
ALMA MATER STUDIORUM
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.

“Exploring the unknown requires

tolerating uncertainty.”

(Brian Greene)





Abstract

This work considers multi-stage optimization problems under uncer-

tainty. In this context, at each stage some uncertainty is revealed and

some decision must be made: the need to account for multiple future de-

velopments makes stochastic optimization incredibly challenging. Due

to such a complexity, the most popular approaches depend on the tem-

poral granularity of the decisions to be made. These approaches are,

in general, sampling-based methods and heuristics. Long-term strate-

gic decisions (which are often very impactful) are typically solved via

expensive, but more accurate, sampling-based approaches. Short-term

operational decisions often need to be made over multiple steps, within

a short time frame: they are commonly addressed via polynomial-time

heuristics, while more advanced sampling-based methods are applica-

ble only if their computational cost is carefully managed. We will refer

to the first class of problems (and solution approaches) as offline and to

the second as online. These phases are typically solved in isolation, de-

spite being strongly interconnected. Starting from the idea of providing

multiple options to balance the solution quality/time trade-off in opti-

mization problem featuring offline and online phases, we propose dif-

ferent methods that have broad applicability. These methods have been

firstly motivated by applications in real-word energy problems that in-

volve distinct offline and online phases: for example, in Distributed

Energy Management Systems we may need to define (offline) a daily

production schedule for an industrial plant, and then manage (online)

its power supply on a hour by hour basis. Then we show that our meth-
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ods can be applied to a variety of practical application scenarios in very

different domains with both discrete and numeric decision variables.

In the first part of this thesis, we propose general methods based on

a tighter integration between the two phases and we show that their

applicability can lead to substantial improvements. Our methods are

applicable under two (fairly general) conditions: 1) the uncertainty is

exogenous; 2) it is possible to define a greedy heuristic for the online

phase that can be modeled as a parametric convex optimization prob-

lem. We start with a baseline composed by a two-stage offline approach

paired with an online greedy heuristic. We then propose multiple meth-

ods to tighten the offline/online integration, leading to significant qual-

ity improvements, at the cost of an increased computation effort either

in the offline or the online phase.

The second part of this thesis focuses on how to manage the cost/quality

trade-off of online stochastic anticipatory algorithms, taking advantage

of some offline information. Sampling-based anticipatory algorithms

can be very effective at solving online optimization problems under un-

certainty, but their computational cost may be sometimes prohibitive.

In many practical cases, some degree of information about future un-

certainty is available significantly in advance. This provides an oppor-

tunity to exploit offline techniques to boost the performance of the on-

line method. In this context, we present three methods that, given an

arbitrary anticipatory algorithm, allow to retain its solution quality at

a fraction of the online computational cost, via a substantial degree of

offline preparation. Our approaches are obtained by combining: 1) a

simple technique to identify likely future outcomes based on past ob-

servations; 2) the (expensive) offline computation of a “contingency

table”; and 3) an efficient solution-fixing heuristic.

Overall, all the methods proposed in this thesis provide multiple options

to balance the solution quality/time trade-off in optimization problem

featuring offline and online phases, suiting a variety of practical ap-

plication scenarios. We ground our methods on two real case studies
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with both offline and online decisions: an energy management system

with uncertain renewable generation and demand, and a routing prob-

lem with uncertain travel times. The application domain feature respec-

tively continuous and discrete decisions. An extensive analysis of the

experimental results shows that indeed offline/online integration may

lead to substantial benefits by achieving high solution quality, while

reducing the online computation time.
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Chapter 1

Introduction

This thesis considers multi-stage optimization problems under uncer-

tainty that involve distinct offline and online phases. In particular it

addresses the issue of integrating these phases to show how the two are

often interrelated in real-world applications.

1 Context

Optimization under uncertainty arises in many application areas, such

as project scheduling, transportation systems, financial systems, and

energy management: fuel prices, electrical power, activity durations,

travel times, etc. are effectively stochastic in the real world. Optimiza-

tion problems in this class can be seen as a sequence of multiple stages,

such that at each stage part of the uncertainty is revealed and some de-

cisions must be made. Such decisions are irrevocable and made without

full knowledge of the future: they should therefore account for multi-

ple (ideally all) possible outcomes, and optimize a probabilistic per-

formance measure (e.g.the expected value of a relevant cost metric).

The need to account for multiple future developments makes stochastic

optimization incredibly challenging, which explains how approximate

(sampling-based) methods and heuristics are the most popular solu-

tion techniques. Due to such a complexity, the applicable approaches
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depend on the temporal granularity of the decisions to be made. Long-

term strategic decisions (which are often very impactful) are typically

solved via expensive, but more accurate, sampling-based approaches.

Short-term operational decisions often need to be made over multi-

ple steps, within a short time frame: they are commonly addressed

via polynomial-time heuristics, while more advanced sampling-based

methods are applicable only if their computational cost is carefully

managed. We will broadly refer to the first class of problems (and so-

lution approaches) as offline and to the second as online.

In this thesis, we move from the observation that many practical appli-

cation scenarios require to make interdependent offline and online de-

cisions. For example, we may need to define a daily production sched-

ule for an industrial plant, and then manage its power supply on a hour

by hour basis; or we may assign customers to vehicles for delivering

goods, and then adjust their routes dynamically as the traffic conditions

reveal themselves over time. As we can see in the related current lit-

erature, the most common approach to tackle such problems is to deal

with the offline and online phase separately. Sampling-based online al-

gorithms have become more common and heuristics are still the most

common approach in practical applications, though. We will show that

substantial improvements can be obtained by treating the two phases

in an integrated fashion.

2 Contribution

This distinction in offline and online optimization has led to consider

the two modes separately in recent literature. However, in many cases

multi-stage optimization problems under uncertainty can be considered

composed of both an offline strategic phase and an operational online

phase. Strict constraints on the available decision time are often present

in the online phase, but are absent (or very relaxed) on the offline one.

In this thesis, we will show that a tighter integration between the two
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phases can lead to substantial improvements: this will be done via an

empirical evaluation using the first two examples (energy management

and transportation system) as case studies.

In the first part of this thesis, we start from a general baseline model that

integrate both offline and online decision phases and then we improve

it by altering either the offline or the online component of the solution

process, so that the two play better together. In the second part, we

start from a generic sampling-based online anticipatory algorithm and

we propose methods to show how to exploit the existence of an offline

phase to manage its cost/quality trade-off.

In the first part, as a baseline, we consider an approach that deals with

offline decisions via a sampling-based method, and with online deci-

sions via a greedy heuristic. This baseline is not problem specific, in-

stead we simply assume that: 1) the uncertainty is exogenous; 2) a two-

stage stochastic optimization model is used for the offline phase; 3) the

online heuristic can be stated as convex optimization problem. We then

show how to improve the baseline in different directions, each altering

either the offline or the online component of the solution process. The

baseline is improved via three broad ideas: 1) improving the online

heuristic by adding an anticipatory component; 2) making the offline

solver aware of the online heuristic and its limitations; 3) tuning the

parameters of the online heuristic to alter its behavior. The first idea

is closely related to existing online anticipatory algorithms (e.g. EX-

PECTATION); the second and third ideas exploit the mixed nature of the

problem to enable improvements via a deeper integration of the offline

and online phases. We formalize our methods to propose general ap-

proaches that can be applied to different real world use cases, as long as

a few basic assumptions are satisfied. We believe our techniques repre-

sent a significant step toward integrated offline/online optimization. To

test our methods, we ground them on two case studies, matching the ex-

amples mentioned earlier: 1) an energy system management problem,

where load shifts are planned offline (the day ahead) and power flows
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must be controlled online (e.g. hour by hour); and 2) a Vehicle Rout-

ing Problem where customer are assigned offline, but the routes can be

chosen online (i.e. based on the uncertain travel times). The first prob-

lem features a continuous (and hence non-enumerable) decision space,

while the second has pure discrete decisions. In our experiments, all the

proposed methods significantly improve over the baseline in terms of

solution quality. While the computation cost is always higher than the

baseline, each approach hits a different trade-off in terms of offline and

online solution time.

In the second part of the thesis, we focus on stochastic online antici-

patory algorithms that have a considerable computational cost, which

may be problematic if (as it is often the case) online decisions must

be taken within a short time frame. In most practical settings, how-

ever, a substantial amount of time and information is available before

the online problem is solved, in an offline phase. For example, one

may have access to energy production forecasts, historical travel times

in routing problems, results from test runs in cyber-physical systems.

We refer to this sort of data as offline information. Usually, it is em-

ployed to characterize the uncertain elements and for sampling likely

outcomes (i.e. scenarios). We will show how to exploit this informa-

tion at a much deeper level. In this context, we propose three hybrid

offline/online methods that build over a given, sampling-based, antici-

patory algorithm, and allow to match its solution quality at a fraction

of the online computational cost. One of them can even rely on a deter-

ministic algorithm, thus providing state-of-the-art performance in prob-

lems for which no anticipatory approach is available. All our methods

work by shifting part of the computation to the offline phase, where

time limits are more relaxed and the costs can be better amortized (e.g.

via parallelization). We obtain our methods by combining three basic

contributions: 1) a technique to estimate the probability of future out-

comes, given past observations; 2) a scheme for building a contingency

table, with precomputed solutions to guide the online choices; and 3)
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an efficient fixing heuristic for adapting the precomputed solutions to

run-time conditions. We ground our approaches on a (numeric) energy

management problem with uncertain loads and generation from Re-

newable Energy Sources (RES), and on a (discrete) Traveling Salesman

Problem with uncertain travel times. We show how our methods reach a

solution quality comparable with the anticipatory algorithm, with lower

(or dramatically lower) online computational cost.

Our contributions can be summarized as follows:

1. We propose multiple methods to tighten the offline/online inte-

gration, leading to significant quality improvements, at the cost

of an increased computation effort either in the offline or the on-

line phase.

2. Given an arbitrary online (sampling-based) anticipatory algorithm,

we propose three methods that allow to retain its solution quality

at a fraction of the online computational cost, via a substantial

degree of offline preparation.

All our methods have broad applicability and they provide multiple

options to balance the solution quality/time trade-off in optimization

problem featuring offline and online phases, suiting a variety of prac-

tical application scenarios in very different domains with both discrete

and numeric decision variables.

3 Outline

The structure of the thesis is the following.

Chapter 2 provides a review of methods for optimization under uncer-

tainty, both in an offline and online setting, and then focuses on moti-

vating examples. The chapter also provides an introduction and state-

of-the-art discussion on the enabling methodologies used to tackle the

problem of optimization under uncertainty in complex systems. In par-

ticular, all the methods proposed in this work were originally born for
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the energy system domain, which presents integrable offline/online de-

cisions. For this reason, in the final part of this chapter, a section is

devoted to the optimization techniques and description of Distributed

Energy Systems (e.g. Virtual Power Plants).

Chapter 3 formally describes our integrated offline/online proposed

methods (as improvements of a detailed baseline model) by pointing

out the importance of both the offline and the online part for each

method.

In Chapter 4 we ground the methods developed in Chapter 3 on two

real case studies and we provide an exhaustive analysis and discussion

of the results.

Chapter 5 formally introduces our three hybrid methods that, given an

arbitrary online anticipatory algorithm, allow to retain its solution qual-

ity at a fraction of the online computational cost, via offline preparation.

In Chapter 6 we ground the methods developed in Chapter 5 on two

real case studies and we provide an exhaustive analysis and discussion

of the results.

Chapter 7 concludes with the final remarks and future works.
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Related Work

In this section we provide an overview of methods for optimization

under uncertainty, both in an offline and online setting, and then we

provide motivating examples to show how both the offline and online

phases are often interrelated in real-world applications. Moreover, since

the work described in this thesis was originally motivated by problems

on the energy domain, the final part of this chapter is dedicated to opti-

mization techniques and description of distributed energy systems such

as Virtual Power Plants.

1 Optimization Under Uncertainty

Optimization under uncertainty is characterized by the need to make

decisions without complete knowledge about the problem data. This

situation is extremely common, and there is a growing realization that

dealing with uncertainty in optimization is necessary to achieve real-

world impact in many domains.

A large number of problems in production planning and scheduling,

transportation, energy management, and finance require that decisions

be made in the presence of uncertainty (e.g. electricity and fuel prices,

renewable energy production, routing travel times). However, this situa-

tion is very challenging: ideally, one should optimize for every possible
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contingency, which is often impossible or impractical, and a key diffi-

culty is in dealing with an uncertainty space is that it is huge and fre-

quently leads to very large-scale optimization models. Decision-making

under uncertainty is often further complicated by the presence of de-

cision variables in a multi-period or multi-stage setting. Optimization

problems in this class can be seen as a sequence of multiple stages,

such that at each stage part of the uncertainty is revealed and some de-

cisions must be made. Such decisions are irrevocable and made without

full knowledge of the future: they should therefore account for multi-

ple (ideally all) possible outcomes, and optimize a probabilistic perfor-

mance measure (e.g.the expected value of a relevant cost metric).

One extreme (and frequent) method to deal with such issues is to dis-

regard the uncertainty and assume that all parameters are deterministic

[Sah04]. When the potential impact of uncertainty is not negligible,

however, using stochastic optimization becomes necessary (see [SP07]

for an introduction or [BL97, KWK94] for an extensive discussion). In

this case, a suitable representation for the uncertainty must be found

and (except in rare cases) some technique must be used to trade esti-

mation accuracy for a reduction of the computation time. The field has

been extensively investigated, and we refer the reader to [Pow16] for a

comprehensive overview.

There are two main approaches to deal with data uncertainty in opti-

mization, namely robust and stochastic optimization. Robust optimiza-

tion does not assume that probability distributions of uncertain data

are known, but instead it assumes that the uncertain data resides in the

so-called uncertainty set. Additionally, basic versions of Robust Opti-

mization assume hard constraints, i.e., constraint violation cannot be

allowed for any realization of the data in the uncertainty set. The Ro-

bust approach is popular because of its computational tractability for

many classes of uncertainty sets and problem types. However, when

distributions of the uncertainty are sufficiently well characterized, the

Stochastic approach may be better. Stochastic optimization has an im-
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portant assumption, i.e., the true probability distribution of uncertain

data has to be known or estimated. If this condition is met and the re-

formulation of the uncertain optimization problem is computationally

tractable, then the stochastic approach is arguably the most effective

methodology to solve the uncertain optimization problem.

We discuss both the approaches in the following sections.

1.1 Robust Optimization

When a deterministic model is inappropriate, and there are few prob-

ability indications for using a stochastic model, it could be useful to

work with ranges of uncertainty. Uncertain parameters, in this case,

are assumed as restricted to particular intervals, without an associated

probability distribution. This is the key idea in Robust Optimization

and has the additional benefit of reducing even further the computa-

tional costs [BS04, BBC11, ZWL15, Nem, BTN08]. Instead of min-

imizing the total expected cost as in stochastic optimization, robust

optimization reduces the worst-case costs for all possible results of

uncertain parameters. Often the objective is to make a trade-off be-

tween robustness and the solution quality in the most common scenar-

ios. An uncertainty set that contains all possible realizations for each

component of the uncertain parameters is the most robust choice, but

on the other hand there is only a small chance that all uncertain pa-

rameters take their worst case values. Since often the underlying prob-

ability distribution is not known, the idea is to find a distributionally

robust solution [GYdH15]. Robust approaches might lead to a substan-

tially higher costs of the proposed solution [BS04] w.r.t. stochastic ones

when distributions of the uncertainty are sufficiently well characterized.

This is mainly because robust approaches protect against each event in

the specified uncertainty set regardless of its probability, and therefore

may have to account for extremely unlikely events. Several robust ap-

proaches have parameters (e.g., budget of uncertainty) that can be used

to adjust the degree of protection offered by the model [CSS07]; yet,
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in general tuning these parameters is not trivial. To reduce the price

of robustness, subsequent studies have investigated alternative soft and

light robustness models [FM09, BTBB10]. Recently, multiband robust-

ness [BD12], has been proposed to support an improved and strati-

fied representation of uncertainty, while maintaining the computational

tractability. It would be worth mentioning also Model-predictive con-

trol (MPC) algorithms [BM99] that are affinely adjustable robust opti-

mization where the parameters of a state function (that acts online to

changes in state/uncertainty) are optimized offline. Such an algorithm

nicely spans the space between a myopic heuristic, and a two-stage

anticipatory algorithm with many scenarios. Hybrid stochastic/robust

models have been proposed in recent years (e.g. [ZG13, KRK16, LXT15])

to combine the advantages and compensate for the disadvantages of

pure robust and stochastic approaches to make better decisions in com-

plex domains under uncertainty.

1.2 Stochastic Optimization and Sequential Decision
Problems

Data subject to uncertainty is usually represented via random variables

– see [BL97, KWK94]. A random variable ξ does not take a value, but

is instead sampled to obtain realizations, from a continuous or discrete

set called support (i.e. the variable domain). A probability distribution

defines how likely each value in the support is to be sampled. As al-

ready mentioned, stochastic optimization problems can be viewed as

composed of multiple stages. At each stage, some uncertain elements

are observed (i.e. one or more random variables are sampled), and some

decisions must be made (i.e. some decision variables need to be as-

signed). The uncertainty is said to be exogenous if the distribution of

the random variables in a stage does not depend on the decisions made

in previous stages (e.g. weather conditions), and endogenous in the op-

posite case (e.g. recovering from an illness, while receiving cures).
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The goal is to optimize a probabilistic performance measure (e.g. the

expected problem cost), subject to both deterministic and probabilistic

constraints. In the case of probabilistic constraints, the focus is on the

reliability of the system, i.e., the system ability to meet feasibility in

an uncertain environment. This reliability is expressed as a minimum

requirement on the probability of satisfying constraints. Probabilistic

constraints can be further divided on constraints over expectation (e.g.

the expected stock of certain goods in a warehouse should be above a

given level) or chance constraints (e.g. the probability that the stock is

above a given level should be higher than a threshold). For more details,

see e.g. [ZL11, LAGW08, Sah04].

Stochastic optimization needs a unified mathematical framework. In

this perspective, [Pow16] describes and identify five common elements

of potentially any stochastic optimization problem:

• State variable - It has the information needed to model a sys-

tem at a given time. The elements of a state variable can include

physical information or capture the probability distributions that

describe the uncertainty.

