 type and let Y be the 2:1 cover of
X described above. Let ϕ ∈ Aut(X) an automorphism of prime order p, p 6= 2,
such that Sing(Y ) ⊂ Fix(ϕ). Suppose there exists a class E ∈ NS(X) ∩ Tϕ(X) with
E2 = −2 and div(E) = 2. In these hypotheses ϕ is induced at the quotient.

Remark 3.3.16. The request of Theorem 3.3.15 that Σ ⊂ Fix(ϕ) is true if we
assume the condition expressed in 3.3.

Lemma 3.3.17. Let f be an automorphism of BlΓY that fixes the exceptional
divisor, and f∗ the induced action on Pic(I) = 〈H1, H2〉. Then f∗ is the identity
or f∗(H1) = H2 and f∗(H2) = H1.

Proof. From the hypothesis we know that H1 and H2 are hyperplane sections of
the two copies of P3, that in this proof we denote by P3 and (P3)∗ to distinguish
them. Recall that the pullback commutes with the intersection product, and for
this reason, if we consider the product Hk

1 , we can say that this is zero when k ≥ 4
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and the same holds true for H2. We define h1 = OP3(1) and h2 = O(P3)∗(1), l is a
line, then it holds

H2
1 = p∗1(h2

1) = [p−1
1 (l)] = [(P3 × l) ∩ I],

where the class is in the Chow group. Moreover, for H2 it holds the same:

H3
2 = p∗2(h3

2) = [p−1
2 (∗)] = [(∗ × (P3)∗ ∩ I].

This is the fiber of the point ∗ and this is isomorphic to P2. The product H2
1H

3
2 is

equal to 1, since this is an intersection of a line and a P2 in a generic position. With
the same argument, but exchanging the role of H1 and H2 we obtain that H3

1H
2
2 is

equal to 1.
Since the pullback operation commutes with the intersection form, from the

initial remark we have that f∗(H1)5 = f∗(H5
1 ) = 0. In general since the action

of f∗ preserves the Picard group of I, we can denote f∗(H1) = αH1 + βH2 and
f∗(H2) = γH1 + δH2. With this notation we have:

(f∗H1)5 =

5∑
i=0

(
5

i

)
αiβ5−iH i

1H
5−i
2 = 10α2β3H2

1H
3
2 +10α3β2H3

1H
2
2 = 10α2β3+10α2β3.

Furthermore we have
α2β2(α+ β) = 0.

In the same way for H2 we obtain:

γ2δ2(γ + δ) = 0.

After some straightforward computation we obtain the following six cases:{
f∗(H1) = H1

f∗(H2) = H2

{
f∗(H1) = ±(H1 −H2)

f∗(H2) = H2

{
f∗(H1) = H1

f∗(H2) = ±(H1 −H2){
f∗(H1) = H2

f∗(H2) = ±(H1 −H2)

{
f∗(H1) = H2

f∗(H2) = H1

{
f∗(H1) = ±(H1 −H2)

f∗(H2) = H1

We can notice that f∗(H1) = ±(H1 − H2) is not allowed. In fact, let l1 ⊂
p−1

1 (p) ' P2 and let l2 ⊂ p−1
2 (q) ' P2 be two lines which lie in the two different

fibrations. Since f∗H1.l1 = f∗(f
∗H1.l1) = H1.f∗l1, we need to notice that f∗l1 is a

line which means f∗l1 ∼= P1 since f is an automorphism and for this reason H1.f∗l1
could be 1 or 0. If H1.f∗l1 = 1 and if it holds that f∗(H1) = H1−H2, then we have
that H1l1−H2l1 = −1 which is an absurd. This holds also in the other similar cases,
choosing the right intersection with l1 or l2 and for this reason we can conclude that
the two possible actions of f∗ on Pic(I) are the identity and the automorphism
which exchanges H1 and H2.

Proof. (of Theorem 3.3.15)
If X ∼ OG6 we know from Theorem 3.3.3 that X is birational to Y/i where Y is
birational to an IHS manifold of K3[3] type. From Theorem 3.3.9 we know that ϕ
lifts to ψ on Y . For the previous considerations we can say that ψ lifts to ψ in a
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direct way, but we know that to descends to Y we need that the fibrations are not
exchanged. From Lemma 3.3.17 we know the action of ψ on Pic(I), hence we deduce
that if the order of the automorphism is prime p > 2, the action is the identity on
Pic(I). The fibrations are not exchanged and we can define ψ : Y −→ Y , which
means that ϕ is induced at the quotient.
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Chapter 4

Non-symplectic automorphisms

This chapter is devoted to classify purely non-symplectic automorphisms of
prime order on manifolds of OG6 type. In doing this, we will be inspired by the
techniques used in Chapter 2 to classify non-symplectic automorphisms on a K3
surfaces.

In this setting X is a manifold of OG6 type, G ⊂ Aut(X) a finite group of
non-symplectic automorphisms with |G| = m. We need the following remark and
definitions. Let X, X1 and X2 be irreducible holomorphic symplectic manifolds.

Definition 4.0.1. An isomorphism f : H∗(X1,Z)→ H∗(X2,Z) is a parallel trans-
port operator if there exists a smooth proper family π : X → B of IHS manifolds
over a base B, points bi ∈ B, isomorphisms ψi : Xi → Xbi , i = 1, 2 and a con-
tinuous path γ : [0, 1] → B such that γ(0) = b1 and γ(1) = b2 and such that
the parallel transport in the local system Rπ∗Z along γ induces the homomorphism
ψ2∗ ◦f ◦ψ∗1 : H∗(Xb1 ,Z)→ H∗(Xb2 ,Z). An isomorphism g : Hk(X1,Z)→ Hk(X2,Z)
is said to be a parallel-transport operator, if it is the k-th graded summand of a
parallel-transport operator f as above.

Definition 4.0.2. An automorphism f : H∗(X,Z) → H∗(X,Z) is said to be a
monodromy operator if it is a parallel-transport operator. The monodromy group
Mon(X) is the subgroup of GL(H∗(X,Z)) consisting of all monodromy operators.
We define Mon2(X) the image of Mon(X) in O(H2(X,Z)).

Definition 4.0.3. Let ϕ ∈ O(H2(X,Z)) an isometry. We call ϕ an Hodge oper-
ator if the the C-linearized action of ϕ is such that ϕ(H2,0(X)) ⊆ H2,0(X) and
ϕ(H1,1(X)) ⊆ H1,1(X),

Remark 4.0.4. Let G ⊂ Aut(X) be a finite group and ϕ ∈ G. Then ϕ∗ ∈
O(H2(X,Z)) is an Hodge-monodromy operator. This means that ϕ is an Hodge
operator and that ϕ∗ ∈Mon2(X) ⊂ O(H2(X,Z)).

Definition 4.0.5. LetX be an IHS manifold and ωX be a generator ofH2,0(X). Let
ϕ ∈ O(H2(X,Z)) be an isometry of finite order m. The isometry is non-symplectic
if the C-linearized action of ϕ is such that ϕ(ωX) = α ωX with α ∈ C, α 6= 1 and
αm = 1.

71
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Lemma 4.0.6. Let X be an IHS manifold and let ωX be a generator of H2,0(X).
Let G ⊂ Aut(X) be a non-symplectic (Definition 1.5.3) and finite group of auto-
morphisms. Then ϕ∗ ∈ O(H2(X,Z)) is an isometry and let m be the order of ϕ∗.
In this hypothesis the C-linearized action of ϕ∗ is such that ϕ∗(ωX) = ζm(ωX) where
ζm 6= 1 denotes a m-th root of unity.

Proof. This is a consequence of Remark 4.0.4.

From a result of Beauville (see [8]), we have the following proposition:

Proposition 4.0.7. Let X be an IHS manifold. If G ⊂ Aut(X) is a finite group
of purely non-symplectic automorphisms, then G is cyclic, which means that G ∼=
Z/mZ where |G| = m.

Now, inspired by the definitions of chapter 2, we need to introduce some nota-
tions: if G ⊂ Aut(X), we define the invariant sublattice with respect the induced
action of G on H2(X,Z)

TG(X) := H2(X,Z)G

The orthogonal complement of TG(X) in H2(X,Z) is the co-invariant sublattice

SG(X) := TG(X)⊥.

It holds that

H2(X,Z)⊗Q = (TG(X)⊕ SG(X))⊗Q.

Remark 4.0.8. Let X be an IHS manifold and G ⊂ O(H2(X,Z)) a finite subgroup
of non-symplectic isometries. In the moduli space of pairs (X,G), where the action
of G is fixed and the invariant sublattice TG(X) is fixed, the generic element is such
that TG(X) = NS(X) and consequently T (X) = SG(X). If the action is symplectic
the generic point of the family of the pairs (X,G) is such that T (X) = TG(X) and
consequently SG(X) = NS(X). See [78] for a more detailed reference.

Proposition 4.0.9. Let X be an IHS manifold of OG6 type, suppose G ∼= Z/pZ
is a non-symplectic group of automorphisms and p is a prime number. Then p ∈
{2, 3, 5, 7}.

Proof. From Proposition 1.5.5 there exists n ∈ Z such that rk(T (X)) = φ(p)n ≤ 7.
Thus φ(p) = p− 1 ≤ 7 and this implies that p ∈ {2, 3, 5, 7}.

The main goal of our work is to classify automorphisms of manifolds of OG6

type. If we classify effective isometries, i.e. we study Im(ν) for manifolds of OG6

type, where

ν : Aut(X) −→ O(H2(X,Z)),

we will obtain a classification, up to ker(ν), of automorphisms, at least for the prime
order and non-symplectic case, as it is shown in the next proposition.

Proposition 4.0.10. If X is a IHS manifold of OG6 type and ϕ ∈ O(H2(X,Z)) is
a non-symplectic isometry of prime order p ∈ {3, 5, 7} then ϕ is effective, if p = 2
then ϕ is effective up to a sign.
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Proof. To show this result we use Theorem 1.2.34. Since ϕ is non-symplectic,
ϕ(ωX) = α ωX where α 6= 1, α ∈ C is a p-root of unity. Let G = 〈ϕ〉 ∼= Z/pZ
be the group of isometries generated by ϕ. With these hypothesis T (X) ⊆ SG(X).
Since TG(X) and SG(X) are in direct sum and the same holds for T (X) and
NS(X), this implies that TG(X) ⊆ NS(X). It is not restrictive to consider that
TG(X) = NS(X). Consequently ϕ ∈ O(H2(X,Z)) is an Hodge isometry. From
[61, Theorem 5.4(1)] we know the monodromy of a manifold of OG6 type, i.e.
Mon2(X) = O+(H2(X,Z)), where O+(H2(X,Z)) denotes the isometries which
preserve the orientation of the positive cone of X, where the positive cone is the
connected component of {x ∈ H1,1(X,R)|(x, x) > 0} which contains the cone of
Kähler classes, KX (see Definition 1.2.36). Since ϕ is of prime order p, ϕ preserves
the orientation of the positive cone if p 6= 2, otherwise ±ϕ preserves the orientation
of the positive cone, which means that ±ϕ ∈Mon2(X).
The last thing that we need to check is that a Kähler class is sent to a Kähler class. In
order to show this we need to show that in this hypothesis, if we consider the generic
element od the pair (X,G), the manifold X is projective. Consider the class defined
in this way ωG :=

∑
ϕ∈G ϕ(ω), where ω is a Kähler class. By definition ω is positive

and ω ∈ NS(X)⊗R, and since ϕ is an isometry, ϕ(ω) is positive. Since the positive
classes lies in cone, ωG is a positive class. In our assumption TG(X)⊗R = NS(X)⊗R,
and by construction ϕ(ωG) = ωG, thus ωG ∈ NS(X) ⊗ R. Consequently, since by
definition sgn(NS(X)) = sgn(NS(X)⊗R), then sgn(NS(X)) = (1, ∗). For sure the
positive part can not be greater than 1 since the orthogonal complement of NS(X)
is T (X) = SG(X) and there are two positive classes in T (X) which are the sym-
plectic form and its conjugated. For the Huybrechts’ projectivity criterion, since
there is a positive class in the NS(X), then X is projective. Consequently, since
NS(X) = TG(X), there exists an invariant ample class. In this way we conclude
that there exists a Kähler class which is preserved by ϕ and for this reason ϕ is
effective.

4.0.1 How to classify automorphisms

From the previous proposition, if X is of OG6 type and ϕ ∈ O(H2(X,Z))
is a prime order and non-symplectic isometry, ϕ is effective, i.e. it comes from
an automorphism of X. Let G = 〈ϕ〉 be the group of non-symplectic isometries
generated by ϕ. To classify effective isometries we can start from a decomposition
of H2(X,Z) in sublattices T and S which are possible invariant and co-invariant
sublattices.
By classifying we mean either one of the following:

(1) The first thing that we can do is to compute all the possible pairs of co-
invariant and invariant sublattices of H2(X,Z), (SG(X), TG(X)). We can
do it up to isometries of TG(X) and SG(X), this means that if in a table
we classify using this criterion, two invariant sublattices with respect to the
action of G which are not isometric, are in different pairs.

(2) After (1), another level of classification depends on the fact that each SG(X)
(and in the same way TG(X)) can be embedded in H2(X,Z) in ways that
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are not isometric. This means that we can have SG(X) and S′G(X) which
are isomorphic but such that do not exist an isometry of H2(X,Z) which
sends SG(X) in S′G(X). This is equivalent to count the different primitive
embeddings of SG(X) in H2(X,Z). To do the computation we need to use
Theorem 1.1.13 due to Nikulin, or in some special cases that depend on the
rank of SG(X), we can use Theorem 2.9 of [5]. The non-isometric primitive
embeddings count the number of connected components of the period domain
(see Definition 1.2.23), i.e. the different images of the pair (X,G) in the period
domain, which correspond to the different choices of SG(X) = T(X) that we
can do.

(3) The third and best level of classification that we can do, concerns to count
the different connected components of the moduli space of the pairs (X,G).
We can have two manifolds of OG6 type, X and Y , two pairs (X,G) and
(Y,G) such that the lattices (SG(X), TG(X)) and (SG(Y ), TG(Y )) are isomet-
ric to each others and such that there exists an isometry of H2(X,Z) such
that SG(X) is sent to SG(Y ), but such that there is no way to deform in a
continuous way (X,G) to (Y,G) preserving the action of G. This means that
(X,G) and (Y,G) are in different connected components of the moduli space
of the pairs (X,G). The fact that there are more connected components in
the moduli space of pairs (X,G) is related to the presence of wall divisors (see
Lemma 1.2.50 for the characterization in the OG6 case), which are not prime
exceptional divisors (see Lemma 1.2.49 for a characterization in the OG6 case)
in the invariant lattice TG(X) = NS(X).

The fact that the second integral cohomology of a manifold of OG6 type is not
unimodular often makes computations more complicated. It is therefore sometimes
convenient to switch to a bigger unimodular lattice. We consider a primitive em-
bedding H2(X,Z) ↪→ Λ := U⊕5. We observe that such an embedding is unique up
to an isometry of Λ.

This embedding sends U⊕3 identically into the first three copies of U and sends
n1 and n2 which are the two generators of (U⊕3)⊥ ⊂ H2(X,Z) such that n2

1 = n2
2 =

−2, to e4 − f4 and to e5 − f5, respectively, where e4, f4, e5, f5 form the usual basis
of the last two copies of U⊕2. The manifold X is of OG6 type, and from what we
know from Remark 1.5.13, the discriminant group of X is AX ∼= (Z/2Z)⊕2. Let
[1, 0] and [0, 1] be the two generators of AX . Since G is a group of isometries, the
induced action of G on AX is either trivial or it exchanges [1, 0] with [0, 1].

Definition 4.0.11. Consider the primitive embedding of lattices

i : H2(X,Z) ↪→ Λ,

and let ϕ be an isometry of H2(X,Z). We define the embedding ϕ-equivariant if
there exists an isometry ϕ̃ on Λ such that ϕ̃|i(H2(X,Z)) = ϕ and ϕ̃ is the identity on

H2(X,Z)⊥Λ .

