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Abstract  

Hydrodynamic modelling of inundation events is associated with a large array of 

uncertainties. This aspect is especially evident in the models run for geographically large 

areas. Recent studies suggest using fully two-dimensional (2D) models with high resolution 

in order to avoid uncertainties and limitations coming from the incorrect interpretation of 

flood dynamics and unrealistic reproductions of the terrain topography. The increasing 

availability of high-resolution topographic data and the ever growing computational 

potential of workstations enable us to simulate inundation events with a high level of 

hazard parameters details (i.e. water depth, inundation extent, flow velocity, etc.). The EU 

Floods Directive requires the Member States to update their flood hazard and risk maps 

every six years, and this requires high resolution simulations over large areas for successful 

flood management solutions.  Additionally, low-frequency high-magnitude events bring 

additional challenges as conventional structural flood protection systems (e.g. levees), 

which are omnipresent in floodplain landscapes,  might collapse due to hydraulic 

conditions such as high water loads, durations and velocities, or geotechnical factors that 

weaken structures (e.g. burrowing animal activities). Therefore, it is important to jointly 

consider the distribution of the inundated zones, potential levee breaching and holistic 

river-system behaviour when assessing flood hazard. In order to address the 

abovementioned challenges the present research focuses on the high-resolution flood 

simulations performed on geographically large areas using 2D inundation models with 

particular focus on complex topography (e.g. main and minor levees, embankments, small 

canals, etc.). Moreover, this Thesis aims at developing and testing a new tool, which allows 

for an efficient levee breach modelling and river dynamic tracking in fully 2D mode. 

First, our study evaluates and compares numerical models of different complexity 

by testing them on a floodplain inundation event that occurred in the basin of the Secchia 

River, Northern Italy, on 19th January, 2014. The event was characterized by a levee breach 
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and consequent flooding of over 75 km² of the plain behind the levee within 48 hours 

causing population displacement, one death and economic losses in excess of 400 million 

Euro. We test the well-established HEC-RAS 2D, and LISFLOOD-FP codes implemented 

using different grid size (25, 50, 100 m) based on 1 m digital elevation model resolution. The 

two models are based on different governing equations and mesh representation. Our 

study quantitatively compares modelling strategies highlighting differences in terms of the 

ease of implementation, accuracy of representation of hydraulic processes within 

floodplains and computational efficiency. Additionally, we look into the different grid 

resolutions in terms of the results accuracy and computation time. This study is a 

preliminary assessment that focuses on smaller areas in order to identify potential 

modelling schemes that would be efficient for simulating flooding scenarios for large 

floodplains.  

Then, we simulate the flood which occurred in October, 2000 on the mid-lower 

portion of the Po River (c.a. 350 km long reach), Northern Italy and produced significant 

damages in the area, particularly in the upper portion of the river. Due to its peculiar flood 

protection system, which consists of a complex network of minor and main embankments, 

flood management in this region is a great challenge. In order to represent the complexity 

of the floodplain we simulate the event along the study reach using a LISFLOOD-FP model 

in fully 2D mode. The model is run based on high-resolution digital elevation data (from 

30 m to 100 m) in order to reproduce the inundation patterns of the event. The main 

objective of this task is to investigate how high resolution data together with the 2D 

hydraulic model may contribute to the large-scale hazard assessment. We test different 

terrain configurations, which account for protection measures (i.e. embankments) 

differently and derive an optimal solution in terms of the resolution and computation costs. 

Importantly, the current work advances previous studies performed for the flood 

simulations on the Po River which employed one-dimensional (1D) and quasi-2D schemes 

that have significant limitations (e.g. quasi-2D schemes lack the representation of spatial 

distribution of flood depth and flow velocity).   

Finally, to reproduce the river system behaviour as a response to the levee breach 

we simulate flooding events using the LISFLOOD-FP 2D with its new levee-breaching 

extension developed within this PhD project. This accurate yet computationally efficient 

tool allows for levee breaching simulations run on large- scale with minimum setup effort. 

In order to investigate the performance of the extension we test it against the identical setup 

of the full-momentum 2D solver HEC-RAS 2D on a synthetic case study.  Moreover, we 

evaluate the performance of the new extension on two historical events in terms of 

inundation extent: a small-scale Secchia River flood (January 2014) and large-scale 

catastrophic Polesine flood (November 1951), both occurred in the Northern Italy and 

resulted in vast damages and life losses. Numerical stability, as well as computation costs 

were assessed accounting for the accuracy of the results and sensitivity of the model 



Abstract 

 

iii 

 

parameters. Our levee-breaching extension will allow breach simulations to be undertaken 

over geographically larger areas in order to capture the inundation patterns and changes in 

flow hydrographs downstream from the breach. Moreover, the designed tool is expected to 

be applied in near-real time and emergency flood risk management solutions. 
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Introduction 

Floods are a greatly impactful natural disaster, which over the years have taken 

millions of human lives and caused tremendous socio-economic damages around the globe 

(Alfieri et al. 2017). Floods may have a different origin, and may thus be classified 

accordingly: coastal, riverine, flash floods and ice-jam floods. Compared to other natural 

hazards such as droughts, earthquakes, extreme temperatures, landslides, mass 

movements, storms, volcanic activity and wildfire, floods are the most frequently occurring 

disasters throughout 2008-2017 globally (CRED 2019b). In 2018 floods affected more people 

than all other natural hazards combined (Figure 1). 

 

Figure 1. Number of affected people (million) by disaster type: 2018 compared to 2008-2017 annual 

average. Taken from (CRED 2019b) 

Spatially (Figure 2), most affected regions are Asia and Africa, from which in 

Pakistan, Vietnam, India and Bangladesh floods occur several times a year and 

tremendously impact local communities.  In 2018 some African countries such as Somalia 

and Nigeria suffered severe floods, having direct and indirect impacts on almost 5 million 

inhabitants (CRED 2019a). Developing countries with high-level flood protection system 

and efficient flood management solutions also suffer from the increasing water levels. 
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Extreme rainfalls in Japan generated catastrophic floods, resulting in 230 deaths (CRED 

2019a). In terms of monetary losses, according to CRED (2019b) in 2018 floods contributed 

to third largest share of monetary losses (about $19.7 billion) after storms and wildfire.  

 

 

Figure 2. Share of affected people (%) by continent (million). Taken from (CRED 2019b) 

In human record, one of the deadliest floods occurred on the Yellow River (China) 

in 1931.  According to various sources, the death toll reached between 1 and 4 million 

people, which is difficult to accurately estimate because of the spatial extent and the 

accessibility of the data back in 1931. 25 million people were displaced,  the territory as large 

as 70.000 square miles was flooded and overall damages reached $2.000.000.000 (National 

Flood Relief Commission 1933).  

There have been a series of large-scale floods in recent decades also on the European 

continent. An event, which was recorded as one of the most damaging in terms of monetary 

losses is the November 1994 flood in Italy, which devastated some areas of Piedmont, 

Lombardy, Liguria, Aosta Valley and Emilia-Romagna, with $9.3 billion overall and $65 

million insured losses. According to Munich RE (2016) the event of August 2002 across 

central Europe, which mainly affected Germany, Austria, Czech Republic, Switzerland and 

Slovakia, are among the 10 costliest floods worldwide in the period between 1980-2015. 

These events resulted in 39 deaths and $16.5 billion of overall losses, from which $3.4 billion 

were insured losses. Following this event, a catastrophic flood impacted Austria, Czech 

Republic, Germany, Hungry, Poland and Switzerland in 2013. Insured losses were of the 

same magnitude as in 2002, but overall losses were somewhat lower ($12.5 billion) and the 

event caused 25 fatalities. Extensive research has shown that, despite the fact that the 2013 

event was more severe in hydrologic terms, it was possible to reduce the overall economic 

losses compared to the 2002 event. This effect is attributed to increased preparedness and 
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higher level of adaptation in some regions after the 2002 event (Kienzler et al. 2015; Kreibich 

et al. 2011).  

Numerous studies (Alfieri et al. 2017; Bubeck et al. 2019; Hallegatte et al. 2013; 

Winsemius et al. 2016; IPCC 2014) conclude that flood risks will only increase in future 

decades due to economic development, urban migration of population and global climatic 

changes. Alfieri et al. (2018) highlighted that flood risk is likely to increase in Central and 

Western Europe.  Dottori et al. (2018) explored the impact of different levels of climate 

warming and socio-economic scenarios, and found  that socio-economic dynamics will be 

the crucial element in changes in riverine flood risk in the 21st century. Under different 

mitigation targets, including those set in Paris agreement (United Nations 2015), the flood 

risks are subject to change. In their research on impact of different levels of climate warming 

they investigated three thresholds: 1.5°C, 2°C and 3°C (of global temperature warming) and 

summarised that in all areas globally, the flood damages related to agriculture, residential 

and capital will upsurge with temperature increase (Dottori et al. 2018). Regarding future 

risks on railway network in Europe, the damages related to railway tracks disruption is 

likely to increase by 310% (under the 3°C of global warming scenario) (Bubeck et al. 2019). 

Despite obvious direct consequences, such as deaths, direct damages to buildings 

and infrastructure, agricultural losses, floods may have a vast array of indirect impacts. 

Some of them are infrastructure disruption and related economic losses, spread of 

infections, famine, household displacement, long-term environmental impacts, etc. Koks et 

al. (2019) suggests that financial damages associated with indirect impacts on 

macroeconomic level in Europe will increase in the light of increasing occurrence of extreme 

flood events. Indirect losses is a subject to 65% increase compared to direct, as due to the 

severity of the natural hazards it will be more challenging to supply products from 

alternative sources (Koks et al. 2019). 

In order to address increasing flood risk issues the European Commission 

developed the European Floods Directive 2007/60/EC, which is aimed to “establish a 

framework for the assessment and management of flood risks, aiming at the reduction of the adverse 

consequences for human health, the environment, cultural heritage and economic activity associated 

with floods in the Community" (Article 1, European Commission 2007). The implementation 

of the Floods Directive is supposed to be in cooperation with the Water Frame Directive 

(2000/60/EC), meaning that flood risk management and river basin management should be 

performed in close collaboration and agreement. The Floods Directive defines a flood as 

“temporary covering by water of land not normally covered by water. This shall include floods from 

rivers, mountain torrents, Mediterranean ephemeral water courses, and floods from the sea in coastal 

areas, and may exclude floods from sewerage systems”. While, flood risk is defined as 

“combination of the probability of a flood event and of the potential adverse consequences for human 

health, the environment, cultural heritage and economic activity associated with a flood event” 

(Article 1, European Commission 2007). Hereafter, we will refer to the definitions stated in 
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the Floods Directive. The EU countries (also Member States) should assess flood risks 

related to coastal and river floods and develop strategies taking into account long term 

developments (climate change) and be addressed through sustainable land-use solutions. 

Member states are obliged to provide flood hazard (magnitude and probability of the flood, 

(Moel et al. 2009a)) and flood risk maps, which would display potential negative effects of 

various flooding scenarios using “best available technologies” (European Commission 

2007). The outcomes such as maps, plans, other supplementary materials are supposed to 

be accessible to public (European Commission). The flood scenarios produced by 

responsible authorities should cover: 

 Extreme flood events 

 Floods with medium probability (likely return period ≥ 100 years) 

 High probability floods  

Based on the Floods Directive requirement, the flood hazard maps should include 

flood extent, water levels and flow velocity or water flow (where appropriate) (European 

Commission 2007).  Flood hazard maps illustrate a spatial distribution of several flooding 

parameters and their combination, such as water depth, flow velocities, duration of flood 

and in some cases time of arrival of the flood at a certain location. Flood hazard maps are 

the basis for calculating associated risks, therefore flood mapping is an essential step in 

reducing flood risks. Flood risk maps visualise an aggregated information on the risk zones, 

which are usually described as e.g. low, medium and high. 

With the changing physical environment, and scientific methods and tools, existing 

methods and maps get outdated after certain period of time. For this reason, the Floods 

Directive establishes that every six years the hazard and risk maps need to be revised and 

updated (European Commission 2007). Moreover, it is stated in the document that 

management plans should be developed for each river basin or sub-basin. These plans 

should satisfy the condition that they do not increase flood risks (in countries) upstream or 

downstream of any given river. In order to achieve such goals, flood risk assessments and 

mapping should be undertaken considering the catchment response to any given flood 

scenario (see above). Vorogushyn et al. (2018) question the assumption that Member States 

utilise state-of-art scientific methodologies and approaches in flood risk mapping. 

Incomplete/fragmented spatial coverage used in the undertaking of flood risk management 

and mapping may lead to inefficient adaptation strategies, where complex river system 

effects are poorly addressed or not considered entirely (Vorogushyn et al. 2018). This, in 

turn violates the solidarity principles outlined in the Floods Directive, which means some 

changes are required to overcome current challenges in implementation of the EU Floods 

Directive.  

Large-scale flood risk assessment, which spatially covers the whole river system 

rather than a single reach, is an essential concept in the development of effective flood 

management strategies. The evolution of the physical environment over time, as well as 
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climate change, needs to be considered, especially in light of substantial economic 

investments, e.g. installing flood protection infrastructure (levees, embankments, retention 

basins, etc.) (Vorogushyn et al. 2018).  

As a crucial part of the large-scale flood mapping it is important to consider a 

complex interaction between floodplains and flood protection measures and related risks 

in cases of their failures. Flood protection measures such as levees and embankments, may 

fail due to a series of various internal or external factors. A levee failure may bring 

catastrophic consequences to the communities and assets located behind levees. Sudden 

lowering of embankment crests in densely populated areas leads to human losses and a 

vast array of direct and indirect socio-economic and environmental impacts. Therefore, it 

is of great importance to consider remaining (residual) risks and plan the adaptation and 

mitigation measures appropriately. Therefore, it is a common phenomenon when the 

communities in the protected floodplains are not aware of the possible risks in case the 

levee is breached, so the consequences become catastrophic when failures occur (Ludy and 

Kondolf 2012). In Greater New Orleans this effect was seen after the passage of Hurricane 

Katrina in 2005, which caused over 1100 deaths and claimed to be the costliest hurricane on 

human record (Andersen 2007). The protecting levee breached in several locations 

inundating the majority of New Orleans and affecting the community for many years 

ahead. Another example is Polesine flood that occurred on the Po River in 1951, when the 

levee breached in 3 locations on the left embankment, letting an enormous amount of water 

penetrate the floodplain. The floodwaters reached the Adriatic coast and spread for an area 

of 1000km², killing 114 people and leaving about 180,000 people homeless (Viero et al. 2019). 

The recovery after such devastating events may last decades and in some cases, certain 

parts of the flooded communities may never be able to recover to the pre-event state. Thus, 

it is highly important to investigate and assess residual risks and inform the communities 

about possible remaining risks.  

Despite negative impacts outlined above, retention of flood waters in off-line 

floodplains may have overall positive effects, by reducing the peak water flow and water 

levels downstream from the breach (Sanders et al. 2006; van Mierlo et al. 2007). This can be 

undertaken by controlled levee failure, when a portion of the levee is removed in a pre-

defined location under the supervision of responsible local authorities. Controlled flooding 

is considered an important element for flood management strategies and practiced globally, 

e.g. Italy, The Netherlands, Vietnam, Germany, Belgium, Bangladesh, The USA etc. (van 

Staveren et al. 2017). In such case, a floodplain upstream the river reach gets inundated 

taking certain volume of floodwater and reducing risks of possible levee failures 

downstream. This is of specific importance in places where residual risks are high behind 

the levees. A complex interaction between channel flow and floodplains is also known as 

river system behaviour (van Mierlo et al. 2007). In order to address associated effects and 

their consequences we need to produce accurate flood risk maps. 
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In view of the above, flood hazard mapping across geographically large areas, 

considering possible levee breaches, can provide policy makers with valuable input for the 

development of correct and holistic flood management strategies. This aspect is highly 

important and our work is focused on further deepening understanding in this topic.  

In order to meet requirements of the EU Floods Directive and develop effective 

flood risk management plans, the European Member States established responsible bodies 

(European Commission 2007). These bodies carry out a large scope of activities associated 

with the implementation of the Floods Directive, i.e. production of the flood hazard maps. 

As mentioned above, flood hazard mapping is a preliminary and compelling step in 

developing flood risk maps and mitigation strategies. There are two main approaches for 

the development of flood hazard maps, named probabilistic and deterministic flood 

modelling (Apel et al. 2006). The general algorithm of probabilistic flood mapping usually 

consists of hydrological simulation, flood frequency analysis and eventually hydraulic 

modelling (Alfieri et al. 2015).  Hydrological simulations are performed using hydrological 

models: mathematical models that simulate hydrological processes (snowmelt, surface 

runoff, infiltration, groundwater drainage, etc.) over an extended period of time. The 

outcome of such simulations is streamflow, which is then analysed using statistical models 

to derive extreme flow peaks (Alfieri et al. 2015). The peak flows are then used in the flood 

inundation model to generate flood maps for given probability levels, usually expressed in 

terms of return period e.g. 100-yr, 500-yr or 1000-yr floods. Some of the most spread 

inundation models are hydrodynamic models which represent different complexity and 

dimensionality (Di Baldassare et al. 2010). Using probabilistic models like this is one of the 

possible methods for flood hazard maps construction. Deterministic approach for 

floodplain mapping uses historical hydrographs and distributed rainfall and catchment 

models to produce hydrological input (synthetic design flood events, e.g. 1 in 50 year flood 

(Di Baldassare et al. 2010) to the inundation model, which then simulates a particular event 

or a set of events (Apel et al. 2006). As outlined earlier, flood hazard maps normally contain 

information on the flood extent, water depth and velocities, inundation time, etc. This 

information is combined to produce hazard maps, which are then used to calculate risks.  

Structure and contributions of the Thesis 

The current Dissertation focuses on the latter element of flood hazard mapping, 

namely flood inundation modelling. In particular, we investigate the flow dynamics on 

geographically large areas by developing and applying state-of-art scientific methods and 

numerical algorithms to high-resolution datasets in order to better understand the potential 

of such tools to improve flood risk assessment and modelling and to reduce associated 

uncertainties. As mentioned earlier, we particularly aim to look at improved representation 
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of the flooding scenarios due to levee breaches on large scale. In order to address the issues 

stated above in most logical way, the Dissertation is structured as follows: 

Chapter 1 presents an exhaustive literature review on main methods used in 

riverine flood modelling, including empirical methods, terrain-based approaches and 

hydrodynamic models. As the focus of the dissertation is centred on the latter method, the 

whole spectrum of available methods is described. There, the models of different 

dimensionality and complexity (one-dimensional - 1D, two-dimensional - 2D, combined 

1D/2D) are presented, addressing  most spread software packages and codes, their areas of 

application, related limitations and existing challenges. We highlight the differences of the 

schemes, grid representation and geometry used. In addition, it discusses potential 

application of certain methods or tools in large-scale studies. 

Chapter 2 presents a thorough comparison of two fully 2D codes, which are tested 

on a Secchia River flood of 2014, when a levee breach caused vast inundation in Modena 

municipality. The chapter describes a performance of two well-known 2D models of 

different complexity. As the two codes operate with different mesh representation and 

governing equations used in flow calculation, we evaluate their effect on the results 

accuracy. We apply the two models on a complex terrain around two small towns located 

in the affected area. Moreover, we implement various grid size (25-100 m) based on 1 m 

Digital Elevation Model (DEM) resolution in order to evaluate the potential and limitations 

of the two models to be run on a large-scale study also considering their computational 

efficiency as one of the crucial elements. 

In Chapter 3 we look into a larger scale study and importance of the DEM pre-

processing in high-resolution fully 2D flood modelling. For this reason, we review existing 

research done on the study area (Po River, Italy) by using flood inundation models and we 

discuss remaining gaps which would potentially contribute to the Floods Directive 

implementation on the Po River. We apply a 2D model to simulate the flood, which 

happened in October 2000 and produced significant damages in the area. Specifically, we 

are dealing with the middle-lower stretch of the river, which is of particular interest for the 

responsible authorities. Due to its peculiar flood protection system, which consists of the 

complex network of main and minor embankments with different design return period, the 

flood management in this region is a great challenge (Castellarin et al. 2011a). In order to 

represent the complexity of the floodplain we simulate the event on the 350 km long river 

reach using a fully 2D model. The model is run using 30, 50 and 100 m raster resolution 

data resampled from 2 m resolution terrain data with and without addition of the actual 

embankment height. We describe how the deliberate inclusion of the embankments’ height 

influences the accuracy of the model at each resolution and computational effort needed to 

run simulations on a large-scale study. We evaluate the benefits gained from large-scale 2D 

model by presenting water depth, local distribution of flow velocities and discharge along 

the reach.  
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Chapter 4 is dedicated to the description of a new levee-breaching extension 

(module) of a widely-known 2D model, namely LISFLOOD-FP. The extension was 

developed as a part of the PhD studies in cooperation with the research group of Bristol 

University. The new extension allows simulating levee breaches in one single simulation 

(which was previously unavailable). In order to evaluate the accuracy and efficiency of the 

new module we compare the outcomes with the identical simulations performed by full-

momentum 2D solver. Furthermore, we test the updated model on a Secchia River flood 

of 2014, where we simulate the whole chain of the flooding process, including the water 

dynamics within the river channel, levee breaching link and consequent inundation of 

initially dry floodplain. To test the potential of the new extension to simulate levee-

breaching scenarios on a large-scale study, we simulate a historic Polesine flood, which 

occurred in 1951 on the downstream portion of the Po River. We compare the outcomes 

obtained from the new feature with those available in reports and scientific literature. In 

order to identify applicability of the model on different scales, we assess the computation 

time in relation to the sizes of modelled domains.  Finally, in Synthesis, we present the 

main outcomes of the performed work and possible implications of the obtained results.
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Chapter 1. Flood hazard mapping 

methods 

1.1. Introduction 

A crucial element in the flood risk assessment is efficient and accurate flood hazard 

mapping, which enhances the overall quality of risk analysis and allows the illustration of 

the flood. According to the Floods Directive  2007/60/EC, the hazard maps should consider 

extreme, medium (return period of about 100 years) and more frequent events providing 

the insight about the flood extent, water depth or water levels and flow velocity, where 

appropriate (European Commission 2007). Implementation of the Floods Directive 

2007/60/EC triggered the development of manifold methods and techniques to assess and 

represent spatial distribution of river floods. The hazard assessment methods vary not only 

between countries, but also between different parts and institutions within one country 

(Nones 2017).  

A considerable number of studies showed an extensive use of the one- and two-

dimensional (1D and 2D) numerical models to delineate floodplains (Bates and Roo 2000; 

Aronica et al. 2002; Horritt and Bates 2002; Penning-Rowsell et al. 2005; Büchele et al. 2006; 

Moel et al. 2009b; Di Baldassare et al. 2009b; Di Baldassare et al. 2010; Alfieri et al. 2014; 

Neal et al. 2012b; Falter et al. 2013), which enable the users to produce an accurate 

representation of river hydraulics and floodplain inundation dynamics. Some models, 

however apply different principles in calculating inundated areas, those would be 

approaches that mainly rely on Digital Elevation Model (DEM) analysis (Manfreda et al. 

