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Abstract 

Huge amounts of georeferenced data streams are arriving daily to data stream management 

systems that are deployed for serving highly scalable and dynamic applications. There are 

innumerable ways at which those loads can be exploited to gain deep insights in various 

domains. Decision makers require an interactive visualization of such data in the form of 

maps and dashboards for decision making and strategic planning. Data streams normally 

exhibit fluctuation and oscillation in arrival rates and skewness. Those are the two 

predominant factors that greatly impact the overall quality of service. This requires data 

stream management systems to be attuned to those factors in addition to the spatial shape of 

the data that may exaggerate the negative impact of those factors. Current systems do not 

natively support services with quality guarantees for dynamic scenarios, leaving the handling 

of those logistics to the user which is challenging and cumbersome. Three workloads are 

predominant for any data stream, batch processing, scalable storage and stream processing. 

In this thesis, we have designed a quality of service aware system, SpatialDSMS, that 

constitutes several subsystems that are covering those loads and any mixed load that results 

from intermixing them. Most importantly, we natively have incorporated quality of service 

optimizations for processing avalanches of geo-referenced data streams in highly dynamic 

application scenarios. This has been achieved transparently on top of the codebases of 

emerging de facto standard best-in-class representatives, thus relieving the overburdened 

shoulders of the users in the presentation layer from having to reason about those services. 

Instead, users express their queries with quality goals and our system optimizers compiles 

that down into query plans with an embedded quality guarantee and leaves logistic handling 

to the underlying layers. We have developed standard compliant prototypes for all the 

subsystems that constitutes SpatialDSMS. Thereafter, we have tested with huge amounts of 

real and synthetic geo-referenced datasets, deploying our computing clusters in-house and in 

Cloud computing environments. Our results show that all the subsystems of SpatialDSMS 

were able to achieve the envisaged quality goals and outperform baselines by significant 

margins.  
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      Chapter 1 

1 Introduction 

The unprecedented abundance of Internet of Things (IoT) devices have caused avalanches 

of ultra-fast arriving geo-referenced data streams to arrive at Data Stream Management 

Systems (DSMS). Analyzing that data is important for strategic planning and decision 

making. Processing such massive amounts of data in a timely fashion depending on relational 

systems is specifically grueling. Consequently, novel frameworks have emerged, such as 

Apache Spark [1] ,for distributed processing, and MongoDB [2] for scalable distributed 

storage. Those general-purpose systems have established themselves as de-facto standards 

for macro-scale big data intensive analytics. However, employing them as-is in dynamic and 

highly scalable application scenarios (e.g., smart cities [3] , Industrial Internet of Things 

(IIoT), Industry 4.0 [4]  and urban computing [5]) requires investigating their ability in 

meeting QoS goals (e.g. latency/throughput and resource utilization) . An intrinsic problem 

in those frameworks is that they are not natively attuned to data characteristics, rendering 

them unable to achieve (or at least striking a plausible balance between) QoS goals. Those 

systems do not provide out-of-the-box representational and analytical models for geospatial 

data, overburdening developers with logistics and slowing down the production process.  

Dynamic and highly scalable application scenarios coming from smart cities, IIoT and urban 

computing are innumerable. However, they all require mixing (sometimes in a mashup 

fashion, thus fusing disparate elements) workloads in order to get full insights that guide the 

decision making for improving our lives in all aspects. Batch processing and online aggregate 

processing occupy a big share of those workloads. The fact that input data is mostly geo-

referenced invokes a novel spatial aware data stream management system that covers most 

critical quality of service aspects in an end-to-end pattern. 

Current big data management systems (for example, Apache Spark [1]  and MongoDB [2]) 

are growing quickly. Having modular architectures, those systems, despite not being attuned 

to characteristics of georeferenced data, are promising jumping-off points that can be used 

for building optimized QoS aware versions, achieving goals related to latency/throughput, 

accuracy and resource utilization. In this thesis, we generally aim at improving the QoS of 
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those mature systems for highly dynamic application scenarios. In the next subsection, we 

introduce a genuine QoS-demanding highly dynamic application scenario that motivates 

various contributions that we have achieved in this thesis.  

This chapter is organized as follows. In § 1.1, we iterate a contrived representative toy 

scenario in highly dynamic application domain. In what follows, we introduce the thesis 

statement in § 1.2. Thereafter, in § 1.3, we summarize our contributions in this thesis in a 

coherent and consistent structure. We conclude the chapter in § 1.4 by presenting an outline 

showing the organization of remaining parts of the thesis. 

1.1 Highly Dynamic and Scalable Applications: A Motivating Scenario and Usage 

Model 

Our main goal by explaining the following highly scalable and dynamic application scenario 

is to delineate, in a coherent and consistent manner, the contributions presented in this thesis. 

Streaming data coming from heterogeneous sources in dynamic applications, such as smart 

cities, can be exploited in innumerable ways to get deep insights that improve the quality of 

our lives. In this section, we envision a representative application scenario that belongs to 

the family of participatory healthcare, a life-critical dynamic scenario that imposes harsh 

QoS goals on the underlying data stream management system (DSMS). QoS goals may 

include low-latency, high-throughput, high-accuracy and high resource utilization. 

Consider an application which analyzes Global Positioning System (GPS) data collected in 

real-time by citizens and vehicles moving around in a city. A citizen suffering a chronic 

disease (e.g., asthma attack) which may attack suddenly while moving around in a city and 

needs an instant first-aid. The goal is to provide reliable assistance to that patient and keep 

danger as low as possible, while at same time avoid disorganizing roads traffic (i.e., avoid 

causing congestions). Achieving those goals requires two things. First, sending patient 

location and health severity degree to the nearest hospital. Second, finding nearest 

appropriate person who is willing and able (well-trained) to provide first-aid. This is a mixed-

workload scenario which invocates a reliable system that needs to provide at least the 

following services: 



Introduction 

3 

 

1) Traffic Light Controller (TLC). This component constitutes sensors that are 

implanted in the roads and can send timely signals to a periodic traffic signal actuator.  

Actuator then decides to change lights of some traffic lights into green for those lanes 

to allow the ambulance to pass in a consistent way.  

2) Smart Real-time Pathfinder (SRP). This component of the envisaged system 

generates an interactive navigation map that navigates ambulances en-route to 

accident location, whereas recommends alternative roads to other vehicles 

consistently.   

3) (Near) Real-time Community Detection (RCD). This component can identify 

communities in the surroundings of the patient by applying a clustering and selects 

the most appropriate volunteer who is the nearest and capable of providing first-aid.  

A typical architecture of a system that handles this scenario can be envisioned in the 

schematic diagram of figure 1.1, showing a typical interplay and interaction between many 

constituting components. This resembles a publish/subscribe pattern, where data collectors 

dynamically send geo-referenced data to batch and online processing systems that perform 

analytics and serve them to subscribers (e.g., actuators) that enact/react correspondingly. 

Various QoS goals are imposed at all stages during the interaction of the constituent parts of 

the envisaged DSMS shown in Figure 1.1. TLC should act in a latency bounded fashion (i.e., 

low-latency QoS goal) to control traffic light signals efficiently in real-time. Errors are not 

allowed in such a critical service and nearly-perfect accuracy is a must. On the contrary, SRP 

 

Figure 1.1. A typical publish/subscribe based pattern showing the interaction between typical 

system components in a typical highly dynamic and scalable application scenario 
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can safely depend on approximation, thus trading off a rigorous error-bounded accuracy for 

lower latency. This in part is because we need to generate an approximate heatmaps in real-

time to draw trajectories for ambulances en-route to accident locations, only showing 

approximately how congested a lane in a specific time is enough. Also, RCD can be 

adequately based on an error-bounded approximate (i.e., high estimation accuracy QoS goal).  

A comprehensive usage model could extend tremendously, but even with this simple 

synopsis it is quite straightforward to distinguish an important aspect that is inherently 

apparent in this scenario, that it requires mixing instantaneous reactions with proactive 

actions. Reactions include applying real-time analytics before data becomes obsolete and 

loses its value. Proactive actions require achieving data in a homogeneous way so as to apply 

predictive models (e.g., overnight) that further assist in decision making and planning. To be 

considered a QoS-aware DSMS for highly dynamic application scenarios, it should 

incorporate QoS-awareness natively within the layers of its core baselines without requiring 

developers and users to reason about the underlying mechanisms of those services. 

1.2 Thesis Statement 

In this thesis, we aim at designing and implementing a constellation of methods and 

algorithms, then incorporating them into few sub-systems that collectively form a spatial 

data stream management system for managing and processing spatial streaming data in 

highly dynamic and scalable applications. Low latency, high throughput, and controlled 

accuracy with rigorous error-bounds, in addition to high resources utilization are QoS goals 

of a paramount importance. We aim at trading them off appropriately in a manner that 

improves the overall service quality envisaged from the system.  

1.3 Thesis Contributions 

In this thesis, we show the design and implementation of our QoS-aware DSMS that we dub 

as SpatialDSMS (short for Spatial Data Stream Management System), which operates over 

fast arriving geo-referenced data streams. Our system receives input data from either a stream 

source or a batch source. Through an appropriate interface, we provide the user with the 

ability to express their queries (i.e., batch or continuous) and serve them together with QoS 

budgets to the system. Budgets are expressed as QoS goals (e.g., latency/throughput, 

estimation quality or resource utilization). Thereafter, our system ensures that the query is 
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executed within the specified budget and results are served to the user either incrementally 

(in case of online processing mode) with rigorous error-bounds or as only-once (in case of 

batch processing mode). Streaming data sources can be combined, on-need, with a batch 

static data (in what is known as stream-static join) to answer an interactive query that requires 

enrichment with master data (i.e., disk-resident data). 

In this thesis, we show the following constituting parts that collectively form our system (i.e., 

SpatialDSMS). 

1.3.1 SpatialBPE and SpatialNoSQL: Scalable Distributed Spatial Batch Query 

Processing and Storage 

We begin this thesis by designing two QoS-aware custom data partitioning methods and their 

associated query optimizers for scalable storage and batch processing of big spatial (we use 

spatial and geospatial interchangeably hereafter) data. We dub those systems as 

SpatialNoSQL and SpatialBPE, respectively. Spatial data partitioning is a mean-to-an-end, 

where the goal is achieving quality goals; lowering latency and maximizing resource 

utilization while keeping accuracy levels high. To achieve those, we design Geospatial 

Sharding Scheme (GSS), a custom spatial partitioning method for a NoSQL scalable 

distributed storage emerging framework, MongoDB [2] , together with a query optimizer 

that exploits GSS for improving the quality of service, both constituting SpatialNoSQL. We 

also have designed a custom spatially-attuned adaptive partitioning method that we dub as 

SCAP, which adequately trade-off three contradicting spatial partitioning goals (i.e., 

boundary spatial objects - a.k.a. edge cases, spatial co-locality preservation and load 

balancing) in an emerging batch processing framework (i.e., Apache Spark [1] ). We further 

have retrofitted a density-based clustering algorithm so that it exploits SCAP, both the SCAP 

and the associated query optimizer form SpatialBPE. We have evaluated SpatialNoSQL and 

SpatialBPE using real-world geospatial big data loads. Our results show that SpatialBPE and 

SpatialNoSQL outperform state-of-art counterparts by significant magnitudes. Also, they 

were able to meet QoS goals specified as latency/throughput and resource utilization. 

SpatialNoSQL is geared toward scalable distributed storage, whereas SpatialBPE is designed 

for distributed batch processing. 
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1.3.2 SpatialSPE: Spatial Approximate Query Processing 

After designing spatial-aware appropriate data partitioning and query optimizers for 

distributed scalable storage and batch processing, we have realized that those methods alone 

cannot achieve QoS goals for spatial interactive analytics, where fast arriving fluctuating 

(i.e., in skewness and arrival rate) spatial data streams hit so hard the resources of the 

SpatialDSMS. Also, we aim at a system that supports incrementalization of spatial data 

stream computation, meaning that results are served incrementally based on time-based 

window semantics without the need to recompute or materialize previous loads. to achieve 

those goals, we design SpatialSPE, which aims at achieving low-latency and maximal 

resource utilization, while serving results with acceptable high accuracy expressed as 

rigorous error-bounds. SpatialSPE accepts a continuous query and QoS budgets (expressed 

as latency and accuracy targets) and employs our spatial-aware sampling method (that we 

dub as SAOS, which is an integral part of SpatialSPE) to select an appropriate sample, then 

it computes an approximate answer and serves it to the user incrementally, together with 

rigorous error bounds. We have implemented SpatialSPE on top of Spark Structured 

Streaming [6]. Our results show that SpatialSPE (and the incorporated SAOS scheme) 

outperforms baselines by significant margins. Also, combining SpatialSPE with the 

partitioning methods (GSS from SpatialBPE and SCAP from SpatialNoSQL) is possible in 

order to materialize (partial) stream data loads efficiently for a future (semi-)batch 

processing, rendering them complementary, and the combination allows to benefit from both 

worlds without their limitations.  

1.3.3 SpatialSSJP: Adaptive Stream-Static Spatial Join Processing 

After designing SpatialBPE, SpatialNoSQL and SpatialSPE, we have realized that 

interesting mixed-workloads in highly dynamic environments require combining batch and 

streaming views (i.e., current views with historical views) or enriching spatial streams with 

static descriptions. For this purpose, we have designed SpatialSSJP, a QoS-aware adaptive 

stream-static join processor that exploits SpatialSPE (and specifically SAOS) in adaptively 

selecting proportionate sampling fraction through the application of an embedded rate 

controller and serve it to SAOS using a feedback loop mechanism. SpatialSSJP is an 

approximation framework that is designed to efficiently tradeoff miniscule error-bounded 

accuracy for low-latency, thereby assisting SpatialDSMS to survive during brutal burst 
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spikes in data arrival rates. SpatialSSJP achieves that in a circadian rhythm without 

compromising the overall stability of SpatialDSMS. We have implemented SpatialSSJP on 

top of Spark Structured Streaming [6] to complement SpatialSPE for approximate query 

processing of fast arriving spatial big data loads. Our evaluations with real-world scenarios 

and big spatial benchmarks and data loads prove that SpatialSSJP is able to survive even the 

most striking burst workloads while keeping accuracy loss in check (i.e., under a statistically 

desirable margin). 

1.4 Thesis Outline 

This thesis is organized in the following chapters. 

In Chapter 2, we show a background about data processing in dynamic and scalable 

applications and big data management frameworks that have been exploited in this thesis. 

In Chapter 3, we show the overall architectural design of our system SpatialDSMS. 

In Chapter 4, we show the design and realization of SpatialBPE and SpatialNoSQL, two 

quality of service aware frameworks for distributed batch processing and scalable storage, 

respectively. 

In Chapter 5, we show the design and realization of SpatialSPE, a Spatial Approximate 

Query Processing engine. 

In Chapter 6, we show the design and realization of SpatialSSJP, an adaptive Stream-

Static Spatial Join Processing system. 

To sum up, in Chapter 7, we conclude our works, showing the implication that can be 

carried over to other domains, and some future research frontiers. 
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    Chapter 2 

2 Background 

In this chapter, we start in § 2.1 by showing a baseline architecture for DSMSs that has 

gained a momentum in the last decade. We then showcase the capabilities of big data storage 

(§ 2.2) and analytics (§ 2.3) frameworks that we have exploited to implement our algorithms 

and systems that we are presenting in this thesis. 

2.1 Lambda Architecture 

Challenges associated with managing mixed streaming big data workloads have motivated 

the emergence of novel dynamic architectural patterns such as the Lambda architecture [7]. 

The Lambda architecture employs real-time stream processing for timely approximate results 

and batch processing for delayed accurate results. Figure 2.1 shows a typical Lambda 

architecture. 

 

 

 

 

 

 

 

 

New streaming data is served to either a batch layer or a speed layer. Accurate, often 

computationally expensive, posterior analytics are performed on historical data (a.k.a. data-

at-rest) in the batch layer (e.g., using Spark). On the contrary, approximate queries are 

performed in the speed layer, analyzing and processing stream data (a.k.a. non-stationary) 

on-the-fly (e.g., using Spark Streaming). Mixing workloads in this setting means basically 

exploiting static historical archives from the batch layer in predicting future or current trends 

 

Figure 2.1. Typical Lambda architecture 
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in the speed layer, and thereby accelerating the processing and possibly helping in the 

prediction of a sudden brutal burst spike in an arriving data load (i.e., being proactive). Stated 

another way, batch layer serves as a synergistically complementary processing engine that 

performs complex computations (which are prohibitively expensive online, such as a deep 

learning model) on static data (i.e., collected previously from active streams) aiming to gain 

deeper insights , correlations and patterns, which together with the help of online analytics 

serve a clearer picture that better facilitates timely decision making. In this sense also, serving 

instantaneously two paths of computation better helps in resolving the cause/effect problems, 

where a speed layer can appropriately discover an effect that is explained by a deeper (i.e., 

resource-intensive and costly) analysis in the batch layer. Views are normally served through 

the serving layer (e.g., using MongoDB). Representative frameworks that can collectively 

form a typical ecosystem based on the Lambda architecture are discussed in the next 

subsections. 

2.2 Distributed (Spatial) Big Data Storage Frameworks 

In this section, we summarize the features and traits of an emerging scalable distributed 

storage NoSQL system that we have exploited for building up SpatialNoSQL (one of our 

sub-systems) as discussed in section 4.8. 

2.2.1 MongoDB: A Scalable Distributed Storage Framework 

MongoDB is a document-oriented scalable NoSQL distributed (thus simplifying horizontal 

scaling) database management system that offers many indexing strategies for a highly-

performing batch processing experience. Data is stored in a flexible changeable JSON-alike 

representation that offers freedom in dynamically changing the data structure to be able to 

gather heterogeneous data sources under one umbrella. In MongoDB terms, each document 

contains key/value pairs of an entity, and several documents (analogous to records in 

RDBMSs) constitute a collection (analogous to tables in RDBMSs).  

In RDBMSs, information related to an entity are normally spread out between many tables 

and are collected through their referential integrities (i.e., the relations represented through 

primary/foreign keys) at run time. On the contrary, in MongoDB, the notion of referential 

integrity vanishes. To compensate for that, MongoDB is using an embedded document 
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metaphor, where documents are values for keys, thus naturally organizing data better than 

the plain flat structure (i.e., key/value pairs) [8]. 

Architecturally speaking, MongoDB is built to operate on sharded clusters (analogous to 

master/slave architectures), where one (or more) routers (mongos in MongoDB terms) shard 

(split) data points to several (two or more) parallelly connected shards (analogous to worker 

nodes, slaves or executors) aiming at distributing the load so as to provide a scalable storage 

for massive amounts of datasets, and thereby demystifying the access for analytics. 

2.2.2 Geospatial Analytics in MongoDB 

MongoDB supports primitive types of spatial operations and associated access structures 

(i.e., indexes). It natively supports two types of geospatial indexing; 2dsphere and 2d. 

2dsphere is designed for spherical geometries, whereas 2d indexing flattens the earth out 

(similar to a heuristic overview of a grid, two-dimensional Euclidean plane) [9]. 

2dsphere yields more accurate results than 2d because of the representation, where the latter 

is used for queries that use flat geometry as it assumes a perfectly flat surface, thus causing 

(massive) distortions near the earth poles. 2d supports the "$geoWithin" 

and "$near" operators. 

Several geospatial queries are supported, including proximity (i.e., nearness, through 

$geoNear operator, an aggregation operator), intersection, or inclusion (i.e., ‘within’ 

predicate) by providing appropriate operators such as "$geoWithin”.  Those queries are 

supported for geospatial points and shapes (i.e., line, polygon). 

$geoWithin is normally utilized to search for geospatial points within a shape (represented 

on a flat surface, such as a rectangle, polygon, or a circle) 

We have selected MongoDB in this thesis as a baseline representative to base some of our 

batch-oriented implementations because of the spatially-oriented overarching support it 

offers natively. We have stacked-up SpatialNoSQL specifically over MongoDB (as 

explained in chapter 4) 

2.3 Distributed (Spatial) Big Data Processing Frameworks 

Another important component that resides in the batch layer of the lambda architecture is 

distributed processing frameworks such as Apache Hadoop [10]  and Spark (patterned after 
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Hadoop MapReduce module). Of late, Spark has shown superiority over Hadoop and most 

efforts of the relevant literature are stacking up on Spark. Spark significantly outperforms 

Hadoop especially for iterative structures that access in-memory data excessively. This 

encouraged us to focus on Spark exclusively as a big data processing framework in this 

thesis.  

We first list basic features of Spark core, with some interesting traits that encouraged us to 

favor it over counterparts as a representative for stacking up our algorithms. We then shortly 

recapitulate spatial-aware plugins that have been patterned on Spark such as GeoSpark [11]. 

Thereafter, we overview (spatial) stream processing frameworks, specifically Spark 

Magellan1 [12, 13]. We stack up SpatialBPE (chapter 4)  SpatialSPE (chapter 5) and 

SpatialSSJP (chapter 6) on Spark’s Magellan plugins to realize our standard compliant 

prototypes. 

2.3.1 Batch Processing: Apache Spark 

Apache Spark [1]  is an open-source framework that has been patterned after MapReduce 

framework, aiming at processing huge amounts of data efficiently in parallel computing 

environments. It is an efficient general-purpose solution for processing disk-resident, 

memory-resident and big data streams (in micro-batching mode). The core programming 

abstractions of Spark are RDDs [14] , which are groups of objects partitioned across multiple 

computing resources for parallel manipulation, where each partition containing an RDD is 

processed parallelly in a single task. Spark jobs include constructing new RDDs, RDD’s 

transformations (i.e., filter and map), which are performed on a coarse-grained fashion, or 

calculating a result by invoking a function on RDDs (a.k.a. action in Spark’s jargon, such as 

count or other reduce functions).  

Spark provides high-level APIs for various programming languages such as Java, Scala, and 

Python. It allows programmers to develop a complex data pipeline system, parallelizing 

multiple processing flows through the Directed Acyclic Graph (DAG) pattern.  

 

 

1 https://github.com/harsha2010/magellan 



Background 

12 

 

Spark executes the lineage DAG graph lazily in such a way that transformations are 

performed only after encountering an action in the graph. RDD is constructed either from 

scratch or through a transformation from one RDD into another. Spark architecture is 

master/slave where the master controller receives the result of a DAG after completion [15].  

The technical burdens brought by RDD-based operations hinder a wider adoption of the 

Spark between non-technologically-experienced users. This has motivated the emergence of 

a full-fledged SQL-alike API that demystifies such an adoption, initiating by its batch format 

, Spark SQL [16] , that served as a precursor to launching a streaming version, Spark 

Structured Streaming (SpSS for the most of the remaining of the discussion hereafter). This 

declarative SQL-alike support introduces DataFrames and Datasets to represent distributed 

collections, with additional schema information (as opposed to RDDs) [15]. 

Spark default join on RDDs is shuffled hash join, implemented through cogroup operation 

[15, 17] (analogous to the hash-partitioned join, and similar to full outer join in SQL), which 

requires shuffling of both input RDDs in case that partitioner is unknown for both. Spark 

needs the data that has same keys to reside on the same partition to be joined. However, in 

cases where one RDD has an associated partitioner, it needs no shuffling, instead the other 

RDD is shuffled with the same partitioner so that its elements hit the same node hosting the 

partition of the other RDD and collocate for the join operation to proceed.  

There are two types of join in distributed environments; broadcast and repartitioning join. 

The former is possible in cases where one of the RDDs (and similarly the DataFrames in 

Spark SQL) fits in main memory of the worker nodes. In such a case, it is broadcasted to 

those nodes, what then remains incumbent is a map-side combine with each partition of the 

larger RDD [15] (and similarly the DataFrames in Spark SQL). In the latter case, where 

RDDs (and similarly DataFrames) do not fit in the fast memory, a repartitioning join is 

performed, which requires shuffling as explained earlier. In Spark SQL, broadcast join is 

configurable through enabling/disabling “autoBroadcastJoinThreshold” (enabled by 

default). It worth mentioning that joining with non-unique keys result in a costly cross 

product. 

Limiting the comparison to a single plain ecosystem felt all wrong. So now we’re flipping 

the switch on some non-trivial architectural tiered plugins that make distributed in-memory 
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spatial analytics a reality. Even though Spark outperforms its predecessors for processing big 

data, it is still not optimized for specific application scenarios, such as geospatial data 

analysis, which led to the emergence of spatial-aware extensions built on top of Spark core. 

Two recent representatives are GeoSpark [11]  and Spark’s Magellan [12, 13]. Both have 

seen swift adoption throughout the Spark community. 

I) GeoSpark [11]  is a spatial-aware open-source framework that have been 

designed specifically for processing massive amounts of spatial data loads. it has 

been engineered atop the Spark’s pyramid, extending the traditional Spark core 

layers with spatial-aware abstractions and counterparts. For example, GeoSpark 

has extended the Spark abstraction RDD into a spatial-contemporary that is 

termed as SpatialRDD (SRDD for short), signifying that it preserves the idea of 

the RDD abstraction but introducing the multidimensionality to the equation. 

GeoSpark supports a myriad of spatial operations and predicates, most 

importantly, kNN, ranges searches and spatial join. The architecture of GeoSpark 

is explained in Appendix A. 

I) Spark Magellan2 [12, 13] . Magellan is the first-in-class library that is fully 

extending Spark SQL declarative API by offering a layer of geospatial analytics 

relational abstractions. It offers a developer-friendly interface that allows 

executing spatial query primitive in a QoS-aware fashion, focusing mainly on low-

latency and high throughput. Magellan optimizes the query plan by offering low-

cost spatial indexing. 

At a cursory level, Magellan is layered on Spark, which by itself is the de-facto standard for 

big data processing so far and looks set to remain that way at least for the foreseeable future. 

Using the z-curves (in addition to non-hierarchical grids), the filtering step reduces to that of 

point-in-MBR (a.k.a. MBR-join) test, which is computationally plausible. Magellan join 

algorithm obeys the true hit filtering approach [18, 19]  (specifically filter-and-refine 

approach). Magellan supports several spatial predicates including intersection, containment 

 

 

2 https://github.com/harsha2010/magellan 
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and inclusion (i.e., within). Spatial join is supported natively and both participating relations 

are indexed with z-order curves. 

Magellan natively operates on a costly cross join. However, it has incorporated an 

optimization for performing an inner join instead. It achieves this by indexing points and 

polygons using geohashing (a special case of z-order curves based on bounding boxes), then 

performing a hash join (i.e., filter stage) that is proceeded by a PIP test (e.g. a ‘within’ 

predicate, refinement stage), thus discarding possible false positives (i.e., cases when 

geohash bounding box boundaries of a query point intersect a polygon, but query point falls 

actually outside). Listing 2.1 shows an example PIP query using Magellan. 

 

 

 

 

In this case, a quick-and-dirty sieve (filter) is first applied (pointsDF("index") == 

polygonsDF("index")) that is really a cheap hash join on the index, resembling the filter stage 

of the filter-and-refine approach, thereafter costly PIP test ($"point" within $"polygon") is 

applied to discard false positives. 

Spark’s Magellan automatically stores z-order curves that cover a geometry (i.e. polygons 

representing neighborhoods or counties in a city), with the associated relation (e.g., 

‘contains’, ‘within’ (contained in), ‘intersects’) expressing the relation between the z-order 

curve (geohash for longitude/latitude representations) and the geometry. This relation is 

important to minimize the costly ‘within’ predicate (i.e., PIP test), which will be evaluated 

only when a z-order curve that is enveloping a query point is not guaranteed to fall within a 

polygon. 

pointsDF.join(polygonsDF,pointsDF("index")== 

polygonsDF("index")).where($"point" within $"polygon") 

 
listing 2.1. Example PIP test in Magellan 
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Most importantly, Spark’s Magellan supports PIP test (i.e., geofencing). Being stacked up 

over Spark SQL, broadcasting is by default enabled, meaning that a small DataFrame 

(representing polygons in the PIP test input) will, by default, be broadcasted to executor 

nodes. Join key in this case is a geometric field (i.e., multidimensional), and Spark natively 

does not support partitioning based on such keys. Hash partitioner is the default used by 

DataFrames, which takes the hash value of the join key and calculates the modulus of 

dividing it by the number of partitions, then it emits the tuple to the partition that is 

corresponding to the resulting value. This means that if we are able to reduce the 

multidimensional representation of a geospatial object into one-dimensional space, then 

geometrically-nearby objects should end up in the same partition.  

Figure 2.2 represents a high-level sketch of a general structure of PIP join performed in 

Magellan, which also serves as a machine for elucidating the broadcast join mechanism in 

distributed systems, in addition to the true hit filtering join approach [20]. 

Magellan and GeoSpark are not panacea but instead are springboards to begin with QoS-

aware spatial optimizations. 

We found Magellan superior to GeoSpark and other spatial-supporting frameworks in the 

sense that Magellan is built with the spark fluent API (which allows wiring up all functions 

in a single expression) in mind. All spatial operations that has been pushed up the stack are 

 

Figure 2.2. PIP test in Spark’s Magellan, Filter-and-refine (true-hit part) is adapted from [20] 
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obeying this fluency, thus complementing the Spark’s modular hot-swappable architecture, 

and thereby avoiding to reason about the underlying processes atomically (as recommended 

by Spark’s development team [6] ), which is one of the main design goals targeted in Spark. 

Also, Magellan offers access structures (i.e., indexing schemes) that have less associated 

computational complexity, such as z-curves. 

2.3.2 Online Processing: Spark (Structured) Streaming 

Stream Processing Engines (SPE) are machines designed to process avalanches of fast 

arriving unbounded online data streams, aiming at gaining deep insightful views that support 

decision making and strategic planning in real time. They normally employ a graph of 

operators (typically a DAG) where operator instances are distributed to parallelly connected 

processing nodes so as to accelerate the processing, which is normally incremental, meaning 

that results are dynamically updated as new data arrives. A major challenge in distributed 

stream processing is the state management, where intermediate computation states need to 

be stored/retrieved in a consistent manner that does not deteriorate the benefits of 

parallelization.  

The distinction between batch and online processing modes is that in the latter a push 

mechanism is applied where data is pushed by sources to be processed by an SPE, whereas 

in the former a pulling mechanism is applied such that a system pulls data residing in disk. 

Also, batch processing is typically an exactly-once operation, whereas online mode runs 

endlessly and compute results stepwise.  

Second, due to the fact that within a DSMS, data must be processed in a push-based manner, 

the temporal aspect of the query execution is more important than that of pull-based query 

executions in a database system. 

Those distinctions impose challenges that normally do not affect batch processing systems. 

Queries run against a data stream are known as Continuous Queries (CQ) (sometimes 

colloquially referred to as online querying, termed continuous as opposed to one-time 

queries) that run in unbounded fashion, hence the order of data arrival is focal and is normally 

accounted for by windows semantics (i.e., temporal intervals bounding the start/end times of 

every query execution trigger ) [21]. Also, as clock ticks forward, stream data becomes 

obsolete and potentially loses its value, hence low-latency is a priority QoS goal. In addition, 
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stream data normally exhibits temporal skewness and fluctuation in the arrival rates that 

alternate between brutal spikes and underloads, and a good SPE should be able to survive 

such unpredictable behaviors. SPEs store arriving tuples and access structures (i.e., indexes) 

in-memory for speeding up the processing. 

Spark Streaming [22]  is a SPE that splits arriving stream tuples into blocks of RDDs dubbed 

as discretized streams (or D-Streams) based on the time-based window semantics, where 

every batch interval, micro-batches that are comprised of RDDs are sent to the batch Spark 

processor in a process that is termed as micro-batching. Most transformations supported on 

RDDs are also supported on D-Streams [15].  

Spark Streaming does not natively support the join between streaming data and static 

relation. It is otherwise supported in Spark Structured Streaming (explained shortly). Spark 

Streaming is robust against arrival rate fluctuations for aggregation queries [23] . Also, Spark 

Streaming, which uses the micro-batch model, is more fault-tolerant than Storm and Flink 

(which are otherwise brittle and easily prone to failures), which use the record-at-a-time 

model [24], which acts on per-row basis. Upon nodes failure, micro-batch based systems 

recompute lost data efficiently [25] , thus recovering quickly [24, 25] , which is a plausible 

overarching trait that is expensive in  systems that obey record-at-a-time model, simply since 

those models require serial replay processing [25] . Also, binding schemas to data sources is 

straightforward in Spark SQL, which demystifies transforming it into a Scala case class, thus 

enabling type-safe querying, which is a plausible trait while jumping through operating 

machines. All those traits provided by the micro-batching model encouraged us to adopt it 

for our implementations. 

Spark Structured Streaming [6] (hereafter SpSS for short) is a new layer atop Apache Spark 

layered-up ecosystem. It is a high-level API that lends many concepts from the original Spark 

Streaming design [25] . Structured streaming mainly differs from the discretized streams in 

that users normally express queries using a declarative SQL-alike API (in the form of 

DataFrames [16] ) instead of manually building a pipeline DAG of operators (such as those 

found in MapReduce). Being a newly addition joining Spark’s family, it lacks accompanied 

proper documentation for many details explaining specifically its internals and subtleties. As 
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such, we here provide a structure that captures the anatomy of major constituent parts and 

their workflow. 

SpSS aims basically at resolving latency and accuracy issues that are normally confronted in 

end-to-end data analytical deployments, where, more than often, fast arriving data torrents 

read on-the-wire are joined with batch tables for interactive insightful BI analytics. 

Production pipelines depend on joining serving streaming system’s workloads with 

transactional ones, while most SPEs currently focus on streaming computations, spark 

structured streaming is gaining more attention because it places due importance on other 

batch loads combined with streaming, thus improving the end-to-end performance in time-

sensitive production systems. Another outstanding feature that makes structured streaming 

favorable over counterparts is the incrementalization in the continuous query execution 

model. This means at a highest level that users write their queries as if they were to be 

executed in a batch mode and SpSS incremantalizes those queries to be executed in a 

streaming mode with no further effort from the user’s side, thus relieving the overburdened 

load from the shoulders of users and programmers from reasoning about the underlying 

mechanism of such an optimization. SpSS was able to achieve that by reusing the Spark SQL 

optimizers [16] (such as Catalyst, which utilizes advanced features such as Scala pattern 

matching in a distinguishable manner that improves the query optimizer and makes it 

extensible), which streamlines the adoption of any newly added SQL batch functionality in 

the future. The default mode of operation is micro-batching via fine-grained tasks [1] (i.e., 

using the discretized streaming execution model from Spark Streaming). SpSS semantics are 

based on incrementalization. In doing so, it treats the stream as an unbounded table, where 

every arriving tuple is appended to that infinite input table. User expresses a batch-alike 

query and the underlying SpSS engine translates that into an incremental query scheduled to 

be executed on the infinite input table. Results in the result table are updated based on a 

trigger (analogous to batch interval in Spark Streaming). 
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Likewise, SpSS uses fluent API that enables users to chain pipeline operators, allowing them 

to describe the input data source using method chaining, aiming at an enhanced code 

readability in a way that resembles a sequential written prose. We try here to uncover the 

peculiarity by which D-Streams and SpSS are operating internally throughout a unique 

anatomy which is elucidated in figure 2.3. 

 

 

 

 

 

 

 

 

 

 

 

Also, one more distinguished feature of SpSS is that it can easily manage stateful 

aggregations, not to be confused with batch aggregations, as the former means those 

aggregations with states that are incrementally evolving over time, in interactive settings 

(such as ‘counting by groups’), whereas the latter means having a single value (such as 

‘count’, ‘sum’) computed in a static batch mode . As we can see from figure 2.3, SpSS 

handles stateful aggregations by keeping aggregation states and midway results in fault-

tolerant state store (every worker node has its own state store instance), so as to invoke the 

state at every trigger and build aggregations upon it incrementally. By doing so, SpSS can 

continue from where it left off upon any non-intentional system crash. Internally, at every 

trigger, the computation of stateful aggregations compiles down to that of a MapReduce 

Spark job. 

All those traits make Spark (with all its constituting parts) a perfect match for complementing 

our architecture, achieving basically an important design goal of being able to apply the same 

 

Figure 2.3. Anatomy of Spark (Structured) Streaming 
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programming efforts in batch and interactive modes. In this thesis, we have decided to opt 

for SpSS as a reference system, since it outperforms counterparts (such as Apache Flink and 

Kafka Streams) by orders of magnitudes [6] . 

To our knowledge, there is no consolidated framework or system for managing streaming 

geospatial datasets. Existing systems, such as GeoSpark and Spark’s Magellan are designed 

to operate in batch modes (better suiting the batch and serving layers of Lambda-obeying 

architectures). All other efforts are either ad-hoc fixes or patches and glues that do not 

collectively form a comprehensive framework. However, libraries and frameworks such as 

Magellan and GeoSpark are compatible jumping off points for initiating a constellation of 

optimizations and a new breed of contributions toward a full-fledge online spatial processing 

engine. More theoretically, since, for example, Magellan is built on Spark SQL and since the 

optimizer of SpSS accepts a batch-alike query and automatically incrementalizes it on the 

unbounded input table, it is then evident that Magellan is a candidate for an optimization and 

can be efficiently retrofitted for spatial interactive queries (such as spatial online join 

processing). This is a significant contribution of this thesis as will be explained in chapter 6. 

In the next chapter, we explain in detail the general architecture of our system. 

 

  



SpatialDSMS: Spatial Data Stream Management System 

21 

 

Chapter 3 

3 SpatialDSMS: Spatial Data Stream Management System 

In this chapter, we start in § 3.1 by showing the type of analytics that novel systems should 

provide to be able to cope up with the QoS-demanding requirements of highly dynamic and 

scalable applications. We then, in § 3.2, explain the QoS attributes that we are supporting in 

our system, including a general methodology for measuring the accomplishment of QoS 

goals through services provided by our system. Thereafter, in  § 3.3, we recapitulate the 

importance of fusing scalable storage with fast analytics, promoting our architecture which 

we then introduce in § 3.4. 

