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ABSTRACT

The ever increasing prevalence of smartphones and the popularity of social net-

work platforms have facilitated instant sharing of multimedia content through

social networks. However, the ease in taking and sharing photos and videos

through social networks also allows privacy-intrusive and illegal content to be

widely distributed. As such, images captured and shared by users on their pro-

files are considered as significant digital evidence for social network data analysis.

The Sensor Pattern Noise (SPN) caused by camera sensor imperfections

during the manufacturing process mainly consists of the Photo-Response Non-

Uniformity (PRNU) noise that can be extracted from taken images without hack-

ing the device. It has been proven to be an effective and robust device fingerprint

that can be used for different important digital image forensic tasks, such as

image forgery detection, source device identification and device linking. Partic-

ularly, by fingerprinting the camera sources captured a set of shared images on

social networks, User Profile Linking (UPL) can be performed on social network

platforms.

The aim of this thesis is to present effective and robust methods and al-

gorithms for better fulfilling shared image analysis based on SPN. We propose

clustering and classification based methods to achieve Smartphone Identifica-

tion (SI) and UPL tasks, given a set of images captured by a known number of

smartphones and shared on a set of known user profiles. The important out-

come of the proposed methods is UPL across different social networks where

the clustered images from one social network are applied to fingerprint the re-

lated smartphones and link user profiles on the other social network. Also, we

propose two methods for large-scale image clustering of different types of the

shared images by users, without prior knowledge about the types and number of

the smartphones. The former called Hybrid Markov Clustering (HAL) clusters
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only the images taken by user’s smartphones and shared on their profiles. The

latter, called Hybrid Markov Clustering with Outliers (HALO) can also cluster

images taken from different sources, e.g., the Internet, to simulate the real case

scenario in which users share images on their profiles that are not taken by the

camera of their smartphones. The HALO method is performed by an outlier

detection method. The strengths of our proposed methods include overcoming

large-scale and high-dimensional device fingerprint datasets, and the loss of im-

age details caused by the process of content compression performed by social

networks. The proposed methods are evaluated on our image dataset1 and the

public benchmarking VISION image dataset2. Experimental results as well as

the comparisons with state-of-the-art algorithms confirm the effectiveness and

the robustness of the proposed methods.

1The dataset is available from: http://smartdata.cs.unibo.it/datasets#images
2The dataset is available from: https://lesc.dinfo.unifi.it/en/datasets
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Chapter 1

Introduction

1.1 Shared Image Analysis based on Camera

Sensor Pattern Noise

In recent years, different social networks have revolutionized the Internet and our

society by providing specific types of interaction, for instance by sending texts

and sharing images and videos. Many social networks provide their own dedi-

cated applications for major mobile devices (e.g. smartphones). This influences

user habits with respect to multimedia content on social networks [1]. In partic-

ular, this has led users to take more digital images and share them across various

social networks [2], making it a challenging task to control image production and

propagation and to use such images as a form of digital evidence.

Images shared by social network users can be considered as complementary

clues used to detect evidence references in data analysis, e.g., identity theft, on-

line sexual harassment, piracy, illegal trading, cyber stalking and cyber terrorism

[3]. In tracing the history of an image, identifying the source captured the image

is of major interest. As an application, in a court of law, the origin of a par-

ticular image can provide crucial evidence. The validity of this evidence might

be compromised by the reasonable doubt that the image has not been captured

by the device it is claimed to be acquired with. When the original images and

smartphones are available, the validity of the evidence is pretty easy. However,
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in practical cases, almost it cannot be assumed that prior information about the

original image is available.

Important clues on the camera source can be easily found in Exchangeable

Image File Format (EXIF) data [4]. However, since this information can be sim-

ply modified or can be removed by online social network platforms (due to user’s

privacy), it cannot always be applied to data analysis. Hence, blind analysis has

to be applied to specify the image source. The blind analysis has attracted a

growing interest of researchers during the last years. Particularly, blind tech-

niques exploit traces left by different processing steps in source manufacturing

and the image acquisition and storage phases. The traces leave footprints in

the image [5]. The Sensor Pattern Noise (SPN), due to camera sensor imper-

fections, is considered as a unique characteristic to fingerprint a source camera

[6]. Regarding the SPN, different techniques such as Smartphone Verification

(SV), Smartphone Identification (SI), SPN-based Image Clustering (SIC) and

User Profile Linking (UPL) have been presented in data analysis.

1.1.1 Smartphone Verification

Given a set of smartphones and a set of user profiles on social networks, we

may want to know whether the images shared on the profiles originated from the

smartphones or not. It is usually called smartphone verification. More specifi-

cally, the verification task is a binary classification that carries out 1-by-1 match-

ing between the pairs of the images and the smartphones. The aim of SV is to

verify the source camera that has taken a query image, as shown in Figure 1.1.

Firstly, the SPN of the camera is constructed, by averaging the Residual Noises

(RNs) extracted from a set of images captured by the camera. The images used

for constructing the reference SPN are usually those with high intensity and low

2



Figure 1.1: Smartphone verification.

texture, e.g., blue sky images as the extracted SPN has a better quality [7]. Next,

the RNs of the query images are extracted and compared with the reference cam-

era SPN. If the similarity between the RN of the query image and the reference

SPN is high enough, the query image is considered to be captured by the camera.

1.1.2 Smartphone Identification

The second technique is similar to the first, but instead of one, multiple smart-

phones are available. It is known as smartphone identification, which reliably

matches a specific image with its related smartphone, as shown in Figure 1.2.

Particularly, SI deals with 1-to-m matching problem and determines which smart-

phone out of, e.g., m, took a given image [8]. First of all, a reference SPN is

constructed for each smartphone camera. Then, the RN of the query image is

extracted. Next, the similarities between the SPNs and the RN are calculated.

If the highest similarity is higher than a predefined threshold, the query image

is considered to be taken by the camera with the highest similarity.
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Figure 1.2: Smartphone identification.

1.1.3 Image Clustering

In most real-life cases in data analysis, a large number of shared images on a

set of profiles are collected, without any clue of the cameras, and the aim is to

group the images into an unknown number of clusters, each of them includes the

images taken by the same camera. In the previous tasks, i.e., SV and SI, a set of

images taken by the same camera source has to be provided for the construction

of the reference SPN. It can be simply fulfilled when the information about the

smartphone is available. However, in many real-world scenarios, only a set of

images are available, without any information about the types and the number

of the sources generated the images.

For example, in Internet child pornography, a large number of illegal images

can be collected from pornographic website, but the sources taken these images

are not available. If there would be a way to cluster the collected images into a

number of groups, each of them includes the images captured by the same cam-

era, it is possible to associate different crime scenes and provide the investigators
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Figure 1.3: SPN-based image clustering.

by more clues to link the evidence to the seized hardware that are owned by

the suspects in the future. In Figure 1.3, the task of SPN-based image cluster-

ing is shown. By clustering the RNs extracted from the collected images, the

corresponding images taken by the same camera are grouped in the same cluster.

1.1.4 User Profile Linking

Since social networks provide users with specific types of interaction, such as

sending texts and sharing images and videos, users are usually active across

multiple social networks [9].

Once smartphones are fingerprinted in SV, SI, or SIC techniques, by using

the shared images on user profiles, with having the profile tags specifying each

user on a social network platform, the profiles sharing images from the same

camera source are linked, as it was proposed in our previous works [10, 11, 12,
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Figure 1.4: Using shared images and fingerprinting the related smartphones: (a)
intra-layer UPL and (b) inter-layer UPL can be achieved.

13, 14]. It can be achieved within the same social network, i.e., intra-layer UPL

or across different social networks, i.e., inter-layer UPL, see Figure 1.4. It is

worth mentioning that a user would be linked to other profiles even if there is

not a direct friendship between the profiles on the same or different social network

platforms.

1.2 Research Questions

Regarding a set of images taken by a known or an unknown number of smart-

phones and shared on a set of user profiles on social networks, we aim to address

some questions as follows:

If the number of the smartphones is known:

6



1. Is it possible to cluster the shared images on a social network into a given

number of groups, corresponding to the number of smartphones, to generate

the smartphone fingerprints and achieve intra-layer UPL?

2. Can the obtained clusters from the shared images on one social network

be used to classify a set of shared images on another social network and

achieve inter-layer UPL?

If the number of the smartphones is unknown:

3. Is it possible to cluster the captured images by smartphones and shared

on user profiles into an unknown number of groups, each of them includes

images form the same smartphone?

4. Is it possible to cluster the captured and shared images by smartphones on

user profiles in the case of perturbation, where the users also share cut or

single images from different sources such as the Web?

1.3 Research Contribution

In this thesis, we propose methods for SI, SIC with or without perturbation as

well as UPL tasks within the same or across different social networks. More

specifically, we present the methods as follows:

1. We propose a clustering and classification based methods to achieve SI

and UPL, where a set of images captured by a known number of smart-

phones and shared on a set of user profiles are provided. More specifically,

we apply k-medoids technique, to cluster both “native” and “shared im-

ages” and achieve original-by-original SI and intra-layer UPL. Whereas, a
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classification method based on Artificial Neural Networks (ANNs) is pro-

posed to achieve social-by-original SI and inter-layer UPL. We classify the

“shared images” by exploiting the fingerprints resulting from the k-medoids

clustering [15]. The methods are applicable to images compressed on social

networks, and there is no need to hack user’s smartphone for fingerprinting.

2. We present a Hybrid Markov Clustering (HAL) method by combining hi-

erarchical and Markov clustering algorithms. The HAL method is capable

of clustering the images captured and shared on social networks without

prior knowledge about the types and number of smartphones. Particularly,

the HAL method is precise, scalable and feasible for real life applications.

3. We develop the HAL method to tackle the clustering when users share

images, e.g., single images from different sources, cropped images, or im-

ages from the Web, such that they cannot be used in fingerprinting their

sources. These images make a perturbation, so they have to be detected

and removed from the clustering process. We detect the outliers based on

Density-Based Spatial Clustering of Applications with Noise (DBSCAN)

technique. We call it Hybrid Markov Clustering with Outliers (HALO).

We show that the HALO method is stable against the outliers.

4. We have collected and cleaned a dataset including smartphone images avail-

able from http://smartdata.cs.unibo.it/datasets#images, for the im-

plementation of the proposed methods.

5. We have done software developments for the implementation of the pro-

posed methods efficiently and effectively which is available from https:

//tinyurl.com/y2zw8owy, for social network data analysis.
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Chapter 2

Background

2.1 Digital Camera Components

As it can been seen in Figure 2.1, a digital camera has mainly several built-in

components such as lens (a), Color Filter Arrays (CFA) (b) and sensors (c).

Figure 2.1: Different components embedded in smartphone’s camera.

Particularly, the lens produces a similar-prism phenomenon and divides the

light beam into a spectrum of rainbow colors. This causes a shift in the point

where different wavelengths (colors) converge, that is the characteristic of the

lens. Optical anti-aliasing filter and CFA are in front of the image sensor and re-
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construct the color information. The color subsampling is affected by noise [16].

All of these components present hardware imperfections created during the man-

ufacturing process that uniquely characterize each smartphone. Particularly, the

camera fingerprint formed by sensor imperfections has been known as a reliable

characteristic making a smartphone trackable [6, 17, 18].

2.2 Camera Sensor Pattern Noise

The SPN consists of the Fixed Pattern Noise (FPN) and the Photo Response

Non-Uniformity (PRNU) noise, as shown in Figure 2.2.

Figure 2.2: Sensor pattern noise of camera sensor.

The FPN, which is created by dark currents, is the pixel-to-pixel differences

when the sensor array is not exposed to light. Since the FPN is an additive

noise, some cameras suppress it automatically, by subtracting a dark frame from

every captured image. FPN is affected by ambient temperature and exposure.

The dominant component in SPN is the PRNU noise. It is generated primarily

by Pixel Non-Uniformity (PNU) defined as different sensitivity of pixels to light,
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which is caused by the inhomogenity of silicon wafers and imperfections. The

character and origin of the PNU noise make it unlikely that even sensors from

the same wafer would present correlated PNU patterns. So, the PNU noise is not

dependent on temperature or humidity. Light refraction on dust particles and

optical surfaces and zoom settings also contribute to the PRNU noise. These

components are of low spatial frequency in nature and they are not a charac-

teristic of the sensor. Hence, only the PNU component, which is an intrinsic

characteristic of the sensor, is used for fingerprinting sensors [19]. PRNU is a

strong tool for fingerprinting smartphones as it is unique for an individual device.

Besides, it is stable against environmental conditions [7].

2.2.1 Camera Sensor Pattern Noise Extraction

Camera sensor imperfections remain stable as the RNs in the images. Each RN

is the difference between the image content and its denoised version acquired by

a denoising filter d(). The RN of an image I is extracted as follows [6]:

RN = I − d(I) (2.1)

By averaging the RNs extracted from n images taken by a given smartphone,

the SPN, i.e., the camera fingerprint, can be approximated by:

SPN =
1

n

n∑
j=1

RN j (2.2)

Based on (2.1) and (2.2), it is obvious that the quality of the extracted RNs

and SPN depends on d() and n. Block-Matching and 3D (BM3D) denoising filter

introduced by [20] is an accurate way to extract the RNs with better qualities.
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Through BM3D, non-unique artifacts are removed by using zero-meaning all

columns and rows, and Wiener filtering in the Fourier domain [21], [17, 22].

2.2.2 Camera Sensor Pattern Noise Similarities

To perform different tasks in data analysis such as smartphone verification,

smartphone identification and SPN-based image clustering, the similarities be-

tween the camera fingerprints, whether RNs or SPNs, need to be calculated.

The Normalized Cross Correlation (NCC) similarity between any two camera

fingerprints fi = [x1, ..., xl] and fj = [y1, ..., yl] is calculated as follows:

A(fi, fj) =

∑l
n=1(xn − f i)(yn − f j)√∑l

n=1(xn − f i)2
∑l

n=1(yn − f j)2
(2.3)

where f i and f j represent the means of the two fingerprints, respectively. Gen-

erally, the correlations between the fingerprints from the same camera are higher

than those from different cameras [23]. The NCC has been applied in many

SPN-based techniques in the computation of similarities between camera finger-

prints in the literature as it is the optimal metric for multiplicative signals such

as PRNU [19].

2.3 Classification and Clustering Algorithms

Classification (supervised learning) and clustering (unsupervised learning) are

the two types of learning methods which organize objects into groups based on

one or more features. They appear to be similar, but they are different in the

context of data mining. Classification is the process of learning a model that elu-

cidate different predetermined classes of data. It is a two-step process composed
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of a learning step and a classification step. In the learning, a classification model

is constructed, and it is trained in a supervised approach, such that predefined

labels are assigned to objects by features. Then, the trained classifier is given

the objects whose labels are unknown, to assign them a label as their class.

On the contrary, clustering is performed in an unsupervised learning ap-

proach where similar objects are grouped, based on their features. It does not

involve training or learning, and the training sample is not known previously. It

organizes objects into clusters where the objects reside inside a cluster will have

high similarity and the objects of two clusters would be dissimilar to each other.

Here the two clusters can be considered as disjoint [24].

2.4 Outlier Detection

In data mining, an outlier is an object that differs significantly from other objects

in a dataset [25]. Typically, outliers are a minority of objects that are inconsistent

with the pattern presented by the majority of objects in the same dataset [26].

Cluster analysis and outlier detection are strongly coupled tasks. The resulted

clusters can be simply destroyed by a few number of outliers. Outliers are defined

by the concept of the cluster and they are recognized as the objects which are

not assigned to any cluster. Most of the existing clustering methods, generally

and also specifically presented for the application of SPN-based image clustering,

assume that all the objects (images in our case) should be assigned to a cluster

label, meaning that there are no phases for outlier detection in the clustering

methods. This is not always true, especially for the unsupervised clustering.

The outliers unavoidably degrade the clustering effectiveness. For instance, only

a few outliers easily destroy the cluster structure resulting from k-means and

generate bizarre distributions of Gaussian mixture model [27]. Consequently,
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the clustering should be provided with an outlier detection phase.

