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Abstract 
Nearly all animal species inherit mitochondrial DNA in a matrilineal way: the 

mtDNA of the progeny originates entirely from the oocyte, whereas paternal 

mtDNA carried by spermatozoa is actively degraded pre- or post-fertilization 

by a variety of means. This well-known pattern goes by the name of “strictly 

maternal inheritance” of mitochondria or SMI. It is not currently known why 

SMI is so prevalent and what evolutionary advantage it confers exactly. Some 

bivalve species  present a different mitochondrial inheritance pattern called 

doubly uniparental inheritance or DUI, the only known stable exception to 

SMI. Despite constituting an excellent system to study mitochondrial 

evolution and inheritance, its molecular background is poorly understood and 

the evolutionary equilibria it participates to even less so. The present thesis 

aims at uncover some of the molecular basis for DUI in R. philippinarum 

(Bivalvia, Veneridae) and to map some features of its basic biology.  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Introduction 

Mitochondria 

Mitochondria are fundamental cellular organelles found in almost all eukaryotic 

organisms that originated through an endosymbiotic event (Margulis & Sagan, 1986). 

They are the target of almost a thousand proteins in yeast and 1100-1400 in human 

(Calvo & Mootha, 2010; Morgenstern et al., 2017) that are employed in the most diverse 

biological process, such as calcium homeostasis, heme synthesis, β-oxidation of free 

fatty acids and, most importantly, ATP production through oxidative phosphorylation or 

OXPHOS (Michel et al., 2012). The latter is performed thanks to the concerted action of 

almost a hundred proteins, some of which are encoded in the mitochondrial DNA 

(mtDNA). Generally, in animals, mtDNA is a small (16 kb) circular molecule that 

encodes for 13 protein-coding genes involved in OXPHOS and 24 structural RNAs, with 

little to no introns (Gissi, Iannelli, & Pesole, 2008), making it a very compact genome if 

compared to the nuclear one.

However, there is ample variation to this paradigm. Several animals have been reported 

to lack specific mitochondrial genes, such as atp6 lacking in several ctenophores (Kohn 

et al., 2012) and chaetognaths (Miyamoto, Machida, & Nishida, 2010) and atp8 being 

lost in several taxonomic lineages (Bernt, Braband, Schierwater, & Stadler, 2013), or to 

have duplicated genes, such as in some cephalopods (Kawashima et al., 2013). The most 

interesting deviation from the rule, however, is the presence of protein-coding genes with 

non-OXPHOS functions. For instance, in the octocoral Sarcophyton glaucum mtDNA, 

there is a homolog of mutS, a homolog of the bacterial component of the mismatch repair 

pathway, whose origin is thought to be due to horizontal gene transfer (Bilewitch & 

Degnan, 2011) and, notably, a gene called humanin has been detected in human mtDNA, 

coding for a 24 amino acid peptide which functions as neuro- and cytoprotector(Lee, 

Yen, & Cohen, 2013). Some of these newly-discovered genes have yet to be identified 

and are collectively known under the name of ORFans. The best characterized ORFans 

are gau, an ubiquitous open reading frame (ORF) encoded on the complementary strand 

of cox1 of eukaryotic mitochondria, and a complex of ORFs found in male and female 

mitotypes in bivalves with DUI (see next paragraph). In particular, in the venerid 
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Ruditapes philippinarum (Milani, Ghiselli, Maurizii, Nuzhdin, & Passamonti, 2014), the 

mytilid Mytilus edulis (Ouimet et al., 2019) and the unionid Venustaconcha ellipsiformis 

(Breton et al., 2011), the presence of the protein product has been confirmed 

experimentally, leading to the hypothesis that these proteins, which display remarkable 

conservation levels (Milani, Ghiselli, Guerra, Breton, & Passamonti, 2013), are 

functional.

Mitochondria are in communication with other organelles through a variety of 

mechanisms that ensures that the interplay between them is finely tuned. Mitochondria 

are tightly linked to the endoplasmic reticulum by means of contact sites called 

mitochondria-associated ER membranes (MAMs), which coordinates several functions 

such as calcium uptake, apoptosis regulation and phospholipid synthesis (Xia et al., 

2019). Vesicle trafficking is the main agent of the interaction between mitochondria and 

peroxisomes, fundamental for ROS balance maintenance and to perform immune 

responses (Schrader, Costello, Godinho, & Islinger, 2015). Finally, the nucleus maintains 

a complex dialogue with mitochondria through several means. Aside from the 

anterograde and retrograde cascade signaling, several noncoding RNAs comprehending 

long and short noncoding RNAs have been found to regulate nucleus-mitochondria 

interplay. Intriguingly, this involves not only RNA encoded in the nuclear genome (see 

for example mitoMiRs, Bandiera, Matégot, Girard, Demongeot, & Henrion-Caude, 

2013), but also in the mitochondrial one. Recent findings evidenced

new classes of small noncoding RNAs transcribed from the mtDNA in humans (Ro et al., 

2013) and in the clam Ruditapes philippinarum (Pozzi, Plazzi, Milani, Ghiselli, & 

Passamonti, 2017). The latter is of particular significance, as the targets of the so called 

small mitochondrial RNAs or smithRNAs are nuclear genes and some of them appear to 

have been empirically validated (unpublished results).

One of the peculiarities of mitochondria is their mode of inheritance. In fact, in almost all 

the animal kingdom, mitochondria are inherited solely from the mother, an inheritance 

pattern known as strictly maternal inheritance or SMI. Despite the uniformity of the 

outcome across taxa, the resulting state of homoplasmy is achieved through different 

molecular processes (K. Sato & Sato, 2017) which involve degrading mtDNA during 

spermatogenesis as in Drosophila (DeLuca & O’Farrell, 2012) and Oryzias latypes 
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(Nishimura et al., 2006), degradation of paternal mitochondria after fecundation through 

autophagy as in Caenorhabditis elegans (M. Sato & Sato, 2011) and subsequent to 

ubiquitin marking as in mammals (Sutovsky et al., 1999), or even preventing paternal 

mitochondria entrance in the egg as in Cricetulus griseus (Pickworth & Change, 1969) 

(for a more thorough review, see chapter 1).

DUI 

About a hundred bivalve species pertaining to the super-class Autolamellibranchia 

(Gusman, Lecomte, Stewart, Passamonti, & Breton, 2016) present a characteristic pattern 

of mitochondrial inheritance known as doubly uniparental inheritance or DUI. In DUI 

species, two different mtDNA lineages are present: the F-type and the M-type, inherited 

through the eggs and the sperm respectively. Upon entering the egg, male mitochondria 

face a different fate according to the zygote sex. In males, they keep their aggregate form 

and multiply, so that males are homoplasmic for the M-type in the germline and 

heteroplasmic in soma. In females, instead, paternal mitochondria disperse and their 

DNA becomes undetectable, making them mostly homoplasmic for F-mtDNA in both the 

germline and somatic tissues.

The origin of DUI is still shrouded in mystery. As Theologidis, Fodelianakis, Gaspar, & 

Zouros, 2008 detail, its presence in the bivalve phylogenetic tree is scattered, with entire 

families inheriting their mitochondria through SMI and families whose species present 

either SMI or DUI. At the time being, two opposing hypotheses have been formulated on 

DUI origin. One hypothesis presupposes a single origin at the base of 

Autolamellibranchia radiation, at the beginning of the Ordovician, with DUI being lost in 

several taxa and retained in others (Zouros, 2013). The other one postulates that DUI 

originated several times through viral infection (Milani et al., 2014), which would 

explain the scattered distribution. This second hypothesis is supported by another feature 

often found in DUI mitochondrial genomes, which are the already mentioned ORFans. 

The in silico analysis of DUI ORFans found no clear homology with proteins in 

databases, except for distant similarities with viral proteins (Milani et al., 2013). What is 

more, their sequences are not similar to each other, as one would expect with a single-

origin DUI. The role of these ORFans is still source of debate, one possibility being that 

they are involved in the selfish behavior that their host mitochondria display, allowing 
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them to invade the female or male germline and acting as meiotic drivers (Milani, 

Ghiselli, & Passamonti, 2016; Milani, Ghiselli, Pecci, Maurizii, & Passamonti, 2015).

Aim of the thesis 

With this thesis, I intended to shed light on the molecular processes behind DUI in the 

venerid species Ruditapes philippinarum with a twofold approach. The first step was to 

assess similarities and differences between the transcriptome of R. philippinarum and its 

congeneric SMI species R. decussatus with regards to the pathways known to be 

involved in SMI maintenance (Chapter 1). In order to gain insight about its structure and 

function, I moved forward trying to produce R. philippinarum M-ORFan RPHM21 

through cell-free protein expression and in yeast (Chapter 2). Finally, given the discovery 

of smithRNAs in this species, I set to elucidate the miRNA environment and its links to 

mitochondria (Chapter 3).
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Chapter one  

Lose it or keep it: how bivalves can 
provide insights into mitochondrial 
inheritance mechanisms 
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Abstract
The strictly maternal inheritance (SMI) is a pattern of mitochondrial inheritance observed across

thewhole animal kingdom.However, some interesting exceptions are known for the class Bivalvia,

in which several species show an unusual pattern called doubly uniparental inheritance (DUI)

whose outcome is a heteroplasmic pool of mtDNA inmales. Even if DUI has been studied for long,

its molecular basis has not been established yet. The aim of this work is to select classes of pro-

teins known to be involved in the maintenance of SMI and to compare their features in two clam

species differing for their mitochondrial inheritancemechanism, that is, the SMI speciesRuditapes

decussatus and the DUI species Ruditapes philippinarum. Data have been obtained from the tran-

scriptomes of male and female ripe gonads of both species. Our analysis focused on nucleases

and polymerases, ubiquitination and ubiquitin-like modifier pathways, and proteins involved in

autophagy and mitophagy. For each protein group of interest, transcription bias (male or female),

annotation, and mitochondrial targeting (when appropriate) were assessed. We did not find evi-

dence supporting a role of nucleases/polymerases or autophagicmachinery in the enforcement of

SMI in R. decussatus. On the other hand, ubiquitinating enzymes with the expected features have

been retrieved, providing us with two alternative testable models for mitochondrial inheritance

mechanisms at themolecular level.

K EYWORD S

autophagy, nucleases, polymerases, transcriptomics, ubiquitin

1 INTRODUCTION

In animals, the mitochondrial genome (mtDNA) is usually transmit-

ted to the progeny exclusively by the female parent. Despite strictly

maternal inheritance (SMI) being nearly ubiquitous across eukary-

otes, its underlying molecular mechanism is widely variable, suggest-

ing recurrent loss and restoration and/or several independent origins

(Birky, 1995). Paternal inheritance can be prevented by mtDNA elim-

ination by nucleases either during spermatogenesis or after fertiliza-

tion; alternatively, paternal mitochondria can be selectively degraded

after entering the oocyte through proteasomal action or mitophagy.

In the fish Oryzias latypes, the copy number of nucleoids (i.e., mtDNA–

protein complexes) decreases during spermatogenesis. Once the sper-

matozoon enters the oocyte, an unknown endonuclease degrades

the remaining mtDNA molecules, leaving paternal mitochondria with

no genomic content, yet morphologically intact (Nishimura et al.,

2006). In spermatozoa of Drosophila melanogaster, the two mito-

chondria extend by the exceptionally long tail (1,800 !m); in this

species, nucleoids are completely degraded during spermatogenesis in

a proximal-distal way, from the neck to the end to the tail (DeLuca &

O'Farrell, 2012). Endonuclease G was initially thought to be the main

effector of this degradation; however, recent research revealed the

essential role of themitochondrial polymerase Tamas in nucleoid elim-

ination (Yu, O'Farrell, Yakubovich, & DeLuca, 2017). A second mech-

anism ensures the complete clearance of paternal nucleoids: during

D. melanogaster spermatid individualization, an actin structure called

“investment cone” progresses along the sperm tail axoneme and col-

lects trimmed nucleoids in a distal “waste bag.” Subsequently, paternal

mitochondria are degraded through autophagy soon after fertilization,

betweenmitotic cycles 1 and 9 (Politi et al., 2014). The autophagic pro-

cess involves the formation of a double-membrane vesicle that wraps

the targeted structure and fuses with a lysosome, causing the degra-

dation of the target. Autophagy has been extensively studied when

occurring in response to starvation (Pfeifer and Scheller, 1975)—a pro-

cess named also non-selective autophagy—but it performs a number of

other selective tasks aswell, such as pexophagy (i.e., selective degrada-

tion of peroxisomes via autophagy; Oku& Sakai, 2016), andmitophagy

(i.e., mitochondrial autophagy; Lemasters, 2014).

The pioneering work of Sutovsky's research group highlighted

the importance of the ubiquitination pathway in sperm mitochondria

J Exp Zool (Mol Dev Evol). 2018;330:41–51. c⃝ 2018Wiley Periodicals, Inc. 41wileyonlinelibrary.com/journal/jezb
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elimination in cows and pigs. Ubiquitin (Ub) is a highly conserved pep-

tide of 76-amino acids that is covalently bonded to lysine residues

of proteins (Ciehanover, Hod, & Hershko, 1978), determining their

sorting, degradation, or signal transduction, depending on the ubiq-

uitination pattern (Swatek & Komander, 2016). Ubiquitination occurs

as a three-step process involving Ub-activating (E1), Ub-conjugating

(E2), and Ub-ligating (E3) enzymes. Tag specificity and selectivity are

achieved by the high diversity of the E3 Ub-ligases (Hershko and

Ciechanover, 1998). Ubmoieties can be removed by a deubiquitinating

enzyme (DUB),making ubiquitination a highly dynamic tagging system.

During spermatogenesis in cows and pigs, the 30 kDa innermembrane

protein prohibitin is diubiquitinated. After fertilization, mitochondrial

membranes undergo a structural rearrangement that brings ubiquiti-

nated prohibitins on the outer membrane, causing them to be exposed

to recognition by zygotic/embryonic ubiquitination machinery. Such

machinery, in turn, adds more Ubmoieties to prohibitin and marks the

switch from the di-Ub recognition signal to a poly-Ub degradation one

(Sutovsky et al., 2000). Subsequently, paternal mitochondria are tar-

geted to proteolytic destruction by the conjoint action of proteasome

and autophagy/lysosome system (Sutovsky et al., 2000; Sutovsky, Mc

Cauley, Sutovsky, & Day, 2003; Rojansky, Cha, & Chan, 2016). Further

work by May-Panloup et al. (2003) and Luo et al. (2013), determined

that vital sperm of mice and men has a very low nucleoid content, sug-

gesting a process of mtDNA copy number reduction during spermato-

genesis.

Lastly, autophagy and ubiquitination are the main processes

responsible for the clearance of paternal mitochondria in Caenorhabdi-

tis elegans as well (Sato & Sato, 2011): upon entering the oocyte, sperm

mitochondria and other structures of paternal origin called membra-

nous organelles (MOs) are degraded through autophagy. MOs have

been found to be ubiquitinated before and after fertilization, similarly

to what happens in mammalian paternal mitochondria; however, no

sign of ubiquitination has been detected on C. elegans paternal mito-

chondria.