3.1 Spatial Data Analytics in Highly Dynamic and Scalable Applications 

Applications in smart cities, Industrial Internet of Things (IIoT) and Industry 4.0 demand an 

awareness of specific dimensions that have been long treated as second-class citizens. Most 

dynamic applications nowadays are focusing specifically on location, where extra locational 

information offers support for optimized deep insightful exploration of data that leads to 

improving the overall quality of the service an information system is offering, aiming 

ultimately at enhancing the quality of our lives in many aspects.  The abundance of geospatial 

data streams has motivated several new application scenarios that would remain otherwise 

illusive. For example, a system for road traffic control that has been proposed by [26], which 

aims at lowering congestions and improving future city planning in a way that lowers the 

toxic emissions from vehicles. Other examples include, designing reactive and proactive 

solutions for monitoring environmental crises, such as hurricanes, animal herds and oil-spills 

[27] , air quality and pollen distribution [28]. Also, providing personalized location-based 

services (LBS) through the exploitation of location metadata in social networks  [29]. 

Additionally, fusing social data, such as tweets from the micro-blog service Twitter, together 

with trajectory data collected through GPS-enabled devices, in a data mining algorithm to 

cluster topics discussed by region [30] or visualize (by exploiting heat maps) planetary-scale 

or city-wide scale distributions of people communication activities [31] . In the same vein, 

[32] have designed applications for finding local Twitter influencers to detect local events 

by tracking their tweets. Moreover, complex mixed workload application scenarios, such as 
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applying representation learning for the analysis of cars driving behaviors [33], improving 

the bike sharing experience [33], and location-based recommendations [29]. 

What is then axiomatic in all those dynamic applications is that they require the acquisition 

of diverse spatial analytics. All query types related to location intelligence (a.k.a. spatial 

intelligence) are receiving more attention in the last decade or so. Our application scenario, 

discussed in section 1.1, requires passing through an end-to-end QoS aware spatial data 

processing system.  

Location intelligence is the process of deriving meaningful insights from geospatial 

data relationships, modelling the interaction of spatial objects with their surrounding ambient 

[34]. In achieving this goal, many spatial queries are common, from the simplest forms all 

the way up the pyramid to the most complex composable queries. Integrating Business 

Intelligence (BI) with location data has long history in yielding better ad hoc reporting 

experiences that benefits those businesses. The essence of this intelligence is composed of 

the capacity to organize complex huge data in a way that exploits geographical information 

in revealing hidden relationships between locations and events. Moreover, dynamic 

applications in smart cities are depending on visualizations (for example, heat maps) to 

understand hidden patterns in the data that are not normally shown through traditional tabular 

formats. Visualizations and other forms of dashboarding are the ultimate goals. However, 

reaching that point requires a spatially attuned end-to-end data stream management system 

that constitutes in-between transformations and analytics, which then resembles the 

architecture of our system SpatialDSMS (introduced shortly in § 3.4). In this section, we 

identify the most recurrent types of spatial analytics that can be executed in either one of two 

modes, batch or online, which collectively provide baselines that can be efficiently exploited 

in en-route to achieve locational intelligence with quality guarantees. 

The following is a list of the most common geospatial queries that we natively support in 

SpatialDSMS: 

1) Range spatial query (a.k.a. proximity queries). Range searches return the set 

of spatial objects that fall at a maximum specified range (e.g., radius) from a 

specific spatial object (most often referred to as focal point, query point or test 

point). An example spatial range search from our scenario is “finding people near 
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an accident location in range that is equal to 1K meters maximum”. We support 

range spatial queries for the batch processing (explained in chapter 4). 

2) Spatial join. In its general form, spatial join is a set of all pairs that is formed by 

pairing two geo-referenced datasets while applying a spatial predicate (e.g., 

intersection, inclusion, etc.,) [35]. The two participating sets can be representing 

multidimensional spatial objects.  An example spatial join query from our 

scenario in section 1.1 is “finding boroughs to which each GPS-represented 

spatial point (volunteer) belongs, a.k.a. geofencing”, which requires joining 

spatial points with a master table representing boroughs. 

In mathematic terms, given two sets A and B, a spatial join returns a set of pairs 

(a, b) that satisfy the formulation in (3.1) 

A ⋈𝑝𝑟𝑒𝑑 B = {(a, b) | a ∈ A, b ∈ B, 𝑝𝑟𝑒𝑑 (a, b) == true}.  (3.1) 

, where 𝑝𝑟𝑒𝑑 is the spatial predicate applied (e.g., touches, intersects, overlaps, 

etc.,). It worth mentioning that since proximity ordering is not preserved with 

digitized representations of spatial objects that are candidates of a join, relational 

join methods such as sort-merge join are not applicable. Also, equijoin (e.g., hash 

joins) is generally inapplicable in cases where spatial objects that are involved 

have extents. This can be mitigated with dimensionality reduction approaches that 

impose a spatial ordering, such as the application of z-order curves, thus 

projecting spatial objects into one-dimensional space (more about this in chapter 

6). 

Checking the join condition (a.k.a. predicate, such as ‘intersects’, ‘touches’, 

‘within’, ‘contain, ‘overlap’) is an expensive operation. As such, most well-

performing algorithms employ a two-stages approach that constitutes filtering 

and refinement (patterned after true-hit filtering approach [20] ). The former aims 

at pruning the search space by first applying a quick-and-dirty sieve (filter), 

performing a spatial join on approximations of the objects (typically MBRs, 

known as MBR-join [20]). In the refinement stage, incorrect results (i.e., false 

positives) caused by the approximations are removed using the exact geometry 

processor (i.e., the expensive predicate) that is applied on the [20]original objects. 

Spatial refinement dominates the cost of the whole join procedure, thus designs 
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should consider minimizing edge cases (we refer to those as Boundary Spatial 

Objects (BSO) in chapter 4) so as to relax the cost induced by applying it.  Spatial 

join is a primitive that acts as a pulsating heart in dynamic application scenarios 

that normally require intermixing geo-referenced datasets for deeper analytics. 

More on spatial join in chapter 6.   

A special case of spatial join is represented through containment (or inclusion) 

test that seeks whether a spatial object falls within the boundaries of the extent of 

another object or outside. 

We support two types of spatial join; static-static (i.e., deterministic), within the 

layers of SpatialNoSQL as explained in chapter 4, and stream-static (i.e., 

probabilistic), within the layers of SpatialSSJP as explained in chapter 6.  

3) Spatial clustering. Clustering algorithms basically aim at grouping identical 

spatial objects together into subgroups called clusters. From many types of 

clustering algorithms, density-based clustering [36] has picked up pace recently 

and is widely accepted for the overarching traits it provides. It is a class of 

clustering that basically works by separating spatially dense space regions from 

outliers, thus dense regions constitute clusters. A well-known method for density-

based clustering is DBSCAN [37] . However, tailoring such an algorithm for the 

parallel computing environments requires attention, as a naïve solution poses 

heavy network communication overhead. To cope with this challenge, related 

versions (DBSCAN-MR [38]  or MR-DBSCAN [39] ) have been tuned for 

parallel general-purpose big data workloads. Clustering is one of the most 

important data analytics activities [40] . We support density-based clustering 

within the layers of SpatialBPE as explained in chapter 4. An example spatial 

clustering query form our scenario in section 1.1 is “grouping volunteers, in 

specific proximity to incident location, by the level of training they possess” 

4) Spatial geo-statistics. We support two types of spatial geo-statistics. Those are 

Linear (a.k.a. single queries) and online aggregations (e.g., top-N). computing 

those queries in batch mode is straightforward. We alternatively aim at 

optimizing their execution in the streaming (i.e., online) mode, where we 

incrementalize the results of computing those queries, considering an unbounded 
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input stream. Incrementalizing those queries requires special attention specially 

for ensembles (e.g., Top-N) that normally encapsulate an online aggregation, 

which requires a costly state management. For single queries, we support 

statistics such as ‘average’ and ‘total’ of target variables as primitives. Other 

statistics can be estimated based on those primitives. An example spatial statistic 

query form our scenario in section 1.1 is “finding the average trip distance 

travelled by ambulances originating from specific regions in the city and ordering 

them in descending way”. We support spatial statistics within the layers of 

SpatialSPE  (the topic of chapter 5) and SpatialSSJP (the topic of chapter 6). 

5) K-nearest neighborhoods (kNN). It is an optimization proximity search 

problem (i.e., based on range search queries). Formally, given a set A of points 

in an embedding space S and a query point (a.k.a. test point) q ∈ S, kNN seeks to 

find the c ≥ 1  number of points forming a subset B such that all points in B are 

closest than all other points in the remaining subset (A – B). Stated another way, 

every point in A but not in B is at least as far away from q as the furthest point 

in B. More mathematically, given a query point q, a set of c ≥ 1 nearest neighbor 

to q is B, where B ⊆ A such that ||S|| = c and ∀ point pi ∈ (A – B), 

EuclideanDistance (q, pi) ≥ max
𝑞𝑝 ∈ B

(𝑞, 𝑞𝑝). We support kNN for batch mode within 

the layers of SpatialNoSQL as explained in chapter 4. An example kNN query 

form our scenario in section 1.1 is “finding the nearest 10 volunteers around an 

incident location”. 

Other primitives that we do not support natively but are easily composable from our baseline 

primitives include the following: 

6) kNN join. kNN join sets on the confluence between kNN and spatial join. 

Formally, having two geo-referenced datasets A and B, kNN join generates c ≥ 1 

closest neighbors in B for every object in A. More theoretically expressed in (3.2).

 A ⋈𝑘𝑁𝑁 B = {(a, b) | ∀a ∈ A, ∀b ∈ B, 𝑘𝑁𝑁 (a, b, k) is true}.  (3.2) 

In other terms, kNN join can be loosely defined as finding all kNN objects 

(belonging to a spatial data set) for every object of another spatial set. This 

operation is extremely expensive as it combines the complexities of two complex 



SpatialDSMS: Spatial Data Stream Management System 

26 

 

spatial query processing operations, spatial join and kNN. An example kNN-join 

from our scenario (recap section 1.1) is “selecting k-nearest well-trained passing-

by medical staff members and ordering them by their location in relative to many 

incidents having emergencies at same time”. This intrinsically encapsulates two 

spatial datasets, volunteers and locations of many incidents (or patients with 

sudden health problem attack), such that for every incident the algorithm selects 

k-nearest volunteers that satisfy all spatial query predicates.  

kNN-join traditionally constitute three main steps. Those are data partition, 

candidate selection and kNN join steps, which can be realized with MapReduce 

[41]. Authors apply Voronoi diagrams as  a tessellation method in the partitioning 

step (mostly a map transformation), whereas the candidate selection step 

constitutes some algebraic calculations based on the Euclidean distance basically, 

then a join is applied ( a reduce action in Spark terms) to join the candidate set 

with partitions. We do not natively support kNN join, but we provide all the QoS-

aware spatial analytical primitives for easily constructing an efficient kNN join 

algorithm. 

We directly support baseline spatial analytics primitives that are the most important of the 

myriad of spatial data analysis activities. We also posit that other workloads are composable 

and can be efficiently stacked-up the pyramid. By those supports, we aim at a modular system 

design to manage streaming spatial data in a coherent way. To achieve this goal, we have 

designed SpatialDSMS, comprising highly-efficient algorithms in batch static modes and in 

streaming modes where data arrives in a high pace into the system. In the next subsection, 

we define the most recurrent QoS attributes that we support in our system. 

3.2 Quality of Service Goals 

In life-critical applications such as healthcare, it is very important that services provided by 

a data management engine meet a prespecified set of SLAs that intrinsically encapsulate QoS 

goals. Common metrics of the performance of a DSMSs in meeting QoS requirements 

include, most importantly, latency/throughput, accuracy and resource utilization. Quality 

attributes constraint system functionalities, specifying a qualification (a.k.a. annotation) on 



SpatialDSMS: Spatial Data Stream Management System 

27 

 

how those functions are performed. Such as constraining a spatial query to be performed 

with a low-latency. 

Distributed big data management systems should treat QoS-awareness as a first-class citizen 

when designing their services, such that they serve in accordance with QoS properties of the 

SLAs. Achieving this goal is specifically challenging as it necessitates intelligently trading 

off several contradicting factors. A problem that is further inflated when operating in a 

fluctuating data stream setting, where data arrival rates oscillate between normal and peak 

bursts (sometimes fierce), the fact that those figures are unknown a-priori in real-time 

scenarios could be to blame.  

There are QoS metrics that are based on time. For example, throughput and latency.  

• Throughput. It is loosely defined as the count of streaming tuples that can be 

processed with specific computation resources during a time period. The goal is 

normally high-throughput.  SPEs normally work by implicitly catching up with the 

oscillation in the data arrival rates aiming to maximize the throughput. 

• Latency. Is the total time required for processing all tuples arrived during a 

continuous query (CQ) running  session in an end-to-end fashion (i.e., passing 

through all the operators of a DAG operator graph) from the moment data hits the 

front-stage of the DSMS coming from a stream ingestion system until results are 

served to the user, where user chooses to stop the CQ or result outputs to the sink of 

the data flow graph describing the stream processing operations. The goal of the 

latency QoS is always lowering it. 

Another QoS metric depends on the accuracy of results obtained such as: 

• Estimation quality. If the scenario needs approximation, such as depending on 

samples instead of the population, error-bound tied to such an approximation 

determines the estimation quality. Higher estimation quality is the goal in this case. 

Also, one more QoS metric we consider in this thesis is: 

• Computation resource utilization. Computation resources are assets. The 

abundance of extra computing resources does not necessarily mean overprovisioning 
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them (or under-provisioning them). Those resources are normally shared between 

various workloads and a QoS aware DSMS should seek to achieve a high resource 

utilization. 

Those four QoS metrics are contradicting and solving for all collectively enforces a tradeoff 

that can be optimized to a specific degree. It worth mentioning though that some DSMSs are 

working on “best effort” basis where they do not necessarily meet the QoS goals (especially 

time-based goals), they otherwise work to their maximum capacity trying to achieve as close 

to the goal specified as possible. Some other DSMSs are designed to guarantee a prespecified 

set of QoS goals by normally applying cost models so as to reactively (or proactively) 

guarantee the QoS goals. However, it worth mentioning that current DSMSs are designed to 

operate in a “best effort” fashion, thus not always being able to guarantee QoS goals specified 

by the users. A problem that is inflated in spatially-heavy streaming data loads. We otherwise 

aim at a system that can meet a prespecified list of QoS goals, and also can strike a plausible 

balance between the contradicting QoS goals. In the next subsection, we explain a general 

methodology that we apply for measuring the ability of the services we provide in this thesis 

to meet the QoS goals. 

3.2.1 Methodology for Measuring the Achievement of Quality-of-Service Goals  

We adopt the following methodology in measuring the ability of each component (i.e., the 

skill) in achieving a prespecified list of QoS goals. We take a scenario-based methodology. 

We call our method cause/effect-tactic-measure. 

The cause is the event that causes a QoS issue to arise. The effect is the effect of the QoS 

issue which has happened because of the cause. Tactics are the responding mechanisms that 

we have supported through SpatialDSMS for mitigating the effects (i.e., reversing them). 

Measures are the metrics we impose to measure the ability of every approach (i.e., from the 

tactics) in achieving the QoS goal. 

Categorizing tactics this way allows a more systematic architectural design. Tactic selection 

decision depends on which way it affects the tradeoff between the participating QoS goals, 

and also the overall overhead of adopting this technique and whether it is mitigated in a way 

that renders its adoption beneficial. In other words, the cost of incorporating it does not 

counteract its benefits. This is because the pattern applied is a trending layered pattern, where 
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stacked up layers normally add complexity and up-front running costs to the system. Causes 

include spatial characteristics nature (e.g., skewness, arrival rate fluctuation). Effects include 

low performance (i.e., in terms of time, throughput, resource utilization, estimation quality). 

Tactics include element-level optimization, adaptation and approximation. Measures include 

performance gain, speedup, estimation quality etc. Figure 3.1 shows the workflow of the 

method. 

 

 

 

 

 

 

 

 

 

3.3 Scalable Storage and Fast Analytics: Better Together 

The highly dynamic and scalable application scenarios such as our case scenario (discussed 

in section 1.1) led to the emergence of our system SpatialDSMS, which resolves the 

limitations of Lambda architecture, taking advantage of the underlying architecture without 

its limitations. It is evident that no system can alone survive such highly scalable application 

scenarios that require a mashup by fusing diverse analytical activities in an interconnected 

fashion, where the output of a stage feeds another constituent part in an endless fashion, or 

workloads are continuously mashup. This in its essence means the tight coupling between 

disk-based storage and online analytics. They collegially complement each other, and real 

applications need them both in a coherent analytics pipeline. 

Two distributed paradigms are gaining more attention. Scalable distributed storage based on 

NoSQL such as MongoDB [2, 9] and distributed batch and stream processing systems such 

 

Figure 3.1. cause/effect-tactic-measure for spatially-attuned QoS awareness 
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as Apache Spark [1]. Current spatial plugins and frameworks that are based on those systems 

are introduced as marvelous tools that can extract deep insights from massive amounts of 

digitized spatially-represented datasets. However, they are mostly ad hoc patches and glues 

that constitute repeated and dispersible efforts that exploit different structures for same 

targets, causing efforts to fade in a maze of software packages that are hard to consolidate in 

a coherent structure. On the contrary, a coherent architectural design is needed, which assures 

that subsequent efforts are conveniently stacked up in a fashion that unifies spatial structures 

and analytics under one language, aiming ultimately at a robust collaboration for creating 

new knowledge not inherent in the input spatial sources.  

It also worth mentioning that the literature lacks a distributed system for stream interactive 

spatial analytics (for which we offer SpatialSPEs, the topic of chapter 5).  

Mixed workloads identified through empirical investigation show that the notion of “better 

together” applies in this context and require systems to co-work in a complementary manner. 

No system can alone handle all types of workloads or keep up with the pace of data 

fluctuation. Having said that, we posit that integrating features form NoSQL systems with 

batch processing layers from systems such as Spark and integrating both semantically with 

speeding analytics services such as Spark Streaming has a sizable impact that achieves better 

qualities. In the next subsections, we showcase the architectural design of SpatialDSMS. 

3.4 SpatialDSMS Overview 

In this section we showcase the design process of our system SpatialDSMS, starting by the 

design goals, and then showing the architecture followed by the scope under which the 

system operates. 

3.4.1 Architectural Design Goals 

The architectural design goals we achieve in this thesis are the following. 

• Modularity.  We design a system that is constituting of multiple components 

operating collaboratively in a way that allows them to be plugged in/out in a hot-

swappable fashion (i.e., can be separated and recombined), thus enabling more 

flexibility as we are considering highly dynamic mixed workloads that require 

various types of treatment. We have achieved this by implementing our methods 
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and algorithms as patches or glues that are tightly interfaced and tied to state-of-

art de facto standard systems, thus exploiting the underlying functionalities 

without reinventing the wheel and leaving logistics handling to codebases of the 

underlying ecosystems (specifically, Apache Spark [1]  and MongoDB [2] in this 

thesis). This was possible because the underlying systems are modular by design 

and our patches compile down to appropriate abstractions that exploit underlying 

functionalities without additional efforts. 

• Elasticity. We offer a variety of operation modes, ranging from exact closed-

form solutions to probabilistic approximations, depending on the application 

scenario aiming at achieving a prespecified list of quality constraints including a 

tradeoff between the result’s accuracy and latency/throughput. 

• Dependability. We aim at efficiently handling scenarios with oscillating and 

fluctuating data arrival rates that normally exhibit temporal skewness, 

specifically for highly dynamic and scalable application scenarios fully loaded 

with multidimensional geospatially-tagged workloads. 

• Composability. We aim at offering baselines that can be combined collectively, 

or in a mashup fashion to solve most interesting highly dynamic application 

scenarios, rendering them composable from the baseline primitives that we 

provide.  

• QoS guarantees. We ensure that the system runs within the boundaries of the 

specified budget expressed as latency/throughput and accuracy guarantees goals. 

In addition to maximizing the resource utilization.  

More design goals that belong to specific sub-systems are explained in section 4.3. 

Aiming at achieving these goals, we have designed SpatialDSMS (short for Spatial Data 

Stream Management System) that is explained in the next subsection. 

3.4.2 SpatialDSMS Architecture 

Despite being a promising direction that has been adopted heavily in the literature, because 

it achieves several QoS goals (i.e., high accuracy, low latency) while operating over 

massively fast arriving data streams, we posit that Lambda architecture suffers from many 

limitations that hinders its adoption in geo-referenced fast arriving streaming data loads that 
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normally exhibit temporal skewness and fluctuation in arrival rates. Perhaps most 

significantly is the fact that sending same data loads to two distinct storage (i.e., one is batch 

and the other one could be the fast memory in the speed layer) media overburdens the 

communication and I/O components. Also, combining current data loads (i.e., streams) with 

historical archives (i.e., disk-resident), normally using a stream-static join operator has not 

been addressed. The lack of consolidation and orchestration between the two layer’s storage 

stacks easily causes an overhead that is carried to any custom management effort at the 

processing layer. Moreover, Lambda architecture is a general architecture that is not 

attunable with the nature of data that is arriving from heterogeneous data streams, rendering 

its adoption as-is inappropriate for spatially-laden scenarios. However, Lambda architecture 

is not a panacea, but otherwise serves as a simple place that has inspired us to design a novel 

architecture for spatial data stream loads. We aim at enriching such an architecture with QoS-

aware optimizations that are attuned to the nature of the arriving data streams (spatial in this 

case). We aim at transplanting and injecting QoS and spatial awareness transparently within 

our architecture so that the user in the presentation layer benefits from the overall 

optimizations provided without the need to reason about the logistics in the underlying 

layers. 

One distinction also departing from Lambda architecture is that in our architecture, in 

addition to stream (i.e., data-in-motion) data, we allow input data to come as batches (i.e., 

static, data-at-rest), which could be coming from other sources or legacy systems or even 

master tables from data lakes or data warehouses. In this way, we guarantee further flexibility 

that allows systems to operate with ease in highly dynamic environments that request, 

sometimes unprecedented, mixed workloads. 

In this thesis, we have designed an end-to-end QoS-aware data stream management system 

for the management of mixed workloads of massive amounts of geo-referenced data loads 

arriving endlessly through heterogeneous fluctuating streaming channels. We dub our system 

as Spatial Data Streaming Management System (SpatialDSMS hereafter for short). 
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The context diagram of figure 3.2 depicts a high-level architecture of SpatialDSMS’s 

workflow. Geo-referenced data is coming from heterogeneous sources, to be then served as 

an unbounded input table (in SPEs terms) at regular basis (e.g., batch intervals, a.k.a. trigger 

intervals in SPEs terms). At a front-stage resides an interactive interface that confronts users 

with scalable options depending on the application scenario. For example, the user can either 

opt for exact processing or approximate processing. Storing data efficiently in a distributed 

environment before processing it or processing it on-the-fly. All in all, depending on the 

user’s selection, the system takes care of the underlying spatial-aware data management 

logistics with QoS being natively incorporated, thus not requiring the user to reason about 

the underlying logistics that are related to the QoS. 

All parts constituting our architecture are heavily discussed in their corresponding chapters. 

On the biggest picture, our architecture resorts to a layer pattern as shown in figure 3.3. Other 

patterns apply implicitly from the underlying architecture. For example, pipe-and-filter 

pattern applies from Spark core. 

 

Figure 3.2. SpatialDSMS Overview 

 

 

 

 

 

 

 

 

 

 



SpatialDSMS: Spatial Data Stream Management System 

34 

 

 

 

 

 

 

 

In the next subsection, we discuss the presumptions and assumptions under which 

SpatialDSMS is operating. 

3.4.3 Scope of Operation 

Many QoS-aware tactics exist in the literature, including adaptivity, elasticity and 

approximation. Those techniques aim mainly at achieving a prespecified list of QoS 

properties expressed through SLAs. In this thesis, we focus on adaptivity and approximation.  

Elastic computing clusters, in which it is more of a default that there are standby computing 

resources (e.g., executor cores and secondary or main memory resources) to be added 

dynamically, is outside the scope of this thesis. We only consider parsimonious (stingy or 

frugal) resource-constrained cloud or in-house cluster computing deployments.  

We design our system SpatialDSMS so that it operates under the following assumptions. 

• We consider data stream sources with the following characteristics. i) data loads are 

spatial, which in this thesis is either geometrical planar (i.e., Euclidean plane, flat 

surface) coordinates (coming, for example,  from sensors operating on Global 

Positioning System, GPS) defined as latitudes and longitudes (i.e., points), or shapes 

fenced by virtual boundaries representing lines between spatial points, such as 

polygons. ii) source streams use the push model to push their data to receivers in the 

ingestion layer, receivers never pull the data. The stream is unbounded and there is 

no such thing like a “point in time” defining the end of streaming. iii) data is hitting 

the ingestion receiver only once (i.e., need to be processed in single pass) and data 

tuples are non-replayable. iv) data loads are temporally oscillating and fluctuating in 

skewness, meaning that the skewness and size are unpredictable.  Because of those 

 

Figure 3.3. layered pattern of SpatialDSMS 

 

 

 

 

 

 

 

 

 

 



SpatialDSMS: Spatial Data Stream Management System 

35 

 

characteristics, Continuous Queries (CQ, a.k.a. online queries) are fundamental, 

expressed through a Continuous Query Language (CQL). 

• Continuous Queries (CQ) are expressed using the fluent API of Spark SQL. They are 

mapped by the underlying optimizer into a Directed Acyclic Graphs (DAG) 

consisting of diverse operators (i.e. join) running against micro-batch tuples arriving 

at each window. Results are incrementalized in the sense that they are improving after 

each batch interval, which is also known as incremental stream query evaluation 

[42]. 

• We rely on tumbling time-based window semantics, where a sequence of unbounded 

micro-batches hit an ingestion layer (could be a buffer or a specialized system such 

as Apache Kafka [43]) with tuples during a time interval (i.e., window).  Tumbling 

windows differ from sliding windows in the sense that they do not overlap. 

• We deploy our experiments, for batch and streaming modes, either in a private in-

house cluster or a Cloud. We do not put any considerations on the type of processing 

nodes or memory architectures.  High resource utilization is a common QoS goal in 

server-based and Cloud deployments. We also do not put any considerations on any 

additional overhead incurred by the communication between the stream sources and 

the processing infrastructure (i.e., in Cloud or cluster). Further, possible deployments 

on Fog infrastructures are outside the scope of this thesis. 

• The type of parallelization we consider is data parallelization (a.k.a. data-level 

parallelism or DLP for short, as opposed to task-level parallelism, or TLP for short 

[44]), where instances of DAGs operators are dispatched to the workers of the 

computing cluster. Then, a data partitioning scheme is applied to distribute arriving 

data to the fast memory of the workers, thereafter each operator instance performs a 

local computation and returns the result to a coordinating node (known as master).  

• We only consider optimizing partitioning strategies for the batch processing (as 

described in chapter 4). We avoid touching those in the streaming analytics as the 

partitioner can become a bottleneck if the input size is very high.  Since we need 

strategies that can keep up with the pace of burstiness in data loads, the best resort is 

approximation as it does not require re-partitioning. 
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• From many types of spatial information, we consider static spatial points, polygons 

and trajectories. Static points are those points that are incorporated as additional 

information with a spatial object. Such as locational data that are added as metadata 

to ‘tweets’ in Twitter micro-blogging system, those data do not change over time. On 

the contrary, trajectories are information generated by objects in-motion, where 

temporally varying object location is associated with corresponding timestamps, thus 

constituting an array of static spatial points that collectively form a trajectory. We 

also consider static spatial regions that do not move or evolve over time, such as 

districts or boroughs in a city (hereafter polygons synonymously). 

We believe that those assumption does not affect the generalizability of our systems and 

algorithms that we present in this thesis. In the next chapter we introduce two sub-systems; 

SpatialBPE and SpatialNoSQL for distributed batch processing and scalable distributed 

storage of big spatial data, respectively. 
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Chapter 4 

4 QoS Aware Distributed Batch Spatial Query Processing 

4.1 Introduction 

In this chapter, we describe the methods we have designed throughout SpatialDSMS for 

supporting quality of service goals in batch processing workloads. As the data coming from 

streaming sources hits the data ingestion engine, the user may opt for , depending on the 

scenario, storing (part of) the arrived data ‘as-is’ (thus supporting the construction of data 

lakes) in a persistent storage backend or in an optimized reformatted NoSQL fashion, thus 

providing more flexibility, interoperability and scalability. Those materialized data 

snapshots are then used for offline batch processing in support for interactive analytics. For 

example, prediction models work better in offline mode and there are, as far as we know, no 

online predictive machine learning or deep learning models that outstrip offline counterparts 

in terms of accuracy. As such, those analytics are performed offline in batch modes and 

results support the online part. 

This chapter is organized as follows. We first describe data partitioning in distributed 

systems in § 4.2, this is followed in § 4.3 by explaining three partitioning goals that are most 

recurrent in the relevant literature. We then in § 4.4 classify the traditional distributed data 

partitioning methods, focusing on their limitations that led to the emergence of state-of-art 

spatial partitioning methods discussed in § 4.5. Thereafter, in § 4.6 we show a general view 

of a spatial data batch processing system , and in §  4.7 we present SpatialBPE that we have 

designed for spatial batch analytics in big data frameworks, proceeded by storage-oriented 

counterpart SpatialNoSQL that we have designed for NoSQL scalable storage as discussed 

in 4.8, both constituting integral parts of SpatialDSMS. 

4.2 A Primer on Distributed Data Partitioning 

From the many parallelization methods available in distributed computing environments, we 

focus specifically on data parallelization. It is loosely defined as applying several instances 

of an operator (from the DAG graph) on several partitions of the input data parallelly, such 

as each partition is processed by a single instance. Data from sources is first partitioned using 

a partitioner into several chunks that are disseminated to parallelly connected computing 
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nodes (i.e., worker nodes). After each operator finishes its designated task (same operation 

applied by all instances to different data partitions), it emits an output that is collected 

together with outputs from other operator instances into a coherent piece using a combiner 

which then outputs the final result to the user or forwards it as an intermediate result to be 

ingested by other operators downstream (i.e., complementing the DAG). Figure 4.1 depicts 

a typical architecture of a parallel data management system and the mechanism of data 

parallelization. 

 

 

 

 

 

 

What is common among all frameworks that apply this model is that there is a splitting (a.k.a. 

partitioning or sharding) and combining stages. The decision on the mechanism used for 

splitting is important and may have serious impacts on the overall system performance. We 

posit that splitting methods should be chosen carefully to increase benefits while minimizing 

adverse effects. More precisely, it is often the case that dynamic and scalable application 

scenarios require designing special custom partitioning (splitting) methods that consider, 

most importantly, the nature of data being treated. 

4.3 Spatial Data Partitioning Goals 

Current distributed computing systems have one intrinsic problem in common, which is the 

fact that they are all designed to capture and handle generic workloads, thus are unaware of 

the nature of data they are handling. Consequently, not being attuned to the data 

characteristics may degrade significantly the performance achievements to points that 

sometimes undo the benefits of parallelization. 

 

Figure 4.1. An exemplar architecture of a distributed processing system 
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As the core idea of “bringing computations to data” depends heavily on the fact that “data is 

appropriately apportioned”, which has been mistakenly long explained as a resemblance for 

“load balancing”. Appropriate data splitting does not necessarily imply sending roughly 

same data loads to every partition in parallel (thus the term ‘load balancing’). Our experience 

with dynamic and scalable application scenarios (such as the envisioned scenario of section 

1.1) posits that “load balancing” alone cannot normally achieve the QoS goals desired by the 

user (as defined in section 3.2). 

Most important quality requirements that affect the design of a partitioning strategy include 

the following: 

1) Interoperability. In highly dynamic and scalable application scenarios, 

interoperability plays a pivotal rule in allowing a better consolidation. Data normally 

originates in heterogeneous sources with different formats and structures. 

Consolidating all sources under one umbrella that unifies the structure is essential 

and allows a better interoperability that eases the process of moving data around and 

consuming it by diverse access tools, and enables a streamlined jumping across the 

systems that constitute all layers of our architecture. For example, the on-the-fly 

indexing structure that is used for speeding up the interactive processing of stream 

data should be the same as the one that is used in the serving and batch layers so that 

snapshots of stream data seamlessly flow along the pipeline without the need for 

restructuring. For example, using grid representations with ordering (e.g., z-order 

curves) structures for both the speed and serving layers (e.g., Spark Streaming and 

MongoDB, respectively). Additionally, having the same data structures representing 

different workloads simplifies spatial queries that incorporate a join that is necessary 

to be performed between different data sets (potentially residing in different storage 

media). For example, reiterating our case scenario from section 1.1, an interactive 

query may request “finding all incident locations (regions) where more than 50 

volunteers in-motion (dynamic spatial objects) are around within 2 miles “. Using the 

same representation structure (for example, grid-based imposed with an ordering 

such as z-curves) for volunteers (as a stream of spatial points) with regions (a static 

master table, perhaps polygons with same representation structure) can simplify the 
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stream-static join (a.k.a. geo-fencing, explained in chapter 6 in details) processing by 

simply overlaying maps (spatial points map and regions map) and the join is done 

gracefully. The overlay enforces a containment join predicate. Moreover, by 

achieving this goal, we intuitively avoid repeating the same logic for several 

workloads and we also avoid the complexities associated with orchestrating the 

operation of several system units. This also simplifies writing codes that easily jump 

across operating frameworks of different kinds. 

2) Scalability. In highly dynamic and scalable application scenarios, arrived data show 

high temporal skewness and fluctuation. This requires the system to be highly 

scalable in order to cope up. Stated another way, in distributed data management 

terms, this means scaling in/out or opting for approximate solutions depending on the 

scenario. Scaling out seamlessly means provisioning extra processing power, storage 

capacity and appropriately distributing the data and workloads. The choice should 

account for repartitioning scenarios, where data need to be repartitioned in case of 

dynamic allocation (provisioning extra resources or de-provisioning). This normally 

confluence with the costly challenge of rebalancing partitions, where in such cases 

the system starts to show undesirable state causing hotspots (i.e., partitions with 

disproportionate volume of traffic) to appear. Rebalancing simply means migrating 

data between partitions so as to balance loads. There are two modes of migration, 

online and offline, where the former allows migrating data while partitions are in-use 

by some operators, whereas the latter is more disruptive as it requires marking 

partitions unavailable during migration.  Both modes deteriorate the overall QoS 

goals, mostly rendering the system unable to meet time-based QoS goals such as 

latency and throughput. Having said that, a successful partitioning strategy should 

aim at minimizing the shuffling during migration. This can be achieved by better 

trading off three goals that are described shortly. 

We have identified three contradicting goals focusing specifically on spatial data 

partitioning, which determine the QoS of big spatial query processing. i) Load balancing, 

which is the process of de-clustering data loads in a way that guarantees an even distribution 

among all partitions, thus mitigating data skewness. While this is efficient for general-
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purpose data loads, it is insufficient for geospatial datasets. Spatial data loads often show co-

location continuum relations. We refer to this characteristic as ii) Spatial Data Locality 

(SDL) preservation. Preserving this co-location feature is essential for an optimized big 

geospatial data analytics performance. By achieving SDL preservation while splitting data, 

the partitioning strategy aims at minimizing cross-partition spatial data access operations. 

For example, proximity-alike spatial queries normally require accessing spatial tuples 

(representing objects) that are geometrically-nearby. By being able to preserve such a 

proximity relation while splitting data, by for example sending geographically-nearby 

objects to same partitions, the system axiomatically reduces cross-partition access as it only 

accesses some partitions that host appropriate objects. The partitioning scheme should also, 

for the same purpose and at the same way, aim at minimizing cross-partition joins. iii) 

Boundary Spatial Objects (BSO) minimization. Imagining the earth flattened out (a.k.a. 

Euclidean space or flat surface) and split into cells (forming a grid network). We refer to 

spatial objects residing exactly on borders between cells as Boundary Spatial Objects (BSO). 

Accounting for those in a partitioning scheme is specifically challenging, as it imposes extra 

processing overhead on the system. Specifically, if BSOs constitute a large portion of the 

spatial dataset. This can be extremely detrimental to the processing operator in cases such as 

join processing, especially that most well-performing join algorithms are based on filter-and-

refine approach, where processing BSOs (a.k.a. edge cases) in the refinement stage requires 

applying the real geometry processor which is computationally expensive and turns 

prohibitive in extreme scenarios. 

An efficient Spatial Data Management Engine (SDME) targets at allocating roughly equal 

weights of spatial objects to processing elements, preserving, as much as possible, the SDL 

by grouping geometrically-nearby objects within same subdomains, and minimizing BSOs. 

To achieve those, various works of the literature have designed spatial-aware custom 

partitioning strategies that collectively provide top service layer for solving some of those 

goals in a way that guarantees an acceptable degree of balance between them as discussed 

hereafter. We evaluate representatives of those works based on the three goals mentioned 

above. We first review classical data partitioning methods, as complex spatial-aware 

methods are based on them. Afterwards, we provide taxonomies for spatial-aware 

partitioning schemes. 
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4.4 Traditional Big Data Partitioning Schemes 

In traditional distributed data management systems, the two most common partitioning 

strategies are: horizontal and vertical. i) Horizontal partitioning (a.k.a. sharding). All 

partitions (a.k.a. shards) share the same data schema, with each partition hosting a subset of 

the data. Accessing items horizontally apportioned is more challenging than other schemes, 

because all partitions share the same schema. This however is amortized normally by 

designing appropriate access structures (i.e., indexes). In this thesis we focus on horizontal 

partitioning. ii) Vertical partitioning.  In columnar databases, each partition host a group of 

fields (columns in RDBMSs terms). The way division is decided is normally based on the 

access pattern, such that most frequently accessed fields are placed in a partition while others 

are hosted in other partitions.  