• Decisions/actions/controls - These can come in a variety of forms

(e.g. binary, discrete or continuous).

• Exogenous information - It describes new information that ar-

rives over time from an exogenous (uncontrollable) source, which

are uncertain to the system before the information arrives.

• Transition function - These are functions which describe how

the state of the system evolves over time due to endogenous de-

cisions and exogenous information. The transition function de-

scribes the evolution of all the state variables, and may exhibit a

variety of mathematical structures (e.g. linear vs. nonlinear).

• Objective function - It is always assumed the presence of typi-

cally one metric (some applications have more) that can be used

to evaluate the quality of decisions.
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Generally, stochastic programs are more difficult than their determin-

istic counterparts, even if significant progress has been made towards

their exact and approximate solution. Exact solution of deterministic

equivalents of stochastic linear programs relies on decomposition: [BL97]

reports the exact solution, on parallel computers, of stochastic linear

programs with up to one million variables in their deterministic equiv-

alents. Much larger problems are typically solvable by sampling-based

rather than decomposition methods. These problems are solved using

Sample Average Approximations.

1.3 Sampling and the Sample Average Approximation

With a few exceptions, the probability distributions of the random vari-

ables are approximated by drawing a finite number of samples [Sha13a]:

this yields a collection of realizations referred to as scenarios. This

sampling step can be done prior to the solution process in case of ex-

ogenous uncertainty, but must be performed at search time for endoge-

nous uncertainty. Sampling and scenarios allow to tackle stochastic op-

timization via the Sample Average Approximation, [SP07, Sha13a]. In

this approach, a set (i.e. a copy) of deterministic decisions is associated

to each scenario, which allows to deal with expected values and chance

constraints via summations and averages. To ensure meaningful solu-

tions, it is important to add so-called non-anticipativity constraints to

ensure that no decision is made with perfect knowledge of the future. In

practice, if two scenarios share the same realization for the random vari-

ables in stages 1 to k, then their decisions for the stages 1 to k+ 1 must

be identical. The SAA is a powerful and general method, but also very

expensive from a computational point of view [Wal02]. For this rea-

son, its application has been historically limited to offline, finite-stage,

problems. This is in fact the context for which the SAA was originally

developed, and the focus of many acceleration techniques such as the

classical L-shaped method [LL93a].

An approach for stochastic programs with large sample spaces is the
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use of Monte-Carlo sampling to generate i.i.d. realizations and approx-

imate with a sample average approximating problem. Repeated solu-

tions of the problem for different sample sizes along with statistical

tests can provide approximate solutions together with estimates of the

true optimal value. Monte-Carlo methods generally follow these steps:

1. Start from the statistical properties of possible inputs

2. Generate different sets of possible inputs with the above proper-

ties

3. Perform a deterministic calculation with these sets

4. Analyze statistically the results.

These methods are a subset of computational algorithms that use the

process of repeated random sampling to make numerical estimations

of unknown parameters. They allow for the modeling of complex sit-

uations where many random variables are involved. There are a broad

spectrum of Monte Carlo methods (see [dMB14]), but they all rely on

random number generation to solve deterministic problems.

Decision making under uncertainty traditionally has focused on a pri-

ori optimization which, as mentioned earlier, is orthogonal and com-

plementary to online optimization. This is the case with stochastic pro-

gramming, which is more concerned with strategic planning than oper-

ational decisions at the core of online algorithms.

1.4 Two-Stage Stochastic Programming

Applying the SAA to a two stage problem requires to determine a

single set of decisions for stage 1, and one set of decisions (the so-

called recourse actions) per scenario for stage 2 [Sha08]. In particu-

lar, the first-stage variables are those that have to be decided before

the actual realization of the uncertain parameters. Subsequently, once

the random events have presented themselves, further design or op-

erational policy improvements can be made by selecting, at a certain
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cost, the values of the second-stage, or recourse, variables. Tradition-

ally, the second-stage variables are interpreted as corrective measures

or recourse against any infeasibilities arising due to a particular realiza-

tion of uncertainty. However, the second-stage problem may also be an

operational-level decision problem following a first-stage plan and the

uncertainty realization. Due to uncertainty, the second-stage cost is a

random variable. The objective is to choose the first-stage variables in

a way that the sum of the first-stage costs and the expected value of the

random second-stage costs is minimized. The concept of recourse can

be applied to linear, integer, and non-linear programming. This struc-

ture is depicted in Figure 2.1.

Figure 2.1: Two-Stage Stochastic Programming [HB09]

1.5 Multistage Stochastic Programming

The above formulations can be extended to multistage stochastic pro-

grams (see Fig. 2.2). This is often computationally intractable, and it

states a problem that is the extension of decision trees to problems

where a decision at certain time t is a vector that has to satisfy a set

of constraints. [Sha08] has shown that the SAA method cannot be ex-

tended efficiently to multistage stochastic optimization problems: the

number of required samples must grow exponentially with the number

of iterations, which is typically large or infinite. Combinatorial solu-

tions suffer from similar exponential explosion.

The recourse-based approach to stochastic programming requires to as-

sign a cost to recourse activities that ensures feasibility of the second-

stage problem. This approach allows infeasibilities in the second stage
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Figure 2.2: Multitage Stochastic Programming [HB09]

at a certain penalty. The objective is the minimization of expected re-

course costs.

In the next sections we briefly introduce the concept of Stochastic Dy-

namic Programming that proposed how to rewrite time separable multi-

stage stochastic optimization problems in the dynamic form, and Markov

Decision Processes for sequential decision making. Then we focus on

Online Stochastic Optimization.

1.6 Stochastic Dynamic Programming

The idea of moving from static optimization to a dynamic sequen-

tial one, allows to analyze the dynamic programming method [Bel58]

which expressed the optimal policy in terms of an optimization problem

with iteratively evolving value function (the optimal cost-to-go func-

tion).

The uncertainty is considered as part of the dynamic environment, gen-

erally considered a discrete-time system that evolves over N time peri-

ods (known as time horizon). It is assumed that, in a certain period k,

the present state of the system is fully determined by its previous his-

tory and the objective function minimizes an additive cost function over

the entire time horizon. It has been considered also a tail subproblem

of minimizing the cost-to-go from time i to time N and the idea is that,

regardless of how we arrived at state i, the remaining decisions must be

optimal for the tail subproblem [Ros14].

Dynamic programming first solves all tail subproblems, then the orig-

inal problem is solved at the last step of the process by utilizing the

solutions of all tail subproblems.
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It is necessary to use suitable algorithms to solve the tail problems (e.g.

non-linear or other stochastic programming algorithms): as all tail sub-

problems must be solved by the algorithm, the procedure could be very

computationally intensive. In practice, it is often necessary to limit the

exponential growth of computational time and storage requirements in

terms of the number of state and control variables. These difficulties

have led to the development of several approximation techniques, in-

cluding the approximation of the optimal cost-to-go function by that of

a related simpler problem.

1.7 Markov Decision Processes

Markov Decision Processes (MDP) [Put14] is another fundamental model

for sequential decision making. Generally, MDP consider a finite num-

ber of states and actions. At each time a state is observed and an action

is executed, which incurs intermediate costs to be minimized (or re-

wards to be maximized). The cost and the successor state depend only

on the current state and the chosen action. Successor generation may be

probabilistic, based on the uncertainty we have on the environment in

which the search takes place. For example, an action might sometimes

fail to result in the desired target state, instead staying in the current

state with a small probability.

MDP are often used to model sequential decision making, alternating

between decisions and observations in which the uncertainty depends

on the actions (endogenous). The biggest difference with stochastic op-

timization (i.e. the uncertainty is exogenous) pushed [HB09] towards

the definition of a variant of MDP where the uncertainty is exogenous

(i.e. Markov Chance-Decision Processes (MCDP)) whose benefits for

stochastic optimization are computational: they can be tackled online

using anticipatory algorithms [HB09]. Indeed, because the uncertainty

is exogenous, MCDP naturally allow for the anticipatory relaxation that

removes the interleaving of decisions and observations and is expressed

in terms of deterministic optimization problems. The anticipatory algo-
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rithms can thus exploit the anticipatory relaxation on scenarios of the

future in order to make better decisions online.

2 Towards Online Stochastic Optimization

When we are dealing with a problem with more than two stages, op-

timizing at run time provides the opportunity to adapt the solutions

to unexpected events (since those can be observed) and to reduce the

computational cost (since there is no need to plan for every possible

outcome). This line of reasoning is at the basis of stochastic online op-

timization that, due to the frequent presence of tight time limit on the

solution process, has been traditionally tackled via heuristics.

Ideally, an offline optimization would compute an optimal policy to an

accurate model of the application. However, such models need to ac-

count for a huge amount of rare events that induce high computational

costs. If the offline optimization is the only option, we need to sim-

plify the model by obtaining optimal or near-optimal solutions to an

approximated problem.

Since online algorithms can react to external events or anticipate the

future, often uncertainties are better handled online. We can observe

that the positive aspect to approach online optimization is that it avoids

the need to search for policies in huge search space. On the other hand,

the price to pay is the need to optimize online with the possibility of

not satisfying tight time constraints. Moreover, the synergy of offline

optimization (to compute robust architectures) and online optimization

(to use these architectures adaptively) has the potential to find high-

quality solutions to the real problems and it is the aim of this thesis.

2.1 Online Stochastic Optimization

In general, online algorithms use only the revealed inputs and past de-

cisions to take the next decision, and a competitive analysis [FW98] is
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used to analyze their performance. It means that the online algorithm is

compared to an offline algorithm for the same problem. Online stochas-

tic combinatorial optimization algorithms use a black-box to sample

scenarios of the future and they exploit past and future information to

take their decisions. The goal is to maximize the expected profit (or

minimize the expected cost) of the online algorithm. In recent years,

the availability of improved algorithms has enabled the application of

sampling-based algorithm also in an online setting: these are often re-

ferred to as anticipatory algorithms, many of which received excellent

coverage in [HB09].

2.2 Online Anticipatory Algorithms

Generally speaking, online anticipatory algorithms need to be run at

each stage and rely on scenarios to obtain approximate information

about the future: this enables significant improvements in terms of qual-

ity, but comes with a substantial computational cost that must be care-

fully managed.

For example, the EXPECTATION algorithm [BVH04a] attempts to re-

duce the solution time by optimizing each scenario independently (and

therefore as a deterministic problem), for all possible decisions; the

method then selects the decision which maximizes the expected profit.

The CONSENSUS algorithm [BVH04d] improves over this scheme by

solving a deterministic problem per scenario. Every time a decision

for the current stage is picked as optimal in one of those problems it

receives a votes; once the process over, the algorithm chooses the deci-

sion with the most “votes”.

The technique employed by CONSENSUS has some adverse effects on

the solution quality, which are addressed in REGRET algorithm [BVH04b]

by extracting more information from each solved problem; this leads to

a more reliable selection of the optimal decision for the current stage.

The AMSAA method [MVH08] instead hybridizes SAA and Markov

Decision Processes techniques to improve the solution quality at the
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expense of the computational cost. All the anticipatory online algo-

rithms mentioned so far are applicable only to problems with discrete,

enumerable, decisions.

There is always a trade-off between the computation cost and the qual-

ity and robustness of the provided solution. This trade-off is the pri-

mary object of investigation in [MH07], and can be tuned by adjust-

ing the number scenarios and the so-called look ahead horizon, i.e.

the number of future stages that are taken into account in each sce-

nario. More in general, the method for generating the scenarios can be

adapted to the given problem and the user goals, as described for ex-

ample in [KW03a].

As mentioned before, the literature on optimization under uncertainty

has focused on offline problems that usually rely on sampling (yielding

a number of scenarios) to obtain a statistical model of future uncer-

tainty. Robust solutions can be obtained by building one copy of the

decision variables per scenario, and linking them via non-anticipativity

constraints (decisions based on the same observations should be identi-

cal): SAA [KSHdM02] provides convergence guarantees under reason-

able assumptions, and can substantially outperform myopic optimiza-

tion.

More recently, improvements in the solution techniques and compu-

tational power have enabled the application of online anticipatory al-

gorithms, which proved very effective at finding robust, high quality,

solutions as uncertainty slowly reveals itself.

Online anticipatory algorithm typically rely on scenario sampling to

estimate the possible developments for a fixed number of future steps,

known as look-ahead horizon. Larger sample sizes result in higher ac-

curacy, but also in more and bigger (possibly NP-hard) problems to

be solved. This is a strong limitation, since in many practical cases

online decision must be produced within strict time limits. Consider-

able research effort has therefore focused on improving the efficiency

of these algorithms. For example, the CONSENSUS and REGRET al-
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gorithms from [BVH04c] both attempt to reduce the number of prob-

lems w.r.t. the earlier EXPECTATION approach. Computational studies

such as [BEY05, MVH07] aim at characterizing the algorithm sensitiv-

ities to their design parameters (such as the number of sampled scenar-

ios and the look-ahead horizon). The approaches from [JL96, PDM12,

LTY13, DFLM19] attempt instead to reduce the number of scenarios

by increasing their relevance, and in particular by taking into account

past observations while sampling. We also focused on this aspect, in

particular in the second part of this thesis, to define general methods

in order to manage the cost/quality trade-off of online stochastic an-

ticipatory algorithms, taking advantage of exploiting the existence of

an offline phase with some useful offline information (e.g. forecasts or

historical data).

3 Integrated Offline/Online Decision-Making
in Complex Systems

The need to account for multiple future developments makes stochastic

optimization incredibly challenging, which explains how approximate

(sampling-based) methods and heuristics are the most popular solu-

tion techniques. Due to such a complexity, the applicable approaches

depend on the temporal granularity of the decisions to be made. Long-

term “strategic” decisions (which are often very impactful) are typically

solved via expensive, but more accurate, sampling-based approaches.

Short-term “operational” decisions often need to be made over mul-

tiple steps, within a short time frame: they are commonly addressed

via polynomial-time heuristics, while more advanced sampling-based

methods are applicable only if their computational cost is carefully

managed.

A classical example, to better understand the motivations and the con-

text, is a real-world management system which involves the planning,
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scheduling and control of activities with different temporal granularity

of the decisions to be made. Traditionally, theoretical approaches in lit-

erature have mainly focused on the scheduling phase assuming a static

and deterministic environment. However, in practice, there is a need to

consider uncertainty in order to prevent incurring costs due to unex-

pected events with a negative impact on project milestone completion

times. In the perspective of time horizons and objectives of decisions,

project and system management decision making can be subdivided

into three levels [HHLW07, DDH+07]. The strategic level is concerned

with long-term decisions made by top level management (e.g. major

capital investments and project financing). On the tactical level, deci-

sions are made regarding project acceptance. Finally, the scheduling

decisions are made at the operational level. This involves the alloca-

tion of specific resource units to project activities and the scheduling of

those activities in time together with reacting to schedule changes when

needed. It is important to focus on the interdependencies between these

obviously related decision levels by also taking into account, at every

decision level, the source of uncertainty.

As shown in different real-world and literature examples, the distinc-

tion between offline and online problems is somewhat blurry: in this

thesis, we will refer as “online” to problems that need to be solved

repeatedly over time, with the outcome of each solution attempt affect-

ing the subsequent ones. In practice, online problems often need to be

solved within strict time limits, while this requirement is relaxed for

offline problems.

3.1 Motivating Examples

In this section, we review some real world use cases that are typically

solved via either offline or online models, while in fact they are inte-

grated offline/online problems.

• Energy Management Systems (EMS) are key components of the

electrical grid that maintain its stability both by shifting con-
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sumption (over time) and routing power flows from the avail-

able generators. EMS need to tackle a very challenging problem,

due to the progressive shift towards decentralized generation, the

strong penetration of (uncontrollable and stochastic) Renewable

Energy Sources (RES), and the integration of flexible (determin-

istic) energy systems. In practice, the load shifts must be planned

offline (the day ahead) and the power flow balance should be

maintained online (e.g. hour by hour), so as to minimize the costs

(see [MCM+13, CBRJ15]).

• In transportation systems, a central role is played by the Vehi-

cle Routing Problem and its variants [TV02], which consists in

establishing the paths for a set of vehicles to serve a set of cus-

tomers. In a real world setting, many aspects (e.g. customer de-

mands and travel times) are also subject to uncertainty [MNP14].

Several transportation companies focus on assigning customers

to smaller scale operators (offline), which are then in charge of

choosing the routes (online).

• In project scheduling the goal is to generate a feasible schedule

that optimizes some performance metric (i.e. the project dura-

tion), in presence of limited resources. This schedule can serve

as a basis for planning external activities such as material pro-

curement, preventive maintenance and delivery of orders to ex-

ternal or internal customers. During execution, project activities

are subject to considerable uncertainty that may lead to schedule

disruptions [HL05]. A disrupted schedule incurs higher costs due

to missed deadlines, resource idleness, higher work-in-process

inventory and possible frequent rescheduling. Like in the previ-

ous examples, it is possible to plan project activities offline and

then to use online algorithms to improve (online) solutions as the

elements of uncertainty reveal themselves.
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• In reservation systems requests arrive online and must be dy-

namically allocated to limited resources in order to maximize

profit [VHBV06]. Example include hotel of flight booking sys-

tems, which are both subject to considerable uncertainty in the

real world. Once again, a base reservation plan is usually devised

offline, but it then needs to be integrated with an online dynamic

system to cope with unexpected disruptions.

All such problems feature both offline and online phases, which are typ-

ically solved in isolation, despite being strongly interconnected. In this

thesis, we will show that a tighter integration between the two phases

can lead to substantial improvements: this will be done via an empir-

ical evaluation using the first two examples (energy management and

transportation system) as case studies.

3.2 Offline/Online Models

In optimization under uncertainty a suitable representation for the un-

certainty must be found and (except in rare cases) some technique must

be used to trade estimation accuracy for a reduction of the computa-

tion time. As already said, data subject to uncertainty can be often rep-

resented via random variables in a multi-stage decision system. After

taking the decisions for a stage a random event occurs, i.e. some of the

random variables are instantiated, and the decisions for the next stage

must be taken, and so on.

As already mentioned, it is common to use sampling to approximate

the probability distribution of the random variables [Sha13b]. Sampling

yields a number of scenarios: then, a single set of decisions is associ-

ated to the current stage, while separate sets of decisions are associated

to each scenario in the next stage. More scenarios result in a better

approximation, but a larger computation time. Looking more than one
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stage ahead also improves the estimation quality, but it requires to re-

peat the procedure recursively, with major impacts on the solution time.

