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Abstract 
In a global changing framework forest importance is nowadays recognized and the awareness about 

sustainable practices and management is raising (European_Commission, 2013). As well as the 

needs of more knowledge and control on forest harvesting in Italian forest (Mori, 2019). Earth 

Observation science had an explosive growth since the policy change on data distribution for NASA 

Landsat archive (Wulder et al., 2012) and the advent of ESA Copernicus program. The access to these 

groundbreaking technologies leaded researcher to a different point of view in the forest sector. 

Immediately tropical forest deforestation drawn the majority of interests (Perbet et al., 2019; Tang 

et al., 2019; Shimizu et al., 2017; Reiche et al., 2013, 2016; Joshi et al., 2015; Asner et al., 2009), 

heading to the development of many different tools for tropical forest monitoring. This study was 

focused on the application of satellite remote sensing data (derived from Sentinel-2) to two cardinal 

aspect for Italian forest.  

Since wood production plays a key role in developing a rural economy and stimulating the use of 

sustainable raw material, an increment of Douglas-fir plantation is desirable because of his great 

growth potential. Therefore, it was necessary to investigate good indices in order to assess the 

Douglas-fir land suitability and fertility indices. Empirical mathematical models were developed and 

validated using different sets of variables derived from remote sensing data and field survey. Models 

validation reached very good results for Site Index ranging from 0.63 to 0.97 R2 and Current Annual 

Increment ranging from 0.50 to 0.98 R2. 

Furthermore, remote sensing data were applied to calibrate and validate different approaches for 

forest change detection. Knowing where and when forest harvests are done is crucial for correctly 

applying sustainable forest management and for controlling illegal logging. In this study was 

demonstrated that there are already tools developed in tropical forest that it could be applied to 

Italian forest. The best method was the basic one, which uses only summer images avoiding the 

seasonal noise problem in the time series but losing near-real time ability. If the temporal accuracy 

is essential the best method for removing time series seasonality resulted the harmonic model 

fitting, but further analyses are needed expanding the validation area in order to corroborate these 

results.  
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General Introduction 
Forestry science and silviculture plays a key role in forest sustainability and forest carbon balance. 

In the previous centuries these factors were overwhelmed by the importance of forest production 

and the necessity of the population to growth. Nowadays, due to global warming and global change, 

forest managers awareness is raised on that and they are more focused on sustainable forest 

practices. This goal requires a comprehensive knowledge about the history and the future of forests. 

In the last few decades, the technology advancement in computer science led to a massive 

improvement in modeling and prediction for the forest sector; the forest scientific research has 

benefited from this big step forward as well. This impressive progress has speed up the processing 

time and solved a large number of problems, nonetheless of course it has generated new ones. 

Generally, now in a research project focused on find relationships between variables, a major part 

of the study is spent to identify the really meaningful variables. This is because much more 

information and data are available now, but unexpectedly, this massive quantity of information can 

generate confusion and misinterpretation, not only benefits. 

Meanwhile, the field of earth observation (EO) has seen explosive growth and development due to 

the large number of investments (public and private), as well as the aid from computer science 

progress (Ma et al., 2015; Prashanth, 2009). Therefore, the problems showed in the previous 

paragraph are present in the Earth Observation field as well. The number of planet images is 

growing, and the information carried by them are increasing even more due to sensors technology 

evolution. 

1 Remote sensing: in general 
The remote sensing is universally defined as the technique to measure surfaces or objects 

characteristics from a distance (Ma et al., 2015; Congalton, 1991) using many different tools which 

exploit different technology, more precisely: 

 

"...remote sensing in the most generally accepted meaning refers to instrument-based techniques 

employed in the acquisition and measurement of spatially organized (most commonly, 

geographically distributed) data/information on some property(ies) (spectral; spatial; physical) of an 

array of target points (pixels) within the sensed scene that correspond to features, objects, and 
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materials, doing this by applying one or more recording devices not in physical, intimate contact with 

the item(s) under surveillance (thus at a finite distance from the observed target, in which the spatial 

arrangement is preserved); techniques involve amassing knowledge pertinent to the sensed scene 

(target) by utilizing electromagnetic radiation, force fields, or acoustic energy sensed by recording 

cameras, radiometers and scanners, lasers, radio frequency receivers, radar systems, sonar, thermal 

devices, sound detectors, seismographs, magnetometers, gravimeters, scintillometers, and other 

instruments" (Short, 2009). 

 

Beside this comprehensive definition of general remote sensing, when the focus is earth 

observation (EO), the remote sensing is often based on electromagnetic radiation, mainly visible 

and infrared spectrum. Thus, the data are values of reflected or emitted energy from a surface or 

an object (Prashanth, 2009). The electromagnetic radiation range is very wide, an overview of the 

range variation is given in the Figure . 

Figure 1 - Electromagnetic spectrum (Mukesh, 2015). Visible, infrared and microwave are currently the most relevant ranges used in 

earth observation. 

The ability of Remote Sensing to measure physical characteristic of real object without relying on 

physical contact it’s essential for the study of our planet. Indeed, it’s already broadly used in a large 

number of applications, such as agriculture, forestry, urban planning, disaster monitoring, etc. 

(Zanetti, 2017). This different fields of application are possible only because the Earth Observation 

is made by different sensors, which measures different object characteristics. 
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Some of the most common sensors are called passive, it measures the reflected sunlight, or the 

direct energy emitted from the earth surface in the visible and near- to middle infrared range of 

wavelength. Alternatively, some sensors measures the backscatter from surface of the energy 

emitted from the sensor vehicle itself and they are called active sensor, such as laser or radar 

(Richards and Jia, 2013; Prashanth, 2009). 

Different platforms are used to carried out Remote Sensing imaging, for example drones, aircraft 

and spacecraft. The sensors are mostly similar, but the difference in their distance from the earth 

and stability can lead to different image properties, especially in spatial resolution. The spacecraft 

platforms are divided in two classes based mainly on their altitude: low earth orbiting and 

geostationary. In the first class the satellites orbit is usually sun-synchronous, that means that the 

images acquisition is made at the same local time in each orbit, thus are used mainly for earth 

surface and oceanographic observations. The geostationary satellites are higher in elevation and, 

even if the imaging technology is similar to the low earth orbiting satellites, the images spatial 

resolution are much lower, therefore are generally used for weather and climate studies (Richards 

and Jia, 2013). 

The manned airplanes were the first carrier for remote sensing sensors but in the last 15 years the 

novelty of the drones it became more significant. For local investigation the drone is unbeatable in 

terms of precision: the images has ultra-high spatial resolution with a ground spacing in centimeter-

level as well as the geolocation accuracy (Surový et al., 2019). However, the problems of the drones 

are the relative high costs for the survey, this is big constraint regard to the temporal resolution, 

and the limitation of the survey extension making impossible to do global and nation wise study. 

2 Sources of errors 
Taking photos from the space is not as easy as it sounds like. In fact, remote sensing images must to 

be corrected before use in studies and research. The main errors are classified in two categories: 

radiometric errors and geometric errors. 

The latter one is originated from several issues. The relative motions of the satellite and the earth, 

the non-idealities in the sensor, the curvature of the earth, the variations of attitude, velocity and 

position of the platforms can all lead to different geometric errors. Usually these errors can be 

corrected exploiting models of the source of errors, this process is explained in detail by Richards 

and Jia (2013). 
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The radiometric errors, i.e. errors of the pixels brightness, are mainly due to the interaction of the 

solar radiation with the atmosphere compounds and noise in the electronics sensor components 

(Prashanth, 2009). As the geometric errors, there are several ways to overcome these errors and 

usually they are corrected from the agency/owner of the images before releasing them. For 

instance, the European Space Agency for the Sentinel-2 images provide different level of products 

with different level of correction: from only the strictly needed to almost all the correction 

mentioned in the previous paragraphs (SUHET, 2015). 

For advanced analysis using multitemporal images, as time series analysis, another problem should 

be considered. The misregistration for the same tile acquired in different time, indeed the 

geolocation accuracy is far from the perfection and this lead to difficulties and errors during 

multitemporal analysis especially for change detection (Roy, 2000). Sentinel-2 images has a very 

high geolocation accuracy but this problem still raising awareness in the scientific community, 

although the mean error was estimated to 0.4 10m pixel (Yan et al., 2018). 

3 Concept of resolution 
It’s possible to distinguish between three kinds of resolutions: spatial, spectral and temporal 

resolution.  

The spatial resolution is equivalent to the minimum spatial unit on the ground and it’s represented 

by the pixel size. The remote sensing image is a grid of pixels obtained by continuous ground 

scanning. The energy (photons), within this spatial unit, coming from different objects is averaged 

(Prashanth, 2009). 

Each sensor is built to work in combination to prisms and spectral filters, which are able to split the 

electromagnetic spectrum in sectors and aggregate the energy for each band wavelengths. The 

wavelength interval characterizes the spectral resolution for the visible/infra-red sensors. A high 

spectral resolution image corresponds to a high number of bands with a narrow width, on the other 

hand, a lower number of bands correspond to a wider band width. The number of bands in the 

image effect the ability of the sensor to distinguish different sensed materials, the more are the 

number of bands the better is the chance to discriminate different materials (Prashanth, 2009). 

The temporal resolution is the frequency of revisit time for the same location on the ground, in other 

words, the time between each satellite passage. This characteristic is crucial for some applications 

in monitoring and change detection. 
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4 Remote sensing applied to forest management 
Recently the forestry sector is more aware of the remote sensing potentials regardless the carriers. 

Nowadays several opportunities for improving decision support and inventories are coming from 

satellites, aircrafts and drones. Every platform can carry similar sensor but usually they differ for 

spatial and spectral resolution in the images due to different altitude during the survey. However, 

the forest managers chose the remote sensing source based on the goal to be accomplished and 

the extension of the area to be assessed.  

Knowing the current state and the temporal dynamics of the forest is crucial for both forest 

management and forest policy (Kennedy et al., 2007). Today, one of the most important challenge 

is the estimation of nationwide carbon balance in order to follow the goals and guidelines from 

REDD+. Since the forest is one of the key parts for their carbon stock, one affordable way to address 

this challenge is provided by remotely sensed data which has the potential to assess current and 

historical tendencies of forest degradation and deforestation (James Baker et al., 2010).  

As the carbon stock estimation, the demands for nationwide forest inventories continue to increase 

but the financial resources dedicated to that purpose are diminishing (White et al., 2016). In this 

context remote sensing technology will gain importance due to their ability of measuring some 

direct information or deriving others data by modelling (Brosofske et al., 2014). The more relevant 

technologies for inventories purpose and thus, those more studied by the scientific community 

include: high and very-high spatial resolution (HSR and VHSR) satellite optical imagery, digital aerial 

photogrammetry (DAP), airborne laser scanning (ALS) and terrestrial laser scanning (TLS) (White et 

al., 2016).  

One of the greatest advantages of remote sensing is the possibility to cover the entire globe multiple 

times, and now reaching a new global coverage almost every day with useful information about the 

forest. Therefore, a forest global monitoring is affordable and precise for many applications. Surely, 

monitoring illegal logging and deforestation in the tropical forests are the leading purposes in the 

monitoring field (Shimizu et al., 2017; Joshi et al., 2015; Hansen et al., 2013; Verbesselt et al., 2012; 

Asner et al., 2009). 

More interesting to the enterprise-level forest managers are the structural and spectral properties 

of the forest. Remote sensing data are broadly used to estimate structural parameters, such as: 

strata and zones of the forests, detection regeneration, canopy height estimation, diameter or basal 

area, canopy closure, etc. Although, the spectral information is related to the chemical compounds 
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in the canopy and leaf, this lead to more complex assessment for example tree species classifications 

and forest health assessment (Surový et al., 2019). 

5 Aims of the thesis 
Accordingly on what mentioned in the previous paragraphs and scientific literature, the remote 

sensing is leading a revolution in the forestry sector, either on scientific research and operational 

level (Surový et al., 2019; Noorian et al., 2016). The impact of this technology is highly effective in 

several aspects, we have chosen two quite different applications in order to response at current 

issues in the Italian forest sector. The forest is crucial for carbon stock, climate change mitigation 

and biodiversity conservation (Dinerstein et al., 2019), this is remarkably true for tropical forest but 

European and Italian forest are not less important.  

In the Chapter I the use of remote sensing was applied in combinations with numerous other 

environmental characteristics to evaluate the best sets of variables in order to estimate Douglas-fir 

fertility indices. The Douglas-fir (Pseudotzuga menziesii (Mirb.) Franco) in Italy can be used to help 

rural economy because of his ability to outproduce native coniferous and broadleaf (Lavender and 

Hermann, 2014; Ciancio et al., 1980) in terms of wood production. In order to reach this goal, the 

Douglas-fir plantation has to be expanded and thus reliable fertility indices and land suitability 

indicators are necessary for both planning and managing the plantations. The Site Index as the most 

common productivity and site quality indicator (Bueis et al., 2016; Corona et al., 1998) was 

investigated in conjunctions with the current annual increment ad fixed age (proposed as new 

fertility indicator). 

Since 2015 the Italian statistical institute (ISTAT) has stopped to collect and publish data about the 

real volume and forest surface harvested in Italy. This lack of information is due to a fractionated 

system of forest management and control to regional and province level. Usually the logging 

authorization released from the authority are not strict about the timing of operation and allow the 

logger to cut less than what he requested. This permissibility and the control deficiency, led to a not 

reliable data, i.e. the administrative data are useless for harvesting statistics. The Italian national 

forest report 2017-2018 has highlighted this problem, because a carefully designed planning on the 

growing and harvesting rate is essential for the sustainability of the forest sector. For this purpose, 

the remote sensing is a suitable solution because of the large number of freely available data and a 

relatively high spatial and temporal resolution. The Chapter II and Chapter III are focused on 

assessing the possibility to use different monitoring techniques developed for tropical forest in 
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Italian one. These studies try to evaluate and overcame difficulties due to several aspects such as 

the seasonality in the forest, different logging practices (e.g. coppice, thinning, transformation to 

high forest, etc), varying terrain topography and different forest reaction to harvest. In this context 

some scientific methodologies were assessed and evaluated with the aim of nationwide estimation 

of forest harvest/disturbance.  

In the Chapter II, a Bayesian approach for forest change detection developed by Reiche et.al (2015a) 

was used. In this chapter many difficulties and problems were avoided using a simplified method: 

Sentinel-2 derived indices (NBR, NDVI) were calculated from a summer only time series. In this 

condition the seasonality was excluded, but the time series utilized were only partial and not along 

all year. 

In the Chapter III, the whole Sentinel-2 time series was used, and two method to overcome the 

seasonality were assessed. Firstly, the previous approach was adopted with a spatial normalization 

proposed by the author to reduce the seasonality effect (Reiche et al., 2018a), after that, a more 

advanced algorithm with seasonality harmonic model fitting option was tested (Reiche et al., 

2018b). 

