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Abstract

Faculty of Engineering

Department of Electrical, Electronic and Information Engineering ”G. Marconi (DEI)

Doctor of Philosophy

by Victor Javier Kartsch Morinigo

Human-Machine Interaction (HMI) systems, once used for clinical applications, have re-

cently reached a broader set of scenarios, such as industrial, gaming, learning, and health

tracking thanks to advancements in Digital Signal Processing (DSP) and Machine Learn-

ing (ML) techniques. A growing trend is to integrate computational capabilities into

wearable devices to reduce power consumption associated with wireless data transfer

while providing a natural and unobtrusive way of interaction. However, current plat-

forms can barely cope with the computational complexity introduced by the required

feature extraction and classification algorithms without compromising the battery life

and the overall intrusiveness of the system. Thus, highly-wearable and real-time HMIs

are yet to be introduced.

Designing and implementing highly energy-efficient biosignal devices demands a fine-

tuning to meet the constraints typically required in everyday scenarios. This thesis work

tackles these challenges in specific case studies, devising solutions based on bioelectrical

signals, namely EEG and EMG, for advanced hand gesture recognition.

The implementation of these systems followed a complete analysis to reduce the

overall intrusiveness of the system through sensor design and miniaturization of the

hardware implementation. Several solutions have been studied to cope with the compu-

tational complexity of the DSP algorithms, including commercial single-core and open-

source Parallel Ultra Low Power architectures, that have been selected accordingly also

to reduce the overall system power consumption. By further adding energy harvesting

techniques combined with the firmware and hardware optimization, the systems achieved

self-sustainable operation or a significant boost in battery life.

The HMI platforms presented are entirely programmable and provide computational

power to satisfy the requirements of the studies applications while employing only a frac-

tion of the CPU resources, giving the perspective of further application more advanced

paradigms for the next generation of real-time embedded biosignal processing.
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Chapter 1

Introduction

Embedded wearable applications have gained a considerable boost in popularity,

driven by the development of unintrusive and low-power digital systems. As this hap-

pens, biopotential monitoring devices are gaining traction considering their potential not

only in health applications but also to anticipate or infer human intentions in everyday’s

life on healthy subjects.

Among the plethora of information available from the human body, neural activity

(EEG) has attracted significant interest since it holds the promise to provide a direct

brain-computer link [1] [2] with limited invasivity. As a consequence, several commer-

cial platforms, such as Emotiv Insight and EPOC+ [3], Neurosky MindWave [4], and

OpenBCI [5] already provide simple BCIs features, enabling new application scenarios

beyond the biomedical, such as industrial and gaming[6].

Furthermore, hand gesture recognition is a critical element to enable natural and

advanced ways of communication between objects and users in many domains, in the

track of the ever-evolving IoT trend. One of the major approaches used for hand ges-

ture recognition, also in commercial scenarios, is the processing of muscular activity [7]

through electromyography (EMG). Prosthetic systems such as [8] and [9] can decode

predefined bursts of muscular contractions to produce a highly reliable and amenable

wearable system. An approach that is gaining popularity is based on machine learning

(ML) techniques to analyze EMG signal patterns during muscular contractions.

Embedding these systems is crucial to enable compelling human-machine interac-

tion. The options explored to embedding BCIs processing include using portable single-

board computers, streaming acquired data to an external device, and embedding ac-

quisition and processing on a single device. The latter, also known as edge computing,

1



Introduction 2

is considered a more energy-efficient approach as it reduces the power intrinsic to data

transmissions.

Nevertheless, porting applications, for both EEG and EMG, to wearable and em-

bedded systems is not a trivial task, posing several challenges in terms of computational

power, battery life, and wearability. For instance, feature extraction and classification

has to be supported by extremely high-efficiency hardware and firmware optimization

to satisfy real-time constraints and minimize power consumption simultaneously.

Clinical-grade EEG/EMG systems are based on cumbersome systems that are hardly

socially acceptable in a non-clinical environment [10]. And, although some of the com-

mercial platforms listed above provide a less intrusive interface, they lack on signal qual-

ity [11]. Likewise, this inconvenient is found for the processing and acquisition node.

Commercial and research nodes with a practical form factor have yet to be delivered

[5, 12].

The development of a complete, low-intrusive, fully wearable device is still an open

challenge. Designing and implementing highly energy-efficient biosignal devices requires

a multi-level approach to balance the challenges imposed by everyday-like devices. This

work offers a complete analysis to reduce the overall intrusiveness of the system through

sensor design and miniaturization of the hardware implementation and the use of both

commercial (ARM) and open-source (PULP) MCU architectures as to provide energy-

efficient and real-time processing. The next section describes the specific contribution

of this thesis.

1.1 Thesis contribution

This work tackles the previously introduced challenges from many prospectives,

including both hardware and firmware optimizations, in an application-oriented fash-

ion. Significant effort has been granted to the develop of BioWolf, a multicore highly

configurable platform that meets most of the modern HMIs requirements for everyday

scenarios. The development of BioWolf aims to provide solutions in terms of intrusive-

ness, performance, and energy efficiency. Intrusiveness has been significantly reduced

through improvements in the sensor interface and PCB miniaturization, obtaining an

area reduction of 4x to state-of-the-art (SoA) systems. In terms of energy efficiency,

BioWolf can provide 4x more battery life than single-core commercial base platforms

while only employing a fraction of the available processing power (<20%) and achiev-

ing State-of-the-art (SoA) accuracy for both EEG and EMG applications (>90% for

most cases). Furthermore, by adding energy harvesting techniques combined with the
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firmware and hardware optimization, some of the presented systems can achieve self-

sustainable operation or a significant boost in battery life (2-4x).

In the following sections, details of BioWolf design and its features are introduced.

Consequently, four study cases of biosignal classification and embedded implementation

are presented. Concretely, this work focuses on three study cases on EEG classification,

including a drowsiness detection system, an SSVEP-based BCI, an ERP-based BCI and,

finally, an EMG system for Gesture Recognition.

The results demonstrate the benefits of multicore microcontroller architectures for

biomedical signals for HMI to commercially available systems based on single-core pro-

cessors, empowering the next generation of real-time embedded biosignal processing.

1.2 Thesis structure

The rest of the thesis is structured as follows.

The second chapter, named, Acquisition and Processing of Biosignals for HMI, pro-

vides background information about the HMIs, describing in detail all the modules that

compose a typical HMI system and the challenges associated with a wearable deploy-

ment. Similarly, this chapter introduces the signal processing and classification tech-

niques to overcome the problems related to the stochastic and non-stationary behavior

of biosignals while being suitable for embedded implementation.

The third chapter, namely, Hardware Design, and Implementation of HMIs, provides

a summary and experimental results on the HMI architectures introduced in this work,

giving particular emphasis to BioWolf as it is the main focus of this thesis.

The fourth chapter, HMI applications using BioWolf, introduces details about the

signal processing, classification, embedded deployment, and optimizations of four case

studies for HMI. The first three (EEG) include a drowsiness detection system, a CCA-

based BCI for SSVEPs, and a system for food quality grading through ERPs, while

the fourth proposes an EMG gesture recognition system based on High-Dimensional

Computing. Each section offers a discussion to highlight the improvements achieved for

each application by employing the resources available in BioWolf to previous work and

the SoA.

Finally, chapter five draws the final conclusions of this thesis work.



Chapter 2

Acquisition and Processing of

Biosignals for HMI

Biosignals contain qualitative and quantitative information about the human body’s

state, which has been exploited in the past to improve the diagnosis and treatment

of health disorders. Most recently, it has also gained growing popularity to enhance

interaction with the external world through Human-Machine Interaction devices.

Fig. 2.1 highlights the main building blocks of an HMI system, which includes the

biosignal source, the analog-front-end, and the processing unit. A specific application

then tailors the resulting information to signal processing and classification techniques to

provide the control, monitoring, or feedback. This chapter offers a detailed introduction

about these blocks highlighting the challenges to provide unobtrusive and energy-efficient

HMIs.

2.1 Biosignals for Human-Machine Interaction

The body can provide a variety of signal sources that include, for instance, electrocar-

diogram (ECG), electrooculogram (EOG), and galvanic skin response (GSR). Nonethe-

less, those above are not suitable for HMI as not under volitional control from the

user, and therefore, only useful for monitoring. On the other hand, Electrocorticogra-

phy (ECoG), EMG, and EEG can be used for biomedical control and HMI, therefore,

providing a broader range of applications. Nevertheless, only EMG and EEG are prac-

tical for everyday scenarios. For these reasons, EEG and EMG are the main focus of

this work, and the following aims to provide insights about the body generation and

modulation mechanisms.

4
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Figure 2.1: Typical components of an HMI system, including the signal source, the
acquisition device, and the application.

2.1.1 EMG Signals

EMG signals are non-stationary stochastic electric potentials originated by the cur-

rent flow of ionic charges through the membrane of the muscular fibers. Muscle activa-

tion is triggered by the central nervous system through signals sent to the motor units

(motor neurons), innervating the muscular tissue. Each motor neuron is associated with

neuromuscular junctions and muscle fibers through its axiom. The activation of the

muscle fibers depends on the motor neurons depolarization threshold and its size [13].

The final EMG signal is thus, the sum of the different motor units.

EMG can be collected using invasive or non-invasive methods[14]. Invasive methods

consist of inserting recording needles to a specific muscle, allowing an excellent charac-

terization of the EMG response even for deeper fibers. Non-invasive techniques instead

capture the muscle (sEMG) activation, only requiring electrodes attached to the skin.

However, this method does not allow for fine characterization of the EMG source since

it only captures the surface activations. Still, sEMGs can be used in a variety of ap-

plications, including medical (muscular decease) and HMI. Fig. 2.2 presents a typical

sEMG response for muscle contraction. When performing different hand gestures, the

signal increase in amplitude with respect to the rest states.

2.1.2 EEG Signals

EEG signals are electric potentials generated on the scalp during the ionic transfer

of large groups of pyramidal neurons in the cerebral cortex. The neurons receive and

transmit electrochemical signals through axioms and dendrites. The axioms transport
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Figure 2.2: Raw EMG signal during several contractions and rest muscular cycles.

Figure 2.3: EEG response (time-domain) with eyes closed.

electrical impulses while the dendrites bring information to the cell bodies. The ionic

charges are due to interactions between Na+, Ca++, K+ cations, and Cl- anions. The

registered electric potential is the result of the summation of the individual potentials

of large groups of neurons fairing synchronously [15], which results in a stochastic and

non-stationary process[16]. Fig. 2.3 shows a typical EEG response to the closure of the

eyes.

Brain signals have been of great interest from early times since they hold the promise

of providing not only brain function information but also the status of the whole body

[17]. It has been used for diagnosis and treatment of brain disorders, while also attracting

significant interest in non-medical scenarios such as in industry and gaming [6].

EEG analysis is mainly based on the spectrum of the naturally occurring activity

or during auditory or visual stimulation. The spectral components of the EEG can be

separated into bands (waves or rhythms), called delta, theta, alpha, beta, and gamma

. Delta waves (0.5-4Hz) are visible during deep sleep stages (3rd-NREM) and walking



Acquisition and Processing of Biosignals for HMI 7

Figure 2.4: Brain rhythms obtained by filtering the raw EEG signal into the
different corresponding bandwidths.

[18]. Theta waves activity (4-7.5Hz) have been linked to several causes, including deep

meditation, level of arousal, sleep stage transitions [19, 20]. Alpha activity (8.5-13Hz) is

associated with relaxed awareness, and it is visible, with high amplitude (highest among

all the rhythms), with the eyes closed [21]. Beta activity (14-26Hz) is often associated

with active thinking (focus, attention, and problem solving), anxious, or panic events.

In the motor cortex, beta waves are also associated with muscle contractions [22, 23].

Gamma rhythms (>30Hz) are rarely present on the EEG, although its presence can be

evidence of a brain decease [17]. Fig. 2.4 presents an example of the brain rhythms

during wakeful resting. These rhythms are naturally present on the brain [24, 25], and

they can be used to monitor the physiological parameters of the user, such as drowsiness.

Event-related potentials (ERP), on the other hand, are direct time-locked EEG re-

sponse to a motor or sensory stimulus or a cognitive task. ERPs are obtained through

signal averaging to increase the signal-to-noise ratio (SNR) as they are small in ampli-

tude. The signals have positive and negative components (P and N) and are typically

visible after a few milliseconds (>100ms) from the stimuli presentation (non-obligatory).

Fig. 2.5 shows an example of ERPs.

The importance of ERPs is two-folded. First, it can be used for the diagnosis of

brain disorders. For instance, P300 can be used to detect early stages of Alzheimer’s

disease [26] as its response is smaller to control groups. Secondly, it can be used as

a way of HMI. In such a scenario, P300 is elicited by presenting a target stimulus

(the flashing of the intended symbol) occasionally, among non-relevant ones (the other
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Figure 2.5: EEG P300 response obtained after averaging several EEG trials.

possible symbols), and can be used to detect the choice of a subject. Steady-State Visual

Evoked Potentials (SSVEP) has also been used recently with considerable success [27–30]

for HMI. SSVEP is elicited in the primary visual cortex as a result of a periodic visual

stimulation and is, therefore, phase and frequency locked to the source. The detection is

typically performed through spectral analysis, although recent work demonstrated that

Canonical Correlation Analysis (CCA) [31] could lead to better performance for HMI.

2.2 Biopotential Signal Acquisition

Biosignals are particularly challenging due to their small amplitude, high impedance,

and noise. Following strict requirements, signals need to be amplified to match the char-

acteristics of the Analog-to-digital converter (ADC). Hence, the Analog-front-end (AFE)

plays a crucial role to obtain information from a specific event, especially when the am-

plitude of the signal, like in the case of EEG, is small (<50uV). Similarly, for clinical

applications, the AFE must follow the International Federation of Clinical Neurophysi-

ology (IFCN) standards [32], as they ensure good quality of the digital recording.

Fig. 2.6 presents a typical electrode-skin and AFE equivalent circuit that highlights

the structure and challenges for the acquisition of biosignals. An essential factor that

determines the quality of the signal is the contact impedance between the electrodes and

the skin (Cd||Rd). A high value of contact impedance leads to a potential divider effect

at the input of the amplifier, which causes a reduction in Common-Mode Rejection Mode

(CMRR) [33], hence allowing for common-mode noise, such as Power Line Interference

(PLI) to be introduced in the system. Traditional systems employ saline solutions or
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Figure 2.6: Electrode-skin equivalent circuit. From the electrical standpoint, the
skin behaves as several resistors and capacitors connected in series (and parallel) to

the acquisition device.

electroconductive gels to minimize these problems. Nevertheless, they are only suitable

for laboratory conditions.

Zero-preparation dry electrodes, on the other hand, are suitable for use outside

clinical settings due to the quick setup features, even for untrained users. However, they

add some challenges such as a steep increase in contact impedance from the typical values

of few tens of KΩ for wet electrodes after extensive skin preparation, to hundreds of KΩ

or even several MΩ. It also increases the noise generated at the metal-skin interface and

augments the effect of interference coupling through capacitive effects on the cables or

artifacts due to cable movement, microphony, and piezoelectric effects. To tackle these

issues, the so-called active-electrode approach [34, 35] is typically used, and it has also

been adopted in the present work.

As introduced above, once the signals are generated, signal conditioning is needed

before quantization. An approach that has gained popularity is to use integrated cir-

cuits that provide both signal conditioning, sampling, and quantization. From the many

solutions including ASIC [36, 37] and commercial [38, 39], the ADS1298, from Texas

Instruments (TI), stands out. It is currently considered a standard for biopotential

acquisition platforms due to its favorable trade-off between performance and power con-

sumption (0.85mW/Channel) while being compatible with the IFCN standards [32].

The AFE allows simultaneous sampling of up to eight bipolar channels, at up to 32 kbps

sampling rate and 24-bit resolution. Each channel can be amplified by a factor 1 to 12

through an internal Programmable Gain Amplifier (PGA).
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2.3 Processing Unit

Miniaturization of electronic devices such as the AFE allows for a paradigm shift

from external data analysis and classification to wearable onboard processing. Hence,

the computational unit plays a growing role in modern HMIs. Nevertheless, porting

applications, for both EEG and EMG, to wearable and embedded systems is not a

trivial task as the final system requires to provide both computational power (real-time

constrains) and energy efficiency (battery life).