Horizontal data partitioning can be then classified into three schemes as the following: i) 

range key-based data partitioning. It splits tuples based on a specific range of a partitioning 

key, where each operator instance is assigned non-overlapping key range such that each 

portion of data that are having that key range are forwarded to the same partition. Initial data 

assignment tends to be highly imbalanced because some keys are more common than others 

in real applications. Hence, the selection of the partitioning (a.k.a. sharding) key is pivotal to 

avoid sequential query scans, by only visiting some partitions for a query. This method is 

better suited for stateless operators if applied in interactive stream processing systems (i.e., 

not appropriate for online aggregations which are stateful operations). ii) hash data 

partitioning. It employs a hash function to partition data, where same-group data share the 

same hash value (i.e., hash range). In this case, depending on the application and the adopted 

hash function, data locality might not be well preserved. Also, initial data distribution tends 

to be imbalanced.  If hash function is selected appropriately, hash benefits the parallel hash 

join immensely. iii) Random and round-robin data partitioning. It partitions data based on 

a given equation, where every tuple in turn is assigned to a partition randomly or sequentially 

(for example, in a clockwise direction). The merit of this method is an even data loads 

distribution [45] . However, SDL is lost, and a query search needs to scan all partitions [46].  

If used online, this partitioner is not suitable for online aggregations (i.e., stateful), it is only 

used for stateless operators, that process data chunks independently. 
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Those schemes are explained as if they were operating on batch workloads that need to be 

processed offline. However, the story in interactive settings is different. SPEs use a 

combination of those batch partitioning models with other semantics to split data 

continuously as they arrive. Micro-batching models do not follow the same partitioning 

schemes as record-at-a-time models. The former treats the streaming loads pretty much the 

same way as if they were batches that are processed statically, hence the term “micro-batch”. 

For example, in Spark Streaming, a receiver accumulates stream data at every time interval 

(i.e., batch interval) into micro-batches (e.g., small RDDs in Spark terms) using a block 

manager (i.e., technological block in Spark core) and then partitions every micro-batch the 

same way as if it was a static load, using the default partitioner or a user-preferred partitioner.  

Non-relational systems, MongoDB natively supports range and hash data partitioning. The 

default is range data partitioning, where nearby documents (analogues to tuples in RDBMSs) 

with close key values are placed on the same partition (i.e., shard in MongoDB terms). Being 

column-oriented databases, HBase and Cassandra apply vertical partitioning approaches.  

It worth noticing that partitioning in processing-oriented ecosystems is not profoundly 

different than that of storage-oriented systems. However, partitioning is performed in-

memory after the Map stage and just before the Reduce stage in an ad-hoc style (i.e., on-the-

fly), where each data partition is passed to a single Reduce stage. Spark default partitioning 

scheme is a hash data partitioner. It also uses range data partitioning among others [47] . 

Spark provides a mechanism to custom data partitioning for performance tuning in specific 

application domains. For batch-oriented systems, Hadoop [10]  supports hash data 

partitioning and others.  

As noticed, round-robin is not widely accepted by big data distributed management systems. 

The reason is that although it ensures load balance, data locality is not well preserved, and 

any query naively scans all partitions. In other words, there is no chance to apply aggressive 

pruning (i.e., where only specific partitions are scanned). On the flipside, hash and range 

partitioning strategies preserves locality better than that of round-robin, thus widely 

accepted. Round-robin, hash, and range are one-dimensional partitioning methods, rendering 

their ‘as-is’ application to multi-dimensional spatial datasets inconvenient. Therefore, spatial 

partitioning methods are required, which is the central discussion of the next subsection. We 
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first recapitulate data structures that support spatial data partitioning, thereafter we briefly 

review trending spatially-attuned data splitting schemes. 

4.5 Spatial-aware Distributed Data Partitioning  

Traditional data partitioning methods were designed for general data structures. However, 

they are unaware of specific characteristics of spatial data. We first review the most common 

spatial partitioning approaches and build taxonomies for their application in modern big data 

management systems. Afterwards, we identify their pros and cons regarding the three goals 

mentioned in section 4.3. 

4.5.1 Multidimensional Data Structures Supporting Spatial Data Partitioning 

First, we summarize multidimensional data structures that support spatial data partitioning. 

Performing spatial analytics on highly dynamic big data streams require two stages, space 

representation (two alternatives are common, data-dependent or independent) and access 

data structures. The former step is representing the space where points are drawn from using 

a data structure such as grids, whereas the latter is responsible for selecting appropriate data 

indexing structures (a.k.a. access structures) for speeding up the access at query run-time. 

We focus on indexing structures that are used for both spatial points and shapes (such as 

polygons). Space representation implies a division structure that is either data-dependent or 

space-dependent [48].  Stated another way, space representation is followed by imposing a 

data access structure on the representation for speeding up the scans. There are two types of 

spatial representations, deterministic and probabilistic.  

One of the most widely used and accepted deterministic representation structures are 

hierarchical representations such as grid-based and tree-based structures 

1) Grid-based representation structures [49, 50] . As its name implies, in two 

dimensional spaces (imagining the earth flattened out) it partitions the embedding 

space (the geometric space where geospatial data resides) into grid-shape 

(rectangular or squared) cells by placing a grid over it (i.e., overlaying it).  A 

pointer is referencing a data structure (e.g., an array) that hosts the real elements 

(spatial objects) of a specific cell. 

2) Tree-based representation structures. An example in this category is quadtrees 

[51]  and k-d trees [52]. They basically work by dividing a two-dimensional 
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planar geometry (i.e., Euclidean) recursively into four rectangular parts. The only 

way to return a query result from data distributed with a tree structure is to 

traverse tree nodes, this implies that an optimization should seek minimizing, as 

much as possible, the visited nodes during run time. 

3) Ordering-based representation-enriching structures. An ordering is normally 

assigned to cells in a grid decomposition, and thereafter a tree-based access 

structure (e.g., B+-tree) is imposed on the ordering. Ordering is a 

multidimensional reduction approach that projects multidimensional cells into a 

one-dimensional space. From many types of ordering we focus on the family of 

z-order curves (a.k.a. Morton orders).  Simply put, an ordering is an enhanced 

representation employed after other representations. It worth mentioning that 

ordering per se is not a representation structure that can be used alone, it lends 

itself otherwise as a helper that can enhance preceding representations so that the 

access is sped up. Ordering helps in deciding the traversal order of grid cells. 

Variations to Morton ordering include methods that map the grid into geocodes (for example, 

geohash). Those codes if sorted (e.g., in an ascending order) results in an ordering that is 

equal to the order of visiting leaf nodes (i.e., representing grid cells) of a tree (e.g., quadtree) 

representation.  

A special application of Z-order curves is geohash 3, where the ordering imposed on the grid 

space is z-shaped, geocodes generated are strings where a shared prefix signifies 

geometrically-nearby spatial points, where longer shared prefix means objects involved are 

closer in real geometries. Geohashing is exemplar in quick-and-dirty proximity searches (i.e., 

working as a quick-and-dirty sieve). 

After representing the spatial object (being point, region, etc.,), an access structure (i.e., 

index) is imposed on the representation to speed up spatial search queries (e.g., range). Most 

common access structures that are associated with hierarchical representations include 

 

 

3 http://geohash.org/ 
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arrays, where each element of the array references a cell in the grid representation. Also, tree 

indices (such as B+-trees and PK-tree [53] , both can be imposed on a quadtree 

representation), where each leaf node references a cell. 

Hierarchical representations are not appropriate for interactive settings, where massive data 

arrives very fast with fluctuation in skewness. The reason is that the creation and 

management of those structures is expensive. Alternative solutions comprise the exploitation 

of approximate structures, such as Minimum Bounding Rectangles (MBR). Methods include 

tree-based representations such as R-tree [54, 55] . R-tree works by grouping objects based 

on their proximity (their enclosing MBRs specifically). An inherent problem is that point 

queries are costly and may need to visit unduly all the nodes because of the overlapping 

nature of the MBRs. R-trees are widely used in online steam settings because of the 

dynamicity they provide in such a way that they do not require fully reconstructing a tree 

upon receiving a new stream tuple and it can otherwise be placed in a hot-swappable fashion. 

R+-tree  [56] differs from R-tree in that it generates non-overlapping MBRs. It does so by 

dividing the space in non-overlapping regions, and a spatial object may span multiple regions 

(B-tree can be used to group those regions).  

Grid approaches and those based on quadtree has a paramount utility in operations that 

require datasets mashup and the incorporation of diverse operations between batch and 

interactive modes of operation.  It is then evident that those approaches perform well in 

stream-static join (more details in chapter 6), an advantage that is further inflated when 

enriching them with ordering sequences such as Z-order curves. Also, recent studies [57, 58]  

have shown that using non-hierarchical and simple spatial indexes on modern parallel 

systems boosts the analytical performance. However, an inherent problem in grid partitioning 

is that it exaggerates the load-balancing problem in dynamic application scenarios, where 

specific cells are easily becoming stragglers (i.e. congested) while others are empty. Stated 

another way, fixed grid partitioning is not preferred in highly skewed distributions, instead 

the grid size should be based on a cost model that considers data distribution and BSOs, so 

as to preserve spatial proximity and minimize BSOs in addition to load balancing. 

Because every representation method (i.e., partitioning in the context of this thesis) has its 

own limitations. We posit that applying a single scheme cannot guarantee the QoS goals and 
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is not able to achieve the three spatial partitioning goals that we have identified in section 

4.3. Consequently, most works of the relevant literature have designed their own set of 

custom spatial-aware partitioning methods that are based on the primitives discussed in this 

subsection. 

4.5.2 Custom Spatial-Aware Data Partitioning methods 

Custom spatial-aware data partitioning methods that fall within the confluence of many 

schemes mentioned in section 4.5.1 include: 

I) Sort-Tile Partition (STP) [59] . First, data sorting is performed in one dimension 

(horizontal in a grid-based Euclidean representation), and equally-loaded slices 

are generated, thereafter data in each slice is sorted and partitioned based on the 

other dimension (vertical in a grid-based flat surface representation). Tiles 

(horizontal and vertical) locations  can be selected based on a model that balances 

the tradeoff of the three goals of section 4.3.  

II) Boundary Optimized Strip Partitioning [60]. This algorithm is specifically 

designed for BSO minimization. It is a special case of strip (tile) partitioning 

where a cost model is applied to select optimized tile locations so as to minimize 

the BSOs. 

III) Custom partitioning methods. For example, [61] have designed a boundary-aware 

spatial splitting scheme that also achieves load balancing. Also, Cruncher [62]  

employs a dynamic adaptive method that is aware of query workload. A cost-

model-based repartitioning module calculates number of points and queries for 

each partition and repartitions accordingly.  

SpatialHadoop [63] supports grid-based, sometimes enriching with an ordering such as 

Hilbert- and z-order curves, STP, and quadtree [64] . HadoopGIS currently supports grid-

based partitioning in addition to others added through SATO framework [65] . From the in-

memory batch processing systems, SpatialSpark supports grid-based and STP [66] . On the 

other hand, GeoSpark [11]  supports grid-based splitting, sometimes enriching by Hilbert-

curves ordering, in addition to quadtree, Voronoi and R-tree. MongoDB does not support 

partitioning on geospatial keys.  
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Intensifying now on the ability of each method in meeting spatial partitioning goals (recap 

section 4.3), load balancing, BSOs minimization and SDL preservation. We now provide a 

guidance taxonomy that facilitates the selection of most appropriate schemes for specific 

domains. For example, considering spatial data skewness ratios for co-location data mining 

promotes selecting a framework that employs a locality-aware custom partitioning method. 

In grid-based partitioning, the selection of the partition size profoundly impacts the 

performance. For example, a coarser-level amplifies data imbalance, where some partitions 

may acquire more elements than others. By way of contrast, a granular-level improves load 

balancing, however, amplifies BSOs. This method replicates BSOs to neighboring grid cells. 

However, it does not provide a capability for achieving SDL preservation goal. Quadtree-

based schemes can handle BSOs by replicating them to adjacent overlapping cells, and its 

ability to balance loads depends on data distribution in real geometries. Also, it does not 

support SDL preservation. In STP, BSOs are processed by expanding neighboring cells. 

Also, STP guarantees load balancing to some extent by applying a splitting mechanism that 

is aware of actual data distribution. However, it does not intrinsically achieve SDL 

preservation. Imposing an ordering (e.g., z-curves) over the representation helps in 

preserving SDL.  Table 4.1 sums-up our taxonomy, comparing the performance of the spatial 

partitioning techniques sketched previously, and introducing an important dimension that 

shows capability of every method in achieving the three partitioning goals. 

None of those schemes efficiently imposes a balanced tradeoff between the three spatial-

aware partitioning goals.  Those primitive schemes insufficiently represent spatial objects 

relationships for specific application scenarios, such as smart cities, by being not attuned to 

spatial locality characteristic. As a resolution for this, some works have gone beyond those 

traditional spatial partitioning methods by designing custom partitioning schemes that strike 

a balance between the three partitioning goals. For example, [67] have designed a query-

workload-aware technique for partitioning big spatial data that adaptively repartitions data 

in accordance with a query workload, achieving roughly equal load balances while keeping 

SDL preservation in check.  

It is then evident that “one fits all” does not apply when it comes to selecting a spatial data 

partitioning approach that balances the three goals, SDL preservation, LB and BSO 
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minimization. Stated another way, we are not aware of any single method that alone 

successfully tackled the problem holistically. Hence, a better-performing method should be 

custom, adaptive or both combining many primitives in a coherent way taking advantage of 

the overarching traits of each method individually in a way which guarantees that they 

reinforce each other without their limitations. 

Table 4.1. A taxonomy of capabilities of general spatial splitting methods in handling spatial partitioning 

goals defined in section 4.3 

Approach big spatial data partitioning goals 

 load balancing BSO Minimization SDL preservation 

Grid-based ✓ X X 

Quadtree ✓ X X 

STP-based ✓ ✓ ✓ 

Grid with 

space-ordering 

✓ ✓ ✓ 

 

Notice that z-curves and a method based on STP are the only two amid all others that can 

achieve a weighted balance between the three tradeoffs discussed in section 4.3. This 

rationale our selection for those two in designing QoS-aware partitioning strategies in 

support for distributed systems serving highly scalable application scenarios (NoSQL or 

batch processing frameworks). We have designed hybrid adaptive data partitioning methods 

as we posit that no single method alone can balance the tradeoffs between the three 

partitioning goals (section 4.3). 

As a recap, referring to the schematic diagram of figure 3.2, The user may opt for storing the 

data coming from the streaming sources as-is, in which case the stored data is not distributed, 

it is otherwise stored as a whole chunk. In a later stage, that data can then be distributed for 

parallel processing (for example, using Spark). For this case we have designed a novel 

adaptive spatial-aware partitioning method (discussed in section 4.7.3.1) that better trades-
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off the three goals mentioned in section 4.3 in a fashion that achieve results outperforming 

state-of-art methods. 

On the other side, for scenarios where data arriving is tremendous and cannot fit efficiently 

in single chunks, simply because it is arriving from diverse heterogeneous sources, the 

system may opt for unifying the format (thus supporting the interoperability requirement) 

and distributing then the arriving data to be stored in parallel storage chunks (shards in 

MongoDB terms). For an efficient dissemination of spatial data, aiming at a weighted QoS-

aware tradeoff between load balancing and spatial locality preservation, we have designed a 

qualified partitioning strategy for NoSQL distributed environments (discussed shortly in 

section 4.8). 

4.6 System Design Perspectives 

We have designed two sub-systems. One for batch processing that we dub as SpatialBPE, 

and one for NoSQL scalable storage that we term as SpatialNoSQL. 

By this combination, we recap our SpatialDSMS, where we have two components 

(analogous to batch and serving layers of Lambda architecture). Any snapshot or view 

(resulting from online processing or batch processing) or simply pouring as raw data directly 

heading towards the storage backend will be indexed with an appropriate representation 

structure, and thereby will be partitioned in a unified manner so that future workloads 

mashup seamlessly. For example, we use the same indexing strategy (grid with an enforced 

z-order curves) to index streaming data coming for an online processing, and also to shard 

the data in NoSQL (i.e. MongoDB). In addition, we exploit the same dimensionality 

reduction approach for an offline batch processing of data (e.g., Spark). This structure 

streamlines the mix workload handling which is a main design goal of SpatialDSMS. In the 

next subsection, we explain SpatialBPE. 
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4.7 SpatialBPE: Spatial-aware Batch Processing Engine 

SpatialBPE4 constitutes two main submodules: spatial-aware partitioning module and query 

optimizer module, which are explained in the following two subsections, respectively. 

4.7.1 Motivation 

Big data is being exploited in various emerging scenarios that are dynamic and require high 

scalable architectures. For example, participatory healthcare services [68] , city planning [69] 

and urban computing [5]. Batch-processing systems are not designed to process that data 

deluge. This led to the appearance of parallel computing frameworks such as MapReduce-

based [70] systems and NoSQL scalable storage systems such as MongoDB [2]. Two 

entwined aspects apparently intermix in dynamic application workloads. Those are data 

splitting and query processing. Load balancing while partitioning data has been on full 

display by those systems in the relevant literature, not considering the spatial characteristics, 

such as the data skewness, where geo-referenced objects concentrate at some locations more 

than others in real geometries [71, 72] . In addition, boundary spatial objects (BSO) 

minimization goal has not been adequately considered, thus deteriorating the benefits of 

parallelization, recap that BSOs are objects that reside exactly on the borders between grid 

cells (in grid-based hierarchical representations). This carries a negative impact that renders 

the underlying system unable to handle QoS objectives in complex scenarios such as geo-

clustering algorithms. Works of the literature have focused on a replicate-and-refinement 

approach, where BSOs are duplicated to adjacent cells, which is followed by a refinement 

step [65], taking a huge toll that renders the system unable to meet time-based and accuracy 

QoS goals. It has statistically been proved that geometrically proximate units share similar 

characteristics by being affected by the same surrounding factors (such as ecological factors 

in environment monitoring studies). This implies that the system should be attuned to spatial 

co-location relationships while partitioning data, thus focusing on SDL preservation has a 

paramount effect on performance on the way to achieve time and accuracy based QoS goals. 

 

 

4 The source code of SpatialBPE (including SCAP) is available at: 

https://github.com/IsamAljawarneh/SpatialBPE 
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Most scenarios in dynamic environments seek answers (through spatial queries) that reflect 

a proximity and co-location relationship. We posit that preserving SDL leads to avoiding 

costly shuffling. Cross-nodes shuffling is known otherwise to heavily cause the processing 

system to run into a big bill far beyond its capacities.  

However, current batch processing systems do not natively offer appropriate approaches for 

efficiently trading-off partitioning goals in an aim at achieving QoS goals. To overcome 

those limitations, we have designed and implemented an in-memory batch processing 

component for SpatialDSMS. The contributions of this component are two folds. First, we 

design a custom spatially-attuned partitioning method that achieves a plausible degree of 

load balancing in addition to BSO minimization and/or (depending on the case scenario) 

SDL preservation. Thereafter, we design query optimizers that appropriately exploit the 

newly added partitioning method in solving density-based clustering algorithms (specifically 

DBSCAN-MR) with prespecified sets of QoS guarantees. 

4.7.2 Design Perspectives 

Figure 4.2 shows a high-level architecture of our spatial-aware optimizations for the in-

memory spatial batch processing systems. Our patches reside atop Spark’s Magellan (which 

itself sits atop the core of Spark) constituting a transparent layer that hides implementation 

details from application layer, thus achieving one of the design goals of SpatialDSMS, which 

is the ‘modularity’ (refer to section 3.4.1 for details). 

Our patches include a spatial-aware partitioning scheme (we dub as SCAP, explained shortly 

in section 4.7.3.1), basically accounting for a better tradeoff between three goals (load 

balancing, BSOs minimization and SDL preservation), aiming ultimately at achieving a 

weighted balanced tradeoff between the QoS contradicting goals: low-latency, high-

throughput, high-accuracy and high resource utilization. 

 An integral part of SpatialBPE is a query optimizer that employs SCAP and a retrofitted 

version of DBSCAN-MR [38] implemented over Spark’s Magellan for optimizing the 

parallel execution of DBSCAN [37]. We have specifically selected clustering as an analytics 

to support for in-memory systems because it is heavily appearing in dynamic application 

scenarios (refer to section 1.1 for more details).  
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4.7.3 Spatial Partitioning in Distributed Batch In-memory Processing Systems 

Partitioning per se is not an optimization goal, it is otherwise a mean-to-an-end. The goal 

then is exploiting a well-performing partitioning scheme in analytics and achieving desirable 

set of QoS goals predefined in SLAs. In this thesis, as batch in-memory distributed data 

processing systems are responsible for handling heavy workloads in dynamic application 

scenarios that require scalability, we have designed a spatial aware adaptive big data 

partitioning method that significantly outperforms baselines by orders of magnitude. Our 

method is explained in the next subsection. 

4.7.3.1 Spatial Co-Locality-Aware Partitioner (SCAP) 

By designing a custom spatial-aware partitioning scheme for batch processing systems we 

focus on time-based QoS goals including low-latency/high-throughput and other qualities 

such as accuracy and high-resource utilization. 

Several works of the relevant literature apply grid-based representations for partitioning 

spatial big datasets in parallel batch computing settings. However, the plain application of 

those hierarchical schemes leaves the computing cluster lopsided, where more objects are 

clumped into few partitions, deteriorating the load balancing. More importantly, spatial co-

 

Figure 4.2. SpatialBPE overview 
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locality is impeded as geometrically-collocated objects are randomly forwarded to different 

partitions, forcing a huge toll caused by the great amount of shuffling that may be required 

at query time. To alleviate those problems, we have designed an adaptive spatially-attuned 

partitioning method that considers, most importantly, the SDL preservation and aims at 

achieving a weighted balance for the other two partitioning goals (BSOs to a lesser extent 

and load balancing). We dub our novel method as SCAP (short for spatial co-locality-aware 

partitioning) as shown in figure 4.3. 

More formally, the workflow of our method is listed in Algorithm 4.1. The method starts by 

geocoding the spatial points. We focus in this thesis on dimensionality reduction based on 

geohash encoding. We then apply an efficient spatial join method that is readily offered by 

Spark’s Magellan for joining the spatial objects (i.e., points) with a table comprising 

neighborhoods (in city management terms) represented as polygons. This stage results in a 

list that specifies to which neighborhood each point (i.e., spatial object) belongs. This process 

is also known as geofencing, a problem that demands solving a mathematically resource- 

extravagant operation known as point-in-polygon (PIP for short). Nevertheless, by 

employing the already optimized Spark’s Magellan library, we significantly cut off the 

computational costs to linearly discernible margins. Stated another way, this stage resembles 

 

Figure 4.3. Spatial Co-Locality-aware partitioner (SCAP) 
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clumping geometrically co-located spatial objects into single patches that can afterwards be 

disseminated to nearby or same partitions for local processing. For each neighborhood list, 

we verify whether the number of enclosed objects exceeds a prespecified threshold, which 

then signifies the need to sub-split that overloaded segment so that to achieve a credible 

degree of load balancing.  

 

Algorithm 4.1 SCAP partitioning scheme for in-memory batch processing frameworks 

 /* points: coordinates in longitude/latitude shape, neighborhoods: polygonal shapes representing 

neighbourhoods of the embedding study area, geoPrec: geohash precision */ 

Input:  points, neighbourhoods, geoPrec, spatialQuery, numPartitions 

1: pointsAssignedList = [ ] //each element contains all points that belongs to a specific neighborhood 

 finalist = [ ] /* the final list containing sub-lists, where each element (sub-list) will be sent to a single 

partition */ 

2: coverGeo  getCoverGeo (neighbourhoods, geoPrec) /* List of geohashes covering each 

neighbourhood (polygon)*/ 

3: GeoCodedPoints  geoEncode(points) 

 /* perform inner join on geohash using the filter stage, filter-and-refine approach */ 

 /* pointsAssignedList: list of points that have been assigned to neighborhoods */ 

4: pointsAssignedList = GeoCodedPoints.join(coverGeo, GeoCodedPoints (“index”) ==  

coverGeo(“index”)) 

 /* iterating through all parent lists, where each list contains elements belonging to a single 

neighborhood */ 

5: For idx = 0 until pointsAssignedList.size 

 //check whether a number of elements in a specific neighborhood exceeds a threshold 

 //currently threshold is specified by pre-profiling the data 

7:  If (pointsAssignedList[idx]. count > threshold) 

8:   sub_ pointsAssignedList = split (pointsAssignedList[idx]) 

9:   finalist.append (sub_ pointsAssignedList) 

10  Else  
11:   finalist.append (pointsAssignedList[idx]) 

12:  End if 

13: End For 

14: For j = 0 until finalist.size 

 //materializing data chunks in partitions 

15:  partition[j]. populate (finalist[j]) 

16: End for 
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We achieve that by splitting overloaded neighborhoods to granular sub-lists so that the 

number of enclosed points fenced within each sub-list never exceeds the fences of the 

prespecified threshold. We do this to account for load balancing, where we seek trading that 

off with spatial col-locality preservation. To a lesser extent, our SCAP method accounts to 

BSO minimization, which is attainable through tweaking geohash precision parameter. The 

workflow of SCAP is schematically shown in figure 4.3. 

 

 

In the next subsection, we show how we have retrofitted SCAP (with a very little effort) and 

applied it to Magellan-based DBSCAN-MR, thus retrofitting the latter and gluing it within 

the layers of Spark’s Magellan, which then constitutes a primary contribution of SpatialBPE. 

4.7.4 A Recap on Spatial Querying in Batch Oriented Systems 

Partitioning geo-referenced big data in parallel computing environments is a precursor for 

optimizations that aim at achieving QoS goals by applying spatial analytics. Current plain 

systems being not attuned to the spatial patchy distributions are causing the underlying 

optimizers to shuffle huge amounts of data over the network. This normally deteriorates the 

benefits of parallelization, especially in cases where shuffled subsets constitute big fractions 

Procedure 4.1: split (pointsAssignedList[idx], threshold) 

 // the purpose of this method is to split overloaded lists depending on a prespecified threshold 

1: size  pointsAssignedList[idx]. size( ) //overloaded list size 

2: sub_ pointsAssignedList = [ ] /* each element of this array contains part of the spatial points from an 

overloaded parent list (where the parent list represents a full neighborhood, whereas the child lists 

represent parts of the neighborhood) */ 

3: newListsCount  (size / threshold) //the number of new sub-lists (child lists) 

4: index = 0 

 
5: For i = 0 until newListsCount 

6:  partialList = pointsAssignedList[idx]. take (“*”). where (id between index and 

(threshold+index-1)) 

7:  sub_ pointsAssignedList[i]. append (partialList) 

8:  index = index + threshold 

9: End 

10: Return sub_ pointsAssignedList 
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of data. Query optimizers aim at selecting the most efficient query plan that reduces shuffling 

and thereby striking a weighted balance between the QoS goals. 

Having designed SCAP, we have decided to proceed it with designing a query optimizer that 

exploits its overarching traits in optimizing the running of a costly density-based clustering 

algorithm (i.e., DBSCAN [37]) that is very common in dynamic scenarios of smart cities. In 

a loose way, DBSCAN clusters units in a way that considers high-dense regions as clusters, 

whereas others are noise. The plain DBSCAN is not applicable per se in distributed systems, 

then DBSCAN-MR [73] has emerged as a variation that is able to run in parallel. Technically 

speaking, DBSCAN-MR proceeds as follows. It receives epsilon (ε) and minPoints (short 

for minimum number of points) as input parameters. Epsilon is used to find all points that 

are far-away from a query point (similar to kNN) by a distance that equals epsilon at most. 

minPoints is thus the minimum count of points in vicinity that together form a cluster. It then 

starts by splitting input data points to the partitions of the worker nodes that are comprising 

a distributed computing cluster. In a later stage, the algorithm employs a local edition of the 

vanilla DBSCAN for data that is fenced in each partition. The algorithm afterwards merges 

micro-clusters received from local versions into unified macro-clusters. An apparent obstacle 

while parallelizing DBSCAN-MR version is the demand to duplicate BSOs into adjoining 

cells. Considering a planar earth geometry, those cells resemble grid cells that result from 

the grid representation of the embedding space. In that sense, dealing with BSOs resembles 

a replicate-and-refine approach, where duplicated BSOs are thereafter eliminated in a post-

replication refinement step. Another confounding challenge lies in finding an appropriate 

manner to efficiently consider SDL preservation throughout partitioning and also striking a 

credible balance among the three partitioning goals mentioned in section 4.3.   

Out of the box, Spark’s Magellan does not offer over-the-counter DBSCAN-MR optimizers. 

We then offer an optimization to Spark’s Magellan that transparently incorporate our 

retrofitted version of DBSCAN-MR, which then constitutes one of our contributions in 

SpatialBPE. In addition, our retrofitted version of DBSCAN-MR exploits our SCAP method 

(see subsection 4.7.3.1 for details) for orders of magnitude performance gain (as opposed to 

the plain DBSCAN-MR) achieving a better balance between QoS goals (especially low-
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latency/high-throughput, high-resource utilization and high accuracy) by consequently 

striking a plausible balance between the spatial partitioning goals. 

4.7.5 Spatial Query Optimizers for Distributed Data Batch Processing 

4.7.5.1 Co-location Query Optimizer 

We have hybridized a retrofitted version of SCAP with a retrofitted version of the plain 

DBSCAN-MR. In this way, SCAP acts as a front-stage that partitions the static (i.e., disk-

resident) input data into the computing cluster, thereafter the retrofitted version of DBSCAN-

MR works on the apportioned data as explained shortly. 

To be able to apply SCAP to DBSCAN-MR, we have retrofitted SCAP so that it accounts 

for the BSOs. The approach we choose for dealing with the BSOs is replicate-and-refine. We 

first replicate BSOs to the overlapping cells. In a later stage, we discard those local duplicated 

BSOs from the resulting final clusters (a.k.a. macro-clusters). The replication strategy relies 

on a fact that each neighborhood (i.e., polygon) is represented by several geohashes. In this 

context, a geohash spans many neighborhoods. As the time of this writing, to avoid 

introducing any additional model-based cost layers that may bog down the system, we simply 

replicate objects which belong to overlapping geohashes. The number of replicated BSOs 

relies on two factors, the data skewness and the geohash precision. Geohash precision is a 

number that is a multiple of five. As an example, a geohash precision that equals 30 signifies 

that the size of the corresponding geohash string would be six, which is typically a 

combination of characters and numbers, whereas a geohash precision 35 means that the string 

size is seven and so on. 

In our previous works [74, 75], we have designed SASAP (explained shortly in more details 

in section 4.7.5.2), which is a method that is similar to STP (recap information from section 

4.5.2). In SASAP, for replicating BSOs, we rely on stretching each strip (i.e., horizontal or 

vertical split) to a dimension that equals to a double epsilon value. We have exploited 

Haversine formula for measuring distances horizontally and vertically. Our SASAP method 

in our previous work resembles an STP approach, which then requires sorting geospatial 

points in each direction based on longitude and latitude data.  After deeply investigating the 

possible consequences, we have discovered that the computational model-based approach 
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that we have applied for computing BSOs to replicate could easily turn as a bottleneck when 

the data size increases. This potentially can bog down the system performance and, in some 

cases, may bring the system into a halt. This in part is due to the fact that the procedure sorts 

massive amounts of multidimensional spatial data (i.e., longitude and latitude). As a way of 

contrast, our novel method SCAP avoids any complexity layer that necessitates expensive 

model-based computations for deciding the BSOs to replicate. We otherwise rely on a 

dimensionality reduction approach that is based on z-order curves, specifically geohash 

spatial encoding, which reduces the problem of working with multi-dimensionally-shaped 

data down to that of a single-dimension. 

In both methods, SCAP and SASAP, grid cells are overlapping, and the splitting is non-

disjoint. While each non-boundary point is assigned a unique identifier, BSOs are assigned 

several identifiers (one corresponding to each partition they are replicated in). The algorithm 

proceeds then by sending points to corresponding partitions.  A local plain DBSCAN is 

thereafter applied to each partition. The algorithm now proceeds normally as in the plain 

DBSCAN-MR. Despite the ability of SCAP (and also SASAP form our previous works [74, 

75],) in reducing the shuffling during the local application of DBSCAN in each partition, it 

induces a huge toll on resource utilization, and here is where the adaptive controller comes 

into play, lending itself as a loop feedback mechanism from the control theory, aiming 

basically at minimizing the BSOs but at the same time balancing loads and preserving SDL 

in a plausibly significant weighted balance fashion. For SCAP, we simply depend on the fact 

that the geohash precision is tweakable, thus allowing the opportunity for better resource 

utilization. Interested readers are referred to our previous works for more information on the 

mechanism at which our traditional method SASAP is acting adaptively. See Appendix B 

for technical details on DBSCAN-MR. 

4.7.5.2 Usage Model and Baseline System 

Referring to our scenario in section 1.1, the application may need to build clustering views 

(i.e., offline) based on locational data of passing-by registered people (e.g., volunteers) who 

are capable and willing to provide instant assistance to victims of an incident. Those views 

need to be updated regularly, and this step can be considered as a second stage for the online 
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clustering, or what is better referred to as macro-clustering [76]  (refer to section 7.2 for 

details) that normally runs offline (e.g., overnight). 

Since we have already designed an optimized custom spatial partitioning method in a 

previous work [74, 75], which we dubbed as SASAP (short for Spatial Aware Self-Adaptive 

Partitioning). We have decided in this thesis to select SASAP as a baseline benchmark to 

compare with our newly introduced method, SCAP. SASAP in its core recovers an adaptive-

STP-alike (recap information from section 4.5.2) partitioning approach. The working 

mechanism of SASAP proceeds as follows. First, it accepts spatial data points as an RDD (in 

Spark terms). Thereafter, it exploits an abstraction from GeoSpark to transforms those into a 

pointRDD representation (which is an abstraction for spatial representations in GeoSpark 

that resembles the traditional RDDs from Spark but instead is intended to spatial settings). 

As it reaches this stage, points are imagined as if they were overlay on a planar earth 

geometry that is a flattened version of the Earth. Afterwards, SASAP sorts pointRDD points 

in both directions (i.e., longitude and latitude) and then assigns a unique numerical identifier 

to every point in pointRDD. SASAP then proceeds by employing a splitting mechanism as 

follows. First, it overlay dividing vertical stripes on the two-dimensional map that is 

representing the embedding Earth planar geometry. The result of this stage is a list of 

longitudes for the stripes. This is proceeded this by a horizontal division for obtaining 

latitudes of stripes. The overall result of this splitting scheme is a grid in two-directional 

sorted order. This procedure recovers recursive halving in single-dimension (for each 

splitting direction) and quartering in two-dimensions (while extracting longitudes and 

latitudes of stripes). 

SASAP is a generic approach that we could apply to various dynamic workloads. A 

significant disadvantage of SASAP however is that it resorts to an STP approach (recap 

information from section 4.5.2). We have proved practically its superiority over traditional 

benchmarks (refer to our papers for interesting results [74, 75]) in accomplishing discernible 

balance between several challenging spatial data partitioning goals, such as SDL 

preservation and BSOs minimization. However, we find that an undesirable overhead can 

significantly accumulate as the data size becomes massively big. Overall, this may 

deteriorate at some points the benefits we reap from parallelization. This has to do with the 

fact that several expensive model-based computations are involved. For this reason, we have 
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decided to design a new method in this thesis that we term as SCAP so that it overcomes the 

drawbacks of SASAP. 

4.7.5.3 Experimental Setup and Test Cases 

This section discusses deployment settings that aim at assessing the ability of SCAP and the 

query optimizer, consequently, in achieving a plausible balance between QoS goals of this 

thesis. 

Deployment and experimental settings. We run our system, SpatialBPE, on a Microsoft 

Azure HDInsight Cluster hosting Apache Spark version 2.2.1. It consists of 6 NODES (2 

Head + 4 Worker) with 24 cores. Head nodes are analogous to master nodes in master-slave 

architecture. We have two head nodes of type D12 v2, in addition to four worker nodes of 

type D13 v2. Each head node operates on 4 cores with 28 GB RAM and 200 GB Local SSD 

memory, and quantities are double those figures for worker nodes. 

Dataset. For benchmarking, we choose cohorts of two datasets. The first dataset is the NY 

City taxicab itinerary datasets 5. From this dataset, we choose a cohort of approximately 150k 

points representing a slice of data captured from taxi rides for the first half of year 2016. We 

have selected the green taxi trips that include, most importantly, fields containing pick-

up/drop-off locational data. The second dataset that we have selected represents a cohort of 

150k spatial data points that were collected through the ParticipAct project [77]. ParticipAct 

is a project initiated at University of Bologna in Italy, aiming at achieving the People as a 

Service (PaaS) vision, where people act as collectors of data that can be exploited and applied 

to interesting scenarios such as DBSCAN clustering. Every spatial point has a user locational 

data (in two-dimensional planar geometrical representations, longitude/latitude) in addition 

to timestamps that inform about the times of data collection. 

We have applied the following intermixed parameter settings, aiming at testing the 

capabilities of SpatialBPE in achieving a wide variety of quality guarantees. 