Finally, in the Chapter IV, the simplified method was employed to evaluate different time series, i.e. 

the fractional cover derived from the software CLASlite (Asner et al., 2009), gaining information 

from the whole spectral signature. Moreover, time series with different spatial resolution from 10m 

(Sentinel-2), 5m (RapidEye), and 3m (PlanetScope) were studied in order to verify if an increasing 

spatial resolution lead to an increasing accuracy. 

 

5.1 How to read the thesis 

The thesis main part is composed by 3 consecutive chapters, each one explains in detail problems 

and applications of remote sensing to forest monitoring and management. All chapters are 

organized as independent scientific paper, with a proper Introduction, Materials and Methods, 

Result, Discussion and Conclusion sections. The thesis ends with a General Conclusion chapter, that 

encloses a general explanation of the achievements and knowledge increases due to this work. 
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 – Site Index and growth prediction from remote 
sensing and environmental factors in Douglas-fir 
plantations 

1 Abstract 
The Italian Douglas-fir plantations (10 000 ha) are not widespread as in nearby European states, 

France (333 000 ha) as well as Germany (100 000 ha) (Lavender and Hermann, 2014). However the 

Douglas-fir plantations in Italy are able to outproduce both native conifers and broadleaves 

(Lavender and Hermann, 2014; Ciancio et al., 1980) in terms of wood production. 

Since wood production plays a key role in developing a rural economy, an increment of Douglas-fir 

plantation is essential in order to achieve this objective. Therefore, it is necessary to investigate 

good indices in order to assess the Douglas-fir land suitability. 

In this study two fertility indices, Site Index at 50 years old and net current annual increment, were 

adopted with the aim of finding their relationships with environmental characteristics, such as 

climate, soil and biochemical factors together with some remote sensed indices. 

The assessment plots were located in public property plantations. They differed in structure (density 

and volume), climate and soil characteristics, but they were similar in tree age. 

The statistical analysis was based on empirical mathematical models (multiple linear regression). 

Akaike information criterion (AIC) was implemented in order to select the most relevant subset of 

variables, then five best models for each fertility index were validated with Leave-One-Out Cross-

Validation (LOOCV) to identify the best prediction model. 

Each fertility index was studied to obtain both prognostic and diagnostic predictions. For these 

purpose different subsets of variables were selected; in the prognostic model only variables not 

directly related to stand were used while in the diagnostic model there were adopted all the 

variables. Moreover, a further simplified diagnostic model was elaborated using the variables which 

did not need field survey. 

Both fertility indices were related to the variables; the majority of variance was explained by the 

diagnostic models (site index R2 = 0.97; CAI R2 = 0.98), differently, the prognostic models reached 

the worst results with the lower explained variance (site index R2 = 0.63; CAI R2 = 0.50) and the 

simplified approach got mid-way results (site index R2 = 0.75; CAI R2 = 0.56).  
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2 Introduction 
Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) was introduced in Italy since the end of XIX 

century during significant reforestation programs focused on wood production aims.  

Nowadays, it is possible to find its plantations in most Italian regions, nevertheless the main planting 

areas are located in the central part of the peninsula, such as in Tuscany and Emilia Romagna. 

Moreover, after a century of studies and tests, several authors shown that the Douglas-fir growth 

rate makes possible to outproduce both native conifers and broadleaves (Lavender and Hermann, 

2014; Corona et al., 1998; Ciancio et al., 1980) and they have proposed Apennines as its optimal 

vegetation zone (Lavender and Hermann, 2014; Corona et al., 1998). Furthermore, no serious 

disease were observed (Corona et al., 1998; Ciancio et al., 1981) and a more recent study has shown 

substantial improvement on soil C sequestration, N stock and microbial activity rather to indigenous 

beech forest (Antisari et al., 2015). 

However, the plantation extension in Italy (10 000 ha) are far less than the nearby European state, 

such as France (330 000 ha) and Germany (100 000 ha) (Lavender and Hermann, 2014). 

In this context, an increment of Douglas-fir plantation it is possible and useful for developing a 

stronger rural economy. 

For those reasons reliable fertility indices and land suitability indicators are necessary for both 

planning and managing plantations. In fact, lots of authors were focused on finding relationship 

between productivity indices and site features, such as soil, climate and topographic characteristics 

(Littke et al., 2016; Kimsey et al., 2008; Curt et al., 2001; Corona et al., 1998); despite all of these 

efforts, they were able to reach just low amount of explained variance (R2= 0.4 - 0.58), except for 

Littke et al. (2016) which has got R2=0.89 during calibration and R2=0.66 on validation but using 

boosted regression trees (BRT) models. 

The aim of this investigation was to develop multiple linear regression models in order to explain 

and predict important information for forest planning and management such as Site Index and stand 

growth rate (net current annual increment). The fist one it is the most common site quality and 

productivity indicator (Bueis et al., 2016; Corona et al., 1998) and the second one was proposed as 

fertility index since it was used at fixed age. 

This purpose was achieved with three different sets of variables to simulate different level of data 

availability and distinguish between prognostic (ex-ante) and diagnostic (ex-post) models.  
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3 Materials and methods 

3.1 Study area 

The study was carried out in P. menziesii plantations inside the Foreste Casentinesi National Park, 

located in Italian Northern Apennine (Figure 2). The climate region is warm temperate, occasionally, 

with short summer drought; the rainiest periods are Autumn and Spring and in winter the snow 

cover is common.  

The soils are sandy-loam and sometimes clay-loam, with normal LFH horizon due to their agriculture 

history. 

Fifteen field plots with approximately the same stand age were chosen, in order to cover a wide 

range of elevation, local climate and stands structure (density and volume; see Table 1). The stands 

were situated between 530 and 825 m a.s.l., with slopes range between 5 and 60% and they were 

even-aged plantations on ex-agricultural land; stands with a known history of thinning, fire or storm 

disturbance during the reference study-period (2003 - 2015) were excluded from the analysis. 

 

Figure 2 - Location of the study area and relative plots for field survey. 
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3.2 Stands data 

A square 30 m plot was permanently located in each stand, and the all trees measurement were 

repeated in two date, 2003 and 2015. All heights were interpolated by a species-specific model 

(Curtis, 1967) in order to reduce the uncertainty associated with height measurement. Initially it 

was calibrated with data from both survey date and for each plot, then the heights were predicted 

as function of tree age and diameter at breast height (DBH).  

Stem volume was estimated for each date as a function of tree height and diameter using a site-

specific allometric model (Bernetti, 1965), corrected for treetop volumes. Then, stand net current 

annual increments (CAI) were estimated as volumes cumulated difference in 2015 and 2003. 

In order to correct for small age differences among stands, a species-specific top height model 

(Maetzke and Nocentini, 1994) was used to estimate the Site Index (mean height of the 100 

dominant thickest trees per hectare at age of 50 years) for every plot as a function of top height and 

age. 

Table 1 - Measured and estimated stands characteristics (value between all 15 plots). 

 Max Min SD 
Age 
years 

48 40 3 

Density  
trees/ha 

933 511 119 

DBH (mean) 
cm 

38 28 3 

H (mean) 
m 

29 23 2 

Hd 
m 

36 27 3 

SI 
m 

38 31 2 

Volume 
m3ha-1 

928 541 114 

CAI net 
m3ha-1years-1 

27.7 7.5 6.6 

Note: To be notice the plots heterogeneity in terms of volume and density as well as current annual increment and the relatively 

homogeneous stands age. 
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3.3 Soil variables 

For each stand, soil samples were taken in center of the plot, as well in all four cardinal directions 

with 10 m distance from plot center. For each sampling point, the samples were taken at three 

different depths, corresponding to the forest floor (LFH), superficial (0-10 cm) and bulk mineral soil 

(25-35 cm). 

In the laboratory, the samples were air-dried, manually grounded and sieved to 2 mm in order to 

remove rocks and roots. Soil texture at both depths was assessed by standard laboratory methods 

(Kettler et al., 2001) modified with 20 min sedimentation time. 

Small sub-samples were weighted in silver capsules and scanned by an elemental analyzer CHNS-O 

(mod. Flash 2000, Thermo Scientific, MA) connected online to the isotope mass spectrometer 

(DELTA V Advantage, Thermo Scientific, MA) in order to estimate biochemical indices (soil C/N ratio, 

soil δ15N and forest floor δ13C). The small soil samples were pretreated before the elemental 

analyzer with HCl 6M to remove all the carbonates. Soil δ15N value was estimated as an index of N 

availability and net nitrification (Kahmen et al., 2008; Templer et al., 2007). 

Forest floor δ13C was measured as water stress index (Wilson and Maouire, 2009; Ehleringer et al., 

2002; O’Leary, 1993; Farquhar et al., 1982), neglecting any effects of fractionation during 

decomposition. Intrinsic water use efficiency (iWUE) was estimated from δ13C (Leonardi et al., 2012; 

Farquhar et al., 1989): 

 
Eq. 1 – Intrinsic water use efficiency equation. 

 

Reference values of atmospheric δ13C and CO2 concentration were derived from the literature 

(Dlugokencky et al., 2016; White et al., 2015). 

 

3.4 Climatic variables 

Climatic variables for each plot could not be measured directly, but they were estimated from a 

dense network of nearby meteorological stations which are managed by Regional Meteorological 

Service (ARPAE) and water utility company (Romagna Acque S.p.A.). Monthly temperature and 

precipitation data in the period 2003-2015 were used. Mean, minimum and maximum temperatures 

  
iWUE = 0.625 Ca 1− Δ13C − a

b− a
⎛
⎝⎜

⎞
⎠⎟
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from the nearest meteorological station were corrected for each field plot. The data error was due 

to different elevation between field plot and meteorological station, so a monthly lapse rate was 

used. It was computed over the entire study area using the entire stations network (between 41 

and 1060 m a.s.l). 

A similar error for monthly precipitation data was corrected, this error was due to the distance 

between filed plots and nearest meteorological station. Long-term correction factors, based on 

available precipitation maps (1961/1999), were used. 

According to Rehfeldt et al. (2014), a suite of climate variables statistically related to P. menziesii 

climate niche was computed for each plot (see Table 2). 

 
Table 2 - Climate variable statistically relevant to delineate Douglas-fir niche according to Rehfeldt et al. (2014) 

Variable Unit Definition 
MTCM °C Mean temperature in the coldest month 
MTWM °C Mean temperature in the warmest month 
MMAX °C Maximum temperature in the warmest month 
SUMP mm Sum of July and August precipitation 
TDIFF °C Summer–winter temperature differential: MTWM - MTCM 

Note: abbreviation used along the article and how were computed the variables with their units. 

 

Since the great importance of site water balance demonstrated for P. menziesii growth (Corona et 

al., 1998; Tyler et al., 1996), the annual sum of soil water deficit and surplus were computed for 

each plot as Thornthwaite and Mather (1957) suggested. The USGS tool available online (McCabe 

and Markstrom, 2007) was applied. 

Solar radiation values for each plot were extracted from the Climate-SAF database (Huld et al., 2012; 

Šúri et al., 2007), correcting for plot slope and aspect. 

 

3.5 Remote sensed variables 

Lastly, the set of variables was completed with six remotely sensed indices, which are related to Net 

Primary Production (NPP), photosynthetic activity, chlorophyll content and leaf nitrogen (Xiao et al., 

2018; Weiss and Baret, 2016; Dash and Curran, 2004; Gower et al., 1999): the Fraction of Absorbed 
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Photosynthetically Active Radiation (FAPAR), Leaf Area Index (LAI), Canopy chlorophyll content 

(Cab), MERIS terrestrial chlorophyll index (MTCI), Inflection Point in the Red Edge (REIP). 

Due to the high spatial resolution of Sentinel-2 images, S-2 products were choosing to compute the 

remotely sensed variables. The Level 1C (top-of-atmosphere radiance) product was downloaded 

from Copernicus Open Access Hub web site, after a quick look at the products, the image with 

sensing date 2015/07/04 was selected in order to match the field survey period and exclude the 

clouds problem. The process to Level 2A (top-of-canopy reflectance) product was done by SNAP 

v6.0 software and the internal plug-in sen2cor (Müller-Wilm, 2017) with setting as default and the 

terrain correction with Digital Elevation Model from the Shuttle Radar Topography Mission enabled. 

Afterward, the indices were calculated using SNAP functions within thematic land and biophysical 

processor. Lastly remote sensed variables were extracted from the grids (10x10 pixel resolution) for 

each plot calculating mean over the plots area. 

 

3.6 Models development 

The relationship between each dependent variable (CAI and SI) and potential predictors was 

assessed through a sequential process of model calibration and validation, which was entirely 

executed in the open source software R (R_Core_team, 2016). 

Firstly, three subsets of variables were selected in order to simulate different variables availability 

and distinguish the models potential. The prognostic models were developed without variables 

directly related to stands aimed at predicting the fertility indices ex-ante the Douglas-fir plantation. 

The diagnostic models were developed with all variables to reach the best possible variance 

explanation. Lastly, simplified diagnostic models were proposed selecting just the variables which 

did not need field survey. 

Based on information theory (IT), the most reliable multiple linear regression models were 

determined by the Akaike Information Criterion (AIC) through an iterative comparison of all possible 

variables combinations (Aertsen et al., 2010; Zuur et al., 2007), using the glmulti::glmulti R function.  

Therefore, five best models resulting from each AICc screening were selected and compared 

through a calibration (bootstrap) and validation process. Model validation on an independent 

dataset is recognized as the most effective way to assess model reliability (Amaro et al., 2015). The 

validation process was based on the Leave-One-Out-Cross-Validation (LOOCV) method and 
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executed through the caret::train R function (Aertsen et al., 2010): the model was fitted to 14 plots 

values and the 15th plot was predicted by that model, afterwards the prediction result from the 

model and the real values of 15th plot was compared. This procedure was repeated for 15 times and 

every time using different plot as 15th one. 

The predictive performance of each model was quantified in terms of explained variance fractions 

(R2) (Aertsen et al., 2010), model root mean square error (RMSE), which is the absolute goodness-

of-fit indicator and describes the difference between observed and predicted values in 

measurement units (Aertsen et al., 2010). Lastly, the relative root mean square error (RMSE%) was 

used to add more information on models assessment. 

 
Table 3 - Input variables list. 

