

Esame finale anno 2020

Alma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA (Ph.D.) IN

Computer Science and Engineering

Ciclo XXXII

Settore Concorsuale: 09/H1

Settore Scientifico Disciplinare: ING-INF/05

Quality of Service Aware Data Stream Processing

for Highly Dynamic and Scalable Applications

Presentata da:

Isam Mashhour Hasan Al Jawarneh

Coordinatore Dottorato:

Prof. Davide Sangiorgi

Supervisore:

Prof. Rebecca Montanari

ii

Isam Mashhour Hasan Al Jawarneh: Quality of Service Aware Data Stream

Processing for Highly Dynamic and Scalable Applications, © 2020

website: https://www.unibo.it/sitoweb/isam.aljawarneh3

E-mail: isam.aljawarneh3@unibo.it

iii

Abstract

Huge amounts of georeferenced data streams are arriving daily to data stream management

systems that are deployed for serving highly scalable and dynamic applications. There are

innumerable ways at which those loads can be exploited to gain deep insights in various

domains. Decision makers require an interactive visualization of such data in the form of

maps and dashboards for decision making and strategic planning. Data streams normally

exhibit fluctuation and oscillation in arrival rates and skewness. Those are the two

predominant factors that greatly impact the overall quality of service. This requires data

stream management systems to be attuned to those factors in addition to the spatial shape of

the data that may exaggerate the negative impact of those factors. Current systems do not

natively support services with quality guarantees for dynamic scenarios, leaving the handling

of those logistics to the user which is challenging and cumbersome. Three workloads are

predominant for any data stream, batch processing, scalable storage and stream processing.

In this thesis, we have designed a quality of service aware system, SpatialDSMS, that

constitutes several subsystems that are covering those loads and any mixed load that results

from intermixing them. Most importantly, we natively have incorporated quality of service

optimizations for processing avalanches of geo-referenced data streams in highly dynamic

application scenarios. This has been achieved transparently on top of the codebases of

emerging de facto standard best-in-class representatives, thus relieving the overburdened

shoulders of the users in the presentation layer from having to reason about those services.

Instead, users express their queries with quality goals and our system optimizers compiles

that down into query plans with an embedded quality guarantee and leaves logistic handling

to the underlying layers. We have developed standard compliant prototypes for all the

subsystems that constitutes SpatialDSMS. Thereafter, we have tested with huge amounts of

real and synthetic geo-referenced datasets, deploying our computing clusters in-house and in

Cloud computing environments. Our results show that all the subsystems of SpatialDSMS

were able to achieve the envisaged quality goals and outperform baselines by significant

margins.

iv

Lovingly, to my parents, my son and my wife

Ai miei genitori, a mio figlio e a mia moglie,

per il loro instancabile sostegno.

v

Acknowledgements

I first would like to sincerely thank my Ph.D. supervisor Prof. Rebecca Montanari for

magnificently and wisely supervising my works during my three years Ph.D. I am thankful

and grateful to Prof. Paolo Bellavista for encouraging me and inviting me to his fabulous

research group. Many thanks to my Ph.D. advisor Prof. Antonio Corradi for advising me and

supporting my research. I would like to thank Prof. Luca Foschini for his patience and for

motivating me in every aspect while he was helping me to improve my research skills and

competences. Thanks to you all, with your supervision, support, guidance and advices, I have

enjoyed every moment during my Ph.D. journey. Thanks a lot for making me always feel

like being with family, for being my friends and always encouraging me and supporting me

with deep tenderness and warmness.

I am very grateful to my family, my parents, my son and my wife, my sisters and my brothers

for the love, support and encouragement they give to me.

I also would like to thank my collaborators from the department of computer science and

engineering (DISI) at University of Bologna (Andrea Zanotti and Francesco Casimiro) for

their technical contributions. I would like to thank my fellow doctoral researchers and

research assistants, Domenico Scotece, Michele Solimando, Riccardo Venanzi, Giuseppe

Martuscelli, and all the other fellows in Lab2 for being my friends and for the nice work

environment we have shared.

I also would like to thank the external reviewers of my Ph.D. thesis, Prof. Melike Erol-

Kantarci and Prof. Javier Berrocal, for their insightful comments, feedback and suggestions

that assist in improving the quality of this work.

I am thankful to the Institute of Advanced Studies (ISA) at the University of Bologna for

granting me the PhD@ISA fellowship for three years. I am specifically thankful to the

director of ISA, Prof. Dario Braga, thank you for the great arrangement of those insightful

and fruitful seminars. I have learned a lot during those seminars.

A very special gratitude goes to Centro Interdipartimentale di Ricerca Industriale su ICT

(CIRI ICT) at University of Bologna for funding my works for the three years during my

Ph.D. I have enjoyed a lot working on SACHER project.

vi

Publications

Part of the contents of this thesis are based on the following publications:

[1] I. M. Al Jawarneh, P. Bellavista, L. Foschini and R. Montanari, "Spatial-aware

approximate big data stream processing," in 2019 IEEE Global Communications

Conference, GLOBECOM. In press.

[2] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari and A. Zanotti,

"In-memory spatial-aware framework for processing proximity-alike queries in big spatial

data," in 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design

of Communication Links and Networks (CAMAD), 2018, pp. 1-6.

[3] I. M. Al Jawarneh, P. Bellavista, F. Casimiro, A. Corradi and L. Foschini, "Cost-

effective strategies for provisioning NoSQL storage services in support for industry 4.0," in

2018 IEEE Symposium on Computers and Communications (ISCC), 2018, pp. 1227.

[4] I. M. Aljawarneh, P. Bellavista, C. R. De Rolt and L. Foschini, "Dynamic identification

of participatory mobile health communities," in Cloud Infrastructures, Services, and IoT

Systems for Smart Cities. Springer, 2017, pp. 208-217.

[5] I. M. Aljawarneh, P. Bellavista, A. Corradi, R. Montanari, L. Foschini and A. Zanotti,

"Efficient spark-based framework for big geospatial data query processing and analysis," in

2017 IEEE Symposium on Computers and Communications (ISCC), 2017, pp. 851-856.

[6] I. M. Aljawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari , "Efficient QoS-

Aware Spatial Join Processing for NoSQL Scalable Storage Frameworks". 2020. Submitted.

[7] I. M. Aljawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari, “. SpatialSSJP:

QoS-Aware Adaptive Approximate Stream-Static Spatial Join Processor”. 2020. Submitted.

[8] I. M. Aljawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari, " Locality-

Preserving Spatial Partitioning Scheme for Quality Spatial Analytics in Distributed Main

Memory Frameworks".2020. Submitted.

[9] I. M. Aljawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari. “QoS-Aware

Optimizations for Big Geospatial Data Management - A Survey”. 2020. Submitted.

vii

Additional publications published while at the department of computer science and

engineering, University of Bologna during my Ph.D.:

[10] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari, J. Berrocal

and J.M. Murillo. “A Pre-filtering Approach for Incorporating Contextual Information into

Deep Learning Based Recommender Systems”. 2020. IEEE Access. To appear.

[11] S. Bertacchi, I. M. Al Jawarneh, F. I. Apollonio, G. Bertacchi, M. Cancilla, L. Foschini,

C. Grana, G. Martuscelli and R. Montanari, "SACHER project: A cloud platform and

integrated services for cultural heritage and for restoration," in Proceedings of the 4th EAI

International Conference on Smart Objects and Technologies for Social Good, 2018, pp. 283-

288.

[12] I. M. Al Jawarneh, P. Bellavista, L. Foschini, R. Montanari, J. Berrocal and J. M.

Murillo, "Toward privacy-aware healthcare data fusion systems," in International Workshop

on Gerontechnology, 2018, pp. 26-37.

[13] I. M. Al Jawarneh, P. Bellavista, F. Bosi, L. Foschini, G. Martuscelli, R. Montanari

and A. Palopoli, "Container orchestration engines: A thorough functional and performance

comparison," in ICC 2019-2019 IEEE International Conference on Communications (ICC),

2019, pp. 1-6.

[14] I. M. Al Jawarneh, P. Bellavista, L. Foschini, G. Martuscelli, R. Montanari, A. Palopoli

and F. Bosi, "Qos and performance metrics for container-based virtualization in cloud

environments," in Proceedings of the 20th International Conference on Distributed

Computing and Networking, 2019, pp. 178-182.

viii

Contents

Abstract ... iii

Acknowledgements .. v

Publications ... vi

1 Introduction .. 1

1.1 Highly Dynamic and Scalable Applications: A Motivating Scenario and Usage

Model 2

1.2 Thesis Statement ... 4

1.3 Thesis Contributions ... 4

1.3.1 SpatialBPE and SpatialNoSQL: Scalable Distributed Spatial Batch Query

Processing and Storage ... 5

1.3.2 SpatialSPE: Spatial Approximate Query Processing 6

1.3.3 SpatialSSJP: Adaptive Stream-Static Spatial Join Processing 6

1.4 Thesis Outline ... 7

2 Background ... 8

2.1 Lambda Architecture ... 8

2.2 Distributed (Spatial) Big Data Storage Frameworks .. 9

2.2.1 MongoDB: A Scalable Distributed Storage Framework 9

2.2.2 Geospatial Analytics in MongoDB .. 10

2.3 Distributed (Spatial) Big Data Processing Frameworks 10

2.3.1 Batch Processing: Apache Spark ... 11

2.3.2 Online Processing: Spark (Structured) Streaming ... 16

3 SpatialDSMS: Spatial Data Stream Management System ... 21

3.1 Spatial Data Analytics in Highly Dynamic and Scalable Applications 21

3.2 Quality of Service Goals ... 26

ix

3.2.1 Methodology for Measuring the Achievement of Quality-of-Service Goals 28

3.3 Scalable Storage and Fast Analytics: Better Together .. 29

3.4 SpatialDSMS Overview .. 30

3.4.1 Architectural Design Goals .. 30

3.4.2 SpatialDSMS Architecture .. 31

3.4.3 Scope of Operation .. 34

4 QoS Aware Distributed Batch Spatial Query Processing ... 37

4.1 Introduction ... 37

4.2 A Primer on Distributed Data Partitioning .. 37

4.3 Spatial Data Partitioning Goals ... 38

4.4 Traditional Big Data Partitioning Schemes... 42

4.5 Spatial-aware Distributed Data Partitioning ... 44

4.5.1 Multidimensional Data Structures Supporting Spatial Data Partitioning 44

4.5.2 Custom Spatial-Aware Data Partitioning methods .. 47

4.6 System Design Perspectives .. 50

4.7 SpatialBPE: Spatial-aware Batch Processing Engine ... 51

4.7.1 Motivation .. 51

4.7.2 Design Perspectives ... 52

4.7.3 Spatial Partitioning in Distributed Batch In-memory Processing Systems ... 53

4.7.4 A Recap on Spatial Querying in Batch Oriented Systems 56

4.7.5 Spatial Query Optimizers for Distributed Data Batch Processing 58

4.7.6 Related Works .. 67

4.8 SpatialNoSQL: A Scalable Storage for Spatial Data .. 68

4.8.1 Motivation .. 69

4.8.2 SpatialNoSQL overview .. 70

x

4.8.3 QoS Aware Spatial Data partitioning for NoSQL ... 71

4.8.4 Spatial Query Optimizers for NoSQL Scalable Distributed Storage 73

4.8.5 Experimental Setup and Parameter Settings .. 77

4.8.6 Test Cases, Results and Discussion ... 78

4.8.7 Related Literature .. 85

4.9 Chapter Conclusion ... 86

5 SpatialSPE: Spatial Approximate Query Processing ... 88

5.1 Motivation ... 89

5.2 Theoretical Foundations .. 91

5.2.1 Stream Processing .. 91

5.2.2 Sampling .. 92

5.3 SpatialSPE: QoS-aware Approximate Spatial Data Stream Processing Engine ... 96

5.3.1 Usage Model and Baseline System .. 96

5.3.2 Design Assumptions .. 97

5.3.3 SpatialSPE Design Overview .. 97

5.3.4 Spatial Aware Online Sampling (SAOS) Algorithm 101

5.3.5 Spatial Queries Supported ... 102

5.3.6 Quantifying the Uncertainty Associated with Sampling 104

5.4 SpatialSPE Implementation Technical Details ... 107

5.5 Performance Evaluation and Results .. 108

5.5.1 Comparison Methodology ... 108

5.5.2 Metrics of Interest .. 108

5.5.3 Experimental Setup and Datasets .. 110

5.5.4 Evaluation Strategy .. 110

5.5.5 Test Cases and Results ... 111

xi

5.6 Similar Works ... 117

5.7 Chapter Conclusion and Forward.. 118

6 SpatialSSJP: Adaptive Stream-Static Spatial Join Processing 120

6.1 Background ... 123

6.1.1 The Problem of Poor Resource Utilization in Stream Processing 123

6.1.2 Streaming Distributed Joins and Complexities Associated with Spatial Cases

 124

6.1.3 Controllers for Resolving the Information Overloading and Resource

Utilization ... 126

6.2 QoS- and Spatial-Aware Adaptive Stream-Static Join Processor 130

6.2.1 Usage Model and Baseline System .. 130

6.2.2 SpatialSSJP Overview ... 131

6.3 SpatialSSJP Algorithms and Mathematical Formulations 134

6.3.1 SpatialSSJP Workflow ... 134

6.3.2 Rate Controller Algorithm ... 135

6.3.3 Supported Queries .. 139

6.3.4 Quantifying Uncertainty .. 139

6.4 Implementation ... 140

6.5 Performance Evaluation and Results .. 143

6.5.1 Deployment Settings, Test Cases and Benchmarking 143

6.5.2 Results and Discussion .. 144

6.6 Related Work .. 153

6.7 Chapter Conclusion ... 157

7 Conclusion and Future Works .. 159

7.1 Summary of Contributions .. 159

7.1.1 SpatialBPE ... 160

xii

7.1.2 SpatailNoSQL .. 160

7.1.3 SpatialSPE ... 161

7.1.4 SpatialSSJP .. 161

7.1.5 Putting it All Together: SpatialDSMS ... 162

7.2 Applicability of SpatialDSMS in Diverse Domains ... 163

7.3 Future Works ... 165

List of Figures .. 167

List of Tables ... 170

List of Algorithms .. 170

List of Listings ... 171

Appendices ... 172

Appendix A .. 172

GeoSpark Architecture ... 172

Appendix B .. 172

DBSCAN-MR Workflow ... 172

Appendix C .. 173

Calculating Throughput in SpatialSPE ... 173

Appendix D .. 173

Spatial Sampling Distributions: Data Skewness .. 173

Appendix E... 174

Further Words on SAOS Efficiency: Theoretical Perspectives 174

Appendix F ... 176

PID controller calculations similar to the way it has been used for backpressure in Spark

Streaming [22, 126] . .. 176

Bibliography .. 177

Introduction

1

 Chapter 1

1 Introduction

The unprecedented abundance of Internet of Things (IoT) devices have caused avalanches

of ultra-fast arriving geo-referenced data streams to arrive at Data Stream Management

Systems (DSMS). Analyzing that data is important for strategic planning and decision

making. Processing such massive amounts of data in a timely fashion depending on relational

systems is specifically grueling. Consequently, novel frameworks have emerged, such as

Apache Spark [1] ,for distributed processing, and MongoDB [2] for scalable distributed

storage. Those general-purpose systems have established themselves as de-facto standards

for macro-scale big data intensive analytics. However, employing them as-is in dynamic and

highly scalable application scenarios (e.g., smart cities [3] , Industrial Internet of Things

(IIoT), Industry 4.0 [4] and urban computing [5]) requires investigating their ability in

meeting QoS goals (e.g. latency/throughput and resource utilization) . An intrinsic problem

in those frameworks is that they are not natively attuned to data characteristics, rendering

them unable to achieve (or at least striking a plausible balance between) QoS goals. Those

systems do not provide out-of-the-box representational and analytical models for geospatial

data, overburdening developers with logistics and slowing down the production process.

Dynamic and highly scalable application scenarios coming from smart cities, IIoT and urban

computing are innumerable. However, they all require mixing (sometimes in a mashup

fashion, thus fusing disparate elements) workloads in order to get full insights that guide the

decision making for improving our lives in all aspects. Batch processing and online aggregate

processing occupy a big share of those workloads. The fact that input data is mostly geo-

referenced invokes a novel spatial aware data stream management system that covers most

critical quality of service aspects in an end-to-end pattern.

Current big data management systems (for example, Apache Spark [1] and MongoDB [2])

are growing quickly. Having modular architectures, those systems, despite not being attuned

to characteristics of georeferenced data, are promising jumping-off points that can be used

for building optimized QoS aware versions, achieving goals related to latency/throughput,

accuracy and resource utilization. In this thesis, we generally aim at improving the QoS of

Introduction

2

those mature systems for highly dynamic application scenarios. In the next subsection, we

introduce a genuine QoS-demanding highly dynamic application scenario that motivates

various contributions that we have achieved in this thesis.

This chapter is organized as follows. In § 1.1, we iterate a contrived representative toy

scenario in highly dynamic application domain. In what follows, we introduce the thesis

statement in § 1.2. Thereafter, in § 1.3, we summarize our contributions in this thesis in a

coherent and consistent structure. We conclude the chapter in § 1.4 by presenting an outline

showing the organization of remaining parts of the thesis.

1.1 Highly Dynamic and Scalable Applications: A Motivating Scenario and Usage

Model

Our main goal by explaining the following highly scalable and dynamic application scenario

is to delineate, in a coherent and consistent manner, the contributions presented in this thesis.

Streaming data coming from heterogeneous sources in dynamic applications, such as smart

cities, can be exploited in innumerable ways to get deep insights that improve the quality of

our lives. In this section, we envision a representative application scenario that belongs to

the family of participatory healthcare, a life-critical dynamic scenario that imposes harsh

QoS goals on the underlying data stream management system (DSMS). QoS goals may

include low-latency, high-throughput, high-accuracy and high resource utilization.

Consider an application which analyzes Global Positioning System (GPS) data collected in

real-time by citizens and vehicles moving around in a city. A citizen suffering a chronic

disease (e.g., asthma attack) which may attack suddenly while moving around in a city and

needs an instant first-aid. The goal is to provide reliable assistance to that patient and keep

danger as low as possible, while at same time avoid disorganizing roads traffic (i.e., avoid

causing congestions). Achieving those goals requires two things. First, sending patient

location and health severity degree to the nearest hospital. Second, finding nearest

appropriate person who is willing and able (well-trained) to provide first-aid. This is a mixed-

workload scenario which invocates a reliable system that needs to provide at least the

following services:

Introduction

3

1) Traffic Light Controller (TLC). This component constitutes sensors that are

implanted in the roads and can send timely signals to a periodic traffic signal actuator.

Actuator then decides to change lights of some traffic lights into green for those lanes

to allow the ambulance to pass in a consistent way.

2) Smart Real-time Pathfinder (SRP). This component of the envisaged system

generates an interactive navigation map that navigates ambulances en-route to

accident location, whereas recommends alternative roads to other vehicles

consistently.

3) (Near) Real-time Community Detection (RCD). This component can identify

communities in the surroundings of the patient by applying a clustering and selects

the most appropriate volunteer who is the nearest and capable of providing first-aid.

A typical architecture of a system that handles this scenario can be envisioned in the

schematic diagram of figure 1.1, showing a typical interplay and interaction between many

constituting components. This resembles a publish/subscribe pattern, where data collectors

dynamically send geo-referenced data to batch and online processing systems that perform

analytics and serve them to subscribers (e.g., actuators) that enact/react correspondingly.

Various QoS goals are imposed at all stages during the interaction of the constituent parts of

the envisaged DSMS shown in Figure 1.1. TLC should act in a latency bounded fashion (i.e.,

low-latency QoS goal) to control traffic light signals efficiently in real-time. Errors are not

allowed in such a critical service and nearly-perfect accuracy is a must. On the contrary, SRP

Figure 1.1. A typical publish/subscribe based pattern showing the interaction between typical

system components in a typical highly dynamic and scalable application scenario

Introduction

4

can safely depend on approximation, thus trading off a rigorous error-bounded accuracy for

lower latency. This in part is because we need to generate an approximate heatmaps in real-

time to draw trajectories for ambulances en-route to accident locations, only showing

approximately how congested a lane in a specific time is enough. Also, RCD can be

adequately based on an error-bounded approximate (i.e., high estimation accuracy QoS goal).

A comprehensive usage model could extend tremendously, but even with this simple

synopsis it is quite straightforward to distinguish an important aspect that is inherently

apparent in this scenario, that it requires mixing instantaneous reactions with proactive

actions. Reactions include applying real-time analytics before data becomes obsolete and

loses its value. Proactive actions require achieving data in a homogeneous way so as to apply

predictive models (e.g., overnight) that further assist in decision making and planning. To be

considered a QoS-aware DSMS for highly dynamic application scenarios, it should

incorporate QoS-awareness natively within the layers of its core baselines without requiring

developers and users to reason about the underlying mechanisms of those services.

1.2 Thesis Statement

In this thesis, we aim at designing and implementing a constellation of methods and

algorithms, then incorporating them into few sub-systems that collectively form a spatial

data stream management system for managing and processing spatial streaming data in

highly dynamic and scalable applications. Low latency, high throughput, and controlled

accuracy with rigorous error-bounds, in addition to high resources utilization are QoS goals

of a paramount importance. We aim at trading them off appropriately in a manner that

improves the overall service quality envisaged from the system.

1.3 Thesis Contributions

In this thesis, we show the design and implementation of our QoS-aware DSMS that we dub

as SpatialDSMS (short for Spatial Data Stream Management System), which operates over

fast arriving geo-referenced data streams. Our system receives input data from either a stream

source or a batch source. Through an appropriate interface, we provide the user with the

ability to express their queries (i.e., batch or continuous) and serve them together with QoS

budgets to the system. Budgets are expressed as QoS goals (e.g., latency/throughput,

estimation quality or resource utilization). Thereafter, our system ensures that the query is

Introduction

5

executed within the specified budget and results are served to the user either incrementally

(in case of online processing mode) with rigorous error-bounds or as only-once (in case of

batch processing mode). Streaming data sources can be combined, on-need, with a batch

static data (in what is known as stream-static join) to answer an interactive query that requires

enrichment with master data (i.e., disk-resident data).

In this thesis, we show the following constituting parts that collectively form our system (i.e.,

SpatialDSMS).

1.3.1 SpatialBPE and SpatialNoSQL: Scalable Distributed Spatial Batch Query

Processing and Storage

We begin this thesis by designing two QoS-aware custom data partitioning methods and their

associated query optimizers for scalable storage and batch processing of big spatial (we use

spatial and geospatial interchangeably hereafter) data. We dub those systems as

SpatialNoSQL and SpatialBPE, respectively. Spatial data partitioning is a mean-to-an-end,

where the goal is achieving quality goals; lowering latency and maximizing resource

utilization while keeping accuracy levels high. To achieve those, we design Geospatial

Sharding Scheme (GSS), a custom spatial partitioning method for a NoSQL scalable

distributed storage emerging framework, MongoDB [2] , together with a query optimizer

that exploits GSS for improving the quality of service, both constituting SpatialNoSQL. We

also have designed a custom spatially-attuned adaptive partitioning method that we dub as

SCAP, which adequately trade-off three contradicting spatial partitioning goals (i.e.,

boundary spatial objects - a.k.a. edge cases, spatial co-locality preservation and load

balancing) in an emerging batch processing framework (i.e., Apache Spark [1]). We further

have retrofitted a density-based clustering algorithm so that it exploits SCAP, both the SCAP

and the associated query optimizer form SpatialBPE. We have evaluated SpatialNoSQL and

SpatialBPE using real-world geospatial big data loads. Our results show that SpatialBPE and

SpatialNoSQL outperform state-of-art counterparts by significant magnitudes. Also, they

were able to meet QoS goals specified as latency/throughput and resource utilization.

SpatialNoSQL is geared toward scalable distributed storage, whereas SpatialBPE is designed

for distributed batch processing.

Introduction

6

1.3.2 SpatialSPE: Spatial Approximate Query Processing

After designing spatial-aware appropriate data partitioning and query optimizers for

distributed scalable storage and batch processing, we have realized that those methods alone

cannot achieve QoS goals for spatial interactive analytics, where fast arriving fluctuating

(i.e., in skewness and arrival rate) spatial data streams hit so hard the resources of the

SpatialDSMS. Also, we aim at a system that supports incrementalization of spatial data

stream computation, meaning that results are served incrementally based on time-based

window semantics without the need to recompute or materialize previous loads. to achieve

those goals, we design SpatialSPE, which aims at achieving low-latency and maximal

resource utilization, while serving results with acceptable high accuracy expressed as

rigorous error-bounds. SpatialSPE accepts a continuous query and QoS budgets (expressed

as latency and accuracy targets) and employs our spatial-aware sampling method (that we

dub as SAOS, which is an integral part of SpatialSPE) to select an appropriate sample, then

it computes an approximate answer and serves it to the user incrementally, together with

rigorous error bounds. We have implemented SpatialSPE on top of Spark Structured

Streaming [6]. Our results show that SpatialSPE (and the incorporated SAOS scheme)

outperforms baselines by significant margins. Also, combining SpatialSPE with the

partitioning methods (GSS from SpatialBPE and SCAP from SpatialNoSQL) is possible in

order to materialize (partial) stream data loads efficiently for a future (semi-)batch

processing, rendering them complementary, and the combination allows to benefit from both

worlds without their limitations.

1.3.3 SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

After designing SpatialBPE, SpatialNoSQL and SpatialSPE, we have realized that

interesting mixed-workloads in highly dynamic environments require combining batch and

streaming views (i.e., current views with historical views) or enriching spatial streams with

static descriptions. For this purpose, we have designed SpatialSSJP, a QoS-aware adaptive

stream-static join processor that exploits SpatialSPE (and specifically SAOS) in adaptively

selecting proportionate sampling fraction through the application of an embedded rate

controller and serve it to SAOS using a feedback loop mechanism. SpatialSSJP is an

approximation framework that is designed to efficiently tradeoff miniscule error-bounded

accuracy for low-latency, thereby assisting SpatialDSMS to survive during brutal burst

Introduction

7

spikes in data arrival rates. SpatialSSJP achieves that in a circadian rhythm without

compromising the overall stability of SpatialDSMS. We have implemented SpatialSSJP on

top of Spark Structured Streaming [6] to complement SpatialSPE for approximate query

processing of fast arriving spatial big data loads. Our evaluations with real-world scenarios

and big spatial benchmarks and data loads prove that SpatialSSJP is able to survive even the

most striking burst workloads while keeping accuracy loss in check (i.e., under a statistically

desirable margin).

1.4 Thesis Outline

This thesis is organized in the following chapters.

In Chapter 2, we show a background about data processing in dynamic and scalable

applications and big data management frameworks that have been exploited in this thesis.

In Chapter 3, we show the overall architectural design of our system SpatialDSMS.

In Chapter 4, we show the design and realization of SpatialBPE and SpatialNoSQL, two

quality of service aware frameworks for distributed batch processing and scalable storage,

respectively.

In Chapter 5, we show the design and realization of SpatialSPE, a Spatial Approximate

Query Processing engine.

In Chapter 6, we show the design and realization of SpatialSSJP, an adaptive Stream-

Static Spatial Join Processing system.

To sum up, in Chapter 7, we conclude our works, showing the implication that can be

carried over to other domains, and some future research frontiers.

Background

8

 Chapter 2

2 Background

In this chapter, we start in § 2.1 by showing a baseline architecture for DSMSs that has

gained a momentum in the last decade. We then showcase the capabilities of big data storage

(§ 2.2) and analytics (§ 2.3) frameworks that we have exploited to implement our algorithms

and systems that we are presenting in this thesis.

2.1 Lambda Architecture

Challenges associated with managing mixed streaming big data workloads have motivated

the emergence of novel dynamic architectural patterns such as the Lambda architecture [7].

The Lambda architecture employs real-time stream processing for timely approximate results

and batch processing for delayed accurate results. Figure 2.1 shows a typical Lambda

architecture.

New streaming data is served to either a batch layer or a speed layer. Accurate, often

computationally expensive, posterior analytics are performed on historical data (a.k.a. data-

at-rest) in the batch layer (e.g., using Spark). On the contrary, approximate queries are

performed in the speed layer, analyzing and processing stream data (a.k.a. non-stationary)

on-the-fly (e.g., using Spark Streaming). Mixing workloads in this setting means basically

exploiting static historical archives from the batch layer in predicting future or current trends

Figure 2.1. Typical Lambda architecture

Background

9

in the speed layer, and thereby accelerating the processing and possibly helping in the

prediction of a sudden brutal burst spike in an arriving data load (i.e., being proactive). Stated

another way, batch layer serves as a synergistically complementary processing engine that

performs complex computations (which are prohibitively expensive online, such as a deep

learning model) on static data (i.e., collected previously from active streams) aiming to gain

deeper insights , correlations and patterns, which together with the help of online analytics

serve a clearer picture that better facilitates timely decision making. In this sense also, serving

instantaneously two paths of computation better helps in resolving the cause/effect problems,

where a speed layer can appropriately discover an effect that is explained by a deeper (i.e.,

resource-intensive and costly) analysis in the batch layer. Views are normally served through

the serving layer (e.g., using MongoDB). Representative frameworks that can collectively

form a typical ecosystem based on the Lambda architecture are discussed in the next

subsections.

2.2 Distributed (Spatial) Big Data Storage Frameworks

In this section, we summarize the features and traits of an emerging scalable distributed

storage NoSQL system that we have exploited for building up SpatialNoSQL (one of our

sub-systems) as discussed in section 4.8.

2.2.1 MongoDB: A Scalable Distributed Storage Framework

MongoDB is a document-oriented scalable NoSQL distributed (thus simplifying horizontal

scaling) database management system that offers many indexing strategies for a highly-

performing batch processing experience. Data is stored in a flexible changeable JSON-alike

representation that offers freedom in dynamically changing the data structure to be able to

gather heterogeneous data sources under one umbrella. In MongoDB terms, each document

contains key/value pairs of an entity, and several documents (analogous to records in

RDBMSs) constitute a collection (analogous to tables in RDBMSs).

In RDBMSs, information related to an entity are normally spread out between many tables

and are collected through their referential integrities (i.e., the relations represented through

primary/foreign keys) at run time. On the contrary, in MongoDB, the notion of referential

integrity vanishes. To compensate for that, MongoDB is using an embedded document

Background

10

metaphor, where documents are values for keys, thus naturally organizing data better than

the plain flat structure (i.e., key/value pairs) [8].

Architecturally speaking, MongoDB is built to operate on sharded clusters (analogous to

master/slave architectures), where one (or more) routers (mongos in MongoDB terms) shard

(split) data points to several (two or more) parallelly connected shards (analogous to worker

nodes, slaves or executors) aiming at distributing the load so as to provide a scalable storage

for massive amounts of datasets, and thereby demystifying the access for analytics.

2.2.2 Geospatial Analytics in MongoDB

MongoDB supports primitive types of spatial operations and associated access structures

(i.e., indexes). It natively supports two types of geospatial indexing; 2dsphere and 2d.

2dsphere is designed for spherical geometries, whereas 2d indexing flattens the earth out

(similar to a heuristic overview of a grid, two-dimensional Euclidean plane) [9].

2dsphere yields more accurate results than 2d because of the representation, where the latter

is used for queries that use flat geometry as it assumes a perfectly flat surface, thus causing

(massive) distortions near the earth poles. 2d supports the "$geoWithin"

and "$near" operators.

Several geospatial queries are supported, including proximity (i.e., nearness, through

$geoNear operator, an aggregation operator), intersection, or inclusion (i.e., ‘within’

predicate) by providing appropriate operators such as "$geoWithin”. Those queries are

supported for geospatial points and shapes (i.e., line, polygon).

$geoWithin is normally utilized to search for geospatial points within a shape (represented

on a flat surface, such as a rectangle, polygon, or a circle)

We have selected MongoDB in this thesis as a baseline representative to base some of our

batch-oriented implementations because of the spatially-oriented overarching support it

offers natively. We have stacked-up SpatialNoSQL specifically over MongoDB (as

explained in chapter 4)

2.3 Distributed (Spatial) Big Data Processing Frameworks

Another important component that resides in the batch layer of the lambda architecture is

distributed processing frameworks such as Apache Hadoop [10] and Spark (patterned after

Background

11

Hadoop MapReduce module). Of late, Spark has shown superiority over Hadoop and most

efforts of the relevant literature are stacking up on Spark. Spark significantly outperforms

Hadoop especially for iterative structures that access in-memory data excessively. This

encouraged us to focus on Spark exclusively as a big data processing framework in this

thesis.

We first list basic features of Spark core, with some interesting traits that encouraged us to

favor it over counterparts as a representative for stacking up our algorithms. We then shortly

recapitulate spatial-aware plugins that have been patterned on Spark such as GeoSpark [11].

Thereafter, we overview (spatial) stream processing frameworks, specifically Spark

Magellan1 [12, 13]. We stack up SpatialBPE (chapter 4) SpatialSPE (chapter 5) and

SpatialSSJP (chapter 6) on Spark’s Magellan plugins to realize our standard compliant

prototypes.

2.3.1 Batch Processing: Apache Spark

Apache Spark [1] is an open-source framework that has been patterned after MapReduce

framework, aiming at processing huge amounts of data efficiently in parallel computing

environments. It is an efficient general-purpose solution for processing disk-resident,

memory-resident and big data streams (in micro-batching mode). The core programming

abstractions of Spark are RDDs [14] , which are groups of objects partitioned across multiple

computing resources for parallel manipulation, where each partition containing an RDD is

processed parallelly in a single task. Spark jobs include constructing new RDDs, RDD’s

transformations (i.e., filter and map), which are performed on a coarse-grained fashion, or

calculating a result by invoking a function on RDDs (a.k.a. action in Spark’s jargon, such as

count or other reduce functions).

Spark provides high-level APIs for various programming languages such as Java, Scala, and

Python. It allows programmers to develop a complex data pipeline system, parallelizing

multiple processing flows through the Directed Acyclic Graph (DAG) pattern.

1 https://github.com/harsha2010/magellan

Background

12

Spark executes the lineage DAG graph lazily in such a way that transformations are

performed only after encountering an action in the graph. RDD is constructed either from

scratch or through a transformation from one RDD into another. Spark architecture is

master/slave where the master controller receives the result of a DAG after completion [15].

The technical burdens brought by RDD-based operations hinder a wider adoption of the

Spark between non-technologically-experienced users. This has motivated the emergence of

a full-fledged SQL-alike API that demystifies such an adoption, initiating by its batch format

, Spark SQL [16] , that served as a precursor to launching a streaming version, Spark

Structured Streaming (SpSS for the most of the remaining of the discussion hereafter). This

declarative SQL-alike support introduces DataFrames and Datasets to represent distributed

collections, with additional schema information (as opposed to RDDs) [15].

Spark default join on RDDs is shuffled hash join, implemented through cogroup operation

[15, 17] (analogous to the hash-partitioned join, and similar to full outer join in SQL), which

requires shuffling of both input RDDs in case that partitioner is unknown for both. Spark

needs the data that has same keys to reside on the same partition to be joined. However, in

cases where one RDD has an associated partitioner, it needs no shuffling, instead the other

RDD is shuffled with the same partitioner so that its elements hit the same node hosting the

partition of the other RDD and collocate for the join operation to proceed.

There are two types of join in distributed environments; broadcast and repartitioning join.

The former is possible in cases where one of the RDDs (and similarly the DataFrames in

Spark SQL) fits in main memory of the worker nodes. In such a case, it is broadcasted to

those nodes, what then remains incumbent is a map-side combine with each partition of the

larger RDD [15] (and similarly the DataFrames in Spark SQL). In the latter case, where

RDDs (and similarly DataFrames) do not fit in the fast memory, a repartitioning join is

performed, which requires shuffling as explained earlier. In Spark SQL, broadcast join is

configurable through enabling/disabling “autoBroadcastJoinThreshold” (enabled by

default). It worth mentioning that joining with non-unique keys result in a costly cross

product.

Limiting the comparison to a single plain ecosystem felt all wrong. So now we’re flipping

the switch on some non-trivial architectural tiered plugins that make distributed in-memory

Background

13

spatial analytics a reality. Even though Spark outperforms its predecessors for processing big

data, it is still not optimized for specific application scenarios, such as geospatial data

analysis, which led to the emergence of spatial-aware extensions built on top of Spark core.

Two recent representatives are GeoSpark [11] and Spark’s Magellan [12, 13]. Both have

seen swift adoption throughout the Spark community.

I) GeoSpark [11] is a spatial-aware open-source framework that have been

designed specifically for processing massive amounts of spatial data loads. it has

been engineered atop the Spark’s pyramid, extending the traditional Spark core

layers with spatial-aware abstractions and counterparts. For example, GeoSpark

has extended the Spark abstraction RDD into a spatial-contemporary that is

termed as SpatialRDD (SRDD for short), signifying that it preserves the idea of

the RDD abstraction but introducing the multidimensionality to the equation.

GeoSpark supports a myriad of spatial operations and predicates, most

importantly, kNN, ranges searches and spatial join. The architecture of GeoSpark

is explained in Appendix A.

I) Spark Magellan2 [12, 13] . Magellan is the first-in-class library that is fully

extending Spark SQL declarative API by offering a layer of geospatial analytics

relational abstractions. It offers a developer-friendly interface that allows

executing spatial query primitive in a QoS-aware fashion, focusing mainly on low-

latency and high throughput. Magellan optimizes the query plan by offering low-

cost spatial indexing.

At a cursory level, Magellan is layered on Spark, which by itself is the de-facto standard for

big data processing so far and looks set to remain that way at least for the foreseeable future.

Using the z-curves (in addition to non-hierarchical grids), the filtering step reduces to that of

point-in-MBR (a.k.a. MBR-join) test, which is computationally plausible. Magellan join

algorithm obeys the true hit filtering approach [18, 19] (specifically filter-and-refine

approach). Magellan supports several spatial predicates including intersection, containment

2 https://github.com/harsha2010/magellan

Background

14

and inclusion (i.e., within). Spatial join is supported natively and both participating relations

are indexed with z-order curves.

Magellan natively operates on a costly cross join. However, it has incorporated an

optimization for performing an inner join instead. It achieves this by indexing points and

polygons using geohashing (a special case of z-order curves based on bounding boxes), then

performing a hash join (i.e., filter stage) that is proceeded by a PIP test (e.g. a ‘within’

predicate, refinement stage), thus discarding possible false positives (i.e., cases when

geohash bounding box boundaries of a query point intersect a polygon, but query point falls

actually outside). Listing 2.1 shows an example PIP query using Magellan.

In this case, a quick-and-dirty sieve (filter) is first applied (pointsDF("index") ==

polygonsDF("index")) that is really a cheap hash join on the index, resembling the filter stage

of the filter-and-refine approach, thereafter costly PIP test ($"point" within $"polygon") is

applied to discard false positives.

Spark’s Magellan automatically stores z-order curves that cover a geometry (i.e. polygons

representing neighborhoods or counties in a city), with the associated relation (e.g.,

‘contains’, ‘within’ (contained in), ‘intersects’) expressing the relation between the z-order

curve (geohash for longitude/latitude representations) and the geometry. This relation is

important to minimize the costly ‘within’ predicate (i.e., PIP test), which will be evaluated

only when a z-order curve that is enveloping a query point is not guaranteed to fall within a

polygon.

pointsDF.join(polygonsDF,pointsDF("index")==

polygonsDF("index")).where($"point" within $"polygon")

listing 2.1. Example PIP test in Magellan

Background

15

Most importantly, Spark’s Magellan supports PIP test (i.e., geofencing). Being stacked up

over Spark SQL, broadcasting is by default enabled, meaning that a small DataFrame

(representing polygons in the PIP test input) will, by default, be broadcasted to executor

nodes. Join key in this case is a geometric field (i.e., multidimensional), and Spark natively

does not support partitioning based on such keys. Hash partitioner is the default used by

DataFrames, which takes the hash value of the join key and calculates the modulus of

dividing it by the number of partitions, then it emits the tuple to the partition that is

corresponding to the resulting value. This means that if we are able to reduce the

multidimensional representation of a geospatial object into one-dimensional space, then

geometrically-nearby objects should end up in the same partition.

Figure 2.2 represents a high-level sketch of a general structure of PIP join performed in

Magellan, which also serves as a machine for elucidating the broadcast join mechanism in

distributed systems, in addition to the true hit filtering join approach [20].

Magellan and GeoSpark are not panacea but instead are springboards to begin with QoS-

aware spatial optimizations.

We found Magellan superior to GeoSpark and other spatial-supporting frameworks in the

sense that Magellan is built with the spark fluent API (which allows wiring up all functions

in a single expression) in mind. All spatial operations that has been pushed up the stack are

Figure 2.2. PIP test in Spark’s Magellan, Filter-and-refine (true-hit part) is adapted from [20]

Background

16

obeying this fluency, thus complementing the Spark’s modular hot-swappable architecture,

and thereby avoiding to reason about the underlying processes atomically (as recommended

by Spark’s development team [6]), which is one of the main design goals targeted in Spark.

Also, Magellan offers access structures (i.e., indexing schemes) that have less associated

computational complexity, such as z-curves.

2.3.2 Online Processing: Spark (Structured) Streaming

Stream Processing Engines (SPE) are machines designed to process avalanches of fast

arriving unbounded online data streams, aiming at gaining deep insightful views that support

decision making and strategic planning in real time. They normally employ a graph of

operators (typically a DAG) where operator instances are distributed to parallelly connected

processing nodes so as to accelerate the processing, which is normally incremental, meaning

that results are dynamically updated as new data arrives. A major challenge in distributed

stream processing is the state management, where intermediate computation states need to

be stored/retrieved in a consistent manner that does not deteriorate the benefits of

parallelization.

The distinction between batch and online processing modes is that in the latter a push

mechanism is applied where data is pushed by sources to be processed by an SPE, whereas

in the former a pulling mechanism is applied such that a system pulls data residing in disk.

Also, batch processing is typically an exactly-once operation, whereas online mode runs

endlessly and compute results stepwise.

Second, due to the fact that within a DSMS, data must be processed in a push-based manner,

the temporal aspect of the query execution is more important than that of pull-based query

executions in a database system.

Those distinctions impose challenges that normally do not affect batch processing systems.

Queries run against a data stream are known as Continuous Queries (CQ) (sometimes

colloquially referred to as online querying, termed continuous as opposed to one-time

queries) that run in unbounded fashion, hence the order of data arrival is focal and is normally

accounted for by windows semantics (i.e., temporal intervals bounding the start/end times of

every query execution trigger) [21]. Also, as clock ticks forward, stream data becomes

obsolete and potentially loses its value, hence low-latency is a priority QoS goal. In addition,

Background

17

stream data normally exhibits temporal skewness and fluctuation in the arrival rates that

alternate between brutal spikes and underloads, and a good SPE should be able to survive

such unpredictable behaviors. SPEs store arriving tuples and access structures (i.e., indexes)

in-memory for speeding up the processing.

Spark Streaming [22] is a SPE that splits arriving stream tuples into blocks of RDDs dubbed

as discretized streams (or D-Streams) based on the time-based window semantics, where

every batch interval, micro-batches that are comprised of RDDs are sent to the batch Spark

processor in a process that is termed as micro-batching. Most transformations supported on

RDDs are also supported on D-Streams [15].

Spark Streaming does not natively support the join between streaming data and static

relation. It is otherwise supported in Spark Structured Streaming (explained shortly). Spark

Streaming is robust against arrival rate fluctuations for aggregation queries [23] . Also, Spark

Streaming, which uses the micro-batch model, is more fault-tolerant than Storm and Flink

(which are otherwise brittle and easily prone to failures), which use the record-at-a-time

model [24], which acts on per-row basis. Upon nodes failure, micro-batch based systems

recompute lost data efficiently [25] , thus recovering quickly [24, 25] , which is a plausible

overarching trait that is expensive in systems that obey record-at-a-time model, simply since

those models require serial replay processing [25] . Also, binding schemas to data sources is

straightforward in Spark SQL, which demystifies transforming it into a Scala case class, thus

enabling type-safe querying, which is a plausible trait while jumping through operating

machines. All those traits provided by the micro-batching model encouraged us to adopt it

for our implementations.