 

 

5 https://www1.nyc.gov  
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1) Configurations#1. Varying the DBSCAN-MR parameter settings. We specifically 

vary epsilon and minPoints. We have applied two settings. 0.09 epsilon, 200 

minPoints, and the other combination is 0.15 epsilon and 300 minPoints. By this test 

case, we aim at comparing between SpatialBPE and a baseline in their abilities to 

balance the tradeoffs of spatial partitioning goals, thus ultimately better trading off 

time-based QoS goals (e.g., latency/throughput) and other QoS goals (e.g., accuracy 

and resource utilization). 

2) Configurations#2. Fixing DBSCAN-MR parameter settings and varying the geohash 

precision. We aim at showing the effect of adaptation (self-adaptation module of 

SpatialBPE) on our retrofitted version of DBSCAN-MR and its ability in achieving 

better QoS goals. For example, lowering the latency and maximizing the resource 

utilization.  

4.7.5.4 Results and Discussion 

All results reported in this section are the averages calculated from five query runs. 

DBSCAN-MR, which encloses both proximity queries that require calculating distances 

between points at each partition by applying a local version of a plain DBSCAN. It also 

encompasses a spatial join queries for joining micro-clusters resulting from local versions 

into global macro-clusters result set.  In this thesis, we have compared the time-based QoS 

performance (i.e., latency) of applying our newly emerged retrofitted DBSCAN-MR version 

that incorporates SCAP partitioning scheme against our DBSCAN-MR version that exploits 

a spatial partitioning scheme from our previous work, SASAP [74, 75].  Our previous 

retrofitted version of DBSCAN-MR (with SASAP injected within its layers) is built on top 

of GeoSpark, whereas the current version (that is incorporating SCAP) is built atop Spark’s 

Magellan.  

We have tested SCAP against SASAP by using Configurations#1 for five sessions each. As 

shown in figure 4.4 and figure 4.5, respectively, our retrofitted version of DBSCAN-MR 

over SCAP is adept in terms of meeting QoS time-based goals better than the previous 

version that exploits SASAP counterpart. Notice how an increased number of bordering 

replicated points (i.e., BSOs) implies a near-linear similar-pattern increase in running times 

of both implementations. This applies also for the case of value of epsilon that is equal to 
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0.09 and minPoints equals to 200. However, in both cases it negatively affects the running 

time of our SCAP version to a lesser extent as opposed to SASAP counterpart. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4. Running times and number of BSOs of our retrofitted version of DBSCAN-MR 

over SCAP against SASAP-based version using epsilon 0.15 and minPoints 300, secondary 

access on the right-hand side of the figure represents the data size with BSOs 

 

 

 

Figure 4.5. Running times and number of BSOs of our retrofitted version of DBSCAN-MR over 

SCAP against SASAP-based version using epsilon 0.15 and minPoints 300, secondary access on 

the right-hand side of the figure represents the data size with BSOs 
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As shown in figures 4.4 and 4.5, respectively, our retrofitted version of DBSCAN-MR can 

adeptly lower latency for both datasets compared to the SASAP baseline counterpart. Notice 

however that both versions are expensive and can reach the orders of tens of minutes for only 

hundreds of thousands of orders of input rate. This implies that applying DBSCAN and any 

variation of density-base clustering online is a façade. However, instead, DBSCAN and its 

variants (such as our version) can be applied in an offline stage, which is the second stage of 

online stream clustering (i.e., to form the final macro-clusters) [76] . 

Another tweakable parameter in our SCAP method is the geohash size (i.e., precision), which 

determines the number of BSOs to duplicate to overlapping cells. In the second testing case, 

we have, on the same data cohort, applied configurations#2, fixing the parameters of 

DBSCAN-MR and enabling the controller of SCAP to tweak geohash from 30 to 35. Total 

running time has been slightly decreased. Fig. 4.6 depicts that tweaking geohash precision 

from 30 to 35 leads to less BSOs for SCAP. This is due to the fact that more geohash 

precision implies smaller cell sizes for cells represented by those geohashes, leading to less 

overlapping areas among neighboring cells. Since we depend on simply replicating objects 

in the overlapping zones, this would result in attenuating the BSOs count. 

 

 

 

Figure 4.6. The effect of tweaking geohash precision on the number of BSOs generated by SCAP on 

NYC taxicab dataset. secondary access on the right-hand side of the figure represents the data size 

with BSOs 
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Notice how the running time for both competitors (our SCAP-based version and SASAP-

based version) increase, but however the proportions are not the same , as the trend of 

SASAP-based version is to increase significantly as the number of BSOs increase, whereas 

the running time of our version (SCAP-based) creeps up in a smoother way. This is due to 

the effect of SDL preservation that SCAP is adept at achieving better than SASAP, which 

leads to less data shuffling. As a confirming quantification showing the benefits that we reap 

by applying our new method SCAP against the traditional SASAP and the associated 

DBSCAN-MR version, we define a speed up gain obtained through parallelization by 

adapting a simplified version of the Amdahl’s Law [78]. More computationally, we define 

(4.1)  

𝑠𝑝𝑒𝑒𝑑𝑢𝑝  =  𝑇𝑆𝐴𝑆𝐴𝑃/ 𝑇𝑆𝐶𝐴𝑃  (4.1)  

where 𝑇𝑆𝐴𝑆𝐴𝑃 is the running time obtained by applying the baseline method SASAP to the 

associated retrofitted DBSCAN-MR, whereas 𝑇𝑆𝐶𝐴𝑃 is the running time by applying our new 

version SCAP to run the newly retrofitted Magellan-based DBSCAN-MR version. Our 

results exhibit that we gain a higher speed up through applying DBSCAN-MR with SCAP 

version as opposed to a lower speedup while applying DBSCAN-MR with SASAP.  Figure 

4.7 shows an example on the NYC taxicabs dataset. It worth noticing that the shape (bell-

curve plateau-alike) obeys an important corollary of Amdahl’s law. As shown in figure 4.7, 

there is a limit on the speedup gain (i.e., the escalation trend) that can be obtained, after 

which the speed up gain decreases. This is due in part to the fact that the partitioning process 

is sequential (i.e., non-distributed), which may become exhaustive as data size soar, putting 

speed up gain on a decline, even though we may still reap a discernible speed up gain. Even 

a low speed-up gain is handsomely beneficial in resource-constrained settings that do not 

offer too much of scaling-up options. Nevertheless, a future promising frontier we 

recommend is enabling the parallelization of the partitioning scheme, aiming at an extra 

improvement in the speed up gain. However, this falls outside the scope of this thesis. For 

more interesting results, specifically comparing our traditional method SASAP with a 

MongoDB version of DBSCAN-MR, readers are referred to our papers [74, 75]. 
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We have decided also to quantify the gain of the adaptation of the geohash size (i.e., 

precision). More mathematically, we define (4.2) 

𝑎𝑑𝑎𝑝𝐺𝑎𝑖𝑛 =  (𝐵𝑆𝑂30  − 𝐵𝑆𝑂35
𝐵𝑆𝑂30

⁄ ) ∗  100 % (4.2) 

Where 𝐵𝑆𝑂30 is the number of BSOs generated by applying a geohash size that is equal to 

30, whereas 𝐵𝑆𝑂35 is the number of BSOs by applying a geohash size that is equal to 35. 

Figure 4.8 illustrates how we gain roughly 44% by tweaking the geohash precision. We also 

dub this gain as the design effect because it results from applying the design of our SCAP 

scheme. Results combined show the excellence of SCAP in striking a credible balance 

among the three spatial partitioning goals, thus balancing loads, while also preserving spatial 

co-locality and minimizing BSOs. 

 

 

 

 

 

 

 

 

Figure 4.8. adaptation gain by tweaking the geohash precision in SCAP from 30 

to 35 applied on NYC taxicabs datasets 

 

 

Figure 4.7. speedup by applying SCAP instead of SASAP, NYC dataset 
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The fluctuating shape of the adaptation gain suggests that the data skewness oscillate 

between different data sizes, leading at times to less adaptation gains in the middle of the 

shape such as the case of data size that is equal to 50k tuples as shown in Figure 4.8. 

This shows the ability of SCAP controller in tweaking the geohash precision so that the 

resulting partitions are containing objects that are not only preserving load balance, but also 

preserving co-locality and minimizing BSOs. The reason of this effect is that unduly 

partitioned space results in partitions that cause some nodes to become congested and 

stragglers (i.e., nodes that take more processing times as opposed to other nodes) , and it is 

well known that the running time of parallel distributed systems is determined by the 

stragglers. Refer to our papers for more explanations [74, 75]. 

Figures drawn in this section support the fact that employing a custom spatial-aware 

partitioning with a relevant selection of configurations typically yields substantial 

improvements over plain spatial partitioning methods. 

It worth noticing that a tension among QoS goals always show up and there is no such thing 

like a “free optimization that does not affect contradicting factors”. As an example, an 

expensive model-based approach for calculating the size of BSOs list that are candidates for 

replication may yield a smaller number of BSOs, thereby leading to a maximal resource 

utilization. This is what was achieved by our traditional method SASAP. As contradictory 

as it can look, a mathematically simple method may yield larger size of BSOs to replicate, 

thereby achieving a lower latency level at the price of lower resource utilization. That is the 

case of our novel method that we introduce in this thesis, SCAP. SCAP may introduce higher 

number of BSOs (which is a tweakable parameter that relies on the geohash precision) but it 

acts favorably for resource-permissive settings as it achieves lower latency than SASAP. 

However, for both methods, the number of BSOs to replicate relies on many factors. Most 

importantly, data skewness for both approaches and geohash precision for SCAP. 

4.7.6 Related Works 

Most works of the related art are based on Hadoop. For example,  [79] propose a custom 

density- and spatial-aware partitioning method for pathology imaging on top of Hadoop. 

Their method is preserving SDL and balancing loads by relying on a costly computational 
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model-based approach which aims at minimizing the differences of running times between 

all participating partitions. On the downside, they did not account for cases where BSOs need 

to be taken care of. Also, Hadoop-based systems are proved to be slower than Spark-based 

counterparts and are currently being replaced. 

On the other side, based on fast-memory structures such as Spark. Few systems have 

designed custom spatial aware partitioning schemes. As a case of example, LocationSpark 

[71]  has been designed to transparently incorporate a feedback loop-based adaptive spatial 

partitioning scheme over Spark. Their method focuses on balancing loads by relying on an 

underlying model-based computational model that subsequently and periodically collects 

active statistics session-after-session and accordingly enhances the splitting stripes (i.e., 

coordinates) until the corresponding partitions that constitute stragglers vanish. The method 

keeps a knowledge base regarding real geometrical objects for SDL preservation. It mainly 

achieves this by forwarding geometrically-nearby objects to same/nearby partitions. Also, 

the method applies a replicate-and-refinement approach for trading-off BSO minimization.  

As a recap, Hadoop-based systems are slower than Spark-based contemporaries. Also, 

Spark-based methods do not retrofit or integrate into density-based clustering algorithms, 

which then makes SpatialBPE a significant unique contribution. 

4.8 SpatialNoSQL: A Scalable Storage for Spatial Data 

Some workloads in highly dynamic application scenarios require storing snapshots (or even 

a full crawling output if resource capacity is permissive) for future offline analytics. Since 

streaming data sources are normally heterogeneous, it is then better to consolidate all coming 

formats in a unified shape, and here where NoSQL distributed storage systems come into 

play. They normally host data in simple JSON-like formats, treating referential integrity in 

simpler ways (such as embedding documents in MongoDB, refer to section 2.2.1 for details). 

Those systems however do not readily support sharding (i.e., splitting) natively on spatial 

data loads. To close this void, we have designed a scalable NoSQL-based storage system that 

can perform spatial-aware partitioning, and thereafter serving the spatial queries in a QoS-
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aware fashion. We dub our version as SpatialNoSQL 6. In this context, the story is a little bit 

different as we are accessing disk-resident data without depending on the fast memory. This 

is specifically beneficial in cases where snapshots do not fit comfortably in the fast memory 

or in other cases where a future reference for huge amount of data is required. However, the 

main purpose of those systems is storage, but they support query processing (analogous to 

RDBMSs). All in all, we should store data in a way that guarantees quality aware access, 

because those systems work synergistically hand-in-hand with the batch processing 

(SpatialBPE section 4.7) and speeding systems (SpatialSPE and SpatialSSJP in chapters 5 

and 6, respectively ) as a united system for interactive analytics. In other terms, they perform 

the heavy task of offline processing, in cases where in-memory capacity is not enough, and 

their slow results, also slowly changing, are served on-demand to assist in better decisions 

together with interactive queries. Thus, complementing the effect of QoS-aware spatial 

mixed workloads handling as a main contribution of this thesis. 

4.8.1 Motivation 

There are many dynamic scenarios in smart cities and industry 4.0 that require storing 

snapshots of the streaming data periodically sometimes constituting huge amounts, which 

calls for a scalable distributed storage system that unifies diverse heterogenous source data 

under one umbrella. The envisioned Industry 4.0 vision heavily depends on Data as a Service 

(DaaS [80] ) paradigm, where avalanches of geo-referenced data loads need to be stored 

efficiently and quickly [81] . Scalable NoSQL ecosystems have been focusing thus far on 

load balancing because they know that sending geometrically co-located objects to same 

shards normally leads to a lopsided cluster, where heavy loads are normally clumped into 

few partitions. Currently, NoSQL systems (such as MongoDB) do not support partitioning 

on geocodes in an optimized way that can carry performance gains en-route to achieving 

QoS goals. In this thesis, we provide a novel viable and cost-effective spatial data partitioning 

 

 

6 The source code of SpatialNoSQL (including associated query optimizers) is available at: 

https://github.com/IsamAljawarneh/SpatialNoSQL 
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scheme for an optimized ad-hoc spatial querying in scalable NoSQL settings, forming 

together our SpatialNoSQL system, which is recapitulated in the next subsection. 

4.8.2 SpatialNoSQL overview 

Technically speaking, we have incorporated few submodules within various layers of 

MongoDB codebase as shown in figure 4.9. 

SpatialNoSQL presents itself as a transparent layer setting between the MongoDB core and 

the presentation layer. It is comprised of two components: 

1) GSS (abbreviation for geospatial sharding scheme). A custom method we design that 

is responsible for sharding geo-referenced data loads with the aim of striking a 

balance between the partitioning goals. In this thesis, we basically focus on load 

balancing and SDL preservation, while to a lesser extent on BSOs minimization. By 

this we aim at a significant effect that strikes a discernible balance between the QoS 

goals. The peculiarities of GSS are illustrated in section 4.8.3. 

2) Retrofitted query optimizers. Our version takes full advantage of our partitioning 

method GSS in supporting spatial queries that intrinsically incorporate spatial joins, 

such as proximity-alike and containment queries with quality guarantees as explained 

in section 4.8.3. 

 

Figure 4.9. SpatialNoSQL workflow 
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4.8.3 QoS Aware Spatial Data partitioning for NoSQL 

In simpler terms, storage-oriented data partitioning means disseminating (a.k.a. sharding) 

datasets to multiple nodes in a distributed storage environment [82]. We specifically focus 

on striking a balance between load balancing and SDL preservation. This complies with the 

types of the spatial queries that we support for NoSQL as explained shortly in section 4.8.4. 

Natively, MongoDB supports quadtrees and z-curves indexing. However, as per 4.0 version, 

those are utilized for indexing only and not sharding.  

To strike a balance between the contradicting QoS goals (such as low-latency and high 

accuracy), we have designed a novel spatial sharding scheme for MongoDB, which we dub 

as Geospatial Sharding Scheme (GSS for most of the rest of discussion). GSS aims at 

preserving spatial characteristics and load balancing. As the time of this work, MongoDB 

does not offer native support for geocode-based spatial data sharding. Figure 4.10 elucidates 

the workflow of GSS, which is formally expressed in Algorithm 4.2. The algorithm proceeds 

as follows. It first accepts geo-referenced documents (representing spatial objects) as an input 

and thereafter employs a simple mapper on them to incorporate a geohash field. Afterwards, 

documents are clumped into small chunks by relying on their associated geohash values. As 

of yet particularly happens the load balancing, where overburdened chunks are split. GSS 

then advances by employing a loader that sends chunks to their relevant shards. By doing 

that, SDL preservation is guaranteed to a good degree, and also load balancing is traded off 

appropriately altogether. In addition, this method assures a minimal shuffling (chunk 

migration in MongoDB parlance) during query running. 
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    Algorithm 4.2 GSS sharding scheme for NoSQL frameworks 

 /* input: two-dimensional spatial points on the form of (longitude, latitude) received from 

GPS-enabled devices */ 

Input: region, qp 
1: Foreach point p in points 

2:     geoCode  geohashEncode(p) //geo-encode a spatial point using geohash  

3:     shardID   geoMapper ( geoCode ) /* assign a shardID to which spatial point should be 

sent */ 

4:     chunk [ shardID]. add (geoCode) //add geocoded spatial point to the appropriate chunk 

5:     load_chunks(shards[1…i]) //bulk loading chunks altogether to their relative shards 

End foreach 

 

 

Figure 4.10. GSS sharding scheme 
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4.8.4 Spatial Query Optimizers for NoSQL Scalable Distributed Storage 

4.8.4.1 Spatial Query Primitives Supported 

We support two primitive types of geospatial queries: 

1) Proximity queries. For example, spatial range search and kNN. 

2) Containment (a.k.a. inclusion).  We support two kinds of containment searches: 

o Containment searches based on arbitrarily-shaped embedding areas (i.e., 

polygons). Those need Point in Polygon (PIP) tests. We refer to this type as 

containment-PIP to distinguish it from the other types. 

o Containment searches based on regularly-shaped embedding areas (i.e., 

circles), we refer to this category as Point-In-Circle (PIC for short) test, which 

is analogous to PIP test with the exception that the embedding area we are 

searching in is circular, thus retrieving concentrically located points. 

4.8.4.2 NoSQL Query Optimizer Overview 

Traditional spatial query processors obey the scatter-gather scanning scheme by performing 

exhaustive searches. However, few systems such as MongoDB encapsulate routers that 

forward the query request to specific shards based on the sharding key.  However, Spatial 

indexing is not natively offered for sharded collections in MongoDB 7.   

Aiming at closing this void, we have designed a NoSQL query optimizer for MongoDB, as 

depicted in figure 4.11 (shaded components represent our patches), specifically for assisting 

spatial proximity (such as kNN) and containment queries in exploiting the merits of GSS 

sharding scheme, thus achieving a prespecified set of QoS goals. By doing so, we focus on 

higher resource utilization, higher throughput, lower latency while keeping the accuracy 

untouched. Chiefly, we have retrofitted a version of the plain MongoDB spatial join query 

optimizer, which is used specifically for queries that incorporate containment, intersection 

or overlap spatial predicates. Our retrofitted edition exploits our newly introduced 

 

 

7 https://docs.mongodb.com/manual/core/2dsphere/ 
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partitioning scheme GSS for supporting queries that intrinsically encapsulate spatial join 

predicates such as ensembles (e.g., Top-N) and inclusion. 

 

 

 

 

 

 

 

 

 

 

 

 

The query optimizer starts by the same procedure for both query types (i.e., proximity and 

containment). The optimizer first classifies the query to decide based on the type either to 

retrieve the stored covering geohashes (in case of containment-PIP) or to calculate the 

geohashes based on the embedding circle (in case of containment-PIC and proximity). The 

procedures are different in both cases. 

For containment-PIC and proximity, we utilize our legacy support that appeared in our paper 

in [4]. The procedure first constructs a circle (given the radius and a query point), then a 

MBR for the circle is imposed, and thereafter a list of covering geohashes is generated based 

on the MBR. On the other hand, for containment-PIP, we utilize our new support [83]  

depending on a precalculated geohash covering for the embedding space, where we have a 

list of polygons (neighborhoods, boroughs or districts in city management terms) and we 

 

Figure 4.11. Spatial-Aware Query Optimizer for NoSQL 
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calculate the covering for each polygon, then we store the result coverings in disk.  This is a 

one-time process that is cheaper than calculating coverings for every query independently. 

Our optimizer then reformats the query operator so that it encapsulates the geohashes 

covering as a prefiltering stage (a specifier in MongoDB parlance), which then acts as a 

pruning machine that significantly reduces the search space. Thereafter, the new formatted 

query is passed to MongoDB query router, which then forwards requests to only shards that 

contain the candidate results.  

In our legacy work [4] , we have provided two new operators for proximity-alike and 

containment-PIC queries over MongoDB. In short, we have provided a support for 

proximity-alike queries via a retrofitted version encapsulated within the plain MongoDB 

layers, which then executes as a MapReduce job. At the time, $near or $nearSphere 

MongoDB plain operators were not operating on sharded collections, a drawback that 

prohibits them from exploiting the benefits of distributed processing. However, starting from 

MongoDB 4.0, $nearSphere operator has started operating on sharded collections. 

Consequently, to further extend our legacy support, we have decided to extend the support 

for proximity-alike queries by employing geohash coverings as a specifier on a $nearSphere 

operator this time. In this thesis, we show our latest support for the proximity-alike queries 

[83] . Interested readers are referred to our paper [4] for more information about our legacy 

method for supporting the proximity-alike queries and the related interesting results. 

Containment and proximity queries normally exploit geospatial indexes such as MongoDB 

2dsphere. As such, spatial join is pivotal so that a list of spatial objects that are encompassed 

within the fences of a geometrical covering is generated. Algorithm 4.3 summarizes our 

Spatial join optimizer for NoSQL workflow. We have introduced a novel geohash specifier 

that works as a quick-and-dirty sieve (i.e., a prefiltering stage). This acts as a pruning device 

that prunes aggressively the search space prior to applying an expensive PIP test. 
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 Algorithm 4.3 Spatial join optimizer for NoSQL workflow 

1: Input: two versions: 

 Either Query: q, points: p, r: radius, qp (longitude, latitude): query point 

for proximity through $nearSphere operator 

 OR Query: q, points: p, neighborhoods: nb for containment-PIP through 

$geoWithin with a geometry specifier 

2: coverGeo  getCoverGeo (embedding_area, geoPrec) /* List of geohashes covering region (circle 

or polygon) embedding_area is either polygonal arbitrarily shaped neighbourhoods (nb in the input) 

or a regularly-shaped circle (with radius r in input) */ 

3: coverGeoSpecifier = “geohash”: {“$in”: [coverGeo]} 

4: newOperator = add (coverGeoSpecifier, MongoDB_operator) //adding the geohash specifier to the 

plain MongoDB operator 

5: p.createIndex(({"geohash":1,"location":"2dsphere"})/* two-levels 

indexing scheme */ 

6: executeQuery (q, newOperator,p) //execute the query using the new operator 

 

Geohash is a geospatial encoding scheme that normally generates a single-dimensional 

representation as a string that encompasses a geographical meaning. MongoDB recognizes 

geohash string as a textual field. This is a free optimization that allows using geohash 

encoding as a pruning machine considering the fact that geohash is also used for partitioning 

(i.e., sharding) where we select geohash filed as a sharding key.  The resulting spatial index 

that is then imposed is a composite key in the sense that it is composed of geohash field that 

we provide and also the 2dsphere that is already provided by the plain MongoDB query 

optimizer. This mechanism assures that both indexing schemes synergistically reinforce each 

other without their limitations. To take a more serviceable perspective, a composite index 

that is comprising geohash and 2dsphere ensures that we enforce spatial indexes on a two-

levels basis, local and global. In one hand, geohash indexing acts as a global index that is 

beneficial as it is the sharding key that assists the query router in pruning significantly the 

search space. On the other hand, 2dsphere acts as a local index that is applied for each shard 

independently, helping in further pruning the search space as it only examines those 

documents locally that in real geometries are fenced within the boundaries of S2 coverings. 

In MongoDB compound indexing strategy, the order of the indexes matters (those are the 

indexes that constitute the compound index). Having said that, because we have specified 
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the geohash indexing as the first index in the composite index, we could reap many benefits 

and enable pre-pruning the search space to highly plausible magnitudes. 

Providing a more heuristic overview, our methodology acts in the following manner. First, 

we overlay the embedding space with a fixed-grid network. Afterwards, we enforce an 

ordering representation (z-curves and specifically geohash) so that we help in reducing the 

dimensionality of the underlying multidimensional embedding space. This process results in 

a z-order that helps in determining the order at which the covering grid cells are visited while 

answering a query request. This causes a substantial pruning for the search space and returns 

a list of points that interact with the covering. The result is then forwarded to the second part 

of the compound index, 2dspahere that is freely provided by MongoDB, which additionally 

prunes the local spaces. 2dspehere first linearizes the embedding space (which is a portion 

of the pruned space that resulted by using the global index geohash). Afterwards, MongoDB 

imposes an access structure (specifically, a B-tree index) on the sub-coverings. Running 

times involved in the two parts of our procedure are linear and independent from the total 

size of a MongoDB collection. This preprocessing mechanism causes MongoDB compiler 

to read points (i.e., documents in MongoDB terms) that only interact with the geometrical 

coverings, thus significantly minimizing the unnecessary overhead that may be caused by 

costly frequent I/O operations. 

4.8.5 Experimental Setup and Parameter Settings 

Environment. We run SpatialNoSQL on a MongoDB Atlas cluster deployed on Microsoft 

Azure cloud hosting a newer version of MongoDB (specifically version 4.0). Our 

deployment consists of 4 shards. Each shard has the following profile: M30 tier with 32 GB 

storage, 8 GB RAM and 2 vCPUs.  

Datasets. For benchmarking, we choose to use the NY City taxicab trips datasets 8. We have 

selected a cohort of two months dataset (that is constituting around three million units), 

representing data captured through taxi itineraries for the first half of year 2016. We have 

 

 

8 https://www1.nyc.gov  



QoS Aware Distributed Batch Spatial Query Processing 

78 

 

selected the green taxicab trip records, which include interesting fields capturing, most 

importantly, pick-up/drop-off locations and trip distances. 

Parameter settings.  

• Varying geohashes precision and comparing total documents and keys examined in 

addition to the time-based QoS goals such as the running time. We have applied this 

setting to compare the application of our optimization for the containment-PIP (i.e., 

based on the PIP with polygon geometry specifier) test against the plain MongoDB 

support. In addition, we have applied this setting for the Top-N queries (those that are 

a special case of containment-PIP). 

• Varying the circle radius and measuring total keys and document examined in addition 

the time-based QoS goals such as the running time. We have applied this setting to 

compare the application of our optimization for the proximity queries based on 

$nearSphere MongoDB operator with a test point and circle geometry specifier. 

4.8.6 Test Cases, Results and Discussion 

All results reported in this section are the averages of running same queries with same 

settings for five times. 

4.8.6.1 Testing Containment-PIP Query Optimizer 

In this thesis, we focus on containment queries that demand a PIP test. 

Query. We have tested based on the spatial containment-PIP query: “find all taxi trips that 

have been originated in a given neighborhood in NY City during a two months period”. 

Figure 4.12 depicts that our newly introduced optimizer significantly outperforms the vanilla 

MongoDB optimizer for containment-PIP test. 

Notice that for a geohash precision that is equal to 35, our geohash-based query optimizer 

searches three shards only (instead of the scanning the four deployed shards). On the 

contrary, the plain MongoDB optimizer requires scanning all the four shards of the 

deployment, which causes an extra overhead. It is also apparent that the number of 

documents and keys that need to be examined by using our optimizer are less than those that 

need to be examined through the plain MongoDB version. This fact applies to most geohash 

values. However, for narrower geohash values such as the case of geohash value that is equal 
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to 25, both methods are on the brink of the need to examine the same number of documents 

and keys. This apparent paradox is in part due to the fact that a smaller geohash precision 

implies necessarily a wider geohash coverage (embedding space that is covered by a specific 

geohash precision expand as we narrow the geohash value). For example, a geohash 

precision 25 covers a cell that is less than 4.89 kilometers and almost 4.89 kilometers in 

width and height, respectively. On the other side, a bigger geohash value such as a value that 

is equal to 30 covers 1.22 kilometers by 0.61 kilometers for width and height, respectively, 

which is a smaller area. In simpler terms, larger geohash value implies a smaller area, hence 

the overlapping space (between many geohashes) shrinks, which means that less documents 

(i.e., spatial points in real geometries) fall within the fences of those corresponding geohash 

coverings. This fact is proved also with the case of geohash precision that is equal to 35 as 

shown in figure 4.12.  As a way of contrast, smaller geohash values mean larger areas, and 

thereby more documents fenced within their boundaries, which causes more documents to 

be examined at run time.  

To quantify results in a more coherent way, we have calculated the speed up by relying on 

Amdahl’s law as in (4.3). 

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =  
𝑇𝑚𝑜𝑛𝑔𝑜

𝑇𝑔𝑒𝑜ℎ𝑎𝑠ℎ
⁄   (4.3) 

 

Figure 4.12. Comparing the performance of our new spatial join query optimizer on containment-PIP 

queries (with a $geoWithin operator with a geometry specifier) against the vanilla MongoDB optimizer. 

‘Mongo’ in the legend means the plain MongoDB, whereas ‘geohash’ means our new geohash-based 

optimizer. noExDocs and noExKeys mean the number of examined documents and keys, respectively 
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Where 𝑇𝑚𝑜𝑛𝑔𝑜 is the running time by applying MongoDB plain operator, whereas 𝑇𝑔𝑒𝑜ℎ𝑎𝑠ℎ 

is the running time by applying our version based on geohash.  

Our results shown in figure 4.13 prove that we always (for all geohash precisions) gain speed 

up by applying our filter. Notice that we obtain a better speed up by conveniently tweaking 

the geohash value. For example, we obtain the best speed up by using a geohash value that 

equals 35 which further strengthens the argument we started beforehand regarding the results 

of figure 4.12. However, all in all, our optimizer outperforms the plain MongoDB counterpart 

by numerically significant orders. 

4.8.6.2 Testing Top-N Query Optimizer  

By this test scenario, we compare the ability of our optimizer in striking a better balance 

between the QoS goals.  

Ensemble queries such as top-N are special cases of containment-PIP. Having that in mind, we can 

answer Top-N queries by checking the spatial objects that are fenced within the boundaries of each 

neighborhood (i.e., polygon). This in its essence requires applying the containment-PIP test operator 

for each object that interacts with the coverings. 

Query: We have tested our containment-PIP optimizer effect on top-N queries based on the 

following query: “what are the top-10 neighborhoods in NY City, USA that have the most 

taxi pickup orders in a period of two months”. 

 

Figure 4.13.  The speed up gain we obtain by applying geohash-based containment-PIP optimizer 

against MongoDB plain optimizer 

 



QoS Aware Distributed Batch Spatial Query Processing 

81 

 

Figure 4.14 depicts that the vanilla MongoDB optimizer underperforms our novel optimizer 

for all geohash values. As it is obvious, the best case happens at geohash precision value that 

is equal to 35, which directly implies that geohash precision is a pivotal tweakable 

configuration parameter in our optimizer. 

Expressing those results another way, we apply a simple speedup formula as in (4.4). 

𝑇𝑡𝑜𝑝𝑁_𝑚𝑜𝑛𝑔𝑜
𝑇𝑡𝑜𝑝𝑁_𝑔𝑒𝑜ℎ𝑎𝑠ℎ

⁄   (4.4) 

Where 𝑇𝑡𝑜𝑝𝑁_𝑚𝑜𝑛𝑔𝑜 is the running time by applying the plain MongoDB containment-PIP 

optimizer on Top-N queries, whereas 𝑇𝑡𝑜𝑝𝑁_𝑔𝑒𝑜ℎ𝑎𝑠ℎ is the running time by applying our 

geohash-based containment-PIP optimizer on Top-N queries.  Figure 4.15 depicts what has 

been sketched. Those results show that our query optimizers are able to satisfy and trades off 

time-based QoS goals (specifically running and latency times in this case) better than the 

plain versions. The tiny-gain case where only tiny speedup is obtained when applying the 

 

Figure 4.14. Comparing the effect on performance of our new containment-PIP query optimizer on 

ensembles (specifically Top-N queries) against the plain MongoDB optimizer. Mongo in the legend 

means the plain MongoDB, whereas geohash means our new geohash-based optimizer. noExDocs and 

noExKeys mean the number of examined documents and keys, respectively 
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geohash precision value that is equal to 25 complies with our argument in section 4.8.6.1 

regarding figures 4.12 and 4.13.  

To quantify deeper, we apply (4.5) to calculate the resource utilization gain (i.e., CPU 

running times) 

 𝑑𝑒𝑓𝑓 =  𝑔𝑎𝑖𝑛 =  (𝑆𝑂Mongo −  SOgeohash)/𝑆𝑂Mongo   (4.5) 

 

 

 

 

 

 

 

, where 𝑑𝑒𝑓𝑓 is the design effect (i.e., gain), 𝑆𝑂Mongo  is the number of scanned documents 

by applying the plain MongoDB optimizer, whereas SOgeohash is the number of scanned units 

by applying our version (geohash-based containment-PIP optimizer). Figure 4.16 shows the 

gain we obtain. This specifically achieves the higher-resource-utilization QoS goal, as the 

number of CPU cycles reduces significantly by avoid scanning unnecessarily objects that are 

 

Figure 4.15. speed up by applying geohash-based containment-PIP optimizer against MongoDB 

plain optimizer 

 

Figure 4.16. Design effect expressed as a resource utilization gain 
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not contributing toward a result set. Notice again in this case the fact that we obtain higher 

design effect (plausible) by applying a geohash that is 35 as opposed to narrower values such 

as those that are equal to 25 and 30. 

4.8.6.3 Testing Proximity Queries (for example, kNN) Optimizer (relying on a retrofitted 

$nearSphere MongoDB operator with a test point and circle geometry specifier). 

Query: We have tested our proximity query optimizer effect based on the following kNN query: 

“find all locations of taxi itinerary pickup orders within a predefined circular distance from a 

concentrically located  test point within a period of two months, sorted from nearest to farthest”. 

As shown in figure 4.17, Our novel method outperforms that of MongoDB plain by discernable 

margins. However, we have noticed that in cases that require examining a substantial number of 

documents and keys, the running times reduction gain may vanish. For example, notice the case 

where a prespecified distance is a radius that is equal to 15 kilometers. In that case, our proximity 

query optimizer requires examining a number of documents and keys that is roughly similar to those 

required by the plain MongoDB. This however is normal and healthy because the number of returned 

spatial objects that satisfy the distance predicate (i.e., 15 kilometers) roughly equals the total number 

of documents in the original points collection. 

 

 

Figure 4.17. the performance of our spatial join query optimizer on proximity queries (with a 

$nearSphere operator) against the plain MongoDB optimizer. Mongo in the legend means the plain 

MongoDB, whereas geohash means our new geohash-based optimizer. noExDocs and noExKeys 

mean the number of examined documents and keys respectively 
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Results appear in this thesis include our novel supports [83] . For our legacy supports, 

including containment-PIC optimization, in addition to the legacy MapReduce-based support 

and results of the proximity query optimizer, readers are referred to our paper [4]. 

All results shown in this section prove that SpatialNoSQL is adept in satisfying Qo[4]S goals. 

Specifically, we have focused on time-based goals such as low-latency, in addition to other 

goals such as higher resource utilization and high accuracy. It does so by applying GSS with 

retrofitted query optimizers for both proximity (such as kNN) and containment queries. GSS 

achieves a significant weighted balance between two partitioning goals, SDL preservation 

and load balancing. GSS does not consider BSO minimization as proximity and containment 

queries does not require the replication of BSOs to neighboring grid cells, thus not inducing 

any overhead.  

To quantify at a cursory level, we apply (4.5) to calculate the resource utilization gain (i.e., 

CPU running times) that we may reap by applying our proximity optimizer instead of the 

default MongoDB counterpart. 

As shown in figure 4.18, the gain we can obtain inclines linearly as we increase the radius of 

the area. This complies with our discussion regarding the results of figure 4.17. However, 

we always obtain a gain by applying our optimizer against the plain counterpart. 

 

Figure 4.18. Design effect expressed as a resource utilization gain 
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4.8.7 Related Literature 

From the relevant literature, we herein list some few works. For the column-oriented 

databases, [84] have designed a sharding scheme they term as SPPS, which basically aims at 

balancing loads while preserving SDL. They employ a model-based formulation for 

computing the number of relevant partitions that are required for load balancing. In addition, 

they employ an indexing scheme known as spatial longest common prefix (SLCP for short) 

for geo-encoding spatial objects in a manner that achieves SDL preservation, and thereby 

sending real-geometrically nearby spatial objects to the same partitions.  

In the same vein, [85] have designed a framework they term as HGrid on top of the HBase 

database system. HGrid works by a mixture of a quadtree and grid-based representations, 

aiming at basically achieving SDL preservation. Also, [86] have designed a scheme that is 

based on a method known as GeoSOT [87] over HBase. GeoSOT partitioning method is 

similar to a multi-level geo-encoding scheme that incorporates a micro level (on the scale of 

square centimeters) to bigger macro levels. Grid cells are overlay on each level and a z-

curves ordering is further imposed on the grid to hasten the order of access, thus 

accomplishing a credible balance between load balancing and SDL preservation. Range 

spatial searches are supported. Perhaps most importantly is a work known as GeoSharding 

[88] , which encompasses a method that transforms the embedding space into a virtual 

network of shards, such that each (or few) shards correspond to an area in real geometries. 

Each time the system receives a spatial point, it emits it to the shard which corresponds to its 

real-geometrical location, thus preserving SDL to a plausible degree. They have employed 

Voronoi indexing because it covers irregularly-sized polygons (i.e., regions), which is in 

contrast to z-order curves. GeoSharding is engineered atop MongoDB. The picture thus far 

that has emerged from the literature is that no single splitting scheme is a panacea. Instead, 

several approaches should be combined and tightly coupled so that they synergistically 

produce a credible method that can be used for complex scenarios in dynamic applications. 