There is a delicate trade-off between speculating vs. waiting for the un-

certainty to be resolved [KW03b]. This leads to an informal (but practi-

cal) distinction between offline and online problems: online algorithms

require to make decisions over time as the input is slowly revealed and

delaying decisions can either increase the costs or be impossible due to

constrained resources.

To summarize from the previous sections, offline problems are often

solved via exact solution methods on approximate models with lim-

ited look-ahead, e.g. via two-stage scenario-based approaches where

both the first-stage and second stage variables are instantiated, or via

decomposition based methods [LL93b].

Online problems are often tackled in practice via greedy heuristics, but

more rigorous and effective anticipatory algorithms are also available

as long as the temporal constraints are not too tight, e.g. the AMSAA

algorithm from [HB09, MVH08]. Similarly to offline approaches, on-

line anticipatory algorithms take decisions by solving deterministic op-

timization problems that represent possible realizations of the future.

They address the time-critical nature of decisions by making efforts to

yield solutions of reasonable quality early on in the search process.

In this thesis, we are interested in optimization problems with both an

offline and an online component. Formally, we focus on n-stage prob-

lems where the first-stage decisions are “strategic” (and can be taken

with relative leisure), while the remaining n − 1 stages involve “oper-

ational” decisions (with tighter temporal constraints). For the methods

defined in the first part of the thesis, we made the assumption that a

greedy heuristic, based on a convex optimization model, is available

for the online part. As a baseline, we deal with the offline decisions

by collapsing the n − 1 on-line stages into a single stage, and then

obtaining via sampling a classical two-stage model. The online part is

tackled with the original heuristic. This results into a relatively efficient
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approach, but yields solutions of limited quality.

4 Optimization Models under Uncertainty for
Energy Management Systems

There is a wide range of problems in energy systems that require mak-

ing decisions in the presence of different forms of uncertainty which

pervades optimization problems in the energy sector (e.g. unit commit-

ment, renewable energy production, market prices,...).

Energy systems, consisting of a strong penetration of renewable energy

resources, are subject to uncertainty. This situation is extremely com-

mon but also very complex to manage and model, since the integration

of renewable sources must be adequately treated in order to manage

uncertainty and avoid compromising the operational reliability of the

energy system.

4.1 Distributed Generation and Virtual Power Plants

The progressive shift towards decentralized generation in power dis-

tribution networks has made the problem of optimal Distributed En-

ergy Resources (DERs) operation increasingly constrained. This is due

to the integration of flexible (deterministic) energy systems with the

strong penetration of (uncontrollable and stochastic) Renewable En-

ergy Sources (RES). The integration of these resources into power sys-

tem operation requires a major change in the current network control

structure. This challenge can be met by using new and different con-

cepts like Virtual Power Plant (VPP), which is based on the idea of

aggregating the capacity of many DERs, (i.e. generation, storage, or de-

mand) to create a single operating profile and manage the uncertainty.

A VPP is one of the main components of future smart electrical grids,

connecting and integrating several types of energy sources, loads and

storage devices. A typical VPP is a large industrial plant with high (par-
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tially shiftable) electric and thermal loads, renewable energy generators

and electric and thermal storages (see Figure 4.1).

In a virtual power plant Energy Management System (EMS), the load

shifts can be planned offline, while the energy balance should be main-

tained online by managing energy flows between the grid, the loads,

the renewable and traditional generators, the storage systems.

This makes a VPP management a good candidate for grounding our

approaches. Based on actual energy prices and on the availability of

DERs, the EMS of a VPP decides:

1. how much energy should be produced;

2. which generators should be used for the required energy;

3. whether the surplus energy should be stored or sold to the energy

market;

4. the load shifts planned offline.

Optimizing the use of energy can lead to significant economic benefits,

and improve the efficiency and stability of the electric system (see e.g.

[PBBA+11a]).

Figure 2.3: A typical Virtual Power Plant
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4.2 Optimization Techniques

Electric systems are increasingly converging towards a full integration

of renewable sources into the electricity grid. The spread of Distributed

Generation (DG) involves the emergence of a series of critical issues in

the management of electrical systems and the transmission network, to-

gether with the need for new management criteria and innovative tech-

nical solutions to contain the costs of running the entire system. The

evolution of networks is thus pushed towards greater flexibility, effi-

ciency and reliability. In this context, the concepts of Smart Grid and

Virtual Power Plant are born to effectively and efficiently integrate dis-

tributed generation.

During the last decade several new concepts of energy planning and

management such as decentralized planning, energy conservation through

improved technologies, integrated energy planning, introduction of re-

newable energy sources and energy forecasting have emerged. The dif-

ferent types of models such as energy planning models, energy supply

demand models, forecasting models, renewable energy models, emis-

sion reduction models, optimization models have been reviewed and

presented in [RBG11, BZ11, JI06].

The problem of scheduling and planning of Distributed Energy Re-

sources is typically addressed by introducing a local Energy Manage-

ment System [PBBA+11a], which coordinates power flows from gener-

ators, controllable loads and storage. The goal is to minimize electricity

generation costs and avoid the loss of energy produced from renewable

energy sources in aggregates like Virtual Power Plants.

The potential applications of VPP has been recognized in recent lit-

erature. For example, [AP12] shows that the advance of DER in the

commercial and regulatory structure of electricity markets in course of

liberalization has created opportunities for decentralization of the role

of traditional power utilities. VPPs are one of the main components

of intelligent electrical grids of the future, connecting and integrating

several types of power sources (both renewable and non-renewable),
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storage and energy loads to operate as a unique power plant. The heart

of a VPP is an EMS which coordinates the power flows coming from

the generators, controllable loads and storages. In [LPR09] an EMS for

controlling a VPP is presented, with the objective to manage the power

flows for minimizing the electricity generation costs, and avoiding the

loss of energy produced by renewable energy sources.

DER aggregation can effectively couple traditional peak electrical plants

by supporting them with the flexible contribution of consumers to the

overall efficiency of the electric system. From this perspective, the EMS

of a VPP can develop Demand Side Management (DSM) mechanisms

to modify temporal consumption patterns. DSM can provide a num-

ber of advantages to the energy system and focuses on utilizing power

saving mechanisms, electricity tariffs, and government policies to de-

crease the demand peak and operational costs instead of enlarging the

generation capacity. As an example, [PBBA+11a] proposed an Energy

Management System for a renewable-based microgrid with online sig-

nals for consumers to promote behavior changes.

Optimization techniques such as Demand Response (DR) can bridge

the gap between production and real consumption in the energy man-

agement of complex energy systems (i.e. Virtual Power Plant ) to re-

duce operating costs. These techniques can increase energy efficiency

by moving part of the energy consumption during non-peak hours [PD11].

In addition to environmental benefits, DR mechanisms provide end

users with the opportunity to reduce electricity costs by responding

to market prices. To this end, optimization models such as [DFLM17]

have been developed to support political decision makers (local gov-

ernments) and economics (managers) in defining sustainable business

models and energy tariffs. The system has been integrated into an ICT

services platform to promote energy efficiency.

The management of next-generation energy systems requires accurate

models and data-driven approaches. These models can be categorized

into three groups: descriptive, predictive and prescriptive. The descrip-
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tive models aim to provide an accurate and interpretable view of the

state of the system, or to determine the causes of certain events (diag-

nostics). Predictive models include techniques for estimating the possi-

ble evolution paths of the system and their probability. Finally, the pre-

scriptive models attempt to quantify the effect of possible decisions, to

support the manager or users of the system in choosing the best course

of action. Artificial Intelligence techniques can be applied to all three

levels, to improve the efficiency of the infrastructure, its reliability, and

resilience with respect to unexpected events.

During the last years, optimization techniques in the energy sector are

focused on the integration between predictive and prescriptive level,

in particular on the use of predictive models extracted from data (e.g.

through Machine Learning) within optimization processes and deci-

sion support. The approach called Empirical Model Learning (EML)

[LMB17] allows the application of declarative optimization methods

to complex systems. To design real-world decision support systems it

is necessary a good combinatorial optimization model that takes into

account the uncertainty. Often enough, accurate predictive models (e.g.

simulators) can be devised, but they are too complex or too slow to be

employed in combinatorial optimization. EML is based on the idea of

using a Machine Learning model to approximate the input/output be-

havior of a system that is hard to model by conventional means; embed-

ding such Empirical Model into a Combinatorial Optimization model.

The emphasis of EML is mostly on the techniques to perform the em-

bedding. These should be designed so that the optimization engine can

exploit the structure of the empirical model to boost the search pro-

cess. The range of potential applications of EML is quite vast and in-

cludes: (1) applying Combinatorial Optimization to Complex Systems

(in the proper sense), or systems that are too complicated to obtain an

expert-design; (2) enabling prescriptive analytics by taking advantage

of a pre-extracted predictive analytics model; (3) enable indirect in-

teraction between a high-level optimizer and a lower-level optimizer
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(whose approximate behavior can be captured via Machine Learning).

In this perspective, it is possible to use EML to enable multi-level op-

timization and therefore optimization over large scale systems such as

large distributed energy management systems.

The use of optimization methods, such as Mathematical Programming,

at the heart of an Energy System can allow a rationalization of energy

use, minimizing costs, losses and improving environmental impacts.

However, every mathematical model for an Energy System must in-

evitably come to terms with inevitable sources of uncertainty, linked to

intermittency and partial unpredictability of renewable energy sources.

Making decisions under uncertainty pervades the planning and oper-

ation of our energy system [WF03]. Even if optimization techniques

have a long tradition in supporting planning and operational decisions

in the energy sector, the recent literature highlights the need for in-

creasing both the scope and the granularity of the decisions, including

new factors like distributed generation by renewable sources and un-

certainty.

Both the most popular methods to deal with uncertainty in mathemati-

cal programming (i.e. robust optimization and stochastic programming)

have been widely applied in energy systems [RSJ17, ZZL+13a, JPK15a].

One of the most used assumption is that the distribution of future un-

certainty is available for sampling, e.g. thanks to historical data and/or

predictive models. In particular, the assumption that the distribution of

future uncertainty is independent of current decisions is present in a

variety of applications [HB09].

The integration of renewable sources must be adequately addressed so

as to manage uncertainty and to avoid affecting the operational reliabil-

ity of a power system. Unit commitment (UC) is a critical decision pro-

cess, which can be formalized as the problem of deciding the outputs

of all the generators to minimize the system cost. The main principle

in operating an electrical system is to cover the demand for electric-

ity at all times and under different conditions depending on the season,



2.4.2 Optimization Techniques 47

weather and time, and by minimizing the operating cost. The determin-

istic formulation of this problem may not adequately account for the

impact of uncertainty.

For this reason, different approaches are used to manage UC under un-

certainty [JPK15b]:

1. Stochastic UC, which is based on probabilistic scenarios. The

basic idea is to find optimal decisions taking into account a large

number of scenarios, each representing a possible realization of

the uncertain factors. Stochastic UC is generally formulated as

a two-stage problem[ZZL+13b] that determines the generation

schedule to minimize the expected cost over all of the scenar-

ios, while respecting their probabilities. The approach usually re-

quires high computational cost for simulations.

2. Robust UC formulations, which optimize assuming a well-defined

range for the uncertain quantities, instead of taking into account

their probability distribution. The range of uncertainty is defined

by the upper and lower bounds on the net load at each time pe-

riod. Instead of minimizing the total expected cost as in stochas-

tic UC, robust UC reduces the worst-case costs for all possible

results of uncertain parameters [ZWL15].

3. Hybrid models have been proposed in recent years to combine

the advantages and compensate the disadvantages of pure robust

and stochastic approaches [ZG13].

The assessment of uncertainty in the modeling of distributed energy

systems has received considerable attention in recent works that apply

machine learning techniques for forecasting flexibility of VPP. Many

studies have been done on the residential sector using support vector

regression and neural networks [ENP12, JSCT14] and some methods

present promising results however it seems unlikely they may be im-

plemented in real life in particular in the industrial sector.
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In many practical cases, the problem is further complicated by the need

to take both complex strategic decisions (e.g. consumption planning for

a period of time) and quick operational decisions (e.g. routing of energy

flows). Long-term strategic objectives must coexist with medium and

short-term operational objectives in the energy model decision-making

process.

We developed a series of methods for integrated offline/online opti-

mization in the presence of uncertainty [DFLM18c, DFLM18b] and we

tested them over a VPP energy management system. These methods are

of general applicability, and have been shown to provide considerable

benefits in terms of quality and robustness of the solutions, in different

simulated contexts.

These methods, integrated with Machine Learning, are going to be also

used to develop innovative architectures for energy systems that allow

to consider:

1. an optimized local energy management in industrial and tertiary

contexts, with a high degree of resilience with respect to elements

of uncertainty, such as (e.g.) renewable energy sources, devia-

tions from the estimated consumption plans

2. a decision-making process for the core of an energy management

system based on different temporal granularities, with the possi-

bility of integration of offline and online decisions

3. ability to manage multiple objectives, because the behavior of

the energy system can be evaluated according to different metrics

(for example of an economic nature, related to the reliability and

stability of the system, or relative to environmental aspects).



Chapter 3

Offline/Online Integration in
Optimization under
Uncertainty

1 Introduction

Optimization problems under uncertainty can be seen as a sequence

of multiple stages, such that at each stage part of the uncertainty is

revealed and some decisions must be made. Such decisions are irre-

vocable and made without full knowledge of the future: they should

therefore account for multiple (ideally all) possible outcomes, and op-

timize a probabilistic performance measure (e.g.the expected value of

a relevant cost metric).

1.1 Strategic and Operational Decisions

The need to account for multiple future developments makes stochastic

optimization incredibly challenging, which explains how approximate

(sampling-based) methods and heuristics are the most popular solu-

tion techniques. Due to such a complexity, the applicable approaches

depend on the temporal granularity of the decisions to be made. Long-
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term “strategic” decisions (which are often very impactful) are typically

solved via expensive, but more accurate, sampling-based approaches.

Short-term “operational” decisions often need to be made over mul-

tiple steps, within a short time frame: they are commonly addressed

via polynomial-time heuristics, while more advanced sampling-based

methods are applicable only if their computational cost is carefully

managed. We will broadly refer to the first class of problems (and so-

lution approaches) as offline and to the second as online.

1.2 Model Description and Motivations

In this chapter, we move from the observation that many practical appli-

cation scenarios require to make interdependent offline and online deci-

sions. For example, we may need to define a daily production schedule

for an industrial plant, and then manage its power supply on a hour

by hour basis; or we may assign customers to vehicles for delivering

goods, and then adjust their routes dynamically as the traffic conditions

reveal themselves over time. The simplest approach to tackle such prob-

lems is to deal with the offline and online phase separately, respectively

(e.g.) via a sampling-based method and a heuristic. However, we will

show that substantial improvements can be obtained by treating the two

phases in an integrated fashion.

As a baseline, we consider an approach that deals with offline decisions

via a sampling-based method, and with online decisions via a greedy

heuristic. This baseline is not problem specific, instead we simply as-

sume that: 1) the uncertainty is exogenous; 2) a two-stage stochastic

optimization model is used for the offline phase; 3) the online heuristic

can be stated as convex optimization problem. We then show how to im-

prove the baseline in different directions, each altering either the offline

or the online component of the solution process, so that the two play

better together. All our methods are applicable under the same (gen-

eral) assumptions as the baseline. We believe our techniques represent

a significant step toward integrated offline/online optimization.
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To test our methods, we ground them on two case studies, matching the

examples mentioned earlier: 1) an energy system management prob-

lem, where load shifts are planned offline (the day ahead) and power

flows must be controlled online (e.g. hour by hour); and 2) a Vehicle

Routing Problem where customer are assigned offline, but the routes

can be chosen online (i.e. based on the uncertain travel times). The first

problem features a continuous (and hence non-enumerable) decision

space, while the second has pure discrete decisions. In our experiments,

all the proposed methods significantly improve over the baseline in

terms of solution quality. While the computation cost is always higher

than the baseline, each approach hits a different trade-off in terms of

offline and online solution time.

This chapter is structured as follows: Section 2 describes the starting

baseline model which is designed to be representative of this state of

the art. Section 3 describes in details our proposed methods (as im-

provements of the baseline model) by pointing out the importance of

both the offline and the online part for each method.

2 Baseline Model: Formal Description

We can now proceed to describe our baseline method. Historically,

methods such as stochastic optimization – see [SP07, BL97, KWK94]

– have been used for the offline phase, while the online phase has of-

ten been tackled via simple, non-anticipatory, heuristics. Our baseline

method is designed to be representative of this state of the art. In par-

ticular, we use a sampling-based model for the offline decision that is

already capable of taking into account the existence of the online phase,

albeit in a limited fashion. For the online phase itself, we use instead a

fast greedy heuristic.

We assume exogenous uncertainty, and that the overall management

system is composed by two macro steps: the offline decisions are made

by a two-stage stochastic optimization model, based on sampling and
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Figure 3.1: Baseline Offline and Online Integration [DFLM18a]

scenarios. The second step is an online algorithm, implemented within

a simulator, that tries to make optimal online choices, by building over

the offline decisions. We make the assumption that the online algorithm

is based on a convex optimization model. We allow such model to have

some configuration parameters: for example, the parameters may either

specify the cost of each action, or may represent constants used for

score computation.

We view mixed offline/online problems as on n-stage problems where

the first-stage decisions are strategic (and can be taken with relative

leisure), while the remaining n - 1 stages involve operational decisions

(with tighter temporal constraints).

In the model descriptions, y will represents the offline decisions; xk will

represent the online decisions for stage k; sk (resp. ξk) will represent

the system state (resp. the uncertainty) revealed at the beginning (resp.

the end) of stage k. All variables are assumed to be vector-valued; they

can be either continuous or discrete, and have either finite or infinite

domain.

We will refers as F(y, xk, sk) to the cost incurred at stage k for taking

decisions xk. The cost directly associated to the offline decisions is

instead referred to as Fo(y). Therefore, the total cost for a single run

over all the stages is given by:

Fo(y) +
n∑
k=1

F(y, xk, sk) (3.1)
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The transition from the state in stage k to the state in stage k + 1 is

defined by means of a transition function T , i.e.:

sk+1 = T (y, xk, sk, ξk)

where it can be seen that the effect of the uncertainty (i.e. the random

variable) is encoded in the state.