With this goal, we have focused first on commercially available platforms such as

the ARM Cortex-M4, which provides a compatible power budget while delivering the

required computational. A step forward has been achieved later through Mr. Wolf,

a Parallel Ultra-low Power (PULP) architecture. This section introduces the general

characteristics of both architectures.

2.3.1 ARM Cortex-M4 SoC

The ARM Cortex-M is a 32-bit RISC microcontroller that includes DSP instruc-

tions and a floating-point unit, making it suitable for biosignal processing. Several BCI

systems have adopted this architecture [40–43], to allow for online processing.

Throughout this work, the STMicroelectronics STM32F407 has been used exten-

sively. The processor is based on Harvard architecture with three-pipeline stage and

branch speculation, implementing 32-bit RISC ISA. It also includes the entire 16-bit

Thumbr − 1 and 16/32-bit Thumbr − 2 instruction sets. It features an FPU for fast

floating-point operations and it is equipped with 192 KB of SRAM and 1 MB of non-

volatile Flash memory. It features a power density of 238 µW/MHz, offering up to 210

DMIPS and 566 CoreMark at 168 MHz on general-purpose applications.

Its rich set of peripheral (SPI, I2C, UART) allows flexibility to communicate with

external devices such as specialized ADC for biopotentials. It features non-maskable

interrupts(NMI) and up to 240 physical interrupts, with different priority levels (from

8 to 256). It also offers several power modes, allowing to reduce the overall power

consumption of the system.

It also features a JTAG and Serial-Wire Debug (SWD) ports with up to eight break-

points and four watchpoints. The processor also features Memory Protection Unit

(MPU) for the eight memory sub-regions, preventing access to privileged application

data.
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2.3.2 PULP platform

PULP platform is an open-source project created by the collaboration of the Uni-

versity of Bologna and the Eth Zurich. PULP is a many-core platform (OpenRISC or

RISC-V ISA) able to operate in broad range voltages and frequencies, which provides

energy efficiency for both low and computationally heavy applications.

Several versions of the PULP architecture have been developed, and they differ on

the chip technology (CMOS, FD-SOI implemented on 65, 40, or 28nm), the number

of processing units, and memory size. In the following, PulpV3 and Mr. Wolf are

introduced as they have been included in the systems and applications presented in this

work.

2.3.2.1 PulpV3 SoC

PulpV3 is a 28-nm UTBB FD-SOI SoC [44] that includes a cluster of four cores,

where each processor implements a power-optimized four-pipeline stage micro-architecture

based on the OpenRISC ISA [45].

The original OpenRISC ISA and the micro-architecture have been enhanced for

energy-efficient DSP, supporting load and store operations embedding pointer arithmetic

and power management instructions, and zero-overhead hardware loops.

The cluster of cores features a shared instruction cache with L0 buffer and support

instruction broadcasting as to reduce the load on the cache banks[46]. The cluster relies

on an L1 explicitly-managed multi-banked Tightly-Coupled Data Memory (TCDM) for

energy efficiency and fast data access. A Direct Memory Access (DMA) unit is used

to explicitly transfer data from the off-cluster 256kB L2 data memory and the TCDM

(L1).

Off-cluster, several peripherals such as SPI and I2C communicate with the external

world through a micro-DMA subsystem able to autonomously transfer data from the

peripherals to the L2 memory while the cluster is idling, improving the energy efficiency

of the system. The SoC and the cluster are in two different voltage and frequency

domains to further enhance energy efficiency depending on the computational workload

of applications. Moreover, an automatic clock gating mechanism is used to reduce the

power consumption of idle resources of the system.

The PULP platform relies on OpenMP 3.0 parallel library that operates on top of

a GCC 4.9 toolchain for programming. The hardware/software environment of PULP
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includes a set of software tools useful to implement and debug applications that run on

the architecture, and to estimate their execution time.

2.3.2.2 Mr. Wolf SoC

Mr. Wolf is a multi-core programmable SoC implemented in TSMC 40 nm CMOS

technology, combining a 12 Kgates RISC-V processor for power and peripheral managing

(Fabric Controller, FC) with a parallel cluster of eight RISC-V processors equipped with

flexible and powerful DSP extensions, including floating-point units [47]. These blocks

reside in two different power domains. Hence, the voltage and the frequency of these two

components can be adjusted to meet the application’s requirements with high energy

efficiency.

The SoC features a full set of peripherals, including a JTAG interface for debug

purposes, SPI, UART, and GPIOs, enabling parallel capture and transmission of bio-

potentials at high bandwidth and efficiency. The peripherals, connected to the 512

kB L2 memory through an advanced I/O subsystem, reside on a third clock domain

allowing adjusting the frequency of each peripheral according to the I/O requirements

of applications. The peripheral subsystem has a dedicated DMA channel (µDMA) that

autonomously controls the data transfer to/from the L2 memory. The µDMA has 2

dedicated 32-bit ports on the L2 memory subsystem, granting an aggregated bandwidth

equal to 2 × 32-bit multiplied by the SoC clock frequency. Table 2.1 summarizes Mr.

Wolf features while Fig. 2.7 presents a block diagram of the complete SoC.

2.4 Signal Processing

As introduced previously, the biosignals can be both processed online and offline. A

typical signal processing scheme (in an embedded system) is presented in Fig.2.8, which

Table 2.1: Mr.Wolf SoC features.

Technology CMOS 40nm LP
Chip Area 10mm2

Memory Transistors 576 kB
Equivalent Gates (NAND2) 1.8 Mgates

Voltage Range 0.8 V – 1.1 V
Frequency Range 32 kHz – 450 MHz

Sleep Power (State Retentive) 72 µW (108 µW)
SoC Power Density @ 0.8V 33 µW/MHz

Cluster Power Density @ 0.8V 171 µW/MHz

At its most efficient operating point (100 MHz, 0.8 V), Mr. Wolf can perform up to 15 Mega
multiply-accumulate (MAC) operations per s/mW and 9 Mega Fused-MAC/s/mW.
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Figure 2.7: Mr. Wolf SoC architecture including the SoC and Cluster domains.

Figure 2.8: Typical Signal Processing Chain for HMIs. In an embedded system, all
computation is performed in the sensor node.

includes the signal preprocessing, feature extraction, and classification.

2.4.1 Preprocessing

Signal preprocessing involves removing components outside of the scope of a given

evaluation as they can affect the feature extraction. For instance, High-pass/low-pass

digital filters are typically applied to remove the DC offset and signal drift, high-

frequency artifacts, and external noise in the form of PLI.

These can be implemented as Impulse Response (IIR) or Finite Impulse Response

(FIR) filters. Typically IIR filters obtain a steeper attenuation than FIR filters while

only requiring a few taps (or coefficients). Hence, reducing delay introduced on the final

processing chain. Nonetheless, this filter cannot be used in some applications (such as

ERP-based systems) as the phase response is not linear, and the filter stability cannot be

guaranteed. FIR filters do not face these issues, but the magnitude response is shallower,



Acquisition and Processing of Biosignals for HMI 14

hence, requiring a large number of taps to achieve significant attenuation, which impacts

the overall delay of the processing. Therefore, the filter implementation should take into

consideration these issues to satisfy the application requirements.

Other preprocessing techniques include information reduction. Principal Component

Analysis (PCA) is a widely used lossy statistical procedure to reduce the dimensionality

of a set. PCA performs an orthogonal transformation to map the original data into a new

set of values, called principal components. As the first components of this transformation

have the most substantial variance (hence most of the information), only a few might

be required to achieve the same performance. The channel reduction decreases the

computational, therefore, it is a useful tool for embedded systems when the input data

is significantly large [48].

The preprocessing also includes artifact removal techniques as artifacts might dete-

riorate the performance of the system, where techniques like regression and filtering and

blind source separation[49] are typically used.

2.4.2 Feature Extraction

Feature extraction techniques allow transforming salient information contained in

the signal into a condensed representation. This process is vital as it highlights the

differences between different events, which allows for pattern recognition algorithms to

provide significant performance. A feature extraction mechanism also handles the non-

stationary behavior of biosignals by performing the feature transformation over a time

window.

Biosignal feature extraction can be roughly divided into three different categories,

namely, time, frequency, and time-frequency. Table 2.2 presents a summary of the

Table 2.2: Typical Feature Extraction Techniques for Biosignals

Signal Time Frequency Time-Frequency

EMG[50, 51] IntegratedEMG Autoregrssive Coefficients Short-Time Fourier Transform
Mean Absolute Freq. Median Wavelet Transform

Root-mean Square Freq. Mean Emp. Mode Decomposition
Waveform Length Modiffied Mean Frequency

EEG[48, 52, 53] Mean PSD Short-Time Fourier Transform
Standard Deviation Autoregrssive Coefficients CCA

Mean Absolute Value Wavelet transform

ECG[48, 52, 53] QRS detection PSD Short-Time Fourier Transform
Autoregrssive Coefficients Wavelet Transform
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Figure 2.9: Example of the signal output after feature extraction of EMG signals.
The top-left figure presents the original signal while the remaining present the

different signal extraction outputs for RMS, Waveform Length, and Discrete Wavelet
Transform.

preferred feature extraction techniques applied to EMG, ECG and EEG signals. Still, it

is worth noticing that feature selection is not a deterministic task and obeys extensive

analysis to minimize the total error of the complete system. Fig 2.9 shows examples of

several features extracted from an EMG signal

2.4.3 Classification

Classification of biosignals involves inferring the state or condition of the human

body based on the observed data. In this scope, the pattern recognition approach has

demonstrated to be a robust way to overcome the limitations imposed by the non-linear

behavior of the biosignal. Classification with pattern recognition methods is a well-

studied field of research, with many contributions by machine learning communities.

A pattern recognition approach compares a previously defined model containing

information about all mapped classes with an unseen new example. The class assignment

of the new example relies on the proximity with the different data regions delimited

during the training process.

Pattern recognition algorithms can be divided into two groups: supervised and unsu-

pervised. Unsupervised algorithms attempt to learn patterns without prior information,
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and it is used to differentiate unknown data structures. Clustering analysis, based on

k-means and Gaussian mixture models, is widely used for this purpose. Supervised

methods make use of prior information to identify the data regions. Typical supervised

algorithms include logistic regression (LR), Support Vector Machines (SVM), and Neu-

ral Networks (NN). A logistic regression algorithm separates the class space linearly

while SVM and NN are strongly non-linear.

SVM has gained popularity for embedded deployment as it provides superior classifi-

cation performance to LR while being computationally lighter than NN based algorithms

[40]. In this work, we have also explored the benefits of the High-Dimensional Comput-

ing, a brain-inspired approach that computes with points in the HD space (hypervectors)

as an alternative to numbers, which offers SoA classification performance [54] while al-

lowing for optimizations when coupled with the PULP architecture (bit-wise operations).

Details of these algorithms and their implementation are introduced in Section 4.



Chapter 3

Hardware Design and

Implementation of HMIs

One of the most critical challenges in this field is to reduce the device form factor

while performing all the computation online to provide unobtrusive monitoring. Current

systems, nevertheless, are bulky, with limited portability. Similarly, the sensor interface

is highly intrusive and does not provide adequate signal quality.

These issues are currently targeted by employing low-power non-intrusive wearable

embedded design with flexible and dry sensor interfaces. Still, this task is not trivial

since the deployment has to take into consideration resource constrains (memory and

computational power) while also minimizing the power consumption to allow extended

battery life.

In the following, we present two systems that tackle these issues. Both systems share

the same AFE, namely, ADS1298, as it provides SoA performance while they differ in

other aspects such as the processing unit and form factor. This chapter starts with the

description of an ARM-based HMI and concludes with BioWolf, a PULP based HMI,

which is the main focus of this thesis work.

3.1 ARM-based HMI

The first proposed IoT node for biosignal monitoring is based on the multichannel

commercial Analog Front End (AFE) introduced in Section 2.2 (ADS1298)[55] connected

with a low-power ARM Cortex M4 microcontroller. The board also includes other

devices such as a barometric sensor and an inertial measurement unit (IMU). Fig. 3.1

shows a block diagram of the system (left) and the PCB implementation (right).

17
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Figure 3.1: ARM BCI including Block diagram and PCB implementation.

3.1.1 PCB design

All the components are allocated in a 6-layers printed circuit board (PCB) with a

single solid ground plane. To minimize current return paths, the power planes are split,

keeping separated the analog and digital circuitry. Discrete components were carefully

placed on both sides of the PCB to maximize signal integrity, maintaining a low level of

noise and a small form-factor that results in 85x50 mm.

3.1.2 Sensor Interface

The eight channels of the ADC (described in Section 2.2) are connected with the

active ExG sensors while the AFE’s back-end streams the data via SPI to the microcon-

troller. This system, as the same as BioWolf, features zero-preparation dry electrodes,

which are suitable for use outside clinical settings, due to the quick setup features, even

for untrained users.

Several strategies are employed to tackle the typical challenges associated with dry

electrodes (as introduced in Section 2.2). The first is placing the first amplification

stage directly on the electrode to minimize the stray capacitance on the noise-sensitive

electrode node, which reduces interference coupling through capacitive effects to the

cables and artifacts due to cable movement while improving CMRR.

The reduction in the capacitive load on the electrode also improves system band-

width as it reduces the voltage divider effect between electrode-tissue impedance and

input capacitance itself, making it negligible even for dry electrodes showing very high

values of contact impedance.

Since single-ended amplification of the electrode signal with a gain higher than

one degrades the capability of the system to reject common-mode noise, only signal

buffering is performed on the active electrode through a low-power, low-noise, rail-to-

rail Operational Amplifier (O.A., namely AD8603 by Analog Devices) connected as a
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Figure 3.2: Scheme of the electrode configuration used for both systems*.

* On BioWolf, a square wave is applied to patient ground to perform impedance estimation.

unity-gain buffer. Protection resistors (68 KΩ) limit the current delivered to the subject

in case of a single fault condition (e.g., electrode shorted to positive or negative rail

supply) to less than 50 µA as prescribed by applicable standards.

Another strategy, in this case, to minimize the number of wires, is to use the output

signal of the amplification stage for providing power supply to the O.A. as well. This

means that the positive power supply of the O.A. is at the same voltage of the inverting

and non-inverting inputs, hence the need for a rail-to-rail operational amplifier. A

forward-biased diode connects the output pin of the O.A. to the power supply. The

output is biased by the following stage, which entails a 10 kΩ resistor toward a 2.7 V

power supply. The output of the amplification stage can swing between 1.8 V, which

is the minimum power supply voltage of the O.A. and 2.2 V, which corresponds to the

50 µA quiescent current required by the O.A. Fig.3.2 presents a block diagram of the

complete sensor interface.

3.1.3 Subsystems

The board also has an IC for power management for automatic power source switch-

ing (battery or USB). Analog, digital, and communication subsystems are supplied by

separate low-dropout voltage regulators, which enables finer power management strate-

gies, like duty-cycling submodules as to enhance battery life. Finally, data can be

streamed to an external device through a BT 2.1 module. Table 3.1 summarizes all the

features of the system.

3.2 BioWolf: The Parallel Ultra Low Power HMI

BioWolf is an integrated platform for computationally-intensive medical IoT appli-

cations, which addresses the typical challenges for biosignal processing by providing a
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Figure 3.3: BioWolf System. Block diagram (left) and PCB implementation (left).

ULP compute platform that can process biosignals in parallel and locally with a power

budget lower than that required by the analog front-end (AFE) to acquire the data.

The platform is based on Mr. Wolf [56] and a commercial Bluetooth Low Energy (BLE)

SoC (Nordic nRF52832) that enables data transmission and auxiliary support for the

system, an 8-channel Analog Front End (AFE) to convert the EEG signals (ADS1298)

and an Energy Harvesting (EH) subsystem for charging battery from solar source.