By designing GSS over MongoDB and all the associated optimizers, we have specifically 

achieved that goal. 



QoS Aware Distributed Batch Spatial Query Processing 

86 

 

4.9 Chapter Conclusion 

A weighted balance should be considered for conflicting data partitioning goals, SDL 

preservation, BSOs Minimization and load balancing. Those are conflicting in a way that 

makes a closed-form solution NP-hard and far from being solved (rendering the problem 

computationally intractable at times depending on the data distribution and skewness).  

Exaggerating the optimization of any of those competitors, even counterintuitively with 

small factors, can carry over a negative effect on other goals. We recommend seeking to 

strike a plausible balance between partitioning goals, while combining that with custom 

query optimizers that exploit the novel sharding methods in a way that assists the system to 

achieve QoS goals. Considering also that most partitioning methods are performed as 

sequential jobs in distributed systems, the gains by a custom partitioning procedure should 

mitigate any additional overhead it induces. Consider also that as per the Amdahl's law, there 

is a limit on the gain (especially speedup in data parallelization scenarios) that can be 

obtained through an optimization for a parallelly executed job that intrinsically incorporates 

a non-dispensable sequential part. Amdahl’s law  [44] is a dominant corollary in this context, 

where the incremental gain obtained by continue optimizing the same portion vanishes 

ultimately. Having said that, the non-separable sequential data partitioning part should be 

minimized, and any custom partitioning method should seek trading off the three partitioning 

goals in a convenient manner that does not add superfluous overhead to the equation. 

In accordance with those recommendations, SpatialBPE and SpatialNoSQL perform 

favorably against baselines. Resource utilization also should be considered a QoS goal with 

a high priority, thus striking a balance between time-based QoS and economy-based goals is 

pivotal. 

In summary, we posit that spatial partitioning plays a vital role in the speed of spatial query 

processing in parallel computing environments. However, spatial-aware data partitioning 

alone is unable of achieving all desired qualities.  

Our focus in this chapter was on batch processing and scalable storage and the systems we 

design have taken central position in the SpatialDSMS, thus easily finds their way to break 

into big geospatial management domain. An upcoming stage in the pipeline could be 

accepting data as streams, then joining those with historical archives. This enables 
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SpatialNoSQL and SpatialBPE to engage in mashup workloads effectively. Also, it is 

infeasible to store on-the-fly deluge of geo-referenced datasets, despite the need to store 

snapshots at times. Interactive processing is receiving a momentum for the better part of the 

last decade or so. Structures, models and algorithms from the batch processing space, some, 

are transferable while others need more efforts to be considered for online speedy processing 

of geo-referenced datasets. For example, some partitioning spatial methods while performing 

with QoS guarantees in batch mode cannot be applied to online data as they take a huge toll 

on I/O performance. Having said that, online processing despite complementary to the other 

parts in our architecture SpatialDSMS (refer to section 3.4), has its own peculiarities that 

should be considered which are covered throughout the next two chapters. 
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Chapter 5 

5 SpatialSPE: Spatial Approximate Query Processing 

Nowadays, with the abundance of cheap GPS-enabled devices, IoT is emitting avalanches of 

geo-referenced data streams. Most applications at the top level are seeking insights by 

presenting data in a multidimensional manner (dashboards, heat maps, and other 

visualizations) interactively so as to serve them to higher level managers for an improved 

decision making and strategic planning. It is then important to present those insights 

interactively in a timely fashion before they become obsolete and loses their value. However, 

the 3Vs of big data (velocity, variety and volume) challenges the capacities of current SPEs. 

Provisioning extra computing resources in a dynamic allocation style is often the solution 

that is becoming a norm in state-of-art SPEs. However, scaling that way often enforces a 

huge toll on the QoS goals and is not able to strike acceptable margins of balancing between 

time-based QoS goals (i.e., low-latency, mostly on the scale of sub-seconds) and other goals 

such as high resource utilization. As a way of coping with that, load shedding lends itself as 

a highly desirable solution, especially knowing that a well-designed load shedding 

mechanism yields statistically plausible results with rigorous error bounds.  This is the 

essence that encouraged us to prefer approximations over dynamic allocation approaches 

(i.e., elasticity). In addition, elasticity induces extra overheads through repeated 

reconfigurations that may require various cycles of shutdowns and restarting which slides an 

effect that negatively impacts an end-to-end QoS metrics (e.g., latency). 

After building SpatialBPE and SpatialNoSQL which support faster analytics in batch mode 

(in-memory and disk-based processing), we have realized that despite we have obtained 

orders of magnitude gain over state-of-art counterparts, the implementation is still suffering 

slowness (on the orders of minutes for complex analytic scenarios such as DBSCAN) and 

cannot be applied “as-is” for processing data in-flight (a.k.a. arriving in online settings). The 

fact that in spatial intelligence, scientists accept approximations with rigorous error bounds 

encouraged us then to search for gaps where we can contribute by providing spatial-aware 

optimizations for Approximate Query Processing (AQP) in online settings. This led to the 

design and implementation of a baseline engine we dub as SpatialSPE, a unique and solo in 
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its class that can provide an SQL-like (exposing micro-batches through a declarative API 

similar to SQL in relational DBMSs) interface for distributed Spatial Approximate Query 

Processing (SAQP). With SpatialSPE, we support an extra set of spatial analytics coming 

this time from the spatial statistics (a.k.a. geo-statistics) field, aiming at enriching the pipeline 

with a diverse set of analytics that meet the requirements envisioned throughout the 

motivating scenario of section 1.1. To the best of our knowledge, we are not aware of any 

system in the relevant literature that achieves the goals of SpatialSPE. 

This chapter is organized as follows. We first motivate the work in § 5.1, this is followed by 

a primer on theoretical foundations in § 5.2, then we discuss the design of SpatialSPE with 

the associated SAOS algorithm in section § 5.3. We then in § 5.4 show the technical details 

behind the realization of SpatialSPE in short, followed by a discussion of the results obtained 

by applying SpatialSPE in § 5.5. Thereafter, in § 5.6 we recapitulate important works from 

the related literature, and then conclude the chapter in § 5.7 with a short forward introducing 

the need for a complementary work in chapter 6. 

5.1 Motivation 

The widespread adoption of IoT devices have caused avalanches of geo-referenced data 

streams to flow endlessly and feed DSMSs, and specifically SPEs [22]. The timely 

exploration of those streams offers deep insightful analytics that assist strategic planning in 

all aspects of our lives, including city planning, urban computing and health care. Low-

latency and high-estimation-quality are the two greatly antithetical QoS goals that need to be 

trade off in a plausible way. Deterministic solutions, where exactness is required, cannot 

normally strike a plausible balance between those contradicting QoS goals. Thus, 

Approximate Query Processing (AQP) lends itself as an alternative probabilistic path that 

has shown promising in striking a balance between QoS goals. The fact that, more than often, 

users are willing to abandon tiny error-bounded estimation quality by accepting a small 

reduction in the gain profit margin for the benefit of even a small latency gain. In other terms, 

it is important to comprise an acceptable degree of exactness but on the price of avoiding the 

slowness induced by an exhaustive search, thus striking a balance between conflicting QoS 

goals (such as the case of low-latency against high-resource utilization). AQP depends on 



SpatialSPE: Spatial Approximate Query Processing 

90 

 

many data size reduction techniques, from which sampling presents itself as a leading 

solution. Sampling means selecting a portion of the total data (i.e., population) and compute 

an error-bounded statistic based on that portion. A great challenge relates to designing a 

sampling scheme that is able to select representative samples that yield estimations with 

rigorous error-bounds [89]. Most online sampling methods embrace randomness, by 

depending on sampling schemes that are based on random sampling. However, most 

interesting data are highly skewed (as opposed to the normal distribution). Designs that are 

based on randomness proved inefficient for non-uniformly distributed data such as geospatial 

data. In real scenarios, data streams are geo-referenced and being attuned to this 

characteristic in every aspect of the DSMSs is essential for location intelligence to success, 

including the online sampling scheme. Aiming at closing those gaps, we have designed and 

implemented SpatialSPE (short for Spatial Stream Processing Engine), together with a 

specialized online sampling method SAOS (discussed shortly in section 5.3.4). Our 

contributions by introducing SpatialSPE are the following. First, we have designed a fast in-

memory first-in-class online spatial sampling scheme and incorporated it with an emerging 

SQL-like based micro-batch SPE, Specifically Spark Structured Streaming [6], (SpSS as a 

shorthand). We dub our method as SAOS (explained in section 5.3.4). The originality of our 

method lies in the fact that it is able to pick interactively spatially proportional representative 

samples that, when used in an approximate yield results with high quality. The second 

contribution we provide through SpatialSPE is that we have retrofitted the SpSS query 

incrementalizer so that it becomes aware of the spatial approximate queries that are 

confronting the system up the pyramid. We use the retrofitted version to incrementalize geo-

statistical computations on geospatial data. Incrementalization means that results accuracy 

will be improving stepwise. Queries include single spatial queries, such as approximating a 

study variable (e.g., the ‘average’ or ‘total’ of a variable). We also support spatial online 

aggregations, such as Top-N rank geo-statistics. To the best of our knowledge, we are not 

aware of any system from the relevant literature that achieves these goals. 



SpatialSPE: Spatial Approximate Query Processing 

91 

 

5.2 Theoretical Foundations 

In this section, we aim at laying down the foundation for delineating coherently the ideas 

presented thereafter. We discuss various sampling designs and the need for spatial-aware 

methods that consider spatial patchy distributions by design. 

5.2.1 Stream Processing  

Stream Processing can be loosely defined as any middleware that is responsible for 

processing streaming loads of data, aiming at gaining deep insights. Those systems normally 

have a topology of operators, often known as Directed Acyclic Graph (DAG), which also 

comprises input streams that emit data and the output sinks that receive the (often) 

incrementalized results. In distributed deployments, operator instances are replicated through 

the network so as to distribute the workload. The goal then is to achieve a prescribed list of 

primary QoS goals such as low latency, high throughput and high accuracy. In addition to 

secondary QoS goals (e.g., load balancing) that are defined for empowering the primary 

goals. Those goals are normally achieved through elasticity or approximate computing. 

Parallelizing SPEs is important for achieving QoS goals (i.e., lowering latency and gaining 

throughput), where the system depends on executing multiple instances of the same operator 

(i.e., one in each worker node) on a subset of data in a parallel fashion (as opposed to the 

traditional sequential execution). Two processing models are common in SPEs, record-at-a-

time (a.k.a. tuple-by-tuple) or micro-batching. In the former, as its name implies, each record 

is processed independently in the sequence it arrives, whereas in the latter, multiple records 

are accumulated into micro-batches before being sent to parallelly distributed operator 

instances. Stream processing has borrowed many semantics from the batch processing 

because of micro-batching model. It also introduced a new set of semantics that are not 

required in batch mode. For example, window semantics either constraining the period (i.e., 

time-based windows) or number of records (i.e., count-based windows) that can collectively 

be processed in one shot. In this thesis, we focus on tumbling windows, thus reducing the 

endless processing mechanism of a stream by discretizing (a.k.a. windowing) it into more 

manageable finite subsequence periods that are non-overlapping (i.e., tumbling). A stream 

tuple belongs only to one window period in tumbling semantics. Aggregations then are 

performed on each window independently or with a state management mechanism in case of 
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stateful aggregations. Thereafter, results are served interactively and incrementally (i.e., 

stepwise) to the user. 

5.2.2 Sampling 

5.2.2.1 A Short Primer on sampling 

In statistics, sampling is loosely defined as the procedure of selecting a representative portion 

(could be miniatures) of a population for estimating an unknown population quantity, such 

as an ‘average’ or ‘count’ of a target variable. Population represents all units in a specific 

study area. For example, all persons in a city, where the target of sampling is, for instance, 

estimating the average age of persons. Those estimators are normally associated with a 

variance measuring their accuracy [90] .  

Sampling is pivotal for most statistical studies for various reasons. For example, obtaining a 

total population could be purely fictional. For instance, heights of all people in a country. 

One other potential reason is that processing a whole population census is, more than often, 

computationally challenging. Despite that this is hardly ever an issue with the abundance of 

wide spectrum of big data processing engines, at times, it may be true that data arrives in 

streams where updating results regularly based on newcomers is pivotal for correct time-

dependent estimators. In those cases, we usually base our estimates on observations arrived 

so-far and extrapolate our results to future times. Besides, at times, it’s not even practical to 

visually plot a summary of billions of observations on boards, such as those cases where we 

generate heat-maps of a natural phenomenon.  

Our decision on whether a method is a good or bad sampling method depends highly on 

various factors including the sampling design and size. The sampling design is the procedure 

by which a sample of units or sites is selected. However, there is a consensus on the idea that 

the sample should be a good representative for the population. Stated another way, sample 

constitutes a scaled-down (can also be dubbed as ‘microcosm’) version of the population 

holding intrinsically and mirroring all traits and characteristics of that population it is 

representing. It is undoubtedly true that there is no such thing like a “perfectly-representative 

sample”, but at least if we could obtain a sample that is good enough to yield characteristic’s 

estimations with a known degree of accuracy or confidence, then it would be safe claiming 

that the sample is representative. One of the most recurrent problems that renders some 
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sampling designs as bad is the selection biasedness, which, in simple terms, is the process 

for which the sampling method overlooks some parts of the population by design [90] . For 

example, for estimating a percentage of possible voters in the United States who potentially 

will vote for the democratic party in an upcoming election cycle, selection biasedness may 

render estimates invalid. It is an indispensable fact that sampling generally cause sampling 

errors (normally termed as Standard Errors (SE)) which stems from basing estimates on a 

sample rather than the whole population [90]. Modeling uncertainty has strong ties with 

selecting proper sampling designs. A design that minimizes uncertainty figures, such as 

standard errors, is plausible more than those with expanded error intervals. In other terms, as 

long as those values estimated using a sample are close to the real values (i.e., estimated from 

the total population with no sampling) for some arbitrary number of sampling permutations, 

the method is considered good, otherwise not. 

Aiming at increasing the unbiasedness coupled with the tendency to design methods that 

yield low-variance estimates in a variety of scenarios, many sampling methods have been 

designed, among which the two most widely adopted are simple random sampling (SRS) , 

which is a probability design (a.k.a. random sampling without replacement) and Simple 

Stratified Sampling (SSS). The former proceeds by normally assigning an equal selection 

probability to each unit in the population, thereafter, assigning labels to each unit and 

selecting labels randomly until a specific number of distinct units that is equal to the sample 

size is selected.  This guarantees that all possible permutations have equal probabilities of 

being considered as a sample. The latter operates in a different way, where it selects 

fractional portions from total units depending on the group they belong to. Sampling students 

from schools, we take 50% boys and 50% girls, where boys and girls are stratum in this case. 

The distinction between those two magnets lies in the fact that SSS may assign equal 

inclusion probabilities to each unit in the same stratum, but this may differ from other units 

in other stratum as each stratum is treated independently [91].  

The overarching traits offered by stratification has encouraged us to consider a design that is 

based on stratified sampling, but at the same time considers the spatial patchy distributions 

in scenarios of smart cities and Industry 4.0. In the next subsections, we provide a short 
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primer that spots the light on spatial sampling, aiming at steering a better comprehension for 

the hybridization we have performed in our method, discussed in section 5.3.4. 

5.2.2.2 Sampling 

Deterministic solutions for data analytics problems do not play well with fast arriving huge 

data streams that are mostly geo-referenced with complex data structures that show 

oscillation in data arrival rates and skewness [4]. Be that as it may, in geo-statistics, 

approximations that yield plausible error-bounded statistical results are acceptable  [92]. 

Having said that, a well-selected representative sample can be safely exploited for 

geostatistical analytics such as the approximation of target study variables (e.g., ‘average’, 

‘total’ and ‘proportion’). Also, observing all items of a population could be intractable, such 

as observing migrating birds in a huge location, which are spatially unevenly distributed [93]. 

5.2.2.3 Spatial Online Sampling Designs 

Spatial sampling has a great advantage in many domains such as environmental monitoring 

[94] . It is formally expressed with a ternary (𝜓, ℑ, ℜ), where ℜ is the embedding space 

(often two- or three-dimensional space) from which samples are drawn, ℑ is the sampling 

frame (i.e., SRS, SSS) overlaying the survey area (i.e., embedding space), 𝜓 is the statistic 

that is employed for estimating a variable of interest (e.g., ‘total’ and ‘mean’ of a parameter 

in study area). The choices of ℑ and 𝜓 heavily affects the goodness of the spatial sampling 

design [94]. Those configurations enforce an uncertainty on the spatial sample estimation 

and the common goal is to reach an unbiased estimation with the lowest possible variance, 

which, in spatial distribution, is normally achieved by being attuned to the characteristics of 

the spatial data, where the sample is spatially representative and well-spread out over the 

sampling space [95] . 

Preserving spatial co-locality through a sampling design is known to yield better estimates 

[96, 97]. A principle that complies with Tobler's first law of geography, which simply states 

that nearby spatial objects are more related than those far apart [98]. One way for achieving 

this, is to imagine the earth flattened out (i.e., two-dimensional planar irregular grid-like 

representation) and sample proportional quantities from each subregion (i.e., cell or 

polygon), which is known to yield plausible statistical results with reduced estimation errors 

[94, 98] . 
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Current SPEs with their related spatial-aware extensions and plugins focus on striking a 

weighted balance between few QoS goals (e.g., low-latency and high-accuracy) by either 

overprovisioning resources (i.e., scaling in/out) or dropping-off (a.k.a. sampling or shedding) 

portions from the arriving data, thus loosing tiny accuracy for plausible latency gains. 

However, overprovisioning resources, that are not normally released after a spike, conflicts 

with the target of high resources utilization. For sampling and other sketching methods, state-

of-art SPEs exploit sampling schemes that are basically embracing randomness, based 

mostly on SRS [90] , rendering them non-attuned for spatial characteristics that surround 

objects in proximate locations. SRS does not serve the estimation quality QoS target in 

spatial patchy environments, where spatial objects are normally clumped into few patches. 

Stated in other terms, SRS normally unduly chooses random counts with unfair fractions 

from all cells of the survey area (analogous to strata in stratified sampling), even if it 

performs well at times, at most times it cannot. There is a consensus in geo-statistics that 

geo-near spatial objects have, more than often, strong ties with contexts of their surroundings 

(i.e., ecological, anthropogony, etc.,) [93, 99, 100]. All in all, selecting geographically 

spread-out samples is known to affect estimations quality. We dub those samples drawn that 

way as geospatially representative samples. In addition, although some works of the related 

art focus on spatially representative sampling designs, they normally consider only static 

finite populations (as opposed to continuous infinite populations that always have 

superpopulations). Chief among factors that played a role in the shortage of spatially 

representative sampling designs for continuous populations is maybe the prohibitive 

computational capacities of systems at those times. However, current SPEs act as promising 

jumping off systems for building online sampling designs. 

In this thesis, we scope ourselves to designing stratified-alike spatial sampling methods that 

select well-spread out proportional spatial samples from irregular regions in the sampling 

space (a.k.a. polygons). It should be also noticed that there are requirements that affect the 

fact that we are constrained to selecting spatial samples in non-stationary, anisotropy online 

settings with temporal fluctuations in arrival rates and skewness, thus the term stream 

sampling (a.k.a. online sampling), which is discussed in the next subsection. 
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5.2.2.4 Stream Sampling (a.k.a. Online Sampling) 

There are requirements that are normally imposed on stream sampling in a way that does not 

affect finite sampling designs. One important consideration is that samples would be taken 

either on-the-fly in case of record-at-a-time stream processing models, or from small batches 

(known as micro-batches) in micro-batch processing models. Another fact is that streaming 

systems normally apply the exactly-once semantics, where tuples are not replayable. Also, 

estimates should be designed so that they confluence with the incrementalization semantics 

of the streaming model. For example, in time-based micro-batching window semantics, an 

‘average’ on an interesting variable should be updated in every interval (i.e., batch interval, 

portion of the time window) incrementally building on preceding intervals. Those challenges 

place many constraints on stream sampling designs that do not normally affect stationary 

sampling designs in the same way. To close those gaps, we have designed a spatial aware 

online sampling method that is based on a SPE that supports a declarative SQL-like API. 

Our system that we term SpatialSPE is discussed in the next section. 

5.3 SpatialSPE: QoS-aware Approximate Spatial Data Stream Processing Engine 

5.3.1 Usage Model and Baseline System 

Intelligent systems such as those focusing on spatial intelligence (refer to section 3.1 for 

details) serve interactive results from a spatially patchy streaming source to the decision 

makers in a simplified way that enables them to make sound decisions and strategic plans 

easily. To achieve that, results are served on the form of either visualizations (e.g., heatmaps, 

histograms, etc.,) or dashboards. Both are end results that pass through an end-to-end 

complex pipeline. Map rendering systems are space-constrained in the language of their 

ability to absorb a limited count of spatial objects and overlay them on a map at any given 

time. Consider an example of an online spatial query that asks to interactively generate 

heatmaps of “people and vehicles in-motion grouped by district in the city of Milano in 

Italy”. In a rush hour, were objects are usually clumped into specific districts, this easily 

cause a clutter. Sampling in this case lends itself as a promising solution. A baseline system 

that depends on SRS (SpSS-based SRS baseline) normally unduly overlooks regions, 

resulting in maps that do not necessarily represent the real distributions, which does not help 

in assisting a correct decision making. In that case, selecting a geospatially well spread-out 

sample based on a spatial aware design that yields better heatmaps plots. This usage model 
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convinces the need for an online spatial sampling design. For this, we have designed SAOS 

as explained in section 5.3.4. 

5.3.2 Design Assumptions 

To resolve challenges associated with traditional sampling designs such as the case of 

heatmaps generation, we have designed a spatial aware approximate interactive real-time 

processing system that we dub as SpatialSPE (an abbreviation for spatial stream processing 

engine) so that it operates under the following assumptions. Sampling rates are served to the 

system as an external input, we are not providing any cost model that feeds a controller for 

mapping QoS goals into an adaptive sampling rate. We have designed instead that kind of a 

controller as part of the SpatialSSJP (the topic of chapter 6).  

5.3.3 SpatialSPE Design Overview 

SpatialSPE can be effectively exploited for online spatial approximate analytics. The context 

diagram of figure 5.1 shows a high-level architecture of the workflow of SpatialSPE. The 

operation proceeds as follows. Geo-referenced spatial streaming data is fed to the system 

through an ingestion system (e.g., Kafka) as an unbounded input table (in SpSS terms) at 

regular time intervals (known as trigger intervals in SpSS terms). SpatialSPE receives the 

online spatial query in addition to QoS goals (expressed as estimation quality, latency and 

throughput targets).  
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It also receives a sampling rate (e.g., calculated through an external controller).  Listing 5.1 

shows an example online query (in Spark SQL terms) 

 

SpatialSPE granularity identifier (a building block in SpatialSPE, see figure 5.1) decides the 

level of granularity to apply (most granular level is geohash, while the coarser level has no 

limits, could be borough, district, neighborhood, county in city administration terms, or even 

cities, countries, etc.,). In cases where the most granular level is required, for example 

“sampling fairly proportional amounts based on a grid-like representation”, imagining the 

df = samplepointDF_SSS.groupBy($"geohash"). count().orderBy($"count".desc) 

 

 

 

Figure 5.1. SpatialSPE workflow 

 

listing 5.1 An example online query in Spark Structured Streaming terms 
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earth in two planar geometry with each grid cell as a covering for a circle (squared-grid with 

width equals to double the radius), then the granularity identifier forwards micro-batches 

untouched to a component that simply adds geohashes to each unit ( a linear dimensionality 

reduction approach, from GPS coordinates, longitude/latitude, into a geohash code). On the 

contrary, in cases where a coarser level is requested, such as sampling by ‘borough’ instead 

of ‘geohashes’, thus taking evenly proportional sampling rates from each borough in a city, 

the problem is more complex and needs more attention. First, each spatial point in the micro-

batch can be converted to a geohash, then specifying to which borough this point belongs 

requires solving the Point in Polygon test (recall more information from section 2.3.2), which 

requires joining data from each micro-batch with polygons table (a static table, where each 

polygon represents a borough). To solve this problem efficiently, we have employed a 

retrofitted version of Spark’s Magellan 9 (a geospatial analytics library that was designed to 

work with Spark SQL).  We have chosen Magellan because it supports SQL and it is known 

in performing a cheap PIP tests by utilizing filter-and-refinement join approach (that employs 

a cheap MBR-join in the filter stage). Hitting this point, spatial objects are readily stratified 

and will be fed to our spatial aware online sampling algorithm (abbreviated SAOS, explained 

shortly in section 5.3.4). SAOS selects fairly proportional amounts (based on the granularity 

level identified) from all regions and serves the resulting sample to an approximator that 

operates on top of SpSS , taking advantage of the incrementalizer and optimizers of the 

underlying system in generating incremental query results( e.g., every time window) . 

SpatialSPE operates under the assumption that QoS goals (e.g., latency/throughput) are 

served as an input by the user. A model-based function is responsible for calculating those 

parameters into an appropriate sampling fraction (i.e., rate), which is also an external module. 

SAOS then samples proportional fractions from the data input stream, this is followed by an 

application for the retrofitted incrementalizer, which computes the geo-statistics from the 

samples and produce a result with rigorous error bounds and serve them to user interactively. 

 

 

9 https://github.com/harsha2010/magellan 
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At this stage, sampling ratios (i.e., fractions) are the same for all stratum (i.e., geohashes). 

Also, the system receives a CQ that will be executed stepwise.  

An important sub-module of SpatialSPE is responsible for calculating the covering geocodes 

(currently geohashes). Those are the geohashes corresponding to MBRs that are covering an 

embedded space where the sample has been drawn. This submodule works as follows; it first 

receives an input file containing coordinates of vertices that are forming polygonal areas 

(a.k.a. neighborhoods, districts or boroughs in city management terms) covering collectively 

the survey area. The procedure proceeds by exploding all the geohashes covering all the 

polygons, thus building a map and serving it to SAOS, which selects a well representative 

spatial sample and emits it to the operator downstream.  

Algorithm 5.1. SpatialSPE Workflow  

 /* latThrTargets: latency throughput targets, precision: geohash precision, CQ: 

continuous query*/ 

 
 Input: stream, ContinuousQuery (CQ), latThrTargets, polygons, geoPrec, seed 

1: samplingMap  ∅ //map of geohash keys and sampling fractions  

2: coverGeo  getCoverGeo (polygons, geoPrec) /* List of geohashes covering study area 

(embedding space) */ 

 // costProcedure: external cost model that calculates the sampling fraction 

3: sampFraction   costProcedure(latThrTargets) 

4: Foreach geohash in coverGeo do 

     // construct a map, geohash: key, sampling fraction: value 

5:     element  map {geohash→ sampFraction} 

6:     samplingMap.put(element) 

7: End 

8: Foreach time window interval do 

9:     windowSample = ∅   // tuples sampled in current time window 

10:     Foreach batchInterval in window interval do 

11:            batchSample =  ∅  //tuples sampled in current batch interval 

12:            forall tuplesi in batch interval do  

              /* apply SAOS on tuples of current batch interval: tuplesi */ 

13:                        batchSample   SAOS (tuplesi, samplingMap, sampFraction, seed) 

14:                        windowSample.add(batchSample) 

15:            End 

16:    End 

         //compute and serve incremental output after each time window 

17:  incrementalOutput   run (CQ, windowSample) 

18:  return incrementalOutput with error-bounds 

19: End 
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The operator is part of a DAG that is corresponding to the user-defined CQ, which then will 

be applied to the sample during that time window interval and the result will be interactively 

served to user incrementally, reflecting inter-window changes. Algorithm 5.1 shows the 

workflow of SpatialSPE. For more information about Algorithm 5.1, refer to our paper [101]. 

5.3.4 Spatial Aware Online Sampling (SAOS) Algorithm 

To enable SpatialSPE in achieving QoS goals for spatial real-time data analytics scenarios 

that require approximations, we have designed a unique sampling method that we dub as 

Spatial-Aware Online Sampling (short for SAOS), comprising a pivotal technological block 

in our system SpatialSPE. Our algorithm is superior because of its unique ability in 

considering spatial patchy distributions by being able to collect fairly proportional amounts 

without overlooking some sampling areas. SAOS seamlessly and transparently is 

incorporated within the layers of a de facto micro-batch-based SPE (specifically SpSS). 

Thus, captivating advantages of the incrementalizers and query optimizers of the underlying 

engine. SAOS does not necessitate a prior-knowledge of streaming statistics (e.g., total data 

population, where even such a semantic vanishes as any population in continuous settings is 

part of a superpopulation). 

The workflow of SAOS is listed in Algorithm 5.2. It proceeds as follows; during each trigger 

interval within a tumbling time window, for micro-batches (tagged with geohashes or coarser 

containment polygon such as ‘neighborhood’) SAOS refers to a fraction map to read the 

corresponding sampling fraction for each stratum (i.e., geohash, neighborhood, etc.,), then it 

applies SRS to each stratum independently to select a count that is equal to the fraction 

specified, such that each point within each stratum (i.e., geohash) has an equal inclusion 

probability. For an explanatory utilitarian perspective, SAOS algorithm resembles a heuristic 

overview such as follows. Considering the earth flattened out to a two-dimensional planar 

space, we first overlay a square grid on the embedding space (i.e., the space where samples 

are drawn), where SAOS design frame resorts to a recursive halving in one-dimension and 

quartering in two dimensions. This is in case of a stratification based on geohash, whereas 

on a coarser level the grid is irregular. Thereafter SAOS selects randomly a proportional 

number of spatial objects from each grid cell independently (or from each borough, district, 
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etc., in case of a coarser stratification level). By this design, we recover stratified sampling, 

which is plausible in geo-statistics. Changing the precision of geohash affects the number of 

covering cells in the survey area, which allows user to control the system in a drill-down/roll-

up fashion. Such a hybridization between sequence ordering (i.e., geohash imposed on a grid-

based hierarchal representation) with SRS (imposed within each grid cell independently) 

yields a geospatially well-representative sample, which is known to result in better estimation 

quality in geo-statistics.  For more information about that refer to our paper [101]. 

 

 

 

 

 

 

 

 

5.3.5 Spatial Queries Supported  

Along the lines with the design goals that we have stipulated for SpatialDSMS (refer to 

section 3.4.1), SpatialSPE currently supports two primitives of spatial queries; single and 

ensembles, which then can be used seamlessly to compose other more advanced queries (e.g., 

spatial clustering [102]  and spatial online clustering). Recap that composability is one of the 

design goals of SpatialDSMS. We rely on the theory of stratified sampling and the theory of 

random sampling [90] for approximating spatial queries in SQG1, some equations in this 

section are adapted from [90]. 

Spatial Queries Group1 (SQG1). Single spatial queries (i.e., linear). An example spatial 

query in this category is an interactive request to “find the average trip distance travelled by 

taxis originating from a specific district in a metropolitan city”. Because SAOS resorts to a 

stratified-like sampling design, we depend on the theory of stratified sampling for 

 Algorithm 5.2 Spatial-Aware Online Sampling (SAOS) 

1: SAOS (tuplesi, samplingMap, sampFraction, seed) 

2: r = random(seed), S  ∅ 

3: Foreach tuple in micro-batch-tuples do 

4:     geohash   geocode (tuple) 

     //get sampling fraction for this geohash key = fractioni, or zero 

5:     fractioni   samplingMap.getOrElse(geohash,0.0) 

     //toss a coin for selecting items from each geohash in current batch 

6:     If (P (r < fractioni)) S.put(tuple) 

7: End 

8: return S //return a set S containing the sample 

9: End 
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estimations (e.g., ‘means’, ‘totals’, etc.,) [90]. Having said that, estimating the ‘average’ 

envisaged in the query can be formalized as follows. Imagine that we have K geohashes in 

total (each geohash overlays a stratum, imagining both as grid cells), ykj  is a value of a jth 

tuple in geohash k, then 𝑡 (pronounced tau) is a population ‘total’ for stratum k, which 

follows that a population ‘total’ for the target parameter y  is estimated by SAOS through 

applying the formula  in (5.1). 

 t ̂SAOS= ∑ tk

K

k=1

= ∑ Nky̅
k

K

k=1

 5.1) 

Then using SAOS the average is estimated by applying (5.2). 

 Y̅SAOS= t ̂SAOS/N = ∑(Ni/N)y̅
i

I

i=1 

 (5.2) 

Where t ̂SAOS is the estimated ‘total’ by applying SAOS, N is the number of tuples received 

thus far, Ni is the number of tuples received heretofore in stratum i, y̅
i
 is the incremental 

‘average’ in stratum i calculated up to now. 

For SpSS-based SRS baseline, we first apply (5.3), to estimate the ‘mean’ 

 𝑌̅𝑆𝑅𝑆  =  
∑ 𝑦𝑘𝑘∈𝑆𝑅𝑆

𝑛⁄  5.3) 

where 𝑦𝑖 are the values of target variables in every time window, 𝑛 is the size of the sample 

in every time window.  

SpSS does not natively support those estimators, we have incorporated a glue specifically 

for incrementalizing those estimators, taking advantage of the incrementalizer (a building 

block in SpSS) provided by the Spark engine. A query in this category is similar to the one 

in listing 5.2, which is asking to “calculate the ‘average’ trip distance travelled through all 

taxi trips in NY City, USA every minute” 

 

data.where(“city = NY”).groupBy(window(“time”,”60 

seconds”).avg(“trip_distance”) 

 

 

 

 

listing 5.2. average statistic estimation spatial query example in Spark terms 
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Spatial Queries Group2 (SQG2). In this group falls stateful spatial online aggregation 

queries (i.e., ensembles). Online aggregations differ from static batch counterpart in that the 

former requires managing state between batch intervals, thus achieving a consistency. In this 

thesis, we focus on Top-N (a.k.a. top-K) online aggregations. SAOS is applied to arriving 

spatial points , thereafter they are grouped by geohash keys (Also it is possible to group on 

a  coarser level such as neighborhoods, boroughs, or districts), and then a count predicate is 

applied calculating tuples number for every geohash incrementally and a sorting function is 

applied in a descending style. An example spatial query belonging to this category is the 

follows. “which are the top-10 boroughs in NYC where people tend to order green taxi 

pickups”. Listing 5.3 shows this query expressed in Spark SQL terms. 

 

5.3.6 Quantifying the Uncertainty Associated with Sampling 

Estimating target variables by sampling instead of the population is naturally bounded to an 

uncertainty which should be quantified to measure the ability of the sampling design in 

achieving the QoS goals predefined by the user. Since SAOS in its core resorts to stratified-

alike sampling, then the theory of stratification applies. We rely on the theory of stratified 

sampling and the theory of random sampling [90] for quantifying the uncertainty of applying 

spatial queries in SQG1 to estimate target variables, some equations in this section are 

adapted from [90]. 

I) For SQG1 (single spatial queries), since SAOS recovers a stratified-alike 

sampling design, we depend on the Theory of Stratified Sampling [90] for 

producing statistically acceptable estimations of the accuracy of approximations 

val sampleStatistics = sample 

    .groupBy($"borough ", window($"time", "1 minute")) 

    .count().orderBy($"count".desc) 

val query = sampleStatistics.writeStream 

  .queryName("statistics")…start() 

statistics.select($"borough",$"count").limit(10) 

 

 

listing 5.3. Top-N spatial query example 



SpatialSPE: Spatial Approximate Query Processing 

105 

 

for SQG1 queries that are obtained by applying SAOS instead of a SRS. We first 

apply (5.4). 

 v̂(t ̂SAOS) = ∑ (𝑁𝑘– nk/Nk)

K

k=1

 (Nk
2sk

2/nk) 5.4) 

Where nk is the number of tuples thus far in stratum k, Nk is the total number of items up to 

now in all strata, sK
2  is the standard deviation in stratum k. All those magnitudes are calculated 

incrementally by our support. 

In order to compute an estimated variance for the estimated total. Then we incorporate the 

result in an equation to estimate a variance for the estimated average of the target variable, 

specifically by applying (5.5). 

 v̂(Y̅SAOS) = v̂(t ̂SAOS)/N2 5.5) 

 

Where v̂(Y̅SAOS) is the estimated variance of the estimated mean, v̂(t ̂SAOS) is the estimated 

variance of the estimated total. 

Thereafter, we compute standard error (SE) depending on (5.6). 

 SE(Y̅SAOS) = √v̂(Y̅SAOS) (5.6) 

Then we carry the value obtained of SE and apply it in (5.7). 

 Y̅SAOS ∓ zα/2SE(Y̅SAOS) (5.7) 

In order to approximate 100(1- α)% confidence interval (CI) of the population mean Y̅pop, 

where zα/2 is the upper 𝛼/2 point of normal distribution. Thereafter we define relative error 

as in (5.8). SE measures sampling distribution variability (not to be confused with standard 

deviation, which measures the variability on points level). 

 RE = zα/2(SE(Y̅SAOS)/Y̅SAOS) 
5.8) 
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The intuition behind this adjusted error metric is that values of SE metric are normally small, 

so we have used a relative error as a representative that preserves the same SE trend but being 

more meaningful. We also define an accuracy loss by (5.9). 

 accLoss = |estimatedMean – trueMean| / trueMean 
5.9) 

 

We also define the gain by applying SAOS instead of the SRS-based baseline, for which we 

apply (5.10). 

  gainSAOS  =v̂(Y̅SAOS) /v̂(Y̅SRS) 5.10) 

, where v̂(Y̅SAOS) is the estimated variance resulted by applying SAOS, whereas v̂(Y̅SRS) is 

the estimated variance resulted by applying SpSS-based SRS baseline. 

Also, we apply the following equations from the theory of SRS to calculate the estimated 

variance estimated average and other quantities. Then we apply (5.11) to calculate the 

estimated variance of the estimated mean. 