2.5 Evaluation Measures

The classification and clustering are evaluated by different measures. There

are four definitions based on the agreement between two sets of labels, i.e.,

ground truth or target labels T = {t1, t2, ..., tg} and the resulted labels C =

{c1, c2, ..., ch}, where g and h are the number of the target and the resulted labels,

respectively. Given two samples di and dj in a dataset, e.g., D = {d1, d2, ..., dN},

where N is the number of samples in the dataset, we have the following defini-

tions:

i. True Positive: TP = |{(di, dj) : ti = tj and ci = cj} meaning that the two

samples di and dj belong to the same group in T , and they are also in the

same output group in C.

ii. False Negative: FN = |{(di, dj) : ti = tj and ci 6= cj} meaning that the two

samples di and dj belong to the same group in T , while they are not in the

same output group in C.

iii. False Positive: FP = |{(di, dj) : ti 6= tj and ci = cj} meaning that the two

samples di and dj do not belong to the same group in T , but they are in

the same output group in C.

iv. True Negative: TN = |{(di, dj) : ti 6= tj and ci 6= cj} meaning that the two

samples di and dj do not belong to the same group in T , and they are also

not in the same output group in C.

Having the above definitions, Precision rate P , Recall rate R also known

as True Positive Rate (TPR), F1-measure (F1), F2-measure (F2), Rand In-
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dex (RI ), Adjusted Rand Index (ARI ), Purity, False Positive Rate (FPR) are

depicted by (2.4)-(2.11):

P =
|TP |

|TP |+ |FP |
(2.4)

R =
|TP |

|TP |+ |FN |
(2.5)

F1 = 2 · P · R
P +R

(2.6)

F2 = 5 · P · R
4 · P +R

(2.7)

RI =
|TP |+ |TN |

|TP |+ |FP |+ |TN |+ |FN |
(2.8)

where |.| shows the number of the pairs in the corresponding set defined in

i-iv. The value of RI varies between 0 and 1, respectively showing no agreement

and full agreement between the clustering results and the ground truth. For two

random clusters, the average of RI is a non-zero value. To get rid of this bias,

ARI was proposed in [28]:

ARI =
RI −RI
1−RI

(2.9)

Also, we use Purity and FPR in the evaluations as follows:

Purity =

∑|C|
i=1

|ĉi|
|ci|

|C|
(2.10)
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where |C| is the number of the obtained classes, ĉi denotes the number of RNs

with the dominant class label in the cluster ci, and |ci| is the total number of

RNs in ci.

FPR =
|FP |

|FP |+ |TN |
(2.11)

In addition, in clustering, the ratio of the number of the obtained clusters

that is nh over the number of ground truth clusters denoted by ng is calculated

as follows:

NC =
nh
ng

(2.12)

We calculate NU for the clustering as well:

NU =
nu
N

(2.13)

where nu is the number of unclustered RNs.

Also, for the outlier detection, NO is defined as follows:

NO =
nd
no

(2.14)

where nd and no are the number of the detected and ground truth outliers,

respectively.
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Chapter 3

Related Works

3.1 Source Camera Identification

Many approaches have been proposed to get smartphone fingerprints using a

variety of built-in sensors such as accelerometers [29], gyroscopes [30], magne-

tometers [31, 32], cameras [33], and paired microphones and speakers [34]. All of

them have hardware imperfections, which are created during the manufacturing

process, and can be used in the smartphone fingerprinting. The camera has been

considered as a sensor that is less invasive and more reliable for source camera

identification [35]. Generally, the majority of the source camera identification

methods proposed in the literature extract a pattern noise from the captured im-

ages. Particularly, a statistical similarity such as correlation between the image

and the computed pattern noise is evaluated. The source camera identification

methods can generally be categorized into lens system aberrations, Color Filter

Arrays (CFA) interpolation, and sensor imperfections [35], corresponding to the

camera components shown in Figure 2.1.

The lens causes some aberrations such as spherical, coma, astigmatism, field

curvature, radial distortion and chromatic aberration. Choi et al., [36] showed

that a high value of accuracy can be achieved in the identification, by measuring

the intrinsic lens radial distortion of each camera. They used parameters from

aberration measurements to train and test a support vector machine (SVM)
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classifier. Several studies presented methods based on CFA which consider char-

acteristics of the interpolation algorithm that generate some obvious differences

between camera models. Bayram et al., [37], studied the process of CFA inter-

polation to find the correlation pattern, appearing in each color channel of the

image. Expectation and Maximization (EM) algorithm and SVM classifiers were

applied, respectively, to identification of the traces of demosaicing process and

classification of various source camera groups. The method failed in the iden-

tification of similar camera models, due to the identical CFA pattern and the

interpolation algorithm they share. Celiktutan et al., [38] proposed a correlation

based method for identifying the smartphone cameras, where the correlation

existing between different bit planes of the image was calculated using binary

similarity measures and image quality metrics. A k-Nearest Neighbor (KNN)

classifier was trained by the extracted features to identify cameras. The tech-

niques based on demosaicing artifacts failed to identify the cameras of identical

models since they use similar demosaicing algorithm.

Some methods were proposed based on camera Sensor Pattern Noise (SPN)

for camera source identification. Lukáš et al., [39] introduce a reliable method for

identifying the source camera using Photo Response Non-Uniformity (PRNU)

noise. A significant advantage of the PRNU is that it remains stable under

different environments, so it can result in a reliable fingerprint that characterizes

the digital device effectively, even the identical camera models. The effectiveness

of the method proposed in [39] was not found to be satisfactory for the cropped

images and images with different sizes. The estimation of the exact PRNU noise

from the images was studied in some works by improving the PRNU extraction

methods. Chan et al., [40] proposed a confidence map and pixel based weighted

correlation method to eliminate the scene effect left in the estimated PRNU noise

in order to enhance the accuracy. Gisolf et al., [41] proposed a new method to
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extract PRNU from the images by using simplified version of Total Variation

(TV) based noise removal algorithm, to denoise the data without blurring the

edges. Also Cattaneo et al., [42] proposed a feasible distributed and scalable

implementation of the work presented by Lukáš et al.

In a number of works, researchers concentrated on extracting some features

based on color characteristics, image quality metrics and wavelet transformation

for source camera identification. The authors of [43] proposed a method to use

the image features for identifying an individual camera, where each image is rep-

resented by using a numerical feature vector composed of color related features,

image quality measures and statistical features from the wavelet domain. They

trained an SVM classifier based on the features extracted from both the spatial

domain and the wavelet domain. The reported results for five different cam-

eras show the error rates between 5% and 22%. Celiktutan et al., [44] proposed

a feature fusion and decision fusion schemes using binary similarity measures,

image quality measures and higher order wavelet statistics. An SVM classifier

was trained by the extracted features, to classify the images from several smart-

phone cameras. Orozco et al., [45] introduced a method using the mixture of two

techniques, i.e., sensor imperfections and wavelet transform as well as SVM clas-

sifiers to achieve better identification rate. Tsai et al., [46], proposed a method

by extracting the features of Charge-Coupled Device (CCD) embedded in most

of digital cameras. Hence, the method cannot achieve desirable results with sim-

ilar CCD. Besides, it is not effective at fingerprinting cameras of identical models

[35].

Recently, some methods have been proposed based on deep learning tech-

niques. For example, Baroffio et al., [47] introduced a three convolutional and

two fully connected layers architecture, which achieves an error rate about 6%.

Tuama et al., [48] proposed an architecture also based on three convolutional
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layers, unlike the work of Baroffio et al., [47], they applied a single pooling layer

after the convolutional layers. Tuama et al., [48] obtained an error rate of less

than 10% from their experiments. The work of [49] focused on designing an ar-

chitecture to create a more effective tool for source camera identification. They

proposed an architecture along with the hyperparameters tuning which created

a decision system to classify the given image into the corresponding source cate-

gory. The model was sufficiently complex to effectively distinguish between both

problems, an accuracy value of 98.1% for identifying the device manufacturer

and 91.1% of accuracy for identifying the exact camera.

3.2 Image Clustering based on Camera Sensor

Pattern Noise

Many works have been done on SPN-based image clustering. As a pioneering

work, Bloy in [50] presented an unsupervised clustering algorithm considering

the RNs as singleton clusters and hierarchically merging the similar clusters.

The pairs of the clusters are randomly selected and if their correlation exceeds a

threshold, they are merged into a new cluster, which is represented by its centroid,

i.e., the corresponding SPN. It is based on the idea that the more images are

clustered, the better the quality of SPNs can be obtained. As a drawback, the

algorithm produces the threshold based on a quadratic model, which does not

generalize well across various source cameras.

In [51], Markov random fields are used to assign iteratively a class label to

an image, according to the consensus of a small set of SPNs, called membership

committee. This raises an issue on how to choose an appropriate committee,

particularly for the datasets with various cluster cardinalities, i.e., asymmetric
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datasets. The authors of [52] developed a faster algorithm by proposing a new

enhancer applied to the extracted SPNs. A random subset, i.e., training set,

of the entire dataset is used for clustering, which is followed by a classification

step for the remaining fingerprints, i.e., test set. The algorithm merges the

clusters hierarchically, and a silhouette coefficient is calculated for each cluster.

Particularly, the silhouette coefficient estimates the separation among clusters as

well as the cohesion within each cluster. The average of the silhouette coefficients

corresponding to the produced clusters in each iteration is considered as a merit

of the clustering, showing its quality. Once all fingerprints are merged into one

cluster, a set of clusters with the highest value of the merit is selected as the

optimal result of the clustering. In [53], a similar unsupervised algorithm was

proposed. The main difference is that the evolutionary process of the cluster

formation is used in the calculation of the coefficient. The main problem of the

proposed hierarchical algorithms is that they are sensitive to noise and outliers

as wrong assignments may propagate the error to the following iterations in the

clustering. Also, their computational complexities are high especially for high

dimensional RNs because all the cluster pairs have to be checked for a merging.

The graph-based algorithms have successfully been applied to SPN-based

image clustering by computing a small portion of the full-pairwise correlation

matrix. In [54], a method based on k-nearest neighbor technique was proposed,

where the clustering is regarded as a graph partitioning problem. Each image is

considered as a node and the correlation values between the RNs are considered

as the weights of the edges. Next, the nodes are partitioned into disjointed sets

by using spectral analysis. Besides the need for the user to provide the number

of clusters, a major problem of this method is that its quality depends on the

random initialization. In [55], the problems were addressed by means of the nor-

malized cut graph partitioning algorithm [56], which produced better clustering
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results without providing the number of clusters as an input parameter. How-

ever, the stopping condition is met once all the aggregation coefficients computed

for the obtained clusters are greater than a pre-defined threshold, which is an

important input parameter itself.

In [57], the clustering is performed based on correlation clustering, formu-

lating the graph partitioning problem as constrained energy minimization. A

refinement step is applied to generate clusters with higher qualities. The dis-

advantage is that it needs a parameter set by the user according to preliminary

analyses on an appropriate training set. The issue of parameter setting was han-

dled in [58] by consensus clustering applied to all the cluster partitions obtained

from correlation clustering, to extract a unique solution. Generally, the average

correlations between SPNs of one camera may remarkably differ from that of

other cameras. This makes the clustering more difficult. To tackle the issue,

in [59], shared nearest neighbors [60] are applied to the full-pairwise correlation

matrix, to find clusters with different sizes and densities. A common undesir-

able trait of the mentioned algorithms is their need for full-pairwise correlation

matrix, which may prevent their use for large-scale datasets in practical applica-

tions.

Only a few studies considered the scalability aspect of SPN-based image clus-

tering. In [61], large-scale clustering was handled by partitioning the dataset

into small batches, which could fit in RAM efficiently, and applying a coarse-

to-fine clustering method. An adaptive threshold was proposed for merging the

obtained clusters based on the quality of the clusters iteratively updated during

the clustering. The authors of [62] used the similar partitioning approach and

exploited linear dependencies among SPNs in their intrinsic vector subspaces. It

uses a training phase to generate an adaptive threshold for merging the obtained

clusters. However, the training may lead to over-fitting in some datasets. Also,
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compared with the threshold proposed in [61], it tends to be too radical for clus-

ters with large size, which is a critical point in real-life applications. However,

these scalable clustering algorithms were only tested on native images and their

robustness on shared images on social networks is still in doubt.

3.3 Outlier Detection in Clustering

Outlier detection, also known as anomaly detection, recognizes the objects devi-

ated from the others and identifies these objects as outliers. In most of the ex-

isting works, unsupervised outlier detection was studied, in such a way that each

object is given a score based on some criteria, and the objects with large scores are

considered as the outlier candidates [27]. Some representative methods include

density based Local Outlier Factor (LOF) [63], Connectivity-based Outlier Factor

(COF) [64], Local Distance-based Outlier Factor (LODF) [65], Frequent Pattern-

based outlier detection (Fp-outlier) [66], Angle-Based Outlier Detection (ABOD)

[67], Fast Angle-Based Outlier Detection (FABOD) [68], ensemble-based isola-

tion Forest (iForest) [69], Bi-Sampling Outlier Detection (BSOD) [66], Oversam-

pling Principal Component Analysis (OPCA) [70], cluster-based Text Outliers

using Non-negative Matrix Factorization (TONMF) [71]. Recently, some meth-

ods based on deep learning were proposed for outlier detection, such as deep

one-class SVM [72] and Generative Adversarial Networks (GAN)-based methods

[73, 74, 75], learning a non-linear transformation in order to project the original

data into hidden space for more effective recognition. These methods are su-

pervised and train the model only with accurate samples and predict the label

of new samples whether they are outliers or not. Hence, the training phase is

crucial and challenging.

Clustering (unsupervised learning) and outlier detection are mostly consid-
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ered as two independent tasks in the data mining area, although in the real-life

applications, they are coupled task. There are few works presented a unified

framework for cluster analysis and outlier detection. For example, a developed

version of k-means algorithm was proposed in [76], called k-means--, which de-

tects outliers and groups the remaining objects into k clusters, where the objects

with large distance from the nearest centroid are considered as outliers during the

clustering process. Langrangian Relaxation (LP), presented in [77], formulates

the clustering task with outliers as an integer programming problem, which re-

quires the cluster creation costs as the input parameter. Charikar et al., [78] pro-

posed a bi-criteria approximation algorithm for the facility location with outliers

problem. Chen [79] proposed a constant factor approximation algorithm for the

k-medoids clustering with outliers. Although some pioneering works introduced

new approaches for joining clustering and outlier detection phases, none of these

algorithms, except k-means--, are applicable to large-scale datasets. However, the

spherical structure assumption of k-means-- and the original feature space limit

its capability for clustering complex data. Liu et al., [27] introduced a Clustering

with Outlier Removal (COR) method, which partitions an entire dataset into sev-

eral clusters and one outlier cluster, separately. The COR method transforms the

original feature space into the partition space, where according to Holoentropy,

the COR is designed to provide simultaneous consensus clustering and outlier

detection. Some methods proposed for outlier detection based on Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) [80]. For example, Saki

et al., [81] proposed an online framework clustering for classification of streaming

data provided by an oulier detection phase based on DBSCAN clustering. To

the best of our knowledge, only the work presented in [62] considered the outlier

detection, based on DBSCAN technique, and evaluated their method robustness

against outliers. However, their method was not evaluated in such a case that the
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number of outliers exceeds the number of the other images. Hence, more effort

is needed to study SPN-based image clustering particularly with the presence of

outliers particularly.

3.4 User Profile Linking

Different methods have been proposed for the User Profile Linking (UPL) task.

For example, Al Mutawa et al., [82] exploited user activities on social networks.

They collected logs filed within the device through a manual investigation and

used them the information to match user profiles. Their experiments showed

that the method failed for BlackBerry devices. Similarly, [1] monitored user

activities and collected a variety of artifacts, such as usernames, passwords, lo-

gin information, personal information, uploaded posts, and exchanged messages.

The authors of [83] used the Jaro-Winkler distance algorithm [84], to compare

the account information of users, such as username, friends, and interests, from

accounts on different social networks for profile matching. Iofciu et al., [85] in-

troduced a method based on the combination of user IDs and tags to recognize

users through the social tagging system.