Let ϕ ∈ O(H2(X,Z) and let ϕ̃ be the induced action on Λ. We know from
Lemma 1.5.14 that if the induced action of ϕ on AX is trivial, the embedding of
H2(X,Z) in Λ is ϕ-equivariant.
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In fact, if the action of ϕ ∈ G is trivial on AX then ϕ̃(e4 + f4) = e4 + f4 and
ϕ̃(e5 + f5) = e5 + f5, otherwise if the action is not trivial on AX then ϕ̃(e4 + f4) =
e5 + f5 and ϕ̃(e5 + f5) = e4 + f4. As usual, we keep calling TG(Λ) := ΛG and
SG(Λ) := TG(Λ)⊥. The advantage of this setting is that if G is of prime order
p, then TG(Λ) and SG(Λ) are p–elementary lattices, by Lemma 1.1.18. This is by
not true in general for SG(X) and TG(X). The idea is to define a list of possible
p−elementary sublattices of Λ, (T ′, S′), where we know that 〈2〉⊕2 ⊆ T ′. These will
be the possible invariant and co-invariant sublattices with respect to the action of
G on Λ.
Starting from this list, it is possible to write down the list (T, S), where T ∼=
(〈2〉⊕2)⊥ ⊆ T ′ and S = S′. These are the possible invariants and co-invariants
sublattices of H2(X,Z) with respect to the action of a prime order isometry on it.
We start from a list of p−elementary sublattices in an abstract way and to know
which ones correspond to an action of an isometry on H2(X,Z) we can use results
contained in [4], where the authors classify non-symplectic automorphisms of prime
order on K3 surfaces. The trick is to find an embedding of S in H2(K3,Z) ∼=
U⊕3 ⊕ E8(−1)⊕2, which is a unimodular lattice of big rank. Using Lemma 1.5.14
we know it is possible to extend the action of G on the K3−lattice in a way such
that it is trivial on S⊥ ⊆ H2(K3,Z). By construction S ≡ SG(K3) and so, if S is
not in the list of possible co-invariant sublattices that we can find in the tables of
classification in [4] we know that there is no isometry on H2(X,Z) such that the
action has S as co-invariant sublattice. On the other hand if S is in the list we can
conclude that there exists an isometry of H2(X,Z) such that S is the co-invariant
sublattice and consequently T is the invariant one.

For p = 2 we know that the isometry which corresponds to the order-two action
is −IdSG(Λ); moreover since for the generic point of the moduli space of (X,G),
SG(X) = T (X), the signature of SG(X) = (2, ∗), so we are sure that isometries
of order two correspond to a non-symplectic involution. For p ∈ {3, 5, 7}, to know
which co-invariant sublattices S, p-elementary that we have classified correspond to
an isometry of order p we can consider, as we have explained above, the following
G−equivariant embedding:

SG(Λ) ↪→ H2(K3,Z).

Since the induced action of G on AX is trivial for p ≥ 3, we know that SG(Λ) ∼=
SG(K3). When the co-invariant lattice is isometric to the co-invariant lattice of a
K3 surface with an automorphism of order p, we have a unique action on the lattice.
Indeed in [4] it is proved that the connected component of the moduli space of K3
surfaces with an automorphism of order p is given by the isometry classes of the
co-invariant lattice. For p = 3 all the 3-elementary lattices that we find in the list
are possible co-invariant lattices with respect to an automorphism of order three
since we can find them in the list in [2]. When p = 5 we can accept as co-invariant
lattice only SG(Λ) = U ⊕H5 and when p = 7 we can accept the only one that we
have found as 7-elementary sublattice of Λ i.e. SG(Λ) = U⊕2 ⊕K7.

Proposition 4.0.12. Le X be an IHS manifold of OG6type, suppose f : H2(X,Z)→
H is a marking of X. Let G ⊂Mon2(H) be a cyclic subgroup of isometries of order
p. Assume that TG(H) ⊂ H has signature (1, ∗) and suppose that TG(H) ⊂ NS(X).
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Then the group G therefore consists of parallel transport operators and the isome-
tries are birational effective. If furthermore G preserves all wall divisors in NS(X),
then we actually construct automorphisms of X, which, in this case, can easily seen
to be non-symplectic. Equivalently G is a group of effective isometries.

4.1 Classification for Λ

Suppose G is cyclic and generated by a non-symplectic element of maximal
order p where p is prime, i.e. G ∼= Z/pZ. For what we find in Proposition 4.0.9,
p ∈ {2, 3, 5, 7}. Moreover, in this case TG(X) has signature (1, rk(TG(X))− 1) and
SG(X) has signature (2, rk(SG(X)) − 2), as we can find in Proposition 1.5.8. By
the considerations of the previous section we obtain an embedding of H2(X,Z) into
Λ ∼= U⊕5. Conversely H2(X,Z) can be considered as the orthogonal complement of

a lattice L ∼=
(

2 0
0 2

)
in Λ. We can call n1 and n2 the two orthogonal generators of

square 2 in L. If the action of G on AX is trivial, we have

SG(X) ∼= SG(Λ) and TG(X) ∼=
(

2 0
0 2

)⊥
⊂ TG(Λ).

Thus SG(Λ) has signature (2, ∗) and TG(Λ) has signature (3, ∗).
If p = 2 and ϕ is an automorphism which exchanges [1, 0] and [0, 1] ∈ AX we have:

TG(X) ∼= (n1 + n2)⊥ ⊂ TG(Λ) and SG(X) ∼= (n1 − n2)⊥ ⊂ SG(Λ).

Thus SG(Λ) has signature (3, ∗) and TG(Λ) has signature (2, ∗). Since Λ is
unimodular, then the lattices SG(Λ) and TG(Λ) are p-elementary and their discrim-
inant group is isomorphic to (Z/pZ)a for some integer a ≥ 0. In order to classify
non-symplectic automorphisms of manifolds of OG6 type of prime order p, we first
study p-elementary sublattices of Λ ∼= U⊕5 that might occur as invariant and co-
invariant lattices of isometries of Λ of order p. In the case p = 2 we add a column
′δ ′ to indicate whether the quadratic form of the discriminant group of the lattices
at hand is integer valued (δ = 0) or not (δ = 1).

4.1.1 p=2 - trivial action of G on the discriminant group

Proposition 4.1.1. The following is a complete list of co-invariant lattices SG(Λ)
of signature (2, ∗) and invariant lattices TG(Λ) of signature (3, ∗) of order two isome-
tries of Λ.

Proof. Since G ∼= Z/2Z then TG(Λ) and SG(Λ) are 2-elementary lattices, which
means that TG(Λ) ∼= SG(Λ) ∼= (Z/2Z)⊕a. For each value of rk TG(Λ) and conse-
quently for each value of rk SG(Λ), we can establish an upper bound for a using
Lemma 1.1.19. For each possible value of a we apply Theorem 1.1.21 and Theorem
1.1.23 for even hyperbolic 2-elementary lattices to find the lattices in the list above.
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No. SG(Λ) TG(Λ) rk (TG(Λ)) a δ

1 U⊕2 ⊕ 〈−2〉⊕3 〈2〉⊕3 3 3 1

2 U ⊕ 〈−2〉⊕3 ⊕ 〈2〉 〈2〉⊕3 ⊕ 〈−2〉 4 4 1

3 U⊕2 ⊕ 〈−2〉⊕2 U ⊕ 〈2〉⊕2 4 2 1

4 〈2〉⊕2 ⊕ 〈−2〉⊕3 〈−2〉⊕2 ⊕ 〈2〉⊕3 5 5 1

5 U ⊕ 〈−2〉⊕2 ⊕ 〈2〉 U ⊕ 〈2〉⊕2 ⊕ 〈−2〉 5 3 1

6 U⊕2 ⊕ 〈−2〉 U⊕2 ⊕ 〈2〉 5 1 1

7 〈2〉⊕2 ⊕ 〈−2〉⊕2 U ⊕ 〈2〉⊕2 ⊕ 〈−2〉⊕2 6 4 1

8 U(2)⊕2 U ⊕ U(2)⊕2 6 4 0

9 U ⊕ 〈2〉 ⊕ 〈−2〉 U⊕2 ⊕ 〈2〉 ⊕ 〈−2〉 6 2 1

10 U ⊕ U(2) U⊕2 ⊕ U(2) 6 2 0

11 U⊕2 U⊕3 6 0 0

12 〈2〉⊕2 ⊕ 〈−2〉 U⊕2 ⊕ 〈−2〉⊕2 ⊕ 〈2〉 7 3 1

13 U ⊕ 〈2〉 U⊕3 ⊕ 〈−2〉 7 1 1

14 〈2〉⊕2 U⊕3 ⊕ 〈−2〉⊕2 8 2 1

Table 4.1: Order 2 trivial action on Λ

4.1.2 p=2 - non-trivial action of G

Proposition 4.1.2. The following is a complete list of co-invariant lattices SG(Λ)
of signature (3, ∗) and invariant lattices TG(Λ) of signature (2, ∗) of order two isome-
tries of Λ.

No. SG(Λ) TG(Λ) rk (TG(Λ)) a δ
1 U⊕3 ⊕ 〈−2〉⊕2 〈2〉⊕2 2 2 1
2 U ⊕ 〈2〉⊕2 ⊕ 〈−2〉⊕2 〈2〉⊕2 ⊕ 〈−2〉⊕2 4 4 1
3 U ⊕ U(2)⊕2 U(2)⊕2 4 4 0
4 U⊕2 ⊕ 〈2〉 ⊕ 〈−2〉 U ⊕ 〈2〉 ⊕ 〈−2〉 4 2 1
5 U⊕2 ⊕ U(2) U ⊕ U(2) 4 2 0
6 U⊕3 U⊕2 4 0 0
7 〈−2〉⊕2 ⊕ 〈2〉⊕3 〈2〉⊕2 ⊕ 〈−2〉⊕3 5 5 1
8 U ⊕ 〈−2〉 ⊕ 〈2〉⊕2 U ⊕ 〈2〉 ⊕ 〈−2〉⊕2 5 3 1
9 U⊕2 ⊕ 〈−2〉 U⊕2 ⊕ 〈2〉 5 1 1
10 U(2)⊕ 〈2〉⊕2 U ⊕ U(2)⊕ 〈−2〉⊕2 6 4 1
11 U ⊕ 〈2〉⊕2 U⊕2 ⊕ 〈−2〉⊕2 6 2 1
12 〈2〉⊕3 U⊕2 ⊕ 〈−2〉⊕3 7 3 1

Table 4.2: Order 2 non-trivial action on Λ

Proof. This is a direct application of Theorem 1.1.21 and Theorem 1.1.23.

4.1.3 p=3

Proposition 4.1.3. The following is a complete list of coinvariant lattices SG(Λ)
of signature (2, ∗) and invariant lattices TG(Λ) of signature (3, ∗) of order three
isometries of Λ.
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No. SG(Λ) TG(Λ) rk (TG(Λ)) a

1 U⊕2 ⊕A2(−1) U ⊕A2 4 1

2 U ⊕A2(−1)⊕ U(3) U(3)⊕A2 4 3

3 A2 U⊕3 ⊕A2(−1) 8 1

Table 4.3: Order 3 action on Λ

Proof. When rk (TG(Λ)) = 4 we have sign(TG(Λ)) = (3, 1) and sign(SG(Λ) =
(2, 4). We can find, by Lemma 1.1.19, that a ∈ {0, 1, 2, 3}. We cannot have a = 0
because SG(Λ) cannot be unimodular by the fact that 2 6≡ 4 (8). We cannot have
a = 2 since we need that the discriminant of the lattice divided by pp−2 is a square
in Q, as we can find in Proposition 1.1.25. For this reason a must be odd.
If a = 1 then SG(Λ) is uniquely determined because we can write it as U ⊕ S′ by
Theorem 1.1.23 with S′ hyperbolic of rank 4, which is unique by Theorem 1.1.22.
If a = 2 we can use Theorem 1.1.23 and Theorem 1.1.22 to conclude that this case
is not allowed.
If a = 3 we can use Theorem 1.1.22 to conclude that there exists a lattice TG(Λ)
with these properties. When rk (TG(Λ)) = 6 we have sign(TG(Λ)) = (3, 3) and
sign(SG(Λ)) = (2, 2). We can find, by Lemma 1.1.19, that a ∈ {0, 1, 2}, but a
must be odd from Proposition 1.1.25, then a = 1. If a = 1 we can use Theorem
1.1.23 and Theorem 1.1.22 to conclude that this case is not allowed because we
split SG(Λ) = U ⊕ S′ and sign(S′) = (1, 1); so this is a hyperbolic lattice of
rank r = 2. By Theorem 1.1.22 we conclude that this case is impossible because
p = 3 6≡ (−1)r/2−1 = 1 (4).
When rk (TG(Λ)) = 8 we have sign(TG(Λ)) = (3, 5) and sign(SG(Λ)) = (2, 0). We
can find by Lemma 1.1.19, that a ∈ {0, 1}. We cannot have a = 0 because SG(Λ)
cannot be unimodular by the fact that 2 6≡ 0 (8). If a = 1 then TG(Λ) is uniquely
determined because we can write it as U⊕2 ⊕ T ′ by Theorem 1.1.23 applied two
times. T ′ is hyperbolic of rank 4 and is unique by Theorem 1.1.22 and equal to
U ⊕A2(−1).

4.1.4 p=5

Proposition 4.1.4. For p = 5 the rank of SG(Λ) must be equal to 4. The following
is a complete classification with respect to the action of G ∼= Z/5Z on the unimodular
lattice Λ.

No. SG(Λ) TG(Λ) rk (TG(Λ)) a

1 U ⊕H5 U⊕2 ⊕H5 6 1

Table 4.4: Order 5 action on Λ

Proof. For p = 5 the rank of SG(Λ) must be equal to 4 because rk(SG(Λ)) = α · 4
and rk(sG(Λ)) ≤ 7. From Lemma 1.1.19 we have a ∈ {0, 1}. From Proposition
1.1.25 we know that a must be odd, this implies that a = 1. If a = 1 we can
apply Theorem 1.1.23 to SG(Λ) and we obtain SG(Λ) = U ⊕ S′. S′ is hyperbolic,
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5-elementary of rank r = 2 and invariants (r, a) = (2, 1). By Theorem 1.1.22 we
obtain S′ = H5. In this case SG(Λ) = U ⊕H5 and TG(Λ) = U⊕2 ⊕H5. We recall

that H5 =

(
2 1
1 −2

)

4.1.5 p=7

Proposition 4.1.5. For p = 7 there is only a possibility for the pair (TG(Λ), SG(Λ)):

No. SG(Λ) TG(Λ) rk (TG(Λ)) a

1 U⊕2 ⊕K7 U ⊕K7(−1) 4 1

Table 4.5: Order 7 action on Λ

Proof. In this case we have sign(TG(Λ)) = (3, 1) and sign(SG(Λ)) = (2, 4). From
Lemma 1.1.19 we obtain a ∈ {0, 1}. The case a = 0 is not allowed because 2 6≡ 4 (8).
If a = 1 we can apply Theorem 1.1.23 to SG(Λ) and we obtain SG(Λ) = U⊕S′. S′ is
hyperbolic, 7-elementary of rank r = 4, signature (1, 3) and invariants (r, a) = (4, 1).

By Theorem 1.1.22 we obtain S′ = U ⊕K7. We recall that K7 =

(
−4 1
1 −2

)

4.2 Classification for OG6

Now we specialize to the case of manifolds of OG6 type. As in the previous
section we consider the primitive embedding

H2(X,Z) ↪→ Λ := U⊕5.

Lattice-theoretically this is done by choosing a sublattice L =

(
2 0
0 2

)
in Λ. The

cohomology H2(X,Z) will then be isometric to L⊥. Keeping in mind that we can
have different choices of embedding L in Λ related to the action of G, we will give
a list of all configurations of lattices occurring as invariant and co-invariant lattices
of prime order and non-symplectic automorphisms of manifolds of OG6 type.

If L is embedded in the invariant lattice TG(Λ), the induced action on H2(X,Z)
corresponds to a trivial action on AX . In this situation the discriminant group of
SG(X) is isomorphic to (Z/pZ)a for some integer a(SG(X)) = a ≥ 0.

It is useful to recall when two lattices have the same genus.

Proposition 4.2.1. L and T have the same genus ⇐⇒ sgn(L) = sgn(T ) and
qAL = qAT .

We show that if p ≥ 3 we have that TG(X) is uniquely determined up to isometry
regardless of the embedding of L in TG(Λ) . We need to show that the discriminant
group of TG(X), i.e. ATG(X), is the same for each different embedding of L =
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(
2 0
0 2

)
in TG(Λ). If we have this result we can find an embedding of L in TG(Λ),

we compute the orthogonal of L embedded in TG(Λ) and we find TG(X). If TG(X) is
unique in its genus we obtain the unicity of the invariant lattice TG(X) of H2(X,Z).