2014). Alongside numerical models, other methods occupy a rather large niche in flood 

modelling. Among those are mpirical methods, which include various on-ground 

measurements and historic data collection, as well as remotely sensed images processing 

(Teng et al. 2017). Remote sensing gives an opportunity to capture flood extent of the 

occurred disaster and assists hydrodynamic models by providing input data and 

observation for calibration and validation.  



Chapter 1. Flood hazard mapping methods 

10 

 

It has been recognised that the correct method selection increases the overall 

efficiency and accuracy of hazard assessment, which in turn attributes to the risk analysis. 

There has been a wide array of mapping options suggested by numerous research groups 

and institutions (Teng et al. 2017; Néelz S. and Pender G. 2013). The selection of the 

approaches to delineate floodplains usually depends on numerous factors such as the data 

availability, computational and time capacity, scale, output requirements, etc. This chapter 

reviews well-known methods and tools together with auxiliary schemes to capture river 

flood inundation extent and related hazard characteristics such as water depth and flow 

velocity. Moreover, the research provides a comprehensive insight on their differences in 

terms of the background principles, complexity and designed application. In order to 

outline most widely spread flood hazard mapping methods, they are grouped as following: 

empirical methods with remote sensing techniques, DEM-based methods and numerical 

hydrodynamic models. Below we demonstrate the application of such methods and their 

main limitations based on extensive literature review. 

1.2. Empirical methods: application, limitations and 

advantages 

One of the most basic methods to delineate flood-prone areas is the retrospective 

information collection and mapping. Surveys, ground measurements, sediments 

sequencing, dendrochronology, eye-witness interviews, remotely sensed images play a 

great role in this process ( Zhang et al. 2018; Kakar et al. 2014; Zielonka et al. 2008). Data 

collection allows for reconstruction based on numerous data inputs from various sources. 

Historic floods leave traces in the environment; there has been a series of studies performed 

in order to identify geochemical proxies that are reflected in the floodplain and deltaic 

sediments (Zhang et al. 2018; Zhao et al. 2017). Such proxies help to investigate the climatic 

and anthropogenic interplay in the river basins on high-resolution dated hundreds years 

back (Zhang et al. 2018). These methods are a very approximate representation of reality 

and are subject to uncertainties. The results of such methods are also used as a supplement 

to other modelling methods (DEM- based or hydraulic numerical models) as a reference for 

calibration and validation. For instance, remote sensing is a fast evolving approach for flood 

forecasting and monitoring (Teng et al. 2017). In order to support flood modelling, remote 

sensing offers significant inputs. Remote sensing data can be used either for empirical 

mapping (observed or historical event used for mapping), for constructing hydrodynamic 

modelling (1D and 2D), or for applying simplified DEM-based methods.   

Flood mapping can now be supported by satellite observations (Schumann et al. 

2009; Li et al. 2016). From one side, such data can be an auxiliary tool for hydraulic 

modelling in terms of data derivation (DEM, morphological properties of channels) and 
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model calibration/validation (Schumann et al. 2009; Li et al. 2016; Horritt and Bates 2002). 

From the other side, remote sensing is a (semi-) independent instrument which helps flood 

monitoring, capturing the inundation extent and depth levels during and after a flood event 

(Townsend and Walsh 1998; Brivio et al. 2010; Patel and Srivastava 2013; Hoque et al. 2011). 

Furthermore, we would like to focus on the remote sensing methods of inundation maps 

derivation. 

There are different types of data acquisition techniques: optical sensors, passive 

microwave instruments and synthetic aperture radars (SAR). They vary by the way the 

images are obtained, their resolution and cost. For instance, optical sensors allow acquiring 

images with very high spatial resolution, visible and invisible spectrum range 

compositions, where the inundation extent is obtained by digitizing the contours of water-

surface boundary (Schumann et al. 2009). This approach has gained a very high spread 

around the world and is used by numerous research groups, governmental and commercial 

institutions due to its straightforward nature. An advantage is that such images may be 

provided free of charge (Landsat 5, 7, 8; MODIS aqua and terra, SPOT, COANE, etc.), 

however in case of a specific mission, they may be expensive.  Despite broad successful 

application (Marcus and Fonstad 2008; Townsend and Walsh 1998; Sanyal and Lu 2004; 

Joyce et al. 2009; Ward et al. 2014; Khan et al. 2011; Villaret et al. 2013; Proud et al. 2011), 

optical imagery has a serious limitation: it is unable to capture the terrain in case of dense 

cloud cover over the catchment and vegetation presence (Hoque et al. 2011; Schumann et 

al. 2009; Ward et al. 2014; Wilson et al. 2007).  

Unlike optical sensors, microwaves are capable of passing through the 

clouds. Passive microwaves enable data acquisition day-and-night regardless weather 

conditions, since radiometers capture thermal emissions (Rees 2001). As emissivity of land 

and water surfaces are different, it is possible to detect inundated areas. Despite this 

capability, due to the large angular beams, the resulting resolution of such images is rather 

coarse, therefore it is applicable for very large river catchments only (approx. 10³ km²) 

(Smith 1997; Schumann et al. 2013; Schumann et al. 2009; Li et al. 2016). Among the passive 

sensors there are SSM/I, SSMIS, SMMR, MIMR, TRMM-TMI, AMSR-E, etc. They are 

extensively used for the flood monitoring and forecasting (Bindlish et al. 2009; Temimi et 

al. 2005; Temimi et al. 2011; Singh et al. 2013; Lacava et al. 2015), in fact Groeve (2010) points 

out on the potential of using passive imagery in the global and national flood monitoring 

because of its high temporal resolution. Yet, the flood mapping and modelling requires 

higher spatial resolution than the one offered by passive microwave imagery (Schumann et 

al. 2009). Some studies, however, are dedicated to overcoming this limitation by e.g. 

downscaling the images and involving social media geotagged posts into the flood extent 

estimations (Sun et al. 2015). 

A suitable tool to capture the terrain during the flood is the synthetic aperture radar 

(SAR) (Horritt et al. 2010b; Hess et al. 1995; Brivio et al. 2010; Joyce et al. 2009; Smith 1997; 
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Townsend and Walsh 1998; Sanyal and Lu 2004; Matgen et al. 2007; Dewan et al. 2007; Ward 

et al. 2014), which is able to penetrate the clouds, creating “cloud-free” images of high 

resolution. This feature is of great importance, as normally during a flood event the sky is 

overcast; more notably, SAR operates in the night time, which allows efficient hazard 

monitoring (Smith 1997). Active microwave imagery is obtained by the backscattered 

microwave pulses from the surface to the antenna; once the higher spatial resolution is 

needed, the beam “footprint” has to be reduced. Depending on the surface roughness, 

shape and dielectric properties the amount of backscattered pulse varies (Grimaldi et al. 

2016); thus, the water surfaces cleared off vegetation are precisely defined in the imageries 

(Smith 1997). One of the examples of the flood extent capture using SAR images can be seen 

in Figure 3. Different colour lines are a part of the post-processing done by Schumann and 

Moller (2015) to delineate the flooded areas. Most of the measurements are free of charge 

or rather less expensive and provided by space agencies (Grimaldi et al. 2016).  

 

                

Figure 3. Flood extent delineation on airborne SAR images at flour different dates during one 

event. Taken from (Schumann and Moller 2015) 

Different algorithms exist to process the satellite images in order to delineate floods; 

among them are: basic visual interpretation,  multitemporal change detection (Calabresi 

1996; Dellepiane and Angiati 2012), automated processing (Hess et al. 1995; Matgen et al. 

2011; Twele et al. 2016; Oberstadler et al. 1997), supervised classification (Roo et al. 1999), 

fuzzy logic (Pulvirenti et al. 2011), image histogram thresholding (Brivio et al. 2010), etc. 
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1.3. DEM-based methods: application, limitations 

and advantages 

This group of methods uses terrain elevation data as a basic component of 

delineating flood-prone areas on different scales. Such delineation is normally performed 

using various methods to calculate the possible spread of the “inundated” areas, such as 

impact zonation or geomorphic characteristics of given terrain (Manfreda et al. 2014). One 

of the main advantages of DEM-based methods, is that they are highly efficient in terms of 

computation time and can be used on very large areas (national or continental scales). 

However, they all have a significant limitation: such methods do not capture flow dynamics 

and some of them are unable to report water elevations. The most spread tools and 

approaches are presented next. 

Height Above Nearest Drainage (HAND) method is a low-complexity DEM-based 

approach, which has been used in numerous studies for large-scale domains (Nobre et al. 

2016; McGrath et al. 2018; Johnson et al. 2019; Jafarzadegan and Merwade 2017). The basic 

principle is that it first processes DEM in a way that the flow pathway is defined from the 

local drain direction grid in 8 directions. Then the DEM is rebuilt to remove incoherent 

areas (those which are not hydrologically connected with the stream network). The 

drainage is delineated by identifying a threshold value (Nobre et al. 2016). Based on that, 

the drainage network is normalised and can be used for outlining flood inundation extent. 

This method is applied on large-scale areas (over 1000 km²), as well as probabilistic flood 

modelling due to its computational efficiency and data requirements (Teng et al. 2017). 

Nevertheless, such a method does not include the momentum transfer and velocity fields, 

moreover, it is known to overestimate flood-prone areas (Nobre et al. 2016).   

Some other methods can be based on different assumptions and approaches, among 

them are: modified Topmodel index approach, linear binary classifier and inundation 

hydro-geomorphic characterization algorithm,  etc. (see e.g., Manfreda et al. 2014 and 

references therein). All of them rely on different aspects related to geomorphic features that 

can be derived from the DEM datasets. For instance, modified Topmodel index approach 

takes the topographic index, which is a function of the local upslope contributing area and 

the local slope (Manfreda et al. 2014). The linear binary classifier is based on five features 

which are calculated from a given DEM to delineate flood-prone areas:  distance from a 

DEM cell to the nearest stream, difference of elevation between a given cell and closest 

stream, surface curvature, contributing area and local slope (Jafarzadegan and Merwade 

2017). The hydro-geomorphic method outlines the flood-prone areas in regard to the river 

basin properties. It considers a set of natural physical processes, which take part in the 

formation of the river networks and specifies the interconnections between the width of the 

possible flooded area and contributing area (Nardi et al. 2006). Similar to HAND approach, 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/curvature
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all these methods are limited in their application for a preliminary identification of flood-

prone areas due to the absence of hydrodynamics in the delineation of floodplains. DEM-

based approaches are not able to take into account hydraulic structures and flow velocities. 

Therefore, in order to comply with the Floods Directive 2007/60/EC requirements in flood 

hazard map production, such methods should be applied along with hydrodynamic 

models. 

Another method to delineate the flood is Rapid Flood Spreading Methodology 

(RFSM) developed at HR Wallingford (Gouldby et al. 2008). It was built in order to perform 

large-scale simulations for the regional flood risk assessments in relatively short time 

comparing to hydraulic models. Its main input is generated from (multiple) breached or 

overtopped defences and discharge into the floodplain (Lhomme et al. 2009).  The 

automatic approach is based on two steps, first step includes a DEM pre-processing, which 

results in the model mesh calculation (irregular cells shape) and impact zones delineation. 

This is done by analysing the floodplain gradient in 8-directional expansion from the low-

elevated DEM points using a search algorithm, and the consequent definition of the storage 

cells (Gouldby et al. 2008).  Second step is the distribution of the certain water volume over 

the storage cells by simple flux-approximations and stage-volume functions (Falter et al. 

2013). Such method is a rapid and efficient flood mapping tool (Gouldby et al. 2008), 

however it is linked to certain limitations such as neglecting the flow dynamics, terrain 

obstacles and the sensitivity of the model to the time steps observed by Falter et al. (2013). 

Nevertheless, RFSM performed considerably well in comparison with fully 2D codes in 

terms of flood depth and extent representation, and, importantly, computational efficiency. 

Overall, the approach has a great potential for time-saving large-scale risk mapping  

(Pender and Liu 2012; Falter et al. 2013; Lhomme et al. 2009; Krupka et al. 2007; Pender and 

Liu 2012; Liu Y. 2010).  

 

1.4. Numerical hydrodynamic models: application, 

limitations and advantages  

Recent studies have shown a large interest to and exploitation of numerical 

modelling schemes of different complexity to simulate hydraulic processes ( Néelz S. and 

Pender G. 2013). Such tools are widely applied by engineers and researchers around the 

globe; numerous studies proved the applicability of hydraulic models (Bates and Roo 2000; 

Horritt and Bates 2002; Néelz S. and Pender G. 2013; Hunter et al. 2008; Neal et al. 2012a; 

Teng et al. 2017; Di Baldassare et al. 2010). Unlike DEM-based mapping methods, hazard 

characteristics are derived from the numeric computations of physical equations. In this 



Chapter 1. Flood hazard mapping methods 

15 

 

sub-chapter we would like to present hydraulic models and their main application areas, 

as well as discuss their differences and advantages.   

Any model requires a certain amount of pre-processing and setup. Depending on 

the model complexity and dimensionality, the data collection and pre-processing may 

require much longer time than the software setup itself (Sosa et al. 2019). Flood hazard 

mapping consists of steps described in Figure 4. 

 

Figure 4. Schematics of the steps commonly used in flood mapping when hydraulic models are 

applied. Based on Hoch and Trigg (2019) and Caribbean handbook of Risk Information 

Management . 
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As illustrated in Figure 4, the domain must be carefully outlined first, to consider 

all possible flow directions and be large enough to account for correct representation of 

boundary conditions. Depending on the purpose of the flood modelling, a modeller may 

apply deterministic or probabilistic approach. If the hydrograph represents an estimated or 

historic extreme event, flow hydrograph data can be used as the upstream boundary 

condition to route the flow. Alternatively, it can be a series of flow hydrographs derived 

using statistical models, which represent a particular given exceedance probability.  

The models can be grouped following the criteria of their dimensionality as 1D, 2D 

and 3D (see for the further details below). Regardless modelling scheme, the model needs 

to be calibrated using certain parameters and then validated if possible. These stages are 

crucial in producing most accurate flood maps, however the accuracy is also a subject of 

the selected method used. Below we discuss 1D and 2D modelling schemes which are 

employed in hydraulic models. 3D models are not discussed below, as they are used to 

study vertically stratified fluid properties: temperature, salinity, velocity, sediment 

transport or ecological studies (Popescu et al. 2015; van Ballegooyen et al. 2004; Lee et al. 

2014). For instance, dam break dynamics or tsunami simulations require the application of 

3D codes. Due to the aspects mentioned above 3D models are not applied for regional or 

large-scale floodplain inundation modelling. 

1.4.1. 1D schematization 

General principle of one-dimensional models lies in the evaluation of the water 

volume flowing through the channel cross-sections. Different models may operate with 

steady or unsteady and primarily uni-directional, homogeneous flows. Most models solve 

full 1D Saint Venant equation, represented by continuity or mass conservation equation 

and momentum conservation equation (Néelz and Pender 2009): 

Conservation of mass:  
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Where, Q is discharge, t is for time, h is the water depth, g is the gravitational 

acceleration, Sf is the friction slope and So is the channel bed slope, A is the flow cross-section 

area and x is the distance between cross-sections.  
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This solution assumes that the flow is parallel to the centreline of the channel and 

varies slowly in the cross-sections. The geometry of the model is represented as cross-

sections, which describe the riverbed morphology (river bed, banks and adjacent relevant 

areas) (Figure 5). Figure 5 represents main elements of the 1D models simulation. Flow 

boundary condition is a hydrological input to the model, which reflects the volume of water 

coming into the model and is normally represented as discharge hydrograph, water levels 

or water stage. The modelling scheme is routing the flow within the channel and flow 

parameters are calculated at each cross-section. When the water levels in the cross-section 

exceed river banks, it spills to the adjacent indicated terrain.  

     

Figure 5. Example of 1D geometry and boundary conditions. Upper right panel is a top view on the 

channel and cross-sections, where yellow arrows point on the upstream and downstream 

boundary conditions, which in this case are represented as the relevant cross-section, located on 

the edges of the domain. The lower images graphically show the geometry of the cross-sections 

and associated water levels.  Taken from (Caribbean handbook of Risk Information Management). 

The numerical modelling scheme depends on discretization of the initial equation 

and in the majority of 1D codes it is finite-difference method (Néelz and Pender 2009). Some 

of the models that use finite-difference method are: HEC-RAS 1D (U.S. Army Corps of 

Engineers), SOBEK 1D Flow (Deltares), ISIS 1D (now Flood Modeller Pro), MIKE 11 (Danish 

Hydraulic Institute), InfoWorks RS 1D (MWH Soft/Innovyze). These are only the most 

popular packages, which differ by their interface features, availability (some of those, e.g. 

HEC-RAS, are non-commercial), etc. Overall, the numerical scheme of 1D models makes 
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the computation time faster compared to 2D. However, the depth mapping and evaluation 

of the flood extent is not always straight forward, it may require the use of interpolation 

methods (such as Inverse Distance Weighting) and supplementary Geographical 

Information System (GIS)  tools (Werner 2004). In some cases, the floodplain may be 

represented as a part of a cross-section, it is then possible to capture the inundation extent. 

Therefore, 1D packages may be used to simulate inundation extent (with data post-

processing), water depth, flow velocity (averaged per cross-section) and hydraulic 

structures: bridges, weirs, pumps, gates, etc. (Néelz and Pender 2009). One of the most 

crucial parts is the accurate representation of the cross-sections topography, which, in most 

cases, can be achieved solely by the detailed ground survey. This, and considerable amount 

of other input parameters may produce more room for errors. One of the most limiting 

factors is that 1D configuration requires the modeller to evaluate the river behaviour and 

dynamics, reproducing the main connections of the river with lateral floodplains or other 

minor reaches by means of hydraulic connections (e.g., weirs, culvert, gates and so on). This 

introduces subjectivity and the model performance may vary from one application to 

another. These models do not reproduce the real two-dimensional behaviour that 

characterizes some conditions but rather provide average hydraulic variables, not 

appropriate for real hazard representation, especially in large floodplain, where 2D 

dynamics are relevant (Teng et al. 2017). Due to very high computation efficiency, 1D 

models are commonly used for flood modelling on different scales, including large-scale 

studies with the limitations mentioned above (Horritt and Bates 2002; Castellarin et al. 

2009).  

1.4.2. 2D schematization  

The availability of the high-resolution Light Detection and Ranging (LiDAR) DEMs 

(2 m and finer) prompted the application of more complex solutions for flood hazard 

mapping (Hawker et al. 2019). The fundamental difference between 1D and 2D models lies, 

firstly, in the representation of topography. In 2D models there is a complete 2-dimensional 

coverage of the terrain (Figure 6). The river dynamics are driven by the topography and do 

not depend on the river schematization provided by the modeller. Most of 2D models’ 

solvers are based on the depth-averaging Navier-Stokes equations, which are implemented 

as two-dimensional shallow-water equations, which preserve mass and momentum 

conservation.  

 

  Conservation of mass: 
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Conservation of momentum:       
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where x and y are spatial dimensions, estimates of u, v, and h over space and time 

(Teng et al. 2017). Due to the fact that 1D and 2D formulations do not have analytical 

solution for the vast majority of real world applications, different numerical schemes are 

implemented in order to compute the approximated flows (finite-element, finite-volume, 

finite-difference). Regarding spatial representation, the computational grids may have 

different shapes (i.e. triangular, square, rectangular, etc.) and be structured or unstructured 

(Figure 6).   

 

 

Figure 6. Different meshes used in 2D modelling: a) structured mesh; b) unstructured mesh; c) 

flexible mesh. Taken from (Teng et al. 2017) 
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Grid geometry plays an important role in the model accuracy: the more 

topographical details are captured in mesh building, the more detailed/accurate the results 

are. Unstructured and flexible meshes, which are able to contain fine topographic features 

such as embankments, canals, levees, etc. would greatly benefit the flood dynamic over 

complex topography (Shustikova et al. 2019). Meanwhile structured grid might be less 

efficient in this case.  

2D models are able to compute the inundation extent over complex topography as 

well as in urban areas, and provide water depth and depth-averaged velocities, yet they are 

less sensitive to smaller hydraulic structures (Néelz and Pender 2009). 

 

Combined 1D/2D models 

 

It must be noted that certain software packages allow combining 1D and 2D models 

(See Table 1). Normally it is represented as a link between 1D river flow model and 2D 

floodplain grid (Figure 7). Such method is used when the channel representation requires 

the terrain model with a significantly higher resolution, which sometimes is 

impossible/inefficient to use. 1D/2D combining is widely spread (see Table 1) as it gives an 

opportunity to considerably reduce the computation time compared to fully 2D models and 

keep the representation of the two-directional flow over the floodplain (Brunner 2016).  

    

Figure 7. Schematic representation of 1D (cross-sections, green lines) and 2D (floodplain, green 

polygon with mesh) areas and lateral link between them (black line at left top corner in the image). 

Below are presented some of the most used 2D packages (Néelz and Pender 2009). 
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Table 1. Some of most common 2D software used for river flood modelling. 

Name Developer 

Numerical 

scheme Mesh 

1D 

coupling License 

TELEMAC 

2D 
EDF 

finite-

element 

structured/ 

unstructured, 

triangular + free 

MIKE 21 

DHI 

finite-

difference 

structured/ 

unstructured, 

triangular or 

quadrilateral + proprietary 

ANUGA 

Australian 

National 

University and 

Geoscience 

Australia 

finite-

volume triangular  - free 

InfoWorks 

RS 
MWH 

Soft/Innovyze 

finite-

volume 

structured/ 

unstructured, 

triangular + proprietary 

FESWMS-

2DH 

Federal 

Highway 

Administration 

finite-

element 

triangular or 

quadrilateral + free 

FLO-2D 
FLO-2D 

Software, INC 

finite-

difference raster-based + proprietary 

HEC-RAS  

2D mode 
US Army Corps 

of Engineers 

finite-

volume 

structured/ 

unstructured, 

up to 8 sides + free 

ISIS 2D 

(Flood 

Modeller 

Pro) Flood Modeller 

finite-

difference 

structured/ 

unstructured, 

triangular or 

quadrilateral + proprietary 

SOBEK 2D 
Deltares 

finite-

difference staggered grid + proprietary 

TUFLOW 
BMT-WBM 

finite-

difference square + proprietary 

Delft3D 

(FLOW 

module) 
Deltares 

finite-

difference 

structured/ 

unstructured 

(flexible mesh) 

+ (couples 

with 

another 

model) free 

 

Due to the differences that can be observed in Table 1, the results obtained from 

modelling also differ. A benchmark study performed by the UK Environment Agency on 

2D hydraulic modelling packages revealed that 2D models based on shallow-water 
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equations deliver better results in terms of flood water velocity, than the ones which use 

simplified equations (Néelz and Pender 2009). Nevertheless, for the representation of the 

flood extent all 2D packages perform comparably.  Then, predictably, it is suggested that 

possibility to link 2D model with 1D channel model gives a wide array of options that are 

provided by both codes, however the type of 1D/2D linkage is an essential threshold for the 

river-floodplain water volume exchange (Néelz and Pender 2009). Moreover, the numerical 

scheme used in software influences the ability to represent the levee breaches, and those 

which are able to capture shocks (mostly  finite-volume schemes perform better in such 

conditions (Néelz and Pender 2009)). Therefore, finite-volume schemes are more popular 

(Teng et al. 2017). Combined 1D/2D models are widely used in large-scale flood mapping, 

as they allow to cover vast areas with lower computation costs compared to fully 2D 

schemes (Di Baldassare et al. 2010; Castellarin et al. 2011a).  