This Baseline will be improved in Section 3, via three broad ideas: 1)

improving the online heuristic by adding an anticipatory component;

2) making the offline solver aware of the online heuristic and its limi-

tations; 3) tuning the parameters of the online heuristic to alter its be-

havior. The first idea is closely related to existing online anticipatory

algorithms (e.g. EXPECTATION); the second and third ideas exploit the

mixed nature of the problem to enable improvements via a deeper inte-

gration of the offline and online phases. We formalize our methods to

propose general approaches that can be applied to different real world

use cases, as long as a few basic assumptions are satisfied.

2.1 Flattened Problem

Before introducing the model for the offline phase, it is useful to discuss

a common approximation technique employed to reduce the computa-

tional cost of solving a multi-stage problem.

Let Ω be a set of scenarios ω for ξ = (ξ0, . . . ξn−1). Given a single

scenario ω, it is possible to collapse the constraint and cost of each

stage to obtain a flattened (online) problem:

min
n∑
k=1

F(y, xkω, s
k
ω) (PF)

s.t. e(y, xkω, s
k
ω) = 0 ∀k = 1..n (3.2)

g(y, xkω, s
k
ω) ≤ 0 ∀k = 1..n (3.3)

sk+1
ω = T (y, xkω, s

k
ω, ξ

k
ω) ∀k = 1..n− 1 (3.4)

where xkω/skω/ξkω are the online decisions/state/realizations for stage k in
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scenario ω. Functions e and g are vector-valued in general and define

the constraints for each stage.

Since PF assumes the availability of all ξkω values, it is effectively a

clairvoyant approach, due to the lack of non-anticipativity constraints.

In the online optimization literature the flattened problem is better known

as the offline problem [HB09]: we adopt a different name to avoid am-

biguity with the actual offline phase.

Note that the flattened problem is obtained by collapsing online stages,

for which we have made a convexity assumption. This implies that g

must be convex and e linear. From a computational standpoint, this also

means that PF is largely convex itself, and that its complexity depends

heavily on the properties of the state transition function. If T is linear,

then the flattened problem will be convex and relatively easy to solve.

Non-linear transition functions are conversely much harder to handle.

2.2 Offline Problem

As a baseline to deal with the offline decisions we consider a two-stage

stochastic optimization problem obtained by instantiating PF once per

scenario:

min Fo(y) +
1

|Ω|
∑
ω∈Ω

n∑
k=1

F(y, xkω, s
k
ω) (PO)

s.t. Eq. (3.2)− (3.4) ∀ω ∈ Ω

s1
ω = To(y, ξ

0
ω) ∀ω ∈ Ω (3.5)

y ∈ Y (3.6)

where we recall that Fo(y) represents the cost that depends directly on

the offline decisions. The remainder of the cost function is given by the

Sample Average Approximation of the expected cost of the subsequent

stages. The function To(y, ξ0
ω) determines the initial state for the online

stages, based on the value of y and on the uncertainty revealed at the

end of the offline stage (i.e. ξ0
ω). Finally, Y is the feasible space for
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the offline decision variables y. We make no special assumption on Y ,

Fo(y), and To(y, ξ0
ω), meaning that even when the flattened problem is

convex the offline problem may be NP-complete (or harder). Still, the

fact that the problem is solved offline makes its complexity less critical.

2.3 Online Heuristic

Since we assume that the online heuristic can be modeled as a paramet-

ric convex optimization problem, we have that:

min f(y, xk, sk;αk) (PH)

s.t. e(y, xk, sk) = 0 (3.7)

g(y, xk, sk) ≤ 0 (3.8)

where f is the cost function with parameter vector αk, while e and g

are the same constraint functions appearing in PF.

Note that the objective function f is not in general the same as the ac-

tual costF(y, xk, sk) incurred at stage k: using a modified cost function

is actually a common technique employed by domain experts to control

the behavior of a heuristic.

Problem PH is general enough to capture heuristics of practical inter-

est, such as shortest link selection in routing, or Priority Rule Based

scheduling (aka List Scheduling): in this cases, the constraints define

the available actions and the cost function allows to rank them.

3 Improving Offline/Online Integration Meth-
ods

The biggest drawback of the approach from Section 2 is that using the

flattened problem to estimate the effect of the offline decision on the

future is equivalent to assuming the availability of perfect information.

However, the greedy heuristic employed for the online phase is instead

completely myopic. This creates a discrepancy between the estimates
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made by the offline solver and the capabilities of the online solver,

which intuitively should have an adverse effect on the performance on

the overall problem.

Such a discrepancy can be addressed by following two strategies. First,

we can improve the online solver by adding some anticipatory capa-

bilities. Second, we can make the offline solver explicitly aware of the

limitations of the online approach. Both methods have the effect of

bridging the gap between the tools used in the offline and online phase.

They are also not mutually exclusive, and in fact one of the approaches

we present acts in both directions.

Probably the most natural way to improve online decision making con-

sists in replacing the greedy heuristic with a sampling-based anticipa-

tory algorithm: this is the key idea in our ANTICIPATE method (see

Section 4). However, increasing the computational load of the online

phase may not a good idea when stringent time constraints exist. In

such a situation, it may be better to improve the greedy heuristic by

simply adjusting its parameters. This is the main idea in the TUNING

approach: this maintains the efficiency of the original greedy heuristic,

at the price of a computationally expensive parameter tuning process,

which is however performed offline (see Section 5).

Shifting our attention to the offline decision, we can mitigate the dis-

crepancy by translating the online greedy heuristic as a set of con-

straints, which can be injected in the offline model PO. This techniques

leads to our ACKNOWLEDGE method (see Section 6). Interestingly, we

show in Section 7 that the approach can be combined with parameter

tuning to achieve even deeper integration: this idea is explored in our

ACTIVE method (see Figure 3.2).

4 ANTICIPATE

We can derive a sampling-based anticipatory algorithms for the online

phase via the same method employed for the offline problem in our
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Figure 3.2: General Building Block Techniques.

baseline, i.e. instantiating PF for the remaining stages (and for all sam-

ples). Formally, let h be the index of the current stage, then we consider:

min F(y, xh, sh) +
1

|Ω|
∑
ω∈Ω

n∑
k=h+1

F(y, xkω, s
k
ω) (PA)

s.t. Eq. (3.7, 3.8) – online problem constraints – for stage h

Eq. (3.2, 3.3) – flattened problem constraints – for k > h

Eq. (3.4) – state – for k ≥ h, with shω = sh and xhω = xh

The offline decisions are taken like in the baseline, i.e. by using PO.

This first approach, referred to as ANTICIPATE, improves the accuracy

of the online component at the expense of its solution time. In par-

ticular, the need to take into account state transitions may make PA
NP-hard even if the constraints for each online stage are convex.

PA has the same semantic as the EXPECTATION algorithm, except that

this is done by solving a single optimization problem rather than one

problem for each scenario and for each possible decision in the current

stage. As a main drawback, the problem that our method needs to solve

may be considerably larger (as it takes into account all scenarios simul-
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Figure 3.3: Techniques and component to generate our methods.

taneously): in many cases, this trait makes our approach less efficient

than EXPECTATION (and therefore than CONSENSUS and REGRET).

However, there are two important practical cases where our approach

has a substantial advantage. First, when the decision for each stage

consists of multiple “components” (e.g. choosing subsets of items in

a knapsack problem) the number of potential alternatives may grow

very large. In such a situation,the EXPECTATION algorithm may be-

come rather costly (due to the need to enumerate all subsets), while

CONSENSUS and REGRET may have difficulties in obtaining a valid es-

timate of the expected impacts (since costs cannot be readily ascribed

to individual items). Second (and more importantly), when the decision

space is not enumerable (e.g. for continuous xk variables), EXPECTA-

TION, REGRET (and even CONSENSUS and AMSAA) cannot be applied

directly, while our method is still viable with no modification.
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Figure 3.4: ANTICIPATE schema

5 TUNING

Our second technique for improving the online decision making con-

sists in applying a parameter tuning phase to the greedy heuristic. In

principle, this could be done by any suitable algorithm available from

the literate, such as those from [LIDLC+16] or [HHLBS09]. However,

we can take advantage of the convexity of PH to tackle the tuning prob-

lem in a principled fashion and obtain a guaranteed optimal parameters.

In particular, any decision made a stage k by the heuristic is a global op-

timum for PH. Now, convexity implies that any local minimum must be

a global minimum. Local minima can be characterized in terms of the

Karush-Kuhn-Tucker optimality conditions [Win04]. Essentially, those

conditions give us a set of constraints that must be satisfied by any solu-

tion that is compatible with the behavior of the greedy heuristic. We can

exploit this property to formulate the tuning problem as a mathematical

program.

As a first step, we need to consider the form of the KKT conditions for
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PH in a given scenario ω. Those are given by:

−∇xkω
f(..;αk) =

|e|∑
i=1

λkω,i∇xkω
ei +

|g|∑
i=1

µkω,i∇xkω
gi (3.9)

µkω,igi = 0 ∀i = 1..|g| (3.10)

µkω,i ≥ 0 ∀i = 1..|g| (3.11)

Eq. (3.7, 3.8) – online problem constraints –

where, for sake of readability, f(y, xkω, s
k
ω;αk) has been shortened to f ,

the i-th component (out of |e|) of e(y, xkω, s
k
ω) to ei, and the i-th compo-

nent (out of |g|) of g(y, xkω, s
k
ω) to gi. The λkω,i and µkω,i variables repre-

sent dual multipliers. Eq. (3.9) corresponds to the gradient cancellation

condition, Eq. (3.10) to complementary slackness, Eq. (3.11) to dual

feasibility (λkω,i is free), and Eq. (3.7), (3.8) to primal feasibility. Note

that here we use the heuristic cost function f , rather than the “real” cost

F .

Then, we rely on the KKT conditions to define a model for an additional

offline processing step, whose goal is to find the optimal values of the

αk parameters for a given set of scenarios. Such model is given by:

min
1

|Ω|
∑
ω∈Ω

n∑
k=1

F(y, xkω, s
k
ω) (PT)

s.t. Eq. (3.2)− (3.4) – flattened and state – ∀ω ∈ Ω

Eq. (3.5), (3.6) – initial state –

Eq. (3.9)− (3.11) – KKT cond – ∀ω ∈ Ω,∀k = 1 . . . n

This is a stochastic two-stage model where the first stage variables are

the αk parameters (appearing in the equations for the KKT conditions),

and the recourse actions (i.e. second stage variables) are the decisions

xkω that the heuristic would make in the considered scenarios – plus the

related states skω and the λkω,i and µkω,i multipliers. The problem goal is

to minimize the expected cost over all stages and scenarios.

Solving PT yields an optimal parameter vector for the considered sce-

nario set Ω. The offline decisions y are still made using PO, while the
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Figure 3.5: TUNING schema

online decisions are made via PH, with the optimized parameters. We

refer to this method as TUNING. Intuitively, this approach should al-

low to retain some of the benefits of ANTICIPATE, without increasing

the online computational cost. The price to pay is a considerably larger

offline cost.

6 ACKNOWLEDGE

We now move to explore the second improvement direction: rather than

trying to overcome the limitations of the online approach, we make the

offline solver aware of the online heuristic.

Figure 3.6: ACKNOWLEDGE schema

We achieve this by simply injecting the KKT conditions from Eq. (3.9)

- (3.11) as constraints in PO. Similarly to what done to PT, this forces
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all xkω variables in the offline problem to take the values that would be

actually assigned by the heuristic. Overall, we get the following prob-

lem:

min fo(y) +
1

|Ω|
∑
ω∈Ω

n∑
k=1

F(y, xkω, s
k
ω) (PACK)

s.t. Eq. (3.2)− (3.4) – flattened and state – ∀ω ∈ Ω

Eq. (3.5), (3.6) – initial state –

Eq. (3.9)− (3.11) – KKT cond – ∀ω ∈ Ω,∀k = 1 . . . n

Similarly to PO, this is a two-stage stochastic program. The first stage

variables are the offline decisions y, while the recourse actions are xkω
– plus skω, λkω,i, and µkω,i.

Once an offline decision vector has been found via PACK, the on-

line decisions can be made via the original heuristics. We refer to this

method as ACKNOWLEDGE. The method achieves integration at the

cost of offline solution time, because of the additional variables in

PACK and the presence of non-linearities in Eq. (3.10).

7 ACTIVE

Finally, we can combine these two methods to obtain the ACTIVE method

that is composed by an offline part with KKT conditions that optimizes

the offline decisions y and αk (i.e. PACT).

min fo(y) +
1

|Ω|
∑
ω∈Ω

n∑
k=1

F(y, xkω, s
k
ω) (PACT)

s.t. Eq. (3.2)− (3.4) – flattened and state – ∀ω ∈ Ω

Eq. (3.5), (3.6) – initial state –

Eq. (3.9)− (3.11) – KKT cond – ∀ω ∈ Ω,∀k = 1 . . . n

The decision variables of PACT are, in this case, y, xkω, skω, λkω,i, µ
k
ω,i

and crucially αk. The online decisions are then taken using the origi-
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Figure 3.7: ACTIVE schema

nal heuristics, but its behavior will be affected also in this case by the

“parameter schedule” α1, . . . αn produced by solving PACT. The dif-

ference in this case is that y and αk are both optimized at the same time

and by considering the KKT. The computational time will be higher but

with, hopefully, better solution quality to steer online heuristic behav-

ior.

8 Method Comparison

Figure 3.8: Proposed methods for Offline and Online integration
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We start from the observation that many practical applications require

to make interdependent offline and online decisions. The simplest and

most common approach to tackle such problems is to deal with the

offline and online phase separately, respectively (e.g.) via a sampling-

based method and a heuristic: we consider these methods as compo-

nents of our baseline. However, we will show that substantial improve-

ments can be obtained by treating the two phases in an integrated fash-

ion.

We propose four methods to improve the baseline in different direc-

tions, each altering either the offline or the online component of the

solution process, so that the two play better together. Our methods are

applicable provided that some simple but important assumptions are

satisfied: 1) the uncertainty is exogenous; 2) in the baseline, a two-

stage stochastic optimization model is used for the offline phase; 3) in

the baseline, the online heuristic can be stated as convex optimization

problem.

Selecting the suitable technique requires to consider the available time

constraints for all offline and online decisions to use the most suitable

method. We believe our techniques represent a significant step toward

integrated offline/online optimization in complex systems.

Figure 3.8 summarizes the design of our methods, highlighting the

techniques used in each phase, their decision variables and the output.



Chapter 4

Instantiating the Integrated
Offline/Online Methods

In this section we present our case studies. The first one (an energy

management system) was originally considered in [DFLMB17]: since

it features continuous online decision variables, it is not amenable to

existing approaches such as EXPECTATION or REGRET. The second use

case (a Vehicle Routing Problem variant) is meant to provide a realis-

tic, dramatically different, example of how the methods can be instanti-

ated: it features discrete online decisions, and allows a quality compar-

ison with classical algorithms because in such cases ANTICIPATE leads

to the same results as EXPECTATION (although with different solution

times). The case studies have been chosen to show that our methods

work with both discrete and numerical decision variables.

1 Distributed Energy System: the Virtual Power
Plant Case Study

The progressive shift towards decentralized generation in power dis-

tribution networks has made the problem of optimal Distributed En-

ergy Resources (DERs) operation increasingly constrained. This is due
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Figure 4.1: A typical Virtual Power Plant Energy Management System

to the integration of flexible (deterministic) energy systems with the

strong penetration of (uncontrollable and stochastic) Renewable En-

ergy Sources (RES). The integration of these resources into power sys-

tem operation requires a major change in the current network control

structure. This challenge can be met by using the Virtual Power Plant

(VPP) concept, which is based on the idea of aggregating the capacity

of many DERs, (i.e. generation, storage, or demand) to create a sin-

gle operating profile and manage the uncertainty. A typical VPP is a

large plant with high (partially shiftable) electric and thermal loads, re-

newable energy generators and electric and thermal storages (see Fig-

ure 4.1).

Making decisions under uncertainty pervades the planning and opera-

tion of energy systems and one of the most used assumption is that the

distribution of future uncertainty is available for sampling, e.g. thanks

to historical data and/or predictive models. In particular, the assumption

that the distribution of future (exogenous) uncertainty is independent of

current decisions is present in a variety of applications [HB09].

We consider a VPP Energy Management System (EMS) (see [MCM+13])

with partially shiftable loads, renewable energy generators, storage sys-
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Figure 4.2: Offline/Online Decision Making in VPP

tems, and grid-connection. The goal is to decide the minimum-cost en-

ergy flows at each online stage (see [CBRJ15]). The uncertainty stems

from uncontrollable deviations from the planned shifts and from the

presence of Renewable Energy Sources (RES) (see [PBBA+11a, BMRY15]).

We assume that the RES production forecast is good enough that its

error in each stage can be considered an independent random variable.

Based on actual energy prices and on the availability of DERs, the EMS

decides: 1) how much energy should be produced; 2) which generators

should be used for the required energy; 3) whether the surplus energy

should be stored or sold to the energy market; 4) the load shifts planned

offline. Optimizing the use of energy can lead to significant economic

benefits, and improve the efficiency and stability of the electric system

(see e.g. [PBBA+11a]).