First of all we can fix the notation, we have L ⊕ TG(X) ⊂ TG(Λ), which
is an embedding of finite index and L and TG(X) are primitive sublattices of
TG(Λ). We know that ATG(Λ) = (Z/pZ)a for some a and AL = (Z/2Z)2. Us-
ing Proposition 1.1.14, this embedding is given by two subgroups HL ⊂ AL and
HTG(X) ⊂ ATG(X) and by an anti-isometry γ : HL −→ HTG(X). We can call HT =

Γγ = {(a, γ(a)), s.t. a ∈ HL} and we know that ATG(Λ) = Γ⊥γ /Γγ = (HT )⊥/HT

where HT ⊂ AL ⊕ATG(X) is an isotropic subgroup.

Proposition 4.2.2. In the previous notation, if p 6= 2, we have:

i) HL = AL and since γ is an anti-isometry, HTG(X) = AL(−1)

ii) ATG(Λ) ⊂ ATG(X) (ATG(Λ) ⊕AL(−1) ⊂ ATG(X) and these are orthogonal com-
plements with respect to the product in ATG(X)).

iii) ATG(X) = ATG(Λ) ⊕AL(−1).

Proof. i) In this proof N := TG(X) and T := TG(Λ). Suppose HL ( AL. We would
like to find a ∈ AL \HL such that a ∈ AT . We will show that, if a ∈ AL \HL then
a ⊥ HL.

This can not happen because AT = (Z/pZ)a and p 6= 2, so it doesn’t contain
elements of order 2. For this reason we have to conclude that HL = AL. Let
a 6= 0 ∈ AT = Γ⊥γ /Γγ which means that a ∈ Γ⊥γ but a /∈ Γγ . We need (c, γ(c)) ∈ Γγ
and we consider e ∈ AN such that γ(e) = 0, since γ is injective, e = 0 and in this
way we are sure that e ∈ HN . In these hypotesis we can write:

bAL⊕N ((a, e), (c, γ(c)) = bAL(a, c) + bAN (e, γ(c)) =

bAL(a, c)− bAL(γ−1(0), γ−1(γ(c))) = bAL(a− γ−1(0), c) = bAL(a, c).

If we find a such that bAL(a, c) = 0 ∀ c ∈ HL, we will find (a, 0) ∈ Γ⊥γ such that
(a, 0) /∈ Γγ i.e we will find (a, 0) ∈ AT . AL ∼= Z/2Z⊕Z/2Z so the proper subgroups
HL different from the trivial one are {[0, 0], [0, 1]}, {[0, 0], [1, 0]}, {[1, 1], [0, 0]}.

We can use the following trick. Let HL be one of the non-trivial subgroups
and let a be the [0, 0] class and b the other one. We have HT ⊂ AL ⊕ AN and
HT
⊥ ⊂ AL ⊕ AN and in particular HT = {(a, γ(a)), (b, γ(b))} ∼= Z/2Z. Now since

N = L⊥ ⊂ T , we can say that AN ∼= (Z/2Z)b ⊕ (Z/pZ)a, and for this reason we
obtain AL ⊕ AN = (Z/2Z)b+2 ⊕ (Z/pZ)a. We have AT = H⊥T /HT and qAL⊕AN is
a non-degenerate quadratic form on AL ⊕ AN , since we are taking the orthogonal
of a group of order 2 which is HT , we have H⊥T = (Z/2Z)b+1 ⊕ (Z/pZ)a. Moreover
AT = H⊥T /HT = (Z/2Z)b ⊕ (Z/pZ)a and b has to be equal to zero since there are
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no elements of order 2 in AT . If b = 0 AN = (Z/pZ)a which is false because we
must have elements of order two in AN . We can conclude that HL = AL as we want.

ii) & iii) By the first step HN = AL(−1) ⊂ AN , H⊥N ⊂ AN . We would like to
show that H⊥N

∼= AT = H⊥T /HT .
The group AL is (Z/2Z)2 and this implies that HN = AL(−1) ∼= (Z/2Z)2 which
means that b = 2.
HN = (Z/2Z)2 ⊆ AN = (Z/2Z)2 ⊕ (Z/pZ)a and this implies that H⊥N

∼= (Z/pZ)a

since the last orthogonal complement is with respect to the product in AN . Since
|H⊥N | = |AT |, the idea is to construct an isomorphism g : H⊥N → H⊥T /HT which
sends α ∈ H⊥N , α 6= 0 to [g(α)] = [(0, α)]. We need to verify that g(α) ∈ H⊥T ,
in particular (0, α) ∈ AL ⊕ AN and α ∈ H⊥N ⊂ AN , so if (a, b) ∈ HT we have
qAL⊕AN ((0, α), (a, b)) = qAL(0, a) + qAN (α, b) = 0 because qAL is non-degenerate,
α ∈ H⊥N and b ∈ H⊥N . This allow us to conclude that (0, α) ∈ H⊥T .
In this hypothesis g is well defined. Actually the last thing that we must prove is
the injectivity of g. We have

[g(α)] = g[(β)]⇔ [(0, α)] = [(0, β)],

(0, α) = (0, β) + (c, γ(c))⇒ (0, α− β) = (c, γ(c))⇒ (0, α− β) ∈ HT .

In this setting α− β = γ(0) = 0, since γ is an anti-isometry. We can conclude that
α = β an this forced g to be injective. Actually g is an isomorphism as we wanted
to prove.
Moreover H⊥N

∼= AT , AL(−1) ∼= HN , consequently HN ⊕ H⊥N ⊂ AN , where the
orthogonal complement of HN is in AN . Since qAN is non-degenerate, HN ⊕H⊥N =
AN i.e. AN = AT ⊕AL(−1).

Remark 4.2.3. What we have done in point i) is exactly what we can not do in
the case p=2. For this reason in that situation we have to use another strategy.

Remark 4.2.4. For what we have proved in the previous theorem we can say that
the discriminant form of TG(X) depends only on TG(Λ) and AL(−1), so whatever
the embedding of L in TG(Λ) is, the orthogonal complement will be in the same
genus as TG(X). If we show that this lattice is unique in its genus, we will have the
uniqueness of TG(X).

4.2.1 p=2, trivial action on the discriminant group

As in the notation of Proposition 4.2.2, we denote N := TG(X), L := 〈2〉 ⊕ 〈2〉
and T := TG(Λ). Since p = 2 we have AL ' (Z/2Z)2, AT ' (Z/2Z)a. Moreover it
holds the following Lemmas.

Lemma 4.2.5. Let L be any lattice and ϕ ∈ O(L), an involution, then it holds that
Sϕ(L) = T−ϕ(L).

Proof. It holds that

Sϕ(L) := ker(ϕ+ 1) = ker(−ϕ− 1) = ker((−ϕ)− 1) = T−ϕ(L).
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Lemma 4.2.6. Let T be a 2-elementary lattice, and ϕ ∈ O(T ) an involution, such
that ϕ ∈ O(AT ) is trivial, then Tϕ(T ) := Tϕ is 2-elementary.

Proof. Let T ↪→ Λ be a primitive embedding of T in the smallest unimodular lattice
Λ, and let L := T⊥Λ . Let ϕ̃ := ϕ⊕−IdL be an extension of ϕ to Λ. Suppose that
ord(ϕ) = 2. Then −ϕ̃ ∈ O(Λ) is of order 2 and we have T−ϕ̃(Λ) = Sϕ̃(Λ) from
Lemma 4.2.5. Moreover Tϕ(T ) = S−ϕ(T ) = S−ϕ̃(Λ), where the first equal holds
from Lemma 4.2.5, and the second equal holds by construction. Thus Tϕ(T ) is a
co-invariant sublattice of a unimodular lattice with respect to an action of order 2
and this implies that Tϕ(T ) is 2-elementary.

Conjecture: The statement of Lemma 4.2.6 holds also for p-elementary lattices.

We can apply the previous result to our case taking TG(X) and G of order 2 as
we want, using T = TG(Λ) and considering TG(X)⊕ 〈2〉⊕2 ⊆ TG(Λ), a finite index
embedding. We consider the extension of the action of G on 〈2〉⊕2 as −IdL which
is a non-trivial action, but trivial on the discriminant group. Using this setting
TG(TG(Λ)) = TG(X) and from the previous result it is 2-elementary.

Consequently in our case N is 2-elementary, thus we have AN ' (Z/2Z)q. If
AT ' (Z/2Z)a q and a are related, as we will see later. In this case AT , AL, and AN
are all 2-elementary, so we need to use another strategy to obtain all the embeddings
of L in TG(Λ) and consequently all possible TG(X). In this case the action on AX
is trivial, hence SG(X) = SG(Λ) and TG(X) has signature (1, ∗) and the latter is
obtained as the orthogonal complement of L ⊂ TG(Λ).

As in the previous notation we have L⊕TG(X) ⊂ TG(Λ) which is an embedding
of finite index, and L and TG(X) are primitive sublattices of TG(Λ). This embedding
is given by two subgroups HL ⊂ AL and HTG(X) ⊂ ATG(X), and by an anti-isometry
γ : HL −→ HTG(X). We can call HT = Γγ = {(a, γ(a)), s.t. a ∈ HL} and we

know that ATG(Λ) = Γ⊥γ /Γγ = (HT )⊥/HT where HT ⊂ AL ⊕ATG(X) is an isotropic
subgroup.

Proposition 4.2.7. In the previous notation, AT ' (Z/2Z)a and AN ' (Z/2Z)q,
if the induced action on AX is trivial, we have one of the following possibilities:

i) HL = AL ⇒ q = a+ 2.

ii) HL = 0 ⇒ q = a− 2.

iii) HL ' Z/2Z ⇒ q = a

Proof. For point i) we refer to the Proposition 4.2.2 and we obtain AN = AT ⊕
AL(−1), which means that q = a+ 2.
For point ii) we notice that HL = 0 implies that γ(HL) = 0 which means HT = 0.
In this case H⊥T = AL ⊕AN and AT = (HT )⊥/HT = AL ⊕AN , so q = a− 2.
For point iii) we have (HL, γ(HL)) = (0, γ(0)), (1, γ(1)) ' Z/2Z = HT . H⊥T ⊂
AL ⊕ AN ' (Z/2Z)q+2 and for this reason HT ' (Z/2Z)q+1. Moreover AT =
(HT )⊥/HT = (Z/2Z)q+1/Z/2Z ' (Z/2Z)q, and we conclude that q = a.

This is a complete list of possible invariants and co-invariants lattices corre-
sponding to the action of a group G ∼= Z/2Z on H2(X,Z) which acts trivially



4.2. CLASSIFICATION FOR OG6 83

on AX . In this list sgn(SG(X)) = (2, ∗) and sgn(TG(X)) = (1, ∗). We denote
a(SG(X)) by a. In the column HL we specify which is the corresponding value of
HL ⊆ AL ∼= Z/2Z⊕ Z/2Z.
In the following table the last column is related to automorphisms which are in-
duced and we are referring to chapter 3 for this notion. For sake of completeness
we recall that the operative definition that we apply is Definition 3.2.2.

No. SG(X) TG(X) a δ(SG(X))) HL induced
1 U⊕2 ⊕ 〈−2〉⊕3 〈2〉 3 1 0 no

2.1 U ⊕ 〈−2〉⊕3 ⊕ 〈2〉 〈2〉 ⊕ 〈−2〉 4 1 0 no
2.2 U ⊕ 〈−2〉⊕3 ⊕ 〈2〉 U(2) 4 0 0 no
3.1 U⊕2 ⊕ 〈−2〉⊕2 U 2 0 0 no
3.2 U⊕2 ⊕ 〈−2〉⊕2 U(2) 2 0 Z/2Z no
3.3 U⊕2 ⊕ 〈−2〉⊕2 〈2〉 ⊕ 〈−2〉 2 1 Z/2Z no
4 〈2〉⊕2 ⊕ 〈−2〉⊕3 〈−2〉⊕2 ⊕ 〈2〉 5 1 0 no

5.1 U ⊕ 〈−2〉⊕2 ⊕ 〈2〉 U ⊕ 〈−2〉 3 1 0 no
5.2 U ⊕ 〈−2〉⊕2 ⊕ 〈2〉 〈2〉 ⊕ 〈−2〉⊕2 3 1 Z/2Z no
6.1 U⊕2 ⊕ 〈−2〉 〈−2〉⊕2 ⊕ 〈2〉 1 1 AL no
6.2 U⊕2 ⊕ 〈−2〉 U ⊕ 〈−2〉 1 1 Z/2Z no
7.1 〈2〉⊕2 ⊕ 〈−2〉⊕2 U ⊕ 〈−2〉⊕2 4 1 0 no
7.2 〈2〉⊕2 ⊕ 〈−2〉⊕2 U ⊕ 〈2〉 ⊕ 〈−2〉⊕3 4 1 Z/2Z no
8 U(2)⊕2 〈−2〉⊕2 ⊕ U(2) 4 1 Z/2Z no

9.1 U ⊕ 〈2〉 ⊕ 〈−2〉 〈2〉 ⊕ 〈−2〉⊕3 2 1 AL yes
9.2 U ⊕ 〈2〉 ⊕ 〈−2〉 U ⊕ 〈−2〉⊕2 2 1 Z/2Z yes
10.1 U ⊕ U(2) U(2)⊕ 〈−2〉⊕2 2 1 AL yes
10.2 U ⊕ U(2) U ⊕ 〈−2〉⊕2 2 1 Z/2Z yes
11 U⊕2 U ⊕ 〈−2〉⊕2 0 1 AL yes

12.1 〈2〉⊕2 ⊕ 〈−2〉 〈−2〉⊕4 ⊕ 〈2〉 3 1 AL no
12.2 〈2〉⊕2 ⊕ 〈−2〉 U ⊕ 〈−2〉⊕3 3 1 Z/2Z no
13 U ⊕ 〈2〉 U ⊕ 〈−2〉⊕3 1 1 AL no

14.1 〈2〉⊕2 U ⊕ 〈−2〉⊕4 2 1 AL yes
14.2 〈2〉⊕2 U ⊕D4(−1) 2 0 Z/2Z yes

Table 4.6: Order 2 trivial action on H2(X,Z)

4.2.2 p=2, non-trivial action on the discriminant group

We know that H2(X,Z) is the orthogonal complement of L ∼= 〈2〉⊕2 in Λ ∼= U⊕5

where n1 and n2 are the two vectors of square 2 in L. If the action of G on
AX ∼= Z/2Z⊕ Z/2Z is non-trivial, we have

TG(X) ∼= (n1 + n2)⊥ ⊂ TG(Λ) and SG(X) ∼= (n1 − n2)⊥ ⊂ SG(Λ).

SG(Λ) has signature (3, ∗) and TG(Λ) has signature (2, ∗). It follows from the
first section that all lattices SG(Λ) and TG(Λ) are 2-elementary, thus their discrim-
inant group is isomorphic to (Z/2Z)a for some integer a ≥ 0.

In the following q is the Beauville-Bogomolov quadratic form introduced in Theo-
rem 1.2.7. By an easy computation we obtain that q(n1+n2) = 4 and q(n1−n2) = 4.
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We denote by (., .) the symmetric bilinear form associated to q. Let x, y be two el-
ements in H2(X,Z). The bilinear from is defined in this way

(x, y) :=
q(x+ y)− q(x)− q(y)

2
.

Another request that we need for n1 and n2 is that (n1 +n2, n1−n2) = 0. These
two vectors are orthogonal, and n1 + n2 + n1 − n2 = 2n1, i.e. the sum of them is
twice a primitive vector. It holds the following lemma.

Lemma 4.2.8. Let G ⊂ O(Λ) be a finite group of isometries of Λ of order 2, such
that the Let TG(Λ) and SG(Λ) be respectively the invariant and the co-invariant
sublattice of Λ with respect to the action of G. The lattices TG(X) and SG(X)
are the invariant and the co-invariant sublattices with respect to the action of G
on H2(X,Z) such that the induced action of G on AX is non-trivial. The lattices
TG(X) and SG(X) exist if and only if there exist two vectors, v0 = n1−n2 ∈ SG(Λ)
and v1 = n1 + n2 ∈ TG(Λ), of square 4, orthogonal to each other and such that the
sum is twice a primitive vector. In this situation

TG(X) := (n1 + n2)⊥ ⊂ TG(Λ)

SG(X) := (n1 − n2)⊥ ⊂ SG(Λ).