1.1 The exception to SMI

The only known evolutionarily stable exception to the common SMI

is represented so far by the doubly uniparental inheritance of mito-

chondria or DUI (Skibinski, Gallagher, & Beynon, 1994a, b; Zouros,

Ball, Saavedra, & Freeman, 1994a; Zouros, Oberhauser Ball, Saave-

dra, & Freeman1994b). Thismitochondrial inheritancemechanismhas

been found in ∼100 species of bivalve molluscs (Gusman, Lecomte,

Stewart, Passamonti, & Breton, 2016) and features two different mtD-

NAs, the F-type and the M-type, with high intraspecific divergence,

and sex-specific inheritance. The distribution of the twomitochondrial

genomes within an individual depends on its sex: females are homo-

plasmic for F-type mtDNA, whereas males carry the M-type mtDNA

in the germline and both mitochondrial genomes in the soma, with

varying proportions depending on species and tissue (Ghiselli, Milani,

& Passamonti, 2011; Obata, Sano, & Komaru, 2011; Milani, Ghiselli,

Iannello, & Passamonti, 2014a).

One of the most interesting peculiarities of DUI mtDNAs is that

they contain a novel lineage-specific ORF (one in the F-type, one in the

M-type) that, according to in silico prediction, might have had a viral

origin (Milani, Ghiselli, Guerra, Breton, & Passamonti, 2013; Milani,

Ghiselli, Maurizii, Nuzhdin, & Passamonti 2014b; Milani, Ghiselli, &

Passamonti, 2016).Moreover, femalesofDUI speciesdiffer inoffspring

sex ratio, which can be either male-biased, female-biased, or balanced.

This is a feature that appears to be mostly dependent on the maternal

genotype, but not immune to paternal influence (Ghiselli et al., 2012;

Kenchington,MacDonald, Cao, Tsagkarakis, & Zouros, 2002; Saavedra,

Reyero, & Zouros, 1997; Yusa, Breton, & Hoeh, 2013). Observations

in early embryos of Mytilus and the venerid Ruditapes philippinarum

(both with DUI) revealed that sperm mitochondria show two differ-

ent distribution patterns across blastomeres: aggregated or dispersed

(Cao, Kenchington, & Zouros, 2004; Milani, Ghiselli, & Passamonti,

2012). In Mytilus, the two patterns have been associated with male

and female embryos, respectively. However, differences in the aggre-

gation pattern cannot account completely for the aforementioned dis-

tribution of mtDNA in tissues, and additional active mechanisms such

aspaternalmitochondria degradation in females andpreferential repli-

cation in males (i.e., meiotic drive) have been proposed (Ghiselli et al.,

2011,Milani, Ghiselli, Pecci,Maurizii, & Passamonti, 2015;Milani et al.,

2016).

A further point of relevance concerns the evolutionary inception

of DUI. It is not clear whether DUI had a single origin or arose sev-

eral times throughout its evolutionary history. In the first case, DUI

might be the result of a single event happened at the origin of theAuto-

lamellibranchia superclass, more than 400 million years ago (Zouros,

2013). However, its distribution across the bivalve phylogenetic tree

is not homogenous: for instance, within Pteriomorphia, mytilids have

DUI, whereas ostreids and pectinids do not (Doucet-Beaupré et al.,

2010), and among Veneridae, the two lineage-specific mtDNAs have

been found in R. philippinarum (Passamonti & Scali, 2001) and Mere-

trix lamarckii (Bettinazzi, Plazzi, & Passamonti, 2016), whereas no evi-

dence was found in Ruditapes decussatus (Ghiselli et al., 2017) and Cal-

lista chione (Plazzi, Cassano, & Passamonti, 2015). Besides being the

result of incomplete sampling, this scattered distribution may also be

imputed to false negatives due to the technical difficulties in the detec-

tion of the two different DUI mitochondrial genomes (see Theologidis,

Fodelianakis, Gaspar, & Zouros, 2008 and Ghiselli et al., 2017 for a

thorough discussion of this issue). In any case, if DUI had a single origin,

several loss events have to be assumed to explain its scattered distri-

bution across bivalves (Zouros, 2013).

That said, a multiple-origin hypothesis might be more parsimo-

nious. Recent works proposed that the mitochondrial lineage-specific

ORFs found in several bivalve species may play a role in DUI emer-

gence and establishment (Breton et al., 2011b; Milani et al., 2013,

2014b, 2015, 2016). According to this hypothesis, the endogeniza-

tion of viral sequences in mtDNA might be the trigger for DUI evolu-

tion; such viral sequences might have provided the recipient mtDNA

with the ability to invade the germ line (e.g. through meiotic drive),

thus producing a selfish element (Milani et al., 2015, 2016). Although

such ORFs share some common features, their alignments were

possible only among sequences of closely related species (Breton et al.,

2011a; Milani et al., 2013): this may be due either to their fast evolu-

tion making their homology undetectable, or to several independent
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endogenization events. As amatter of fact, a hypothesis featuringmul-

tiple viral origins of DUI may explain its scattered distribution across

bivalves.

Being the only known stable exception to SMI, DUI provides a

unique chance to studymitochondrial inheritancemechanismsby com-

paring two naturally occurring systems in two relatively close species.

As mentioned before, it is well known that SMI maintenance, despite

resulting in the same outcome, is achieved through the most diverse

mechanisms (Birky, 1995, 2001; Sato & Sato, 2013). Similarly, it is con-

ceivable that, at a molecular level, DUI relies on a machinery that dif-

fers from one taxon to another. So it seems legitimate to hypothesize

that R. philippinarum may share a more similar machinery with a con-

generic SMI species such as R. decussatus, rather than with other DUI

species outsideVeneroida.Of course, since the eventualmitochondrial

distributionpatternbetweenaSMIandaDUI species is completelydis-

tinct, theremust be difference, but such difference can reside virtually

in a single protein (Zouros, 2013).

Summarizing, the process of paternal mitochondria degradation in

animals comprises two temporally distinct steps: degradation of sperm

mtDNA and/or labeling of paternal mitochondria occurs during sper-

matogenesis,whereasdegradationof nucleoids and/or recognition and

degradation of paternal mitochondria happens after fertilization.

The sequences encoding the machinery for the first step have to

be necessarily transcribed during spermatogenesis; the second step,

instead, can comprehend sequences transcribed during oogenesis and

accumulated into the oocyte, or by the zygote genome after maternal-

zygotic transition, or both.

In order to uncover the molecular outline of mitochondrial inheri-

tance, transcriptomic data from mature gonads of the SMI species R.

decussatus and the DUI species R. philippinarum were analyzed, taking

into account presence, transcription patterns, and mitochondrial tar-

geting of all proteins belonging to pathways known to be involved in

SMI achievement. Due to the nature of the available data, our research

focused on the first step. Previous data (Ghiselli et al., 2012, Milani

et al., 2013) show that, in R. philippinarum gonads, some sequences

involved in theubiquitinationpathwayare transcribedwith amalebias,

and in situ hybridization found some Ub-related transcripts localized

in gametogenic cells, hinting at a possible implication of Ub system in

DUI. A proteomic analysis on the DUI speciesMytilus edulis (Diz et al.,

2013) yielded similar results. Our analysis of transcripts belonging to

nucleases/polymerases, autophagy and mitophagy, and ubiquitination

pathway are consistent with pre-existing data, and allowed us to pro-

pose a model of SMI mechanism in R. decussatus and its modification in

R. philippinarum.

2 MATERIALS AND METHODS

2.1 Dataset

RNA-Seq libraries were prepared from ripe gonads of twelve individu-

als (six females and six males) of R. philippinarum from the Pacific coast

of USA (Puget Sound, WA), and twelve individuals (six females and six

males) of R. decussatus from the Northern Adriatic Sea (Goro, Italy),

following the protocols of Mortazavi, Williams, McCue, Schaeffer, and

Wold (2008) with the modifications reported in Ghiselli et al. (2012).

Raw reads and de novo assemblies of R. philippinarum and R. decussatus

are available on NCBI (BioProjects PRJNA68513 and PRJNA170478,

respectively). Details about sequencing, de novo assembly, and differ-

ential transcription analysis are described inGhiselli et al. (2012),while

statistics on the assemblies can be found in Supplementary data file

S1. Differential transcription between males and females is expressed

as the binary logarithm of the fold change of the transcription level

[log2(FC)]; male-biased transcripts are defined as those for which

log2(FC)<−1, whereas female-biased those for which log2(FC)> 1.

In order to perform a comparative analysis of the two transcrip-

tomes, the de novo assemblies were annotated with a transcrip-

tome annotation pipeline for non-model organisms (Ghiselli et al.,

in preparation; detailed information, data and scripts can be found

at the following link: https://osf.io/2gdqe/?view_only=f0b2cde926
db43719f3d705012c4eeaa).

Mitochondrial targeting of all the sequences belonging to both tran-

scriptomeswas assessedwith TargetP (Emanuelsson, Brunak, vonHei-

jne, & Nielsen, 2007).

2.2 Data analysis

Following the literature on the subject, we narrowed our research to

some “protein groups of interest” defined as follows: Ub-proteasome

system (UPS) and Ub-like modifiers, mitophagy/autophagy, nucle-

ases/DNA polymerases (Table 1). FPKM data of the all the retrieved

sequences can be found in Supplementary data file S2 and S3.

Autophagy and mitophagy pathways rely on an evolutionarily con-

served core machinery, and this has allowed us to compile lists of

orthologs including all the proteins known to belong to these path-

ways. The sequences of the proteins included in such lists were used

as queries in the searches against the transcriptomes of the two clam

species. Conversely, proteins belonging to the groups of nucleases,

DNApolymerases, and theUPS are part ofmultiple gene families vary-

ing in size and evolutionary history. As such, a gene-to-gene relation-

ship with other species orthologs cannot be established. For this rea-

son, we had to follow two differentmethods to retrieve loci of interest.

Orthologous sequences belonging to autophagy and mitophagy

pathways in Homo sapiens and in the oyster Crassostrea gigas (the only

bivalve species available) were downloaded from the KEGG database

(Kanehisa and Goto, 2000). In order to present the most compre-

hensive results possible, proteins involved in both autophagy and

mitophagywere retained in both datasets. These sequenceswere used

as queries in aBLASTP (Camachoet al., 2009) search against databases

built from R. decussatus and R. philippinarum transcriptomes. We fil-

tered out the hits with an E-value above 1E-50, and we checked the

remaining sequences. If a sequence showed similarity for orthologs

in both C. gigas and H. sapiens, it was retained only if the similarity

with the bivalve species had a stronger support (i.e., a lower E-value).

If a sequence showed similarity with a C. gigas sequence, but did not

have any hit against human orthologs, it was kept as well; the opposite

cases—similarity with H. sapiens but not with C. gigas—were regarded

as possible contaminants and discarded. The KO (KEGG Orthology)
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TABLE 1 Overall sequences retrieved for each protein group of interest, comprehensive of transcription bias, orthology, and mitochondrial
target

Rde Rph Rde Rph

Ubiquitination Autophagy
(Total KO ids in KEGG: 100)

Total sequences 778 728 KO ids 62 50 45 KO ids in common

Female biased 48 18 Total loci 124 92

Male biased 28 20 Female biased 16 0

mt target 38 42 Male biased 7 2

Orthologs 471 (394) 450 (387) 381 Clusters in common Orthologs 87 (59) 65 (59) 59 Clusters in common

Nucleases Mitophagy
(Total KO ids in KEGG: 57)

Total sequences 277 230 KO ids 27 24 22 KO ids in common

Female biased 25 12 Total loci 46 35

Male biased 16 4 Female biased 6 0

mt target 24 13 Male biased 4 0

Orthologs 154 (127) 131 (113) 109 Clusters in common Orthologs 31 (29) 31 (29) 29 Clusters in common

Polymerases

Total loci 284 266

Female biased 19 7

Male biased 14 6

mt target 19 18

Orthologs 173 (148) 147 (129) 128 Clusters in common

Note: Orthologs, number of sequences that have one or more orthologs in the other species’ transcriptome; in parentheses the number of sequences that
have at least one orthologwith the same annotation and thus that belong to the clusters in common; clusters in common, ortholog clusters whose sequences
have the same annotation in both species; KO ids, total KO identifiers with at least a corresponding sequence in the species – correspondence addressed in
detail in Tables 3 and 4; Rde, R. decussatus; Rph, R. philippinarum.

identifier reported for the selected C. gigas and H. sapiens sequences

was associated with each hit, so that exact correspondence with the

KEGG reference pathways could be traced (Tables 2 and 3, and Supple-

mentary data file S7–S10).

For UPS and nucleases/polymerases, instead, GO terms featur-

ing the terms “ubiquitin,” “proteasome,” “nuclease,” and “DNA poly-

merase” were selected from the GO database (Balakrishnan, Harris,

Huntley,VanAuken,&Cherry, 2013; downloadedon12October2016)

and manually curated (Supplementary data file S4–S6). Sequences

annotated with such GO terms were then extracted from the two

transcriptomes (Supplementary data file S11–S16). Additionally, pro-

hibitin sequences belonging to C. elegans, Xenopus tropicalis, Gallus gal-

lus, Mus musculus, Rattus norvegicus, Bos taurus, Pongo abelli, and H.

sapiens were downloaded from UniProtKB (The UniProt Consortium,

2017) and were used to perform a local BLASTP search, which unan-

imously retrieved the two evolutionarily conserved subunits of pro-

hibitin in both species.

3 RESULTS AND DISCUSSION

3.1 Nucleases and polymerases

We retrieved 277 sequences in R. decussatus and 230 sequences in R.

philippinarumwhichwere annotatedwithGOterms related tonuclease

activity or polymerase activity (Table 1, Supplementary data file S4–S5,

and S11–S14). These sequences were mostly involved in DNA repair

(GO:0006281, “DNA repair”, 56 occurrences in R. decussatus and 65

in R. philippinarum), but sequences involved in RNA retrotranscription

were not uncommon (GO:0006278, “RNA-dependent DNA biosyn-

thetic process,” 37 and 24 occurrences, respectively), either annotated

with transposon activity (according to BLASTP annotation, 23 and

14, respectively) or telomere maintenance (GO:0000723 “telomere

maintenance” and child terms, 11 and 21 occurrences, respectively).

The biological functions uncovered by the annotation are expected,

given the high proliferation activity of cells in gametogenic gonads—

obviously requiring both polymerases and nucleases—and the phys-

iological quality-check role of telomere maintenance in mitosis and

meiosis. If any endonuclease or polymerase were to enter male mito-

chondria in order to reducemitochondrial nucleotide content duringR.

decussatus spermatogenesis as it happens in O. latypes, we expect that

the candidate sequence would have both a male-biased transcription

and amitochondrial targeting presequence (Table 2). Regarding nucle-

ases, several sequencespossessingeitheroneor theother featurehave

been retrieved, but none shows both (Figure 1A). As for polymerases,

the great majority of sequences do not display a sex bias (Figure 1A),

with only one female-biased contig per species and one strongly male-

biased contig in R. philippinarum (−8.18397 log2(FC)), annotated as

a “DNA polymerase nu-like,” an error-prone polymerase involved in

DNA damage repair.
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TABLE 2 Summary of the assessed features of the proteins belonging to the pathways under study

Endonucleases Polymerases Autophagy Mitophagy Ubiquitination

Proposedmode of action DegrademtDNA during spermatogenesis Degrademitochondria during
spermatogenesis and/or after
fertilization

Tags paternal
mitochondria for
degradation during
spermatogenesis
and/or after
fertilization

Did we retrieve all the
sequences necessary
to enforce this
pathway?

Yes Yes Almost all Dubious Yes

Is a transcriptional bias
necessary?Male or
female?

Yes –Male Yes –Male Yes – Could be
both

Yes – Could be
both

Yes –Male

Did we find sequences
with such bias?

Yes, but lacking a
mitochondrial
presequence

Yes, but lacking a
mitochondrial
presequence

No No Yes

Does the resulting
protein(s) have to enter
themitochondria (i.e.,
is a mitochondrial
presequence
necessary)?

Yes Yes No No No

Did we find sequences
with themitochondrial
presequence?