3.2.1 PCB design

All the components are assembled in a 20x40 mm form factored 4-layer Printed

Circuit Board (PCB) that aims to provide full portability and wearability. Fig. 3.3

shows a block diagram of the system and the PCB implementation, while Fig. 3.4 shows

BioWolf encased in a patch-like form factor and worn on the head in an experiment of

SSVEP-based BCI for hands-free control of a digital score for musicians.

AFE (ADS1298)
Channels 8
Input reference Noise 4(micro)Vpp
Power Consumption 12.5 mW
No. of adjustable gains 7
Signal-to-noise Ratio 112dB
Resolution 24bit

IMU (MPU-9150)
DOF 9
Resolution 16bit
Sample Rate(Acc) 1Khz
Power Consumption 1.4mW

Microcontroller (STM32F407vgt6)
Operational Frequency 168Mhz
RAM 192kB
Flash Memory 1MB
Run mode Pw. Consumption 152mW
Sleep mode Pw. Consumption 39mW

Table 3.1: Relevant features of the devices used in the system.



Hardware Design and Implementation of HMIs 21

Figure 3.4: Example of BioWolf montage in an SSVEP-based BCI for hands-free
control of a digital score for musicians.

3.2.2 Sensor Interface and electrical characterization

As mentioned before, BioWolf shares the same sensor interface as the ARM-based

HMI (ADS1298 and zero preparation electrodes). We characterized the complete system

with the AFE running at 500 samples-per-second (SPS), which provides a -3 dB cutoff

frequency of 131 Hz, exceeding the needs of most applications. As the active electrode

bandwidth exceeds 100 kHz, this value is essentially determined by the AFE internal

filters. Noise is measured by shorting the inputs of the electrodes and varies depending

on the chosen PGA gain.

We consider three different configurations: without active electrodes and with active

electrodes in single-ended (negative input of the ADC connected to patient ground) and

differential signal acquisition (positive and negative input connected to two separate

active electrodes).

In the first configuration, with PGA gain equal to 1, noise is measured at 1.62

µVRMS in the 0.5-100 Hz band, decreasing to 0.95 µVRMS (gain = 2), 0.48 µVRMS

(gain = 4) and 0.40 µVRMS (gain = 12). Common Mode Rejection Ratio for a 50 Hz

signal ranges from a minimum of 115 dB (gain = 1) to 122 dB (gain = 12).

It is worth mention that for the second configuration, i.e., using active electrodes,

there is a slight degradation in noise and CMRR performances due to the additional noise

introduced by the electrode circuitry and the finite GBW of the O.A., which results in

each electrode having a gain slightly different from the theoretical value of 1.

As the input swing with two-wires active electrodes is limited to a few hundred mV,

we characterize the system only for a gain of 6 and 12. In single-ended configuration,
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noise increases at 0.63 µVRMS for gain 6 and 0.6 µVRMS for gain 12. In the differential

configuration, due to the presence of a second O.A., noise increases to 0.77 µVRMS and

0.75 µVRMS respectively. CMRR is measured at at 92 dB (gain = 6) and 96 dB (gain

= 12). Channel isolation exceeds 100 dB in all cases.

These values are in line with IFCN standards for clinical recording of EEG signals

[32], which are generally considered as the most stringent for bio-potential acquisition,

demonstrating how ADS1298 is a feasible choice for medical-grade signal acquisition.

The ADS1298 can perform lead-off detection by injecting a small current between

two electrodes and measuring the resulting voltage difference. This is a typical approach

in systems based on passive electrodes, or active electrodes with custom ICs [34] but

is not a viable option in systems employing active electrodes based on commercial OA,

where current sources should be added at the input of each active electrode amplifier,

increasing the cost and size of each electrode.

To overcome this limitation, we apply the scheme depicted in Fig. 3.2, where ZC1

and ZC2 represent the contact impedance of the measuring and ground electrodes, re-

spectively. ZT is the equivalent impedance of the tissue between the two electrodes and

is negligible as being significantly smaller than dry-electrode contact impedance. RP

represents the protection resistors added on each electrode, intended to limit the cur-

rent to the subject in case of a single fault, which is considered as an add-up to contact

impedance.

When contact impedance measurement is required, the system superimposes a 200

mV square wave to the DC voltage on the ground electrode. As the amplifier is extremely

close to the electrode, parasitic capacitance on the electrode are almost entirely due to

the input capacitance of the amplifier itself (ZIN ) and, as the values of ZC1, ZC2 increase,

it causes a voltage divider effect which reduces the amplitude of the first harmonic of the

square wave. This voltage divider effect is directly responsible for most of the common-

mode interference and can provide an indirect measure of the contact impedance. The

difference between the signal’s full amplitude on the ground electrode and that detected

on the signal electrode ultimately provides a measure of the contact quality and can be

computed through the average power of the first harmonic (signal is band-pass filtered).

The higher the value, the higher the contact impedance and, therefore, the worse the

contact quality. This information can be compared to a threshold (which can depend on

application and type of electrode) to inform the user whether the quality is good enough

for the BCI to work as expected.

We verified the behavior of the contact impedance measuring circuit by connecting

impedances of known value between the ground electrode and one active electrode.



Hardware Design and Implementation of HMIs 23

Contact impedances ZC1 and ZC2 (Fig.3.2) are modeled as the parallel of a capacitance

and a resistor, which is a typical model to represent an interface between an electrode

and skin [33].

Values have been chosen to be those typical of wet electrodes with skin preparation

(47 nF || 51 KΩ), and representing worse quality contact such as that typical of dry

electrode setups (4.7 nF || 510 KΩ and 1 nF || 2.2 MΩ). Input impedance ZIN is

represented by a capacitance of 20 pF or 120 pF. The first value represents a reasonable

value of input capacitance for an active electrode, the second one for a standard setup

with approximately 1 m cables connecting electrodes to amplification circuits. Table

3.2 compares the theoretical and measured amplitude of the 40 Hz harmonic at the

ADC input due to the voltage divider effect between contact impedance ZC1 +ZC2 and

impedance to ground ZIN . Signal amplitude is expressed as a fraction of the input signal.

Results show excellent agreement between theoretical and measured values, validating

our approach.

3.2.3 Operational Modes

Thanks to the presence of both a standard MCU/SoC and Mr. Wolf Ultra-Low

Power (ULP) processor, BioWolf behaves as a highly configurable platform that can

work in three different modes, i.e., Stream, Processing and Deep-Sleep. In stream mode,

Mr. Wolf goes into sleep mode, and the Nordic SoC acts as the Master of the SPI bus to

read data directly from the ADC. The samples can then be streamed using the BLE link

embedded in the SoC. This mode is useful for BCI algorithm development and testing,

where raw data is required for offline data analysis. In processing mode, Mr. Wolf

ensures the best system-level energy efficiency as computationally intensive processing

is required and is therefore adopted in BCI applications. Mr. Wolf acts as the Master

on the SPI bus and directly samples data from the ADC. The processing required by the

BCI application is then executed on this ULP processor, while the other devices act as

slaves. Results from the processing can be transmitted using the BLE link through the

Table 3.2: Contact impedance measurement for different values of ZC1,2 and ZIN

ZC1,2 ZIN Expected Measured Estimated |ZC1,2|

47 nF || 51 KΩ 20 pF 0.21 0.21 43.9 KΩ
47 nF || 51 KΩ 120 pF 1.21 1.20 43.4 KΩ

4.7 nF || 510 KΩ 20 pF 2.0 2.0 83.3 KΩ
4.7 nF || 510 KΩ 120 pF 1.20 % 1.21 % 83.9 KΩ
1 nF || 2.2 MΩ 20 pF 0.93 % 0.94 % 1.92 MΩ
1 nF || 2.2 MΩ 120 pF 5.33 % 5.76 % 1.99 MΩ
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Figure 3.5: Operational modes of BioWolf.

Nordic SoC. The complete system can be put into a deep sleep mode to minimize power

consumption while the system is in standby. Fig. 3.5 summarizes the functionalities

and operation modes introduced above.

3.2.4 Subsystems

The nRF52832 SoC from Nordic provides data communication to the system. The

Arm Cortex-M4 MCU (64 MHz) allows flexible Bluetooth 5 (BLE) communication at a

low-power budget. Power consumption for the radio is 15.9 mW when streaming data

at 1 Mbps, 0 dBm output power, and 16.2 mW when receiving data at the same rate.

Its ULP features allow reducing power consumption down to 4.5 µW with the system

on full RAM retention, wake on any event (such as interrupts from the AFE when new

data is available). The power consumption can be further reduced down to 2.1 µW when

the complete system is in sleep mode.

The nRF52832 SoC also serves as a device manager of the board, allowing to choose

the operation mode (sleep, stream, and processing), and to program Mr. Wolf by directly

accessing its volatile memory through a JTAG interface. The SoC also monitors the

battery status through a fuel gauge IC. Additionally, the SoC allows for Near-Field

Communication (NFC) that is used to wake-up the complete system after entering sleep

mode by tapping the board with an NFC-enabled device.

3.2.5 Energy Harvesting

A Texas Instruments BQ25570 manages power supply, battery charging, and energy

harvesting. The IC implements Maximum Power Point Tracking (MPPT) to maximize

energy conversion efficiency for all lighting conditions, up to 90%. The harvested energy

is used to recharge a 65 mAh battery with a size of 29x12x2 mm. The Energy Harvesting

Subsystem (EH) also provides a highly efficient buck converter that outputs the 1.8 V
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Figure 3.6: Solar Panel current charging output for different illumination conditions.
Indoor illumination is typically around 600 lux (magnified), while in outdoors, the illumination is

about 10k lux.

required to supply the digital portions of the board. An additional output voltage of 3

V is available, and it is used to power an LDO, which supplies a 2.7 V rail to the AFE

and the remaining analog portions of the system.

In indoor conditions (office illumination), the complete EH subsystem can provide

up to 0.4 mW of power, enough to sustain the device during deep-sleep. In outdoor

environments, the solar panels can generate up to 5 mW. Thus, under ideal conditions,

the EH subsystem is capable of extending the battery duration of the application or of

providing self-sustainability, as it is the case of some of the applications presented in

the following. Fig. 3.6 shows the measured current generated for different illumination

conditions.

3.2.6 Software

Fig. 3.7 shows the GUI that provides support for the final user. The software,

running on JavaVM, allows visualizing and storing the incoming data. The software

also allows changing the configuration of the ADS1298 on-the-fly (op. mode, sample

rate, and gain) and visualization parameters (data scale). The system supports real-

time filtering (bandpass and notch) to remove artifacts or to visualize, for instance, the

EEG rhythms such as Alpha.

Other add-ons include battery monitoring and trigger support. The later can be

generated manually (button) and remotely through a TCP/IP server. The system also

allows visualizing the outputs of Mr. Wolf when the board operates in Processing mode

through a serial terminal. The BLE connection from the board to the computer is
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Figure 3.7: BioWolf GUI for streaming and data storing (PC).

Figure 3.8: BioWolf GUI for Android during EMG classification.

achieved through a USB dongle. An Android application has also been developed to

provide more flexibility and freedom of movement. Fig. 3.8 shows a screenshot of the

running application that shares the same features introduced for the PC version.

3.2.7 Discussion

In this chapter, two HMI systems have been presented. BioWolf offers significant ad-

vantages to the ARM-based HMI and the SoA devices for onboard biomedical processing,

which are more evident when comparing it with the previous work presented in Table

3.3. Although some of the listed systems can provide higher performance ([MFlop/s]),

they lack efficiency ([MFlop/s/mW]), where BioWolf outperforms all systems by a factor

of 10.
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Table 3.3: Comparison between SoA embedded platforms for BCI processing.

Application Footprint
[mm x
mm]

Number of
Channels

Connectivity System
Power
[mW]

System On
Chip

Performance
[MFlop/s]1

Efficiency
[MFlop/s/mW]

Condori [59] : Motor
Imagery

83x59 3 n.a. >10000 Exynos 5422 13600 <1.362

Lin [60] : SSVEP n.a. 2 BT 50002 Qualcomm
Snapdragon

800

9200 1.82

Li [61] : α-band
pow-

er/SVM

37x56 2 Wi-Fi/BLE 321.6 Qualcomm
Snapdragon

400

4800 1.82

De Venuto
[12] :

P300 85x563 32 Wi-Fi >1200 BCM2836 3600 32

Chi [62] : SSVEP n.a. 8 BT 1000 TI OMAP
2420

434 0.52

Chai [57] : SSVEP 36x363 2 2.4GHz RF >3300 Nordic
nRF24

164 14

McCrimmon [63]: Motor
Imagery

130x90 8 n.a. 1000 Atmel
SAM3X8E

844 14

Salvaro [41] : SSVEP 85x50 8 BT2.1 27.50 ARM-
STM32F407

168 1.2

Kartsch [58] : Drowsiness 85x50 8 BT2.1 109.00 ARM-
STM32F407

168 1.2

This work : SSVEP 40x20 35 BLE 6.31 Mr. Wolf 1400 6 187

1 Ideal (i.e. considering maximum operating frequency x # of FPUs).
2 Estimated.
3 The complete system is composed of multiple embedded devices.
4 Fixed-point.
5 8-Channel Capable.
6 Considering two floating-point operations for fused multiply and accumulate. Cluster 1.1V, 350 MHz.
7 Operating point: 0.8V, 100 MHz.

A significant advantage of BioWolf is the reduction of intrusiveness. Although [57]

offers a similar form factor, this device only serves as streaming. Hence, under the

same conditions, only the ARM-based BCI (also in [41, 58]) presented in this section is

comparable, where BioWolf offers a 4.25x smaller area.

Another notable benefit of BioWolf is its high versatility, allowing for both low-

complexity and computationally intensive applications to run efficiently through single-

core or multi-core processing.

To complement the advantages in terms of energy efficiency (and therefore also

size, weight, and wearability of the system), we have also demonstrated a subsystem for

energy harvesting from solar sources and one for checking electrode contact quality, both

for passive and active electrodes. The compactness and ease of use of our platform allow

it to be seen as a valid self-contained wearable device for day-to-day BCI applications.

Details about the power consumption are introduced in the following sections as

they depend on the specific application.



Chapter 4

HMI applications using BioWolf

The following chapter presents four case studies for HMI. The first three (EEG)

include a drowsiness detection system, a CCA-based BCI for SSVEPs, and a system for

food quality grading through ERPs, while the fourth introduces an EMG gesture recogni-

tion system based on High-Dimensional Computing. Details about the experimentation,

offline data analysis, embedded deployment, and optimizations are introduced, demon-

strating the efforts to produce a system that offers both unobtrusiveness and energy

efficiency. Each section also offers a discussion to highlight the improvements achieved

for each application by employing the resources available in BioWolf.

4.1 Drowsiness Detection

Drowsiness detection mechanisms gained attention recently as it is one of the preva-

lent causes of accidents within the mining, driving, and industrial activities. Drowsiness

is typically quantified using behavioral analyses based on camera eye-tracking systems

as well as analyzing physiological features like ECG. EEG signals have also reached more

notoriety recently.

Detection systems typically use specific drowsiness indicators from only one of these

methods, leaving a risk of missed detection since not all the population presents some

symptoms of drowsiness [64]. Hence, multi-feature systems have the potential to pro-

vide a more robust detection. Nevertheless, this approach comes with a more significant

system complexity, especially when implemented on the current power-hungry SoA plat-

forms, which only have a slim chance of providing useful battery lifetime and wearability.

The following work presents a drowsiness detection scheme fusing behavioral infor-

mation coming from user motion through an IMU sensor and physiological information

28
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coming from brain activity through a single EEG electrode. The system is implemented

and tested on a low-power programmable platform based on an ARM Cortex-M4 mi-

crocontroller (introduced in Section 3.1). It is capable of detecting 5 different levels of

drowsiness with an average accuracy of 95.2% and a battery life of 6 hours while offer-

ing a more robust system (through multiple drowsiness features) in a highly embedded

platform.

In this first part, the energy optimizations achievable by accelerating the sensor

fusion-based drowsiness detector on a parallel ultra-low power (PULP) platform have

also been studied, demonstrating that this architectural shift can lead to improvements

(>7x) in battery life to SoA systems.