Proof. For sure the ”if” part is true since if we find the vectors n1 and n2 with the
requested properties, we can compute SG(X) and TG(X). For the ”only if” part
we need to observe that if we have a non-trivial action of G on AX ∼= Z/2Z, then
we know that L has to be embedded partially in SG(Λ) and partially in TG(Λ).
Since the two elements [1, 0] and [0, 1] of are exchanged, for sure the sum of them
is preserved and the difference is not preserved.

Starting from the table in Proposition 4.1.2, we find that in the cases 4, 5, 6, 9
it is non possible to find two vectors with the properties explained above.

Example 4.2.9. In case 4, SG(Λ) ∼= U⊕2⊕〈2〉⊕〈−2〉 and TG(Λ) ∼= U ⊕〈2〉⊕〈−2〉.
Since TG(Λ) ⊕ SG(Λ) ⊂ Λ, we can define the two copies of U in SG(Λ) generated
by {e1, f1, e2, f2}, the vector of square 2 is e3 + f3 in the embedding above and the
vector of square −2 is e4 − f4. In the same way we can call {e5, f5} the generators
of U in TG(Λ), the vector of square 2 is e4 + f4 w.r.t. the choice which we have
done before, and the vector of square −2 is e3 − f3. Doing this choice for the basis
we can take v0 = e1 + f1 + e3 + f3 or v0 = 2(e3 + f3) + e1 − f1 + e2 − f2 and
v1 = e5 + f5 + e4 + f4 or v1 = 2(e4 + f4) + e3 − f3 + e5 − f5. Since we have these
possible choices the sum v0 + v1 is not equal to twice a primitive vector.

Example 4.2.10. In case 2 we can compute for instance SG(Λ) ∼= U ⊕〈2〉2⊕〈−2〉2
and TG(Λ) ∼= 〈2〉2 ⊕ 〈−2〉2. Since TG(Λ)⊕ SG(Λ) ⊂ Λ, we can define the copy of U
in SG(Λ) generated by {e1, f1}, the two vectors of square 2 are e2 + f2 and e3 + f3

in the embedding above and the two vectors of square −2 are e4−f4 and e5−f5. In
the same way we can call the vectors of square 2 in TG(Λ) e4 + f4 and e5 + f5 w.r.t.
the choice which we have done before, and the vectors of square −2 are e2− f2 and
e3 − f3.
We have for sure at least two possible choices for v0 and v1: the first one is v0 =
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e4−f4+e5−f5+2(e1+f1) and v1 = e4+f4+e5+f5, the second one is v0 = e4−f4+e5−
f5+2(e2+f2) and v1 = e4+f4+e5+f5. In the first case SG(X) ∼= 〈2〉⊕2⊕〈−2〉⊕2⊕〈4〉
and TG(X) ∼= 〈−2〉⊕2⊕〈4〉. In the second case SG(X) ∼= U ⊕〈2〉⊕ 〈−2〉⊕ 〈−4〉 and
TG(X) ∼= 〈−2〉⊕2 ⊕ 〈4〉. These two pairs of lattices are not isomorphic.

The same situation happens in cases 7 and 10. There is just one possible choice
for v0 and v1 in cases 3, 5, 8, 11, 12 of Proposition 4.1.2.

We can find the list of these lattices in the following table.

Remark 4.2.11. The following is not a complete list of possible invariant and co-
invariant sublattices in this case since we did not show that the choices that we have
computed for v0 and v1 are the unique that we can do. The different cases that we
can have depend on the possible embeddings of v0 in SG(Λ) and of v1 in TG(Λ).

No. SG(X) TG(X) a(SG(X))
1 U⊕2 ⊕ 〈−2〉⊕2 ⊕ 〈−4〉 〈4〉 3

2.1 〈2〉⊕2 ⊕ 〈−2〉⊕2 ⊕ 〈−4〉 〈−2〉⊕2 ⊕ 〈4〉 6
2.2 U ⊕ 〈−2〉 ⊕ 〈2〉 ⊕ 〈−4〉 〈−2〉⊕2 ⊕ 〈4〉 4
3 U ⊕ U(2)⊕ 〈−4〉 U(2)⊕ 〈−4〉 4

7.1 〈2〉⊕2 ⊕ 〈−2〉 ⊕ 〈−4〉 〈−2〉⊕3 ⊕ 〈4〉 5
7.2 〈−2〉⊕2 ⊕ 〈2〉 ⊕ 〈4〉 〈−2〉⊕2 ⊕ 〈2〉 ⊕ 〈−4〉 5
8 U ⊕ 〈−2〉 ⊕ 〈4〉 〈2〉 ⊕ 〈−2〉⊕2 ⊕ 〈−4〉 3

10.1 〈2〉⊕2 ⊕ 〈−4〉 U ⊕ 〈−2〉⊕2 ⊕ 〈−4〉 4
10.2 U(2)⊕ 〈4〉 U(2)⊕ 〈−2〉⊕2 ⊕ 〈−4〉 4
11 U ⊕ 〈4〉 U ⊕ 〈−2〉⊕2 ⊕ 〈−4〉 2
12 〈2〉 ⊕ 〈4〉 U ⊕ 〈−2〉⊕3 ⊕ 〈−4〉 3

Table 4.7: Order 2 non-trivial action on H2(X,Z)

Remark 4.2.12. In the following the last two columns in the cases p = 3, 5, 7 are
related to automorphisms which are induced (i.) and induced at the quotient (i.q.)
and we are referring to chapter 3 for this notion. For sake of completeness we recall
that the operative definition that we apply to check if an automorphism is induced is
Definition 3.2.2, and the one that we apply to check if an automorphism is induced
at the quotient is the result of Theorem 3.3.15.

4.2.3 p=3

For p = 3 the action on AX is trivial, hence SG(X) = SG(Λ) and TG(X) has
signature (1, ∗) and the latter is obtained as the orthogonal complement of the
primitive sublattice L ⊂ TG(Λ). As we have seen in the previous section, all the
lattices SG(Λ) are admissible, so we need to find a primitive embedding of L in the
invariant lattice TG(Λ) and to compute the orthogonal complement to find TG(X).
As first thing, in the case SG(Λ) = U ⊕U(3)⊕A2(−1), then TG(Λ) = U(3)⊕A2. In
this case ATG(Λ)

∼= (Z/3Z)⊕3. We know that there exists a primitive embedding of L
in a lattice isomorphic to TG(Λ) if there exists an isomorphism between a subgroup
of AL ∼= (Z/2Z)⊕2 and a subgroup of ATG(Λ) (Theorem 1.1.13). We notice that
the orders of the respective subgroups are co-prime, and for this reason the unique
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isomorphism between the subgroups that we can have is the one between the trivial
subgroups. Consequently we get AL⊕ATG(Λ)

∼= ATG(X), i.e. (Z/2Z)⊕2⊕(Z/3Z)⊕3 ∼=
(Z/6Z)⊕2⊕Z/3Z, and this implies l(ATG(X)) = 3. This is a contradiction since the
rank of TG(X) = 2 and for this reason this case is not allowed (see Theorem 1.1.26).

No. SG(X) TG(X) a(SG(X)) i. i. at the q.

1 U⊕2 ⊕A2(−1) 〈−2〉 ⊕ 〈6〉 1 no yes

2 A2 U ⊕A2(−1)⊕ 〈−2〉⊕2 1 yes yes

Table 4.8: Order 3 action on H2(X,Z)

In the first case of Table 4.8 we have TG(Λ) = U⊕A2. An embedding consists in
taking a vector of square two in U and another orthogonal vector of square two in A2.
With this primitive embedding the orthogonal complement is TG(X) = 〈−2〉 ⊕ 〈6〉.
Now we notice, using Theorem 1.1.13, that to find a primitive embedding of L in
TG(Λ) we need to define an isomorphism between a subgroup of AL ∼= (Z/2Z)⊕2 and
a subgroup of ATG(Λ)

∼= Z/3Z. Since the orders of the subgroups of AL are 1, 2, 4
and the orders of the subgroups of ATG(Λ) are 1, 3 to have an isomorphism, the only

possibility is to take the trivial subgroup. In this case L⊥ ∼= TG(X) ⊂ TG(Λ) and we
can apply Theorem 1.1.13 to note that there are no others primitive embeddings,
up to isometries, of L in TG(Λ) since the unique subgroup of AL that we can choose
is HL

∼= Id. In the second case of Table 4.8 we can embed the two generators of L
in U⊕2, and we obtain TG(X) = U ⊕ 〈−2〉⊕2 ⊕ A2(−1). In this case l(ATG(X)) = 2
since ATG(X)

∼= (Z/2Z)⊕2 ⊕ Z/3Z ∼= Z/2Z ⊕ Z/6Z. We have that the hypothesis
of Theorem 1.1.17 is verified since rank(TG(X)) ≥ 2. Also in this case we have
uniqueness up to isometry of TG(X).

4.2.4 p=5

For p = 5 the action on AX is trivial, hence SG(X) = SG(Λ) and TG(X)
has signature (1, ∗) and the latter is obtained as the orthogonal of the sublattice
L ⊂ TG(Λ). As we have seen in Table 4.4 the only admissible lattice for TG(Λ) is
U⊕2 ⊕H5.

No. SG(X) TG(X) a(SG(X)) i. i. at the q.

1 U ⊕H5 〈−2〉 ⊕ 〈−10〉 ⊕ U 1 yes yes

Table 4.9: Order 5 action on H2(X,Z)

As in the second case for p = 3 we can notice that rk(TG(X)) = 4 and
l(ATG(X)) = 2, for this reason TG(X) is uniquely determined up to isometry of
TG(X).

4.2.5 p=7

As in the second case for p = 3 we can notice that rk(TG(X)) = 4 and
l(ATG(X)) = 2, for this reason TG(X) is uniquely determined up to isometry of
TG(X).



4.2. CLASSIFICATION FOR OG6 87

No. SG(X) TG(X) a(SG(X)) i. i. at the q.

1 U⊕2 ⊕K7 〈−2〉 ⊕ 〈14〉 1 no yes

Table 4.10: Order 7 action on H2(X,Z)

The following is a result that summarizes what has been said so far about non-
symplectic and prime order automorphisms of manifolds of OG6 type, with respect
to the 3 levels of classification that we have described in Section 4.0.1

Theorem 4.2.13. Let X be a manifold of OG6 type. Let G be a non-symplectic
group of automorphisms of order p. If p = 5 or p = 7 there exists a unique pair
(SG(X), TG(X)), up to isometry, of the invariant and co-invariant sublattices of
H2(X,Z). If p = 3 there are two pairs of (SG(X), TG(X)) up to isometry, if p = 2
there are more then ten pairs of (SG(X), TG(X)).
If p = 3 we have two connected component of the period domain with respect to this
action, i.e. there are two images of the pairs (X,G) in the period domain. If p = 7
we have we have a unique image of the pair (X,G) in the period domain.

Proof. The proof concerns the classification that we have done in this Chapter.
In fact, for the first level of classification we can find the number of the pairs
(SG(X), TG(X)) up to isometry in the tables above, where each TG(X) and SG(X)
is computed up to isometry. For the second level of classification we can consider
[5, Theorem 2.9], and using this result we find a unique embedding of SG(X) (or
equivalently of TG(X)) in H2(X,Z), up to isometry of H2(X,Z). This depends on
the fact that for the two cases of p = 3 and in the case of p = 7, the rank of SG(X)
or the rank of TG(X) is equal to 2 and there are three copies of U in H2(X,Z).
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Chapter 5

Symplectic birational
automorphisms

In this section we would like to discuss and classify symplectic birational mor-
phisms on manifolds of OG6 type. In the following, unless otherwise stated, X is
an irreducible holomorphic symplectic manifold of OG6 type.

Definition 5.0.1. Let G ⊆ Aut(X) a group of automorphisms of X, then we say
that G is a symplectic group if ϕ∗(ωX) = ωX for each ϕ ∈ G, where ωX is the
symplectic form of X.

Let now G be a group of symplectic automorphisms, G generated by ϕ, where
ϕ is of prime order p. Since there exists an action of ϕ on H2(X,Z) we can find the
invariant lattice TG(X) and the co-invariant lattice SG(X). We know that there
exists an integer m such that rk(SG(X)) = m(p− 1) and the discriminant group of
H2(X,Z) which we have denoted throughout the thesis with AX is isomorphic to
(Z/2Z)⊕2. If p 6= 2 the induced action of ϕ on AX , is trivial.

If p = 2 the induced action of ϕ on AX could be non trivial which means that it
exchanges the generators [1, 0] and [0, 1] of the discriminant group (see Proposition
1.5.5).

Remark 5.0.2. Since by definition the action on TG(X) is trivial, ϕ acts in a trivial
way also on ATG(X).

Proposition 5.0.3. Let G be a finite group of automorphisms, the action of ϕ on
AX is trivial ⇐⇒ the action of ϕ on ASG(X) is trivial.

Proof. We know that the finite index embedding SG(X) ⊕ TG(X) ⊆ H2(X,Z) is
given by an isotropic subgroup H such that H ⊆ ASG(X)⊕ATG(X) and AX = H⊥/H,
so if there exists a non trivial action on an element of AX this comes from a non
trivial action on an element of ASG(X). On the other hand, if the action of G is
trivial on AX , then we can consider a primitive embedding H2(X,Z) ↪→ Λ = U⊕5

and extend the action of G trivially on the orthogonal complement.

We know that ASG(Λ)
∼= ASG(X) and ATG(Λ)

∼= ASG(Λ) since Λ is unimodular
and the embedding is G-equivariant. Obviously the action of ϕ on ATG(Λ) is trivial
and so we can conclude that the same holds for ASG(X).

89
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Proposition 5.0.4. Let X be a manifold of OG6 type and let G ⊂ Bir(X) be a
finite group of birational symplectic maps. Then the following assertions are true:

(i) SG(X) and TG(X) are non-degenerate and SG(X) is negative definite.

(ii) T (X) ⊂ TG(X) and SG(X) ⊂ NS(X).

(iii) SG(X) contains no prime exceptional divisors.

Proof. The proof of the first two items is taken from Lemma 3.5 of [60], we sketch
it here for the reader’s convenience. To prove that SG(X) and TG(X) are non-
degenerate letH2(X,C) = ⊕ρUρ be the decomposition in orthogonal representations
of G, where Uρ contains all irreducible representations of G of character ρ inside
H2(X,C). Obviously TG(X) = UId|Z and SG(X) = H2(X,Z) ∩ ⊕ρ 6=IdUρ, which
implies they are orthogonal and of trivial intersection. Hence they are both non-
degenerate.

It is known that ϕ(ωX) = ωX . The transcendental lattice is the smallest sub-
lattice of H2(X,Z) such that T (X)⊗C ⊇ H2,0⊕H0,2. Recall that (H0,2⊕H2,0)∩
H2(X,R) is positive definite. Here T (X) ⊂ TG(X) and if ω is a Kähler class,
ωG =

∑
g∈G g(ω) is preserved by the action of ϕ, i.e. ωG ∈ TG(X) ⊗ R. Since ωG

is a positive class, it holds sgn(TG(X)) = (3, ∗), consequently SG(X) is negative
definite. As a consequence we have that SG(X) ⊂ NS(X).
For the last item assume on the contrary that we have an element c ∈ SG(X)
which is a prime exceptional divisor. Then using Markman it is known that there
exists n ∈ Z, n > 0, such that either ± nc is represented by an effective divi-
sor D on X. Let D′ =

∑
ϕ∈G ϕ(D) which is also an effective divisor on X, but

[D′] ∈ SG(X) ∩ TG(X) = 0. This implies D′ is linearly equivalent to 0, which is
impossible.

As a consequence of the previous theorem we have a result that will be really
useful in the part of classification of symplectic birational morphisms.

Corollary 5.0.5. If X is a manifold of OG6 type and G ⊆ O(H2(X,Z)) is a group
of prime order p of symplectic isometries of X then rk(SG(X)) ≤ 5 and p = 2, 3, 5.

Proof. Let |G| = p, SG(X) is a negative definite sublattice of H2(X,Z) and the sig-
nature of the latter is (3, 5) for a manifold of OG6 type. We know that rk(SG(X)) =
m(p − 1) and for reasons that depends on the signature this rank should be ≤ 5 ,
so p is a prime number ≤ 6.

Moreover, we know that:

Proposition 5.0.6. Let X be an IHS manifolds and G ⊆ Aut(X) a group of
symplectic automorphisms, then SG(X) contains no wall divisors.

Proof. If G is symplectic, then SG(X) is negative definite. Since TG(X)⊗R contains
a Kähler class, its orthogonal can not contain wall divisors, from the definition of
them (see Definition 1.2.47).