 

Raster-based hydrodynamic models 

 

A distinction of raster-based hydrodynamic models, hereafter referred to also as 

raster-based models, is that they operate with regular rectangular mesh (e.g. LISFLOOD-

FP, JFLOW, PRIMo, PARFLOOD) (Neal et al. 2012a; Vacondio et al. 2014; Sanders and 

Schubert 2019; Bradbrook 2006). The flow in raster-based models moves in x and y 

directions (Figure 8). Raster-based models can pose a limitation, due to the fact that some 

critical topographical features might be not captured in such mesh, which would result in 

errors in flow parameters. These errors can be avoided by applying smaller mesh size (or 

higher terrain data resolution). Specific characteristics related to the mesh building vary 

from one model to another. Below we describe several examples of how such models 

function. 

                       

Figure 8. Schematics of the raster-based model representation. Taken from (Bates 2009-2019) 

Numerous studies utilise 2D LISFLOOD-FP model, developed by the University of 

Bristol and freely accessible for the research purposes (Bates et al. 2010; Di Baldassare et al. 

2010; Neal et al. 2012a). The 2D flow is solved based on inertial formulation of shallow-

water equation coupled in x and y directions (Bates et al 2010). The above mentioned 

simplification allows for the substantial reduction of the computational time (Alfieri et al. 
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2014; Néelz and Pender 2009). LISFLOOD-FP operates with square grid of same resolution 

as the input raster, however, it may represent channel thanks to its subgrid capabilities 

(Neal et al. 2012a). This model is proven to be efficient specifically for large-scale hazard 

modelling. This feature has been tested by various research groups, among them are the 

studies conducted on regional (Horritt and Bates 2002; Schumann et al. 2013; Fewtrell et al. 

2011; Bates and Roo 2000; Maugeri 2012), basin (Savage et al. 2016; Dimitriadis et al. 2016; 

Amarnath et al. 2015; Schumann et al. 2013) and continental/global (Alfieri et al. 2014; 

Schumann et al. 2016; Sampson et al. 2015) scales.  

A similar approach is used in JFLOW (JBA consulting), a commercial software 

developed for the engineering and consultancy purposes (Bradbrook 2006). It was tested 

and showed an excellent performance in terms of computational efficiency working with 

high resolution DEMs (Lamb et al. 2009). It utilizes full-momentum shallow water equation 

on regular grid, utilising graphical processing units (GPU) capabilities, which makes the 

computation fast (Néelz and Pender 2009). In addition, this tool is supplied by a built-in 

GIS interface for convenient mapping. 

Unlike LISFLOOD-FP and JFLOW, The Parallel Raster Inundation Model 

(PRIMo) model solves full-momentum shallow water equation on upscaled grid, which can 

be of different size than the input raster dataset. Meaning, e.g. the topographic data can be 

of 5 m resolution, while the mesh cell size can be any larger (>5 m).  This can drastically 

decrease the computation time, while preserving high accuracy. Moreover, PRIMo allows 

for subcritical, supercritical and transitional flows because of the approximate Riemann 

solver used to estimate fluxes (Sanders and Schubert, 2019).  

 

There are, however, some significant weaknesses of all 2D models: most 

importantly, they require much longer computational time comparing to 1D and combined 

1D/2D models.  This difference would depend on the number of cells within the domain 

and water volume. At the same time some simplified models (i.e. LISFLOOD-FP) are faster 

than conventional 2D codes, as they are based on inertial formulation of the shallow water 

equation and have been tested on large and continental scales (see above). Yet, the factor of 

computational capacity and data availability may pose the main source of the limitations 

for the users.  

1.5. Flood modelling: recent advances and further 

steps 

Future climatic changes and shifts in flood risk towards the increase in frequency 

and severity of the events triggers the community to develop, test and implement updated 

modelling methods in order to reduce damages. Among the fastest developing empirical 
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methods for flood modelling is remote sensing (Schumann et al. 2009) . The overall quality 

of the images (SAR) and improved timing of the acquisition plays a great role in flood 

forecasting and monitoring. The integration of remote sensing into flood forecasting have 

gained a large attention in recent years, however it requires a further improvement for 

streamflow predictions (Li et al. 2016). Satellite data is processed using significantly faster 

computation capacity via cloud computing (Morsy et al. 2018). In order to reduce the 

limitations related to hydrological data quality acquired from satellite images, a new 

generation Surface Water Ocean Topography (SWOT) mission is expected to be launched 

in 2020 (Biancamaria et al. 2016). Moreover, machine learning and deep learning are now 

extensively used for the remote sensing image processing and classification, which allows 

for more efficient and accurate flood mapping (Lamovec et al. 2013; Schnebele and Cervone 

2013; Lim and Lee 2018). There is a clear trend in increasing use of remote sensing in not 

only flood modelling but also providing necessary data such as Shuttle Topography Radar 

Mission (SRTM) and Light Detection and Ranging (LiDAR) DEM. (Teng et al. 2017).  

Regarding hydrodynamic models, recent advances in computational resources and 

availability of high-resolution (30 m or higher) large-scale datasets (Yamazaki et al. 2017) 

drive the tendency on development and application of state-of-art hydrodynamic 

numerical models. Each new model or its updated version has target applications. Simple 

1D codes have been applied to calculate the discharge through cross-sections and are still 

widely applied on specific case studies. The overview above showed, that nowadays, most 

commonly used methods to map floods are combined 1D/2D or fully 2D codes of different 

complexity. The model choice is commonly justified by data availability, computation 

capacity and access to specific modelling software. Numerous studies in recent years utilise 

fully 2D codes, which provide a better overlook on flow parameters (water depth, flow 

velocities, inundation extent) and their spatial distribution (Shustikova et al. 2019). 

Moreover, 2D codes allow for river system dynamic tracking, which is largely unavailable 

in combined 1D/2D models, due to architecture of one-directional links between channel 

and floodplain. While 2D codes are able to capture flow and backwater effects between 

channel and floodplains.  

Each modelling approach discussed above has their own uncertainties associated 

with input data or modelling techniques. Identifying and quantifying uncertainties is a 

fundamental component of flood hazard modelling. Further studies should focus on the 

reduction of uncertainties and finding best solutions.  

Regarding computation efficiency, as shown above, low-dimensional models 

require much less time for simulations, whereas the most time-consuming are full-

momentum models. This, and data availability play a great role in the models application 

on large scale. In the meantime, it has been proved that cloud computing and GPU-

parallelisation significantly increase the use of 2D codes not only for local studies but for 

very large areas (catchment and continental scales). The integration of one method into 
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another may be greatly beneficial in flood modelling, for instance applying updated 

techniques in terrain data acquisition (LiDAR) would provide much improved input into 

hydrodynamic and DEM-based models. Therefore, we may expect even greater use of 2D 

schemes in large-scale flood modelling. 

Building spatially complete and accurate flood maps is a crucial component in flood 

risk management and compliance with national and international laws and regulations. To 

sum up, all mentioned models have their application suitability, the codes have their 

strength and weaknesses. The approach selection is a matter of each specific case and 

requirements skills of the modeller and should be considered with great care. The 

subsequent chapters will provide a closer look into the testing and analysing the 

performance of different modelling techniques (software), which have a potential to be 

applied on large-scale studies.  

1.6. Research questions addressed in this 

Dissertation 

The research questions addressed in the Dissertation are: 

1. How do two-dimensional hydrodynamic models with different complexity 

contribute to flood hazard mapping with a specific focus on areas with complex 

topography? What is their potential relative to large-scale studies? 

We focus on the testing of two models, namely the 2D full-momentum HEC-RAS 

and raster-based LISFLOOD-FP, we apply them for modelling the inundation event which 

occurred on the Secchia River (Italy) in January 2014. During the event, the morphologic 

complexity of the terrain had a pivotal impact on the inundation dynamics, therefore we 

tested the fully-2D schematization of both models, which differ in their governing 

equations and mesh representation, to see how these elements influence the accuracy of the 

outcomes as well as the computational efficiency (i.e. runtime). 

2. What is the potential of raster-based 2D models for simulating inundations 

across large geographical areas characterized by heavily anthropogenically 

modified terrain? What is the impact of terrain pre-processing and resolution 

under such circumstances? 

Here we look into application of fully-2D LISFLOOD-FP to the Po River flooding 

event that occurred in October 2000.  A complex network of main and minor embankments 

that protect floodplains along 350 km river reach pose a great challenge for modellers, 

therefore we apply various techniques in DEM pre-processing and consider different 

horizontal resolutions (i.e. 30, 50, 100 m). This helps to identify the configuration that would 

be able to correctly depict water extent, local flow velocities and water surface elevations, 

and at the same time it would be computationally efficient.  
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3. Concerning a new levee breaching extension for LISFLOOD-FP model, what are 

its main advantages and potential? 

We develop and test an additional extension to LISFLOOD-FP model, which allows 

for levee breaching in one or multiple locations, pre-defined by the user. We analyse the 

performance of the tool on a synthetic case study, as well as for two historic inundation 

events of different magnitude, that occurred in Italy in 1951 and 2014. We then discus the 

potential of the new extension for the application across different scales and geographical 

regions.  
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Chapter 2. Comparing 2D 

capabilities of HEC-RAS and 

LISFLOOD-FP on complex 

topography 

2.1. Introduction  

Recent studies suggest using fully 2D models with high level of details in order to 

avoid uncertainties and limitations coming from the incorrect interpretation of flood 

dynamics and unrealistic reproductions of the terrain topography (Morsy et al. 2018). Some 

studies, point out that for the large-scale studies, coarser resolution (i.e. 50 m) is an 

optimum between the accuracy and computational expenses for 2D simulations (Savage et 

al. 2016). Using fully 2D codes can, however, be difficult, as most areas are not covered by 

the high-resolution terrain datasets (LiDAR surveys) that such modelling requires. In 

addition, another evident constraint of using fully 2D codes lies in their higher 

computational burden relative to simplified combined 1D/2D codes (Apel et al. 2009; Falter 

et al. 2013; Dimitriadis et al. 2016). Yet, the tendency to run high-resolution global and 

regional flood scenarios is increasing (Falter et al. 2013; Sampson et al. 2015; Savage et al. 

2016; Schumann et al. 2016, 2016). Furthermore, with increasing computational capacity, 

parallelization techniques and affordable access to cloud computing services, the utilisation 

of 2D codes in combination with high-resolution DEMs becomes more and more viable for 

hydraulic engineers and researchers (Morsy et al. 2018). Moreover, the 20x and 100x speed-

ups gained by executing codes on graphical processing units (GPU) hardware comparing 
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to central processing unit (CPU) clusters show the potential in applying high-resolution 

flood models over large areas  (Vacondio et al. 2014; Morsy et al. 2018). 

Building on the existing literature, our study aims at further deepening our 

knowledge and understanding of the potential and capabilities of different types of 2D 

inundation models in the context of flood hazard assessment and mapping. In particular, 

our study compares two models, the well-known  LISFLOOD-FP (Horritt and Bates 2002) 

and the recently launched 2D version (release 5.0.3) of Hydrologic Engineering Center-

River Analysis System (HEC-RAS) model. As mentioned above, LISFLOOD-FP is a  raster-

based 2D model based on inertial formulation of the shallow-water equations, while HEC-

RAS is a widespread modelling tool for hydraulic engineers that can be used for a large 

spectrum of applications and deploy different schematization complexities, and, in more 

recent releases, solves the full-momentum 2D equations.  

A previous study performed by Horritt and Bates (2002) looked into differences in 

terms of flood extent for a 2D diffusion-wave LISFLOOD-FP model, a 1D HEC-RAS model 

and a 2D finite-element TELEMAC 2D model. They identified that HEC-RAS and 

TELEMAC 2D are different from LISFLOOD-FP because of their different response to 

friction coefficients used in calibration (Horritt and Bates 2002). It is important to point out, 

that the study of (Horritt and Bates 2002) is based on the older version of the models. For 

instance, HEC-RAS has been improved and is now used not only for 1D but also for fully 

2D simulations with additional advantages of implying fully momentum shallow water 

equation on high resolution DEMs with unstructured grid. LISFLOOD-FP has also been 

updated from a diffusion wave to inertial formulation of the shallow water equation and 

now uses an adaptive time step, which ensures numerical stability of the code.  

 LISFLOOD-FP and HEC-RAS codes are governed not only by different schemes, 

but mesh representations, capabilities and input data requirements, and hence a thorough 

comparison is needed to better understand their advantages and limitations relative to 

topographical complexity, inundation dynamics and data availability of the codes updated 

versions. Regional and continental applications of LISFLOOD-FP are already a reality 

(Alfieri et al. 2014; Schumann et al. 2016; Sampson et al. 2015), while such applications can 

be envisaged in the near future for fully 2D HEC-RAS due to the rapid expansion of 

computational means and strategies cited above. For instance, a  recent study by Liu et al. 

(2019) compared the 1D and 2D modules of HEC-RAS and LISFLOOD-FP where the 

channel flow is linked to the floodplain by lateral structures using a uniform grid resolution 

of 30 m. They concluded that the 2D models showed slightly better results than 1D. It is 

crucial to remember, that small and big changes made to the codes together with emerging 

accuracy of LiDAR data may drastically affect models’ performance and results. Therefore, 

in this study we focus on the newest versions of the codes and investigate the advantages 

and disadvantages and their correlation with the DEM resolution for floodplain modelling. 
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This study aims at quantitatively highlighting differences and similarities in terms 

of accuracy of representation of inundation processes within heterogeneous floodplains 

and computational efficiency between the models with regard to different grid and terrain 

resolutions. We focused our study on such aspects as the capabilities and accuracy of 2D 

models of different complexity to capture flood extent and water depth in areas with 

complex topography. Additionally, we discuss model limitations in the context of future 

large-scale applications of detailed fully 2D models.  

2.2. Tools and study scope 

2.2.1. HEC-RAS (5.0.3) 

HEC-RAS (5.0.3) was developed to perform fully 2D computations, and solves both 

the 2D Saint Venant equations and the 2D Diffusion Wave equations through an implicit 

finite volume scheme. The selection of the equation depends on the study case (dam breach, 

wave propagation analysis, existence of multiple hydraulic structures within the area) 

(Brunner 2016). Previous studies done on benchmarking of the codes with different 

physical complexity showed that, in cases where subcritical flow is unlikely (gradually 

varied flow), simpler codes perform comparably well in terms of water depth and velocity 

(Neal et al. 2012b; Almeida and Bates 2013). In order to utilise more stable numerical 

solutions and reduce the computation time for the current case, we selected the 2D 

Diffusion Wave solver. It identifies the barotropic and bottom friction terms as prevailing.  

𝑛2|𝑉|𝑉

(𝑅(𝐻))
4

3⁄
  =  − ∇𝐻                                                      (6) 

The above equation can be further rearranged by dividing both sides by the square 

root of their norm,  

𝑉 =
−(𝑅(𝐻))

2
3⁄

𝑛
 

∇𝐻

|∇𝐻|
1

2⁄
                                                       (7) 

Where V is the velocity vector, R is the hydraulic radius and −∇H is the surface 

elevation gradient, n is Manning´s n. 

The differential form of the Diffusion Wave Approximation of the Shallow Water 

equation can be obtained by combining the diffusion wave equation in the mass 

conservation equation, 

𝜕𝐻

𝜕𝑡
− ∇ • 𝛽∇𝐻 + 𝑞 = 0                                                    (8) 
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Where,   

𝛽 =
(𝑅(𝐻))

5
3⁄

𝑛|∇𝐻|
1

2⁄
                                                                (9) 

(Brunner 2016). 

Mesh computation is done automatically within the 2D flow areas and meshes can 

be structured (i.e. regular connectivity) or unstructured (irregular connectivity). The 

selection of the grid type (structured/unstructured) depends on the terrain topography and 

data availability, enabling the user to adopt reduced mesh resolution in more homogenous 

areas and a highly detailed description along critical terrain features such as embankments 

or levees. Additionally, the model gives an opportunity to reduce the computation time by 

implementing a coarser grid on fine topographic details through a so-called subgrid 

bathymetry approach (Figure 9) (Brunner 2016). 

 

                                         

Figure 9. RasMapper representation of 2 m subgrid DEM and 25 m mesh cell size of HEC-RAS 2D 

(adapted from Brunner (2016)). 

For instance, the DEM resolution might be 2 meters, while the mesh cell size is 25 m 

(see Figure 9).  During a pre-processing step, hydraulic radius, volume and cross-sectional 

data are collected for each mesh cell using the finer resolution data and stored in property 

tables (a function for cell face area (A) and water surface elevation (H); see Figure 10). The 

subgrid approach allows the computation of more detailed property tables for larger mesh 

cell sizes.  

 

Figure 10. Cell face terrain data (left) and schematic representation of A (area) – H (elevation) 

relationship reproduced with the Property Table (right) (adapted from Brunner (2016)). 
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2.2.2. LISFLOOD-FP 

The raster-based LISFLOOD-FP model used here is employed in  2D mode and 

solves an inertial formulation of the shallow-water equations in explicit form through a 

finite difference scheme (Bates et al. 2010; Savage et al. 2016).  The model further simplifies 

the computation by decoupling flows in the x and y directions and treating the 2D problem 

as a series of 1D calculations through the cell face boundaries. Therefore, the water flow 

through each cell face is calculated as: 

𝑞𝑡+∆𝑡 =
𝑞𝑡−𝑔ℎ𝑡∆𝑡

𝛥(ℎ𝑡+𝑧)

𝛥𝑥

(1+𝑔ℎ𝑡∆𝑡𝑛2 𝑞𝑡/ℎ𝑡

10
3⁄

)
                                                  (10) 

Where, 𝑞𝑡+∆𝑡 is a unit flow at the next time step t, g is gravitational acceleration, h is 

depth, n is a Manning’s roughness coefficient, Δ is the cell resolution, z is cell elevation, ℎ𝑡 

is the difference between highest bed elevation and highest water surface elevation between 

two cells  (Savage et al. 2016; Bates et al. 2010).  

The discharge through the four faces of each cell is then used to update the water 

depth in each cell at each time step: 

∆ℎ𝑖,𝑗

∆𝑡
=

𝑄𝑥
𝑖−1,𝑗

−𝑄𝑥
𝑖,𝑗

+ 𝑄𝑦
𝑖,𝑗−1

− 𝑄𝑦
𝑖,𝑗

∆𝑥²
                                                (11) 

Where, i and j are the coordinates of a cell (Coulthard et al. 2013). 

In order to secure the model stability we used an adaptive time step  based on the 

Courant-Friedrichs-Lewy (CFL) condition which is estimated as (Bates et al. 2010): 

∆𝑡𝑚𝑎𝑥 = α
∆𝑥

√𝑔ℎ𝑡
                                                       (12) 

Where  α is a coefficient ranging from 0.3 to 0.7, which ensures the numerical 

stability (Coulthard et al. 2013). 

Despite the governing equations used to compute the flow between cells, another 

important distinction between the two models is the way in which the codes treat 

topographic data. Differently from HEC-RAS, mesh size in LISFLOOD-FP is forced by the 

resolution of the input DEM data and cannot be further manipulated.  There is not an option 

to include subgrid (see details above) terrain in the 2D computations with larger mesh sizes, 

meaning the mesh face cross-section profile has a rectangular shape. 

2.2.3.  Objective of the study 

This study tests and compares the models on an inundation event that occurred on 

the 19th January, 2014 in the dike-protected floodplain of the Secchia River (a right bank 

tributary of the Po River), Northern Italy. We compare HEC-RAS with LISFLOOD-FP using 
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various grid sizes 25, 50 and 100 m generated from a LiDAR DEM of 1 m resolution. 

Moreover, along with the resampled DEMs we use the subgrid capabilities of HEC-RAS by 

applying subgrid terrain of 1 m resolution within the 25, 50 and 100 m sized meshes. 

We explicitly focus on the fully 2D formulations for both models addressing the 

representation of the floodplain wave dynamics, i.e. no 1D component is included in the 

simulations (no channel flow simulated). This is done in order to see the difference in the 

codes’ ability to simulate inundation propagating over complex topography and an initially 

dry floodplain. 

2.3. Study event and data used, models setup and 

calibration  

2.3.1. Study event and data 

The event was characterized by a levee breach and consequent flooding of over         

50 km² of the plain behind the dike within 48 hours causing significant population 

displacement, one death and economic losses in excess of 400 million Euro (D’Alpaos et al. 

2014; Carisi et al. 2018). It occurred around 6:00 am on January 19 when a part of the levee 

in the right bank of Secchia River collapsed (see Figure 11). Although the water levels in the 

river did not exceed the designed embankment crest height, right after the breach the crest 

lowered by about 1 m compared to the water elevation in the Secchia River. The conclusion 

driven from the post-event analysis is that the reason for the levee collapse was the activity 

of burrowing animals in the area (Vacondio et al. 2016; Orlandini et al. 2015).  

Over the event the breach width reached nearly 80 m (Figure 12) and the inflow 

water volume that penetrated the floodplain reaching the municipalities of Modena, 

Bastiglia and Bomporto was estimated in 38.7·10x6 m³ (Figure 13). Previous studies showed 

that linear terrain irregularities strongly affected the flooding dynamics (Castellarin et al. 

2014; Hailemariam et al. 2014; Carisi et al. 2018; Domeneghetti et al. 2015; Domeneghetti 

2014). The water flowed northward for nearly 16 km, where it started accumulating due to 

the presence of an embankment (see Strada di Cavezzo in Figure 11). 

Figure 11 illustrates the study area outline, which is identified by the embankments 

from east and west and the roads and Strada di Cavezzo from the north. As can be seen 

from the figure, once the inundation reached Bastiglia, it turned in a south-westerly 

direction and further reached the municipality of Bomporto from the south-west; Bomporto 

was completely flooded at about 11:00 AM on January 20th. Figure 12  shows the place of 

the breach and inundated areas in Bomporto and Bastiglia. 
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Figure 11. Breach location and flow direction during the event. 

 

Figure 12. Images of the January 2014 Secchia River flooding event. Upper left corner is the breach 

location.  Upper right shows the inundated houses and fields in the affected area. Two lower 

images show the inundation in Bomporto. Taken from (Raggini 2016). 
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Due to the system of linear terrain features such as embankments and channels (see 

Figure 11), the inundation dynamics followed depressions in the relief. After overtopping 

the embankment near Villavara eastwards, the water moved to the north, direction 

Bomporto. At the same time, a channel, which divides the study area in half (the line 

following from Bastiglia southern direction to Modena), filled up with water and 

contributed to the inundation of Bomporto from the west (see Figure 11). Post event field 

surveys made by the local authorities together with other publicly available data 

(photographs, videos and Google Earth images) provided us with the water marks 

(maximum water depths) at certain points. The study of Horritt et al. (2010a) shows that 

the post-event collection and evaluation of the water marks and wreck marks is not always 

matches the actual maximum values. Field measurement methods and their interpretation 

done by surveying groups, approximations of the elevation of water marks acquired from 

images may produce uncertainties. Horritt et al. (2010a) reports that accuracy range in such 

estimations is likely to be up to 0.5 m, which could be a potential source of errors. In order 

to check the liability of the observed water marks, we plotted them in relation to the 1 m 

LiDAR DEM in order to see if there are water surface elevation outliers (points in closer 

vicinity with the large difference in depth). We looked at their weighted average and 

observations difference and removed the outliers (>0.5 m). As the result we further used 46 

water mark points to validate the maximum simulated water depth.  We, however, left the 

points in very close distance from each other (<50 m) in order to look at the models’ 

performance with different subgrid configurations.   