Unlike in most of the existing literature, we acknowledge that in many

practical cases, the load shifts can be planned offline, while the energy

balance should be maintained online by managing energy flows among

the grid, the renewable and traditional generators, and the storage sys-

tems. Intuitively, handling these two phases in an integrated fashion

should lead to some benefits, thus making the VPP EMS a good candi-

date for grounding our approach (see Figure 4.2).
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1.1 Instantiating the Baseline Model

The offline problem is modeled via Mixed Integer Programming (MILP)

and it is given by:

min
1

|Ω|
∑
ω∈Ω

∑
g∈G

n∑
k=1

ckgx
k
g,ω (P1.1)

s.t. L̃kω =
∑
g∈G

xkg,ω ∀ω ∈ Ω,∀k = 1, . . . n (4.1)

xg ≤ xkg,ω ≤ xg ∀ω ∈ Ω,∀k = 1, . . . n (4.2)

0 ≤ γkω ≤ Γ ∀k = 1, . . . n (4.3)

γk+1
ω = γkω + ηxk0,ω ∀ω ∈ Ω,∀k = 1, . . . n− 1 (4.4)

xk+1
1,ω = R̂k + ξkR,ω ∀ω ∈ Ω,∀k = 1, . . . n (4.5)

L̃k+1
ω = L̂k + yk + ξkL,ω ∀ω ∈ Ω, ∀k = 1, . . . n (4.6)

t+m∑
k=t

yk = 0 ∀t = 1, . . . n−m (4.7)

yk ≤ yk ≤ yk ∀k = 1, . . . n (4.8)

where Eq.(4.1)−(4.6) define the flattened problem, and Eq. (4.7)−(4.8)

the feasible space for the offline variables y. In particular, Eq.(4.4) −
(4.6) represent the transiction function, where R̂k and L̂k are the esti-

mated RES production and load, and ξkR and ξkL are the corresponding

errors (random variables). We assume that the errors follow roughly a

Normal distribution N(0, σ2), and that the variance σ2 is such that the

95% confidence interval corresponds to ±20% of the estimated value

[GYI02]. The yk variable represents the (offline planned) shift from the

estimated load. Eq. (4.7) ensures that the shifts respect a local balance.

The initial battery charge γ0
ω is identical for all scenarios.

Based on the shifts produced by the offline step, and adjusted to take

into account the uncertainty, the online heuristic minimizes the oper-

ational cost and covers the energy demand by manipulating flows be-

tween nodes in g ∈ G. We assume the index 0 refers to the storage

system and index 1 to the RES generators. The stages represent periods
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long enough to treat the corresponding flow decisions as independent.

The heuristic can be formulated as an LP model:

min
n∑
k=1

∑
g∈G

ckgx
k
g (P1.2)

s.t. L̃k =
∑
g∈G

xkg (4.9)

0 ≤ γk + ηxk0 ≤ Γ (4.10)

xg ≤ xkg ≤ xg (4.11)

where n is the number of online stages, and xkg represents the flow from

g to the VPP (if positive) or in the reverse direction (if negative). All

flows must respect the physical bounds xg and xg. The flow costs ckg
correspond to the problem parameters αk in PH. The state variables

are the RES energy flow xk1, the load to be satisfied L̃k, and the battery

charge γk. The battery upper limit is Γ and η is the charging/discharging

efficiency.

1.2 Instantiating ANTICIPATE

A model for the ANTICIPATE approach can be obtained by applying in

an almost straightforward fashion the definitions from Section 4:

min
∑
g∈G

chgx
h
g +

1

|Ω|
∑
ω∈Ω

n∑
k=h+1

∑
g∈G

ckgx
k
g,ω (P1.3)

s.t. Eq. (4.9)− (4.11) – online problem constraints –

Eq. (4.1)− (4.3) ∀k > h – flattened –

Eq. (4.4)− (4.6) ∀k ≥ h, with shω = sh and xhω = xh – state –

Note that P1.3, although potentially large, is a Linear Program and can

be solved in polynomial time.
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1.3 Instantiating TUNING

We start by formulating the KKT conditions for the online heuristic in

a single scenario, thus obtaining:

− ckg = λkω + µkg,ω − νkg,ω ∀g ∈ G (4.12)

µkg,ω(xkg,ω + xg) = 0 ∀g ∈ G (4.13)

νki,ω(xg − xtg,ω) = 0 ∀g ∈ G (4.14)

µ̂kω(ηxk0,ω + γk − Γ) = 0 (4.15)

ν̂kω(ηxk0,ω + γk) = 0 (4.16)

µkg,ω, ν
k
g,ω ≥ 0 ∀g ∈ G (4.17)

µ̂kω, ν̂
k
ω ≥ 0 (4.18)

where µkg,ω and νkg,ω are the multipliers associated to the physical flow

bounds, while µ̂kω and ν̂kω are associated to the battery capacity bounds.

The multiplier λkω is associated to the balancing constraint, i.e. Eq.

(4.9), and can be eliminated with a few algebraic transformations. In-

jecting the conditions in the offline model yields:

min
1

|Ω|
∑
ω∈Ω

∑
g∈G

n∑
k=1

ckgx
k
g,ω (P1.4)

s.t. Eq. (4.1)− (4.8) – offline problem –

Eq. (4.26)− (4.32) ∀ω ∈ Ω,∀k = 1, . . . n – KKT cond –

where the decision variables are yk, xkg,ω, µkg,ω, νkg,ω, µ̂kω, ν̂kω, based on

the considered method. To those, we add the cost ck0 associated to the

flow between the VPP and the storage system (the only parameter that

we allow the solver to adjust). Normally, there are neither economic

penalties nor incentives for such flow, while there is a profit associated

to flows from the VPP to the grid.

In particular, in TUNING we use P1.2 to solve the yk variables and then

we use P1.4 for ck0 (i.e. our offline phase is divided in two parts).
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1.4 Instantiating ACKNOWLEDGE

We formulate the KKT conditions for the online heuristic in a single

scenario also in this method:

− ckg = λkω + µkg,ω − νkg,ω ∀g ∈ G (4.19)

µkg,ω(xkg,ω + xg) = 0 ∀g ∈ G (4.20)

νki,ω(xg − xtg,ω) = 0 ∀g ∈ G (4.21)

µ̂kω(ηxk0,ω + γk − Γ) = 0 (4.22)

ν̂kω(ηxk0,ω + γk) = 0 (4.23)

µkg,ω, ν
k
g,ω ≥ 0 ∀g ∈ G (4.24)

µ̂kω, ν̂
k
ω ≥ 0 (4.25)

where µkg,ω and νkg,ω are the multipliers associated to the physical flow

bounds, while µ̂kω and ν̂kω are associated to the battery capacity bounds.

The multiplier λkω is associated to the balancing constraint, i.e. Eq.

(4.9), and can be eliminated with a few algebraic transformations. In-

jecting the conditions in the offline model yields:

min
1

|Ω|
∑
ω∈Ω

∑
g∈G

n∑
k=1

ckgx
k
g,ω (P1.4)

s.t. Eq. (4.1)− (4.8) – offline problem constraints –

Eq. (4.26)− (4.32) ∀ω ∈ Ω,∀k = 1, . . . n – KKT conditions –

where the decision variables are yk, xkg,ω, µkg,ω, νkg,ω, µ̂kω, ν̂kω, based on

the considered method. To those, we add the cost ck0 associated to the

flow between the VPP and the storage system (the only parameter that

we allow the solver to adjust). Normally, there are neither economic

penalties nor incentives for such flow, while there is a profit associated

to flows from the VPP to the grid.

We recall that in ACKNOWLEDGE we consider yk as decision variables

and ck0 as constant parameters using P1.4 as offline phase.
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1.5 Instantiating ACTIVE

We formulate the KKT conditions again for the online heuristic in a

single scenario, thus obtaining:

− ckg = λkω + µkg,ω − νkg,ω ∀g ∈ G (4.26)

µkg,ω(xkg,ω + xg) = 0 ∀g ∈ G (4.27)

νki,ω(xg − xtg,ω) = 0 ∀g ∈ G (4.28)

µ̂kω(ηxk0,ω + γk − Γ) = 0 (4.29)

ν̂kω(ηxk0,ω + γk) = 0 (4.30)

µkg,ω, ν
k
g,ω ≥ 0 ∀g ∈ G (4.31)

µ̂kω, ν̂
k
ω ≥ 0 (4.32)

where µkg,ω and νkg,ω are the multipliers associated to the physical flow

bounds, while µ̂kω and ν̂kω are associated to the battery capacity bounds.

The multiplier λkω is associated to the balancing constraint, i.e. Eq.

(4.9), and can be eliminated with a few algebraic transformations. In-

jecting the conditions in the offline model yields:

min
1

|Ω|
∑
ω∈Ω

∑
g∈G

n∑
k=1

ckgx
k
g,ω (P1.4)

s.t. Eq. (4.1)− (4.8) – offline problem constraints –

Eq. (4.26)− (4.32) ∀ω ∈ Ω,∀k = 1, . . . n – KKT conditions –

where the decision variables are yk, xkg,ω, µkg,ω, νkg,ω, µ̂kω, ν̂kω, based on

the considered method. To those, we add the cost ck0 associated to the

flow between the VPP and the storage system (the only parameter that

we allow the solver to adjust). Normally, there are neither economic

penalties nor incentives for such flow, while there is a profit associated

to flows from the VPP to the grid.

In ACTIVE we use P1.4 with both yk and ck0 as decision variables of the

same offline phase. As a side effect, the naive P1.1 heuristic will always

choose to sell the surplus energy. ACTIVE allows the offline solver to
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associate a “virtual profit” to storing energy, which enables addressing

the original limitation at no online computational cost.

2 Results for the VPP

We performed an experimentation to compare the solution quality and

run times of our methods. As references for comparison we use the

baseline approaches, plus an optimal solver operating under perfect in-

formation.

2.1 Experimental Setup

Our methods are evaluated over different uncertainty realizations, ob-

tained by sampling the random variables for the loads and RES gener-

ation in the VPP model. We consider a sample of 100 realizations for

six different instances of each problem. We then run each approach on

each realization and measure the cost and run time. The scenarios in our

models, conversely, are not sampled, but programmatically chosen: for

the VPP we consider four “extreme” scenarios where (resp.) the load

and the RES generation are at low/high values and the VPP problem

has 24 online stages.

We solve our LPs and MILPs using Gurobi, while for the non-linear

problems we use BARON via the GAMS modeling system on the Neos

server for optimization. The time limit is 100 seconds. We use data

from two public datasets to define problem instances for a residential

[EO15] and industrial plant1.

We use data from two public datasets to test our models on a residential

plant[EO15] with only PV energy production for renewable sources

and an industrial plant2 with eolic and PV production. We modify these

datasets to obtain use cases for testing our models (see Table 4.1):

1https://data.lab.fiware.org/dataset/
2Available at https://data.lab.fiware.org/dataset/

https://data.lab.fiware.org/dataset/


74 Instantiating the Integrated Offline/Online Methods

1. RB is the baseline residential dataset;

2. RR is the residential dataset with an increase of renewable (i.e.

PV) production;

3. RP is dataset UC1 where the market prices are different for the

sale/purchase of energy from/to the grid;

4. IB is the industrial dataset with also eolic renewable production;

5. in IR we increase the renewable production as in RR;

6. in IP we consider IB with different market prices as in RP.

Methodologies for the estimation of hourly global solar radiation have

been proposed by many researchers and in this work, we consider as

a prediction the average hourly global solar radiation from [SE07] and

we use assumption for wind prediction from [HLM+12]. We then as-

sume that the prediction errors in each timestamp can be modeled again

as random variables. Specifically, we assume normally distributed vari-

ables with a variance such that the 95% confidence interval corresponds

to −+10% of the prediction value. We assume physical bounds on CHP

due to its Electrical Capability based on real generation data[BMRY15,

EO15]. The initial battery states and the efficiency values are based on

real generation data [BMRY15, EO15] and we assume there are physi-

cal bounds for storage system based on real data [BMRY15, EO15].

Load Baseline Renewable Different

demand dataset peak market Prices

Residential RB RR RP

Industrial IB IR IP

Table 4.1: Different use cases

2.2 Discussion

In Tables 4.2 and 4.3 we show the average costs and run time over

the 100 input realizations for each approach for the VPP use case.
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Online times refer to the sum of the stages. The baseline model (be-

ing an LP) appears to be rather efficient in terms of computation time,

but yields solutions of limited quality. The ANTICIPATE method comes

much closer to the oracle solver, at the cost of a higher, but still reason-

able, online run time. The ACTIVE method incurs substantially larger

offline solution times, but it manages to beat or match the ANTICI-

PATE solution quality by making use of the original, straightforward,

online heuristic. Table 4.3 shows a comparison among the computa-

tional times of all the proposed method to help understanding the po-

tential of each method both in terms of offline and online computational

cost.

Daily Cost (ke)
Instance Oracle Baseline ANTICIPATE ACKNOWLEDGE TUNING ACTIVE

RB 331.36 404.62 342.06 382.44 391.18 346.60

RR 247.21 311.14 265.32 297.77 294.75 266.80

RP 393.81 462.57 404.32 435.11 422.92 408.72

IB 798.38 923.24 822.24 894.33 883.99 817.11

IR 565.60 684.19 580.17 625.83 609.81 577.93

IP 856.95 984.90 874.58 950.81 901.27 888.76

Table 4.2: Cost values for the different VPP models

Offline phase (sec) Online phase (sec)
Instance Baseline ACKNOWLEDGE TUNING ACTIVE Heuristic ANTICIPATE

RB 0.184 10.453 10.980 27.884 0.778 5.011

RR 0.190 9.996 9.473 31.992 0.772 5.017

RP 0.185 10.944 11.221 30.772 0.775 5.009

IB 0.346 15.437 13.466 38.913 0.839 5.430

IR 0.341 16.777 12.994 39.184 0.832 5.423

IP 0.348 15.768 15.443 37.777 0.835 5.420

Table 4.3: Computation time for the different VPP model stages

We show, for the VPP, the average values of each hourly optimized flow
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Figure 4.3: Oracle (up) and Baseline (down) optimal power flows for instance

RR

over the 100 realizations for each proposed model in instance RR. We

can see, in Fig. 4.3, the limits of using a non anticipatory algorithm,

compared for example the Oracle optimization, since it is not possible

to acquire energy from the grid in advance (i.e. when the cost is lower)

and/or to sell energy to the grid in periods of highest price on the market

or when more energy is available from renewable sources.

Moreover the exchange of energy with the storage system is almost

never used, i.e. to store RES energy. In Fig. 4.5, it is possible to see

that, near the peak of renewable energy production, the ACTIVE model



4.2.2 Discussion 77

Figure 4.4: ACKNOWLEDGE (up) and TUNING (down) optimal power flows

for instance RR

accumulates energy in the storage and uses in a more balanced way the

energy present in the storage system compared to the baseline model

represented in Fig. 4.3 and which never uses the storage system. Fur-

thermore, still looking at Fig. 4.5, it can be seen that ANTICIPATE has

peaks of energy sold on the network near the increase in electricity

prices on the market. In Fig. 4.4 and Fig. 4.5 it is possible to notice

the more consistent use of the storage system. We can see that, by op-

timizing the virtual storage cost in the offline phase, we can improve

solution quality in term of cost (see Table 1) by using the storage sys-
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Figure 4.5: ANTICIPATE (up) and ACTIVE (down) optimal power flows for

instance RR

tem. Since the online solver has the ability to sell energy on the market,

and storing energy has no profit, it ends up in always selling unless the

virtual cost is employed.

In Fig. 4.6 is shown the comparison between the optimized α in the

two methods ACTIVE and TUNING. Moreover, we show also the market

price trend to compare the trends of the two methods. It is interesting

to notice how both the methods try to increase or decrease the virtual

cost of the storage to promote the storage of energy in anticipation of

future increases of energy price. In Fig. 4.7 it is possible to observe
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Figure 4.6: Market prices and optimized alpha in ACTIVE and TUNING for

instance RB

the different use of the storage system due to the optimized parameters

injected in the online solver to guide the heuristic decisions. Since the

online (baseline) solver has the ability to sell energy on the market and

storing energy has no profit, it ends up in always selling unless the

virtual cost is employed (ACTIVE).

3 The Vehicle Routing Problem Case Study

We consider a variant of the Capacitated VRP with uncertain travel

times (see [TV02, BSL96, LLP12, TDVWDK13] ). The problem con-

sists in establishing the paths of a set of vehicles to serve a set of cus-

tomers. All vehicles have a finite capacity, and customers have a known

demand and can be visited by a single vehicle. There are n fully con-

nected customers/nodes, with node 0 being the (single) depot.

Customer assignments must be done offline, while the vehicle routes

are chosen online. We assume that, whenever a node is reached, its

binary “state” becomes known, and with that the (uniform) distributions

followed by the travel times of all its outgoing arcs.

Formally, this results in bi-modally distributed, statistically dependent,
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Figure 4.7: Baseline (left) and ACTIVE (right) online storage flow for instance

RB

travel times. The objective is to minimize the total travel time.

3.1 Instantiating the Baseline Model

The online heuristic consists in simply picking the outgoing arc with

the shortest travel time. This can be modeled also as a simple Integer

Program. Let h be the current node, then we have:

min
∑
j∈Vh

chjxhj (P2.1)

s.t.
∑
j∈Vh

xh,j = 1 (4.33)

xh,j ∈ {0, 1} ∀j ∈ V (4.34)

where xhj = 1 iff we choose to move from h to j, Vh is the set of nodes

that still needs to be visited (and it always include the depot), and the

travel times chj are the heuristic parameters. P2.1 does not apparently

satisfy our assumptions, due to the integer variables. However, its LP

relaxation has always an integer solution, banning degenerate cases

(i.e. arcs with the same cost). We can therefore relax the integrality

requirement without loss of generality. The transition function is given
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Figure 4.8: An Example of Vehicle Routing Problem

by:

Vh∗ = Vh \ {h∗} (4.35)

ch∗,j = ξh∗,j (4.36)

where h∗ is the index of the next node selected by the heuristic and

ξh∗,j is the travel time from h∗ to j (a random variable). Note also that

in this case the index of the online stage is implicitly given by h. We

take advantage of this and reduce the notation clutter by moving the ω

index to apex position.

We tackle the offline problem via Mixed Integer Linear Programming,

which forbids us to directly embed the non-linear Eq. (4.35) in the

model. In practice, however, the equation states that 1) each vehicle

should serve only its assigned customers, and 2) the visit should form

a single loop. Both are well known VRP constraints and can be lin-
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earized. In particular, we use the model:

min
1

|Ω|
∑
ω∈Ω

∑
k∈K

∑
i,j∈V

ξωi,jx
ω
k,i,j (P2.2)

s.t.
∑
j∈V

xωk,i,j = yk,i ∀k ∈ K, ∀i ∈ V (4.37)∑
i∈V

xωk,i,j = yk,j ∀k ∈ K, ∀j ∈ V (4.38)

yk,0 = 1 ∀k ∈ K (4.39)

tωk,j ≥ tωk,i −M + (M + 1)xωk,i,j
∀k ∈ K,

∀i, j ∈ V, V + (4.40)

tωk,0 = 0 ∀k ∈ K (4.41)∑
i∈V

qiyk,i ≤ Ck ∀k ∈ K (4.42)∑
k∈K

yk,i = 1 ∀i ∈ V + (4.43)

where all constraints where an ω apex appears should be posted ∀ω ∈
Ω. All x and y variables are binary, and yki = 1 iff customer i should be

visited by vehicle k. We haveM = |V |, and V + = V \{0}. Eq.(4.37)−
(4.41) define the flattened problem, and Eq. (4.42) − (4.43) define the

feasible space of the offline decision variables. For sake of simplicity,

we eliminate subloops by keeping track of the visiting order tωki of each

node for each vehicle: this is a simple, but not particularly effective

method, because it relies on big-Ms and reduces the quality of the LP

bound [MTZ60].