In [86, 87], some frameworks were presented for UPL across social networks

based on profile attributes. The frameworks assign a different similarity measure

to each attribute. Gupta et al., [88] introduced a method which is not depen-

dent on login credentials. The behavioral traits of users were applied to link

users. Zafarani et al., [89] applied behavioral patterns to establish a mapping

among identities of individuals across social media sites. Naini et al., [90] used

datasets like call records and matched the obtained histograms of users’ data,

representing their fingerprints to identify users. However, there are still some

problems with these methods. The information of users’ identities could be di-
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verse on different social networks, [91]. The users may select different nicknames

and e-mail addresses, resulting incorrect matching between the real person and

the accounts [89]. Interestingly, Bertini et al., [11] applied images shared on

user profiles and performed smartphone verification for UPL on different social

networks. Afterwards, the method was developed based on classification and

clustering techniques, to achieve intra-layer UPL and inter-layer UPL [13, 14].

The work proposed in [92] was specially dedicated to clustering the shared images

on social networks with the application of UPL.
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Chapter 4

Smartphone Identification and
User Profile Linking

Smartphone Identification (SI) is the task of identifying the source cameras gen-

erated the images, and User Profile Linking (UPL) is the task of determining

whether two profiles with different nicknames or IDs are linked or not. These

tasks can be achieved by classification or clustering. In this thesis, we present a

solution for SI and UPL within the same or across different social networks based

on clustering and classification techniques, providing significant digital evidence

for social network data analysis. Through the following sections, the proposed

methods are illustrated and the obtained results are discussed.

4.1 Problem Statement

Given a set of images, “native” or “shared images”, taken by a given number of

smartphones, and a set of user profiles, as shown in Figure 4.1, we aim to perform

SI and UPL tasks based on clustering and classification of RNs extracted from

the images. A visual example of the proposed methods for two smartphones and

two social networks, Facebook and WhatsApp, is provided in Figure 4.1 (b) and

(c). For SI, we consider the following cases.

1.1 Original-by-original SI is the task used to detect the source cameras

from which a set of “native images” directly coming from smartphones
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(a) (b)

Figure 4.1: A visual example of the proposed methods: (a) clustering and (b)
classification based methods for SI and UPL by “native” and “shared images”, re-
spectively. The labels (1) to (4) refer to Figure 4.2 presenting all the combination
of “native” and “shared images”.

have been taken, see the arrow labeled “Clustering (1)” in Figure 4.1

(a).

1.2 Social-by-original SI represents the task used to identify the source

cameras of a given set of “shared images”, see the arrow labeled “Clas-

sification (3)” in Figure 4.1 (b). In this case, the “native images” are

input data and allow one to define the smartphone camera fingerprints.

Moreover, the UPL task is categorized into two cases: within the same social

network and across different social networks, resulting in the following tasks:

2.1 Intra-layer UPL is the task used to link a given set of user profiles
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within the same social network using “shared images”, see the arrows

labeled “Clustering (2)” on Facebook and WhatsApp in Figure 4.1 (a).

Through this task, the profiles within the same social network that

share images from the same source are linked.

2.2 Inter-layer UPL represents the task used to link a set of user profiles

across different social networks by using“shared images”, see the arrow

labeled “Classification (4)” in Figure 4.1 (b). Through this task, the

profiles from different social networks that share images from the same

source are linked.

4.2 Contribution

We consider both “native” and “shared images” for fingerprinting the smart-

phones. Figure 4.2 shows all the combinations of both types of images. Labels

(1) to (4) make a connection with Figure 4.1 (b) and (c), presenting the same

meaning. More specifically, we apply the k-medoids technique [93], to cluster

“native” and “shared images” and achieve original-by-original SI and intra-layer

UPL (i.e., the green and magenta rounded arrows in Figure 4.2). Whereas, a

classification method based on Artificial Neural Networks (ANNs) is proposed to

achieve social-by-original SI and inter-layer UPL (i.e., the blue and red straight

arrows in Figure 4.2). In particular, we classify the “shared images” by exploit-

ing the fingerprints resulting from the previous clusters (refer to Section 4.3.3 for

more details).

The obtained results show the effectiveness of the proposed methods, even

for the images degraded through the compression process on the applied social

networks. Moreover, the methods are device-independent and able to distinguish
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Figure 4.2: Proposed SI and UPL methods applied to “native” and “shared
images”. The green and magenta rounded arrows from A to A imply clustering
images of A, while the blue and red straight arrows from A to B mean that we
use the clustered images of A to classify the images of B.

the same model of smartphones. An important result of our work is applying

the inter-layer UPL task to link a given set of user profiles on different social

network platforms. This is more desirable in shared image analysis because on

average, users are active on multiple social networks [94].

The rest of the Chapter is organized as follows. Section 4.3 present the

proposed SI and UPL methods. Experiments and their results are discussed in

Section 4.4. Some concluding remarks are made in Section 4.5.
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4.3 Smartphone Identification and User Profile

Linking

4.3.1 Preparation

First of all, since images come from different devices, some pre-processing has

to be applied to images. This also helps to result in a reasonable computational

cost in terms of both memory and running time of the algorithms.

4.3.1.1 Image pre-processing

Orientation. As the SPN is dependent on the orientation of images, the correct

image orientation has to be provided. By the EXIF tool, the metadata infor-

mation of images can be obtained to get their correct orientation. Then, all the

images are rotated to either portrait or landscape orientation [95], see Figure 4.3.

Some smartphone setting and social network platforms remove the orienta-

Figure 4.3: Normalization of images’ orientation: (a) the smartphones’ orien-
tation along with the resulting images, and (b) the corresponding images after
rotation.
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tion information from the file header of images, due to the user privacy. However,

for those images whose orientation information is lost there are still some ways

to tackle the orientation issue. For example, once the NCC between RNs is cal-

culated by (2.3), one of the RNs is rotated 180◦ and again the NCC is computed.

Next, the highest value is considered as the similarity between the RNs. This

approach is time consuming and is not applicable to large-scale datasets. In [96],

a rotation-invariant binary representation of SPN was proposed, which reduces

the computational cost, but it has the penalty of loosing information.

Channel. Digital images can be represented in different color spaces, com-

monly RGB and YCbCr. A color RGB image consists of three channels namely

Red (R), Green (G), and Blue (B), while YCbCr represents color images as

brightness/luma (Y) and two color difference signals, i.e., blue minus luma (Cb)

and red minus luma (Cr). The luma component in YCbCr color space is es-

sentially the grayscale copy of the image. Smartphones are equipped with RGB

camera, however, the YCbCr representation can be obtained through a math-

ematical coordinate transformation from the associated RGB color space. The

SPN extraction can be performed using all these different channels. To reduce

memory usage and the computational cost, we use the Y channel (grayscale ver-

sion) of images in this thesis, as it resulted in better effectiveness in the clustering

task, in our previous work [13].

Since dark and saturated images do not provide trustworthy RNs [21], in-

cluding these images makes the clustering task unreliable and computationally

cumbersome [61]. Therefore, we recognize these images and exclude them from

our experiments. The value of each pixel in a grayscale image can be in the range

[0 - 255], where the values 0 and 255 represent black and white colors, respec-

tively. Accordingly, the image whose 70% of pixel intensities are smaller than 50

or greater than 250 is considered as a dark or saturated image, respectively.
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(a) (b)

Figure 4.4: (a) Cropping versus (b) resizing.

4.3.1.2 RN resizing

After extracting the RNs from the full-size grayscale images by 2.1, unlike many

works, which cropped RNs (often from the center), we resize them to a specific

resolution based on bicubic interpolation [97]. Indeed, resizing is a flexible way

to calculate the correlations between the RNs with different resolutions. Assume

that images in a dataset were captured by 2 smartphones and have different

resolutions such as 2560 × 1920 and 960 × 720 px. To calculate correlations,

all the RNs are typically cropped to the lowest resolution, i.e., 960 × 720 px in

this case. Consequently, a large segment of RNs with the highest resolution, i.e.,

2560× 1920 px, is discarded. Conversely, by resizing, we can flexibly upscale the

lowest resolution or downscale the highest resolution to a specific size for more

efficient use of available information, see Figure 4.4. Actually, zero-padding can

be another option to handle the computation of correlations between RNs with

different resolutions. It may give rise to other issues, e.g., memory usage, but it

is worth further investigation.
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4.3.2 Clustering-based SI and intra-layer UPL

As shown in Figure 4.1 (b), we apply clustering to group unlabeled images into a

given number of clusters, which is the number of the smartphones generated the

images. The clustering is performed based on the correlation matrix computed

by (2.3). In hierarchical clustering, the objects are typically organized into a

dendrogram (tree structure), where leaf nodes represent the individual data and

the root is the whole dataset. The middle nodes represent merged groups of

similar objects [98]. In partitional clustering such as k-means [99], and k-medoids

the objects are divided into some partitions, each of which is considered as a

cluster. The partitional clustering starts by initializing a set of k cluster centers.

Then, each object is assigned to the cluster whose center is the nearest [93, 100].

K-medoids is an expensive method, but it is more reliable in the presence of noise

and outliers compared to the other clustering methods [101].

We compare the hierarchical, k-means, and k-medoids techniques to cluster

the “native images” and achieve original-by-original SI. This also allows us to

select the best method for clustering smartphone camera fingerprints. Then, in

a similar way, we cluster the “shared images” to achieve intra-layer UPL. Figure

4.5 shows the task of original-by-original SI.

Let I be a set of the “native images”, and S = {S1, S2, ..., Sm} be a set of m

camera sources. We aim to cluster the images of I into the right sources of S,

where each camera source Si has its own set of images, i.e., I〈1,i〉, ..., I〈j,i〉, ..., I〈n,i〉 ∈

Si. Thus, we have the full dataset I =
⋃
I〈i,j〉, ∀ i = 1, ..., n and j = 1, ...,m,

where n is the number of the collected images for each smartphone. Firstly, we

extract the RNs of the“native images”such that RN<i,j> is the RN corresponding

to ith image taken by jth smartphone.

We create a matrix A containing correlations between each pair of the ex-
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Figure 4.5: Original-by-original SI task based on clustering: the “native images”
are clustered according to their sources.

tracted RNs by (2.3). Because of the varying qualities of SPNs of different

cameras, the average correlation between the RNs from one camera is different

from that of other camera [59]. This makes the clustering of SPNs more chal-

lenging. To address this problem, an alternative similarity measure is calculated

[59], based on Shared K-Nearest Neighbors (SNN) proposed in [60]:

W(ρi, ρj) = |N(ρi) ∩ N(ρj)| (4.1)

where ρi and ρj are two elements in the full-pairwise correlation matrix A, and

N(ρi) and N(ρj) are the SNN of ρi and ρj, so W(ρi, ρj) results in the number of

K-nearest neighbours shared by ρi and ρj, where K is a predefined parameter.

Then, we apply clustering to the resulted matrix W from SNN.

Smartphone identification deals with 1-to-m matching problem and deter-

mines which smartphone out of m took a given image. So, the stopping criterion

in the hierarchical clustering and the parameter k in k-means and k-medoids are
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Figure 4.6: Intra-layer UPL task based on clustering: profiles P1 and P2 are
linked since they share images taken from the same smartphone S1.

set to the number of smartphones. All the clustering techniques label each RN

with a cluster, representing the related source of the image.

Similarly, we address the intra-layer UPL task, as shown in Figure 4.6.

Let D x = {d1, d2, ..., dN} be a set of images where x ∈ {G, W, FH, FL, T},

corresponding to social networks Google+ (G), WhatsApp (W), Facebook High

Resolution (FH), Facebook Low Resolution (FL) and Telegram (T). Each image

di in D x has a specific profile tag Pi that represents the ith user’s profile on the

social network x the image comes from. Like original-by-original SI, we exploit

the full-pairwise correlation matrix of the extracted RNs to cluster D x images

into the right sources of S. Then, by using the resulted clusters and profile

tags, we are able to link profiles. Moreover, we can determine whether a user

uploaded images taken by one or more smartphones. In the first case, if within

two different profiles there are images that are in the same cluster Si, these

profiles could be linked. For instance, in Figure 4.6, identification of smartphone
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S1 leads to a matching between the profiles P1 and P2. In the second case, if the

images belonging to the same profile are grouped in different clusters, it means

that the user uploaded the images from different smartphones. In Figure 4.6, the

user of profile P4 has shared images taken by two different smartphones, namely

S2 and Sm.

4.3.3 Classification-based SI and inter-layer UPL

Here, we exploit the obtained clusters, from original-by-original SI and intra-

layer UPL tasks, as ground truths of the fingerprinted smartphones to classify

“native” or “shared images” into m classes. Generally, ANNs, inspired by the

biological form of the human neural system, have proven their effectiveness in

classification tasks [102]. They are very flexible in learning features and can solve

non-linear problems. Compared with the other classifiers such as support vector

machine, extreme learning machine, and random forest, ANNs are more fault

tolerant [103]. As a mathematical model, an ANN consists of a set of attached

neurons called processing units. Neurons are organized in layers. The output of a

neuron is stated as f(h), where f() is the activation function, and h is computed

as follows:

h =
s∑
i=1

wix + b (4.2)

xi and wi are the input and weight of the neuron, respectively; b is the

bias; and s is the total number of input connections of the neuron [104]. For a

desirable classification, the weights of the ANN should be tuned. This process

is called training or learning [105]. A Multi-Layer Perceptron (MLP) is a kind

of ANN composed of one or several hidden layers of neurons [106]. An MLP is

trained by using a Back Propagation (BP) algorithm such that it minimizes the
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Figure 4.7: Social-by-original SI task based on classification: the clustered
“native images” are used to train the ANN and classify the “shared images”.

Mean Squared Error (MSE), which is formulated by:

MSE =
1

N

N∑
i=1

(Ti −Oi)
2 (4.3)

where O and T are matrices representing the labels predicted by ANN and the

class labels of the inputs, respectively, and N is the number of samples in Dx.

We will use the clustered images that are the outcome of the previous task and

ANN to perform both social-by-original SI and inter-layer UPL.

The social-by-original SI task is shown in Figure 4.7. We first define the

fingerprint SPNi corresponding to the obtained clusters from the set I, such

that SPNi transitively identifies the smartphone Si. Then, by Equation (2.3),

we calculate the correlation values between each pair of RNs extracted from the

images in D x, and the obtained SPNs. For example, a correlation matrix of
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Figure 4.8: Inter-layer UPL task based on classification: to classify the “shared
images” on a given social network (e.g., WhatsApp), the ANN is trained by
using the obtained clusters of “shared images” on a different social network (e.g.,
Google+).

the size 900 × 18 is formed corresponding to 900 RNs in LG to be classified

according to 18 smartphones in LNA which have already been identified in the

clustering. The matrix is used for training and test the ANN through a 10-folds

cross-validation model [107]. In particular, in each 10 iterations, the ANN is

given 90% of the rows in the correlation matrix and corresponding class labels

(smartphone labels by which the RNs in LG were generated) as the ground truth.

In the test, the trained ANN is provided by 10% of the rows in the correlation

matrix to classify each image in LG, called social-by-original SI. By using the

10-fold technique, all the samples in the correlation matrix are tested as there is

a swap between training and test in each iteration.

In inter-layer UPL task, as shown in Figure 4.8, the profile tag Pi, where

i represents the ith profile on a given social network, allows one to link user
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profiles across different social networks. The SPNi is defined by using the clusters

obtained from Google+, and the ANN is trained to classify the WhatsApp images.

After the classification, the profile P1 on WhatsApp is linked to the profiles P1, P2

and P3 on Google+ because they share images taken from the same smartphones

S1 and S2. Similarly, the profile Pu on WhatsApp is linked to the profiles P4 and

Pu on Google+.

4.4 Experimental Setting and Results

In this section, some experimental setting for the proposed methods, i.e., SI

and UPL, is performed and the results of the methods on different datasets

are presented. To evaluate the proposed methods, we gathered a dataset that

consists of 4500 “native images” captured by 18 different smartphones and call

it “Lab Dataset”, i.e., L. The dataset was uploaded and downloaded on 4 of

the most popular social networks, namely Google+, Facebook (high resolution),

WhatsApp, and Telegram1. Corresponding to the “native” (NA) and “shared

images”, we have the datasets LNA, LG, LW, LFH, and LT. The characteristics

of the applied smartphones in L are listed in Table 4.1.