Variables Unit Max Min SD 
Altitude m a.s.l. 825 199 153.9 
Slope % 60 5 0.2 
Sand_10 % 41 12 9.4 
Clay_10 % 12 5 1.8 
Sand_35 % 38 11 8.4 
Clay_35 % 16 5 3.1 
C/N_litter - 42.6 25.9 4.2 
C/N_10 - 13.6 9.2 1.4 
C/N_35 - 9.0 6.8 0.6 
δ15N _10 ‰ 2.1 -1.5 1.0 
δ15N _35 ‰ 3.4 1.0 0.8 
WUEi - 99.2 77.2 5.6 
Volume (V) m3/ha 927.6 541.4 114.3 
Age years 48 40 2.5 
MMAX °C 30 25.8 1.3 
MTWM °C 23.1 20.1 1.0 
MTCM °C 3.5 1.9 0.4 
TDIFF °C 19.6 17.6 0.8 
SUMP mm 139 98 12.6 
Rad kWh 192 128 17.5 
Sum_deficit mm 75 26 16.0 
Sum_surplus mm 1194 426 259.8 
LAI - 3.1 2.5 0.212 
FAPAR - 0.77 0.69 0.027 
Cab - 193 132 17.5 
MTCI - 5.3 3.7 0.396 
REIP - 723 721 0.718 
NDVI - 0.86 0.82 0.01 
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4 Results 

4.1 Site Index 

The five best models ranked by AICc were selected, despite the significance threshold of two AICc 

units according to Calcagno and Mazancourt (2010). These models were calibrated with bootstrap 

and validated with LOOCV.  

The coefficients of determination (R2) computed in validation and calibration did not corroborated 

the AICc ranking, see Table 4. 

As expected, the SIex-post analysis achieved the best prediction results up to R2 = 0.97 and RMSE = 

0.36 m in the validation step using the following model: 

 

 
Eq. 2 - Best Site Index model to explain ex-post fertility.  

 

All five SIex-post models agreed with the importance of MMAX and TDIFF variables and even Cab and 

LAI were often selected by AICc. Regardless the different variables selected, the results were quite 

similar in terms of R2 and RMSE. 

SIex-ante models selection were much more uniform, since all the five models agreed with the 

importance of CN_35, MMAX and MTWM, furthermore the relative importance of predictors were 

confirmed by calc.relimp::relaimpo function (R) according to Chevan and Southerland (1991); each 

model was based on these three variables plus one (Table 4). 

 
Table 4 - Site Index models summary.  

 Calibration Validation 
Variables 

 Ranking 
(AICc) R2 R2 RMSE 

(m) 
RMSE_rel 
(%) 

SI ex-post 

1° 0.99 0.97 0.36 1 MMAX; TDIFF; Cab; LAI; Sand_10; Rad; Slope 
2° 0.98 0.95 0.45 1.29 MMAX; TDIFF; Cab; LAI; Sand_35; Delta_N_10 
3° 0.97 0.88 0.63 1.81 MMAX; TDIFF; Cab; LAI; Sand_35 
4° 0.96 0.89 0.67 1.93 MMAX; TDIFF; Sand_35; Delta_N_10; Age;  
5° 0.98 0.93 0.52 1.5 MMAX; TDIFF; Delta_N_10; Age; CN_35; WUEi 

  

SIex− post =  117.59+ 0.84 MMAX( )− 4.26 TDIFF( ) + 0.26 Cab( )− 29.06 LAI( ) +
              + 0.2 Sand_10( ) + 0.06 Rad( )− 3.02 Slope( )
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SI ex-ante 

1° 0.73 0.58 1.29 3.7 CN_35; MMAX; MTWM 
2° 0.80 0.63 1.22 3.5 CN_35; MMAX; MTWM; Slope 
3° 0.77 0.52 1.41 4.1 CN_35; MMAX; MTWM; Delta_N_35 
4° 0.76 0.44 1.65 4.8 CN_35; MMAX; MTWM; Clay_35 
5° 0.76 0.55 1.41 4.1 CN_35; MMAX; MTWM; Altitude  

SI 
simplified 

1° 0.93 0.74 1.01 2.9 LAI; REIP; SUMP; Sum_surplus; Altitude; Rad 
2° 0.75 0.49 1.44 4.1 LAI; REIP; SUMP; Sum_surplus; 
3° 0.84 0.63 1.22 3.5 LAI; Cab; MTWM; Sum_deficit; Rad 
4° 0.62 0.44 1.49 4.3 LAI; Cab; MTWM;  
5° 0.84 0.57 1.35 3.9 LAI; Cab; MTWM; Sum_deficit; MMAX 

Note: Ranked by AICc; calibration R-squared (R2) with bootstrap, validation R-squared (R2) with LOOCV, root mean squared error 

(RMSE), relative root mean square error (RMSE_rel), variables included in the model (Variables). 

 

 
Eq. 3 - Best Site Index model to predict the fertility ex-ante plantation. 

 

The simplified models for SI were divided in two main groups of variables and only the LAI is 

highlighted in all the models. The superior results of best model were probably due to the highest 

number of variables, however the AICc ranking agreed with the R2 ranking (Table 4). 

 

 
Eq. 4 - Best simplified Site Index model to explain fertility without field survey. 

 

All the best models did not shown trends in the residuals and their frequency distributions were 

quite normal. The analysis of variance for the best models revealed that Rad, Altitude and REIP were 

not significant (p-value > 0.05) for the models, also the MMAX and Slope were not significant but 

only for the SIex-ante model. Nevertheless, the other variables were all significant (p-value < 0.05). 

  SIex−ante =  16.07+ 3.12 MMAX( )− 3.86 MTWM( ) + 2.06 CN_35( )− 3.41 Slope( )

  

SIsimplified = −1316+ 1.99 REIP( )− 12 LAI( ) + 0.08 Rad( )− 0.71 SUMP( ) +
                + 0.04 Sum_surplus( )− 0.009 Altitude( )
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4.2 Net current annual increment 

Since the small variability in trees age (eight years), the CAI_net has been proposed as fertility index 

ad fixed age. 

The same protocol used for Site Index models was adopted for net current annual increment 

(CAI_net) and the results from the three models type were similar: the best results were for ex-post 

modeling, the worst were for ex-ante and the simplified reached mid-way results. 

The CAIex-ante and CAIex-post models were agreed with the importance of Altitude variable since it was 

chosen always by the AICc selection, but the CAIsimplified models did not corroborate this importance 

(Table 5) 

The results and the variables selection for CAIex-post models were very similar, in fact, the models 

were different from each other only for one o two variables. The Altitude, Sand_10, Sand_35, 

Delta_N_35, Rad were selected for all the models.  

  

Figure 3 - Goodness of fit for the best Site Index models:  

(A) SI ex-post; (B) SI ex-ante; (C) SI simplified. 
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Table 5 - CAI net models summary. 

Note: Calibration ranking during the selection of variables by AICc, R-squared (R2) in calibration, R-squared (R2) in validation, root 

mean squared error (RMSE), relative root mean square error (RMSE_rel), variables included in the model (Variables). 

 

 
Eq. 5 - Best model to explain the CAI in Douglas fir plantation. 

 

  

CAIex− post = −129+ 0.03 Altitude( )− 2 Sand_10( ) + 2.04 Sand_35( )− 2.88 Delta_N_35( )−
                - 0.25 Rad( ) + 4.88 MTCI( ) + 2.1 FAPAR( )

 Calibration Validation 

Variables 
 

Ranking 

(AICc) 
R2 R2 

RMSE 

(m3/ha-1/yr-1) 

RMSE_rel 

(%) 

CAI 

ex-post 

1° 0.99 0.98 0.96 6.1 
Altitude; Sand_10; Sand_35; Delta_N_35; 

Rad; MTCI; FAPAR 

2° 0.98 0.96 1.37 8.6 
Altitude; Sand_10; Sand_35; Delta_N_35; 

Rad; Cab 

3° 0.99 0.98 0.95 6 
Altitude; Sand_10; Sand_35; Delta_N_35; 

Rad; Cab; REIP 

4° 0.99 0.96 1.22 7.7 
Altitude; Sand_10; Sand_35; Delta_N_35; 

Rad; Cab; CN_35 

5° 0.99 0.97 1.12 7.1 
Altitude; Sand_10; Sand_35; Delta_N_35; 

Rad; LAI; CN_35 

CAI 

ex-ante 

1° 0.64  0.43 5.97 37.8 Altitude; MMAX 

2° 0.53 0.30 6.63 42 Altitude 

3° 0.61 0.35 6.19 39.2 Altitude; Slope 

4° 0.71 0.50 5.15 32.6 Altitude; Slope; Sum_deficit 

5° 0.60 0.34 6.29 39.8 Altitude; Sand_10 

CAI 

simplifi

ed 

1° 0.63 0.53 4.42 27.9 LAI 

2° 0.70 0.56 4.29 27.1 LAI; Rad 

3° 0.68 0.53 4.46 28.2 LAI; FAPAR 

4° 0.68 0.50 5.15 32.6 LAI; Altitude 

5° 0.67 0.49 4.64 29.4 LAI; REIP 
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The ranking by AICc in CAIex-ante models wasn’t corroborate by R2 results, the best model was the 

fourth, it was probably due to the highest number of variables in that model. 

 

 
Eq. 6 - Best model to predict the CAI net 

 

As for CAIex-ante models, the CAIsimplified models were able to explain only half of the total variance 

(Table 5). These results were due to the lower numbers of variables used in the models. Besides 

that, the diagnostic model (CAIsimplified) with only two variables overcame the prognostic one (CAIex-

ante) because the CAI is much more related to LAI than Altitude. 

 

 
Eq. 7 - Best diagnostic CAI model with simplified method. 

 

The analisis of variance (ANOVA) for the CAI best models shown a lack of significance only for Rad 
and Sum_deficit, p-value lower than 5%. Furthermore, any plot with fitted values against residuals 
did not shown particular pattern. 

 

  

  CAIex−ante = 8.49+ 0.03 Altitude( )− 0.14 Sum_deficit( )− 13.86 Slope( )

  
CAIsimplified = − 62.57+ 38.39 LAI( )− 0.19 Rad( )

Figure 4 - Goodness of fit for the best CAI models: 

(A) CAI ex-post; (B) CAI ex-ante; (C) CAI simplified. 
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5 Discussion 
Site index has always been the most used parameter to estimate the site fertility with the aim of 

evaluate the forest productivity (Maetzke and Nocentini, 1994). However, this assumption is based 

on the well know relation between high and growth, but it is possible to study directly the relation 

between site parameters and growth (current annual increment). 

Therefore, instead of trying to estimate only the Site Index, we have studied the possibility to 

suggest volume current annual increment at fixed age as fertility index. 

The outstanding results obtained are remarkable compared to other empirical models developed. 

A great result was reached thru MLR by Klinka e Carter (1990) with 84% of explained variance in 

calibration; afterward a lots of authors (Kimsey et al., 2008; Curt et al., 2001; Curt, 1999) have tried 

to achieve better results changing variables and model technics. Nevertheless, they didn’t exceed 

the 42% of explained variance. Only an Italian study was able to overcame the average and explain 

58% of variance (Corona et al., 1998). Furthermore, a recent study (Littke et al., 2016) was able to 

explain the 89% of site index variation during calibration and 66% on validation, but using boosted 

regression trees models. 

Before going any further, it is necessary to highlights the principal limits of this study; these great 

results achieved were obtained with data from 15 site located in three valleys adjacent each other, 

hence these data cannot represent all the environmental variance of Italy, but they can be a good 

thrust to try of apply this method on bigger scale. 

That said, the SIex-post model achieved the 97% of explained variance, therefore it is a very good 

diagnostic model to predict SI at 50 years in a young douglas-fir plantation with only 0.36 m error. 

On the other hand, the prognostic model (SIex-ante) wasn’t able to explain the same amount of 

variance, but this approach allows the users to estimate the land suitability for new plantations. 

Therefore, it is necessary for increasing the douglas fir plantation extensions. 

At last, the SIsimplified method is designed for users which need to accomplish these predictions with 

less efforts. 

Moreover, about CAI models, the results were similar to those gained for SI, but the values obtained 

are directly the volume growth instead of fertility index. 
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5.1 Statistical approach 

The application of multiple linear regression is simplistic for representing the eco-physiological 

relationship between growth and environment because most ecological variables shows a typical 

non-linear course (Aertsen et al., 2010) and the effect on growth is more complex than a multiple 

linear regression. However, this study wasn’t focused only on eco-physiological explanation of 

growth rather on develop useful and user-friendly models. 

Due to these reasons, the statistical approach was designed with the validation step. Similar studies, 

even with different model technics, bases their results only on calibration. These models are 

interesting on eco-physiological explanation, but on the other hand, they are not really tested to 

make prediction. 

According on this difference between validation and calibration, every paper should highlight which 

method was used for the analysis, because often it isn’t very clear if the results are from validation 

or calibration method. 

5.2 Factors affecting fertility 

The multiple linear regression was chosen even for its easy interpretable results, therefore every 

selected variable in the model has a straightforward relationship with the Site index and CAI, each 

one with a positive or negative effect. 

Lots of climate variables computed by Rehfeldt et al. (2014) such as TDIFF, MTWM, MMAX were 

included in the models, these inclusions corroborate his thesis; i.e. the climate index are significantly 

related to the Douglas-fir growth range. 

The positive effect of Sand_10 and Sand_35 showed the importance of the soil drainage for Douglas-

fir, highlighted by Corona et al. (1998) in Italy and Tyler et al. (1996) in Scotland. About the positive 

effect of Sand_10, it is necessary to indicate an incongruent result in the CAIex-post model. 

The solar radiation (Rad) has different effect for CAI and SI models, but in both cases the ANOVA 

highlighted a lack of significance. 

The geomorphological variables such as slope and altitude were probably incorporated in the 

models as surrogate variables for climate and soil condition (Tyler et al., 1996), moreover the 

importance of altitude on productivity study has been demonstrated repeatedly (Tyler et al., 1996; 

Worrell, 1987). 
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6 Conclusion 
The potential growth of Douglas-fir in Italy is very high and the indigenous conifer cannot reach the 

same productivity (Corona et al., 1998). Looking around in the near European state, the Douglas-fir 

plantation are much more widely spreads (Curt et al., 2001) than Italy, thus it is reasonable to think 

at Douglas-fir plantation area expansion.  

Nowadays some politics and governments drive in a different direction and try to limit the extension 

of the Douglas-fir because it is considered as not indigenous species. Today, after almost a century 

of Douglas-fir presence in Italy and lots of different studies, no serious disease has been observed 

(Corona et al., 1998; Ciancio et al., 1981) and it hasn’t an invasive attitude. Therefore, the politics 

could be changing to stimulate the plantation and increase the wood production with a high 

productive species such as the Douglas-fir. 

This study has performed good results in order to estimate the land suitability for the Douglas-fir 

plantation in Italy. These tools are crucial to allow good territorial planning and guide clever 

investments.  
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 – Evaluation of Sentinel-2 time series change 
detection for forest harvesting of variable intensity 
in temperate forests 

1 Abstract 
Robust data for forest harvesting in Italian forest are missing (Cesaro et al., 2019; Mori, 2019). These 

data are crucial for a correct control and management on a regional and national level for a natural 

resource like forests. The remote sensing data archive and access are growing now more than ever 

(Drusch et al., 2012; Wulder et al., 2012), they are creating an immense quantity of data with 

continuous updating. This remote sensing characteristics made it an affordable and reliable solution 

for a precise forest monitoring. Since many studies have already established different solutions for 

forest change detection (Reiche et al., 2018a; Hirschmugl et al., 2017b; Ryan et al., 2012; Asner et 

al., 2009), this study was focused on the application to Italian forest of one promising solution 

(Reiche et al., 2015a), developed on tropical forest. A practical tool for an easy application on a large 

scale was the goal. Keeping this in mind, cloud and seasonal problems were partially avoided for 

creating the NDVI and NBR time series from Sentinel-2 images. 