Remark 5.0.7. Before the next Proposition we recall that the characterization of
stably prime exceptional and wall divisors for OG6 type manifolds is contained in
Lemma 1.2.49 and Lemma 1.2.50.
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Theorem 5.0.8. Let X be an OG6 type manifold and G ⊂ O(H2(X,Z)) a non-
trivial subgroup of symplectic isometries with trivial action on AX , then SG(X)
contains wall divisors.

Proof. As in the non-symplectic setting it is possible to define an embedding of
SG(X) in the second integral cohomology of a K3 surface. In fact, we know that
rk(SG(X)) ≤ 5 and the action on ASG(X) is trivial, which means that the action
on the second K3 cohomology can be extended trivially out of SG(X), i.e. the
embedding:

SG(X) ↪→ H2(K3,Z) ∼= U⊕3 ⊕ E8(−1)⊕2

is such that SG(X) = SG(K3). If SG(X) does not contain classes of square −2
and divisibility 1, this means that SG(K3) does not contain wall divisors for a K3
surface (see [53, proposition 1.5]) and this has to be the co–invariant sublattice of
a K3 surface with respect to a symplectic automorphism. But we know from [73]
that the co–invariant sublattice of a K3 surface with respect to a symplectic action
has rank ≥ 8 and this is a contradiction.

Corollary 5.0.9. Let X be a manifold of OG6 type, and G ⊂ O(H2(X,Z)) a
non–trivial subgroup of symplectic isometries with trivial action on AX , then G is
not effective.

Proof. This is a direct consequence of Theorem 5.0.8.

As a consequence we have that in the symplectic case, if the induced action on
AX si trivial, we do not obtain symplectic automorphisms of the manifold of OG6

type, starting from non trivial isometries of the second integral cohomology. What
we can analyze is when the group of isometries is birational effective and in the
remaining part of the chapter we will give a classification of birational symplectic
automorphisms.

We always have a group of symplectic automorphisms acting trivially on the sec-
ond cohomology: the kernel of the map ν : Aut(X)→ O(H2(X,Z)) is deformation
invariant and was determined by Mongardi and Wandel in [65]. It is isomorphic to
(Z/2Z)×8 which means that it is composed by 256 symplectic involutions.

Proposition 5.0.10. If X is a manifold of OG6 type, and G is a group of symplectic
isometries on H2(X,Z) with a trivial action on AX , such that one of the following
holds:

• rk(SG(X)) ≤ 4,

• rk(SG(X)) = 5 and l(ASG(X)) ≤ 3,

then there exists an embedding of SG(X) in E8(−1), which is the unique unimodular
negative definite lattice of rank 8, up to isometries.

Proof. We can notice that SG(X) has to be negative definite and it is a sublattice
of H2(X,Z), so rk(SG(X)) ≤ 5. We can define a lattice SG(X) := SG(X)(−1)
(which has the same rank, the same discriminant group and is positive definite, so
the discriminant form is the same but with opposite sign).
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Now we want to define a finite index embedding of SG(X) ⊕ SG(X) in a unimod-

ular lattice K. We need SG(X) = SG(X)
⊥

and SG(X) = SG
⊥. Since we have

sgn(SG(X)) = (0, ∗), we can say that sgn(SG(X)) = (∗, 0) and sgn(K) = (∗, ∗). To
do this we need a subgroup of ASG(X), a subgroup of A

SG(X)
and an anti-isometry

γ between them. In this case we can choose as these subgroups the discriminant
groups themselves and since the discriminant form is the same but with opposite
sign, γ : ASG(X) → A

SG(X)
is automatically defined. Now it’s easy to find that

K ∼= U⊕ rk(SG(X)).
Since SG(X) exists it has to satisfy the 4 conditions of Theorem 1.1.26. Let E be a
unimodular, negative definite lattice which is the smallest in which we can embed
SG(X), and let N be the orthogonal complement of SG(X) inside E. Now we want
to show that actually N exists. It should be negative definite and with the same
discriminant form of SG(X). The idea is to fix the discriminant form, i.e. qA

SG(X)
.

We denote with (t+, t−) the signature of SG(X). We need that t+ = 0 in order to
verify the two first conditions of Theorem 1.1.26. We need to control just the two
first conditions since to check the third and the fourth conditions we need that there
exists no prime numbers for which the rank of the lattice is equal to the length on
the discriminant group.
The second condition is verified by our assumptions on rk(SG(X)) and l(ASG(X))

and the first implies that t+ − t− ≡ sgn qA
SG(X)

(mod 8), where sgn(SG(X)) ∈
{(1, 0), (2, 0), (3, 0), (4, 0), (5, 0)}.
If rk(SG(X)) ≤ 4, then rk(SG(X))) ≤ 4. We need to fit that −(t−) ≡ 4 (mod 8),
which is verified if (t−) = 4. This implies that N is a negative definite lattice of
rank 4. It exists from Theorem 1.1.26, since l(ASG(X)) = l(AN ) ≤ 4, this means
that E is a unimodular, negative definite lattice of rank 8, i.e. E ∼= E8(−1). If
rk(SG(X)) < 4, then −(t−) ∈ {1, 2, 3} and so there exists an embedding of SG(X)
in E8(−1).
On the other hand, if rk(SG(X)) = 5, then −(t−) ≡ 5 (mod 8) and this implies
that t− ∈ {3, 11, . . .}. If t− = 3 then rk(N) = 3 and using Theorem 1.1.26 we have
that N in this way exists if and only if l(ASG(X)) = l(AN ) ≤ 3, but this holds by
hypothesis. Also in this case this means that E is a unimodular, negative definite
lattice of rank 8, i.e. E ∼= E8(−1).

Remark 5.0.11. The case rk(SG(X)) = 5 with l(ASG(X)) ∈ {4, 5} must be treated
in a different way. In fact in this case we cannot use the strategy of Proposition
5.0.10 since it is not possible to find a primitive embedding of SG(X) in a unimodular
lattice of rank 8. For this reason the case rk(SG(X)) = 5 will be classified in the
case of prime order action, using the support of SAGE [97].

As a direct consequence of Proposition 5.0.10 we have the following result.

Corollary 5.0.12. Let X be a manifold of OG6 type, and let G ⊂ O(H2(X,Z)) be a
group of symplectic isometries such that one of the hypothesis of Proposition 5.0.10
is verified, then G ↪→ O(E8) and if the induced action of G on the discriminant
group of H2(X,Z) is trivial, then SG(X) ∼= SG(E8)(−1).

Corollary 5.0.13. If |G| is odd there exists an embedding of SG(X) in E8(−1).
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Proof. If |G| is odd, then rk(SG(X)) is even. Thus rk(SG(X)) ≤ 4 and Theorem
5.0.10 applies.

5.1 Birational symplectic automorphisms

The following is a fundamental result for the classification of birational effective
isometries of manifolds pf O’Grady six type.

Theorem 5.1.1. [Thm. 1.5 [52]]
If X is an irreducible holomorphic symplectic manifold, FEX is an open cone,

which is the interior of a closed generalized convex polyhedron in CX . BKX is a
dense open subset of FEX .

Definition 5.1.2. Let X be an IHS manifold and ωX be a generator of H2,0(X).
Let ϕ ∈ O(H2(X,Z)) be an isometry of finite order. The isometry is symplectic if
the C-linearized action of ϕ is such that ϕ(ωX) = ωX .

Proposition 5.1.3. If X is a projective manifold of OG6 type, G ⊂ O(H2(X,Z))
is a finite group of symplectic isometries, then BKX is preserved.

Proof. If G is a finite symplectic group of isometries, in a generic point of the family
of deformations of the pair (X,G), we have SG(X) = NS(X) and T (X) = TG(X).
Since G is symplectic, SG(X) contains no prime exceptional divisors, see Proposition
5.0.4, and we can not find divisors in T(X), we conclude that X has no prime
exceptional divisors. From [52] we can deduce that FEX has only a chamber which
coincides with CX . It follows that

BKX = CX

and this implies that the birational Kähler cone is preserved, since the positive cone
is preserved by an isometry.

Let me recall this crucial result of Markman:

Corollary 5.1.4. [[52], Corollary 5.7] Let X1 and X2 be irreducible holomorphic
symplectic manifolds, g : H2(X1,Z) → H2(X2,Z) a parallel transport operator,
which is an isomorphism of Hodge structures, and α1 ∈ FEX1 a very general class.
Then g(α1) belongs to FEX2, if and only if there exists a bimeromorphic map f :
X1 99K X2, such that g = f∗.

The following is a birational version of Theorem 1.2.34 for manifolds of OG6

type. For sake of completeness we give the proof in this case.

Theorem 5.1.5. Let X be an IHS manifold of OG6 type and let ϕ ∈ O(H2(X,Z))
be an isometry of finite order. The isometry ϕ is birational effective ⇐⇒

• ϕ is an Hodge isometry on H2(X,C)

• ϕ ∈Mon2(X) ⊂ O(H2(X,Z))

• An element of BKX is sent to an element of BKX .
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Proof. Let ϕ ∈ O(H2(X,Z)). If ϕ is non-symplectic, it holds Proposition 4.0.10
which assures that ϕ is effective and in particular birational effective. We can assume
that ϕ is symplectic. Since ϕ si symplectic, we know that sgn(TG(X)) = (3, ∗). For
this reason the orientation of CX is preserved (since this is equivalent to check that
the orientation of a positive 3-space, which is contained in TG(X), is preserved, see
[52, Section 4]). Consequently ϕ ∈ Mon2(X) = O+(H2(X,Z)). The isometry ϕ is
an Hodge isometry by construction and since it is a birational effective isometry, it
comes from a birational map of X and from Proposition 5.0.4 we know that SG(X)
contains no prime exceptional divisors. For this reason BKX∩SG(X) = CX∩SG(X)
and the last one is preserved and so we have the third condition.
For the other direction we want to show that if ϕ ∈ O(H2(X,Z)) is an Hodge-
Monodromy operator which sends a Kähler class to a Kähler class for another
birational model, ϕ comes from a birational map of X via the representation map

ν : Bir(X)→ O(H2(X,Z))

Since we have in aim to apply Corollary 5.1.4, we need to know if a very general
class of FEX is sent to a class of FEX . We know that BKX is an open subset and
the very general classes are a dense subset of BKX . We know that an element of
BKX is sent to an element of BKX , so for regularity of ϕ there exists an open subset
of BKX which is sent to an open subset of BKX and consequently a very general
class is sent to an element of FEX . We can apply Corollary 5.1.4 and Theorem
5.1.1 in our setting, and we know that there exists a birational map f of X such
that ϕ = f∗ which means that ϕ is birational effective.

The following is an operative result about how to find birational effective isome-
tries:

Theorem 5.1.6. Let G ⊂ O(E8) be a group of finite order isometries and let X
be an IHS manifold of OG6 type. Suppose there exists a primitive G-equivariant
embedding of SG(E8(−1)) in H2(X,Z) ∼= U⊕3 ⊕ 〈−2〉⊕2. Suppose that NS(X) ∼=
SG(E8(−1)) under the above embedding. Suppose that @ σ ∈ NS(X) such that
σ2 = −2 and div(σ) = 2 and @ σ ∈ NS(X) such that σ2 = −4 and div(σ) = 2 (i.e.
NS(X) contains no prime exceptional divisor). Then G is a group of birational
effective isometries and the corresponding birational maps are symplectic.

Proof. In this setting since SG(E8(−1)) is negative definite since it is a sublattice of
E8(−1) which is negative definite. Moreover since E8(−1) is unimodular, the action
on AE8(−1) is trivial and the action on ASG(E8(−1)) is trivial because the embedding is
G-equivariant; we can extend trivially the action outside NS(X), which means that
NS(X) = SG(X) and T (X) = TG(X). From hypothesis NS(X) = SG(X) has no
prime exceptional divisors and for this reason CX = BKX . The group G is a group
of Hodge isometries by construction and if we take ϕ ∈ G, ϕ ∈Mon2(OG6) because
Mon2(OG6) = O+(H2(OG6,Z)), i.e. Mon2(OG6) is made by orientation preserving
isometries (see Theorem 1.2.33). We know that SG(X) is negative definite, thus the
positive cone is preserved and also the BKX is preserved. We can apply the Theorem
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5.1.5 and we can conclude that G is a group of birational effective isometries and
the corresponding birational maps are symplectic.

From the last theorem it makes sense to analyze subgroups of O(E8) such that
their covariant lattice can be embedded in U⊕5 = Λ and afterwards to specialize to
U⊕3⊕〈−2〉⊕2. Finally we will check the additional conditions of the Theorem 5.1.6
to check that NS(X) does not contain prime exceptional divisors.

5.2 Induced birational symplectic morphisms

For this part we will refer to Section 3.2, since we have in aim to obtain sim-
ilar results in the symplectic case. Here we provide a classification for symplectic
birational morphisms. As a consequence we can speak about induced birational
symplectic morphisms on manifolds of OG6 type; definitions and lattice theoretic
results of Section 3.2 holds also in this case, but for sake of completeness we will
give them again in this setting.

Definition 5.2.1. Let X be a manifold of OG6 type and let G ⊂ Bir(X). We
say that G is an induced group of birational morphisms if there exists an abelian
surface A with G ↪→ Bir(A), a G-invariant non-primitive Mukai vector u = 2w,
u ∈ H∗(A,Z)G and a u-generic stability condition θ such that X is birational to
K̃u(A), and the induced action on K̃u(A, θ) is a birational action which coincides
with the action of G on X.

The Definition 3.2.2 of numerically induced depends only on the lattice struc-
ture of the second cohomology of OG6 hence it can be applied also to birational
morphisms. For this reason Theorem 3.2.6 holds with this statement:

Theorem 5.2.2. Let X be a manifold of OG6 type and let G ⊂ Bir(X) be a
numerically induced group of birational morphisms. Then there exists a projective
abelian surface A with G ↪→ Aut(A), a G-invariant non-primitive Mukai vector
u = 2w and a u-generic stability condition θ such that X is birational to K̃u(A, θ)
and G is an induced group of birational morphisms.

Moreover, it holds the following result:

Proposition 5.2.3. If X is a manifold of OG6 type and G ⊂ Bir(X) is a finite
symplectic induced group of birational morphisms then TG(X) ∩ NS(X) 6= {0} and
the -2-class σ of divisibility 2 requested in the definition 3.2.2 is an invariant class
i.e. σ ∈ TG(X).

Proof. To show this result we need Proposition 5.0.4. We know that SG(X) contains
no prime exceptional divisors and SG(X) ⊂ NS(X). Since G is numerically induced,
we know from Proposition 3.2.5 that there exists a class σ ∈ NS(X) such that
σ2 = −2 and div(σ) = 2, and such that σ is G-invariant and this implies that
σ ∈ TG(X). In fact if the group is numerically induced this means that the group is
induced and this implies that the automorphisms is defined on the singular moduli
space and on the smooth one, and this means that the singular locus of the singular
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moduli space is preserved by the action of the induced automorphism, and this
implies that σ is preserved.

Theorem 5.2.4. If A is an abelian surface, ϕ ∈ O(H2(A,Z)) is birational effective
⇐⇒

• ϕ is an Hodge isometry on H2(A,C)

• ϕ ∈Mon2(A) ⊂ O(H2(A,Z))

• A Kähler class is sent to a Kähler class.

Corollary 5.2.5. If X is a manifold of OG6 type, G = 〈ϕ〉 ⊂ Bir(X) is a finite
induced group of birational automorphisms, and |G| = 2 then rk(SG(X)) is even.

What we have already described in Corollary 5.2.5 about the structure of SG(X)
also applies in the symplectic case, but there is an additional result if the group is
induced:

Remark 5.2.6. If X is a manifold of OG6 type and G = 〈ϕ〉 ⊂ Bir(X) is an induced
group of birational automorphisms, then ϕ∗ is birational effective for the abelian
surface so it has to satisfy Theorem 5.2.4. Moreover, if G = 〈ϕ〉 is an induced group
of birational morphisms, and the induced action of ϕ on ASG(X) is trivial, then
SG(X) ∼= SG(A) where A is the corresponding abelian surface of Theorem 3.2.6.

Proposition 5.2.7. If SG(X) is the co-invariant lattice with respect to the action
of a finite symplectic group of induced birational morphisms on a manifold of OG6

type, then rk(SG(X)) ≤ 3.