3.2 Instantiating ANTICIPATE

The ANTICIPATE method can be instantiated for each vehicle k sepa-

rately, by first restricting the focus to the set of nodes Vh, and then by

applying the definition from Section 4 and linearizing Eq. (4.35) in the
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baseline offline problem, we get:

min
∑
j∈Vh

ch,jxk,i,j +
1

|Ω|
∑
ω∈Ω

∑
i,j∈Vh

ξωi,jx
ω
k,i,j (P2.3)

s.t. Eq. (4.33) – online problem constraints –

Eq. (4.37) restricted to Vh \ {0} (4.44)

Eq. (4.38)− (4.40) restricted to Vh – state transition –

tωk,h = 0 (4.45)

where Eq. (4.45) means that the vehicle path should start from the cur-

rent node h (and end as usual in the depot).

3.3 Instantiating TUNING

The first step is formulating the KKT conditions for P2.1. In this case

after some algebraic transformations, for a given vehicle k, node h, and

scenario ω we obtain:

(chj + λωk,h)x
ω
k,h,j = 0 ∀j ∈ Vh (4.46)

(chj + λωk,h) ≥ 0 ∀j ∈ Vh (4.47)

where λωk,h is the multiplier for Eq. (4.33), and all other multipliers have

been eliminated. The main difficulty is again dealing with the set Vh,

which is part of the state and should be constructed dynamically in the

offline problem. Here, we handle Vh by introducing fresh variables rωkji
such that rωkji = 1 iff node i has been visited when node j is reached.

The semantic is enforced via additional non-linear constraints in the
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offline model. The latter is given by:

min
1

|Ω|
∑
ω∈Ω

∑
k∈K

∑
i,j∈V

ξωi,jx
ω
k,i,j (P2.4)

s.t. Eq. (4.37)− (4.43) – offline problem constraints –

(cij + λωk,i)x
ω
k,i,j(1− rkji) = 0 ∀k ∈ K, ∀i, j ∈ V

(cij + λωk,i)(1− rkji) ≥ 0 ∀k ∈ K, ∀i, j ∈ V

rωk,i,i = yk,i ∀i ∈ V

rωk,j,i = rωk,h,ix
ω
k,h,j ∀i ∈ V, ∀h ∈ V, ∀j ∈ V

cij ≤ cij ≤ cij ∀i, j ∈ V

The decision variables are yki, xωkij , λ
ω
ki, r

ω
kji, plus the “virtual travel

times” cij , i.e. the parameters for the online heuristic, always based on

the method considered. The constraints on the rωkji variables enforce

the transitive property on the set of visited nodes. Bounding the virtual

travel times is necessary to prevent the solver from building degenerate

parameterizations for P2.1 on purpose, which would trivially satisfy

all KKT constraints and make the approach boil down to the baseline

offline solver.

Also here, we recall that in TUNING we use P2.2 to solve the yki vari-

ables and then we use P2.4 for cij (i.e. our offline phase is divised in

two parts).

3.4 Instantiating ACKNOWLEDGE

As usual, the first step is formulating the KKT conditions for P2.1. In

this case after some algebraic transformations, for a given vehicle k,

node h, and scenario ω we obtain:

(chj + λωk,h)x
ω
k,h,j = 0 ∀j ∈ Vh (4.48)

(chj + λωk,h) ≥ 0 ∀j ∈ Vh (4.49)

where λωk,h is the multiplier for Eq. (4.33), and all other multipliers have

been eliminated. The main difficulty is again dealing with the set Vh,
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which is part of the state and should be constructed dynamically in the

offline problem. Here, we handle Vh by introducing fresh variables rωkji
such that rωkji = 1 iff node i has been visited when node j is reached.

The semantic is enforced via additional non-linear constraints in the

offline model. The latter is given by:

min
1

|Ω|
∑
ω∈Ω

∑
k∈K

∑
i,j∈V

ξωi,jx
ω
k,i,j (P2.4)

s.t. Eq. (4.37)− (4.43) – offline problem constraints –

(cij + λωk,i)x
ω
k,i,j(1− rkji) = 0 ∀k ∈ K, ∀i, j ∈ V

(cij + λωk,i)(1− rkji) ≥ 0 ∀k ∈ K, ∀i, j ∈ V

rωk,i,i = yk,i ∀i ∈ V

rωk,j,i = rωk,h,ix
ω
k,h,j ∀i ∈ V, ∀h ∈ V, ∀j ∈ V

cij ≤ cij ≤ cij ∀i, j ∈ V

The decision variables are yki, xωkij , λ
ω
ki, r

ω
kji, plus the “virtual travel

times” cij , i.e. the parameters for the online heuristic, always based on

the method considered. The constraints on the rωkji variables enforce

the transitive property on the set of visited nodes. Bounding the virtual

travel times is necessary to prevent the solver from building degenerate

parameterizations for P2.1 on purpose, which would trivially satisfy

all KKT constraints and make the approach boil down to the baseline

offline solver.

Also here, we recall that in ACKNOWLEDGE we consider yki as decision

variables and cij as parameters using P2.4 as offline phase.

3.5 Instantiating ACTIVE

The first step in the ACTIVE is still formulating the KKT conditions

for P2.1. In this case after some algebraic transformations, for a given

vehicle k, node h, and scenario ω we obtain:

(chj + λωk,h)x
ω
k,h,j = 0 ∀j ∈ Vh (4.50)

(chj + λωk,h) ≥ 0 ∀j ∈ Vh (4.51)
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where λωk,h is the multiplier for Eq. (4.33), and all other multipliers have

been eliminated. The main difficulty is again dealing with the set Vh,

which is part of the state and should be constructed dynamically in the

offline problem. Here, we handle Vh by introducing fresh variables rωkji
such that rωkji = 1 iff node i has been visited when node j is reached.

The semantic is enforced via additional non-linear constraints in the

offline model. The latter is given by:

min
1

|Ω|
∑
ω∈Ω

∑
k∈K

∑
i,j∈V

ξωi,jx
ω
k,i,j (P2.4)

s.t. Eq. (4.37)− (4.43) – offline problem constraints –

(cij + λωk,i)x
ω
k,i,j(1− rkji) = 0 ∀k ∈ K, ∀i, j ∈ V

(cij + λωk,i)(1− rkji) ≥ 0 ∀k ∈ K, ∀i, j ∈ V

rωk,i,i = yk,i ∀i ∈ V

rωk,j,i = rωk,h,ix
ω
k,h,j ∀i ∈ V, ∀h ∈ V, ∀j ∈ V

cij ≤ cij ≤ cij ∀i, j ∈ V

The decision variables are yki, xωkij , λ
ω
ki, r

ω
kji, plus the “virtual travel

times” cij , i.e. the parameters for the online heuristic, always based on

the method considered. The constraints on the rωkji variables enforce

the transitive property on the set of visited nodes. Bounding the virtual

travel times is necessary to prevent the solver from building degenerate

parameterizations for P2.1 on purpose, which would trivially satisfy

all KKT constraints and make the approach boil down to the baseline

offline solver.

Also here, we recall that in ACTIVE we use P2.4 with both yki and cij
as decision variables of the same offline phase.
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4 Results for the VRP

4.1 Experimental Setup

Our methods are evaluated over different uncertainty realizations, ob-

tained by sampling the random variables for the travel times in the VRP

model. We consider a sample of 100 realizations for six different in-

stances of each problem. We then run each approach on each realiza-

tion and measure the cost and run time. The scenarios in our models,

conversely, are not sampled, but programmatically chosen: for the VRP,

each scenario corresponds to the mean travel times in one mode of the

distribution. In the VRP the number depends on how many customers

are assigned to each vehicle.

We solve our LPs and MILPs using Gurobi, while for the non-linear

problems we use BARON via the GAMS modeling system on the Neos

server for optimization. The time limit is 500 seconds for the VRP and

we use modified version of classical instances3, by including problems

from 10 to 30 customers with one depot and different numbers of vehi-

cles.

4.2 Discussion

Tables 4.4 and 4.5 report the same results in terms of costs and com-

putation time for the VRP. Here the online times are summed over all

the vehicles. The original online heuristic is very efficient, but coupled

with the baseline offline model it does not come close to the oracle

quality. The offline model (a Mixed Integer Linear Program) takes also

considerably more time to be solved. ANTICIPATE, which in this case

yields the same results as EXPECTATION with no time limit, yields sub-

stantially better solutions, but, being also MILP-based, it takes non-

negligible time during the online phase. The ACTIVE results follow the

same trend as the VPP: the solution quality matches or beats that of

3http://myweb.uiowa.edu/bthoa/TSPTWBenchmarkDataSets.htm



88 Instantiating the Integrated Offline/Online Methods

ANTICIPATE, at the cost of a higher offline computation time, though

the gap wrt the baseline is now much smaller.

Total travel Time (t)
Instance Oracle Baseline ANTICIPATE ACKNOWLEDGE TUNING ACTIVE

I1 146.10 165.83 151.23 162.88 158.01 148.84

I2 278.37 347.28 299.67 320.43 312.33 295.43

I3 372.82 561.66 477.16 530.43 522.32 507.80

I4 321.57 381.45 342.94 368.94 355.32 340.85

I5 503.65 670.86 559.22 659.22 632.33 543.92

I6 448.53 871.87 470.99 605.88 584.33 504.82

Table 4.4: Travel time (cost) values for the different VRP models

Offline phase (sec) Online phase (sec)
Instance Baseline ACKNOWLEDGE TUNING ACTIVE Heuristic ANTICIPATE

I1 1.699 3.442 4.356 6.255 0.255 7.134

I2 2.477 10.229 12.377 17.445 0.169 15.222

I3 2.532 15.999 19.323 25.938 0.554 18.024

I4 186.798 288.344 295.247 338.998 3.444 255.932

I5 243.330 300.232 312.222 357.543 5.248 313.656

I6 361.537 405.233 422.300 490.856 5.342 416.645

Table 4.5: Computation time for the different VRP model parts

From Fig. 4.9 to Fig. 4.10 we show the average online routing decisions

over the 100 realizations for the same instance I2 (10 customers, one

depot and two vehicles). The heatmaps shown below represent differ-

ent colors for each vehicle and different color intensity for the number

of times that each route has been chosen over the 100 realizations. We

remember that our models make first offline decisions (i.e. assignment

of clients for each vehicle) and then make routing (online) decisions.

We remember also that in ACTIVE model we can have different offline

decisions (compared to those made from the other three models) since
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we inject KKT conditions in the offline part. We therefore propose an

instance as example where the offline decisions are the same for all the

models with the aim to observe the different online routing decisions.

We show the most representative and interesting results for method

comparison (i.e. Oracle-Baseline, ANTICIPATE-ACTIVE). Indeed, we

have different trends with the same offline decisions. In particular, the

Baseline model makes different routing decisions compared to the Ora-

cle decisions: routes 2 -> 10, 3 -> 2, 6 -> 5 are never considered in the

Baseline decisions while they are (with a certain probability) consid-

ered in the ANTICIPATE decisions. We can also notice that, the Baseline

and ANTICIPATE models assume a (low) probability also for different

routing decisions of vehicle 0 and this is not present in ACTIVE rout-

ing decisions. The ACTIVE routing decisions are equals to the Oracle

ones for vehicle 0 in terms of probability and, for the other vehicle,

they present routes (with the relative probability) never used by AN-

TICIPATE (e.g. 0 -> 6, 5 -> 7). Moreover, we can notice that ANTICI-

PATE presents online decisions with a higher probability but, in general,

different from the most frequent decisions of the Oracle. Instead, AC-

TIVE makes more decisions with lower probability than ANTICIPATE,

but considering more often decisions similar to the Oracle.

Figure 4.9: (left) Oracle and (right) Baseline routing decisions for instance I2

We proposed four alternative approaches based on the idea of making

the offline and online solvers operate synergistically. All the techniques

yield substantially improved solutions: ANTICIPATE matches the qual-

ity level of EXPECTATION, but it is applicable under more general as-
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Figure 4.10: (left) ANTICIPATE and (right) ACTIVE routing decisions for in-

stance I2

sumptions. ACTIVE often manages to beat ANTICIPATE (and therefore

EXPECTATION) in terms of solution quality. While this comes at the

price of a substantially increased offline computation time, the method

achieves these results by using naive and very efficient online heuris-

tics.

In the following part of the thesis we focus on how to manage the

cost/quality trade-off of sampling-based anticipatory algorithms and we

present three methods that can be applied to a generic anticipatory al-

gorithm to reduce its online computational effort by exploiting offline

information.



Chapter 5

Managing Cost-Quality
Trade-Offs of Online
Anticipatory Algorithms

1 Introduction

Optimization problems under uncertainty often benefit from making

all or part of their decisions online, reacting and adapting to external

events. In this context, stochastic online anticipatory algorithms have

proved particularly effective (see e.g. [HB09]). However, many of such

algorithms have a considerable computational cost, which may be prob-

lematic if (as it is often the case) online decisions must be taken within

a short time frame.

In most practical settings, however, a substantial amount of time and

information is available before the online problem is solved, in an of-

fline phase. For example, one may have access to energy production

forecasts, historical travel times in routing problems, results from test

runs in cyber-physical systems. We refer to this sort of data as offline

information. Usually, it is employed to characterize the uncertain ele-

ments and for sampling likely outcomes (i.e. scenarios). We will show

how to exploit this information at a much deeper level.
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We propose three hybrid offline/online methods that build over a given,

sampling-based, anticipatory algorithm, and allow to match its solution

quality at a fraction of the online computational cost. One of them can

even rely on a deterministic algorithm, thus providing state-of-the art

performance in problems for which no anticipatory approach is avail-

able. All our methods work by shifting part of the computation to the

offline phase, where time limits are more relaxed and the costs can be

better amortized (e.g. via parallelization).

We obtain our methods by combining three basic contributions: 1) a

technique to estimate the probability of future outcomes, given past

observations; 2) a scheme for building a “contingency table”, with pre-

computed solutions to guide the online choices; and 3) an efficient fix-

ing heuristic for adapting the precomputed solutions to run-time condi-

tions.

We ground our approaches on a (numeric) energy management problem

with uncertain loads and generation from Renewable Energy Sources

(RES), and on a (discrete) Traveling Salesman Problem with uncertain

travel times. We show how our methods reach a solution quality com-

parable with the anticipatory algorithm, with lower (or dramatically

lower) online computational cost.

2 Motivations of “Taming” an Online Antic-
ipatory Algorithm

Our goal is reducing the online computational cost of a given sampling-

based anticipatory algorithm, referred to as A, by exploiting the exis-

tence of an offline phase. Such A algorithm is the main input for all our

methods.

Similarly to [HB09], we view online optimization under uncertainty

as a stochastic n-stage problem. At each stage some uncertainty is re-

solved, and some decision must be made. A stage k is associated to a
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decision variable xk (e.g. the power flows between loads and genera-

tors) and a state variable sk (summarizing the effect of past decisions).

All variables may be vector-valued.

We assume that uncertainty is exogenous, i.e. not affected by the deci-

sions (e.g. the RES generation does not depend on how we choose to

route it), and modeled via a set of random variables ξi. Which variables

are observed at each stage depends on the state, and is controlled by a

peek function:

O = peek(sk) (5.1)

which returns a set O with the indices of the observed variables. We

will use the notation ξO to denote the observed ξ variables, and ξŌ for

the unobserved ones.

2.1 Offline Information Availability

Defining a representative set of scenarios Ω is critical for the approach

effectiveness and it is usually done by exploiting the available offline

information. Here, we assume that the such offline information is a

collection of observed uncertain values. This definition captures many

practical cases (e.g. forecasts or predictions, historical data, data from

test runs). More importantly, this means that the offline information is

in fact a collection of scenarios. We will denote the offline information

as I , index its element with ω, and assume (as it is usual) that I is rep-

resentative of the true probability distribution of the random variables.

A set Ω of scenarios for ANTICIPATE can be obtained by sampling a

number of elements uniformly at random from I .

3 Building Block Techniques

All our methods rely on three techniques, which will be described in

this section.
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3.1 Probability Estimation for Scenario Sampling

Using a fixed set of scenarios (as in ANTICIPATE) is beneficial when the

ξi variables are statistically independent. When they are not, however,

the set of scenarios may loose relevance as uncertainty is resolved. For

example, a scenario based on a cloudy day forecast becomes less likely

if fair weather is observed at the beginning of online execution.

Formally, at stage k we wish to sample scenarios that are likely to oc-

cur given the past observations, i.e. to sample the unobserved variables

ξŌ according to the conditional distribution P (ξŌ | ξO). If we draw

the scenarios from the offline information (which guarantees physi-

cally meaningfulness), then sampling requires to estimate the condi-

tional probabilities of the elements in I . From basic probability theory,

this is given by the ratio of two joint probabilities:

∀ω ∈ I, P (ξωŌ | ξO) =
P (ξOξ

ω
Ō

)

P (ξO)
(5.2)

where P (ξOξ
ω
Ō

) is the probability that observed values occur together

with the remaining predictions from the scenario, and P (ξO) is the

probability that the values are observed. The joint probability at the

numerator can be approximated via any density estimation method,

such as Kernel Density Estimation [Sil18], Gaussian Mixture Mod-

els [GL94], or recent Deep Learning techniques such as Normalizing

Flows [RM15] and Real NVP [DSDB16]. Any such method can be

trained on the offline information to obtain an estimator P̃ (ξ) for the

joint distribution of the random variables.