Yes, but lacking a
transcriptional
bias

Yes, but lacking a
transcriptional
bias

N/A N/A N/A

Did we find
sequences/groups of
sequences with all the
needed
characteristics?

No No No No Yes

Details in themain text.

Our results are not consistent with a mechanism of nucleoid num-

ber reduction similar to that of O. latypes and some mammals; how-

ever, it has to be noted that mitochondrial targeting assessment is

especially prone to false negatives due to the presence of import sig-

nals other than presequences, or to transcript length biases. More

extensive research has to be performed to rule out the involvement of

endonucleases in SMI enforcement in R. decussatus.

3.2 Autophagy andmitophagy

Because of its high level of conservation across eukaryotes, autophagy

is a particularly suitable pathway for transcriptomics studies in

nonmodel species, so we were able to assess the completeness

of autophagic supramolecular complexes by extracting autophagy-

related orthologs from the two studied transcriptomes. The core com-

ponents of autophagy are mostly present in both R. decussatus and

R. philippinarum—for instance, GABARAP, an ortholog of yeast LC3,

whose detection has been often used as a proxy for autophagy tak-

ing place (e.g. Kraft, Peter, & Hofmann, 2010; Jin and Klionsky, 2014).

Moreover,most of the functional annotation of the sequences involved

in both autophagy and mitophagy is in common between the two

clam species (Table 1). Autophagy has been proved fundamental both

for male and female gametogenesis, with roles ranging from regula-

tion of signaling between follicle cells and oocytes in Drosophila, to

correct acrosome formation in mouse spermatozoa (Barth, Hafen, &

Köhler, 2012; Kanninen, de Andrade Ramos, & Witkin, 2013; Wang

et al., 2014; Agnello, Chiarelli, Martino, Bosco, & Roccheri, 2016). In

R. philippinarum transcriptome, only two sequences out of 92 display

a sex-biased transcription; in R. decussatus, instead, there are 22 sex-

biased sequences out of 124, representing almost one-fifth of the

total number of sequences involved in autophagy in this species (Fig-

ure 1B). These sequences codemainly for regulatory enzymes and dis-

play predominantly a female bias (16 female-biased vs. 6 male-biased

sequences; see Table 3 and Supplementary data file S7 and S8).

While these data suggest that autophagy-related genes are active

at this stage in gonads, thus enabling the autophagy process, the same

cannot be easily said for mitophagy: a core machinery for autophagy

has been established with a wide consensus, whereas the molecular

actors determining selective autophagy are more debated. A central

mitophagic trigger mechanism revolves around the serine/threonine-

protein kinase PINK1, which, upon attachment to the outer mem-

brane of depolarized mitochondria, recruits the E3 Ub ligase Parkin

for their degradation through mitophagy (Durcan & Fon 2015). Other

Parkin-independent pathways have been defined as well; for instance,

hypoxia triggersmitophagy through activation of Nix/Fundc1 pathway

(Campello, Strappazzon, & Cecconi, 2014; Georgakopoulos, Wells, &

Campanella, 2017). Even if roughly half of the sequences involved in

themitophagy pathway are present in both species, most of the funda-

mental ones aremissing in both species (i.e., Parkin and the initiators of

hypoxia-induced mitophagy FOXO3, Fundc1, Bnip3, and Bnip3L/Nix;

see Table 4), while Ambra1, an effector of a hypothesized Parkin-

independent mitophagy pathway, and PINK1 are present only in R.
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F IGURE 1 Distribution of Ruditapes decussatus and Ruditapes philippinarum loci according to the statistical significance and the transcriptional
sex bias, expressed as the binary logarithm of the fold change of the transcription level. The horizontal gray line marks the significance threshold
(P = 0.05), whereas the vertical gray linesmark the transcriptional sex bias threshold (seeMaterials andmethods). (A) Loci annotated as nucleases
and polymerases; the loci represented with an empty square possess a mitochondrial presequence; (B) loci annotated as belonging to autophagy
and/or mitophagy pathway; (C) loci annotated as belonging to the ubiquitination or ubiquitination-like pathways

philippinarum.Moreover, a female-biased transcription of the retrieved

mitophagy-associated genes in R. decussatus—even if weak (Figure 2)—

point out to an inhibition of mitophagy rather than an activation (for a

review on mitophagy regulation refer to Hamacher-Brady and Brady,

2016).

We can hypothesize at least two different mechanisms for SMI

enforcement through mitophagy/autophagy (Table 2). On one hand,

mitophagy could have a role in reducing nucleoid number during sper-

matogenesis. As data do not point outmale-biased transcription of any

of the sequences, it appears that this mechanism is not put in place in

R. decussatus. On the other hand, male mitochondria could be digested

after fertilization, as in studied mammals and C. elegans. If this is the

case, we could reasonably expect an accumulation of autophagy- and

mitophagy-related transcripts in oocytes, resulting in a female bias.

However, with the exception of the already discussed bias regarding

regulatory sequences, no other strong female bias has emerged. Still,

this mechanism could take place after the maternal-zygotic transition

and be due to zygotic transcripts (Schier, 2007), but in order to further

elucidate this point, different developmental stages shouldbeassessed

for the presence of this pathway.

3.3 Ubiquitination andUb-likemodifiers

We retrieved 778 and 728 ubiquitination-related sequences in R.

decussatus and R. philippinarum, respectively (Table 1, Supplemen-

tary data file S6 and S15–S16, and Figure 1C). As the name of the
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TABLE 3 Proteins Involved in Autophagy in R. decussatus (Rde) and
R. philippinarum (Rph)

KOid Name Rde Rph KOid Name Rde Rph

K00914 PIK3C3 o o K08270 DDIT4 x x

K00922 PIK3CA_B_D o x K08331 ATG13 o o

K01110 PTEN o o K08333 PIK3R4 o o

K01363 CTSB o o K08334 BECN o o

K01365 CTSL o o K08336 ATG12 o x

K01379 CTSD o o K08337 ATG7 o o

K02158 BAD x x K08339 ATG5 o o

K02161 BCL2 x x K08341 GABARAP o o

K02649 PIK3R1_2_3 o x K08342 ATG4 o o

K02833 HRAS x x K08343 ATG3 o o

K03175 TRAF6 o o K08491 STX17 x x

K03237 EIF2S1 o o K08509 SNAP29 x o

K04345 PKA o o K08512 VAMP8 x x

K04366 RAF1 x x K08803 DAPK x x

K04368 MAP2K1 o o K08852 ERN1 o x

K04369 MAP2K2 x x K08860 EIF2AK3 o x

K04371 MAPK1_3 o o K10802 HMGB1 x x

K04382 PPP2C o o K11248 SH3GLB1 o x

K04427 MAP3K7 o o K15464 BNIP3 x x

K04440 JNK o o K16172 IRS1 x x

K04456 AKT o o K16184 AKT1S1 x x

K04526 INS x x K16185 RRAGA_B x o

K04570 BCL2L1 x o K16186 RRAGC_D o x

K04688 RPS6KB o o K16196 EIF2AK4 o o

K04724 CFLAR x x K17445 IRS3 x x

K04958 ITPR1 o o K17446 IRS4 x x

K05087 IGF1R x x K17589 RB1CC1 o x

K06068 PRKCD o o K17603 ZFYVE1 x x

K06276 PDPK1 o o K17606 IGBP1 o o

K06528 LAMP1_2 x x K17888 ATG10L x x

K07187 IRS2 x x K17889 ATG14L o x

K07198 PRKAA o o K17890 ATG16L1 o o

K07203 MTOR o o K17906 ATG2 o o

K07204 RAPTOR o o K17907 ATG9 o x

K07206 TSC1 o o K17908 WIPI o o

K07207 TSC2 o x K17985 AMBRA1 o x

K07208 RHEB o o K18052 PRKCQ x x

K07298 STK11 o o K18082 MTMR3_4 o o

K07359 CAMKK2 x x K18086 MTMR14 o x

K07827 KRAS o o K19330 RUBCN o x

K07828 NRAS x x K19730 ATG101 o o

K07829 RRAS x x K20402 DEPTOR x x

K07830 RRAS2 o x K20868 ATG16L2 x x

K07831 MRAS x o K21245 SUPT20H o x

K07897 RAB7A o o K21246 NRBF2 x o

K07898 RAB7B x x K21247 TP53INP2 x x

(Continues)

TABLE 3 (Continued)

KOid Name Rde Rph KOid Name Rde Rph

K07920 RAB33B o o K21248 VMP1 o o

K08266 MLST8 o o K21249 UVRAG o x

K08268 HIF1A x x K21250 PRAP1 x x

K08269 ULK2 o o K21357 ULK1 x x

KOids, KEGG Orthology entries; Name, common name of the ortholog
group; o, presence; x, absence.

TABLE 4 Proteins Involved in Mitophagy in R. decussatus (Rde) and
R. philippinarum (Rph)

KOid Name Rde Rph KOid Name Rde Rph

K02833 HRAS x x K08341 GABARAP o o

K03097 CSNK2A x x K08860 EIF2AK3 o x

K03115 CSNK2B o o K09105 TFE3 x x

K04374 ATF4 x x K09455 MITF o o

K04440 JNK o o K11839 USP8 o o

K04448 JUN x o K11851 USP30 o o

K04451 TP53 x x K14381 SQSTM1 o o

K04551 UBB x x K15485 BCL2L13 x x

K04570 BCL2L1 x o K15590 TFEB x x

K04684 SP1 x x K15637 PGAM5 o o

K04735 RELA x x K17454 E2F1 x x

K05410 TBK1 o o K17771 TOM7 x x

K05704 SRC o o K17907 ATG9 o x

K06030 MFN2 o o K17969 FIS1 o x

K07827 KRAS o o K17985 AMBRA1 o x

K07828 NRAS x x K17987 NBR1 o o

K07829 RRAS x x K19945 TBC1D17 x x

K07830 RRAS2 o o K19946 OPTN o o

K07831 MRAS x x K20168 TBC1D15 o o

K07870 RHOT1 o o K21343 USP15 o o

K07871 RHOT2 x x K21347 TAX1BP1 o o

K07897 RAB7A o o K21348 CALCOCO2 x x

K07898 RAB7B x x K21356 MFN1 x x

K08268 HIF1A x x K21357 ULK1 x x

K08334 BECN o o K21361 CITED2 x x

K08339 ATG5 o o

KOids, KEGG Orthology entries; Name, common name of the ortholog
group; o, presence; x, absence.

pathway itself suggests, it is one of the most ubiquitous mechanism

for routinely protein quality control within cells. As such, several E1,

E2, E3, and DUBs were retrieved (Table 5). Moreover, ubiquitination

covers specialized roles during gametogenesis, especially in males (for

thorough reviews see: Richburg, Myers, & Bratton, 2014; Suresh, Lee,

Kim, &Ramakrishna, 2016). Inmammals, one of such roles is to provide

sperm mitochondria with degradation signals by di-ubiquitinating the

mitochondrial membrane protein prohibitin (Sutovsky et al., 2000).

A similar pattern of prohibitin ubiquitination, even if with a slightly

different timing, appears to extend to species outside the mammalian

taxon: for instance, in the crayfish Procambarus clarkii prohibitin, Ub,
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F IGURE 2 Representation of the ubiquitination state in mitochondria of spermatozoa in both clam species, according to the two hypotheses
presented in this study. Hypothesis 1 (HP1): During spermatogenesis of both species, prohibitins or other proteins on the mitochondrial outer
membrane are ubiquitinated by a “F-box only 39″ E3. RPHM21 then masks the recognition/degradation signal in R. philippinarum, hindering mito-
chondria destruction after fertilization. Hypothesis 2 (HP2): RPHM21 is involved in processes other than masking the recognition signal, such as
gonad differentiation or determination of the mitochondria aggregation pattern (Milani et al., 2014b). The ubiquitinating enzyme is a transmem-
branemib/herc E3 in R. decussatus and is absent in R. philippinarum. MOM,mitochondrial outer membrane; IMS, intermembrane space

and mitochondria co-localize in late spermatogenesis (Dong, Hou, &

Yang, 2015).

Prohibitins havebeen retrieved in the analyzed clam species aswell.

Given the evolutionary conservation of ubiquitination of prohibitin

during spermatogenesis, it is conceivable that they might play a role in

paternal mitochondria recognition as in mammals.

Given the high substrate specificity of E3 Ub ligases and their high

recurrence in the two transcriptomes (258 in R. decussatus and 237

in R. philippinarum according to GO term annotation—see Table 5), we

expect the candidate sequences to show a strongly male-biased tran-

scription level, if not amale-specific transcription (Table 2).

TABLE 5 Estimate of the number of enzymes involved in the ubiq-
uitination pathway according to the GO annotation

Ruditapes
decussatus

Ruditapes
philippinarum

E1 –Ub-activating enzymes 5 5

E2 –Ub-conjugating
enzymes

7 7

E3 –Ub-ligases 258 237

Deubiquitinating enzymes 57 61

Proteasome 153 144

In order to explain the different mitochondrial inheritance out-

comes between the two species investigated here, we propose two

hypotheses (Figure 2). There is some speculation in such hypotheses,

but they are all consistent with the available data and can be useful to

guide future experiments and research by providing candidate targets

for further investigation.

3.3.1 Hypothesis 1

Effectiveness of degradation through ubiquitination relies on the

recognition of Ub moieties linked to the target. If the ubiquitina-

tion signal is persistent in both species, it has to be masked in R.

philippinarum in order to achieve DUI. A candidate for this role is

RPHM21, a protein encoded by a male-specific mitochondrial ORF

transcribed and translated during spermatogenesis, localized in sperm

mitochondria and nuclei, and in embryos (Milani et al., 2014b, 2015,

2016). Its main putative features are two transmembrane helices,

a binding site for Ub, and domains involved in cytoskeleton inter-

actions. As already hypothesized in Milani et al. (2014b), RPHM21

might prevent the recognition of the degradation signal on the male

mitochondria by binding to ubiquitinated mitochondrial proteins (for

instance, prohibitin dimers) through their Ub binding site. Indeed,male

mitochondria are not degraded before the 32-blastomere stage in all
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R. philippinarumembryosobserved, irrespectiveof theaggregationpat-

tern (Milani et al., 2014b), so RPHM21 protection mechanism could

delay degradation of sperm mitochondria independently from the sex

of the embryos. If this is the case, the E3 Ub ligase performing this

task may be conserved in both species and show a male-biased tran-

scription. Such features, indeed, apply to two sequences (identified

as Locus_350 in R. decussatus and Locus_6979 in R. philippinarum, see

Figure 1C and Figure 2-HP1) that belong to the same ortholog clus-

ter, both undetectable in female gonads—designating them as male

specific—and both annotated as “F-box only protein 39,” a substrate

recognition component of the SCF (Skp1/Cullin/F-box) complex, a fam-

ily of modular E3 ligases.

3.3.2 Hypothesis 2

On the other hand, if the membrane protein carrying the male recog-

nition signal is unmasked also in R. philippinarum (i.e., no masking

by RPHM21 or other factors), then the difference between the two

species could lie instead in the ubiquitination pattern. Hence, ubiquiti-

nation in the SMI species could be performed by an E3Ub ligasewhose

ortholog is either absent or transcriptionally downregulated/silenced

in R. philippinarum, resulting in a male-biased sequence in R. decussa-

tus lacking an ortholog in the other species. This description delineates

the characteristics of several R. decussatus male-biased sequences.