 

       

Figure 13. Outflowing discharge at the levee breach point over time (adopted from D’Alpaos et al. 

2014). 

Official reports recorded vast damage in the small town of Bomporto (Carisi et al. 

2018). During the event the area within the embankment was completely flooded (Figure 

14). We selected the area surrounding this particular town due to its complex and highly 

anthropogenically altered terrain (e.g. minor levees, embankments, irrigation and drainage 

channel networks, etc.) to test how the models were able to reproduce the propagation of 

inundated extent in such topography. The water marks are located within the populated 
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areas; therefore they are concentrated within the affected settlements of Bastiglia and 

Bomporto and the close vicinity around them. Fewtrell et al. (2008) in their study explicitly 

showed that the 2D models behaviour is strongly affected by the heterogeneity of the urban 

fabric and requires a very fine mesh to represent the building dimensions. Thus, we are 

particularly interested how the selected models will perform in built-up zones. We used 

these data to validate the models by comparing them to maximum water depths observed 

during the event (Carisi et al. 2018). The study by Carisi et al. (2018) reproduced the Secchia 

event simulating the  inundation dynamic. 

The simulations of Carisi et al. (2018) were based on the higher resolution 1 m 

LiDAR DEM with unstructured mesh, whose faces ranged in size from 1 to 200 m  in more 

homogenous zones. The linear terrain irregularities were explicitly represented. The official 

reports done on the post-event field data collection and simulations made possible to 

reconstruct the flood extent as detailed as possible (D’Alpaos et al. 2014). The simulations 

showed a high correspondence with the maximum flood extent records (up to 0.9 in terms 

of CSI, Eq.13) (Carisi et al. 2018).   

 

        

Figure 14. Observed flood extent, hotspot focus areas (red boxes) and water marks (control points). 

Left red box captures the inundation in Bastiglia; right red box shows the inundation extent in 

Bomporto. 
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2.3.2.  Models configuration and setup 

Previous modelling studies of the January 2014 inundation event showed that the 

topography of the area strongly controls the model performance (Vacondio et al. 2016; 

Carisi et al. 2018).  

As our interest is to show how the models behave on large scales, we considered 

downscaling the 1 m LIDAR DEM to 25, 50 and 100 meters by taking the mean of the pixels’ 

value. The vertical accuracy of the bare earth DEM is ± 0.15 m (Geoportale Nazionale 2017). 

The study of Savage et al. (2016) on regional flood modelling showed that resolution coarser 

than 100 m decreases the reliability of the model’s outcomes, therefore, we avoided using 

lower resolutions. The same study showed that probabilistic flood mapping does not 

benefit much from resolution higher than 50 m. Nevertheless, as our study is specifically 

focused on heterogeneous topography, we intentionally included a 25 m DEM in order to 

have a more profound comparison of the two different models. 

The flow leaving the breach was estimated based on the difference between 

observed discharge hydrographs 200 m upstream and 200 m downstream along the reach 

(see Figure 13) (Vacondio et al. 2016). 

Both models were constructed adopting the same hydraulic loads.  The upstream 

boundary condition was represented by the discharge flowing through the levee breach 

and it was fixed in each simulation as a point (a pixel) located at the failure location. The 

breach width was set in all simulations equal to 100 m, simultaneously involving 1, 2 and 4 

pixels in the simulations using 100 m, 50 m and 25 m resolutions, in this order. The inflow 

hydrograph was represented by the values retrieved from the studies of Carisi et al. (2018), 

Vacondio et al. (2016) and Orlandini et al. (2015). In order to avoid possible errors coming 

from different widths of the upstream boundary (levee breach breadth), we insured that 

the water marks are located further downstream from the inflow location.   

We referred to the CORINE Land Cover (European Environment Agency 2007) and 

OpenStreetMap (Contributors OSM 2012) data sets for classifying land use in the study 

area, which we represented in the models using spatially varying roughness coefficients. In 

particular, we adopted a subdivision of the study area into 2 main classes: built up (i.e. 

urban and industrial zones) and rural (i.e. all other land-use types mostly represented as 

agricultural fields) areas. 

Fully 2D HEC-RAS was used and tested with and without its subgrid function 

capability with structured mesh cell sizes of 25x25, 50x50 and 100x100 m based on the 1 m 

LiDAR DEM. Structured mesh selection significantly decreases the model setup time and 

does not require additional data (i.e. linear infrastructure outlines) as is the case for 

configuration of an unstructured mesh. This is of a high importance for large-scale 

simulations, where such details might be unavailable or their implementation would 

require significant effort. 
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Table 2. Simulation configurations 

Mesh 

Resolution LISFLOOD 

HEC RAS 1 m subgrid 

terrain resolution 

HEC RAS 25/50/100 m 

subgrid terrain 

resolution 

25 L25 HR25_1 HR25_25 

50 L50 HR50_1 HR50_50 

100 L100 HR100_1 HR100_100 

 

The meshes were also used with the corresponding aggregated DEM (25x25 mesh 

with 25 m DEM resolution, 50x50 mesh with 50 m DEM resolution, 100x100 mesh with 100 

m DEM resolution). Overall, we apply 9 mesh/terrain configurations as indicated in Table 

2. 

2.3.3.  Models calibration 

The models were calibrated using roughness coefficients for HEC-RAS and 

LISFLOOD-FP at 25 m resolution. We looked into previous research and post-event surveys 

done to describe and analyse this event. In particular, we considered the publication of 

Carisi et al. (2018) and the accurate reconstruction of the flood extent reported therein. We 

compared the maximum flood extent resulting from the models with the reference flood 

extent from Carisi et al. (2018) by means of a well-known Critical Success Index (CSI) 

method to compare binary maps (wet and dry areas) of the simulated and observed extents 

using a performance measure (Schumann et al. 2009):  

CSI =
A

A+B+C
∗ 100                                                       (13) 

Where A is the area correctly predicted as flooded (wet in both observed and 

simulated), B is the area overpredicting the extent (dry in observed but wet in simulated) 

and C is the underpredicted flood area (wet in observed but dry in simulated). CSI defined 

in (Eq. 13) varies between 0 and 100%, where 100% corresponds to a perfect match between 

the modelled extent and the reference inundation map  (Horritt and Bates 2002).  

Calibration consisted of varying the Manning’s roughness coefficient, n, of rural 

areas from 0.03 to 0.2 𝑚−1/3s, by 0.005 𝑚−1/3s increments, while keeping n of urbanised 

zones constant (0.3 𝑚−1/3s, (Syme 2008)) and referring to the land-use description resulting 

from CORINE Land Cover data (European Environment Agency 2007) and OpenStreetMap 

(2012). So, for each simulation we would use one roughness coefficient for rural and one 

for urban areas. LISFLOOD-FP resulted in the highest CSI value (81%) for a floodplain 

roughness coefficient n = 0.155 𝑚−1/3𝑠; with CSI varying between 73% for n = 0.030 𝑚−1/3𝑠 

and 77% for n = 0.200 𝑚−1/3𝑠. HEC-RAS showed similar performance, maximum value is 

equal to 78% at n = 0.195 𝑚−1/3𝑠, however CSI values plateau at 78% for n values larger than 
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0.185 𝑚−1/3𝑠. For the further analysis we selected the value of 0.195 𝑚−1/3. These values 

(0.195 𝑚−1/3 for rural and 0.3 𝑚−1/3 for urban areas) do not reflect the actual vegetation/soil 

cover in the area, they are aimed at compensating for the possible errors coming from the 

overall flooding extent used to calibrate the model and possible limitations related to the 

inability of the terrain to capture the linear features, which played a crucial role in routing 

the flow. Also, we calibrated both models at 50 m and 100 m resolution, obtaining optimal 

values of the calibration parameters that differed from the optimal values at 25 m resolution 

by less than 1%. Therefore, we decided to use uniform optimal values for all resolutions.    

Both models were validated against 46 water marks (see e.g. Figure 14) for which 

the maximum water depth (m) was surveyed in the event aftermath (water marks, post-

event surveys, interviews and geolocating the marks using aerial and ground 

photographs). Dry simulated points were given zero value. Comparison was performed by 

means of Root Mean Square Error (RMSE). All simulations were performed on the 4 cores 

with the Intel Core i7 3.60 GHz CPU, 64 GB RAM.  

2.4. Results 

From Figure 15 we can see that the overall performance in terms of inundation 

extent (i.e. CSI values defined as in (13)) of LISFLOOD-FP is slightly better than HEC-RAS. 

The 25 m LISFLOOD-FP simulation (L25) was able to correctly simulate 81% of the flooding 

extent, while the 50 m LISFLOOD-FP simulation (L50) was as good as the HEC-RAS 

simulation with 1 m subgrid terrain (78%) (Table 3). All other configurations produced 

almost identical results, with a CSI value of ~77%.  However, the spatial pattern of the 

flooded areas differs for all configurations (Figure 15).  

Together with the analysis of the overall inundation extent, the performance of each 

model was scrupulously assessed relative to specific areas in the towns of Bomporto and 

Bastiglia. Figure 14 illustrates the observed extent and the location of focus areas (red 

squares). From Figure 16 we can see that the LISFLOOD-FP model was able to correctly 

simulate the maximum flood extent in Bomporto for the fine resolution of 25 m, while with 

other LISFLOOD-FP resolutions the same results were not achieved. The red line in these 

maps demarcates the observed inundation extent, so we can see that the L25 configuration 

output is in good agreement with the observations (the flood propagated to the observed 

inundation boundary and covered all water marks).   

The LISFLOOD-FP 50 m and 100 m simulations (L50 and L100) did not properly 

simulate the flood propagation in this area. The water marks display the accuracy of 

predicted water levels in relation to the observations. Figure 16 shows that the flood extent 

simulated by HEC-RAS for 25, 50 and 100 m mesh sizes with 1 m subgrid terrain was 

consistent with the observations, especially the larger meshes of 50 and 100 m. 
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Table 3. Critical Success Index (in %), inundation extent accuracy. 

Mesh size[m] LISFLOOD-FP 

HEC-RAS 1 m 

subgrid 

HEC-RAS 25/50/100 m 

subgrid 

25 81 78 78 

50 78 78 77 

100 77 78 77 

 

 

Figure 15. Overall simulated extent for all configurations (blue), compared to the observed extent 

(red outline) 
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The HEC-RAS models without subgrid terrain (HR25_25, HR50_50 and HR100_100) 

were unable to simulate the flood wave propagation in the Bomporto focus area. 

 

Figure 16. LISFLOOD-FP and HEC-RAS flood extent for different configurations at Bomporto 

(right red box in Figure 14). Water depth difference (m) between predicted and observed at water 

mark points. 

As for the other focus area, from Figure 17  we can see that the flood extent in 

Bastiglia produced by all LISFLOOD-FP resolutions is in-line with the observed flood 

extent. The L25 configuration was more successful in reproducing the flood extent over the 

control areas, while the L50 and L100 models just slightly underestimate the flood 
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boundaries (see Figure 16 and Figure 17 ). HEC-RAS coarser grid simulations (25, 50 and 

100 m subgrid), similar to LISFLOOD-FP (50 and 100 m), produce plausible results in terms 

of the inundation extent. The accuracy decreases with increasing mesh size. The HEC-RAS 

configurations using subgrid terrain of 1 m resolution struggle to produce a continuous 

inundation pattern, resulting in numerous dry islands.  

            

Figure 17. LISFLOOD-FP and HEC-RAS flood extent for different configurations at Bastiglia (left 

red box in Figure 14). Water depth difference (m) between predicted and observed at water marks. 

Figures 16 and 17 display the water marks and the colour indicates on the level of 

absolute difference between simulated and surveyed maximum water levels through a red 

(underestimation) to dark green (overestimation) colour scale. The largest difference is 



Chapter 2. Comparing 2D capabilities of HEC-RAS and LISFLOOD-FP on complex 

topography 

42 

 

especially visible in Bomporto focus area (up to 1.8 meters), as most of the simulations did 

not succeed in inundating the town. While in Bastiglia such difference is less pronounced. 

There, the values vary between 0.1 m and 1.2 m. General tendency for all simulations is 

underestimation of the water depth values at water marks. 

In addition, we compared observed and simulated maximum water levels using 

RMSE. Overall, the best results (see Table 4) are of L25 configuration (0.61m).  Same 

performance was obtained from HEC50_1 (0.62m). The results from L50 and L100 are 

similar to those gotten from HR25_25, HR50_50 and HR100_100 (0.79-0.84m), while the 

other high-resolution subgrid terrain of HEC-RAS produced somewhat better outcomes 

0.71m.   

Table 4. RMSE [m] of the water depth at water marks 

Mesh size [m] 

LISFLOOD-

FP 

HEC-RAS 

1 m subgrid 

HEC-RAS 25/50/100 m 

subgrid 

25 0.61 0.69 0.79 

50 0.80 0.62 0.80 

100 0.82 0.71 0.84 

 

Another important factor to be considered in the mesh size and DEM resolution 

evaluation is the computation time. From Figure 18 we can see that in all simulations 

LISFLOOD-FP was significantly faster than HEC-RAS, no numerical instabilities reported. 

For instance, the 100 m resolution HEC-RAS simulation lasted about a minute, while the    

25 m mesh size simulation with this model would take about 45 minutes (Figure 18).  

LISFLOOD-FP was about 20 times faster than HEC-RAS for the same grids and time 

step (L50 was 1 min 20 sec computation time, HR50_1 was 25 min computation time). HEC-

RAS of 25 m resolution and 25 m subgrid terrain is faster than the same resolution with      

25 m terrain, but this difference become less evident for large mesh. HEC-RAS of 100 m 

large mesh and 1 m subgrid resolution is 4 times slower than HR100_100, it means that 

considering high performance (overall extent 78% accuracy and 0.71 m RMSE at water 

marks) HR100_1 is the best choice in HEC-RAS simulations. When 1 m subgrid is 

implemented in HEC-RAS simulations, the model performs similarly in terms of flood 

extent (See Table 4), however the computation time can be drastically decreased by using 

large mesh (HR100_1).  L25 has shown best performance in terms of flood extent and water 

depth at selected control points, however it is 2 times slower than HR100_1.  
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Figure 18. Approximate computation time of HEC-RAS and LISFLOOD-FP configurations. 

2.5. Discussion 

The two codes of different complexity and terrain resolution, used in this study, 

strongly affect the quality of the outputs. Diffusion wave model (HEC-RAS) and inertial 

formulation of the shallow water equation (LISFLOOD-FP) are distinct in different ways. 

The ability of HEC-RAS to include the subgrid bathymetry component makes it effective in 

terms of representation of topographic details by computing more informative property 

tables for each cell face. LISFLOOD in turn, operates with the rectangular mesh of the same 

resolution as the input terrain raster.  

2.5.1.  Performance comparison  

As it was outlined in the Results section, the structured regular mesh of both models 

is able to reproduce the flooding event with sufficient correspondence with observations 

and capture the overall inundation extent and water depth marks at selected control points. 

The mesh size played a great role in the accuracy of the outputs of LISFLOOD-FP; the 25 m 

grid model performed somewhat better than coarser girds considering the inundation 

boundary. One of the main reasons for such performance is the ability of the finer resolution 

models to capture more terrain details and route the flow into the right direction 

considering depressions and the elevations of the relief. The flood extent of the 50 and         

100 m models (L50 and L100, respectively) were virtually similar, differing by only 1% from 

each other in terms of the CSI. HEC-RAS, in turn had comparable results across the 

resolutions and subgrid terrain configurations considering flood extent in the whole study 
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area; nevertheless, compared to LISFLOOD-FP (L25), the CSI value is slightly less accurate. 

This is of specific importance for areas with complex topography. Overall extent differences 

between best performing L25 and the rest of configurations, however, are minimal.  This 

can be explained by rather confined area, which is shaped by the embankments of the 

Secchia River from the west and another river from the east, moreover the northern 

boundary is also well-pronounced and acts as a barrier to the flood water preventing it 

propagating further north. Therefore, we suggest that the terrain configuration explains the 

similar performance of the models (77-78% accuracy, apart from L25 with 81% accuracy). 

This also  confirms the previous findings that inundation extent over larger areas can be 

properly identified with the low-resolution datasets (in our case 50 or 100 m), with 

additional benefit of lower computational costs (Savage et al. 2016). Such findings can be 

relevant for areas with similar terrain configurations regardless geographical location. It is 

important to point out that CSI (spatially averaged performance measure) is not sensitive 

enough to inform about the resolution and local flow parameters, therefore it was necessary 

to additionally analyse the models’ performance in selected spots in more details. 

However, as predicted the behaviour of the models in the focus areas had diverse 

patterns. For instance, HR50_1 and HR100_1 were able to represent the inundation 

boundaries in Bomporto fairly well, unlike in Bastiglia (see Figure 16 and Figure 17). While 

LISFLOOD-FP was more accurate at high resolution of 25 m compared to 50 and 100 m. L25 

performed strikingly better than HR25_25 both overall and in the two focus areas (i.e. 

Bomporto and Bastiglia). We explicitly highlight such results, as L25 provided best 

outcomes in terms flood extent and water depth across all selected configurations (see Table 

3 and Table 4). We suggest that this outcome of both models is strongly related to their 

ability to simulate floods in built-up areas with given resolution. It is known that the towns 

of Bomporto and Bastiglia are not only represented by urban fabric but also surrounded by 

a network of smaller channels and embankments, which in case of 2014 flood event played 

a crucial role in the inundation dynamics.  

One of the similarities between both models is the performance of the 50 m and      

100 m LISFLOOD-FP and HEC-RAS models when subgrid terrain resolutions are not 

considered for the latter code. For instance, by applying configurations L50 and HR50_50 

we attained rather comparable inundation patterns in Bastiglia (see Figure 17) and almost 

identical in Bomporto (see Figure 16). 

The water mark errors evaluated in the current study show how models represented 

water depth spatially. A point that deserves attention is the vertical accuracy of the input 

and calibration data. As was discussed earlier, the vertical accuracy of the used LiDAR 

dataset (±0.15 m) and the observed data (±0.5 m), is a subject of uncertainties. Looking at 

the differences between observed and simulated water mark values, we may suggest that 

the RMSEs are within the input data error range. Despite eliminating the outliers, we cannot 

be 100% confident that the values perfectly match the reality. Therefore, here we treat the 
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results as a relative comparison between the two models rather than compare absolute 

observed and simulated values. In addition, the points also serve as an indicator to evaluate 

the simulations, where the water marks did not get inundated. Overall, in terms of RMSE 

HEC-RAS with 1 m subgrid terrain for all resolutions was better compared to coarser 

terrains (approx. 0.13 m difference in terms of RMSE between HEC-RAS 1 m subgrid and 

coarse subgrids, including LISFLOOD-FP simulations). The only exception is LISFLOOD-

FP of 25 m resolution, which was comparable to high-detailed subgrid of HEC-RAS (RMSE 

error equal to 0.61 and 0.62 m correspondingly).  We suggest that such performance can be 

reasoned by the fact that most of the points are located within rather short distance (up to 

200 m) on heterogeneous terrain, meaning the water depth points varied by over   1 m. At 

Bomporto and Bastiglia focus areas, some points were located within short distance of 30-

40 m, which was far denser than the resolution of the underlying terrains (50-100 m). 

Therefore, HEC-RAS on 1 m subgrid performed the best due to its ability to operate with 

highly-detailed terrain compared to other configurations with coarse subgrids (both, 

LISFLOOD-FP and HEC-RAS).  

The differences in terms of computation time outlined in the Results section are 

crucial for instance for calibration and running Monte Carlo simulation scenarios, 

especially, if we intend to extrapolate this performance parameter to the larger-scale 

studies. Therefore, we may draw a suggestion, that flood mapping for geographically large 

areas can still be performed with the coarser grids (50 or 100 m) and produce reasonable 

results to identify the flood risk hotspots (areas with an increased flood risk compared to 

other areas in the region). Such hotspots can be then analysed using high-resolution 

datasets. In HEC-RAS configurations the use of high-resolution (1 m) subgrid outperforms 

those of the same resolution as size of the mesh (25, 50, 100 m). However, the computational 

costs for 1 m subgrid increases. The modeller should select among the two options in 

relation to the mesh size, when the mesh size is small (25 m) the difference in computation 

time is significant. On the other hand, when the mesh size is larger, the difference in terms 

of computation time among two becomes smaller. 1 m subgrid becomes more beneficial to 

be used in terms of computation time, as it additionally shows high performance.   

Nevertheless, speaking of large-scale simulations, we expect that smaller areas 

complicated by highly heterogeneous terrain but with the potential for large socio-

economic impacts (as it is in Bomporto) will still be misrepresented and wrongly estimated. 

As shown in the example of this study, the resolution of the topographic description is not 

the only key factor; another element of paramount importance is the ability of the model 

mesh/grid to correctly capture critical terrain features which determine the flood wave 

propagation. This aspect becomes particularly crucial when simulating floods over heavily 

anthropogenically altered floodplains, as it was the case in our study.  

The solution of the problem can be assisted by performing a bottom up assessment, 

where the most vulnerable and susceptible areas are initially considered in hazard 
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modelling, such as was done in the current study. As it was known which areas were 

impacted the most, we particularly focused on the model behaviour in these regions. It 

helped us to attain better performance based on the study of Carisi et al. (2018) for the 

January 2014 event. In probabilistic assessment, these areas can be particularly outlined by 

intentionally focusing on the locations with high concentration of population/assets, 

meaning, more attention should be given to analyse flood characteristics in the calibration 

stage. By doing this, we may reduce uncertainties related to the identification of hotspots. 

2.5.2.  Limitations  

One of the main issues for the HEC-RAS applications is the way in which the model 

distributes the water within a mesh cell. The volume-elevation curve drawn for each cell-

face while pre-processing does not recognise the exact location of the higher/lower ground 

of the subgrid terrain.  In case of rectangular mesh, when the cell faces are not aligned with 

the elevated linear features, they are not captured into the property tables. We may 

therefore observe a leaking effect (see Figure 19), or the opposite way when the model 

would not recognise the obstacles for the flow and route it further onto a neighbouring cell. 

This is a known limitation, previously observed in the used version of HEC-RAS 5.0 

(Goodell 2015). In our case, we noticed that there is a certain amount of hydraulically 

disconnected flooded areas. Moreover, this effect is particularly obvious in the simulations 

with coarser subgrid terrains. Some areas (see Figure 19) simulated as flooded are, however 

disconnected from the main inundated area. This might be a limitation in the calculations 

of the flood extent and, in some cases, the distribution of local water depth values. This 

problem is normally solved by refining the mesh with the breaklines, reducing the mesh 

sizes along such linear irregularities, however, as explained above, the current study did 

not look into such property.  

 

Figure 19. Leakage effect of HEC-RAS subgrid mesh examples of HR100_100 (left), HR25_1 (right). 