Also, we validate our proposed methods by the VISION image dataset [95],

shown in Table 4.2, composed of images in both native format and shared ver-

sion. More specifically, the dataset contains flat and generic images taken by 35

smartphones. The former is a set of images of walls and skies, while the latter is

a set of images without limitations on orientation or scenario.

The images were shared through WhatsApp and Facebook (in both high and

low resolutions). We use only the generic images in our experiments. We call

1The entire dataset including shared images on 16 social networks is available from: http:
//smartdata.cs.unibo.it/datasets#images
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Phone ID Brand Model Resolution #images

S1 LG Nexus 4 3264× 2448 50

S2 Samsung Galaxy S2 3264× 2448 50

S3 Apple iPhone 6+ 3264× 2448 50

S4 LG Nexus 5 3264× 2448 50

S5 Huawei Y550 2592× 1944 50

S6 Apple iPhone 5 3264× 2448 50

S7 Motorola Moto G 2592× 1456 50

S8 Samsung Galaxy S4 4128× 3096 50

S9 LG G3 4160× 3120 50

S10 LG Nexus 5 3264× 2448 50

S11 Sony Xperia Z3 5248× 3936 50

S12 Samsung Samsung S3 3264× 2448 50

S13 HTC One S 3264× 2448 50

S14 LG Nexus 5 3264× 2448 50

S15 Apple iPhone 6 3264× 2448 50

S16 Samsung Galaxy S2 3264× 2448 50

S17 Nokia Lumia 625 2592× 1456 50

S18 Apple iPhone 5S 3264× 2448 50

Table 4.1: Smartphone’s characteristics in Dataset in L.

the datasets VNA, VW, VFH, and VFL corresponding to the native, WhatsApp

and Facebook with high and low resolutions images. In Table 4.3, the lowest and

the highest resolutions of images in both datasets for each social network are

presented.

In the following subsections, the results of original-by-original SI, social-by-

original SI, intra-layer UPL, and inter-layer UPL are presented, respectively.

4.4.1 Original-by-original SI results

In this experiment, we use “native images” to identify their related smartphones,

which is called the original-by-original SI task. As shown in Table 4.3, these

images have a high resolution, so the results can be considered as a benchmark for

the capability of the clustering in the best case. Also, we exploit this experiment

to select a specific resolution for RNs cropping or resizing. In particular, in
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ID Brand Model Resolution #images

S1 Apple iPhone 4S 3264× 2448 178

S2 Apple iPhone 4S 3264× 2448 200

S3 Apple iPhone 5 3264× 2448 203

S4 Apple iPhone 5 3264× 2448 223

S5 Apple iPhone 5c 3264× 2448 201

S6 Apple iPhone 5c 3264× 2448 206

S7 Apple iPhone 5c 3264× 2448 333

S8 Apple iPhone 6 3264× 2448 129

S9 Apple iPhone 6 3264× 2448 227

S10 Samsung Galaxy S III Mini GT-I8190 2560× 1920 150

S11 Samsung Galaxy S III Mini GT-I8190N 2560× 1920 200

S12 Apple iPad2 960× 720 170

S13 Apple iPad mini G 2592× 1936 157

S14 Apple iPhone 4 2592× 1936 217

S15 Apple iPhone 6 Plus 3264× 2448 256

S16 Asus Zenfone 3264× 1836 208

S17 Huawei Ascend G6-U10 3264× 2448 153

S18 Huawei Honor 5C 4160× 3120 271

S19 Huawei P8 GRA-L09 4160× 2336 265

S20 Huawei P9 EVA-L09 3968× 2976 237

S21 Huawei P9 Lite VNS-L31 4160× 3120 234

S22 Lenovo P70-A 4784× 2704 216

S23 LG D290 3264× 2448 224

S24 Microsoft Lumia 640 LTE 3264× 2448 180

S25 OnePlus A3000 4640× 3480 284

S26 OnePlus A3003 4640× 3480 236

S27 Samsung Galaxy S3 GT-I9300 3264× 2448 207

S28 Samsung Galaxy S4 Mini GT-I9195 3264× 1836 208

S29 Samsung Galaxy S5 SM-G900F 5312× 2988 254

S30 Samsung Galaxy Tab 3 GT-P5210 2048× 1536 166

S31 Samsung Galaxy Tab A SM-T555 2592× 1944 154

S32 Samsung Galaxy Trend Plus GT-S7580 2560× 1920 163

S33 Sony Xperia Z1 Compact D5503 5248× 3936 216

S34 Wiko Ridge 4G 3264× 2448 249

S35 Xiaomi Redmi Note 3 4608× 2592 305

Table 4.2: Smartphone’s characteristics in Dataset V .

the setting, we use the k-medoids method, where k is set to the number of

smartphones, i.e., k = 18 and k = 35 for the datasets L and V , respectively, see

Tables 4.1 and 4.2.

1The highest resolution for cropping RNs is 960 × 544 px corresponding to the highest
image resolutions in LNA in Table 4.3.
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Dataset Lowest resolution Highest resolution

LNA 960× 544 5248× 3936

LG 960× 544 5248× 3936

LW 960× 544 1600× 1200

LFH 960× 544 2048× 1536

LT 960× 544 1280× 960

VNA 960× 720 5248× 3936

VW 960× 720 1280× 960

VFH 960× 720 2048× 1536

VFL 1040× 584 1312× 984

Table 4.3: The lowest and highest image resolution in different datasets.

Size P R F1 F2 ARI Purity FPR

960× 5441 0.89 0.91 0.90 0.824 0.89 0.95 0.00

512× 512 0.79 0.85 0.82 0.692 0.81 0.89 0.02

256× 256 0.75 0.76 0.76 0.598 0.74 0.87 0.02

128× 128 0.42 0.44 0.43 0.208 0.39 0.66 0.04

Table 4.4: Results (%) of original-by-original SI on LNA, by cropping the RNs
with different image resolution.

Size P R F1 F2 ARI Purity FPR

1536× 1536 0.85 0.91 0.88 0.787 0.88 0.95 0.00

1280× 1024 0.90 0.89 0.86 0.819 0.85 0.94 0.00

1024× 1024 0.90 0.91 0.91 0.834 0.90 0.96 0.00

960× 544 0.86 0.90 0.88 0.789 0.87 0.95 0.00

512× 512 0.86 0.90 0.88 0.789 0.87 0.94 0.01

256× 256 0.55 0.58 0.57 0.348 0.55 0.75 0.03

128× 128 0.16 0.18 0.17 0.034 0.13 0.38 0.06

Table 4.5: Results (%) of original-by-original SI on LNA, by resizing the RNs
with different image resolution.

To select a specific resolution resulting in the best quality of the clustering,

we consider a variety of image resolutions. For example, for the dataset LNA, we

consider the resolutions 128× 128, 256× 256, 512× 512, 960× 544, 1024× 1024,

and 1280 × 1024 and 1536 × 1536 px. While for cropping, we crop each image

from the center to the resolutions including 128× 128, 256× 256, 512× 512, and

960× 544 px, which is the lowest resolution of the native images in the dataset,
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Figure 4.9: Results (%) of original-by-original SI by using different clustering
methods on LNA.

see Table 4.3. Based on the obtained results shown in Tables 4.4 and 4.5, it can

be seen that resizing the RNs to the size 1024 × 1024 results in the best values

of all the measures, i.e., P , R, F1, F2, ARI, Purity and FPR compared with

the other resolutions. The best value of each measure is highlighted in bold, in

Tables 4.4 and 4.5. Hence, in the following experiments, RNs are resized to the

resolution 1024×1024 for both datasets LNA and VNA. The comparison among k-

means, hierarchical clustering and k-medoids techniques applied to LNA is shown

in Figure 4.9. The results confirm that the k-medoids is the best for clustering

RNs, among the other basic clustering techniques, even for clustering the images

from identical models of smartphones.

Figure 4.10 shows the impact of SNN on the pairwise correlation matrices of

the datasets LNA and VNA. Comparing the sub-figures (c) and (d) with (a) and

(b), it can be seen that the average of intra-camera correlations, shown in the

diagonal parts, has increased, while the average of the inter-camera correlations

has decreased. This improvement in the correlations between RNs produces

better results in the k-medoids clustering. The value of K in SNN for each dataset
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(a) (b)

(c) (d)

Figure 4.10: Pairwise similarities of RNs: (a) and (b) without and (c) and (d)
with using shared K-nearest neighbour, respectively from left to right for LNA,
K=20, and VNA, K=70.

was experimentally determined. Different values were tested and K = 20 and

K = 70 generated the best results in the clustering for LNA and VNA, respectively.

Table 4.6, presents the results of original-by-original SI on different datasets

based on k-medoids clustering.
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Dataset P R F1 F2 ARI Purity FPR

LNA 0.901 0.911 0.915 0.835 0.900 0.964 0.000

VNA 0.827 0.834 0.831 0.713 0.825 0.894 0.005

Table 4.6: Results (%) of original-by-original SI on different datasets.

4.4.2 Social-by-original SI results

In this test, we use both“native”and“shared images”to present social-by-original

SI. We apply the obtained clusters of LNA from the previous test to classify the

shared images on social networks based on ANNs.

As described before, we evaluate the effectiveness of the ANN in the clas-

sification stage as well as its generalization capability by using 10-fold cross-

validation. Firstly, a matrix including the correlations between the extracted

RNs and the obtained SPNs are calculated based on Equation (2.3). The ith row

of the matrix includes the similarities between the ith RN and all the resulted

SPNs from the clustering. The rows related to the same smartphone are shuffled

to have an order-independent evaluation. Then, they are divided into 10 folds

so that each of them includes an equal number of samples for each smartphone.

In each of 10 iterations of the cross-validation, nine folds and one independent

fold are used respectively for “training set” and “test set”. For example, in LNA

we have 50 images for each smartphone, so we use 850 and 50 rows, respectively,

in training and test at each iteration. The 10-fold cross-validation process is

repeated 10 times by swapping between training and test samples. Finally, the

average values obtained from the measures in (2.4)-(2.11) for all the iterations

are considered as the ANN results.

To set up the architecture of the applied ANNs, we use the obtained clusters

of the LNA to classify the images in LG, as Google+ images provide the highest
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resolution. Accordingly, the test could also be considered as a benchmark for

the ANNs used for the other social networks. We tested different topology in

terms of training method, activation function, and number of hidden layers. As a

result, an appropriate effectiveness of social-by-original SI and inter-layer UPL is

achieved by the simple ANN’s architecture shown in Table 4.7. In particular, we

use trainscg as the training function that updates weight and bias values based

on the scaled conjugate gradient training algorithm, and the logistic sigmoid as

activation function that provides an appropriate convergence in the training. In

particular, the applied activation function is defined as follows:

f(h) =
1

1 + e−h
(4.4)

where h is obtained by (4.2).

Type Multi-Layer Perceptron (MLP)

Number of layers 2

Neurons in input layer

for L, 850 (training) and 50 (test)

for V, 6732 (training) and 748 (test)

Neurons in hidden layer 35

Neurons in output layer

18 for L
35 for V

Learning rule Back Propagation (BP)

Training function trainscg

Activation function logsig

Error Mean Squared Error (MSE)

Table 4.7: ANN’s architecture.

Based on Figure 4.11, by systematically increasing the number of neurons,

the classification results are improved in terms of P ,R, F1, F2, ARI and Purity.

After the cardinality of 5, the trend of the results is almost plateau. However,

to be sure to get the best results for all the datasets, we consider the cardinality

35 resulting in the highest values in the plateau part of the graph. The tuning
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Figure 4.11: Results (%) of social-by-original SI for systematically increasing
the number of neurons in the hidden layer of ANN. Images in LG are classified
by the obtained clusters of images in LNA and the trained ANN.

phase of the ANNs can also be used as a benchmark for the capability of the

classification in the best case because the “native images” and Google+ images

have the highest resolution in the dataset. The results of social-by-original SI

for both datasets L and V are shown in Table 4.8. The social-by-original SI

enables identification of smartphones in spite of the fact that the pictures get

downgraded during the uploading and downloading process.

Dataset P R F1 F2 ARI Purity FPR

LG − LNA 0.933 0.954 0.943 0.898 0.940 0.980 0.003

LW − LNA 0.815 0.853 0.833 0.716 0.825 0.923 0.009

LFH − LNA 0.833 0.859 0.846 0.736 0.839 0.926 0.008

LT − LNA 0.828 0.866 0.846 0.736 0.839 0.930 0.008

VW − VNA 0.882 0.836 0.829 0.762 0.824 0.910 0.005

VFH − VNA 0.795 0.821 0.808 0.676 0.802 0.900 0.006

VFL − LNA 0.730 0.774 0.752 0.591 0.744 0.883 0.008

Table 4.8: Results (%) of social-by-original SI on different datasets.
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4.4.3 Intra-layer UPL results

In this section, we discuss the results of intra-layer UPL. In particular, this test

exploits “shared images” to determine whether a given set of user profiles within

the same social network are linked. Table 4.9 shows the results on the “shared

images” in both L and V . The best results are related to LG. The reason is that

Google+ images have the same resolution as the “native images” confirming that

the compression algorithm on this social network results in less elimination of

image details, (see Table 4.3). Although the other social networks compress the

images more than Google+, the method has returned good results confirming the

effectiveness of the method in the task of intra-layer UPL.

Dataset P R F1 F2 ARI Purity FPR

LG 0.884 0.897 0.890 0.809 0.884 0.942 0.006

LW 0.845 0.878 0.861 0.760 0.853 0.938 0.009

LFH 0.848 0.862 0.855 0.751 0.846 0.921 0.008

LT 0.848 0.862 0.855 0.751 0.846 0.921 0.008

VW 0.742 0.751 0.746 0.586 0.738 0.839 0.007

VFH 0.700 0.729 0.714 0.539 0.705 0.793 0.009

VFL 0.412 0.424 0.418 0.197 0.400 0.573 0.018

Table 4.9: Results (%) of intra-layer UPL on different datasets.

4.4.4 Inter-layer UPL results

This last test is the most challenging. We demonstrate that the proposed method

is able to link a restricted set of user profiles across different social networks. In

other words, we verify whether two sets of images from different user profiles on

different social networks are linked, that is inter-layer UPL. The strengths of our

method include the possibility to exploit images from different social networks,

not only the “native images”, but also the robustness in spite of the fact that
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some social networks degrade the resolution of the images more than others. We

consider all the different combinations of the selected social networks for each

dataset, as shown in Figure 4.2. The results for all the possible pairs of social

networks are presented in Tables 4.10 and 4.11.

Dataset P R F1 F2 ARI Purity FPR

LW − LG 0.890 0.911 0.900 0.825 0.896 0.005 0.958

LFH − LG 0.880 0.905 0.892 0.811 0.887 0.958 0.005

LT − LG 0.887 0.909 0.898 0.821 0.893 0.005 0.957

LG − LW 0.871 0.900 0.885 0.799 0.880 0.959 0.006

LFH − LW 0.815 0.860 0.836 0.721 0.829 0.941 0.009

LT − LW 0.839 0.872 0.855 0.750 0.848 0.942 0.007

LG − LFH 0.864 0.897 0.880 0.791 0.875 0.953 0.006

LW − LFH 0.815 0.864 0.838 0.723 0.830 0.941 0.009

LT − LFH 0.854 0.885 0.869 0.773 0.863 0.946 0.007

LG − LT 0.900 0.921 0.910 0.842 0.906 0.965 0.004

LW − LT 0.88 0.902 0.891 0.809 0.886 0.953 0.005

LFH − LT 0.822 0.881 0.850 0.741 0.843 0.944 0.009

Table 4.10: Results (%) of inter-layer UPL on L.