Although most of them are either involved in cell cycle maintenance

or have a relatively weak male bias, the most transcriptionally biased

one is a sequence (identified as Locus_14176, see Figure 1C) contain-

ing a mib/herc2 domain (a Ub ligase domain; PF06701) also annotated

withGO:0016020 “membrane” andGO:0016021 “integral component

of membrane”. Studies suggest that transmembrane E3 substrates are

preferentially transmembrane proteins themselves (Bauer, Bakke, &

Morth, 2016). This E3 might ubiquitinate a male recognition protein

on themitochondrial outer membrane of the SMI species R. decussatus

targeting spermmitochondria for degradation.

4 CONCLUSIONS

We can detail the process of paternal mitochondria degradation in

animals as composed of two steps: (1) during spermatogenesis—

degradation of nucleoids and/or marking of paternal mitochondria

as means to distinguish them from maternal ones; and (2) after

fertilization—degradation of nucleoids or paternal mitochondria.

The sequences encoding the machinery for the first step have

to be necessarily transcribed during spermatogenesis; the second

step, instead, can comprehend sequences transcribed during oogen-

esis, or after maternal-zygotic transition, or both. The transcriptomic

data here analyzed, portraying late gametogenesis of the two bivalve

species R. decussatus and R. philippinarum, allowed us to hypothesize

which processes and genes might be involved in the first step, and

which might be the molecular similarities and differences underlying

the two different inheritance outcomes (Figure 2).

We propose two hypotheses (Figure 2): (1) the degradation signal

present on the mitochondrial outer membrane (which could be rep-

resented by ubiquitinated prohibitins) is masked in the zygote (e.g.,

by RPHM21), so the enzyme responsible for such degradation label-

ing must be present in both R. decussatus and R. philippinarum. Two

male-specific ortholog sequences annotated as “F-box only protein

39,” an E3 Ub ligase, show characteristics which are compatible with

this hypothesis; (2) the difference lies in the labeling pattern being

absent or delayed in the DUI species. A transmembrane E3 Ub ligase

with a strongmale bias, retrieved in R. decussatus andwith no apparent

ortholog in R. philippinarum, is a good candidate to perform this task.

As for the second step, that is degradation of paternal mitochon-

dria after fertilization, it may involve proteins transcribed after the

maternal-zygotic transition, so further research involving developing

embryos is needed to clarify this point.

Future perspectives include immunological analyses on sperm and

zygotes of both species, and investigating localization and interaction

among prohibitin/Ub and the other suggested candidate proteins will

help defining the describedmechanisms.
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1. Introduction 

In almost all animal species, mitochondria are inherited exclusively from the mother, a 

pattern that goes under the name of strictly maternal inheritance or SMI. However, a 

growing group of species more or less distantly related in the class Bivalvia constitutes 

an exception to this rule. In fact, in these species males transmit their mitochondrial DNA 

to their progeny, a peculiar inheritance pattern known as doubly uniparental inheritance 

or DUI. It is called “doubly uniparental” and not simply “biparental” because the two 

mitochondrial DNA constitute two separate lineages that have evolved independently for 

as much as 200 million years (Zouros, 2013). This evolutionary distance is well reflected 

in their diverging sequences, that can bear an amino acid p-distance as high as 51% 

(Zouros 2013). The sex-specific mtDNAs are inherited independently, each one through 

the gametes of the corresponding sex. After fertilization, a curious phenomenon is 

observed (Cao, Kenchington, & Zouros, 2004): the paternal (M) mitochondria can be 

tightly packed and remain in one cell during the first cellular divisions, entering 

blastomere 4d, from which germ cell originate, or can be dispersed, distributing 

randomly in the zygote. In Mytilus these two patterns were associated with the sex of the 

offspring: male in the former case and female in the latter (Cao et al., 2004).

Probably one of the most striking peculiarities of DUI is that each sex-specific mtDNA 

contains an ORFan (open reading frame having no detectable sequence similarity to 

other known proteins) of yet unknown function (Milani et al., 2013). There is some 

evidence concerning the transcription and as well the translation of the supernumerary 

ORF in M mtDNA of Ruditapes philippinarum (Ghiselli et al., 2013; Milani, Ghiselli, 

Maurizii, Nuzhdin, & Passamonti, 2014), in female (F) mtDNA of Venustachonca 

ellipsiformis  (Breton, Beaupré, Stewart, Hoeh, & Blier, 2007; Breton et al., 2009), and 

in F mtDNA of Mytilus edulis (Ouimet et al., 2019). In R. philippinarum, the M-mtDNA-

specific protein, known as RPHM21, is translated in the germline during gametogenesis, 

and its expression levels progress along with the spermatogenesis. In mature 

spermatozoa, it is found in mitochondria and in nuclei (Milani, Ghiselli, Maurizii, et al., 

2014). Recently, the male mtDNA has been found in early female gametogenesis as well, 
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defying the idea that females are homoplasmic for F-mtDNA and hinting at the 

possibility that RPHM21 might be present during early stages of oogenesis (Ghiselli et 

al., 2019).

What is the function of the ORFans, ORF with unknown functions and no detectable 

homology, present in DUI mtDNA? The attempts to solve this puzzle have just added 

more mystery to it (Milani et al., 2013). The in silico predictions on their structure, 

domains and ultimately functions have revealed a complex situation. The ORFans do not 

bear much sequence similarity to each other, to the point that, made exception for a few 

very closely related species, they cannot be aligned to each other. However, they do not 

resemble anything else either, making a clear-cut prediction of their function impossible. 

These proteins do not seem to share any obvious evolutionary history, and Milani, 

Ghiselli, Guerra, et al. (2013), using multiple in silico approaches for a comparative 

analysis of DUI mitochondrial ORFans, proposed their origin through viral 

endogenization. This could also explain the scattered distribution of DUI in the bivalve 

phylogenetic tree.

The molecular mechanisms underlying DUI are still unknown; however, many structural 

and functional features of M and F mtDNAs were proposed as candidates for a role in 

mitochondrial inheritance and germ line establishment/differentiation (Ghiselli et al. 

2013; Milani, Ghiselli, Guerra, et al. 2013; Zouros 2013). Among these candidates, the 

novel lineage-specific ORFs found so far in DUI species belonging to the families 

Unionidae (Breton et al. 2009, 2011a), Mytilidae (Breton et al. 2011b), and Veneridae 

(Ghiselli et al. 2013) were proposed. The existence of the translation product was verified 

in the unionid Venustaconcha ellipsiformis (Breton et al. 2009, 2011a) and in R. 

philippinarum (Milani L., Ghiselli F., Pecci A., Maurizii M.G., Passamonti M. 2015).

In this study, to gain some information on the function of the ORFans, I attempt to 

produce RPHM21, the protein encoded by the male-specific ORFan of R. philippinarum 

M-mtDNA, through an in vitro cell-free protein expression system and in yeast.
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2. Materials and methods 

2.1. Plasmid construction 

A pEX-A128 plasmid containing the rphm21 gene (flanked by ApaI and XhoI restriction 

sites) was purchased from Eurofins genomics. The sequence of rphm21 was reencoded 

using http://genomes.urv.es/OPTIMIZER/ in order to respect the codon usage of both E. 

coli and S. cerevisiae (Annex 1). The gene was amplified by PCR using forward primer 

5’-GGGGGGCATATGGTCTGGGTCGCCGTCGCC-3’  and reverse primer 5’-

GGGGGGCCCGGGTTAGTTGGAGTCGGGGTCGTCC-3’  for subsequent insertion in 

pIVEX and forward primer 5’-GGGGGGGGCCCGTCTGGGTCGCCGTCGCC-3’  and 

reverse primers 5’-GGGGGGCTCGAGTTAGTTGGAGTCGGGGTCGTCC-3’ and 5’-

GGGGGGCTCGAGTTAATGATGATGATGATGATGGTTGGAGTCGGGGTCGTCC-3

’  for insertion in pESC-His plasmids without and with a hexahistidine tag respectively, 

in frame with the mitochondrial tag of yeast COXIV. All PCRs were performed with 

Phusion® High-Fidelity DNA Polymerase (New England Biolabs Inc.). The fragments 

amplified were inserted in pIVEX2.3-MCS and pIVEX2.4d plasmids (Roche) using 

restriction sites NdeI/SmaI and in pESC-His (Agilent Technologies) plasmids using 

restriction sites ApaI/XhoI (Annex 2) and FastDigest restriction enzymes 

(ThermoScientific). Ligation was verified by PCR. 

2.2. Cloning 

The plasmids were cloned in Escherichia coli DH5α strains as in Pope & Kent, 1996. 

Briefly, 0.1-1 ng plasmid DNA was mixed with cells, left for approx. 40 minutes on ice, 

heat shocked for two minutes at 42°C and two minutes on ice. After the heat shock, 0.5 

ml antibiotic-free LB growth medium (1% yeast extract, 1.6% BactoTryptone, 1% NaCl, 

pH 7.5) was added and the cells were left for up to an hour at 37°C to allow bacterial 

recovery. Cells were spread on LB-agar plates supplemented with ampicillin or 

carbenicillin 0.1% and grown at 37°C. Following the persistent difficulties in cloning, 
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LB medium was supplemented with 1% glucose to suppress gene transcription. 

Transformation was verified with PCR.

Positive colonies were transferred in 2-3 ml liquid LB growth medium supplemented 

with ampicillin or carbenicillin and 1% glucose and left to grow overnight in a rotating 

incubator at 28°C or 37°C and 180 rpm. Plasmids were purified from the liquid cultures 

using Monarch® Plasmid Miniprep Kit (New England Biolabs Inc.). Final DNA 

concentration was quantified on NanoDrop (ThermoScientific). The fragment sequence 

was verified by sequencing (Eurofins Technologies).

2.3. Cell-free protein expression system (CFPS) 

In vitro protein synthesis was performed as in Larrieu et al., 2017 and Simonyan et al., 

2017.

Briefly, the in vitro synthesis was performed in a 100 μL dialysis chamber, separated 

from a feeding reservoir (1700 μL) by a dialysis membrane (MW 10,000). The system 

was set up in an inverted microcentrifuge tube. Both chambers contain 0.1 M HEPES 

(pH 8.0), 1 mM EDTA, 0.05% NaN3, 2% PEG 8000, 151 mM potassium acetate, 7.1 

mM magnesium acetate, 0.1 mg/ml folinic acid, 2 mM DTT, 1 mM NTP mix, 0.5 mM 

amino acid mix, 1 mM RDEWCM mix, 20 mM PEP, 20 mM acetylphosphate, protease 

inhibitors cocktail (Complete, Roche).  The dialysis chamber was added with 

components for the synthesis: 35% (w/v) S30 E. coli BL21(DE3) lysate, 35% S30 buffer 

(10 mM TRIS-acetate, pH 8.2, 14 mM magnesium acetate, 60 mM potassium acetate, 0.5 

mM DTT), 0.04 mg/ml pyruvate kinase (Sigma), 15 μg/mL pIVEX2.3MCS-RPHM21 or 

pIVEX2.4b-RPHM21 plasmid, 0.5 mg/ml tRNAs mix (Roche), 6 units/ml T7 RNA 

polymerase, 3 units/ml RNasin® Ribonuclease Inhibitors (Promega). The synthesis was 

made for at least 20 hours under agitation. A pIVEX2.3-MCS bearing another gene was 

used as positive control.

The reaction mix was centrifuged at 10,000g. The resulting pellet was washed twice in 

water, whereas the supernatant was precipitated in trichloroacetic acid (TCA) 0.3M and 

washed twice in ice-cold acetone. The fractions were resuspended in Laemmli loading 

buffer with 2% β-mercaptoethanol and examined through Western blot (see below).
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2.4. mRNA synthesis control 

In order to verify whether problems with in vitro protein synthesis were due to a 

transcriptional issue, an mRNA synthesis control was performed. Three 20 µl mix was 

prepared containing 200 ng of pIVEX2.3 MCS-RPHM21 digested with EcoRV, 0.5 mM 

NTP mix, 2mM spermidine, 0.8 µg T7 RNA polymerase, 40mM Tris-Cl pH 7.9, MgCl2 

6 mM, 0.5 µl RNasin® Ribonuclease Inhibitors (Promega), 2 mM DTT. Each mix was 

left incubating at 28°C for 0, 30 or 60 minutes respectively. The synthesis was verified 

in agarose electrophoresis gel with RiboRuler High Range RNA Ladder 

(ThermoScientific) as a marker. 

2.5. Western blotting 

Extracted protein were precipitated in 0.3M TCA and washed twice in acetone, then 

solubilized in the Laemmli buffer containing 2% β-mercaptoethanol except where 

noted, and optionally heated at 70°C for 15 min or at 90°C for 5 min prior to gel 

loading on a 12.5% acrylamide SDS-PAGE. Western blotting was done according to 

Laemmli, 1970. Proteins were transferred to PVDF membrane (Amersham 

International, Buckinghamshire, UK) in a liquid system. Nonspecific protein-binding 

sites were blocked with 5% dried skimmed milk, 3% bovine serum albumin (BSA), 

and 0.1% Tween-20 (Sigma) in TBS (50 mM Tris-Cl, pH 7.6; 150 mM NaCl) or PBS 

(137 mM NaCL, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM KH2PO4) for 30 minutes at 

4°C, and subsequently washed with 0.1% Tween TBS or PBS. To recognize RPHM21 

protein, a specific antiserum produced in rabbit (anti-RPHM21; Davids 

Biotechnologie) was used, diluted 1:80,000 with 0.1% Tween TBS, overnight at 4 °C. 

The used antibodies are as follows: anti-RPHM21 as in Milani, Ghiselli, Maurizii, 

Nuzhdin, & Passamonti, 2014, peroxidase-coupled anti-hexahistidine diluted 

1:10,000, anti-PGK diluted 1:5,000, anti-porin diluted 1:10,000, anti-ATP synthase 

subunit β diluted 1:10,000, anti-COX2 diluted 1:5,000, anti-carboxypeptidase diluted 

1:2,000, anti-dolicholphosphate mannosyltransferase diluted 1:2,000. After abundant 
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rinsing, membranes were incubated with secondary antibodies conjugated with 

horseradish peroxidase at the dilution of 1:5,000 for 1 h 30 min at RT, except for the 

antibodies anti-hexahistidine which were already coupled to the enzyme. The washed 

membranes were detected with ECL Western Blotting Detection Reagents (Roche) and 

exposed to Hyperfilm ECL (GE Healthcare). 

2.6. RPHM21 production in yeast 

pESCHis-RPH21 was introduced in the yeast haploid strain W303-1B (mat a, ade1, his3, 

leu2, trp1, ura3) by means of "One step transformation" as in Chen, Yang, & Kuo, 1992.

Briefly, one solid colony or 1.5 ml liquid culture in stationary phase was mixed with 90 

μl LiAc (LiAc 0.2N, PEG 3350 40%) solution, 10 μl DTT 1M, 50 μg salmon sperm 

carrier DNA, 1 mg plasmid, yeast (1 solid colony or 1,5 ml liquid culture in stationary 

phase). The mix was incubated for 30 minutes at 45°C and spread on synthetic medium 

supplemented with glucose (yeast nitrogen extract 1%, KH2PO4 0.1%, (NH4)2SO4 

0.12%, 0.2% Drop mix, 0.01% auxotrophic markers, glucose 2%, pH 5.5).

Yeast positive to the plasmid was grown on synthetic medium whose carbon source was 

2% glucose or 2% lactate. RPHM21 production was induced by addition of 0.2% 

galactose and was tested through sampling at 0, 2, 4 and 6 hours from induction time.

2.7. Yeast mitochondria isolation 

Yeast mitochondria isolation was performed as in (Simonyan et al., 2017).