The accuracy assessment based on error matrixes has returned comprehensive values of User, 

Producer and Overall Accuracy (UA, PA, OA) for control the algorithm results on spatial and temporal 

accuracy. Different harvesting techniques were considered and used to verify the detection 

capability with a different impact on the crown cover. 

The best results were achieved using single NBR time series. it was able to reach PA and UA for 

spatial accuracy equal to 92 and 83 respectively. Furthermore, the detection was very good for all 

harvesting techniques assessed (PA values: clear-cut 99, coppice 95, thinning 94), the worst one was 

for conversion (PA 84). 
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2 Introduction 
Change detection algorithm development for tropical forest are driven mainly by the need of quickly 

identify and quantify deforestation over large areas (Reiche et al., 2018a; Hirschmugl et al., 2017b; 

Ryan et al., 2012; Asner et al., 2009). Nevertheless, the importance of sustainable forest 

management is rapidly increasing in Europe and in the European Commission it’s raising awareness 

(2013), therefore a reliable method for mapping and identify forest degradation and disturbance is 

fundamental. According to Intergovernmental Panel on Climate Change (IPCC) carbon report, forest 

degradation is clearly attributed to a “direct human-induced activity that leads to a long-term 

reduction in forest carbon stocks”. Instead, the forest disturbance is commonly used to describe 

mainly natural effects on the forest biomass or crown cover, such as forest fire, drought stress, 

storm damage, insect infestation and may include short-term impact harvesting (Hirschmugl et al., 

2017b). 

Since the opening archive of Landsat data in 2008 (Wulder et al., 2012) many other space agencies 

followed the data policy from United States Geological Survey (USGS), for instance the European 

Space Agency (ESA) with the Sentinel-2 mission (Drusch et al., 2012). These datasets are growing 

now more than ever before and with such data volume in high spatial and temporal resolution, using 

time series analysis allow to carefully monitor changes in a national (Potapov et al., 2012) and global 

level (Hansen et al., 2013). However, forest types, seasonal effects as well as degradation drivers 

are geographic location related. Consequently, it’s difficult to provide a reliable method with a very 

high detailed products able to satisfy managers and politics in a multilevel system (local, regional, 

national and global level). In this context the recently lunched Sentinel-2A and Sentinel-2B (in June 

2015 and March 2017, respectively) are a feasible answer for a multilevel forest monitoring due to 

their high spatial resolution and sort revisit time. 

2.1 Optical sensors problems 

Anyhow all optical observations are facing some constrains which effect a time series analysis. First 

of all, the major problems for optical sensor in remote sensing are clouds and cloud shadow 

(Hirschmugl et al., 2017a; Zhu and Woodcock, 2014; Huang et al., 2010; Asner, 2001). The cloud 

problem is especially evident in change detection analysis because cloud contamination may be 

mapped as false changes (Huang et al., 2010). There are many methods for detect and mask cloud 

and cloud shadow (Zhu and Woodcock, 2012; Huang et al., 2010; Irish et al., 2006) but nowadays 

researchers are usually still avoiding the problem using cloud-free images (Tang et al., 2019; Grecchi 
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et al., 2017; White et al., 2017), although studying new procedure to improve cloud masking 

(Baetens et al., 2019).  

For Sentinel-2, the European Space Agency (ESA) processor for converting images from Level-1C 

(Top Of Atmosphere) to Level-2A (Bottom Of Atmosphere) it’s called Sen2Cor (Main-Knorn et al., 

2017). During the atmospheric correction procedure, it generates a pixel classification map (cloud, 

cloud shadows, vegetation, soils/deserts, water, snow, etc.). This classified scene can be used to 

mask cloud and cloud shadow (Ranghetti and Busetto, 2019), but the accuracy is not perfect 

especially for cloud shadow and for cloud borders. For this purpose, Ranghetti and Busetto 

implemented in their procedure the possibility to add a buffer and smooth the mask (Ranghetti and 

Busetto, 2019). 

Furthermore, the optical images are susceptible of seasonal or cyclic changes driven from annual 

temperature and rainfall interaction (Verbesselt et al., 2012), which impacts in plant phenology. 

This is particularly true in temperate zones, where four seasons are remarkably impacting in the 

plant crown appearance and characteristics. Using a time series approach, this effect is a real 

Figure 5 - SEN2COR processor generate Level-2A products with a scene classification for many classes including cloud and cloud 

shadow (ESA, 2019). from left to right: (1) Sentinel-2 Level-1C TOA reflectance input image, (2) the atmospherically corrected Level-

2A BOA reflectance image, (3) the output scene classification of the Level-1C product. 
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concern and there are different techniques to address this issue (Reiche et al., 2015a, 2018a; 

Shimizu et al., 2017; Cai and Liu, 2015; Verbesselt et al., 2010), however these studies are made in 

tropical region with different forest and different seasonal cycle. Occasionally, a simple but 

effective workaround is used: excluding images in the useless period of the year (Shimizu et al., 

2017); e.g. in winter trees are leaf-off and remote sensing signal is weaker than summer 

conditions for disturbance detection. 

The clouds in temperate zones are present mainly during fall, winter and spring but in summer long 

cloud-free periods are common. Moreover, in summer the forest NDVI and NBR is much more 

different from the disturbance condition than in winter NDVI/NBR. In this regard, the study was 

focused on using a time series change detection approach excluding potential errors and 

complications. Therefore, only summer images (June, July, August) were used to compose the time 

series. In this way a simplified method developed for tropical forest was tested to perform change 

detection in temperate forests (Italian Apennine). This aim was addressed in order to potentially fill 

the lack of information present in the Italian forest sector about statistical data on forest harvesting. 

This problem has a long history ending with the statistical data interruption in 2015 (Mori, 2019). 

As Mori (2019) wrote and Brosofske et al. (2014) reinforced, the potential for a statistical and 

inventory data produced from remote sensing techniques is more and more near to reality. 

Nowadays, the remote sensing data accessibility granted from space agencies all across the globe 

give a ready-to-use database of information never saw before. Although, a great number of change 

detection methodology has already been proofed and they show stunning results (Zhu, 2017). Since 

there aren’t methodology tested in Italian forest, the aims of this study was to verify the application 

of a change detection method developed in tropical forest from Reiche et al. (2015a), which 

revealed a promising results. All the process was done bearing in mind the intention to upscaling 

the procedure to a nationwide level. Given all these circumstances, the procedure adopted was 

simplifier than the original method (Reiche et al., 2015a) in order to achieve the best result in the 

simplest way. Because of the future view to upscaling and deliver a practical tool for institutions and 

authorities interest in a frequent and precise forest harvest monitoring for statistical and 

management purpose. 
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3 Materials and methods 

3.1 Study area 

For this study, the area of interest was chosen based on the data availability and the possibility to 

find different logging techniques adopted in the period 2015-2018. In central north Apennines in 

the region of Emilia-Romagna, the authority designated to control and authorize the forest 

harvesting was able to share information about logging events during the period of interest, and so 

the province of Bologna was chosen. 

In that area the forest is predominantly composed by broadleaf tree, but some planted conifer, such 

as Pinus spp and Abies are present as well. The forest management in coniferous stands is mainly 

based on thinning and clear-cut. On the other hand, the principal techniques in broadleaf stands are 

coppice with standards, conversion from coppice to high forest and thinning. All the previous 

mentioned practices are limited in intensity and extension by law, but the regulation give a per 

specie range of variation for the intensity. 
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Figure 6 - Study area location, in the zoomed window are showed the dataset for calibration and validation. 
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The forest in this area has a long history of exploitation and harvesting, beside the period during the 

second world war two, the forest is growing faster than the harvesting rate. This condition assures 

the sustainability of the practice and clears any doubts about deforestation, in fact the forest 

extension is growing (Cesaro et al., 2019). 

 

3.2 Bayesian multi-input time series approach 

The time series change detection approach chosen is explained in detail by Reiche et. al. (2015a). 

This method is able to use multiple time series as input, no matter if they are coming from the same 

sensor o different one. It’s based on non-forest conditional probability calculated on forest (F) and 

non-forest (NF) probability density functions. Each probability density function has to be defined for 

every time series used. The NF conditional probability at each time is determinate by iterative 

Bayesian updating, using previous, current and future observations to confirm or reject a forest 

disturbance. If the condition NF probability exceeds the defined threshold, a potential disturbance 

is flagged, in order to be confirmed the follow update has to be over the threshold as well, otherwise 

the mark will be removed. 

The threshold value used is the same suggested by the authors (Reiche et al., 2015a) and correspond 

to 0.9. Furthermore, the probability density functions were estimated from a calibration dataset 

created from verified logging events in order to define parameters accurately calibrated on the 

study area. 

 

3.3 Calibration and validation dataset 

With the aim of assessing the potential of this change detection method in Italian forest, using a 

local database for calibration and validation is crucial. The calibration dataset extension is about 

7200 ha, however the forested area is 4050 ha based on the regional forest map updated on 2014. 

The forest probability density function was calculated over this 4050 ha excluding the known logging 

surface. As shown in Table 6, the harvested surface is much less than the undisturbed one, but this 

represent almost the total harvest in the period 2015-2018 classified by the logging techniques 

adopted. It was used this area to calibrate the parameters because the large variety of cut extension 

and techniques, but the database wasn’t included all the logging events in the reference period 

(2015-2018). This is due to the lack of information in the Italian forest sector. The database was 
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created with the help of forest control authority (Unione dei comuni), a field survey and some 

photointerpretation from satellite very high-resolution images but even with all this effort was 

impossible to create a complete database as large as this with all the logging events.  

As displayed in Figure 7, the validation dataset was a nearby area of calibration dataset without 

overlapping. This was necessary in order to properly verify the change detection results on an 

independent dataset. The area was much smaller than the calibration dataset and correspond to 

about 400 ha. Adopting a smaller area allow to clearly identify all the cuts executed in the period 

2015-2018 and inventory it in order to have a complete reference dataset (see Figure 8). 

Table 6 – Statistical summary for calibration database, the high number of coppice cut show the importance of this technique in the 

study area. 

 

Harvesting 

type 

Number 

of areas 

Average 

extension 

(ha) 

Min 

extension 

(ha) 

Max 

extension 

(ha) 

Total 

extension 

(ha) 

Pixel 

extension 

(S-2 grid) 

Coppice 101 0.7 0.09 3.22 71.35 7110 

Clear cut 18 1.00 0.10 4.5 19.75 1974 

Thinning 8 2.55 0.57 4.9 20.45 2032 

Conversion 3 2.57 1.26 5.00 7.72 768 

Tot summary 130 0.92 0.09 5.00 119.3 11884 
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The validation areas collected from institutions was checked by field survey in order to reach the 

best reliability. Since the area was limited, it was possible to verify every harvested areas using GPS 

and confirm the year of the events by expert looking at forest regrowth. The field survey was done 

in 2018 with the Holux funtrek 130 pro GPS, following indications from loggers and also searching 

by looking in the valley. It was chosen this area because it represents a common Apennines area 

and the harvesting intensity is standard. The predominant cutting techniques is coppice with 

standards, although other are present, they are only occasionally and less frequent. These 

characteristics and the certainty of the forest and non-forest surface made this part of the dataset 

a good area for the validation process. 

As shown in the Table 7, beside the coppice cuts, the other typologies were represented from a few 

events (see Figure 8 as well). The number correspond to the entire surface event, which always 

correspond to more than one hectare surface. This extension divided by the Sentinel-2 pixel grid 

(10m pixel) results in a large number of pixels. While the change detection is by pixel, this resolve 

the problem of the low number of clear-cut, thinning and conversion. 

Figure 7 - Database of logging events from 2015 to 2018 for calibrate the probability density functions (yellow) and for validate and 

assessing (Red) the accuracy for the change detection method. 
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Table 7 -Statistical summary for validation database. 

Harvesting 

Type 

Number 

of areas 

Average 

extension 

(ha) 

Min 

extension 

(ha) 

Max 

extension 

(ha) 

Total 

extension 

(ha) 

Pixel 

extension 

(S-2 grid) 

Coppice 10 0.62 0.11 1.88 6.2 600 

Clear cut 1 1.15 1.15 1.15 1.15 119 

Thinning 1 2 2 2 2 201 

Conversion 2 3.13 1.26 5.00 6.26 617 

Tot summary 14 1.12 0.11 5.00 15.62 1537 

 

 

3.4 Sentinel-2 data and pre-process workflow 

Sentinel-2 is a European Space Agency (ESA) mission with two satellites working in tandem. Each 

satellite carry a multispectral optic camera capable of capture 13 spectral bands images in high 

spatial resolution (varying by band) and high revisit frequency (5 days at the equator) (Sentinel-2 

PDGS Project Team, 2011). Indeed, this high frequency revisit time is due to the couple work of the 

two satellite. 
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For the time series construction were used only summer (June, July, August) images from 2015 to 

2018. A total of 39 images (see Figure 9) were selected due to the threshold of 20% of cloud cover. 

The dataset download was executed from the Copernicus Open Access Hub thru the API access.  

Since the L2A images were not available for all the 2015-2018 period, only L1C level images were 

downloaded in order to apply the exact same pre-process workflow to all the images.  

The well-known SEN2COR (Main-Knorn et al., 2017; Müller-Wilm, 2017) processor (atmospheric 

radiative transfer) was applied to the L1C images in order to obtain L2A images. L2A product level 

consist in Bottom of Atmosphere (BOA) corrected reflectance images, with terrain and cirrus 

correction as well.  

All the pre-process workflow was completed using the Sen2r package (Ranghetti and Busetto, 2019) 

implemented in the R (R_Core_team, 2016) programming language. This package allows to use 

SEN2COR with other options, such as cloud masking and indices calculation. Indeed, it was used the 

cloud masking option with a 100m buffer and a value of 30 for the buffer smoothing. All the 

classified scenes (SCL) made from SEN2COR processor were applied for the cloud masking. This 

procedure was adopted despite losing pixels because in a time series change detection approach is 

better a lack of information instead of a wrong pixel value; it could drive to detection errors. 

Therefore, in the same R package Normalized Burned Ratio (NBR)(Key and Benson, 2006) and 

Normalized Difference Vegetation Index (NDVI) were calculated because of their sensitivity to the 

forest disturbance (Shimizu et al., 2017; Grogan et al., 2015). Together the time series were used in 

order to obtain a better change detection, since the NDVI after disturbance is rapidly rising and 

tends to saturate easily, while the NBR is more strongly linked to forest structure (White et al., 

2 3

2 2 3

3 6 6

2 5 5

2015

2016

2017

2018

6 7 8
month

ye
ar

Number of immages per year and month

Figure 9 - Number of Sentinel-2 images per 

month with a total amount of 39 images. 
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2017). Both indices are widely use in literature per forest fire and forest disturbance detection and 

estimation (Lima et al., 2019; White et al., 2017; Cohen et al., 2010; Vicente-Serrano et al., 2008; 

Wimberly and Reilly, 2006; Cocke A,B et al., 2005). 