The section concludes with the implementation of a modified version of the original

drowsiness detection system on BioWolf.

4.1.1 Introduction

Detection of driver’s drowsiness is an active research field in both industrial and

transportation areas. Several automotive companies, universities, research centers, and

governments are contributing to the development of Advanced Driver Assistance Systems

(ADAS), which aims to analyze the different technologies and techniques to reduce the

risk of accidents caused by drowsiness [65, 66].

Commonly, commercial vehicles identify safety risks by analyzing the driver’s be-

havior, which includes the monitoring of the vehicle’s position to the lane markings [67].

Nevertheless, these systems fail to alert the driver before the occurrence of an incident.

A more reliable approach is to measure physical behaviors (PERCLOS, blink frequency,

nodding, and yawing occurrences) to detect the level of fatigue.

The work presented by Flores et al. [68] relies on a digital camera to compute the

driver’s eyes state. This architecture is coupled with NIR (near infra-red) illumination

and stereo vision to deal with low-light conditions [69, 70]. Still, computer vision tech-

niques result in a challenging task due to the variability of environmental factors and

the computational requirements needed to provide a real-time assessment.

A new trend in research is to directly measure biometric signals such as EEG, EOG

(Electrooculography), ECG, PPG (Photoplethysmogram), and eventually fusing data

from multiple sensors [71, 72] to improve the robustness [73–75]. The system proposed by

Lee et al. [76] relies on sensor fusion algorithms to detect the driver’s fatigue level using

ECG, heart rate variability, blood pressure, and PPG signals. Reyes et al. [77], proposed

the integration of body area sensors and vehicular ad-hoc networks for traffic safety using
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Figure 4.1: Features extracted from EEG and IMU sensors.

a wireless physiological signal-acquisition module and onboard PC processing. Similarly,

Lin et al. [78] proposed a system based on EEG combining independent component

analysis (ICA), power-spectrum analysis, correlation evaluations, and linear regression

model. Notwithstanding, the approaches above rely on cumbersome high-end computing

platforms, which discourages its use.

Another non-exploited advantage of physiological monitoring is the lower compu-

tational complexity required (to computer vision methods) that allows for the use of

embedded microcontrollers[79–81].

This work, taking into account the previous research, exploits a sensor fusion algo-

rithm based on IMU and EEG sensors integrated on a single wearable board to provide a

5-level drowsiness alert system, covering a wide variety of drowsiness-related symptoms.

The following introduces the drowsiness parameters extracted from both EEG and

IMU and the techniques to fuse the information and the onboard/online implementation

of the system. Furthermore, the detection algorithm has been implemented on a near-

threshold parallel platform to evaluate possible energy savings to previously reported

architectures.

4.1.2 Feature Extraction

In this application, the blink duration and alpha wave activity are used and extracted

from EEG, as they correlate with the presence of drowsiness [82–86]. The head posture

also correlates with drowsiness[87–89], and it is extracted through an IMU sensor.

Blink duration is estimated by analyzing the lower spectral components of the EEG

through the Short-Time Fast Fourier Transform (STFT) (over 512 samples with 32-

samples overlap). Fig. 4.1 (center) shows the energy of the STFT 1Hz during a series of
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eye blinks. The presence of a high and low peak on the signal is used for the estimation as

they correlate with the actual blinks. The amplitude difference compared to a threshold

helps in removing artifacts such as short blinks, eye movements, and saccades (No blink,

NB). Table 4.1 shows the results of the validation of this method for short (SB), middle

(MB) and, long blinks (LB).

The alpha wave activity is estimated using the previously calculated STFT. An

example of the alpha power during the closure of the eyes is presented in Fig. 4.1 (left).

Following the Objective Sleepiness Scoring (OSS) [90], it is possible to identify a drowsy

state, without referring to more evident behaviors, such as the closure of the eyes, by

evaluating the period on which the alpha waves level exceeds a given threshold, over a

time window of 20 seconds. In this work, we refer to this feature as Cumulative alpha

wave (CAW). This feature triggers a binary indicator, which is true when alpha waves

activity is at least present for 5 seconds on the 20-second time window specified by the

OSS. This is achieved by accumulating the value of the alpha wave occurrences above

threshold (in seconds). The same approach is used to detect the closure of the eyes

but using instead a shorter time window (3 seconds), named Continuous Alpha Wave

(CoAW), in this work. In this case, the alpha activity must remain above the threshold

during the complete window to be considered. The threshold for both features was

estimated empirically by comparing alpha waves activity during regular morning activity

and drowsy conditions, i.e., during nightly experimentation.

The nodding gesture is detected through the RMS of the derivative of the accelerom-

eter signal on the three dimensions (32 samples, 1 sample overlap) to assert three differ-

ent states: sudden tilt (ST), normal movement (NM), and no movement (NOM). Two

thresholds are compared to the RMS value to assign one of the three activity states. If

the RMS is greater than the higher threshold, the ST state is asserted. If the RMS is

in between the two thresholds, the NM state is asserted. If the RMS is below the lower

threshold, the NOM state is asserted. The thresholds have been selected empirically.

The accuracy of the classifier for the three different classes is reported in Table 4.2. Fig.

4.1 (left) show an example of the extracted features from the IMU sensor, the thresholds

selected, and the detection output.

4.1.3 Sensor Fusion

The sensor fusion algorithms input the extracted values to obtain the drowsiness

level classification using several thresholds. Fig. 4.2 summarizes the complete sensor

fusion algorithm. The different levels are asserted when the following events/conditions

are present:
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• Level 1: Normal movement

At the first level, only the IMU sensor is used. The system remains in this level

when the blink duration is below 500ms, the user produces no alpha waves (or

below threshold), and the IMU classifier reports No movement (NOM) or Normal

movement (NM).

• Level 2: Blink Duration + No movement

Two conditions are required to trigger the alarm at this level. The blink duration

must be longer than 500 ms, according to previous investigations [82–84] and the

gesture classification must return no movement (NM) class, used to confirm the

reduced activity triggered by a drowsiness state of the user. If normal movement

(NM) is reported, the value of the blink duration is set to zero, assuming that the

user is not to be under drowsy conditions.

• Level 3: Alpha waves burst detection

The occurrence of alpha waves bursts increases when the user enters in a deeper

drowsiness state. Following the Objective Sleepiness Scoring (OSS) [90], it is

possible to identify a drowsy state by evaluating the period on which the alpha

waves level exceeds a given threshold, over a time window of 20 seconds. The

alpha waves are quantified using the PSD method described before, and the alarm

is triggered if the value is above the threshold for at least 5 seconds on the time

window.

• Level 4: Sudden tilt (nodding)

Table 4.1: Normalized peak-to-peak difference for different blinks and detection
accuracy.

Trial No. SB+ MB+ LB+ NB+ Acc.∗ %

Trial 1 0.03 0.168 0.308 0.01 92

Trial 2 0.03 0.168 0.290 0.009 93

Trial 3 0.03 0.167 0.302 0.01 87

Avg. time 0.367ms 0.61ms 1.174ms - -

∗ The accuracy was evaluated comparing the estimated values with
the values obtained using the definition of blink given by [91].

+ normalized values

Table 4.2: Threshold values for ST, NOM and NM calculated from the IMU sensor.

Gesture Threshold Accuracy

ST Output >1.6 93

NM 0.4 >= Output <1.8 95

NOM Output<0.3 97

The values here exposed correspond to the threshold giving
the highest accuracy values.
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Figure 4.2: Block diagram of the extracted features to compose the drowsiness
sensor fusion algorithm.

Figure 4.3: Block diagram of the complete wearable deployment for drowsiness
detection based on the ARM Cortex-M4 MCU.

Level 4 of the drowsiness state is asserted using only the 3-axis accelerometer to

recognize nodding movements of the user’s head. In this alarm level, only the

sudden tilt is accounted. A single event is needed to activate the alarm, since the

nodding gesture represents a stronger indication of drowsiness [87–89].

• Level 5: Constant presence of alpha waves

A constant burst of alpha waves is an indication of the closure of the eyes [92]

induced by a total loss of attention or sudden sleep. Such a state is detected

using the same feature extraction method reported for level 3. More specifically,

if the maximum energy of the alpha waves stays over the threshold for more than

3 seconds, the alarm level 5 is asserted. This was considered as the highest level

of alarm since it corresponds to the most dangerous situation where the user is

falling asleep.

4.1.4 Embedded Deployment

The complete processing and classification algorithm is implemented on the ARM-

based architecture presented in Section 3.1. Once the signals have been acquired, the
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Figure 4.4: Detection accuracy of the different drowsiness alarms.

power spectral density (PSD) of the EEG signal and the RMS of the IMU signal are cal-

culated by exploiting the optimized Cortex microcontroller Software Interface Standard

(CMSIS) DSP Software Library [93]. Detected drowsiness levels can be streamed via

the BT module to an Android application, developed to show the system state and the

intermediate or final outputs of the processing chain. The sensor interface is based on

auto adhesive circular gel-based electrodes, and the board is secured on the head using

rubber bands. Fig. 4.3 shows a high-level diagram of the complete wearable deployment.

4.1.5 Experimental Results

Testing a drowsiness detection system is not a trivial task. A real scenario where

a drowsy person drives a car exposes the test subject to dangerous situations. Hence,

validation of the proposed system is performed simulating the behavioral and physio-

logical drowsiness symptoms, rather than in real conditions. This approach has already

been validated by previous works and demonstrated to be an effective and reliable way

to test drowsiness [94–97].

The 5-level alarm system described previously is tested on ten healthy subjects

with no previous history of neural diseases (aged 32 ± 5 years old). The participants

were under sleep deprivation (3 hours of sleep) the day before the test. The tests were

conducted at late night hours to maximize the drowsiness effects.

The board is placed on the subject’s head. The electrodes are located at Oz (Posi-

tive electrode) and Fpz (Negative electrode), following the 10-20 reference system [98],

with a reference electrode placed in A1. Locations are chosen to maximize SNR in the
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Figure 4.5: Power consumption of the embedded implementation (on PCB). The
MCU dominates the power consumption, employing 87% of the total power.

acquisition of both relevant brain activity rhythms and eye blinking as needed by the ap-

plication and to be compatible with integration on head caps, helmets and headbands.

Subjects reported that the device did not cause significant discomfort after 30min of

testing.

During the test, each alarm level is assessed separately, leading to a binary evaluation

of each level (fail/pass). Each test subject simulates the alarm conditions five times. The

first level is identified as fail if any alarm is triggered over 1 minute of regular activity

performed by the user. The second level is asserted as a fails if the alarm is not triggered

after closing the eyes for more than 500ms while performing no movement. Regarding the

third level, the test fails if the alarm is not triggered after the corresponding evaluation

window (20 seconds). In the case of the fourth level, the detection must be done on a

single nodding event. For the last level, the detection fails if the system does not detect

the condition after three seconds from the closure of the eyes.

Fig. 4.4 shows the experimental results, where average accuracy reaches to 95.2%.

It is noteworthy that the lowest accuracy is measured in pure alpha wave detection,

confirming the high variability of purely physiological detection and the added value of

a sensor fusion approach to improve the robustness of detection.

4.1.6 Embedded System Performance

Fig. 4.5 shows the system power consumption, including the contributions of the

ADC, IMU, the microcontroller (ARM-M4 @168Mhz), and the BT radio. When possible,

the microcontroller can be put in sleep mode to reduce the average power consumption.

Fig. 4.6 shows detailed information about the current drawn by MCU throughout the



HMI applications using BioWolf 36

Figure 4.6: Current drawn by the MCU during the processing and classification of
the drowsiness levels.

processing and classification of the signal, denoting in fine detail power management

applied to reduce power consumption. Thanks to this, the system reaches up to 6 hours

of life with a 200mAh Li-Ion battery.

4.1.7 Implementation on the PULP architecture

The kernel functions have also been implemented in a PULP architecture (PulpV3,

described in Section 2.3.2) to evaluate the possible benefits (energy efficiency) when

switching architectures.

Since the most compute demanding part of the algorithm is the FFT, a great ef-

fort has been spent to optimize this kernel on the PULP architecture, exploiting a

fine-grained data-parallel scheme supported by the programming model. The FFT al-

gorithm requires to compute a set of butterflies (i.e., partial FFT transforms) on the N

input samples (where N is the size of FFT, 512 for this application) for each stage of

computation, and the number of stages is equal to the 2-base logarithm of the number

of input samples (9 in this case). In the baseline radix-2 algorithm, after each stage,

Table 4.3: Number of cycles required to compute each function in the analyzed em-
bedded computing platforms [KCycles].

Kernel Func ARM Pulp SC 4CPulp ARM/PulpSC ARM/4CPulp PulpSC/4CPulp

FFT RDX8 42.90 64.03 16.69 0.67 2.57 3.84

Magnitude 17.87 15.17 3.83 1.18 4.66 3.96

RMS (32s) 0.26 0.30 0.16 0.86 1.67 1.94

RMS(512s) 2.52 2.95 0.83 0.86 3.05 3.56

The FFT calculation is the most computationally demanding operation. Given its highly parallelizable
computational algorithm, the 4-core PULP MCU reaches nearly ideal speedup.
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data generated by the butterflies of the previous stage has to be shuffled to compute the

butterflies on the following stage.

On the PULP architecture, the FFT is computed by splitting the butterflies calcu-

lation homogeneously among the four cores, and synchronizing the cores using hardware

barriers after each stage of butterflies to maintain the data consistency. Two different

implementations have been evaluated, described in the following.

As explained above, the baseline radix-2 FFT requires a synchronization barrier after

each stage of butterflies (i.e. 9 barriers), leading to a relevant synchronization overhead

not amortized by the small computational load required by each stage of butterflies.

A more optimized approach relies on the radix-8 algorithm. Exploiting this implemen-

tation, each butterfly performs a single Discrete Fourier Transform (DFT) among 8

samples instead of 2 as in the case of the radix-2 implementation. This reduces the

number of butterflies to be computed at each stage but it increases the computational

complexity of each butterfly. The proposed implementation is composed of 3 stages each

with 64 butterflies (16 for each core), therefore 3 barriers are triggered to accomplish

the full 512 samples FFT. Hence, this approach increases the available parallelism and

reduces the synchronization overhead with respect to the radix-2 algorithm. The com-

putation of the magnitude of the FFT is parallelized by dividing the signal by 4, thus

each core works independently without synchronizations. Both the FFT and magnitude

parallel implementations feature a speedup greater than 3.9 w.r.t. the single core version

on PULP, showing a quasi-ideal parallel speedup in performance.

Regarding the computation part related to the IMU signal, the RMS envelope is

computed on the last 512 samples instead to 32 since it offers more efficient use of cores.

A parallel version was implemented by splitting again the signal in four parts. Each core

computes the summation of the square of the signal assigned and finally the cores are

synchronized. In the last phase, a single core is in charge to sum the four results and to

compute the square root.

Table 4.4 offers a comparison between different platforms for real-time operation,

where core frequency is modulated to achieve real-time. This table includes a high-end

MCU STM32F407x (original MCU) and an ultra-low-power MCU Ambiq Apollo, both

based on Cortex-M4 processor, and PULP executing on a single core and four cores.

Although Ambiq Apollo offers superior energy efficiency, it cannot satisfy the real-time

constraints due to its limited maximum operating frequency (24 MHz). On PULP,

the frequency required to maintain the latency obviously decreases when increasing the

number of cores. This, coupled with the near-threshold computing capabilities of the

PULP platform aim towards a significant improvement in energy efficiency. This concept

is well highlighted in Fig. 4.7, which also shows the comparison with off-the-shelf MCUs
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Figure 4.7: Power consumption comparison between different platforms.
The 4-cores PULP MCU offers 63x energy saving with respect to the implementation on STM32F407.

that operates at nominal voltage supply of 1.8V and 2.5V. The difference in energy

between the MCUs and the single-core PULP platform at the nominal supply voltage

is mainly given by technology gap, different implementation strategy and architectural

complexity, which leads to 8.6x to 45.2x lower energy consumption.