Larger ponds of water in both images are disconnected from the inundation extent. 
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Inundation boundaries produced by LISFLOOD-FP should be also taken with great 

care, as the model operates with a raster grid, and the water is distributed equally across 

the whole cell.  For coarse grid resolutions (i.e. pixel size equal or larger than 100 m) it might 

thus misestimate the flood extent. In areas with complex topography, it is necessary to 

include important terrain features into the model. Due to the fact that LISFLOOD-FP 

simulates 4 directional water propagation at each cell face (i.e., D4 routing), the linear 

irregularities captured by L25 configuration (see Figure 20) would actually be sufficient to 

limit the flood propagation over such an elevation distribution. We suggest that this 

simplification of LISFLOOD-FP in case of high-elevation fine linear terrain features (i.e. 

levees, embankments, see Figure 20 light green cells) could help to route the water in the 

right direction and not to “leak” through the embankments. Nevertheless, the same 

peculiarity would restrain the water propagation in lower-elevation fine linear terrain 

features (i.e. rivers, canals, drainage networks) (blue cells in Figure 20, area near Bomporto). 

The same point applies to structured grid of HEC-RAS.  

 

                                                    

Figure 20. 25 m resolution DEM. Dark blue - canal, light green – levee. 

By having 25 m mesh cell size (smallest in this case) it is not always possible to 

capture important local topographical features, such as embankments, small channels, etc., 

especially, when the linear features are significantly narrower than the model resolution. 

The known and widely used practice to include the actual terrain heights (levees, 

embankments, etc.) by “burning” them into the coarser terrain enables capturing such 

features, even when their width is smaller than the terrain resolution and mesh size. We 

intentionally avoided such option to see how the models would respond to the simplified 

approach of terrain pre-processing. Supposedly, on the geographically larger scale such 

manipulation when the complex and dense network of narrow levees in a specific area are 

‘burnt’ into the terrain, may not be always feasible and/or effective. Especially, in cases 

when such modifications would greatly affect the storage volume of floodplains (i.e. when 

100x100 m raster cell is given the height of the much narrower feature of 10 m breadth). 
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Moreover, this is certainly a challenging task for the areas, which are not covered with 

LiDAR data acquisition and areas with poor data availability and quality in general.  

2.6. Conclusions  

Due to the specific nature of the event described in this study and the growing use 

of fully 2D codes for flood modelling, we evaluated and compared the performance of the 

well-known HEC-RAS and LISLOOD-FP models for a floodplain with a complex and 

highly anthropogenically altered topography. The aim of the study was to see how the 

models of different complexity with given terrain resolution reproduce the flooding event 

and how accurate the results are. The resolutions were rather coarse for the given study 

area as our main goal was to identify the potential of the codes and mesh dimensions to 

simulate events over large regions.  

One of the conclusions from the study is that 50 m resolution for describing terrain 

with complex linear features is a reasonable compromise between output accuracy and 

computation time for LISFLOOD-FP model, while HEC-RAS optimum solution would be 

the configuration of 1 m subgrid terrain and 100 m mesh size. This experience may 

contribute to simulations performed at catchment scales designed to capture large-scale 

system behaviour. Specific floodplain morphology may serve as water storage areas during 

flooding events and hence, lower the risks in the downstream part of the catchment.  

Another point is the complexity of the modelling schemes. Raster-based 

LISFLOOD-FP was more efficient at representing overall flood extent and water depth at 

water marks, while HEC-RAS performed better at representing spatial distribution details 

(i.e. inundation boundary) considering given terrain (due to its high-resolution subgrid 

feature). Therefore, a selection of the modelling scheme and resolution should be carefully 

considered depending on the purpose of each given case study.  

Finally, a topical issue in 2D code usage for large-scale simulations using high-

resolution datasets is computational cost. As mentioned above, this can be significantly 

advanced by using GPU version of the codes. In this study we highlight the computational 

advantage of the inertial formulation of the shallow water LISFLOOD-FP model compared 

to diffusion wave HEC-RAS. This study shows that codes with simplified physics are a 

necessary tool for probabilistic/preliminary flood risk assessment. Moreover, by including 

high-resolution subgrid (HEC-RAS with 1 m terrain) we obtain more detailed hazard maps 

even for large meshes (i.e. 25, 50, 100), however, sacrificing the computational time. When 

comparing the overall performance of L25 and HR100_1, the latter one is two times faster, 

however L25 showed somewhat better results in flood extent and water depth 

representation.  

Nevertheless, we suggest that more complex tools (i.e. full momentum shallow 

water codes) have their place in local-scale studies to provide hyper-detailed 
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hydrodynamic modelling. Moreover, future work should consider the cases when the 

channel flow simulation is included in the model. Such advances will shed more light on 

the application of 2D models of different complexity.
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Chapter 3. Large-scale high-

resolution simulations using 2D 

raster-based model. The Po River 

case study 

3.1. Introduction 

There has been a limited amount of studies done on highly-detailed large-scale 

flood modelling using fully 2D codes. The limiting factor here is the common unavailability 

of LiDAR datasets for geographically large areas and insufficient computational power. 

Nevertheless, it is being changing nowadays, as there is trend in increasing of the 

computation capacity and wider access to high-resolution terrain data. As has been shown 

above, the application of 2D models gives an additional and valuable insight on the spatial 

distribution of the flooding extent, water depth and flow velocities. In order to meet the 

modern tendencies and look up into the upcoming years we evaluate the efficiency and 

accuracy of 2D large-scale simulations based on high-resolution LiDAR terrain data. 

Moreover, it is known that simulating a flood event based on a shorter river reach may 

bring an array of limitations, as certain hydrodynamic processes can be caught only 

considering upstream and downstream conditions on the whole catchment area (i.e. river 

system behaviour) (Vorogushyn et al. 2018). This issue becomes especially burning when it 

comes to the river basins with an intensive human interaction. Complex embankment 

networks  greatly impact the hydrodynamics (Afshari et al. 2018; Shustikova et al. 2019). 

Particularly, we focus on the mid-lower portion of the Po River, which is described in the 
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subsequent paragraphs in detail. The main objective of this Chapter is to analyse the 

potential of a raster-based 2D model (i.e. LISFLOOD-FP) to simulate inundations across 

geographically large areas characterized by heavily anthropogenically modified terrain and 

discuss the impact of the data resolutions and pre-processing on results’ accuracy.  First we 

outline the study area with its characteristics and peculiarities. Then, we present most 

relevant modelling studies done on the investigation area, their limitations and gaps. And 

finally we present an advancement of our research by describing methods and discussing 

its results.  

3.1.1. Study area 

Po River is longest river in Italy (about 650 km) and located in the northern part of 

the country, 5% of the river basin in the upstream parts are shared between Switzerland 

and France (Figure 21). It flows from west to east and discharges into the Adriatic Sea, 

forming Po delta. From north and south, the river basin is surrounded by the Alps and 

Apennine mountains, respectively. The Po river flows across alluvial floodplain (Po valley), 

which is also known as Pianura Padana. The river slopes eastwards to the river mouth, 

where the source is at 2100 m a.s.l. (Cottian Alps) and downstream parts (Po Delta and 

Polesine regions) are up to 4 m below the sea level. The riverbed slopes gradually, from 

0.35% in the upstream parts to 0.14% in the downstream. Due to orogenic formations, the 

valley slopes from northern and from southern mountain chains (Marchetti 2002). The 

overall area of the river basin is about 74000 km2, from which about 29000 km² are plain 

(Raggi et al. 2007). 

There are 141 tributaries that contribute into the river flow, some of the largest are: 

Maira, Tanaro, Ticino, Lambro, Trebbia, Adda, Taro, Parma, Enza, Oglio, Secchia, Panaro 

(Montanari 2012).  The area contains about 450 lakes, from which only several are large. 

Apart from tributaries, the flow input comes from numerous artificial irrigation and 

reclamation channels. The basin is split into 28 principal sub-basins, where each of them 

has different discharge characteristics. 

The climate of the area varies from mountains (alpine) to floodplains to the delta 

(continental). The annual precipitation amount spatially changes in respect to the altitude. 

As can be seen from Figure 22, most rainfall is measured in the mountainous areas of Alps 

and Apennines (1200-1800 mm/year), whereas in plain parts of the Po Valley, it ranges 

between 800-1200 mm/year. Some parts (Po Delta and Northern parts of Emilia-Romagna 

and some regions upstream) are rather drier, with the mean annual rainfall amount of 400-

800 mm/year. 
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Figure 21.  Location of the Po river basin within Italy.  

         
 

Figure 22. Mean annual rainfall over the Po River basin (mm/year). Taken from (Autorit`a di 

Bacino del Fiume Po 2006). 

From socio-economic point of view, the floodplain is characterized by a variety of 

productive activities and infrastructure, it represents a nerve centre of national economy, 

and it is also densely populated: local population is 17 million people (Musolino et al. 2017). 

It covers 7 administrative regions of Italy, Piedmont, Valle d´Aosta, Lombardy, Veneto, 

Liguria, Emilia-Romagna, and Tuscany and autonomous province of Trento. This area 

contributes 34% of GNP; with 29% of national industry developed there. 41% of agricultural 

productivity comes from the basin surroundings, and 48% of national electrical 

consumption (Musolino et al. 2017). Because of fertile alluvial soils, lower regions of alluvial 

Po Valley have experienced a significant agricultural development; this was especially 

intensified after the Second World War. Various economic activities of the area consume a 
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large amount of fresh water from the river and from the groundwater sources. For instance, 

the agricultural production along, which considerably relies on water resources, takes 

about 17 billion m³ per year. Additionally, the production sites, agriculture and high dense 

population have increased demands of electricity supplies; for this reason, 46% of national 

hydroelectric power is produced in the Po river Basin. One of the largest dams in the river 

is located near Isola Serafini, with the potential to produce 300 GWh per year on average 

(Collegio Ingegneri Venezia 2018). Additionally, the Po River floodplain is remarkably 

valuable in terms of touristic activities: there are more than 60 natural parks, natural 

reserves, sports and navigation sites. Some of the largest cities are Turin, Ferrara, Piacenza, 

Parma, Alessandria, Modena and Milan.  

There has been a series of floods of different magnitude occurring on the history of 

human record. Analysis of such records allow us to assume that 22 flooding events occurred 

in the 16th century, 14 events in the 17th century and 18 floods occurred in the 18th century. 

Some of the most severe floods in the 19th century were recorded in 1801, 1839, 1846, 1857, 

1868 and 1872. In the 20th century some most impacting floods occurred in 1926, 1928, 1949, 

1951, 1953, 1957, 1968, 1994 and 2000. The event of 1951 was particularly catastrophic, as it 

involved multiple levee breaches near Ferrara on the left bank of the main channel. Vast 

floodplains were inundated for many months, which caused immense damages and human 

losses. The socio-economic recovery of the affected communities after 1951 flood lasted 

decades (Montanari 2012). Naturally, the local population was trying to reduce the risks 

related to flooding, so the first levees were surrounding agriculture regions and settlements. 

In the past centuries, the levee height and width has significantly changed (Di Baldassare 

et al. 2009a) . 

High heterogeneity in terms of climatic, eco-hydrological and geomorphological 

patterns makes the Po river basin a very complex interconnected system. Nowadays, in 

order to establish national policies and develop flood management plans, the following 

bodies are responsible for different aspects of controlling, monitoring and mitigation: the 

Interregional Agency of the Po River (AIPO; www.agenziainterregionalepo.it) and the Po 

River Basin Authority (AdB-Po).  

The subject area of the current research covers about 350 km-long reach between 

Isola Sant'Antonio to Pontelagoscuro (Figure 23). The area is characterised by an extensive 

system of main and minor embankments with different design return period, which makes 

it challenging for the flood managers to make decision based on the simplified or outdated 

flood maps.  

http://www.agenziainterregionalepo.it/
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Figure 23. Study area extent and images from 2000 flood. Images in the upper right panel are taken 

from  (Meteolive.it 2016; nimbus.it).  

In particular, the floodplain is divided into certain buffer zones, so-called 

compartments (fascia in Italian). There are 3 compartment levels, depending on the 

configuration of embankments. Minor embankment has a design return period of 50 years, 

meaning it is likely to be overtopped when the flood event would be considered as 1 in 50 

years or more. The zone between minor embankments is a so-called “Compartment A”. The 

main embankment (red line in Figure 24), was designed to protect against 1 in 200 years 

flood and corresponds to “Compartment B”. The schematic representation of the 

embankments can be seen in Figure 25. The floodplain behind main embankment is called 

“Compartment C”. It is activated once the main embankment is overtopped, or there is a 

breach. There is no strictly delineated boundary of the Compartment C, as it depends on 

the magnitude of the events and location of possible breaches. Meeting the EU Floods 

Directive requirements in flood mapping for extreme event, Po River Basin Authority 

considers 500 years event.  

 



Chapter 3. Large-scale high-resolution simulations using 2D raster-based model. The 

Po River case study 

56 

 

      

Figure 24. Spatial distribution of the main and minor embankments along a portion of the 

upstream part of the river with associated design return periods. 

                         

Figure 25. Schematic representation of the spread of inundation extent regarding the design return 

period of the main and minor embankment. 
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3.1.2. Flood modelling on the mid-lower portion of the Po River. 

Review of existing research               

As one of the main aims of this thesis is to further deepen understanding of the flow 

behaviour on the Po River using 2D modelling techniques, the review of existing key 

studies done on the same study area using modelling tools of various complexity is crucial. 

There has been a series of researches, which aimed at investigating flood hazard evolution 

and flood management strategies on the mid-lower portion of the Po River by the means of 

flood models. Below, we would like to present most relevant studies, pointing on the 

modelling methods used, the river reach and main outcome of their work. Building on this 

review we expect to outline main advances, gaps and challenges in large-scale flood 

modelling on the Po River.  

In the past 200 years , the geometry of embankments  has significantly changed, it 

increased in height and width (Di Baldassare et al. 2009a). In Figure 26 we can see that near 

Pontelagoscuro, between 1878 and 2005, the embankment was elevated to more than 6 

meters at certain places and got significantly wider.  

             

Figure 26. An example of the Po river cross-section showing the elevation of the embankment in 

1878 and 2005 near the Pontelagoscuro gauging station. Taken from (Di Baldassare et al. 2009a). 

Within the past decades the enhancement and upgrading of existing dikes posed 

additional issues causing so-called “levee effect”, when high-intensity low-frequency 

events may cause devastating effect on the growing socio-economic activities behind the 

dikes.  

Di Baldassare et al. (2009a) investigated the impact of the levee changes over time 

on flood wave propagation on a mid-lower part of the Po River between 1878 and 2005 on 

190-km reach of the Po River. They reconstructed the 1879 flooding event and evaluated 

the role of human activities in flood wave propagation by applying two coupled models: 

1D channel flow run in HEC-RAS and 2D floodplain was simulated using TELEMAC-2D. 
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The authors highlight, that the increased levee height lowered the inundation frequency of 

the protected floodplains. Meanwhile, the levees decrease flood attenuation and cause the 

increase of the discharges downstream (Di Baldassare et al. 2009a). This study specifically 

points on the importance of the more detailed investigation of the flow dynamics and 

changes in the levee-height. Authors suggest that modern configuration of the levee-

heights may result in multiple breaches in case of an extreme event (i.e. 500-year flood). 

Moreover, this study outlines the benefits of controlled flooding, rather than continuous 

levee-heightening for future flood risk management on the Po River. 

A study by Castellarin et al. (2011a) aimed at identification of the effects of the 

changes in minor embankment elevations as an elaboration of risk mitigation strategies. 

Castellarin et al. (2011a) used combined 1D/2D scheme of HEC-RAS model in order to 

simulate different flooding scenarios on the mid-lower portion of the Po River (about 350 

km long). The geometry was outlined in a way that the main channel was represented as 

1D component and 2D flooded areas (Compartments B and C), which were connected by 

the means of lateral links (weirs), represented as the minor levee height. They performed a 

series of simulations in order to investigate an effect of the embankments height on the 

flooding dynamics reproducing a large-scale flooding event, which occurred on the Po 

River in October 2000. Additionally, they considered two synthetic hydrographs, both 

representing an event with recurrence interval greater than 200 years. The geometry 

configurations were set as following: (i) the minor embankment height retrieved from 

available LiDAR data (acquisition of 2005), (ii) the minor embankment elevated to 

maximum possible level according to the Po River Basin Authority normative, which is 

approximately 1 m lower than the height of the main embankment, (iii) minor embankment 

system is entirely removed from the DEM. Castellarin et al. (2011a) concluded that the 

floodplains that are protected by minor levees play a key role in peak discharge attenuation 

for extreme events (200 years flood). This complex system of flood defences greatly 

improves the capacity of the river to retain a certain amount of flood water. Moreover, the 

modified embankment height to maximum level (1 m below the height of the main 

embankment) would have even larger effect on flood peak attenuation. The authors suggest 

that in light of the finding presented in (Castellarin et al. 2011a) the existing management 

strategies developed by the AIPO should be revised and adapted. However, their study 

was based on the simulation performed by combined 1D/2D, which lacked the backwater 

effects that can be better captured with the fully 2D approach. 

Castellarin et al. (2011b) applied combined 1D/2D model HEC-RAS on the 350 km 

river reach from Isola Sant’Antonio to Pontelagoscuro. By simulating a 500 years flood and 

evaluating different geometry of main embankments. Particularly, the model was set up in 

a way to simulate no overtopping of main embankment; overtopping and levee breaching 

at pre-defined locations by the mean of lateral structures; overtopping without levee 

breaching. The water volumes of the overflows and breach outflows were estimated and 
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compared under each scenario. Among main findings is that, in the light of the high 

uncertainty associated with the levee breach location and timing, the residual risks behind 

the main embankment are significant. Additionally, the controlled flooding is an efficient 

solution in case of the mid-lower portion of the Po River and should be further investigated. 

Domeneghetti et al. (2013) looked into different uncertainty sources in flood 

modelling such as upstream and downstream boundary conditions and dike failure 

probabilities simulating probabilistic flooding on the Po River using 1D/2D model with a 

levee-breaching link (IHAM) (Vorogushyn et al. 2010). The authors advanced an 

understanding of the uncertainty role of the rating curve as a downstream boundary 

condition in probabilistic flood mapping.  Brandimarte and Di Baldassarre (2012) by the 

means of 1D model deepened the research in the probablistic framework for the flood 

defences design and uncertainties by simulating October 2000 flood on the Po River portion 

between Cremona and Borgoforte. Particularly, the standard freeboard used in the 

construction of the defence structures (as defined to be 1 m above estimated 200 years event) 

appears to underestimate the uncertainty associated with water levels. Alternatively , the 

authors suggest applying a pragmatic method, derived from the uncertain flood profile 

(Brandimarte and Di Baldassarre 2012). 

The study area has been a subject of several continental and global flood models at 

coarse resolution (pixel size 100 m or larger) using various flood mapping methods. Among 

them are Alfieri et al. (2014) and Tavares da Costa et al. (2019).  Despite having a complete 

extent of the study area, the performance of the continental-scale models usually does not 

allow for a detailed processing of the terrain, so the main and minor embankments are not 

particularly considered.  This might bring misleading results in specific parts of the Po 

River. Therefore, showing the inundation in the Compartment C, even for events lower 

than 1-in-200-years event. This is a significant limitation for the production of the flood 

hazard and risk maps, as required by the Floods Directive 2007/60/EC. Table 5 shows a 

summary for some of the previous research done on the study area, the geographical extent 

covered and specific problem considered. 

Table 5. Selected studies done on flood modelling on the mid-lower portion of the Po River. 

Study Model used Domain Study scope 

Di Baldassare et al. 2009a 1D HEC-RAS  

2D TELEMAC 

Cremona to 

Pontelagoscuro 

(190 km long 

reach) 

evaluation of the levee 

heightening in the past 

140 years and its 

impact on the flow 

dynamics 

Di Baldassare et al. 2009b 1D HEC-RAS  

2D TELEMAC 

Reno river, Po 

tributary 

probability-weighted 

hazard maps 
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Schumann et al. 2010 1D/2D HEC-RAS between the two 

gaging stations of 

Cremona and 

Borgoforte 

near real time space-

born approximating 

using freely available 

data 

Castellarin et al. 2011a 1D/2D HEC-RAS Isola S. Antonio to 

Pontelagoscuro 

(350 km long 

reach) 

attenuation of the peak 

discharge under the 

effect of different 

geometries of breach to 

reflect advantages of 

the controlled flooding 

Castellarin et al. 2011b 1D/2D HEC-RAS Isola S. Antonio to 

Pontelagoscuro 

(350 km long 

reach) 

simulation of 500 years 

flood under different 

geometries of the main 

embankment 

considering the 

overtopping of the 

main embankment 

Brandimarte and Di 

Baldassarre 2012 

1D HEC-RAS between Cremona 

and Borgoforte 

probabilistic 

framework for the 

flood defences design 

and uncertainties 

Domeneghetti et al. 2012 1D/2D HEC-RAS river reach along 

Cremona 

uncertainty related to 

rating curve and its 

effect on hydraulic 

model calibration 

Domeneghetti et al. 2013 IHAM framework, 

1D channel 

representation/2D 

raster based model 

between the 

gauges at 

Piacenza and 

Cremona 

uncertainty sources in 

flood modelling 

Alfieri et al. 2014 1D/2D LISFLOOD-

FP 

continental contentedly flood 

mapping of a 100 year 

event 

Mazzoleni et al. 2014 1D HEC-RAS 

 2D LISFLOOD-FP 

between the two 

gaging stations of 

Cremona and 

Borgoforte 

probabilistic flood 

hazard mapping under 

levee breaching 

scenarios. 

Tavares da Costa et al. 2019 GFI index continental DEM-based web 

application to derive 

flood-prone areas 

based on GFI index 

 

From Table 5 we can see that the majority of the studies were done on a certain 

portion of the River using 1D or combined 1D/2D hydrodynamic models. However, some 
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of the study covered the whole area of current interest. Such as from modelling point of 

view, the study of Castellarin et al. (2011a) and (2011b) simulated the flood water volume 

entering the levee protected floodplains, so the 2D part did not include the underlying 

terrain data, but was simulated using spilling and filling method. Therefore, this method 

does not allow for representation of the spatial distribution of the water depth, velocities 

and inundation extent within the channel and inundated floodplains. In all 

abovementioned cases the entire interaction channel-floodplain-channel was never 

investigated on a detailed 2D level, which poses a significant limitation for the large-scale 

flood risk mapping, which would consider local distribution of flow velocities and water 

depth. Moreover, few studies that investigated the levee stability always applied the 

analysis adopting simple representation of the channel and protected floodplain, using 

combined 1D/2D models (Domeneghetti et al. 2013; Mazzoleni et al. 2017). Detailed flood 

hazard parameters are crucial for the flood risk maps, e.g. risk to life and direct damage 

assessment are calculated using the product of depth and velocities. 

3.1.3.  Research objectives 

Previous research done on the study area utilised combined 1D/2D codes, where the 

flow within the channel was reproduced using 1D codes only. As mentioned above, such 

codes allow for a faster computation times and possibility to cover much larger areas. 