Spark Structured Streaming [6] (hereafter SpSS for short) is a new layer atop Apache Spark

layered-up ecosystem. It is a high-level API that lends many concepts from the original Spark

Streaming design [25] . Structured streaming mainly differs from the discretized streams in

that users normally express queries using a declarative SQL-alike API (in the form of

DataFrames [16]) instead of manually building a pipeline DAG of operators (such as those

found in MapReduce). Being a newly addition joining Spark’s family, it lacks accompanied

proper documentation for many details explaining specifically its internals and subtleties. As

Background

18

such, we here provide a structure that captures the anatomy of major constituent parts and

their workflow.

SpSS aims basically at resolving latency and accuracy issues that are normally confronted in

end-to-end data analytical deployments, where, more than often, fast arriving data torrents

read on-the-wire are joined with batch tables for interactive insightful BI analytics.

Production pipelines depend on joining serving streaming system’s workloads with

transactional ones, while most SPEs currently focus on streaming computations, spark

structured streaming is gaining more attention because it places due importance on other

batch loads combined with streaming, thus improving the end-to-end performance in time-

sensitive production systems. Another outstanding feature that makes structured streaming

favorable over counterparts is the incrementalization in the continuous query execution

model. This means at a highest level that users write their queries as if they were to be

executed in a batch mode and SpSS incremantalizes those queries to be executed in a

streaming mode with no further effort from the user’s side, thus relieving the overburdened

load from the shoulders of users and programmers from reasoning about the underlying

mechanism of such an optimization. SpSS was able to achieve that by reusing the Spark SQL

optimizers [16] (such as Catalyst, which utilizes advanced features such as Scala pattern

matching in a distinguishable manner that improves the query optimizer and makes it

extensible), which streamlines the adoption of any newly added SQL batch functionality in

the future. The default mode of operation is micro-batching via fine-grained tasks [1] (i.e.,

using the discretized streaming execution model from Spark Streaming). SpSS semantics are

based on incrementalization. In doing so, it treats the stream as an unbounded table, where

every arriving tuple is appended to that infinite input table. User expresses a batch-alike

query and the underlying SpSS engine translates that into an incremental query scheduled to

be executed on the infinite input table. Results in the result table are updated based on a

trigger (analogous to batch interval in Spark Streaming).

Background

19

Likewise, SpSS uses fluent API that enables users to chain pipeline operators, allowing them

to describe the input data source using method chaining, aiming at an enhanced code

readability in a way that resembles a sequential written prose. We try here to uncover the

peculiarity by which D-Streams and SpSS are operating internally throughout a unique

anatomy which is elucidated in figure 2.3.

Also, one more distinguished feature of SpSS is that it can easily manage stateful

aggregations, not to be confused with batch aggregations, as the former means those

aggregations with states that are incrementally evolving over time, in interactive settings

(such as ‘counting by groups’), whereas the latter means having a single value (such as

‘count’, ‘sum’) computed in a static batch mode . As we can see from figure 2.3, SpSS

handles stateful aggregations by keeping aggregation states and midway results in fault-

tolerant state store (every worker node has its own state store instance), so as to invoke the

state at every trigger and build aggregations upon it incrementally. By doing so, SpSS can

continue from where it left off upon any non-intentional system crash. Internally, at every

trigger, the computation of stateful aggregations compiles down to that of a MapReduce

Spark job.

All those traits make Spark (with all its constituting parts) a perfect match for complementing

our architecture, achieving basically an important design goal of being able to apply the same

Figure 2.3. Anatomy of Spark (Structured) Streaming

Background

20

programming efforts in batch and interactive modes. In this thesis, we have decided to opt

for SpSS as a reference system, since it outperforms counterparts (such as Apache Flink and

Kafka Streams) by orders of magnitudes [6] .

To our knowledge, there is no consolidated framework or system for managing streaming

geospatial datasets. Existing systems, such as GeoSpark and Spark’s Magellan are designed

to operate in batch modes (better suiting the batch and serving layers of Lambda-obeying

architectures). All other efforts are either ad-hoc fixes or patches and glues that do not

collectively form a comprehensive framework. However, libraries and frameworks such as

Magellan and GeoSpark are compatible jumping off points for initiating a constellation of

optimizations and a new breed of contributions toward a full-fledge online spatial processing

engine. More theoretically, since, for example, Magellan is built on Spark SQL and since the

optimizer of SpSS accepts a batch-alike query and automatically incrementalizes it on the

unbounded input table, it is then evident that Magellan is a candidate for an optimization and

can be efficiently retrofitted for spatial interactive queries (such as spatial online join

processing). This is a significant contribution of this thesis as will be explained in chapter 6.

In the next chapter, we explain in detail the general architecture of our system.

SpatialDSMS: Spatial Data Stream Management System

21

Chapter 3

3 SpatialDSMS: Spatial Data Stream Management System

In this chapter, we start in § 3.1 by showing the type of analytics that novel systems should

provide to be able to cope up with the QoS-demanding requirements of highly dynamic and

scalable applications. We then, in § 3.2, explain the QoS attributes that we are supporting in

our system, including a general methodology for measuring the accomplishment of QoS

goals through services provided by our system. Thereafter, in § 3.3, we recapitulate the

importance of fusing scalable storage with fast analytics, promoting our architecture which

we then introduce in § 3.4.

3.1 Spatial Data Analytics in Highly Dynamic and Scalable Applications

Applications in smart cities, Industrial Internet of Things (IIoT) and Industry 4.0 demand an

awareness of specific dimensions that have been long treated as second-class citizens. Most

dynamic applications nowadays are focusing specifically on location, where extra locational

information offers support for optimized deep insightful exploration of data that leads to

improving the overall quality of the service an information system is offering, aiming

ultimately at enhancing the quality of our lives in many aspects. The abundance of geospatial

data streams has motivated several new application scenarios that would remain otherwise

illusive. For example, a system for road traffic control that has been proposed by [26], which

aims at lowering congestions and improving future city planning in a way that lowers the

toxic emissions from vehicles. Other examples include, designing reactive and proactive

solutions for monitoring environmental crises, such as hurricanes, animal herds and oil-spills

[27] , air quality and pollen distribution [28]. Also, providing personalized location-based

services (LBS) through the exploitation of location metadata in social networks [29].

Additionally, fusing social data, such as tweets from the micro-blog service Twitter, together

with trajectory data collected through GPS-enabled devices, in a data mining algorithm to

cluster topics discussed by region [30] or visualize (by exploiting heat maps) planetary-scale

or city-wide scale distributions of people communication activities [31] . In the same vein,

[32] have designed applications for finding local Twitter influencers to detect local events

by tracking their tweets. Moreover, complex mixed workload application scenarios, such as

SpatialDSMS: Spatial Data Stream Management System

22

applying representation learning for the analysis of cars driving behaviors [33], improving

the bike sharing experience [33], and location-based recommendations [29].

What is then axiomatic in all those dynamic applications is that they require the acquisition

of diverse spatial analytics. All query types related to location intelligence (a.k.a. spatial

intelligence) are receiving more attention in the last decade or so. Our application scenario,

discussed in section 1.1, requires passing through an end-to-end QoS aware spatial data

processing system.

Location intelligence is the process of deriving meaningful insights from geospatial

data relationships, modelling the interaction of spatial objects with their surrounding ambient

[34]. In achieving this goal, many spatial queries are common, from the simplest forms all

the way up the pyramid to the most complex composable queries. Integrating Business

Intelligence (BI) with location data has long history in yielding better ad hoc reporting

experiences that benefits those businesses. The essence of this intelligence is composed of

the capacity to organize complex huge data in a way that exploits geographical information

in revealing hidden relationships between locations and events. Moreover, dynamic

applications in smart cities are depending on visualizations (for example, heat maps) to

understand hidden patterns in the data that are not normally shown through traditional tabular

formats. Visualizations and other forms of dashboarding are the ultimate goals. However,

reaching that point requires a spatially attuned end-to-end data stream management system

that constitutes in-between transformations and analytics, which then resembles the

architecture of our system SpatialDSMS (introduced shortly in § 3.4). In this section, we

identify the most recurrent types of spatial analytics that can be executed in either one of two

modes, batch or online, which collectively provide baselines that can be efficiently exploited

in en-route to achieve locational intelligence with quality guarantees.

The following is a list of the most common geospatial queries that we natively support in

SpatialDSMS:

1) Range spatial query (a.k.a. proximity queries). Range searches return the set

of spatial objects that fall at a maximum specified range (e.g., radius) from a

specific spatial object (most often referred to as focal point, query point or test

point). An example spatial range search from our scenario is “finding people near

SpatialDSMS: Spatial Data Stream Management System

23

an accident location in range that is equal to 1K meters maximum”. We support

range spatial queries for the batch processing (explained in chapter 4).

2) Spatial join. In its general form, spatial join is a set of all pairs that is formed by

pairing two geo-referenced datasets while applying a spatial predicate (e.g.,

intersection, inclusion, etc.,) [35]. The two participating sets can be representing

multidimensional spatial objects. An example spatial join query from our

scenario in section 1.1 is “finding boroughs to which each GPS-represented

spatial point (volunteer) belongs, a.k.a. geofencing”, which requires joining

spatial points with a master table representing boroughs.

In mathematic terms, given two sets A and B, a spatial join returns a set of pairs

(a, b) that satisfy the formulation in (3.1)

A ⋈𝑝𝑟𝑒𝑑 B = {(a, b) | a ∈ A, b ∈ B, 𝑝𝑟𝑒𝑑 (a, b) == true}. (3.1)

, where 𝑝𝑟𝑒𝑑 is the spatial predicate applied (e.g., touches, intersects, overlaps,

etc.,). It worth mentioning that since proximity ordering is not preserved with

digitized representations of spatial objects that are candidates of a join, relational

join methods such as sort-merge join are not applicable. Also, equijoin (e.g., hash

joins) is generally inapplicable in cases where spatial objects that are involved

have extents. This can be mitigated with dimensionality reduction approaches that

impose a spatial ordering, such as the application of z-order curves, thus

projecting spatial objects into one-dimensional space (more about this in chapter

6).

Checking the join condition (a.k.a. predicate, such as ‘intersects’, ‘touches’,

‘within’, ‘contain, ‘overlap’) is an expensive operation. As such, most well-

performing algorithms employ a two-stages approach that constitutes filtering

and refinement (patterned after true-hit filtering approach [20]). The former aims

at pruning the search space by first applying a quick-and-dirty sieve (filter),

performing a spatial join on approximations of the objects (typically MBRs,

known as MBR-join [20]). In the refinement stage, incorrect results (i.e., false

positives) caused by the approximations are removed using the exact geometry

processor (i.e., the expensive predicate) that is applied on the [20]original objects.

Spatial refinement dominates the cost of the whole join procedure, thus designs

SpatialDSMS: Spatial Data Stream Management System

24

should consider minimizing edge cases (we refer to those as Boundary Spatial

Objects (BSO) in chapter 4) so as to relax the cost induced by applying it. Spatial

join is a primitive that acts as a pulsating heart in dynamic application scenarios

that normally require intermixing geo-referenced datasets for deeper analytics.

More on spatial join in chapter 6.

A special case of spatial join is represented through containment (or inclusion)

test that seeks whether a spatial object falls within the boundaries of the extent of

another object or outside.

We support two types of spatial join; static-static (i.e., deterministic), within the

layers of SpatialNoSQL as explained in chapter 4, and stream-static (i.e.,

probabilistic), within the layers of SpatialSSJP as explained in chapter 6.

3) Spatial clustering. Clustering algorithms basically aim at grouping identical

spatial objects together into subgroups called clusters. From many types of

clustering algorithms, density-based clustering [36] has picked up pace recently

and is widely accepted for the overarching traits it provides. It is a class of

clustering that basically works by separating spatially dense space regions from

outliers, thus dense regions constitute clusters. A well-known method for density-

based clustering is DBSCAN [37] . However, tailoring such an algorithm for the

parallel computing environments requires attention, as a naïve solution poses

heavy network communication overhead. To cope with this challenge, related

versions (DBSCAN-MR [38] or MR-DBSCAN [39]) have been tuned for

parallel general-purpose big data workloads. Clustering is one of the most

important data analytics activities [40] . We support density-based clustering

within the layers of SpatialBPE as explained in chapter 4. An example spatial

clustering query form our scenario in section 1.1 is “grouping volunteers, in

specific proximity to incident location, by the level of training they possess”

4) Spatial geo-statistics. We support two types of spatial geo-statistics. Those are

Linear (a.k.a. single queries) and online aggregations (e.g., top-N). computing

those queries in batch mode is straightforward. We alternatively aim at

optimizing their execution in the streaming (i.e., online) mode, where we

incrementalize the results of computing those queries, considering an unbounded

SpatialDSMS: Spatial Data Stream Management System

25

input stream. Incrementalizing those queries requires special attention specially

for ensembles (e.g., Top-N) that normally encapsulate an online aggregation,

which requires a costly state management. For single queries, we support

statistics such as ‘average’ and ‘total’ of target variables as primitives. Other

statistics can be estimated based on those primitives. An example spatial statistic

query form our scenario in section 1.1 is “finding the average trip distance

travelled by ambulances originating from specific regions in the city and ordering

them in descending way”. We support spatial statistics within the layers of

SpatialSPE (the topic of chapter 5) and SpatialSSJP (the topic of chapter 6).

5) K-nearest neighborhoods (kNN). It is an optimization proximity search

problem (i.e., based on range search queries). Formally, given a set A of points

in an embedding space S and a query point (a.k.a. test point) q ∈ S, kNN seeks to

find the c ≥ 1 number of points forming a subset B such that all points in B are

closest than all other points in the remaining subset (A – B). Stated another way,

every point in A but not in B is at least as far away from q as the furthest point

in B. More mathematically, given a query point q, a set of c ≥ 1 nearest neighbor

to q is B, where B ⊆ A such that ||S|| = c and ∀ point pi ∈ (A – B),

EuclideanDistance (q, pi) ≥ max
𝑞𝑝 ∈ B

(𝑞, 𝑞𝑝). We support kNN for batch mode within

the layers of SpatialNoSQL as explained in chapter 4. An example kNN query

form our scenario in section 1.1 is “finding the nearest 10 volunteers around an

incident location”.

Other primitives that we do not support natively but are easily composable from our baseline

primitives include the following:

6) kNN join. kNN join sets on the confluence between kNN and spatial join.

Formally, having two geo-referenced datasets A and B, kNN join generates c ≥ 1

closest neighbors in B for every object in A. More theoretically expressed in (3.2).

 A ⋈𝑘𝑁𝑁 B = {(a, b) | ∀a ∈ A, ∀b ∈ B, 𝑘𝑁𝑁 (a, b, k) is true}. (3.2)

In other terms, kNN join can be loosely defined as finding all kNN objects

(belonging to a spatial data set) for every object of another spatial set. This

operation is extremely expensive as it combines the complexities of two complex

SpatialDSMS: Spatial Data Stream Management System

26

spatial query processing operations, spatial join and kNN. An example kNN-join

from our scenario (recap section 1.1) is “selecting k-nearest well-trained passing-

by medical staff members and ordering them by their location in relative to many

incidents having emergencies at same time”. This intrinsically encapsulates two

spatial datasets, volunteers and locations of many incidents (or patients with

sudden health problem attack), such that for every incident the algorithm selects

k-nearest volunteers that satisfy all spatial query predicates.

kNN-join traditionally constitute three main steps. Those are data partition,

candidate selection and kNN join steps, which can be realized with MapReduce

[41]. Authors apply Voronoi diagrams as a tessellation method in the partitioning

step (mostly a map transformation), whereas the candidate selection step

constitutes some algebraic calculations based on the Euclidean distance basically,

then a join is applied (a reduce action in Spark terms) to join the candidate set

with partitions. We do not natively support kNN join, but we provide all the QoS-

aware spatial analytical primitives for easily constructing an efficient kNN join

algorithm.

We directly support baseline spatial analytics primitives that are the most important of the

myriad of spatial data analysis activities. We also posit that other workloads are composable

and can be efficiently stacked-up the pyramid. By those supports, we aim at a modular system

design to manage streaming spatial data in a coherent way. To achieve this goal, we have

designed SpatialDSMS, comprising highly-efficient algorithms in batch static modes and in

streaming modes where data arrives in a high pace into the system. In the next subsection,

we define the most recurrent QoS attributes that we support in our system.

3.2 Quality of Service Goals

In life-critical applications such as healthcare, it is very important that services provided by

a data management engine meet a prespecified set of SLAs that intrinsically encapsulate QoS

goals. Common metrics of the performance of a DSMSs in meeting QoS requirements

include, most importantly, latency/throughput, accuracy and resource utilization. Quality

attributes constraint system functionalities, specifying a qualification (a.k.a. annotation) on

SpatialDSMS: Spatial Data Stream Management System

27

how those functions are performed. Such as constraining a spatial query to be performed

with a low-latency.

Distributed big data management systems should treat QoS-awareness as a first-class citizen

when designing their services, such that they serve in accordance with QoS properties of the

SLAs. Achieving this goal is specifically challenging as it necessitates intelligently trading

off several contradicting factors. A problem that is further inflated when operating in a

fluctuating data stream setting, where data arrival rates oscillate between normal and peak

bursts (sometimes fierce), the fact that those figures are unknown a-priori in real-time

scenarios could be to blame.

There are QoS metrics that are based on time. For example, throughput and latency.

• Throughput. It is loosely defined as the count of streaming tuples that can be

processed with specific computation resources during a time period. The goal is

normally high-throughput. SPEs normally work by implicitly catching up with the

oscillation in the data arrival rates aiming to maximize the throughput.

• Latency. Is the total time required for processing all tuples arrived during a

continuous query (CQ) running session in an end-to-end fashion (i.e., passing

through all the operators of a DAG operator graph) from the moment data hits the

front-stage of the DSMS coming from a stream ingestion system until results are

served to the user, where user chooses to stop the CQ or result outputs to the sink of

the data flow graph describing the stream processing operations. The goal of the

latency QoS is always lowering it.

Another QoS metric depends on the accuracy of results obtained such as:

• Estimation quality. If the scenario needs approximation, such as depending on

samples instead of the population, error-bound tied to such an approximation

determines the estimation quality. Higher estimation quality is the goal in this case.

Also, one more QoS metric we consider in this thesis is:

• Computation resource utilization. Computation resources are assets. The

abundance of extra computing resources does not necessarily mean overprovisioning

SpatialDSMS: Spatial Data Stream Management System

28

them (or under-provisioning them). Those resources are normally shared between

various workloads and a QoS aware DSMS should seek to achieve a high resource

utilization.

Those four QoS metrics are contradicting and solving for all collectively enforces a tradeoff

that can be optimized to a specific degree. It worth mentioning though that some DSMSs are

working on “best effort” basis where they do not necessarily meet the QoS goals (especially

time-based goals), they otherwise work to their maximum capacity trying to achieve as close

to the goal specified as possible. Some other DSMSs are designed to guarantee a prespecified

set of QoS goals by normally applying cost models so as to reactively (or proactively)

guarantee the QoS goals. However, it worth mentioning that current DSMSs are designed to

operate in a “best effort” fashion, thus not always being able to guarantee QoS goals specified

by the users. A problem that is inflated in spatially-heavy streaming data loads. We otherwise

aim at a system that can meet a prespecified list of QoS goals, and also can strike a plausible

balance between the contradicting QoS goals. In the next subsection, we explain a general

methodology that we apply for measuring the ability of the services we provide in this thesis

to meet the QoS goals.

3.2.1 Methodology for Measuring the Achievement of Quality-of-Service Goals

We adopt the following methodology in measuring the ability of each component (i.e., the

skill) in achieving a prespecified list of QoS goals. We take a scenario-based methodology.

We call our method cause/effect-tactic-measure.

The cause is the event that causes a QoS issue to arise. The effect is the effect of the QoS

issue which has happened because of the cause. Tactics are the responding mechanisms that

we have supported through SpatialDSMS for mitigating the effects (i.e., reversing them).

Measures are the metrics we impose to measure the ability of every approach (i.e., from the

tactics) in achieving the QoS goal.

Categorizing tactics this way allows a more systematic architectural design. Tactic selection

decision depends on which way it affects the tradeoff between the participating QoS goals,

and also the overall overhead of adopting this technique and whether it is mitigated in a way

that renders its adoption beneficial. In other words, the cost of incorporating it does not

counteract its benefits. This is because the pattern applied is a trending layered pattern, where

SpatialDSMS: Spatial Data Stream Management System

29

stacked up layers normally add complexity and up-front running costs to the system. Causes

include spatial characteristics nature (e.g., skewness, arrival rate fluctuation). Effects include

low performance (i.e., in terms of time, throughput, resource utilization, estimation quality).

Tactics include element-level optimization, adaptation and approximation. Measures include

performance gain, speedup, estimation quality etc. Figure 3.1 shows the workflow of the

method.

3.3 Scalable Storage and Fast Analytics: Better Together

The highly dynamic and scalable application scenarios such as our case scenario (discussed

in section 1.1) led to the emergence of our system SpatialDSMS, which resolves the

limitations of Lambda architecture, taking advantage of the underlying architecture without

its limitations. It is evident that no system can alone survive such highly scalable application

scenarios that require a mashup by fusing diverse analytical activities in an interconnected

fashion, where the output of a stage feeds another constituent part in an endless fashion, or

workloads are continuously mashup. This in its essence means the tight coupling between

disk-based storage and online analytics. They collegially complement each other, and real

applications need them both in a coherent analytics pipeline.

Two distributed paradigms are gaining more attention. Scalable distributed storage based on

NoSQL such as MongoDB [2, 9] and distributed batch and stream processing systems such

Figure 3.1. cause/effect-tactic-measure for spatially-attuned QoS awareness

SpatialDSMS: Spatial Data Stream Management System

30

as Apache Spark [1]. Current spatial plugins and frameworks that are based on those systems

are introduced as marvelous tools that can extract deep insights from massive amounts of

digitized spatially-represented datasets. However, they are mostly ad hoc patches and glues

that constitute repeated and dispersible efforts that exploit different structures for same

targets, causing efforts to fade in a maze of software packages that are hard to consolidate in

a coherent structure. On the contrary, a coherent architectural design is needed, which assures

that subsequent efforts are conveniently stacked up in a fashion that unifies spatial structures

and analytics under one language, aiming ultimately at a robust collaboration for creating

new knowledge not inherent in the input spatial sources.

It also worth mentioning that the literature lacks a distributed system for stream interactive

spatial analytics (for which we offer SpatialSPEs, the topic of chapter 5).

Mixed workloads identified through empirical investigation show that the notion of “better

together” applies in this context and require systems to co-work in a complementary manner.

No system can alone handle all types of workloads or keep up with the pace of data

fluctuation. Having said that, we posit that integrating features form NoSQL systems with

batch processing layers from systems such as Spark and integrating both semantically with

speeding analytics services such as Spark Streaming has a sizable impact that achieves better

qualities. In the next subsections, we showcase the architectural design of SpatialDSMS.

3.4 SpatialDSMS Overview

In this section we showcase the design process of our system SpatialDSMS, starting by the

design goals, and then showing the architecture followed by the scope under which the

system operates.

3.4.1 Architectural Design Goals

The architectural design goals we achieve in this thesis are the following.

• Modularity. We design a system that is constituting of multiple components

operating collaboratively in a way that allows them to be plugged in/out in a hot-

swappable fashion (i.e., can be separated and recombined), thus enabling more

flexibility as we are considering highly dynamic mixed workloads that require

various types of treatment. We have achieved this by implementing our methods

SpatialDSMS: Spatial Data Stream Management System

31

and algorithms as patches or glues that are tightly interfaced and tied to state-of-

art de facto standard systems, thus exploiting the underlying functionalities

without reinventing the wheel and leaving logistics handling to codebases of the

underlying ecosystems (specifically, Apache Spark [1] and MongoDB [2] in this

thesis). This was possible because the underlying systems are modular by design

and our patches compile down to appropriate abstractions that exploit underlying

functionalities without additional efforts.

• Elasticity. We offer a variety of operation modes, ranging from exact closed-

form solutions to probabilistic approximations, depending on the application

scenario aiming at achieving a prespecified list of quality constraints including a

tradeoff between the result’s accuracy and latency/throughput.

• Dependability. We aim at efficiently handling scenarios with oscillating and

fluctuating data arrival rates that normally exhibit temporal skewness,

specifically for highly dynamic and scalable application scenarios fully loaded

with multidimensional geospatially-tagged workloads.

• Composability. We aim at offering baselines that can be combined collectively,

or in a mashup fashion to solve most interesting highly dynamic application

scenarios, rendering them composable from the baseline primitives that we

provide.

• QoS guarantees. We ensure that the system runs within the boundaries of the

specified budget expressed as latency/throughput and accuracy guarantees goals.

In addition to maximizing the resource utilization.

More design goals that belong to specific sub-systems are explained in section 4.3.

Aiming at achieving these goals, we have designed SpatialDSMS (short for Spatial Data

Stream Management System) that is explained in the next subsection.

3.4.2 SpatialDSMS Architecture

Despite being a promising direction that has been adopted heavily in the literature, because

it achieves several QoS goals (i.e., high accuracy, low latency) while operating over

massively fast arriving data streams, we posit that Lambda architecture suffers from many

limitations that hinders its adoption in geo-referenced fast arriving streaming data loads that

SpatialDSMS: Spatial Data Stream Management System

32

normally exhibit temporal skewness and fluctuation in arrival rates. Perhaps most

significantly is the fact that sending same data loads to two distinct storage (i.e., one is batch

and the other one could be the fast memory in the speed layer) media overburdens the

communication and I/O components. Also, combining current data loads (i.e., streams) with

historical archives (i.e., disk-resident), normally using a stream-static join operator has not

been addressed. The lack of consolidation and orchestration between the two layer’s storage

stacks easily causes an overhead that is carried to any custom management effort at the

processing layer. Moreover, Lambda architecture is a general architecture that is not

attunable with the nature of data that is arriving from heterogeneous data streams, rendering

its adoption as-is inappropriate for spatially-laden scenarios. However, Lambda architecture

is not a panacea, but otherwise serves as a simple place that has inspired us to design a novel

architecture for spatial data stream loads. We aim at enriching such an architecture with QoS-

aware optimizations that are attuned to the nature of the arriving data streams (spatial in this

case). We aim at transplanting and injecting QoS and spatial awareness transparently within

our architecture so that the user in the presentation layer benefits from the overall

optimizations provided without the need to reason about the logistics in the underlying

layers.

One distinction also departing from Lambda architecture is that in our architecture, in

addition to stream (i.e., data-in-motion) data, we allow input data to come as batches (i.e.,

static, data-at-rest), which could be coming from other sources or legacy systems or even

master tables from data lakes or data warehouses. In this way, we guarantee further flexibility

that allows systems to operate with ease in highly dynamic environments that request,

sometimes unprecedented, mixed workloads.

In this thesis, we have designed an end-to-end QoS-aware data stream management system

for the management of mixed workloads of massive amounts of geo-referenced data loads

arriving endlessly through heterogeneous fluctuating streaming channels. We dub our system

as Spatial Data Streaming Management System (SpatialDSMS hereafter for short).

SpatialDSMS: Spatial Data Stream Management System

33

The context diagram of figure 3.2 depicts a high-level architecture of SpatialDSMS’s

workflow. Geo-referenced data is coming from heterogeneous sources, to be then served as

an unbounded input table (in SPEs terms) at regular basis (e.g., batch intervals, a.k.a. trigger

intervals in SPEs terms). At a front-stage resides an interactive interface that confronts users

with scalable options depending on the application scenario. For example, the user can either

opt for exact processing or approximate processing. Storing data efficiently in a distributed

environment before processing it or processing it on-the-fly. All in all, depending on the

user’s selection, the system takes care of the underlying spatial-aware data management

logistics with QoS being natively incorporated, thus not requiring the user to reason about

the underlying logistics that are related to the QoS.

All parts constituting our architecture are heavily discussed in their corresponding chapters.

On the biggest picture, our architecture resorts to a layer pattern as shown in figure 3.3. Other

patterns apply implicitly from the underlying architecture. For example, pipe-and-filter

pattern applies from Spark core.

Figure 3.2. SpatialDSMS Overview

SpatialDSMS: Spatial Data Stream Management System

34

In the next subsection, we discuss the presumptions and assumptions under which

SpatialDSMS is operating.

3.4.3 Scope of Operation

Many QoS-aware tactics exist in the literature, including adaptivity, elasticity and

approximation. Those techniques aim mainly at achieving a prespecified list of QoS

properties expressed through SLAs. In this thesis, we focus on adaptivity and approximation.

Elastic computing clusters, in which it is more of a default that there are standby computing

resources (e.g., executor cores and secondary or main memory resources) to be added

dynamically, is outside the scope of this thesis. We only consider parsimonious (stingy or

frugal) resource-constrained cloud or in-house cluster computing deployments.

We design our system SpatialDSMS so that it operates under the following assumptions.

• We consider data stream sources with the following characteristics. i) data loads are

spatial, which in this thesis is either geometrical planar (i.e., Euclidean plane, flat

surface) coordinates (coming, for example, from sensors operating on Global

Positioning System, GPS) defined as latitudes and longitudes (i.e., points), or shapes

fenced by virtual boundaries representing lines between spatial points, such as

polygons. ii) source streams use the push model to push their data to receivers in the

ingestion layer, receivers never pull the data. The stream is unbounded and there is

no such thing like a “point in time” defining the end of streaming. iii) data is hitting

the ingestion receiver only once (i.e., need to be processed in single pass) and data

tuples are non-replayable. iv) data loads are temporally oscillating and fluctuating in

skewness, meaning that the skewness and size are unpredictable. Because of those

Figure 3.3. layered pattern of SpatialDSMS

SpatialDSMS: Spatial Data Stream Management System

35

characteristics, Continuous Queries (CQ, a.k.a. online queries) are fundamental,

expressed through a Continuous Query Language (CQL).

• Continuous Queries (CQ) are expressed using the fluent API of Spark SQL. They are

mapped by the underlying optimizer into a Directed Acyclic Graphs (DAG)

consisting of diverse operators (i.e. join) running against micro-batch tuples arriving

at each window. Results are incrementalized in the sense that they are improving after

each batch interval, which is also known as incremental stream query evaluation

[42].

• We rely on tumbling time-based window semantics, where a sequence of unbounded

micro-batches hit an ingestion layer (could be a buffer or a specialized system such

as Apache Kafka [43]) with tuples during a time interval (i.e., window). Tumbling

windows differ from sliding windows in the sense that they do not overlap.

• We deploy our experiments, for batch and streaming modes, either in a private in-

house cluster or a Cloud. We do not put any considerations on the type of processing

nodes or memory architectures. High resource utilization is a common QoS goal in

server-based and Cloud deployments. We also do not put any considerations on any

additional overhead incurred by the communication between the stream sources and

the processing infrastructure (i.e., in Cloud or cluster). Further, possible deployments

on Fog infrastructures are outside the scope of this thesis.

• The type of parallelization we consider is data parallelization (a.k.a. data-level

parallelism or DLP for short, as opposed to task-level parallelism, or TLP for short

[44]), where instances of DAGs operators are dispatched to the workers of the

computing cluster. Then, a data partitioning scheme is applied to distribute arriving

data to the fast memory of the workers, thereafter each operator instance performs a

local computation and returns the result to a coordinating node (known as master).

• We only consider optimizing partitioning strategies for the batch processing (as

described in chapter 4). We avoid touching those in the streaming analytics as the

partitioner can become a bottleneck if the input size is very high. Since we need

strategies that can keep up with the pace of burstiness in data loads, the best resort is

approximation as it does not require re-partitioning.

SpatialDSMS: Spatial Data Stream Management System

36

• From many types of spatial information, we consider static spatial points, polygons

and trajectories. Static points are those points that are incorporated as additional

information with a spatial object. Such as locational data that are added as metadata

to ‘tweets’ in Twitter micro-blogging system, those data do not change over time. On

the contrary, trajectories are information generated by objects in-motion, where

temporally varying object location is associated with corresponding timestamps, thus

constituting an array of static spatial points that collectively form a trajectory. We

also consider static spatial regions that do not move or evolve over time, such as

districts or boroughs in a city (hereafter polygons synonymously).

We believe that those assumption does not affect the generalizability of our systems and

algorithms that we present in this thesis. In the next chapter we introduce two sub-systems;

SpatialBPE and SpatialNoSQL for distributed batch processing and scalable distributed

storage of big spatial data, respectively.

QoS Aware Distributed Batch Spatial Query Processing

37

Chapter 4

4 QoS Aware Distributed Batch Spatial Query Processing

4.1 Introduction

In this chapter, we describe the methods we have designed throughout SpatialDSMS for

supporting quality of service goals in batch processing workloads. As the data coming from

streaming sources hits the data ingestion engine, the user may opt for , depending on the

scenario, storing (part of) the arrived data ‘as-is’ (thus supporting the construction of data

lakes) in a persistent storage backend or in an optimized reformatted NoSQL fashion, thus

providing more flexibility, interoperability and scalability. Those materialized data

snapshots are then used for offline batch processing in support for interactive analytics. For

example, prediction models work better in offline mode and there are, as far as we know, no

online predictive machine learning or deep learning models that outstrip offline counterparts

in terms of accuracy. As such, those analytics are performed offline in batch modes and

results support the online part.

This chapter is organized as follows. We first describe data partitioning in distributed

systems in § 4.2, this is followed in § 4.3 by explaining three partitioning goals that are most

recurrent in the relevant literature. We then in § 4.4 classify the traditional distributed data

partitioning methods, focusing on their limitations that led to the emergence of state-of-art

spatial partitioning methods discussed in § 4.5. Thereafter, in § 4.6 we show a general view

of a spatial data batch processing system , and in § 4.7 we present SpatialBPE that we have

designed for spatial batch analytics in big data frameworks, proceeded by storage-oriented

counterpart SpatialNoSQL that we have designed for NoSQL scalable storage as discussed

in 4.8, both constituting integral parts of SpatialDSMS.

4.2 A Primer on Distributed Data Partitioning

From the many parallelization methods available in distributed computing environments, we

focus specifically on data parallelization. It is loosely defined as applying several instances

of an operator (from the DAG graph) on several partitions of the input data parallelly, such

as each partition is processed by a single instance. Data from sources is first partitioned using

a partitioner into several chunks that are disseminated to parallelly connected computing

QoS Aware Distributed Batch Spatial Query Processing

38

nodes (i.e., worker nodes). After each operator finishes its designated task (same operation

applied by all instances to different data partitions), it emits an output that is collected

together with outputs from other operator instances into a coherent piece using a combiner

which then outputs the final result to the user or forwards it as an intermediate result to be

ingested by other operators downstream (i.e., complementing the DAG). Figure 4.1 depicts

a typical architecture of a parallel data management system and the mechanism of data

parallelization.

What is common among all frameworks that apply this model is that there is a splitting (a.k.a.

partitioning or sharding) and combining stages. The decision on the mechanism used for

splitting is important and may have serious impacts on the overall system performance. We

posit that splitting methods should be chosen carefully to increase benefits while minimizing

adverse effects. More precisely, it is often the case that dynamic and scalable application

scenarios require designing special custom partitioning (splitting) methods that consider,

most importantly, the nature of data being treated.

4.3 Spatial Data Partitioning Goals

Current distributed computing systems have one intrinsic problem in common, which is the

fact that they are all designed to capture and handle generic workloads, thus are unaware of

the nature of data they are handling. Consequently, not being attuned to the data

characteristics may degrade significantly the performance achievements to points that

sometimes undo the benefits of parallelization.

Figure 4.1. An exemplar architecture of a distributed processing system

QoS Aware Distributed Batch Spatial Query Processing

39

As the core idea of “bringing computations to data” depends heavily on the fact that “data is

appropriately apportioned”, which has been mistakenly long explained as a resemblance for

“load balancing”. Appropriate data splitting does not necessarily imply sending roughly

same data loads to every partition in parallel (thus the term ‘load balancing’). Our experience

with dynamic and scalable application scenarios (such as the envisioned scenario of section

1.1) posits that “load balancing” alone cannot normally achieve the QoS goals desired by the

user (as defined in section 3.2).

Most important quality requirements that affect the design of a partitioning strategy include

the following:

1) Interoperability. In highly dynamic and scalable application scenarios,

interoperability plays a pivotal rule in allowing a better consolidation. Data normally

originates in heterogeneous sources with different formats and structures.

Consolidating all sources under one umbrella that unifies the structure is essential

and allows a better interoperability that eases the process of moving data around and

consuming it by diverse access tools, and enables a streamlined jumping across the

systems that constitute all layers of our architecture. For example, the on-the-fly

indexing structure that is used for speeding up the interactive processing of stream

data should be the same as the one that is used in the serving and batch layers so that

snapshots of stream data seamlessly flow along the pipeline without the need for

restructuring. For example, using grid representations with ordering (e.g., z-order

curves) structures for both the speed and serving layers (e.g., Spark Streaming and

MongoDB, respectively). Additionally, having the same data structures representing

different workloads simplifies spatial queries that incorporate a join that is necessary

to be performed between different data sets (potentially residing in different storage

media). For example, reiterating our case scenario from section 1.1, an interactive

query may request “finding all incident locations (regions) where more than 50

volunteers in-motion (dynamic spatial objects) are around within 2 miles “. Using the

same representation structure (for example, grid-based imposed with an ordering

such as z-curves) for volunteers (as a stream of spatial points) with regions (a static

master table, perhaps polygons with same representation structure) can simplify the

QoS Aware Distributed Batch Spatial Query Processing

40

stream-static join (a.k.a. geo-fencing, explained in chapter 6 in details) processing by

simply overlaying maps (spatial points map and regions map) and the join is done

gracefully. The overlay enforces a containment join predicate. Moreover, by

achieving this goal, we intuitively avoid repeating the same logic for several

workloads and we also avoid the complexities associated with orchestrating the

operation of several system units. This also simplifies writing codes that easily jump

across operating frameworks of different kinds.

2) Scalability. In highly dynamic and scalable application scenarios, arrived data show

high temporal skewness and fluctuation. This requires the system to be highly

scalable in order to cope up. Stated another way, in distributed data management

terms, this means scaling in/out or opting for approximate solutions depending on the

scenario. Scaling out seamlessly means provisioning extra processing power, storage

capacity and appropriately distributing the data and workloads. The choice should

account for repartitioning scenarios, where data need to be repartitioned in case of

dynamic allocation (provisioning extra resources or de-provisioning). This normally

confluence with the costly challenge of rebalancing partitions, where in such cases

the system starts to show undesirable state causing hotspots (i.e., partitions with

disproportionate volume of traffic) to appear. Rebalancing simply means migrating

data between partitions so as to balance loads. There are two modes of migration,

online and offline, where the former allows migrating data while partitions are in-use

by some operators, whereas the latter is more disruptive as it requires marking

partitions unavailable during migration. Both modes deteriorate the overall QoS

goals, mostly rendering the system unable to meet time-based QoS goals such as

latency and throughput. Having said that, a successful partitioning strategy should

aim at minimizing the shuffling during migration. This can be achieved by better

trading off three goals that are described shortly.

We have identified three contradicting goals focusing specifically on spatial data

partitioning, which determine the QoS of big spatial query processing. i) Load balancing,

which is the process of de-clustering data loads in a way that guarantees an even distribution

among all partitions, thus mitigating data skewness. While this is efficient for general-

QoS Aware Distributed Batch Spatial Query Processing

41

purpose data loads, it is insufficient for geospatial datasets. Spatial data loads often show co-

location continuum relations. We refer to this characteristic as ii) Spatial Data Locality

(SDL) preservation. Preserving this co-location feature is essential for an optimized big

geospatial data analytics performance. By achieving SDL preservation while splitting data,

the partitioning strategy aims at minimizing cross-partition spatial data access operations.

For example, proximity-alike spatial queries normally require accessing spatial tuples

(representing objects) that are geometrically-nearby. By being able to preserve such a

proximity relation while splitting data, by for example sending geographically-nearby

objects to same partitions, the system axiomatically reduces cross-partition access as it only

accesses some partitions that host appropriate objects. The partitioning scheme should also,

for the same purpose and at the same way, aim at minimizing cross-partition joins. iii)

Boundary Spatial Objects (BSO) minimization. Imagining the earth flattened out (a.k.a.

Euclidean space or flat surface) and split into cells (forming a grid network). We refer to

spatial objects residing exactly on borders between cells as Boundary Spatial Objects (BSO).

Accounting for those in a partitioning scheme is specifically challenging, as it imposes extra

processing overhead on the system. Specifically, if BSOs constitute a large portion of the

spatial dataset. This can be extremely detrimental to the processing operator in cases such as

join processing, especially that most well-performing join algorithms are based on filter-and-

refine approach, where processing BSOs (a.k.a. edge cases) in the refinement stage requires

applying the real geometry processor which is computationally expensive and turns

prohibitive in extreme scenarios.

An efficient Spatial Data Management Engine (SDME) targets at allocating roughly equal

weights of spatial objects to processing elements, preserving, as much as possible, the SDL

by grouping geometrically-nearby objects within same subdomains, and minimizing BSOs.

To achieve those, various works of the literature have designed spatial-aware custom

partitioning strategies that collectively provide top service layer for solving some of those

goals in a way that guarantees an acceptable degree of balance between them as discussed

hereafter. We evaluate representatives of those works based on the three goals mentioned

above. We first review classical data partitioning methods, as complex spatial-aware

methods are based on them. Afterwards, we provide taxonomies for spatial-aware

partitioning schemes.

QoS Aware Distributed Batch Spatial Query Processing

42

4.4 Traditional Big Data Partitioning Schemes

In traditional distributed data management systems, the two most common partitioning

strategies are: horizontal and vertical. i) Horizontal partitioning (a.k.a. sharding). All

partitions (a.k.a. shards) share the same data schema, with each partition hosting a subset of

the data. Accessing items horizontally apportioned is more challenging than other schemes,

because all partitions share the same schema. This however is amortized normally by

designing appropriate access structures (i.e., indexes). In this thesis we focus on horizontal

partitioning. ii) Vertical partitioning. In columnar databases, each partition host a group of

fields (columns in RDBMSs terms). The way division is decided is normally based on the

access pattern, such that most frequently accessed fields are placed in a partition while others

are hosted in other partitions.

Horizontal data partitioning can be then classified into three schemes as the following: i)

range key-based data partitioning. It splits tuples based on a specific range of a partitioning

key, where each operator instance is assigned non-overlapping key range such that each

portion of data that are having that key range are forwarded to the same partition. Initial data

assignment tends to be highly imbalanced because some keys are more common than others

in real applications. Hence, the selection of the partitioning (a.k.a. sharding) key is pivotal to

avoid sequential query scans, by only visiting some partitions for a query. This method is

better suited for stateless operators if applied in interactive stream processing systems (i.e.,

not appropriate for online aggregations which are stateful operations). ii) hash data

partitioning. It employs a hash function to partition data, where same-group data share the

same hash value (i.e., hash range). In this case, depending on the application and the adopted

hash function, data locality might not be well preserved. Also, initial data distribution tends

to be imbalanced. If hash function is selected appropriately, hash benefits the parallel hash

join immensely. iii) Random and round-robin data partitioning. It partitions data based on

a given equation, where every tuple in turn is assigned to a partition randomly or sequentially

(for example, in a clockwise direction). The merit of this method is an even data loads

distribution [45] . However, SDL is lost, and a query search needs to scan all partitions [46].

If used online, this partitioner is not suitable for online aggregations (i.e., stateful), it is only

used for stateless operators, that process data chunks independently.

QoS Aware Distributed Batch Spatial Query Processing

43

Those schemes are explained as if they were operating on batch workloads that need to be

processed offline. However, the story in interactive settings is different. SPEs use a

combination of those batch partitioning models with other semantics to split data

continuously as they arrive. Micro-batching models do not follow the same partitioning

schemes as record-at-a-time models. The former treats the streaming loads pretty much the

same way as if they were batches that are processed statically, hence the term “micro-batch”.