It is worth mentioning that the images in L used for experiments of inter-

layer UPL on different social networks are not from the same scenes, making

more similar real-life situation. As it is shown in Table 4.10, using Google+

images to classify the images on the other social network datasets, i.e., LW, LFH

and LT produces the highest values of P , R, F1, F2, ARI, Purity, and FPR,

as shown in the first rows of Table 4.10. From the results in Table 4.11, it is

implied that using images in VW to classify the images in the other datasets i.e.,

VFH and VFL obtained the best results. It is interesting that the classification of

the images in VFL in inter-layer UPL compared with the clustering the images in

intra-layer UPL generates better results. Given the results, it is proven that the

proposed methods are reliable enough to link user profiles on the selected social

networks.
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Dataset P R F1 F2 ARI Purity FPR

VFH − VW 0.755 0.785 0.772 0.619 0.762 0.878 0.007

VFL − VW 0.755 0.782 0.775 0.617 0.760 0.878 0.007

VW − VFH 0.755 0.781 0.772 0.616 0.761 0.877 0.007

VFL − VFH 0.754 0.776 0.760 0.612 0.756 0.871 0.007

VW − VFL 0.589 0.610 0.591 0.389 0.582 0.723 0.013

VFH − VFL 0.585 0.611 0.600 0.387 0.586 0.736 0.012

Table 4.11: Results (%) of inter-layer UPL on V .

4.5 Conclusion

In this Chapter, we have proposed clustering and classification based methods to

achieve SI and UPL. The methods can help to detect evidence references in data

analysis, when a set of images captured by a given number of smartphones and

shared on a set of user profiles are provided. We have evaluated our methods on

different datasets, i.e., our dataset and VISON dataset. The results confirm the

effectiveness of the methods, even with the same models of smartphones. The

methods are applicable to images compressed on social networks, and there is

no need to hack user’s smartphone for fingerprinting. An important outcome

of our work is presenting the inter-layer UPL task, which is more desirable in

shared image analysis because it links user profiles on different social networks.

The methods will become even more powerful when considering other types of

information such as GPS, users’ e-mail addresses, and login information, to name

a few. Through the methods, the number of the smartphones has to be provided.

In the following Chapter, we propose SPN-based image clustering methods for

clustering different types of shared images, whether images taken and shared by

user smartphones or images taken from the other sources like the Web, without

prior knowledge of the number of the camera sources generated the images.
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Chapter 5

Shared Image Clustering and
User Profile Linking

The traditional clustering algorithms like k-means, k-medoids and hierarchical

clustering has to be provided by the initial information about the number of

camera sources. In the cases without the initial information, usually combin-

ing different clustering algorithms is more effective. In this Chapter, firstly, we

present a Hybrid Markov Clustering (HAL) method capable of clustering the im-

ages captured and shared by users on social networks, without prior knowledge

about the types and number of the camera sources. The HAL method exploits

batch partitioning, image resizing, hierarchical and graph-based clustering tech-

niques to cluster the images. Using Markov clustering, the hierarchical clustering

is conducted in such a way that the representative clusters with a higher proba-

bility of belonging to the same camera are selected for merging, which accelerates

the clustering. For merging the clusters, an adaptive threshold, which is updated

iteratively through the clustering process, is used, resulting in more precise clus-

ters even for images from identical smartphones.

The shared images by users can be categorized into two groups. The first one

is a set of images representing the SPN characteristics of their camera sources

sufficiently and can be applied to the smartphone camera fingerprinting. The

second one is a set cropped images, images from the Web, or single images

from different sources, not representing the SPN characteristics of their camera
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sources sufficiently. So, they cannot be applied to smartphone camera finger-

printing. We consider the second group as outliers and propose Hybrid Markov

Clustering with Outliers (HALO) method to detect and remove the outliers from

the clustering process. Particularly, in the HALO method, the outlier detection is

performed based on Density-Based Spatial Clustering of Applications with Noise

(DBSCAN) technique.

The results on the VISION image dataset, including both “native” and

“shared images”, prove the effectiveness and efficiency of the HAL and HALO

methods in comparison with the state-of-the-art SPN-based image clustering al-

gorithms.

5.1 Problem Statement

For real-life applications dealing with a large number of images, the SPN-based

image clustering algorithm needs to be precise, scalable and feasible. In other

words, it is desired to cluster the shared images on user profiles into the right

groups, to be applicable on any given dataset, and have a reasonable running

time. Developing an algorithm meeting all these requirements has some chal-

lenges as follows:

• To extract the right SPN, the correct orientation of images has to be ob-

tained. Some smartphone settings and social network platforms remove

the orientation information from metadata of the image file, which makes

the clustering task more challenging.

• The extracted RN from an image can be severely contaminated by other

interference. Besides, the process of content compression performed by

social networks causes loss of image details and weakens the SPN.
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• To compute the similarity among the RNs, they have to have the same

spatial resolution. The typical way is to crop the central block of RNs

which may cause loss of critical data.

• Though it is desirable to apply high resolutions of RNs, for having better

quality of clustering, the heavy overhead on data storage and computation

costs their usage.

• Images captured by different smartphones of the same model undergo the

same imaging pipeline which may introduce similar artifacts in the SPNs.

• Calculating the full-pairwise correlation matrix is a cumbersome and some-

times infeasible task especially for large-scale datasets.

• In a more challenging situation, the users may share images from various

sources, not representing the SPN characteristics of their cameras. This

results in the generation of a large number of singleton clusters which is

not computationally cost effective.

With these challenges in the SPN-based image clustering, many works have

been done as it was mentioned in Chapter 3. However, the literature lacks a

precise, scalable, and feasible algorithm designed particularly for clustering the

shared images on social network platforms.

5.2 Contribution

We present a Hybrid Markov Clustering (HAL) method by combining the hi-

erarchical and Markov clustering techniques. The HAL method is capable of

clustering the images captured and shared through social networks without prior
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knowledge about the types and number of the related smartphones, and it tackles

most of the mentioned challenges. This makes it applicable to the real-life cases:

• Unlike most studies presented in the literature, to get better characteristics

of SPN, we exploit resizing rather than cropping the RNs, which is more

useful in the clustering, especially for shared images having low resolutions.

• To decrease the computational costs in terms of memory usage, the dataset

is partitioned into small batches, whose sizes fit the size of the available

RAM.

• By using Markov clustering, the hierarchical clustering is conducted in such

a way that the representative clusters with a higher probability of belonging

to the same camera are selected for a merging.

• To merge the candidate clusters, an adaptive threshold is used. The thresh-

old generally increases as the size and quality of a cluster increase. This

prevents wrong merging of clusters, especially the clusters from the same

models of smartphones.

• Partitioning the dataset, exploiting the inherent sparseness of the correla-

tion matrix, and checking only the representative clusters in the merging

result in the calculation of a small portion of the full-pairwise correlation

matrix. This accelerates the clustering, which is particularly helpful for

large-scale datasets.

• Considering the images, which do not sufficiently represent the SPN char-

acteristics of their sources, as outliers, a developed version of the HAL

method based on DBSCAN algorithm is presented, called Hybrid Markov

Clustering with Outliers (HALO). The HALO method detects outliers and

purifies each batch, resulting in more efficient and effective clustering.
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5.3 Hybrid Markov Clustering Method

The HAL method mainly consists of preparation, hybrid clustering, and post-

processing phases, as shown in Figure 5.1. We will look into each of the three

Figure 5.1: Flowchart of HAL method.
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phases to give an overview of the proposed method:

1. Preparation: Firstly, images are aligned to the same orientation, depend-

ing on the availability of meta-data of the image files. Next, the grayscale

version of the images is obtained and dark and saturated images are ex-

cluded. Then, RNs are extracted from the pre-processed images, and they

are resized to a specific resolution, i.e., 1024× 1024 px.

2. Hybrid clustering: the clustering starts with randomly partitioning the

dataset into small batches. For each batch, a pairwise correlation matrix

is calculated. Markov clustering algorithm is applied to the correlation

matrix. By using the probability matrix, as the output of the Markov clus-

tering, and nearest neighboring, the candidate clusters are selected, and

subsequently an adaptive threshold is computed for merging the clusters.

The SPN is updated for the merged clusters and similar process is hierar-

chically performed on the merged clusters. The clustering stops once no

new cluster is found.

3. Post-processing: in this phase, the resulted clusters are scored based on

their sizes, and the coarse clusters, i.e., the clusters with a notable number

of RNs sharing the same SPN characteristics, are stored as the final result.

5.3.1 Preparation

The applied pre-processing step was mentioned previously, in Section 4.3. We

apply similar pre-processing step, but there is only a difference in setting the

orientation of images. For some images without EXIF data, we only rotate the

images to either portrait or landscape orientation based on the spatial resolution
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[95]. This may not completely resolve the orientation problem, but it can be

alleviated. Anyhow, the clustering quality would be affected.

5.3.2 Hybrid clustering

The proposed hybrid clustering groups the RNs based on the combination of

hierarchical and Markov clustering algorithms and an adaptive threshold which

is iteratively generated according to the quality of the resulted clusters. First, we

explain batch partitioning and how the cluster similarities are computed. Then,

in the following subsections, we describe different steps in the hybrid clustering

in the following subsections.

To reduce the use of RAM and to make the algorithm scalable, we fol-

low the approach presented in [61]. Let N be the total number of RNs in the

dataset. The pre-processed RNs are randomly partitioned into t batches, i.e.,

B = {b1, b2, ..., bt}, where t = dN
q
e and q is the batch size. The parameter q is

determined with respect to the available size of RAM. For each batch, a corre-

lation matrix A is constructed, with each element A(i, j) being NCC similarity

between any two SPNs in the batch, calculated by (2.3).

5.3.2.1 Hierarchical clustering

The clustering for each batch starts by considering each RN as a singleton cluster,

and it is performed in an agglomerative hierarchical way by iteratively merging

the similar clusters. At the end of each iteration of the hierarchical clustering, the

camera fingerprints corresponding to the merged clusters are updated according

to (2.2). Then, the obtained clusters from all the batches are grouped, and they

are hierarchically partitioned and clustered until no new cluster is found, see
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Figure 5.1. The hierarchical clustering has some drawbacks. Once a merging is

done, this cannot be undone, and a wrong assignment may propagate the error

to the following iterations in the clustering. Moreover, its computational burden

is high because it has to investigate all the pairs of clusters for merging [98]. In

our proposed clustering algorithm, we handle the mentioned drawbacks of the

hierarchical clustering by combining it with the Markov clustering algorithm and

a cluster merging step based on an adaptive threshold to achieve precise and fast

clustering.

5.3.2.2 Markov clustering

Markov clustering is a fast and scalable unsupervised algorithm proposed in

[108]. It has successfully been applied in different fields of science. It considers

the objects as the vertices of a graph, e.g., Q, and groups them with respect

to the weights of the edges, i.e., the similarities between the objects [109]. The

Markov matrixM associated with the graph Q is defined by normalizing all the

columns of the similarity matrix. A random walk is simulated over the vertices

of the graph to increase and decrease the flow in strong and weak currents in

Q, respectively [110]. More specifically, the random walk can be modeled as a

Markov chain on the graph Q. Starting from a vertex, a random walk is more

likely to arrive at the vertices within the same cluster than those in different

clusters. The vertices of Q are considered as a set of states S = {s1, s2, ..., sn},

and the graph edges are associated with the transition probabilities represented

in M = [p(i, j)] ∈ Rn×n, where each element at index (i, j) is the transition

probability from vertex i to vertex j and

n∑
i=1

p(i, j) = 1, 0 ≤ p(i, j) ≤ 1 (5.1)
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By alternatively applying expansion and inflation operators to M, the clusters

can be interpreted from the resulting transition matrix at the converged state.

The expansion operator performed based on matrix multiplication simulates a

random walk on the graph Q by:

Mexp =Me (5.2)

where e is the expansion parameter. The jth column ofMexp can be interpreted

as the probability distribution of the jth of random walk.

Subsequently, the inflation operator is performed on each element of the

matrix Mexp as follows:

Minf (i, j) =
Mexp(i, j)

η∑n
k=1Mexp(k, j)η

(5.3)

By the inflation operator, the elements of the matrix Mexp are raised to the

power of the inflation parameter η, and then the columns are normalized. In

each column, the elements which have very small values (less than a predefined

value ς) are removed, and the remaining elements are rescaled, to make the sum

of each column equal to 1. This is called pruning defined as follows:

Mpru(i, j) =


0, Minf (i, j) < ς

Minf (i, j), otherwise

(5.4)

The pruning reduces the number of non-zero elements in the matrixMinf , which

decrease the memory usage and accelerates the clustering [111]. A global chaos G

denotes the rate of the changes in the probability values in every two consecutive

iterations. The algorithm stops when the global chaos approximately equals zero.

The value of G is calculated based on the maximum value of chaos denoted as Cj
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on every column j of the matrix Mpru [112].

Cj =
max

i=1,2,..,n
Mpru(i, j)∑n

i=1Mpru(i, j)2
(5.5)

G = max
j=1,2,..,n

Cj (5.6)

The details of the Markov clustering as a part of the proposed HAL method

are presented in Algorithm 1. The Markov clustering receives the matrix A,

computed by (2.3), including the similarities of the fingerprints in one batch, as

an input, and it produces the matrix M, such that each entry of the matrix

represents the degree of the similarities between a pair of RNs in the batch.

The addition of self-loops to the input matrix A prevents the dependency of

the flow distribution on the length of the random walk, ensuring at least one

Algorithm 1: Markov clustering algorithm.

input: Pairwise correlation matrix, A
output: Probabilities matrix, M
- expansion parameter: e
- inflation parameter: η
- global chaos: G
- prune parameter: ς
- threshold for global chaos: ξ
- add self-loops to the graph A, A = A+ I
- create the diagonal degree matrix of A, D
- create Markov matrix, M = AD−1
while G > ξ do

- expansion on M, based on (5.2)
- inflation on Mexp, based on (5.3)
- pruning on Minf , based on (5.4)
- update G based on (5.5) and (5.6)
- M=Mpru

returnM
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non-zero entry per column [111]. Given two clusters ci and cj corresponding to

the vertices vi and vj in Q, if they share the same or very similar fingerprint

characteristics of a camera, the element M(i, j) is assigned to a non-zero value.

Otherwise, it means that the clusters are from different cameras and M(i, j) is

set to 0.

During the hybrid clustering, in every iteration of the hierarchical clustering,

the Markov clustering is performed on each batch, see Figure 5.1. By applying

nearest neighboring to the columns of the resulted probability matrix, small clus-

ter granularities can be obtained. We consider these representative and precise

clusters as the candidate clusters, which are more likely to be from the same

camera sources, and we merge them iteratively to discover larger clusters.

5.3.2.3 Cluster merging

Since the RNs were randomly partitioned into batches, the matrixM of a batch

may contain many sparse columns, which are populated with many zero values.

Hence, only the clusters corresponding to non-sparse columns are kept, and the

remaining clusters are passed to the next iterations to get a better chance for a

merging, as the clusters are being evolved. In the implementation, we consider

a column as non-sparse if the number of its non-zero elements is less than 20.

For each non-sparse column corresponding to the cluster ci, its nearest neighbor

cluster, i.e., cj is found based on the highest probability value existing in the

column. Then, the clusters ci and cj are selected as the candidate clusters for

a merging. Usually, the RNs from the same model of smartphones present high

correlations, and correspondingly high probabilities inM are produced. Accord-

ingly, it is probable that they are selected as the candidate clusters. Therefore,

to make the HAL method more precise, in the cluster merging, in addition to
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using the candidate clusters, we use an adaptive threshold.