 𝑉̂(𝑌̅𝑆𝑅𝑆)  =  ((𝑁 −  𝑛
𝑁⁄ )(𝑠2

𝑛⁄ ) 5.11) 

Where N is the total number of records arrived at the system at the time of computation, 𝑠2 

is the incrementalized variance calculated from the sample drawn thus far. 

Then we apply (5.12) to calculate the standard error 

 

Then we apply (5.13) to calculate a relative error. 

For the same rationale that we have suggested beforehand regarding the relative error in 

SAOS case. 

II) For Spatial Queries Group2 (SQG2), online spatial stateful aggregations 

(specifically Top-K) queries. We measure every method ability in preserving an 

original ranking that would be obtained if we have access to a population or a 

superpopulation. This is due to the fact that the online stateful aggregations we 

 SE(𝑌̅𝑆𝑅𝑆) = √𝑉̂(𝑌̅𝑆𝑅𝑆) 5.12) 

 RE = zα/2(SE(𝑌̅𝑆𝑅𝑆)/𝑌̅𝑆𝑅𝑆) 5.13) 
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compute by applying sampling instead of the population depending on a baseline 

normally has a quality guarantees in terms of accuracy. To measure the ability in 

satisfying those qualities, we apply a Spearman's rank correlation coefficient 

[103] (read Spearman's rho hereafter). We have retrofitted the measure so that it 

applies to our case.  Spearman's rho is a measure for statistical dependency 

between the ranking of two variables in a dataset. In short, our application of rho 

proceeds as follows. We collect the ranks (i.e., orderings), and once the spatial 

CQ stops (i.e., shutdown by user, or depending on a query window semantics) we 

take the collected orderings of the original aggregations (i.e., those that would 

result from a  population without sampling, we consider the total number of tuples 

emitted by the sources at that point as the population) and the ranking that is 

calculated by applying SAOS (and in the same vein, by applying SpSS-based 

SRS baseline). Then we serve those figures to Spearman’s rho and apply (5.14) 

accordingly. 

 ρ
rg

= covariance(ranknosampling, ranksampling) / (σranknosampling
 . σranksampling

) 
5.14) 

 

, where ρ
rg

 (i.e., rho) is spearman’s correlation coefficient applied for ranking statistics , 

covariance(ranknosampling, ranksampling) is the covariance of the rank variables, 

σ𝑟𝑎𝑛knosampling
 and σ𝑟𝑎𝑛𝑘sampling

 are the standard deviations of the rank variables, without and 

with sampling, respectively. 

5.4 SpatialSPE Implementation Technical Details 

To show that SpatialSPE10 is adept and versed in achieving QoS goals, specifically time-

based qualities such as high throughput and low latency, in addition to accuracy-based QoS 

goals, specifically the estimation quality, we have implemented a standard-compliant 

prototype based on SpSS, stacking up our patches on SpSS. Because, as of the time of this 

writing,  SRS is not implemented in SpSS, aiming at an equal comparison, we have 

 

 

10 The source code of SpatialSPE (together with SAOS sampling method) is available at: 

https://github.com/IsamAljawarneh/SpatialSPE 
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incorporated a patch that glues a version of an online SRS , which can operate in streaming 

settings for approximating estimators depending on SRS (we dub this version as  SpSS-based 

SRS). The micro-batching model of SpSS has enabled us to implement this transparently, 

where source tuples are collected in blocks (i.e., micro-batching mode of operation) before 

being split for processing. Thus, by injecting a frontstage after the block formation stage and 

exactly before partitioning, our patch for SRS works as if it is operating in a batch mode (the 

core concept of micro-batch stream processing).  

We did this because we needed a comparable ground-truth with which to compare our SAOS 

method. The two methods, the baseline SpSS-based SRS and SAOS belong to the family of 

sampling without replacement. 

5.5 Performance Evaluation and Results 

5.5.1 Comparison Methodology 

To compare with the baseline, since the goals we aim at achieving are novel, to the best of 

our knowledge, with same settings, including the utilization of a declarative API-based 

streaming and the incrementalization of statistical estimators in non-stationary spatially-rich 

environments, we are not aware of any similar system from the literature that is achieving 

the same goals. We build on top of SpSS, which currently, as of this writing, does not have 

a native support for sampling on streaming DataFrames/Datasets (core SpSS abstractions). 

We needed a baseline for which to compare our method with, so we have decided to retrofit 

SpSS so as to enable incrementalizing an SRS-based method as a patch on top of the stack, 

and then compared our SpatialSPE with that. The SRS-based method works by simply 

applying the traditional SRS for every micro-batch without replacement and with equal 

inclusion probabilities. Replacement is not preferable in our setting because the nature of the 

data torrents does not guarantee equal chance of inclusion for all arrival tuples in case of 

replacements. It is often possible that replacement units are also non-response units, thus 

deteriorating the inclusion probability. 

5.5.2 Metrics of Interest 

We first define a set of metrics of interest that we apply for the queries that we are supporting 

(recap them from section 5.3.5) . We depend on two fundamental targets; those are normally 

found in all AQP systems. In particular, we rely on estimator accuracy (estimation quality, 
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recap section 3.2) and processing throughput for measuring the QoS in terms of quality of 

estimates and the ability of the system in keeping up with data skewness and arrival paces, 

respectively. Also, we measure an additional functional QoS metric, scalability. 

Among those metrics, we have measured throughput, latency, accuracy (estimation quality 

and gain), and scalability for all queries belonging to the single queries group (SQG1) (linear 

queries that return single values such as ‘averages’ and ‘totals’ estimator). For stateful 

aggregations (belonging to group SQG2, refer to section 5.3.5), we measure throughput, 

latency, estimation quality (through Spearman’s rho) and scalability. We vary multiple 

parameters to measure a mixture of those metrics (i.e., trading off a mashup between them), 

those basically include varying sampling fractions, arrival rates and geohash precisions as 

detailed in section 5.5.4. We now conceptualize definitions of the foregoing metrics. 

Throughput. Refer to Appendix C for technical details explaining the way we compute 

throughput for SpatialSPE. 

Latency. We have calculated it the same way as described in section 3.2.  

Estimation quality. We measure the estimation quality of single queries of estimators for 

both, our SpatialSPE and adapted SpSS SRS-based, by utilizing the Standard Error (SE) 

general formula from the Central Limit Theorem [90]  and calculating a relative error. Also, 

we apply rho for measuring the quality of ranking statistics (i.e., the estimation quality of 

queries in SQG2, refer to section 5.3.5)  

Scalability. We define the scalability as the ability of the system to perform either faster (in 

terms of latency) or keep, at least, with the pace of data fluctuating arrival torrents at 

moments of transient spikes. For measuring scalability, we vary the parameters of cluster 

deployment, more specifically, increasing the bare-metals of our cluster from two to four 

worker nodes (see section 5.5.3 for details of a worker node characteristic), thus doubling 

computation power and sensing the effect against arrival rates. 

We vary the stream arrival rate as this is the case in reality, where streams exhibit oscillating 

rates over time. Higher stream rate carries a greater number of input units and may cause 

latency to rocketry climb, thus studying the effect of this on incrementalizations in parallel 

settings is pivotal. 



SpatialSPE: Spatial Approximate Query Processing 

110 

 

5.5.3 Experimental Setup and Datasets 

5.5.3.1 Dataset  

For benchmarking, we use the NY City green taxicab trips datasets 11, where we select a big 

cohort representing six months (almost nine million tuples) expressing taxis rides for the first 

half of year 2016. Data includes spatial fields, geometrical planar representations of pick-

up/drop-off locations and trip distances measuring the distance travelled for each trip. 

Despite the skewness of this data, traditional sampling theories applies in accordance with 

the Central Limit Theorem (CLT) [90]. Refer to Appendix D for further details. 

5.5.3.2 Deployment and experimental settings 

We deploy SpatialSPE on a Microsoft Azure HDInsight cloud computing cluster hosting 

Apache Spark (version 2.2.1). Our cluster consisted of 6 NODES in total (2 Head, analogous 

to master nodes in Amazon, plus 4 worker nodes). Head nodes specifications are based on 

(2 x D12 v2), and workers are based on (4 x D13 v2) specifications. Every head node hosts 

4 CPU cores with 28 GB RAM on each and 200 GB Local SSD memory, and quantities are 

double those figures for each worker node. 

5.5.4 Evaluation Strategy 

In this section, we discuss the results we have collected through measuring the QoS metrics 

that are explained in section 5.5.2. Our evaluation strategy varies four parameter 

configurations; sampling rate, stream source data arrival rate, geohash size and computing 

resources size. We intermix those configurations for measuring the QoS metrics by executing 

queries of section 5.3.5. The two parameter configurations are as follows.  

• Parameter Configurations #1. Varying geohash size and sampling rate. We vary 

geohash size between 30 and 35. Also, we vary the sampling rate between 20% 

and 80% (20% step length).  By this configuration mashup, we target measuring 

the accuracy QoS goals (i.e., estimation quality) of all query types in groups 

SQG1 and SQG2. 

 

 

11 https://www1.nyc.gov  
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• Parameter Configurations #2.  Fixing geohash size to 30 and varying spatial 

stream tuples arrival rate from 1 million to 2 million tuples/second, in 

combination with varying sampling rates between 20% and 80% (with a step size 

that is equal to 20%), and also including 1% and 5% to account for harsh latency 

goals in cases where spikes in data arrival rates are brutal. By this configuration 

mashup, we measure the QoS throughput and latency goals of spatial queries in 

SQG2, because they consist of computationally expensive online stateful 

aggregations.  

All measurements are computed as a median (i.e., 50th percentile) of ten running sessions 

(i.e., repeating same queries with same configurations 10 times and taking the average of the 

skill).  

5.5.5 Test Cases and Results 

5.5.5.1 Testing scenarios 

1) SQG1 test cases. We have measured the performance (i.e., the achievement of 

estimation quality QoS goal) by applying the following query (which belongs to 

SQG1): “what is the accumulative average of a trip distance travelled by taxicabs 

itinerary trips within first six months of 2016”.  

2) SQG2 test cases. For top-N rankings, we apply an online spatial aggregation query, 

specifically the following; “what is the top 10 neighborhoods (or circular locations 

bounded by MBRs, geohashes) in NY city, USA where taxicabs trips originate”.  

5.5.5.2 Results and discussion 

5.5.5.2.1 SQG1 test case results 

We use parameter configurations#1 for running those tests in this subsection. 

Figure 5.2 elucidates the differences between the online sampling schemes SAOS and SpSS-

based SRS in terms of the “estimation quality” of an estimator for a target variable (such as 

the ‘average’ requested through SQG1 test cases as explained in section 5.5.5.1). 

As it is evident, SpSS-based SRS underperforms SAOS in terms of the estimation quality 

(measured through RE and accuracy loss). Increasing the geohash size negatively affects the 

estimation quality. Results shown here are measures for confidence interval 68%. The same 
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pattern applies for the confidence intervals 95% and 99%. Refer to our paper for more 

interesting results [101] .  

Notice that, despite seems trivial, relative errors signifies an important aspect in regard to 

estimation quality. To make sense of it, reducing the error by a factor of 2 requires at least a 

sample that is bigger by a factor of 4. This means that even a small fractional gain in terms 

of those measures (i.e., accuracy loss and relative error) significantly meets the accuracy QoS 

goals (i.e., higher estimation quality). 

To take a more utilitarian perspective of how this effect (even looks small in figures ) can 

negatively impact the estimation, we show in figures 5.3 and 5.4 , respectively, how by using 

SpSS-based SRS the estimator misses the 68% confidence interval (for the mean estimator) 

at some sampling rates, whereas SAOS is perfectly fitting within the boundaries of the same 

CI. The same trend occurs for 99 and 95 confidence intervals, refer to our paper for more 

interesting results [101].  

 

Figure 5.2. Estimation accuracy of SAOS vs. SpSS-based SRS, for G1 queries. ‘loss’ in the 

legend is the accuracy loss calculated by applying equation (5.9), whereas ‘RE’ is the 

relative error calculated through equations (5.8) and (5.13) for SAOS and SpSS-based SRS, 

respectively 
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Figure 5.3. CI 68% SRS on mean estimator varying the sampling fraction. CI in the legend is 

the confidence interval 

 

 

Figure 5.4. CI 68% SAOS on mean estimator varying the sampling fraction. CI in the legend is 

the confidence interval 
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To better understand how SAOS is adept more than SRS in geo-statistics, we show in figure 

5.5 the gain obtained by applying our method to SQG1 queries (calculated by applying the 

design effect measurement [90] , refer to section 5.3.6).  

 

 

 

 

 

 

 

 

 

Notice that we obtain as large as 7% gain by applying SAOS against SpSS-based SRS. If 

these figures were the population variances, we would expect that we would need on average 

only (1000k).(0.93) = 930k observations with a sample from SAOS to obtain the same 

estimation quality as from an SRS of 1000k observations, this saves (70K tuples less, for an 

arrival rate of 1 million tuples/second, this means that we take 70 thousands tuples less, 

which is statistically significant) a precious time of online processing in latency-sensitive 

SPEs, where even milliseconds can save the system from coming into a halt. 

5.5.5.2.2 SQG2 test case results 

Figure 5.6 depicts the skill of SAOS in comparison to the baselines (SpSS-based SRS) in the 

language of estimation quality for spatial queries of SQG2, where Top-N ranking quality of 

SAOS outperforms SRS, despite almost at par for some sampling rates and geohash sizes. 

 

 

 

 

Figure 5.5. design effect by applying SAOS against SpSS-based SRS 
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Speaking about time-based QoS goals (more specifically the throughput in this case), Figure 

5.7 elucidates that SpSS-based SRS slightly underperforms SAOS. Despite being a simple 

approach, SRS in this case performs worst because, on average, the system needs to manage 

more key states between triggers when applying SRS, this is basically due to the fact that 

 

Figure 5.6. Spearmans’s rho by applying SAOS Vs. SpSS SRS-based. ‘rho 30’ (in the primary access) 

means rho value at geohash precision 30, whereas ‘rho 35’ (in the secondary axis) means rho value at 

geohash precision 35 

 

 

 

 

Figure 5.7. Throughput by running SAOS against SpSS-based SRS, with a streaming rate that is 

equal to 500k tuples/second. ‘key_states_updated’ (in the secondary access) in the legend means the 

average number of keys updated between tumbling windows 
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SRS is not aware of keys distribution and selects tuples totally randomly, which means 

sampling unnecessarily more keys every trigger. 

SAOS and SpSS-based SRS act in the same way for data oscillation from 500K to 1000K to 

2000K tuples/second, while SpSS-based SRS always underperforming. Refer to our paper 

for more interesting results, specifically those showing the same latency and throughput 

trends on different settings (four worker nodes instead of two) [101]. All in all, SAOS is able 

to handle the pace at which data is arriving (almost at the par), thus achieving the latency 

quality goals. 

We finally show the effect of incrementalization on mean estimator. Figure 5.8 shows how 

both SAOS and SpSS-based SRS are catching up with the true mean value after a total 

number of a million tuples arrived. The mean estimation for both is approaching stepwise 

the true value. However, SAOS is approaching faster and this is further self-explained by the 

smaller value of standard error that is resulting from applying SAOS (as opposed to the value 

obtained by applying SRS), calculated incrementally. Notice also however, that the standard 

error (SE) difference for both converges and vanishes as their estimates approach the true 

value. 

 

 

Figure 5.8. the effect of incrementalization on the ‘average’ or ‘mean’ estimator. Sampling 

fraction is set to 40 %. In the legend, ‘stepwise_mean’ (the primary access on the left) is the 

‘mean’ value changes in correspondence to total tuples arrived up until that point in time. SE (the 

secondary access on the right) is the standard error. 
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In theory also, SAOS is an appealing and compelling approach, a theoretical perspective 

explaining the excellence of SAOS is explained in Appendix E. 

5.6 Similar Works 

In relevant literature [99, 100, 104] apply various dimensionality reduction approaches, but 

however are computationally expensive and inapplicable in distributed online deployments. 

Also, relevant art of the literature focus on achieving single QoS goals (for example, 

satisfying either high-resource utilization or low-latency) without seeking a balanced weight 

between them. 

Several works can be traced in the literature focusing on spatial sampling. However, most of 

them are geared toward centralized and stationary settings, depending on High Performance 

Computing (HPC) deployments with disk-resident datasets. While this works for some 

scenarios, it was not usually the case during the last decade, where spatially-augmented huge 

data amounts are arriving very fast, with sometimes burst loads and unruly spikes (i.e., not 

amenable to discipline), thus leading to an interest in online spatial sampling. This is 

specifically challenging, giving that implanting spatial awareness normally presents systems 

with additional overheads, due in part to the ‘curse of dimensionality’ of geospatial objects 

representations. 

Most relevantly, [105] have designed a dimensionality reduction method for finite 

populations, dubbed as generalized random-tessellation stratified (GRTS) , that is based on 

mapping two-dimensional into lower-dimensional space, then creating a set of randomly 

ordered spatial addresses with a mix of  systematic sampling in order to generate  a well-

balanced random sample. They depend on the fact that spatial objects that are proximate in 

the two-dimensional planar space tend to be proximate in a lower one-dimensional space 

after mapping.  The sample is then selected using a systematic sampling scheme. This is 

analogous to random tessellation in a two-dimensional space. However, well-spread does not 

necessarily mean well representativeness and the systematic component may under-represent 

some regions.  In the same vein,  [106]  presents a sampling method that relies on 

dimensionality reduction, more specifically by utilizing space-filling curves. They order the 

survey units in such a way that consecutively numbered points represent spatially well-
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balanced sample. Other works include [96] which has incorporated kriging estimator for a 

real-time monitoring of environmental phenomena into a higher-level architectural pattern. 

The picture that emerges from the relevant literature, however, is that, none of the forgoing 

studies are applicable in distributed deployments. Hence, they are not designed to achieve 

incrementally accurate results that improve dynamically over time (i.e., stepwise). On the 

contrary, our system was adept in achieving spatial-awareness in distributed settings. Also, 

SpatialSPE has introduced incrementalization over geo-referenced data streams using a 

declarative API, a target that is completely novel. 

5.7 Chapter Conclusion and Forward 

The idea that spatially-balanced sampled datasets yield better estimations than simple 

probability sampling methods is well established in the relevant literature. In accordance 

with that, there are some frameworks for incorporating spatial awareness into statistical 

sampling. Some methods are based on splitting the study area into cells (traditionally known 

as tessellation, which implies dividing the study area into polygons, either equally- or 

arbitrarily-sized) and treating each cell as a stratum, thus simplifying the application of 

stratified-alike sampling designs, which is plausible in geo-statistics. However, those 

methods are not ready for distributed computing settings. Furthermore, they incorporate 

computationally expensive structures, such as tree-based hierarchal representation structures 

that renders them, despite being efficient theoretically, unsuitable for extension to the 

distributed computing world. 

On the other side, distributed big data processing systems are evolving fast in an 

unprecedented way, reflecting the need for systems that adapt to the fluctuating and 

oscillating pace of big datasets that show temporal skewness. 

In this chapter, we have shown SpatialSPE which constitutes an integral building block of 

our system SpatialDSMS. It is complementing the accurate computations (performed 

through SpatialBPE and SpatialNoSQL, topics of chapter 4) for scenarios that need 

approximations to be performed on fast arriving online spatial torrents of data loads. SpSS 

does not have a native support for SAQP and SpatialSPE is transparently incorporated with 

SpSS and complementing it in that dimension. Again, we have achieved one of our design 

goals, specifically the modularity, in the way that we have designed SpatialSPE so that it 
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accepts any future patches for SAQP. The novelty of our system is that it is the first-in-class 

that is being built on top of an SPE that offers a declarative API, thus naturally offering an 

interface that allows expressing geometric approximate computations in a human-friendly 

manner and as a batch-like query as if it was to be executed in batch mode, while underneath 

reusing optimizations provided by such a promising SPE. 

Because of being simple and conceptually appealing approach, the desire by statisticians to 

employ SRS is high. However, this does come at the inconvenience of poor results obtained 

in geostatistical settings and it suffers from computational limitations, and we advise that in 

those settings it should only be envisioned as a last resort, and there could be a qualitative 

leap between using SRS and SAOS. This does not however detract from the value of SRS, 

but otherwise complementing it and extending its usefulness to the current world that is rich 

of spatial data. Beyond its theoretical impact, our method performs the best in the wild and 

as a hybridization between SRS-based and SSS designs, it is the best-of-both-worlds 

retaining benefits of both without their drawbacks. 

SAOS was able to incorporate seamlessly and transparently within the layers of the semantic 

representations of an emerging declarative micro-batch streaming model, yielding 

statistically significant estimates with rigorous error bounds. So far, we have considered 

sampling fractions that are served to SpatialSPE by an expert user. However, the temporal 

fluctuation of geo-referenced streaming loads calls for an interactive controller based on the 

control theory and an appropriate cost model, that is able to respond adaptively to oscillations 

in data arriving paces and fluctuations in skewness. This has encouraged us to design an 

adaptive system that exploits SAOS in a control feedback mechanism, which, despite 

designed for heavy workloads (e.g., stream-static join), can be used for any streaming 

workload.  We term the complementing sub-system as SpatialSSJP which is the topic of 

chapter 6. 
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Chapter 6 

6 SpatialSSJP: Adaptive Stream-Static Spatial Join Processing 

In today's big data landscape, online applications are, more than ever before, relying on real-

time data for deeper insights that benefit businesses. IoT is currently the main source of huge 

avalanches of geo-referenced data streams that feed online services. It is expected that it 

generates more than 500 zettabytes of data by 2020 [107], which overburdens the capacities 

of current DSMSs. What’s more, most interesting application scenarios however contain 

mixed workloads requiring stationary data to be joined with data in-flight in order to pluck 

an interesting insight. The abundance of the ways we can mix data together led to the 

introduction of the Lambda architecture, designed specifically to handle low-latency updates 

in a linearly scalable way. Consisting of three layers, where streaming data is fed into either 

a batch or speed layer. Data can then be combined from both layers to be served through a 

serving layer to the benefit of dynamic application scenarios. 

It is then becoming obvious that the join operation constitutes an integral building block of 

any successful SPE (a.k.a. Distributed Stream Processing System, DSPS for short). It is 

however prohibitively computationally expensive in an exhaustive way to compute over a 

huge amounts of fast arriving data streams and may take several hours to complete for 

complex querying scenarios [108, 109]. A problem that is exacerbated in geofencing that 

includes complex polygons [110].  

As a natural resolution, Approximate Query Processing (AQP) (especially for ad-hoc and 

long-running queries) excels in optimizing the QoS of online join processing in highly 

dynamic and scalable application scenarios, such as those in smart cities [3]  and Industry 

4.0 [4]. AQP depends on the observation that an approximate answer that falls within the 

boundaries of a confidence interval suffices for expressing a statistical parameter. To address 

this problem, sampling-before-join seems a super-quick compelling fix, but, however, is a 

candidate for high accuracy loss as it may potentially deteriorates the statistical properties of 

study variables, simply because sampling designs commonly embrace randomness by 

depending on uniformity. On the other hand, sampling-after-join could be computationally 

prohibitive. Stated another way, in smart city scenarios, samples taken should be spatially 



SpatialSSJP: Adaptive Stream-Static Spatial Join Processing 

121 

 

representative for the join after to perform well in the currency of estimating interesting geo-

statistics.  Approximate join methods from the relevant literature such as RippleJoin [111]  

and WanderJoin [112]  are designed to be operating in single-node beefed-up servers and 

parallelizing them is challenging. 

The fluctuating nature of arriving rates of data streams challenges the current Spatial 

Approximate Query Processing (SAQP) engines. It is hard to predict such an oscillating 

nature in streaming settings in addition to the temporal oscillating skewness. Such settings 

require an adaptable model-based solution that responds interactively to spikes. A 

compelling solution should also be able to control the way of join processing such as to 

achieve the prescribed SLAs, including most importantly the latency/throughput/accuracy 

QoS goals trade-offs.  

To cope with the fluctuating rates of arrival data, another major goal of current systems, 

typically deployed over on-demand cloud environments, is to maximize resource utilization 

in order to lower the costs for the user. Accordingly, most state-of-art solutions depend 

heavily on elasticity, by overprovisioning and de-provisioning computing resources to 

maximize resource utilization. Nevertheless, studies have shown that the average utilization 

in cloud deployments is under 40 percent of the overall reserved resources [113, 114].  This 

is possibly due to the fact that users lack the relevant understanding on how to configure the 

auto-scaling parameters (which requires technical knowledge for most SPEs) that, in its turn, 

behooves them to select lenient  configurations that allow, most often, the overprovisioning 

in order to handle peak loads , leading then to a low resource utilization. Consequently, 

elasticity methods, despite relevant for some cases, do not interplay well in resource-

constrained settings. We consider systems with shortage in computing resources, being 

deployed on an on-demand cloud, where the goal is saving money by maximizing the 

utilization of resources, or deployed on in-house clusters, where the goal is to free unused 

resources for the benefit of other queued applications. 

Our main goal in designing SpatialSSJP is to provide a QoS-aware optimization for online 

join processing in highly dynamic application scenarios. To realize this goal, we have 

designed an adaptive QoS- and spatial-aware system (we term as Spatial Stream-Static Join 

Processor, SpatialSSJP for short) for stream-static online join processing (i.e., joining 
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arriving tuples in a data stream with a static disk-resident master table). Most importantly, 

SpatialSSJP constitutes a controller, which contains two sub-controllers; the first is based on 

the control loop feedback mechanism and specifically the Proportional-Integrative-

Derivative (PID) controller, which is utilized in case that the user prioritizes low-latency QoS 

goal. However, when the user chooses to prioritize high-accuracy (i.e., high estimation 

quality), then we apply the second model-based controller (described shortly in section 

6.3.2.2) that returns results with rigorous error-bounds. The controller is entwined with our 

spatial-aware sampling method (Spatial Aware Online Sampling, SAOS for short) [101] that 

we have designed with SpatialSPE (refer to section 5.3.4 for details).  

By lending SAOS, we guarantee that an appropriate count of items is safely purged from the 

arriving stream before applying the join predicate. A special characteristic of SpatialSSJP is 

that it preserves the spatial characteristics of the data stream. It is therefore aware of the data 

nature, and thereby preserving the geo-statistical properties of the served result by providing 

a spatial approximate result with rigorous error-bounds. Also, it meets the target QoS 

requirements prespecified by the user through SLAs from which two are most common and 

contradicting, high-accuracy (i.e., high estimation quality) and low-latency, where 

overoptimizing any may deteriorate the other in an endless tension.  SpatialSSJP self-tunes 

the sampling parameter by calculating after each loop (i.e., batch or trigger in SPE terms) an 

appropriate sampling fraction (our solo configuration parameter, not inducing any extra 

overhead). Thereafter, it serves the sampling fraction back to SAOS module so as to select 

an appropriate spatially representative sample for the next batch (a.k.a. trigger in DSMS’s 

jargon). All in all, satisfying the quality requirements prespecified by the user. 

We have implemented SpatialSSJP on top of an emerging de facto standard general-purpose 

SPE, Spark Structured Streaming (SpSS hereafter for short) and evaluated its ability to 

achieve QoS goals by applying the general methodology that we have defined in section 

3.2.1. We use a real-world data load against Spark’s baselines (such as our glue for SpSS 

supporting backpressure mechanism) and the vanilla Spark without sampling. Our 

experiments show that SpatialSSJP is able to meet QoS goals prespecified by an expert user. 

In addition, it outperforms baselines in terms of accuracy and latency QoS attributes. 
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To sum up, we make the following contributions by designing SpatialSSJP: 

• We develop model-based adaptive hybrid (reactive and proactive) controller for 

spatial stream-static join operators (i.e., equivalent to geofencing [110]) and 

incorporate it with an emerging SPE, specifically, SpSS, taking full advantage of 

the optimizations provided by the underlying layers of SpSS codebase.  

• We enrich the controller by an accuracy-aware module (reactive) that receives a 

‘margin of error’ as an estimation-quality QoS goal and responds accordingly. 

• We incrementalize the appropriate spatial statistics so that the performance 

improves as time ticks forward. We also support the incrementalization of other 

basic standard spatial queries such as Top-N ensembles and other spatial online 

aggregations. 

To the best of our knowledge, we are not aware of any system from the relevant literature 

that synergistically achieves these goals. We first introduce the theory behind our work in § 

6.1. We then explain the architecture of SpatialSSJP in § 6.2 in addition to a usage model 

and a baseline system. In § 6.3 we expand the algorithmic perspectives within the layers of 

SpatialSSJP, showing also the supported queries and measures to quantify the uncertainty. 

In what follows, we shortly recapitulate the implementation of SpatialSSJP in § 6.4. 

Thereafter, we present our results with proper discussions in § 6.5. This is followed by a 

short review of the relevant literature in § 6.6. We finalize by summing up the effort and 

recommend future research directions in § 6.7. 

6.1 Background 

We aim by this short background at assisting, in a coherent and structured way, to grasp the 

rudiments of the ideas presented in this chapter. 

6.1.1 The Problem of Poor Resource Utilization in Stream Processing  

The parallelized versions of SPEs distribute DAG operator instances to multiple worker 

nodes (i.e., bare-metal or virtualized) to achieve the primary QoS goals. But this sometimes 

cause the overprovisioning of resources thus lowering the resource utilization, which 

counteracts the benefits of parallelization. SPEs then should aim at maximizing the resource 

utilization in parallel distributed settings. For example, by releasing resources in in-house 
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computing clusters and make them available for other applications. Also, minimizing the 

cost incurred by the pay-as-you-go model while deploying on a Cloud infrastructure, but at 

the same time keeping the latency low. In summary, a goal not-to-be-underestimated is 

keeping the average end-to-end latency bounds low while maximizing resource utilization. 

Two highly contradicting QoS goals that can be exacerbated in continuous queries that 

contain complex operators such as the join operator. Coming up next is a subsection that 

summarizes the complexities associated with DAGs that encompass a join operator. 

6.1.2 Streaming Distributed Joins and Complexities Associated with Spatial Cases 

Data aggregation remains one of the most desired analytics in real-time applications. It 

heavily depends on joining data between either several streams (i.e., stream-stream join) or 

a stream and a static table (i.e., stream-static join).  

However, in streaming scenarios, where data tuples arrive in an unbounded fashion that 

exhibits temporal skewness and fluctuation, results are normally incrementalized in 

unbounded manner. Hence, the assumption that input data is indexed does not play well with 

those settings, rendering standard join algorithms unsuitable in such streaming scenarios 

[115].  

The parallel distributed processing model encompasses logistic complexities that are 

uncommon in traditional centralized single-server settings. For example, distributed 

processing engines (such as Apache Spark [1]) dispatch data loads to parallelly connected 

computing nodes aiming at speeding up the processing phase. Some operations however 

require shuffling data between nodes. Join processing is a potential candidate as joins can 

only be performed on same-node basis. SPEs normally apply either repartition or broadcast 

joins (refer to section for 2.3.1 details). In cases where a static master table is small enough 

to reside in-memory of all processing worker nodes, it is broadcasted (together with a join 

operator instance) and the join that is then performed needs no shuffling as it is done locally, 

from which conquering local join results is the only thing at the time that remains incumbent 

(usually is achieved by the master node). However, if the master table (i.e., disk-resident) is 

huge, and therefore cannot fit in-memory (a.k.a. in fast memory), then data need to be 

shuffled around in the so-called repartition join, which is computationally expensive and 

resource-hungry. Cases where joins take several hours or days are not unheard of, especially 
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when exposed to big data on the scale of terabytes to zettabytes. For thorough details of the 

mechanics of those joins in Spark, we refer the interested reader to [116] . From many join 

types that are supported by SPEs, we specifically focus on a class that is most widely used 

in highly dynamic and scalable scenarios. That is the so-called stream-static join (a.k.a. semi-

stream join [117]  or Stream-Relation Join (SRJ) [118] ) which aims at joining on-the-fly 

online arriving tuples with a master static table data (i.e., disk-resident opponent). Join is 

natively computationally expensive in its simplest forms. A problem that is further inflated 

when applied in specific dynamic application scenarios such as smart cities and Industry 4.0. 

This in part is because those data tuples are geo-referenced (for example, in the form of 

longitude/latitude coordinates). Joining spatial data streams costs more. Take the case of 

Point in Polygon (PIP) test which necessitates the application of the costly ‘within’ spatial 

join predicate, as an example. A typical query could ask to “find in which borough (i.e., 

polygon) of NY city (in the United States) a taxi trip (i.e., spatial point) has started”. This is 

specifically complex and challenging because of the "curse of multi-dimensionality", which 

means joining a GPS coordinate streaming tuple with a static table containing the covering 

polygons. In this case, simple traditional join algorithms (such as sort-merge join) are 

inapplicable, because in spatial joins, join condition comprise multidimensional attributes 

[119].  

Stream-static join is of a paramount importance also in other domains such as data lakes and 

active data warehouses [120] . For example, in data warehouses it is important for surrogate 

key generation, duplicate detection or identification of newly inserted tuples in view 

maintenance scenarios.  

Stream-static join constitutes thus a strongly potential candidate for optimization through 

controllers as explained in the next subsection. The rationale is that distributed stream 

processing (e.g., stream-static join) runs into multiple complications that do not normally 

affect simpler computations like batch jobs (e.g., static-static join). For example, peak loads 

that exceed resource computational capacities. 
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6.1.3 Controllers for Resolving the Information Overloading and Resource 

Utilization 

Information overloading is presenting current big data management systems with 

tremendous challenges and obstacles. Online streaming data shows temporal skewness and 

fluctuation, thus challenging, at times, the capacities of existing parallel computing 

deployments. In cases where a peak load emits excessive amounts of data that outpaces the 

processing capacities of the operators, data accumulates excruciatingly upstream, causing 

congestion in the operator input queue that carries over a negative effect, deteriorating the 

online processing. Also, most cloud deployments underuse provisioned resources, thus 

minimizing the resource utilization. The unbounded fashion at which streaming continuous 

queries work requires the innovation of adaptive mechanisms that can survive brutal burst 

workloads at peak times. However, most traditional methods depend on a presumption that 

data loads are finite, rendering them inappropriate for unbounded semantics [115].  

Many solutions have been widely used in the literature for resolving the information 

overloading in a manner that maximizes resource utilization. Most of them depends on 

elasticity and adaptivity. We identify three most widely used alternatives. Those are 

backpressure, elasticity and approximate computing. We describe each one in details in the 

following subsections. 

6.1.3.1 Backpressure for Resolving Data Load Bursts 

Situations where streaming data arrival rates (e.g., during a temporary load spike) exceed the 

capacity of the receiving processing engine are not unheard of, which can cause bottlenecks 

in downstream dependencies. Backpressure has been widely used as a solution, which can 

be loosely defined as a mechanism that pushes back the lateness to the ingestion layer (such 

as Apache Kafka [43] ) by only allowing the sender to emit an acceptable rate of tuples that 

can be processed gracefully without causing batches to back up.  

Backpressure normally depends on a rate limiter in the back-end, which is then responsible 

for calculating, at each batch interval (trigger in SpSS jargon), a new rate that the system 

capacity can handle without falling behind. This ensures that the system is stable (i.e., 

scheduling and processing delays are not stacked up). 
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Streaming systems often depend on feedback loop mechanisms such as PID algorithm to 

build the rate limiters. A case of example is Apache Spark Streaming [25]. PIDRateEstimator 

in Spark Streaming first calculates a rate at which its receiver (a building block in Spark 

Streaming) is writing data blocks to a block manager (a building block in Spark Streaming). 

If the received data is outstripping the processing capacity, then the new rate is decreased, 

while it will be increased in the opposite case. 

However, backpressure has been abandoned in many systems because of the negative effect 

in processing fast streams. Among others, it might congest data receivers, which wait for the 

overloaded downstream operators to finish processing, which normally leads to endanger 

QoS goals. 

6.1.3.2 Elasticity and Adaptivity: to Assign or to Release? 

The ability of the system to elastically change the parallelism degree (mostly at run time) 

based on the trending circumstances (i.e., peak data loads as opposed to off-peak loads) to 

achieve the QoS goals is known as elasticity [121]. With the introduction of the pay-as-you-

go models (e.g., in cloud deployments), SPEs are currently seeking to strike a balance 

between provisioning extra resources (which is costly but strong against oscillating data 

arrival rates) and resource utilization (which is cheaper but vulnerable to unpredicted data 

load spikes). By this strategy, they aim at maximizing the latter while keeping the former at 

the bare minimal level in order to cut costs associated with overprovisioned nonutilized 

resources. An obvious problem is that the continuous process of provisioning and de-

provisioning resources dynamically may counteract the benefits of elasticity, especially in 

cases where the costs associated with always-on reconfigurations are not amortized by the 

benefits of elasticity (e.g., reducing latency). 

This kind of resource scaling is sometimes referred as dynamic allocation, including 

horizontal scaling (a.k.a. in/out) on clusters of commodity servers, where extra computing 

nodes (or virtual machines) are added to a cluster of computing resources connected 

parallelly. This can be done dynamically online as a resort for sudden spikes in data arrival 

rates (dynamic allocation in Spark Streaming parlance [25]). Another type of dynamic 

allocation is the vertical scaling (a.k.a. up/down), which means adding extra computing 

power (e.g., CPUs and memory) to a single node, normally a beefed-up server.  Auto-scaling 
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techniques [122]  depend on diverse approaches for the decision on when to scale, including 

threshold-based and control-theory based. 

In summary, the near-linear scalability provided through provisioning extra computing 

resources in cloud deployments is no longer attractive as it comes on the cost of inefficient 

resource utilization and deteriorated throughput. 