Proof. First of all we know by Remark 5.2.6 that SG(X) = SG(A). Hence rk(TG(A)) ≥
3 because it contains the symplectic form, its conjugated and the invariant Kähler
class. Since the rank of H2(A,Z) = 6 then rk(SG(X)) ≤ 3.

5.3 Some remarks on strictly semistable sheaves

In the following we will explain what kind of obstructions do we have in the
symplectic case to extend a birational induced map to an automorphism. Let A be
an abelian surface and G ⊂ Aut(A) a finite group of symplectic automorphisms (we
need that A is projective to define the moduli space). This implies that NS(A) ∩
TG(A) 6= {0}. In this setting T (A) ⊆ TG(A) and SG(A) ⊆ NS(A). We have a
classification of the invariant and co-invarinat sublattices of H2(A,Z) with respect
to a symplectic action (see [37]) and we know that rk(SG(A)) ≥ 2 and since A is
projective ρ(A) ≥ 3.

We are interested in the case in which G ⊂ Aut(A) is a symplectic group of
automorphisms. We need to induce the action of G on the moduli space Mv(A, θ)
where θ ∈ NS(A) is a stability condition. To have this, we ask that θ is G-invariant,
i.e. θ ∈ TG(A). Another request to induce the action on Mv(A, θ) is that v ∩
H2(X,Z) ∈ TG(A). From [37] we know that in SG(A) there are divisors D such
that D.D = −2 and D.θ = 0. Using the Remark 1.3.4 we see that in this case θ is
not v-generic. Consequently the subspace of Mv(A, θ) of strictly semistable shaves
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with respect to θ does not consist only in destabilizing sub sheaves described by
O’Grady (see [76, Lemma 2.1.2]) but the locus of strictly semistable shaves is richer.
In particular, let [F ] ∈Mv(A, θ) and assume

0→ L1 → F → L2 → 0

is a destabilizing sequence, we have the following theorem:

Theorem 5.3.1. [76, Lemma 2.1.2] Keep notation as above, then Li
∼= Ixi ⊗ ξi,

where Ixi is the ideal sheaf of a point xi ∈ A and ξi ∈ A∨. Conversely, if F fits into
an exact sequence as above, with Li of this form, then F ∈ Mv and F is strictly
semistable.

We need to recall that if A is an abelian surface, then H2(A,Z) has a lattice
structure. i.e. a non-degenerate symmetric bilinear form with integer values. This
lattice is know to be isomorphic to U⊕3, where U is the hyperbolic plane, i.e. the
rank 2 lattice with intersection form

U =

(
0 1
1 0

)
.

The group H2,0(A) is 1-dimensional and generated by a nowhere vanishing holo-
morphic 2-form ω. Let Aut(A) be the group of automorphisms of A.

Definition 5.3.2. We call σ ∈ Aut(A) symplectic if σ preserves the symplectic
form and we call it non-symplectic otherwise.

In Section 2 of his paper, O’Grady describes the desingularization of these
strictly semistable sheaves of the moduli space ([76]).

For this reason we know that O’Grady destabilizing sequences are of this form
and if we consider the Mukai vectors associated to these sheaves we have that
v(Li) = (1, 0,−1), since rk(Ixi) = 1, c1(Ixi) = 0 and ch2 = −c2(Ixi) = −1, and
v(F ) = (2, 0,−2). In our setting we have:

Theorem 5.3.3. Let Mv(A, θ) be a moduli space of stable sheaves on a projective
abelian surface A, with respect to a stability condition θ ∈ NS(A)∩TG(A), and Mukai
vector v = (2, 0,−2). Let G ⊂ Aut(A) be a group of symplectic automorphisms on
A. Suppose v ∩H2(A,Z) ∈ TG(A) and there exists D ∈ NS(A) ∩ SG(A) such that
D2 = −2 and D.θ = 0. Consider the sequence

0→ F1 → F → F2 → 0 (5.1)

where F ∈ Mv, F1 is a subsheaf of F of Mukai vector (1, D,−1) and F2 is a
subsheaf F of Mukai vector (1,−D,−1). The moduli spaces M(1,D,−1)(A, θ) and
M(1,−D,−1)(A, θ) are non-empty and 5.1 is a destabilizing sequence i.e. the sheaf F
is strictly θ-semistable.

Proof. To prove this we use equation 1.4. We need to compute the Hilbert polyno-
mials Pθ(F1)(n) = χ(F1(nθ)) and Pθ(F )(n) = χ(F (nθ)) and to write down the
following equality.

rk(F )χ(F1(nθ)) = 2

∫
A

ch(F1) ch(O(n)) = 2

(
n2θ2

2
+ nD.θ − 1

)
= n2θ2 − 2,
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rk(F1)χ(F (nθ)) =

∫
A

ch(F ) ch(O(n)) = n2θ2 − 2.

This means that F is strictly θ-semistable.
The moduli space M(1,±D,−1)(A, θ) 6= ∅ since (1,±D,−1)2 = 1− 2 + 1 = 0 ≤ 0 and
rk(F ) = 1 > 0 (see [99]).

Remark 5.3.4. The sequence of Theorem 5.3.3 is a destabilizing sequence which
is not considered by O’Grady in [76]. This happens since θ is not v-generic.

From the previous remark we deduce that these sheaves inMv(A, θ) form a singu-
lar locus which remains singular even if we apply the desingularization described by
O’Grady in [76]. Consider a sheaf described in 5.1, since rk(F )=2 and F is strictly
semistable we have Gr(F ) = F1 ⊕ (F/F1) ∼= F1 ⊕ F2. Since (1,±D, 1)2 = 0,
M(1,±D,−1)(A, θ) are abelian surfaces (see [67]), we call them A1 and A2. We deduce
that

A1 ×A2 ⊂ Sing(Mv(A, θ)).

We consider the construction described by O’Grady in [76] and we deduce that,
since the fibration av : Mv(A, θ) −→ A × A∨ is isotrivial, then for reasons related
to the dimension of the objects involved, we have some singular points:

P1 . . . Pl ∈ Sing(Kv(A, θ)),

and these points remain singular even if we consider the desigularization described
by O’Grady in [76]. In fact, with this choice of strictly semi-stable sheaves, K̃v(A, θ)
is no longer regular, but it is a six dimensional variety and P1, . . . , Pl are singular
points on it.
We know that θ is on a v-wall in the description above since it is not v-generic. We
know that the classes D ∈ NS(A) such that D.D = −2 and D.θ = 0 are of finite
number which depends on NS(A), let me call them D1, . . . , Dm, so it makes sense
to consider a little increase of θ in this way:

θ̃1 := θ +
m∑
i=1

εiDi,

where εi ∈ Q are small positive coefficients, small enough to have θ̃1 positive. In
the same way but with different sign we define:

θ̃2 := θ −
m∑
i=1

εiDi,

and as for the other case we have θ̃2 positive. These two ample classes θ̃i (i = 1, 2)
and we can choose εi in a way such that θ̃i are v-generic since @D ∈ NS(A) such that
θ̃iD = 0. For this reason we can consider Kv(A, θ̃i) which is a singular variety of
OG6 type, where the singularities are given by the destabilizing sequence of O’Grady
type (see [76]) and these are the only ones. So we know how to desingularize this
space and we obtain K̃v(A, θ̃i) which are two smooth IHS manifolds of OG6 type.

The sequence of this form:

0→ F1 → F → F2 → 0,
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where F1 ∈M(1,D,−1)(A, θ̃1), F2 ∈M(1,−D,−1)(A, θ̃1) and F ∈Mv(A, θ̃1) is no more

a destabilizing sequence with respect to the stability condition θ̃1. Consequently
the subspace of sub sheaves of Mv(A, θ̃1) which fits in this exact sequence is not
made by S-equivalence classes but by the sheaves themselves, which means that we
find P(E xt1(F2,F1)) as a subspace of the smooth locus of Kv(A, θ̃1). There exists
a generalized version of Hirzebruch-Riemann-Roch formula for arbitrary coherent
sheaves. First of all define for E ,F coherent sheaves, the Euler pairing

χ(E ,F ) :=
∑

(−1)idim Exti(E ,F ). (5.2)

Serre duality implies χ(E ,F ) = χ(F ,E ) i.e. the Euler pairing is symmetric. Note
that for E = OX we find χ(OX ,F ) = χ(F ) and more generally, for E locally free
χ(E ,F ) = χ(E ∗ ⊗F ). Then 5.2 generalizes to

χ(E ,F ) =

∫
ch(E )∗ ch(F ) td(A).

Recall that for a locally free sheaf E it holds ch(E )∗ = ch(E ∗) and then applying
this to F1 and F2 and with stability condition θ̃1 we obtain

χ(F2,F1) = ext0(F2,F1)−ext1(F2,F1)+ext2(F2,F1) =

∫
ch(F2)∗ ch(F1) td(A).

By Poincaré duality ext0(F2,F1) = ext2(F2,F1) and∫
ch(F2)∗ ch(F1) td(A) = −4.

Then it follows:
2 ext0(F2,F1)− ext1(F2,F1) = −4.

By Proposition 1.2.7 of [47], since the reduced Hilbert polynomials p(F1) and p(F2)
are such that p(F2) > p(F1), then Hom(F2,F1) = ext0(F2,F1) = 0. Finally we
get ext1(F2,F1) = 4 and

P(E xt1(F2,F1)) ∼= P3.

We have the following situation, l copies of P3 which we will call P3
1, . . . ,P3

l ∈
Kv(A, θ̃1) and the same but with the dual for the other v-generic ample divisor θ̃2,
i.e. (P3

1)∗ . . . , (P3
l )
∗ ∈ Kv(A, θ̃2). This is due to the fact that the roles of F1 and F2

are completely exchangeable and this means that if we consider the exact sequence

0→ F2 → F → F1 → 0

with respect to θ̃2 we have the dual copies of P3.
Now we can desingularize the two six dimensional varietiesKv(A, θ̃1) andKv(A, θ̃2)

using the O’Grady techniques (see [76, Section 2]) and we obtain two smooth mani-
folds of OG6 type, K̃v(A, θ̃1) and K̃v(A, θ̃2) respectively. We can summarize saying
that K̃v(A, θ̃i) with i = 1, 2 is the resolution of singularities of K̃v(A, θ); this reso-
lution consists in replacing the points P1, . . . , Pl with the copies of P3 or with the
dual copies (P3)∗. In fact as we can find in [1], if we have a moduli space with
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a fixed Mukai vector v and we change the stability condition, i.e. the ample class
θ ∈ NS(A), passing from a stability condition which is v-generic to another which
is not v-generic, we know that the the generic one is a resolution of singularities
of the non-generic. Moreover K̃v(A, θ̃i)) for i = 1, 2 is a smooth symplectic mani-
fold of OG6 type which dominates a singular variety K̃v(A, θ) and for this reason
K̃v(A, θ̃1)→ K̃v(A, θ) and K̃v(A, θ̃2)→ K̃v(A, θ) are resolution of singularities.

Since α1 is a contraction of P3’s on the points P1, . . . , Pl and α2 is a contraction
of some (P3)∗’s on the same points, we can say that there exists a birational map

K̃v(A, θ̃1) 99K K̃v(A, θ̃2)

P3
1, . . . ,P3

l ⊂ K̃v(A, θ̃1) Kv(A, θ̃1)

P1, . . . , Pl ∈ K̃v(A, θ) Kv(A, θ)

(P3
1)∗, . . . , (P3

l )
∗ ⊂ K̃v(A, θ̃2) Kv(A, θ̃2)

Mukaiflop

α1 π1

α2 π2

If we want that the morphism on K̃v(A, θ̃i), shortly K̃ from here to the end of
this section, is induced from an automorphism of A then SG(K̃) ∼= SG(A). The
classes of divisors D in SG(A) of square -2 are also classes of SG(K̃). The copies of
P3 that we find in K̃ contain lines. The classes of these lines are in the fibers of an
extremal contraction K̃v(A, θ̃1) → Kv(A, θ) and are of negative self intersection so
for [58, Lemma 1.3] they include wall divisors (see [58, Lemma 1.4 and Proposition
1.5]).

Let G ⊂ Aut(K̃). If we take an ample divisor L and we take the class L =∑
ϕ∈G(ϕ∗(L)) this is an invariant ample class and we can not find wall divisors in

its orthogonal complement. In a similar way if G ⊂ Bir(K̃) it holds the same with
movable divisors instead of ample and prime exceptional divisors instead of wall
divisors (see [58]).

For this reason if G ⊂ Bir(K̃) we can find wall divisors in SG(K̃) which are these
classes of lines of square -2 and divisibility 1 and, if we do not find prime exceptional
divisors, then we conclude that G is an induced group of birational morphisms on
K̃v(A, θ̃i) which is an O’Grady six dimensional manifold.

5.4 A classification with trivial action on the discrimi-
nant group

5.4.1 The prime order case

Let X be a manifold of OG6 type. In this section we would like to provide
a classification of possible groups G of symplectic birational morphisms of prime
order on manifolds of OG6 type.
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Since there are no results about the impossibility of a non-trivial action of G on
AX we need to admit also this case. This can happen only in the case |G| divides
|AX | = 4, which means if |G| = 2 (G is a group of prime order).

In the following we will study only the case in which if |G| = 2, then the action of
G on AX is trivial. As in the non-symplectic case and using the Proposition 5.0.10
and the Corollary 5.0.5, we first analyze prime order subgroups of O(E8) such that
their co-invariant lattice has rank ≤ 5, then we specialize to U⊕3 ⊕ 〈−2〉⊕2 and we
check the additional conditions of Theorem 5.1.6. To obtain this classification we
use some results of Nikulin, that we find in [72, Section 1.12], moreover we need
[72, Theorem 1.10.1, Theorem 1.8.1], and [32, Theorem 1.5.2]. Some other useful
results for classification of lattices are due to Gordon-Nipp and to the database of
Gabriel Nebe and Neil Sloane.

Rank SG(X) G SG(X) = SG(E8(−1))

1 Z/2Z A1(−1)

2 Z/2Z A1(−1)⊕2

2 Z/3Z A2(−1)

3 Z/2Z A1(−1)⊕3

4 Z/2Z A1(−1)⊕4

4 Z/2Z D4(−1)

4 Z/3Z A2(−1)⊕2

4 Z/5Z A4(−1)

5 Z/2Z D4(−1)⊕A1(−1)

Table 5.1: Co-invariant sublattices with respect to a symplectic and prime order
action; case rk(SG(X)) ≤ 4 or rk(SG(X)) = 5 and l(ASG(X)) ≤ 3

This is the list that we obtain in the case of Proposition 5.0.10, in fact we
are in one of the two following conditions rk(SG(X)) ≤ 4 or rk(SG(X)) = 5 and
l(ASG(X)) ≤ 3. The two more cases that we need to consider to complete the
classification in the prime order case for symplectic isometries, are the following:

• rk(SG(X)) = 5 and l(ASG(X)) = 4,

• rk(SG(X)) = 5 and l(ASG(X)) = 5.

These two cases are not treated in the classification obtained starting from E8(−1)-
root lattice since in these cases it is not possible to define a primitive embedding of
SG(X) in the E8(−1)-root lattice.

If l(ASG(X)) = 4 we have det(SG(X)) = 24. This is not allowed, since a 2-
elementary lattice with these invariants does not exist by the classification of 2-
elementary lattices (see Theorem 1.1.21).

In the second case we have rk(SG(X)) = 5 and l(ASG(X)) = 5. Such a lattice
exists by Theorem 1.1.21. Since SG(X)(1/2) is an odd unimodular lattice of sig-
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nature (0, 5), then it is unique in its genus. In this way we get the uniqueness of
SG(X) = A1(−1)⊕5.

Rank SG(X) l(ASG(X)) G SG(X)

5 5 Z/2Z A1(−1)⊕5

Table 5.2: Co-invariant sublattice with respect to a symplectic and prime order
action; case rk(SG(X)) = 5

In order to obtain the classification of birational symplectic automorphisms,
we can now proceed by checking which of these lattices admits an embedding in
U⊕3 ⊕ 〈−2〉⊕2 without prime exceptional divisors. Clearly in this contest we are
treating morphisms of manifolds of OG6 type, for this reason prime exceptional
divisors are referred to this deformation type and are the ones described in Lemma
1.2.49 that we recall for sake of completeness.

Lemma 5.4.1. Let X be a manifold of OG6 type. Let D ∈ Div(X) and let [D] ∈
Pic(X) be its class. Then [D] is the class of a multiple of a stably prime exceptional
divisor if one of the following holds:

• [D]2 = −4 and div(D) = 2,

• [D]2 = −2 and div(D) = 2.