The adaptive threshold is updated based on the quality of the obtained

clusters in each iteration of the hierarchical clustering. It exploits the idea that

the more images from a given smartphone are precisely clustered, the better the

quality of SPN can be estimated [50]. As the cluster size grows, the inter-camera

and intra-camera correlation distributions are normally more separable. There-

fore, adaptively increasing the threshold can effectively prevent wrong merging

of clusters, especially those from the same model of smartphones. The adaptive

threshold T is defined as follows [61]:

T = max(τ,
ψ
√
ncincjµ

2
ci
µ2
cj√

[(nci − 1)µ2
ci

+ 1][(ncj − 1)µ2
cj

+ 1]
) (5.7)

where τ is a minimum threshold working as a trust boundary of T . The terms nci

and ncj denote the number of the RNs in the two clusters ci and cj, respectively,

and ψ is a predefined scaling factor. The quality of the cluster ci, that is µci ,

is defined as the mean of the correlation values between all the pairs of RNs in

the cluster. Given two candidate clusters ci and cj, if the correlation calculated

by (2.3) between their corresponding fingerprints fi and fj is greater than the

adaptive threshold, i.e., A(fi, fj) > T , the clusters are merged. Otherwise, they

are kept separately and passed to the next iteration of the algorithm.

5.3.2.4 Computational complexity

Given the explanations above, we present the pseudo code of the HAL method

in Algorithm 2. To compute the time complexity of the HAL algorithm, we

first compute the complexity for one batch and then generalize it over all the t
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Algorithm 2: Hybrid Markov Clustering.
input: pre-processed RNs
output: list of clusters, C
- number of RNs, N
- scaling factor, ψ in (5.7)
- minimum threshold, τ in (5.7)
- size of batches, q
- clustering initialization, Cold = {}
- considering a set of single clusters corresponding to the RNs, Cnew = {c1, c2, ..., cN}
- initializing a set of camera fingerprints with the RNs corresponding to the clusters,
F = {f1, f2, ..., fN}

- partitioning initialization, Bold = {}
- t = dNq e
- randomly partition Cnew into t batches with size q, Bnew = {b1, b2, ..., bt}
while |Bnew| 6= |Bold| do

for k = 1 : t do
while |Cnew| 6= |Cold| do

- compute correlation matrix A by (2.3)
- apply Markov clustering to A and generate the probability matrix M by

Algorithm 1
- put non-sparse column’s indices in the list L
for i = 1 : |L| do

- find the nearest cluster cj to the cluster ci from the list L
- compute the adaptive threshold T by (5.7)
if A(fi, fj) > T then

- merge clusters ci and cj
else

- continue

- put the obtained clusters in Cnew

- update the camera fingerprints in F for the merged clusters by (2.2)
- Cold = Cnew

- consider all the obtained clusters from batches as a new cluster Cnew

- Bold = Bnew

- N = |Cnew|
- update t, t = dNq e
- partition the clusters in Cnew into t batches with size q, and form Bnew

- C = Cnew

return C

batches. For each batch, different steps such as correlation matrix computation,

Markov clustering, finding non-sparse columns and nearest neighboring for clus-

ter merging are applied. The correlation matrix computation for each batch with

the size of q has the complexity O(q2). Then, Markov clustering is applied to

the correlation matrix A with the complexity O(qz2), where z is the maximum
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number of non-zero elements in each column in A. Finding non-sparse columns

in M, has the complexity O(q). In addition, selecting the nearest neighbors of

non-sparse columns in M requires the complexity O(q2 log q) in the worst case,

where M has no sparse columns. Totally, the complexity of the clustering for

each batch is O([q2+qz2+q+q2 log q]). The agglomerative hierarchical clustering

has the cost O(C ′2 logC ′) where C ′ is the number of the obtained clusters after

the first iteration. Eventually, the total time complexity of clustering t batches is

approximated as O(t[q2 + qz2 + q + q2 log q] +C ′2 logC ′) ≈ O(q2). With respect

to q, the complexity of the HAL method is almost quadratic which is promising

for SPN-based image clustering.

5.3.3 Post-processing

As the final phase of the HAL method, post-processing is applied to the resulted

clusters. The HAL method generates both fine and coarse clusters. While coarse

clusters include a notable number of RNs sharing the same camera fingerprints

characteristics, the fine clusters include few RNs which do not share sufficient

similarities with the obtained camera fingerprints during the clustering. Due to

the nature of the noise-like camera fingerprints [61], and especially the low resolu-

tion of the shared images on social networks, the presence of the fine clusters are

almost unavoidable. For the datasets with a variety of images coming from the

same or different smartphone models and brands, merging the fine clusters into

the coarse ones may cause a drop in the quality of the clustering. Accordingly,

to present a more precise clustering tool for shared image analysis, we remove

the fine clusters and preserve the coarse ones. To distinguish the coarse clusters

from the fine ones, we introduce a size-based score ζi specified for each cluster as
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follows:

ζi =
|ci|.|C|
N

(5.8)

where N is the number of RNs, and ci is the ith cluster in the resulted set of

clusters, i.e., C, from the HAL method. If ζi ≤ 1, the cluster ci is considered as a

fine cluster, and it is excluded from C. Otherwise, we keep it as a coarse cluster.

5.3.4 Experimental results

In this section, firstly we explain how we do pre-processing on the RNs and

parameter setting for the HAL method. Next, we present the results of the

method on the different datasets. Finally, the HAL method is compared with

other state-of-the-art SPN-based clustering algorithms. For the datasets covering

a variety of smartphone models and brands, it is difficult to achieve the best

values for all the mentioned measures in Section 2.5. For example, merging

the RNs of different cameras into the same cluster increases FPR, which can

propagate the error to the following iterations in the clustering. As a result, P

and Purity decrease, although R increases [61]. We prefer to have the clusters

with high values of P , Purity, a low value of FPR, and accurate values of NC .

5.3.4.1 Experimental setting

To see the functionality of the proposed algorithm on the images from the iden-

tical or completely different models of smartphones, we divide the entire dataset

V into two subsets V1 and V2.
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ID Brand Model Original resolution #images

S1 Apple iPhone 4S 3264× 2448 178

S2 Apple iPhone 4S 3264× 2448 200

S3 Apple iPhone 5 3264× 2448 203

S4 Apple iPhone 5 3264× 2448 223

S5 Apple iPhone 5c 3264× 2448 201

S6 Apple iPhone 5c 3264× 2448 206

S7 Apple iPhone 5c 3264× 2448 333

S8 Apple iPhone 6 3264× 2448 129

S9 Apple iPhone 6 3264× 2448 227

S10 Samsung Galaxy S III Mini GT-I8190 2560× 1920 150

S11 Samsung Galaxy S III Mini GT-I8190N 2560× 1920 200

Table 5.1: Smartphone’s characteristics in Dataset V1.

ID Brand Model Original resolution #images

S1 Apple iPad2 960× 720 170

S2 Apple iPad mini G 2592× 1936 157

S3 Apple iPhone 4 2592× 1936 217

S4 Apple iPhone 6 Plus 3264× 2448 256

S5 Asus Zenfone 3264× 1836 208

S6 Huawei Ascend G6-U10 3264× 2448 153

S7 Huawei Honor 5C 4160× 3120 271

S8 Huawei P8 GRA-L09 4160× 2336 265

S9 Huawei P9 EVA-L09 3968× 2976 237

S10 Huawei P9 Lite VNS-L31 4160× 3120 234

S11 Lenovo P70-A 4784× 2704 216

S12 LG D290 3264× 2448 224

S13 Microsoft Lumia 640 LTE 3264× 2448 180

S14 OnePlus A3000 4640× 3480 284

S15 OnePlus A3003 4640× 3480 236

S16 Samsung Galaxy S3 GT-I9300 3264× 2448 207

S17 Samsung Galaxy S4 Mini GT-I9195 3264× 1836 208

S18 Samsung Galaxy S5 SM-G900F 5312× 2988 254

S19 Samsung Galaxy Tab 3 GT-P5210 2048× 1536 166

S20 Samsung Galaxy Tab A SM-T555 2592× 1944 154

S21 Samsung Galaxy Trend Plus GT-S7580 2560× 1920 163

S22 Sony Xperia Z1 Compact D5503 5248× 3936 216

S23 Wiko Ridge 4G 3264× 2448 249

S24 Xiaomi Redmi Note 3 4608× 2592 305

Table 5.2: Smartphone’s characteristics in Dataset V2.

After excluding dark and saturated images, V1 includes 2250 images from

11 smartphones with 5 different models, while V2 covers 5230 images from 24
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smartphones with completely different models. The characteristics of the ap-

plied smartphones and their corresponding number of images in our experiments

are listed in Tables 5.1 and 5.2. For each dataset Vi, both types of images native

and shared are considered, so we have VNA
i , VW

i , VFH
i and VFL

i corresponding to

Native, WhatsApp, Facebook high-resolution and Facebook low-resolution images,

respectively. Finally, to test the generalization of the proposed algorithm, we run

it on the whole dataset, i.e., V = V1∪V2. In particular, we have VNA = VNA
1 ∪VNA

2 ,

VW = VW
1 ∪VW

2 , VFH = VFH
1 ∪VFH

2 , and VFL = VFL
1 ∪VFL

2 , each of them includes

7480 images. In Table 5.3, the lowest and the highest resolutions of the images

for each dataset are listed.

Dataset Lowest resolution Highest resolution

VNA
1 2560× 1920 3264× 2448

VW
1 1280× 960 1280× 960

VFH
1 2048× 1536 2048× 1536

VFL
1 960× 720 1224× 918

VNA
2 960× 720 4608× 2592

VW
2 960× 720 2048× 1536

VFH
2 960× 720 1280× 960

VFL
2 1040× 584 1312× 984

VNA 960× 720 5248× 3936

VW 960× 720 1280× 960

VFH 960× 720 2048× 1536

VFL 1040× 584 1312× 984

Table 5.3: Lowest and highest image resolution in different datasets.

To empirically set a specific resolution for resizing the RNs and the required

parameters for the the HAL method, we consider the sample datasets VNA
0 ⊆

VNA, VW
0 ⊆ VW, VFH

0 ⊆ VFH and VFL
0 ⊆ VFL. From each of 35 smartphones, 100

images are randomly selected, so each dataset includes 3500 images. The sample

datasets make the setting facilitative and they still include images from a variety

of smartphone models and brands. Hence, the obtained values from the setting
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for each dataset can be generalized to the entire datasets, i.e., VNA, VW, VFH

and VFL.

The impact of resizing versus cropping is evaluated based on both corre-

lation gain and clustering quality. The related results are presented in Figure

5.2 in terms of Receiver Operating Characteristics (ROC) showing the relation-

ship between TPR and FPR measures. Each ROC curve is obtained by se-

lecting a threshold from the range [-1,1] and comparing it with the values in

the full-pairwise correlation matrix, representing the similarities between the re-

sized/cropped RNs. The results of the HAL method by using the correlation

matrices obtained from cropping and resizing RNs in VNA
0 , with different resolu-

tions, are also presented in Tables 5.4 and 5.5. The best value of each measure is

Figure 5.2: ROC curves obtained from resizing versus cropping with different
resolution of RNs in VNA

0 .
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highlighted in bold. The results in Figure 5.2 and Tables 5.4 and 5.5, show that

for the resolutions smaller than 960× 720, cropping generates better results. In

contrast, for the resolutions equal to or greater than 960× 720, resizing delivers

far better clustering results compared with cropping. As it can be easily seen

from Table 5.5, resizing the RNs to the resolution 1024×1024 concludes the best

values of P , R, F1, F2, ARI , FPR and NC . Accordingly, in the experiments,

we resize all the RNs to the resolution 1024× 1024 px.

Size P R F1 F2 ARI Purity FPR NC NU

960× 7201 0.69 0.61 0.65 0.456 0.64 0.96 0.00 31/35 95/3500

512× 512 0.67 0.49 0.57 0.365 0.56 0.96 0.00 37/35 129/3500

256× 256 0.65 0.30 0.41 0.226 0.40 0.88 0.00 60/35 158/3500

128× 128 0.48 0.13 0.21 0.075 0.20 0.59 0.00 159/35 257/3500

Table 5.4: Results (%) of HAL method on VNA
0 , by cropping the RNs with

different image resolutions.

Size P R F1 F2 ARI Purity FPR NC NU

1280× 1024 0.99 0.75 0.86 0.781 0.85 0.99 0.00 35/35 121/3500

1024× 1024 0.99 0.76 0.86 0.790 0.86 0.99 0.00 35/35 138/3500

960× 720 0.98 0.72 0.83 0.747 0.83 0.99 0.00 34/35 134/3500

512× 512 0.95 0.44 0.60 0.470 0.59 0.96 0.00 48/35 115/3500

256× 256 0.50 0.02 0.05 0.012 0.04 0.59 0.00 280/35 305/3500

128× 128 0.031 0.14 0.05 0.005 0.00 0.17 0.13 26/35 98/3500

Table 5.5: Results (%) of HAL method on VNA
0 , by resizing the RNs with

different image resolutions.

There are few parameters that should be set for the hybrid algorithm. Using

the sample datasets VNA
0 , VW

0 , VFH
0 , and VFL

0 , we set the parameters empirically

to the values resulting in the highest quality of the clustering. As an example of

the setting process, the results of setting the inflation parameter η in (5.3) and ψ

for the adaptive threshold in (5.7), for VNA
0 , are presented in Figure 5.3. Based

1The highest resolution for cropping RNs is 960× 720 px, based on Table 4.3.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.3: The inflation parameter η and threshold ψ affect the clustering
based on HAL method on VNA

0 , (a) Precision, (b) Recall, (c) F1-Measure, (e)
F2-Measure, (f) Adjusted Rand Index, (f) Purity, (h) False Positive Rate, (h)
number of the obtained clusters and (i) number of unclustered images.

on the graphs shown in Figure 5.3, setting ψ to a value in the range [0.11, 0.17]

and η = 1 generates reasonable clustering results. With η = 1, if ψ is set to a

high value, e.g., 0.19, the clustering generates a large number of fine clusters up

to 50. Accordingly, to have the best values of P , purity, FPR and NC we set

ψ = 0.15 for native images. Similar parameter setting is performed for the shared
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Notation Value Description

q 1500 batch size for partitioning dataset

e 2 expansion parameter in (5.2)

η 1 inflation parameter in (5.3)

ς 0.005 prune parameter in (5.4)

G 2 initial value of global chaos in (5.6) and Algorithm 1

ξ 0.3 threshold for global chaos in (5.6)

ψ


0.15 scaling factor in (5.7) for VNA

1 ,VNA
2 and VNA

0.09 scaling factor in (5.7) for VW
1 ,VW

2 and VW

0.07 scaling factor in (5.7) for VFH
1 ,VFH

2 and VFH

0.03 scaling factor in (5.7) for VFL
1 ,VFL

2 and VFL

τ 0.004 minimum threshold in (5.7) for adaptive threshold

Table 5.6: Parameter values for the HAL method.

images. In Table 5.6, all the required parameters and their set values are listed.

It can be seen that while ψ depends on the quality of the images and it needs

to be set to different values for shared and native images, the values of other

parameters are set equally for all the images in the datasets. So, the appropriate

values of ψ for the images of Native, WhatsApp, Facebook high-resolution and

Facebook low-resolution datasets are set to 0.09, 0.07, and 0.03, respectively.

5.3.4.2 Hybrid Markov Clustering

In this section, we illustrate the obtained results of the hybrid clustering on differ-

ent datasets V1, V2, and V , covering 11, 24, and 35 smartphones, respectively, for

both native and shared images. We try to figure out how the proposed algorithm

is capable of clustering images in different datasets, even if the datasets include

images from identical smartphones. Since the algorithm randomly partitions the

RNs into some batches, the results from multiple running of the algorithm on

a given dataset may vary. Thereby, for each dataset, we run the algorithm 10

times and report the average results for the different measures. The results for
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the dataset V1 which includes smartphones from the same models are shown in

Table 5.7. Due to the high resolution of native images in VNA
1 , as shown in Table

Dataset P R F1 F2 ARI Purity FPR NC NU

VNA
1 1.000 0.826 0.905 0.855 0.896 1.000 0.000 11/11 134/2250

VW
1 0.975 0.775 0.863 0.791 0.850 0.993 0.002 13/11 252/2250

VFH
1 0.994 0.720 0.835 0.758 0.821 0.994 0.001 12/11 268/2250

VFL
1 0.866 0.601 0.705 0.565 0.680 0.914 0.009 9/11 548/2250

Table 5.7: Results (%) of clustering based on HAL method on V1.