 

𝑁𝐵𝑅 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅2
𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷 

Eq. 8 - Normalized Burned Ration equation (on top), Normalized Difference Vegetation Index equation (on bottom). 

 

3.5 Calibration method 

As previously mentioned in the paragraph 3.3, A set of ground truth areas were selected for the 

calibration process, namely, calculate the probability density function (pdf) for forest (F) and non-

forest (NF) areas. For both NDVI and NBR time series the pdfs were calculated with the same 

method. The forest pdf was based on the real values distribution of pixels inside the forest mask but 

outside the disturbed areas (according with the calibration dataset).  

On the other hand, non-forest pdf was calculated using pixels inside the disturbed areas but 

considering only the year after logging events (according with the calibration dataset), i.e. excluding 

images before the events and after one year. With the aim of highlight the real index value deriving 

from the harvest and avoid potential noise from regrowth. Therefore, the total number of pixels 

used were 7454 for non-forest and 93034 for forest pixels. 

The needed parameters for the change detection procedure were mean and standard deviation for 

F and NF distribution, but instead of using mean it was used the median value to reduce the effect 

of outliers. 

 

3.6 Results assessment 

Assessing change detection is largely discussed in literature (Olofsson et al., 2014; Liu and Zhou, 

2004; Macleod and Congalton, 1998; Congalton, 1991), the most common and interpretable 

method was chosen to assess the results. All the procedures were based on the error matrix, this 
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allow to calculate accuracy parameters such as the Producer Accuracy (PA) i.e. the complementary 

of commission error, User Accuracy (UA) i.e. the complementary of omission error and lastly the 

Overall Accuracy (OA). The kappa value was intentionally avoided due to the large number of 

problems related, a very good explanation on that was given from Olofsson et. al. (2014). 

Thankfully to the information available in the validation dataset it was possible to deeply assess the 

results. The investigation aimed to verify spatial and temporal accuracy as well as the detection 

ability for different harvesting techniques. The validation dataset contained the polygon shape of 

the harvesting areas linked with information on the type and year of logging event.  

Initially the temporal accuracy was verified using a rasterized version of the validation dataset 

applying years for pixels values. This raster and that one obtained from the change detection 

algorithm were compared in the error matrix adopting the years (2015 to 2018) as classes plus the 

not disturbed area (no cut).  

Subsequently the spatial accuracy was assessed using simplified validation dataset, all the areas 

were converted in “cut” and “no-cut” raster, as well as the output generated from the change 

detection algorithm. Then the error matrix was calculated based on these two simple classes. 

Lastly, in order to assess the detection ability for different harvest technique, the validation dataset 

was modified for each class. For every class (coppice, clear-cut, thinning and conversion) the 

reference raster and the predicted raster were subtracted with the unused classes, e.g. when the 

“coppice” class was assessed in the clear-cut, thinning and conversion areas pixels values were set 

to no-data. 

 

3.7 Change detection algorithm application 

The chosen change detection algorithm (Reiche et al., 2015a) works with a single time series in 

input, but it’s able to fuse two or more time series as well. Since the needed parameters were 

estimated for NBR and NDVI time series, the algorithm was applied three times: once for NBR and 

NDVI singularly and lastly the NBR and NDVI fusion was tried. 

From the time when the first date in the time series was 04/07/2015 the parameter to indicate the 

starting point was set to 2015.6. Moreover, the last parameter needed was the threshold of 

deforestation probability at which flagged change is confirmed; according to Reiche et al. (2015a) it 

was used a value of 0.9. 
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Since the change detection algorithm is a computing intensive data process, all the images pre-

processing and the actual change detection procedure were executed in the computing 

environment provided by European Space Agency thru the Research and User Support service (RUS). 
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4 Results 
The results presented in this chapter were obtained after a calibration to Italian forests of the 

change detection procedure developed by Reiche et al. (2015a) in tropical forest. 

During the calibration, the Forest and Non-Forest pixel distribution (see Figure 10) highlighted the 

F-NF separability at pixel level, and the similarity between NBR and NDVI as well. The Forest means 

were 0.66 and 0.87 with a standard deviation of 0.09 and 0.07 for NBR and NDVI respectively. On 

the other hand, the Non-Forest means were 0.32 (NBR) and 0.60 (NDVI) with a standard deviation 

of 0.13 for both NBR and NDVI. 

 

As explained in the materials and methods (paragraph 3.6), after the change detection procedure, 

three error matrixes were made in order to assess different aspects such as spatial-temporal 

accuracy and forest harvesting techniques detectability.  

The output map delivered from change detection procedure represented confirmed changes with 

a date value in Day Of Year (DOY). Then, the output raster was reclassified by years to match the 

reference classes (Figure 11 and Figure 12). Afterwards, the classes in the output map were used in 

the error matrix to compute the overall, user and producer accuracy (OA, UA, PA). With this type of 

assessment spatial and temporal accuracy was addressed together and this affect hardly the 

accuracy levels in the single class. So as to give a general description the mean UA and PA were 

calculated (Table 8), as well as the Overall accuracy: 95.9 for NBR, 96 for NDVI and 95.8 for the fusion 

of both NBR and NDVI time series. The class trends were quite similar between NBR and NDVI, the 

fusion of both indices didn’t increase the results significantly, rather it reach usually an intermediate 

result between the results obtained with single time series (Table 8). 
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Table 8 - Change detection results for spatial and temporal accuracy assessment 

NBR NDVI NBR and NDVI 

  UA PA UA PA UA PA 

no cut 99.1 97.2 98.8 97.7 99.1 97.1 

2015 45.1 99.6 57.2 99.6 47.2 99.6 

2016 86.3 65.4 90.1 55.6 87.7 63.2 

2017 27.9 93.2 25.7 91.8 25.4 94.5 

2018 57.8 90.0 49.6 95.7 52.4 94.3 

mean 63.2 89.1 64.3 88.1 62.4 89.7 

 

With a view to practical application, the temporal component was excluded from the accuracy 

assessment converting all the pixel in only two classes: cut and no-cut. Only the spatial accuracy was 

assessed and in this case the result increased significantly compared to the previous assessment, 

especially for UA (Table 9). The overall accuracy reached little better results: 96.6 for NBR, 96.7 for 

NDVI and 96.5 for the fusion of both NBR and NDVI. As before, the time series fusion didn’t increase 

the results.  

 

Table 9 - Change detection results for simplified classes "cut" "no-cut" 

NBR NDVI NBR and NDVI 

  UA PA UA PA UA PA 

no cut 99.1 97.2 98.8 97.7 99.1 97.1 

cut 65.8 86.1 68.9 80.5 65.3 85.7 

mean 82.5 91.7 83.9 89.1 82.2 91.4 

 

Results shown in Table 10 are little confusing, it’s due to the method employed (explained in 

paragraph 3.6). The UA values were largely affected by the methodology as well as OA, which 

changed thru classes because the reference data was changed too. 
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A comprehensive looking to all the results highlighted some general trends. Between the three trial 

there wasn’t a supreme one, but the fusion of two time series (NBR and NDVI) has never shown 

superior results rather an intermediate or even lower.  

 

Table 10 - Chance detection results for different forest harvesting techniques 

 
NBR NDVI NBR and NDVI 

  UA PA OA UA PA OA UA PA OA 

Clear cut 60.5 99.2 98.3 61.7 99.3 98.5 60.1 99.1 98.2 

Coppice 74.4 95.2 97.6 76.1 93.0 97.9 74.0 95.3 97.5 

Thinning 64.1 94.2 98.2 65.6 94.0 98.5 63.5 94.1 98.1 

Conversion 74.2 83.6 97.6 74.0 79.1 97.6 73.1 82.9 97.5 
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5 Discussion 
To better understand the results shown in Table 8, Table 9 and Table 10, looking at the Figure 11 

and Figure 12 is very important because they give a real perception of the errors and the relative 

causes. 

In Table 8 the UA and PA were changed drastically thru the classes. To explain this effect, looking at 

Figure 11 is crucial. It was clear that some cuts were done in multiple times, e.g. starting in one year 

and ending the follow or second year after. This problem affected the accuracy assessment in a 

negative way for both UA and PA, but this problem was actually related to a reference data issue. 

The change detection algorithm was able to identify very small (pixelwise) changes, way smaller 

than available reference data. Besides that, in 2015 and 2017 the UA was significantly lower than 

other years because of the major number of erroneous detected pixels were in 2015 and 2017 

classes. On the contrary, the lower PA value in 2016 was due to the omission of the conversion cut 

executed in the northern-east area. 

For a practical use, sometimes spatial accuracy is preferred than extreme temporal accuracy. Since 

the aim of this study wasn’t test a near-real-time application, the second assessment focused on a 

spatial accuracy without temporal interference. It was also done to clarify the nature of errors. This 

revealed a great potential due to the high PA value (86 for harvest and 97 for not harvest areas), it’s 

mean that only little parts of harvested areas were omitted. The omission error was primarily due 

to the conversion cut (Figure 11), which affect the crown cover only partially, similar to selective 

logging and hence it was more difficult to be detected from remote sensing optic images (Asner et 

al., 2005).  

Looking at Figure 11, beside some margin errors due to images misregistration (Yan et al., 2018) and 

geolocation errors, the main commission errors, highlighted in the upper image (Figure 11) with 

circles, impacted negatively to the UA cut class (65.8 and 68.9 for NBR and NDVI respectively). 

Investigating further using Google Earth historical images, these areas were identified as old (before 

2015) harvested areas, in fact the change detection algorithm identified these changes as soon as 

the time series started (2015).  

Regarding the detection ability for harvest techniques, the different number of pixels per class in 

the reference area was responsible for some distortion in the results. In order to calculate the 

accuracy table, the output map was masked with the validation dataset excluding all the harvested 

areas beside the assessed one. The OA was changing by class and the UA was distorted because the 
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unused classes margin errors remained in the output map and became a commission error. This 

effect influenced especially the classes with a low number of pixels such as clear-cut and conversion. 

On the contrary, the PA was correctly assessed, the results were overwhelmed for the high level of 

accuracy reached: 99 for clear-cut, 95 for coppice, 94 for thinning and 84 for conversion. Moreover, 

the PA results were as expected: better with increasing crown cover disturbance, e.g. higher PA with 

clear-cut (complete crown cover removal) and lower PA for conversion (little effect on crown cover).  

Furthermore, all results achieved with the fusion of NBR and NDVI agreed. No accuracy gain was 

reached, usually a midway or even lower results. This was probably due to the similarity of NBR and 

NDVI, which brought similar information. In fact, comparing Figure 11 with Figure 12, it was clear 

that PA was similar to the best results i.e. NBR time series, but the commission errors has been 

influenced from both NBR and NDVI lowering the UA. 
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Figure 11 - NBR and NDVI change detection maps. In the upper image, two black circles indicate the 

main commission errors areas due to old harvest areas (before 2015). 
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Figure 12 – Output map from NBR and NDVI time series fuse together 
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6 Conclusion 
Forest change detection algorithm application to Italian and European forest is a procedure that it’s 

raising attention (Mori, 2019; European_Commission, 2013). This study tried to find solutions to this 

in a rapid and easy way that it makes suitable for application in forest statistics, control and 

management. Using a single NBR time series was the best solutions and applying a fusion approach 

with NBR and NDVI didn’t improved the results. A comprehensive spatial and temporal accuracy 

assessment was difficult due to the lack of ground-truth information, but positive results were 

achieved. Moreover, a deeper analysis based on Google Earth historical images and expert 

evaluation of harvesting practices revealed that algorithm had a better temporal resolution than 

validation dataset, it was capable of detect forest harvests executed on multiple years. 

This simplified method is ready to be used for control, statistics and management on sub-regional 

level due to the computational effort needed. But upscaling is possible with adequate 

computational power and with a procedure optimization.  

Future prospective could lead to the application of this change detection procedure with a whole 

year time series, using deseasonalize process with the aim of reaching an even better temporal 

accuracy (Reiche et al., 2018b, 2018a).  

  



56 

7 Bibliography 

Asner, G.P., 2001. Cloud cover in Landsat observations of the Brazilian Amazon. Int. J. Remote Sens. 

22, 3855–3862. doi:10.1080/01431160010006926 

Asner, G.P., Knapp, D.E., Balaji, A., Páez-acosta, G., 2009. Automated mapping of tropical 

deforestation and forest degradation : CLASlite. J. Appl. Remote Sens. 3, 1–24. 

doi:10.1117/1.3223675 

Asner, G.P., Knapp, D.E., Broadbent, E.N., Oliveira, P.J.C., Keller, M., Silva, J.N., 2005. Selective 

Logging in the Brazilian Amazon. Science (80-. ). 310, 480–482. doi:10.1126/science.1118051 

Baetens, L., Desjardins, C., Hagolle, O., 2019. Validation of copernicus Sentinel-2 cloud masks 

obtained from MAJA, Sen2Cor, and FMask processors using reference cloud masks generated 

with a supervised active learning procedure. Remote Sens. 11. doi:10.3390/rs11040433 

Brosofske, K.D., Froese, R.E., Falkowski, M.J., Banskota, A., 2014. A Review of Methods for Mapping 

and Prediction of Inventory Attributes for Operational Forest Management. For. Sci. 60, 733–

756. doi:10.5849/forsci.12-134 

Cai, S., Liu, D., 2015. Detecting change dates from dense satellite time series using a sub-annual 

change detection algorithm. Remote Sens. 7, 8705–8727. doi:10.3390/rs70708705 

Cesaro, L., Romano, R., Pompei, E., Piloni, S., Mori, P., Torreggiani, L., 2019. RaF Italia 2017-2018, 

Direzione generale delle foreste del Mipaaft. Arezzo. 

Cocke A,B, A.E., Fulé, P.Z., Crouse, J.E., 2005. Comparison of burn severity assessments using 

Differenced Normalized Burn Ratio and ground data. Int. J. Wildl. Fire 14, 189–198. 

doi:10.1071/WF04010 

Cohen, W.B., Yang, Z., Kennedy, R., 2010. Detecting trends in forest disturbance and recovery using 

yearly Landsat time series: 2. TimeSync — Tools for calibration and validation. 

doi:10.1016/j.rse.2010.07.010 



57 

Congalton, R.G., 1991. A review of assessing the accuracy of classifications of remotely sensed data. 

Remote Sens. Environ. 37, 35–46. doi:10.1016/0034-4257(91)90048-B 

Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., 

Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., Bargellini, P., 2012. 

Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. 