Mitochondria were isolated from yeast cells expressing RPHM21 or not. Washed and 

concentrated yeast cells were incubated in the presence of 0.5 M β-mercaptoethanol for 

15 min and washed twice with 0.5 M KCl. Cells were then suspended in a 20 mM 

phosphate buffer (pH 6.8) containing 1.35 M sorbitol and 1 mg/mL zymolyase 20T in 

order to digest the cellular wall. Digestion was extended for 20–35 min and followed by 

yeast observation through a microscope. Upon digestion completion, spheroplasts (i.e. 

yeast cells without the cell wall) were washed twice in a 10 mM maleate-TRIS buffer 

(pH 6.8) containing 1.1 M sorbitol, 0.4 M mannitol, 1 mM EGTA, 0.1% BSA. Cells were 
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resuspended in a 10 mM maleate-TRIS buffer containing 0.6M mannitol, 1 mM EGTA, 

0.2% BSA, and homogenized with three-second passes in a Waring Blender. Cell debris 

were removed by a 15 min, 900×g centrifugation and mitochondria-enriched fraction was 

recovered through a 15 min, 17,000×g centrifugation. Mitochondria were resuspended 

and gently homogenized in a glass-Teflon potter in the same buffer without BSA (10 mM 

maleate-tris buffer (pH 6.8) containing 0.6 M mannitol, 1 mM EGTA), and the same 

cycle of centrifugation was done to recover the mitochondrial pellet.

2.8. Yeast total protein extraction 

Yeast total protein extraction was performed according to (Egner, Mahé, Pandjaitan, & 

Kuchler, 1995). Yeast was centrifuged and the washed pellet was resuspended in a NaOH 

1.85M/ β-mercaptoethanol 7.5% solution and incubated on ice for 10 min. One volume 

50% trichloroacetic acid was added and the mix was incubated for an additional 10 min. 

After centrifugation, 50 µl 5% SDS with the addition of 6 µl Tris Base 1M were used to 

resuspend the pellets. The samples were incubated at 42°C for 15 min and centrifuged 

for 15 min at 15,000 rpm, then the supernatants were used for subsequent analysis. 

2.9. Sucrose gradients 

A sucrose gradient was used to better separate subcellular fractions and localize 

RPHM21-6His as in (Meisinger, Sommer, & Pfanner, 2000). A continuous gradient of 

15-65% OptiPrep™ and MES solution (MES 10 mM, sorbitol 0.2M, EDTA 2mM, PMSF 

1 mM, Complete protease inhibitor cocktail tablet) was created using a density gradient 

fractionator. 1 mg proteins were deposited on the surface of the gradient and 

ultracentrifuged in a Beckman SW41 Ti swinging-bucket rotor at 28,000 rpm for 14 h. 

Fourteen fractions were recuperated from each gradient and the proteins were 

precipitated with 0.1 volumes TCA, centrifugated and the pellets were washed with ice-

cold acetone and analyzed through Western blot. 
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2.10. Crosslinking 

Purified mitochondria, obtained in “Yeast mitochondria isolation”, were washed twice 

in crosslinking solution (50 mM triethanolammine, 0.6M mannitol, 2 mM EDTA, 

Complete protease inhibitor cocktail tablet, pH 8) in a 1:1 volume ratio and 

resuspended in the same solution. DSP 100 or 200 µl diluted in dimethilsulphoxide 

was added and the mix was incubated 30 min at 30°C. The cross-linking reaction was 

stopped by addition of TRIS 10mM pH 7.5, which acted for 15 min at room 

temperature. Samples were mixed with Laemmli loading buffer without β-

mercaptoethanol and examined through Western blot. 

2.11. Oxygen consumption assays 

To gain insights on the state and integrity of mitochondria, respiration measurements 

through oxygraphy were performed. Oxygen consumption rates were measured with a 

Clark electrode in a 1 ml thermostatically regulated chamber at 28°C in the respiration 

buffer (0.65 M mannitol/0.3 mM EGTA/3 mM Tris-phosphate/10 mM Tris-maleate, pH 

6.75). 300 µg mitochondria were used for the assays. NADH 3 mM was used as electron 

donor, whereas the measurements of state 3 and 4 and decoupled oxygen consumption 

rates were performed by adding 100 µM ADP and 3 µM carbonyl cyanide m-

chlorophenylhydrazone (CCCP) respectively. 
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3. Results 

3.1. Cloning in E. coli and cell-free protein synthesis 

Cloning the rphm21 gene in both pIVEX 

and pESC plasmid has proven a very 

difficult task. The number of transformed 

colonies was lower by two orders of 

magnitude than the norm and almost all 

of them were found to be false positives 

through PCR (figs.1 and 2). This was not 

dependent on the strain, as DH5α is 

reliably and routinely used for 

transformation (Kostylev, Otwell, 

Richardson, & Suzuki, 2015) and the 

positive control did not show any 

issue regarding the colony number. 

 
Fig1: 
PCR of E.coli colonies selected for the presence of pIVEX-RPHM21 
plasmid. None of them bear the gene. 

Results

Cloning in E. coli and cell-free protein synthesis

Fig. 1: PCR of E.coli colonies selected for the 

presence of pIVEX-RPHM21 plasmid. None of 

them bear the gene.

Fig. 2: PCR of E.coli colonies selected for the presence of pESC-

RPHM21 with and without 6His. The number of true positives is 

much lower than expected.

500 bp

250 bp

Fig. 2: PCR of E.coli colonies selected for the presence of pESC-RPHM21 with and without 
6His. The number of true positives is much lower than expected. 
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Fig. 1: PCR of E.coli colonies selected for the 

presence of pIVEX-RPHM21 plasmid. None of 

them bear the gene.

Fig. 2: PCR of E.coli colonies selected for the presence of pESC-

RPHM21 with and without 6His. The number of true positives is 

much lower than expected.

250 bp

500 bp
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Supplying LB with glucose increased the number of colonies growing on selective 

medium from less than ten to more than a hundred (fig. 3), making it possible to recover 

the plasmid with the correct gene sequence. Indeed, after numerous attempts, we were 

finally able to recover a pIVEX bearing the correct sequence of RPHM21 to use in in 

vitro cell-free protein synthesis (CFPS). Despite CFPS is a robust technique for protein 

synthesis (Gregorio, Levine, & Oza, 2019), no result was obtained. 

Fig. 4 shows a Western blot of RPHM21 CFPS 

pellet and supernatant compared to a control 

production. RPHM21 was detected using antibodies 

validated in (Milani, Ghiselli, Maurizii, et al., 2014). 

Being these polyclonal antibodies, they show a quite 

intense cross-reactivity against E.coli proteins, thus 

producing a large amount of bands. However, it is 

clear that no extra band ascribable to RPHM21 is 

detectable in RPHM21 supernatant with respect to 

control supernatant. 

Fig. 3: PCR of E.coli colonies transformed with pIVEX-RPHM21 and grown on 1% glucose. 
Each lane is the mix of ten colonies.

250 bp

500 bp

Fig. 4: Western blot of RHM21 
CFPS pellet and supernatant 
(lanes 1-2) and positive control 
(lane 3). Antibody anti- 
RPHM21.

321
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Re-sequencing of the plasmid used for CFPS 

and digestion control (fig. 5) demonstrated 

that the sequence was correct and harbored at 

the right position within the plasmid. Adding 

on this, mRNA production control was 

performed to test whether the issue lied in the 

transcription step, but the mRNA was 

produced at a steady rate and had a proper 

length (fig. 6). 

3.2. RPHM21 production in yeast 
Due to cross-reactivity issues with S. cerevisiae proteins, it was not possible to use the 

antibody anti-RPHM21 transformed in yeast. In order to produce RPHM21 in yeast, 

target it to the mitochondrial matrix and identify it with certainty, a chimeric sequence 

comprising a mitochondrial presequence, RPHM21 gene and a hexahistidine tag was 

cloned into a pESC-His plasmid and the latter used to transform yeast. 

Fig. 5: Digestion control of pIVEX-
RPHM21 used for CFPS. From left to right: 
molecular standard, undigested, digested 
with Nde I, with SmaI, with both enzymes. 
In the first lane the supercoiled form is 
present as a faint band (arrow head), 
whereas in the fourth lane the lower 
band (516 bp) is the gene. 

1ST 32 4

<
4000 bp

500 bp

Fig. 6: mRNA production 
control of pIVEX- 
RPHM21 used for CFPS. 
From left to right: mRNA 
production at 0', 30' and 
60' from reaction start. 

0’ 30’ 60’
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In pESC, RPHM21 is under the transcriptional 

control of a galactose-inducible promoter. As 

clearly visible in fig. 7, pESC induction with 

galactose triggers RPHM21 production. No 

cross-reactivity nor leaky transcription was 

present, indicating a strong and reliable promoter. 

It is worth noting that the apparent weight of 

RPHM21 is higher than expected (25 kDa instead 

than19.5) because of the mitochondrial 

presequence and the histidine tag. 

To verify that RPHM21 had been correctly 

targeted to mitochondria, a sucrose density 

gradient was performed and fractions were tested 

for presence of mitochondrial markers through 

Western blots. In fig. 8a, c and d, it is possible to 

see how most of the mitochondrial markers - 

porin, ATP synthase subunit beta, cytochrome oxydase 2, carboxypeptidase (CPY) 

and dolichol phosphate mannosyl transferase (DPM1) - localize in fractions 11-13, 

identifying these as the ones containing mitochondria. RPHM21 (fig 8b) is 

localized in fractions 11-12, visible as a faint band in lane 11 at about 25 kDa and 

in lane 12 as a light smear. Being the input quantity spread over several lanes, the 

signal is quite weak if compared to the previous blot, but is nonetheless present. 

Yeast transformed with pESC-RPHM21-6His was grown on synthetic media with lactate 

as a sole carbon source. This allows to highlight possible mitochondrial problems caused 

by proteins targeted to this subcellular compartment, as lactate is a non fermentable 

carbon source for yeast (Turcotte, Liang, Robert, & Soontorngun, 2010). As shown in 

fig. 9, growth rates were not notably different between carbon sources. The presence of 

an additional and preferred carbon source boosted yeast growth in both cases, as 

expected. It is apparent that the massive production of a mitochondrially-targeted protein 

does not hinder yeast growth nor mitochondrial respiratory functions, conclusion further 

confirmed by oxygraphic analysis (Annex 3). 

Fig. 7: Western blot of pESC-RPHM21-
His protein extracts grown on Lac (first 
three lanes) and Lac + Gal (lanes 4, 5 and 6) and 
revealed with an Ig@6His. The three lanes 
correspond to different treatments in Laemmli 
sample buffer before chargement. From left to 
right: no heating, heated at 70°C for 15 minutes, 
heated at 90°C for 5 minutes. ST:protein standard

4 5 6 ST321
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Fig. 9: Growth monitoring of yeast on synthetic medium and lactose. Legend: ctrl: control (yeast 
transformed with empty plasmid); ctrl + Gal: control induced with galactose; RPHM21: yeast 
transformed with pESC-RPHM21-6His; RPHM21 + Gal: yeast transformed with pESC-RPHM21-6His 
induced with galactose. 

  
Fig. 8: Western blot of yeast extract gradients. Each lane has been loaded with a fraction of yeast cellular 
extract, the topmost of the gradient being at the left and the bottom of the gradient at the right. Protein 
detected: a) porin and PGK, b) RPHM21 (arrow head), c) ATP synthase subunit beta and COX2, d) CPY and 
DPM1. Details in text.

a b

c d
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During the previous growth control, Gal-induced PHM21 population was sampled at 0, 

2, 4 and 6 hours post-induction and the expression was verified through a Western blot. 

After 6 hours, protein production has reached a level suitable for the subsequent analysis, 

and the mitochondrial presequence starts to be cleaved, as shown by the faint band at 

about 20 kDa. 

Having verified that RPHM21 is indeed produced and properly targeted to the 

mitochondrion without impeding normal yeast growth, we proceeded to investigate its 

protein-protein interactions through cross-linking. Dithiobis(succinimidyl propionate) 

(DSP) is a homobifunctional cross-linking reagent containing a cleavable disulfide 

spacer. Since it bonds to amines, such as lysine functional groups and protein N termini, 

and is cell membrane permeable, it is widely used as a generic cross-linking reagent 

(Sinz, 2018). As it creates disulfide bonds, the Laemmli loading buffer for crosslinked 

samples was devoid of β-mercaptoethanol. The Western blot in fig. 11 shows the result of 

the cross-linking: upon use of DSP, the protein hardly enters the stacking gel, which 

suggest the presence of RPHM21 in the form of inclusion bodies (lanes 2-4). The 

Fig. 10: Western blot of pESC-RPHM21-6His induction at 0, 2, 4 and 6 hours post-
induction. Every time has been loaded twice, the second lane has double the quantity of 
the first for the same time. At 6h post induction it is possible to see some cleavage of the 
protein (arrow head).
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situation improves slightly after TCA precipitation, instead getting almost completely 

stuck at the interface with the stacking gel (lanes 5-7). Interestingly, the controls show 

the same issue, hinting at the formation of spurious disulfide bridges that were released 

by the use of β-mercaptoethanol in the previous Western blots. 

Fig. 11: Western blot of crosslinking. From 
1 to 7: control, RPHM21, RPHM21 + 
DSP 100 uM, RPHM21 + DSP 200 uM, 
RPHM21 + TCA, RPHM21 + DSP 100 uM 
+ TCA, RPHM21 + DSP 200 uM + TCA.

 1      2     3     4      5       6       7
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4. Discussion 
Heterologous protein expression has become one of the cornerstones of biochemistry, 

both in fundamental and applied research. Here we report the first attempt to synthesize a 

mitochondrial ORFan in two distinct heterologous systems in order to uncover its 

function.

The first major hurdle encountered in this process was the cloning of RPHM21-bearing 

plasmids in E. coli. We were faced with an anomalously low colony number and, among 

these, a high rate of false positives, suggesting a very high toxicity of RPHM21 in a 

bacterial context. This was rather unexpected, as RPHM21 in pIVEX is under T7 

promoter transcriptional control and the E. coli strain used for cloning, DH5α, was 

specifically chosen because it lacks the T7 RNA polymerase gene, thus theoretically 

being completely unable to show leaky transcription. The addiction of glucose to both 

liquid and solid LB medium, which grants a global transcriptional repression by inducer 

exclusion (Inada, Kimata, & Aiba, 1996) coupled with a decrease in temperature of E. 

coli growth from 37°C to 28°C helped solving this issue (Fig. 3) and retrieving the 

plasmid for the subsequent cell-free protein expression system (CFPS) step.

The most striking aspect, however, was the complete impossibility to produce RPHM21 

in an E. coli-based CFPS. Cell-free protein expression has been specifically designed to 

address the shortcomings of protein production in a living organism, such as cytotoxicity 

(Rosenblum & Cooperman, 2014). The controls performed to check plasmid structure 

(fig. 5), mRNA production (fig.6) and CFPS itself (fig. 4) showed that the issue actually 

lied in the protein produced.

On the other hand, this extreme effect was not observed upon yeast transformation and 

induction. As a matter of fact, RPHM21 expression tightly followed galactose induction 

and did not visibly alter metabolic functions in yeast (fig. 9-10). The protein was 

correctly expressed and targeted in mitochondria (fig. 8). However, issues concerning the 

correct folding of RPHM21 surfaced when a cross-linking agent was added. Cross-

linking helps uncover protein-protein noncovalent interactions by stabilizing them 

through the dual covalent bonding of the cross-linking agent (Tang & Bruce, 2009). In 

our case, however, yeast extracts supplemented with DSP showed a RPHM21 aggregate 
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too voluminous even to enter the stacking portion of the acrylamide gel. TCA 

precipitation reduces the problem, but the aggregate does not get past the stacking-

running gel interface. It is apparent that RPHM21 does not fold properly in the 

mitochondrion, instead creating an amorphous aggregate, useless for the purposes of 

protein-protein interaction investigation. The formation of an aggregate might be due to 

an excessive translation caused by the strong, on-off Gal-inducible promoter, and in the 

future it could be circumvented using a more tunable promoter. Ironically, as a means to 

produce aggregate-forming proteins, it has been suggested to use CFSP (Tang & Bruce, 

2009).