We remark that, since all prime exceptional divisors have non-trivial divisibility,
a sufficient condition is that all elements of these lattices are embedded with trivial
divisibility. Moreover notice that, all lattices of rank at most 3 can be embedded
into U⊕3 and, checking that if |G| = 2 then rk(SG(X)) is even, using Corollary 5.2.5,
we obtain induced automorphisms. If we want to establish when an automorphism
ϕ of X, a manifold of OG6 type, is induced in the sense of definition 3.2.1 we need to
check that rk(SG(X)) ≤ 3 and U⊕2 ⊂ TG(Λ10) in the embedding H2(X,Z) ↪→ Λ10.
Moreover we need a class σ ∈ NS(X) s.t. σ2 = −2 and div(σ) = 2. Using Theorem
5.2.3 we know that since the isometry is symplectic σ is in TG(X). The following is
a classification with respect to the induced action of G = 〈ϕ〉 on Λ10.

SG(Λ10) TG(Λ10)

A1(−1) A1 ⊕ U⊕4

A1(−1)⊕2 A⊕2
1 ⊕ U⊕3

A2(−1) A2 ⊕ U⊕3

A1(−1)⊕3 A⊕3
1 ⊕ U⊕2

A1(−1)⊕4 A⊕4
1 ⊕ U

D4(−1) D4 ⊕ U
A2(−1)⊕2 A⊕2

2 ⊕ U
A4(−1) A4 ⊕ U

D4(−1)⊕A1(−1) D4 ⊕A1

A1(−1)⊕5 A⊕5
1

Table 5.3: Embedding of the co-invariant sublattices in Λ10



5.4. TRIVIAL ACTION ON THE DISCRIMINANT GROUP 103

With the same techniques used in the non-symplectic case, we obtain the follow-
ing list of groups of prime order that can act symplectically on O’Grady’s sixfolds.
In the following Table, induced refers to Definition 3.2.1, bir.eff. means birational
effective and refers to Definition 1.5.12 and i.q. means induced at the quotient and
refers to Definition 3.3.5.

Rank G SG(X) TG(X) induced bir. eff. i.q.

1 Z/2Z A1(−1) A1 ⊕ U⊕2 ⊕ 〈−2〉⊕2 Yes Yes

2 Z/2Z A1(−1)⊕2 A⊕2
1 ⊕ U ⊕ 〈−2〉⊕2 Yes Yes

2 Z/3Z A2(−1) A2 ⊕ U ⊕ 〈−2〉⊕2 Yes Yes Yes

3 Z/2Z A1(−1)⊕3 A⊕3
1 ⊕ 〈−2〉⊕2 Yes Yes

4 Z/2Z A1(−1)⊕4 〈2〉⊕3 ⊕ 〈−2〉 No No

4 Z/2Z D4(−1)

 6 −2 −2
−2 2 0
−2 0 2

⊕ 〈−2〉 No Yes

4 Z/3Z A2(−1)⊕2 A2 ⊕ 〈6〉 ⊕ 〈−2〉 No Yes Yes

4 Z/5Z A4(−1)

 6 −2 0
−2 2 −1
0 −1 2

⊕ 〈−2〉 No Yes Yes

5 Z/2Z D4(−1)⊕A1(−1)

 6 −2 −2
−2 2 0
−2 0 2

 No No

5 Z/2Z A1(−1)⊕5 A⊕3
1 No No

Table 5.4: Prime order symplectic isometries

Remark 5.4.2. In the last column we list the automorphisms which are induced
at the quotient.(i.q.). As we expect the automorphisms which are induced (in the
sense of abelian surfaces) are induced at the quotient. We leave the last column
incomplete since we don’t know in general if involutions are induced at the quotient
or not since we don’t know if the action exchanges or not the fibers of the two
different P2 fibrations as we have explained in Section 3.3

The previous table is not a complete classification since we just find, when it is
possible, a suitable embedding of SG(X) in H2(X,Z) in a way such that there are
no prime exceptional divisors. We do not compute all the possible, up to isometries,
primitive embeddings of SG(X) in H2(X,Z).

Remark 5.4.3. If we find an embedding in which all the generators and all the lin-
ear combinations of generators have trivial divisibility, the embedding is primitive,
on the other hand there are primitive embeddings in which there exists elements
with divisibility greater than one.

There are three cases in the previous table in which it is not possible to find an
embedding of SG(X) in H2(X,Z) without prime exceptional divisors:

(i) SG(X) = A1(−1)⊕4,
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(ii) SG(X) = D4(−1)⊕A1(−1),

(iii) SG(X) = A1(−1)⊕5.

If we show that all the possible primitive embeddings of A1(−1)⊕4 admit prime
exceptional divisors we can conclude that also all primitive embeddings of D4(−1)⊕
A1(−1) and A1(−1)⊕5 admit prime exceptional divisors. In fact it holds the follow-
ing proposition:

Proposition 5.4.4. If S is an even lattice such that S ↪→ L is a primitive embedding
without prime exceptional divisors then all the primitive sublattices S′ of S have the
same property.

Since there exists a primitive embedding of A1(−1)⊕4 in D4(−1)⊕A1(−1) then
it does not admit a primitive embedding without prime exceptional divisors. A
possible embedding is the following:


−2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −2

 ↪→


−2 0 0 0 0
0 −2 1 0 0
0 1 −2 1 1
0 0 1 −2 0
0 0 1 0 −2


If we call {a1, a2, a3, a4} the generators of A1(−1)⊕4 and {b1, b2, b3, b4, b5} the

generators of A1(−1)⊕D4(−1) we can consider the following primitive embedding:

a1 7−→ b1
a2 7−→ b2
a3 7−→ b4
a4 7−→ b5

In the case SG(X) = A1(−1)⊕5 it is easy to find the following primitive embed-
ding:

A1(−1)⊕4 ↪→ A1(−1)⊕5.

So we need to compute all the possible primitive embeddings of S := A1(−1)⊕4

in L := H2(X,Z). We compute the discriminant group and we find AS ∼= (Z/2Z)⊕4

and AL ∼= (Z/2Z)⊕2 = {[0, 0], [0, 1], [1, 0], [1, 1]}, so using a result of Nikulin, [72,
Theorem 1.15.1], we know that primitive embeddings are determined by quintuples
Θi := (HS , HL, γ, T, γT ). The possible subgroups HS and HL are

{{0},Z/2Z, (Z/2Z)⊕2}.

We have two ways up to isomorphism to choose Z/2Z in AL: {[0, 0], [1, 0]} and
{[0, 0], [1, 1]}. We know the values of the discriminant form qL on the generators
of the discriminant group, qL([1, 0]) = qL([0, 1]) = −1

2 . In the same way we know
the values of the discriminant form of S on the generators, which are in this set:
qS([1, 0, 0, 0]) = qS([0, 1, 0, 0]) = qS([0, 0, 1, 0]) = qS([0, 0, 0, 1]) = −1

2 . We have the
following four case:



5.4. TRIVIAL ACTION ON THE DISCRIMINANT GROUP 105

• HS = HL = {0}. The rank of the orthogonal complement T is 4 and
the signature is (3, 1). In this case γ : {[0, 0, 0, 0]} −→ {[0, 0]} and Γ =
{[0, 0, 0, 0], [0, 0]}, so Γ⊥ ∼= AS⊕AL, and Γ⊥/Γ ∼= AS⊕AL. The quadratic form
is qT = ((−qS)⊕ qL)|Γ⊥/Γ ∼= ((−qS)⊕ qL)|AS⊕AL . For this reason l(AT ) = 6.
Since l(AT ) > rk(T ), the lattice T does not exists (see Theorem 1.1.26).

• HS = HL = Z/2Z, in the case {[0, 0], [1, 0]}, which means that the dis-
criminant form holds −1

2 on the generator of this subgroup. In this case
γ([1, 0, 0, 0]) = ([1, 0]), Γ ∼= Z/2Z, Γ⊥ ∼= Z/2Z⊕5 and Γ⊥/Γ ∼= Z/2Z⊕4. We
compute the discriminant form qT on Γ⊥/Γ and it holds 1

2 on three generators
of the discriminant group of T and −1

2 on the fourth generator. The lattice T
is indefinite and 2-elementary, so by Theorem 1.1.17, the lattice T is unique
up to isometries, and it holds T ∼= 〈2〉⊕3 ⊕ 〈−2〉:

T ∼=


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 −2


If we call {e1, f1, e2, f2, e3, f3, z1, z2} the generators of H2(X,Z), the embed-
ding of S in L is the following:

a1 7−→ e1 − f1

a2 7−→ e2 − f2

a3 7−→ e3 − f3

a4 7−→ z1

As we can see in this case a4 is a prime exceptional divisor, an element of
square −2 and divisibility 2.

• HS = HL = Z/2Z, in the case {[0, 0], [1, 1]}, which means that the discrimi-
nant form holds −1 ≡ 1 in Q/2Z on the generator of this subgroup. In this
case γ([1, 1, 0, 0]) = ([1, 1]), Γ ∼= Z/2Z, Γ⊥ ∼= Z/2Z⊕5 and Γ⊥/Γ ∼= Z/2Z⊕4.
We compute the discriminant form qT on Γ⊥/Γ and it holds 1

2 on two gen-
erators of the discriminant group of T and 0 on the other two which are not
orthogonal in fact the form holds 1

2 between them. The lattice T is indefi-
nite and 2-elementary, so by Theorem 1.1.17, the lattice T is unique up to
isometries, T ∼= 〈2〉⊕2 ⊕ U(2):

T ∼=


2 0 0 0
0 2 0 0
0 0 0 2
0 0 2 0


Remark 5.4.5. Observe that T which we obtain in this last case is isomorphic
to the previous one. In fact
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
0 2 0 0
2 0 0 0
0 0 2 0
0 0 0 2

 ∼=


2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 −2


If we call {e1, e2, e3, e4} the generators of U(2)⊕〈2〉⊕2 and {f1, f2, f3, f4} the
generators of 〈2〉⊕3 ⊕ 〈−2〉 we consider this map:

e1 7−→ f3 − f4

e2 7−→ f3+f4

2
e3 7−→ f1

e4 7−→ f2

and this is an isomorphism.

Since these lattices are isomorphic, also in this case S admits a prime excep-
tional divisor in the embedding.

• HS = HL = Z/2Z⊕2. In this case γ([1, 0, 0, 0]) = ([1, 0]), γ([0, 1, 0, 0]) =
([0, 1]), Γ ∼= (Z/2Z)⊕2, Γ⊥ ∼= Z/2Z⊕4 and Γ⊥/Γ ∼= Z/2Z⊕2. We compute the
discriminant form qT on Γ⊥/Γ and it holds 1

2 on the two generators of the
discriminant group of T . Since 4 ≥ l(AT ) + 2, by Theorem 1.1.17, the lattice
T is unique up to isometries, T ∼= 〈2〉⊕2 ⊕ U :

T ∼=


2 0 0 0
0 2 0 0
0 0 0 1
0 0 1 0


The embedding of S in L is the following:

a1 7−→ e2 − f2

a2 7−→ e3 − f3

a3 7−→ z1

a4 7−→ z2

As we can see in this case a4 is a prime exceptional divisor, an element of
square −2 and divisibility 2.

Example 5.4.6. We take into consideration SG(X) = D4(−1) and we show how to
build embeddings in Λ10, to check if there are two copies of U in TG(Λ). Moreover we
build embeddings of SG(X) in H2(X,Z) taking care to not have prime exceptional
divisors.
First of all we call {v1, v2, v3, v4} a basis for the lattice D4(−1) and {ei fi} for
i = 1, · · · 5 a basis for Λ10. It is well defined the following embedding:

v1 7−→ e1 − f1 + f2

v2 7−→ e2 − f2

v3 7−→ e3 − f3 + f2

v4 7−→ e4 − f4 + f2
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The orthogonal complement is:

TG(Λ) ∼= U ⊕D4

There is a unique copy of U in TG(Λ) and this is the reason why this birational map
is not induced by a map of the abelian surface.
On the other hand, we have to show that there exists a way to find an embedding
of SG(X) = SG(Λ) in H2(X,Z) such that there are no prime exceptional divisors.
This means that the the isometry of H2(X,Z) such that the corresponding invariant
and co-invariant lattices are TG(X) and SG(X) is birational effective. This means,
by definition, that there exists a birational map defined on a manifold of OG6 type,
such that the induced action on the cohomology is the action of this example.
In fact there exists an embedding of SG(X) in H2(X,Z) without prime exceptional
divisors. Let {e1, f1e2, f2, e3, f3, z1, z2} be a basis for the O’Grady six lattice, the
following embedding is without prime exceptional divisors:

v1 7−→ e1 − f1 + f2

v2 7−→ e2 − f2

v3 7−→ e3 − f3 + f2

v4 7−→ e1 + f1 + z1 + z2 + f2

Example 5.4.7. For the case SG(X) ∼= A2(−1)⊕2 we can consider the following
embedding which is without prime exceptional divisors:

v1 7−→ e1 − f1 + e2

v2 7−→ f2 − e2

v3 7−→ z1 + e3

v4 7−→ z2 + f3

And we can compute the orthogonal complement which is:

TG(X) ∼= A2 ⊕
(
−2 −4
−4 −2

)

We need to remark that

(
−2 −4
−4 −2

)
is isometric to

(
6 0
0 −2

)
, where the last is the

one that you find in the table 5.4.

5.4.2 The finite case

In this section we would like to provide a classification of possible group G of
symplectic birational morphisms of finite order on manifolds of OG6 type. The
E8-root lattice is the unique even, unimodular, positive-definite lattice of rank 8
and its isometries group is the corresponding Weyl group, W (E8). It follows from
a Theorem of Steinberg (see [88, Theorem 1.5]) that the stabilizer of a sublattice
of a root lattice inside the corresponding Weyl group is a reflection group. The
conjugacy classes of reflections subgroups for W (E8) are known, (see [34, Table 5]).
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Let me recall this result of Hohn and Mason which is fundamental to find the
possible co-invariant sublattices of E8(−1) in order to apply Theorem 5.1.6 and
classify symplectic isometries of manifolds of OG6 type.

Theorem 5.4.8. [42, Theorem 3.6] In its action on the E8-root lattice, the Weyl
group of type E8 has 41 orbits of fixed-point sublattices. These are in bijective
correspondence with the isomorphism types of full subgraphs of the Coxeter graph
for E8, the lattice-stabilizers being the Coxeter groups determined by these subgraphs.
The coinvariant lattices are the corresponding root lattices.

Using the previous theorem we can find this list of possible sublattices corre-
sponding to co-invariant sublattices of E8(−1).

Rank SG(E8(−1)) G SG(E8(−1))

3 S4 A3(−1)

3 Z/2Z⊕ S3 A1(−1)⊕A2(−1)

4 Z/2Z⊕2 ⊕ S3 A1(−1)⊕2 ⊕A2(−1)

4 Z/2Z⊕ S4 A1(−1)⊕A3(−1)

5 Z/2Z⊕3 ⊕ S3 A1(−1)⊕3 ⊕A2(−1)

5 Z/2Z⊕2 ⊕ S4 A1(−1)⊕2 ⊕A3(−1)

5 Z/2Z⊕ S5 A1(−1)⊕A4(−1)

5 S6 A5(−1)

5 S4 n Z/2Z⊕4 D5(−1)

5 S⊕2
3 ⊕ Z/2Z A2(−1)⊕2 ⊕A1(−1)

5 S3 ⊕ S4 A2(−1)⊕A3(−1)

Table 5.5: Co-invariant sublattices with respect to a symplectic and finite order
action

Theorem 5.4.9. Let X be a manifold of OG6 type and G ⊂ O(H2(X,Z)) be a
subgroup of symplectic isometries of finite order such that rk(SG(X)) ≤ 4. The
following is a list of birational effective isometries with respect to these actions.
The prime order case action is computed in table 5.4.

R G SG(X) TG(X) is induced bir. eff. i.q.

3 S4 A3(−1) A3 ⊕ 〈−2〉⊕2 Yes Yes Yes

3 Z/2Z⊕ S3 A1(−1)⊕A2(−1) A1 ⊕A2 ⊕ 〈−2〉⊕2 Yes Yes Yes

4 Z/2Z⊕2 ⊕ S3 A1(−1)⊕2 ⊕A2(−1) A⊕2
1 ⊕

(
−2 4
4 −2

)
No Yes Yes

4 Z/2Z⊕ S4 A1(−1)⊕A3(−1) A1 ⊕

 2 −2 0
−2 −2 4
0 4 −2

 No Yes Yes

Table 5.6: Finite order symplectic isometries with rk(SG(X)) ≤ 4
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We know that if rk(SG(X)) = 5 and l(ASG(X)) ≤ 3 then the classification
starting from the E8(−1) lattice is complete and this is what we can find in the
following table. The case rk(SG(X)) = 5 is incomplete since l(ASG(X)) could be
also 4 or 5 and these cases are not classified here.