For example, in Spark Streaming, a receiver accumulates stream data at every time interval

(i.e., batch interval) into micro-batches (e.g., small RDDs in Spark terms) using a block

manager (i.e., technological block in Spark core) and then partitions every micro-batch the

same way as if it was a static load, using the default partitioner or a user-preferred partitioner.

Non-relational systems, MongoDB natively supports range and hash data partitioning. The

default is range data partitioning, where nearby documents (analogues to tuples in RDBMSs)

with close key values are placed on the same partition (i.e., shard in MongoDB terms). Being

column-oriented databases, HBase and Cassandra apply vertical partitioning approaches.

It worth noticing that partitioning in processing-oriented ecosystems is not profoundly

different than that of storage-oriented systems. However, partitioning is performed in-

memory after the Map stage and just before the Reduce stage in an ad-hoc style (i.e., on-the-

fly), where each data partition is passed to a single Reduce stage. Spark default partitioning

scheme is a hash data partitioner. It also uses range data partitioning among others [47] .

Spark provides a mechanism to custom data partitioning for performance tuning in specific

application domains. For batch-oriented systems, Hadoop [10] supports hash data

partitioning and others.

As noticed, round-robin is not widely accepted by big data distributed management systems.

The reason is that although it ensures load balance, data locality is not well preserved, and

any query naively scans all partitions. In other words, there is no chance to apply aggressive

pruning (i.e., where only specific partitions are scanned). On the flipside, hash and range

partitioning strategies preserves locality better than that of round-robin, thus widely

accepted. Round-robin, hash, and range are one-dimensional partitioning methods, rendering

their ‘as-is’ application to multi-dimensional spatial datasets inconvenient. Therefore, spatial

partitioning methods are required, which is the central discussion of the next subsection. We

QoS Aware Distributed Batch Spatial Query Processing

44

first recapitulate data structures that support spatial data partitioning, thereafter we briefly

review trending spatially-attuned data splitting schemes.

4.5 Spatial-aware Distributed Data Partitioning

Traditional data partitioning methods were designed for general data structures. However,

they are unaware of specific characteristics of spatial data. We first review the most common

spatial partitioning approaches and build taxonomies for their application in modern big data

management systems. Afterwards, we identify their pros and cons regarding the three goals

mentioned in section 4.3.

4.5.1 Multidimensional Data Structures Supporting Spatial Data Partitioning

First, we summarize multidimensional data structures that support spatial data partitioning.

Performing spatial analytics on highly dynamic big data streams require two stages, space

representation (two alternatives are common, data-dependent or independent) and access

data structures. The former step is representing the space where points are drawn from using

a data structure such as grids, whereas the latter is responsible for selecting appropriate data

indexing structures (a.k.a. access structures) for speeding up the access at query run-time.

We focus on indexing structures that are used for both spatial points and shapes (such as

polygons). Space representation implies a division structure that is either data-dependent or

space-dependent [48]. Stated another way, space representation is followed by imposing a

data access structure on the representation for speeding up the scans. There are two types of

spatial representations, deterministic and probabilistic.

One of the most widely used and accepted deterministic representation structures are

hierarchical representations such as grid-based and tree-based structures

1) Grid-based representation structures [49, 50] . As its name implies, in two

dimensional spaces (imagining the earth flattened out) it partitions the embedding

space (the geometric space where geospatial data resides) into grid-shape

(rectangular or squared) cells by placing a grid over it (i.e., overlaying it). A

pointer is referencing a data structure (e.g., an array) that hosts the real elements

(spatial objects) of a specific cell.

2) Tree-based representation structures. An example in this category is quadtrees

[51] and k-d trees [52]. They basically work by dividing a two-dimensional

QoS Aware Distributed Batch Spatial Query Processing

45

planar geometry (i.e., Euclidean) recursively into four rectangular parts. The only

way to return a query result from data distributed with a tree structure is to

traverse tree nodes, this implies that an optimization should seek minimizing, as

much as possible, the visited nodes during run time.

3) Ordering-based representation-enriching structures. An ordering is normally

assigned to cells in a grid decomposition, and thereafter a tree-based access

structure (e.g., B+-tree) is imposed on the ordering. Ordering is a

multidimensional reduction approach that projects multidimensional cells into a

one-dimensional space. From many types of ordering we focus on the family of

z-order curves (a.k.a. Morton orders). Simply put, an ordering is an enhanced

representation employed after other representations. It worth mentioning that

ordering per se is not a representation structure that can be used alone, it lends

itself otherwise as a helper that can enhance preceding representations so that the

access is sped up. Ordering helps in deciding the traversal order of grid cells.

Variations to Morton ordering include methods that map the grid into geocodes (for example,

geohash). Those codes if sorted (e.g., in an ascending order) results in an ordering that is

equal to the order of visiting leaf nodes (i.e., representing grid cells) of a tree (e.g., quadtree)

representation.

A special application of Z-order curves is geohash 3, where the ordering imposed on the grid

space is z-shaped, geocodes generated are strings where a shared prefix signifies

geometrically-nearby spatial points, where longer shared prefix means objects involved are

closer in real geometries. Geohashing is exemplar in quick-and-dirty proximity searches (i.e.,

working as a quick-and-dirty sieve).

After representing the spatial object (being point, region, etc.,), an access structure (i.e.,

index) is imposed on the representation to speed up spatial search queries (e.g., range). Most

common access structures that are associated with hierarchical representations include

3 http://geohash.org/

QoS Aware Distributed Batch Spatial Query Processing

46

arrays, where each element of the array references a cell in the grid representation. Also, tree

indices (such as B+-trees and PK-tree [53] , both can be imposed on a quadtree

representation), where each leaf node references a cell.

Hierarchical representations are not appropriate for interactive settings, where massive data

arrives very fast with fluctuation in skewness. The reason is that the creation and

management of those structures is expensive. Alternative solutions comprise the exploitation

of approximate structures, such as Minimum Bounding Rectangles (MBR). Methods include

tree-based representations such as R-tree [54, 55] . R-tree works by grouping objects based

on their proximity (their enclosing MBRs specifically). An inherent problem is that point

queries are costly and may need to visit unduly all the nodes because of the overlapping

nature of the MBRs. R-trees are widely used in online steam settings because of the

dynamicity they provide in such a way that they do not require fully reconstructing a tree

upon receiving a new stream tuple and it can otherwise be placed in a hot-swappable fashion.

R+-tree [56] differs from R-tree in that it generates non-overlapping MBRs. It does so by

dividing the space in non-overlapping regions, and a spatial object may span multiple regions

(B-tree can be used to group those regions).

Grid approaches and those based on quadtree has a paramount utility in operations that

require datasets mashup and the incorporation of diverse operations between batch and

interactive modes of operation. It is then evident that those approaches perform well in

stream-static join (more details in chapter 6), an advantage that is further inflated when

enriching them with ordering sequences such as Z-order curves. Also, recent studies [57, 58]

have shown that using non-hierarchical and simple spatial indexes on modern parallel

systems boosts the analytical performance. However, an inherent problem in grid partitioning

is that it exaggerates the load-balancing problem in dynamic application scenarios, where

specific cells are easily becoming stragglers (i.e. congested) while others are empty. Stated

another way, fixed grid partitioning is not preferred in highly skewed distributions, instead

the grid size should be based on a cost model that considers data distribution and BSOs, so

as to preserve spatial proximity and minimize BSOs in addition to load balancing.

Because every representation method (i.e., partitioning in the context of this thesis) has its

own limitations. We posit that applying a single scheme cannot guarantee the QoS goals and

QoS Aware Distributed Batch Spatial Query Processing

47

is not able to achieve the three spatial partitioning goals that we have identified in section

4.3. Consequently, most works of the relevant literature have designed their own set of

custom spatial-aware partitioning methods that are based on the primitives discussed in this

subsection.

4.5.2 Custom Spatial-Aware Data Partitioning methods

Custom spatial-aware data partitioning methods that fall within the confluence of many

schemes mentioned in section 4.5.1 include:

I) Sort-Tile Partition (STP) [59] . First, data sorting is performed in one dimension

(horizontal in a grid-based Euclidean representation), and equally-loaded slices

are generated, thereafter data in each slice is sorted and partitioned based on the

other dimension (vertical in a grid-based flat surface representation). Tiles

(horizontal and vertical) locations can be selected based on a model that balances

the tradeoff of the three goals of section 4.3.

II) Boundary Optimized Strip Partitioning [60]. This algorithm is specifically

designed for BSO minimization. It is a special case of strip (tile) partitioning

where a cost model is applied to select optimized tile locations so as to minimize

the BSOs.

III) Custom partitioning methods. For example, [61] have designed a boundary-aware

spatial splitting scheme that also achieves load balancing. Also, Cruncher [62]

employs a dynamic adaptive method that is aware of query workload. A cost-

model-based repartitioning module calculates number of points and queries for

each partition and repartitions accordingly.

SpatialHadoop [63] supports grid-based, sometimes enriching with an ordering such as

Hilbert- and z-order curves, STP, and quadtree [64] . HadoopGIS currently supports grid-

based partitioning in addition to others added through SATO framework [65] . From the in-

memory batch processing systems, SpatialSpark supports grid-based and STP [66] . On the

other hand, GeoSpark [11] supports grid-based splitting, sometimes enriching by Hilbert-

curves ordering, in addition to quadtree, Voronoi and R-tree. MongoDB does not support

partitioning on geospatial keys.

QoS Aware Distributed Batch Spatial Query Processing

48

Intensifying now on the ability of each method in meeting spatial partitioning goals (recap

section 4.3), load balancing, BSOs minimization and SDL preservation. We now provide a

guidance taxonomy that facilitates the selection of most appropriate schemes for specific

domains. For example, considering spatial data skewness ratios for co-location data mining

promotes selecting a framework that employs a locality-aware custom partitioning method.

In grid-based partitioning, the selection of the partition size profoundly impacts the

performance. For example, a coarser-level amplifies data imbalance, where some partitions

may acquire more elements than others. By way of contrast, a granular-level improves load

balancing, however, amplifies BSOs. This method replicates BSOs to neighboring grid cells.

However, it does not provide a capability for achieving SDL preservation goal. Quadtree-

based schemes can handle BSOs by replicating them to adjacent overlapping cells, and its

ability to balance loads depends on data distribution in real geometries. Also, it does not

support SDL preservation. In STP, BSOs are processed by expanding neighboring cells.

Also, STP guarantees load balancing to some extent by applying a splitting mechanism that

is aware of actual data distribution. However, it does not intrinsically achieve SDL

preservation. Imposing an ordering (e.g., z-curves) over the representation helps in

preserving SDL. Table 4.1 sums-up our taxonomy, comparing the performance of the spatial

partitioning techniques sketched previously, and introducing an important dimension that

shows capability of every method in achieving the three partitioning goals.

None of those schemes efficiently imposes a balanced tradeoff between the three spatial-

aware partitioning goals. Those primitive schemes insufficiently represent spatial objects

relationships for specific application scenarios, such as smart cities, by being not attuned to

spatial locality characteristic. As a resolution for this, some works have gone beyond those

traditional spatial partitioning methods by designing custom partitioning schemes that strike

a balance between the three partitioning goals. For example, [67] have designed a query-

workload-aware technique for partitioning big spatial data that adaptively repartitions data

in accordance with a query workload, achieving roughly equal load balances while keeping

SDL preservation in check.

It is then evident that “one fits all” does not apply when it comes to selecting a spatial data

partitioning approach that balances the three goals, SDL preservation, LB and BSO

QoS Aware Distributed Batch Spatial Query Processing

49

minimization. Stated another way, we are not aware of any single method that alone

successfully tackled the problem holistically. Hence, a better-performing method should be

custom, adaptive or both combining many primitives in a coherent way taking advantage of

the overarching traits of each method individually in a way which guarantees that they

reinforce each other without their limitations.

Table 4.1. A taxonomy of capabilities of general spatial splitting methods in handling spatial partitioning

goals defined in section 4.3

Approach big spatial data partitioning goals

 load balancing BSO Minimization SDL preservation

Grid-based ✓ X X

Quadtree ✓ X X

STP-based ✓ ✓ ✓

Grid with

space-ordering

✓ ✓ ✓

Notice that z-curves and a method based on STP are the only two amid all others that can

achieve a weighted balance between the three tradeoffs discussed in section 4.3. This

rationale our selection for those two in designing QoS-aware partitioning strategies in

support for distributed systems serving highly scalable application scenarios (NoSQL or

batch processing frameworks). We have designed hybrid adaptive data partitioning methods

as we posit that no single method alone can balance the tradeoffs between the three

partitioning goals (section 4.3).

As a recap, referring to the schematic diagram of figure 3.2, The user may opt for storing the

data coming from the streaming sources as-is, in which case the stored data is not distributed,

it is otherwise stored as a whole chunk. In a later stage, that data can then be distributed for

parallel processing (for example, using Spark). For this case we have designed a novel

adaptive spatial-aware partitioning method (discussed in section 4.7.3.1) that better trades-

QoS Aware Distributed Batch Spatial Query Processing

50

off the three goals mentioned in section 4.3 in a fashion that achieve results outperforming

state-of-art methods.

On the other side, for scenarios where data arriving is tremendous and cannot fit efficiently

in single chunks, simply because it is arriving from diverse heterogeneous sources, the

system may opt for unifying the format (thus supporting the interoperability requirement)

and distributing then the arriving data to be stored in parallel storage chunks (shards in

MongoDB terms). For an efficient dissemination of spatial data, aiming at a weighted QoS-

aware tradeoff between load balancing and spatial locality preservation, we have designed a

qualified partitioning strategy for NoSQL distributed environments (discussed shortly in

section 4.8).

4.6 System Design Perspectives

We have designed two sub-systems. One for batch processing that we dub as SpatialBPE,

and one for NoSQL scalable storage that we term as SpatialNoSQL.

By this combination, we recap our SpatialDSMS, where we have two components

(analogous to batch and serving layers of Lambda architecture). Any snapshot or view

(resulting from online processing or batch processing) or simply pouring as raw data directly

heading towards the storage backend will be indexed with an appropriate representation

structure, and thereby will be partitioned in a unified manner so that future workloads

mashup seamlessly. For example, we use the same indexing strategy (grid with an enforced

z-order curves) to index streaming data coming for an online processing, and also to shard

the data in NoSQL (i.e. MongoDB). In addition, we exploit the same dimensionality

reduction approach for an offline batch processing of data (e.g., Spark). This structure

streamlines the mix workload handling which is a main design goal of SpatialDSMS. In the

next subsection, we explain SpatialBPE.

QoS Aware Distributed Batch Spatial Query Processing

51

4.7 SpatialBPE: Spatial-aware Batch Processing Engine

SpatialBPE4 constitutes two main submodules: spatial-aware partitioning module and query

optimizer module, which are explained in the following two subsections, respectively.

4.7.1 Motivation

Big data is being exploited in various emerging scenarios that are dynamic and require high

scalable architectures. For example, participatory healthcare services [68] , city planning [69]

and urban computing [5]. Batch-processing systems are not designed to process that data

deluge. This led to the appearance of parallel computing frameworks such as MapReduce-

based [70] systems and NoSQL scalable storage systems such as MongoDB [2]. Two

entwined aspects apparently intermix in dynamic application workloads. Those are data

splitting and query processing. Load balancing while partitioning data has been on full

display by those systems in the relevant literature, not considering the spatial characteristics,

such as the data skewness, where geo-referenced objects concentrate at some locations more

than others in real geometries [71, 72] . In addition, boundary spatial objects (BSO)

minimization goal has not been adequately considered, thus deteriorating the benefits of

parallelization, recap that BSOs are objects that reside exactly on the borders between grid

cells (in grid-based hierarchical representations). This carries a negative impact that renders

the underlying system unable to handle QoS objectives in complex scenarios such as geo-

clustering algorithms. Works of the literature have focused on a replicate-and-refinement

approach, where BSOs are duplicated to adjacent cells, which is followed by a refinement

step [65], taking a huge toll that renders the system unable to meet time-based and accuracy

QoS goals. It has statistically been proved that geometrically proximate units share similar

characteristics by being affected by the same surrounding factors (such as ecological factors

in environment monitoring studies). This implies that the system should be attuned to spatial

co-location relationships while partitioning data, thus focusing on SDL preservation has a

paramount effect on performance on the way to achieve time and accuracy based QoS goals.

4 The source code of SpatialBPE (including SCAP) is available at:

https://github.com/IsamAljawarneh/SpatialBPE

QoS Aware Distributed Batch Spatial Query Processing

52

Most scenarios in dynamic environments seek answers (through spatial queries) that reflect

a proximity and co-location relationship. We posit that preserving SDL leads to avoiding

costly shuffling. Cross-nodes shuffling is known otherwise to heavily cause the processing

system to run into a big bill far beyond its capacities.

However, current batch processing systems do not natively offer appropriate approaches for

efficiently trading-off partitioning goals in an aim at achieving QoS goals. To overcome

those limitations, we have designed and implemented an in-memory batch processing

component for SpatialDSMS. The contributions of this component are two folds. First, we

design a custom spatially-attuned partitioning method that achieves a plausible degree of

load balancing in addition to BSO minimization and/or (depending on the case scenario)

SDL preservation. Thereafter, we design query optimizers that appropriately exploit the

newly added partitioning method in solving density-based clustering algorithms (specifically

DBSCAN-MR) with prespecified sets of QoS guarantees.

4.7.2 Design Perspectives

Figure 4.2 shows a high-level architecture of our spatial-aware optimizations for the in-

memory spatial batch processing systems. Our patches reside atop Spark’s Magellan (which

itself sits atop the core of Spark) constituting a transparent layer that hides implementation

details from application layer, thus achieving one of the design goals of SpatialDSMS, which

is the ‘modularity’ (refer to section 3.4.1 for details).

Our patches include a spatial-aware partitioning scheme (we dub as SCAP, explained shortly

in section 4.7.3.1), basically accounting for a better tradeoff between three goals (load

balancing, BSOs minimization and SDL preservation), aiming ultimately at achieving a

weighted balanced tradeoff between the QoS contradicting goals: low-latency, high-

throughput, high-accuracy and high resource utilization.

 An integral part of SpatialBPE is a query optimizer that employs SCAP and a retrofitted

version of DBSCAN-MR [38] implemented over Spark’s Magellan for optimizing the

parallel execution of DBSCAN [37]. We have specifically selected clustering as an analytics

to support for in-memory systems because it is heavily appearing in dynamic application

scenarios (refer to section 1.1 for more details).

QoS Aware Distributed Batch Spatial Query Processing

53

4.7.3 Spatial Partitioning in Distributed Batch In-memory Processing Systems

Partitioning per se is not an optimization goal, it is otherwise a mean-to-an-end. The goal

then is exploiting a well-performing partitioning scheme in analytics and achieving desirable

set of QoS goals predefined in SLAs. In this thesis, as batch in-memory distributed data

processing systems are responsible for handling heavy workloads in dynamic application

scenarios that require scalability, we have designed a spatial aware adaptive big data

partitioning method that significantly outperforms baselines by orders of magnitude. Our

method is explained in the next subsection.

4.7.3.1 Spatial Co-Locality-Aware Partitioner (SCAP)

By designing a custom spatial-aware partitioning scheme for batch processing systems we

focus on time-based QoS goals including low-latency/high-throughput and other qualities

such as accuracy and high-resource utilization.

Several works of the relevant literature apply grid-based representations for partitioning

spatial big datasets in parallel batch computing settings. However, the plain application of

those hierarchical schemes leaves the computing cluster lopsided, where more objects are

clumped into few partitions, deteriorating the load balancing. More importantly, spatial co-

Figure 4.2. SpatialBPE overview

QoS Aware Distributed Batch Spatial Query Processing

54

locality is impeded as geometrically-collocated objects are randomly forwarded to different

partitions, forcing a huge toll caused by the great amount of shuffling that may be required

at query time. To alleviate those problems, we have designed an adaptive spatially-attuned

partitioning method that considers, most importantly, the SDL preservation and aims at

achieving a weighted balance for the other two partitioning goals (BSOs to a lesser extent

and load balancing). We dub our novel method as SCAP (short for spatial co-locality-aware

partitioning) as shown in figure 4.3.

More formally, the workflow of our method is listed in Algorithm 4.1. The method starts by

geocoding the spatial points. We focus in this thesis on dimensionality reduction based on

geohash encoding. We then apply an efficient spatial join method that is readily offered by

Spark’s Magellan for joining the spatial objects (i.e., points) with a table comprising

neighborhoods (in city management terms) represented as polygons. This stage results in a

list that specifies to which neighborhood each point (i.e., spatial object) belongs. This process

is also known as geofencing, a problem that demands solving a mathematically resource-

extravagant operation known as point-in-polygon (PIP for short). Nevertheless, by

employing the already optimized Spark’s Magellan library, we significantly cut off the

computational costs to linearly discernible margins. Stated another way, this stage resembles

Figure 4.3. Spatial Co-Locality-aware partitioner (SCAP)

QoS Aware Distributed Batch Spatial Query Processing

55

clumping geometrically co-located spatial objects into single patches that can afterwards be

disseminated to nearby or same partitions for local processing. For each neighborhood list,

we verify whether the number of enclosed objects exceeds a prespecified threshold, which

then signifies the need to sub-split that overloaded segment so that to achieve a credible

degree of load balancing.

Algorithm 4.1 SCAP partitioning scheme for in-memory batch processing frameworks

 /* points: coordinates in longitude/latitude shape, neighborhoods: polygonal shapes representing

neighbourhoods of the embedding study area, geoPrec: geohash precision */

Input: points, neighbourhoods, geoPrec, spatialQuery, numPartitions

1: pointsAssignedList = [] //each element contains all points that belongs to a specific neighborhood

 finalist = [] /* the final list containing sub-lists, where each element (sub-list) will be sent to a single

partition */

2: coverGeo getCoverGeo (neighbourhoods, geoPrec) /* List of geohashes covering each

neighbourhood (polygon)*/

3: GeoCodedPoints geoEncode(points)

 /* perform inner join on geohash using the filter stage, filter-and-refine approach */

 /* pointsAssignedList: list of points that have been assigned to neighborhoods */

4: pointsAssignedList = GeoCodedPoints.join(coverGeo, GeoCodedPoints (“index”) ==

coverGeo(“index”))

 /* iterating through all parent lists, where each list contains elements belonging to a single

neighborhood */

5: For idx = 0 until pointsAssignedList.size

 //check whether a number of elements in a specific neighborhood exceeds a threshold

 //currently threshold is specified by pre-profiling the data

7: If (pointsAssignedList[idx]. count > threshold)

8: sub_ pointsAssignedList = split (pointsAssignedList[idx])

9: finalist.append (sub_ pointsAssignedList)

10 Else
11: finalist.append (pointsAssignedList[idx])

12: End if

13: End For

14: For j = 0 until finalist.size

 //materializing data chunks in partitions

15: partition[j]. populate (finalist[j])

16: End for

QoS Aware Distributed Batch Spatial Query Processing

56

We achieve that by splitting overloaded neighborhoods to granular sub-lists so that the

number of enclosed points fenced within each sub-list never exceeds the fences of the

prespecified threshold. We do this to account for load balancing, where we seek trading that

off with spatial col-locality preservation. To a lesser extent, our SCAP method accounts to

BSO minimization, which is attainable through tweaking geohash precision parameter. The

workflow of SCAP is schematically shown in figure 4.3.

In the next subsection, we show how we have retrofitted SCAP (with a very little effort) and

applied it to Magellan-based DBSCAN-MR, thus retrofitting the latter and gluing it within

the layers of Spark’s Magellan, which then constitutes a primary contribution of SpatialBPE.

4.7.4 A Recap on Spatial Querying in Batch Oriented Systems

Partitioning geo-referenced big data in parallel computing environments is a precursor for

optimizations that aim at achieving QoS goals by applying spatial analytics. Current plain

systems being not attuned to the spatial patchy distributions are causing the underlying

optimizers to shuffle huge amounts of data over the network. This normally deteriorates the

benefits of parallelization, especially in cases where shuffled subsets constitute big fractions

Procedure 4.1: split (pointsAssignedList[idx], threshold)

 // the purpose of this method is to split overloaded lists depending on a prespecified threshold

1: size pointsAssignedList[idx]. size() //overloaded list size

2: sub_ pointsAssignedList = [] /* each element of this array contains part of the spatial points from an

overloaded parent list (where the parent list represents a full neighborhood, whereas the child lists

represent parts of the neighborhood) */

3: newListsCount (size / threshold) //the number of new sub-lists (child lists)

4: index = 0

5: For i = 0 until newListsCount

6: partialList = pointsAssignedList[idx]. take (“*”). where (id between index and

(threshold+index-1))

7: sub_ pointsAssignedList[i]. append (partialList)

8: index = index + threshold

9: End

10: Return sub_ pointsAssignedList

QoS Aware Distributed Batch Spatial Query Processing

57

of data. Query optimizers aim at selecting the most efficient query plan that reduces shuffling

and thereby striking a weighted balance between the QoS goals.

Having designed SCAP, we have decided to proceed it with designing a query optimizer that

exploits its overarching traits in optimizing the running of a costly density-based clustering

algorithm (i.e., DBSCAN [37]) that is very common in dynamic scenarios of smart cities. In

a loose way, DBSCAN clusters units in a way that considers high-dense regions as clusters,

whereas others are noise. The plain DBSCAN is not applicable per se in distributed systems,

then DBSCAN-MR [73] has emerged as a variation that is able to run in parallel. Technically

speaking, DBSCAN-MR proceeds as follows. It receives epsilon (ε) and minPoints (short

for minimum number of points) as input parameters. Epsilon is used to find all points that

are far-away from a query point (similar to kNN) by a distance that equals epsilon at most.

minPoints is thus the minimum count of points in vicinity that together form a cluster. It then

starts by splitting input data points to the partitions of the worker nodes that are comprising

a distributed computing cluster. In a later stage, the algorithm employs a local edition of the

vanilla DBSCAN for data that is fenced in each partition. The algorithm afterwards merges

micro-clusters received from local versions into unified macro-clusters. An apparent obstacle

while parallelizing DBSCAN-MR version is the demand to duplicate BSOs into adjoining

cells. Considering a planar earth geometry, those cells resemble grid cells that result from

the grid representation of the embedding space. In that sense, dealing with BSOs resembles

a replicate-and-refine approach, where duplicated BSOs are thereafter eliminated in a post-

replication refinement step. Another confounding challenge lies in finding an appropriate

manner to efficiently consider SDL preservation throughout partitioning and also striking a

credible balance among the three partitioning goals mentioned in section 4.3.

Out of the box, Spark’s Magellan does not offer over-the-counter DBSCAN-MR optimizers.

We then offer an optimization to Spark’s Magellan that transparently incorporate our

retrofitted version of DBSCAN-MR, which then constitutes one of our contributions in

SpatialBPE. In addition, our retrofitted version of DBSCAN-MR exploits our SCAP method

(see subsection 4.7.3.1 for details) for orders of magnitude performance gain (as opposed to

the plain DBSCAN-MR) achieving a better balance between QoS goals (especially low-

QoS Aware Distributed Batch Spatial Query Processing

58

latency/high-throughput, high-resource utilization and high accuracy) by consequently

striking a plausible balance between the spatial partitioning goals.

4.7.5 Spatial Query Optimizers for Distributed Data Batch Processing

4.7.5.1 Co-location Query Optimizer

We have hybridized a retrofitted version of SCAP with a retrofitted version of the plain

DBSCAN-MR. In this way, SCAP acts as a front-stage that partitions the static (i.e., disk-

resident) input data into the computing cluster, thereafter the retrofitted version of DBSCAN-

MR works on the apportioned data as explained shortly.

To be able to apply SCAP to DBSCAN-MR, we have retrofitted SCAP so that it accounts

for the BSOs. The approach we choose for dealing with the BSOs is replicate-and-refine. We

first replicate BSOs to the overlapping cells. In a later stage, we discard those local duplicated

BSOs from the resulting final clusters (a.k.a. macro-clusters). The replication strategy relies

on a fact that each neighborhood (i.e., polygon) is represented by several geohashes. In this

context, a geohash spans many neighborhoods. As the time of this writing, to avoid

introducing any additional model-based cost layers that may bog down the system, we simply

replicate objects which belong to overlapping geohashes. The number of replicated BSOs

relies on two factors, the data skewness and the geohash precision. Geohash precision is a

number that is a multiple of five. As an example, a geohash precision that equals 30 signifies

that the size of the corresponding geohash string would be six, which is typically a

combination of characters and numbers, whereas a geohash precision 35 means that the string

size is seven and so on.

In our previous works [74, 75], we have designed SASAP (explained shortly in more details

in section 4.7.5.2), which is a method that is similar to STP (recap information from section

4.5.2). In SASAP, for replicating BSOs, we rely on stretching each strip (i.e., horizontal or

vertical split) to a dimension that equals to a double epsilon value. We have exploited

Haversine formula for measuring distances horizontally and vertically. Our SASAP method

in our previous work resembles an STP approach, which then requires sorting geospatial

points in each direction based on longitude and latitude data. After deeply investigating the

possible consequences, we have discovered that the computational model-based approach

QoS Aware Distributed Batch Spatial Query Processing

59

that we have applied for computing BSOs to replicate could easily turn as a bottleneck when

the data size increases. This potentially can bog down the system performance and, in some

cases, may bring the system into a halt. This in part is due to the fact that the procedure sorts

massive amounts of multidimensional spatial data (i.e., longitude and latitude). As a way of

contrast, our novel method SCAP avoids any complexity layer that necessitates expensive

model-based computations for deciding the BSOs to replicate. We otherwise rely on a

dimensionality reduction approach that is based on z-order curves, specifically geohash

spatial encoding, which reduces the problem of working with multi-dimensionally-shaped

data down to that of a single-dimension.

In both methods, SCAP and SASAP, grid cells are overlapping, and the splitting is non-

disjoint. While each non-boundary point is assigned a unique identifier, BSOs are assigned

several identifiers (one corresponding to each partition they are replicated in). The algorithm

proceeds then by sending points to corresponding partitions. A local plain DBSCAN is

thereafter applied to each partition. The algorithm now proceeds normally as in the plain

DBSCAN-MR. Despite the ability of SCAP (and also SASAP form our previous works [74,

75],) in reducing the shuffling during the local application of DBSCAN in each partition, it

induces a huge toll on resource utilization, and here is where the adaptive controller comes

into play, lending itself as a loop feedback mechanism from the control theory, aiming

basically at minimizing the BSOs but at the same time balancing loads and preserving SDL

in a plausibly significant weighted balance fashion. For SCAP, we simply depend on the fact

that the geohash precision is tweakable, thus allowing the opportunity for better resource

utilization. Interested readers are referred to our previous works for more information on the

mechanism at which our traditional method SASAP is acting adaptively. See Appendix B

for technical details on DBSCAN-MR.

4.7.5.2 Usage Model and Baseline System

Referring to our scenario in section 1.1, the application may need to build clustering views

(i.e., offline) based on locational data of passing-by registered people (e.g., volunteers) who

are capable and willing to provide instant assistance to victims of an incident. Those views

need to be updated regularly, and this step can be considered as a second stage for the online

QoS Aware Distributed Batch Spatial Query Processing

60

clustering, or what is better referred to as macro-clustering [76] (refer to section 7.2 for

details) that normally runs offline (e.g., overnight).

Since we have already designed an optimized custom spatial partitioning method in a

previous work [74, 75], which we dubbed as SASAP (short for Spatial Aware Self-Adaptive

Partitioning). We have decided in this thesis to select SASAP as a baseline benchmark to

compare with our newly introduced method, SCAP. SASAP in its core recovers an adaptive-

STP-alike (recap information from section 4.5.2) partitioning approach. The working

mechanism of SASAP proceeds as follows. First, it accepts spatial data points as an RDD (in

Spark terms). Thereafter, it exploits an abstraction from GeoSpark to transforms those into a

pointRDD representation (which is an abstraction for spatial representations in GeoSpark

that resembles the traditional RDDs from Spark but instead is intended to spatial settings).

As it reaches this stage, points are imagined as if they were overlay on a planar earth

geometry that is a flattened version of the Earth. Afterwards, SASAP sorts pointRDD points

in both directions (i.e., longitude and latitude) and then assigns a unique numerical identifier

to every point in pointRDD. SASAP then proceeds by employing a splitting mechanism as

follows. First, it overlay dividing vertical stripes on the two-dimensional map that is

representing the embedding Earth planar geometry. The result of this stage is a list of

longitudes for the stripes. This is proceeded this by a horizontal division for obtaining

latitudes of stripes. The overall result of this splitting scheme is a grid in two-directional

sorted order. This procedure recovers recursive halving in single-dimension (for each

splitting direction) and quartering in two-dimensions (while extracting longitudes and

latitudes of stripes).

SASAP is a generic approach that we could apply to various dynamic workloads. A

significant disadvantage of SASAP however is that it resorts to an STP approach (recap

information from section 4.5.2). We have proved practically its superiority over traditional

benchmarks (refer to our papers for interesting results [74, 75]) in accomplishing discernible

balance between several challenging spatial data partitioning goals, such as SDL

preservation and BSOs minimization. However, we find that an undesirable overhead can

significantly accumulate as the data size becomes massively big. Overall, this may

deteriorate at some points the benefits we reap from parallelization. This has to do with the

fact that several expensive model-based computations are involved. For this reason, we have

QoS Aware Distributed Batch Spatial Query Processing

61

decided to design a new method in this thesis that we term as SCAP so that it overcomes the

drawbacks of SASAP.

4.7.5.3 Experimental Setup and Test Cases

This section discusses deployment settings that aim at assessing the ability of SCAP and the

query optimizer, consequently, in achieving a plausible balance between QoS goals of this

thesis.

Deployment and experimental settings. We run our system, SpatialBPE, on a Microsoft

Azure HDInsight Cluster hosting Apache Spark version 2.2.1. It consists of 6 NODES (2

Head + 4 Worker) with 24 cores. Head nodes are analogous to master nodes in master-slave

architecture. We have two head nodes of type D12 v2, in addition to four worker nodes of

type D13 v2. Each head node operates on 4 cores with 28 GB RAM and 200 GB Local SSD

memory, and quantities are double those figures for worker nodes.

Dataset. For benchmarking, we choose cohorts of two datasets. The first dataset is the NY

City taxicab itinerary datasets 5. From this dataset, we choose a cohort of approximately 150k

points representing a slice of data captured from taxi rides for the first half of year 2016. We

have selected the green taxi trips that include, most importantly, fields containing pick-

up/drop-off locational data. The second dataset that we have selected represents a cohort of

150k spatial data points that were collected through the ParticipAct project [77]. ParticipAct

is a project initiated at University of Bologna in Italy, aiming at achieving the People as a

Service (PaaS) vision, where people act as collectors of data that can be exploited and applied

to interesting scenarios such as DBSCAN clustering. Every spatial point has a user locational

data (in two-dimensional planar geometrical representations, longitude/latitude) in addition

to timestamps that inform about the times of data collection.

We have applied the following intermixed parameter settings, aiming at testing the

capabilities of SpatialBPE in achieving a wide variety of quality guarantees.

5 https://www1.nyc.gov

QoS Aware Distributed Batch Spatial Query Processing

62

1) Configurations#1. Varying the DBSCAN-MR parameter settings. We specifically

vary epsilon and minPoints. We have applied two settings. 0.09 epsilon, 200

minPoints, and the other combination is 0.15 epsilon and 300 minPoints. By this test

case, we aim at comparing between SpatialBPE and a baseline in their abilities to

balance the tradeoffs of spatial partitioning goals, thus ultimately better trading off

time-based QoS goals (e.g., latency/throughput) and other QoS goals (e.g., accuracy

and resource utilization).

2) Configurations#2. Fixing DBSCAN-MR parameter settings and varying the geohash

precision. We aim at showing the effect of adaptation (self-adaptation module of

SpatialBPE) on our retrofitted version of DBSCAN-MR and its ability in achieving

better QoS goals. For example, lowering the latency and maximizing the resource

utilization.

4.7.5.4 Results and Discussion

All results reported in this section are the averages calculated from five query runs.

DBSCAN-MR, which encloses both proximity queries that require calculating distances

between points at each partition by applying a local version of a plain DBSCAN. It also

encompasses a spatial join queries for joining micro-clusters resulting from local versions

into global macro-clusters result set. In this thesis, we have compared the time-based QoS

performance (i.e., latency) of applying our newly emerged retrofitted DBSCAN-MR version

that incorporates SCAP partitioning scheme against our DBSCAN-MR version that exploits

a spatial partitioning scheme from our previous work, SASAP [74, 75]. Our previous

retrofitted version of DBSCAN-MR (with SASAP injected within its layers) is built on top

of GeoSpark, whereas the current version (that is incorporating SCAP) is built atop Spark’s

Magellan.

We have tested SCAP against SASAP by using Configurations#1 for five sessions each. As

shown in figure 4.4 and figure 4.5, respectively, our retrofitted version of DBSCAN-MR

over SCAP is adept in terms of meeting QoS time-based goals better than the previous

version that exploits SASAP counterpart. Notice how an increased number of bordering

replicated points (i.e., BSOs) implies a near-linear similar-pattern increase in running times

of both implementations. This applies also for the case of value of epsilon that is equal to

QoS Aware Distributed Batch Spatial Query Processing

63

0.09 and minPoints equals to 200. However, in both cases it negatively affects the running

time of our SCAP version to a lesser extent as opposed to SASAP counterpart.

Figure 4.4. Running times and number of BSOs of our retrofitted version of DBSCAN-MR

over SCAP against SASAP-based version using epsilon 0.15 and minPoints 300, secondary

access on the right-hand side of the figure represents the data size with BSOs

Figure 4.5. Running times and number of BSOs of our retrofitted version of DBSCAN-MR over

SCAP against SASAP-based version using epsilon 0.15 and minPoints 300, secondary access on

the right-hand side of the figure represents the data size with BSOs

QoS Aware Distributed Batch Spatial Query Processing

64

As shown in figures 4.4 and 4.5, respectively, our retrofitted version of DBSCAN-MR can

adeptly lower latency for both datasets compared to the SASAP baseline counterpart. Notice

however that both versions are expensive and can reach the orders of tens of minutes for only

hundreds of thousands of orders of input rate. This implies that applying DBSCAN and any

variation of density-base clustering online is a façade. However, instead, DBSCAN and its

variants (such as our version) can be applied in an offline stage, which is the second stage of

online stream clustering (i.e., to form the final macro-clusters) [76] .

Another tweakable parameter in our SCAP method is the geohash size (i.e., precision), which

determines the number of BSOs to duplicate to overlapping cells. In the second testing case,

we have, on the same data cohort, applied configurations#2, fixing the parameters of

DBSCAN-MR and enabling the controller of SCAP to tweak geohash from 30 to 35. Total

running time has been slightly decreased. Fig. 4.6 depicts that tweaking geohash precision

from 30 to 35 leads to less BSOs for SCAP. This is due to the fact that more geohash

precision implies smaller cell sizes for cells represented by those geohashes, leading to less

overlapping areas among neighboring cells. Since we depend on simply replicating objects

in the overlapping zones, this would result in attenuating the BSOs count.

Figure 4.6. The effect of tweaking geohash precision on the number of BSOs generated by SCAP on

NYC taxicab dataset. secondary access on the right-hand side of the figure represents the data size

with BSOs

QoS Aware Distributed Batch Spatial Query Processing

65

Notice how the running time for both competitors (our SCAP-based version and SASAP-

based version) increase, but however the proportions are not the same , as the trend of

SASAP-based version is to increase significantly as the number of BSOs increase, whereas

the running time of our version (SCAP-based) creeps up in a smoother way. This is due to

the effect of SDL preservation that SCAP is adept at achieving better than SASAP, which

leads to less data shuffling. As a confirming quantification showing the benefits that we reap

by applying our new method SCAP against the traditional SASAP and the associated

DBSCAN-MR version, we define a speed up gain obtained through parallelization by

adapting a simplified version of the Amdahl’s Law [78]. More computationally, we define

(4.1)

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 = 𝑇𝑆𝐴𝑆𝐴𝑃/ 𝑇𝑆𝐶𝐴𝑃 (4.1)

where 𝑇𝑆𝐴𝑆𝐴𝑃 is the running time obtained by applying the baseline method SASAP to the

associated retrofitted DBSCAN-MR, whereas 𝑇𝑆𝐶𝐴𝑃 is the running time by applying our new

version SCAP to run the newly retrofitted Magellan-based DBSCAN-MR version. Our

results exhibit that we gain a higher speed up through applying DBSCAN-MR with SCAP

version as opposed to a lower speedup while applying DBSCAN-MR with SASAP. Figure

4.7 shows an example on the NYC taxicabs dataset. It worth noticing that the shape (bell-

curve plateau-alike) obeys an important corollary of Amdahl’s law. As shown in figure 4.7,

there is a limit on the speedup gain (i.e., the escalation trend) that can be obtained, after

which the speed up gain decreases. This is due in part to the fact that the partitioning process

is sequential (i.e., non-distributed), which may become exhaustive as data size soar, putting

speed up gain on a decline, even though we may still reap a discernible speed up gain. Even

a low speed-up gain is handsomely beneficial in resource-constrained settings that do not

offer too much of scaling-up options. Nevertheless, a future promising frontier we

recommend is enabling the parallelization of the partitioning scheme, aiming at an extra

improvement in the speed up gain. However, this falls outside the scope of this thesis. For

more interesting results, specifically comparing our traditional method SASAP with a

MongoDB version of DBSCAN-MR, readers are referred to our papers [74, 75].

QoS Aware Distributed Batch Spatial Query Processing

66

We have decided also to quantify the gain of the adaptation of the geohash size (i.e.,

precision). More mathematically, we define (4.2)

𝑎𝑑𝑎𝑝𝐺𝑎𝑖𝑛 = (𝐵𝑆𝑂30 − 𝐵𝑆𝑂35
𝐵𝑆𝑂30

⁄) ∗ 100 % (4.2)

Where 𝐵𝑆𝑂30 is the number of BSOs generated by applying a geohash size that is equal to

30, whereas 𝐵𝑆𝑂35 is the number of BSOs by applying a geohash size that is equal to 35.

Figure 4.8 illustrates how we gain roughly 44% by tweaking the geohash precision. We also

dub this gain as the design effect because it results from applying the design of our SCAP

scheme. Results combined show the excellence of SCAP in striking a credible balance

among the three spatial partitioning goals, thus balancing loads, while also preserving spatial

co-locality and minimizing BSOs.

Figure 4.8. adaptation gain by tweaking the geohash precision in SCAP from 30

to 35 applied on NYC taxicabs datasets

Figure 4.7. speedup by applying SCAP instead of SASAP, NYC dataset

QoS Aware Distributed Batch Spatial Query Processing

67

The fluctuating shape of the adaptation gain suggests that the data skewness oscillate

between different data sizes, leading at times to less adaptation gains in the middle of the

shape such as the case of data size that is equal to 50k tuples as shown in Figure 4.8.

This shows the ability of SCAP controller in tweaking the geohash precision so that the

resulting partitions are containing objects that are not only preserving load balance, but also

preserving co-locality and minimizing BSOs. The reason of this effect is that unduly

partitioned space results in partitions that cause some nodes to become congested and

stragglers (i.e., nodes that take more processing times as opposed to other nodes) , and it is

well known that the running time of parallel distributed systems is determined by the

stragglers. Refer to our papers for more explanations [74, 75].

Figures drawn in this section support the fact that employing a custom spatial-aware

partitioning with a relevant selection of configurations typically yields substantial

improvements over plain spatial partitioning methods.

It worth noticing that a tension among QoS goals always show up and there is no such thing

like a “free optimization that does not affect contradicting factors”. As an example, an

expensive model-based approach for calculating the size of BSOs list that are candidates for

replication may yield a smaller number of BSOs, thereby leading to a maximal resource

utilization. This is what was achieved by our traditional method SASAP. As contradictory

as it can look, a mathematically simple method may yield larger size of BSOs to replicate,

thereby achieving a lower latency level at the price of lower resource utilization. That is the

case of our novel method that we introduce in this thesis, SCAP. SCAP may introduce higher

number of BSOs (which is a tweakable parameter that relies on the geohash precision) but it

acts favorably for resource-permissive settings as it achieves lower latency than SASAP.