6.1.3.3 Approximate Computing  

All approaches discussed thus far focus on the assumption that there are readily available on-

demand resources to allocate to a join operator dynamically on-need. However, the case 

where only a fixed memory is allocated, where data load spikes exceed the operator service 

rate, are interesting. In those cases, there is a point where the operator cannot withstand the 

transient burst load that easily turns insurmountable at times, a point that requires employing 

an approximate computing. 

Approximate computing depends only on a portion of input data to get results in what so-

called Approximate Query Processing (AQP), which means basically serving results that are 

bounded by rigorous error-bounds in a form that is statistically acceptable and plausible. It 

is based on the observation that users are accepting normally to tradeoff tiny accuracy for a 

high speedup [123]. Also, decision makers normally make perfectly accurate decisions 

without having perfectly accurate query responses (for example, the cases of A/B testing and 

visualizations such as in heatmaps). In addition, the data is normally noisy and depending on 

a whole population in query answering does not readily imply accurate answers. A special 

branch of AQP is the so-called Spatial AQP (SAQP), which is then the same as AQP, but 

becoming more attuned to the shape and structure of the data (i.e., spatial data in this case). 

We can reap tremendous benefits by being attuned of the spatial structure of the data stream. 

AQP depends on shrinking the input data size based on diverse mechanisms, including 

sampling and backpressure. Approximate query processing via sampling is a popular 

technique. We opt for approximation in latency-sensitive settings over resource-based 

elasticity approaches because of two main reasons. 

1) AQP does not imply that system halts processing during adaptation. In 

elasticity approaches, on the contrary, each reconfiguration halts data 

processing, and thus negatively affects quality of service (e.g., end-to-end 
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latency) [124]. In our system, the reconfiguration cost is tiny and negligible 

as we only change the sampling fraction that is passed to SAOS. Other 

information for computing the fraction provided for us already by SpSS at no 

additional cost.  

2) The management of state migration (online migration in this case) in elasticity 

approaches is costly, which may trigger at the time of altering the 

parallelization degree of a stateful operator, which may require , for example, 

re-splitting the keys, and thereby broadcasting the key state again. In most 

current SPEs, this means halting the processing until state migration is done, 

which then incurs extra latencies. 

6.1.3.4 QoS-aware Sampling as an Enabling Technique for Spatial Approximate 

Computing 

Recap sampling types and SAOS from chapter 5. Sampling as a mixed workload with join 

can be performed either before or after join. If performed before join, sampling focuses on 

selecting a sample and then applying the join on it (sample is taken from the stream in the 

stream-static scenarios). We focus on sampling before the join because the main goal of this 

work is to make the join adaptive and limiting the arrival rate to quantities that do not exceed 

DAGs capacities. 

Despite the abundance of alternative AQP methods such as sketches and wavelets, we found 

that sampling is the most compelling and a powerhouse method to be used in SAQP because 

of the additive property. In other terms, taking a simple sample, computing the incremental 

result and if the result is not satisfying the QoS stringent goals, then adding incrementally 

more data to the sample does not mean recomputing or reconfiguring, instead the result is 

building up on the previously obtained sub-results and the incremental procedure can be 

continued indefinitely until either a predefined rigorous error-bound or a latency goal is 

achieved. On the contrary, for other AQP methods, this does not apply, and a result that is 

not satisfying could require a recourse that involves recomputing using the whole sketch (i.e., 

synopsis). 
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6.2 QoS- and Spatial-Aware Adaptive Stream-Static Join Processor  

In this section, we describe all the peculiarities associated with the SpatialSSJP system that 

we have designed, which aims basically to proactively avoid congestion within the operator 

graph (that specifically includes a stream-static join operator), and thus seeking high resource 

utilization and averting frequent reconfigurations. 

6.2.1 Usage Model and Baseline System 

While the main purpose of parallelizing the operation of SPEs is to achieve low latency and 

high throughput, there are innumerable scenarios that require accessing static information 

(i.e., information that is held and spelled out in disks), thus compromising the performance 

of the SPEs [118] . There are innumerable ways for which stream-static join is attractive. 

Always focusing on highly dynamic and scalable scenarios, where fast arriving spatially-

tagged data points need to be enriched with master static data (a.k.a. data-at-rest) for deeper 

insights.  

For example, NYC taxicab trips (represented with, most importantly, pickup and drop-off 

points) have been distributed on the form that includes only the GPS longitude/latitude 

coordinates without the names of the regions that those traces belong to. On the other hand, 

names of zones (i.e., boroughs or districts in city management terms) are distributed alone in 

a static table. That table is normally containing polygons on the form of points covering each 

polygon (a.k.a. bounding box). An example scenario is a query that asks to “generate an 

interactive heatmap showing trajectories of taxis in-motion to see the trend and decide on 

city planning”. As such, specifying the neighborhood for every tuple requires solving the 

Point in Polygon (PIP) problem (a.k.a. geofencing [125]), which basically requires stream-

static join. As the amount of streaming data can be prohibitively large in the terms that our 

screens are not able to efficiently absorb such amounts in one map (e.g., while generating 

heatmaps), then it is favorable to take only portion of the arrival data and join it with the 

static table.  

However, the tremendous deluge of geo-referenced continuously arriving data streams 

challenges the capacities of currents SPEs in achieving a (near) real-time interactive 

visualization (e.g., through heatmaps). A spatial-aware online sampling is then necessary for 

a proper data reduction, thus striking an acceptable balance between accuracy and latency 
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QoS targets. This reduction requires either clustering or aggregating, which basically, in a 

streaming setting, means joining tuples (that are spatially-tagged) with data-at-rest, thus the 

stream-static join. Traditional sampling designs (such as SRS, refer to section 5.2.2 for 

information) do not consider the spatial characteristics of the arriving tuples, thus rendering 

the visualization process erroneous. 

Approximation is a valuable solution in highly dynamic environments. Baselines include a 

standard-compliant system employing backpressure on top of an emerging de facto standard 

SPE, specifically SpSS. The SpSS baseline is a resemblance to that of Spark Streaming 

backpressure mechanism. Spark Streaming backpressure works by applying a PID controller 

(known as PID rate estimator in Spark Streaming, which is based on the PID theory). We 

have retrofitted the PID controller (similar to PID rate estimator in Spark Streaming) so that 

it transparently incorporates with SpSS and operates under the SQL-like API. The baseline 

also comprises SRS-based sampler instead of SAOS. That is for the case of low-latency QoS 

goal. 

As a baseline to compare our models for the case of accuracy QoS goals, we have 

transparently incorporated within the layers of SpSS a model-based controller that is based 

on SRS theory for calculating a new sampling fraction after every trigger and serving it 

interactively to an SRS-based sampler (as opposed to our SAOS sampler). 

6.2.2 SpatialSSJP Overview 

We have designed SpatialSSJP12 (short for Spatial-aware approximate Join Processor), an 

adaptive QoS- and Spatial-aware framework for processing spatial stream-static joins 

efficiently. Our system employs hybrid model-based controllers to reactively and proactively 

handle the information overflooding during burst spikes in spatial data streaming workloads.  

 

 

12 The source code of SpatialSPE (including rateController) is available at: 

https://github.com/IsamAljawarneh/SpatialSSJP 
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We depend on hybridizing a novel rate controller with our spatial-aware sampling method 

(from our previous work SAOS [101] , refer to section 5.3.4 for details). A general overview 

of SpatialSSJP is schematized in the context diagram of figure 6.1. 

 

 

 

 

 

 

 

 

An expert expresses the continuous spatial query (that implicitly requires stream-static join 

operation) and a query running budget. Budgets are a form of either latency or accuracy QoS 

guarantees. Data is arriving continuously from geo-referenced heterogeneous sources and is 

then fed interactively at regular time intervals (e.g., batch intervals, a.k.a. trigger intervals in 

SpSS terms). We have implanted our cogent method SAOS in a front stage so that it receives 

a signal from the rate controller of SpatialSSJP that informs the new appropriate sampling 

fraction. SAOS then selects a proportionate sample and emits it to the stream-static join 

operator, which thereafter forwards the intermediate result to the approximator. 

Approximator completes the approximate computation cycle and serves an incremental 

result with rigorous error-bounds to the user. At the same time the join operator sends 

statistics of the latest trigger to the rate controller, which exploits those statistics in 

calculating new sampling rate and serving it to SAOS to be applied in the next trigger. 

SpatialSSJP comprises three main components: 

• Stream-static join operator. This component is responsible for stream-static join 

over the sampled subset. While stream-static join processor in SpSS is a simple and 

conceptually appealing approach, it suffers from computational limitations when 

 

Figure 6.1. SpatialSSJP Overview. CQ is ‘continuous query’ 
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applied to spatially-tagged datasets. Our join operator is alternatively then a 

retrofitted version based on an operator offered by the spatial-aware library on top of 

spark (known as Spark’s Magellan13 [12, 13]). Spark’s Magellan is basically designed 

to handle static-static spatial joins using z-order curves. We have retrofitted Spark’s 

Magellan so that it works with the stream-static join, using the primitive features of 

Spark’s Magellan that offer basically a static-static join.  

• Rate controller. The rate controller depends on QoS goals fed to the system by an 

expert user. Our controller is composed of two sub-components; latency-aware rate 

controller and accuracy-aware rate controller. For latency-aware rate controller, we 

have incorporated a hybrid (i.e., proactive and reactive) model-based loop feedback 

mechanism for appropriately pruning the arrived data loads to avoid system failure 

and achieve the latency QoS targets. The controller calculates a new appropriate rate 

(which is then mapped into an appropriate sampling fraction) and feeds it back to the 

SAOS method to force SAOS to limit the rate of data accepted for processing in the 

next trigger. Accuracy-aware rate controller employs a model-based statistical 

approach to compute a sampling fraction that is appropriate for meeting the accuracy 

requirement (expressed as ‘margin of error’ value, explained shortly in section 6.3.2). 

Notice that both controllers have one common reconfigurable parameter, which is the 

sampling fraction. Since sampling module is a front-stage, then the overhead caused 

by the rate controllers is tiny and negligible, which is highly desirable in the control 

theory. 

• Approximator. This component is responsible for receiving the output of the join 

operator and then using the result in incrementalizing a required statistical target 

variable. For example, calculating the “average trip distance for all Uber trips (e.g., 

during a specific time-based window) originated in a specific district in Amman city 

(in Jordan)”. 

 

 

13 https://github.com/harsha2010/magellan 
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6.3 SpatialSSJP Algorithms and Mathematical Formulations 

In this section, we explain the algorithm that shows the workflow of SpatialSSJP in addition 

to the algorithms of the rate controllers. 

6.3.1 SpatialSSJP Workflow 

 SpatialSSJP workflow is given in Algorithm 6.1, including the procedure for implementing 

stream-static join based on a retrofitted version of Spark’s Magellan-based spatial static-

static join. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Algorithm 6.1. SpatialSSJP Workflow 

 /* latThrAccTargets: latency throughput and accuracy targets  

geoPrec: geohash precision */ 

Input: stream, ContinuousQuery (CQ), latThrAccTargets, polygons, geoPrec 

1: coverGeo  getCoverGeo (polygons, geoPrec) /* List of geohashes covering 

each polygon */ 

 //cost model computes the sampling fraction 

2: newSampFraction = 1.0 //initially do not sample 

3: While true //loop forever – unbounded stream 

4: Foreach time window interval do 

5:     windowSample = ∅   // tuples sampled in current time window 

6:     Foreach batchInterval in window interval do 

7:            batchSample =  ∅  //tuples sampled in current batch interval 

8:            Forall tuplesi in batchInterval do  

              /* apply SAOS on tuples of current batch interval: tuplesi */ 

9:                        batchSample   SAOS (tuplesi, samplingMap, NewSampFraction, seed) 

10:                        windowSample.add(batchSample) 

11:            End 

12:    End 

 /* perform inner join on geohash using the filter stage, filter-and-refine 

approach */ 

13: joinResult = windowSample.join(coverGeo, windowSample(“index”) ==  coverGeo(“index”)) 

 /* refinement stage, filter-and-refine approach, by applying the ‘within’ join 

predicate, i.e., PIP test 
 , refer to listing 6.1 for an example */ 

14: optimizedJoinResult = joinResult.filter(edgeCases) 

         //Compute and serve incremental output every time window 

15: newSampFraction   rateController(latThrAccTargets) // section 6.3.2 

16:  incrementalOutput   run (CQ, optimizedJoinResult) 

17:  return incrementalOutput with error-bounds 

18: End 

19: End While 
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Listing 6.1 shows an example stream-static join processing using a retrofitted version of 

Spark’s Magellan. Refer to section 2.3 for more details. 

 

 

 

To sum up, the three constituent building blocks of SpatialSSJP are: (i) stream-static join 

operator, (ii) rate controller and (iii) approximator. Those are interweaved and bounded 

together in a synergistically complementary way so that the benefits accrued by their synergy 

is greater than their combined independent benefits. Data passes through SAOS (initially 

disabled in the first trigger, batch interval) to be then fed to the stream-static join operator 

that performs the spatial-aware join (through a retrofitted version based on Spark’s 

Magellan) and the join results are forwarded to the approximator that computes the CQ . 

During the CQ computation in every trigger, rate controller module computes the new 

sampling fraction based on the query budget and send it back to the SAOS module to select 

a proportional sample. After each window interval results are served to the user, either 

achieving the latency target (currently stepwise, the mechanism in which PID works) or the 

geo-statistically plausible rigorous error-bounds (e.g., in the form of confidence intervals). 

6.3.2 Rate Controller Algorithm 

The procedure rateController workflow is given in Algorithm 6.2. 

 Algorithm 6.2 rateController Procedure 

1: Procedure rateController (latThrAccTargets) 

2:  If (priority == latency) 

3:     𝑟𝑎𝑡𝑒𝑛𝑒𝑤  = LatencyAwareController(latencyTarget, PIDvalues) 

4:  Elseif (priority == accuracy) 

5:       𝑟𝑎𝑡𝑒𝑛𝑒𝑤= AccuracyAwareController(marginOfError) 

  End if 

6:      Return 𝑟𝑎𝑡𝑒𝑛𝑒𝑤 

7: End procedure 

8: Procedure LatencyAwareController(latencyTarget, PIDvalues) 

 /* retrieving statistical information from the last trigger, 

specifically, scheduling delay,  
 Processing time, and number of elements */ 

9:       lastTriggerInformation = retrieveLastTriggerInfo( ) 

 

pointsDF.join(polygonsDF,pointsDF("index")== 

polygonsDF("index")).where($"point" within $"polygon") 

 listing 6.1. An example stream-static join processing using Spark’s Magellan 
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 /* adapted from Spark Streaming [22, 126] but here applied to 

sampling using SpSS*/  13:     𝑟𝑎𝑡𝑒𝑛𝑒𝑤 =  𝑟𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑠𝑡  −  (𝑝. 𝑒𝑟𝑟)  −  (𝐼. 𝑒𝑟𝑟ℎ𝑖𝑠𝑡)  −  (𝐷. 𝑒𝑟𝑟𝑑) 

14: End Procedure 

15: Procedure AccuracyAwareController (marginOfError 𝑒) 

16:      𝑟𝑎𝑡𝑒𝑛𝑒𝑤 = 𝑧𝛼/2
2 𝑣/𝑒𝑑𝑒𝑠

2     

17:      𝑟𝑎𝑡𝑒𝑛𝑒𝑤 =  3.84 ∗  (𝑣/𝑒𝑑𝑒𝑠
𝟐)     // 𝑣 =  ∑ 𝑛

𝑛ℎ⁄ (𝑁ℎ/𝑁)2 𝑆ℎ
2𝐻

ℎ = 1  

18: End Procedure 

 

We offer a simple interface that allows an expert to express targets as either desired latency 

or the desired rigorous error-bound (𝒆𝒅𝒆𝒔). Currently, PID controller eliminates the latency 

stepwise. Our rate controller then guarantees that the stream-static join is performed within 

the budget. It does so by calculating an appropriate sampling fraction depending on one of 

two procedures as explained in the next two subsections. 

6.3.2.1 Latency-aware Rate Controller 

SpatialSSJP takes latency QoS goals specified in the query budget and then applies a 

retrofitted version of PID controller. PID controller is a control loop feedback mechanism 

that calculates an error value by subtracting a measured process variable (i.e., PV) from a 

desired setpoint (i.e., SP). PID controller then enforces a correction depending on three terms 

known as proportional, integral, and derivative. The process aims to settle the PV by 

reducing three error values. In our setting (and similarly those of Spark Streaming 

backpressure version [22, 126]), proportional term defines how correction depends on the 

present error (w.r.t. the latest measurement from the latest batch information).  Integral term 

specifies the way that the correction should react to the accumulation of historical errors (i.e., 

accumulated through past triggers or batch intervals). The purpose of this term is to speed up 

the healing process (i.e., the movement towards the desired setpoint SP). The derivative term 

specifies how the correction depend on future errors prediction based on error change 

between two triggers (i.e., the trend).  

As the time of this writing, backpressure through PID controller has not been applied to 

Spark Structured Streaming or incorporated with a sampler for dropping loads in a 

convenient way that achieves high incrementalized estimation quality. To close this void, we 

have retrofitted the plain version of the PID rate controller (known as PID rate controller in 

https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Setpoint_(control_system)
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Spark Streaming terms) that has been applied in Spark Streaming [22] for backpressure [126] 

so that it transparently incorporates within the layers of SpSS. It worth mentioning though 

that for calculating the three terms of PID (i.e., Proportional, Integrative and Derivative), we 

use the same mathematical model-based formulation approach as the one that was applied in 

the plain Spark Streaming version.  After each trigger, the new rate is calculated with (6.1). 

 𝑟𝑎𝑡𝑒𝑛𝑒𝑤 =  𝑟𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑠𝑡  −  ((𝑃. 𝑒𝑟𝑟)  +  (𝐼. 𝑒𝑟𝑟ℎ𝑖𝑠𝑡)  +  (𝐷. 𝑒𝑟𝑟𝑑)) 6.1) 

 

Refer to Appendix F for a detailed explanation on how each term is calculated with equations 

adapted from the PID application in Spark Streaming [22]. 

It worth mentioning though that PID controller has been used in a similar way by Spark 

Streaming with the same formulation to activate the backpressure mechanism. But however, 

it has never been used to activate a SAQP with the declarative API (i.e., SQL-alike API in 

SpSS), especially in a spatially-rich environment. To the best of our knowledge, we are not 

aware of any system in the relevant literature that achieves these goals. 

In this thesis, we do not focus too much on future prediction. The rationale is that the relevant 

literature proved that only adaptive approaches that place no (or at most very little) 

assumptions on workload characteristics are considered stable and may show good 

performance for data stream processing systems, since workloads oscillate continuously in 

unpredictable ways [127] . 

6.3.2.2 Accuracy-Aware Rate Controller  

If among SLAs there is a ‘margin of error’ specified as a QoS target, then our rate controller 

activates the mode that computes a new sampling rate based on the error-bound specified. 

Since our SAOS method resorts to stratified sampling in its core, then we depend on the 

theory of stratification [90]  for estimating a proper sample size depending on a prespecified 

‘margin of error’. As such, some equations in this section are adapted from [90]. We 

specifically depend on (6.2). 

 𝑛 =  𝑧𝛼/2
2 𝑣/𝑒𝑑𝑒𝑠

2 6.2) 

Where we calculate 𝑣 depending on (6.3). 
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 𝑣 =  ∑ (𝑛. 𝑁𝑘
2. 𝑆𝑘

2/𝑛𝑘. 𝑁2) 

𝐾

𝑘 = 1

 6.3) 

This approach supposes that we have some knowledge of 𝑣 perhaps from a previous survey. 

As this may not potentially be the case in streaming settings, we otherwise depend on 

incrementalization and loop feedback mechanism in improving the value of 𝑣 after each 

trigger and feeding it back to the controller. Other possible approaches include profiling 

some data in a method dubbed as bootstrapping [90]. We however avoid that approach in 

this thesis. The reason is that we target settings where profiling is not easily accessible. With 

95% confidence level, we have z𝛼/2= 1.96; thus, we apply (6.4) to calculate the new rate. 

 𝑛 =  3.84 ∗  (𝑣/𝑒𝑑𝑒𝑠
2) 6.4) 

Which then calculates an appropriate sample size given a ‘margin of error 𝑒’. For a fair 

comparison, as we are comparing the employment of SAOS in the front-stage against and 

SRS-based design, we also depend on the theory of simple random sampling [90]  for 

estimating an appropriate sample size based on a target ‘margin of error’ in cases that SRS 

is applied instead of SAOS. We specifically employ (6.5), 

 
𝑛 =  (𝑛0. 𝑁)/(𝑁 +  𝑛0))  =  1/(1/𝑛0  +  1/𝑁) 

 
6.5) 

to calculate the desired sample size. If the population size N is large relative to the sample 

size 𝑛 so that the finite-population correction (fpc) factor can be ignored, the formula for 

sample size simplifies to 𝑛 =  𝑛0. Where 𝑛0 is calculated using (6.6). 

 𝑛0 =  𝑧2𝜎2/𝑒𝑑𝑒𝑠
2   6.6) 

It is then apparent by combining the two equations that we obtain a tradeoff equation between 

latency (incorporated within the three terms of PID) and ‘margin of error’ (i.e., accuracy, 

estimation quality) which is shown in (6.7), rendering the problem a conundrum where 

optimizations are limited. 

   𝑟𝑎𝑡𝑒𝑛𝑒𝑤 =  𝑟𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑠𝑡  − ((𝑝. 𝑒𝑟𝑟)  +  (𝐼. 𝑒𝑟𝑟ℎ𝑖𝑠𝑡)  +  (𝐷. 𝑒𝑟𝑟𝑑)) =  3.84 ∗  (𝑣/𝑒2) 6.7) 
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6.3.3 Supported Queries 

We support online spatial aggregation (was first proposed by [128]), where join is part of the 

query plan. Hence, we are interested in an end-to-end accuracy (i.e. estimation quality), as it 

is hard to factor the join operator independently. Since we are operating on window 

semantics, aggregations typically include some statistic such as an ‘average’ estimator of an 

attribute value during each time window [129]. Some equations in this section are adapted 

from [90]. 

An expert specifies a tolerable error. Those are normally expert investigators in a geo-statistic 

study who can specify the precision needed, expressed often as P(|y̅𝑠𝑎𝑚𝑝  −  y̅pop|  ≤

𝒆𝒅𝒆𝒔 ) =   1 –  𝛼, where y̅𝑠𝑎𝑚𝑝 is the estimate of the ‘mean’ value using the sample, y̅pop is 

the estimate of the mean using the population, and 𝑒𝑑𝑒𝑠 is the permitted error (i.e., margin of 

error). The investigator normally decides acceptable value for 𝛼  and 𝑒𝑑𝑒𝑠. For example, 𝑒𝑑𝑒𝑠 

= 0.02 and 𝛼 = 0.05 (equivalent to a confidence level 95%) are common.  This is equivalent 

to defining a maximum permitted difference between an estimate (e.g., ‘average’ of a target 

variable) and a true value, together with an allowable tiny probability 𝛼 for the error to 

exceed the difference, the goal is then choosing a sample size that achieves the equation. 

6.3.4 Quantifying Uncertainty 

We depend on the same set of equations of chapter 5 (specifically, section 5.3.6) for 

quantifying the uncertainty carried by the estimations through sampling instead of the 

population. In addition to the following new equations. Some equations in this section are 

adapted from [90]. 

We first depend on an equation that is adapted from [130] to certify that samples drawn are 

always falling with the minimum standard recommended for the normal approximation to be 

adequate, which is given by (6.8). 

   𝑛𝑚𝑖𝑛𝑖𝑚𝑢𝑚 =  28 +  25 (𝑝𝑜𝑝𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠)2  6.8) 

, where 𝑝𝑜𝑝𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 is the population skewness that is calculated using 

∑ (𝑦𝑘 𝑁
𝑘 = 1 −  y̅)3

(𝑁𝑆3)
⁄   adopted from [90] , which is then responsible for specifying the 
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size of the sample for the normal approximation to be accepted, where large skewness 

signifies the need for a large sample size and vice versa. 

For single queries, in addition to those in section 5.3.6, we also rely on ‘coefficient of 

variation’ (CV) [90] as a measure of relative variability using (6.9). 

 𝐶𝑉̂ =  
𝑆𝐸(𝑌̅𝑆𝐴𝑂𝑆)

𝑌̅𝑆𝐴𝑂𝑆
   6.9) 

Which is then equivalent to the SE as a percentage of the mean. In addition to that, we 

calculate the gain of applying SAOS (instead of the SRS-based baseline), for which we use 

the design effect (abbreviated deff) [90] , which provides a measure of the precision gained 

or lost by using a more complicated design instead of an SRS. deff is computed using (6.10). 

   deff = 𝑔𝑎𝑖𝑛𝑆𝐴𝑂𝑆 =
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑆𝐴𝑂𝑆

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑆𝑝𝑆𝑆−𝑏𝑎𝑠𝑒𝑑 𝑆𝑅𝑆
   6.10) 

6.4 Implementation 

To implement SpatialSSJP, we have built a standards compliant prototype on top of the 

elastic data SPE Spark (specifically SpSS). Also, because by our work presented in this 

thesis, we aim at complementing an end-to-end QoS-aware pipeline for big data management 

in dynamic application scenarios, we aim at incorporating the work with our modular 

architecture that can achieve mixed workloads (recall SpatialDSMS from section 3.4). We 

have selected Apache Spark as a candidate to implement SpatialSSJP, and specifically we 

depend on SpSS [6]  for the overarching traits that makes it excels in its class. Spark is the 

de facto best-of-breed standard for processing streaming mixed workloads. However, Spark 

in its vanilla version does not offer over-the-shelf spatial-aware services. A shortcoming that 

led to the emergence of spatial-aware glues and patches on top of Spark. We specifically 

depend on a spatial-aware static-static join library recently popularized (the so-called Spark’s 

Magellan14 [12, 13]  ) as it specifically employs a relatively fast dimensionality reduction 

 

 

14 https://github.com/harsha2010/magellan 
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approach (i.e., z-order curves imposed on a grid-based representation) in joining spatial 

datasets over Spark. Although faster than any state-of-art spatial-aware join methods, Spark’s 

Magellan does not offer adaptivity and can collapse in spatial join scenarios where data 

arrives in tremendous amounts at spikes. However, Spark and its spatial library Magellan 

serve as good jumping-off points for a novel approach that is QoS-aware, which is our 

SpatialSSJP. One other reason that guided our decision in selecting Magellan and preferring 

it over counterparts is that it is the first spatial-aware library over Spark that extends Spark 

SQL [16] , thus inherently providing relational-alike abstractions for geospatial analytics 

(most importantly spatial join in this case). By doing so, SQL-alike queries are applied to 

DataFrames with geometric predicates (e.g. within, contains and intersects). 

Our approach is a top-down, where we start by tuning on top of a Spark Structured 

Streaming-based model (i.e., Spark’s Magellan), which per se is internally tuning the catalyst 

model, and thus everything is compiled down to RDDs. Because of Spark modular 

architecture, we believe that this way we avoid reasoning about the underlying processes 

atomically (as recommended by the Spark development team [6]). We have implemented the 

system by coding basically using Scala on Spark. 

Backpressure is provided off-the-shelf by Spark Streaming [25]. However, as the time of this 

writing, it was not incorporated with the SpSS [6] . For a fair comparison, and since we are 

layering up our architecture on top of SpSS, we have added a patch that implements and runs 

backpressure and glues it transparently within the layers of SpSS. 

We have implemented the two rate controllers (i.e., latency-based and accuracy-based rate 

controllers) by adding our coding patches and incorporating them transparently within the 

layers of SpSS. First, for the latency-based controller, we have retrofitted the PID controller 

that has been used previously by Spark Streaming [25] for backpressure. We use the same 

mathematical model-based formulation from Spark Streaming. The novel contribution we 

provide is the incorporation of the PID controller within SpSS. Also, our version of the PID 

controller calculates a new sampling fraction after each trigger. On the contrary, the version 

implemented in Spark Streaming calculates only a new rate at which the DAG graph is able 

to process at any given moment and serves it to backpressure so as to limit the rate a data 

ingestion layer is emitting. For the accuracy-based controller, we have designed a model-
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based controller that calculates statistics after every trigger and uses that information for 

calculating a new sampling fraction. The overhead induced by extracting that statistical 

information is negligible and mitigated by the QoS benefits we reap. 

The user can express the query in SQL-alike format such as the example in listing 6.2. In this 

query the user wants to specifically “compute a statistical attribute (i.e., average) of a target 

variable (i.e., trip distance) and then aggregates (by neighborhood attribute) after performing 

the stream-static join”. The join operation is performed by applying the filter-and-refine 

approach (recall information from section 2.3.1). By using geohash indexing (a class of z-

order curves), we have reduced the join predicate in the filter stage from a spatial predicate 

(i.e., ‘within’ predicate in this case) into a simple equal predicate (i.e., MBR-join). However, 

in the refinement stage, the costly ‘within’ predicate still need to be applied to discard the 

edge cases (i.e., BSOs). The user expresses this continuous query with an incorporated query 

budget as shown in listing 6.2 and then serves it to SpatialSSJP. 

 

 

 

 

 

 

 

The stream-static join in this query will be compiled down into two parts. The first part is an 

equijoin (the ‘S.key = M.key’ operation in listing 6.2), which is analogous to the filter stage 

in the filter-and-refine approach. This part will be executed using the relatively cheap MBR-

join (refer to section 2.3.1 for details). The second part (the operation ‘p WITHIN po’ in 

listing 6.2) requires applying the refinement stage from the filter-and-refine approach ( recall 

section 2.3.1 for details), which then executes the costly join predicate (i.e., PIP test, ‘within’ 

predicate in this case). The purpose of executing this refinement stage is to eliminate the 

edge cases (i.e., BSOs). This is equivalent to the spatial query of listing 6.3. 

SELECT point p, polygon po, avg(tripDistance) 

FROM Stream S, MasterTable M 

WHERE S.key = M.key AND (p WITHIN po) 

GroupBy neighborhood 

Latency 120 MS 

OR 

e 0.03 CL 95% 

 

 

listing 6.2. An example spatial approximate online aggregation query with 

QoS goals 
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SpatialSSJP then executes the query either within a “best effort” stepwise strategy to reduce 

the latency so as to approach the target latency specified (or even less) or it works at 

achieving the accuracy level (i.e., estimation quality QoS goal). All in all, we support the 

same set of queries that we previously supported in our previous work (SpatialSPE [101] , 

chapter 5). The addition here is that the join operation enables a coarser granularity. We 

measure then the accuracy of the queries with a coarser granularity. For example, aggregating 

on the neighborhood level (i.e., a coarser level) instead of the geohash level (i.e., fine 

grained-level, the level we natively supported in SpatialSPE [101] , as explained in chapter 

5). 

6.5 Performance Evaluation and Results 

In this section, we discuss the deployment settings, data used for benchmarking, and how 

SpatialSSJP excels in meeting QoS targets specified though SLAs. 

6.5.1 Deployment Settings, Test Cases and Benchmarking 

Dataset. We use the same dataset cohort that we have exploited for SpatialSPE (refer to 

section 5.5.3 for details). 

Deployment and experimental settings. We deploy SpatialSSJP on a Microsoft Azure 

HDInsight cloud Cluster hosting Apache Spark (version 2.2.1). Our cluster consisted of 6 

computing nodes in total (2 Head nodes, analogous to master nodes in Amazon, plus 4 

worker nodes). Head nodes specifications are based on (2 x D12 v2), and workers are based 

on (4 x D13 v2) specifications. Every head node hosts 4 CPU cores with 28 GB RAM on 

each and 200 GB Local SSD memory, and quantities are double those figures for each worker 

node. 

Testing scenarios. We have developed complicated mix workload scenarios that require 

stream-static join, we aim to measure the following. 

SELECT point p, polygon po 

FROM point SPATIAL JOIN polygons 

WHERE WITHIN (p, po) 

listing 6.3. an example of an exhaustive PIP test 
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1) SpatialSSJP ability to satisfy a target latency requirement by applying the latency-

aware rate controller. We compare that between applying SAOS and SRS-based 

sampling approaches. For this scenario, we use two PID values settings. For the first, 

we use P=1, I=1, D=1. For the second, we use P=1, I=0.6, D=0.2. by alternating 

values of PID, we are able to measure the effect of the degree of the term 

consideration. For example, the less means that we give less importance to the 

associated term. For example, in the second setting we set D=0.2 to say that we do 

not want to affect the system stability by accounting for a future prediction too much. 

Instead, we consider future load trends slowly. We do the same in cases of using 

SAOS and SRS-based sampling. Also, we mimic the oscillating nature of arrival rates 

by fluctuating rates in diverse settings. ‘500K to 2000K’, ‘500K to 3000K’, ‘500K to 

5000K’, and ‘500K to 2000K to 1000K’. By doing so, we measure how the system 

responds to oscillation. We compare SpatialSSJP with backpressure (a patch that we 

have added atop SpSS) using the same settings. In addition, we alternate the geohash 

precision between 30 and 25, aiming at measuring the effect of granularity in latency 

gain and to see how fast the system can recover and be controlled back to a normal 

range. 

2) SpatialSSJP ability to satisfy accuracy target by applying the accuracy-aware rate 

controller. We fix the arrival rate and change the accuracy target (i.e., margin of 

error) between 0.01 (strict and stringent), 0.03 (middle strictness) and 0.09 

(permissive). We compare the join under SAOS against the join by using SRS-based 

sampler. Backpressure is not applicable in this case as one of the shortcomings that 

detract backpressure is its obvious inability in achieving a desired accuracy target in 

a timely fashion. The reason is that backpressure pushes the lateness upstream 

forestalling the emitters from sending new data until the operators downstream have 

a capacity. 

6.5.2 Results and Discussion 

All results reported in this chapter are calculated as the median (i.e., 50th percentile) of ten 

runs. 
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6.5.2.1 SpatialSSJP ability to satisfy a target latency requirement 

Figure 6.2 depicts how the latency-aware controller of SpatialSSJP is able to lower the 

latency to the minimum (near zero) which was specified as a latency target by the user. PID 

values used in this case are (1,1,1), respectively. Scheduling and processing delays 

(processing delay is equal to processing time minus the batch interval)  converges at the first 

point where the latency-aware controller realizes that a staggered delay is caused by the 

sudden spike in the batch size (i.e., from 500K to 2000k) and a newly computed sampling 

fraction which roughly equals to 3.18% is then served to SAOS, after that a catch up occurs, 

but then the controller decides to take it slowly (because of the D value being 1, accounting 

more for a future possible sudden spike in the batch size), thereafter the system returns back 

to normal operation stepwise slowly increasing the fraction rate after each trigger (reaches 

on the verge of 40% at batch ID 6). 

Trigger interval in all those experiments is 1 second (1000 milliseconds). Notice that 

processing delay (processing time) never goes below the duration of the trigger interval. This 

is because we depend on the tumbling window semantics (i.e., non-overlapping time-based 

 

Figure 6.2. catch up at PID values 1,1,1 where SpatialSSJP is able to meet the latency target 

by applying the latency-aware controller. Secondary axis to the right hand-side represents 

‘processing time’ and ‘scheduling delay’, whereas the main axis to the left compares the batch 

size (data load) with sampling fraction 
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windows). Notice that using PID, the lateness is amortized stepwise and even if the flood 

slows down it returns to a previous state stepwise to account for future spikes.  

For the same oscillation settings, but changing the PID values to 1,0.6,0.2 respectively 

(scientifically plausible margins), we obtain the adaptation shown in the visual representation 

of timeline in figure 6.3. 

 

 

 

 

 

Figure 6.4 shows a catch-up by oscillating batch size from 500K to 3000K, hitting stronger 

the SPE resources. Notice that in this case, as the oscillation is higher than the previous case 

(being sterner, 3000K instead of 2000K) the system does not overshoot the sampling fraction, 

it instead keeps lowering it monotonically until the system stabilize at almost 0.02% and a 

plausible convergence is achieved near the latency target specified by the user. Similar trend 

occurs in case of PID values equal to (1,1,1), respectively as illustrated in figure 6.5. 

 

 

 

 

 

Figure 6.3. catch up at PID values 1,0.6,0.2 where SpatialSSJP is able to meet the latency 

target by applying the latency-aware controller. Secondary axis to the right hand-side 

represents ‘processing time’ and ‘scheduling delay’, whereas the main axis to the left 

compares the batch size (data load) with sampling fraction 
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Being harsher, and mimicking the oscillation in wild, we mimic a sudden spike from 500K 

to 5000K. again, SpatialSSJP was able to catchup and stay alive for both PID settings. Figure 

6.6 shows also the case where SpatialSSJP was able to survive a brutal spike in batch size, a 

 

Figure 6.5. catch up at PID values 1,1,1 and oscillation 500k-3000K where SpatialSSJP is able 

to meet the latency target by applying the latency-aware controller. Secondary axis to the right 

hand-side represents ‘processing time’ and ‘scheduling delay’, whereas the main axis to the 

left compares the batch size (data load) with sampling fraction 

 

 

 

Figure 6.4. catch up at PID values 1,0.6,0.2 and oscillation 500k-3000K where SpatialSSJP is 

able to meet the latency target by applying the latency-aware controller. Secondary axis to the 

right hand-side represents ‘processing time’ and ‘scheduling delay’, whereas the main axis to 

the left compares the batch size (data load) with sampling fraction 
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fluctuation happens from 500K to 2000K to 1000K. Notice how the processing/scheduling 

delays are smoothly and ideally following the same discernible pattern as the input rate, in a 

circadian rhythm,  signifying the ability of the system in meeting efficiently the spikes in all 

ways, considering a sudden spike and a fluctuation from brutal spike to a more relaxed 

situation. Our method can extrapolate unseen sudden spikes in data arrival paces.  