More interesting is the exploitation of parallel near threshold computing on the

PULP platform (PulpV3), leading to a further improvement of 3.4x in performance

with respect to sequential processing, and to an improvement of 12.1x and 63.3x in

terms of energy consumption with respect to commercial MCUs. At a system level, this

approach has the potential to improve the energy efficiency (to our initial deployment

on ARM) by 7x, extending the battery life to 46 hours.

Table 4.4: Comparison between different platforms for real-time operation.

MCU A. Apollo STM32F407 1C PULP 4C PULP

No. of Cores 1 1 1 4

RT Freq [MHz] 31.68 31.68 45.59 11.76

Vdd (V) 1.80 2.50 0.48 0.45

Pw Dens [W/MHz] 115 600 10.27 27.64

Power [mW] 3.64 18.99 0.42 0.30

Energy[J] 7.28 37.97 0.84 0.59

The real-time frequency (RT freq) corresponds to the frequency required to achieve real-time operation. Ambiq
Apollo features a lower power consumption but it does not achieve the required frequencies (i.e. max frequency
is 24 MHz). The 4-cores PULP MCU delivers best energy efficiency while meeting the real-time constraint of

the application.
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Figure 4.8: Block diagram of the feature extraction and classification for the
drowsiness detection with BioWolf.

4.1.8 Drowsiness Detection With BioWolf

The results obtained when porting the kernel functions of the previously introduced

work motivated an actual implementation on BioWolf. As before, a 5-level drowsiness

detection system was designed based on a similar feature extraction while employing the

Nearest Centroid Classifier to output the alarm levels.

4.1.8.1 Feature Extraction

EEG data are acquired using a three-channel configuration. The first step of the pre-

processing is to merge all the information contained in the channels using the Principal

Component Analysis. PCA is a linear transformation which represents data into a new

reference system by maximizing the variance contained in the original signals [99]. In

this case, we reduce the dimensionality of the input matrix to a single vector, retaining

up to 90% of the information. From this 1-D vector, we extract four features used for

the drowsiness detection.

The first two features are based on the power of the signal in the alpha band (i.e.

8-13 Hz). The first, called Cumulative Alpha Power (CAP) accounts for bursts of alpha

waves, which are increasingly present as drowsiness raises [100]. CAP is calculated by

computing the alpha-band power spectrum over a moving-average filter with a large

size (n = 2k, or 2 seconds). The second feature, called Constant Alpha Waves (CAW),

aims to detect the closure of the eyes that is characterized by a constant presence of

alpha waves with a relative large amplitude (1̃00µV) and it is extracted by evaluating

the signal power on the alpha band over a shorter moving-average window (n=500 or

500 ms).
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The third feature, namely Blink Duration (BD), is also extracted from the EEG

signal trace, but it derives from an artifact related to extra-ocular muscle movements.

The final feature, called Head Gesture (HD) is obtained by processing data from the

IMU sensor. These two features are extracted using the techniques introduced in Section

4.1.2. Thus, a further description is omitted.

4.1.8.2 Training and Classification

The classification is based on the Nearest Centroid Classifier, where the output

depends on the distance from the average center of the labeled data (centroids). The

learning process relies on finding the positions of such centroids, and it is performed

automatically using the k-Means algorithm. K-Means clusters data by an iterative

process where it first assigns a class label to all observations, as a function of the distance

from the current class centroids and then reassigns such centroids to a new position in

function of the average position of the recently labeled data. We run this on experimental

data from three subjects simulating four different drowsy conditions (k = 4+1) to create

the model of the system. A summary of all the features and drowsiness conditions is

presented in Table 4.5.

The initial positions of the centroids play a crucial role in the clustering. We com-

pared two methods, the first one based on random assignment, the second one providing

a portion of labeled data for fixing the initial centroid positions. This last method has

been demonstrated to help increase the robustness of this approach [102], which is con-

firmed by our results presented in the next section. Fig. 4.8 summarizes the complete

process of feature extraction and classification.

Table 4.5: System Drowsiness Levels

Levels of alarms with meeting criteria

Level Description Parameters
- Fully awake subject (morning test) BD<0.5s & AW<Th1a

1 Increase of the blink duration BD>0.5s
2 Increase of the alpha wave activity AW>Th1a

3 Head gesture IMU
4 Closure of eyes AW>Th2b

Th1a AW over given threshold over a time window of 20 seconds.
Th2b AW over given threshold over a time window of 3 seconds.
Data samples were stored after reaching some drowsiness criteria (previously acknowledged [101]) for each level.
Physiological parameters were evoked by exposing the subject to drowsiness conditions or simulation.
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4.1.8.3 Experimental Results

As introduced before, the NCC classification depends on the distance of the ob-

servation to the class centroids, which contains information about the model of the

classifier. K-means is used to determine the centroids’ positions from the data collected

from three test subjects simulating four different drowsiness levels. Nevertheless, the

model can perform adversely if the initial conditions are not chosen adequately during

the training phase. Using two-fold cross-validation, we test two different training strate-

gies. The first trains the model starting from randomly-initialized centroids, while in

the second, we provided a certain amount of labeled data to help the clustering. Table

4.6 demonstrates that the second approach leads to significant advantages. This is fur-

ther confirmed by the online testing results reported in Table 4.7, showing an average

accuracy of 83%, with L3 and L4 above 90%, ensuring the detection of the most critical

drowsiness states.

During real-time classification, each 8ms a new window of data is elaborated (8

samples overlap). The cluster elaborates the entire processing chain in less than 1ms

working with an operative frequency of 100MHz at 0.8V. As a consequence, the total

power of the device is around 6.17 mW, and its the contribution of the three main chips

mounted on the board. The AFE is responsible for 36% of the power, whether the Nordic

MCU employs 43%. The remaining power consumption derives from Mr. Wolf, and it is

the result of the parallelization, the optimizations, and power management techniques.

Significant energy savings were achieved through the FFT as it took full advantage of

the parallel architecture achieving the ideal speedup, only limited by the FPU of Mr.

Wolf [103]. During the processing, only the required cores of the cluster are clocked up,

avoiding energy loss. When the MCU is in idle, we power off the cluster and part of

the SoC (sleep mode) to further reduce the power consumption. As a result, the system

Table 4.6: K-means Offline test per level

Method L0 L1 L2 L3 L4 Avg
Random 0.54 0.65 0.40 0.85 0.95 0.67
Pre-labeled 0.73 0.71 0.71 1.00 1.00 0.83

Table 4.7: Online accuracy per level for the NCC

Method L0 L1 L2 L3 L4 Avg

T1 0.83 0.72 0.74 1.00 0.95 0.84
T2 0.79 0.75 0.64 0.95 0.93 0.81
T3 0.82 0.74 0.70 0.96 0.94 0.83

Avg 0.81 0.74 0.69 0.97 0.94 0.83
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delivers up to 60h of autonomy with a 200mAh battery, which can be further extended

using the energy harvester subsystem.

4.1.9 Discussion

Drowsiness detection poses significant challenges since the clinical parameters to

quantify the drowsiness are not clearly defined, and the systems to detect drowsiness

and fatigue level should target unobtrusiveness and energy efficiency.

This section introduced a drowsiness detection system based on sensor fusion tech-

niques implemented initially on a commercial low-power embedded processor. Many of

the current implementations consider only individual features, while fatigue and drowsi-

ness symptoms are highly variable among the population and are exhibited through

different symptoms.

The embedded systems presented previously tackle these issues by providing a multi-

feature approach to detect five levels of drowsiness from EEG signals and an IMU sensor

with a detection accuracy in line with the SoA.

The online and real-time implementation of the system implemented on the ARM

Cortex-M4 reached 6 hours of life with a 200mAh Li-Ion battery. This initial work also

highlighted the benefits of implementing the kernel algorithms on a PULP architecture

(PulpV3), showing that an energy boost of 63x can is achievable that can extend the

battery life of the system up to 7x to out original implementation.

Further efforts have been made to pursuit an actual implementation, which was

possible thanks to the development of BioWolf. Apart from the improvements in terms

of intrusiveness, the new system, compliant with the SoA (as the same as the former),

showed significant advantages in terms of power consumption, reducing up 17x the power

envelope required (6mW). Furthermore, the low CPU utilization of the system suggests

that more advanced ML can be integrated to improve the detection accuracy, which is

the scope of future work.

4.2 SSVEP-Based BCI

A growing trend in Human-Computer Interaction (HCI) is to integrate computa-

tional capabilities into wearable devices, to enable sophisticated and natural interaction

modalities. Acting directly by decoding neural activity is a very natural way of inter-

action and one of the fundamental paradigms of Brain-Computer Interfaces (BCIs) as
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well. Following this trend, this section presents an online and real-time application of

BioWolf for BCI spelling based on Visual Evoked Potentials through Canonical Correla-

tion Analysis (CCA). The system offers performance comparable with those achieved by

state-of-the-art non-embedded systems with an ultra-low-power budget and an unobtru-

sive sensor interface. The following introduces details about the feature extraction and

classification mechanism as the same as details of the optimizations to keep the power

consumption below 10mW.

4.2.1 Introduction

First BCI spellers were based on P300 (ERP), an EEG response elicited by presenting

a relevant stimulus among non-relevant ones. For example, researchers in [104] presented

a BCI capable of detecting 36 different target stimuli associated with the letters of the

alphabet and some symbols, leading to the overall performance of 0.17 bits per second.

Improvements introduced in [105, 106] led to 0.45 and 0.40 b/s. Nevertheless, these

results are not compliant with nowadays standards, resulting in a user that refuses to

adopt such a system, especially if not impaired.

Steady-State Visual Evoked Potential (SSVEP) is another BCI paradigm that has

been used in more recent works with considerable success [27–30]. Processing requires

identifying the frequency (and possibly the phase) of the SSVEP signal to determine

which stimuli evoked it.

The SSVEP paradigm is attractive due to its higher signal-to-noise ratio (SNR) in

comparison with ERPs, being significantly more immune to eye-related and electrode

shifting artifacts when a proper frequency band is used [107]. If relying only on frequency

information, SSVEPs present two significant advantages with respect to ERPs, namely,

no synchronization, and no training required.

Feature extraction for SSVEP can be performed using simple techniques. An early

example is found in [108], where the authors designed and implemented a BCI to help

users to input phone numbers based almost entirely on FFT-based Power Spectral Den-

sity (PSD) analysis. Nevertheless, the approach based on canonical correlation analysis

has demonstrated to deliver better performance [31]. Some attempts [109] have been

done to use the CCA for real-time classification, achieving, nevertheless, an ITR lower

than 1 bps, with a bulky setup.

The lesson learned is that the development of a high-performance wearable platform

for BCI spelling is still an open challenge. Although some systems target a portable
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Figure 4.9: Average CCA correlation of SSVEP responses for different stimuli
(x-axes) calculated with different reference signals (y-axes).

setup, (e.g., a tablet [60] or a smartphone [62]), they achieve poor performance (ITR)

while running in intrusive and power-hungry platforms.

To provide improvements in these aspects, we designed a wearable system for brain-

computer interaction, relying on a minimally intrusive setup composed of three zero

preparation electrodes, which achieves an ITR in line with SoA (>1bps) while running

entirely on a wearable node.

4.2.2 BCI System

The proposed BCI includes two main functional blocks, namely, the SSVEP stimula-

tion screen (stimuli presentation) and BioWolf (acquisition and processing). The stimuli

are presented on a 24-inch LED (60 fps) display, placed approximately 80 cm from the

subject. The stimulation layout is composed of four black and white 10 × 10 square

checkerboards [110] arranged in a 2 × 2 pattern at equidistant positions, each displaying

a different frequency-coded stimulus, where a single checkerboard occupies 20% of the

screen.

Stimuli modulation on each checkerboard is performed using the sampled sinusoidal

stimulation method [111], with the contrast of each checkerboard adjusted as follows:
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Figure 4.10: BCI setup during experimentation.

A - Stimulation screen at 80 cm of the subject. B - Approximate location of the BCI elements. C -
Stimulation as seen by the subject.

Contrast(f, φ, i) = A · sin(2πfi/Fr) +A

where i indicates the frame index, A the initial amplitude, f the frequency of the

stimulation, and Fr is the refresh rate of the screen. To help visual fixation, we included a

diagonal cross on each checkerboard. All the textures are generated using Psychtoolbox

3.0.10 for Windows in Matlab R2018b.

The frequency targets used are in the range of [6 7.5], with a ∆F = 0.5 Hz and

have been chosen in previous experimentation, including a larger set of frequencies as

introduced in Fig. 4.9, where it is evident that the lower half spectrum offers higher

performance. To minimize any interference from the theta band and other artifacts [112],

we tested several CCA evaluation window sizes, where a window of 2 seconds offered

the best ITR values.

During experiments, the subjects are asked to fixate on one of the four checkerboards,

as indicated by a red cue. During the stimulation, all four checkerboards are displayed for

five seconds. This process is repeated (cue and stimulation) to present twice all frequency

targets, for a total of eight trials. For all experiments, BioWolf samples EEG signals at

500 SPS, using only three electrodes, located at POz, PO5, and PO7. The number and

location of these electrodes have been fixed during previous empirical experimentation

and provide similar performance from a full configuration (eight electrodes at the visual

cortex region). The complete BCI setup is summarized in Fig. 4.10.
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Figure 4.11: Block diagram of CCA algorithm and implementation.

4.2.3 Signal Processing

As mentioned in Section 4.2.1, the approach based on canonical correlation analysis

is widely accepted as the SoA paradigm [31] for SSVEPs. CCA calculates the canonical

coefficients, i.e., the maximal correlation between two sets of multidimensional variables.

In this work, we used the Golub-Reinsch algorithm [113] to implement the CCA, due to

its computational efficiency and scalability, particularly useful for resource-constrained

platforms.

Fig. 4.11 shows a block diagram of the signal processing chain. A new window is

first band-pass filtered with a 5-taps low pass (LPF) and 2-tap IIR HPF (BW=4-16Hz)

and then downsampled. Filtering allows retaining only relevant information and reduces

the overall signal noise while downsampling reduces the number of samples that need

to be processed by the CCA. The optimal downsampling rate (10×) is derived from

experimental data, as in a previous work [114].

The filtered (and downsampled) EEG signals are then used as inputs for the CCA

block. XNsxn is EEG data matrix (Ns samples x n channels), while the columns of

Y contain the sine and cosine of the fundamental and second harmonic of the target

frequency. CCA is calculated on an Ns sample window on the n channels.

The computational steps are the following: X and Y are QR-factorized via House-

holder reduction to extract the orthogonal matrices Qx and Qy. Finally, the Single

Value Decomposition (SVD) is applied to the matrix A = QTxQy. The first part of the

SVD reduces the input matrix in a bi-diagonal form via Householder rotations while the

second part executes the matrix diagonalization of the bi-diagonal form via symmetric

QR decomposition (Givens Rotation). The diagonal matrix S of the SVD decomposition

holds the set of canonical coefficients ρ1···d.

Target classification is finally performed using a threshold over the Euclidean norm

between the canonical coefficients. If the correlation of a given frequency exceeds the
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Figure 4.12: Average ITR results calculated with different thresholds values.

Figure 4.13: Diagram of the signal sampling and execution of the application on Mr.
Wolf.

threshold, then the BCI output is the corresponding frequency-coded class. This pa-

rameter is chosen to maximize the average ITR over all the subjects, which is calculated

for the asynchronous BCIs as in [115]:

ITR = 1−Pr
davg

(
log2Nf + (1− Pw) log2(1− Pw) + Pw log2

(
PW
Nf−1

))

where Pr is the probability of non-detected stimuli, Pw is the probability of incorrect

detected cases, Nf is the number of target stimuli, and davg is the average delay or latency

of the system in seconds.