However, for both methods, the number of BSOs to replicate relies on many factors. Most

importantly, data skewness for both approaches and geohash precision for SCAP.

4.7.6 Related Works

Most works of the related art are based on Hadoop. For example, [79] propose a custom

density- and spatial-aware partitioning method for pathology imaging on top of Hadoop.

Their method is preserving SDL and balancing loads by relying on a costly computational

QoS Aware Distributed Batch Spatial Query Processing

68

model-based approach which aims at minimizing the differences of running times between

all participating partitions. On the downside, they did not account for cases where BSOs need

to be taken care of. Also, Hadoop-based systems are proved to be slower than Spark-based

counterparts and are currently being replaced.

On the other side, based on fast-memory structures such as Spark. Few systems have

designed custom spatial aware partitioning schemes. As a case of example, LocationSpark

[71] has been designed to transparently incorporate a feedback loop-based adaptive spatial

partitioning scheme over Spark. Their method focuses on balancing loads by relying on an

underlying model-based computational model that subsequently and periodically collects

active statistics session-after-session and accordingly enhances the splitting stripes (i.e.,

coordinates) until the corresponding partitions that constitute stragglers vanish. The method

keeps a knowledge base regarding real geometrical objects for SDL preservation. It mainly

achieves this by forwarding geometrically-nearby objects to same/nearby partitions. Also,

the method applies a replicate-and-refinement approach for trading-off BSO minimization.

As a recap, Hadoop-based systems are slower than Spark-based contemporaries. Also,

Spark-based methods do not retrofit or integrate into density-based clustering algorithms,

which then makes SpatialBPE a significant unique contribution.

4.8 SpatialNoSQL: A Scalable Storage for Spatial Data

Some workloads in highly dynamic application scenarios require storing snapshots (or even

a full crawling output if resource capacity is permissive) for future offline analytics. Since

streaming data sources are normally heterogeneous, it is then better to consolidate all coming

formats in a unified shape, and here where NoSQL distributed storage systems come into

play. They normally host data in simple JSON-like formats, treating referential integrity in

simpler ways (such as embedding documents in MongoDB, refer to section 2.2.1 for details).

Those systems however do not readily support sharding (i.e., splitting) natively on spatial

data loads. To close this void, we have designed a scalable NoSQL-based storage system that

can perform spatial-aware partitioning, and thereafter serving the spatial queries in a QoS-

QoS Aware Distributed Batch Spatial Query Processing

69

aware fashion. We dub our version as SpatialNoSQL 6. In this context, the story is a little bit

different as we are accessing disk-resident data without depending on the fast memory. This

is specifically beneficial in cases where snapshots do not fit comfortably in the fast memory

or in other cases where a future reference for huge amount of data is required. However, the

main purpose of those systems is storage, but they support query processing (analogous to

RDBMSs). All in all, we should store data in a way that guarantees quality aware access,

because those systems work synergistically hand-in-hand with the batch processing

(SpatialBPE section 4.7) and speeding systems (SpatialSPE and SpatialSSJP in chapters 5

and 6, respectively) as a united system for interactive analytics. In other terms, they perform

the heavy task of offline processing, in cases where in-memory capacity is not enough, and

their slow results, also slowly changing, are served on-demand to assist in better decisions

together with interactive queries. Thus, complementing the effect of QoS-aware spatial

mixed workloads handling as a main contribution of this thesis.

4.8.1 Motivation

There are many dynamic scenarios in smart cities and industry 4.0 that require storing

snapshots of the streaming data periodically sometimes constituting huge amounts, which

calls for a scalable distributed storage system that unifies diverse heterogenous source data

under one umbrella. The envisioned Industry 4.0 vision heavily depends on Data as a Service

(DaaS [80]) paradigm, where avalanches of geo-referenced data loads need to be stored

efficiently and quickly [81] . Scalable NoSQL ecosystems have been focusing thus far on

load balancing because they know that sending geometrically co-located objects to same

shards normally leads to a lopsided cluster, where heavy loads are normally clumped into

few partitions. Currently, NoSQL systems (such as MongoDB) do not support partitioning

on geocodes in an optimized way that can carry performance gains en-route to achieving

QoS goals. In this thesis, we provide a novel viable and cost-effective spatial data partitioning

6 The source code of SpatialNoSQL (including associated query optimizers) is available at:

https://github.com/IsamAljawarneh/SpatialNoSQL

QoS Aware Distributed Batch Spatial Query Processing

70

scheme for an optimized ad-hoc spatial querying in scalable NoSQL settings, forming

together our SpatialNoSQL system, which is recapitulated in the next subsection.

4.8.2 SpatialNoSQL overview

Technically speaking, we have incorporated few submodules within various layers of

MongoDB codebase as shown in figure 4.9.

SpatialNoSQL presents itself as a transparent layer setting between the MongoDB core and

the presentation layer. It is comprised of two components:

1) GSS (abbreviation for geospatial sharding scheme). A custom method we design that

is responsible for sharding geo-referenced data loads with the aim of striking a

balance between the partitioning goals. In this thesis, we basically focus on load

balancing and SDL preservation, while to a lesser extent on BSOs minimization. By

this we aim at a significant effect that strikes a discernible balance between the QoS

goals. The peculiarities of GSS are illustrated in section 4.8.3.

2) Retrofitted query optimizers. Our version takes full advantage of our partitioning

method GSS in supporting spatial queries that intrinsically incorporate spatial joins,

such as proximity-alike and containment queries with quality guarantees as explained

in section 4.8.3.

Figure 4.9. SpatialNoSQL workflow

QoS Aware Distributed Batch Spatial Query Processing

71

4.8.3 QoS Aware Spatial Data partitioning for NoSQL

In simpler terms, storage-oriented data partitioning means disseminating (a.k.a. sharding)

datasets to multiple nodes in a distributed storage environment [82]. We specifically focus

on striking a balance between load balancing and SDL preservation. This complies with the

types of the spatial queries that we support for NoSQL as explained shortly in section 4.8.4.

Natively, MongoDB supports quadtrees and z-curves indexing. However, as per 4.0 version,

those are utilized for indexing only and not sharding.

To strike a balance between the contradicting QoS goals (such as low-latency and high

accuracy), we have designed a novel spatial sharding scheme for MongoDB, which we dub

as Geospatial Sharding Scheme (GSS for most of the rest of discussion). GSS aims at

preserving spatial characteristics and load balancing. As the time of this work, MongoDB

does not offer native support for geocode-based spatial data sharding. Figure 4.10 elucidates

the workflow of GSS, which is formally expressed in Algorithm 4.2. The algorithm proceeds

as follows. It first accepts geo-referenced documents (representing spatial objects) as an input

and thereafter employs a simple mapper on them to incorporate a geohash field. Afterwards,

documents are clumped into small chunks by relying on their associated geohash values. As

of yet particularly happens the load balancing, where overburdened chunks are split. GSS

then advances by employing a loader that sends chunks to their relevant shards. By doing

that, SDL preservation is guaranteed to a good degree, and also load balancing is traded off

appropriately altogether. In addition, this method assures a minimal shuffling (chunk

migration in MongoDB parlance) during query running.

QoS Aware Distributed Batch Spatial Query Processing

72

 Algorithm 4.2 GSS sharding scheme for NoSQL frameworks

 /* input: two-dimensional spatial points on the form of (longitude, latitude) received from

GPS-enabled devices */

Input: region, qp
1: Foreach point p in points

2: geoCode geohashEncode(p) //geo-encode a spatial point using geohash

3: shardID geoMapper (geoCode) /* assign a shardID to which spatial point should be

sent */

4: chunk [shardID]. add (geoCode) //add geocoded spatial point to the appropriate chunk

5: load_chunks(shards[1…i]) //bulk loading chunks altogether to their relative shards

End foreach

Figure 4.10. GSS sharding scheme

QoS Aware Distributed Batch Spatial Query Processing

73

4.8.4 Spatial Query Optimizers for NoSQL Scalable Distributed Storage

4.8.4.1 Spatial Query Primitives Supported

We support two primitive types of geospatial queries:

1) Proximity queries. For example, spatial range search and kNN.

2) Containment (a.k.a. inclusion). We support two kinds of containment searches:

o Containment searches based on arbitrarily-shaped embedding areas (i.e.,

polygons). Those need Point in Polygon (PIP) tests. We refer to this type as

containment-PIP to distinguish it from the other types.

o Containment searches based on regularly-shaped embedding areas (i.e.,

circles), we refer to this category as Point-In-Circle (PIC for short) test, which

is analogous to PIP test with the exception that the embedding area we are

searching in is circular, thus retrieving concentrically located points.

4.8.4.2 NoSQL Query Optimizer Overview

Traditional spatial query processors obey the scatter-gather scanning scheme by performing

exhaustive searches. However, few systems such as MongoDB encapsulate routers that

forward the query request to specific shards based on the sharding key. However, Spatial

indexing is not natively offered for sharded collections in MongoDB 7.

Aiming at closing this void, we have designed a NoSQL query optimizer for MongoDB, as

depicted in figure 4.11 (shaded components represent our patches), specifically for assisting

spatial proximity (such as kNN) and containment queries in exploiting the merits of GSS

sharding scheme, thus achieving a prespecified set of QoS goals. By doing so, we focus on

higher resource utilization, higher throughput, lower latency while keeping the accuracy

untouched. Chiefly, we have retrofitted a version of the plain MongoDB spatial join query

optimizer, which is used specifically for queries that incorporate containment, intersection

or overlap spatial predicates. Our retrofitted edition exploits our newly introduced

7 https://docs.mongodb.com/manual/core/2dsphere/

QoS Aware Distributed Batch Spatial Query Processing

74

partitioning scheme GSS for supporting queries that intrinsically encapsulate spatial join

predicates such as ensembles (e.g., Top-N) and inclusion.

The query optimizer starts by the same procedure for both query types (i.e., proximity and

containment). The optimizer first classifies the query to decide based on the type either to

retrieve the stored covering geohashes (in case of containment-PIP) or to calculate the

geohashes based on the embedding circle (in case of containment-PIC and proximity). The

procedures are different in both cases.

For containment-PIC and proximity, we utilize our legacy support that appeared in our paper

in [4]. The procedure first constructs a circle (given the radius and a query point), then a

MBR for the circle is imposed, and thereafter a list of covering geohashes is generated based

on the MBR. On the other hand, for containment-PIP, we utilize our new support [83]

depending on a precalculated geohash covering for the embedding space, where we have a

list of polygons (neighborhoods, boroughs or districts in city management terms) and we

Figure 4.11. Spatial-Aware Query Optimizer for NoSQL

QoS Aware Distributed Batch Spatial Query Processing

75

calculate the covering for each polygon, then we store the result coverings in disk. This is a

one-time process that is cheaper than calculating coverings for every query independently.

Our optimizer then reformats the query operator so that it encapsulates the geohashes

covering as a prefiltering stage (a specifier in MongoDB parlance), which then acts as a

pruning machine that significantly reduces the search space. Thereafter, the new formatted

query is passed to MongoDB query router, which then forwards requests to only shards that

contain the candidate results.

In our legacy work [4] , we have provided two new operators for proximity-alike and

containment-PIC queries over MongoDB. In short, we have provided a support for

proximity-alike queries via a retrofitted version encapsulated within the plain MongoDB

layers, which then executes as a MapReduce job. At the time, $near or $nearSphere

MongoDB plain operators were not operating on sharded collections, a drawback that

prohibits them from exploiting the benefits of distributed processing. However, starting from

MongoDB 4.0, $nearSphere operator has started operating on sharded collections.

Consequently, to further extend our legacy support, we have decided to extend the support

for proximity-alike queries by employing geohash coverings as a specifier on a $nearSphere

operator this time. In this thesis, we show our latest support for the proximity-alike queries

[83] . Interested readers are referred to our paper [4] for more information about our legacy

method for supporting the proximity-alike queries and the related interesting results.

Containment and proximity queries normally exploit geospatial indexes such as MongoDB

2dsphere. As such, spatial join is pivotal so that a list of spatial objects that are encompassed

within the fences of a geometrical covering is generated. Algorithm 4.3 summarizes our

Spatial join optimizer for NoSQL workflow. We have introduced a novel geohash specifier

that works as a quick-and-dirty sieve (i.e., a prefiltering stage). This acts as a pruning device

that prunes aggressively the search space prior to applying an expensive PIP test.

QoS Aware Distributed Batch Spatial Query Processing

76

 Algorithm 4.3 Spatial join optimizer for NoSQL workflow

1: Input: two versions:

 Either Query: q, points: p, r: radius, qp (longitude, latitude): query point

for proximity through $nearSphere operator

 OR Query: q, points: p, neighborhoods: nb for containment-PIP through

$geoWithin with a geometry specifier

2: coverGeo getCoverGeo (embedding_area, geoPrec) /* List of geohashes covering region (circle

or polygon) embedding_area is either polygonal arbitrarily shaped neighbourhoods (nb in the input)

or a regularly-shaped circle (with radius r in input) */

3: coverGeoSpecifier = “geohash”: {“$in”: [coverGeo]}

4: newOperator = add (coverGeoSpecifier, MongoDB_operator) //adding the geohash specifier to the

plain MongoDB operator

5: p.createIndex(({"geohash":1,"location":"2dsphere"})/* two-levels

indexing scheme */

6: executeQuery (q, newOperator,p) //execute the query using the new operator

Geohash is a geospatial encoding scheme that normally generates a single-dimensional

representation as a string that encompasses a geographical meaning. MongoDB recognizes

geohash string as a textual field. This is a free optimization that allows using geohash

encoding as a pruning machine considering the fact that geohash is also used for partitioning

(i.e., sharding) where we select geohash filed as a sharding key. The resulting spatial index

that is then imposed is a composite key in the sense that it is composed of geohash field that

we provide and also the 2dsphere that is already provided by the plain MongoDB query

optimizer. This mechanism assures that both indexing schemes synergistically reinforce each

other without their limitations. To take a more serviceable perspective, a composite index

that is comprising geohash and 2dsphere ensures that we enforce spatial indexes on a two-

levels basis, local and global. In one hand, geohash indexing acts as a global index that is

beneficial as it is the sharding key that assists the query router in pruning significantly the

search space. On the other hand, 2dsphere acts as a local index that is applied for each shard

independently, helping in further pruning the search space as it only examines those

documents locally that in real geometries are fenced within the boundaries of S2 coverings.

In MongoDB compound indexing strategy, the order of the indexes matters (those are the

indexes that constitute the compound index). Having said that, because we have specified

QoS Aware Distributed Batch Spatial Query Processing

77

the geohash indexing as the first index in the composite index, we could reap many benefits

and enable pre-pruning the search space to highly plausible magnitudes.

Providing a more heuristic overview, our methodology acts in the following manner. First,

we overlay the embedding space with a fixed-grid network. Afterwards, we enforce an

ordering representation (z-curves and specifically geohash) so that we help in reducing the

dimensionality of the underlying multidimensional embedding space. This process results in

a z-order that helps in determining the order at which the covering grid cells are visited while

answering a query request. This causes a substantial pruning for the search space and returns

a list of points that interact with the covering. The result is then forwarded to the second part

of the compound index, 2dspahere that is freely provided by MongoDB, which additionally

prunes the local spaces. 2dspehere first linearizes the embedding space (which is a portion

of the pruned space that resulted by using the global index geohash). Afterwards, MongoDB

imposes an access structure (specifically, a B-tree index) on the sub-coverings. Running

times involved in the two parts of our procedure are linear and independent from the total

size of a MongoDB collection. This preprocessing mechanism causes MongoDB compiler

to read points (i.e., documents in MongoDB terms) that only interact with the geometrical

coverings, thus significantly minimizing the unnecessary overhead that may be caused by

costly frequent I/O operations.

4.8.5 Experimental Setup and Parameter Settings

Environment. We run SpatialNoSQL on a MongoDB Atlas cluster deployed on Microsoft

Azure cloud hosting a newer version of MongoDB (specifically version 4.0). Our

deployment consists of 4 shards. Each shard has the following profile: M30 tier with 32 GB

storage, 8 GB RAM and 2 vCPUs.

Datasets. For benchmarking, we choose to use the NY City taxicab trips datasets 8. We have

selected a cohort of two months dataset (that is constituting around three million units),

representing data captured through taxi itineraries for the first half of year 2016. We have

8 https://www1.nyc.gov

QoS Aware Distributed Batch Spatial Query Processing

78

selected the green taxicab trip records, which include interesting fields capturing, most

importantly, pick-up/drop-off locations and trip distances.

Parameter settings.

• Varying geohashes precision and comparing total documents and keys examined in

addition to the time-based QoS goals such as the running time. We have applied this

setting to compare the application of our optimization for the containment-PIP (i.e.,

based on the PIP with polygon geometry specifier) test against the plain MongoDB

support. In addition, we have applied this setting for the Top-N queries (those that are

a special case of containment-PIP).

• Varying the circle radius and measuring total keys and document examined in addition

the time-based QoS goals such as the running time. We have applied this setting to

compare the application of our optimization for the proximity queries based on

$nearSphere MongoDB operator with a test point and circle geometry specifier.

4.8.6 Test Cases, Results and Discussion

All results reported in this section are the averages of running same queries with same

settings for five times.

4.8.6.1 Testing Containment-PIP Query Optimizer

In this thesis, we focus on containment queries that demand a PIP test.

Query. We have tested based on the spatial containment-PIP query: “find all taxi trips that

have been originated in a given neighborhood in NY City during a two months period”.

Figure 4.12 depicts that our newly introduced optimizer significantly outperforms the vanilla

MongoDB optimizer for containment-PIP test.

Notice that for a geohash precision that is equal to 35, our geohash-based query optimizer

searches three shards only (instead of the scanning the four deployed shards). On the

contrary, the plain MongoDB optimizer requires scanning all the four shards of the

deployment, which causes an extra overhead. It is also apparent that the number of

documents and keys that need to be examined by using our optimizer are less than those that

need to be examined through the plain MongoDB version. This fact applies to most geohash

values. However, for narrower geohash values such as the case of geohash value that is equal

QoS Aware Distributed Batch Spatial Query Processing

79

to 25, both methods are on the brink of the need to examine the same number of documents

and keys. This apparent paradox is in part due to the fact that a smaller geohash precision

implies necessarily a wider geohash coverage (embedding space that is covered by a specific

geohash precision expand as we narrow the geohash value). For example, a geohash

precision 25 covers a cell that is less than 4.89 kilometers and almost 4.89 kilometers in

width and height, respectively. On the other side, a bigger geohash value such as a value that

is equal to 30 covers 1.22 kilometers by 0.61 kilometers for width and height, respectively,

which is a smaller area. In simpler terms, larger geohash value implies a smaller area, hence

the overlapping space (between many geohashes) shrinks, which means that less documents

(i.e., spatial points in real geometries) fall within the fences of those corresponding geohash

coverings. This fact is proved also with the case of geohash precision that is equal to 35 as

shown in figure 4.12. As a way of contrast, smaller geohash values mean larger areas, and

thereby more documents fenced within their boundaries, which causes more documents to

be examined at run time.

To quantify results in a more coherent way, we have calculated the speed up by relying on

Amdahl’s law as in (4.3).

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑇𝑚𝑜𝑛𝑔𝑜

𝑇𝑔𝑒𝑜ℎ𝑎𝑠ℎ
⁄ (4.3)

Figure 4.12. Comparing the performance of our new spatial join query optimizer on containment-PIP

queries (with a $geoWithin operator with a geometry specifier) against the vanilla MongoDB optimizer.

‘Mongo’ in the legend means the plain MongoDB, whereas ‘geohash’ means our new geohash-based

optimizer. noExDocs and noExKeys mean the number of examined documents and keys, respectively

QoS Aware Distributed Batch Spatial Query Processing

80

Where 𝑇𝑚𝑜𝑛𝑔𝑜 is the running time by applying MongoDB plain operator, whereas 𝑇𝑔𝑒𝑜ℎ𝑎𝑠ℎ

is the running time by applying our version based on geohash.

Our results shown in figure 4.13 prove that we always (for all geohash precisions) gain speed

up by applying our filter. Notice that we obtain a better speed up by conveniently tweaking

the geohash value. For example, we obtain the best speed up by using a geohash value that

equals 35 which further strengthens the argument we started beforehand regarding the results

of figure 4.12. However, all in all, our optimizer outperforms the plain MongoDB counterpart

by numerically significant orders.

4.8.6.2 Testing Top-N Query Optimizer

By this test scenario, we compare the ability of our optimizer in striking a better balance

between the QoS goals.

Ensemble queries such as top-N are special cases of containment-PIP. Having that in mind, we can

answer Top-N queries by checking the spatial objects that are fenced within the boundaries of each

neighborhood (i.e., polygon). This in its essence requires applying the containment-PIP test operator

for each object that interacts with the coverings.

Query: We have tested our containment-PIP optimizer effect on top-N queries based on the

following query: “what are the top-10 neighborhoods in NY City, USA that have the most

taxi pickup orders in a period of two months”.

Figure 4.13. The speed up gain we obtain by applying geohash-based containment-PIP optimizer

against MongoDB plain optimizer

QoS Aware Distributed Batch Spatial Query Processing

81

Figure 4.14 depicts that the vanilla MongoDB optimizer underperforms our novel optimizer

for all geohash values. As it is obvious, the best case happens at geohash precision value that

is equal to 35, which directly implies that geohash precision is a pivotal tweakable

configuration parameter in our optimizer.

Expressing those results another way, we apply a simple speedup formula as in (4.4).

𝑇𝑡𝑜𝑝𝑁_𝑚𝑜𝑛𝑔𝑜
𝑇𝑡𝑜𝑝𝑁_𝑔𝑒𝑜ℎ𝑎𝑠ℎ

⁄ (4.4)

Where 𝑇𝑡𝑜𝑝𝑁_𝑚𝑜𝑛𝑔𝑜 is the running time by applying the plain MongoDB containment-PIP

optimizer on Top-N queries, whereas 𝑇𝑡𝑜𝑝𝑁_𝑔𝑒𝑜ℎ𝑎𝑠ℎ is the running time by applying our

geohash-based containment-PIP optimizer on Top-N queries. Figure 4.15 depicts what has

been sketched. Those results show that our query optimizers are able to satisfy and trades off

time-based QoS goals (specifically running and latency times in this case) better than the

plain versions. The tiny-gain case where only tiny speedup is obtained when applying the

Figure 4.14. Comparing the effect on performance of our new containment-PIP query optimizer on

ensembles (specifically Top-N queries) against the plain MongoDB optimizer. Mongo in the legend

means the plain MongoDB, whereas geohash means our new geohash-based optimizer. noExDocs and

noExKeys mean the number of examined documents and keys, respectively

QoS Aware Distributed Batch Spatial Query Processing

82

geohash precision value that is equal to 25 complies with our argument in section 4.8.6.1

regarding figures 4.12 and 4.13.

To quantify deeper, we apply (4.5) to calculate the resource utilization gain (i.e., CPU

running times)

 𝑑𝑒𝑓𝑓 = 𝑔𝑎𝑖𝑛 = (𝑆𝑂Mongo − SOgeohash)/𝑆𝑂Mongo (4.5)

, where 𝑑𝑒𝑓𝑓 is the design effect (i.e., gain), 𝑆𝑂Mongo is the number of scanned documents

by applying the plain MongoDB optimizer, whereas SOgeohash is the number of scanned units

by applying our version (geohash-based containment-PIP optimizer). Figure 4.16 shows the

gain we obtain. This specifically achieves the higher-resource-utilization QoS goal, as the

number of CPU cycles reduces significantly by avoid scanning unnecessarily objects that are

Figure 4.15. speed up by applying geohash-based containment-PIP optimizer against MongoDB

plain optimizer

Figure 4.16. Design effect expressed as a resource utilization gain

QoS Aware Distributed Batch Spatial Query Processing

83

not contributing toward a result set. Notice again in this case the fact that we obtain higher

design effect (plausible) by applying a geohash that is 35 as opposed to narrower values such

as those that are equal to 25 and 30.

4.8.6.3 Testing Proximity Queries (for example, kNN) Optimizer (relying on a retrofitted

$nearSphere MongoDB operator with a test point and circle geometry specifier).

Query: We have tested our proximity query optimizer effect based on the following kNN query:

“find all locations of taxi itinerary pickup orders within a predefined circular distance from a

concentrically located test point within a period of two months, sorted from nearest to farthest”.

As shown in figure 4.17, Our novel method outperforms that of MongoDB plain by discernable

margins. However, we have noticed that in cases that require examining a substantial number of

documents and keys, the running times reduction gain may vanish. For example, notice the case

where a prespecified distance is a radius that is equal to 15 kilometers. In that case, our proximity

query optimizer requires examining a number of documents and keys that is roughly similar to those

required by the plain MongoDB. This however is normal and healthy because the number of returned

spatial objects that satisfy the distance predicate (i.e., 15 kilometers) roughly equals the total number

of documents in the original points collection.

Figure 4.17. the performance of our spatial join query optimizer on proximity queries (with a

$nearSphere operator) against the plain MongoDB optimizer. Mongo in the legend means the plain

MongoDB, whereas geohash means our new geohash-based optimizer. noExDocs and noExKeys

mean the number of examined documents and keys respectively

QoS Aware Distributed Batch Spatial Query Processing

84

Results appear in this thesis include our novel supports [83] . For our legacy supports,

including containment-PIC optimization, in addition to the legacy MapReduce-based support

and results of the proximity query optimizer, readers are referred to our paper [4].

All results shown in this section prove that SpatialNoSQL is adept in satisfying Qo[4]S goals.

Specifically, we have focused on time-based goals such as low-latency, in addition to other

goals such as higher resource utilization and high accuracy. It does so by applying GSS with

retrofitted query optimizers for both proximity (such as kNN) and containment queries. GSS

achieves a significant weighted balance between two partitioning goals, SDL preservation

and load balancing. GSS does not consider BSO minimization as proximity and containment

queries does not require the replication of BSOs to neighboring grid cells, thus not inducing

any overhead.

To quantify at a cursory level, we apply (4.5) to calculate the resource utilization gain (i.e.,

CPU running times) that we may reap by applying our proximity optimizer instead of the

default MongoDB counterpart.

As shown in figure 4.18, the gain we can obtain inclines linearly as we increase the radius of

the area. This complies with our discussion regarding the results of figure 4.17. However,

we always obtain a gain by applying our optimizer against the plain counterpart.

Figure 4.18. Design effect expressed as a resource utilization gain

QoS Aware Distributed Batch Spatial Query Processing

85

4.8.7 Related Literature

From the relevant literature, we herein list some few works. For the column-oriented

databases, [84] have designed a sharding scheme they term as SPPS, which basically aims at

balancing loads while preserving SDL. They employ a model-based formulation for

computing the number of relevant partitions that are required for load balancing. In addition,

they employ an indexing scheme known as spatial longest common prefix (SLCP for short)

for geo-encoding spatial objects in a manner that achieves SDL preservation, and thereby

sending real-geometrically nearby spatial objects to the same partitions.

In the same vein, [85] have designed a framework they term as HGrid on top of the HBase

database system. HGrid works by a mixture of a quadtree and grid-based representations,

aiming at basically achieving SDL preservation. Also, [86] have designed a scheme that is

based on a method known as GeoSOT [87] over HBase. GeoSOT partitioning method is

similar to a multi-level geo-encoding scheme that incorporates a micro level (on the scale of

square centimeters) to bigger macro levels. Grid cells are overlay on each level and a z-

curves ordering is further imposed on the grid to hasten the order of access, thus

accomplishing a credible balance between load balancing and SDL preservation. Range

spatial searches are supported. Perhaps most importantly is a work known as GeoSharding

[88] , which encompasses a method that transforms the embedding space into a virtual

network of shards, such that each (or few) shards correspond to an area in real geometries.

Each time the system receives a spatial point, it emits it to the shard which corresponds to its

real-geometrical location, thus preserving SDL to a plausible degree. They have employed

Voronoi indexing because it covers irregularly-sized polygons (i.e., regions), which is in

contrast to z-order curves. GeoSharding is engineered atop MongoDB. The picture thus far

that has emerged from the literature is that no single splitting scheme is a panacea. Instead,

several approaches should be combined and tightly coupled so that they synergistically

produce a credible method that can be used for complex scenarios in dynamic applications.

By designing GSS over MongoDB and all the associated optimizers, we have specifically

achieved that goal.

QoS Aware Distributed Batch Spatial Query Processing

86

4.9 Chapter Conclusion

A weighted balance should be considered for conflicting data partitioning goals, SDL

preservation, BSOs Minimization and load balancing. Those are conflicting in a way that

makes a closed-form solution NP-hard and far from being solved (rendering the problem

computationally intractable at times depending on the data distribution and skewness).

Exaggerating the optimization of any of those competitors, even counterintuitively with

small factors, can carry over a negative effect on other goals. We recommend seeking to

strike a plausible balance between partitioning goals, while combining that with custom

query optimizers that exploit the novel sharding methods in a way that assists the system to

achieve QoS goals. Considering also that most partitioning methods are performed as

sequential jobs in distributed systems, the gains by a custom partitioning procedure should

mitigate any additional overhead it induces. Consider also that as per the Amdahl's law, there

is a limit on the gain (especially speedup in data parallelization scenarios) that can be

obtained through an optimization for a parallelly executed job that intrinsically incorporates

a non-dispensable sequential part. Amdahl’s law [44] is a dominant corollary in this context,

where the incremental gain obtained by continue optimizing the same portion vanishes

ultimately. Having said that, the non-separable sequential data partitioning part should be

minimized, and any custom partitioning method should seek trading off the three partitioning

goals in a convenient manner that does not add superfluous overhead to the equation.

In accordance with those recommendations, SpatialBPE and SpatialNoSQL perform

favorably against baselines. Resource utilization also should be considered a QoS goal with

a high priority, thus striking a balance between time-based QoS and economy-based goals is

pivotal.

In summary, we posit that spatial partitioning plays a vital role in the speed of spatial query

processing in parallel computing environments. However, spatial-aware data partitioning

alone is unable of achieving all desired qualities.

Our focus in this chapter was on batch processing and scalable storage and the systems we

design have taken central position in the SpatialDSMS, thus easily finds their way to break

into big geospatial management domain. An upcoming stage in the pipeline could be

accepting data as streams, then joining those with historical archives. This enables

QoS Aware Distributed Batch Spatial Query Processing

87

SpatialNoSQL and SpatialBPE to engage in mashup workloads effectively. Also, it is

infeasible to store on-the-fly deluge of geo-referenced datasets, despite the need to store

snapshots at times. Interactive processing is receiving a momentum for the better part of the

last decade or so. Structures, models and algorithms from the batch processing space, some,

are transferable while others need more efforts to be considered for online speedy processing

of geo-referenced datasets. For example, some partitioning spatial methods while performing

with QoS guarantees in batch mode cannot be applied to online data as they take a huge toll

on I/O performance. Having said that, online processing despite complementary to the other

parts in our architecture SpatialDSMS (refer to section 3.4), has its own peculiarities that

should be considered which are covered throughout the next two chapters.

SpatialSPE: Spatial Approximate Query Processing

88

Chapter 5

5 SpatialSPE: Spatial Approximate Query Processing

Nowadays, with the abundance of cheap GPS-enabled devices, IoT is emitting avalanches of

geo-referenced data streams. Most applications at the top level are seeking insights by

presenting data in a multidimensional manner (dashboards, heat maps, and other

visualizations) interactively so as to serve them to higher level managers for an improved

decision making and strategic planning. It is then important to present those insights

interactively in a timely fashion before they become obsolete and loses their value. However,

the 3Vs of big data (velocity, variety and volume) challenges the capacities of current SPEs.

Provisioning extra computing resources in a dynamic allocation style is often the solution

that is becoming a norm in state-of-art SPEs. However, scaling that way often enforces a

huge toll on the QoS goals and is not able to strike acceptable margins of balancing between

time-based QoS goals (i.e., low-latency, mostly on the scale of sub-seconds) and other goals

such as high resource utilization. As a way of coping with that, load shedding lends itself as

a highly desirable solution, especially knowing that a well-designed load shedding

mechanism yields statistically plausible results with rigorous error bounds. This is the

essence that encouraged us to prefer approximations over dynamic allocation approaches

(i.e., elasticity). In addition, elasticity induces extra overheads through repeated

reconfigurations that may require various cycles of shutdowns and restarting which slides an

effect that negatively impacts an end-to-end QoS metrics (e.g., latency).

After building SpatialBPE and SpatialNoSQL which support faster analytics in batch mode

(in-memory and disk-based processing), we have realized that despite we have obtained

orders of magnitude gain over state-of-art counterparts, the implementation is still suffering

slowness (on the orders of minutes for complex analytic scenarios such as DBSCAN) and

cannot be applied “as-is” for processing data in-flight (a.k.a. arriving in online settings). The

fact that in spatial intelligence, scientists accept approximations with rigorous error bounds

encouraged us then to search for gaps where we can contribute by providing spatial-aware

optimizations for Approximate Query Processing (AQP) in online settings. This led to the

design and implementation of a baseline engine we dub as SpatialSPE, a unique and solo in

SpatialSPE: Spatial Approximate Query Processing

89

its class that can provide an SQL-like (exposing micro-batches through a declarative API

similar to SQL in relational DBMSs) interface for distributed Spatial Approximate Query

Processing (SAQP). With SpatialSPE, we support an extra set of spatial analytics coming

this time from the spatial statistics (a.k.a. geo-statistics) field, aiming at enriching the pipeline

with a diverse set of analytics that meet the requirements envisioned throughout the

motivating scenario of section 1.1. To the best of our knowledge, we are not aware of any

system in the relevant literature that achieves the goals of SpatialSPE.

This chapter is organized as follows. We first motivate the work in § 5.1, this is followed by

a primer on theoretical foundations in § 5.2, then we discuss the design of SpatialSPE with

the associated SAOS algorithm in section § 5.3. We then in § 5.4 show the technical details

behind the realization of SpatialSPE in short, followed by a discussion of the results obtained

by applying SpatialSPE in § 5.5. Thereafter, in § 5.6 we recapitulate important works from

the related literature, and then conclude the chapter in § 5.7 with a short forward introducing

the need for a complementary work in chapter 6.

5.1 Motivation

The widespread adoption of IoT devices have caused avalanches of geo-referenced data

streams to flow endlessly and feed DSMSs, and specifically SPEs [22]. The timely

exploration of those streams offers deep insightful analytics that assist strategic planning in

all aspects of our lives, including city planning, urban computing and health care. Low-

latency and high-estimation-quality are the two greatly antithetical QoS goals that need to be

trade off in a plausible way. Deterministic solutions, where exactness is required, cannot

normally strike a plausible balance between those contradicting QoS goals. Thus,

Approximate Query Processing (AQP) lends itself as an alternative probabilistic path that

has shown promising in striking a balance between QoS goals. The fact that, more than often,

users are willing to abandon tiny error-bounded estimation quality by accepting a small

reduction in the gain profit margin for the benefit of even a small latency gain. In other terms,

it is important to comprise an acceptable degree of exactness but on the price of avoiding the

slowness induced by an exhaustive search, thus striking a balance between conflicting QoS

goals (such as the case of low-latency against high-resource utilization). AQP depends on

SpatialSPE: Spatial Approximate Query Processing

90

many data size reduction techniques, from which sampling presents itself as a leading

solution. Sampling means selecting a portion of the total data (i.e., population) and compute

an error-bounded statistic based on that portion. A great challenge relates to designing a

sampling scheme that is able to select representative samples that yield estimations with

rigorous error-bounds [89]. Most online sampling methods embrace randomness, by

depending on sampling schemes that are based on random sampling. However, most

interesting data are highly skewed (as opposed to the normal distribution). Designs that are

based on randomness proved inefficient for non-uniformly distributed data such as geospatial

data. In real scenarios, data streams are geo-referenced and being attuned to this

characteristic in every aspect of the DSMSs is essential for location intelligence to success,

including the online sampling scheme. Aiming at closing those gaps, we have designed and

implemented SpatialSPE (short for Spatial Stream Processing Engine), together with a

specialized online sampling method SAOS (discussed shortly in section 5.3.4). Our

contributions by introducing SpatialSPE are the following. First, we have designed a fast in-

memory first-in-class online spatial sampling scheme and incorporated it with an emerging

SQL-like based micro-batch SPE, Specifically Spark Structured Streaming [6], (SpSS as a

shorthand). We dub our method as SAOS (explained in section 5.3.4). The originality of our

method lies in the fact that it is able to pick interactively spatially proportional representative

samples that, when used in an approximate yield results with high quality. The second

contribution we provide through SpatialSPE is that we have retrofitted the SpSS query

incrementalizer so that it becomes aware of the spatial approximate queries that are

confronting the system up the pyramid. We use the retrofitted version to incrementalize geo-

statistical computations on geospatial data. Incrementalization means that results accuracy

will be improving stepwise. Queries include single spatial queries, such as approximating a

study variable (e.g., the ‘average’ or ‘total’ of a variable). We also support spatial online

aggregations, such as Top-N rank geo-statistics. To the best of our knowledge, we are not

aware of any system from the relevant literature that achieves these goals.

SpatialSPE: Spatial Approximate Query Processing

91

5.2 Theoretical Foundations

In this section, we aim at laying down the foundation for delineating coherently the ideas

presented thereafter. We discuss various sampling designs and the need for spatial-aware

methods that consider spatial patchy distributions by design.

5.2.1 Stream Processing

Stream Processing can be loosely defined as any middleware that is responsible for

processing streaming loads of data, aiming at gaining deep insights. Those systems normally

have a topology of operators, often known as Directed Acyclic Graph (DAG), which also

comprises input streams that emit data and the output sinks that receive the (often)

incrementalized results. In distributed deployments, operator instances are replicated through

the network so as to distribute the workload. The goal then is to achieve a prescribed list of

primary QoS goals such as low latency, high throughput and high accuracy. In addition to

secondary QoS goals (e.g., load balancing) that are defined for empowering the primary

goals. Those goals are normally achieved through elasticity or approximate computing.

Parallelizing SPEs is important for achieving QoS goals (i.e., lowering latency and gaining

throughput), where the system depends on executing multiple instances of the same operator

(i.e., one in each worker node) on a subset of data in a parallel fashion (as opposed to the

traditional sequential execution). Two processing models are common in SPEs, record-at-a-

time (a.k.a. tuple-by-tuple) or micro-batching. In the former, as its name implies, each record

is processed independently in the sequence it arrives, whereas in the latter, multiple records

are accumulated into micro-batches before being sent to parallelly distributed operator

instances. Stream processing has borrowed many semantics from the batch processing

because of micro-batching model. It also introduced a new set of semantics that are not

required in batch mode. For example, window semantics either constraining the period (i.e.,

time-based windows) or number of records (i.e., count-based windows) that can collectively

be processed in one shot. In this thesis, we focus on tumbling windows, thus reducing the

endless processing mechanism of a stream by discretizing (a.k.a. windowing) it into more

manageable finite subsequence periods that are non-overlapping (i.e., tumbling). A stream

tuple belongs only to one window period in tumbling semantics. Aggregations then are

performed on each window independently or with a state management mechanism in case of

SpatialSPE: Spatial Approximate Query Processing

92

stateful aggregations. Thereafter, results are served interactively and incrementally (i.e.,

stepwise) to the user.

5.2.2 Sampling

5.2.2.1 A Short Primer on sampling

In statistics, sampling is loosely defined as the procedure of selecting a representative portion

(could be miniatures) of a population for estimating an unknown population quantity, such

as an ‘average’ or ‘count’ of a target variable. Population represents all units in a specific

study area. For example, all persons in a city, where the target of sampling is, for instance,

estimating the average age of persons. Those estimators are normally associated with a

variance measuring their accuracy [90] .

Sampling is pivotal for most statistical studies for various reasons. For example, obtaining a

total population could be purely fictional. For instance, heights of all people in a country.

One other potential reason is that processing a whole population census is, more than often,

computationally challenging. Despite that this is hardly ever an issue with the abundance of

wide spectrum of big data processing engines, at times, it may be true that data arrives in

streams where updating results regularly based on newcomers is pivotal for correct time-

dependent estimators. In those cases, we usually base our estimates on observations arrived

so-far and extrapolate our results to future times. Besides, at times, it’s not even practical to

visually plot a summary of billions of observations on boards, such as those cases where we

generate heat-maps of a natural phenomenon.

Our decision on whether a method is a good or bad sampling method depends highly on

various factors including the sampling design and size. The sampling design is the procedure

by which a sample of units or sites is selected. However, there is a consensus on the idea that

the sample should be a good representative for the population. Stated another way, sample

constitutes a scaled-down (can also be dubbed as ‘microcosm’) version of the population

holding intrinsically and mirroring all traits and characteristics of that population it is

representing. It is undoubtedly true that there is no such thing like a “perfectly-representative

sample”, but at least if we could obtain a sample that is good enough to yield characteristic’s

estimations with a known degree of accuracy or confidence, then it would be safe claiming

that the sample is representative. One of the most recurrent problems that renders some

SpatialSPE: Spatial Approximate Query Processing

93

sampling designs as bad is the selection biasedness, which, in simple terms, is the process

for which the sampling method overlooks some parts of the population by design [90] . For

example, for estimating a percentage of possible voters in the United States who potentially

will vote for the democratic party in an upcoming election cycle, selection biasedness may

render estimates invalid. It is an indispensable fact that sampling generally cause sampling

errors (normally termed as Standard Errors (SE)) which stems from basing estimates on a

sample rather than the whole population [90]. Modeling uncertainty has strong ties with

selecting proper sampling designs. A design that minimizes uncertainty figures, such as

standard errors, is plausible more than those with expanded error intervals. In other terms, as

long as those values estimated using a sample are close to the real values (i.e., estimated from

the total population with no sampling) for some arbitrary number of sampling permutations,

the method is considered good, otherwise not.

Aiming at increasing the unbiasedness coupled with the tendency to design methods that

yield low-variance estimates in a variety of scenarios, many sampling methods have been

designed, among which the two most widely adopted are simple random sampling (SRS) ,

which is a probability design (a.k.a. random sampling without replacement) and Simple

Stratified Sampling (SSS). The former proceeds by normally assigning an equal selection

probability to each unit in the population, thereafter, assigning labels to each unit and

selecting labels randomly until a specific number of distinct units that is equal to the sample

size is selected. This guarantees that all possible permutations have equal probabilities of

being considered as a sample. The latter operates in a different way, where it selects

fractional portions from total units depending on the group they belong to. Sampling students

from schools, we take 50% boys and 50% girls, where boys and girls are stratum in this case.

The distinction between those two magnets lies in the fact that SSS may assign equal

inclusion probabilities to each unit in the same stratum, but this may differ from other units

in other stratum as each stratum is treated independently [91].

The overarching traits offered by stratification has encouraged us to consider a design that is

based on stratified sampling, but at the same time considers the spatial patchy distributions

in scenarios of smart cities and Industry 4.0. In the next subsections, we provide a short

SpatialSPE: Spatial Approximate Query Processing

94

primer that spots the light on spatial sampling, aiming at steering a better comprehension for

the hybridization we have performed in our method, discussed in section 5.3.4.

5.2.2.2 Sampling

Deterministic solutions for data analytics problems do not play well with fast arriving huge

data streams that are mostly geo-referenced with complex data structures that show

oscillation in data arrival rates and skewness [4]. Be that as it may, in geo-statistics,

approximations that yield plausible error-bounded statistical results are acceptable [92].

Having said that, a well-selected representative sample can be safely exploited for

geostatistical analytics such as the approximation of target study variables (e.g., ‘average’,

‘total’ and ‘proportion’). Also, observing all items of a population could be intractable, such

as observing migrating birds in a huge location, which are spatially unevenly distributed [93].