4.3, the clustering results in the best values of P , R, F1, F2, ARI , Purity,

FPR, NC and NU . Interestingly, the algorithm can detect all the 11 clusters

corresponding to the smartphones in VNA
1 . For the datasets VW

1 and VFH
1 , the

results are better than those for VFL
1 . It is because of low-resolution images in

VFL
1 , see Table 5.3, but the algorithm is still capable to cluster the images with

P = 0.866, Purity = 0.914, FPR = 0.009, andNC = 9/11. In Table 5.8, similar

Dataset P R F1 F2 ARI Purity FPR NC NU

VNA
2 0.992 0.672 0.801 0.713 0.794 0.992 0.000 27/24 813/5230

VW
2 0.970 0.610 0.750 0.641 0.741 0.972 0.000 24/24 985/5230

VFH
2 0.958 0.627 0.758 0.649 0.749 0.966 0.001 25/24 1053/5230

VFL
2 0.798 0.543 0.647 0.476 0.634 0.876 0.006 29/24 1258/5230

Table 5.8: Results (%) of clustering based on HAL method on V2.

trends can be observed for V2, with the best and worst results for VNA
2 and VFL

2 ,

respectively. However, clustering the images of V2 generates lower quality than

that of V1. Obviously, the reason is that V2 covers images from completely differ-

ent smartphone models and brands as well as various image resolutions. In Table

5.9, the results for native and shared images taken by all the 35 smartphones are

shown. We consider it as the most challenging test for the proposed algorithm.

Comparing the results in Tables 5.8 and 5.9, we can see that the algorithm can
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effectively cluster the images even in the larger datasets, i.e., VNA, VW, VFH and

VFL.

Dataset P R F1 F2 ARI Purity FPR NC NU

VNA 0.992 0.720 0.834 0.756 0.830 0.994 0.000 37/35 725/7480

VW 0.964 0.600 0.733 0.628 0.727 0.975 0.000 33/35 1601/7480

VFH 0.962 0.610 0.746 0.636 0.740 0.975 0.000 33/35 1624/7480

VFL 0.750 0.513 0.609 0.426 0.599 0.847 0.005 33/35 1950/7480

Table 5.9: Results (%) of clustering based on HAL method on V .

To see why the proposed clustering is effective in calculating only a portion of

the full-pairwise correlation matrix, in Figure 5.4, sub-figures (a)-(h), we present

both full-pairwise correlation matrices and the correlation matrices calculated by

the algorithm for each dataset. Indeed, the HAL method exploits the sparseness

of the full-pairwise correlation matrix and applies the Markov clustering, through

which the trivial correlation values between the clusters in each batch are pruned.

Subsequently, only the candidate clusters, which are selected based on the ob-

tained transition matrix from the Markov clustering and the nearest neighboring,

are checked in the merging. Therefore, to produce the adaptive threshold in (5.7),

intra-cluster correlations and inter-cluster correlations of the candidate clusters

need to be calculated, besides a few correlations between the clusters randomly

partitioned in batches. Accordingly, for the datasets VNA, VW, VFH, and VFL, the

algorithm calculates 14.75%, 14.52%, 14.66%, and 14.59% of the corresponding

full-pairwise correlation matrices, respectively. In sub-figures (a)-(h) of Figure

5.5, the probability distributions of the corresponding correlation matrices in

Figure 5.4 are shown. The more the inter-camera and intra-camera correlation

distributions are separable, the better the quality of the clustering is obtained.

Comparing the graphs presented in Figure 5.5 in the sub-figures (b), (d), (f) and

(h) with those presented in the sub-figures (a), (c), (e) and (g), it can be seen
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.4: Effectiveness of the HAL method in calculating correlation matrix:
(a), (c), (e) and (g) are full-pairwise correlation matrices of RNs of the images
in VNA, VW, VFH and VFL, respectively, and (b), (d), (f) and (h) are the corre-
sponding correlation matrices calculated by the method.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5: Effectiveness of the HAL method in calculating correlation matrix:
(a), (b), (c), (d), (e), (f), (g) and (h) are probability distributions corresponding
to the correlation matrices in Figure 5.4.
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that the calculated correlation matrices by the algorithm provide more separa-

tion between the probability distributions. In other words, the decrease in the

overlapping areas of the probability distributions prevents wrong merging in the

clustering, so more precise clusters are achieved.

5.3.4.3 Comparison with other clustering algorithms

The proposed HAL is compared with other SPN-based image clustering algo-

rithms. All the clustering algorithms including the proposed HAL, Fast Cluster-

ing (FC) [59], and Hierarchical Clustering (HC) [53] and Correlation Clustering

(CC) [58] are performed on the datasets VNA, VW, VFH, and VFL, and the results

are analysed based on both clustering quality and running time. The compari-

son results in Tables 5.10, 5.11, 5.12 and 5.13 show that the proposed algorithm

achieves the outstanding values of P , Purity, FPR and NC , apart from only

Purity for VFL. The values of F and ARI obtained by CC, and R by HC are

the highest for the datasets VNA, VW and VFH. Although FC does not show

any improvement for the mentioned datasets, it generates the highest values of

F1, F2, ARI and Purity for VFL. Also, for all the datasets, HC concludes the

highest R. Compared with the other methods, the HAL method has achieved

the best values of P , Purity, FPR and NC .

Method P R F1 F2 ARI Purity FPR NC NU

HAL 0.992 0.720 0.834 0.756 0.830 0.994 0.000 37/35 725/7480

FC [59] 0.952 0.759 0.845 0.759 0.841 0.982 0.001 63/35 0/7480

HC [53] 0.205 0.949 0.338 0.196 0.304 0.828 0.112 23/35 0/7480

CC [58] 0.987 0.863 0.921 0.875 0.919 0.915 0.000 46/35 0/7480

Table 5.10: Comparison of clustering methods on VNA.
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Method P R F1 F2 ARI Purity FPR NC NU

HAL 0.964 0.600 0.733 0.628 0.727 0.975 0.000 33/35 1601/7480

FC [59] 0.919 0.722 0.809 0.702 0.804 0.974 0.001 65/35 0/7480

HC [53] 0.245 0.863 0.382 0.217 0.352 0.813 0.081 32/35 0/7480

CC [58] 0.952 0.787 0.862 0.782 0.858 0.856 0.001 56/35 0/7480

Table 5.11: Comparison of clustering methods on VW.

Method P R F1 F2 ARI Purity FPR NC NU

HAL 0.962 0.610 0.746 0.636 0.740 0.975 0.000 33/35 1624/7480

FC [59] 0.913 0.758 0.828 0.727 0.824 0.974 0.002 64/35 0/7480

HC [53] 0.475 0.823 0.602 0.405 0.587 0.793 0.027 30/35 0/7480

CC [58] 0.955 0.793 0.866 0.790 0.863 0.841 0.001 58/35 0/7480

Table 5.12: Comparison of clustering methods on VFH.

Method P R F1 F2 ARI Purity FPR NC NU

HAL 0.750 0.513 0.609 0.426 0.599 0.847 0.005 33/35 1950/7480

FC [59] 0.665 0.690 0.717 0.489 0.680 0.915 0.011 52/35 0/7480

HC [53] 0.031 0.999 0.061 0.309 0.003 0.520 0.941 2/35 0/7480

CC [58] 0.712 0.632 0.669 0.485 0.660 0.776 0.007 42/35 0/7480

Table 5.13: Comparison of clustering methods on VFL.

In addition to the quality of clustering, the running time of a clustering

algorithm is another important factor that should be taken into account for

real-life applications. Hence, we compare the running time of the algorithms

on the datasets VNA, VW, VFH, and VFL as shown in Figure 5.6. The time

for each algorithm is separately depicted by I/O, correlation calculation, and

clustering operations. In terms of the overall running time, FC and CC are the

fastest and the slowest algorithms, respectively. FC, HC, and CC have to be

provided with the full-pairwise correlation matrix, so they have equal I/O and

correlation calculation time. Despite the shorter clustering time of FC, HC and

CC, they cannot be applicable to large-scale datasets due to the unavoidable

time needed for the computation of full-pairwise correlation matrix. In contrast,
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Figure 5.6: Running time of different clustering algorithms on VNA, VW, VFH,
and VFL with image resolution 1024× 1024.

by the proposed HAL, a small portion of the correlation matrix is calculated.

This accelerates the clustering and also results in more precise clusters.

5.4 Hybrid Markov Clustering with Outliers

Method

In the HAL algorithm, the RNs which do not share sufficient similarities with the

obtained clusters are removed in the post-processing phase, i.e., Subsection 5.3.3.

However, when the dataset is perturbed by a large number of outliers, the HAL
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is not cost-effective in terms of the running time and the memory usage, as the

ouliers have to be kept until the final step of the clustering. Hence, an effective

and efficient clustering algorithm is needed for outlier detection and removal such

that the clustering of the other images is not affected negatively. We present the

HALO method to detect and remove the outliers, performed in the first steps of

the clustering, and cluster the remaining images based on the camera sources.

The flowchart of the HALO method is presented in Figure 5.7. The difference

between Figure 5.1 and Figure 5.7 is the outlier detection step which purifies

each batch with detecting and removing the outliers from the clustering process.

Particularly, the outliers are detected by a Density-Based Spatial Clustering of

Applications with Noise (DBSCAN) algorithm. We show that the HALO method

is stable against the the number of the outliers and can cluster the images coming

from unknown number of sources (smartphones in our case).

5.4.1 Outlier removal based on DBSCAN

Outlier detection is a pre-clustering step that is usually performed in many den-

sity based clustering algorithms. Through a density-based approach, the clusters

of arbitrary shapes can be found, i.e., It can even find a cluster completely

surrounded by (but not connected to) a different cluster. DBSCAN is a density-

based clustering non-parametric algorithm proposed in [80]. DBSCAN does not

require to be provided with the number of clusters in the data a priori, unlike

k-means, k-medoids and hierarchical clustering.

Giving some objects, DBSCAN groups together the objects and marks these

which lie alone in low-density regions as the ouliers. It finds the object’s neighbors

by density ϑ on an n-dimensional sphere with radius ε. The parameter ϑ is

defined as the minimum number (a threshold) of the objects huddled together
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Figure 5.7: Flowchart of HALO method.
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for a region to be considered dense, and ε is a parameter specifying the radius

of the neighborhood. A cluster can be defined as the maximal set of density

connected objects in the space.

DBSCAN defines different classes of objects such as core object, reachable

object and outlier, as follows:

• A is a core object if at least ϑ objects are within distance ε of it (including

A).

• An object B is directly reachable from A if the object B is within distance

ε from core object A. Objects are only said to be directly reachable from

core objects.

• An object C is reachable from B if there is a path p1, ..., pn with p1 = A

and pn = C where each pi+1 is directly reachable from pi. It means that

all objects on the path must be core objects, with the possible exception

of C.

• O is an outlier object that lies in no cluster and it is not reachable from

any other object. So, this object will have its own cluster.

If A is a core object, then it forms a cluster together with all objects, whether

core or non-core, that are reachable from it. Each cluster includes at least one

core object. Non-core objects can be part of a cluster, forming the edge of cluster,

because they cannot be used to reach more objects.

Reachability in the DBSCAN is not a symmetric relation, based on the

above definitions, no object may be reachable from a non-core object, regardless

of distance. Thus, a non-core point may be reachable, but nothing can be reached

from it. Accordingly, a notion of connectedness is needed to define the extent of

82



Figure 5.8: An example of DBSCAN algorithm with ϑ = 4: object A and the
other green points are core objects, objects B and C are reachable from A via
other core objects and Object O is an outlier object.

the clusters found by DBSCAN. Two points p and q are density-connected if there

is a point r such that both p and q are reachable from r. Density-connectedness

is symmetric. Subsequently, a cluster satisfies two properties:

• All objects within the cluster are mutually density-connected.

• If an object is density-reachable from any object of the cluster, it is part

of the cluster as well.

To give a visual example, consider a set of objects in some space to be

clustered, see Figure 5.8. Object A and the other green objects depict core

objects, as the area surrounding these objects in an ε radius contain at least 4

objects, including the object itself. Since the green objects are all reachable from

one another, they are grouped in the same cluster. Objects B and C are not

core objects, but they are reachable from A via other core objects. Accordingly,

they belong to the cluster as well. Object O is an outlier object that is neither

a core object nor reachable.
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DBSCAN is a strong and effective method when the distribution of values

in the feature space cannot be assumed. Hence, it can handle the process of

clustering the high dimensional RNs specified by a large feature vector e.g., with

the size 1024 × 1024, and detect outliers. DBSCAN is robust to outliers. We

apply DBSCAN to the clustering just before the Markov clustering is performed

and for the first iteration of the processing of each batch, see Figure 5.7. Once the

batch is purified by removing the discovered outliers, it is passed to the following

stages to cluster the remained RNs into unknown number of clusters, each of

them including RNs coming from the same samrtphone. It is worth mentioning

that the larger the size is considered for each batch the better the effectiveness

of the outlier detection is concluded, as the RNs are compared in a larger scale.

The algorithms of the applied DBSCAN and the proposed HALO methods

are presented in Algorithms 3 and 4, respectively.

Algorithm 3: DBSCAN algorithm.

input: distance matrix Â = 1−A including distances between RNs
output: two list of clusters, outliers CO and normal RNs CN
- threshold for neighborhood of each RN, ε
- threshold for number of RNs to form a dense region, ϑ
- corresponding to all RNs, consider a list lb
while all RNs in lb are labeled do

- pick an arbitrary data point RN as the first point
- mark RN in the list lb as the visited sample
- find all RNs present in its neighborhood (upto ε distance from the
point), and call it a set nb

if |nb| >= ϑ then
- consider the RN as an inlier and add it to CN
for id = 1 : |nb| do

- consider all points within ε distance (members of nb) as inliers

else
- add RN to CO as an outlier

return CO and C
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Algorithm 4: Hybrid Markov clustering with outliers.
input: pre-processed RNs
output: list of clusters, outliers CO and C normal images
- number of RNs, N
- scaling factor, ψ in (5.7)
- minimum threshold, τ in (5.7)
- size of batches, q
- clustering initialization, Cold = {}
- considering a set of single clusters corresponding to the RNs, Cnew = {c1, c2, ..., cN}
- initializing a set of camera fingerprints with the RNs corresponding to the clusters,
F = {f1, f2, ..., fN}

- partitioning initialization, Bold = {}
- t = dNq e
- randomly partition Cnew into t batches with size q, Bnew = {b1, b2, ..., bt}
- parameter for determining first iteration to apply DBSCAN, flag = 1
while |Bnew| 6= |Bold| do

for k = 1 : t do
while |Cnew| 6= |Cold| do

- compute correlation matrix A by (2.3)
if flag then

- apply DBSCAN to A by Algorithm 3
- put the found outliers in the cluster CO

- extract the correlation matrix of normal RNs, i.e., AN

- A = AN

- apply Markov clustering to A and generate the probability matrix M by
Algorithm 1

- put non-sparse column’s indices in the list L
for i = 1 : |L| do

- find the nearest cluster cj to the cluster ci from the list L
- compute the adaptive threshold T by (5.7)
if A(fi, fj) > T then

- merge clusters ci and cj
else

- continue

- put the obtained clusters in Cnew

- update the camera fingerprints in F for the merged clusters by (2.2)
- Cold = Cnew

- consider all the obtained clusters from batches as a new cluster Cnew

- Bold = Bnew

- N = |Cnew|
- update t, t = dNq e
- partition the clusters in Cnew into t batches with size q, and form Bnew

- flag = 0

- C = Cnew

return CO and C
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5.4.2 Experimental results

To validate the HALO method, we apply the VISION image dataset. Firstly,

some parameter setting is performed for the DBSCAN algorithm. Then, the

results of the HALO method are presented and discussed. We evaluate the

HALO method by all the mentioned measures in (2.4)-(2.14).

5.4.2.1 Experimental setting

We use all the set parameter values mentioned in Table 5.6 for the HALO method

and need to only set the parameters ε and ϑ for the applied DBSCAN algorithm.