However, 1D representation of the river bed does not allow for the detailed spatial 

distribution of flow parameters. Among such flow parameters are water depth, velocities, 

arrival time, which are greatly beneficial for production of flood risk maps for the areas 

within and outside the embankments and as required by the EU Floods Directive. Flow 

details are function to better hazard evaluation, since they might be useful for breach failure 

investigations, protection structure design, etc. Therefore, it is important to consider the 

levee stabilities, whereas 1D models applied so far fail in providing accurate hydraulic load 

for the embankment. Growing availability of high-resolution data together with the 

increasing computational capacity of the working stations makes it possible to perform the 

simulations on the large-scale using high-resolution LiDAR data provided by Po River 

Basin authority (AdB‐Po, www.adbpo.it) using 2D codes. Different studies, which 

researched the topic on the large-scale flood modelling, would cover areas from 2000 km² 

Falter et al. (2013) to 170,000 km² Schumann et al. (2013) or cover the whole continent Wing 

et al. (2017).  The definition of the “large-scale” highly dependent on the tools used and the 

context behind each particular study. Due to the complexity of the 2D codes, amount of 

computation cells, data availability and computation time, it is largely challenging to 

perform global or continental scale studies using fully 2D models. Global 2D simulations 

have been applied with a compromise in terms of DEM resolution, which in case of the 

study of  Dottori et al. (2016) was 1 km. In this light, we suggest that the fully 2D codes 

allow flood modelling on the areas larger than several thousand square kilometres and can 

http://www.adbpo.it/
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be viewed as large-scale studies. Therefore, we stress that the suggested approach will 

greatly improve the representation of crucial elements (i.e. spatial distribution of flow 

parameters) on the given study area. As outlined above, it is important to investigate the 

system behaviour, which requires flood modelling on the large scale in order to track the 

catchment response. Thus, we would like to advance previous studies done on the 

mentioned geographical area and apply fully 2D inundation model. We would like to 

stress, that to the best knowledge of authors, this is the first fully 2D high-resolution study 

done on the mid-lower portion of the Po River. Moreover, we additionally test different 

configurations of DEM in order to better represent the complex network of embankments.  

In this chapter, we would like to introduce and analyse the influence of the DEMs 

with different configuration (with and without embankments) on flood propagation on 

large scale. Our analysis is performed using high-resolution LiDAR data, which includes 

the bathymetric data of the mid-lower portion of the Po River. Such approach is performed 

using well-known LISFLOOD-FP code (see detailed description above) in fully 2D mode. 

By doing this, we would like to show to which extent the detailed data affects the model 

outcomes and how different resolutions and embankments inclusion contributes to flood 

mapping and further risk assessment. An additional, yet compelling advancement of this 

work is to show the potential of such models to simulate a series of flooding scenarios, 

regarding their computational efficiency.  

More specifically, we simulated the flood of October 2000 on the mid-lower portion 

of the Po River (350 km river reach) using fully 2D LISFLOOD-FP model. We apply the 

model with a set of resolutions 30, 50 and 100 m and their configurations with the real 

embankment height included in aggregated DEM and without the manual adding of 

embankment height (simple DEM aggregation). 

3.2. Methods and data 

3.2.1. Study event and data 

The domain includes compartments A and B, main embankment and 100 m buffer 

area outside the embankment (Figure 23).  The DEM LiDAR data was provided by AdB‐

Po, its horizontal resolution is 2 m. The data acquisition took place in years 2004-2005 using 

two laser scanners mounted on aircrafts. The bathymetric data was collected using multi-

beam sonars during approximately same period (Castellarin et al. 2011a). DEM used in the 

study represents bare earth terrain, cleared from trees and buildings with vertical accuracy 

of the data of about ±0.15 m. The model domain has an overall area of over 6675 km².  

Most aggregation techniques used in flood modelling tend to produce various 

errors when it comes to representation of the fine linear features, which are finer than the 

resulting resolution. In such areas as Po River basin, to capture a complex embankment 
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system is a challenging, yet crucial task for flood modellers. We suggest that most of the 

coarse models would misestimate flow parameters due to this issue (Shustikova et al. 2019). 

In this study, our goal is to show to which extent a fully 2D model at different resolutions 

can correctly capture flood dynamic inside the floodplains, therefore we produced a set of 

configurations. First, we aggregated 2 m LiDAR data using the mean value of the pixel into 

30, 50 and 100 m. The aggregation of LiDAR DEM means that the representation of 

topography is rather smooth, however contains some errors due to vertical averaging. Such 

errors are inevitable in large-scale studies when the DEM data is being resampled, this 

especially becomes evident when global datasets are utilised in flood modelling. In order 

to reduce such errors and include linear terrain irregularities (e.g. levees) we produced two 

sets of the DEM and compared the outcomes to highlight the importance of the levee in the 

flood dynamics.  Based on resulted DEMs we produced another set of the configurations, 

where we manually ‘burnt’ in the actual height of embankments into the simply aggregated 

DEMs (Table 6 and Figure 27).   

An important point here is that LISFLOOD-FP is a raster-based model, which 

operates with the rectangular mesh of the same cell size as input data (detailed model 

description can be found in Chapter 2.2.2). Therefore, different configurations will have an 

impact on the storage capacity of the floodplain. As can be seen from Figure 27 (two lower 

images), the resolution of the terrain data plays the greatest role. The modified DEM at each 

resolution (upper image) clearly identifies the location and the approximate height of the 

main and minor levees; however, the lower resolution (100 m) remarkably reduces the 

floodplain storage capacity (lower image, red line). Regular rectangular mesh is unable to 

represent fine linear terrain features, such as roads, levees or embankments.  Therefore, 

here we analyse which configuration and which resolution, among those investigated here 

(Table 6 and Figure 27), is the most suitable.  

Table 6. Names of configurations tested. 

DEM Resolution 

(m) 
Aggregated LiDAR 

Aggregated LiDAR with 

'burnt' in embankments 

30 30m_noembank 30m_embank 

50 50m_noembank 50m_embank 

100 100m_noembank 100m_embank 
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Figure 27. Cross-section profile location and DEM resolutions (upper). Profile without 

embankment (middle). Profile with embankment (lower). 

To perform such investigation we refer to well-documented flooding event, which 

occurred on the Po River in October 2000.  The flood of October 2000 is considered as one 

of most severe in the recent decades. Some of the rivers in the Po basin experienced 200 

years return period discharges (Cassardo et al. 2001).  Uncommonly heavy rainfalls 

extended all over the upstream part of the basin, where larges area of the mountainous 

settlements got damaged, as well as parts of Turin city. The strongest rainfalls were 

recorded on the tributaries of Po in Northern and Western parts of Piedmont region. Several 

gauges recorded historical maximum, such as it happened in Turin (2350 m3/s). Moreover, 

maximum water levels along the reach stayed for unusually long time (8-10 hours 
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continuously). The graph below shows the discharges at upstream part of the river, as well 

as the discharge at some tributaries (see Figure 28).  

 

Figure 28. Left: observed discharge at upstream boundary. Right: inflow of the major tributaries. 

The flood caused several deaths and severe damages in the affected areas (Cassardo 

et al. 2001). Maximum water levels along the reach are taken from the official report 

delivered by the Po River Basin Authority. The vertical errors in such measurements are 

known to be up to 0.5 m (Horritt et al. 2010a). 

In mid-lower portion of the basin the flood behaved in a way that the water levels 

did not reach the crest height of the main embankments, so the inundation boundaries are 

clearly outlined by main embankment contour. This makes it a perfect case study to 

evaluate performance of the hydrodynamic model and influence of terrain modifications 

and resolutions on the accuracy of results. In order to evaluate efficiency of the large-scale 

2D modelling, we specify the computation time of different resolutions. The simulations 

were performed on a server with 2 CPUs (20 real cores and hyperthreading 40 cores) and 

64 GB RAM. 

3.2.2. Model set up and calibration 

We apply LISFLOOD-FP in fully 2D mode (no 1D or subgrid component is 

considered for channel flow calculation) to see how well the flow parameters can be 

represented with six selected configurations (Table 6) to simulate the October 2000 event. 

The upstream boundary condition was set at near Isola Sant’Antonio (at Ticino-Po 

confluence) main reach and tributaries: Trebbia, Lambro, Taro and Adda. The hydrograph 

from the inflows were taken from the river gauges measurements. The free downstream 

boundary condition was set 50 km downstream from Pontelagoscuro gauging station 

(Figure 23), the place where the main channel splits into two branches and forms the Po 

Delta. The simulation was set to 191 h with input hourly hydrograph data.  
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The spatially variable roughness coefficients were initially distributed in two main 

classes: channel and floodplain. LISLOOFD-FP is known to be sensitive to change in 

roughness parameters for 2D calculations. In order to obtain best results, we calibrated the 

model by varying roughness coefficients Manning’s n (𝑚−1/3s) at 30 m DEM.  As the area 

is rather large and 2D simulations normally take many hours to run we did not consider 

running Monte Carlo simulations. Instead, we implemented trial and error method, where 

the distribution of initial values were taken from the work done by Domeneghetti et al. 

(2015). In order to achieve best results we manually modified values based on simulated 

and observed maximum water surface elevations by means of Root Mean Square Error. 

Altogether, there was data of 171 water mark records. Because the flooding extent was 

outlined by the main embankments, we additionally visually inspected the levees on 

subject of overflows. If some overflows (more than in 1-2 spots) were noticed during the 

simulation, we would disqualify the configuration. Due to the computation time length 

(around 4 h for one simulation) and amount of manual parameter tuning, the calibration of 

other 5 configurations would require enormous amount of time and effort, therefore we 

adopted the results of 30 m DEM for 50 and 100 m configurations.  

3.3. Results and discussion 

By performing the calibration, we identified the DEM resolutions and 

configurations, which were unable to maintain the flood within the main embankments. In 

case of “30m_noembank”, “50m_noembank”, “100m_noembank” and “100m_embank” the 

levee was always overtopped in multiple locations. The simple mean aggregation of 2 m 

LiDAR resulted in underestimations of the critical linear feature heights.  The two 

remaining configurations “30m_embank” and “50m_embank” resulted in comparatively 

better results with maximum of 1-2 overtops along the whole reach and are further 

discussed.  

Additionally, to have a profound insight into different parts of the selected domains, 

we looked into the performance of configurations in the upstream and downstream parts 

of the reach. Figure 29 shows the results for the water depth and flood extent for all six 

configurations and two focus areas (upstream and downstream the reach). The left column 

of panels “A” and “B” represents the results with manually enhanced embankments, while 

the right one shows the performance of the configurations without such enhancement.   

From Figure 29 (panel “A”), which represents the upstream part, where the floodplain 

between the main embankments is relatively wide and the height of the embankments is 

lower than downstream, we can see that the only configurations, where the main levee was 

not overtopped are the ones with manually added embankment with 30 and 50 m 

resolution, while the rest got overtopped in numerous places (blue pixels outside the red 

line in Figure 29). While, in the downstream part, all configurations (30, 50, 100 m) with 
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manually enhanced embankments performed considerably well, having no overtops. It can 

be justified by the fact that the embankments are higher than in upstream part, which allows 

for larger storage volume. Moreover, because of river system behaviour, the water that 

propagates to the floodplain behind the main embankment due to overtop in the upstream 

part reduce the discharges downstream.  

As we can see from Figure 29 the role of the inclusion of both minor (panel “B”, 

green box) and main embankments is significant, as our simulation shows, they fully 

control the flow within the embankments. Clear distinction of Compartments A and B 

within the geometry of the configuration plays crucial role in the results accuracy. Because 

of the raster-based principle of the LISFLOOD-FP model, that was used in the simulations, 

the minimum width of the embankment equals to the input raster resolution. Despite the 

fact, that the height of the embankments from 100 m DEM was correctly represented, such 

inclusion sacrificed the volume of the Compartment B (compartment between main 

embankments). The capacity of the floodplain between the main embankments was 

reduced to the extent that the water spilled out from the floodplains in multiple locations. 

Altogether, 4 configurations (“30m_noembank”, “50m_noembank”, “100m_noembank” 

and “100m_embank”) were disqualified from the further analysis.  Therefore, it is 

important to look at the model performance along the whole reach. As can be seen, the two 

configurations which perform consistently well in upstream and downstream parts are 

“30m_embank” (0.34 m RMSE) and “50m_embank” (0.39 m RMSE) and are further 

discussed in more details. RMSEs presented above lie within the range of the data 

observation errors, which can be up to 0.5 m (Horritt et al. 2010a). 

. Since in this study we aimed at exploring the resolutions compared using 

calibration for highest resolution only (30 m), it is rather difficult to speculate if the results 

were different if we separately calibrated each configuration. Such assumption would not 

be straightforward due to the spatial extent of the study and rather different result we got 

during calibration. 
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Figure 29. Distribution of local water depth. The middle panel shows overall representation of 

water depth for “30m_embank” configuration with localised focus areas. The upper panel 

represent the results for six configurations in the upstream part (A).  The lower panel represent the 

results for six configurations in the downstream part (B). Green boxes are used to point the 

differences between resolutions. Left columns shows configurations with embankments. Right 

columns shows configurations without embankments.  

We looked at the hourly discharge at the gauging station of Cremona (15 km 

downstream from Isola Serafini, see Figure 21), which is located in the upstream part of the 
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study area. We compare it with the observed hourly discharge, where the Mean Error 

shows that the model overestimates the discharge (-311 and -272 m³/s for 30 and 50 m 

resolutions correspondingly, where the peak is 12,000 m³/s). Meanwhile R-squared is 0.98 

for both resolutions. Concerning the peak flow, the maximum discharge is reached almost 

simultaneously considering the overall length of the simulation (191 h); for  30 m 

configuration the maximum was registered 4 h earlier and for 50 m – 2 h earlier compared 

to observations (Figure 30). The peak discharge for both configurations was less than 1% 

lower than observed.   

 

          

Figure 30. Observed vs. simulated (30 and 50 m DEM with embankment) flow hydrograph at 

Cremona gauging station. 

Looking at the distribution of flow velocities for the two configurations, both of 

them produce quite similar results, where the difference between 30 and 50 m is about ±0.5 

m/s. However, their local distribution is an important parameter to consider while 

evaluating the proximity to the embankments, as it can be of use for the identification of 

places susceptible to higher erosion/piping rates and hence stability of the levees (Wang et 

al. 2014; Semar et al. 2011).  In Figure 31 we can see that there are some distinctive areas at 

the main embankment line (in green), where the velocities are the highest (pixels in dark 

purple and dark blue). Most of such places are located at the outside bend of meanders, 

where the erosion is expected to be the highest. This provides an indication on potential 

places where the breaches may occur and the water may propagate into the protected 

floodplain. The 2D representation of velocity fields brings additional value to 2D modelling 

of the channel flow, since previously, with 1D models such information was obtained 

fragmentally (i.e. the velocities captured at 1D cross-sections). Moreover, the velocity 

values are averaged for each 1D cross-section, therefore there is a risk of underestimating 

velocities at some critical parts which are either averaged or not captured within the cross-

section. Potentially, 2D approach may provide the river management authorities with the 

tool to develop risk management plans, such as more detailed studies, localised ground 
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surveys and levee reinforcement at certain places, increase preparedness in the floodplains 

behind potentially vulnerable portions of the main embankment. For this, the information 

taken from the large-scale studies can be later used for the smaller-scale investigations, to 

model the hotspots with the larger amount of details and include morphodynamic 

component to the set up. 

Regarding the computation time, “30m_embank” (7,441,830 cells) would take about 

4 hours to compute, while “50m_embank” (2,669,920 cells) would be about 1.5 h on average.  

The simulation time was 191 h and the maximum time step 10 sec.   

From all the points mentioned above, we might suggest that using 50 m resolution 

is a fair compromise between the accuracy (water surface elevations, discharge at Cremona 

gauging station) and computation time. 

            

Figure 31. Distribution of local velocities. Zoomed in (a, b, c) examples represent the results of 

“50m_embank” configuration. 
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3.4. Conclusion 

The review of the previous research (for more details see Chapter 3.1.2) done on the 

mid-lower portion of the Po River shows that fully 2D inundation modelling has never been 

implemented earlier and therefore we would like to point out its’ advantages. As expected, 

high-resolution data together with fully 2D model gives favourable results in terms of the 

flood extent. The analysis of the DEMs of different resolution (30, 50 and 100 m) and 

configurations (with and without manually added embankment) showed that the 

performance of the grids with the manually added embankment heights displayed better 

results in terms of water surface elevations for 30 m and 50 m. Meanwhile, other 

configurations were disqualified due to incorrect representation of the geometry of the 

flooded compartment. The inclusion of the actual levee height into the working grids shows 

the potential of LISFLOOD-FP to perform fully 2D simulations on the mid-lower portion of 

the Po River and other rivers with largely modified terrain. Moreover, we suggest that 

regarding the computation time and the accuracy of the results the optimal solution for the 

large-scale simulations on the mid-lower portion of Po River would be 2D simulations 

using 50 m resolution terrain data, which includes the actual embankment height. The 

research showed that the model run on 30 and 50 m resolution DEM produced very similar 

results in terms of maximum water surface elevations (the RMSE difference was 5 cm 

between 30 and 50 m resolutions), discharge at control gauging station and distribution of 

local velocities fields with much higher computation time advantage of 50 m resolution 

model.   

It must be noted, that the results of this study should be taken with a great care, 

since the model calibration and resolutions used aimed at the specific terrain of the Po 

River. Despite of the outcome in terms of resolutions (30 m or 50 m), the study clearly 

showed the role of linear elements (embankments), and the limitations that one has to 

consider in case of not reproducing the embankments and the real behaviour of the 

interaction between floodplains of different return period. Therefore, regarding complex 

terrains and 2D raster-based models, there is a great potential of this approach to be applied 

on other river catchments with the additional investigation of the terrain configuration and 

resolutions for each case study. Moreover, 2D modelling provides a spatially complete 

outlook on the flood hazard parameters (water depth, local flow velocities) within river 

channel and floodplains, which of a specific interest for river system behaviour studies and 

flood management plans. The identification of the hotspots made in one simulation can 

provide a solid basis for the upgrade of the flood risk maps as required by the Floods 

Directive 2007/60/EC.   

In addition, 2D modelling on the large-scale does not only allow for long-term plan 

development but also greatly benefit quick solutions needed in the emergency situation. 

Since LISFLOOD-FP model is fairly easy in its application and computationally very 
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efficient, as was proven by the current case study and numerous previous research, we 

suggest that this modelling approach is a step up in large-scale simulations on the Po River. 

Further research on the Po River should consider investigating the distribution of 

the local hazard parameters (water depth, velocities) along the reach regarding different 

occurrence intervals of the flooding events (e.g. 100, 200, 500 years) and possible levee 

failure scenarios in order to estimate residual risks. 
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Chapter 4. Levee Breaching: a 

New Extension to the LISFLOOD-

FP Model 

4.1. Introduction  

Global warming under different socio-economic scenarios would lead to increasing 

flood risk in Europe and without further adaptation, flood defence structures will be 

breached more frequently in the future (Alfieri et al. 2017). Therefore, development of new 

strategies for flood risk reduction is crucial. As a primary element in this, flood hazard 

modelling encompasses reproduction of the hydraulic behaviour of flood water and its 

interaction with topographical features and engineering structures in the floodplain. Such 

structures may partially or entirely control the flood dynamics, which is especially evident 

in heavily modified terrain with complex networks of levees and embankments. Therefore, 

it is important to identify flooding patterns in case of possible levee breaches for both low- 

and high-intensity events.  

Levee breaches may occur due to different mechanisms such as overtopping, 

geohydraulic failure or piping, and local and global static failure (Vorogushyn et al. 2009; 

Marijnissen et al. 2019). Such failures involve a complex pattern of possible consequences 

for river systems (van Mierlo et al. 2007; Bruijn et al. 2016).  Protected floodplains remain 

vulnerable in case of embankment breaches, which is often termed the residual risk (Ludy 

and Kondolf 2012; Domeneghetti et al. 2015). For instance, the 1993 Mississippi flood, when 

the levees breached at numerous locations along a rather large reach of the river causing 32 

deaths and $15 billion in economic damage (Larson 1996). Alongside record events in terms 

of their magnitude, floods with much lower recurrence interval may cause significant 
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losses. For instance, a 5-year return period flood on the Secchia River (Northern Italy) in 

2014 turned into a disaster, when the levee breached due to burrowing animals causing 

€400 million in monetary damages (Carisi et al. 2018). Together with severe damage, human 

losses and infrastructure disruptions due to sudden lowering of the embankment crests, 

levee breaches may reduce hydraulic loads upstream and downstream, and hence affect 

inundation patterns and the probability of failure elsewhere in the river system (van Mierlo 

et al. 2007; Vorogushyn et al. 2018) 

Despite the obvious adverse effects of levee failures, there are other additional 

strategic aspects to consider. One flood management strategy is controlled flooding 

(activation of off-line floodplain storage) (Sanders et al. 2006). Therefore, it is important to 

have an understanding of how floods behave on a basin scale and which floodplains it is 

sensible to activate in a given flood scenario. For this it is important to jointly assess levee 

breach effects, both adverse and beneficial on the large scale (Vorogushyn et al. 2012). 

There are numerous tools that offer a levee breach component to simulate floods 

(e.g., HEC-RAS, Delft3D, RFSM, Tuflow, TELEMAC2D, Sobek, BREACH, BASEMENT, 

2DEF, PARFLOOD to name a few, see e.g. (Castellarin et al. 2011b; Viero et al. 2013; Wu 

2011; Dazzi et al. 2019). They allow for simulating the breach with a high level of detail and 

consider the breach evolution and forcing conditions in order to compute changes in the 

breach width and consequent flow entering the floodplain. Some associated uncertainties 

are flow conditions, geotechnical embankment properties and variability of external forces 

(Wu 2011; Dazzi et al. 2019). Moreover, other limitations related to the usage of those 

models, such as data availability, set up time and computational costs, pose a significant 

constraint. This especially becomes a critical burden when generating the levee breaching 

scenarios for large-scale studies. Some studies  (Kamrath et al. 2006; Viero et al. 2013; 

Vorogushyn et al. 2010; Castellarin et al. 2011b) suggest using coupled 1D/2D interactions 

between the river channel and floodplain behind the embankment. Kamrath et al (2006) 

applied this method, where the river-floodplain interactions are limited to a straight river 

reach and two adjacent floodplains. The 1D/2D schematisation has obvious benefits over 

fully 2D codes, such as decreased computational time and accuracy.  1D/2D model set up 

and preparation is, however, is rather a time consuming task especially for large-scale 

studies. 

The literature proposes several fully-2D models which allow for simulation of levee 

breaching (Wu 2011),  however, to the best knowledge of the authors, the number of 

computationally efficient tools which allow for simplified levee breach at minimum 

setup/data/time costs, possibly over very large geographical areas, is rather limited 

(including the models mentioned above). With the increasing availability of high-resolution 

geodata (including bathymetry datasets) and improved computational performance, the 

use of 2D models to simulate events of different intensity becomes a real possibility for 

large-scale studies. Previous work has explored levee breaching using the well-known 
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LISFLOOD-FP model, which is known to be suitable for large scale studies and is 

computationally efficient. The study of Luke et al. (2015) discussed the river system 

behaviour and floodplain activation using the model, however the outputs were reached 

by performing coupled consequent simulations (i.e., modelling cascade; meaning, the 

model would be run before the breach, then another simulation with modified/”breached” 

DEM would be needed to mimic the breach). Another study, where the LISFLOOD-FP 2D 

module was used was Mazzoleni et al. (2014). In this study, the channel 1D flow and 

consequent levee breach were first simulated by the 1D HEC-RAS model and the floodplain 

propagation was then performed by the computationally efficient LISFLOOD-FP. HEC-

RAS 1D simulation outputs in that study served as the inputs for the 2D computations. 