5.2.2.3 Spatial Online Sampling Designs

Spatial sampling has a great advantage in many domains such as environmental monitoring

[94] . It is formally expressed with a ternary (𝜓, ℑ, ℜ), where ℜ is the embedding space

(often two- or three-dimensional space) from which samples are drawn, ℑ is the sampling

frame (i.e., SRS, SSS) overlaying the survey area (i.e., embedding space), 𝜓 is the statistic

that is employed for estimating a variable of interest (e.g., ‘total’ and ‘mean’ of a parameter

in study area). The choices of ℑ and 𝜓 heavily affects the goodness of the spatial sampling

design [94]. Those configurations enforce an uncertainty on the spatial sample estimation

and the common goal is to reach an unbiased estimation with the lowest possible variance,

which, in spatial distribution, is normally achieved by being attuned to the characteristics of

the spatial data, where the sample is spatially representative and well-spread out over the

sampling space [95] .

Preserving spatial co-locality through a sampling design is known to yield better estimates

[96, 97]. A principle that complies with Tobler's first law of geography, which simply states

that nearby spatial objects are more related than those far apart [98]. One way for achieving

this, is to imagine the earth flattened out (i.e., two-dimensional planar irregular grid-like

representation) and sample proportional quantities from each subregion (i.e., cell or

polygon), which is known to yield plausible statistical results with reduced estimation errors

[94, 98] .

SpatialSPE: Spatial Approximate Query Processing

95

Current SPEs with their related spatial-aware extensions and plugins focus on striking a

weighted balance between few QoS goals (e.g., low-latency and high-accuracy) by either

overprovisioning resources (i.e., scaling in/out) or dropping-off (a.k.a. sampling or shedding)

portions from the arriving data, thus loosing tiny accuracy for plausible latency gains.

However, overprovisioning resources, that are not normally released after a spike, conflicts

with the target of high resources utilization. For sampling and other sketching methods, state-

of-art SPEs exploit sampling schemes that are basically embracing randomness, based

mostly on SRS [90] , rendering them non-attuned for spatial characteristics that surround

objects in proximate locations. SRS does not serve the estimation quality QoS target in

spatial patchy environments, where spatial objects are normally clumped into few patches.

Stated in other terms, SRS normally unduly chooses random counts with unfair fractions

from all cells of the survey area (analogous to strata in stratified sampling), even if it

performs well at times, at most times it cannot. There is a consensus in geo-statistics that

geo-near spatial objects have, more than often, strong ties with contexts of their surroundings

(i.e., ecological, anthropogony, etc.,) [93, 99, 100]. All in all, selecting geographically

spread-out samples is known to affect estimations quality. We dub those samples drawn that

way as geospatially representative samples. In addition, although some works of the related

art focus on spatially representative sampling designs, they normally consider only static

finite populations (as opposed to continuous infinite populations that always have

superpopulations). Chief among factors that played a role in the shortage of spatially

representative sampling designs for continuous populations is maybe the prohibitive

computational capacities of systems at those times. However, current SPEs act as promising

jumping off systems for building online sampling designs.

In this thesis, we scope ourselves to designing stratified-alike spatial sampling methods that

select well-spread out proportional spatial samples from irregular regions in the sampling

space (a.k.a. polygons). It should be also noticed that there are requirements that affect the

fact that we are constrained to selecting spatial samples in non-stationary, anisotropy online

settings with temporal fluctuations in arrival rates and skewness, thus the term stream

sampling (a.k.a. online sampling), which is discussed in the next subsection.

SpatialSPE: Spatial Approximate Query Processing

96

5.2.2.4 Stream Sampling (a.k.a. Online Sampling)

There are requirements that are normally imposed on stream sampling in a way that does not

affect finite sampling designs. One important consideration is that samples would be taken

either on-the-fly in case of record-at-a-time stream processing models, or from small batches

(known as micro-batches) in micro-batch processing models. Another fact is that streaming

systems normally apply the exactly-once semantics, where tuples are not replayable. Also,

estimates should be designed so that they confluence with the incrementalization semantics

of the streaming model. For example, in time-based micro-batching window semantics, an

‘average’ on an interesting variable should be updated in every interval (i.e., batch interval,

portion of the time window) incrementally building on preceding intervals. Those challenges

place many constraints on stream sampling designs that do not normally affect stationary

sampling designs in the same way. To close those gaps, we have designed a spatial aware

online sampling method that is based on a SPE that supports a declarative SQL-like API.

Our system that we term SpatialSPE is discussed in the next section.

5.3 SpatialSPE: QoS-aware Approximate Spatial Data Stream Processing Engine

5.3.1 Usage Model and Baseline System

Intelligent systems such as those focusing on spatial intelligence (refer to section 3.1 for

details) serve interactive results from a spatially patchy streaming source to the decision

makers in a simplified way that enables them to make sound decisions and strategic plans

easily. To achieve that, results are served on the form of either visualizations (e.g., heatmaps,

histograms, etc.,) or dashboards. Both are end results that pass through an end-to-end

complex pipeline. Map rendering systems are space-constrained in the language of their

ability to absorb a limited count of spatial objects and overlay them on a map at any given

time. Consider an example of an online spatial query that asks to interactively generate

heatmaps of “people and vehicles in-motion grouped by district in the city of Milano in

Italy”. In a rush hour, were objects are usually clumped into specific districts, this easily

cause a clutter. Sampling in this case lends itself as a promising solution. A baseline system

that depends on SRS (SpSS-based SRS baseline) normally unduly overlooks regions,

resulting in maps that do not necessarily represent the real distributions, which does not help

in assisting a correct decision making. In that case, selecting a geospatially well spread-out

sample based on a spatial aware design that yields better heatmaps plots. This usage model

SpatialSPE: Spatial Approximate Query Processing

97

convinces the need for an online spatial sampling design. For this, we have designed SAOS

as explained in section 5.3.4.

5.3.2 Design Assumptions

To resolve challenges associated with traditional sampling designs such as the case of

heatmaps generation, we have designed a spatial aware approximate interactive real-time

processing system that we dub as SpatialSPE (an abbreviation for spatial stream processing

engine) so that it operates under the following assumptions. Sampling rates are served to the

system as an external input, we are not providing any cost model that feeds a controller for

mapping QoS goals into an adaptive sampling rate. We have designed instead that kind of a

controller as part of the SpatialSSJP (the topic of chapter 6).

5.3.3 SpatialSPE Design Overview

SpatialSPE can be effectively exploited for online spatial approximate analytics. The context

diagram of figure 5.1 shows a high-level architecture of the workflow of SpatialSPE. The

operation proceeds as follows. Geo-referenced spatial streaming data is fed to the system

through an ingestion system (e.g., Kafka) as an unbounded input table (in SpSS terms) at

regular time intervals (known as trigger intervals in SpSS terms). SpatialSPE receives the

online spatial query in addition to QoS goals (expressed as estimation quality, latency and

throughput targets).

SpatialSPE: Spatial Approximate Query Processing

98

It also receives a sampling rate (e.g., calculated through an external controller). Listing 5.1

shows an example online query (in Spark SQL terms)

SpatialSPE granularity identifier (a building block in SpatialSPE, see figure 5.1) decides the

level of granularity to apply (most granular level is geohash, while the coarser level has no

limits, could be borough, district, neighborhood, county in city administration terms, or even

cities, countries, etc.,). In cases where the most granular level is required, for example

“sampling fairly proportional amounts based on a grid-like representation”, imagining the

df = samplepointDF_SSS.groupBy($"geohash"). count().orderBy($"count".desc)

Figure 5.1. SpatialSPE workflow

listing 5.1 An example online query in Spark Structured Streaming terms

SpatialSPE: Spatial Approximate Query Processing

99

earth in two planar geometry with each grid cell as a covering for a circle (squared-grid with

width equals to double the radius), then the granularity identifier forwards micro-batches

untouched to a component that simply adds geohashes to each unit (a linear dimensionality

reduction approach, from GPS coordinates, longitude/latitude, into a geohash code). On the

contrary, in cases where a coarser level is requested, such as sampling by ‘borough’ instead

of ‘geohashes’, thus taking evenly proportional sampling rates from each borough in a city,

the problem is more complex and needs more attention. First, each spatial point in the micro-

batch can be converted to a geohash, then specifying to which borough this point belongs

requires solving the Point in Polygon test (recall more information from section 2.3.2), which

requires joining data from each micro-batch with polygons table (a static table, where each

polygon represents a borough). To solve this problem efficiently, we have employed a

retrofitted version of Spark’s Magellan 9 (a geospatial analytics library that was designed to

work with Spark SQL). We have chosen Magellan because it supports SQL and it is known

in performing a cheap PIP tests by utilizing filter-and-refinement join approach (that employs

a cheap MBR-join in the filter stage). Hitting this point, spatial objects are readily stratified

and will be fed to our spatial aware online sampling algorithm (abbreviated SAOS, explained

shortly in section 5.3.4). SAOS selects fairly proportional amounts (based on the granularity

level identified) from all regions and serves the resulting sample to an approximator that

operates on top of SpSS , taking advantage of the incrementalizer and optimizers of the

underlying system in generating incremental query results(e.g., every time window) .

SpatialSPE operates under the assumption that QoS goals (e.g., latency/throughput) are

served as an input by the user. A model-based function is responsible for calculating those

parameters into an appropriate sampling fraction (i.e., rate), which is also an external module.

SAOS then samples proportional fractions from the data input stream, this is followed by an

application for the retrofitted incrementalizer, which computes the geo-statistics from the

samples and produce a result with rigorous error bounds and serve them to user interactively.

9 https://github.com/harsha2010/magellan

SpatialSPE: Spatial Approximate Query Processing

100

At this stage, sampling ratios (i.e., fractions) are the same for all stratum (i.e., geohashes).

Also, the system receives a CQ that will be executed stepwise.

An important sub-module of SpatialSPE is responsible for calculating the covering geocodes

(currently geohashes). Those are the geohashes corresponding to MBRs that are covering an

embedded space where the sample has been drawn. This submodule works as follows; it first

receives an input file containing coordinates of vertices that are forming polygonal areas

(a.k.a. neighborhoods, districts or boroughs in city management terms) covering collectively

the survey area. The procedure proceeds by exploding all the geohashes covering all the

polygons, thus building a map and serving it to SAOS, which selects a well representative

spatial sample and emits it to the operator downstream.

Algorithm 5.1. SpatialSPE Workflow

 /* latThrTargets: latency throughput targets, precision: geohash precision, CQ:

continuous query*/

 Input: stream, ContinuousQuery (CQ), latThrTargets, polygons, geoPrec, seed

1: samplingMap ∅ //map of geohash keys and sampling fractions

2: coverGeo getCoverGeo (polygons, geoPrec) /* List of geohashes covering study area

(embedding space) */

 // costProcedure: external cost model that calculates the sampling fraction

3: sampFraction costProcedure(latThrTargets)

4: Foreach geohash in coverGeo do

 // construct a map, geohash: key, sampling fraction: value

5: element map {geohash→ sampFraction}

6: samplingMap.put(element)

7: End

8: Foreach time window interval do

9: windowSample = ∅ // tuples sampled in current time window

10: Foreach batchInterval in window interval do

11: batchSample = ∅ //tuples sampled in current batch interval

12: forall tuplesi in batch interval do

 /* apply SAOS on tuples of current batch interval: tuplesi */

13: batchSample SAOS (tuplesi, samplingMap, sampFraction, seed)

14: windowSample.add(batchSample)

15: End

16: End

 //compute and serve incremental output after each time window

17: incrementalOutput run (CQ, windowSample)

18: return incrementalOutput with error-bounds

19: End

SpatialSPE: Spatial Approximate Query Processing

101

The operator is part of a DAG that is corresponding to the user-defined CQ, which then will

be applied to the sample during that time window interval and the result will be interactively

served to user incrementally, reflecting inter-window changes. Algorithm 5.1 shows the

workflow of SpatialSPE. For more information about Algorithm 5.1, refer to our paper [101].

5.3.4 Spatial Aware Online Sampling (SAOS) Algorithm

To enable SpatialSPE in achieving QoS goals for spatial real-time data analytics scenarios

that require approximations, we have designed a unique sampling method that we dub as

Spatial-Aware Online Sampling (short for SAOS), comprising a pivotal technological block

in our system SpatialSPE. Our algorithm is superior because of its unique ability in

considering spatial patchy distributions by being able to collect fairly proportional amounts

without overlooking some sampling areas. SAOS seamlessly and transparently is

incorporated within the layers of a de facto micro-batch-based SPE (specifically SpSS).

Thus, captivating advantages of the incrementalizers and query optimizers of the underlying

engine. SAOS does not necessitate a prior-knowledge of streaming statistics (e.g., total data

population, where even such a semantic vanishes as any population in continuous settings is

part of a superpopulation).

The workflow of SAOS is listed in Algorithm 5.2. It proceeds as follows; during each trigger

interval within a tumbling time window, for micro-batches (tagged with geohashes or coarser

containment polygon such as ‘neighborhood’) SAOS refers to a fraction map to read the

corresponding sampling fraction for each stratum (i.e., geohash, neighborhood, etc.,), then it

applies SRS to each stratum independently to select a count that is equal to the fraction

specified, such that each point within each stratum (i.e., geohash) has an equal inclusion

probability. For an explanatory utilitarian perspective, SAOS algorithm resembles a heuristic

overview such as follows. Considering the earth flattened out to a two-dimensional planar

space, we first overlay a square grid on the embedding space (i.e., the space where samples

are drawn), where SAOS design frame resorts to a recursive halving in one-dimension and

quartering in two dimensions. This is in case of a stratification based on geohash, whereas

on a coarser level the grid is irregular. Thereafter SAOS selects randomly a proportional

number of spatial objects from each grid cell independently (or from each borough, district,

SpatialSPE: Spatial Approximate Query Processing

102

etc., in case of a coarser stratification level). By this design, we recover stratified sampling,

which is plausible in geo-statistics. Changing the precision of geohash affects the number of

covering cells in the survey area, which allows user to control the system in a drill-down/roll-

up fashion. Such a hybridization between sequence ordering (i.e., geohash imposed on a grid-

based hierarchal representation) with SRS (imposed within each grid cell independently)

yields a geospatially well-representative sample, which is known to result in better estimation

quality in geo-statistics. For more information about that refer to our paper [101].

5.3.5 Spatial Queries Supported

Along the lines with the design goals that we have stipulated for SpatialDSMS (refer to

section 3.4.1), SpatialSPE currently supports two primitives of spatial queries; single and

ensembles, which then can be used seamlessly to compose other more advanced queries (e.g.,

spatial clustering [102] and spatial online clustering). Recap that composability is one of the

design goals of SpatialDSMS. We rely on the theory of stratified sampling and the theory of

random sampling [90] for approximating spatial queries in SQG1, some equations in this

section are adapted from [90].

Spatial Queries Group1 (SQG1). Single spatial queries (i.e., linear). An example spatial

query in this category is an interactive request to “find the average trip distance travelled by

taxis originating from a specific district in a metropolitan city”. Because SAOS resorts to a

stratified-like sampling design, we depend on the theory of stratified sampling for

 Algorithm 5.2 Spatial-Aware Online Sampling (SAOS)

1: SAOS (tuplesi, samplingMap, sampFraction, seed)

2: r = random(seed), S ∅

3: Foreach tuple in micro-batch-tuples do

4: geohash geocode (tuple)

 //get sampling fraction for this geohash key = fractioni, or zero

5: fractioni samplingMap.getOrElse(geohash,0.0)

 //toss a coin for selecting items from each geohash in current batch

6: If (P (r < fractioni)) S.put(tuple)

7: End

8: return S //return a set S containing the sample

9: End

SpatialSPE: Spatial Approximate Query Processing

103

estimations (e.g., ‘means’, ‘totals’, etc.,) [90]. Having said that, estimating the ‘average’

envisaged in the query can be formalized as follows. Imagine that we have K geohashes in

total (each geohash overlays a stratum, imagining both as grid cells), ykj is a value of a jth

tuple in geohash k, then 𝑡 (pronounced tau) is a population ‘total’ for stratum k, which

follows that a population ‘total’ for the target parameter y is estimated by SAOS through

applying the formula in (5.1).

 t ̂SAOS= ∑ tk

K

k=1

= ∑ Nky̅
k

K

k=1

 5.1)

Then using SAOS the average is estimated by applying (5.2).

 Y̅SAOS= t ̂SAOS/N = ∑(Ni/N)y̅
i

I

i=1

 (5.2)

Where t ̂SAOS is the estimated ‘total’ by applying SAOS, N is the number of tuples received

thus far, Ni is the number of tuples received heretofore in stratum i, y̅
i
 is the incremental

‘average’ in stratum i calculated up to now.

For SpSS-based SRS baseline, we first apply (5.3), to estimate the ‘mean’

 �̅�𝑆𝑅𝑆 =
∑ 𝑦𝑘𝑘∈𝑆𝑅𝑆

𝑛⁄ 5.3)

where 𝑦𝑖 are the values of target variables in every time window, 𝑛 is the size of the sample

in every time window.

SpSS does not natively support those estimators, we have incorporated a glue specifically

for incrementalizing those estimators, taking advantage of the incrementalizer (a building

block in SpSS) provided by the Spark engine. A query in this category is similar to the one

in listing 5.2, which is asking to “calculate the ‘average’ trip distance travelled through all

taxi trips in NY City, USA every minute”

data.where(“city = NY”).groupBy(window(“time”,”60

seconds”).avg(“trip_distance”)

listing 5.2. average statistic estimation spatial query example in Spark terms

SpatialSPE: Spatial Approximate Query Processing

104

Spatial Queries Group2 (SQG2). In this group falls stateful spatial online aggregation

queries (i.e., ensembles). Online aggregations differ from static batch counterpart in that the

former requires managing state between batch intervals, thus achieving a consistency. In this

thesis, we focus on Top-N (a.k.a. top-K) online aggregations. SAOS is applied to arriving

spatial points , thereafter they are grouped by geohash keys (Also it is possible to group on

a coarser level such as neighborhoods, boroughs, or districts), and then a count predicate is

applied calculating tuples number for every geohash incrementally and a sorting function is

applied in a descending style. An example spatial query belonging to this category is the

follows. “which are the top-10 boroughs in NYC where people tend to order green taxi

pickups”. Listing 5.3 shows this query expressed in Spark SQL terms.

5.3.6 Quantifying the Uncertainty Associated with Sampling

Estimating target variables by sampling instead of the population is naturally bounded to an

uncertainty which should be quantified to measure the ability of the sampling design in

achieving the QoS goals predefined by the user. Since SAOS in its core resorts to stratified-

alike sampling, then the theory of stratification applies. We rely on the theory of stratified

sampling and the theory of random sampling [90] for quantifying the uncertainty of applying

spatial queries in SQG1 to estimate target variables, some equations in this section are

adapted from [90].

I) For SQG1 (single spatial queries), since SAOS recovers a stratified-alike

sampling design, we depend on the Theory of Stratified Sampling [90] for

producing statistically acceptable estimations of the accuracy of approximations

val sampleStatistics = sample

 .groupBy($"borough ", window($"time", "1 minute"))

 .count().orderBy($"count".desc)

val query = sampleStatistics.writeStream

 .queryName("statistics")…start()

statistics.select($"borough",$"count").limit(10)

listing 5.3. Top-N spatial query example

SpatialSPE: Spatial Approximate Query Processing

105

for SQG1 queries that are obtained by applying SAOS instead of a SRS. We first

apply (5.4).

 v̂(t ̂SAOS) = ∑ (𝑁𝑘– nk/Nk)

K

k=1

 (Nk
2sk

2/nk) 5.4)

Where nk is the number of tuples thus far in stratum k, Nk is the total number of items up to

now in all strata, sK
2 is the standard deviation in stratum k. All those magnitudes are calculated

incrementally by our support.

In order to compute an estimated variance for the estimated total. Then we incorporate the

result in an equation to estimate a variance for the estimated average of the target variable,

specifically by applying (5.5).

 v̂(Y̅SAOS) = v̂(t ̂SAOS)/N2 5.5)

Where v̂(Y̅SAOS) is the estimated variance of the estimated mean, v̂(t ̂SAOS) is the estimated

variance of the estimated total.

Thereafter, we compute standard error (SE) depending on (5.6).

 SE(Y̅SAOS) = √v̂(Y̅SAOS) (5.6)

Then we carry the value obtained of SE and apply it in (5.7).

 Y̅SAOS ∓ zα/2SE(Y̅SAOS) (5.7)

In order to approximate 100(1- α)% confidence interval (CI) of the population mean Y̅pop,

where zα/2 is the upper 𝛼/2 point of normal distribution. Thereafter we define relative error

as in (5.8). SE measures sampling distribution variability (not to be confused with standard

deviation, which measures the variability on points level).

 RE = zα/2(SE(Y̅SAOS)/Y̅SAOS)
5.8)

SpatialSPE: Spatial Approximate Query Processing

106

The intuition behind this adjusted error metric is that values of SE metric are normally small,

so we have used a relative error as a representative that preserves the same SE trend but being

more meaningful. We also define an accuracy loss by (5.9).

 accLoss = |estimatedMean – trueMean| / trueMean
5.9)

We also define the gain by applying SAOS instead of the SRS-based baseline, for which we

apply (5.10).

 gainSAOS =v̂(Y̅SAOS) /v̂(Y̅SRS) 5.10)

, where v̂(Y̅SAOS) is the estimated variance resulted by applying SAOS, whereas v̂(Y̅SRS) is

the estimated variance resulted by applying SpSS-based SRS baseline.

Also, we apply the following equations from the theory of SRS to calculate the estimated

variance estimated average and other quantities. Then we apply (5.11) to calculate the

estimated variance of the estimated mean.

 �̂�(�̅�𝑆𝑅𝑆) = ((𝑁 − 𝑛
𝑁⁄)(𝑠2

𝑛⁄) 5.11)

Where N is the total number of records arrived at the system at the time of computation, 𝑠2

is the incrementalized variance calculated from the sample drawn thus far.

Then we apply (5.12) to calculate the standard error

Then we apply (5.13) to calculate a relative error.

For the same rationale that we have suggested beforehand regarding the relative error in

SAOS case.

II) For Spatial Queries Group2 (SQG2), online spatial stateful aggregations

(specifically Top-K) queries. We measure every method ability in preserving an

original ranking that would be obtained if we have access to a population or a

superpopulation. This is due to the fact that the online stateful aggregations we

 SE(�̅�𝑆𝑅𝑆) = √�̂�(�̅�𝑆𝑅𝑆) 5.12)

 RE = zα/2(SE(�̅�𝑆𝑅𝑆)/�̅�𝑆𝑅𝑆) 5.13)

SpatialSPE: Spatial Approximate Query Processing

107

compute by applying sampling instead of the population depending on a baseline

normally has a quality guarantees in terms of accuracy. To measure the ability in

satisfying those qualities, we apply a Spearman's rank correlation coefficient

[103] (read Spearman's rho hereafter). We have retrofitted the measure so that it

applies to our case. Spearman's rho is a measure for statistical dependency

between the ranking of two variables in a dataset. In short, our application of rho

proceeds as follows. We collect the ranks (i.e., orderings), and once the spatial

CQ stops (i.e., shutdown by user, or depending on a query window semantics) we

take the collected orderings of the original aggregations (i.e., those that would

result from a population without sampling, we consider the total number of tuples

emitted by the sources at that point as the population) and the ranking that is

calculated by applying SAOS (and in the same vein, by applying SpSS-based

SRS baseline). Then we serve those figures to Spearman’s rho and apply (5.14)

accordingly.

 ρ
rg

= covariance(ranknosampling, ranksampling) / (σranknosampling
 . σranksampling

)
5.14)

, where ρ
rg

 (i.e., rho) is spearman’s correlation coefficient applied for ranking statistics ,

covariance(ranknosampling, ranksampling) is the covariance of the rank variables,

σ𝑟𝑎𝑛knosampling
 and σ𝑟𝑎𝑛𝑘sampling

 are the standard deviations of the rank variables, without and

with sampling, respectively.

5.4 SpatialSPE Implementation Technical Details

To show that SpatialSPE10 is adept and versed in achieving QoS goals, specifically time-

based qualities such as high throughput and low latency, in addition to accuracy-based QoS

goals, specifically the estimation quality, we have implemented a standard-compliant

prototype based on SpSS, stacking up our patches on SpSS. Because, as of the time of this

writing, SRS is not implemented in SpSS, aiming at an equal comparison, we have

10 The source code of SpatialSPE (together with SAOS sampling method) is available at:

https://github.com/IsamAljawarneh/SpatialSPE

SpatialSPE: Spatial Approximate Query Processing

108

incorporated a patch that glues a version of an online SRS , which can operate in streaming

settings for approximating estimators depending on SRS (we dub this version as SpSS-based

SRS). The micro-batching model of SpSS has enabled us to implement this transparently,

where source tuples are collected in blocks (i.e., micro-batching mode of operation) before

being split for processing. Thus, by injecting a frontstage after the block formation stage and

exactly before partitioning, our patch for SRS works as if it is operating in a batch mode (the

core concept of micro-batch stream processing).

We did this because we needed a comparable ground-truth with which to compare our SAOS

method. The two methods, the baseline SpSS-based SRS and SAOS belong to the family of

sampling without replacement.

5.5 Performance Evaluation and Results

5.5.1 Comparison Methodology

To compare with the baseline, since the goals we aim at achieving are novel, to the best of

our knowledge, with same settings, including the utilization of a declarative API-based

streaming and the incrementalization of statistical estimators in non-stationary spatially-rich

environments, we are not aware of any similar system from the literature that is achieving

the same goals. We build on top of SpSS, which currently, as of this writing, does not have

a native support for sampling on streaming DataFrames/Datasets (core SpSS abstractions).

We needed a baseline for which to compare our method with, so we have decided to retrofit

SpSS so as to enable incrementalizing an SRS-based method as a patch on top of the stack,

and then compared our SpatialSPE with that. The SRS-based method works by simply

applying the traditional SRS for every micro-batch without replacement and with equal

inclusion probabilities. Replacement is not preferable in our setting because the nature of the

data torrents does not guarantee equal chance of inclusion for all arrival tuples in case of

replacements. It is often possible that replacement units are also non-response units, thus

deteriorating the inclusion probability.

5.5.2 Metrics of Interest

We first define a set of metrics of interest that we apply for the queries that we are supporting

(recap them from section 5.3.5) . We depend on two fundamental targets; those are normally

found in all AQP systems. In particular, we rely on estimator accuracy (estimation quality,

SpatialSPE: Spatial Approximate Query Processing

109

recap section 3.2) and processing throughput for measuring the QoS in terms of quality of

estimates and the ability of the system in keeping up with data skewness and arrival paces,

respectively. Also, we measure an additional functional QoS metric, scalability.

Among those metrics, we have measured throughput, latency, accuracy (estimation quality

and gain), and scalability for all queries belonging to the single queries group (SQG1) (linear

queries that return single values such as ‘averages’ and ‘totals’ estimator). For stateful

aggregations (belonging to group SQG2, refer to section 5.3.5), we measure throughput,

latency, estimation quality (through Spearman’s rho) and scalability. We vary multiple

parameters to measure a mixture of those metrics (i.e., trading off a mashup between them),

those basically include varying sampling fractions, arrival rates and geohash precisions as

detailed in section 5.5.4. We now conceptualize definitions of the foregoing metrics.

Throughput. Refer to Appendix C for technical details explaining the way we compute

throughput for SpatialSPE.

Latency. We have calculated it the same way as described in section 3.2.

Estimation quality. We measure the estimation quality of single queries of estimators for

both, our SpatialSPE and adapted SpSS SRS-based, by utilizing the Standard Error (SE)

general formula from the Central Limit Theorem [90] and calculating a relative error. Also,

we apply rho for measuring the quality of ranking statistics (i.e., the estimation quality of

queries in SQG2, refer to section 5.3.5)

Scalability. We define the scalability as the ability of the system to perform either faster (in

terms of latency) or keep, at least, with the pace of data fluctuating arrival torrents at

moments of transient spikes. For measuring scalability, we vary the parameters of cluster

deployment, more specifically, increasing the bare-metals of our cluster from two to four

worker nodes (see section 5.5.3 for details of a worker node characteristic), thus doubling

computation power and sensing the effect against arrival rates.

We vary the stream arrival rate as this is the case in reality, where streams exhibit oscillating

rates over time. Higher stream rate carries a greater number of input units and may cause

latency to rocketry climb, thus studying the effect of this on incrementalizations in parallel

settings is pivotal.

SpatialSPE: Spatial Approximate Query Processing

110

5.5.3 Experimental Setup and Datasets

5.5.3.1 Dataset

For benchmarking, we use the NY City green taxicab trips datasets 11, where we select a big

cohort representing six months (almost nine million tuples) expressing taxis rides for the first

half of year 2016. Data includes spatial fields, geometrical planar representations of pick-

up/drop-off locations and trip distances measuring the distance travelled for each trip.

Despite the skewness of this data, traditional sampling theories applies in accordance with

the Central Limit Theorem (CLT) [90]. Refer to Appendix D for further details.

5.5.3.2 Deployment and experimental settings

We deploy SpatialSPE on a Microsoft Azure HDInsight cloud computing cluster hosting

Apache Spark (version 2.2.1). Our cluster consisted of 6 NODES in total (2 Head, analogous

to master nodes in Amazon, plus 4 worker nodes). Head nodes specifications are based on

(2 x D12 v2), and workers are based on (4 x D13 v2) specifications. Every head node hosts

4 CPU cores with 28 GB RAM on each and 200 GB Local SSD memory, and quantities are

double those figures for each worker node.

5.5.4 Evaluation Strategy

In this section, we discuss the results we have collected through measuring the QoS metrics

that are explained in section 5.5.2. Our evaluation strategy varies four parameter

configurations; sampling rate, stream source data arrival rate, geohash size and computing

resources size. We intermix those configurations for measuring the QoS metrics by executing

queries of section 5.3.5. The two parameter configurations are as follows.

• Parameter Configurations #1. Varying geohash size and sampling rate. We vary

geohash size between 30 and 35. Also, we vary the sampling rate between 20%

and 80% (20% step length). By this configuration mashup, we target measuring

the accuracy QoS goals (i.e., estimation quality) of all query types in groups

SQG1 and SQG2.

11 https://www1.nyc.gov

SpatialSPE: Spatial Approximate Query Processing

111

• Parameter Configurations #2. Fixing geohash size to 30 and varying spatial

stream tuples arrival rate from 1 million to 2 million tuples/second, in

combination with varying sampling rates between 20% and 80% (with a step size

that is equal to 20%), and also including 1% and 5% to account for harsh latency

goals in cases where spikes in data arrival rates are brutal. By this configuration

mashup, we measure the QoS throughput and latency goals of spatial queries in

SQG2, because they consist of computationally expensive online stateful

aggregations.

All measurements are computed as a median (i.e., 50th percentile) of ten running sessions

(i.e., repeating same queries with same configurations 10 times and taking the average of the

skill).

5.5.5 Test Cases and Results

5.5.5.1 Testing scenarios

1) SQG1 test cases. We have measured the performance (i.e., the achievement of

estimation quality QoS goal) by applying the following query (which belongs to

SQG1): “what is the accumulative average of a trip distance travelled by taxicabs

itinerary trips within first six months of 2016”.

2) SQG2 test cases. For top-N rankings, we apply an online spatial aggregation query,

specifically the following; “what is the top 10 neighborhoods (or circular locations

bounded by MBRs, geohashes) in NY city, USA where taxicabs trips originate”.

5.5.5.2 Results and discussion

5.5.5.2.1 SQG1 test case results

We use parameter configurations#1 for running those tests in this subsection.

Figure 5.2 elucidates the differences between the online sampling schemes SAOS and SpSS-

based SRS in terms of the “estimation quality” of an estimator for a target variable (such as

the ‘average’ requested through SQG1 test cases as explained in section 5.5.5.1).

As it is evident, SpSS-based SRS underperforms SAOS in terms of the estimation quality

(measured through RE and accuracy loss). Increasing the geohash size negatively affects the

estimation quality. Results shown here are measures for confidence interval 68%. The same

SpatialSPE: Spatial Approximate Query Processing

112

pattern applies for the confidence intervals 95% and 99%. Refer to our paper for more

interesting results [101] .

Notice that, despite seems trivial, relative errors signifies an important aspect in regard to

estimation quality. To make sense of it, reducing the error by a factor of 2 requires at least a

sample that is bigger by a factor of 4. This means that even a small fractional gain in terms

of those measures (i.e., accuracy loss and relative error) significantly meets the accuracy QoS

goals (i.e., higher estimation quality).

To take a more utilitarian perspective of how this effect (even looks small in figures) can

negatively impact the estimation, we show in figures 5.3 and 5.4 , respectively, how by using

SpSS-based SRS the estimator misses the 68% confidence interval (for the mean estimator)

at some sampling rates, whereas SAOS is perfectly fitting within the boundaries of the same

CI. The same trend occurs for 99 and 95 confidence intervals, refer to our paper for more

interesting results [101].

Figure 5.2. Estimation accuracy of SAOS vs. SpSS-based SRS, for G1 queries. ‘loss’ in the

legend is the accuracy loss calculated by applying equation (5.9), whereas ‘RE’ is the

relative error calculated through equations (5.8) and (5.13) for SAOS and SpSS-based SRS,

respectively

SpatialSPE: Spatial Approximate Query Processing

113

Figure 5.3. CI 68% SRS on mean estimator varying the sampling fraction. CI in the legend is

the confidence interval

Figure 5.4. CI 68% SAOS on mean estimator varying the sampling fraction. CI in the legend is

the confidence interval

SpatialSPE: Spatial Approximate Query Processing

114

To better understand how SAOS is adept more than SRS in geo-statistics, we show in figure

5.5 the gain obtained by applying our method to SQG1 queries (calculated by applying the

design effect measurement [90] , refer to section 5.3.6).

Notice that we obtain as large as 7% gain by applying SAOS against SpSS-based SRS. If

these figures were the population variances, we would expect that we would need on average

only (1000k).(0.93) = 930k observations with a sample from SAOS to obtain the same

estimation quality as from an SRS of 1000k observations, this saves (70K tuples less, for an

arrival rate of 1 million tuples/second, this means that we take 70 thousands tuples less,

which is statistically significant) a precious time of online processing in latency-sensitive

SPEs, where even milliseconds can save the system from coming into a halt.

5.5.5.2.2 SQG2 test case results

Figure 5.6 depicts the skill of SAOS in comparison to the baselines (SpSS-based SRS) in the

language of estimation quality for spatial queries of SQG2, where Top-N ranking quality of

SAOS outperforms SRS, despite almost at par for some sampling rates and geohash sizes.

Figure 5.5. design effect by applying SAOS against SpSS-based SRS

SpatialSPE: Spatial Approximate Query Processing

115

Speaking about time-based QoS goals (more specifically the throughput in this case), Figure

5.7 elucidates that SpSS-based SRS slightly underperforms SAOS. Despite being a simple

approach, SRS in this case performs worst because, on average, the system needs to manage

more key states between triggers when applying SRS, this is basically due to the fact that

Figure 5.6. Spearmans’s rho by applying SAOS Vs. SpSS SRS-based. ‘rho 30’ (in the primary access)

means rho value at geohash precision 30, whereas ‘rho 35’ (in the secondary axis) means rho value at

geohash precision 35

Figure 5.7. Throughput by running SAOS against SpSS-based SRS, with a streaming rate that is

equal to 500k tuples/second. ‘key_states_updated’ (in the secondary access) in the legend means the

average number of keys updated between tumbling windows

SpatialSPE: Spatial Approximate Query Processing

116

SRS is not aware of keys distribution and selects tuples totally randomly, which means

sampling unnecessarily more keys every trigger.

SAOS and SpSS-based SRS act in the same way for data oscillation from 500K to 1000K to

2000K tuples/second, while SpSS-based SRS always underperforming. Refer to our paper

for more interesting results, specifically those showing the same latency and throughput

trends on different settings (four worker nodes instead of two) [101]. All in all, SAOS is able

to handle the pace at which data is arriving (almost at the par), thus achieving the latency

quality goals.

We finally show the effect of incrementalization on mean estimator. Figure 5.8 shows how

both SAOS and SpSS-based SRS are catching up with the true mean value after a total

number of a million tuples arrived. The mean estimation for both is approaching stepwise

the true value. However, SAOS is approaching faster and this is further self-explained by the

smaller value of standard error that is resulting from applying SAOS (as opposed to the value

obtained by applying SRS), calculated incrementally. Notice also however, that the standard

error (SE) difference for both converges and vanishes as their estimates approach the true

value.

Figure 5.8. the effect of incrementalization on the ‘average’ or ‘mean’ estimator. Sampling

fraction is set to 40 %. In the legend, ‘stepwise_mean’ (the primary access on the left) is the

‘mean’ value changes in correspondence to total tuples arrived up until that point in time. SE (the

secondary access on the right) is the standard error.

SpatialSPE: Spatial Approximate Query Processing

117

In theory also, SAOS is an appealing and compelling approach, a theoretical perspective

explaining the excellence of SAOS is explained in Appendix E.

5.6 Similar Works

In relevant literature [99, 100, 104] apply various dimensionality reduction approaches, but

however are computationally expensive and inapplicable in distributed online deployments.

Also, relevant art of the literature focus on achieving single QoS goals (for example,

satisfying either high-resource utilization or low-latency) without seeking a balanced weight

between them.

Several works can be traced in the literature focusing on spatial sampling. However, most of

them are geared toward centralized and stationary settings, depending on High Performance

Computing (HPC) deployments with disk-resident datasets. While this works for some

scenarios, it was not usually the case during the last decade, where spatially-augmented huge

data amounts are arriving very fast, with sometimes burst loads and unruly spikes (i.e., not

amenable to discipline), thus leading to an interest in online spatial sampling. This is

specifically challenging, giving that implanting spatial awareness normally presents systems

with additional overheads, due in part to the ‘curse of dimensionality’ of geospatial objects

representations.

Most relevantly, [105] have designed a dimensionality reduction method for finite

populations, dubbed as generalized random-tessellation stratified (GRTS) , that is based on

mapping two-dimensional into lower-dimensional space, then creating a set of randomly

ordered spatial addresses with a mix of systematic sampling in order to generate a well-

balanced random sample. They depend on the fact that spatial objects that are proximate in

the two-dimensional planar space tend to be proximate in a lower one-dimensional space

after mapping. The sample is then selected using a systematic sampling scheme. This is

analogous to random tessellation in a two-dimensional space. However, well-spread does not

necessarily mean well representativeness and the systematic component may under-represent

some regions. In the same vein, [106] presents a sampling method that relies on

dimensionality reduction, more specifically by utilizing space-filling curves. They order the

survey units in such a way that consecutively numbered points represent spatially well-

SpatialSPE: Spatial Approximate Query Processing

118

balanced sample. Other works include [96] which has incorporated kriging estimator for a

real-time monitoring of environmental phenomena into a higher-level architectural pattern.

The picture that emerges from the relevant literature, however, is that, none of the forgoing

studies are applicable in distributed deployments. Hence, they are not designed to achieve

incrementally accurate results that improve dynamically over time (i.e., stepwise). On the

contrary, our system was adept in achieving spatial-awareness in distributed settings. Also,

SpatialSPE has introduced incrementalization over geo-referenced data streams using a

declarative API, a target that is completely novel.

5.7 Chapter Conclusion and Forward

The idea that spatially-balanced sampled datasets yield better estimations than simple

probability sampling methods is well established in the relevant literature. In accordance

with that, there are some frameworks for incorporating spatial awareness into statistical

sampling. Some methods are based on splitting the study area into cells (traditionally known

as tessellation, which implies dividing the study area into polygons, either equally- or

arbitrarily-sized) and treating each cell as a stratum, thus simplifying the application of

stratified-alike sampling designs, which is plausible in geo-statistics. However, those

methods are not ready for distributed computing settings. Furthermore, they incorporate

computationally expensive structures, such as tree-based hierarchal representation structures

that renders them, despite being efficient theoretically, unsuitable for extension to the

distributed computing world.

On the other side, distributed big data processing systems are evolving fast in an

unprecedented way, reflecting the need for systems that adapt to the fluctuating and

oscillating pace of big datasets that show temporal skewness.

In this chapter, we have shown SpatialSPE which constitutes an integral building block of

our system SpatialDSMS. It is complementing the accurate computations (performed

through SpatialBPE and SpatialNoSQL, topics of chapter 4) for scenarios that need

approximations to be performed on fast arriving online spatial torrents of data loads. SpSS

does not have a native support for SAQP and SpatialSPE is transparently incorporated with

SpSS and complementing it in that dimension. Again, we have achieved one of our design

goals, specifically the modularity, in the way that we have designed SpatialSPE so that it

SpatialSPE: Spatial Approximate Query Processing

119

accepts any future patches for SAQP. The novelty of our system is that it is the first-in-class

that is being built on top of an SPE that offers a declarative API, thus naturally offering an

interface that allows expressing geometric approximate computations in a human-friendly

manner and as a batch-like query as if it was to be executed in batch mode, while underneath

reusing optimizations provided by such a promising SPE.

Because of being simple and conceptually appealing approach, the desire by statisticians to

employ SRS is high. However, this does come at the inconvenience of poor results obtained

in geostatistical settings and it suffers from computational limitations, and we advise that in

those settings it should only be envisioned as a last resort, and there could be a qualitative

leap between using SRS and SAOS. This does not however detract from the value of SRS,

but otherwise complementing it and extending its usefulness to the current world that is rich

of spatial data. Beyond its theoretical impact, our method performs the best in the wild and

as a hybridization between SRS-based and SSS designs, it is the best-of-both-worlds

retaining benefits of both without their drawbacks.

SAOS was able to incorporate seamlessly and transparently within the layers of the semantic

representations of an emerging declarative micro-batch streaming model, yielding

statistically significant estimates with rigorous error bounds. So far, we have considered

sampling fractions that are served to SpatialSPE by an expert user. However, the temporal

fluctuation of geo-referenced streaming loads calls for an interactive controller based on the

control theory and an appropriate cost model, that is able to respond adaptively to oscillations

in data arriving paces and fluctuations in skewness. This has encouraged us to design an

adaptive system that exploits SAOS in a control feedback mechanism, which, despite

designed for heavy workloads (e.g., stream-static join), can be used for any streaming

workload. We term the complementing sub-system as SpatialSSJP which is the topic of

chapter 6.

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

120

Chapter 6

6 SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

In today's big data landscape, online applications are, more than ever before, relying on real-

time data for deeper insights that benefit businesses. IoT is currently the main source of huge

avalanches of geo-referenced data streams that feed online services. It is expected that it

generates more than 500 zettabytes of data by 2020 [107], which overburdens the capacities

of current DSMSs. What’s more, most interesting application scenarios however contain

mixed workloads requiring stationary data to be joined with data in-flight in order to pluck

an interesting insight. The abundance of the ways we can mix data together led to the

introduction of the Lambda architecture, designed specifically to handle low-latency updates

in a linearly scalable way. Consisting of three layers, where streaming data is fed into either

a batch or speed layer. Data can then be combined from both layers to be served through a

serving layer to the benefit of dynamic application scenarios.

It is then becoming obvious that the join operation constitutes an integral building block of

any successful SPE (a.k.a. Distributed Stream Processing System, DSPS for short). It is

however prohibitively computationally expensive in an exhaustive way to compute over a

huge amounts of fast arriving data streams and may take several hours to complete for

complex querying scenarios [108, 109]. A problem that is exacerbated in geofencing that

includes complex polygons [110].

As a natural resolution, Approximate Query Processing (AQP) (especially for ad-hoc and

long-running queries) excels in optimizing the QoS of online join processing in highly

dynamic and scalable application scenarios, such as those in smart cities [3] and Industry

4.0 [4]. AQP depends on the observation that an approximate answer that falls within the

boundaries of a confidence interval suffices for expressing a statistical parameter. To address

this problem, sampling-before-join seems a super-quick compelling fix, but, however, is a

candidate for high accuracy loss as it may potentially deteriorates the statistical properties of

study variables, simply because sampling designs commonly embrace randomness by

depending on uniformity. On the other hand, sampling-after-join could be computationally

prohibitive. Stated another way, in smart city scenarios, samples taken should be spatially

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

121

representative for the join after to perform well in the currency of estimating interesting geo-

statistics. Approximate join methods from the relevant literature such as RippleJoin [111]

and WanderJoin [112] are designed to be operating in single-node beefed-up servers and

parallelizing them is challenging.