Theorem 5.4.10. Let X be a manifold of OG6 type and G ⊂ O(H2(X,Z)) be
a subgroup of symplectic isometries of finite order such that rk(SG(X)) = 5 and
l(ASG(X)) ≤ 3. The following is a list of birational effective isometries with respect
to these actions. The prime order case action is computed in table 5.4.

R G SG(X) TG(X) is induced bir. eff. i.q.

5 Z/2Z⊕3 ⊕ S3 A1(−1)⊕3 ⊕A2(−1) A1 ⊕A2 No No No

5 Z/2Z⊕2 ⊕ S4 A1(−1)⊕2 ⊕A3(−1) A3 No No No

5 Z/2Z⊕ S5 A1(−1)⊕A4(−1)

2 0 0
0 6 −4
0 −4 6

 No Yes No

5 S6 A5(−1)

6 2 0
2 2 2
0 2 6

 No Yes No

5 S4 n Z/2Z⊕4 D5(−1)

 2 −2 0
−2 6 −4
0 −4 6

 No Yes No

5 S⊕2
3 ⊕ Z/2Z A2(−1)⊕2 ⊕A1(−1) 〈2〉 ⊕ 〈6〉⊕2 No Yes No

5 S3 ⊕ S4 A2(−1)⊕A3(−1)

 2 −2 0
−2 6 0
0 0 6

 No Yes No

Table 5.7: Finite order symplectic isometries with rk(SG(X)) = 5

The cases that do not admit an embedding with only trivial divisibility elements
in H2(OG6,Z) are A1(−1)⊕3 ⊕ A2(−1) and A1(−1)⊕2 ⊕ A3(−1). Since A1(−1)⊕4

admits a primitive embedding in these two lattices, we can use Proposition 5.4.4.
In this way we conclude that these two lattices do not admit a primitive embedding
without prime exceptional divisors. An embedding of A1(−1)⊕4 in A1(−1)⊕3 ⊕
A2(−1) is the following:

−2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −2

 ↪→


−2 0 0 0 0
0 −2 0 0 0
0 0 −2 0 0
0 0 0 −2 1
0 0 0 1 −2


If we call {a1, a2, a3, a4} the generators of A1(−1)⊕4 and {b1, b2, b3, b4, b5} the

generators of A1(−1)⊕3⊕A2(−1) we can consider the following primitive embedding:

a1 7−→ b1
a2 7−→ b2
a3 7−→ b3
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a4 7−→ b4

The embedding of A1(−1)⊕4 in A1(−1)⊕2 ⊕A3(−1) is the following:
−2 0 0 0
0 −2 0 0
0 0 −2 0
0 0 0 −2

 ↪→


−2 0 0 0 0
0 −2 0 0 0
0 0 −2 1 0
0 0 1 −2 1
0 0 0 1 −2


If we call {a1, a2, a3, a4} the generators of A1(−1)⊕4 and {b1, b2, b3, b4, b5} the

generators of A1(−1)⊕3⊕A2(−1) we can consider the following primitive embedding:

a1 7−→ b1
a2 7−→ b2
a3 7−→ b3
a4 7−→ b5

Example 5.4.11. In this example, the co-invariant sublattice is SG(X) = A1(−1)⊕
A4(−1), and we can find a primitive embedding in H2(OG6,Z) ∼= U⊕3 ⊕ 〈−2〉⊕2 in
this way:

v1 7−→ e1 − f1

v2 7−→ z1 + e2

v3 7−→ f2 − e2

v4 7−→ e2 + e3 − f3

v5 7−→ z2 − e3

We compute the orthogonal complement, which is:

TG(X) ∼=

2 0 0
0 6 −4
0 −4 6

 .

The classification that we have done in this chapter is not a compete classification
of all possible invariant and co-invariant sublattices with respect to a prime order
or finite order symplectic action. In this Chapter the unique thing that we have
classified, for a given possible co-invariant sublattice, is that it admits a primitive
embedding in H2(X,Z) without prime exceptional divisor. What we can say is only
that co-invariant sublattices which admit an embedding without prime exceptional
divisors for sure are the co-invariant sublattices with respect to birational symplectic
automorphisms of a manifold of OG6 type. To classify this birational symplectic
morphisms we have use the E8-root lattice.

Remark 5.4.12. We have to notice is that is the classification of this Chapter
we have considered only the case in which the induced action on AX is trivial.
The classification in which the induced action on AX is non-trivial is still to be
calculated and there are possibilities that in such a case, the symplectic action
on integral cohomology is effective and we can find a classification of symplectic
automorphisms of manifolds of OG6 type.



Chapter 6

An example of induced
automorphism

We have already defined when an automorphism is induced at the quotient (see
Definition 3.3.5). We need to notice that there are two ways to exhibit induced
automorphisms. In the first case we need to know the conditions to lift an automor-
phism of a manifold of OG6 type, which is birational to K3[3]/i to an automorphism
of a K3[3]. This point is discussed in Section 3.3.

Otherwise we can take a group of automorphisms G of the K3[3] such that i ⊆ G
where i is the Rapagnetta’s involution and we can consider the induced action of
G on K3[3]/i which is birational to OG6. Since we have a classification for the
automorphisms of manifold of OG6 type, we can try to recognize in this list an
automorphism which comes from the K3[3].

This second approach is the way we chose to find examples of automorphisms
induced at the quotient. In [42] the authors determine the orbits of fixed-point
sublattices of the Leech lattice with respect to the action of the Conway group Co0.
The Leech lattice Λ is the only positive-definite, even, unimodular lattice of rank
24 with no elements of square -2 [51] [28]. The group of automorphisms of Λ is
the Conway’s group Co0 [27] and so Aut(Λ)/ ± 1 = Co0/ ± 1 = Co1. Höhn and
Mason describe in [42, Theorem 1.1] a classification of the 290 orbits on the set of
fixed-point sublattices of Λ under the action of Co0. The purpose of their note is not
merely to enumerate the orbits of fixed- point sublattices, but to provide in addition
a detailed analysis of their properties. In particular, this includes the stabilizers G,
which are the (largest) subgroups of Co0 that stabilize a given fixed-point sublattice
pointwise. In this section, to provide this example we refer to the orbits of fixed-
point lattices and their fixing groups which are given in Table 1 in Section 4 of [42].
The geometry of K3 surfaces and certain hyperkähler manifolds X, is controlled,
using Torelli-type theorems, by lattices related to Λ. In this way, symmetry groups
of X can be mapped into Co0, and properties of the fixed-point lattices control
which groups may appear. This is what is done in [56] for hyperkähler manifolds.
The extension of Mukai’s Theorem to more general contexts is currently an active
research area, and it is widely expected that knowledge of the stabilizers G with
TG(Λ) ≥ 4, where TG(Λ) is the invariant sublattice in the usual notation, will lead
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to the classification of all finite symplectic automorphism groups of hyperkähler
manifolds of K3[n] type [60].
Let X be a manifold of K3[3] type, we know that the second integral cohomology has
a lattice structure: H2(X,Z) ∼= U⊕3 ⊕E8(−1)⊕2 ⊕ 〈−4〉. The smallest unimodular
lattice in which this K3[3] lattice embeds is the Mukai lattice := Λ24 = U⊕4 ⊕
E8(−1)⊕2, which is a lattice of rank 24 and signature (4, 20). It’s important to
notice that if v ∈ Λ24 is a Mukai vector, then v⊥ ∼= H2(X,Z).

Recall the following result:

Theorem 6.0.1. [60] Let X be an IHS manifold of K3[n] type and let G be a finite
group of symplectic automorphisms of X. Then G ⊂ Co1 and SG(X) = SG(Λ) for
some conjugacy class of G in Co1.

With Auts(X) we refer to symplectic automorphisms. The following is a good
starting point:

Theorem 6.0.2. [60] Let G ⊂ Co0 be a group of isometries such that rk(SG(Λ)) ≤
20 and rk(TG(Λ)) > l(ATG(Λ)). Then there exist an integer n and a manifold X of

K
[n]
3 type such that G ⊂ Auts(X) and SG(X) ∼= SG(Λ).

The condition in the above theorem is actually equivalent to rk(SG(Λ)) +
l(ASG(Λ)) < 24. Now the point is to consider a group G of birational maps of X
such that 〈i〉 ⊆ G where i is the Rapagnetta’s involution. Since we know from [62,
Remark 5.4] that this involution can not be extended to an automorphism of X, we
need that the condition above is not verified which means rk(SG(Λ)) + l(ASG(Λ)) =
24. We stress the fact that for any n, the Rapagnetta’s involution does not ex-
tend (see [60, Proposition 4.6]). In particular rk(SG(Λ)) = 24 − rk(TG(Λ)), and
ASG(Λ)

∼= ATG(Λ) since they are complement in a unimodular lattice, we have that
rk(TG(Λ)) = l(ATG(Λ)).

If G is a group of birational symplectic maps of X, a manifold of K3[3] type, such
that 〈i〉 ⊆ G, where i is the Rapagnetta’s involution, we are sure that G induces an
action on the quotient K3[3]/i, which is a singular model of a manifold of OG6 type,
K in the previous notation. Since we classified the symplectic birational maps for
manifolds of OG6 type, the point is that we can try to find in the list of Table 1 in
Section 4 of [42] a group which acts on a K3[3] type manifold and such that contains
the Rapagnetta’s involution. Now this group induces an action on H2(OG6,Z) and
we can find the structure of SG(OG6) and TG(OG6). If we find this sublattices
in our list of symplectic actions on OG6 we can conclude that this action is an
action which comes from the K3[3] manifold, which means that G is induced at the
quotient.

Proposition 6.0.3. Let X be a manifold of K3[3] type, let G be a finite group
of birational maps of X, such that 〈i〉 ⊆ G, where i is the Rapagnetta’s involu-
tion. Consider the maximal G with SG(X) as co-invariant sublattice. Let Y be the
resolution of the quotient of X by i. Consider the following representation map:

ν : Aut(Y ) −→ O(H2(Y,Z)).

It holds that Ker(ν) ⊆ G.
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Proof. It is known from [65] that Ker(ν) ∼= Z/2Z⊕8. If 〈i〉 ⊆ G then Si(X) ⊆
SG(X). From [65] we know that the co-invariant lattice Si(X) is BW16(−1), the
Barnes-Wall lattice, an even lattice negative definite that we will show below here.
There exists the following injective map:

Õ(ABW16(−1)) ↪→ O(ABW16(−1))

and Ker(ν) ⊂ Õ(ABW16(−1)) ∼= Z/2Z⊕9 [65]. Let τ ∈ Ker(ν) be an involution,
τ acts trivially on ABW16(−1), so τ extends in a trivial way outside BW16(−1) ⊂
H2(K3[3],Z), consequently Sτ (K3[3]) ⊆ BW16(−1). Now we know thatBW16(−1) ⊆
SG(K3[3]) so Sτ (K3[3]) ⊆ SG(K3[3]) ∀τ ∈ Ker(ν) and this implies that τ ∈ G, which
concludes the proof.

Now we can consider the list in Table 1 in Section 4 of [42]. From the previous
result since we want G such that i ∈ G we have to consider G such that Ker(ν) ∼=
Z/2Z⊕8 is contained in G. We recognize these groups because in the column ”type”
of the table we find the notation Mona or Mon∗a and in the column G we find [2s].G′

where s ∈ Z and s ≥ 9. When we look at G as a group of involutions on K3[3] we
can say that i is not in Ker(ν), since when we look at Ker(ν) on K3[3]/i we know
that Ker(ν) is made by the involutions of OG6 which acts trivially on the second
cohomology. We have to stress that when we consider the quotient, K3[3]/i, then i
is the identity and not an involution on this manifold.

Since the Rapagnetta’s involution is ”not contained” in Ker(ν) then G contains
Z/2Z⊕9.

Theorem 6.0.4. The case SG(OG6) = A4(−1) of the table 5.4 corresponds to a
birational maps of OG6 induced at the quotient, which means that this action on
OG6 comes from an action on the manifold of K3[3] type, where OG6 is the blow
up of the singular locus of K3[3]/i.

Proof. The Table 1 of Section 4 of [42] show a classification of the action of a group
G on the Leech Lattice Λ. The second column is the rank of TG(Λ). If we consider
the case 100 we find that G ∼= [29].A5, which means that the group which acts on
the Leech Lattice is an extension of A5, the alternating group on 5 elements, with
a group of order 29, rk(TG(Λ)) = 4 and consequently rk(SG(Λ)) = 20. Now we
have that (SG(Λ)⊕ TG(Λ))⊗Q = Λ⊗Q and they are orthogonal complement in a
unimodular lattice, which means that ATG(Λ)

∼= ASG(Λ) and qTG(Λ) = −qSG(Λ) [72].
The same is true for Λ24, the smallest unimodular lattice which embeds in the lat-
tice of a manifold X of K3[3] type. In fact if G acts on Λ24 then it holds SG(Λ24)⊕
TG(Λ24) = Λ24 and for the same reason ATG(Λ24)

∼= ASG(Λ24) and qTG(Λ24) =
−qSG(Λ24). From [60, Lemma 3.5], the action of a symplectic automorphism on
ASG(X) is trivial, so through this embedding H2(X,Z) ↪→ Λ24, we can extends the
action of G outside SG(X) in a trivial way, which means that SG(Λ24) = SG(X).
From [60, Theorem 3.6] we have that SG(Λ) = SG(X), so we have ASG(Λ)

∼= ASG(Λ24)

and qSG(Λ) = qSG(Λ24). It is known that the embedding H2(X,Z) ↪→ Λ24 is such that

H2(X,Z)⊥Λ24 = v where v is the Mukai vector and v2 = 2n−2 = 4 since here n = 3.
Now we need to find the Mukai vector v in TG(Λ24) and TG(Λ24) ∼= TG(X) ⊕ 〈v〉.
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Since from the previous discussion Si(X) ⊂ SG(X), it holds that TG(X) ⊂ Ti(X).
From computations in Section 3.3, TG(X) ∩ Ti(X) = 2 TG(OG6) where OG6 is the
O’Grady 6 singular manifold, and now TG(X) ∩ Ti(X) = TG(X) = 2 TG(OG6).
Now we can deduce TG(Λ24) from the table of [42] and we can compute TG(X)
as orthogonal complement of a vector of square 4. We know that a rank 4 lattice
of signature (4, 0) and discriminant form 2−4

II 5−1, with respect to the notation oh
Hohn and Mason [42], has discriminant group Z/2Z⊕4 ⊕ Z/5Z. A representative
lattice with this features is TG(Λ24) = A4(2). Now we can take a vector v ∈ A4(2)
of square 4 and we compute the rank 3 lattice TG(X) = 2 TG(OG6).

There exists the following embedding in the unimodular lattice U⊕4:

H2(OG6,Z) ∼= U⊕3 ⊕ 〈−2〉 ↪→ U⊕4

and the orthogonal complement in this embedding is a vector of square 2 which
correspond to the Mukai vector in the context of X. TG(OG6)⊕〈−2〉 ∼= TG(U⊕4) =
TG(Λ24)

2 = A4. Moreover since the action of a symplectic group on ASG(X) is trivial,

SG(OG6) = SG(OG6) = SG(U⊕4). Now we know TG(U⊕4) and we can find SG(U⊕4)
and consequently SG(OG6) since they are orthogonal complement in a unimodular
lattice. We check the list in the table of Section 5.4 and we discover that SG(OG6) =
A4(−1) corresponds to this case. So we can say that this is an example of birational
map of a manifold of OG6 type, which is induced at the quotient. (i.e. it comes
from an automorphism of K3[3]).

Remark 6.0.5. This example, which is the number 100 of the table of Höhn and
Mason [42] corresponds to an automorphism which is induced at the quotient but
not induced.

Conjecture: If X is a manifold of OG6 type, and ϕ is an induced automorphism,
then it is induced at the quotient.
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Séminaire Bourbaki, 25:251–278, 1982.

[33] Igor Dolgachev and Shigeyuki Kondō. Moduli of K3 surfaces and complex
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