Such studies brought credible outcomes, however, would require additional time and effort 

to reproduce the whole chain of the levee failure. Since backflow from floodplain into the 

river channel was not considered, such a modelling cascade does not include the impact of 

backwater effects on system behaviour. 

This study presents a newly developed extension to the LISFLOOD-FP model which 

allows levee-breach analysis on local or large scales (breach at one or multiple locations) in 

fully 2D mode. The approach permits flow dynamic tracking along the entire reach 

performed in one single simulation thereby giving the possibility to capture backwater 

effects and account for the effect of hydraulic interactions. Unlike most codes, where the 

links between the channel and floodplain are typically described by 1D/2D hybrid model, 

the new sub-routine represents these links in fully 2D mode. 2D representation would be 

particularly beneficial in the case when levees are located away from the river banks, which 

is a limitation for certain 1D/2D codes. If the levee course shows sudden contractions or 

widening, which is described by the 1D cross-sections, this adversely impacts 1D model 

stability. Moreover, the LISFLOOD-FP model is known for its computational efficiency and 

accuracy in representing flow parameters, which is particularly relevant for geographically 

large domains (Bates et al. 2010). Whilst implemented in LISFLOOD-FP, the approach is 

generic and could be used in any 2D structured grid model. 

The objective of this Chapter is therefore to illustrate the newly developed levee 

breaching extension and its performance potential for the large-scale studies. We 

deliberately investigate the model behaviour on synthetic test cases and two historical 

events. We test on synthetic cases and compare them against identical setups of well-known 

HEC-RAS 2D model. The first historical event is a small-scale flood which occurred on the 

Secchia River. It is used to test the model sensitivity to its parameters and input data. The 

second historical event is a large-scale high-magnitude catastrophic inundation, which took 

place in 1951 in a large levee-protected floodplain of the lower reach of the Po River. These 

data are used to assess the model potential to perform geographically large-scale 

simulations. In this light, we assess the computational efficiency of the new tool and discuss 

possible limitations and broad areas of application. 
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4.2. Methods 

4.2.1. Levee breach module 

LISFLOOD-FP is a simplified hydrodynamic model based on the local inertial 

formulation of the shallow-water equation (Bates et al., 2010). For further details see 

Chapter 2.2.2. The model has been extensively validated for gradually varying flow 

problems on floodplains (Neal et al. 2012b) and includes basic structures such as weirs and 

1D channel models.   

In this study we propose a new levee breach module, which simulates outflow 

discharge into the protected floodplain subject to levee failures. The levee breach module 

is directly implemented within the LISFLOOD-FP code and is consistent with the raster-

based model structure. The levee breach module is designed to simulate levee failures 

triggered by overtopping, however, the parameters can be set up in a way that the module 

may enable the “manual” levee breaching (when the water level is lower than the levee 

crest). Our main goal was to make the pre-processing simple, yet sufficient to represent the 

required levee failure triggers. The possible breach locations are pre-defined by the 

modeller at the setup stage. 

The computational sub-routine evaluates two simple breaching conditions: (i) water 

levels exceed threshold height and (ii) water levels stay above threshold for a defined 

amount of time. The procedure of breach initialization and subsequent water flow 

simulation is schematically shown in Figure 32: 

 

Figure 32. Orthogonal cross-sections of the levee and breach schematics: (1) water level in the river 

reaches the breach threshold (user defined); (2) the breach is fully formed reaching the breach 

depth (user defined); (3) outflow from the breach starts inundating the floodplain (equations (14) 

or (15)). 

The following parameters need to be specified for the initiation of a breach: breach 

location, breach threshold, duration threshold and breach depth relative to the crest height. 

These parameters are further discussed in more details. 

 Breach location is specified by x and y coordinates of a grid cell where breach 

may occur. For this, the levee needs to be explicitly represented in the input DEM with 

the corresponding location and height.   

 Threshold level is the water level in meters which needs to be exceeded for 

breach initiation. 



Chapter 4. Levee Breaching: a New Extension to the LISFLOOD-FP Model 

77 

 

 Duration threshold is the time in seconds during which the threshold water 

level at the levee is exceeded. 

 Breach depth is the depth in meters in relation to the levee crest height 

assigned upon the breach initiation. The levee breaches instantaneously, i.e. once the 

breach conditions are met, the breach depth is set to the pre-defined value.  

If the breach conditions are fulfilled, the levee breach at the pre-defined location is 

simulated. The outflow discharge is calculated using the broad-crested weir equation:  

Q= 𝐶 ∗ 𝐿 ∗ 𝐻 1.5                                                           (14) 

Where, C is a weir flow coefficient, L is levee breach width (m) and H is the energy 

head upstream (m) (Chow 1959). In a simplified form, the water depth above weir crest 

upstream of the breach is considered instead of energy head. The numerical stability of the 

sub-routine is mainly controlled by the modular limit (user-defined value), which 

automatically switches between the free flow over a broad-crested weir (Eq. 14) and the 

drowned weir flow (Eq. 15): 

𝑄 = 𝐶 ∗ 𝐿 ∗ ℎ𝑢 ∗ √
ℎ𝑢−ℎ𝑑

𝑀
                                                  (15) 

Where hu and hd are water depths above the weir crest upstream and downstream 

from the breach, respectively, while M is modular limit. The value of M is selected by the 

user and is constant for the course of simulation. The typical range depends on the head 

upstream (water height relative to the bed elevation) and the final elevation of the breached 

embankment (White et al. 2000).   

Weir equation (Eq. 14) is the most common approach to simulate flow through dike 

breaches (Wu and Li 2017). This approach is mass conservative, but no momentum transfer 

from the channel into the floodplain is considered.  

The minimum breach width for one grid cell is equal to the input DEM cell width. 

In case, the specified breach width is larger than the input DEM resolution, the required 

amount of neighbouring cells must be specified as potential breach cells including both 

threshold parameters and breach depth. 

The current configuration uses a simple set of conditions with which failure due to 

various breach mechanisms can be mimicked. For instance, in case of overtopping, the user 

can specify the breach threshold height at the levee crest. Further, the duration threshold of 

overtopping flow can be set. Once a failure occurs, the breach depth defined by the user is 

reached instantaneously. Failure due to piping/erosion (“manual” failure) can be mimicked 

by adjusting the breach threshold height and duration. For the reconstruction of historical 

events, if the time between the start of the piping process and the collapse of a levee is 

known, the duration threshold can be set accordingly.  
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We assume that the ultimate breach width has a larger impact on hazard 

characteristics than the width development rate, in particular for large-scale studies; this is 

a common assumption that has been adopted elsewhere, e.g.  Vorogushyn et al. (2010).  

4.2.2. Synthetic test description  

In order to evaluate the performance of the levee breaching module, we set up a 

series of synthetic tests. As the reference for these tests, we perform simulations with the 

2D model set up using HEC-RAS (version 5.0.3, Brunner 2016). It uses either the full 

momentum shallow water equation or a diffusive wave approximation; for our tests we 

selected the first approach as recommended in Brunner (2016). HEC-RAS has proved to be 

a reliable tool to simulate hydraulic processes within river channels and floodplains (water 

surface elevations, velocities, arrival time, etc.), including representation of various 

hydraulic structures (dams, levees, bridges, culverts, etc.). It allows flow parameters to be 

obtained with a high level of accuracy and detail (Brunner 2016; Shustikova et al. 2019). 

Levee breach simulation  with HEC-RAS was undertaken in numerous studies (Mazzoleni 

et al. 2014; D’Oria et al. 2015; Castellarin et al. 2011b). The flow through the breach is 

calculated using a broad-crested weir equation (same as used in the presented module) 

(Brunner 2016). The 2D breaching link is represented as a lateral structure which connects 

both 2D areas, riverside and floodplain. For this, we specify a synthetic terrain model, 

inflow discharges and downstream boundary conditions (Figure 33 and Figure 34). 

Another relevant distinction is that HEC-RAS simulations were found up to 20 times slower 

than LISFLOOD-FP runs using the same resolution and domain size (Shustikova et al. 

2019). 

Synthetic tests for HEC-RAS and LISFLOOD-FP models were built to compare the 

breach outflow on a simple terrain.  The synthetic DEM was designed to include a river 

channel with an adjacent floodplain, a levee (5 m crest height) and the floodplain behind 

the levee (Figure 33). 

     

Figure 33. Synthetic DEM with boundary conditions (BC) used in both models (left); terrain cross-

sections as reproduced by HEC-RAS and LISFLOOD-FP (LFP) from north to south (right). 
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While LISFLOOD-FP operates with a spatially uniform square mesh, which is at the 

same resolution as input raster grid, HEC-RAS internally processes terrain data into a 

Triangulated Irregular Network (TIN) file thus making slopes smoother. Therefore, the 

terrain profiles look different (See Figure 33) and this may influence the flow propagation. 

The parameterization of the breach module is set as follows: breach threshold is set to 2 m 

below the levee crest height, duration threshold equals to 10 seconds, breach depth was set 

to 2 meters, and the modular limit equals 0.5.   

Several simulation runs using different roughness coefficients in the range 0.03 -     

0.1 s m1/3⁄ , with sampling step of 0.01 s m1/3⁄  were performed. The model inflow 

hydrograph (Figure 34) was generated in such a way that in the absence of a breach the 

flood waters would not overtop the levee. The simulation time was set to 35 h with 3 s time 

step. 

             

Figure 34. Flow hydrograph used as an upstream boundary condition for the synthetic tests. 

We compared LISFLOOD-FP and HEC-RAS performance in terms of the breach 

outflow i.e. hydrograph shape and the peak flow differences. To improve model stability, 

the maximum Froude number was set to 1 for LISFLOOD-FP simulations, meaning the 

model is limited to subcritical and critical flows in this and all subsequent cases.  

4.2.3. Secchia inundation 

In addition to synthetic test, we used the new LISFLOOD-FP module to simulate a 

historical flood event that occurred on the Secchia River (right bank tributary of the Po 

River) in January 2014. This case study was selected to test the sensitivity of the model 

parameters. During this event, approximately 50 km² of the protected floodplain was 
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inundated as a consequence of a levee breach, causing a damage in excess of 400 million 

Euro and 2 fatalities. The water level at the levee did not exceed the design return period, 

so the levee was not overtopped. Post-event surveys concluded that the levee failed due to 

the lack of maintenance and burrowing animal activity, which resulted in erosive processes 

and followed by a lowering of the crest (Orlandini et al. 2015). The final breach depth 

reached the ground level. The full breach evolved within 9 hours and reached 80 m in width 

(Figure 35). The total outflow volume was estimated around 39 million m³ (Vacondio et al. 

2016).   

 

Figure 35. Study area of the Secchia flood: the location of upstream boundary condition (BC), the 

river channel, breach and floodplain (upper left and right panels). The photograph of the breach 

during the event (down left) (taken from Vacondio et al. 2016).  

In this test we aim to reproduce the 2D flow within the Secchia River channel, breach 

and consequent inundation of the initially dry floodplain (Figure 35). We use a LiDAR DEM 

of 1 m resolution which represents the bare earth terrain with buildings and vegetation 

removed. It includes the bathymetry of the river bed and levees with a vertical accuracy of 

±0.15 m. We aggregate the DEM to 25 m horizontal resolution, using the mean value of the 

1 m pixels. The levee is represented by ‘burning’ it into the 25 m DEM, i.e. the actual levee 

crest elevation is assigned from the 1 m LiDAR data to respective cells of the aggregated 

DEM. The resulting number of raster cells in the model domain was about 888,000. 

Additionally, we ‘burnt’ in an embankment downstream from the breach (northern part of 
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the domain) into the DEM, where the flood accumulated due to the elevated ground, as 

was reported by the post-event survey (D’Alpaos et al. 2014). The relief of the study area is 

characterised by highly heterogeneous terrain with a complex network of irrigation canals 

and embankments.  

The upstream boundary condition for the Secchia River is assigned ca. 5.5 km 

upstream from the breach, where a gauging station is located (Figure 35). The input 

hydrograph at this location was obtained from Vacondio et al. (2016). The event simulation 

time was 100 hours with a maximum time step of 5 seconds. Downstream boundary 

condition was set where the Secchia River confluences with the Po River and set as a free 

boundary. 

We identified the breach location from the post-event surveys and assigned 

corresponding three cells in the LISFLOOD-FP meaning the breadth equalled to 75 m 

(observed width was 80 m). The breach depth was assigned to reach the ground level. 

Because the breach was caused by an erosive processes, not overtopping, we adjusted the 

flood breach time manually according to historical observations. The levee failure extension 

was settled in order to reproduce the failure when the hydraulic condition (i.e. water level) 

within the river was equal to observations.  

We investigated the sensitivity of the LISFLOOD-FP model to different modular 

limits. Additionally, we looked into the interaction between different values of the modular 

limit and the floodplain roughness coefficient in the area immediately behind the breach. 

Altogether we ran 135 simulations of all possible configurations of modular limit (0.1, 0.2… 

0.9 s m1/3⁄ ) and floodplain roughness coefficients (0.03, 0.035, 0.4 … 0.1 s m1/3⁄ ).  

The performance of the model simulation was assessed by comparing the simulated 

and previously estimated outflow discharge by Vacondio et al. (2016) using the Nash-

Sutcliffe model efficiency coefficient (NSE): 

𝑁𝑆𝐸 = 1 −  
∑ (𝑄𝑚

𝑡 − 𝑄𝑂
𝑡 )

2𝑇
𝑡=1

∑ (𝑄𝑂
𝑡 − �̅�𝑜)

2𝑇
𝑡=1

                                                   (16) 

Where, 𝑄𝑚
𝑡  is simulated outflow, 𝑄𝑂

𝑡  estimated outflow and 𝑄𝑜 is the sample mean 

of estimated outflow at each time step. The river bed was assigned a calibrated Manning’s 

n value of 0.015 s m1/3⁄ .  

Another aspect of model performance that we tested once the model was calibrated 

was the ability to reproduce the inundation boundary and water depth in the floodplain 

behind the breached levee. For this purpose, we looked into previous research and post-

event surveys done to describe and analyse this event. In particular, we referred to the flood 

extent estimated in Carisi et al. (2018). Carisi et al. (2018) reconstructed the event reaching 

90% Critical Success Index (CSI, see eq. (13)). This data was used as a benchmark to evaluate 

the simulated inundation extent. We selected the CSI (Eq. 13) to assess the match of the 

simulated and observed inundation extent. 
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Additionally, we looked into the spatial distribution of water depth at available 

control points, which were obtained from the field surveys done by the local municipalities 

and publicly available photographs of the water and wreck marks. Such measurements are 

known to be prone to errors, which could reach up to 0.5 m (Horritt et al. 2010a). All 

together there were 46 such control points, which are mostly located within the towns of 

Bastiglia and Bomporto. We analysed the ability of the models to predict these water 

elevations using Root Mean Square Error (RMSE). These and all consequent simulations 

were performed on a server with 2 CPUs having 20 real cores and hyperthreading 40 cores. 

4.2.4. November 1951 Polesine catastrophic flood of the Po River 

In order to test the LISFLOOD-FP model on more extreme events for geographically 

larger areas and evaluate its computational efficiency and accuracy, we simulated the 

catastrophic Polesine riverine flood, which occurred in November 1951 on the Po River 

(Northern Italy). During this event, an unusually massive rainfall generated extreme 

discharges in the Po river reaches (Viero et al. 2019). About 50 km upstream from the river 

mouth (at the Pontelagoscuro gauging station, see Figure 36), the left levee of the main 

channel was overtopped and then eventually breached at 3 different locations. The ultimate 

breach width reached the width between 200 and 300 m (See Figure 36).   

The flood waters inundated over 1000 km² of protected floodplain, eventually 

reaching the shore of the Adriatic Sea. The event caused 114 deaths, long lasting population 

displacement, about $7.8 billion monetary losses (in 2018 dollar values) and catastrophic 

impact on local ecosystems (Viero et al. 2019).  Recent studies by Masoero et al. (2013) and 

Viero et al. (2019) together with historical reports provide an overview of the event. For the 

LISFLOOD-FP model setup, the upstream boundary condition was generated based on the 

report by SIMPO (1982), while some of the breaching parameters were retrieved from 

Masoero et al. (2013), who  specified the location of the three breaches and their final width.  

The latter values were 220, 204 and 312 m, which in our set up were represented as breaches 

of 250, 200 and 300 m wide respectively. The reconstruction of the terrain data 

corresponding to the state of 1951 is challenging given that anthropogenic changes in the 

years after the event have triggered land subsidence of up to 3 meters in the coastal part of 

the model domain (Viero et al. 2019).  However, the study of Carisi et al. (2018) pointed out 

that manmade alterations that mostly influence flood hazard over large floodplains are 

generally linear infrastructures. Viero et al. (2019) reports that some of the embankments 

were raised and new embankments were constructed in the aftermath of the event. We use 

terrain data from 2004 (river channel bathymetry) and 2011 (floodplain) survey (both 

datasets are provided by the Po River Basin Authority, www.adbpo.it. We resampled 2 m 

resolution LiDAR data to 50 m resolution DEM and imposed the actual height of the 

embankments taken from LiDAR survey onto the resampled DEM. 
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Figure 36. Polesine flood study area (upper left). Photograph of the flow through one of the 

breaches during the event (upper right). Study area extent and the outline of the surveyed flood 

extent (lower).  

In this approach, the effect of the linear structures (embankments) on the flow propagation 

within the main channel is explicitly considered. Since we use the terrain data including 

levee locations which do not exactly correspond to the state of 1951, we expect certain 

dissimilarities, especially in the areas around newly built embankments.  Because the exact 

levee geometry could not be reproduced due to differences in terrain between the event 

occurrence (1951) and data acquisition (2011), we set up the model according to the current 

elevations (2011). This means that the crest height, the breach depth relative to crest height 

and adjacent bathymetry were as of 2004/2011. We simulate the Polesine flood event in the 

fully 2D mode on the domain of over 4000 km².  Same as for the Secchia event study, we 

model the whole chain of the event including the 2D river flow, levee breaching, weir 

overflow and subsequent floodplain inundation. The upstream boundary condition is set 

up at the Revere gauging station (Figure 36), while downstream was at the Adriatic Sea. 

First, we calibrated the model against the reported discharge values at the Pontelagoscuro 

gauging station (SIMPO 1982) using a spatially uniform channel roughness coefficient 

where the breaches are not considered in the simulation.  Afterwards, we set up the 
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breaching locations and widths as reported in Masoero et al. (2013). The threshold height is 

set to the levee crest height and the failure occurs instantaneously. The breach time was 

adjusted to allow simultaneous breach at all 3 locations. The floodplain was given a uniform 

roughness coefficient of 0.05 s m1/3⁄ . The simulation duration was set to 348 hours, of which 

first 61 hours were a warm-up with a maximum time step of 5 s. The breaching depth was 

set to 7 m at all locations and the modular limit of 0.5 was selected by trial and error in order 

to let the simultaneous breach at all indicated locations. The approximate extent of the flood 

is known from the previous studies of Viero et al. (2019), which is reported to have 88% 

accuracy (CSI). This data is used here to evaluate the model performance using CSI (Eq. 13).  

4.3. Results 

4.3.1. Synthetic tests 

In the synthetic tests, the breach occurred for simulations where the roughness 

coefficient of the floodplain was more than 0.05 s m1/3⁄ . For lower roughness coefficients 

the breach was not activated because the triggering hydraulic conditions were not met. The 

shape of the outflow hydrographs is similar for both models for all roughness coefficients 

(Figure 37). In LISFLOOD-FP simulations the breach occurs about 1 hour later than in HEC-

RAS. The absolute difference in the discharge peaks is rather insignificant, considering the 

inflow discharge. For n = 0.05 and 0.06 the LISFLOOD-FP peak is 7% lower than HEC-RAS, 

whereas for 0.07, 0.08, 0.09 and 0.1 both models perform identically for this parameter 

(difference is less than 1%). The computation time for LISFLOOD-FP simulations was 9 

times faster than for identical setup of HEC-RAS. 
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Figure 37. Flow through the breach simulated by HEC-RAS and LISFLOOD-FP, unsteady 

boundary conditions. 

 

4.3.2. Secchia inundation 

As outlined in the Methods section (Chapter 4.2.), the aim of this case study was to 

analyse the performance of the breach module on a complex terrain for a historic event and 

explore the sensitivity to various model parameters. In Figure 38 the performance with 

regards to the simulated outflow is evaluated depending on the roughness coefficient and 

modular limit. The outflow discharge is more sensitive to variations in the roughness 

parameters compared to variations in the modular limit. The difference between NSE 

values obtained for the set of modular limits within each roughness coefficient (i.e. modular 

limits 0.1 – 0.9 run with 0.03  s m1/3⁄ ) are in range of 0.05-0.07. Whereas, the variation of 

NSE for different roughness coefficients and same modular limit is in range of 0.32 (as a 
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maximum value). The NSE slightly increases for lower Manning values, becoming nearly 

stable at <0.025 s m1/3⁄ . For lower roughness values (<0.015 s m1/3⁄ ) LISFLOOD-FP becomes 

numerically unstable in calculating the flow leaving. As can be seen from Figure 38, there 

is a pattern change when the modular limit is 0.1 for most of the roughness coefficients.  

 

Figure 38. NSE values for each configuration of modular limit and roughness coefficient n. 

Among all simulations the best NSE value was obtained from the configuration 

where the modular limit was set to 0.1 and floodplain Manning value n = 0.025 s m1/3⁄  (See 

Figure 38). For this combination, the NSE coefficient reaches 0.96. Because the modular limit 

value is constant in each simulation, this seemingly low value (0.1) compensates for effect 

of changes in the upstream head over the event.  Therefore, we select this configuration for 

further analysis. The overall volume of water leaving the breach in the selected simulation 

run was about 7% higher than estimated (which is 42 and 39 m³/s correspondingly). The 

CSI value for the best calibrated run was 64%, which shows the ability to reproduce the 

inundation extent (See Figure 39).  

The RMSE values of observed and simulated water depths at 46 points is 0.84 m (See 

Figure 39). Horritt et al. (2010a) reports that post-event surveys of flood water marks might 

have up to 0.5 m vertical error. The resulting RMSE is close to the observational error. 

Concerning the computation time, it took a little over 3 minutes to run one simulation (on 

a server with 2 CPUs having 20 real cores and hyperthreading 40 cores).  
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Figure 39. Simulated (blue) and observed (red) inundation extent 

4.3.3. November 1951 Polesine catastrophic flood, Po River 

The simulations of the Polesine flood on the Po river showed that the model is able 

to correctly simulate the simultaneous breach of all 3 locations at the time reported by Viero 

et al. (2019). Due to the lack of the data on the flow leaving through the breach into the 

floodplain and the shape of the outflow hydrograph, we evaluated the model performance 

based on the inundation extent, for which more studies (i.e. Masoero et al. 2013; Viero et al. 

2019) are available.  As can be seen from Figure 40, the propagation of the flood water 

eastwards is correctly captured by the model, which resulted in 83% accuracy in terms of 

the CSI for the overall flood extent compared to the surveys.  

The computational time of one simulation of 348 hours and over 1,620,000 cells of 

the input domain with a maximum time step of 5 s was about 50 minutes. 
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Figure 40. Results of the Polesine flood simulation. Maximum water depth at each cell and 

surveyed flood extent. 