 

We see that, at all settings, as a convergence occurs, the processing time reduces so that it 

falls within the batch intervals. Then, SpatialSSJP gradually starts pulling in more samples 

per batch. By relying on an SRS-based sampling method instead of our SAOS method, our 

SpatialSSJP is also able to survive spikes at all cases, however, with deteriorated accuracy 

bounds as it induces more Standard Errors (SE) and CV than SAOS.  Figure 6.7 shows an 

example.  

 

 

 

 

 

Figure 6.6. catch up at PID values 1,1,1 and oscillation 500k-2000K-1000K where SpatialSSJP is 

able to meet the latency target by applying the latency-aware controller, Secondary axis to the right 

hand-side represents ‘processing time’ and ‘scheduling delay’, whereas the main axis to the left 

compares the batch size (data load) with sampling fraction 
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Despite being able to survive spikes in streaming data loads, SRS-based sampling 

underperforms SAOS, where the latter yields better sampling statistics in estimating target 

variables. This is obvious through measuring the CV as shown in figure 6.8. 

 

 

Figure 6.7. catch up (SRS) at PID values 1,0.6,0.2 and oscillation 500k-2000K- 1000K where 

SpatialSSJP is able to meet the latency target by applying the latency-aware controller. Secondary axis to 

the right hand-side represents ‘processing time’ and ‘scheduling delay’, whereas the main axis to the left 

compares the batch size (data load) with sampling fraction 

 

 

Figure 6.8 . Coefficient of Variance by applying SAOS against SRS-based, both under 

SpatialSSJP. ‘avg state mgmt.’ in the legend (corresponds to the secondary axis on the right-

hand side, ‘avg. keys. updated’) is the average state keys managed in-between time windows. 

CV in the legend (corresponds to the primary axis on the left-hand side) is the Coefficient of 

Variance 
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Also, SRS-based method is susceptible to missing the confidence interval as shown in figure 

6.9. The case at load oscillation (500K to 2000K), whereas, SAOS-based counterpart is 

perfectly residing safely in the middle, never missing the confidence interval. As shown in 

figure 6.10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.9. Confidence Interval true-value-miss by applying SRS with SpatialSSJP 

 

Figure 6.10. Confidence Interval true-value-always-hit by applying SAOS with SpatialSSJP 
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In cases where sampling is disabled, the system was not able to achieve the latency goals as 

shown in figure 6.11. Also, in brutal oscillation cases such as 500K to 5000K, the plain 

baseline system (plain spatial join operator without sampling) throws an out-of-memory 

(OOM) exception. Signifying the importance of applying sampling in streaming highly 

dynamic application scenarios. 

Overall, the gain (a.k.a. precision or design effect, deff for short) of relying on our sampling 

method (SAOS from our previous work [101] ) instead of an SRS-based design , and 

incorporating that synergistically as a front-stage quick-and-dirty sieve , is shown in figure 

6.12. 

 

Figure 6.11.  High delays imposed by disabling sampling during burst loads, Oscillation 

500K – 2000K. Secondary access to the right hand-side represents ‘processing time’ and 

‘scheduling delay’, whereas the main access to the left shows the batch size (input rate)  
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We can see that relying on SAOS, we achieve the best performance, significantly 

outperforming SRS by a large margin (on average, the relative improvement over SRS is at 

least 10% and reaching more than 50% at times), suggesting that relying on data-shape-aware 

designs (such as SAOS) is preferable over randomly selected designs. 

6.5.2.2 SpatialSSJP Ability to Satisfy Accuracy (estimation quality) Target 

Using our accuracy-aware rate controller, relying either on SRS-based or SAOS, we could 

achieve the prespecified accuracy target (i.e., estimation quality or ‘margin of error’). 

However, SAOS requires, on average, less sampling fractions compared to SRS-based 

designs in order to achieve the same error-bonded target. A plausible case, as less fractions 

means lower latency and higher resource utilization, thus better trading off the contradicting 

QoS goals. This trend is shown in figure 6.13 for two ‘margin of error’ values (0.03 and a 

more restrictive 0.01). Notice that in more restrictive cases (i.e., when error equals to 0.01), 

both SAOS and SRS-based need more sampling fractions to achieve the target accuracy. 

However, all in all, relying on SAOS yields less sampling fractions than SRS-based, which 

is statistically plausible. 

Because N (continuous population in each trigger) is large, n0/N is very small, rendering n ≈ 

n0. Thus, approximately same sample is required for any large population (being 1 million 

or 1 billion tuples). Then it becomes readily apparent why we obtain the same almost 

 

Figure 6.12. Gain by applying SAOS (with SpatialSSJP) against SRS 
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sampling fraction in subsequent trigger intervals (whether relying on SAOS or SRS), which 

corroborates the formalization herein. 

Backpressure shows similar latency improvement as our system. However, it does not reflect 

the latest progressions in deep insights in a timely fashion as it considers only a past time 

and puts a hold on the arriving data, thus negatively affecting the freshness of system output 

which counteracts the benefits of stream processing.  

6.6 Related Work 

The widespread abundance of sensor-enabled and IoT devices have catalyses the trend of 

data analysis to shift greatly from static views into online and real-time counterparts. As the 

analytics envisaged from such unbounded loads are mixed, sometimes integrating data from 

multiple sources, join presents itself as a main operation in any successful stream processing 

end-to-end pipeline.  

Join is computationally expensive and can render a SPE unresponsive in burst spike 

workloads, where data arrival rates exceed the service rate of DAGs that encapsulate joins. 

To mitigate this problem, several works from the relevant literature have adopted different 

strategies for controlling the rate in burst streaming sources. Those systems are based on one 

of the approaches that we have discussed in section 6.1.3 (i.e., backpressure, elasticity and 

 

Figure 6.13. Accuracy gain by applying SAOS with SpatialSSJP against SRS. In the legend, 

‘moe0.03’ means ‘margin of error’ that equals 0.03, whereas ‘moe0.01’ means ‘margin of error’ 

that equals 0.01 
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approximate computing). Elastic approaches are classified by the method they apply in 

deciding when and how to adapt. Those are mainly categorized into threshold-based and 

model-based designs. Threshold-based elastic systems compare the size of data in a batch 

with a threshold, so that adaptivity (i.e., scaling resources in/out, up/down) is triggered once 

batch size exceeds the threshold. Just-in-time (not so early, not so late) firing of the 

adaptation trigger is highly desirable and can only be achieved by choosing the appropriate 

threshold, which is specifically challenging. Model-based approaches depend on a 

mathematical model to calculate when and how to adapt, however finding an expressive 

model that represents the system environment is challenging. Other possibilities include self-

tuning learning-based models that learn statistics gradually from the data over time as time 

tick forward and enhance the predictivity depending, for example, on a machine learning 

formalization. However, those normally leave the system unstable as they involve complex 

machine learning models that incur additional costs which are not being amortized by the 

benefits they provide. Another relevant categorization of methods is being proactive or 

reactive. In the former, methods can predict future spikes and act as early as possible, thus 

avoiding any congestion, whereas in the latter methods are only reacting at the time the spike 

hits. 

Most methods of the relevant literature focus on stream-stream joins in distributed 

environments. However, only little attention has been given to stream-static join processing, 

where data-at-flight needs to be joined with a master data-at-rest to enrich the former with 

appropriate descriptions [17]. 

Some streaming join algorithms are designed specifically to work in centralized single-

device servers. They are also designed to operate in RDBMSs. For example, Wander join 

[112]  employs graphs to model data join relationships in stream-stream settings. However, 

such a mechanism is not designed for distributed settings and parallelizing it is a nontrivial 

task. 

In the same vein but applied this time to stream-static join (in what authors call semi-stream 

join), [118] propose a cache-based method for joining streaming data with disk-resident data 

under a record-at-a-time model in a centralized server-based setting. However, their 

adaptation mechanisms are based on complex models such as machine learning predictions 
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and thus add more complexities to the cost formulas, counteracting the benefits of elasticity. 

Again, this method is appropriate in centralized server-based settings and not readily 

available for distributed environments, marking its adoption non-trivial as they are unable to 

scale out to deal with massive data sets efficiently.  

Some other algorithms, despite being designed for centralized single-node servers, focus on 

applying load shedding. However, most of them apply it to stream-stream joins and only few, 

such as [131] , apply it to stream-static join. Their approach is reactive threshold-based in 

the sense that they apply a simple formula for calculating the latest batch size and then if a 

future batch size exceeds its double, they perform load shedding to prevent accumulating 

tuples in the buffer. There are two distinguished problems with this approach. First, it sheds 

loads randomly not being attuned to the data characteristics. Also, there is an overhead 

incurred by continuously spilling out loads to disk and recovering them to be processed again 

as loads slowdown. 

Aiming at parallelizing algorithms like Wander join, some other researchers tackle the 

distributed stream join from other angles, including the partitioning scheme. For example, 

[132]  present a new elastic partitioning scheme for stream-stream theta-join operators, 

aiming at striking a balance between high throughput and high resource utilization by only 

acquiring resources on-demand (i.e., dynamic allocation).  

So far, little attention has been given to the stream-static join processing using the micro-

batch model in distributed settings. [17] propose a solution called DS-join for distributed 

processing of the join between streaming and stored big data under the micro-batch model 

of recent distributed SPEs. They focus on repartition join specifically as they target settings 

where the static relation does not fit in the memory of Spark worker nodes, so they aim at 

minimizing the shuffling. DS-join generates multiple queries that are executed in parallel 

using Spark Streaming. 

Despite the abundance of scattered works handling joins in many directions, most of them 

are general-purpose and not attuned to data specific characteristics such as spatial workloads, 

which require specific considerations. Hence, special systems have emerged to tackle the 

spatial join peculiarities. From the literature, spatial-aware systems are mainly based on the 

batch-oriented Hadoop or the speed-oriented Spark. For example, SpatialHadoop [63] has 
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been built on Hadoop with appropriate indexing schemes (i.e. grid, R-tree, and R+-tree) for 

supporting spatial joins among other spatial queries. similarly, HadoopGIS [65] exploits 

Hive with a grid index for processing self-joins. So, they depend on spatial indexing to speed 

up pair-wise cross joins. On top of Apache Spark [1] , SpatialSpark [133] supports broadcast 

PIP test spatial join algorithm. From the same class, GeoSpark [11] perform spatial joins by 

indexing on quadtree and R-tree for local indexing, whereas employing regular grid for 

global indexing, hence resembling two-level indexing. However, there are few apparent 

limitations with those systems. First, they are basically designed to support static-static 

spatial joins. Second, they do not natively support SQL-like queries. Moreover, they do not 

incorporate approximate methods for handling burst workloads in case they are retrofitted to 

work with streams.  

We are not aware of any works in the relevant literature that exploit approximate processing 

(using sampling basically) to support stream-static joins specifically for spatial workloads. 

However, some works apply sampling for general streaming workloads in burst 

environments.  For example,  [134] propose an adaptive overload management system 

AccStream (on top of Spark Streaming [22] ) which selectively samples/drops and processes 

data tuples (and sometimes blocks, building blocks in Spark Streaming terms) on a de facto 

mini-batch streaming SPE. AccStream consists of three elements; a controller, collector and 

a retrofitted receiver. The collector sends statistical information (i.e., latency and accuracy, 

accuracy depends on sampling theory) to the controller, that, in turns, computes an 

appropriate sampling fraction. The receiver is a retrofitted version of Spark Streaming’s 

receiver so that it incorporates a sampling module that samples at the granularity of tuples 

and blocks. For achieving the latency targets, they employ dynamically a self-tuning 

learning-based model (i.e., latency model). The downside however is that AccStream is 

general purpose and not readily prepared for spatial loads. Also, it only supports two 

analytics, single aggregations (such as ‘counts’) and top-k. This also implies other statistical 

estimates that are composable of those, such as ‘averages’ (i.e., ‘means’) that are composable 

of two divided sums. Also, the complex method they are using for system prediction 

endangers the system stability. This is because the method that they have described is 

computationally expensive and requires continuously calculating many statistics that are not 
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readily available by the underlying system codebase (i.e., Spark in this case), rendering the 

model as a bottleneck that can carry more latency in subsequent time windows.  

We are not aware of any system from the relevant literature that achieves the goals we aim 

at achieving by designing SpatialSSJP. 

To summarize the relevant art, most works presume a (nearly) perfect envisaged knowledge 

of the future. However, an online algorithm that simply self-tunes and does not have 

complete knowledge of the future is more desired [115]. Also, most approaches, despite 

being able to maximally utilize resources at times, need to be manually tuned with specific 

workloads at most other times. They also have limitations in handling live data streams and 

poorly model QoS requirements [127]. Moreover, they are not intrinsically designed to 

handle geospatial workloads that normally show temporal skewness in intensities. Those are 

some reasons that have encouraged us to design SpatialSSJP, most importantly, considering 

a controller such as PID that does not expect too much knowledge of the future and being 

able to keep the system stable. Also, successfully applying methods from the sampling theory 

in modelling an accuracy aware controller, thus efficiently modelling QoS latency and 

accuracy requirements that are prespecified by an expert user. 

6.7 Chapter Conclusion 

Elastic scaling of resources has been thus far the predominant solution for surviving in 

transient burst spikes of streaming data loads. Aiming basically at maximizing the resource 

utilization by (semi-)automatically provisioning and deprovisioning resources. Also, 

threshold-based and other models require a manual tuning of the configurations which may 

need specific domain or workload knowledge and prediction. Only little knowledge, or no 

knowledge at all should be envisaged in those settings. 

The highly skewed nature of spatial loads requires careful attention. It also requires being 

attuned to those characteristics in order to be able to handle spikes and oscillations in spatial 

data arrival rates in streaming deployments. 

To close those gaps in the literature, we have designed an adaptive spatial aware processing 

engine, that most importantly focus on the stream-static joins (better known as geofencing 

or PIP for spatial loads). Our system proves efficient as it can strike a plausible balance 
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between contradicting QoS harsh constraints (such as latency and accuracy or estimation 

quality). It does so by employing two entwined controllers, an accuracy-aware controller that 

carefully obeys the sampling theory and a stable loop-feedback mechanism (PID) that keeps 

the system stable by not undershooting or overshooting the sampling fractions, with a 

minimal calculation effort that only adds negligible costs that are mitigated by the benefits 

we reap from the adaptation. Our system, SpatialSSJP is able to rejuvenate the operation of 

the join operator even after an overwhelmingly striking blazing-fast spikes in data arrival 

rates. We do so by only tuning one parameter, the sampling fraction. In addition, our system 

is the first in its class that adopt an SQL-like declarative API for SAQP (specifically for 

stream-static join processing) by being built on top of SpSS, thus exploiting all the query 

optimizations that are provided already by the codebase. In addition, although designed to 

work with micro-batching systems, it can be easily extended to other SPEs that support other 

window semantics. Results on large-scale datasets show that SpatialSSJP cultivates a 

significant improvement over baselines. 

As a future research perspective, we have only considered the cadence of data arrival rates 

as the major cause of latency in current SPEs. However, there are many other causes that 

may be detrimental to the overall health of the SPE. Most significantly, perhaps is the cross-

network shuffling being a potential confounder, which is basically caused by employing 

naïve partitioning schemes that are unaware of the spatial characteristics.  
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Chapter 7 

7 Conclusion and Future Works 

In this chapter, we first summarize the major contributions that we have made in this thesis 

in § 7.1. In what follows, we explain in § 7.2 the wide range of applicability of the 

contributions of our systems and algorithms in diverse domains, specifically for highly 

dynamic and scalable application scenarios. To conclude the chapter in § 7.3, we recommend 

interesting future research frontiers that can be based on the primitives and baselines we have 

presented in this thesis. 

7.1 Summary of Contributions 

Avalanches of geospatial data that are streaming from various, often, heterogeneous channels 

are looming threats on businesses and presenting them with formidable challenges and 

hazards. In addition to the significant patterns that are hiding deeply inside stockpiles of geo-

referenced data. Neither streaming data nor batch snapshots can exist in void, they are 

complementing each other and analyzing each of them alone is not revealing the whole 

picture that can assist better decision making. We posit that “one-size-fits-all” does not hold 

true in distributed spatial stream processing and management environments. Often, historical 

deep insights need to be combined with data-in-motion so as to improve the analytics quality.  

Current systems do not natively offer QoS awareness as a transparent underlying layer for 

processing streams of geo-referenced data. More than often, users need a technical 

knowledge to tune at the QoS level. A QoS aware system for processing fast arriving spatial 

data streams is then needed, which transparently incorporates QoS awareness within its 

layers so that it constituent parts operate synergistically in an aim at achieving a prespecified 

set of QoS goals. This consequently means that the users at the presentation layer do not need 

to reason about the underlying QoS logistics, but otherwise use them in their applications 

seamlessly. 

To achieve those goals and close the gaps in the literature, in this thesis, we have designed a 

QoS Aware DSMS for geo-referenced huge amounts of streaming data loads (we term our 
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system as SpatialDSMS. The system is built with a modular architecture that streamlines the 

orchestration between the constituent sub-systems such that the development and 

deployment efforts are not repeated for every workload alone. Instead, the systems we have 

designed and incorporated in SpatialDSMS work collaboratively and synergistically in 

achieving the modularity. Colloquially, traditional independent big geospatial management 

systems are operating in an uncharted territory, and SpatialDSMS is the compass. It has been 

designed to provide an unrivalled capacity to achieve desired QoS goals intrinsically. We 

have specifically designed, implemented and incorporated in SpatialDSMS the following 

sub-systems: 

7.1.1 SpatialBPE 

SpatialBPE is the part that is responsible for batch processing of the arriving workloads in 

batch mode. This means that snapshots of streaming data are first spilled to disk. Thereafter, 

on need, SpatialBPE could be asked to analyze portions from this data-at-rest to get some 

historical insights that assist in decision making. The QoS of this component depends on its 

ability in serving results faster at times (i.e., low-latency QoS goal). Also, it is desirable to 

localize the geographically-nearby spatial objects so that to minimize network shuffling and 

thus allowing for a QoS aware sharing of network resources, thus achieving the high 

resource-utilization QoS goal. Those QoS aware services are transparently injected on top of 

the codebases of best-in-class representatives (i.e., Spark in this case). Having done that, 

SpatialBPE assists in complementing the modular architectural design goal that has been 

envisaged by designing SpatialDSMS. 

7.1.2 SpatailNoSQL 

SpatialNoSQL constitutes a scalable backend QoS aware storage framework for geo-

referenced streaming data snapshots. It is consolidating heterogeneous resources in a unified 

compatible format. Snapshots coming from streams are transformed into that format and 

sharded appropriately (i.e., depending on QoS aware rules) to multiple shards in such a way 

that assists in achieving QoS goals prespecified by the user. SpatialNoSQL constitutes a 

custom sharding scheme (i.e., GSS) that is attuned to the data shape (i.e., being spatial). It 

then helps in striking a plausible balance between two sharding goals (i.e., SDL preservation 

and load balancing). It also hosts two spatial query optimizers that exploits our custom 
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sharding scheme in achieving the QoS goals. Being designed to complement the other 

components of SpatialDSMS, it has a modular architecture that enables it synergistically to 

co-work with the other components to solve mixed workloads problems. For example, for a 

fast approximate stream-static join , since the static table is stored in SpatialNoSQL with 

polygons represented as covering geohashes, then it would be easy to combine with a 

geohashed streaming data load as we simply need to overlay the streaming points map (from 

a micro-batch) on the covering polygons map and the join is solved in a simpler way known 

as MBR-join , acting as a quick sieve with statistically rigorous error bounds. The fact that 

both geospatial objects (i.e., the stream and the static master table) have the same 

representation (i.e., geohash) has enabled this kind of mix workloads with QoS guarantees. 

This also has encouraged us to design SpatialSPE, which is discussed in the next subsection. 

7.1.3 SpatialSPE 

For huge spikes that need to be processed fast, where we can sacrifice tiny accuracy for huge 

performance gains (i.e., low-latency, high-throughput and high-resource-utilization), we 

have designed SpatialSPE as the first in its class that is able to perform incremental spatial 

analytics based on a declarative SQL-like API, thus relieving the shoulders of geo-

statisticians from having to reason about the intricacies and complexities of the underlying 

systems and focusing instead on the statistical analytics part. SpatialSPE is based on robust 

statistical modelling and is implemented with an emerging micro-batch streaming SPE (i.e., 

Spark Structured Streaming). SpatialSPE hosts a spatial-aware sampling method SAOS, 

which is attuned to the data characteristics. Thus, we reap many benefits that efficiently 

impact the QoS goals. SpatialSPE is able to achieve statistically plausible results and by 

orders-of-magnitude outperforms its counterparts. SpatialSPE complements the modularity 

architectural design goal of SpatialDSMS in the sense that it incorporates seamlessly with 

other components so that they all synergistically and collaboratively achieve an envisaged 

set of QoS goals.  

7.1.4 SpatialSSJP 

Most interesting insightful analysis happen during the spike in streaming data arrival rates, 

which, at times, necessitates mixing the fast loads with disk-resident descriptions, in a costly 

operation that is mostly known as stream-static join. We have designed SpatialSSJP so that 
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it complements the other components of SpatialDSMS in modular way. SpatialSSJP 

incorporates QoS aware services transparently within the layers of codebases of best-in-

breed SPE (i.e., SpSS) so as to relieve the overburdened shoulders of the users at the 

presentation layer from having to reason about the underlying complex logistics. Services 

include an adaptive controller that constitutes two sub-controllers, one that is latency-aware 

based on the PID from the control theory and the other one is a model-based accuracy aware 

controller that is based on geo-statistical modelling. SpatialSSJP is modular by design and 

conveniently complements the other components of SpatialDSMS. Most importantly, it 

reuses our SAOS sampling method from the SpatialSPE framework. 

7.1.5 Putting it All Together: SpatialDSMS 

Dynamic applications in smart cities and Industry 4.0 require mixing several workloads so 

as to get deeper insights. The constituent parts of SpatialDSMS provide tools for 

 

Figure 7.1. SpatialDSMS contributions map 
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collaboratively and synergistically achieving QoS goals imposed by those workloads. QoS 

awareness is transparently incorporated within various layers of SpatialDSMS, thus relieving 

the shoulders of the users from having to reason about the underlying logistics for handling 

such awareness.  

The map of figure 7.1 delineates in a coherent way the contributions we have made in this 

thesis and all the tactics and methods we have designed for achieving a list of envisaged QoS 

goals. This map complies with the methodology we have designed as described in section 

3.2.1. 

7.2 Applicability of SpatialDSMS in Diverse Domains  

QoS -aware optimizations we have provided in this thesis are in no way exhaustive, instead 

they constitute precursors for other domain-specific optimizations. One of the design goals 

that we have envisaged by designing SpatialDSMS is the composability (refer to section 

3.4.1 for further details). It is loosely defined as the ability to use the primitive QoS aware 

services that we have provided in SpatialDSMS in order to serve other potential workloads 

that are common in highly dynamic and scalable applications. In this section, we recapitulate 

some mixed workloads that are easily composable by mixing some of the services we provide 

through SpatialDSMS. The following is a non-exhaustive list of emerging trendy 

applications for which we provide efficient and sufficient QoS-aware baseline primitives (in 

addition to other easily composable primitives) that allow constructing novel highly-

performing algorithms. 

I) Real-time traffic control. We are not offering an engine that over-the-

counter supports such scenarios as they require specific technical 

implementations. For example, calculating traffic flow correlations, 

indicators [135] , flow rates, occupancy and density and others that can 

be consulted in [136]. We offer baselines (i.e., spatial statistics) that can 

be adequately exploited by most emerging smart traffic control systems 

(e.g.,  [26, 135] ) to build a fully-functional (near) real-time traffic control 

system. Despite our system does not calculate those measures directly, it 

offers appropriate and adequate baselines and primitives that can be used 

seamlessly to calculate those measures, with a distinction from 
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counterparts, in a way that better achieves a prespecified set of QoS goals. 

Another distinction is that we support incrementalization for a primitive 

set of spatial statistics that can be exploited efficiently in achieving those 

operations. Those services are offered through SpatialSPE and 

SpatialSSJP specifically. 

II) Spatial online stream clustering. An interesting mixed workload could 

ask to interactively “disseminate targeted warnings to people in real-time 

in cases of sudden natural hazards, such as hurricanes”. Hence, the 

dynamic identification of homogeneous clusters in (near) real-time is 

essential. For example, referring to our scenario (section 1.1) we can 

dynamically partition an embedding space (i.e., region) into smaller 

regions (such as boroughs or districts in administrative management 

terms) around a hazardous situation by exploiting real-time streaming 

data clustering to assist in emergency response management. Personalized 

notifications can then be forwarded to each cluster independently. Similar 

application scenario is ascribed to [137].  

Although, we currently do not support online clustering over-the-shelf, it 

is easily composable from two clustering modes that we provide natively. 

Most online clustering algorithms work by combining two phases (e.g., 

CluStream [138]  and DenStream [76] ), online and offline clustering 

phases. The former applies a single pass scan over a fast arriving data 

stream to incrementally cluster data points based on proximity, thus 

forming micro-clusters that basically store streaming online aggregates 

(i.e., statistics such as the number of points in each cluster in addition to 

other summary statistics, such as ‘sums’ and ‘counts’). This is 

accomplished incrementally by either assigning each newly arriving point 

to its appropriate micro-cluster (i.e., based on a spatial proximity test) or 

creating a new micro-cluster. The size of the cluster (thereby the number 

of micro-clusters) is a tunable threshold [137] [139].  The offline macro-

clustering phase is a costly operation that forms the actual clusters and is 

normally performed in batch mode (i.e., offline), after it receives the list 
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of micro-clusters, it uses them in conjunction with other parameters to 

construct the actual clusters by using an advanced clustering algorithm 

such as DBSCAN (or its MapReduce-based variants in parallel settings, 

such as DBSCAN-MR). 

The composability of a novel spatial online stream clustering algorithm 

with quality guarantees is easy and straightforward by using the baseline 

primitives we support through SpatialDSMS. Specifically, our optimized 

version of DBSCAN-MR (discussed in section 4.7.5) for the offline 

macro-clustering phase. Also, our approximate spatial query processing , 

that streamlines the process of collecting in piecemeal fashion the online 

summary statistics by applying a lower dimensional index structure (i.e., 

based on z-curves ) , thus dynamically on-the-fly clustering and forming 

micro-clusters (as of yet not the final clusters), as discussed in chapter 5. 

As the micro-clustering phase is the online statistical data collection 

portion of the algorithm, we have shown how our SpatialSPE (explained 

in chapter 5) is adept in such a process, serving statistically plausible 

incremental results with rigorous error bounds. 

7.3 Future Works 

In this thesis, we have presented SpatialDSMS as a comprehensive QoS-aware architecture 

for optimized analytics of spatial data loads in highly dynamic application scenarios that, 

among other functional QoS goals, require scalability. We have addressed many challenges 

in en-route to striking a plausible balance between a list of contradicting QoS goals.  The 

way we incorporate transparently our QoS-aware services into the layers of SpatialDSMS is 

unique. To the best of our knowledge, we are not aware of any similar system that achieves 

goals similar to those that we have accomplished in SpatialDSMS. 

However, SpatialDSMS is not a panacea, and there are innumerable ways in which our 

modular architecture can be complemented by stacking up new modules that achieve QoS 

functional and non-functional goals. We here list some possible future research frontiers: 

1) Offloading sequential jobs to Fog nodes. The communication overhead posed by 

sending endlessly huge amounts of geo-referenced loads to the cloud which could be 
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detrimental in low-latency applications. Especially knowing that some parts of the 

work are sequential and do not need parallelization (or cannot run in parallel). For 

example, partitioning data. Those sequential portions of the work can be offloaded to 

Fog nodes in an efficient way that considers the resource-constrained nature of Fog 

nodes. Also, samplers (such as our sampler SAOS from the SpatialSPE) can be 

pushed upstream near the Edge, which potentially helps in achieving better latency 

QoS goals. 

2) Designing online spatial-aware data partitioning schemes. We did not consider 

spatial-aware data partitioning schemes. As a future frontier, on-the-fly schemes and 

indexing are needed to strike a balance between SDL preservation, BSOs 

minimization and load balancing for the data in-motion. taking those goals online 

enforces few challenges that do not affect batch partitioning schemes such as those 

that we have addressed for spatial batch processing systems. 

3) Designing distributed sampling methods. Our sampling is currently centralized, 

performed by a single node as a front-stage. One way for optimizing that is to design 

a distributed sampling approach that parallelizes the sampling portion of the equation, 

thus enabling more performance optimization in compliance with the Amdahl’s Law. 

This is to avoid the cases where the sequential centralized solution can become itself 

a bottleneck. We envision a multi-stages scheme, say macro- and micro-batching 

stages. In the macro-batching stage, a practitioner (i.e., could be hosted in a master 

node) forms macro-batches and emits each macro-batch to a worker node, which in 

turns, divides the macro-batch into micro-batches and distribute them efficiently. 
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Appendices 

Appendix A 

GeoSpark Architecture 

GeoSpark [11] consists of three layers stacked up in a tiered architecture; i) Apache Spark 

codebase, ii) spatial RDD and iii) spatial query optimizers, arranged in a bottom-up layered 

pattern, respectively. GeoSpark provides four new spatial data structures based on RDDs, 

PointRDD, RectangleRDD, PolygonRDD and CircleRDD. It supports geometric operations 

on each of them and also provide spatial indexing structures such as quadtree [51]  and R-

Tree [140]. Top layer is responsible for executing spatial queries over large scale geo-

referenced datasets. After creating a spatial RDD, it is imposed to the spatial query predicates 

and optimizers are responsible for computing answers and serve them to presentation layers 

thereafter. 

Appendix B 

DBSCAN-MR Workflow 

In short, DBSCAN-MR proceeds as follows. Local clusters are formed by applying the plain 

DBSCAN to each partition independently. Most operations involved are ‘map’ 

transformations. Once the algorithm have done examining all points in all nodes, the output 

of the ‘mapping’ returns a new RDD, this time with the key ID of the point (specifying to 

which partition it belongs) and the point object (a module that we have defined to reformat 

points). Afterwards, local clusters (we refer to them as micro-clusters) from independent 

partitions are emitted to a ‘reduce’ phase in the DAG network. The ‘reduce’ function then 

groups together all elements that share the same ID (which were replicated on multiple 

partitions), which determines the union of temporary clusters located in different partitions 

that will be merged in a later stage. Results from the ‘reduce’ phase are merged to find out 

the cluster’s global structure. The algorithm concludes by applying a relabeling phase, where 

each core local point that belongs to a global cluster (but residing in independent partitions) 

is relabeled to identify the resulting cluster.  
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Appendix C 

Calculating Throughput in SpatialSPE 

Throughput. (refer to section 3.2 for a wider generic definition). For SpSS, we simply 

calculate the throughput by counting the number of tuples that our system could process in 

every time-based window interval (a tumbling window in our settings). To achieve that, we 

employ the ‘StreamingQueryListener’ (a module readily available from SpSS) to capture 

‘start’ and ‘end’ timestamps and ‘number of processed tuples’. Thereafter, we apply a simple 

formula that divides the ‘number of processed tuples’ by the total time elapsed during a 

continuous query window (a tumbling window in our settings).  

Appendix D 

Spatial Sampling Distributions: Data Skewness 

Despite that the NYC taxicab dataset is highly skewed. The average (mean estimator) has an 

approximately normal distribution (informally, bell-shaped curve) in sampling distribution. 

In accordance with the Central Limit Theorem (CLT) [90] , principles from traditional 

statistical sampling applies, specifically those that are coming from classical stratified and 

probability sampling theories. Figure D.1 shows that despite population data is highly 

skewed, a sample of 1000 ‘means’ of few values is normally distributed, also by increasing 

the sample size the distribution becomes more normalized. Notice that in compliance with 

the normal distribution theory [90] , from the cohort data that we have chosen, for the ‘means’ 

calculated for 10 and 40 values repeated 1000 times, 68%, 95% and 99.7% of data falls 

within at most one, two and three ‘standard deviations’ farther from the ‘mean’ value, 

respectively, which further supports the applicability of default general sampling theories 

[90]. 
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Appendix E 

Further Words on SAOS Efficiency: Theoretical Perspectives 

Reiterating our canonical scenario with NYC taxicab (from section 5.3). Imagine the desire 

to answer the following question, “where do people tend to order taxi pickups in NYC”.  

In SpSS, using a fraction of the data stream, this can be expressed using the fluent API with 

the CQ shown in listing E.1. 

 

 

 

 

 

 

Figure 0.1. popultion data distribution, and sampling distribution for the means of 10 and 40 

values, respectively, repeated 1000 times. 

sample= RawStream.SAOS("geocode") 

sampleTransformed = 

sample.groupBy($"neighborhood").count().orderBy($"count").desc 

with error-bound  

continuosQuery= 

sampleTransformed.writeStream.trigger(ProcessingTime).start() 

 

 

listing E.1. An example continuous query in Scala-like format by using SAOS method 
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Where SAOS is our spatial-aware online sampling method described in section 5.3.4. Since 

the default mode of operation in SpSS is micro-batching, this compiles down to a traditional 

Spark job that is composed of a DAG of independent tasks [6, 16]. The math behind the 

transformation of the foregoing query is then flattened into a ‘selection’ (as our SAOS 

method depends on a ‘filter’ transformation in addition to other ‘Map’ tasks). This is 

followed by stateful aggregations (groupBy, orderBy) which execute as ‘reduce’ tasks, 

where the ‘reduce’ tasks is self-informed about the in-memory state on workers and 

checkpoint that to a ‘persistent state store’ every trigger. This can be schematically 

illustrated in block diagram of figure 0.2. 

 

 

 

 

 

 

 

 

This design reveals the fact that extra a-priori overhead carried by our patches is minimal, as 

it mainly depends on relatively cheap ‘map’ and ‘filter’ transformations as a long-lived front-

stage running lazily over all micro-batches for each trigger. Our method acts as a quick-and-

clean sieve that ensures that we do not overlook specific study regions. Those patches do not 

materialize data. Instead, they engage as a low-cost stage preceding any ‘reduce’ tasks. This 

is also possible because we treat each stratum independently, where we apply a random 

sampling for each stratum. Even dispatching a Spark’s streaming job to worker nodes at each 

batch interval does not affect the ‘embarrassingly parallelism’ of our design, which is 

naturally massively parallelizable. Our method, when translates down to a query plan 

(extending those offered by Spark’s SQL optimizers) divides each job into tasks and 

disseminates them to partitions (a task for each), where each task acts on a single partition 

 

Figure 0.2. Internals of a CQ (listing E.1) incorporating SAOS 
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hosted by a worker node independently for the sampling stage. The logic behind this is self-

explanatory, where internally, our method acts on a for-each-partition basis, where we select 

a known fraction from each stratum in each partition according to a pre-defined sampling 

fraction map. Those independent tasks do not need to interplay, and hence no costly shuffling 

is introduced at this stage. 

Appendix F 

PID controller calculations similar to the way it has been used for backpressure in 

Spark Streaming [22, 126] . 

After each trigger, the new rate is calculated with (F.1), adapted from the Spark Streaming 

[22] PID rate estimator. This PID controller has been retrofitted and transparently 

incorporated with SpSS layers so that it serves back new sampling rates to samplers (in this 

case, our sampler SAOS or an SRS baseline) in the frontstage. 

 𝑟𝑎𝑡𝑒𝑛𝑒𝑤 =  𝑟𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑠𝑡  −  ((𝑃. 𝑒𝑟𝑟)  +  (𝐼. 𝑒𝑟𝑟ℎ𝑖𝑠𝑡)  + (𝐷. 𝑒𝑟𝑟𝑑)) (F.1) 

Where 𝑟𝑎𝑡𝑒𝑛𝑒𝑤 is the new rate calculated after each trigger (i.e., batch interval in Spark 

Streaming version),  𝑒𝑟𝑟 is the difference between the desired rate (i.e., desired setpoint (SP) 

in PID original jargon) and the measured rate (PV in PID original terms) based  on 

information collected from the most recent trigger (i.e., batch in Spark Streaming terms). 

𝑟𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑠𝑡 constitutes the desired rate, readily available from previous trigger running 

information (free of charge as SpSS provides this information by default). 𝑟𝑎𝑡𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is then 

the measured process variable (i.e., PV), 𝑒𝑟𝑟 is then given by (F.2). 

 𝑒𝑟𝑟 =  𝑟𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑠𝑡  − 𝑟𝑎𝑡𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (F.2) 

The integral term is used as an indicator to the historical error, specifying the amount of load 

that could not be processed in all the previous triggers (i.e., batches), leading to delay. We 

depend on (F.3) in calculating 𝑒𝑟𝑟ℎ𝑖𝑠𝑡. 

 𝑒𝑟𝑟ℎ𝑖𝑠𝑡   =  𝑑𝑒𝑙𝑎𝑦𝑠𝑐ℎ𝑒𝑑 . 𝑟𝑎𝑡𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑏𝑎𝑡𝑐ℎ𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙⁄  (F.3) 

The derivative term predicts the future as the error change between two triggers (i.e., the 

trend), we depend on (F.4) for calculating 𝑒𝑟𝑟𝑑. 

 𝑒𝑟𝑟𝑑  =  (𝑒𝑟𝑟 −  𝑒𝑟𝑟𝑙𝑎𝑡𝑒𝑠𝑡)/ ( 𝑡𝑖𝑚𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡  −  𝑡𝑖𝑚𝑒𝑙𝑎𝑡𝑒𝑠𝑡) (F.4) 

 

https://en.wikipedia.org/wiki/Setpoint_(control_system)
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