Fig. 4.12 presents different ITR values calculated for several thresholds, where it is

noticeable that the value of 0.6 maximizes the average ITR (solid red), and thus, it was

selected for the final implementation of the BCI. The same trend can be found for each

subject (dashed lines).
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4.2.4 Parallel Processing and Optimizations

This section describes the optimized implementation of the algorithm on Mr. Wolf

SoC. Starting from an analysis of the computational requirements of the application, we

describe how the blocks of the algorithm presented in Section 4.2.3 have been efficiently

implemented on the parallel cluster of Mr. Wolf SoC. The application was implemented

using the 32-bit floating-point format, to deal with the high dynamic range of the al-

gorithm, and exploiting the shared floating-point units available on Mr.Wolf SoC. A

diagram of the signal sampling and execution of the application on Mr. Wolf is pre-

sented in Fig. 4.13, where each block represents the active time of the internal blocks of

Mr. Wolf (not in scale). The complete MCU is usually in deep sleep mode. Only when

it is required, specific modules are activated. For instance, the sampling of data employs

the FC to configure a DMA transfer to read data from the SPI. Once set, the DMA

transfer starts, and FC is put back into sleep mode. When the evaluation window is full,

the FC calls the cluster to execute the classification and goes into sleep mode. During

the cluster processing, the FC is again triggered to fill the next evaluation window in a

new buffer.

A breakdown analysis at execution time highlights that the initial LPF covers over

37% of the total cycles, the downsampling filter less than 1%, the HPF about 3%, and

finally, the CCA covers the remaining 59%. As discussed in the previous subsection,

CCA can be further decomposed into QR decomposition (47%), matrix multiplication

(10%), and SVD followed by Euclidean norm (2%).

To parallelize efficiently the application we exploited two different techniques: loop-

level parallelism, which consists of splitting an iterative workload (i.e. for loop) equally

distributing the loop iterations among the available cores; task-level parallelism, which

assigns a region of the workload (a task) to a specific core whenever a condition on its

numeric identifier is met. In other words, loop-level parallelism splits the data space

of the problem into sub-regions, and assign each space to a processor, following a Sin-

gle Instruction Multiple Data (SIMD) model, where each processor executes the same

instructions on different data. On the other hand, task-level parallelism assigns an en-

tirely different task to each core unrelated to one of the other cores, following a Multiple

Instruction Multiple Data (MIMD) approach. The cluster architecture of Mr. Wolf

allows executing efficiently both computational models, thanks to the tightly coupled

data sharing mechanism based on the word-level interleaved multi-bank L1 memory

and the availability of hardware-assisted synchronization. In general, a solution based

on loop-level parallelism provides higher speed-ups compared to task-level parallelism

since it is easier for the programmer to enforce workload balancing among the avail-

able cores. However, the structure of some algorithms does not allow the adoption of
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Figure 4.14: Parallelization schema of the processing pipeline highlighting the
execution flow and its branches. This diagram reports the size of data samples and

the parallelization approach (loop-level or task-level) for each computing block.

loop-level parallelism due to data dependencies among the iterations: In these cases,

task-level parallelism is the only viable solution. Fig. 4.14 shows the parallelization

scheme adopted in each component of the processing toolchain.

The LPF performs its computation on data structures which are allocated in the L2

memory since the total amount of data does not fit the L1 memory level. To hide the

higher access latency of the L2 memory, we have designed a double-buffering technique

using the cluster DMA and L1 buffers for intermediate results. More in detail, processing

of input data is divided into c chunks of size Nchunck × n with Nchunck = NS/c. While

a set of input/output buffers is accessed by processing cores for computation, a distinct

set of buffers is used as destination (i.e., the next chunk to compute) or source (i.e., the

result of the previous computation) of a DMA transfer. Since the backward computation

is affected by data dependencies, we applied task-level parallelism only to this part,

assigning a core to each channel (from 0 to n− 1).

The downsampling filter (DS) reads input data from the L2 memory and writes its

result in L1. This filtering stage is performed using the 2D capabilities of the DMA,

which is initially programmed by core 0 and then does not require any additional con-

tribution by the processing cores.

The HPF adopts the same parallelization strategy of the LPF. However, its impact

on the total execution time is almost negligible (3%). In this case, both input and

output data fit the L1 memory area, and double-buffering is not required. The QR

decomposition of the target frequencies is performed offline, so this block is not included

in the figure.

The final part of the processing chain includes SVD followed by Euclidean nor-

malization (NORM). Since data dimensions are lower than the number of cores, the

computation of SVD does not expose enough work-load for multiple cores; moreover,

data dependencies among the iterations do not allow to apply loop-level parallelism on
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outer loops, while the work-load of inner loops is negligible. Considering these limita-

tions, we applied task-level parallelism to the code block SVD+NORM assigning a core

to each frequency (from 0 to Nf ).

The parallel speed-ups achievable from SVD and backward computations in LPF

and HPF are limited by construction if the number of cores is higher than the number

of tasks (Nf and n, respectively). As highlighted in the previous paragraphs, this design

choice is forced by the data dependencies inherent in the algorithms. Moreover, QRD,

LPF, and HPF are heavily FPU-intensive, and their parallel speed-up is further limited

by the number of shared FPU available in the architecture.

4.2.5 Experimental Results

Five healthy subjects (aged 25-40 years) with normal or corrected-to-normal vision

participated in the offline and online experiments. All participants reported no history of

neurological or psychiatric disorders and provided written consent to participate in the

experiment. Offline experiments have been performed before the online tests to optimize

critical parameters of the systems and maximize the ITR (electrodes count and location,

frequency intervals, and evaluation window size) as mentioned before. The same group

also participated in the final online experiments that were used to validate the system

performance (accuracy, average latency, and power consumption). Our subjects have

previously participated in SSVEP-based tests, and hence, training was omitted since

they were already familiar with the experiments.

The total accuracy is calculated as the ratio between the number of the correctly

classified points over the total, i.e., each classification output of the system (every 100ms)

is compared with the expected label, including rest and stimulation states (hence, on

Table 4.8: Online results for 4 stimuli.

Subject Tot
accuracy

Trial
accuracy

Latency [s] ITR [b/s]

S1 0.81 0.87 1.42 0.96

S2 0.81 1 1.05 1.90

S3 0.81 1 1.16 1.72

S4 0.87 1 0.88 2.25

S5 0.82 0.87 1.80 0.5

Average 0.82 0.95 1.26 1.46

The total accuracy refers to the classification performance point-to-point with
respect to the expected label (a new classification point is available every 100
ms). The trial is instead asserted as correct if the classification output is equal
to the expected when there is stimulation. All the values of ITR are calculated
assuming an asynchronous BCI.
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a point-to-point basis). The trial accuracy is calculated instead as the ratio between

the number of correctly classified trials over the total number of trials (a test contains

eight trials). A trial is considered correct if the first classification, after the onset of

stimulation, matches the expected one.

The trial accuracy is indeed more applicable for real scenarios, but we also decided

to provide the results of the total accuracy since this gives insights about how good the

system is to detect the rest states.

Table 4.8 summarizes all the previously introduced metrics for our online system.

The average total and trial accuracy of the system are 0.82 and 0.95, with an average

output latency of 1.26 seconds. As a result, the average ITR is above 1.4 b/s, proving

that our wearable and embedded BCI achieves comparable performance with respect

to SoA systems [29, 116, 117] while running entirely on a highly wearable low-power

platform.

To verify the long-term performance of the system, we performed an additional test,

including only one test subject that in addition to the SSVEP test (as in Section 4.2.2),

also performed an alpha wave test (eyes closed/open). In an initial step, we registered a

baseline minutes after setting up the BCI. We have repeated these experiments after one

hour of usage. The CCA of the signals for both tests is presented in Fig. 4.15-A, where,

at first glance, there is no appreciable difference (baseline as a solid line and test after

one hour as a dashed line). A closer analysis shows that there is a small deterioration in

ITR (< 5%) that can be considered negligible and can be associated with physiological

parameters of the user rather than to the BCI itself. In Fig. 4.15-B we also present the

results for the alpha wave test that is in line with the initial findings.

4.2.6 Power Consumption

Table 4.9: Energy/Classification per Kernel Function

Mr. Wolf Seq Mr. Wolf 8-cores

Kernel cyc(k) E(µJ) cyc(k) E(µJ)
LP-Filter 130.29 25.92 45.34 9.02
Downsampling 1.00 0.19 1.00 0.19
HP-Filter 111.85 2.22 3.46 0.68
CCA 210.63 41.91 47.80 9.40

TOTAL 453.77 70.24 97.6 19.29

The energy/classification is calculated considering and op. frequency of 100MHz@0.8v.
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Table 4.9 presents more detailed information for the energy consumption when run-

ning the embedded application. The heaviest processing in our BCI implementation

comes from the CCA and the low-pass filter, requiring up to 47k and 45k cycles per

output when employing all the cores of the cluster. The downsampling and high-pass

filtering offer negligible contributions to the final energy envelope. The benefits of the

parallelization are more evident when examining the ratio between the total energy of

the sequential and parallel processing of the kernel functions at the bottom of the table,

which denotes a 3.64× energy saving. Further savings are achieved by toggling the power

state of Mr. Wolf’s fabric controller and cluster when possible. As a result, the total

power envelope of Mr. Wolf is around 1 mW. The energy required by the other digital

blocks (nRF52840 and digital interface of the AFE) is dominated by the energy required

to transmit the result of the computation and is about 1.26 mW (mostly to keep active

the BLE link), while the power consumption of the ADC is about 4 mW, that includes

the sampling of three EEG channels. As a consequence, the final power envelope is

about 6.31 mW, guaranteeing up to 38 hs of battery life. From these measurements,

we can observe two remarkable results. The first one is that the system is capable of

processing data at a power consumption significantly lower than that required for the

bare streaming of data (3.16 less power), with obvious advantages in terms of efficiency

of both the wearable node and of the full system. Secondly, the energy efficiency of

Mr.Wolf and of the custom implementation of the algorithm make the power budget

of the system largely dominated by the acquisition and Analog-to-Digital conversion of

data (64%).

We also studied the battery life improvements provided by the EH subsystem present

in BioWolf (introduced in Section 3.2.5). Under ideal conditions, the EH subsystem is

capable of extending the battery duration of a factor of two, up to 76 hours. In principle,

if the application allows for a reduced setup (e.g., using only 1 channel, with a power

consumption of 3.76 mW), self-sustainability can be achieved in outdoor environments.

However, it should be pointed out that a bright environment might also reduce the

SSVEP effect and the performance of the system.

4.2.7 Discussion

This work presented a BCI system based on the canonical correlation analysis for

the classification of SSVEPs while running on BioWolf. The system provides SoA perfor-

mance with a power envelope suitable for wearable applications. The device guarantees

up to 38 hs of battery life, which can be translated into 14 days of operation when

using the device 2 hs/day. Table 4.11 present a comparison with the SoA for embedded

SSVEP classification. The implementation with Biowolf offers an ITR higher than most
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Figure 4.15: BCI testing after one hour of usage. A - CCA test, where the solid
lines denote the CCA output of the SSVEP response on a test performed minutes after
setting up the BCI system. The dashed lines denote the CCA output of the SSVEP
response after one hour of device wear. B - Alpha waves test. The topmost figure of this
section presents the alpha band power of a 55-second trial, where the blue line shows
the PSD response form EEG signals acquired on a control test minutes after setting up
the device, while the red line corresponds to a test after one hour of device wear. The
bottom figure denotes the signal in the time-domain of the highlighted (in red) region
of the first figure.

of the listed work, being only 0.10 b/s off from a previous work[114] implemented with

the ARM-based BCI described in Section 3.1. Nevertheless, the efficiency offered is more

than 15x higher (for the processing unit) with a power budget of 4.35x lower.

To complement the advantages in terms of energy efficiency, we have also demon-

strated how the energy harvesting subsystem can provide self-sustained operations when

working in reduced mode. The compactness and ease of use of our platform allow it to

be seen as an accurate, self-contained wearable device for day-to-day BCI applications.

Still, since the implemented algorithm uses less than 5% of Mr. Wolf computational

resources, a more demanding complex BCI algorithm can be accommodated (artifact
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removal techniques based on blind source separation, advanced machine learning, or

Convolutional Neural Networks) as the same as a more significant number of channels.

4.3 ERP-Based BCI

Sensory evaluation is used to assess the consumer acceptance of foods or other con-

sumer products as to improve industrial processes and marketing strategies. The proce-

dures currently involved are time-consuming, requiring a statistical approach from mea-

surements and feedback reports from a large set of evaluators under a well-established

measurement setup.

In this section, an automatic system for sensory evaluation through Event-related

potentials (ERPs) based on BioWolf is presented. Being the outcome of the processing of

visual stimuli that can be modulated by the emotional state of the subject, ERPs can be

employed to assess the perceived quality of food. This implementation allows narrowing

the number of evaluators since errors related to psychological factors are by-passed.

The preliminary results on measuring ERPs presented demonstrates the feasibility of

this approach towards a fully embedded system.

4.3.1 Introduction

Sensory evaluation is defined as the scientific method used to give a quantitative

measure to the appearance or flavor of a food product as perceived through the senses

of sight, taste, smell, touch, and hearing [118].

Table 4.11: SoA embedded implementations for SSVEP classification.

Footprint
[mm x
mm]

Number
of

Channels

Connectivity System Power
[mW]

SoC Performance
[MFlop/s]1

Efficiency
[MFlop/s/mW]

ITR

Lin [60] : n.a. 2 BT 50002 Qualcomm
Snap-
dragon

800

9200 1.82 0.56

Chi [62] : n.a. 8 BT 1000 TI
OMAP

2420

434 0.52 0.44

Chai [57] : 36x363 2 2.4GHz RF >3300 Nordic
nRF24

164 14 0.45

Salvaro [41] : 85x50 8 BT2.1 27.50 ARM-
STM32F407

168 1.2 1.57

This work : 40x20 35 BLE 6.31 Mr.
Wolf

1400 6 187 1.47

1 Ideal (i.e. considering maximum operating frequency x # of FPUs).
2 Estimated.
3 The complete system is composed of multiple embedded devices.
4 Fixed-point.
5 8-Channel Capable.
6 Considering two floating-point operations for fused multiply and accumulate. Cluster 1.1V, 350 MHz.
7 Operating point: 0.8V, 100 MHz.



HMI applications using BioWolf 55

In the food industry, sensorial analysis is actively used to understand the target

market and to optimize the effort and investment during product development. It has

become an irreplaceable tool to determine the success of a product as consumers are

mostly driven by personal sensorial feedback and by the brand, rather than other essen-

tial features like nutrition elements or convenience.

A sensorial analysis is performed through affective and analytical techniques. The

former requires large consumer panels to answer a questioner after tasting. Analytical

methods are specific tests done by trained experts and can be used only to determine if

products are different, or if a food variety highlights a selected characteristic more than

another [119].

Psychological and sensorial feedback from stimuli produced by food products play

a fundamental role also in the ordinary industrial transformation of food (e.g. fruit and

vegetables) as a quality assessment during the whole transformation chain, usually done

by a manual screening of the operators.

Therefore, sensory evaluation is an integral part of the industrial food process and

the success of a product. Nevertheless, two significant factors limit this method: time

and human error/bias.

On the other hand, ERPs are one of the most common techniques to study emo-

tion processing by visual stimuli [120]. Specifically, Late Positive Potentials (LPPs), a

brain response visible after 400ms from the stimuli presentation, can be modulated by

the emotional intensity of the stimulus [121], where stimuli with a stronger emotional

response (to a neutral stimulus) elicit a larger LPP.

In this scope, we propose to collect the signal of the perceived quality of the food

from Event-related potentials (ERPs-LPPs) directly and to process them to have an

objective evaluation of the sensory perception, without any bias introduced by the op-

erator through higher brain functions in an automatic manner. In the following, details

about the processing chain are presented as the same as the wearable deployment of the

system.

4.3.2 Signal Processing

Data processing is performed on Mr. Wolf. Since computation is relatively simple,

all processing can be performed on the Fabric Controller (FC), which processes data in

double-precision fixed-point representation. It also takes care of exchanging data with

the AFE for signal acquisition and with the nRF32832 SoC for communication with

the host through BLE. The latter is a bidirectional communication as the host needs to
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provide synchronization signals (triggers) to inform the device of the instant at which

the visual stimulus is presented to the subject. When the acquisition of a full trial is

completed, the device sends the reconstructed ERPs to the host.

The processing steps for reconstruction of the ERPs are the following:

• Preprocessing: the first operation is the computation of the average of data ac-

quired from the two differential channels (PO7-Fpz and PO8-Fpz) at 500 SPS.