4.4. Discussion 

The new levee breaching sub-routine of LISFLOOD-FP was tested on a number of 

synthetic and real case scenarios.  

4.4.1. Synthetic cases 

First, we have identified that our subroutine behaves similarly to the breach module 

of the HEC-RAS 5.0.3 model under synthetic conditions. Outflow hydrographs using 

various roughness values had similar patterns in the two models. The peak flow differences 

were less than 1% for most of simulations. Largely because the same equation is used to 

calculate the flow leaving through the breach (see Methods section, Chapter 4.2.). The slight 

differences between the two models might be explained by their rather different 

formulations used to calculate floodplain flow (inertial formulation of the shallow-water 

equation in LISFLOOD-FP and full momentum equation in HEC-RAS) and 

correspondingly different peak flow in the hydrograph in main channel.  

For unsteady flow simulations (triangular hydrograph, Figure 34) we obtained a 

definite pattern, where under identical set ups and breaching conditions, the levee fails 

about an hour later for all simulations in LISFLOOD-FP compared to HEC-RAS. This is due 

to the differences in channel and floodplain flow to the breach location, which, as 

mentioned above, is computed using different terms. For lower roughness coefficients (< 

0.6 s m1/3⁄ ) the difference in the peak flow is the largest, while for the higher ones the peak 

flow is virtually identical. Also, the roughness coefficient controls the water level in the 

river channel and the adjacent floodplain and thus the water height above the levee toe. 
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Higher water levels at higher roughness conditions lead to a stronger breach outflow 

discharge. 

The tests demonstrated reliability of the new breach module in LISFLOOD-FP 

under different conditions on simplified terrain and also shows the potential to calibrate 

the models to obtain identical results.  Moreover, the computation time difference showed 

an obvious advantage of LISFLOOD-FP over HEC-RAS. Computation time plays a crucial 

role in large-scale flood modelling and is rather a remarkable burden in 2D large-scale 

simulations particularly. 

4.4.2. Historic events simulations 

Concerning more complex configurations, we looked at the embankment failure 

that occurred on the Secchia River. There we aimed at simulating the whole chain of the 

flood event starting from the flow ca. 5.5 km upstream of the breach, the failure and the 

floodplain inundation using the new module of LISFLOOD-FP. Notwithstanding the 

heterogeneity of the terrain in the area, which potentially might have become a source of 

inaccuracies, LISFLOOD-FP produced credible outcomes. Moreover, a raster-based model 

with 25 m resolution would not be able to include fine linear features of the terrain such as 

embankments and canals, which are in some cases not more than 5 m wide. We suggest 

that in order to address these points additional calibration of the floodplain roughness 

coefficients should substantially improve the flood extent fit, however this was not the goal 

of the sensitivity analysis. This study was not deliberately assessing the uncertainties 

related to the input data, nevertheless, it is worth mentioning that there are possible 

ambiguities related to the DEM vertical accuracy and likely errors in the water evaluation 

control points.  

In some simulations low modular limits of 0.1 provided numerically unstable 

calculations of the flow leaving the breach with the large portion of backwater effect at the 

time point when it is not supposed to occur. The tests have shown that such instabilities can 

be solved by the change of modular limit. Based on sensitivity analysis and synthetic tests 

we found that modular limit values between 0.2 and 0.8 produce numerically stable 

simulations. Moreover, very low Manning roughness coefficients (< 0.015) used in the area 

adjacent to the breach should be avoided due to instability issues.  

Concerning the test of the Polesine flood of 1951, due to the lack of detailed 

bathymetry and terrain data from 1951, the model was set up according to modern 

geometries (breach depth and width). LISFLOOD-FP reached sufficient accuracy in 

simulating the whole chain of the event: extreme water levels within the channel, 

simultaneous breach at multiple pre-defined locations and consequent inundation of the 

floodplain. Investigating the floodplain flow propagation, we gained substantial accuracy 

of 83%. Viero et al. (2019) in their study attained 86-88% accuracy by using a DEM which 

does not contain anthropogenic changes imposed since 1951. However, the model was not 
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able to simulate inundation in the western part of the domain. This was expected due to the 

terrain topography which lowers to the east, closer to the vicinity of the sea coast. The 

changes in terrain elevation between 1951 and 2004/2011 are rather prominent in the 

western part of the model domain (Viero et al. 2019) . As mentioned above, some of the 

embankments were built after 1951; one of them crossing from north to south and acted in 

our simulation as a flood boundary (see brown line in Figure 40). We suspect that this could 

explain the underprediction of inundation in the western part of the domain.   

It is, however, important to specify that the reference inundation extent used to 

compute CSI is likely subject to biases, as it was reconstructed based on historical data and 

post-event field surveys (Viero et al. 2019). From this test we could see that the sub-routine 

is numerically stable for a geographically large simulation with multiple breaches and was 

able to produce reasonable outcomes. 

4.4.3.  Assumption and limitation of the levee failure extension 

Alongside the module flexibility and rather simple setup, there are certain aspects 

of the newly developed routine that that are worth highlighting.  First and foremost, the 

input DEM has to include important elements, such as the levee location and crest height. 

In many instances the levee height and location data can be unavailable. However there are 

options being developed to extract levee locations and height from the remotely sensed 

images, available geodata (OpenStreetMap (Contributors OSM 2012)) cadastral data. Some 

methods would include DEM-based algorithms  (Sofia et al. 2014; Krüger 2010; Wing et al. 

2019). The increasing availability of LiDAR surveys should make levee extraction more 

feasible for flood modellers in the future. 

Another important aspect is that the assumed breach shape is rectangular and 

expressed as a multiple of the raster resolution. For large-scale modelling which sometimes 

run at the 100 m resolution and coarser, the minimum breach width might be an 

overestimation. Numerous studies on the breach modelling have shown the importance of 

a detailed description of the geometry of the breach, which in most cases is either 

rectangular or trapezoidal (Viero et al. 2013; Wu and Li 2017). In our study, we assume that 

for large-scale studies, where the breach width would range from 25 m up to hundreds of 

meters, such complication for the model is negligible. The levee thickness is defined by the 

terrain resolution, meaning, if the input DEM resolution is 50 m, the levee is 50 m wide.  

An important point to consider is that breach occurs instantaneously, meaning, the 

breach width starts developing as soon as the breaching conditions are met. For long-term 

simulations on large scale we might neglect the breach evolution over time (Di Baldassare 

et al. 2009b). 

Moreover, the model does not account for sediment transport and rapid changes in 

the river bed due to morphodynamic processes. Therefore, in cases where the flow is 

expected to be largely impacted by the above mentioned factors, the breaching module of 
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LISFLOOD-FP should be replaced by a morphodynamic model. The tool is not meant for 

detailed engineering studies of the breaching phenomenon and should be used for regional 

and large-scale hazard and risk assessments. However, in case when supercritical flow is 

expected, full-momentum models should be applied.   

4.5. Conclusion 

This Chapter presents a new levee-breaching extension within the widely-used 

model LISFLOOD-FP for simulating flood breaching scenarios over geographically small 

and large areas, which extends the array of possible applications of the LISFLOOD-FP 

model. Levee breaching is a useful component for hydrodynamic models to replicate the 

complex interaction between the river channel and floodplains in 2D mode.  The tests 

shown above prove that the extension is capable to reasonably simulate historical flooding 

events. The tests on various domain sizes and different magnitudes of hydrological forcing 

proved that the module is able to capture the flow leaving the breach and reproduce the 

interactions between the river channel and protected floodplains. Given the computation 

time of the Secchia river flood simulations (about 3 minutes) and the rather large amount 

of computational cells (880,000) we suggest that levee breaching in fully 2D mode with 

LISFLOOD-FP can be performed in Monte Carlo simulations for the probabilistic flood 

mapping. The same conclusion also applies for larger study areas as demonstrated by the 

Polesine flood simulations. Compared to already existing tool (i.e. HEC-RAS), which allows 

levee-breaching in fully 2D mode, LISFLOOD-FP is much more computationally faster. The 

ability to quickly yet efficiently simulate levee failure and consequent inundation of the 

protected floodplain in 2D mode may be of great use for flood risk modellers and decision-

makers, as the calculation of the residual risks is a crucial component for flood 

management.  Such efficiency can benefit near-real time simulations and support flood 

management solutions in emergency cases.  

Further studies should be aimed at running more tests of the tool in more diverse 

conditions, setups and scales, in detail investigate backwater effects. By accepting certain 

assumptions and performing numerous tests, we suggest that the LISFLOOD-FP breaching 

extension is an effective tool which will allow for levee breaching simulations on the local, 

regional and large scales with the minimum setup and computation effort.
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Synthesis 

The Thesis aimed at investigating new approaches to simulate inundations and 

flooding across large geographical scales, considering the possibility for levee systems to 

breach, adopting a fully 2D modelling scheme. In order to tackle this general goal, we 

addressed the following research questions (RQs): 

1. How do two-dimensional hydrodynamic models with different complexity 

contribute to flood hazard mapping with a specific focus on areas with complex 

topography? What is their potential relative to large-scale studies? 

2. What is the potential of raster-based 2D models for simulating inundations 

across large geographical areas characterized by heavily anthropogenically 

modified terrain? What is the impact of terrain pre-processing and resolution 

under such circumstances? 

3. Concerning a new levee breaching extension for LISFLOOD-FP1 model, what 

are its main advantages and potential? 

 

Below we would like to present the conclusion drawn for each RQ.  

 

How do two-dimensional hydrodynamic models with different complexity contribute to flood 

hazard mapping with a specific focus on areas with complex topography? What is their potential 

relative to large-scale studies? 

                                                      

 

1 Bates, P.; Horritt, M. S.; Fewtrell, T. J. (2010): A simple inertial formulation of the shallow 

water equations for efficient two-dimensional flood inundation modelling. In Journal of 

Hydrology 387 (1-2), pp. 33–45. DOI: 10.1016/j.jhydrol.2010.03.027. 
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The aim of first RQ was to see how two models (LISFLOOD-FP and HEC-RAS 2D2) 

of different complexity (in terms of the governing equation used and the mesh 

representation) with given terrain resolution reproduce the flooding event of January 2014 

that occurred on Secchia River and how accurate the results are. We adopted rather coarse 

resolutions for the Secchia River study area, as our main goal was to identify the potential 

of the codes and mesh dimensions to simulate events over large regions; therefore, we 

resampled LiDAR DEM to obtain 25, 50 and 100 m resolution datasets. First, it was 

concluded that 25 m resolution for describing terrain with complex linear features is a 

reasonable compromise between output accuracy and computational time for LISFLOOD-

FP model (8 minutes on the 4 cores with the Intel Core i7 3.60 GHz CPU, 64 GB RAM), while 

for HEC-RAS it would be the configuration of 1 m subgrid terrain and 100 m mesh size (4 

minutes on the same hardware). The other resolutions performed comparably to the best 

performing ones in terms of the overall flood extent (77-78% compared to best result of 

81%), however a more detailed look showed, that in the focus areas (small urbanised 

settlements, which experienced most damages during the January 2014 Secchia River 

flooding event) the models tended to underestimate the observed flooding parameters 

(water depth and flood extent). This brought us to the conclusion, that despite overall 

satisfying performance (77-81%), the focus areas with potential to have large socio-

economic losses remain poorly predicted. This issue is suggested to be solved by focusing 

on such areas initially, by giving additional attention to such areas in the model set up and 

calibration. Another crucial factor in flood hazard modelling is computation time. To 

investigate this aspect we analysed the run time in light of the obtained results accuracy. 

We found out that best performing configurations of LISFLOOD-FP with 25 m resolution 

was two times slower than HEC-RAS (8 minutes and 4 minutes, correspondingly). It is 

worth pointing out, that the HEC-RAS configuration which showed a good balance 

between results accuracy (78% inundation extent accuracy) and computation time (4 

minutes) required the usage of the LiDAR terrain data with 1 m resolution as an input file, 

which is available in very limited number of river basins around the globe. While, 25-30 m 

DEM is more available globally (e.g., SRTM DEM has 30 m resolution).  

Second, the investigation provided useful insights regarding the complexity of the 

modelling schemes and mesh representation. Our study highlights the computational 

advantage of the inertial formulation of the shallow water equations LISFLOOD-FP model 

compared to diffusion wave HEC-RAS. Comparing the duration of one simulation for the 

same mesh sizes and time step of the two models, LISFLOOD-FP was up to 20 times faster 

(for 50 m LISFLOOD-FP and 50 m HEC-RAS mesh with 1 m subgrid terrain). This study 

                                                      

 
2 Brunner, G. W. (2016): HEC-RAS River Analysis System. Hydraulic Reference Manual. 

Version 5.0.  HYDROLOGIC ENGINEERING CENTER DAVIS CA. 
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showed that such codes and setup can potentially be used for probabilistic/preliminary 

flood risk assessment.  

 

What is the potential of raster-based 2D models for simulating inundations across large 

geographical areas characterized by heavily anthropogenically modified terrain? What is the impact 

of terrain pre-processing and resolution under such circumstances? 

 

To address this question we considered large-scale simulations on the River Po 

(study domain of over 6675 km²). A fully 2D model implemented by referring to detailed 

topographic data may produce spatially complete results in terms of the inundated extent, 

water depths and velocities. We looked into the mid-lower portion of the Po River, from 

near Isola Sant’Antonio to Po River delta (overall length of the river stretch: 350 km). This 

river reach is extremely complex in terms of morphology and terrain, i.e. there is an 

extensive network of main and minor embankments that protect the floodplains from the 

events of different recurrence interval. We analysed 6 sets of topographical configurations, 

which represented different resolution (30, 50 and 100m) and levee representation (simple 

LiDAR aggregation and LiDAR aggregation with precise manual incorporation of the levee 

height and location). 

We simulated a historic event that occurred on the Po River in October 2000 using 

LISLFOOD-FP fully 2D model. Our results showed that in such complex system, as in the 

current case study, a careful manual incorporation of the actual levee location and height is 

the most crucial element for controlling the accuracy of the simulation. The inclusion of the 

actual levee height into the working grids enabled us to look into the hydraulic process in 

detail. By performing an exhaustive calibration of the model, we identified that 30 and 50 

m resolution provided favourable results in terms of maximum water surface elevations at 

the 171 investigated river cross-section by means of RMSE. With the second configuration 

(50 m resolution with manually added levees) we gained better performance in relation to 

the computation time, which was over two times longer for 30 m resolution with only a few 

centimetres improvement for the water surface elevation RMSE (0.34 m for 30 m resolution 

and 0.39 for 50 m resolution). The comparison between observed and simulated discharges 

at Cremona gauging station (upstream part of the reach) showed that the model slightly 

overestimates the discharge (Mean Error 311 m³/s and -272 m³/s for 30 m and 50 m 

resolutions correspondingly, where the peak is 12,000 m³/s). Moreover, the peak discharge 

for both configurations was less than 1% lower than observed.  The behaviour of the 30 m 

and 50 m resolutions in terms of the distribution of local velocities was very similar, the 

average difference was within ±0.5 m/s. Maximum velocities were observed at the outer 

side of meanders near the embankment, which gives valuable input for the investigation of 

the embankment stability and breach probability.   
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Such an approach (2D) advances previous studies (1D, combined 1D/2D 

simulations) done on the same study area. This leads to an assumption that 2D raster-based 

model can be used for even larger areas, than those presented above and cover i.e. the whole 

Po River basin.  Furthermore, we suggest that it makes it possible to consider the levee 

breaching simulations for large-scale studies.  

 

Concerning a new levee breaching extension for LISFLOOD-FP model, what are its main 

advantages and potential? 

 

Analysing two previous objectives, it was concluded that with this given 

configuration and current data availability it is possible to further deepen the 

understanding of the channel-floodplain interactions on the large-scale. Such 

understanding will greatly contribute to the studies on the river system behaviour and flow 

dynamics upstream and downstream from a possible breach. Controlled flooding or 

activation of protected floodplain may reduce breaching risk downstream. On the basis of 

these encouraging outcomes, we specifically developed a new extension for the widely 

used and well-known model LISFLOOD-FP. The new LISFLOOD-FP extension enables the 

user to simulate levee-breaching scenarios over geographically small and large areas, which 

extends the array of possible applications of the model itself. The extension is based on a 

set of breaching conditions written into the original code of LISFLOOD-FP, where the 

breach is activated when a user-defined breaching criteria are met (e.g. water levels from 

the riverside are higher than a certain value for a set duration of time), while the breach 

location and depth are also set by the user.  

Since LISFLOOD-FP is a raster-based model that operates with rectangular 

structured mesh of the same size as input raster, the minimal breach width equals to the 

input raster resolution. Such simplified set of parameters is particularly useful for large-

scale simulations, when multiple breaches are considered for levee systems consisting of 

several thousand kilometres of levee and embankments. In order to test the new extension, 

we applied an analysis of different flow conditions and topographic settings. It showed that 

the results are in good agreement with those obtained from full-momentum 2D modelling 

scheme (i.e. HEC-RAS 2D) and historical records.  The simple tests on synthetic terrain and 

hydrograph and comparison with HEC-RAS 2D proved the ability of the new LISFLOOD-

FP model to accurately reproduce the outcomes of state-of-the-art numerical schemes in 

terms of the flow leaving. The two other events analysed are January 2014 Secchia River 

flood and a catastrophic flooding of 1951 in Polesine.  

The Secchia inundation case was run in fully 2D mode, where the river flow, the 

breaching link and consequent floodplain inundation was run in one single setup. The 

analysed discharge through the breach showed that the model is more sensitive to 

variations in the roughness parameters (at the areas at and near to the breaching location) 
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compared to variations in the modular limit. The accuracy of LISFLOOD-FP in simulating 

floodplain inundation was 64% (Critical Success Index, which measures the spatial fit of the 

model compared to observations, it considers over- and underestimations). Given the 

complexity of the study area (numerous embankments and irrigation canals which were 

not possible to capture with the 25 m DEM resolution) such result is considered as 

sufficient. 

The simulations of the Polesine flood on the Po river (extreme inundation event 

impacting over 1000 km²), showed that the model is capable of correctly simulating the 

concurrent activation of three breaches at three different locations, as reported in historical 

records. This setup allowed the overtopping of the levee and consequent breach to be well 

captured and to be in line with the reports. The propagation of the flood water eastwards 

was correctly captured by the model, which resulted in 83% accuracy in terms of the Critical 

Success Index value for overall flood extent compared to the surveys.  

The flexibility of the new module allows levee breaching simulations not only on 

the case studies shown above, but it can be applied in various geographical regions.  The 

current configuration is designed to activate a previously located breach for user-specified 

criteria, therefore it does not enable the user to perform detailed studies of the breaching 

mechanisms nor of the morphological evolution of the breach, which are very common in 

the areas with high rates of sediment movement and levee erosion. Nevertheless, the levee-

breaching module is a useful tool for preliminary flood risk assessment and probablistic 

flood mapping. A fast solution to map levee breaches and flood propagation behind the 

levees is crucial for the development of flood management strategies, and this tool is 

specifically designed to tackle this objective and track river system behaviour and can be 

used on small and large-scale studies globally. 

The runtime for the Polesine flood simulatoin, with c.a. 1,620,000-cell mesh (over 

4000 km²) and overall duration of the event of 348 hours, was about 50 minutes on a server 

(with 2 CPUs -20 real cores and hyperthreading 40 cores- and 64 GB RAM). Given the 

efficient computation time, various flooding scenarios with different breach configurations 

and hydraulic conditions can be run on a batch mode and produce a set of flood hazard 

maps. Based on the performance of the tool we suggest that the tool can be applied on much 

larger areas than presented in the thesis, i.e. longer river reaches, large basin studies.  

Moreover, because of its setup efficiency, the new module may greatly contribute to the 

flood mapping during an event and in emergency situations, when decisions needs to be 

made within a few hours. For instance, in reaches where the monitoring system registers 

higher water stages and discharges, which in turn may cause overtopping and possible 

breaches in highly vulnerable areas, it is possible to provide a quick assessment of flooding 

dynamics for different hypothetical failures and assess in advance the effects of artifical 

levee opening at a given location (i.e. controlled flooding) for preventing from higher flood 

losses downstream. In contrast to somewhat faster options, such as 1D/2D models, fully 2D 
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models allow representation of a scope of hazard parameters (water depth, flow velocities, 

arrival time) and the behaviour of the flow upstream and donwstream of the breach, which 

can not be fully captured by 1D/2D models. This advances existing strategies in numerous 

governmental and non-governmental bodies which are responsible for flood management 

and emergency management. For instance, Civil Protection Agencies, Basin Authorities, 

land-use and urban planners, infrastructure and building agencies and so on. Such flood 

maps can be used to plan an intentional and controlled leavee opening elsewhere upstream 

(controlled flooding), to prepare evacuation and rescue schemes, facilitate the installing of 

soft and hard flood defences.  

 

It has been shown that 2D models regardless of their complexity and mesh 

representation provide valuable input in terms of the representation of the flooding 

parameters (water depth, flood extent, etc.). While HEC-RAS has a significant advantage in 

terms of the possiblity to include high-resolution subgrid  (1 m) and compute very detailed 

flood maps, raster-based LISFLOOD-FP achieved similar results while using coarser data 

(25 m) on complex terrain. In case of the Po River and its topographically complex mid-

lower portion (network of minor and main embankments of different design return period 

along the whole reach), the use of 2D model may greatly improve already existing flood 

maps, which are now rather basic and schematic. As controlled flooding is recognised as 

one of the flood management solutions and applied in numerous countries, we suggest that 

development of the spatially complete hazard maps in terms of water depth and velocities 

may greatly facilitate for flood management and mitigation. The array of flooding scenarios 

can be expanded with a set of probabilistic flood maps with various breaching 

configurations along main embankment in order to account for different flood magnitude 

and breaching locations. As was shown by the January 2014 flood event on the Secchia 

River, even recurrent floods, that is 1 in 5 or 1 in 10-year floods, may cause immense 

damages and life losses. Therefore, we suggest that flood maps of different magnitude and 

breaching scenarios should be available to the responsible authorities. With the new levee-

breaching extension of the computationally efficient LISFLOOD-FP, the development and 

simulations of breaching scenarios on local and large-scales has proved to be an accurate, 

efficient and easy-to-apply tool.   

Further work on this matter should address uncertainties associated with 2D 

modelling on large scale considering levee breaches. The improvements should be made to 

aid the flood risk assessment on the basin scale and account for the numerous uncertainties 

associated with the breaching parameters. One of the ways to improve production of the 

levee breaching scenarios is by including fragility curves, which are highly informative 

tools for the identification of the location of the breach, based on the flood event 

characteristics (e.g. freeboard, duration, local velocity, hydraulic head, etc.). 
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Finally, we suggest that given the ever-growing computation power of the working 

stations and availability of high-resolution data, there will be a large attention given to 

various 2D models applied on large-scale studies. This study has shown that 2D modelling 

using raster-based code is a feasible exercise even on very large domains. Moreover, the 

deliberate representation of the terrain with a complex network of linear features, as it was 

demonstrated here, greatly improves the quality and content of outputs compared to those 

obtained from local studies and coarse continental models available now. Detailed 2D 

models are a necessary step in providing spatially complete flood maps to contribute to the 

EU Floods Directive objectives, hence flood risk mitigation and preparedness.
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