The fluctuating nature of arriving rates of data streams challenges the current Spatial

Approximate Query Processing (SAQP) engines. It is hard to predict such an oscillating

nature in streaming settings in addition to the temporal oscillating skewness. Such settings

require an adaptable model-based solution that responds interactively to spikes. A

compelling solution should also be able to control the way of join processing such as to

achieve the prescribed SLAs, including most importantly the latency/throughput/accuracy

QoS goals trade-offs.

To cope with the fluctuating rates of arrival data, another major goal of current systems,

typically deployed over on-demand cloud environments, is to maximize resource utilization

in order to lower the costs for the user. Accordingly, most state-of-art solutions depend

heavily on elasticity, by overprovisioning and de-provisioning computing resources to

maximize resource utilization. Nevertheless, studies have shown that the average utilization

in cloud deployments is under 40 percent of the overall reserved resources [113, 114]. This

is possibly due to the fact that users lack the relevant understanding on how to configure the

auto-scaling parameters (which requires technical knowledge for most SPEs) that, in its turn,

behooves them to select lenient configurations that allow, most often, the overprovisioning

in order to handle peak loads , leading then to a low resource utilization. Consequently,

elasticity methods, despite relevant for some cases, do not interplay well in resource-

constrained settings. We consider systems with shortage in computing resources, being

deployed on an on-demand cloud, where the goal is saving money by maximizing the

utilization of resources, or deployed on in-house clusters, where the goal is to free unused

resources for the benefit of other queued applications.

Our main goal in designing SpatialSSJP is to provide a QoS-aware optimization for online

join processing in highly dynamic application scenarios. To realize this goal, we have

designed an adaptive QoS- and spatial-aware system (we term as Spatial Stream-Static Join

Processor, SpatialSSJP for short) for stream-static online join processing (i.e., joining

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

122

arriving tuples in a data stream with a static disk-resident master table). Most importantly,

SpatialSSJP constitutes a controller, which contains two sub-controllers; the first is based on

the control loop feedback mechanism and specifically the Proportional-Integrative-

Derivative (PID) controller, which is utilized in case that the user prioritizes low-latency QoS

goal. However, when the user chooses to prioritize high-accuracy (i.e., high estimation

quality), then we apply the second model-based controller (described shortly in section

6.3.2.2) that returns results with rigorous error-bounds. The controller is entwined with our

spatial-aware sampling method (Spatial Aware Online Sampling, SAOS for short) [101] that

we have designed with SpatialSPE (refer to section 5.3.4 for details).

By lending SAOS, we guarantee that an appropriate count of items is safely purged from the

arriving stream before applying the join predicate. A special characteristic of SpatialSSJP is

that it preserves the spatial characteristics of the data stream. It is therefore aware of the data

nature, and thereby preserving the geo-statistical properties of the served result by providing

a spatial approximate result with rigorous error-bounds. Also, it meets the target QoS

requirements prespecified by the user through SLAs from which two are most common and

contradicting, high-accuracy (i.e., high estimation quality) and low-latency, where

overoptimizing any may deteriorate the other in an endless tension. SpatialSSJP self-tunes

the sampling parameter by calculating after each loop (i.e., batch or trigger in SPE terms) an

appropriate sampling fraction (our solo configuration parameter, not inducing any extra

overhead). Thereafter, it serves the sampling fraction back to SAOS module so as to select

an appropriate spatially representative sample for the next batch (a.k.a. trigger in DSMS’s

jargon). All in all, satisfying the quality requirements prespecified by the user.

We have implemented SpatialSSJP on top of an emerging de facto standard general-purpose

SPE, Spark Structured Streaming (SpSS hereafter for short) and evaluated its ability to

achieve QoS goals by applying the general methodology that we have defined in section

3.2.1. We use a real-world data load against Spark’s baselines (such as our glue for SpSS

supporting backpressure mechanism) and the vanilla Spark without sampling. Our

experiments show that SpatialSSJP is able to meet QoS goals prespecified by an expert user.

In addition, it outperforms baselines in terms of accuracy and latency QoS attributes.

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

123

To sum up, we make the following contributions by designing SpatialSSJP:

• We develop model-based adaptive hybrid (reactive and proactive) controller for

spatial stream-static join operators (i.e., equivalent to geofencing [110]) and

incorporate it with an emerging SPE, specifically, SpSS, taking full advantage of

the optimizations provided by the underlying layers of SpSS codebase.

• We enrich the controller by an accuracy-aware module (reactive) that receives a

‘margin of error’ as an estimation-quality QoS goal and responds accordingly.

• We incrementalize the appropriate spatial statistics so that the performance

improves as time ticks forward. We also support the incrementalization of other

basic standard spatial queries such as Top-N ensembles and other spatial online

aggregations.

To the best of our knowledge, we are not aware of any system from the relevant literature

that synergistically achieves these goals. We first introduce the theory behind our work in §

6.1. We then explain the architecture of SpatialSSJP in § 6.2 in addition to a usage model

and a baseline system. In § 6.3 we expand the algorithmic perspectives within the layers of

SpatialSSJP, showing also the supported queries and measures to quantify the uncertainty.

In what follows, we shortly recapitulate the implementation of SpatialSSJP in § 6.4.

Thereafter, we present our results with proper discussions in § 6.5. This is followed by a

short review of the relevant literature in § 6.6. We finalize by summing up the effort and

recommend future research directions in § 6.7.

6.1 Background

We aim by this short background at assisting, in a coherent and structured way, to grasp the

rudiments of the ideas presented in this chapter.

6.1.1 The Problem of Poor Resource Utilization in Stream Processing

The parallelized versions of SPEs distribute DAG operator instances to multiple worker

nodes (i.e., bare-metal or virtualized) to achieve the primary QoS goals. But this sometimes

cause the overprovisioning of resources thus lowering the resource utilization, which

counteracts the benefits of parallelization. SPEs then should aim at maximizing the resource

utilization in parallel distributed settings. For example, by releasing resources in in-house

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

124

computing clusters and make them available for other applications. Also, minimizing the

cost incurred by the pay-as-you-go model while deploying on a Cloud infrastructure, but at

the same time keeping the latency low. In summary, a goal not-to-be-underestimated is

keeping the average end-to-end latency bounds low while maximizing resource utilization.

Two highly contradicting QoS goals that can be exacerbated in continuous queries that

contain complex operators such as the join operator. Coming up next is a subsection that

summarizes the complexities associated with DAGs that encompass a join operator.

6.1.2 Streaming Distributed Joins and Complexities Associated with Spatial Cases

Data aggregation remains one of the most desired analytics in real-time applications. It

heavily depends on joining data between either several streams (i.e., stream-stream join) or

a stream and a static table (i.e., stream-static join).

However, in streaming scenarios, where data tuples arrive in an unbounded fashion that

exhibits temporal skewness and fluctuation, results are normally incrementalized in

unbounded manner. Hence, the assumption that input data is indexed does not play well with

those settings, rendering standard join algorithms unsuitable in such streaming scenarios

[115].

The parallel distributed processing model encompasses logistic complexities that are

uncommon in traditional centralized single-server settings. For example, distributed

processing engines (such as Apache Spark [1]) dispatch data loads to parallelly connected

computing nodes aiming at speeding up the processing phase. Some operations however

require shuffling data between nodes. Join processing is a potential candidate as joins can

only be performed on same-node basis. SPEs normally apply either repartition or broadcast

joins (refer to section for 2.3.1 details). In cases where a static master table is small enough

to reside in-memory of all processing worker nodes, it is broadcasted (together with a join

operator instance) and the join that is then performed needs no shuffling as it is done locally,

from which conquering local join results is the only thing at the time that remains incumbent

(usually is achieved by the master node). However, if the master table (i.e., disk-resident) is

huge, and therefore cannot fit in-memory (a.k.a. in fast memory), then data need to be

shuffled around in the so-called repartition join, which is computationally expensive and

resource-hungry. Cases where joins take several hours or days are not unheard of, especially

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

125

when exposed to big data on the scale of terabytes to zettabytes. For thorough details of the

mechanics of those joins in Spark, we refer the interested reader to [116] . From many join

types that are supported by SPEs, we specifically focus on a class that is most widely used

in highly dynamic and scalable scenarios. That is the so-called stream-static join (a.k.a. semi-

stream join [117] or Stream-Relation Join (SRJ) [118]) which aims at joining on-the-fly

online arriving tuples with a master static table data (i.e., disk-resident opponent). Join is

natively computationally expensive in its simplest forms. A problem that is further inflated

when applied in specific dynamic application scenarios such as smart cities and Industry 4.0.

This in part is because those data tuples are geo-referenced (for example, in the form of

longitude/latitude coordinates). Joining spatial data streams costs more. Take the case of

Point in Polygon (PIP) test which necessitates the application of the costly ‘within’ spatial

join predicate, as an example. A typical query could ask to “find in which borough (i.e.,

polygon) of NY city (in the United States) a taxi trip (i.e., spatial point) has started”. This is

specifically complex and challenging because of the "curse of multi-dimensionality", which

means joining a GPS coordinate streaming tuple with a static table containing the covering

polygons. In this case, simple traditional join algorithms (such as sort-merge join) are

inapplicable, because in spatial joins, join condition comprise multidimensional attributes

[119].

Stream-static join is of a paramount importance also in other domains such as data lakes and

active data warehouses [120] . For example, in data warehouses it is important for surrogate

key generation, duplicate detection or identification of newly inserted tuples in view

maintenance scenarios.

Stream-static join constitutes thus a strongly potential candidate for optimization through

controllers as explained in the next subsection. The rationale is that distributed stream

processing (e.g., stream-static join) runs into multiple complications that do not normally

affect simpler computations like batch jobs (e.g., static-static join). For example, peak loads

that exceed resource computational capacities.

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

126

6.1.3 Controllers for Resolving the Information Overloading and Resource

Utilization

Information overloading is presenting current big data management systems with

tremendous challenges and obstacles. Online streaming data shows temporal skewness and

fluctuation, thus challenging, at times, the capacities of existing parallel computing

deployments. In cases where a peak load emits excessive amounts of data that outpaces the

processing capacities of the operators, data accumulates excruciatingly upstream, causing

congestion in the operator input queue that carries over a negative effect, deteriorating the

online processing. Also, most cloud deployments underuse provisioned resources, thus

minimizing the resource utilization. The unbounded fashion at which streaming continuous

queries work requires the innovation of adaptive mechanisms that can survive brutal burst

workloads at peak times. However, most traditional methods depend on a presumption that

data loads are finite, rendering them inappropriate for unbounded semantics [115].

Many solutions have been widely used in the literature for resolving the information

overloading in a manner that maximizes resource utilization. Most of them depends on

elasticity and adaptivity. We identify three most widely used alternatives. Those are

backpressure, elasticity and approximate computing. We describe each one in details in the

following subsections.

6.1.3.1 Backpressure for Resolving Data Load Bursts

Situations where streaming data arrival rates (e.g., during a temporary load spike) exceed the

capacity of the receiving processing engine are not unheard of, which can cause bottlenecks

in downstream dependencies. Backpressure has been widely used as a solution, which can

be loosely defined as a mechanism that pushes back the lateness to the ingestion layer (such

as Apache Kafka [43]) by only allowing the sender to emit an acceptable rate of tuples that

can be processed gracefully without causing batches to back up.

Backpressure normally depends on a rate limiter in the back-end, which is then responsible

for calculating, at each batch interval (trigger in SpSS jargon), a new rate that the system

capacity can handle without falling behind. This ensures that the system is stable (i.e.,

scheduling and processing delays are not stacked up).

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

127

Streaming systems often depend on feedback loop mechanisms such as PID algorithm to

build the rate limiters. A case of example is Apache Spark Streaming [25]. PIDRateEstimator

in Spark Streaming first calculates a rate at which its receiver (a building block in Spark

Streaming) is writing data blocks to a block manager (a building block in Spark Streaming).

If the received data is outstripping the processing capacity, then the new rate is decreased,

while it will be increased in the opposite case.

However, backpressure has been abandoned in many systems because of the negative effect

in processing fast streams. Among others, it might congest data receivers, which wait for the

overloaded downstream operators to finish processing, which normally leads to endanger

QoS goals.

6.1.3.2 Elasticity and Adaptivity: to Assign or to Release?

The ability of the system to elastically change the parallelism degree (mostly at run time)

based on the trending circumstances (i.e., peak data loads as opposed to off-peak loads) to

achieve the QoS goals is known as elasticity [121]. With the introduction of the pay-as-you-

go models (e.g., in cloud deployments), SPEs are currently seeking to strike a balance

between provisioning extra resources (which is costly but strong against oscillating data

arrival rates) and resource utilization (which is cheaper but vulnerable to unpredicted data

load spikes). By this strategy, they aim at maximizing the latter while keeping the former at

the bare minimal level in order to cut costs associated with overprovisioned nonutilized

resources. An obvious problem is that the continuous process of provisioning and de-

provisioning resources dynamically may counteract the benefits of elasticity, especially in

cases where the costs associated with always-on reconfigurations are not amortized by the

benefits of elasticity (e.g., reducing latency).

This kind of resource scaling is sometimes referred as dynamic allocation, including

horizontal scaling (a.k.a. in/out) on clusters of commodity servers, where extra computing

nodes (or virtual machines) are added to a cluster of computing resources connected

parallelly. This can be done dynamically online as a resort for sudden spikes in data arrival

rates (dynamic allocation in Spark Streaming parlance [25]). Another type of dynamic

allocation is the vertical scaling (a.k.a. up/down), which means adding extra computing

power (e.g., CPUs and memory) to a single node, normally a beefed-up server. Auto-scaling

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

128

techniques [122] depend on diverse approaches for the decision on when to scale, including

threshold-based and control-theory based.

In summary, the near-linear scalability provided through provisioning extra computing

resources in cloud deployments is no longer attractive as it comes on the cost of inefficient

resource utilization and deteriorated throughput.

6.1.3.3 Approximate Computing

All approaches discussed thus far focus on the assumption that there are readily available on-

demand resources to allocate to a join operator dynamically on-need. However, the case

where only a fixed memory is allocated, where data load spikes exceed the operator service

rate, are interesting. In those cases, there is a point where the operator cannot withstand the

transient burst load that easily turns insurmountable at times, a point that requires employing

an approximate computing.

Approximate computing depends only on a portion of input data to get results in what so-

called Approximate Query Processing (AQP), which means basically serving results that are

bounded by rigorous error-bounds in a form that is statistically acceptable and plausible. It

is based on the observation that users are accepting normally to tradeoff tiny accuracy for a

high speedup [123]. Also, decision makers normally make perfectly accurate decisions

without having perfectly accurate query responses (for example, the cases of A/B testing and

visualizations such as in heatmaps). In addition, the data is normally noisy and depending on

a whole population in query answering does not readily imply accurate answers. A special

branch of AQP is the so-called Spatial AQP (SAQP), which is then the same as AQP, but

becoming more attuned to the shape and structure of the data (i.e., spatial data in this case).

We can reap tremendous benefits by being attuned of the spatial structure of the data stream.

AQP depends on shrinking the input data size based on diverse mechanisms, including

sampling and backpressure. Approximate query processing via sampling is a popular

technique. We opt for approximation in latency-sensitive settings over resource-based

elasticity approaches because of two main reasons.

1) AQP does not imply that system halts processing during adaptation. In

elasticity approaches, on the contrary, each reconfiguration halts data

processing, and thus negatively affects quality of service (e.g., end-to-end

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

129

latency) [124]. In our system, the reconfiguration cost is tiny and negligible

as we only change the sampling fraction that is passed to SAOS. Other

information for computing the fraction provided for us already by SpSS at no

additional cost.

2) The management of state migration (online migration in this case) in elasticity

approaches is costly, which may trigger at the time of altering the

parallelization degree of a stateful operator, which may require , for example,

re-splitting the keys, and thereby broadcasting the key state again. In most

current SPEs, this means halting the processing until state migration is done,

which then incurs extra latencies.

6.1.3.4 QoS-aware Sampling as an Enabling Technique for Spatial Approximate

Computing

Recap sampling types and SAOS from chapter 5. Sampling as a mixed workload with join

can be performed either before or after join. If performed before join, sampling focuses on

selecting a sample and then applying the join on it (sample is taken from the stream in the

stream-static scenarios). We focus on sampling before the join because the main goal of this

work is to make the join adaptive and limiting the arrival rate to quantities that do not exceed

DAGs capacities.

Despite the abundance of alternative AQP methods such as sketches and wavelets, we found

that sampling is the most compelling and a powerhouse method to be used in SAQP because

of the additive property. In other terms, taking a simple sample, computing the incremental

result and if the result is not satisfying the QoS stringent goals, then adding incrementally

more data to the sample does not mean recomputing or reconfiguring, instead the result is

building up on the previously obtained sub-results and the incremental procedure can be

continued indefinitely until either a predefined rigorous error-bound or a latency goal is

achieved. On the contrary, for other AQP methods, this does not apply, and a result that is

not satisfying could require a recourse that involves recomputing using the whole sketch (i.e.,

synopsis).

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

130

6.2 QoS- and Spatial-Aware Adaptive Stream-Static Join Processor

In this section, we describe all the peculiarities associated with the SpatialSSJP system that

we have designed, which aims basically to proactively avoid congestion within the operator

graph (that specifically includes a stream-static join operator), and thus seeking high resource

utilization and averting frequent reconfigurations.

6.2.1 Usage Model and Baseline System

While the main purpose of parallelizing the operation of SPEs is to achieve low latency and

high throughput, there are innumerable scenarios that require accessing static information

(i.e., information that is held and spelled out in disks), thus compromising the performance

of the SPEs [118] . There are innumerable ways for which stream-static join is attractive.

Always focusing on highly dynamic and scalable scenarios, where fast arriving spatially-

tagged data points need to be enriched with master static data (a.k.a. data-at-rest) for deeper

insights.

For example, NYC taxicab trips (represented with, most importantly, pickup and drop-off

points) have been distributed on the form that includes only the GPS longitude/latitude

coordinates without the names of the regions that those traces belong to. On the other hand,

names of zones (i.e., boroughs or districts in city management terms) are distributed alone in

a static table. That table is normally containing polygons on the form of points covering each

polygon (a.k.a. bounding box). An example scenario is a query that asks to “generate an

interactive heatmap showing trajectories of taxis in-motion to see the trend and decide on

city planning”. As such, specifying the neighborhood for every tuple requires solving the

Point in Polygon (PIP) problem (a.k.a. geofencing [125]), which basically requires stream-

static join. As the amount of streaming data can be prohibitively large in the terms that our

screens are not able to efficiently absorb such amounts in one map (e.g., while generating

heatmaps), then it is favorable to take only portion of the arrival data and join it with the

static table.

However, the tremendous deluge of geo-referenced continuously arriving data streams

challenges the capacities of currents SPEs in achieving a (near) real-time interactive

visualization (e.g., through heatmaps). A spatial-aware online sampling is then necessary for

a proper data reduction, thus striking an acceptable balance between accuracy and latency

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

131

QoS targets. This reduction requires either clustering or aggregating, which basically, in a

streaming setting, means joining tuples (that are spatially-tagged) with data-at-rest, thus the

stream-static join. Traditional sampling designs (such as SRS, refer to section 5.2.2 for

information) do not consider the spatial characteristics of the arriving tuples, thus rendering

the visualization process erroneous.

Approximation is a valuable solution in highly dynamic environments. Baselines include a

standard-compliant system employing backpressure on top of an emerging de facto standard

SPE, specifically SpSS. The SpSS baseline is a resemblance to that of Spark Streaming

backpressure mechanism. Spark Streaming backpressure works by applying a PID controller

(known as PID rate estimator in Spark Streaming, which is based on the PID theory). We

have retrofitted the PID controller (similar to PID rate estimator in Spark Streaming) so that

it transparently incorporates with SpSS and operates under the SQL-like API. The baseline

also comprises SRS-based sampler instead of SAOS. That is for the case of low-latency QoS

goal.

As a baseline to compare our models for the case of accuracy QoS goals, we have

transparently incorporated within the layers of SpSS a model-based controller that is based

on SRS theory for calculating a new sampling fraction after every trigger and serving it

interactively to an SRS-based sampler (as opposed to our SAOS sampler).

6.2.2 SpatialSSJP Overview

We have designed SpatialSSJP12 (short for Spatial-aware approximate Join Processor), an

adaptive QoS- and Spatial-aware framework for processing spatial stream-static joins

efficiently. Our system employs hybrid model-based controllers to reactively and proactively

handle the information overflooding during burst spikes in spatial data streaming workloads.

12 The source code of SpatialSPE (including rateController) is available at:

https://github.com/IsamAljawarneh/SpatialSSJP

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

132

We depend on hybridizing a novel rate controller with our spatial-aware sampling method

(from our previous work SAOS [101] , refer to section 5.3.4 for details). A general overview

of SpatialSSJP is schematized in the context diagram of figure 6.1.

An expert expresses the continuous spatial query (that implicitly requires stream-static join

operation) and a query running budget. Budgets are a form of either latency or accuracy QoS

guarantees. Data is arriving continuously from geo-referenced heterogeneous sources and is

then fed interactively at regular time intervals (e.g., batch intervals, a.k.a. trigger intervals in

SpSS terms). We have implanted our cogent method SAOS in a front stage so that it receives

a signal from the rate controller of SpatialSSJP that informs the new appropriate sampling

fraction. SAOS then selects a proportionate sample and emits it to the stream-static join

operator, which thereafter forwards the intermediate result to the approximator.

Approximator completes the approximate computation cycle and serves an incremental

result with rigorous error-bounds to the user. At the same time the join operator sends

statistics of the latest trigger to the rate controller, which exploits those statistics in

calculating new sampling rate and serving it to SAOS to be applied in the next trigger.

SpatialSSJP comprises three main components:

• Stream-static join operator. This component is responsible for stream-static join

over the sampled subset. While stream-static join processor in SpSS is a simple and

conceptually appealing approach, it suffers from computational limitations when

Figure 6.1. SpatialSSJP Overview. CQ is ‘continuous query’

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

133

applied to spatially-tagged datasets. Our join operator is alternatively then a

retrofitted version based on an operator offered by the spatial-aware library on top of

spark (known as Spark’s Magellan13 [12, 13]). Spark’s Magellan is basically designed

to handle static-static spatial joins using z-order curves. We have retrofitted Spark’s

Magellan so that it works with the stream-static join, using the primitive features of

Spark’s Magellan that offer basically a static-static join.

• Rate controller. The rate controller depends on QoS goals fed to the system by an

expert user. Our controller is composed of two sub-components; latency-aware rate

controller and accuracy-aware rate controller. For latency-aware rate controller, we

have incorporated a hybrid (i.e., proactive and reactive) model-based loop feedback

mechanism for appropriately pruning the arrived data loads to avoid system failure

and achieve the latency QoS targets. The controller calculates a new appropriate rate

(which is then mapped into an appropriate sampling fraction) and feeds it back to the

SAOS method to force SAOS to limit the rate of data accepted for processing in the

next trigger. Accuracy-aware rate controller employs a model-based statistical

approach to compute a sampling fraction that is appropriate for meeting the accuracy

requirement (expressed as ‘margin of error’ value, explained shortly in section 6.3.2).

Notice that both controllers have one common reconfigurable parameter, which is the

sampling fraction. Since sampling module is a front-stage, then the overhead caused

by the rate controllers is tiny and negligible, which is highly desirable in the control

theory.

• Approximator. This component is responsible for receiving the output of the join

operator and then using the result in incrementalizing a required statistical target

variable. For example, calculating the “average trip distance for all Uber trips (e.g.,

during a specific time-based window) originated in a specific district in Amman city

(in Jordan)”.

13 https://github.com/harsha2010/magellan

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

134

6.3 SpatialSSJP Algorithms and Mathematical Formulations

In this section, we explain the algorithm that shows the workflow of SpatialSSJP in addition

to the algorithms of the rate controllers.

6.3.1 SpatialSSJP Workflow

 SpatialSSJP workflow is given in Algorithm 6.1, including the procedure for implementing

stream-static join based on a retrofitted version of Spark’s Magellan-based spatial static-

static join.

 Algorithm 6.1. SpatialSSJP Workflow

 /* latThrAccTargets: latency throughput and accuracy targets

geoPrec: geohash precision */

Input: stream, ContinuousQuery (CQ), latThrAccTargets, polygons, geoPrec

1: coverGeo getCoverGeo (polygons, geoPrec) /* List of geohashes covering

each polygon */

 //cost model computes the sampling fraction

2: newSampFraction = 1.0 //initially do not sample

3: While true //loop forever – unbounded stream

4: Foreach time window interval do

5: windowSample = ∅ // tuples sampled in current time window

6: Foreach batchInterval in window interval do

7: batchSample = ∅ //tuples sampled in current batch interval

8: Forall tuplesi in batchInterval do

 /* apply SAOS on tuples of current batch interval: tuplesi */

9: batchSample SAOS (tuplesi, samplingMap, NewSampFraction, seed)

10: windowSample.add(batchSample)

11: End

12: End

 /* perform inner join on geohash using the filter stage, filter-and-refine

approach */

13: joinResult = windowSample.join(coverGeo, windowSample(“index”) == coverGeo(“index”))

 /* refinement stage, filter-and-refine approach, by applying the ‘within’ join

predicate, i.e., PIP test
 , refer to listing 6.1 for an example */

14: optimizedJoinResult = joinResult.filter(edgeCases)

 //Compute and serve incremental output every time window

15: newSampFraction rateController(latThrAccTargets) // section 6.3.2

16: incrementalOutput run (CQ, optimizedJoinResult)

17: return incrementalOutput with error-bounds

18: End

19: End While

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

135

Listing 6.1 shows an example stream-static join processing using a retrofitted version of

Spark’s Magellan. Refer to section 2.3 for more details.

To sum up, the three constituent building blocks of SpatialSSJP are: (i) stream-static join

operator, (ii) rate controller and (iii) approximator. Those are interweaved and bounded

together in a synergistically complementary way so that the benefits accrued by their synergy

is greater than their combined independent benefits. Data passes through SAOS (initially

disabled in the first trigger, batch interval) to be then fed to the stream-static join operator

that performs the spatial-aware join (through a retrofitted version based on Spark’s

Magellan) and the join results are forwarded to the approximator that computes the CQ .

During the CQ computation in every trigger, rate controller module computes the new

sampling fraction based on the query budget and send it back to the SAOS module to select

a proportional sample. After each window interval results are served to the user, either

achieving the latency target (currently stepwise, the mechanism in which PID works) or the

geo-statistically plausible rigorous error-bounds (e.g., in the form of confidence intervals).

6.3.2 Rate Controller Algorithm

The procedure rateController workflow is given in Algorithm 6.2.

 Algorithm 6.2 rateController Procedure

1: Procedure rateController (latThrAccTargets)

2: If (priority == latency)

3: 𝑟𝑎𝑡𝑒𝑛𝑒𝑤 = LatencyAwareController(latencyTarget, PIDvalues)

4: Elseif (priority == accuracy)

5: 𝑟𝑎𝑡𝑒𝑛𝑒𝑤= AccuracyAwareController(marginOfError)

 End if

6: Return 𝑟𝑎𝑡𝑒𝑛𝑒𝑤

7: End procedure

8: Procedure LatencyAwareController(latencyTarget, PIDvalues)

 /* retrieving statistical information from the last trigger,

specifically, scheduling delay,
 Processing time, and number of elements */

9: lastTriggerInformation = retrieveLastTriggerInfo()

pointsDF.join(polygonsDF,pointsDF("index")==

polygonsDF("index")).where($"point" within $"polygon")

 listing 6.1. An example stream-static join processing using Spark’s Magellan

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

136

 /* adapted from Spark Streaming [22, 126] but here applied to

sampling using SpSS*/ 13: 𝑟𝑎𝑡𝑒𝑛𝑒𝑤 = 𝑟𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑠𝑡 − (𝑝. 𝑒𝑟𝑟) − (𝐼. 𝑒𝑟𝑟ℎ𝑖𝑠𝑡) − (𝐷. 𝑒𝑟𝑟𝑑)

14: End Procedure

15: Procedure AccuracyAwareController (marginOfError 𝑒)

16: 𝑟𝑎𝑡𝑒𝑛𝑒𝑤 = 𝑧𝛼/2
2 𝑣/𝑒𝑑𝑒𝑠

2

17: 𝑟𝑎𝑡𝑒𝑛𝑒𝑤 = 3.84 ∗ (𝑣/𝑒𝑑𝑒𝑠
𝟐) // 𝑣 = ∑ 𝑛

𝑛ℎ⁄ (𝑁ℎ/𝑁)2 𝑆ℎ
2𝐻

ℎ = 1

18: End Procedure

We offer a simple interface that allows an expert to express targets as either desired latency

or the desired rigorous error-bound (𝒆𝒅𝒆𝒔). Currently, PID controller eliminates the latency

stepwise. Our rate controller then guarantees that the stream-static join is performed within

the budget. It does so by calculating an appropriate sampling fraction depending on one of

two procedures as explained in the next two subsections.

6.3.2.1 Latency-aware Rate Controller

SpatialSSJP takes latency QoS goals specified in the query budget and then applies a

retrofitted version of PID controller. PID controller is a control loop feedback mechanism

that calculates an error value by subtracting a measured process variable (i.e., PV) from a

desired setpoint (i.e., SP). PID controller then enforces a correction depending on three terms

known as proportional, integral, and derivative. The process aims to settle the PV by

reducing three error values. In our setting (and similarly those of Spark Streaming

backpressure version [22, 126]), proportional term defines how correction depends on the

present error (w.r.t. the latest measurement from the latest batch information). Integral term

specifies the way that the correction should react to the accumulation of historical errors (i.e.,

accumulated through past triggers or batch intervals). The purpose of this term is to speed up

the healing process (i.e., the movement towards the desired setpoint SP). The derivative term

specifies how the correction depend on future errors prediction based on error change

between two triggers (i.e., the trend).

As the time of this writing, backpressure through PID controller has not been applied to

Spark Structured Streaming or incorporated with a sampler for dropping loads in a

convenient way that achieves high incrementalized estimation quality. To close this void, we

have retrofitted the plain version of the PID rate controller (known as PID rate controller in

https://en.wikipedia.org/wiki/Setpoint_(control_system)
https://en.wikipedia.org/wiki/Proportional_control
https://en.wikipedia.org/wiki/Integral
https://en.wikipedia.org/wiki/Derivative
https://en.wikipedia.org/wiki/Setpoint_(control_system)

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

137

Spark Streaming terms) that has been applied in Spark Streaming [22] for backpressure [126]

so that it transparently incorporates within the layers of SpSS. It worth mentioning though

that for calculating the three terms of PID (i.e., Proportional, Integrative and Derivative), we

use the same mathematical model-based formulation approach as the one that was applied in

the plain Spark Streaming version. After each trigger, the new rate is calculated with (6.1).

 𝑟𝑎𝑡𝑒𝑛𝑒𝑤 = 𝑟𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑠𝑡 − ((𝑃. 𝑒𝑟𝑟) + (𝐼. 𝑒𝑟𝑟ℎ𝑖𝑠𝑡) + (𝐷. 𝑒𝑟𝑟𝑑)) 6.1)

Refer to Appendix F for a detailed explanation on how each term is calculated with equations

adapted from the PID application in Spark Streaming [22].

It worth mentioning though that PID controller has been used in a similar way by Spark

Streaming with the same formulation to activate the backpressure mechanism. But however,

it has never been used to activate a SAQP with the declarative API (i.e., SQL-alike API in

SpSS), especially in a spatially-rich environment. To the best of our knowledge, we are not

aware of any system in the relevant literature that achieves these goals.

In this thesis, we do not focus too much on future prediction. The rationale is that the relevant

literature proved that only adaptive approaches that place no (or at most very little)

assumptions on workload characteristics are considered stable and may show good

performance for data stream processing systems, since workloads oscillate continuously in

unpredictable ways [127] .

6.3.2.2 Accuracy-Aware Rate Controller

If among SLAs there is a ‘margin of error’ specified as a QoS target, then our rate controller

activates the mode that computes a new sampling rate based on the error-bound specified.

Since our SAOS method resorts to stratified sampling in its core, then we depend on the

theory of stratification [90] for estimating a proper sample size depending on a prespecified

‘margin of error’. As such, some equations in this section are adapted from [90]. We

specifically depend on (6.2).

 𝑛 = 𝑧𝛼/2
2 𝑣/𝑒𝑑𝑒𝑠

2 6.2)

Where we calculate 𝑣 depending on (6.3).

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

138

 𝑣 = ∑ (𝑛. 𝑁𝑘
2. 𝑆𝑘

2/𝑛𝑘. 𝑁2)

𝐾

𝑘 = 1

 6.3)

This approach supposes that we have some knowledge of 𝑣 perhaps from a previous survey.

As this may not potentially be the case in streaming settings, we otherwise depend on

incrementalization and loop feedback mechanism in improving the value of 𝑣 after each

trigger and feeding it back to the controller. Other possible approaches include profiling

some data in a method dubbed as bootstrapping [90]. We however avoid that approach in

this thesis. The reason is that we target settings where profiling is not easily accessible. With

95% confidence level, we have z𝛼/2= 1.96; thus, we apply (6.4) to calculate the new rate.

 𝑛 = 3.84 ∗ (𝑣/𝑒𝑑𝑒𝑠
2) 6.4)

Which then calculates an appropriate sample size given a ‘margin of error 𝑒’. For a fair

comparison, as we are comparing the employment of SAOS in the front-stage against and

SRS-based design, we also depend on the theory of simple random sampling [90] for

estimating an appropriate sample size based on a target ‘margin of error’ in cases that SRS

is applied instead of SAOS. We specifically employ (6.5),

𝑛 = (𝑛0. 𝑁)/(𝑁 + 𝑛0)) = 1/(1/𝑛0 + 1/𝑁)

6.5)

to calculate the desired sample size. If the population size N is large relative to the sample

size 𝑛 so that the finite-population correction (fpc) factor can be ignored, the formula for

sample size simplifies to 𝑛 = 𝑛0. Where 𝑛0 is calculated using (6.6).

 𝑛0 = 𝑧2𝜎2/𝑒𝑑𝑒𝑠
2 6.6)

It is then apparent by combining the two equations that we obtain a tradeoff equation between

latency (incorporated within the three terms of PID) and ‘margin of error’ (i.e., accuracy,

estimation quality) which is shown in (6.7), rendering the problem a conundrum where

optimizations are limited.

 𝑟𝑎𝑡𝑒𝑛𝑒𝑤 = 𝑟𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑠𝑡 − ((𝑝. 𝑒𝑟𝑟) + (𝐼. 𝑒𝑟𝑟ℎ𝑖𝑠𝑡) + (𝐷. 𝑒𝑟𝑟𝑑)) = 3.84 ∗ (𝑣/𝑒2) 6.7)

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

139

6.3.3 Supported Queries

We support online spatial aggregation (was first proposed by [128]), where join is part of the

query plan. Hence, we are interested in an end-to-end accuracy (i.e. estimation quality), as it

is hard to factor the join operator independently. Since we are operating on window

semantics, aggregations typically include some statistic such as an ‘average’ estimator of an

attribute value during each time window [129]. Some equations in this section are adapted

from [90].

An expert specifies a tolerable error. Those are normally expert investigators in a geo-statistic

study who can specify the precision needed, expressed often as P(|y̅𝑠𝑎𝑚𝑝 − y̅pop| ≤

𝒆𝒅𝒆𝒔) = 1 – 𝛼, where y̅𝑠𝑎𝑚𝑝 is the estimate of the ‘mean’ value using the sample, y̅pop is

the estimate of the mean using the population, and 𝑒𝑑𝑒𝑠 is the permitted error (i.e., margin of

error). The investigator normally decides acceptable value for 𝛼 and 𝑒𝑑𝑒𝑠. For example, 𝑒𝑑𝑒𝑠

= 0.02 and 𝛼 = 0.05 (equivalent to a confidence level 95%) are common. This is equivalent

to defining a maximum permitted difference between an estimate (e.g., ‘average’ of a target

variable) and a true value, together with an allowable tiny probability 𝛼 for the error to

exceed the difference, the goal is then choosing a sample size that achieves the equation.

6.3.4 Quantifying Uncertainty

We depend on the same set of equations of chapter 5 (specifically, section 5.3.6) for

quantifying the uncertainty carried by the estimations through sampling instead of the

population. In addition to the following new equations. Some equations in this section are

adapted from [90].

We first depend on an equation that is adapted from [130] to certify that samples drawn are

always falling with the minimum standard recommended for the normal approximation to be

adequate, which is given by (6.8).

 𝑛𝑚𝑖𝑛𝑖𝑚𝑢𝑚 = 28 + 25 (𝑝𝑜𝑝𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠)2 6.8)

, where 𝑝𝑜𝑝𝑠𝑘𝑒𝑤𝑛𝑒𝑠𝑠 is the population skewness that is calculated using

∑ (𝑦𝑘 𝑁
𝑘 = 1 − y̅)3

(𝑁𝑆3)
⁄ adopted from [90] , which is then responsible for specifying the

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

140

size of the sample for the normal approximation to be accepted, where large skewness

signifies the need for a large sample size and vice versa.

For single queries, in addition to those in section 5.3.6, we also rely on ‘coefficient of

variation’ (CV) [90] as a measure of relative variability using (6.9).

 𝐶�̂� =
𝑆𝐸(�̅�𝑆𝐴𝑂𝑆)

�̅�𝑆𝐴𝑂𝑆
 6.9)

Which is then equivalent to the SE as a percentage of the mean. In addition to that, we

calculate the gain of applying SAOS (instead of the SRS-based baseline), for which we use

the design effect (abbreviated deff) [90] , which provides a measure of the precision gained

or lost by using a more complicated design instead of an SRS. deff is computed using (6.10).

 deff = 𝑔𝑎𝑖𝑛𝑆𝐴𝑂𝑆 =
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑆𝐴𝑂𝑆

𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑆𝑝𝑆𝑆−𝑏𝑎𝑠𝑒𝑑 𝑆𝑅𝑆
 6.10)

6.4 Implementation

To implement SpatialSSJP, we have built a standards compliant prototype on top of the

elastic data SPE Spark (specifically SpSS). Also, because by our work presented in this

thesis, we aim at complementing an end-to-end QoS-aware pipeline for big data management

in dynamic application scenarios, we aim at incorporating the work with our modular

architecture that can achieve mixed workloads (recall SpatialDSMS from section 3.4). We

have selected Apache Spark as a candidate to implement SpatialSSJP, and specifically we

depend on SpSS [6] for the overarching traits that makes it excels in its class. Spark is the

de facto best-of-breed standard for processing streaming mixed workloads. However, Spark

in its vanilla version does not offer over-the-shelf spatial-aware services. A shortcoming that

led to the emergence of spatial-aware glues and patches on top of Spark. We specifically

depend on a spatial-aware static-static join library recently popularized (the so-called Spark’s

Magellan14 [12, 13]) as it specifically employs a relatively fast dimensionality reduction

14 https://github.com/harsha2010/magellan

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

141

approach (i.e., z-order curves imposed on a grid-based representation) in joining spatial

datasets over Spark. Although faster than any state-of-art spatial-aware join methods, Spark’s

Magellan does not offer adaptivity and can collapse in spatial join scenarios where data

arrives in tremendous amounts at spikes. However, Spark and its spatial library Magellan

serve as good jumping-off points for a novel approach that is QoS-aware, which is our

SpatialSSJP. One other reason that guided our decision in selecting Magellan and preferring

it over counterparts is that it is the first spatial-aware library over Spark that extends Spark

SQL [16] , thus inherently providing relational-alike abstractions for geospatial analytics

(most importantly spatial join in this case). By doing so, SQL-alike queries are applied to

DataFrames with geometric predicates (e.g. within, contains and intersects).

Our approach is a top-down, where we start by tuning on top of a Spark Structured

Streaming-based model (i.e., Spark’s Magellan), which per se is internally tuning the catalyst

model, and thus everything is compiled down to RDDs. Because of Spark modular

architecture, we believe that this way we avoid reasoning about the underlying processes

atomically (as recommended by the Spark development team [6]). We have implemented the

system by coding basically using Scala on Spark.

Backpressure is provided off-the-shelf by Spark Streaming [25]. However, as the time of this

writing, it was not incorporated with the SpSS [6] . For a fair comparison, and since we are

layering up our architecture on top of SpSS, we have added a patch that implements and runs

backpressure and glues it transparently within the layers of SpSS.

We have implemented the two rate controllers (i.e., latency-based and accuracy-based rate

controllers) by adding our coding patches and incorporating them transparently within the

layers of SpSS. First, for the latency-based controller, we have retrofitted the PID controller

that has been used previously by Spark Streaming [25] for backpressure. We use the same

mathematical model-based formulation from Spark Streaming. The novel contribution we

provide is the incorporation of the PID controller within SpSS. Also, our version of the PID

controller calculates a new sampling fraction after each trigger. On the contrary, the version

implemented in Spark Streaming calculates only a new rate at which the DAG graph is able

to process at any given moment and serves it to backpressure so as to limit the rate a data

ingestion layer is emitting. For the accuracy-based controller, we have designed a model-

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

142

based controller that calculates statistics after every trigger and uses that information for

calculating a new sampling fraction. The overhead induced by extracting that statistical

information is negligible and mitigated by the QoS benefits we reap.

The user can express the query in SQL-alike format such as the example in listing 6.2. In this

query the user wants to specifically “compute a statistical attribute (i.e., average) of a target

variable (i.e., trip distance) and then aggregates (by neighborhood attribute) after performing

the stream-static join”. The join operation is performed by applying the filter-and-refine

approach (recall information from section 2.3.1). By using geohash indexing (a class of z-

order curves), we have reduced the join predicate in the filter stage from a spatial predicate

(i.e., ‘within’ predicate in this case) into a simple equal predicate (i.e., MBR-join). However,

in the refinement stage, the costly ‘within’ predicate still need to be applied to discard the

edge cases (i.e., BSOs). The user expresses this continuous query with an incorporated query

budget as shown in listing 6.2 and then serves it to SpatialSSJP.

The stream-static join in this query will be compiled down into two parts. The first part is an

equijoin (the ‘S.key = M.key’ operation in listing 6.2), which is analogous to the filter stage

in the filter-and-refine approach. This part will be executed using the relatively cheap MBR-

join (refer to section 2.3.1 for details). The second part (the operation ‘p WITHIN po’ in

listing 6.2) requires applying the refinement stage from the filter-and-refine approach (recall

section 2.3.1 for details), which then executes the costly join predicate (i.e., PIP test, ‘within’

predicate in this case). The purpose of executing this refinement stage is to eliminate the

edge cases (i.e., BSOs). This is equivalent to the spatial query of listing 6.3.

SELECT point p, polygon po, avg(tripDistance)

FROM Stream S, MasterTable M

WHERE S.key = M.key AND (p WITHIN po)

GroupBy neighborhood

Latency 120 MS

OR

e 0.03 CL 95%

listing 6.2. An example spatial approximate online aggregation query with

QoS goals

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

143

SpatialSSJP then executes the query either within a “best effort” stepwise strategy to reduce

the latency so as to approach the target latency specified (or even less) or it works at

achieving the accuracy level (i.e., estimation quality QoS goal). All in all, we support the

same set of queries that we previously supported in our previous work (SpatialSPE [101] ,

chapter 5). The addition here is that the join operation enables a coarser granularity. We

measure then the accuracy of the queries with a coarser granularity. For example, aggregating

on the neighborhood level (i.e., a coarser level) instead of the geohash level (i.e., fine

grained-level, the level we natively supported in SpatialSPE [101] , as explained in chapter

5).

6.5 Performance Evaluation and Results

In this section, we discuss the deployment settings, data used for benchmarking, and how

SpatialSSJP excels in meeting QoS targets specified though SLAs.

6.5.1 Deployment Settings, Test Cases and Benchmarking

Dataset. We use the same dataset cohort that we have exploited for SpatialSPE (refer to

section 5.5.3 for details).