The high level of toxicity shown by RPHM21 in E. coli and in the CFSP is peculiar. If it 

impairs CFSP, its toxicity must be tied either to transcription or to translation. It could be 

a nuclease, or a DNA/RNA binding protein, or a protein that prevents translation by 

interacting with the ribosome. In those cases, the production of a small amount of 

RPHM21 would impair the proteic production in a negative feedback loop.

It has been suggested that RPHM21 could be a meiotic driver (Milani et al., 2015; 

Ghiselli et al. 2019). This would mean that, at least in the past, it had the ability to 

passively tweak their probability to be inherited at the expenses of a competitor (in our 

case, the female mitochondrion) that does not bear it. If brought to an extreme, the 

meiotic driver can be an “ultra-selfish” element that promotes its own transmission 

through the destruction of the competitor (Bravo Núñez, Nuckolls, & Zanders, 2018).

These “killer” drivers have two modi operandi, so to say. The first is the so-called “killer-

target” drive system: the driver is a trans acting element that interacts with all the meiotic 

products and becomes destructive only when it comes in contact with a second meiotic 

product, its target. The target can be a protein or a locus, but, most importantly, its 

localization is restricted to the meiotic product that does not inherit the locus. If a meiotic 

product does not have a target, the “killer” driver has no effect.

The second type is the “poison-antidote”. The killer produces both a poison, that kills 

indiscriminately, and an antidote, that protects the killer from self-destruction. In this 

case, the two loci must be very tightly linked in order for the killer not to be killed.

If RPHM21 is an ultra-selfish element, then it could be a “poison-antidote” type, that 

when placed on a plasmid it was decoupled from its antidote factor and was able to 

reproduce the effect that had on competitor mitochondria.
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Of course, since DUI has been a stable inheritance pattern, this means that either the 

driver has become fixed in the population, that exclusively the antidote has become fixed 

instead or that its in an equilibrium with its competitor, possibly through an arms race. 

Since there are two mtDNA types, the driver has not become fixed. If, on the other hand, 

the antidote is fixed instead, the killer is perfectly neutralized. But, if this were the case, 

why would we see R. philippinarum M-mtDNA in female gonads, as (Ghiselli et al., 

2019) have observed?

The answer could lie in the functioning of the poison-antidote system. If the system, or 

the competitor, becomes capable of producing the antidote, then the antidote production 

can work as a fitness signaling system. In other words, when the competitor is too 

damaged to produce the antidote, then the killer driver is able to destroy it. In this way, 

the killer’s role is exapted by the system – in this case, the gonads – to selectively 

destroy the unfit competitors – in this case, the female mitochondria that are not fit 

enough to get into the eggs and be passed to the offspring.

The third option, the arms race, would be verified by populations where one of the two 

mitochondria has successfully invaded the other’s inheritance route, making the 

population homoplasmic. Of course, this is an instance that could go unnoticed, and until 

now there has not been such an observation.

In conclusion, producing RPHM21 or one of the other ORFans in an extraneous system 

could reveal itself very demanding. However, an attempt to substitute the E. coli CFSP 

with a eukaryotic-based one could be the key to its production, and, ultimately, to its 

function.
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Annexes 

Annex 1 – orf21 sequence adapted to E.coli and 
S.cerevisiae codon usage 

>RPHM21 

ATGTGGGTCGCCGTCGCCTTCATCCTGTCCTTCATCGCCTCCGACCTGTCCTGCCAGAT
CTCCATCTTCGACGTCTTCTTCTCCTGGGTCGAGTCCCTGGTCACCCTGTTCCTGAAG
GAGTTCTTCTCCGGCAACATCTATGTCGTCTCCTATACCTTCAAGGTCTTCTGGCTGAT
GATCTTCTTCTCCGTCAAGGGCAACCCCTGCGAGTTCACCGAGACCTCCTCCCCCCTG
CCCTCCTCCTCCTCCTCCTCCTCCGTCCCCTCCTCCTCCAAGCCCCCCAAGCAGGTCTA
TTCCGCCCCCATCATCATCTCCGGCTCCAAGGAGGACTTCGACTATCTGATGTCCCTGT
CCAAGGAGAACCTGCTGTTCAAGGTCATCGTCCTGGACTCCAAGGAGAACCAGAACT
TCAAGTCCTATATCGTCTATTTCTGGGAGAAGGTCGACCTGCCCTGCGAGAACCCCTC
CAAGGTCGTCACCGTCCTGATCATCGCC ATGGACGACCCCGACTCCAACTAA 

>Mitochondrial presequence used in pESC-RPHM21 

ATGCTTTCACTACGTCAATCTATAAGATTTTTCAAGCCAGCCACAAGAACTTTGTG
TAGCTCT AGATATCTGCTT 
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Annex 2 – Plasmids used for cloning and transformation  
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Annex 3  

Measurements of uncoupled respiration of W303 yeast 
expressing or not RPHM21  

Annex 3 – Measurements of uncoupled respiration of W303 yeast

expressing or not RPHM21
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Chapter three 

Preliminary study on miRNA in 
R.philippinarum gonads 
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1. Introduction 

MicroRNAs (miRNAs) are single-stranded, noncoding RNAs measuring about 22 

nucleotides in length and regulate gene expression at the post-transcriptional level. They 

are widespread in animals and plants and, although the exact molecular processes in 

which they are involved are to be elucidated yet, they are implicated in a miriad of 

physiological and pathological processes, from cancer (Tutar, 2014) to development 

(Emde & Hornstein, 2014; Khuu, Nirvani, Utheim, & Sehic, 2016) to spermatogenesis 

(Chen, Li, Guo, Zhang, & Zeng, 2017). The basic mechanism behind miRNA 

functioning is the imperfect pairing to the UTR of a mRNA, either condemning the 

transcript to cleavage or making its translation impossible. In virtue of their imperfect 

pairing to the so-called seed sequence, their in silico prediction is plagued by a high rate 

of false positives (Riffo-Campos, Riquelme, & Brebi-Mieville, 2016), making it difficult 

to study in non-model organisms. 

Despite a growing body of annotations and research, much is still needed to have even a 

slightly less nebulous picture of this fundamental biological process. For instance, in 

miRBase (http://www.mirbase.org/) Homo sapiens alone has more reported miRNA that 

the entire taxon of Lophotrochozoa, which is scantily represented. The varied family of 

noncoding RNAs still represents a source of scientific novelty whose involvement in 

biological processes seems to be ever growing (Cech & Steitz, 2014; Hsiao, Sun, & Tsai, 

2017). 

It is in the Lophotrochozoa clade that a new kind of small noncoding RNA has been 

recently uncovered. The smithRNA are a new class of noncoding RNAs which, akin to 

miRNAs, seem to possess the ability to inhibit translation or degrade its target, but, 

unlike miRNAs, they’re transcribed into the mitochondrion and act on nuclear transcripts 

(Pozzi, Plazzi, Milani, Ghiselli, & Passamonti, 2017, unpublished data). This peculiar 

mechanism of action is put in place in a species, the venerid Ruditapes philippinarum, 

which has at least another surprising feature. Unlike the vast majority of animals, it 

doesn’t inherit its mitochondria exclusively from the mother, but, in what it’s called 

doubly uniparental inheritance or DUI, its zygotes receive mitochondrial DNA from both 

parents(Hoeh, Blakley, & Brown, 1991; Skibinski, Gallagher, & Beynon, 1994). In those 

species who follow DUI (around a hundred of bivalves) the two inherited mtDNAs form 
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two radically different lineages, that can differ as much as 50% in the two sexes (Breton, 

Beaupré, Stewart, Hoeh & Blier, 2007). Once entered the egg, the fate of paternal 

mtDNA, then, is to become undetectable in females and to multiply in males. It is 

unclear how paternal mitochondria could succeed in avoid degradation, but it is thought 

that an ORF located on the paternal mtDNA which codes for a protein of unknown 

function might play a role. 

In order to simultaneously broaden the knowledge of miRNA and R. philippinarum 

biology, we conducted a preliminary study of gonads miRNA, extending the 

repertoire of lophotrochozoan miRNA. 
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2. Materials and Methods 

2.1. Sampling and library preparation 

miRNA libraries were prepared by (Pozzi et al., 2017) from six individuals collected 

during the reproductive season during summer 2016, stored in artificial seawater until 

sex assessment through microscopic examination and gonad homogenization. RNA was 

extracted using TRIzol (Thermo Fisher Scientific) and the libraries were prepared by 

Macrogen Inc using TruSeq Small RNA Library Preparation Kit (Illumina). 

mRNA libraries were prepared during the reproductive season in summer 2015 from 15 

individuals according to (Mortazavi, Williams, McCue, Schaeffer, & Wold, 2008) and 

sequenced in 2-lanes, paired-ends 150bp in an Illumina HiSeq 2500. 

The occurrence of two different libraries prepared with different animals means 

that it is not possible to correlate the transcription levels of miRNA and mRNA. 

2.2. Assembly, annotation and differential expression 
analysis 

The miRNA libraries were trimmed of adapter sequences with Trimmomatic (Bolger, 

Lohse, & Usadel, 2014), retaining those reads that had an average Phred score of at least 

25 and were long at least 18 nucleotides. Prior to any analysis, two filtering steps were 

done. The first made use of Kraken (Wood & Salzberg, 2014) with a custom database 

with prokaryota and human genomes, to filter out contaminants. The second step was to 

align the reads to a yet unannotated R. philippinarum genome with Bowtie2 (Langmead 

& Salzberg, 2012). The extant information on the genome, unfortunately, didn’t let 

perform a characterization of the genomic environment of miRNAs, but it allowed for a 

stringent filter devoid of the risks of false positives. 

The mRNA libraries were trimmed with Trimmomatic as well. The assembly was 

performed with Trinity v2.6.6 (Haas et al., 2013) with default options and –

min_khmer_cov 2. The ORF prediction and 3’UTR extraction were made with ExUTR 
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(Huang & Teeling, 2017), with the conditions of retrieving ORFs minimum 20 

aminoacids long and 3’UTRs with a minimal length of 20 nucleotides. 

2.3. miRNA identification 

MiRNA identification was done with miRDeep2 (Friedländer, Mackowiak, Li, Chen, & 

Rajewsky, 2012; Mackowiak, 2011), an automated pipeline which manages a number of 

steps. The process starts with the identification and folding of potential pre-miRNA 

sequences by RNAfold (Lorenz et al., 2011), which determines the presence of a hairpin-

loop both from a structural and an energetical point of view with the aid of randfold 

(Bonnet, Wuyts, Rouzé, & Van de Peer, 2004). Predicted pre-miRNA with a score above 

10 and a significant randfold p-value were retained for further analysis. 

Quantification was performed mapping the small RNA libraries on the aforementioned 

genome and counting the mapped reads with the quantifier.pl script from miRDeep2. 

Differentially expressed miRNAs were normalized with the trimmed mean of M-values 

method(Robinson, McCarthy, & Smyth, 2010) and established with edgeR (Robinson et 

al., 2010). 

2.4. miRNA target identification and Gene Ontology 
enrichment 

Targets of the miRNA were predicted using MiRanda (Betel, Koppal, Agius, Sander, & 

Leslie, 2010) and RNAhybrid (Krüger & Rehmsmeier, 2006). In order to identify 

potential targets, a conservative approach was adopted. Hits reported by miRanda had to 

have a strict seed binding of Δgduplex ≤ -10 kcal/mole (option “-en -10”) and an exact 

seed match and an A in position 1 (option “-strict”). 

Gene Ontology (GO) annotation was retrieved with PANNZER2 (Törönen, Medlar, & 

Holm, 2018). Annotation that scored more than 0.4 PPV were retained for further 

analysis. GO enrichment was performed with topGO(Alexa & Rahnenfuhrer, 2019). 
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3. Results and discussion 

3.1. Identification of miRNAs in R. philippinarum 
 

About 220M reads were gathered from six individuals, three males and three females 

(Fig. 1). In addition to contaminant filtering, a genome mapping was felt necessary, 

despite the genome not being completely assembled yet, as an added layer of caution; 

about 107M reads were deemed fit for the subsequent steps. The pipeline mirDeep2 

(Friedländer et al., 2012) was used to identify 279 miRNA candidates, further narrowed 

down to 171 according to multiple stringency filters (Annex 1). These filters are a 

mirDeep2 score > 10, which reflects the probability that the sequence is a genuine 

miRNA, and a significant randfold p-value, which expresses the propensity of the 

sequence to assume the three-dimensional hairpin conformation typical of miRNA 

precursors. All of these showed a match to at least a known miRNA in miRBase, a 

number of which to miRNA of the bivalve Crassostrea virginica (Xu et al., 2014). The 

number of putative miRNAs identified through this study is well aligned to the miRNA 

range discovered in other invertebrates, i.e. 60-238 miRNA (Berezikov, 2011). 

Fig. 1: Schematics of reads distributions across samples, treatments and filtering steps. 
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The length of the identified mature miRNA spans from 18 to 25 nucleotides, albeit 

the majority (154/171) is from 21 to 23 nucleotides. 

3.2. Identification of sex-associated miRNA 

Differential expression analysis revealed 22 miRNAs more expressed in females and 

just 9 more expressed in males (p < 0.05, Annexes 2 and 3) . What’s more, female-

biased miRNAs are both more transcribed relatively to their male counterpart (thus 

reaching 3.11 log2 fold-change in the case of tig00018338_22836 and 

tig00011614_15613 versus a maximum of -1.3 for the male-biased tig00030723_29204 

and tig00005293_7460) and in terms of counts per million reads. 

Fig. 2: Transcription levels of microRNA in Ruditapes philippinarum. Fold change values greater than 1 
correspond to female-biased transcription, whereas fold changes smaller than -1 correspond to male-
biased transcription. Fold change is plotted against the expression level, estimated by the counts per 
million (CPM) reads mapped and normalized via the trimmed mean of M-values (TMM) method.
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3.3. Identification of miRNA targets 

Since there is no reference genome available for R. philippinarum, in order to recover the 

3’UTR from its transcriptome we made use of the exUTR pipeline (Huang & Teeling, 

2017), whose first step is an annotation through BLAST rather than an alignment. In the R. 

philippinarum gonads transcriptome, 11946 3’UTR longer than 20 nucleotides were 

identified. 

The potential miRNA targets were identified through a dual approach. miRanda retrieved 

6128 targets, at least one for each miRNA. However, since in silico prediction of targets is 

known for retrieving a high number of false positives (Liu, Li, & Cairns, 2014; Riffo-

Campos et al., 2016)despite setting miRanda as stringently as possible, RNAhybrid was 

choosen as an additional method to retrieve targets and alleviate this issue. RNAhybrid 

retrieved 9063 possible targets, and the targets actually identified by both methods were 

1518. These were the targets that were kept. 

After this process, four miRNA were found not to interact with any target and were excluded 

from further research. In total, 3411 miRNA-mRNA interactions were noted. On average, 

miRNA target 20.4 3’UTRs, and the mRNAs are targeted on average by 2.24 miRNA each. 
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3.4. Gene Ontology annotation and enrichment 

ID–BP Annotation p

GO:0060174 limb bud formation 2.1e-06

GO:0034087 establishment of mitotic sister chromatin 7.4e-06

GO:0032332
positive regulation of chondrocyte 
differentiation 1.5e-05

GO:0061036 positive regulation of cartilage development 1.9e-05

GO:0034085 establishment of sister chromatid cohesion 4.1e-05

GO:0098856 intestinal lipid absorption 6.0e-05

GO:0070966 nuclear-transcribed mRNA catabolic process 8.3e-05

GO:1904480 positive regulation of intestinal absorption 8.3e-05

GO:0032330 regulation of chondrocyte differentiation 8.6e-05

ID–MF Annotation p

GO:0001227
transcriptional repressor activity, RNA 
polymerase II- 3.5e-05

specific

GO:0004686 elongation factor-2 kinase activity 8.2e-05

Table 1 – Significant enriched GO terms among the targets of the female-biased 
miRNA. BP: Biological Process. MF: Molecular Function.
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A first GO enrichment analysis, concerning miRNAs as a whole, didn’t retrieve any 

significantly enriched term. When split according to sex bias, however, some terms 

appeared to be overrepresented. 