Environ. 120, 25–36. doi:10.1016/j.rse.2011.11.026 

ESA, 2019. User guide - Sentinel2 MSI level2A [WWW Document]. URL 

https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-msi/processing-levels/level-2 

(accessed 9.19.19). 

European_Commission, 2013. A new EU Forest Strategy: for forests and the forest-based sector. 

Brussels. 

Grecchi, R.C., Beuchle, R., Shimabukuro, Y.E., Aragão, L.E.O.C., Arai, E., Simonetti, D., Achard, F., 

2017. An integrated remote sensing and GIS approach for monitoring areas affected by 

selective logging: A case study in northern Mato Grosso, Brazilian Amazon. Int J Appl  Earth Obs 

Geoinf. 61, 70–80. doi:10.1016/j.jag.2017.05.001 

Grogan, K., Pflugmacher, D., Hostert, P., Kennedy, R., Fensholt, R., 2015. Cross-border forest 

disturbance and the role of natural rubber in mainland Southeast Asia using annual Landsat 

time series. Remote Sens. Environ. 169, 438–453. doi:10.1016/j.rse.2015.03.001 

Hansen, M.C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A., Thau, D., 

Stehman, S. V., Goetz, S.J., Loveland, T.R., Kommareddy, A., Egorov, A., Chini, L., Justice, C.O., 

Townshend, J.R.G., 2013. High-Resolution Global Maps of 21st-Century Forest Cover Change. 

Science (80-. ). 342, 850–853. doi:10.1126/science.1244693 

Hirschmugl, M., Deutscher, J., Gutjahr, K., Sobe, C., Schardt, M., 2017a. Combined Use of SAR and 

Optical Time Series Data for Near Real-Time Forest Disturbance Mapping, in: 9th International 

Workshop on the Analysis of Multitemporal Remote Sensing Images. IEEE. doi:10.1109/Multi-

Temp.2017.8035208 



58 

Hirschmugl, M., Gallaun, H., Dees, M., Datta, P., Deutscher, J., Koutsias, N., Schardt, M., 2017b. 

Methods for Mapping Forest Disturbance and Degradation from Optical Earth Observation 

Data: a Review. Curr. For. Reports 3, 32–45. doi:10.1007/s40725-017-0047-2 

Huang, C., Thomas, N., Goward, S.N., Masek, J.G., Zhu, Z., Townshend, J.R.G., Vogelmann, J.E., 2010. 

Automated masking of cloud and cloud shadow for forest change analysis using Landsat 

images. Int. J. Remote Sens. 31, 5449–5464. doi:10.1080/01431160903369642 

Irish, R., Barker, J., Goward, S., Arvidson, T., 2006. Characterization of the Landsat-7 ETM? 

Automated Cloud-Cover Assessment (ACCA) Algorithm. Photogramm. Eng. Remote Sens. 72, 

1179–1188. 

Key, C.H., Benson, N.C., 2006. Landscape Assessment (LA). 

Lima, T.A., Beuchle, R., Langner, A., Grecchi, R.C., Griess, V.C., Achard, F., 2019. Comparing Sentinel-

2 MSI and Landsat 8 OLI Imagery for Monitoring Selective Logging in the Brazilian Amazon. 

Remote Sens. 11, 961. doi:10.3390/rs11080961 

Liu, H., Zhou, Q., 2004. Accuracy analysis of remote sensing change detection by rule-based 

rationality evaluation with post-classification comparison. Int. J. Remote Sens. 25, 1037–1050. 

doi:10.1080/0143116031000150004 

Macleod, R.D., Congalton, R.G., 1998. A Quantitative Comparison of Change-Detection Algorithms 

for Monitoring Eelgrass from Remotely Sensed Data. Photogramm. Eng. Remote Sens. 64, 207–

216. 

Main-Knorn, M., Pflug, B., Louis, J., Debaecker, V., Müller-Wilm, U., Gascon, F., 2017. Sen2Cor for 

Sentinel-2. Proc. SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie. 

doi:10.1117/12.2278218 

Mori, P., 2019. Statistiche forestali: Potenzialità e opportunità per ripartire da zero. Sherwood - For. 

ed alberi oggi 13–15. doi:ISSN 1590-7805 

Müller-Wilm, U., 2017. S2 MPC Sen2Cor Configuration and User Manual. doi:Ref. S2-PDGS-MPC-



59 

L2A-SUM-V2.4 

Olofsson, P., Foody, G.M., Herold, M., Stehman, S. V., Woodcock, C.E., Wulder, M.A., 2014. Good 

practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 

148, 42–57. doi:10.1016/J.RSE.2014.02.015 

Potapov, P. V., Turubanova, S.A., Hansen, M.C., Adusei, B., Broich, M., Altstatt, A., Mane, L., Justice, 

C.O., 2012. Quantifying forest cover loss in Democratic Republic of the Congo, 2000-2010, with 

Landsat ETM+ data. Remote Sens. Environ. 122, 106–116. doi:10.1016/j.rse.2011.08.027 

R_Core_team, 2016. R: A Language and Environment for Statistical Computing. R Foundation for 

Statistical Computing, Vienna, Austria. https://www.r-project.org/. 

Ranghetti, L., Busetto, L., 2019. sen2r: Find, Download and Process Sentinel-2 Data. [WWW 

Document]. R Packag. version 1.1.0. doi:10.5281/zenodo.1240384 

Reiche, J., de Bruin, S., Hoekman, D.H., Verbesselt, J., Herold, M., 2015. A Bayesian approach to 

combine landsat and ALOS PALSAR time series for near real-time deforestation detection. 

Remote Sens. 7, 4973–4996. doi:10.3390/rs70504973 

Reiche, J., Hamunyela, E., Verbesselt, J., Hoekman, D., Herold, M., 2018a. Improving near-real time 

deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with 

Landsat and ALOS-2 PALSAR-2. Remote Sens. Environ. 204, 147–161. 

doi:10.1016/j.rse.2017.10.034 

Reiche, J., Verhoeven, R., Verbesselt, J., Hamunyela, E., Wielaard, N., Herold, M., 2018b. 

Characterizing Tropical Forest Cover Loss Using Dense Sentinel-1 Data and Active Fire Alerts. 

Remote Sens. 2018, Vol. 10, Page 777 10, 777. doi:10.3390/RS10050777 

Ryan, C.M., Hill, T., Woollen, E., Ghee, C., Mitchard, E., Cassells, G., Grace, J., Woodhouse, I.H., 

Williams, M., 2012. Quantifying small-scale deforestation and forest degradation in African 

woodlands using radar imagery. Glob. Chang. Biol. 18, 243–257. doi:10.1111/j.1365-

2486.2011.02551.x 



60 

Sentinel-2 PDGS Project Team, 2011. GSC Sentinel-2 PDGS Products Definition Document. 

Shimizu, K., Ponce-Hernandez, R., Ahmed, O.S., Ota, T., Chi Win, Z., Mizoue, N., Yoshida, S., 2017. 

Using Landsat time series imagery to detect forest disturbance in selectively logged tropical 

forests in Myanmar. Can. J. For. Res. 47, 289–296. doi:10.1139/cjfr-2016-0244 

Tang, X., Bullock, E.L., Olofsson, P., Estel, S., Woodcock, C.E., 2019. Near real-time monitoring of 

tropical forest disturbance: New algorithms and assessment framework. Remote Sens. Environ. 

224, 202–218. doi:10.1016/J.RSE.2019.02.003 

Verbesselt, J., Hyndman, R., Newnham, G., Culvenor, D., 2010. Detecting trend and seasonal 

changes in satellite image time series. Remote Sens. Environ. 114, 106–115. 

doi:10.1016/j.rse.2009.08.014 

Verbesselt, J., Zeileis, A., Herold, M., 2012. Near real-time disturbance detection using satellite 

image time series. Remote Sens. Environ. 123, 98–108. doi:10.1016/J.RSE.2012.02.022 

Vicente-Serrano, S.M., Pérez-Cabello, F., Lasanta, T., 2008. Assessment of radiometric correction 

techniques in analyzing vegetation variability and change using time series of Landsat images. 

Remote Sens. Environ. 112, 3916–3934. doi:10.1016/j.rse.2008.06.011 

White, J.C., Wulder, M.A., Hermosilla, T., Coops, N.C., Hobart, G.W., 2017. A nationwide annual 

characterization of 25 years of forest disturbance and recovery for Canada using Landsat time 

series. Remote Sens. Environ. 194, 303–321. doi:10.1016/j.rse.2017.03.035 

Wimberly, M.C., Reilly, M.J., 2006. Assessment of fire severity and species diversity in the southern 

Appalachians using Landsat TM and ETM+ imagery. doi:10.1016/j.rse.2006.03.019 

Wulder, M.A., Masek, J.G., Cohen, W.B., Loveland, T.R., Woodcock, C.E., 2012. Opening the archive: 

How free data has enabled the science and monitoring promise of Landsat. Remote Sens. 

Environ. 122, 2–10. doi:10.1016/j.rse.2012.01.010 

Yan, L., Roy, D.P., Li, Z., Zhang, H.K., Huang, H., 2018. Sentinel-2A multi-temporal misregistration 

characterization and an orbit-based sub-pixel registration methodology. Remote Sens. Environ. 



61 

215, 495–506. doi:10.1016/j.rse.2018.04.021 

Zhu, Z., 2017. Change detection using landsat time series: A review of frequencies, preprocessing, 

algorithms, and applications. ISPRS J. Photogramm. Remote Sens. 130, 370–384. 

doi:10.1016/j.isprsjprs.2017.06.013 

Zhu, Z., Woodcock, C.E., 2014. Automated cloud, cloud shadow, and snow detection in 

multitemporal Landsat data: An algorithm designed specifically for monitoring land cover 

change. Remote Sens. Environ. 152, 217–234. doi:10.1016/j.rse.2014.06.012 

Zhu, Z., Woodcock, C.E., 2012. Object-based cloud and cloud shadow detection in Landsat imagery. 

Remote Sens. Environ. 118, 83–94. doi:10.1016/j.rse.2011.10.028 

 

  



62 

 - Change detection with BaytsDD and Bayts using the 
entire time series: overcome the seasonal problem 
in temperate forest 

1 Abstract 
Applying forest change detection algorithms developed in tropical forest to temperate forest, such 

as Italian, it could be a virtuous way to exploit established knowledge on monitoring deforestation 

to create affordable and reliable inventory tools. European and Italian politicians 

(European_Commission, 2013), as well as managers and controllers (Mori, 2019) need a practical 

and reliable way for monitoring forests and harvesting with good temporal and spatial accuracy. 

Whole time series change detection approach has the opportunity to reduce tremendously the lag 

between logging event and remote detection, especially using Sentinel-2 with 5 days revisit time. 

The main problem with a whole time series in temperate forest is the season effect. This study 

applied the same change detection method to Italian forest with two different seasonality removal 

approach. A simpler one with a spatial normalization on 95th percentile and another with harmonic 

model fitting. 

The spatial normalization wasn’t able to remove entirely the season effect either on NBR or NDVI 

time series, causing many commission errors. The Producer Accuracy was very high, but since the 

model was overestimating the forest disturbed areas, the User accuracy was low. On the other hand, 

the harmonic model fitting had great potential for seasonality removing, but it required a time 

period to calibrate the function. This need reduced drastically the monitoring period because the 

Sentinel-2 time series started on 2015 and ended on 2018. 

The harmonic model fitting had encouraging results, and over time, Sentinel-2 time series will 

become longer, consequently the problem of excluding the starting period for calibration will be 

reduced. This could enhance the application of time series change detection with almost a near-real 

time ability in temperate forest, which can improve forest management and decision making with 

accurate data on harvesting period and areas. 
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2 Introduction 
Over the past 10 years, Earth Observation (EO) has exceeded every expectation and it became a 

groundbreaking technology for monitoring changes of land surface (Thonfeld et al., 2015). Earth 

observation allows for repeated, synoptic and consistent measurement of the Earth surface. 

Moreover, processing a series of EO data is referred to time series analysis (Hostert et al., 2019). 

Tropical forest are highly susceptible to anthropogenic degradation and deforestation, hence 

remote sensing research has been focused to find a reliable and affordable way to assess this type 

of changes for several decades (Shimizu et al., 2017; Potapov et al., 2012; Asner et al., 2009; Skole 

and Tucker, 1993). 

Traditionally, most of the published literature in remote sensing change detection used bi-temporal 

method (Zhu, 2017; Thonfeld et al., 2015). But the opening of Landsat data archive in 2008 (Wulder 

et al., 2012; Woodcock et al., 2008) started to stimulate the use of multitemporal methods rather 

than bi-temporal, reaching nowadays near-real time performances using time series analysis (Tang 

et al., 2019; Reiche et al., 2018b; Hirschmugl et al., 2017a; Hamunyela et al., 2016a). 

Plenty of literature have already described methods for forest change detection, even using time 

series, but they have been mainly developed in tropical forest (Reiche et al., 2018a; Hirschmugl et 

al., 2017b; Ryan et al., 2012; Asner et al., 2009). Tropical forest needs are mainly on a quick 

identification and quantification of deforestation over large areas, but the importance of 

sustainable forest management is rapidly increasing in Europe as well. Indeed in the European 

Commission is raising awareness on this topic (2013), however in Italian forest there is a lack of 

statistical data on forest harvesting (Mori, 2019), therefore a reliable method for mapping and forest 

degradation and disturbance identification is essential. On this regard time series analysis could be 

a reliable and affordable method for monitoring forest harvesting and disturbance with a 

continuous update. 

Beside all the problems already discussed and illustrate in Chapter II2.1 about optical Remote 

sensing data, the optical images are susceptible of seasonal or cyclic changes driven mostly from 

annual temperature and rainfall interaction (Verbesselt et al., 2012), which impacts in plant 

phenology. This is particularly true in temperate zones, where four seasons are remarkably 

impacting on plant crown appearance and characteristics. For whole time series approach, this 

seasonal effect was a real concern and had to be addressed. 
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The Apennine forest is predominantly composed by broadleaf tree, but some planted conifer, such 

as Pinus spp, Abies and Picea are present as well. The forest management in coniferous stands is 

mainly based on thinning and clear-cut. On the other hand, the principal techniques in broadleaf 

stands are coppice with standards, conversion from coppice to high forest and thinning. This forest 

management is very different from the extensive clear-cut or selective logging applied to tropical 

forest. Often in Italian forest the crown cover is only partially removed during the forest harvesting. 