Data is then filtered with a Finite Impulse Response (FIR) low-pass filter (LPF)

with 100 taps and -3dB corner frequency of 30 Hz. This allows to down-sample

the data by a factor of 5, reducing the computational load of the filtering steps as

both the outputs of the LPF and the subsequent High-Pass Filter (HPF) can be

computed at a reduced sampling frequency of 100 SPS. FIR filtering is preferred to

IIR despite the increased computational burden because of its linear phase, which

allows minimizing distortion in the reconstructed ERP. Since we are interested in

late potentials in the ERP, high pass filtering needs to be performed at a very low

corner frequency of 0.25 Hz. This requires the use of an extremely high order filter

(1000 taps), which dominates the computational burden of the ERP reconstruction

algorithm.

• Epochs reconstruction: to remove epochs containing artifacts we adopted a simple

method based on automatically rejecting epochs containing samples over ±50µV .

To this purpose, each sample at the output of the HPF is checked at run-time and,

if its absolute value is higher than the threshold, the epoch is rejected and every

computation for that epoch (including filtering of subsequent samples) is stopped.

Information on the time at which the epoch starts is sent from the host via BLE.

When the epoch is not rejected, it is averaged with previously accepted epochs to

reconstruct the ERP.

Stimuli is presented through images on a 17-inches LCD screen from a PC running

Psychtoolbox under MATLAB. Setup and processing steps are summarized in Fig.4.16.

4.3.3 Experimental Results

We tested the device on five able-bodied, (aged 32 ± 5 years old) without previous

history of neurological disorders. All participants provided written consent to take part

in the experiments. The subject was sitting in a dimly lighted room, approximately 80

cm apart from a 17-inches LCD screen. 200 images of good-quality and defective apples

(100 per class) were presented randomly on a 17-inches LCD monitor for 1 second,
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Figure 4.16: Setup and processing steps for the ERP-based BCI.

Images are presented on a 17 inch LCD screen, while EEG is recorded in PO7 and PO8 with reference
on Fz. Data is band-pass filtered between 0.25 and 30 Hz and decimated by a factor 5 to 100 sps.

Epochs with data above a ± 50 µV are discarded. The remaining epochs are averaged to provide the
final ERPs.
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Figure 4.17: ERP from subject 1.
Red line corresponds to non-commercial grade apple pictures, blue line to commercial-grade ones. Data
is band-pass filtered between 0.25 and 40 Hz, epochs are rejected if EEG amplitude exceeds ± 50 uV.

separated by a 1-second fixation cross. Event-Related Potentials were measured as the

average potential between electrodes PO7 and PO8 versus Fz. Fig. 4.18 presents results

obtained through the analysis of ERPs on the five subjects (grand average on top) and

on a single subject (bottom).

Averaged responses are flat before the presentation of the stimulus (t=0) and present

a high correlation until approximately 300 ms (ERP components related to visual pro-

cessing of the image). After that time, late positive potentials (LPP) components show

significant differences in response to commercial-grade vs. non-commercial grade fruit
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Figure 4.18: Grand average of the ERPs extracted from the five subjects.
Red line corresponds to non-commercial grade apple pictures, blue line to commercial-grade ones. Data
is band-pass filtered between 0.25 and 40 Hz, epochs are rejected if EEG amplitude exceeds ± 50 uV.

images, testifying how responses to the two classes of stimuli are distinguishable, and

giving a clear indication on the suitability of this approach for automated quality grading

analysis.

To evaluate the performance of the embedded implementation, we set the operating

frequency and voltage of Mr. Wolf at 50 MHz and 0.8 V, respectively. Although this

frequency can be scaled up to 450 MHz to meet more constrained applications, the

processing required in this work is minimal. Thus, a lower operational frequency satisfies

the real-time constraints while minimizing the overall power consumption.

The power consumption of the system is the contribution of the active blocks,

namely, Mr. Wolf, the ADC, and the Nordic SoC, for a total of 10.88 mW. Data

sampling through the analog sections (ADS1298) requires the highest share of the over-

all power (around 80%). Although the use of this ADC comes at a high power cost,

it ensures the required signal quality, also allowing to avoid more rigorous filtering of

the signal that could be translated into higher power consumption at the MCU side.

The digital section that includes occasional BLE transmission of computation results

and synchronization of the trigger, and the data transfers between AFE and Mr. Wolf,

represents the 11% of the total power.

Mr. Wolf is responsible for the remaining power, which is the result of power man-

agement techniques, such as switching thought the MCU power modes. While working

in Run Mode, the acquisition and processing of a single sample only require 0.5 ms,

and, when in idle, the MCU is put into sleep mode to minimize the power consumption.

Since the FC is able to satisfy the real-time requirements of the application, the cluster
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remains off all the time. This demonstrates the versatility of Mr. Wolf to work at a low

power budget throughout different computational needs.

As a result, our system achieves up to 19 h of autonomy with a 60 mAh battery,

which can be further extended up to 20 h and 40 h in indoor (600 lux)/outdoor (10000

lux) scenarios, respectively, using the EH subsystem.

4.3.4 Discussion

This work presented an ERP measurement system featuring BioWolf, a Parallel

Ultra Low Power platform, which allows real-time onboard EEG signal acquisition and

processing for differentiation of classes of images to rank food quality. The results show

a clear separation of two distinct ERPs responses in correspondence to commercial and

non-commercial grade apples. The processing of the EEG signal is performed on-line on

the Mr. Wolf platform, which provides more than 19h of battery life with a tiny 60 mAh

LiPo battery. The preliminary results presented validate our embedded deployment and

represent a step forward towards an unbiased automated food quality grading.

4.4 Online Learning and Classification of EMG-Based Ges-

tures using Hyperdimensional Computing

The development of wearable sensing technologies and unobtrusive devices is paving

the way to the design of compelling applications for the next generation of systems for

a smart IoT node for Human-Machine Interaction (HMI). In this vein, the following

section presents a hand gesture recognition application, which is a preferred way of

interaction in HMI design.

This implementation, based on BioWolf, runs a machine learning algorithm (HDC)

in real-time, recognizing up to 11 gestures with a power envelope of 11.84 mW. As a

result, the proposed approach delivers up to 35 hours of continuous operation and 1000

hours in standby. The resulting platform minimizes effectively the power required to run

the software application, and thus, it allows more power budget for high-quality AFE.

4.4.1 Introduction

The hand gesture is probably the most natural and direct method used by humans

to interact with objects, and it has compelling and straightforward applications in many

scenarios, as described before.
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Decoding human intentions expressed by hand gestures is usually based on two main

approaches: visual recognition of hand gestures using computer vision techniques [122],

and recognition based on the analysis of the electrical activity of the muscles involved

in the gestures [7].

The former is typically able to recognize a large number of gestures [122], requiring,

nevertheless, external infrastructure (cameras and power supply) while being sensitive to

environmental factors (line of sight and illumination). The latter is based on decoding

EMG signal by leveraging techniques including direct control [9], pattern recognition

[123] and, deep learning [124].

Such systems require accurate sensory interfaces and high computational capabilities

to be implemented on systems with a reduced form factor, due to the intrinsically noisy

nature of the EMG signal and on the computationally demanding algorithms required

to make sense of the biosignals [125].

Some attempts have been made at a commercial level, such as the MYO [126],

an armband that acquires EMG data from 8 differential channels and sends the data

collected on EMG to a PC that processes them with pattern recognition techniques, to

recognize up to 5 gestures. Such an approach requires a continuous link between the

sensor armband and the PC/gateway platform since traditional wearable platforms are

not suitable for computationally intensive tasks, such as pattern recognition algorithms.

To move towards fully portable solutions, an approach that is gaining traction is

to use an offline bench-top system for the algorithm training and to implement the

classification of the EMG signal directly on the wearable node. However, designing

wearable integrated systems for the acquisition and processing of EMG signals capable

of executing full pattern recognition algorithms in real-time at high energy efficiency is

still an open challenge.

Some systems, like the work presented in [127] or [128], rely on high-end ARM

CORTEX A8 processors, which can sustain the high computational load but require

significant energy, guaranteeing only 0.5 h of operation with a 100 mAh battery.

More efficient solutions, such as [129] and [42] are based on dedicated industrial IoT

microcontrollers (i.e., ARM Cortex-M4) and provide up to 10 hours with a 100 mAh

LiPo battery.

The lesson learned from this analysis is that the development of HMI wearable de-

vices poses two significant challenges for the digital processing part. First, the power

envelope of the digital platforms must be minimized to allow high-quality signal acqui-

sition via an Analog-Front-End (AFE). Second, approaches based on data streaming,
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which offloads the signal processing on external platforms, do not scale well because

of limited bandwidth and a high energy-per-transmitted bit of wireless interfaces, even

with energy-efficient protocols such as Bluetooth Low Energy.

In this work, we take advantage of the features present in BioWolf to implement a

novel framework for EMG gesture recognition based on Hyperdimensional Computing

[130], a novel pattern recognition framework. We characterize the performance of the

system in terms of energy efficiency, showing that, while running the application, the

device consumes only 11.84 mW, providing up to 18 hs of operation with a battery life

that can be extended through the EH subsystem. The full HMI recognition software

runs on the wearable node that employs less than 30% of the total power to acquire

and convert the EMG signals. Thus, the remaining power can be employed on power-

demanding high-quality AFEs, resulting in an improvement of the overall performance

of the system. In the following, details of the implementation are presented.

4.4.2 Signal Processing and Classification

HD Computing algorithm is a brain-inspired approach that computes with points

in the HD space (hypervectors) as an alternative to numbers [130]. Hypervectors are

considered as (pseudo)random dense binary vectors composed of an equal amount of

randomly placed 0s and 1s. Working with binary allows reducing computational com-

plexity by replacing integer computation into binary operations, where Multiplication,

Addition, and Permutation (MAP) are substituted by componentwise XOR, componen-

twise majority, and one-bit circular rotation (ρ), respectively.

Features are extracted from the raw signals and mapped into the HD space using

Item Memory (IM) and Continuous Item Memory (CIM) [131] matrices. In this work,

feature extraction is based on the RMS envelope of the signal. The IM is composed of

random orthogonal (⊥) hypervectors (i.e., E1 ⊥ E2... ⊥ Ei) related to the input chan-

nels. The CIM contains orthogonal endpoint hypervectors, mapped through discretized

values of the input channels. The input values are discretized to be associated with a

given hypervector, where V1 and VK are related to the minimum and maximum input

values. The intermediate levels are generated by linear interpolation between these two

orthogonal endpoints [131].

The HD computing provides two encoders, spatial and temporal. The first captures

the spatial information contained in the signal with a componentwise XOR between E

and V resulting (at instant t):

St = [(E1 ⊕ V t
l(1)) + ...+ (Ei ⊕ V t

l(i))]. (4.1)
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Figure 4.19: Implementation on BioWolf of the HD computing algorithm.

The temporal encoder instead, extracts information about the temporal evolution of

the input data through permutation and multiplication of n consecutive hypervectors

generated by the previous encoder.

Thus, n spatial hypervectors form an n-gram hypervector (T ), defined as:

T = St ⊕ ρSt+1 ⊕ ρ2St+2 ⊕ ...⊕ ρn−1St+n−1 (4.2)

where ρk stands for k times permutation.

The HD generates different n-grams for each gesture. These are finally added to

create a protorype hypervector stored in the associative memory (AM).

During testing, a new sample is encoded into a n-gram (query) hypervector and

compared with all the prototype hypervectors in AM through the Hamming distance,

where the label associated with the minimum distance corresponds to the classification

output. Fig. 4.19 shows a block diagram of the complete system.

As binary hypervectors assume a very high dimension (i.e., 10k-D), for the embedded

implementation, they have been compacting them into 32-bit unsigned integer, leading

to a conspicuous gain in performance and memory requirements. And, although this

representation requires bitwise operations for multiplication, addition, and permutation

(MAP) operations (i.e. read/insert bits into a 32-bit word and popcount), thanks to

the presence of the RI5CY processor, which offers aggressive performance optimizations,

including bit manipulation instructions (builtins), these operations can be performed in

a single clock cycle[132], dramatically reducing the computational load on the MCU.

Another optimization derives from the exploiting of the parallel programming models

through an optimized version of Open Multi-Processing (OpenMP).

4.4.3 Experimental Results

To demonstrate the performance of the system in terms of classification accuracy,

we involved ten able-bodied subjects (aged 32± 5 years old) without a previous history

of neurological or muscular disorders for the experiments. All participants provided
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Figure 4.20: Gestures used for the testing. Open hand, fist, index, 2-fingers pinch,
rest position.

Figure 4.21: Average accuracy obtaining by HD computing, using the same data
collected by 10 subjects, increasing the number of gestures (from 1 to 11).

written consent to participate in the experiments. The gestures tested in this work are

open hand, fist, index, 2-fingers pinch, ok, supination, pronation, number two, number

three, number four and rest position as shown in Fig 4.20.

The algorithm is trained for each subject off-line and the AM matrix stored in the

L2 memory. The training can also be executed on-chip in real-time, but this is out

from the scope of this work. Fig. 4.21 shows the average accuracy results obtained by

increasing the number of gestures (from 2 to 11). The accuracy stands between 84.3%

and 99.4%, showing that this implementation is suitable for a hand gesture controller

[42].

Table 4.12 shows performance in execution time and energy consumption obtained by

executing the algorithm on different configurations of the target architecture. The first

kernel (RMS) computes the envelope of the raw signals on a circular buffer of dimension
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60. It does not require bitwise operations. Hence, the built-ins are not involved. This

kernel can be perfectly parallelized on eight cores as each core can extract the envelope

from 1 channel. In the MAP+ENCS kernel, the cluster executes the component-wise

XOR operation between CIM and IM and the component-wise majority to create the

spatial hypervector. This is optimized through the built-ins, obtaining 2.6× better per-

formance. Moreover, the workload is equally distributed among the cores of the cluster

(each core performs the encoding operations on a different portion of the hypervector),

showing a gain of 20.4× (7.7× wrt Mr. Wolf 1 core with built-ins). In the last ker-

nel (AM), the query hypervector in output from the MAP+ENCS kernel is associated

with one of the possible gestures. Here, it is possible to optimize the performance of

the component-wise majority and the popcount (2.8×) used for the Hamming distance

through the built-ins. The small quantity of work to distribute among multiple cores

leads to a saturation of the speed-up. The small gain obtained in this kernel (9.5×) does

not impact significantly on the overall performance (17.9×) because of the dominance

of the MAP+ENCS kernel.

To evaluate the performance of the architecture, Mr. Wolf’s operating frequency

was set to its most efficient operative point, 100 MHz at 0.8 V. Table 4.12 shows results

related to the energy consumed for the classification of a new sample. The dominant part

of the entire processing derives from the MAP+ENCS kernel with an energy consumption

of 71.9 µJ. The optimized version with the built-ins leads to a gain of 2.6×, which is

further improved, exploiting the parallel computing on eight cores (13.0×). The overall

energy consumption of the single-core execution is 81.44 µJ, further reduced by the

introduction of built-ins (2.6×). Furthermore, splitting the workload among the eight

cores leads to a total energy consumption of 7.2 µJ for a single classification.

While running the application, the total power consumption of the system derives

from the contribution of the active blocks, namely, Mr. Wolf, the ADC, and the Nordic

Soc, for a total of 11.84 mW. The analog sections (mainly the AFE) is responsible for

Table 4.12: HD Computing Execution times on the target architectures, with 10,000-
D, N=1. (Cyc, su) stand for (cycles, speed-up). The total energy/class reported, is
the result of the addition of the contribution of these functions without considering the
energy during idle periods.