Regarding the annotation of the female-biased miRNAs targets, there’s a clear pattern of GO 

terms associated with growth and differentiation (“limb bud formation”, “positive regulation of 

chondrocyte differentiation”, “positive regulation of cartilage development”) and activities 

linked to cell division (“establishment of mitotic sister chromatin”, “establishment of sister 

chromatid cohesion”, “elongation factor-2 kinase activity”) which could be linked to gonad 

and zygote formation. 

In males, there isn’t an overall pattern that emerges at first, but other, less significant terms 

(not shown) share the theme of immune response represented here by “GO:0006956 - 

ID-BP Annotation p

GO:0006956 complement activation 3.9e-06

GO:0072376 protein activation cascade 2.9e-05

ID-CC Annotation p

GO:0005579 membrane attack complex 1.9e-06

GO:0046930 pore complex 7.0e-06

GO:0070822 Sin3-type complex 5.7e-05

GO:0034245
mitochondrial DNA-
directed 0.00021

RNA polymerase complex

Table 2 - Significant enriched GO terms among the targets of the male-biased 
miRNA. BP: Biological Process.CC: Cellular component
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complement activation“. Another GO term, “Sin3-type complex”, which denotes a histone 

deacetylase complex, evokes the epigenetic transcriptional regulation and has actually been 

linked with the modulation of sperm motility (Parab et al., 2015). It is of particular interest, 

given our model species’ peculiar mtDNA transmission route, the regulation of a 

mitochondrial RNA polymerase from a miRNA, as suggested by the occurrence of GO:

0034245. The sudden appearance of a selfish element imposes a narrow evolutionary window 

to find a countermeasure; miRNAs, being small molecules evolving in intergenic regions, 

could be plastic enough to block the spread of selfish elements. 

3.5. MiRNAs with opposite bias share mRNA targets 

Next, we assessed whether there were UTRs targeted by both male- and female-biased miRNA. 
We found five targets which interact with one male-biased miRNA, tig00009357_12789, and 
with eight female-biased miRNAs (Annex 4). Some of them have a clear significance in a 
developmental context.

TRINITY_DN56637_c3_g2_i1 and TRINITY_DN56637_c3_g2_i1 show similarity to zinc-
finger and SCAN domain-containing proteins (zSCANs), DNA-binding proteins which are 

Transcript BLAST hit e-value

TRINITY_DN56637_c3_g2_i1
Zinc finger and SCAN domain-containing 

protein 2 4e-37

TRINITY_DN56637_c3_g2_i2
Zinc finger and SCAN domain-containing 

protein 2 1e-36

TRINITY_DN59888_c2_g1_i6
Mitochondrial import inner membrane 

translocase subunit TIM14 8e-40

TRINITY_DN63196_c0_g1_i2 Lysine histidine transporter-like 3
4e-12

TRINITY_DN64283_c1_g2_i4 BTB/POZ domain-containing protein KCTD7
2e-26
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expressed in human and murin embryonic stem cells (ESC), where they inhibit cellular 
differentiation and are essential to maintain ESC in a pluripotent state (Wang et al., 2007). 
zSCANs are part of a wider transcriptional network involved in ESC differentiation regulation 
(Yu, Kunarso, Hong, & Stanton, 2009). They are both targeted by 21 miRNAs each, well over 
the 2.24 miRNA average target, suggesting that their transcriptional activation plays a crucial 
role in gametogenesis and/or zygote development. The two transcripts differ by just two amino 
acids, so this could be a computational artifact and they could be the same sequence.

The other three targets are proteins important for fundamental processes such as mitochondrial 
import, amino acid transport and control of excitability in neurons. Further analyses are needed 
to understand if this regulatory pattern is typical of gametogenesis or it is a constitutive 
regulation.  

51



Annexes 

Annex 1 – sequences of all the retrieved miRNA 

>tig00007430_10460 
TACCCTGTAGATCCGAATTTGT 

>tig00040972_42614 
AACCCGTAGATCCGAACTTGT 

>tig00036442_37460 
AACCCGTAGATCCGAACTTGT 

>tig00003725_5387 
TGCCATTTTTATCAGTCACTGT 

>tig00022992_26204 
TCCCTGAGACCATAACTTGAGGAC 

>tig00043088_45018 
TCACAACCTGCTTGAATGAGGAC 

>tig00032658_32203 
TTACCCTGTTGAACCGAGCGTGT 

>tig00033893_33950 
AATTGCACTTGTCCCGGCCTGC 

>tig00033893_33954 
AATTGCACTTGTCCCGGCCTGC 

>tig00033893_33946 
AATTGCACTTGTCCCGGCCTGC 

>tig00022279_25624 
TGGACGGAGAACTGATAAGGGT 
>tig00040972_42616 
TGAGGTAGTAGGTTGTATAGT 

>tig00036442_37462 

TGAGGTAGTAGGTTGTATAGT 

>tig00000144_96 
TGAGATCATTTTGAAAACTGAT 

>tig00004039_5761 
TAATCTCAGCTGGTAATTCTGA 

>tig00039553_41208 
TAATCTCAGCTGGTAATTCTGA 

>tig00000144_94 
TGAGATCATTGCGAAAACTGATT 

>tig00004934_7142 
TACTGGCCTGTAAAATCCCAAA 

>tig00039619_41246 
TACTGGCCTGTAAAATCCCAAA 

>tig00035924_36898 
TATCACAGCTGGCTTGAGTGAGC 

>tig00002865_4003 
TATCACAGCTGGCTTGAGTGAGC 

>tig00046835_48003 
CGGGACTACGTCAACTACTTGC 

>tig00009146_12568 
TATCACAGCCAGCTTTGATGAGC 

>tig00042746_44511 
TATCACAGCCAGCTTTGATGAGC 

>tig00002606_3764 
TTTTGATTGTTGCTCAGAAAGCCG 
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>tig00015212_19450 
CTTGGCACTGGCGGAATAATCAC 

>tig00032525_32084 
CTTGGCACTGGCGGAATAATCAC 

>tig00042746_44510 
TATCACAGCCAGCTTTGATGAGC 

>tig00009146_12569 
TATCACAGCCAGCTTTGATGAGC 

>tig00009146_12565 
TATCACAGCCAGCTTTGATGAGC 

>tig00042746_44514 
TATCACAGCCAGCTTTGATGAGC 

>tig00039553_41210 
TGAGTATTACATCAGGTACTGA 

>tig00004039_5759 
TGAGTATTACATCAGGTACTGA 

>tig00039553_41206 
TAATATCAGCTGGTAATCCTGAG 

>tig00005276_7436 
TTCGTTGTCGTCGAAACCTGCCT 

>tig00035924_36900 
TATCACAGCCTGCTTTGATGAGC 

>tig00002865_4001 
TATCACAGCCTGCTTTGATGAGC 

>tig00001505_2321 
TTGGTCCCCTTCAACCAGCTGT 

>tig00038994_40525 
TGAACACAGCTGGTGGTATCTTTT 

>tig00007285_10168 
TGAACACAGCTGGTGGTATCTTTT 

>tig00006731_9639 
TGAACACAGCTGGTGGTATCTTTT 

>tig00002047_3150 
TGACTAGATCCACACTCATCCA 

>tig00009146_12572 
TATCACAGCCTGCTTGGATCAGT 

>tig00042746_44507 
TATCACAGCCTGCTTGGATCAGT 

>tig00044404_46109 
ATTTGGCACTTGTGGAATAATC 

>tig00044815_46468 
ATTTGGCACTTGTGGAATAATC 

>tig00002700_3830 
CAGCTCATCATCGGGTAGCCT 

>tig00009357_12787 
GATCACAGCCTGCTTTGATGAGC 

>tig00009146_12573 
TGAAAGACATGGGTAGTGAGATG 

>tig00042746_44506 
TGAAAGACATGGGTAGTGAGATG 

>tig00007285_10164 
AACCACTTTCTGCACTCCAGAA 

>tig00015187_19438 
GAGCTGCCAAATGAAGGGCTGT 
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>tig00002700_3828 
GAGCTGCCAAATGAAGGGCTGT 

>tig00003027_4179 
TGGAATGTAAAGAAGTATGAGT 

>tig00001505_2319 
TGGAATGTAAAGAAGTATGAGT 

>tig00009357_12783 
AATCACAGTCTGCTTTGGTGAGC 

>tig00009357_12789 
GATCACAGTCTGCTTTGGTGAGT 

>tig00044427_46114 
CTGCCGTAATTGGACTGGCATA 

>tig00009146_12563 
TATCACAGCCAGCTTTGATGACA 

>tig00042746_44516 
TATCACAGCCAGCTTTGATGACA 

>tig00046325_47611 
GTGAGCAAAGTTTCAGGTGTCA 

>tig00009391_12838 
GTGAGCAAAGTTTCAGGTGTCA 

>tig00038996_40533 
AACCACTTTCTGCACTCCAGAA 

>tig00022816_26041 
TGAATTATGGATTTGGAACATA 

>tig00012899_16967 
TGAATTATGGATTTGGAACATA 

>tig00046413_47752 
TGAATTATGGATTTGGAACATA 

>tig00026075_28172 
TGAGATTCAACTCCTCCAACTG 

>tig00019400_23642 
TGAGATTCAACTCCTCCAACTG 

>tig00033893_33966 
TATTGCACTTGCCCCGGCCTTT 

>tig00024536_27281 
TATTGCACTTGCCCCGGCCTTT 

>tig00009391_12834 
GTGAGCAAAGTTTCAAGTGTGT 

>tig00046325_47615 
GTGAGCAAAGTTTCAAGTGTGT 

>tig00009357_12785 
GATCACAGCCTGCTTTGGTGAGC 

>tig00007389_10319 
TAGGACATAACTCTGTCAAGGT 

>tig00039617_41244 
TAATGCCCCGTGAAATCCTAA 

>tig00002933_4064 
CGTGATAGGTCTTGCATTGCTG 

>tig00044182_45882 
CCAGATCTAACTCTTCCAGCTCA 

>tig00009391_12836 
GTGAGCAAAGTTTCAGGTGTCGG 

>tig00046325_47613 
GTGAGCAAAGTTTCAGGTGTCGG 

>tig00037685_38963 
TGAGTTATGGATTTGGAACATA 
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>tig00041823_43653 
TGAAATATGGATTTGGAACATG 

>tig00007538_10573 
TGACTTATGTATTTGGAACATA 

>tig00019259_23484 
TGAATTATGGATTTGAAACATA 

>tig00017930_22399 
TGAATAATGGATTTGGAACATG 

>tig00016616_21089 
CGAATTATGGATTTGGAACATG 

>tig00017051_21591 
TGAATTATAGATTTGGAACATG 

>tig00033375_33253 
GTTGTGACCGTTGTAATGGGT 

>tig00020741_24610 
GTTGTGACCGTTGTAATGGGT 

>tig00017408_21972 
TCGCTGTTGACACAGGTAGAGT 

>tig00012922_16977 
TCGCTGTTGACACAGGTAGAGT 

>tig00038222_39680 
ACGTAGATTTAAGTTGATGTCC 

>tig00042141_43937 
ACGTAGATTTAAGTTGATGTCC 

>tig00012741_16805 
ACGTAGATTTAAGTTGATGTCC 

>tig00037331_38467 
ACGTAGATTTAAGTTGATGTCC 

>tig00006607_9511 
ACGTAGATTTAAGTTGATGTCC 

>tig00040588_42225 
ACGTAGATTTAAGTTGATGTCC 

>tig00002031_3076 
ACGTAGATTTAAGTTGATGTCC 

>tig00032840_32545 
TCGATAACGACGATCCGAGCAC 

>tig00016904_21483 
TCGATAACGACGATCCGAGCAC 

>tig00045767_47178 
TGGAAGACTTGTGATTTTGTTGT 

>tig00009357_12781 
GATCACAGCCTGCTTTGATATTC 

>tig00046090_47523 
TGTCATGGAGTTGCTCTCTTTA 

>tig00005691_8087 
TGAAATATGGATTTGGAACATA 

>tig00005293_7460 
TGAATTATGGATTTGGGACATG 

>tig00030723_29204 
TGAATTATGGATTTGGGACATG 

>tig00010653_14386 
TTGCATAGTCACAAAAGTGATC 

>tig00036478_37525 
TTGCATAGTCACAAAAGTGATC 

>tig00004684_6715 
AGAACTGTGTATGGACATCAGT 
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>tig00002933_4066 
TGTGATAGGCATGCATTGTTG 

>tig00007285_10166 
TAAATGCATAATCTGGTATGTG 

>tig00038994_40527 
TAAATGCATAATCTGGTATGTG 

>tig00038996_40531 
TAAATGCATAATCTGGTATGTG 

>tig00046835_48001 
TCGGGACATTGTCAATTCCATG 

>tig00000078_64 
TGAATAATGGATTTGGAACATA 

>tig00005719_8141 
TGTTTCATTTACATATTTCATT 

>tig00005185_7354 
TCTTTGGTTATCTAGCTGTATGA 

>tig00035538_36428 
TAGCACCATTTGAAATCAGATT 

>tig00002147_3262 
TAGCACCATTTGAAATCAGATT 

>tig00018436_22944 
TGTTTCATTTACATATTTCATT 

>tig00003786_5451 
GGTCCTTCTCTGGGTCTGAGGACT 

>tig00009940_13595 
CAGAATGATGAAATAAGAGATC 

>tig00036728_37699 
TGTTTCATTTACATATTTCATT 

>tig00002949_4087 
TGTTTCATTTACATATTTCATT 

>tig00022970_26156 
TTTGGCACTGTTGTGGTGCTGT 

>tig00004456_6163 
TTCCCGGCCGATGCACCA 

>tig00004238_6005 
TGTTTCATTTACATATTTCATT 

>tig00024386_27245 
TGTTTCATTTACATATTTCATT 

>tig00034791_35451 
TGTTTCATTTACATATTTCATT 

>tig00006732_9642 
TGTTTCATTTACATATTTCATT 

>tig00013067_17200 
TATTTTACGAGTGATGGCTGTC 

>tig00038904_40470 
TATTTTACGAGTGATGGCTGTC 

>tig00011219_14944 
GTGCATTGTAGTTGCATTGCA 

>tig00011219_14946 
GTGCATTGTAGTTGCATTGCA 

>tig00014638_18919 
TCAGCTGTCATGATGCTTTCT 

>tig00004570_6350 
TGTTTCATTGGCATGGGGACTGC 

>tig00041297_43066 
TATTCTTCGACTAAAAGCTGCC 
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>tig00041297_43068 
TATTCTTCGACTAAAAGCTGCC 