Deployment and experimental settings. We deploy SpatialSSJP on a Microsoft Azure

HDInsight cloud Cluster hosting Apache Spark (version 2.2.1). Our cluster consisted of 6

computing nodes in total (2 Head nodes, analogous to master nodes in Amazon, plus 4

worker nodes). Head nodes specifications are based on (2 x D12 v2), and workers are based

on (4 x D13 v2) specifications. Every head node hosts 4 CPU cores with 28 GB RAM on

each and 200 GB Local SSD memory, and quantities are double those figures for each worker

node.

Testing scenarios. We have developed complicated mix workload scenarios that require

stream-static join, we aim to measure the following.

SELECT point p, polygon po

FROM point SPATIAL JOIN polygons

WHERE WITHIN (p, po)

listing 6.3. an example of an exhaustive PIP test

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

144

1) SpatialSSJP ability to satisfy a target latency requirement by applying the latency-

aware rate controller. We compare that between applying SAOS and SRS-based

sampling approaches. For this scenario, we use two PID values settings. For the first,

we use P=1, I=1, D=1. For the second, we use P=1, I=0.6, D=0.2. by alternating

values of PID, we are able to measure the effect of the degree of the term

consideration. For example, the less means that we give less importance to the

associated term. For example, in the second setting we set D=0.2 to say that we do

not want to affect the system stability by accounting for a future prediction too much.

Instead, we consider future load trends slowly. We do the same in cases of using

SAOS and SRS-based sampling. Also, we mimic the oscillating nature of arrival rates

by fluctuating rates in diverse settings. ‘500K to 2000K’, ‘500K to 3000K’, ‘500K to

5000K’, and ‘500K to 2000K to 1000K’. By doing so, we measure how the system

responds to oscillation. We compare SpatialSSJP with backpressure (a patch that we

have added atop SpSS) using the same settings. In addition, we alternate the geohash

precision between 30 and 25, aiming at measuring the effect of granularity in latency

gain and to see how fast the system can recover and be controlled back to a normal

range.

2) SpatialSSJP ability to satisfy accuracy target by applying the accuracy-aware rate

controller. We fix the arrival rate and change the accuracy target (i.e., margin of

error) between 0.01 (strict and stringent), 0.03 (middle strictness) and 0.09

(permissive). We compare the join under SAOS against the join by using SRS-based

sampler. Backpressure is not applicable in this case as one of the shortcomings that

detract backpressure is its obvious inability in achieving a desired accuracy target in

a timely fashion. The reason is that backpressure pushes the lateness upstream

forestalling the emitters from sending new data until the operators downstream have

a capacity.

6.5.2 Results and Discussion

All results reported in this chapter are calculated as the median (i.e., 50th percentile) of ten

runs.

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

145

6.5.2.1 SpatialSSJP ability to satisfy a target latency requirement

Figure 6.2 depicts how the latency-aware controller of SpatialSSJP is able to lower the

latency to the minimum (near zero) which was specified as a latency target by the user. PID

values used in this case are (1,1,1), respectively. Scheduling and processing delays

(processing delay is equal to processing time minus the batch interval) converges at the first

point where the latency-aware controller realizes that a staggered delay is caused by the

sudden spike in the batch size (i.e., from 500K to 2000k) and a newly computed sampling

fraction which roughly equals to 3.18% is then served to SAOS, after that a catch up occurs,

but then the controller decides to take it slowly (because of the D value being 1, accounting

more for a future possible sudden spike in the batch size), thereafter the system returns back

to normal operation stepwise slowly increasing the fraction rate after each trigger (reaches

on the verge of 40% at batch ID 6).

Trigger interval in all those experiments is 1 second (1000 milliseconds). Notice that

processing delay (processing time) never goes below the duration of the trigger interval. This

is because we depend on the tumbling window semantics (i.e., non-overlapping time-based

Figure 6.2. catch up at PID values 1,1,1 where SpatialSSJP is able to meet the latency target

by applying the latency-aware controller. Secondary axis to the right hand-side represents

‘processing time’ and ‘scheduling delay’, whereas the main axis to the left compares the batch

size (data load) with sampling fraction

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

146

windows). Notice that using PID, the lateness is amortized stepwise and even if the flood

slows down it returns to a previous state stepwise to account for future spikes.

For the same oscillation settings, but changing the PID values to 1,0.6,0.2 respectively

(scientifically plausible margins), we obtain the adaptation shown in the visual representation

of timeline in figure 6.3.

Figure 6.4 shows a catch-up by oscillating batch size from 500K to 3000K, hitting stronger

the SPE resources. Notice that in this case, as the oscillation is higher than the previous case

(being sterner, 3000K instead of 2000K) the system does not overshoot the sampling fraction,

it instead keeps lowering it monotonically until the system stabilize at almost 0.02% and a

plausible convergence is achieved near the latency target specified by the user. Similar trend

occurs in case of PID values equal to (1,1,1), respectively as illustrated in figure 6.5.

Figure 6.3. catch up at PID values 1,0.6,0.2 where SpatialSSJP is able to meet the latency

target by applying the latency-aware controller. Secondary axis to the right hand-side

represents ‘processing time’ and ‘scheduling delay’, whereas the main axis to the left

compares the batch size (data load) with sampling fraction

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

147

Being harsher, and mimicking the oscillation in wild, we mimic a sudden spike from 500K

to 5000K. again, SpatialSSJP was able to catchup and stay alive for both PID settings. Figure

6.6 shows also the case where SpatialSSJP was able to survive a brutal spike in batch size, a

Figure 6.5. catch up at PID values 1,1,1 and oscillation 500k-3000K where SpatialSSJP is able

to meet the latency target by applying the latency-aware controller. Secondary axis to the right

hand-side represents ‘processing time’ and ‘scheduling delay’, whereas the main axis to the

left compares the batch size (data load) with sampling fraction

Figure 6.4. catch up at PID values 1,0.6,0.2 and oscillation 500k-3000K where SpatialSSJP is

able to meet the latency target by applying the latency-aware controller. Secondary axis to the

right hand-side represents ‘processing time’ and ‘scheduling delay’, whereas the main axis to

the left compares the batch size (data load) with sampling fraction

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

148

fluctuation happens from 500K to 2000K to 1000K. Notice how the processing/scheduling

delays are smoothly and ideally following the same discernible pattern as the input rate, in a

circadian rhythm, signifying the ability of the system in meeting efficiently the spikes in all

ways, considering a sudden spike and a fluctuation from brutal spike to a more relaxed

situation. Our method can extrapolate unseen sudden spikes in data arrival paces.

We see that, at all settings, as a convergence occurs, the processing time reduces so that it

falls within the batch intervals. Then, SpatialSSJP gradually starts pulling in more samples

per batch. By relying on an SRS-based sampling method instead of our SAOS method, our

SpatialSSJP is also able to survive spikes at all cases, however, with deteriorated accuracy

bounds as it induces more Standard Errors (SE) and CV than SAOS. Figure 6.7 shows an

example.

Figure 6.6. catch up at PID values 1,1,1 and oscillation 500k-2000K-1000K where SpatialSSJP is

able to meet the latency target by applying the latency-aware controller, Secondary axis to the right

hand-side represents ‘processing time’ and ‘scheduling delay’, whereas the main axis to the left

compares the batch size (data load) with sampling fraction

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

149

Despite being able to survive spikes in streaming data loads, SRS-based sampling

underperforms SAOS, where the latter yields better sampling statistics in estimating target

variables. This is obvious through measuring the CV as shown in figure 6.8.

Figure 6.7. catch up (SRS) at PID values 1,0.6,0.2 and oscillation 500k-2000K- 1000K where

SpatialSSJP is able to meet the latency target by applying the latency-aware controller. Secondary axis to

the right hand-side represents ‘processing time’ and ‘scheduling delay’, whereas the main axis to the left

compares the batch size (data load) with sampling fraction

Figure 6.8 . Coefficient of Variance by applying SAOS against SRS-based, both under

SpatialSSJP. ‘avg state mgmt.’ in the legend (corresponds to the secondary axis on the right-

hand side, ‘avg. keys. updated’) is the average state keys managed in-between time windows.

CV in the legend (corresponds to the primary axis on the left-hand side) is the Coefficient of

Variance

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

150

Also, SRS-based method is susceptible to missing the confidence interval as shown in figure

6.9. The case at load oscillation (500K to 2000K), whereas, SAOS-based counterpart is

perfectly residing safely in the middle, never missing the confidence interval. As shown in

figure 6.10.

Figure 6.9. Confidence Interval true-value-miss by applying SRS with SpatialSSJP

Figure 6.10. Confidence Interval true-value-always-hit by applying SAOS with SpatialSSJP

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

151

In cases where sampling is disabled, the system was not able to achieve the latency goals as

shown in figure 6.11. Also, in brutal oscillation cases such as 500K to 5000K, the plain

baseline system (plain spatial join operator without sampling) throws an out-of-memory

(OOM) exception. Signifying the importance of applying sampling in streaming highly

dynamic application scenarios.

Overall, the gain (a.k.a. precision or design effect, deff for short) of relying on our sampling

method (SAOS from our previous work [101]) instead of an SRS-based design , and

incorporating that synergistically as a front-stage quick-and-dirty sieve , is shown in figure

6.12.

Figure 6.11. High delays imposed by disabling sampling during burst loads, Oscillation

500K – 2000K. Secondary access to the right hand-side represents ‘processing time’ and

‘scheduling delay’, whereas the main access to the left shows the batch size (input rate)

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

152

We can see that relying on SAOS, we achieve the best performance, significantly

outperforming SRS by a large margin (on average, the relative improvement over SRS is at

least 10% and reaching more than 50% at times), suggesting that relying on data-shape-aware

designs (such as SAOS) is preferable over randomly selected designs.

6.5.2.2 SpatialSSJP Ability to Satisfy Accuracy (estimation quality) Target

Using our accuracy-aware rate controller, relying either on SRS-based or SAOS, we could

achieve the prespecified accuracy target (i.e., estimation quality or ‘margin of error’).

However, SAOS requires, on average, less sampling fractions compared to SRS-based

designs in order to achieve the same error-bonded target. A plausible case, as less fractions

means lower latency and higher resource utilization, thus better trading off the contradicting

QoS goals. This trend is shown in figure 6.13 for two ‘margin of error’ values (0.03 and a

more restrictive 0.01). Notice that in more restrictive cases (i.e., when error equals to 0.01),

both SAOS and SRS-based need more sampling fractions to achieve the target accuracy.

However, all in all, relying on SAOS yields less sampling fractions than SRS-based, which

is statistically plausible.

Because N (continuous population in each trigger) is large, n0/N is very small, rendering n ≈

n0. Thus, approximately same sample is required for any large population (being 1 million

or 1 billion tuples). Then it becomes readily apparent why we obtain the same almost

Figure 6.12. Gain by applying SAOS (with SpatialSSJP) against SRS

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

153

sampling fraction in subsequent trigger intervals (whether relying on SAOS or SRS), which

corroborates the formalization herein.

Backpressure shows similar latency improvement as our system. However, it does not reflect

the latest progressions in deep insights in a timely fashion as it considers only a past time

and puts a hold on the arriving data, thus negatively affecting the freshness of system output

which counteracts the benefits of stream processing.

6.6 Related Work

The widespread abundance of sensor-enabled and IoT devices have catalyses the trend of

data analysis to shift greatly from static views into online and real-time counterparts. As the

analytics envisaged from such unbounded loads are mixed, sometimes integrating data from

multiple sources, join presents itself as a main operation in any successful stream processing

end-to-end pipeline.

Join is computationally expensive and can render a SPE unresponsive in burst spike

workloads, where data arrival rates exceed the service rate of DAGs that encapsulate joins.

To mitigate this problem, several works from the relevant literature have adopted different

strategies for controlling the rate in burst streaming sources. Those systems are based on one

of the approaches that we have discussed in section 6.1.3 (i.e., backpressure, elasticity and

Figure 6.13. Accuracy gain by applying SAOS with SpatialSSJP against SRS. In the legend,

‘moe0.03’ means ‘margin of error’ that equals 0.03, whereas ‘moe0.01’ means ‘margin of error’

that equals 0.01

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

154

approximate computing). Elastic approaches are classified by the method they apply in

deciding when and how to adapt. Those are mainly categorized into threshold-based and

model-based designs. Threshold-based elastic systems compare the size of data in a batch

with a threshold, so that adaptivity (i.e., scaling resources in/out, up/down) is triggered once

batch size exceeds the threshold. Just-in-time (not so early, not so late) firing of the

adaptation trigger is highly desirable and can only be achieved by choosing the appropriate

threshold, which is specifically challenging. Model-based approaches depend on a

mathematical model to calculate when and how to adapt, however finding an expressive

model that represents the system environment is challenging. Other possibilities include self-

tuning learning-based models that learn statistics gradually from the data over time as time

tick forward and enhance the predictivity depending, for example, on a machine learning

formalization. However, those normally leave the system unstable as they involve complex

machine learning models that incur additional costs which are not being amortized by the

benefits they provide. Another relevant categorization of methods is being proactive or

reactive. In the former, methods can predict future spikes and act as early as possible, thus

avoiding any congestion, whereas in the latter methods are only reacting at the time the spike

hits.

Most methods of the relevant literature focus on stream-stream joins in distributed

environments. However, only little attention has been given to stream-static join processing,

where data-at-flight needs to be joined with a master data-at-rest to enrich the former with

appropriate descriptions [17].

Some streaming join algorithms are designed specifically to work in centralized single-

device servers. They are also designed to operate in RDBMSs. For example, Wander join

[112] employs graphs to model data join relationships in stream-stream settings. However,

such a mechanism is not designed for distributed settings and parallelizing it is a nontrivial

task.

In the same vein but applied this time to stream-static join (in what authors call semi-stream

join), [118] propose a cache-based method for joining streaming data with disk-resident data

under a record-at-a-time model in a centralized server-based setting. However, their

adaptation mechanisms are based on complex models such as machine learning predictions

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

155

and thus add more complexities to the cost formulas, counteracting the benefits of elasticity.

Again, this method is appropriate in centralized server-based settings and not readily

available for distributed environments, marking its adoption non-trivial as they are unable to

scale out to deal with massive data sets efficiently.

Some other algorithms, despite being designed for centralized single-node servers, focus on

applying load shedding. However, most of them apply it to stream-stream joins and only few,

such as [131] , apply it to stream-static join. Their approach is reactive threshold-based in

the sense that they apply a simple formula for calculating the latest batch size and then if a

future batch size exceeds its double, they perform load shedding to prevent accumulating

tuples in the buffer. There are two distinguished problems with this approach. First, it sheds

loads randomly not being attuned to the data characteristics. Also, there is an overhead

incurred by continuously spilling out loads to disk and recovering them to be processed again

as loads slowdown.

Aiming at parallelizing algorithms like Wander join, some other researchers tackle the

distributed stream join from other angles, including the partitioning scheme. For example,

[132] present a new elastic partitioning scheme for stream-stream theta-join operators,

aiming at striking a balance between high throughput and high resource utilization by only

acquiring resources on-demand (i.e., dynamic allocation).

So far, little attention has been given to the stream-static join processing using the micro-

batch model in distributed settings. [17] propose a solution called DS-join for distributed

processing of the join between streaming and stored big data under the micro-batch model

of recent distributed SPEs. They focus on repartition join specifically as they target settings

where the static relation does not fit in the memory of Spark worker nodes, so they aim at

minimizing the shuffling. DS-join generates multiple queries that are executed in parallel

using Spark Streaming.

Despite the abundance of scattered works handling joins in many directions, most of them

are general-purpose and not attuned to data specific characteristics such as spatial workloads,

which require specific considerations. Hence, special systems have emerged to tackle the

spatial join peculiarities. From the literature, spatial-aware systems are mainly based on the

batch-oriented Hadoop or the speed-oriented Spark. For example, SpatialHadoop [63] has

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

156

been built on Hadoop with appropriate indexing schemes (i.e. grid, R-tree, and R+-tree) for

supporting spatial joins among other spatial queries. similarly, HadoopGIS [65] exploits

Hive with a grid index for processing self-joins. So, they depend on spatial indexing to speed

up pair-wise cross joins. On top of Apache Spark [1] , SpatialSpark [133] supports broadcast

PIP test spatial join algorithm. From the same class, GeoSpark [11] perform spatial joins by

indexing on quadtree and R-tree for local indexing, whereas employing regular grid for

global indexing, hence resembling two-level indexing. However, there are few apparent

limitations with those systems. First, they are basically designed to support static-static

spatial joins. Second, they do not natively support SQL-like queries. Moreover, they do not

incorporate approximate methods for handling burst workloads in case they are retrofitted to

work with streams.

We are not aware of any works in the relevant literature that exploit approximate processing

(using sampling basically) to support stream-static joins specifically for spatial workloads.

However, some works apply sampling for general streaming workloads in burst

environments. For example, [134] propose an adaptive overload management system

AccStream (on top of Spark Streaming [22]) which selectively samples/drops and processes

data tuples (and sometimes blocks, building blocks in Spark Streaming terms) on a de facto

mini-batch streaming SPE. AccStream consists of three elements; a controller, collector and

a retrofitted receiver. The collector sends statistical information (i.e., latency and accuracy,

accuracy depends on sampling theory) to the controller, that, in turns, computes an

appropriate sampling fraction. The receiver is a retrofitted version of Spark Streaming’s

receiver so that it incorporates a sampling module that samples at the granularity of tuples

and blocks. For achieving the latency targets, they employ dynamically a self-tuning

learning-based model (i.e., latency model). The downside however is that AccStream is

general purpose and not readily prepared for spatial loads. Also, it only supports two

analytics, single aggregations (such as ‘counts’) and top-k. This also implies other statistical

estimates that are composable of those, such as ‘averages’ (i.e., ‘means’) that are composable

of two divided sums. Also, the complex method they are using for system prediction

endangers the system stability. This is because the method that they have described is

computationally expensive and requires continuously calculating many statistics that are not

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

157

readily available by the underlying system codebase (i.e., Spark in this case), rendering the

model as a bottleneck that can carry more latency in subsequent time windows.

We are not aware of any system from the relevant literature that achieves the goals we aim

at achieving by designing SpatialSSJP.

To summarize the relevant art, most works presume a (nearly) perfect envisaged knowledge

of the future. However, an online algorithm that simply self-tunes and does not have

complete knowledge of the future is more desired [115]. Also, most approaches, despite

being able to maximally utilize resources at times, need to be manually tuned with specific

workloads at most other times. They also have limitations in handling live data streams and

poorly model QoS requirements [127]. Moreover, they are not intrinsically designed to

handle geospatial workloads that normally show temporal skewness in intensities. Those are

some reasons that have encouraged us to design SpatialSSJP, most importantly, considering

a controller such as PID that does not expect too much knowledge of the future and being

able to keep the system stable. Also, successfully applying methods from the sampling theory

in modelling an accuracy aware controller, thus efficiently modelling QoS latency and

accuracy requirements that are prespecified by an expert user.

6.7 Chapter Conclusion

Elastic scaling of resources has been thus far the predominant solution for surviving in

transient burst spikes of streaming data loads. Aiming basically at maximizing the resource

utilization by (semi-)automatically provisioning and deprovisioning resources. Also,

threshold-based and other models require a manual tuning of the configurations which may

need specific domain or workload knowledge and prediction. Only little knowledge, or no

knowledge at all should be envisaged in those settings.

The highly skewed nature of spatial loads requires careful attention. It also requires being

attuned to those characteristics in order to be able to handle spikes and oscillations in spatial

data arrival rates in streaming deployments.

To close those gaps in the literature, we have designed an adaptive spatial aware processing

engine, that most importantly focus on the stream-static joins (better known as geofencing

or PIP for spatial loads). Our system proves efficient as it can strike a plausible balance

SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

158

between contradicting QoS harsh constraints (such as latency and accuracy or estimation

quality). It does so by employing two entwined controllers, an accuracy-aware controller that

carefully obeys the sampling theory and a stable loop-feedback mechanism (PID) that keeps

the system stable by not undershooting or overshooting the sampling fractions, with a

minimal calculation effort that only adds negligible costs that are mitigated by the benefits

we reap from the adaptation. Our system, SpatialSSJP is able to rejuvenate the operation of

the join operator even after an overwhelmingly striking blazing-fast spikes in data arrival

rates. We do so by only tuning one parameter, the sampling fraction. In addition, our system

is the first in its class that adopt an SQL-like declarative API for SAQP (specifically for

stream-static join processing) by being built on top of SpSS, thus exploiting all the query

optimizations that are provided already by the codebase. In addition, although designed to

work with micro-batching systems, it can be easily extended to other SPEs that support other

window semantics. Results on large-scale datasets show that SpatialSSJP cultivates a

significant improvement over baselines.

As a future research perspective, we have only considered the cadence of data arrival rates

as the major cause of latency in current SPEs. However, there are many other causes that

may be detrimental to the overall health of the SPE. Most significantly, perhaps is the cross-

network shuffling being a potential confounder, which is basically caused by employing

naïve partitioning schemes that are unaware of the spatial characteristics.

Conclusion and Future Works

159

Chapter 7

7 Conclusion and Future Works

In this chapter, we first summarize the major contributions that we have made in this thesis

in § 7.1. In what follows, we explain in § 7.2 the wide range of applicability of the

contributions of our systems and algorithms in diverse domains, specifically for highly

dynamic and scalable application scenarios. To conclude the chapter in § 7.3, we recommend

interesting future research frontiers that can be based on the primitives and baselines we have

presented in this thesis.

7.1 Summary of Contributions

Avalanches of geospatial data that are streaming from various, often, heterogeneous channels

are looming threats on businesses and presenting them with formidable challenges and

hazards. In addition to the significant patterns that are hiding deeply inside stockpiles of geo-

referenced data. Neither streaming data nor batch snapshots can exist in void, they are

complementing each other and analyzing each of them alone is not revealing the whole

picture that can assist better decision making. We posit that “one-size-fits-all” does not hold

true in distributed spatial stream processing and management environments. Often, historical

deep insights need to be combined with data-in-motion so as to improve the analytics quality.

Current systems do not natively offer QoS awareness as a transparent underlying layer for

processing streams of geo-referenced data. More than often, users need a technical

knowledge to tune at the QoS level. A QoS aware system for processing fast arriving spatial

data streams is then needed, which transparently incorporates QoS awareness within its

layers so that it constituent parts operate synergistically in an aim at achieving a prespecified

set of QoS goals. This consequently means that the users at the presentation layer do not need

to reason about the underlying QoS logistics, but otherwise use them in their applications

seamlessly.

To achieve those goals and close the gaps in the literature, in this thesis, we have designed a

QoS Aware DSMS for geo-referenced huge amounts of streaming data loads (we term our

Conclusion and Future Works

160

system as SpatialDSMS. The system is built with a modular architecture that streamlines the

orchestration between the constituent sub-systems such that the development and

deployment efforts are not repeated for every workload alone. Instead, the systems we have

designed and incorporated in SpatialDSMS work collaboratively and synergistically in

achieving the modularity. Colloquially, traditional independent big geospatial management

systems are operating in an uncharted territory, and SpatialDSMS is the compass. It has been

designed to provide an unrivalled capacity to achieve desired QoS goals intrinsically. We

have specifically designed, implemented and incorporated in SpatialDSMS the following

sub-systems:

7.1.1 SpatialBPE

SpatialBPE is the part that is responsible for batch processing of the arriving workloads in

batch mode. This means that snapshots of streaming data are first spilled to disk. Thereafter,

on need, SpatialBPE could be asked to analyze portions from this data-at-rest to get some

historical insights that assist in decision making. The QoS of this component depends on its

ability in serving results faster at times (i.e., low-latency QoS goal). Also, it is desirable to

localize the geographically-nearby spatial objects so that to minimize network shuffling and

thus allowing for a QoS aware sharing of network resources, thus achieving the high

resource-utilization QoS goal. Those QoS aware services are transparently injected on top of

the codebases of best-in-class representatives (i.e., Spark in this case). Having done that,

SpatialBPE assists in complementing the modular architectural design goal that has been

envisaged by designing SpatialDSMS.

7.1.2 SpatailNoSQL

SpatialNoSQL constitutes a scalable backend QoS aware storage framework for geo-

referenced streaming data snapshots. It is consolidating heterogeneous resources in a unified

compatible format. Snapshots coming from streams are transformed into that format and

sharded appropriately (i.e., depending on QoS aware rules) to multiple shards in such a way

that assists in achieving QoS goals prespecified by the user. SpatialNoSQL constitutes a

custom sharding scheme (i.e., GSS) that is attuned to the data shape (i.e., being spatial). It

then helps in striking a plausible balance between two sharding goals (i.e., SDL preservation

and load balancing). It also hosts two spatial query optimizers that exploits our custom

Conclusion and Future Works

161

sharding scheme in achieving the QoS goals. Being designed to complement the other

components of SpatialDSMS, it has a modular architecture that enables it synergistically to

co-work with the other components to solve mixed workloads problems. For example, for a

fast approximate stream-static join , since the static table is stored in SpatialNoSQL with

polygons represented as covering geohashes, then it would be easy to combine with a

geohashed streaming data load as we simply need to overlay the streaming points map (from

a micro-batch) on the covering polygons map and the join is solved in a simpler way known

as MBR-join , acting as a quick sieve with statistically rigorous error bounds. The fact that

both geospatial objects (i.e., the stream and the static master table) have the same

representation (i.e., geohash) has enabled this kind of mix workloads with QoS guarantees.

This also has encouraged us to design SpatialSPE, which is discussed in the next subsection.

7.1.3 SpatialSPE

For huge spikes that need to be processed fast, where we can sacrifice tiny accuracy for huge

performance gains (i.e., low-latency, high-throughput and high-resource-utilization), we

have designed SpatialSPE as the first in its class that is able to perform incremental spatial

analytics based on a declarative SQL-like API, thus relieving the shoulders of geo-

statisticians from having to reason about the intricacies and complexities of the underlying

systems and focusing instead on the statistical analytics part. SpatialSPE is based on robust

statistical modelling and is implemented with an emerging micro-batch streaming SPE (i.e.,

Spark Structured Streaming). SpatialSPE hosts a spatial-aware sampling method SAOS,

which is attuned to the data characteristics. Thus, we reap many benefits that efficiently

impact the QoS goals. SpatialSPE is able to achieve statistically plausible results and by

orders-of-magnitude outperforms its counterparts. SpatialSPE complements the modularity

architectural design goal of SpatialDSMS in the sense that it incorporates seamlessly with

other components so that they all synergistically and collaboratively achieve an envisaged

set of QoS goals.

7.1.4 SpatialSSJP

Most interesting insightful analysis happen during the spike in streaming data arrival rates,

which, at times, necessitates mixing the fast loads with disk-resident descriptions, in a costly

operation that is mostly known as stream-static join. We have designed SpatialSSJP so that

Conclusion and Future Works

162

it complements the other components of SpatialDSMS in modular way. SpatialSSJP

incorporates QoS aware services transparently within the layers of codebases of best-in-

breed SPE (i.e., SpSS) so as to relieve the overburdened shoulders of the users at the

presentation layer from having to reason about the underlying complex logistics. Services

include an adaptive controller that constitutes two sub-controllers, one that is latency-aware

based on the PID from the control theory and the other one is a model-based accuracy aware

controller that is based on geo-statistical modelling. SpatialSSJP is modular by design and

conveniently complements the other components of SpatialDSMS. Most importantly, it

reuses our SAOS sampling method from the SpatialSPE framework.

7.1.5 Putting it All Together: SpatialDSMS

Dynamic applications in smart cities and Industry 4.0 require mixing several workloads so

as to get deeper insights. The constituent parts of SpatialDSMS provide tools for

Figure 7.1. SpatialDSMS contributions map

Conclusion and Future Works

163

collaboratively and synergistically achieving QoS goals imposed by those workloads. QoS

awareness is transparently incorporated within various layers of SpatialDSMS, thus relieving

the shoulders of the users from having to reason about the underlying logistics for handling

such awareness.

The map of figure 7.1 delineates in a coherent way the contributions we have made in this

thesis and all the tactics and methods we have designed for achieving a list of envisaged QoS

goals. This map complies with the methodology we have designed as described in section

3.2.1.

7.2 Applicability of SpatialDSMS in Diverse Domains

QoS -aware optimizations we have provided in this thesis are in no way exhaustive, instead

they constitute precursors for other domain-specific optimizations. One of the design goals

that we have envisaged by designing SpatialDSMS is the composability (refer to section

3.4.1 for further details). It is loosely defined as the ability to use the primitive QoS aware

services that we have provided in SpatialDSMS in order to serve other potential workloads

that are common in highly dynamic and scalable applications. In this section, we recapitulate

some mixed workloads that are easily composable by mixing some of the services we provide

through SpatialDSMS. The following is a non-exhaustive list of emerging trendy

applications for which we provide efficient and sufficient QoS-aware baseline primitives (in

addition to other easily composable primitives) that allow constructing novel highly-

performing algorithms.

I) Real-time traffic control. We are not offering an engine that over-the-

counter supports such scenarios as they require specific technical

implementations. For example, calculating traffic flow correlations,

indicators [135] , flow rates, occupancy and density and others that can

be consulted in [136]. We offer baselines (i.e., spatial statistics) that can

be adequately exploited by most emerging smart traffic control systems

(e.g., [26, 135]) to build a fully-functional (near) real-time traffic control

system. Despite our system does not calculate those measures directly, it

offers appropriate and adequate baselines and primitives that can be used

seamlessly to calculate those measures, with a distinction from

Conclusion and Future Works

164

counterparts, in a way that better achieves a prespecified set of QoS goals.

Another distinction is that we support incrementalization for a primitive

set of spatial statistics that can be exploited efficiently in achieving those

operations. Those services are offered through SpatialSPE and

SpatialSSJP specifically.

II) Spatial online stream clustering. An interesting mixed workload could

ask to interactively “disseminate targeted warnings to people in real-time

in cases of sudden natural hazards, such as hurricanes”. Hence, the

dynamic identification of homogeneous clusters in (near) real-time is

essential. For example, referring to our scenario (section 1.1) we can

dynamically partition an embedding space (i.e., region) into smaller

regions (such as boroughs or districts in administrative management

terms) around a hazardous situation by exploiting real-time streaming

data clustering to assist in emergency response management. Personalized

notifications can then be forwarded to each cluster independently. Similar

application scenario is ascribed to [137].

Although, we currently do not support online clustering over-the-shelf, it

is easily composable from two clustering modes that we provide natively.

Most online clustering algorithms work by combining two phases (e.g.,

CluStream [138] and DenStream [76]), online and offline clustering

phases. The former applies a single pass scan over a fast arriving data

stream to incrementally cluster data points based on proximity, thus

forming micro-clusters that basically store streaming online aggregates

(i.e., statistics such as the number of points in each cluster in addition to

other summary statistics, such as ‘sums’ and ‘counts’). This is

accomplished incrementally by either assigning each newly arriving point

to its appropriate micro-cluster (i.e., based on a spatial proximity test) or

creating a new micro-cluster. The size of the cluster (thereby the number

of micro-clusters) is a tunable threshold [137] [139]. The offline macro-

clustering phase is a costly operation that forms the actual clusters and is

normally performed in batch mode (i.e., offline), after it receives the list

Conclusion and Future Works

165

of micro-clusters, it uses them in conjunction with other parameters to

construct the actual clusters by using an advanced clustering algorithm

such as DBSCAN (or its MapReduce-based variants in parallel settings,

such as DBSCAN-MR).

The composability of a novel spatial online stream clustering algorithm

with quality guarantees is easy and straightforward by using the baseline

primitives we support through SpatialDSMS. Specifically, our optimized

version of DBSCAN-MR (discussed in section 4.7.5) for the offline

macro-clustering phase. Also, our approximate spatial query processing ,

that streamlines the process of collecting in piecemeal fashion the online

summary statistics by applying a lower dimensional index structure (i.e.,

based on z-curves) , thus dynamically on-the-fly clustering and forming

micro-clusters (as of yet not the final clusters), as discussed in chapter 5.

As the micro-clustering phase is the online statistical data collection

portion of the algorithm, we have shown how our SpatialSPE (explained

in chapter 5) is adept in such a process, serving statistically plausible

incremental results with rigorous error bounds.

7.3 Future Works

In this thesis, we have presented SpatialDSMS as a comprehensive QoS-aware architecture

for optimized analytics of spatial data loads in highly dynamic application scenarios that,

among other functional QoS goals, require scalability. We have addressed many challenges

in en-route to striking a plausible balance between a list of contradicting QoS goals. The

way we incorporate transparently our QoS-aware services into the layers of SpatialDSMS is

unique. To the best of our knowledge, we are not aware of any similar system that achieves

goals similar to those that we have accomplished in SpatialDSMS.

However, SpatialDSMS is not a panacea, and there are innumerable ways in which our

modular architecture can be complemented by stacking up new modules that achieve QoS

functional and non-functional goals. We here list some possible future research frontiers:

1) Offloading sequential jobs to Fog nodes. The communication overhead posed by

sending endlessly huge amounts of geo-referenced loads to the cloud which could be

Conclusion and Future Works

166

detrimental in low-latency applications. Especially knowing that some parts of the

work are sequential and do not need parallelization (or cannot run in parallel). For

example, partitioning data. Those sequential portions of the work can be offloaded to

Fog nodes in an efficient way that considers the resource-constrained nature of Fog

nodes. Also, samplers (such as our sampler SAOS from the SpatialSPE) can be

pushed upstream near the Edge, which potentially helps in achieving better latency

QoS goals.

2) Designing online spatial-aware data partitioning schemes. We did not consider

spatial-aware data partitioning schemes. As a future frontier, on-the-fly schemes and

indexing are needed to strike a balance between SDL preservation, BSOs

minimization and load balancing for the data in-motion. taking those goals online

enforces few challenges that do not affect batch partitioning schemes such as those

that we have addressed for spatial batch processing systems.

3) Designing distributed sampling methods. Our sampling is currently centralized,

performed by a single node as a front-stage. One way for optimizing that is to design

a distributed sampling approach that parallelizes the sampling portion of the equation,

thus enabling more performance optimization in compliance with the Amdahl’s Law.

This is to avoid the cases where the sequential centralized solution can become itself

a bottleneck. We envision a multi-stages scheme, say macro- and micro-batching

stages. In the macro-batching stage, a practitioner (i.e., could be hosted in a master

node) forms macro-batches and emits each macro-batch to a worker node, which in

turns, divides the macro-batch into micro-batches and distribute them efficiently.

List of Figures

167

List of Figures

Figure 1.1. A typical publish/subscribe based pattern showing the interaction between

typical system components in a typical highly dynamic and scalable application scenario .. 3

Figure 2.1. Typical Lambda architecture .. 8

Figure 2.2. PIP test in Spark’s Magellan, Filter-and-refine (true-hit part) is adapted from

[20] ... 15

Figure 2.3. Anatomy of Spark (Structured) Streaming ... 19

Figure 3.1. cause/effect-tactic-measure for spatially-attuned QoS awareness 29

Figure 3.2. SpatialDSMS Overview ... 33

Figure 3.3. layered pattern of SpatialDSMS ... 34

Figure 4.1. An exemplar architecture of a distributed processing system 38

Figure 4.2. SpatialBPE overview .. 53

Figure 4.3. Spatial Co-Locality-aware partitioner (SCAP) .. 54

Figure 4.4. Running times and number of BSOs of our retrofitted version of DBSCAN-MR

over SCAP against SASAP-based version using epsilon 0.15 and minPoints 300, secondary

access on the right-hand side of the figure represents the data size with BSOs 63

Figure 4.5. Running times and number of BSOs of our retrofitted version of DBSCAN-MR

over SCAP against SASAP-based version using epsilon 0.15 and minPoints 300, secondary

access on the right-hand side of the figure represents the data size with BSOs 63

Figure 4.6. The effect of tweaking geohash precision on the number of BSOs generated by

SCAP on NYC taxicab dataset. secondary access on the right-hand side of the figure

represents the data size with BSOs .. 64

Figure 4.7. speedup by applying SCAP instead of SASAP, NYC dataset 66

Figure 4.8. adaptation gain by tweaking the geohash precision in SCAP from 30 to 35

applied on NYC taxicabs datasets ... 66

Figure 4.9. SpatialNoSQL workflow .. 70

Figure 4.10. GSS sharding scheme ... 72

Figure 4.11. Spatial-Aware Query Optimizer for NoSQL .. 74

Figure 4.12. Comparing the performance of our new spatial join query optimizer on

containment-PIP queries (with a $geoWithin operator with a geometry specifier) against the

vanilla MongoDB optimizer. ‘Mongo’ in the legend means the plain MongoDB, whereas

List of Figures

168

‘geohash’ means our new geohash-based optimizer. noExDocs and noExKeys mean the

number of examined documents and keys, respectively .. 79

Figure 4.13. The speed up gain we obtain by applying geohash-based containment-PIP

optimizer against MongoDB plain optimizer .. 80

Figure 4.14. Comparing the effect on performance of our new containment-PIP query

optimizer on ensembles (specifically Top-N queries) against the plain MongoDB optimizer.

Mongo in the legend means the plain MongoDB, whereas geohash means our new geohash-

based optimizer. noExDocs and noExKeys mean the number of examined documents and

keys, respectively ... 81

Figure 4.15. speed up by applying geohash-based containment-PIP optimizer against

MongoDB plain optimizer ... 82

Figure 4.16. Design effect expressed as a resource utilization gain 82

Figure 4.17. the performance of our spatial join query optimizer on proximity queries (with

a $nearSphere operator) against the plain MongoDB optimizer. Mongo in the legend means

the plain MongoDB, whereas geohash means our new geohash-based optimizer. noExDocs

and noExKeys mean the number of examined documents and keys respectively 83

Figure 4.18. Design effect expressed as a resource utilization gain 84

Figure 5.1. SpatialSPE workflow .. 98

Figure 5.2. Estimation accuracy of SAOS vs. SpSS-based SRS, for G1 queries. ‘loss’ in the

legend is the accuracy loss calculated by applying equation (5.9), whereas ‘RE’ is the relative

error calculated through equations (5.8) and (5.13) for SAOS and SpSS-based SRS,

respectively .. 112

Figure 5.3. CI 68% SRS on mean estimator varying the sampling fraction. CI in the legend

is the confidence interval ... 113

Figure 5.4. CI 68% SAOS on mean estimator varying the sampling fraction. CI in the legend

is the confidence interval ... 113

Figure 5.5. design effect by applying SAOS against SpSS-based SRS 114

Figure 5.6. Spearmans’s rho by applying SAOS Vs. SpSS SRS-based. ‘rho 30’ (in the

primary access) means rho value at geohash precision 30, whereas ‘rho 35’ (in the secondary

axis) means rho value at geohash precision 35 .. 115

List of Figures

169

Figure 5.7. Throughput by running SAOS against SpSS-based SRS, with a streaming rate

that is equal to 500k tuples/second. ‘key_states_updated’ (in the secondary access) in the

legend means the average number of keys updated between tumbling windows 115

Figure 5.8. the effect of incrementalization on the ‘average’ or ‘mean’ estimator. Sampling

fraction is set to 40 %. In the legend, ‘stepwise_mean’ (the primary access on the left) is the

‘mean’ value changes in correspondence to total tuples arrived up until that point in time. SE

(the secondary access on the right) is the standard error. .. 116

Figure 6.1. SpatialSSJP Overview. CQ is ‘continuous query’ ... 132

Figure 6.2. catch up at PID values 1,1,1 where SpatialSSJP is able to meet the latency target

by applying the latency-aware controller. Secondary axis to the right hand-side represents

‘processing time’ and ‘scheduling delay’, whereas the main axis to the left compares the

batch size (data load) with sampling fraction .. 145

Figure 6.3. catch up at PID values 1,0.6,0.2 where SpatialSSJP is able to meet the latency

target by applying the latency-aware controller. Secondary axis to the right hand-side

represents ‘processing time’ and ‘scheduling delay’, whereas the main axis to the left

compares the batch size (data load) with sampling fraction .. 146

Figure 6.4. catch up at PID values 1,0.6,0.2 and oscillation 500k-3000K where SpatialSSJP

is able to meet the latency target by applying the latency-aware controller. Secondary axis to

the right hand-side represents ‘processing time’ and ‘scheduling delay’, whereas the main

axis to the left compares the batch size (data load) with sampling fraction 147

Figure 6.5. catch up at PID values 1,1,1 and oscillation 500k-3000K where SpatialSSJP is

able to meet the latency target by applying the latency-aware controller. Secondary axis to

the right hand-side represents ‘processing time’ and ‘scheduling delay’, whereas the main

axis to the left compares the batch size (data load) with sampling fraction 147

Figure 6.6. catch up at PID values 1,1,1 and oscillation 500k-2000K-1000K where

SpatialSSJP is able to meet the latency target by applying the latency-aware controller,

Secondary axis to the right hand-side represents ‘processing time’ and ‘scheduling delay’,

whereas the main axis to the left compares the batch size (data load) with sampling fraction

 ... 148

Figure 6.7. catch up (SRS) at PID values 1,0.6,0.2 and oscillation 500k-2000K- 1000K

where SpatialSSJP is able to meet the latency target by applying the latency-aware controller.

List of Tables

170

Secondary axis to the right hand-side represents ‘processing time’ and ‘scheduling delay’,

whereas the main axis to the left compares the batch size (data load) with sampling fraction

 ... 149

Figure 6.8 . Coefficient of Variance by applying SAOS against SRS-based, both under

SpatialSSJP. ‘avg state mgmt.’ in the legend (corresponds to the secondary axis on the right-

hand side, ‘avg. keys. updated’) is the average state keys managed in-between time windows.

CV in the legend (corresponds to the primary axis on the left-hand side) is the Coefficient of

Variance ... 149

Figure 6.9. Confidence Interval true-value-miss by applying SRS with SpatialSSJP 150

Figure 6.10. Confidence Interval true-value-always-hit by applying SAOS with SpatialSSJP

 ... 150

Figure 6.11. High delays imposed by disabling sampling during burst loads, Oscillation

500K – 2000K. Secondary access to the right hand-side represents ‘processing time’ and

‘scheduling delay’, whereas the main access to the left shows the batch size (input rate) 151

Figure 6.12. Gain by applying SAOS (with SpatialSSJP) against SRS 152

Figure 6.13. Accuracy gain by applying SAOS with SpatialSSJP against SRS. In the legend,

‘moe0.03’ means ‘margin of error’ that equals 0.03, whereas ‘moe0.01’ means ‘margin of

error’ that equals 0.01 .. 153

Figure 7.1. SpatialDSMS contributions map .. 162

Figure 0.1. popultion data distribution, and sampling distribution for the means of 10 and 40

values, respectively, repeated 1000 times. ... 174

Figure 0.2. Internals of a CQ (listing E.1) incorporating SAOS 175

List of Tables

Table 4.1. A taxonomy of capabilities of general spatial splitting methods in handling spatial

partitioning goals defined in section 4.3 .. 49

List of Algorithms

Algorithm 4.1 SCAP partitioning scheme for in-memory batch processing frameworks .. 55

file:///C:/Users/aljaw/Desktop/thesis-desktop/PhD-Thesis-ALJAWARNEH.docx%23_Toc32853225

List of Listings

171

Algorithm 4.2 GSS sharding scheme for NoSQL frameworks .. 72

Algorithm 4.3 Spatial join optimizer for NoSQL workflow .. 76

Algorithm 5.1. SpatialSPE Workflow .. 100

Algorithm 5.2 Spatial-Aware Online Sampling (SAOS) ... 102

Algorithm 6.1. SpatialSSJP Workflow ... 134

Algorithm 6.2 rateController Procedure ... 135

List of Listings

listing 2.1. Example PIP test in Magellan ... 14

listing 5.1 An example online query in Spark Structured Streaming terms 98

listing 5.2. average statistic estimation spatial query example in Spark terms 103

listing 5.3. Top-N spatial query example .. 104

listing 6.1. An example stream-static join processing using Spark’s Magellan 135

listing 6.2. An example spatial approximate online aggregation query with QoS goals .. 142

listing 6.3. an example of an exhaustive PIP test .. 143

Appendices

172

Appendices

Appendix A

GeoSpark Architecture

GeoSpark [11] consists of three layers stacked up in a tiered architecture; i) Apache Spark

codebase, ii) spatial RDD and iii) spatial query optimizers, arranged in a bottom-up layered

pattern, respectively. GeoSpark provides four new spatial data structures based on RDDs,

PointRDD, RectangleRDD, PolygonRDD and CircleRDD. It supports geometric operations

on each of them and also provide spatial indexing structures such as quadtree [51] and R-

Tree [140]. Top layer is responsible for executing spatial queries over large scale geo-

referenced datasets. After creating a spatial RDD, it is imposed to the spatial query predicates

and optimizers are responsible for computing answers and serve them to presentation layers

thereafter.