Taking all into account, forest types, seasonal effects as well as degradation drivers, they are all 

geographic location related, therefore an applicability check on Italian forest of these algorithms is 

needed. This study aims to compare two methods for forest change detection applied to Italian 

forest with whole Sentinel-2 time series from 2015 to 2018. These two algorithms overcame the 

seasonal problem with two different approaches. The first one (Reiche et al., 2018a) was a basic 

approach using spatial normalization, subtracting the 95th percentile to the pixels values. Instead, 

the second (Reiche et al., 2018b), it was developed with a data driven approach and it use harmonic 

model fitting to remove seasonal effect. Both methodologies can lead to a near-real time forest 

monitoring reducing delays and improving automation in the process compared with single season 

method (described in Chapter II), hence they are able to fully exploit the Sentinel-2 potential and 

his short revisit period. 
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3 Materials and methods 

3.1 Study area 

The study was conducted in the province of Bologna, which is located in central-north Italy in the 

Emilia-Romagna region. it’s spanning from the Padania flat to the main Apennine rim with an 

elevation range from few meters to almost 2000m. The area of interest was the same of the 

previous descripted study, and so it was largely summarized in the Chapter II3.1 and illustrated in 

Figure 6. It was chosen the same area because of the large dataset already built and checked; having 

a reliable ground truth dataset with such a spatial and temporal detail was fundamental to calibrate 

and validate properly the procedures. 

 

3.2 Satellite data 

Multispectral optic images collected from Sentinel-2 mission were used to build the time series. The 

European Space Agency (ESA) started to delivery products from this mission on 04/07/2015, hence 

this was the starting date of the time series, then the ending date was on 21/09/2018. The whole 

time series length was 76 images, it was created with all the images between start and end date 

beside those with cloud cover above 20%. 

The images were downloaded from the Copernicus Open Access Hub thru the API access. Only L1C 

level products was chosen in order to perform the exact same pre-process workflow to all the 

images. 
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Figure 13 - Number of Sentinel-2 images per month. They represented the whole time series, 

images with cloud cover lower than 20%. Total amount of image was 76.  
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Afterward, all pre-process workflow was completed using the “Sen2r” package (Ranghetti and 

Busetto, 2019) implemented in the R (R_Core_team, 2016) programming language. This package 

allows to use SEN2COR with some additional options, such as cloud masking and indices calculation. 

SEN2COR (Main-Knorn et al., 2017; Müller-Wilm, 2017) is an atmospheric correction processor 

(atmospheric radiative transfer) able to convert L1C products into L2A images. L2A product level is 

Bottom of Atmosphere (BOA) corrected reflectance image, with terrain and cirrus correction as well. 

“Sen2r” package was used also for cloud masking, with a 100m buffer and a value of 30 for the 

buffer smoothing. All the classified scenes (SCL) delivered from SEN2COR processor were applied in 

the cloud masking (Figure 5). This procedure was adopted despite the possibility of losing “good” 

pixels because in a time series change detection approach is better a lack of information instead of 

a wrong pixel value; it could drive to false detection (commission error). 

With L2A images time series, Normalized Burned Ratio (NBR)(Key and Benson, 2006) and 

Normalized Difference Vegetation Index (NDVI) were calculated for their sensitivity to forest 

disturbance (Shimizu et al., 2017; Grogan et al., 2015). Both indices were calculated despite they 

are quite similar because after disturbance the NDVI is rapidly rising and tends to saturate easily, 

while the NBR is more strongly linked to forest structure (White et al., 2017). Moreover they are 

both widely used in literature for change detection procedures (Lima et al., 2019; White et al., 2017; 

Cohen et al., 2010; Vicente-Serrano et al., 2008; Wimberly and Reilly, 2006; Cocke A,B et al., 2005). 

 

𝑁𝐵𝑅 =
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅2
𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2 														𝑁𝐵𝑅(𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙2) =

𝐵𝑎𝑛𝑑9 − 𝐵𝑎𝑛𝑑12
𝐵𝑎𝑛𝑑9 + 𝐵𝑎𝑛𝑑12 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷
𝑁𝐼𝑅 + 𝑅𝐸𝐷 														𝑁𝐷𝑉𝐼(𝑆𝑒𝑛𝑡𝑖𝑛𝑒𝑙2) =

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4
𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4 

Eq. 9 - Normalized Burned Ratio equation with respective band number for Sentinel-2 products (on top), Normalized Difference 

Vegetation Index equation with respective band number for Sentinel-2 products (o bottom). 

 

3.3 Seasonality removal and pdf estimation for Bayts 

In order to apply the change detection procedure developed by Reiche et al. (2018a) on the entire 

time series the seasonal effect in the indices has to be removed to avoid errors. A spatial 

normalization was applied following the modified Hamunyela et al. (2016b) procedure described in 
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the manuscript (Reiche et al., 2018a). The 95th percentile was subtracted to all pixel values, assuming 

that the upper tail of the distribution (95th percentile) of pixels represents forest pixels (Reiche et 

al., 2018a; Hamunyela et al., 2016b). 

The NF probabilities were computed from probability density functions (pdf), which were derived 

in different ways for Bayts and BaytsDD. Bayts pdfs were calculated on the calibration dataset built 

for the study described in the previous Chapter II3.3, hence summarized information on the 

calibration dataset can be found in Table 6 and Figure 7. Gaussian models were fitted to forest(F) 

and Non-Forest (NF) distributions from deseasonalized observations. 

 

3.4 Seasonality removal and pdf estimation for BaytsDD 

Knowing the harmonic season effect on time series, Reiche et al. (2018b) proposed a more advanced 

method for removing forest seasonality using an harmonic model fitting. Their technique was 

applied to the NDVI and NBR time series using a first order harmonic model on the training period. 

This method doesn’t require a calibration dataset, but it needs a training period before the 

monitoring period. For Sentinel-2 time series this was a real concern since the time series was quite 

short (from 2015 to 2018), so the training period started from beginning of the time series (2015-

07-04) to 2017-07-02 in order to have a good harmonic model fitting. After 2017-07-02 the 

monitoring phase was started. 

For BaytsDD (Data Driven), NBR and NDVI time series were divided in a training period (from 

beginning to 2017-07-02) and a monitoring period (after 2017-07-02 to end of time series). Beside 

fitting on the harmonic model for the seasonality removal, the first time series period was used to 

compute the F median and standard deviation since it was assumed that all observations during the 

training period represented stable forest. Following the authors guides (Reiche et al., 2018b), 

Gaussian distributions were applied to describe Forest N(Fmean, 2σ) and Non-Forest N(Fmean-4σ, 

2σ) distributions. These values were used from the authors with Sentinel-1 data but looking at the 

real pixel distribution in the calibration dataset for NDVI and NBR data, their thesis was corroborated 

and so those values were used to build pdfs for NDVI and NBR as well. 
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3.5 Bayesian change detection methods: Bayts and BaytsDD  

Both change detection methods applied are based on the same probabilistic approach (Reiche et 

al., 2015a), but they differ on how they remove forest seasonality and how they estimate probability 

density functions (Reiche et al., 2018a, 2018b). Both methods are pixel-based, and they utilize whole 

time series for detect forest changes. In this paragraph only a brief description is provided because 

the probabilistic approach was largely described by Reiche et al. (2015a), the procedure is available 

as open-source “bayts” package for R (R_Core_team, 2016). The Non-Forest (NF) conditional 

probability at each time is determinate by iterative Bayesian updating, using previous, current and 

future observations to confirm or reject a forest disturbance. If the NF condition probability exceeds 

the defined threshold, a potential disturbance is flagged, in order to be confirmed the follow update 

has to be over the threshold as well, otherwise the mark will be removed. In this study It was used 

the default threshold value of 0.9. 

 

3.6 Validation  

The validation process followed the most common and applied method in remote sensing change 

detection (Olofsson et al., 2014; Liu and Zhou, 2004; Macleod and Congalton, 1998). Several error 

matrices were calculated in order to assess different aspects, such as spatial and temporal accuracy 

as well as the detection ability for different harvesting techniques. For all the error matrices 

accuracy parameters were calculated: Producer Accuracy (PA) i.e. the complementary of 

commission error, User Accuracy (UA) i.e. the complementary of omission error and lastly the 

Overall Accuracy (OA). The kappa value wasn’t intentionally used due to the large number of 

problems related to this index. A very good explanation on that was given from Olofsson et. al. 

(2014).  

Firstly, the spatial temporal accuracy was verified using a rasterized version of the validation dataset 

(see Chapter II3.3) applying years as rasterization factor. This raster and the output from the change 

detection algorithm were compared in the error matrix adopting years (2015 to 2018) as classes 

plus the not disturbed area (no cut). 

Subsequently spatial accuracy excluding the temporal factor was assessed using a simplified 

validation dataset. All the rasters were simplified in “cut” and “no-cut” classes, as well as the output 

generated from the change detection algorithm. Then the error matrix was calculated based only 

on these two simple classes. 
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Lastly, in order to assess the detection ability for different harvest technique, the validation dataset 

was modified for each class. For every class (coppice, clear-cut, thinning and conversion) the 

reference raster and the output raster were masked with the unused classes, e.g. when coppice 

class was assessed: the clear-cut, thinning and conversion areas were set to no-data in the rasters. 

For Bayts procedure the entire validation dataset was used to assess the output, summary 

information are in Table 11 and the area is illustrated in Figure 7. 

Table 11 - Validation dataset summary for Bayts 

Type Number Average 

extension 

(ha) 

Min 

extension 

(ha) 

Max 

extension 

(ha) 

Total 

extension 

(ha) 

Coppice 10 0.62 0.11 1.88 6.2 

Clear cut 1 1.15 1.15 1.15 1.15 

Thinning 1 2 2 2 2 

Conversion 2 3.13 1.26 5.00 6.26 

Tot summary 14 1.12 0.11 5.00 15.62 

 

Instead for BaytsDD the validation dataset wasn’t used entirely. Since BaytsDD procedure utilized 

the first period as training, the monitoring period was started only after 2017-07-02. Consequently, 

a subset of the validation dataset with only harvesting events executed in the monitoring period 

was used. Unfortunately, the dataset became quite small with only 3 coppices cut and one clear-

cut, considering Sentinel-2 grid (10m spatial resolution), total pixel count per coppice was 98 and 

119 pixels for clear-cut. 
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4 Results and Discussion 
Looking at the Figure 14 (B), the seasonality was clearly visible for the NBR time series and NDVI as 

well. The NBR summer values were about 0.7 but during the winter season they were dropped 

below 0.1. The Figure 14 illustrate a single pixel trend, but the differences between the two method 

are visible. Spatial normalization with 95th percentile applied for Bayts method wasn’t able to 

remove entirely the season effect (Figure 14 (A)). On the other hand, fitting a first order harmonic 

model for BaytsDD was able to remove almost entirely the seasonal effect in the time series (Figure 

14 (C)). 
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Figure 14 - Deseasonalization for NBR time series in a single pixel with deciduous vegetation. Not 

deseasonalizated time series in the middle graph (B). The upper graph (A) illustrates both with 

and without seasonal effect in the NBR time series, the spatial normalization was applied in 

order to remove the seasonal effect for the Bayts method. The lower graph (C) shows how the 

harmonic model applied has removed the seasonal effect in the time series, method for BaytsDD. 
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Moving forward the assessment view from single pixel to raster level, a real comparison between 

Bayts and BaytsDD results was critical due to the different validation area extension and 

characteristics. So, discussion for each method was made independently and only carful comments 

were done for the comparison. 

Spatial temporal accuracy assessment revealed very similar results between NDVI and NBR time 

series in both methods. The Overall Accuracy for Bayts was 78 and 80 using NBR and NDVI 

respectively, on the other hand, for BaytsDD it was 96 for both NDVI and NBR.  

 

Table 12 - Change detection spatial and temporal assessment for NBR and NDVI time series, both for Bayts and BaytsDD. For 

BaytDD the monitoring period started in 2017, so the values for 2015 and 2016 were Not Available (NA). 

NBR (Bayts) NBR (BaytsDD) NDVI (Bayts) NDVI (BaytsDD) 

  UA PA UA PA UA PA UA PA 

no cut 99.8 77.7 98.4 98.3 99.8 79.9 98.4 97.9 

2015 52.3 98.9 NA NA 55.0 99.3 NA NA 

2016 39.2 74.8 NA NA 37.4 71.0 NA NA 

2017 4.0 92.5 73.4 79.5 4.4 91.8 71.0 70.5 

2018 2.0 28.6 40.6 37.1 2.2 27.1 29.3 38.6 

mean 39.5 74.5 70.8 71.6 39.8 73.8 66.2 69.0 
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4.1 BaytsDD change detection accuracy 

The commission error occurred in BaytsDD deserve a deeper analysis to understand the causes. In 

the Figure 15 was evident that before the start of monitoring phase, the time series seasonality was 

very poor due to lack of winter images. This situation leaded to a bad calibration for the harmonic 

model, which wasn’t able to remove the seasonality during the monitoring period and headed to a 

commission error (low UA value especially in 2018, Table 12).  

The low PA value in 2018 was probably due to the distortion inducted from a small validation 

dataset, in fact, only a single coppice area was present for 2018 and it was identified just partially 

(Figure 16). This hypothesis was corroborated from data listed in Table 14. PA values for clear cut 

were very high and for coppice cut were much lower. Beside the distortion inducted from the small 

reference dataset, this result highlighted the problem of applying change detection algorithm 

developed for tropical forest to in Italian forest. The clear cut was identified much easier than 

coppice, which impact less the crown cover. 

The simplified assessment method (Table 13) supported the discussion and showed very high OA 

values (97 for both NBR and NDVI), as well as good results for UA and PA. The model BaytsDD tended 

to underestimate the total harvesting surface but without high commission error. 
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Figure 15 - Single pixel BaytsDD for NBR time series. Detection error occurred due to seasonal 

removal error. (A) NBR original time series, (B) NBR deseasonalized time series with start 

monitoring date (black line) and change detection by error (red line). 
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Table 13 - Simplified assessment for Bayts and BaytsDD using only "cut" and "no-cut" classes. 

NBR (Bayts) NBR (BaytsDD) NDVI (Bayts) NDVI (BaytsDD) 

  UA PA UA PA UA PA UA PA 

no cut 99.8 77.7 98.4 98.3 99.8 79.9 98.4 97.9 

cut 21.6 97.9 67.1 69.0 23.2 96.9 63.3 69.4 

mean 60.7 87.8 82.8 83.7 61.5 88.4 80.9 83.7 

 

4.2 Bayts change detection accuracy 

The seasonal effect showed in Figure 14 and described at the start of this paragraph 4, it had a huge 

impact in the accuracy assessment. The model was very good at detect the harvested areas (Table 

13 high PA cut value) but it wasn’t precise in temporal accuracy (Table 12). 

Although, the model was overestimating the harvested areas due to false detections. These errors 

were caused by the incomplete removal of seasonal effect in the time series. Indeed, the seasonal 

removal failure was evaluated by single pixel time series. Plotting together the original time series 

and the deseasonalized one (Figure 14 [A]), it was clear that the spatial normalization with the 95th 

percentile wasn’t good enough for remove seasonal effect in temperate forest. The overestimation 

problem was emphasized in Figure 17 and analytically confirmed by low UA values in all the accuracy 

tables (Table 12,Table 13,Table 14). 