>tig00018338_22836 
TTCATACGTATGAACGAAAACCT 

>tig00011614_15613 
TTCATACGTATGAACGAAAACCT 

>tig00008213_11520 
TGAGACAGTGTGTCCTCCCTCA 

>tig00033932_34112 
TGAGACAGTGTGTCCTCCCTCA 

>tig00003382_4592 
TATTCTTCGACTAAAAGCTGCC 

>tig00024577_27309 
CTTACCCTGTAAATCGGAGAAGT 

>tig00032658_32205 
CTTACCCTGTAAATCGGAGAAGT 

>tig00033103_32907 
TAGCACTTGCCTGTGCTTGGGA 

>tig00004867_7032 
TAGCACTTGCCTGTGCTTGGGA 

>tig00026997_28551 
TAGCACTAGCTTGTGCTTGGGA 

>tig00035235_36062 
TAGCACTAGCTTGTGCTTGGGA 

>tig00026807_28465 
ATCGGACAGTAAAACCCTTGCT 

>tig00034060_34406 
GGATTTTCAACGACGCCGT 

>tig00042149_43965 
GGATTTTCAACGACGCCGT 

>tig00042150_43978 
GGATTTTCAACGACGCCGT 

>tig00037544_38816 
GGATTTTCAACGACGCCGT 

>tig00035538_36430 
TAGCACCATTTGAAATCAGTGC 

>tig00018987_23304 
TGGCGCCGTGGAAACATCCTTC 

>tig00031437_30247 
TGGCGCCGTGGAAACATCCTTC 

>tig00006212_9025 
TAAGGCACGCGGTGAATGCCA 

>tig00006212_9023 
TAAGGCACGCGGTGAATGCCA 

>tig00006859_9764 
CCTAGAACTTACTTGTGCTAAT 

>tig00008213_11522 
TGAGACAGTGTGTCCTCCCATG 

>tig00033932_34114 
TGAGACAGTGTGTCCTCCCATG 

>tig00008771_12147 
TCAGCAGTTGTACCACTGATTTG 

>tig00033862_33922 
GAACTTTGCCCGGGACATAACTCTA 

>tig00038975_40494 
ATTGAACGAACGTTTCCGAGAG 
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>tig00024163_27129 
ATTGAACGAACGTTTCCGAGAG 

>tig00038053_39505 
TAGCACTTTTTGATGCTGGGAT 

>tig00046835_48005 
TGGATTTCCCAAGATCCGTGAT 

>tig00003578_5059 
CGTAGATTTAAGTTGATGTCCT 

>tig00041876_43709 
ACACCACATATGATTTACTGTCT 

>tig00011321_15094 
TGATTGTGGATTGTTTGGTGTGCCT 

>tig00006524_9445 
TGATTGTGGATTGTTTGGTGTGCCT 

>tig00026082_28173 
TGATTGTGGATTGTTTGGTGTGCCT 

>tig00005158_7344 
ATGCGTAGGCGTTGTGCACAGA 

>tig00006132_8875 
ATGCGTAGGCGTTGTGCACAGA 

>tig00006214_9061 
ATCCAAACGTTGAGTACGGCACT 

>tig00003841_5539 
ATCCAAACGTTGAGTACGGCACT 

>tig00014190_18489 
TAGCACATGTCTGTGCTGGGAA 

>tig00008991_12444 
ATTGTAGAAAACGACACAATAT 

>tig00036498_37556 
ACACCGCATATGATTTACTGTCT 

>tig00001115_1616 
ATTGTAGAAAACGACACAATAT 

>tig00039419_41039 
ATCCACTCCTTTTGGCTGTCTATG 

>tig00013310_17595 
ATCCACTCCTTTTGGCTGTCTATG 

>tig00034356_34913 
AGAAGGATGATTGCAGAACATTTGC 

>tig00004144_5895 
TTTTGTTGAAATAAGGACACCATAA 

>tig00005579_7958 
CGGAAGAAACCTTCGTCTAGAG 

>tig00003750_5407 
CGGAAGAAACCTTCGTCTAGAG 

>tig00001171_1725 
GAAACGCTTAGACTTTGATCTGGAG 

>tig00002047_3148 
TCACCGGGTAAACATTCATCCGC 

>tig00002011_3051 
TTGGTCACACCAGCTAGGTGAC 

>tig00033674_33723 
TGCCGTAGAACCGACTTCCCGG 

>tig00038752_40284 
GAGATCCGTTAAGTCTGTTGGATA 

>tig00003541_5008 
TGCCGTAGAACCGACTTCCCGG 
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>tig00038459_39939 
TGCGCTGTCGTCCGGCGGTCAT 

>tig00037516_38772 
TATACATAAAGACTTGGGATTGG 

>tig00020699_24581 
TGCACCAAAATGATGCCAGGTGA 

>tig00015836_20047 
TGCGAGCGAAACTAGGGGCGAG 

>tig00026112_28182 
CATCACTATAGGCCTAGGACCCCT 

>tig00034312_34780 
ACGTGTTGTCGTTGTTTTT 

>tig00010196_13882 
ACGTGTTGTCGTTGTTTTT 

>tig00033263_33094 
GACAAGGGGCATCACTCTGAAAGCT 

>tig00008612_11961 
TCACATCATATACTTCAAGGATTGA 

>tig00020643_24536 
AAGTCCGCAGTAGTACAGTCGGTT 

>tig00031748_30849 
AATAATGGCATGTTTTTGTGATGTG 

>tig00031745_30846 
GAGGACTTTATCGGATGTTTGAAGA 

>tig00021406_25064 
TTCCAAAAGGTCTAGGACCCCT 

>tig00033375_33251 
CTAAGTAGTGATGCCGCGGGT 

>tig00040026_41554 
AAATAGTTGATTGTATACCATGCCT 

>tig00037784_39183 
GAGGACTTTATCGGATGTTTGAAGA 

>tig00041725_43472 
TTAATTGAGAGACTTTGTACT 

>tig00033565_33485 
AGGTTTAACATTGCTGTTCGTCGCA 

>tig00035221_36016 
TTTCTTCATATCTCTTCGCGATACT 

>tig00035221_36014 
TTTCTTCATATCTCTTCGCGATACT 

>tig00043176_45054 
TTTTGTAGAAACATCCCGAGAT 

>tig00035150_35819 
GAGGCAGTTACAGATCCTGAAG 

>tig00047976_48615 
CCCGAGAGCTAGAGATTCCTGT 

>tig00012631_16672 
TTCCAATAGGTCTAGGACCCCT 

>tig00040065_41596 
TTTTGTAGAAACATCCCGAGAT 

>tig00008991_12441 
TTCCAAAAGGTCTAGGACCCCT 

>tig00020472_24399 
ATTTCTGGGACAACAAAGAGC 

>tig00002542_3686 
TTTCGGACCGCTCTGGACCTTC 
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>tig00036860_37899 
TGAATTAGCTACCTGAATGGGC 

>tig00036482_37532 
TTTCGGACCGCTCTGGACCTTC 

>tig00038459_39941 
TGCGCTGTCGTTCGGCAGGT 

>tig00036583_37607 
TAGCACTTTTTGATGCTGGGAT 

>tig00018886_23231 
TTCCAATAGGTCTAGGACCCCT 

>tig00018141_22599 
AGATATGTTTGATATATTTGGT 

>tig00033893_33952 
AATTGCACTTGTCCCGGCCT 

>tig00027965_28742 
AAGCACTAAATGATGCTGGTGT 

>tig00043706_45546 
AGGCAAGATGTTGGCATAGCTGA 

>tig00017184_21689 
TCAGCAGTTGTACCACTGATTTG 

>tig00019702_23850 
TAGTAGTGCACACTGGCCTGGCCC 

>tig00038053_39501 
TGCACCAAGTCTTTTCTAACCCAT 

>tig00036519_37570 
TATTATGCTGTTATTCACGAAA 

>tig00020050_24074 
ACAGTTCCACTACATAGGCTGGCCT 

>tig00008210_11507 
TTACCACTCCGAGCATTAGCTG 

>tig00038924_40472 
ACAGTTCCACTACATAGGCTGGCCT 

>tig00010667_14393 
GAATGCCCCAAGAAGTTTCT 

>tig00012253_16268 
GAATGCCCCAAGAAGTTTCT 

>tig00015257_19534 
CTTGAGAACACCTGTTGGACATACA 

>tig00036583_37603 
TGCACCAAGTCTTTTCTAACCCAT 

>tig00038053_39503 
TAGCACTTTCTGATGCTGGGTT 

>tig00020699_24583 
TAGCACTTAGAAATGCTAGGGGC 

>tig00033103_32905 
TAGCACTTGCCTGTGCTTGGGA 

>tig00027965_28744 
AAGCACTAGTGCATGCTGGGAA 

>tig00022242_25615 
TGAAGTAACAAAGAACTTGCAGCCT 

>tig00020699_24589 
TAGCACTTATGTATGCCGGGGG 

>tig00001393_2211 
GTCGGTGTAAATGAAGAGACAGTGG 

>tig00014095_18399 
TCGGTGGGACTTTCGTTCGC 
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>tig00020699_24585 
AAGCACTTATGTATGCTTGGGGG 

>tig00038053_39507 
TAGCACTATTTTATGCTGGGGC 

>tig00020699_24587 
TAGCACTTATGTATGCTGGGGG 

>tig00038843_40389 
CCAGATTATACTTTGTGGTGACATG 

>tig00009023_12461 
CTTGAGAACACCTGTTGGACATACA 

>tig00036583_37605 
TAGCACTTTCTGATGCTGGGTT 

>tig00004039_5763 
TAATATCAGCTGGTAATCCTGAG 

>tig00001393_2213 
GTCGGTGTAAATGAAGAGACAGTGG 

>tig00004981_7171 
CCAGATTATACTTTGTGGTGACATG 

>tig00010133_13755 
CCAGATTATACTTTGTGGTGACATG 

>tig00036583_37609 
TAGCACTATTTTATGCTGGGGC 

>tig00038459_39937 
TGCGCTGTCGTCCGGCGGGTAT 

>tig00020084_24097 
ACTGGTCAGGACAGGTATCAACC 

>tig00032621_32193 

AGAAAATCGTTGGCTGTCCTCCAA 

>tig00012074_16092 
ACTGGTCAGGACAGGTATCAACC 

>tig00039642_41269 
AAAACGAGAGCCCTGAATAGAAC 

>tig00002274_3378 
TTCGTACGTATGAACAAAAACCT 

>tig00030871_29571 
TTCGTACGTATGAACAAAAACCT 

>tig00030869_29569 
TTCGTACGTATGAACAAAAACCT 

>tig00018323_22833 
GCTGCTTTTAAGTTACTGTGGGAGC 

>tig00035462_36374 
CTTGAGAACACCTGTTGGACATACA 

>tig00014452_18772 
ATCTCGGAACACCTCTGTTTTGGA 

>tig00033103_32903 
TAGCACTTGCCTGTGCTTGGGA 

>tig00031481_30364 
GCTGCTTTTAAGTTACTGTGGGAGC 

>tig00021751_25294 
AGACGGGTTATGATATTACTGGAAT 

>tig00018678_23082 
ATTTCTGTGCATTTGAACTAGAACT 

>tig00011614_15614 
TTCATACGTATGAACGAAAACCT 
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>tig00012993_17103 
CAAAATGATGATACTTGGGAC 

>tig00012874_16928 
ACATGCCGGACAGGCCTGACCT 

>tig00013220_17464 
TATACATAAAGACTTGGGATTGG 

>tig00046641_47802 
ACGAAAACACTGGAAGAATGCCGT 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Annex 2 – miRNA that show a female-biased expression 

Name Sex bias (as log2FC) P-value

tig00033932_34112 2.07428864680212 0.00277748461280275

tig00006731_9639 1.28035731052507 0.00377101189636397

tig00007285_10168 1.28035727664026 0.00380525483985817

tig00038994_40525 1.28035724197999 0.00384060551036767

tig00007389_10319 1.75830164391802 0.00391006987964652

tig00039553_41206 1.14831108618447 0.0049525672542177

tig00007285_10164 1.31322596185594 0.00588848490957295

tig00038996_40533 1.3132262571068 0.0060594329883858

tig00009391_12838 1.11226903165296 0.0100799670231518

tig00046325_47611 1.11225886571698 0.0103058359094671

tig00004039_5761 1.11272790488518 0.0114928064764792

tig00039553_41208 1.11272842220751 0.0118422174988511

tig00009391_12836 1.5545237159567 0.0146221151599943

tig00046325_47613 1.55471068946221 0.0152808143001927

tig00002949_4087 1.67569247382539 0.0241306140686574

tig00044182_45882 1.35499623784478 0.0243284688100102

tig00005719_8141 1.6761788198337 0.0243874788517947

tig00008213_11522 1.41642671515223 0.0422422269349546

tig00033932_34114 1.41629569177854 0.042857060882117
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Annex 3 – miRNA that show a male-biased expression 

Name Sex bias (as log2FC) P-value

tig00003027_4179 -1.26855290453997 0.00291319763114421

tig00001505_2319 -1.26854119957097 0.0030207584222971

tig00045767_47178 -1.4806410254912 0.00719941927378854

tig00044404_46109 -1.25449828351639 0.00806840700497169

tig00044815_46468 -1.25448089456768 0.00854213922896576

tig00009357_12789 -1.03149958476519 0.0137060161823656

tig00030723_29204 -1.30454717985568 0.0389657258392422

tig00041823_43653 -1.20544786122644 0.0394819436929184
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Annex 4 – Exact female-biased miRNA targeting with the 
mRNAs also targeted by tig00009357_12789 

miRNA Target

tig00006731_9639 TRINITY_DN56637_c3_g2_i1

TRINITY_DN56637_c3_g2_i2

tig00007285_10168 TRINITY_DN56637_c3_g2_i1

TRINITY_DN56637_c3_g2_i2

tig00009391_12836 TRINITY_DN59888_c2_g1_i6

tig00009391_12838 TRINITY_DN59888_c2_g1_i6

tig00038994_40525 TRINITY_DN56637_c3_g2_i1

TRINITY_DN56637_c3_g2_i2

tig00039553_41206 TRINITY_DN63196_c0_g1_i2

TRINITY_DN64283_c1_g2_i4

tig00046325_47611 TRINITY_DN59888_c2_g1_i6

tig00046325_47613 TRINITY_DN59888_c2_g1_i6
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Conclusions 

During the course of my PhD, I was able to catch a glimpse of the basic reproductive 

biology of R. philippinarum. First of all, drawing a parallelism between a DUI and a 

SMI species allowed me to discriminate the DUI-related signal from the transcriptional 

background noise, making me favor a mitochondrial inheritance process that sees 

ubiquitination or ubiquitin-like modifiers as a primary agent rather than nucleases or 

autophagy. Specifically, I identified three possible E3 ubiquitin ligases, two in R. 

philippinarum and one in R. decussatus, as candidates to perform ubiquitination on male 

mitochondria, targeting them to destruction upon entering the egg. This process might 

involve the M-ORFan-encoded protein RPHM21. To approach the conundrum of this 

protein from another angle, I tried to produce it in vitro and in yeast, to no avail. The 

anomalous difficulty to clone the rphm21 gene and the insurmountable problems in 

producing it in a CFPS prompted me to envision that this protein might be toxic to 

bacteria and an hindrance to bacterial molecular processes even at very low 

concentrations, and that this toxicity might be the symptom of a meiotic drive restored 

through separation from its coevolved genomic environment. Finally, given the recent 

discovery of smithRNAs in our model species, I deemed it timely to delve into the basic 

features of small noncoding RNA analysis in R. philippinarum gonads, compiling a list 

of newly identified miRNAs and associating to them an overview of their targets’ 

function. 
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