An estimator for the distribution P (ξO) at the denominator can then be

derived from P̃ (ξ) via marginalization, i.e. by averaging the contribu-

tion of the unobserved variables. We perform this step over all possible

completions of the observed values in the offline information. Overall,

we have:

∀ω ∈ I, P̃ (ξωŌ | ξO) =
P̃ (ξOξ

ω
Ō

)∑
ω′∈T P̃ (ξOξω

′

Ō
)

(5.3)
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Algorithm 1 BUILDTABLE (s1,AA)
for ω ∈ I do
sω, xω = AA(s1, ξ

ω)

return {ξω, sω, xω}ω∈T

This estimator defines a discrete distribution over the offline informa-

tion I . The chosen marginalization technique guarantees an estimate

that is approximately proportional (not approximately equal) to the true

P (ξO). Hence, we have that:

∀ω ∈ I, P (ξωŌ | ξO) ∝ P̃ (ξωŌ | ξO) (5.4)

Sampling from I according to 5.3 yields scenarios with a distribution

that takes into account the observed values.

3.2 Building a Contingency Table

If a significant amount of time is available in the offline phase, we can

exploit the offline information more aggressively, by trying to prepare

for each likely future development. Intuitively, we can treat each sce-

nario ω ∈ I as if it were an actual sequence of online observations,

and process it via some anticipatory algorithm. By doing this, we build

a pool of solutions that can then be used to guide an online method.

The process is outlined in Algorithm 1, which requires as input the

initial state s1 of the system, and a solution algorithm AA, accepting

the same parameters as ANTICIPATE. The result is an augmented ver-

sion of the offline information, where each scenario ω is additionally

associated to the sequence of states sω visited by the algorithm and its

sequence of decisions xω. We refer to this data structure as contingency

table, and to its elements as traces. We denote the table as T .
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3.3 Efficient Online Fixing Heuristic

We use the traces from T to guide an efficient fixing heuristic, which

tries to choose decisions having the largest chance of being optimal.

Formally, it solves:

arg max{P ∗(xk | skξO) : xk ∈ Xk} (5.5)

where P ∗ is the probability that the chosen xk is optimal, given the

state sk and the observed uncertainty. TheXk set represents the feasible

decision space, which is defined via problem-dependent constraints and

auxiliary variables.

Closed-forms for P ∗ can be obtained separately for discrete and nu-

meric problems, based on the contingency table. The process is de-

scribed in detail in Section 4, and relies on several approximations.

Overall, in case of discrete decisions, the problem from 5.5 translates

into:

arg min

−
m∑
j=1

∑
v∈Dj

log pjvJxkj = vK : xk ∈ Xk

 (5.6)

where J·K denotes the truth value of a predicate, Dj is the domain of

xkj , and:

pjv =

∑
ω∈T,xωkj=v

P (ω)∑
ω∈T P (ω)

(5.7)

Here, P (ω) is a compact notation for the probability that we reach the

same state as trace ω, and then everything goes according to plan. It

can be approximated using:

∀ω ∈ T, P (ω) ∝ P̃ (sωsk+1 | sk)P̃ (ξωŌ | ξO) (5.8)

where P̃ (ξŌ | ξO) is the estimator from 5.3, and P̃ (ssk+1 | sk) is a

second estimator obtained via similar means. The cost function in 5.6

is linear if a one-hot encoding is adopted for xkj , and the size of T
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Algorithm 2 FIXING (s1, ξ, T )
for k = 1 . . . n do
O = O ∪ peek(sk)

Ω = top elements in T by descending 5.8

Compute pjv and/or pω based on Ω

Solve 5.6/(5.9) to obtain xk
sk+1 = next(sk, xk, ξO)

return s, x

affects only the computation of the pjv values. Overall, the problem is

efficient to solve. In case of numeric decisions, we have instead:

arg min

{
m∑
j=1

∑
ω∈T

pω
1

2σj
(xkj − xωkj)2 : xk ∈ Xk

}
(5.9)

with:

pω =
P (ω)∑

ω′∈T P (ω′)
(5.10)

The cost function is quadratic and convex, and the problem size is small

due to the same arguments as 5.6.

Intuitively, the discrete version of the heuristic is related to minimizing

weighted discrepancies w.r.t. the traces in T , i.e. to weighted Hamming

distances. The numeric version is instead related to weighted Euclidean

distances. The pseudo-code for the heuristic is provided in Algorithm

2. The only difference with the process described so far is that the pjv
and pω probabilities may be computed based on a subset Ω of the full

contingency table. This may be useful to bias the choice of the online

decision according to the most relevant traces.

4 Deriving the FIXING Heuristic

Our main goal will be to obtain a closed-form for P ∗ in 5.5, which will

require several approximations. We start by treating all components in
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xk as statistically independent. This allows to state P ∗ as a product of

P ∗(xkj | skξO) probabilities, related to individual components of xk.

Applying a log transformation then leads to the equivalent problem:

arg min

{
−

m∑
j=1

logP ∗(xkj | skξO) : xk ∈ Xk

}
(5.11)

where m is the cardinality of xk. We then assume that a decision xkj
is optimal if the current optimization process is similar to a trace in

the contingency table, and xkj is similar to the decision made in that

circumstance. Formally, we can obtain P ∗(xkj) via marginalization:

P ∗(xkj | skξO) =

∑
ω∈T P (ω)P ∗(xkj | ω)∑

ω∈T P (ω)
(5.12)

where P (ω) is compact notation for P (sωk+1ξ
ω
Ō
| ξOsk). By assuming in-

dependence between the s and ξ variables, and applying the techniques

used for 5.3, we get:

P (ω) ∝ P̃ (ξωŌ | ξO)
P̃ (sks

ω
k+1)∑

ω′∈T P̃ (sksω
′

k+1)
(5.13)

where the estimator for P̃ (sksk+1) can be trained over data from the

contingency table. We now need a way to estimate P ∗(xkj | ω). In the

discrete case, we assume that xkj is optimal iff it matches the value

from the contingency table, i.e. P ∗(xkj | ω) is equal to the truth value

of the predicate xki = xωkj . Hence, 5.12 becomes:

P ∗(xkj | skξO) =
∑
v∈Dj

pjvJxkj = vK (5.14)

with pjv as in 5.7. By applying the log transformation, and using the

fact that values in Dj are mutually exclusive, we get the discrete for-

mulation from 5.6.

In the numeric case, we assume that decisions close to the one in the

trace have a chance of being optimal, which follows a Normal distribu-

tion. Formally, we have that:

P ∗(xkj | ω) =
1√

2πσj
e
− 1

2σj
(xkj−xωkj)

2

(5.15)
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where σj is the standard deviation of the value of xkj in the contin-

gency table. By applying the log transformation to 5.12, then Jensen’s

inequality, and by getting rid of offset terms (which have no impact on

optimization), we get the numeric formulation from 5.9. Note that, due

to the use of Jensen’s inequality, the resulting cost function is actually

an approximated upper bound for the original probability.

5 Formal Method Description

Our three solution methods can now be defined with relative ease, by

combining the techniques just described.

5.1 ANTICIPATE-D

Our first hybrid method is obtained from ANTICIPATE by simply re-

placing the static set of samples with a dynamically adjusted one. The

dynamic set can be populated according to the estimated probabilities

from 5.3, so as not to loose relevance: this may enable to reach sim-

ilar solution qualities with fewer scenarios, at the cost of training an

estimator offline. We refer to this approach as ANTICIPATE-D, and its

pseudo-code is in 3

Algorithm 3 ANTICIPATE-D (s1, ξ)

Train the P̃ (ξ) estimator on I

for k = 1 . . . n do
O = O ∪ peek(sk)

Sample Ω from T , according to 5.3

xk = A(sk, ξO, {ξω}ω∈Ω)

sk+1 = next(sk, xk, ξO)

return s, x
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5.2 CONTINGENCY

The second method is based on the idea of computing robust solutions

for the scenarios in the offline information, and then use them as guid-

ance for the FIXING heuristic. Robust solutions are obtained by using

ANTICIPATE, so that hopefully the (fast) fixing heuristic will be able to

match their quality: the price to pay is a hefty offline computational ef-

fort. We refer to this approach as CONTINGENCY, and its pseudo-code

is reported in 4.

Algorithm 4 CONTINGENCY (s1, ξ)

Train the P̃ (ξ) estimator on I

T = BUILDTABLE(s1, ANTICIPATE)

Train the P̃ (sksk+1) estimators on T , for all k

s, x = FIXING(s1, ξ, T )

return s, x

5.3 CONTINGENCY-D

Algorithm 5 CONTINGENCY-D (s1, ξ)

Train the P̃ (ξ) estimator on I

T = BUILDTABLE(s1, ANTICIPATE1)

Train the P̃ (sksk+1) estimators on T , for all k

s, x = FIXING(s1, ξ, T )

return s, x

Our final method is similar to the previous one, except that the con-

tingency table is populated with non-robust solutions. This is done by

using ANTICIPATE with a single scenario, given by the values of ξω

(i.e. the pretend online observations). This technique (referred to as

ANTICIPATE1) provides perfect information about the future, so that

achieving robustness is entirely delegated to the FIXING heuristic. The
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approach is likely to loose reliability, but has two important advan-

tages: 1) lower offline computational costs; and 2) while ANTICIPATE is

a stochastic algorithm, ANTICIPATE1 is deterministic. So, this method

may provide anticipatory-like results even when no anticipatory algo-

rithm is available. We refer to this method as CONTINGENCY-D, and its

pseudo-code is reported in Algorithm 5.





Chapter 6

Instantiating the Methods

Grounding our approaches requires to specify: 1) the x, s and ξ vari-

ables, 2) the peek and next functions, 3) the sampling-based algorithm

A, and 4) the feasible space Xk for the FIXING heuristic. Additionally,

evaluating the solution quality requires to define 5) a cost metric.

We show how this can be done in two case studies: 1) a Virtual Power

Plant energy management problem with numerical decisions; and 2) a

combinatorial Traveling Salesman Problem with uncertain travel times.

In both cases, the input anticipatory algorithm A is given by a Math-

ematical Programming model, based on the Sample Average Approxi-

mation. The models are slight improvements over those by [DFLM18b],

whose work brought to attention the interplay between offline and on-

line phases. Both approaches are serviceable, but not necessarily rep-

resentative of the state-of-the-art (especially for the TSP). It would

be useful also to underline that a MPC-like approach would be sim-

ilar to ANTICIPATE and ANTICIPATE-D, but where a single scenario

is used, which corresponds to the expected value of the random vari-

ables/distributions. In particular, in the VPP case study we assume that

the prediction error follow roughly a Normal distribution N(0, σ2) so

a MPC-like approach is exactly our ANTICIPATE and ANTICIPATE-D

with a single scenario. Such an algorithm nicely spans the space be-

tween a myopic heuristic, and a two-stage anticipatory algorithm with
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many scenarios: in terms of both online computation and the quality

of outcome. For the TSP case study it is different because we need to

solve our model with a pool of scenarios to obtain the expected values

that compose our single scenario for the MPC approach.

1 Instantiating the Methods for the VPP En-
ergy Problem

A Virtual Power Plant aggregates different sources of power gener-

ation and consumption to offer a predictable power envelope. Man-

aging a VPP requires to route power flows so as to satisfy the de-

mand, to obey physical limits, and to minimize the operating costs

[PBBA+11b, BMRY15]. Both the demand and the RES generation are

uncertain.

1.1 Instantiating the Baseline Model

Formally, the decision vector xk specifies the power flow xkj to/from

each node (demand, generator, storage. . . ). In particular, we assume

that xkS refers to flow for the storage system. The state component skS
corresponds to the storage charge level, while skD to its flow direc-

tion. The random variable ξkL corresponds to the load, while ξkR to the

RES generation. The peek function simply returns the pairs (k, L) and

(k,R). The next function is given by:

sk+1,S = sk + ηxkS (6.1)

sk+1,D = 0 if xkS ≤ 0 and 1 otherwise (6.2)
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where η is the charging efficiency of the storage system. The feasible

space Xk is given by the Mathematical Program:

ξkL =
m∑
j=1

xkj + ξkR (6.3)

lj ≤ xkj ≤ uj ∀j ∈ [1..m] (6.4)

0 ≤ sk + ηxkS ≤ Γ (6.5)

xk ∈ Rm (6.6)

where Eq. (6.3) enforces power balance, Eq. (6.4) states the physical

limits for the power flows, and Eq. (6.5) those for the storage charge.

The cost incurred at each stage is given by:

m∑
j=1

ckjxkj + α|skD − sk+1,D| (6.7)

where ckj is a cost associate to each flow. Unlike the model from [DFLM18b],

we include a cost term α related to storage wear-off, which increases

each time the corresponding flow switches direction. Due to this term,

the input algorithm A needs to solve an NP-hard problem, while the

fixing heuristic has no such need.

1.2 The Models of Uncertainty

The models of uncertainty for both cases studies are technically mix-

tures of Gaussians. They are designed first to ensure a realistic level of

dependence between the random variables, and second for simplicity.

For the VPP, we assume that both the RES power generation and the

load at each stage may exhibit Normally distributed deviations from a

number of different possible behaviors. Formally, each mean and stan-

dard deviation is controlled by a second “mode” random variable ψ.

Using the RES generation ξkR as an example, we have that:

ξkR ∼ N (µkψ, σkψ) ∀k ∈ [1..n] (6.8)
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The ψ variable is integer-valued and acts as an index to specify which

mean and standard deviation should be used at each stage. In other

words, ψ controls which component of a Gaussian mixture is used to

generate the data. We assume that ψ follows a discrete uniform distri-

bution.

Since all stages rely on the same ψ variable, the mixtures are synchro-

nized: this ensures statistical dependence and simplifies the definition

of reasonable parameters. In particular, we chose our µ vectors so that

the µki values related to the same i index correspond respectively to his-

torical daily records of energy production [SE07] and aggregated load

[GYI02]. Each σki value is set to 0.2µki.

1.3 Instantiating ANTICIPATE

In detail, the base algorithm A for the VPP requires to solve a mathe-

matical program, which is best described by grouping its equations in

blocks.

The main decision variables are the power flows to/from the m nodes

in the system (except the RES generators and the demand/load), with a

positive flow meaning that energy is routed towards the node. There is

one xkj variable for each node j related to the current stage k, and (as in

all SAA approaches) one copy xωhj per scenario ω of the flow variables

related to future stages (i.e. with h > k).

Auxiliary variables yk (for the current stage) and yωk (for the scenarios)

are used to keep track of flow inversions for the storage system, which

are linked to wear-off effects. With these variables, we can define the

problem objective, which is the (approximate) expected cost at the cur-

rent stage:

min fk(x, y) +
1

|Ω|
∑
ω∈Ω

fω(x, y) (6.9)
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with the current stage cost being given by:

fk(x, y) =
m∑
j=1

ckjxkj + αyk (6.10)

and the cost for future stages in scenario ω by:

fω(x, y) =
eoh∑

h=k+1

m∑
j=1

chjx
ω
hj + αyωh (6.11)

where ckj is the cost associated to flow j at stage k (e.g. the cost of

buying energy from the grid), and α is the cost of one flow inversion.

The eoh parameter defines how many future stage are taken into ac-

count by the anticipatory algorithm, and it is the minimum between the

look-ahead horizon and the number of stages n.

The flows at each stage and scenario should obey their respective phys-

ical limits. Hence we have, for j ∈ [1..m]:

lj ≤ xkj ≤ uj (6.12)

lj ≤ xωhj ≤ uj ∀ω ∈ Ω,∀h ∈ [k + 1..eoh] (6.13)

Power balance should be reached for each stage and scenario. This con-

dition is dependent on the uncertain value of the load ξkL (ξωhL for the

scenarios), and the power from Renewable Energy Sources ξhR (ξωkR for

the scenarios):

ξkL =
m∑
j=1

xkj + ξkR (6.14)

ξωhL =
m∑
j=1

xωhj + ξωkR ∀ω ∈ Ω,∀h ∈ [k + 1..eoh] (6.15)

The flow to/from the storage system affects its charge level skS (sωhS for

the scenarios). Hence we have for ω ∈ Ω:

sωk+1,S = sk,S + ηxkS (6.16)

sωh+1,S = sωh,S + ηxωhS ∀h = [k + 1..eoh] (6.17)
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The charge level of the storage system sωhS in the scenarios should be

within its physical limits for each stage (for stage k, the level is assumed

to be fine):

0 ≤ sωhS ≤ Γ ∀ω ∈ Ω, ∀h ∈ [k + 1..eoh+ 1] (6.18)

A last set of constraints is necessary to link the inversion variables yk
(yωk for the scenarios) with the flow variables. This is done in two steps1:

first, we use auxiliary binary variable sωhD to track the direction of the

flow to/from the storage system. In particular, we have that sωhD = 0 if

power was drained from the storage in the previous stage. For stage k,

we have an skD parameter with the same semantic. Overall, we have:

yk ≥ sωk+1,D − skD ∀ω ∈ Ω (6.19)

yk ≥ skD − sωk+1,D ∀ω ∈ Ω (6.20)

for stage k. For the subsequent stages and scenarios:

yωh ≥ sωh+1,D − sωhD ∀ω ∈ Ω,∀h ∈ [k + 1..eoh] (6.21)

yωh ≥ sωhD − sωh+1,D ∀ω ∈ Ω,∀h ∈ [k + 1..eoh] (6.22)

Second, we link the sωhD variables to the flows by means of indicator

constraints. For each scenario ω ∈ Ω we have:

sωk+1,D ⇒ xkS ≤ 0 (6.23)

1− sωk+1,D ⇒ xkS ≥ 0 (6.24)

sωh+1,D ⇒ xωhS ≤ 0 ∀h ∈ [k + 1..eoh] (6.25)

1− sωh+1,D ⇒ xωhS ≥ 0 ∀h ∈ [k + 1..eoh] (6.26)

Solving (6.9)-(6.26) yields set of values for the flow variables related to

stage k, which approximately optimize the expected cost of operations.

1This part of the model has been altered w.r.t. the implementation, for sake of
keeping the notation consistent with Section 4
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1.4 Instantiating ANTICIPATE-D

Our first hybrid method is obtained from ANTICIPATE by simply re-

placing the static set of samples with a dynamically adjusted one.

The dynamic set can be populated according to the estimated proba-

bilities from 5.3, so as not to loose relevance: this may enable to reach

similar solution qualities with fewer scenarios, at the cost of training an

estimator offline.

We use Kernel Density Estimation (KDE with Gaussian Kernels) to

obtain all approximate distributions.