Appendix B

DBSCAN-MR Workflow

In short, DBSCAN-MR proceeds as follows. Local clusters are formed by applying the plain

DBSCAN to each partition independently. Most operations involved are ‘map’

transformations. Once the algorithm have done examining all points in all nodes, the output

of the ‘mapping’ returns a new RDD, this time with the key ID of the point (specifying to

which partition it belongs) and the point object (a module that we have defined to reformat

points). Afterwards, local clusters (we refer to them as micro-clusters) from independent

partitions are emitted to a ‘reduce’ phase in the DAG network. The ‘reduce’ function then

groups together all elements that share the same ID (which were replicated on multiple

partitions), which determines the union of temporary clusters located in different partitions

that will be merged in a later stage. Results from the ‘reduce’ phase are merged to find out

the cluster’s global structure. The algorithm concludes by applying a relabeling phase, where

each core local point that belongs to a global cluster (but residing in independent partitions)

is relabeled to identify the resulting cluster.

Appendices

173

Appendix C

Calculating Throughput in SpatialSPE

Throughput. (refer to section 3.2 for a wider generic definition). For SpSS, we simply

calculate the throughput by counting the number of tuples that our system could process in

every time-based window interval (a tumbling window in our settings). To achieve that, we

employ the ‘StreamingQueryListener’ (a module readily available from SpSS) to capture

‘start’ and ‘end’ timestamps and ‘number of processed tuples’. Thereafter, we apply a simple

formula that divides the ‘number of processed tuples’ by the total time elapsed during a

continuous query window (a tumbling window in our settings).

Appendix D

Spatial Sampling Distributions: Data Skewness

Despite that the NYC taxicab dataset is highly skewed. The average (mean estimator) has an

approximately normal distribution (informally, bell-shaped curve) in sampling distribution.

In accordance with the Central Limit Theorem (CLT) [90] , principles from traditional

statistical sampling applies, specifically those that are coming from classical stratified and

probability sampling theories. Figure D.1 shows that despite population data is highly

skewed, a sample of 1000 ‘means’ of few values is normally distributed, also by increasing

the sample size the distribution becomes more normalized. Notice that in compliance with

the normal distribution theory [90] , from the cohort data that we have chosen, for the ‘means’

calculated for 10 and 40 values repeated 1000 times, 68%, 95% and 99.7% of data falls

within at most one, two and three ‘standard deviations’ farther from the ‘mean’ value,

respectively, which further supports the applicability of default general sampling theories

[90].

Appendices

174

Appendix E

Further Words on SAOS Efficiency: Theoretical Perspectives

Reiterating our canonical scenario with NYC taxicab (from section 5.3). Imagine the desire

to answer the following question, “where do people tend to order taxi pickups in NYC”.

In SpSS, using a fraction of the data stream, this can be expressed using the fluent API with

the CQ shown in listing E.1.

Figure 0.1. popultion data distribution, and sampling distribution for the means of 10 and 40

values, respectively, repeated 1000 times.

sample= RawStream.SAOS("geocode")

sampleTransformed =

sample.groupBy($"neighborhood").count().orderBy($"count").desc

with error-bound

continuosQuery=

sampleTransformed.writeStream.trigger(ProcessingTime).start()

listing E.1. An example continuous query in Scala-like format by using SAOS method

Appendices

175

Where SAOS is our spatial-aware online sampling method described in section 5.3.4. Since

the default mode of operation in SpSS is micro-batching, this compiles down to a traditional

Spark job that is composed of a DAG of independent tasks [6, 16]. The math behind the

transformation of the foregoing query is then flattened into a ‘selection’ (as our SAOS

method depends on a ‘filter’ transformation in addition to other ‘Map’ tasks). This is

followed by stateful aggregations (groupBy, orderBy) which execute as ‘reduce’ tasks,

where the ‘reduce’ tasks is self-informed about the in-memory state on workers and

checkpoint that to a ‘persistent state store’ every trigger. This can be schematically

illustrated in block diagram of figure 0.2.

This design reveals the fact that extra a-priori overhead carried by our patches is minimal, as

it mainly depends on relatively cheap ‘map’ and ‘filter’ transformations as a long-lived front-

stage running lazily over all micro-batches for each trigger. Our method acts as a quick-and-

clean sieve that ensures that we do not overlook specific study regions. Those patches do not

materialize data. Instead, they engage as a low-cost stage preceding any ‘reduce’ tasks. This

is also possible because we treat each stratum independently, where we apply a random

sampling for each stratum. Even dispatching a Spark’s streaming job to worker nodes at each

batch interval does not affect the ‘embarrassingly parallelism’ of our design, which is

naturally massively parallelizable. Our method, when translates down to a query plan

(extending those offered by Spark’s SQL optimizers) divides each job into tasks and

disseminates them to partitions (a task for each), where each task acts on a single partition

Figure 0.2. Internals of a CQ (listing E.1) incorporating SAOS

Appendices

176

hosted by a worker node independently for the sampling stage. The logic behind this is self-

explanatory, where internally, our method acts on a for-each-partition basis, where we select

a known fraction from each stratum in each partition according to a pre-defined sampling

fraction map. Those independent tasks do not need to interplay, and hence no costly shuffling

is introduced at this stage.

Appendix F

PID controller calculations similar to the way it has been used for backpressure in

Spark Streaming [22, 126] .

After each trigger, the new rate is calculated with (F.1), adapted from the Spark Streaming

[22] PID rate estimator. This PID controller has been retrofitted and transparently

incorporated with SpSS layers so that it serves back new sampling rates to samplers (in this

case, our sampler SAOS or an SRS baseline) in the frontstage.

 𝑟𝑎𝑡𝑒𝑛𝑒𝑤 = 𝑟𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑠𝑡 − ((𝑃. 𝑒𝑟𝑟) + (𝐼. 𝑒𝑟𝑟ℎ𝑖𝑠𝑡) + (𝐷. 𝑒𝑟𝑟𝑑)) (F.1)

Where 𝑟𝑎𝑡𝑒𝑛𝑒𝑤 is the new rate calculated after each trigger (i.e., batch interval in Spark

Streaming version), 𝑒𝑟𝑟 is the difference between the desired rate (i.e., desired setpoint (SP)

in PID original jargon) and the measured rate (PV in PID original terms) based on

information collected from the most recent trigger (i.e., batch in Spark Streaming terms).

𝑟𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑠𝑡 constitutes the desired rate, readily available from previous trigger running

information (free of charge as SpSS provides this information by default). 𝑟𝑎𝑡𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is then

the measured process variable (i.e., PV), 𝑒𝑟𝑟 is then given by (F.2).

 𝑒𝑟𝑟 = 𝑟𝑎𝑡𝑒𝑙𝑎𝑡𝑒𝑠𝑡 − 𝑟𝑎𝑡𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (F.2)

The integral term is used as an indicator to the historical error, specifying the amount of load

that could not be processed in all the previous triggers (i.e., batches), leading to delay. We

depend on (F.3) in calculating 𝑒𝑟𝑟ℎ𝑖𝑠𝑡.

 𝑒𝑟𝑟ℎ𝑖𝑠𝑡 = 𝑑𝑒𝑙𝑎𝑦𝑠𝑐ℎ𝑒𝑑 . 𝑟𝑎𝑡𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑏𝑎𝑡𝑐ℎ𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙⁄ (F.3)

The derivative term predicts the future as the error change between two triggers (i.e., the

trend), we depend on (F.4) for calculating 𝑒𝑟𝑟𝑑.

 𝑒𝑟𝑟𝑑 = (𝑒𝑟𝑟 − 𝑒𝑟𝑟𝑙𝑎𝑡𝑒𝑠𝑡)/ (𝑡𝑖𝑚𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝑡𝑖𝑚𝑒𝑙𝑎𝑡𝑒𝑠𝑡) (F.4)

https://en.wikipedia.org/wiki/Setpoint_(control_system)

Bibliography

177

Bibliography

[1] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker and I. Stoica, "Spark: Cluster

computing with working sets." HotCloud, vol. 10, (10-10), pp. 95, 2010.

[2] K. Banker, MongoDB in Action. Manning Publications Co., 2011.

[3] I. M. Aljawarneh, P. Bellavista, C. R. De Rolt and L. Foschini, "Dynamic identification

of participatory mobile health communities," in Cloud Infrastructures, Services, and IoT

Systems for Smart CitiesAnonymous Springer, 2017, pp. 208-217.

[4] I. M. Al Jawarneh, P. Bellavista, F. Casimiro, A. Corradi and L. Foschini, "Cost-effective

strategies for provisioning NoSQL storage services in support for industry 4.0," in 2018 IEEE

Symposium on Computers and Communications (ISCC), 2018, pp. 1227.

[5] Y. Zheng, "Urban computing: Tackling urban challenges using big data," in 2016 IEEE

24th International Requirements Engineering Conference (RE), 2016, pp. 3. DOI:

10.1109/RE.2016.14.

[6] M. Armbrust, T. Das, J. Torres, B. Yavuz, S. Zhu, R. Xin, A. Ghodsi, I. Stoica and M.

Zaharia, "Structured streaming: A declarative API for real-time applications in apache

spark," in Proceedings of the 2018 International Conference on Management of Data, 2018,

pp. 601-613.

[7] N. Marz and J. Warren, Big Data: Principles and Best Practices of Scalable Real-Time

Data Systems. New York; Manning Publications Co., 2015.

[8] K. Chodorow, MongoDB: The Definitive Guide: Powerful and Scalable Data Storage. "

O'Reilly Media, Inc.", 2013.

[9] S. Bradshaw and K. Chodorow, Mongodb: The Definitive Guide: Powerful and Scalable

Data Storage, 3rd Edn. O’Reilly Media Inc, USA, 2018.

Bibliography

178

[10] K. Shvachko, H. Kuang, S. Radia and R. Chansler, "The hadoop distributed file system."

in Msst, 2010, pp. 1-10.

[11] J. Yu, J. Wu and M. Sarwat, "Geospark: A cluster computing framework for processing

large-scale spatial data," in Proceedings of the 23rd SIGSPATIAL International Conference

on Advances in Geographic Information Systems, 2015, pp. 70.

[12] R. Sriharsha. “Magellan: Geospatial Analytics Using Spark”. 2015. Accessed on:

August 5, 2019. [Online]. Available: https://github.com/harsha2010/magellan.

[13] R. Sriharsha, "Magellan: geospatial analytics on spark,". October 2015. Accessed on:

August 5, 2019. [Online]. Available: https://blog.cloudera.com/magellan-geospatial-

analytics-in-spark/

[14] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S.

Shenker and I. Stoica, "Resilient distributed datasets: A fault-tolerant abstraction for in-

memory cluster computing," in Proceedings of the 9th USENIX Conference on Networked

Systems Design and Implementation, 2012, pp. 2.

[15] H. Karau and R. Warren, High Performance Spark: Best Practices for Scaling and

Optimizing Apache Spark. " O'Reilly Media, Inc.", 2017.

[16] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaftan,

M. J. Franklin and A. Ghodsi, "Spark sql: Relational data processing in spark," in

Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data,

2015, pp. 1383-1394.

[17] Y. Jeon, K. Lee and H. Kim, "Distributed Join Processing Between Streaming and

Stored Big Data Under the Micro-Batch Model," IEEE Access, vol. 7, pp. 34583-34598,

2019.

[18] A. Kipf, H. Lang, V. Pandey, R. A. Persa, P. Boncz, T. Neumann and A. Kemper,

"Adaptive geospatial joins for modern hardware," arXiv Preprint arXiv:1802.09488, 2018.

Bibliography

179

[19] A. Kipf, H. Lang, V. Pandey, R. A. Persa, P. Boncz, T. Neumann and A. Kemper,

"Approximate geospatial joins with precision guarantees," in 2018 IEEE 34th International

Conference on Data Engineering (ICDE), 2018, pp. 1360-1363.

[20] T. Brinkhoff, H. Kriegel, R. Schneider and B. Seeger, Multi-Step Processing of Spatial

Joins. ACM, 199423(2).

[21] A. Arasu, S. Babu and J. Widom, "The CQL continuous query language: semantic

foundations and query execution," The VLDB Journal, vol. 15, (2), pp. 121-142, 2006.

[22] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker and I. Stoica, "Discretized streams:

Fault-tolerant streaming computation at scale," in Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, 2013, pp. 423-438.

[23] J. Karimov, T. Rabl, A. Katsifodimos, R. Samarev, H. Heiskanen and V. Markl,

"Benchmarking distributed stream processing engines," arXiv Preprint arXiv:1802.08496,

2018.

[24] M. A. Lopez, A. G. P. Lobato and O. C. M. Duarte, "A performance comparison of

open-source stream processing platforms," in 2016 IEEE Global Communications

Conference (GLOBECOM), 2016, pp. 1-6.

[25] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker and I. Stoica, "Discretized streams:

Fault-tolerant streaming computation at scale," in Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, 2013, pp. 423-438.

[26] S. Amini, I. Gerostathopoulos and C. Prehofer, "Big data analytics architecture for real-

time traffic control," in 2017 5th IEEE International Conference on Models and

Technologies for Intelligent Transportation Systems (MT-ITS), 2017, pp. 710-715.

[27] C. Junghans and M. Gertz, "Modeling and prediction of moving region trajectories," in

Proceedings of the ACM SIGSPATIAL International Workshop on GeoStreaming, 2010, pp.

23-30.

Bibliography

180

[28] J. C. Whittier, Q. Liang and S. Nittel, "Evaluating stream predicates over dynamic

fields," in Proceedings of the 5th ACM SIGSPATIAL International Workshop on

GeoStreaming, 2014, pp. 2-11.

[29] J. Bao, Y. Zheng, D. Wilkie and M. Mokbel, "Recommendations in location-based

social networks: a survey," GeoInformatica, vol. 19, (3), pp. 525-565, 2015.

[30] H. Abdelhaq and M. Gertz, "On the locality of keywords in twitter streams," in

Proceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming, 2014,

pp. 12-20.

[31] A. Pozdnoukhov and F. Walsh, "Exploratory novelty identification in human activity

data streams," in Proceedings of the ACM SIGSPATIAL International Workshop on

GeoStreaming, 2010, pp. 59-62.

[32] H. Wei, J. Sankaranarayanan and H. Samet, "Measuring spatial influence of twitter users

by interactions," in Proceedings of the 1st ACM SIGSPATIAL Workshop on Analytics for

Local Events and News, 2017, pp. 2.

[33] P. Wang, X. Li, Y. Zheng, C. Aggarwal and Y. Fu, "Spatiotemporal Representation

Learning for Driving Behavior Analysis: A Joint Perspective of Peer and Temporal

Dependencies," IEEE Trans. Knowled. Data Eng., 2019.

[34] M. Jensen, J. Gutierrez and J. Pedersen, "Location intelligence application in digital data

activity dimensioning in smart cities," Procedia Computer Science, vol. 36, pp. 418-424,

2014.

[35] E. H. Jacox and H. Samet, "Spatial join techniques," ACM Transactions on Database

Systems (TODS), vol. 32, (1), pp. 7, 2007.

[36] H. Kriegel, P. Kröger, J. Sander and A. Zimek, "Density‐based clustering," Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 1, (3), pp. 231-240,

2011.

Bibliography

181

[37] M. Ester, H. Kriegel, J. Sander and X. Xu, "A density-based algorithm for discovering

clusters in large spatial databases with noise." in Kdd, 1996, pp. 226-231.

[38] B. Dai and I. Lin, "Efficient map/reduce-based dbscan algorithm with optimized data

partition," in 2012 IEEE Fifth International Conference on Cloud Computing, 2012, pp. 59-

66.

[39] Y. He, H. Tan, W. Luo, S. Feng and J. Fan, "MR-DBSCAN: a scalable MapReduce-

based DBSCAN algorithm for heavily skewed data," Frontiers of Computer Science, vol. 8,

(1), pp. 83-99, 2014.

[40] R. Xu and D. Wunsch, Clustering. John Wiley & Sons, 2008.

[41] W. Kim, Y. Kim and K. Shim, "Parallel computation of k-nearest neighbor joins using

MapReduce," in 2016 IEEE International Conference on Big Data (Big Data), 2016, pp.

696-705.

[42] T. M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref and A. K. Elmagarmid,

"Incremental evaluation of sliding-window queries over data streams," IEEE Trans.

Knowled. Data Eng., vol. 19, (1), pp. 57-72, 2006.

[43] J. Kreps, N. Narkhede and J. Rao, "Kafka: A distributed messaging system for log

processing," in Proceedings of the NetDB, 2011, pp. 1-7.

[44] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach.

Elsevier, 2011.

[45] D. Taniar, C. H. Leung, W. Rahayu and S. Goel, High-Performance Parallel Database

Processing and Grid Databases. John Wiley & Sons, 2008.

[46] P. Furtado, "A survey of parallel and distributed data warehouses," International

Journal of Data Warehousing and Mining (IJDWM), vol. 5, (2), pp. 57-77, 2009.

Bibliography

182

[47] H. Karau, A. Konwinski, P. Wendell and M. Zaharia, Learning Spark: Lightning-Fast

Big Data Analysis. " O'Reilly Media, Inc.", 2015.

[48] H. Samet, "Multidimensional spatial data structures," in Handbook of Data Structures

and ApplicationsAnonymous Chapman and Hall/CRC, 2018, pp. 251-275.

[49] J. L. Bentley and J. H. Friedman, "Data structures for range searching," ACM Computing

Surveys (CSUR), vol. 11, (4), pp. 397-409, 1979.

[50] D. E. Knuth, "The art of computer programming: Sorting and Searching, 2nd edn., vol.

3," 1998.

[51] R. A. Finkel and J. L. Bentley, "Quad trees a data structure for retrieval on composite

keys," Acta Informatica, vol. 4, (1), pp. 1-9, 1974.

[52] J. L. Bentley, "Multidimensional binary search trees used for associative searching,"

Commun ACM, vol. 18, (9), pp. 509-517, 1975.

[53] W. Wang, J. Yang and R. Muntz, "PK-tree: A spatial index structure for high

dimensional point data," in Information Organization and DatabasesAnonymous Springer,

2000, pp. 281-293.

[54] A. Guttman, R-Trees: A Dynamic Index Structure for Spatial Searching. ACM,

198414(2).

[55] N. Beckmann, H. Kriegel, R. Schneider and B. Seeger, "The R*-tree: An efficient and

robust access method for points and rectangles," in Acm Sigmod Record, 1990, pp. 322-331.

[56] T. K. Sellis, N. Roussopoulos and C. Faloutsos, "The R -tree: A dynamic index for

multi-dimensional objects," in Proceedings of the 13th International Conference on very

Large Data Bases, 1987, pp. 507-518.

[57] D. Šidlauskas, S. Šaltenis, C. W. Christiansen, J. M. Johansen and D. Šaulys, "Trees or

grids?: Indexing moving objects in main memory," in Proceedings of the 17th ACM

Bibliography

183

SIGSPATIAL International Conference on Advances in Geographic Information Systems,

2009, pp. 236-245.

[58] M. Olma, F. Tauheed, T. Heinis and A. Ailamaki, "BLOCK: Efficient execution of

spatial range queries in main-memory," in Proceedings of the 29th International Conference

on Scientific and Statistical Database Management, 2017, pp. 15.

[59] S. T. Leutenegger, M. A. Lopez and J. Edgington, "STR: A simple and efficient

algorithm for R-tree packing," in Proceedings 13th International Conference on Data

Engineering, 1997, pp. 497-506.

[60] H. Vo, A. Aji and F. Wang, "SATO: A spatial data partitioning framework for scalable

query processing," in Proceedings of the 22nd ACM SIGSPATIAL International Conference

on Advances in Geographic Information Systems, 2014, pp. 545-548.

[61] J. Yu, J. Wu and M. Sarwat, "A demonstration of GeoSpark: A cluster computing

framework for processing big spatial data," in 2016 IEEE 32nd International Conference on

Data Engineering (ICDE), 2016, pp. 1410-1413.

[62] A. S. Abdelhamid, M. Tang, A. M. Aly, A. R. Mahmood, T. Qadah, W. G. Aref and S.

Basalamah, "Cruncher: Distributed in-memory processing for location-based services," in

2016 IEEE 32nd International Conference on Data Engineering (ICDE), 2016, pp. 1406-

1409.

[63] A. Eldawy and M. F. Mokbel, "Spatialhadoop: A mapreduce framework for spatial

data," in 2015 IEEE 31st International Conference on Data Engineering, 2015, pp. 1352-

1363.

[64] A. Eldawy, L. Alarabi and M. F. Mokbel, "Spatial partitioning techniques in

SpatialHadoop," Proceedings of the VLDB Endowment, vol. 8, (12), pp. 1602-1605, 2015.

[65] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang and J. Saltz, "Hadoop gis: a high

performance spatial data warehousing system over mapreduce," Proceedings of the VLDB

Endowment, vol. 6, (11), pp. 1009-1020, 2013.

Bibliography

184

[66] S. You, J. Zhang and L. Gruenwald, "Large-scale spatial join query processing in cloud,"

in 2015 31st IEEE International Conference on Data Engineering Workshops, 2015, pp. 34-

41.

[67] A. M. Aly, A. R. Mahmood, M. S. Hassan, W. G. Aref, M. Ouzzani, H. Elmeleegy and

T. Qadah, "AQWA: adaptive query workload aware partitioning of big spatial data,"

Proceedings of the VLDB Endowment, vol. 8, (13), pp. 2062-2073, 2015.

[68] C. R. De Rolt, R. Montanari, M. L. Brocardo, L. Foschini and J. da Silva Dias,

"COLLEGA middleware for the management of participatory mobile health communities,"

in 2016 IEEE Symposium on Computers and Communication (ISCC), 2016, pp. 999-1005.

[69] M. Lom, O. Pribyl and M. Svitek, "Industry 4.0 as a part of smart cities," in 2016 Smart

Cities Symposium Prague (SCSP), 2016, pp. 1-6.

[70] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters,"

Commun ACM, vol. 51, (1), pp. 107-113, 2008.

[71] M. Tang, Y. Yu, Q. M. Malluhi, M. Ouzzani and W. G. Aref, "Locationspark: A

distributed in-memory data management system for big spatial data," Proceedings of the

VLDB Endowment, vol. 9, (13), pp. 1565-1568, 2016.

[72] F. Wang, A. Aji and H. Vo, "High performance spatial queries for spatial big data: from

medical imaging to GIS," Sigspatial Special, vol. 6, (3), pp. 11-18, 2015.

[73] B. Dai and I. Lin, "Efficient map/reduce-based dbscan algorithm with optimized data

partition," in 2012 IEEE Fifth International Conference on Cloud Computing, 2012, pp. 59-

66.

[74] I. M. Aljawarneh, P. Bellavista, A. Corradi, R. Montanari, L. Foschini and A. Zanotti,

"Efficient spark-based framework for big geospatial data query processing and analysis," in

2017 IEEE Symposium on Computers and Communications (ISCC), 2017, pp. 851-856.

Bibliography

185

[75] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari and A. Zanotti,

"In-memory spatial-aware framework for processing proximity-alike queries in big spatial

data," in 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design

of Communication Links and Networks (CAMAD), 2018, pp. 1-6.

[76] F. Cao, M. Estert, W. Qian and A. Zhou, "Density-based clustering over an evolving

data stream with noise," in Proceedings of the 2006 SIAM International Conference on Data

Mining, 2006, pp. 328-339.

[77] G. Cardone, A. Corradi, L. Foschini and R. Ianniello, "Participact: A large-scale

crowdsensing platform," IEEE Transactions on Emerging Topics in Computing, vol. 4, (1),

pp. 21-32, 2015.

[78] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach.

Elsevier, 2011.

[79] A. Aji, F. Wang and J. H. Saltz, "Towards building a high performance spatial query

system for large scale medical imaging data," in Proceedings of the 20th International

Conference on Advances in Geographic Information Systems, 2012, pp. 309-318.

[80] V. Mateljan, D. Cisic and D. Ogrizovic, "Cloud database-as-a-service (DaaS)-ROI," in

The 33rd International Convention MIPRO, 2010, pp. 1185-1188.

[81] S. Cho, S. Hong and C. Lee, "ORANGE: Spatial big data analysis platform," in 2016

IEEE International Conference on Big Data (Big Data), 2016, pp. 3963-3965.

[82] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems. Springer

Science & Business Media, 2011.

[83] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini and R. Montanari, "Efficient

QoS-Aware Spatial Join Processing for NoSQL Scalable Storage Frameworks," 2020.

Bibliography

186

[84] K. Zheng, D. Gu, F. Fang, M. Zhang, K. Zheng and Q. Li, "Data storage optimization

strategy in distributed column-oriented database by considering spatial adjacency," Cluster

Computing, vol. 20, (4), pp. 2833-2844, 2017.

[85] D. Han and E. Stroulia, "Hgrid: A data model for large geospatial data sets in hbase," in

2013 IEEE Sixth International Conference on Cloud Computing, 2013, pp. 910-917.

[86] Z. Weixin, Y. Zhe, W. Lin, W. Feilong and C. Chengqi, "The non-sql spatial data

management model in big data time," in 2015 IEEE International Geoscience and Remote

Sensing Symposium (IGARSS), 2015, pp. 4506-4509.

[87] C. Cheng, X. Tong, B. Chen and W. Zhai, "A subdivision method to unify the existing

latitude and longitude grids," ISPRS International Journal of Geo-Information, vol. 5, (9),

pp. 161, 2016.

[88] J. Graça and S. JNdOe, "GeoSharding: Optimization of data partitioning in sharded

georeferenced databases," 2016.

[89] K. Li and G. Li, "Approximate query processing: what is new and where to go?" Data

Science and Engineering, vol. 3, (4), pp. 379-397, 2018.

[90] S. L. Lohr, Sampling: Design and Analysis. Nelson Education, 2009.

[91] S. K. Thompson, Sampling. Wiley, 2012.

[92] L. Wang, R. Christensen, F. Li and K. Yi, "Spatial online sampling and aggregation,"

Proceedings of the VLDB Endowment, vol. 9, (3), pp. 84-95, 2015.

[93] S. K. Thompson, "Spatial sampling," Precision Agriculture: Spatial and Temporal

Variability of Environmental Quality, (210), pp. 161, 1997.

[94] J. Wang, R. Haining and Z. Cao, "Sample surveying to estimate the mean of a

heterogeneous surface: reducing the error variance through zoning," Int. J. Geogr. Inf. Sci.,

vol. 24, (4), pp. 523-543, 2010.

Bibliography

187

[95] J. Wang, G. Christakos and M. Hu, "Modeling spatial means of surfaces with stratified

nonhomogeneity," IEEE Trans. Geosci. Remote Sens., vol. 47, (12), pp. 4167-4174, 2009.

[96] P. Lorkowski and T. Brinkhoff, "Towards real-time processing of massive spatio-

temporally distributed sensor data: A sequential strategy based on kriging," in Agile

2015Anonymous Springer, 2015, pp. 145-163.

[97] M. Katzfuss and N. Cressie, "Tutorial on fixed rank kriging (FRK) of CO2 data,"

Department of Statistics, the Ohio State University, Columbus, 2011.

[98] J. Wang, A. Stein, B. Gao and Y. Ge, "A review of spatial sampling," Spatial Statistics,

vol. 2, pp. 1-14, 2012.

[99] D. L. Stevens Jr and A. R. Olsen, "Spatially balanced sampling of natural resources,"

Journal of the American Statistical Association, vol. 99, (465), pp. 262-278, 2004.

[100] A. Grafström, N. L. Lundström and L. Schelin, "Spatially balanced sampling through

the pivotal method," Biometrics, vol. 68, (2), pp. 514-520, 2012.

[101] I. M. Al Jawarneh, P. Bellavista, L. Foschini and R. Montanari, "Spatial-aware

approximate big data stream processing," in IEEE Global Communications Conference,

GLOBECOM, 2020. To appear.

[102] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari and A. Zanotti,

"In-memory spatial-aware framework for processing proximity-alike queries in big spatial

data," in 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design

of Communication Links and Networks (CAMAD), 2018, pp. 1-6.

[103] A. Lehman, N. O'Rourke, L. Hatcher and E. Stepanski, JMP for Basic Univariate and

Multivariate Statistics: Methods for Researchers and Social Scientists. Sas Institute, 2013.

[104] A. J. Lister and C. T. Scott, "Use of space-filling curves to select sample locations in

natural resource monitoring studies," Environ. Monit. Assess., vol. 149, (1-4), pp. 71-80,

2009.

Bibliography

188

[105] A. R. Olsen, "Generalized Random Tessellation Stratified (GRTS) Spatially-balanced

Survey Designs for Aquatic Resources." US Environmental Protection Agency, National

Health and Environmental Effects Research Laboratory, 2005.

[106] D. L. Stevens Jr and A. R. Olsen, "Spatially balanced sampling of natural resources,"

Journal of the American Statistical Association, vol. 99, (465), pp. 262-278, 2004.

[107] C. V. Networking, "Cisco global cloud index: Forecast and methodology, 2015-2020.

white paper," Cisco Public, San Jose, 2016.

[108] I. M. Aljawarneh, P. Bellavista, A. Corradi, R. Montanari, L. Foschini and A. Zanotti,

"Efficient spark-based framework for big geospatial data query processing and analysis," in

2017 IEEE Symposium on Computers and Communications (ISCC), 2017, pp. 851-856.

[109] I. M. Al Jawarneh, P. Bellavista, A. Corradi, L. Foschini, R. Montanari and A. Zanotti,

"In-memory spatial-aware framework for processing proximity-alike queries in big spatial

data," in 2018 IEEE 23rd International Workshop on Computer Aided Modeling and Design

of Communication Links and Networks (CAMAD), 2018, pp. 1-6.

[110] S. Tang, Y. Yu, R. Zimmermann and S. Obana, "Efficient geo-fencing via hybrid

hashing: a combination of bucket selection and in-bucket binary search," ACM Transactions

on Spatial Algorithms and Systems (TSAS), vol. 1, (2), pp. 5, 2015.

[111] P. J. Haas and J. M. Hellerstein, "Ripple joins for online aggregation," ACM SIGMOD

Record, vol. 28, (2), pp. 287-298, 1999.

[112] F. Li, B. Wu, K. Yi and Z. Zhao, "Wander join: Online aggregation via random walks,"

in Proceedings of the 2016 International Conference on Management of Data, 2016, pp.

615-629.

[113] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz and M. A. Kozuch, "Heterogeneity

and dynamicity of clouds at scale: Google trace analysis," in Proceedings of the Third ACM

Symposium on Cloud Computing, 2012, pp. 7.

Bibliography

189

[114] C. Delimitrou and C. Kozyrakis, "Quasar: Resource-efficient and QoS-aware cluster

management," in ACM SIGARCH Computer Architecture News, 2014, pp. 127-144.

[115] J. Xie and J. Yang, "A survey of join processing in data streams," in Data

StreamsAnonymous Springer, 2007, pp. 209-236.

[116] R. T. Whitman, M. B. Park, B. G. Marsh and E. G. Hoel, "Spatio-temporal join on

apache spark," in Proceedings of the 25th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems, 2017, pp. 20.

[117] M. A. Naeem, O. Aziz and N. Jamil, "Optimising HYBRIDJOIN to Process Semi-

Stream Data in Near-real-time Data Warehousing," 2019.

[118] R. Derakhshan, A. Sattar and B. Stantic, "A new operator for efficient stream-relation

join processing in data streaming engines," in Proceedings of the 22nd ACM International

Conference on Information & Knowledge Management, 2013, pp. 793-798.

[119] P. Mishra and M. H. Eich, "Join processing in relational databases," ACM Computing

Surveys (CSUR), vol. 24, (1), pp. 63-113, 1992.

[120] M. A. Naeem, K. T. Nguyen and G. Weber, "A multi-way semi-stream join for a near-

real-time data warehouse," in Australasian Database Conference, 2017, pp. 59-70.

[121] N. R. Herbst, S. Kounev and R. Reussner, "Elasticity in cloud computing: What it is,

and what it is not," in Proceedings of the 10th International Conference on Autonomic

Computing ({ICAC} 13), 2013, pp. 23-27.

[122] T. Lorido-Botrán, J. Miguel-Alonso and J. A. Lozano, "Auto-scaling techniques for

elastic applications in cloud environments," Department of Computer Architecture and

Technology, University of Basque Country, Tech.Rep.EHU-KAT-IK-09, vol. 12, pp. 2012,

2012.

Bibliography

190

[123] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U.

Srivastava and J. Widom, "Stream: The stanford data stream management system," in Data

Stream ManagementAnonymous Springer, 2016, pp. 317-336.

[124] T. Heinze, Z. Jerzak, G. Hackenbroich and C. Fetzer, "Latency-aware elastic scaling

for distributed data stream processing systems," in Proceedings of the 8th ACM International

Conference on Distributed Event-Based Systems, 2014, pp. 13-22.

[125] L. A. Combaneyre, "Minority Report is Here—Real-Time Geofencing Using SAS®

Event Stream Processing," Paper SAS395-2017, Available Online at:

Http://Support.Sas.Com/Resources/Papers/proceedings17/SAS0395-2017.Pdf, pp. 1-10,

2017.

[126] X. Chen, Y. Vigfusson, D. M. Blough, F. Zheng, K. Wu and L. Hu, "GOVERNOR:

Smoother stream processing through smarter backpressure," in 2017 IEEE International

Conference on Autonomic Computing (ICAC), 2017, pp. 145-154.

[127] T. Heinze, V. Pappalardo, Z. Jerzak and C. Fetzer, "Auto-scaling techniques for elastic

data stream processing," in 2014 IEEE 30th International Conference on Data Engineering

Workshops, 2014, pp. 296-302.

[128] J. M. Hellerstein, P. J. Haas and H. J. Wang, "Online aggregation," in Acm Sigmod

Record, 1997, pp. 171-182.

[129] P. Carbone, A. Katsifodimos and S. Haridi, "Stream Window Aggregation Semantics

and Optimisation," Stream Window Aggregation Semantics and Optimization., 2019.

[130] R. A. Sugden, T. Smith and R. P. Jones, "Cochran's rule for simple random sampling,"

Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol. 62, (4), pp.

787-793, 2000.

[131] M. A. Naeem, G. Dobbie, C. Lutteroth and G. Weber, "Skewed distributions in semi-

stream joins: How much can caching help?" Inf Syst, vol. 64, pp. 63-74, 2017.

Bibliography

191

[132] J. Fang, R. Zhang, X. Wang and A. Zhou, "Distributed stream join under workload

variance," World Wide Web, vol. 20, (5), pp. 1089-1110, 2017.

[133] S. You, J. Zhang and L. Gruenwald, "Large-scale spatial join query processing in

cloud," in 2015 31st IEEE International Conference on Data Engineering Workshops, 2015,

pp. 34-41.

[134] H. Sun, R. Birke, W. Binder, M. Björkqvist and L. Y. Chen, "AccStream: Accuracy-

aware overload management for stream processing systems," in 2017 IEEE International

Conference on Autonomic Computing (ICAC), 2017, pp. 39-48.

[135] A. I. Maarala, M. Rautiainen, M. Salmi, S. Pirttikangas and J. Riekki, "Low latency

analytics for streaming traffic data with apache spark," in 2015 IEEE International

Conference on Big Data (Big Data), 2015, pp. 2855-2858.

[136] F. L. Hall, "Traffic stream characteristics," Traffic Flow Theory.US Federal Highway

Administration, vol. 36, 1996.

[137] P. Mehta, A. Voisard and S. Müller, "Clustering spatial data streams for targeted

alerting in disaster response," in Proceedings of the 4th ACM SIGSPATIAL International

Workshop on GeoStreaming, 2013, pp. 66-75.

[138] C. C. Aggarwal, J. Han, J. Wang and P. S. Yu, "A framework for clustering evolving

data streams," in Proceedings of the 29th International Conference on very Large Data

Bases-Volume 29, 2003, pp. 81-92.

[139] C. C. Aggarwal, A Survey of Stream Clustering Algorithms. Chapman and Hall/CRC,

2018.

[140] T. Sellis, N. Roussopoulos and C. Faloutsos, "The R -Tree: A Dynamic Index for

Multi-Dimensional Objects." 1987.

192

fin.

	Abstract
	Acknowledgements
	Publications
	1 Introduction
	1.1 Highly Dynamic and Scalable Applications: A Motivating Scenario and Usage Model
	1.2 Thesis Statement
	1.3 Thesis Contributions
	1.3.1 SpatialBPE and SpatialNoSQL: Scalable Distributed Spatial Batch Query Processing and Storage
	1.3.2 SpatialSPE: Spatial Approximate Query Processing
	1.3.3 SpatialSSJP: Adaptive Stream-Static Spatial Join Processing

	1.4 Thesis Outline

	2 Background
	2.1 Lambda Architecture
	2.2 Distributed (Spatial) Big Data Storage Frameworks
	2.2.1 MongoDB: A Scalable Distributed Storage Framework
	2.2.2 Geospatial Analytics in MongoDB

	2.3 Distributed (Spatial) Big Data Processing Frameworks
	2.3.1 Batch Processing: Apache Spark
	2.3.2 Online Processing: Spark (Structured) Streaming

	3 SpatialDSMS: Spatial Data Stream Management System
	3.1 Spatial Data Analytics in Highly Dynamic and Scalable Applications
	3.2 Quality of Service Goals
	3.2.1 Methodology for Measuring the Achievement of Quality-of-Service Goals

	3.3 Scalable Storage and Fast Analytics: Better Together
	3.4 SpatialDSMS Overview
	3.4.1 Architectural Design Goals
	3.4.2 SpatialDSMS Architecture
	3.4.3 Scope of Operation

	4 QoS Aware Distributed Batch Spatial Query Processing
	4.1 Introduction
	4.2 A Primer on Distributed Data Partitioning
	4.3 Spatial Data Partitioning Goals
	4.4 Traditional Big Data Partitioning Schemes
	4.5 Spatial-aware Distributed Data Partitioning
	4.5.1 Multidimensional Data Structures Supporting Spatial Data Partitioning
	4.5.2 Custom Spatial-Aware Data Partitioning methods

	4.6 System Design Perspectives
	4.7 SpatialBPE: Spatial-aware Batch Processing Engine
	4.7.1 Motivation
	4.7.2 Design Perspectives
	4.7.3 Spatial Partitioning in Distributed Batch In-memory Processing Systems
	4.7.3.1 Spatial Co-Locality-Aware Partitioner (SCAP)

	4.7.4 A Recap on Spatial Querying in Batch Oriented Systems
	4.7.5 Spatial Query Optimizers for Distributed Data Batch Processing
	4.7.5.1 Co-location Query Optimizer
	4.7.5.2 Usage Model and Baseline System
	4.7.5.3 Experimental Setup and Test Cases
	4.7.5.4 Results and Discussion

	4.7.6 Related Works

	4.8 SpatialNoSQL: A Scalable Storage for Spatial Data
	4.8.1 Motivation
	4.8.2 SpatialNoSQL overview
	4.8.3 QoS Aware Spatial Data partitioning for NoSQL
	4.8.4 Spatial Query Optimizers for NoSQL Scalable Distributed Storage
	4.8.4.1 Spatial Query Primitives Supported
	4.8.4.2 NoSQL Query Optimizer Overview

	4.8.5 Experimental Setup and Parameter Settings
	4.8.6 Test Cases, Results and Discussion
	4.8.6.1 Testing Containment-PIP Query Optimizer
	4.8.6.2 Testing Top-N Query Optimizer
	4.8.6.3 Testing Proximity Queries (for example, kNN) Optimizer (relying on a retrofitted $nearSphere MongoDB operator with a test point and circle geometry specifier).

	4.8.7 Related Literature

	4.9 Chapter Conclusion

	5 SpatialSPE: Spatial Approximate Query Processing
	5.1 Motivation
	5.2 Theoretical Foundations
	5.2.1 Stream Processing
	5.2.2 Sampling
	5.2.2.1 A Short Primer on sampling
	5.2.2.2 Sampling
	5.2.2.3 Spatial Online Sampling Designs
	5.2.2.4 Stream Sampling (a.k.a. Online Sampling)

	5.3 SpatialSPE: QoS-aware Approximate Spatial Data Stream Processing Engine
	5.3.1 Usage Model and Baseline System
	5.3.2 Design Assumptions
	5.3.3 SpatialSPE Design Overview
	5.3.4 Spatial Aware Online Sampling (SAOS) Algorithm
	5.3.5 Spatial Queries Supported
	5.3.6 Quantifying the Uncertainty Associated with Sampling

	5.4 SpatialSPE Implementation Technical Details
	5.5 Performance Evaluation and Results
	5.5.1 Comparison Methodology
	5.5.2 Metrics of Interest
	5.5.3 Experimental Setup and Datasets
	5.5.3.1 Dataset
	5.5.3.2 Deployment and experimental settings

	5.5.4 Evaluation Strategy
	5.5.5 Test Cases and Results
	5.5.5.1 Testing scenarios
	5.5.5.2 Results and discussion
	5.5.5.2.1 SQG1 test case results
	5.5.5.2.2 SQG2 test case results

	5.6 Similar Works
	5.7 Chapter Conclusion and Forward

	6 SpatialSSJP: Adaptive Stream-Static Spatial Join Processing
	6.1 Background
	6.1.1 The Problem of Poor Resource Utilization in Stream Processing
	6.1.2 Streaming Distributed Joins and Complexities Associated with Spatial Cases
	6.1.3 Controllers for Resolving the Information Overloading and Resource Utilization
	6.1.3.1 Backpressure for Resolving Data Load Bursts
	6.1.3.2 Elasticity and Adaptivity: to Assign or to Release?
	6.1.3.3 Approximate Computing
	6.1.3.4 QoS-aware Sampling as an Enabling Technique for Spatial Approximate Computing

	6.2 QoS- and Spatial-Aware Adaptive Stream-Static Join Processor
	6.2.1 Usage Model and Baseline System
	6.2.2 SpatialSSJP Overview

	6.3 SpatialSSJP Algorithms and Mathematical Formulations
	6.3.1 SpatialSSJP Workflow
	6.3.2 Rate Controller Algorithm
	6.3.2.1 Latency-aware Rate Controller
	6.3.2.2 Accuracy-Aware Rate Controller

	6.3.3 Supported Queries
	6.3.4 Quantifying Uncertainty

	6.4 Implementation
	6.5 Performance Evaluation and Results
	6.5.1 Deployment Settings, Test Cases and Benchmarking
	6.5.2 Results and Discussion
	6.5.2.1 SpatialSSJP ability to satisfy a target latency requirement
	6.5.2.2 SpatialSSJP Ability to Satisfy Accuracy (estimation quality) Target

	6.6 Related Work
	6.7 Chapter Conclusion

	7 Conclusion and Future Works
	7.1 Summary of Contributions
	7.1.1 SpatialBPE
	7.1.2 SpatailNoSQL
	7.1.3 SpatialSPE
	7.1.4 SpatialSSJP
	7.1.5 Putting it All Together: SpatialDSMS

	7.2 Applicability of SpatialDSMS in Diverse Domains
	7.3 Future Works

	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Appendices
	Appendix A
	GeoSpark Architecture

	Appendix B
	DBSCAN-MR Workflow

	Appendix C
	Calculating Throughput in SpatialSPE

	Appendix D
	Spatial Sampling Distributions: Data Skewness

	Appendix E
	Further Words on SAOS Efficiency: Theoretical Perspectives

	Appendix F
	PID controller calculations similar to the way it has been used for backpressure in Spark Streaming [22, 126] .

	Bibliography
	Word Bookmarks
	firstHeading