The parameters should be set to the values resulting in the best quality of the

outlier detection and the clustering. So, we consider different ranges for the

parameters ε and ϑ, which are respectively [0.991, 0.993, 0.995, 0.997, 0.999] and

[10, 15, 20, 25, 30]. We perform the parameter setting on the sample dataset VNA
0

and perturb the dataset with 500 outliers. We evaluate the clustering, which

is performed by selecting different values of the parameters, based on different

measures defined by (2.4) to (2.14). From Figure 5.9, it can be seen if the values

of ε and ϑ are set to 0.995 and 20, respectively, the best effectiveness for both

clustering the images and detecting the outliers can be obtained. Setting ε with

the values smaller than 0.995 results in the removal of more RNs as outliers.

5.4.2.2 Hybrid Markov Clustering with Outliers

In the literature of the outlier detection, e.g., in [26], it has been mentioned that

the number of outlier samples is much less than the number of other samples.

However, in shared image analysis, it cannot always be true as users may share

more single or cropped images than those applicable to camera fingerprinting.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 5.9: The parameters ε and ϑ of DBSCAN affect quality of outlier de-
tection and clustering based on the HALO method on VNA

0 , perturbed by 500
outliers, (a) Precision, (b) Recall, (c) F1-Measure, (d) F2-Measure, (e) Adjusted
Rand Index, (f) Purity, (g) False Positive Rate, (h) number of the obtained clus-
ters, (i) number of the discovered outliers and (j) number of unclustered images.
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So, in this challenging case, stability of the clustering algorithm is important.

To test stability, we increase the number of outliers gradually and perform

clustering based on the HALO method. To simulate the case where users upload

outlier images, we select some images from VNA, VW, VFH and VFL, and crop

blocks with different sizes at different locations from each image, all are performed

randomly. As the SPN is location-based, such a simple and efficient way of

image cropping simulates the process of generating images acquired by different

sensors. We apply the datasets VNA
1 , VW

1 , VFH
1 and VFL

1 , each of them including

2250 images from identical smartphones. The datasets are perturbed by the

generated outliers. More specifically, the outliers are increasingly added with the

order 10%, 20%, 30%, ..., 150% of the 2250 images in the datasets. The results

of the clustering on the perturbed datasets are shown in Figure 5.10. With

increasing the number of outliers, the clustering is not affected, meaning that it

is stable against the outliers even for the increase of 150%. The fine fluctuations

in the graphs are related to the random selection of RNs to fill in each batch.

Table 5.14 presents the results of the HALO method on the datasets VNA,

VW, VFH and VFL in terms of both clustering quality and outlier detection. We

have set the number of outliers to 3000. The algorithm removed successfully the

outliers with NO>90% and also clustered the remained RNs with high quality of

different measures. To see the impact of the HALO method on non perturbed

Dataset P R F1 F2 ARI Purity FPR NC NO NU

VNA 0.996 0.754 0.858 0.789 0.854 0.996 0.000 37/35 2836/3000 595/10480

VW 0.907 0.613 0.732 0.602 0.725 0.970 0.001 30/35 2686/3000 783/10480

VFH 0.981 0.601 0.738 0.640 0.732 0.989 0.000 30/35 2834/3000 407/10480

VFL 0.796 0.301 0.433 0.277 0.423 0.876 0.002 14/35 2608/3000 569/10480

Table 5.14: Results (%) of HALO method on different datasets perturbed by
3000 outliers.

88



(a)

(b)

(c)

(d)

Figure 5.10: HALO method is stable with increasing the number of outliers in
different datasets: (a) VNA

1 , (b) VW
1 , (c) VFH

1 and (d) VFL
1 .
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datasets and compare it with the HAL method, in Tables 5.15, 5.16, 5.17 and

5.18, the results of the clustering methods performed on different datasets are

shown. From the obtained results, it can be implied that the HALO method

is more effective when it is applied to high resolution datasets such as VNA,

VW, and VFH, because the outlier removal step purifies each batch and prevents

from wrong assignment of contaminated or low resolution RNs to the obtained

clusters through the clustering process. By removing the RNs, they are not

computationally an overhead until the last iteration of the algorithm. In contrast,

the HAL method is better for clustering low resolution datasets such as VFL, since

it does not remove the RNs and it gives them an extra chance to be clustered

through the clustering process.

Method P R F1 F2 ARI Purity FPR NC NO NU

HAL 0.992 0.720 0.834 0.756 0.830 0.994 0.000 37/35 —– 725/7480

HALO 0.999 0.759 0.863 0.796 0.859 0.999 0.000 37/35 —– 423/7480

Table 5.15: Comparison of HAL and HALO methods on VNA without pertur-
bation.

Method P R F1 F2 ARI Purity FPR NC NO NU

HAL 0.964 0.600 0.733 0.628 0.727 0.975 0.000 33/35 —– 1601/7480

HALO 0.951 0.666 0.783 0.678 0.778 0.985 0.001 34/35 —– 470/7480

Table 5.16: Comparison of HAL and HALO methods on VW without perturba-
tion.

Method P R F1 F2 ARI Purity FPR NC NO NU

HAL 0.962 0.610 0.746 0.636 0.740 0.975 0.000 33/35 —– 1624/7480

HALO 0.981 0.605 0.742 0.644 0.733 0.996 0.001 32/35 —– 723/7480

Table 5.17: Comparison of HAL and HALO methods on VFH without perturba-
tion.
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Method P R F1 F2 ARI Purity FPR NC NO NU

HAL 0.750 0.513 0.609 0.426 0.599 0.847 0.005 33/35 —– 1950/7480

HALO 0.847 0.342 0.488 0.333 0.478 0.902 0.001 19/35 —– 406/7480

Table 5.18: Comparison of HAL and HALO methods on VFL without perturba-
tion.

5.5 Conclusion

In this Chapter, firstly, we have presented an SPN-based image clustering algo-

rithm, called HAL to cluster shared images by users, without prior knowledge

about the types and number of the related smartphones. Particularly, the HAL

method exploits image resizing, hierarchical and graph-based clustering algo-

rithms, and an adaptive threshold to cluster the images. We have shown that

resizing the RNs to a specific resolution can tackle the problem of low resolution

of the shared images compressed by social network platforms. Using Markov

clustering, the hierarchical clustering is conducted in such a way that the rep-

resentative clusters with a higher probability of belonging to the same camera

are selected for merging. The adaptive threshold for merging the representative

clusters depends on the quality of the obtained clusters. The threshold that

is updated during the hierarchical algorithm can produce more precise clusters

even for images from the same model of smartphones. The scalability of the

HAL method by partitioning dataset into batches decrease the computational

costs, in terms of memory usage. Partitioning dataset, exploiting the inherent

sparseness of the correlation matrix, and checking only the representative clus-

ters in the merging result in the calculation of a small portion (about 15%) of

the full-pairwise correlation matrix, accelerating the clustering. Also, we have

presented the HALO method which detects and clusters the perturbed datasets

with a large number of outliers, i.e., single images from different camera sources

or cropped images not applicable to fingerprinting their sources. The outlier

91



detection is performed based on DBSCAN technique. We have shown that the

HALO method is stable against the outliers. The results of the proposed meth-

ods on the VISION image dataset confirm their effectiveness and efficiency in

comparison with the state-of-the-art clustering methods.
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Chapter 6

Conclusions

The work presented in this thesis has concerned on shared image analysis based

on camera Sensor Pattern Noise (SPN). Since SPN has been proven to be an

effective and robust form of any device fingerprint, it has attracted considerable

attention, due to its significant characteristics such as uniqueness to individual

devices, stability over environmental conditions, and robustness against common

image processing operations. It has successfully been applied to different data

analysis tasks such as identifying the source device, linking devices, and linking

profiles on social networks.

In Chapter 4, we have proposed clustering and classification based methods

to achieve Smartphone Identification (SI) and User Profile Linking (UPL) tasks,

given a set of images captured by a known number of smartphones and shared

on a set of user profiles. The important outcome of the proposed methods is

UPL across different social networks, where the clustered images from one social

network are applied to classify shared images on another social network to fin-

gerprint their sources. By the classified images and user profile tags, the shared

images from the same source are linked and inter-layer UPL is achieved.

In Chapter 5, we have presented a Hybrid Markov Clustering (HAL) method

to cluster the images captured and shared by the users of social network plat-

forms, without prior knowledge about the types and number of the related smart-

phones. Particularly, the HAL method exploits image resizing, hierarchical and
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Markov clustering algorithms, and an adaptive threshold to cluster the images.

We have shown that resizing the RNs to a specific resolution can tackle the

problem of low resolution of the shared images compressed by social network

platforms. Using Markov clustering, the hierarchical clustering is conducted in

such a way that the representative clusters with a higher probability of belonging

to the same camera are selected for merging. The adaptive threshold for merg-

ing the representative clusters depends on the quality of the obtained clusters.

The threshold that is updated during the hierarchical algorithm can produce

more precise clusters even for images from the same model of smartphones. The

scalability of the algorithm by partitioning dataset into batches decreases the

computational costs in terms of memory usage. Particularly, partitioning the

dataset, exploiting the inherent sparseness of the correlation matrix, and check-

ing only the representative clusters in the merging result in the calculation of a

small portion of the full-pairwise correlation matrix, accelerating the clustering.

Subsequently in Chapter 5, we have developed the HAL method and presented

Hybrid Markov Clustering with Outliers (HALO) method. The HALO method

detects and clusters the perturbed datasets with a large number of outliers,

i.e., single images from different camera sources or cropped images not applica-

ble to fingerprinting their sources. The outlier detection is performed based on

Density-Based Spatial Clustering of Applications with Noise (DBSCAN) tech-

nique. Based on the obtained results, it has been confirmed that the HALO

method is stable against the outliers.
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Appendix A

Source Codes Description

Implementation of the proposed methods in this thesis was done in MATLAB
®

,

version R2019a, on a laptop with the following characteristics: Intel Core i7-

6500U (2.93 GHz), 16 GB of RAM, and Windows 10 operating system. The

proposed methods have been evaluated on our image dataset1 and the public

benchmarking VISION image dataset2. Also, the source codes of the methods

are available on GitHub3. The structure of the source codes is as follows:

• Residual Noise (RN) Extraction. The code is structured in 3 modules

including:

Module 1: image pre-processing

Module 2: Block-Matching and 3D (BM3D) denoising

Module 3: RN resizing

• Smartphone Identification (SI) and User Profile Linking (UPL) Method.

The code is generally structured in 6 modules including:

Module 1: correlation computation

Module 2: Shared K-Nearest Neighbors (SNN) computation

Module 3: k-medoids Clustering

Module 4: sensor pattern noise computation

Module 5: Artificial Neural Network (ANN) classification

1The dataset is available from: http://smartdata.cs.unibo.it/datasets#images
2The dataset is available from: https://lesc.dinfo.unifi.it/en/datasets
3https://tinyurl.com/y2zw8owy
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Module 6: evaluation

• Hybrid Markov Clustering (HAL) Method (see Algorithm 2 in Subsection

5.3.2.4). The code is generally structured in 7 modules including:

Module 1: batch partitioning

Module 2: correlation computation

Module 3: hierarchical clustering

Module 4: Markov clustering

Module 5: adaptive threshold computation and cluster merging

Module 6: sensor pattern noise computation

Module 7: evaluation

• Hybrid Markov Clustering with Outliers (HALO) Method, (see Algorithm

4 in Subsection 5.4.1). The code is generally structured in 8 modules in-

cluding:

Module 1: batch partitioning

Module 2: correlation computation

Module 3: Density-Based Spatial Clustering of Applications with Noise

(DBSCAN)

Module 4: hierarchical clustering

Module 5: Markov clustering

Module 6: adaptive threshold computation and cluster merging

Module 7: sensor pattern noise computation

Module 8: evaluation
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[19] J. Lukáš, J. Fridrich, and M. Goljan, “Determining digital image origin

using sensor imperfections,” in Proc. SPIE Electronic Imaging, Image and

Video Communication and Processing, vol. 5685, pp. 249–260, 2005. 11, 12

[20] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, “Image denoising by

sparse 3-d transform-domain collaborative filtering,” IEEE Transactions

on Image Processing, vol. 16, no. 8, pp. 2080–2095, 2007. 11

[21] M. Chen, J. Fridrich, M. Goljan, and J. Lukás, “Determining image ori-

gin and integrity using sensor noise,” IEEE Transactions on Information

Forensics and Security, vol. 3, no. 1, pp. 74–90, 2008. 12, 32

[22] G. Chierchia, S. Parrilli, G. Poggi, C. Sansone, and L. Verdoliva, “On the

influence of denoising in prnu based forgery detection,” in Proceedings of the

2nd ACM workshop on Multimedia in Forensics, Security and Intelligence,

pp. 117–122, ACM, 2010. 12



[23] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya,

S. Foufou, and A. Bouras, “A survey of clustering algorithms for big data:

Taxonomy and empirical analysis,” IEEE transactions on emerging topics

in computing, vol. 2, no. 3, pp. 267–279, 2014. 12

[24] F. Schwenker and E. Trentin, “Pattern classification and clustering: A

review of partially supervised learning approaches,” Pattern Recognition

Letters, vol. 37, pp. 4–14, 2014. 13

[25] F. E. Grubbs, “Procedures for detecting outlying observations in samples,”

Technometrics, vol. 11, no. 1, pp. 1–21, 1969. 13

[26] A. Taha and A. S. Hadi, “Anomaly detection methods for categorical data:

A review,” ACM Computing Surveys (CSUR), vol. 52, no. 2, p. 38, 2019.

13, 86

[27] H. Liu, J. Li, Y. Wu, and Y. Fu, “Clustering with outlier removal,” arXiv

preprint arXiv:1801.01899, 2018. 13, 23, 24

[28] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classification,

vol. 2, pp. 193–218, Dec 1985. 15

[29] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi, “Accelprint:

Imperfections of accelerometers make smartphones trackable.,” in NDSS,

2014. 17

[30] O. Willers, C. Huth, J. Guajardo, and H. Seidel, “Mems-based gyro-

scopes as physical unclonable functions.,” IACR Cryptology ePrint Archive,

vol. 2016, p. 261, 2016. 17

[31] R. Jin, L. Shi, K. Zeng, A. Pande, and P. Mohapatra, “Magpairing: Pairing

smartphones in close proximity using magnetometers,” IEEE Transactions



on Information Forensics and Security, vol. 11, no. 6, pp. 1306–1320, 2016.

17

[32] I. Amerini, R. Becarelli, R. Caldelli, A. Melani, and M. Niccolai, “Smart-

phone fingerprinting combining features of on-board sensors,” IEEE Trans-

actions on Information Forensics and Security, vol. 12, pp. 2457–2466,

2017. 17

[33] E. J. Alles, Z. J. Geradts, and C. J. Veenman, “Source camera identifi-

cation for low resolution heavily compressed images,” in Computational

Sciences and Its Applications, 2008. ICCSA’08. International Conference

on, pp. 557–567, IEEE, 2008. 17

[34] A. Das, N. Borisov, and M. Caesar, “Do you hear what i hear?: Fingerprint-

ing smart devices through embedded acoustic components,” in Proceedings

of the 2014 ACM SIGSAC Conference on Computer and Communications

Security, pp. 441–452, ACM, 2014. 17

[35] T. Van Lanh, K.-S. Chong, S. Emmanuel, and M. S. Kankanhalli, “A survey

on digital camera image forensic methods,” in Multimedia and Expo, 2007

IEEE International Conference on, pp. 16–19, IEEE, 2007. 17, 19

[36] K. San Choi, E. Y. Lam, and K. K. Wong, “Source camera identification

using footprints from lens aberration.,” in Digital Photography, p. 60690J,

2006. 17

[37] S. Bayram, H. Sencar, N. Memon, and I. Avcibas, “Source camera identifi-

cation based on cfa interpolation,” in Image Processing, 2005. ICIP 2005.

IEEE International Conference on, vol. 3, pp. III–69, IEEE, 2005. 18



[38] O. Celiktutan, I. Avcibas, B. Sankur, and N. Memon, “Source cell-phone

identification,” IEEE Signal Processing and Communications Applications,

pp. 1–3, 2005. 18
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