1.5 Instantiating CONTINGENCY

The second method is based on the idea of computing robust solutions

for the scenarios in the offline information, and then use them as guid-

ance for the FIXING heuristic.

Robust solutions are obtained by using ANTICIPATE, so that hopefully

the (fast) fixing heuristic will be able to match their quality: the price

to pay is a hefty offline computational effort. We refer to this approach

as CONTINGENCY.

1.6 Instantiating CONTINGENCY-D

Our final method is similar to the previous one, except that the con-

tingency table is populated with non-robust solutions. This is done by

using ANTICIPATE with a single scenario, given by the values of ξω

(i.e. the pretend online observations). This technique (referred to as

ANTICIPATE1) provides perfect information about the future, so that

achieving robustness is entirely delegated to the FIXING heuristic.

The approach is likely to loose reliability, but has two important advan-

tages:

1. lower offline computational costs
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2. while ANTICIPATE is a stochastic algorithm, ANTICIPATE1 is de-

terministic.

So, this method may provide anticipatory-like results even when no an-

ticipatory algorithm is available. We refer to this method as CONTINGENCY-

D.

2 Results for the VPP

We empirically evaluated the three hybrid offline/online methods on

realistic instances for the case study. The baseline is a myopic heuristic.

2.1 Experimental Setup

Our methods are evaluated over different uncertainty realizations, ob-

tained by sampling the random variables for the loads and RES gen-

eration in the VPP. We use models of uncertainty that ensure realis-

tic statistical dependence between the variables (see 1.2). This process

yields the offline information I and the sequences of observations for

the experiments.

For the VPP, grid electricity prices change every 15 minutes, which is

also the duration of our online stages. New offline information (e.g.

market prices) becomes available every day, hence our horizon corre-

sponds to 24× 4 = 96 stages. We use (real) physical bounds for power

generation from [BMRY15, EO15]. The initial battery state, efficiency,

and power flow limit, etc. are also based on real data [BMRY15, EO15].

Different instances have then been obtained by manually scaling load

and RES generation.

We use Kernel Density Estimation (with Gaussian Kernels) to obtain

all approximate distributions. As an underlying solver we use Gurobi
2, which can handle both MILPs and Quadratic Programs. Each eval-

uated algorithm and configuration is run 50 times, with the same 50

2Available at http://www.gurobi.com

http://www.gurobi.com
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Figure 6.1: Methods solution/quality comparison for the VPP

sequences of realizations. We use a time limit of 300 seconds. For each

run we record both the time required by each approach and the cor-

responding solution cost, and we report their average values over the

50 realizations. In all cases, |I| = |T | = 100, and for the CONTIN-

GENCY method, the contingency table is built using ANTICIPATE with

20 scenarios.

2.2 Discussion

The offline training times of the KDE models are roughly the same

for all the three hybrid methods (∼ 65 sec for the VPP). Building the

contingency tables for CONTINGENCY takes ∼ 6, 000 sec in the VPP,

but only ∼ 400 sec for CONTINGENCY-D.

In Figure 6.1 we show the cost/quality tradeoff of the proposed methods

and of ANTICIPATE for the VPP (base instance). The use of a dynamic

set of scenarios allows ANTICIPATE-D to work better than ANTICIPATE.
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Method VPP (σ)

Myopic H 8.499

ANTICIPATE 4.994

ANTICIPATE-D 5.730

CONTINGENCY 5.557

CONTINGENCY-D 7.017

Table 6.1: Standard deviation comparison for the VPP

The CONTINGENCY method is surprisingly close in terms of quality to

the original anticipatory algorithm, especially considered its dramati-

cally smaller online computational cost (up to two orders of magni-

tude). CONTINGENCY-D performs slightly worse than CONTINGENCY,

but it still much better than the myopic heuristic. Increasing the number

of guiding traces is beneficial in particular for CONTINGENCY-D. We

also show that a MPC-like approach is exactly our ANTICIPATE and

ANTICIPATE-D with a single scenario. Such an algorithm nicely spans

the space between a myopic heuristic, and a two-stage anticipatory al-

gorithm with many scenarios: in terms of both online computation and

the quality of outcome.

In Table 6.1 we show the standard deviation for the solution quality

over the 50 realizations with 20 scenarios/traces (on the same instances

as Figure 6.1). All values are significantly lower than the quality gap

with the myopic heuristic. As expected CONTINGENCY-D tends to be

less stable than the other methods due to its reliance on non-robust

guiding traces.

3 The Traveling Salesman Problem Case Study

As a second case study, we consider a TSP over an asymmetric, fully

connected, graph with uncertain, exogenous, travel times (e.g. the visits

have a negligible impact on traffic).
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3.1 Instantiating the Baseline Model

In this case, the xk vector includes m components xkj , each equal to

1 iff j is the next node to be visited. There is no xkj variable for the

depot, which is reached by default once all other nodes are visited. The

state vector contains a component skj equal to 1 iff node j (excluding

the depot) has been visited at stage k, plus a skC component specifying

the index of the current node. The uncertainty is modeled via random

variables ξij , each associated to the travel time between nodes i and

j. The travel times for all outgoing arcs from i are observed when the

node is visited, i.e. the peek function returns the pairs (skC , j) with

j ∈ [1..m]. The next function is:

sk+1,C =
m∑
j=1

j xkj (6.27)

sk+1,j = max(xkj, sk,j) ∀j ∈ [1..m] (6.28)

where 6.27 makes sure that the value sk+1,C matches the index of the

next node to be visited. The feasible space Xk is given by the Mathe-

matical Program:

m∑
j=1

xkj = 1 (6.29)

xkj ≤ 1− skj ∀j ∈ [1..m] (6.30)

which forces moving to a single, unvisited node. The cost incurred at

each stage is the travel time to the next node, i.e.:

m∑
j=1

ξskC ,j xkj (6.31)

The final cost is obtained by summing the cost of each stage, plus the

distance from the last visited node to the depot. Once again, while the

anticipatory algorithmA needs to solve an NP-hard problem (stochastic

TSP), the fixing heuristic has no such need and is therefore much faster.
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3.2 The Models of Uncertainty

Our model of uncertainty for the TSP is based on similar ideas, but

makes use of a more complex sampling process. First, we assume that

the travel times of all arcs from a given node i follow a Normal distribu-

tion, whose mean and variance is controlled by an additional (binary)

random variable ψi. Formally, we have that:

ξij ∼ N ((1 + ψi)µij, 0.1µij) (6.32)

If we sample 1 from ψi, the travel times of all outgoing arcs become

twice as large on average. The µij values correspond to the determinis-

tic distances from classical asymmetrical TSP benchmarks.

This approach ensures statistical dependence between multiple arcs

from the same node, but not between the nodes themselves. This is

unrealistic (nearby nodes tend to become congested at the same time),

and an issue for our experimentation: in fact, unless observing the travel

times for some node i provides information for some other node j, the

ANTICIPATE-D method can provide no benefit.

We obtain realistic dependence between nodes by sampling the ψi vari-

ables according to a stochastic, time-discrete, dynamic process. Namely,

we assume that the distribution of the ψi variables evolves over a se-

quence of discrete steps. In particular, let ψki be the ψi variable at the

k-th step of its evolution. The chance that ψki = 1 (i.e. that node i is

congested) is given by:

P (ψki = 1) = β + (1− 2β)pki (6.33)

with

pki = αψk−1
i + (1− α)

1

Zi

∑
j 6=i

e−µijψk−1
j (6.34)

Zi =
∑
j 6=i

e−µij (6.35)

where α, β ∈ [0, 1]. 6.34 ensures that: 1) a node that is congested at

step k−1 has increased likelihood (measured by α) of being congested
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at step k; and 2) the presence of nearby congested nodes at step k −
1 increases the chance that i is congested at step k – the intensity of

this correlation decreases with the distance, following an exponential

law. 6.33 ensures that the probability that node i is congested is never

smaller than β, and never larger than 1− β.

We can simulate the process by sampling ψ0
i according to independent

Bernoulli distributions, and then using 6.33 to sample for any number

of steps. After a few iterations, the values of the ψki variables will ex-

hibit some degree of correlation, which can be tuned by choosing the

values of α and β. We sample our ψi variables by drawing ψk vectors

from this process uniformly at random.

Figure 6.2 shows the cross-correlation matrix for 1,000 iterations of

the process3, α = 0.5, β = 0.1, on a six-node TSP instance. Darker

cells denote a higher cross-correlation, and the self-correlation is 1 by

construction (which explains the black diagonal). The correlations are

stable and exhibit only moderate variations over multiple runs of the

process.

3.3 Instantiating ANTICIPATE

The base algorithm A for the TSP is also based on a mathematical

program. At stage k, the model has a binary decision variable xkj for

each of them+1 nodes in the graph (node 0 is the depot), plus variables

xωij for each pair of nodes and for each scenario. We have that xkj = 1

iff, after the current node skC , we move to node j. We have that xωij = 1

iff the arc from node i to node j is part of the route for scenario ω.

The cost function is the (approximate) expected travel distance, which

is given by:

min
m∑
j=0

ξskC ,jxkj +
1

|Ω|
∑
ω∈Ω

m∑
i=0

m∑
j=0

ξijx
ω
ij (6.36)

3Actually 1,100 iterations, but the first 100 are discarded to avoid tail-in effects.
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Figure 6.2: Cross-correlation matrix for the ψi variables in a 6-node TSP in-

stance

where ξskC ,j is the observed travel time from the current node skC to

node j, and ξωij is the travel time between nodes i and j in scenario ω.

Nodes already visited cannot be visited again. This is enforced by re-

lying on a set of parameters skj , such that skj = 1 iff node j has been

visited at stage k. The current node is always visited, while the depot

never counts as visited (and hence does not need a corresponding pa-

rameter). Overall:

xkj ≤ 1− skj ∀j ∈ [1..m] (6.37)

xωij ≤ 1− skj ∀ω ∈ Ω,∀i, j ∈ [1..m] (6.38)

Each non-visited node must be the successor of some other node in

each scenario:
m∑
i=0

xωij = 1 ∀ω ∈ Ω,∀j ∈ [0..m] (6.39)

There can be single successor for the for the current stage:
m∑
j=0

xkj = 1 (6.40)
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Each node except the depot must have exactly one successor in each

scenario:

m∑
j=0

xωij = 1 ∀ω ∈ Ω,∀i ∈ [1..m] (6.41)

Sub-loops are prevented by associating a sequence variable tωi ≥ 0

to each node in each scenario[MTZ60], and then enforcing, for each

scenario ω ∈ Ω:

tωskC = 0 (6.42)

tωj ≥ tωi −m+ (m+ 1)xωij ∀i, j ∈ [0..m] (6.43)

Solving 6.36-(6.43) yields a successor for the current node that approx-

imately optimizes the expected travel time.

To instantiate ANTICIPATE-D, CONTINGENCY and CONTINGENCY-D

for the TSP problem, we can refer to Subsections from 1.4 to 1.6 based

on the previous instantiations of the Baseline Model and the ANTICI-

PATE method.

4 Results for the TSP

We empirically evaluated the three hybrid offline/online methods on

realistic instances. The baseline is a myopic heuristic.

4.1 Experimental Setup

Our methods are evaluated over different uncertainty realizations, ob-

tained by sampling the random variables the travel times in the TSP. We

use models of uncertainty that ensure realistic statistical dependence

between the variables. This process yields the offline information I and

the sequences of observations for the experiments.

For the TSP we use classical benchmarks4, by including problems from

4http://myweb.uiowa.edu/bthoa/TSPTWBenchmarkDataSets.htm
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10 to 40 nodes. In the TSP each stage represents a visit, hence our

horizon corresponds to the total number of nodes.

We use Kernel Density Estimation (with Gaussian Kernels) to obtain

all approximate distributions. As an underlying solver we use Gurobi
5, which can handle both MILPs and Quadratic Programs. Each eval-

uated algorithm and configuration is run 50 times, with the same 50

sequences of realizations. We use a time limit of 300 seconds. For each

run we record both the time required by each approach and the cor-

responding solution cost, and we report their average values over the

50 realizations. In all cases, |I| = |T | = 100, and for the CONTIN-

GENCY method, the contingency table is built using ANTICIPATE with

20 scenarios.

4.2 Discussion

The offline training times of the KDE models are roughly the same

for all the three hybrid methods (∼ 32 sec for the TSP). Building the

contingency tables for CONTINGENCY takes ∼ 15, 000 sec in the TSP,

but only ∼ 2, 000 sec for CONTINGENCY-D.

In Figure 6.3 we show the cost/quality tradeoff of the proposed meth-

ods and of ANTICIPATE for the TSP (a representative 20 customers in-

stance). The use of a dynamic set of scenarios allows ANTICIPATE-D to

work better than ANTICIPATE. The CONTINGENCY method is surpris-

ingly close in terms of quality to the original anticipatory algorithm, es-

pecially considered its dramatically smaller online computational cost

(up to two orders of magnitude). CONTINGENCY-D performs slightly

worse than CONTINGENCY, but it still much better than the myopic

heuristic. Increasing the number of guiding traces is beneficial in par-

ticular for CONTINGENCY-D. It would be useful, also in this case study,

to underline that a MPC-like approach would be similar to ANTICIPATE

and ANTICIPATE-D, but where a single scenario is used, which corre-

5Available at http://www.gurobi.com

http://www.gurobi.com
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Figure 6.3: Methods solution/quality comparison for the TSP

sponds to the expected value of the random variables/distributions. In

particular, for the TSP case study we need to solve (offline) our model

with a pool of scenarios to obtain the expected values that compose our

single scenario for the MPC approach.

Method TSP (σ)

Myopic H 7.106

ANTICIPATE 1.889

ANTICIPATE-D 2.846

CONTINGENCY 3.788

CONTINGENCY-D 5.934

Table 6.2: Standard deviation comparison for TSP

In Table 6.2 we show the standard deviation for the solution quality

over the 50 realizations with 20 scenarios/traces for the TSP (on the
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same instances as Figure 6.3). All values are significantly lower than

the quality gap with the myopic heuristic. As expected CONTINGENCY-

D tends to be less stable than the other methods due to its reliance on

non-robust guiding traces.



Chapter 7

Concluding Remarks & Future
Works

This thesis makes a first significant step toward generic integrated of-

fline/online optimization under uncertainty. We propose two groups of

methods that represent two distinct (but very related) contributions.

On one hand, the thesis focuses on the idea that many practical applica-

tion scenarios require to make interdependent offline and online deci-

sions. For example, we may need to define a daily production schedule

for an industrial plant, and then manage its power supply on a hour

by hour basis; or we may assign customers to vehicles for delivering

goods, and then adjust their routes dynamically as the traffic condi-

tions reveal themselves over time. The simplest approach to tackle such

problems is to deal with the offline and online phase separately, respec-

tively (e.g.) via a sampling-based method and a heuristic. However, we

showed that substantial improvements can be obtained by treating the

two phases in an integrated fashion.

On the other hand, we start from the idea that online anticipatory al-

gorithms often have a considerable computational cost, which may be

problematic if online decisions must be taken within a short time frame.

In most practical settings, however, a substantial amount of time and

information is available before the online problem is solved, in an of-
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fline phase. For example, one may have access to energy production

forecasts, historical travel times in routing problems, results from test

runs in cyber-physical systems. We refer to this sort of data as offline

information. Usually, it is employed to characterize the uncertain el-

ements and for sampling likely outcomes (i.e. scenarios). We showed

how to exploit this information at a much deeper level. In this context,

we propose three hybrid offline/online methods that build over a given,

sampling-based, anticipatory algorithm, and allow to match its solution

quality at a fraction of the online computational cost. One of them can

even rely on a deterministic algorithm, thus providing state-of-the art

performance in problems for which no anticipatory approach is avail-

able. All our methods work by shifting part of the computation to the

offline phase, where time limits are more relaxed and the costs can be

better amortized (e.g. via parallelization).

In the first part, we propose four alternative approaches based on the

idea of making the offline and online solvers operate synergistically. In

the ANTICIPATE method this is done by providing the online solver with

the approximation of an oracle (i.e. replacing the greedy heuristic with a

sampling-based anticipatory algorithm). However, increasing the com-

putational load of the online phase may not a good idea when stringent

time constraints exist. In such a situation, it may be better to improve

the greedy heuristic by simply adjusting its parameters. This is the main

idea in the ACKNOWLEDGE approach which maintains the efficiency of

the original greedy heuristic, at the price of a computationally expen-

sive parameter tuning process, which is however performed offline. In

the remaining methods, we instead make the offline solver aware of the

limitations of the online one (i.e. TUNING), and capable of controlling

its behavior by adjusting parameters (i.e. ACTIVE). Indeed, shifting our

attention to the offline decision, we can mitigate the discrepancy by

translating the online greedy heuristic as a set of constraints, which can

be injected in the offline model. All the proposed techniques yield sub-

stantially improved solutions: ANTICIPATE matches the quality level
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of EXPECTATION, but it is applicable under more general assumptions.

Unfortunately, the method is also less efficient. ACTIVE often manages

to beat ANTICIPATE (and therefore EXPECTATION) in terms of solution

quality. While this comes at the price of a substantially increased offline

computation time, the method achieves these results by using naive and

very efficient online heuristics. We believe there is room for improv-

ing the efficiency of our methods (similarly to how EXPECTATION was

improved in REGRET), and achieving this goal is part of our current

research directions. We also plan to apply our approaches to different

problems, such as resource allocation and scheduling with Simple Tem-

poral Networks under Uncertainty.

In the second part of the thesis we have presented three methods that

can be applied to a generic anticipatory algorithm to reduce its on-

line computational effort by exploiting offline information. In particu-

lar, both CONTINGENCY and CONTINGENCY-D are dramatically faster

than ANTICIPATE during online operation. Between the two of them

CONTINGENCY is significantly more reliable in terms of quality, but

may require a substantial amount of offline computation. The ANTICIPATE-

D technique provides a modest advantage in terms of solution time, but

can match and even surpass ANTICIPATE in terms of quality. The abil-

ity to shift part of the computational cost to an offline stage provides

a significant degree of flexibility to stochastic anticipatory algorithm,

and likely to increase their applicability. We believe there is room for

improving the scalability and efficiency of our methods, and achieving

this goal is part of our current research directions.

We also plan to apply our approaches to different application problems

to demonstrate the broad applicability of our integrated offline/online

methods.
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