 

Table 14 - Assessment for verifying the ability to detect changes due to different harvesting techniques. Since the BaytsDD was 

validated with a smaller validation dataset, only clear cut and coppice were in the dataset and hence for thinning and conversion 

the results were Not Available (NA). 

NBR (Bayts) NBR (BaytsDD) NDVI (Bayts) NDVI (BaytsDD) 

  UA PA OA UA PA OA UA PA OA UA PA OA 

Clear cut 51.2 90.3 80.6 81.2 97.1 98.3 51.3 91.2 82.5 79.1 97.0 98.0 

Coppice 55.0 88.3 79.7 70.8 67.8 97.5 55.4 88.7 81.6 68.2 68.2 97.2 

Thinning 51.6 85.3 80.6 NA NA NA 51.8 86.2 82.4 NA NA NA 

Conversion 55.0 86.9 80.3 NA NA NA 55.4 87.4 82.1 NA NA NA 

 



74 

 

 

 

 

 

  

NBR BaytsDD

4891900

4892000

4892100

4892200

4892300

682000 682200 682400 682600

2017
2018

NDVI BaytsDD

4891900

4892000

4892100

4892200

4892300

682000 682200 682400 682600

2017
2018

Figure 16 - Output raster from BaytsDD change detection applied to NBR and NDVI time series. Smaller area was used due to 

the shorter monitoring period. 

S2 NDVI deseasonalized

4892000

4892500

4893000

682000 682500 683000

2015

2016

2017

2018

S2 NBR deseasonalized

4892000

4892500

4893000

682000 682500 683000

2015

2016

2017

2018

Figure 17 - Output raster from Bayts change detection using NBR and NDVI time series with spatial normalization. 
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5 Conclusion 
The change detection algorithms are applied often on tropical forest (Shimizu et al., 2017; Reiche et 

al., 2015b; Potapov et al., 2012), and new researches are trying to push forward for fully exploiting 

new generation remote sensing technologies. Sentinel-2 has very short revisit time (5 days) and 

open data policy, in this condition the potentials in forest monitoring are very high. Many studies 

applied different methods to develop near-real time change detection algorithms in tropical forest 

in order to monitor deforestation (Perbet et al., 2019; Reiche et al., 2018a; Verbesselt et al., 2012). 

In Italian and temperate forest, the deforestation like in the tropics is not a real concern, 

nevertheless a carful and sustainable forest management is crucial for maintaining healthy forest 

and preserve forest for future generation (European_Commission, 2013).  

Whole time series change detection approach has the opportunity to reduce tremendously the lag 

between logging event and remote detection, especially using Sentinel-2 with 5 days revisit time. 

The results shown in this study confirm the possibility to exploit established knowledge on 

monitoring deforestation in topical forest to create affordable and reliable inventory tools. The 

principal obstacle was the seasonal removal process, a precise method had to be applied in order 

to avoid false detection due to residual seasonal noise. The harmonic model (BaytsDD) revealed 

very good results and seemed to be able of simulate very well the temperate forest seasonal 

pattern. But further investigations are needed in order to expand the validation area to corroborate 

properly this thesis. On the other hand, the spatial normalization (Bayts) on 95th percentile removed 

the seasonal pattern in time series only partially and this leaded to a very high false detection and 

commission errors. 

Additional investigations and applications are needed before delivering a proper tool for inventories 

and decision making. The potentials of Sentinel-2 time series and near-real time algorithms are very 

high for improving the knowledge on temperate forests disturbances and logging activities. 
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 – Time series change detection with different input 
sources for assessing increasing spatial 
resolution: Sentinel-2, CLASlite, RapidEye and 
PlanetScope 

1 Introduction 
In remote sensing field there are some technology limitations (Richards and Jia, 2013), but the issue 

that is most clearly perceived is the spatial resolution. Of course, the satellites equipment are 

constantly upgraded lunching new carriers and creating new satellite constellations.  

The Landsat’s satellites, the most famous satellites group, are carrying multispectral optic sensor 

with 30 m spatial resolution. But nowadays newer satellites with higher spatial resolution are in 

orbit, such as Sentinel-2, RapidEye and Planet Scope. 

The access to these technologies and the calibration/validation dataset at our disposal (Chapter 

II3.3), they led us to investigate more deeply the effect of spatial resolution in change detection 

algorithms. In this chapter, the Bayts algorithm (Reiche et al., 2015a) was applied in different time 

series with the same methodology described in the Chapter II, e.g. using only summer images. The 

main goals were two, the first was an increasing spatial resolution assessment comparing Sentinel-

2 to RapidEye and Planet Scope time series, the second was the implementation of CLASlite software 

for exploiting the entire electromagnetic spectrum instead of using only normalized indices (Asner 

et al., 2009). 
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2 Material and methods 

2.1 CLASlite time series 

CLASlite is a user-friendly software for automated mapping of tropical deforestation and 

degradation. This tool was employed in order to build three time series derived from Sentinel-2 

(10m pixel) using intermediate CLASlite output. CLASlite is able to calculate for each pixel image the 

fractional cover for bare soil (S), photosynthetic active vegetation (PV) and non-photosynthetic 

vegetation as dead or senescent vegetation (NPV). For each Sentinel-2 summer images, already 

described in the Chapter II3.4, three 38 images long time series were built with S, PV, NPV 

information. Then, the calibration process was executed independently for each time series 

calculating the probability density functions and the needed parameters. All three time series were 

used together during the Bayts approach (Reiche et al., 2015a), which was able to fuse different 

time series in a single change detection procedure exploiting information carried from each input. 

2.2 Sentinel-2, RapidEye and Planet Scope time series 

For Sentinel-2 images the procedure employed for this comparison already descripted in the 

Chapter II3 in order to create NDVI time series. For the other two satellites, the procedure was 

replicated but using only images with zero cloud coverage. RapidEye time series was composed of 

16 summer images for the NDVI index with a 5m spatial resolution starting in 2014 and ending in 

2018. On the other hand, Planet Scope time series started in 2017 and ended in 2018 but a total of 

62 images with 3m spatial resolution were downloaded. Unfortunately, since the Planet Scope time 

series started only in 2017, the Sentinel-2 and RapidEye time series were trimmed to match the 

same Planet Scope length in order to obtain comparable results. Consequently, in the time period 

between 2017 and 2018, only 10 images for RapidEye and 27 images for Sentinel-2 were employed 

for building the time series. 
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Figure 18 - Calibration probability density function for Forest (green distribution) e Non-Forest (red distribution) area from CLASlite 

fractional cover. Left: Non-photosynthetic vegetation, Center: Photosynthetic vegetation, Right: Bare soil. 
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3 Results and Discussion 

3.1 CLASlite and Sentinel-2 comparison 

The results reached for Sentinel-2 NDVI time series were largely described and discussed in Chapter 

II4, and the analysis made with CLASlite implementation led to similar problems about false 

detections for harvest made before the monitoring period. Moreover, the harvest procedure by 

step in different years was clear in the output map (Figure 19) but decreased significantly the 

Producer Accuracy especially for the class 2016 in the spatial-temporal assessment (lower in Table 

15). 

Furthermore, it was noticeable an increment in Producer Accuracy regarding coppice and 

conversion techniques, although the other harvesting methods were detected in a very similar way 

with no evident differences between input sources. 

In general, outputs from CLASlite fractional cover change detection underlined slight better results, 

but the improvement is limited for certain classes and often compensated from other. Actually, the 

Overall accuracy was the same for CLASlite and Sentinel-2 input source: 96.7 spatial assessment and 

96 spatial-temporal assessment. 
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Figure 19 - Bayts change detection comparison between NDVI Sentinel-2 input source (left) and fractional cover from CLASlite 

(right). 
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Table 15 - Sentinel-2 NDVI change detection results compared with results obtained using fractional cover time series from CLASlite. 

Sub-table: Upper for spatial accuracy, center for harvesting technique assessment, lower for spatial-temporal accuracy. 

 CLASlite S-2 NDVI 

 
UA PA UA PA 

no cut 99.4 97.1 98.8 97.7 

cut 65.9 90.2 68.9 80.5 

mean 82.7 93.7 83.9 89.1 

     

 
UA PA UA PA 

Clear cut 60.3 99.1 61.7 99.3 

Coppice 73.8 94.8 76.1 93.0 

Thinning 63.8 94.1 65.6 94.0 

Conversion 75.7 89.1 74.0 79.1 

     

 
UA PA UA PA 

no cut 99.4 97.1 98.8 97.7 

2015 47.8 91.2 57.2 99.6 

2016 82.8 73.3 90.1 55.6 

2017 32.5 91.8 25.7 91.8 

2018 26.6 87.1 49.6 95.7 

mean 57.8 88.1 64.3 88.1 

 

3.2 Spatial resolution effect on change detection 

The investigation led to similar results with just a few macroscopic differences. The S-2 and Planet 

Scope time series got a big false detection in 2017 (Figure 20), but actually it was an area harvested 

the year before (2016). Furthermore, the RapidEye time series wasn’t able to detect in an effective 

way the coppice cut executed in 2018.  
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Since the validation area was quite small and with just four harvested areas, these two little errors 

effected drastically the accuracy tables. Indeed, the S-2 and Planet Scope false detection have 

significantly reduced the 2017 class UA values in the spatial-temporal assessment, as well as the 

coppice omission by RapidEye reduced the PA values in the 2018 class. 

However, if we exclude this macroscopic errors, Sentinel-2 time series reached slightly better results 

than the other time series with higher spatial resolution. This it’s probably due to multiple causes 

such as different revisit time and so different number of images per time series, higher relative error 

in geolocation accuracy for the images with high spatial resolution it can lead to problems along the 

borders. 

 

Table 16 - Comparison for spatial resolution increment in change detection algorithm using Sentinel-2 (10m), RapidEye (5m) and 

Planet Scope (3m) time series. Sub-table: Upper for spatial accuracy, center for harvesting technique assessment, lower for spatial-

temporal accuracy. 

 
S-2 NDVI 
(10m) 

RapidEye 
NDVI (5m) 

Planet 
Scope NDVI 
(3m) 

 UA PA UA PA UA PA 
no cut 99.8 97.1 98.5 99.3 99.6 96.9 
cut 63.3 95.8 83.7 71.3 60.2 91.8 
mean 81.6 96.5 91.1 85.3 79.9 94.4 

       
 UA PA UA PA UA PA 
Clear cut 76.7 98.8 90.7 98.2 74.4 97.8 
Coppice 75.1 94.4 92.8 70.9 72.9 91.0 

       

 UA PA UA PA UA PA 
no cut 99.8 97.1 98.5 99.3 99.6 96.9 

RapidEye NDVI (restricted area)
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Figure 20 - Bayts change detection mapping with different spatial resolution NDVI time series. input source from Sentinel-2 (10m) 

on the left, RapidEye (5 m) in center and Planet Scope (3m) on the right. 



85 

2017 56.6 94.5 82.6 86.7 52.5 96.3 
2018 80.7 95.7 76.8 34.4 92.6 82.5 

mean 79.0 95.8 86.0 73.5 81.6 91.9 

 

4 Conclusion 
This little investigation achieved interesting results on the spatial resolution influence to change 

detection algorithm and the information carried by the CLASlite fractional cover. In the resolution 

assessment, the validation area limited to such a small extent was useful as a preliminary study and 

so further investigation with larger areas are needed to confirm these results. However, about the 

coppice and clear cut seemed that the Sentinel-2 time series with 10m spatial resolution was the 

better choice and there was no need to improve spatial resolution to gain more accuracy. 

On the other hand, the fusion approach with CLASlite reached better results than Sentinel-2 NDVI 

time series on the ability to detect conversion and coppice harvesting. This was probably due to the 

information gained from spectral reflectance libraries employed in the CLASlite software. 
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General conclusion 
Earth Observation science had an explosive growth since the policy change on data distribution for 

Landsat archive (NASA) and the advent of Copernicus program (ESA). Remote sensing science added 

a new way of looking and studying the earth, a general prospective of the entire globe is necessary 

for a better understanding of global changes. This quite new technology can be useful in a wide 

range of forest applications for policy and decision making as well as forest monitoring.  

In a global changing framework forests and silviculture play a key role in anthropogenic carbon 

footprint. With a view of sustainable forest management, forest disturbance monitoring is essential 

in order to properly understand forest dynamics and exploitation for making the right policy 

decisions. In a multilevel point of view (global, national and local) having different data spatial 

resolution is common and usually right, i.e. a global forest change detection with 30m pixel 

resolution is quite good, instead a national or local tool should have more detailed information. 

In this prespective, we applied remote sensing technology to two different aspects about forest 

decision making (land suitability) and forest harvesting statistics and control. The implementation 

of Sentinel-2 data allow us to obtain information in a medium-high spatial resolution (10m pixel), 

which allow studies and evaluation ad national and local scale.  

In the first chapter, we have successfully demonstrated the possibility to employ vegetation indices 

derived from Sentinel-2 for estimating the land suitability for the Douglas fir plantation in Italy. This 

way wasn’t the best in term of accuracy evaluation shown in the study, but it can be an affordable 

tool for a preliminary assessment. The open access Sentinel-2 policy data encourage hardly this type 

of application in a local and national scale. With the purpose of green investments and stimulation 

of wood production for increasing the use of sustainable row materials, Douglas-fir plantations are 

very high productive in terms of wood volume and quality. Therefore, tools developed and assessed 

in this study for land suitability and fertility index estimation are ready to be used and they can be 

very important for leading land management and guide clever investments.  

In the second and third chapter, forest change detection from satellite images revealed great 

opportunity for monitoring forest harvesting and disturbance in Italy. This procedure is well known 

for monitoring mainly tropical forest on a large scale but applied to Italian forest it can improve 

drastically the spatial and temporal knowledge on forest harvesting. These information are now 

crucial for a sustainable forest management and policy decision makers.  
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If the temporal resolution is not a key point, the method descripted in the second chapter revealed 

impressive results during the accuracy assessment. This tool is now calibrated and validated on 

Apennines forest and it can be used locally or applied on a larger scale for gathering information on 

forest harvesting and help authorities for controlling illegal logging and collecting harvesting 

statistics.  

On the other hand, if temporal accuracy is important and a near- real time forest monitoring is more 

appropriate, overcame the seasonal noise in the time series is needed. A simple spatial 

normalization on 95th percentile didn’t remove all time series seasonality, but fitting harmonic 

model shown promising results for temperate forest. Further analyses are needed in order to 

confirm these results because the validation area was quite small, but encouraging results are 

shown in the third chapter. 

In conclusion, some applicable forest tools were developed and validated for Italian forests with 

different purposes. This work successfully aimed to integrate and exploit more satellite remote 

sensing potential to forest management and decision making, simplifying crucial information 

collection for keeping forest sector into a sustainable path. The application of Sentinel-2 data 

allowed us to generate very detailed information either spatial and temporal. The Sentinel-2 global 

covering with such high spatial resolution and short revisit time can be useful for different level 

application, from local to national and even global scale. 