Mr. Wolf 1 core Mr. Wolf 1 core built-ins Mr. Wolf 8 cores built-ins

Kernel cyc(k)a E(µJ)c cyc(k)a sub E(µJ)c cyc(k)a sub E(µJ)c

RMS 6.82 0.86 6.82 1.00 0.86 0.89 7.66 0.17
MAP+ENCS 569.10 71.91 215.35 2.64 27.21 27.94 20.36 5.55
AM 68.59 8.66 24.19 2.83 3.05 7.23 9.48 1.43

TOTAL 644.48 81.44 246.37 2.62 31.13 36.06 17.87 7.17

a cycles per sample, b speed-up wrt Mr.Wolf 1 core, c 100MHz@0.8V
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67% of the power consumption, whether the digital section (mostly BLE transmission

of computation results, data transfer between AFE and Mr. Wolf) employs 13%. The

remaining power consumption derives from Mr. Wolf (SoC and cluster), and it is the re-

sult of the parallelization, the optimizations, and several power-management techniques.

Data is acquired at a sampling frequency of 1 KHz, and a new data window is elaborated

each 8 ms (8 samples overlap). The cluster elaborates the entire processing chain in less

than 1ms. During the processing, only the required cores of the cluster are clocked up,

avoiding energy loss. When the MCU is in idle, the cluster and part of the SoC remain

in sleep mode to minimize the power consumption. As a result, our system delivers up to

18 h of autonomy with a 60 mAh battery, which can be further extended up to 19 h and

35 h in indoor (600 lux)/outdoor (10000 lux) scenarios, respectively, using the energy

harvester subsystem. These results are based on the values summarized in Table 4.13,

where we also show the current consumption of the system in streaming mode, with up

to 9 h of autonomy, and sleep/standby (up to 1000 h). While it is difficult to compare

wearable systems directly, it is still noticeable that SoA systems for EMG gesture recog-

nition have a battery life ranging from 3 to 11h [43], [133], [129], independently from

the algorithm that is used. As explained above, our architecture is capable of providing

around 2x more autonomy with a tiny 60 mAh battery, offering superior performance

and unintrusive form factor.

4.4.4 Discussion

In this section, a complete system for hand gesture recognition was presented. The

performance of the proposed system, both in terms of execution time and of energy

efficiency, allows the design of a smart interface to communicate with objects through

the hands by virtue of its highly optimized and versatile architecture, which combines

a small solar harvester with an energy efficient and versatile chip, Biowolf can run a

pattern recognition algorithm to classify up to 11 hand gestures while ensuring up to

18 h of continuous operation that can be further extended up to 35 h with outdoor

illumination.

Table 4.13: Current Consumption of the Board Components in the
Different Operational States

DSP Mr.
Wolf

Digital
Section
1.8v

Analog
Section 2.7v

Battery
Drain

Sleep 55 µA 10 µA 10 µA 50 µA

Streaming 55 µA 7.2 mA 2.4 mA 6.4 mA

Application 1.0 mA 0.7 mA 2.4 mA 3.2 mA
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Figure 4.22: Battery duration of the target applications including the static power
of the ADC with an increasing number of channels.

When comparing this work with the SoA solutions in Table 4.14, it is noteworthy that

while some results and characteristics are similar, BioWolf excels in both intrusiveness

and energy efficiency. For instance, the power consumption was improved by 8x while

substantially reducing the output latency (<10ms vs. 300ms to [135]). Although the

accuracy provided was similar, the HDC offered the chance of online and in-situ training

(SVM requires offline analysis). This feature demonstrates that the system is ready for

fast and intuitive usage, much required in everyday scenarios. Nevertheless, in this

implementation, the advantages of Mr. Wolf SoC have not been fully exploited. Mr.

Wolf has still more than 90% of CPU resources available for more advanced processing.

We pushed these limits by increasing the number of EMG channels, targeting the new

trend in highly dense EMG processing.

Fig. 4.22 shows the autonomy of the target architectures including the static power

of the ADC and considering a battery of 100mAh. With a classification latency of 50ms,

the STM32 and Mr. Wolf (1-core without built-ins) can only be scaled up to 64 channels

because they are not able to meet this latency constraint.

Table 4.14: Comparison with SoA systems for EMG classification.

Sensor Processing Intrusive Accuracy Harvester Bat. Life

McIntosh
[134] :

EMG
Pressure

PC
Offline

Yes 82 No Nd

Huang[60] : EMG IMU PC
Online

No 92 No Nd

Liu [60] : EMG PC
Online

No 80-90 No 24hs

Kartsch [60] : EMG Onboard
Online

No 94 Yes 512hs/perp.

This work : EMG Onboard
Online

No 98-84 Yes 18/35hs1

1 When scaling the system to achieve the same output rate as [135], and using a 60mAh battery, BioWolf can
deliver up to 675hs of operation..
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Nevertheless, Mr. Wolf denotes a more efficient operation by providing up to 3.9x

more autonomy than the STM32. If we include the built-ins, the same core can now be

scaled up 128 channels, providing more than 48h of continuous operation and demon-

strating the benefits of the built-in instructions. Nonetheless, for the current application,

Mr. Wolf (8-cores with built-ins) exceeds all other architectures (for every number of

channels) mainly thanks to the distribution of the task into the different cores.

Another interesting fact comes from the line shapes, where all Mr. Wolf architectures

will show a pseudo-constant average autonomy when increasing the number of channel

up to 64 (with respect to four channels), with only 32% of autonomy degradation, while

the commercial MCU will show peak degradation of 74%, i.e., a linear and steep decrease.

This difference is due to the negligible power contribution of Mr. Wolf with respect to

the ADC power. When scaling up the system with more channel, Mr. Wolf will still

provide 19h to 12h of operation for 128 and 256 respectively, adequate for daily use.

These results place Mr. Wolf as a unique enabler for the new generation of embedded

systems.



Chapter 5

Conclusions

Human-Machine Interaction systems have recently reached a broader set of scenarios,

including industrial, gaming, learning, and health tracking, thanks to advancements

in Digital Signal Processing (DSP) and Machine Learning (ML) techniques. Porting

applications to wearable and embedded systems, however, poses several challenges in

terms of computational power, battery life, and wearability.

This dissertation addresses these challenges by providing complete solutions to re-

duce the intrusiveness of the system through sensor design and miniaturization of the

hardware implementation while providing energy efficiency and real-time processing.

Significant effort has been granted to the develop of BioWolf, a multicore highly

configurable platform that meets most of the modern HMI requirements for everyday

scenarios. Intrusiveness has been significantly reduced through improvements in the

sensor interface and PCB miniaturization, obtaining an area reduction of 4x to SoA

systems. BioWolf can also deliver 4x more battery life than single-core commercial base

platforms while only employing a fraction of the available processing power (<20%) and

achieving SoA accuracy for both EEG and EMG applications (>90% for most cases).

As BioWolf also provides energy harvesting techniques, some of the presented systems

achieved self-sustainable operation or a significant boost in battery life (2-4x). This work

highlighted the benefits of the multicore processing introduced by the PULP architecture

in several bimedical study cases.

First, a sensor fusion approach for drowsiness detection was implemented. The sys-

tem initially implemented a low-power ARM Cortex-M4 microcontroller, is capable of

detecting five different levels of drowsiness with an average accuracy of 95.2% and a

battery life of 6 hours, using a 200mAh battery. Energy optimizations achievable by ac-

celerating the sensor fusion-based drowsiness detector on the PULP platform have been
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also studied and motivated an actual implementation on BioWolf, resulting in a system

offering an accuracy compliant with the SoA while providing significant advantages in

terms of power consumption, allowing for 17x improvements in terms of power envelope.

In a second application a BCI featuring Canonical Correlation Analysis (CCA) of

steady-state visual evoked potentials was implemented. The system achieved an average

information transfer rate of 1.46 bits per second (bps) at a power budget of 6.31 mW,

providing up to 38 hrs operation (65 mAh battery). To the best of the our knowledge,

this design is the first to explore the significant energy boost of a parallel MCU to

single-core MCUs for CCA-based BCI.

In a third application, BioWolf was employed for sensory evaluation through ERP

measurements. The system provided online and real-time differentiation of two classes

of images based only on EEG signals. By virtue of the energy efficiency of Mr. Wolf,

the system exceeds 19h of battery life with a tiny 60 mAh LiPo battery. The prelimi-

nary results presented validate our embedded deployment and represent a step forward

towards an unbiased automated food quality grading.

In the last application, an online approach for learning and classification of EMG-

Based Gestures was presented. The system, based on the Hyperdimensional Computing

and implemented in BioWolf can run a pattern recognition algorithm, recognizing up to

11 hand gestures, and ensure up to 18 h of continuous operation that can be further ex-

tended up to 35 h with outdoor illumination. This implementation once again validated

the capabilities of BioWolf.

These achievements demonstrate that advancements in sensor interface and system

miniaturization can be coupled with multicore architectures, such as PULP, to give

growth to the next generation of unobtrusive and real-time embedded applications for

biosignal processing. Still, the systems presented in this dissertation can benefit from

further improvements regarding the accuracy, the number of features, sensor fusion, and

advanced classification techniques, as currently, the resources available, especially in

terms of computational power, are only partially employed.
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Jean-Michel Guérit, Hermann Hinrichs, Akio Ikeda, Fransisco Jose C Luccas, and

Peter Rappelsburger. Ifcn standards for digital recording of clinical eeg. Electroen-

cephalography and clinical Neurophysiology, 106(3):259–261, 1998.

[33] Marco Guermandi, Eleonora Franchi Scarselli, and Roberto Guerrieri. A driving

right leg circuit (dgrl) for improved common mode rejection in bio-potential ac-

quisition systems. IEEE transactions on biomedical circuits and systems, 10(2):

507–517, 2016.

[34] Marco Guermandi, Roberto Cardu, Eleonora Franchi Scarselli, and Roberto Guer-

rieri. Active electrode ic for eeg and electrical impedance tomography with contin-

uous monitoring of contact impedance. IEEE transactions on biomedical circuits

and systems, 9(1):21–33, 2015.

[35] Jiawei Xu, Srinjoy Mitra, Akinori Matsumoto, Shrishail Patki, Chris Van Hoof,

Kofi AA Makinwa, and Refet Firat Yazicioglu. A wearable 8-channel active-

electrode eeg/eti acquisition system for body area networks. IEEE Journal of

Solid-State Circuits, 49(9):2005–2016, 2014.

[36] Alexander von Lühmann, Heidrun Wabnitz, Tilmann Sander, and Klaus-Robert

Müller. M3ba: a mobile, modular, multimodal biosignal acquisition architecture

for miniaturized eeg-nirs-based hybrid bci and monitoring. IEEE Transactions on

Biomedical Engineering, 64(6):1199–1210, 2016.

[37] Fan Zhang, Jeremy Holleman, and Brian P Otis. Design of ultra-low power biopo-

tential amplifiers for biosignal acquisition applications. IEEE transactions on

biomedical circuits and systems, 6(4):344–355, 2012.

[38] Ultra-Low Power, Single-Channel Integrated Biopotential AFE. https://

datasheets.maximintegrated.com/en/ds/MAX30003.pdf, 2019.

[39] Electroencephalogram (EEG) Measurement - Analog Devices. https:

//www.analog.com/en/applications/markets/healthcare-pavilion-home/

vital-signs-measurement/eeg-measurement.html, 2019.

[40] Simone Benatti et al. Multiple biopotentials acquisition system for wearable ap-

plications. In BIODEVICES, pages 260–268, 2015.

https://datasheets.maximintegrated.com/en/ds/MAX30003.pdf
https://datasheets.maximintegrated.com/en/ds/MAX30003.pdf
https://www.analog.com/en/applications/markets/healthcare-pavilion-home/vital-signs-measurement/eeg-measurement.html
https://www.analog.com/en/applications/markets/healthcare-pavilion-home/vital-signs-measurement/eeg-measurement.html
https://www.analog.com/en/applications/markets/healthcare-pavilion-home/vital-signs-measurement/eeg-measurement.html


Bibliography 74

[41] Mattia Salvaro, Victor Kartsch, Simone Benatti, Michela Milano, and Luca Benini.

Towards a novel hmi paradigm based on mixed eeg and indoor localization plat-

forms. In CAS (NGCAS), 2017 New Generation of, pages 217–220. IEEE, 2017.

[42] Matteo Rossi, Simone Benatti, Elisabetta Farella, and Luca Benini. Hybrid emg

classifier based on hmm and svm for hand gesture recognition in prosthetics. In In-

dustrial Technology (ICIT), 2015 IEEE International Conference on, pages 1700–

1705. IEEE, 2015.

[43] Xilin Liu, Jacob Sacks, Milin Zhang, Andrew G Richardson, Timothy H Lucas, and

Jan Van der Spiegel. The virtual trackpad: An electromyography-based, wireless,

real-time, low-power, embedded hand-gesture-recognition system using an event-

driven artificial neural network. IEEE Trans. Circuits Syst. II Express Briefs, 64:

1257–1261, 2017.

[44] D. Rossi. Sub-pj per operation scalable computing: The pulp experience. In

2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference

(S3S), pages 1–3, Oct 2016. doi: 10.1109/S3S.2016.7804389.

[45] Michael Gautschi, Davide Rossi, and Luca Benini. Customizing an open source

processor to fit in an ultra-low power cluster with a shared l1 memory. In Proceed-

ings of the 24th Edition of the Great Lakes Symposium on VLSI, GLSVLSI ’14,

pages 87–88, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-2816-6. doi: 10.

1145/2591513.2591569. URL http://doi.acm.org/10.1145/2591513.2591569.

[46] Igor Loi, Davide Rossi, Germain Haugou, Michael Gautschi, and Luca Benini.

Exploring multi-banked shared-l1 program cache on ultra-low power, tightly cou-

pled processor clusters. In Proceedings of the 12th ACM International Confer-

ence on Computing Frontiers, CF ’15, pages 64:1–64:8, New York, NY, USA,

2015. ACM. ISBN 978-1-4503-3358-0. doi: 10.1145/2742854.2747288. URL

http://doi.acm.org/10.1145/2742854.2747288.

[47] P. Davide Schiavone et al. Slow and steady wins the race? a comparison of ultra-

low-power risc-v cores for internet-of-things applications. In PATMOS, pages 1–8,

Sept 2017. doi: 10.1109/PATMOS.2017.8106976.

[48] Simone Benatti, Fabio Montagna, Davide Rossi, and Luca Benini. Scalable eeg

seizure detection on an ultra low power multi-core architecture. In 2016 IEEE

Biomedical Circuits and Systems Conference (BioCAS), pages 86–89. IEEE, 2016.
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[116] Martin Spüler. A high-speed brain-computer interface (BCI) using dry EEG elec-

trodes. PloS one, 12(2), 2017.

[117] Hubert Cecotti. A self-paced and calibration-less SSVEP-based brain–computer

interface speller. IEEE Transactions on Neural Systems and Rehabilitation Engi-

neering, 18(2):127–133, 2010.

[118] Herbert Stone and Joel L. Sidel. Sensory evaluation practices (second edition).

Food Science and Technology, pages 1 – 17. Academic Press, London, second

edition edition, 1993. ISBN 978-0-12-672482-0. doi: https://doi.org/10.1016/

B978-0-12-672482-0.50008-3.

[119] International Organization for Standardization ISO. Sensory analysis methodol-

ogy. general guidance for establishing a sensory profile. ISO 13299:2016.

[120] Harald Schupp et al. Affective picture processing: the late positive potential is

modulated by motivational relevance. Psychophysiology, 2000.

[121] Stephen Brown, Henk van Steenbergen, Guido Band, Mischa de Rover, and Sander

Nieuwenhuis. Functional significance of the emotion-related late positive po-

tential. Frontiers in Human Neuroscience, 6:33, 2012. ISSN 1662-5161. doi:

http://www.sciencedirect.com/science/article/pii/S0960982217313994
http://www.sciencedirect.com/science/article/pii/S0960982217313994


Bibliography 82

10.3389/fnhum.2012.00033. URL https://www.frontiersin.org/article/10.

3389/fnhum.2012.00033.

[122] Thad Starner, Joshua Weaver, and Alex Pentland. Real-time american sign lan-

guage recognition using desk and wearable computer based video. IEEE Transac-

tions on pattern analysis and machine intelligence, 20(12):1371–1375, 1998.

[123] Mohammadreza Asghari Oskoei, Huosheng Hu, et al. Support vector machine-

based classification scheme for myoelectric control applied to upper limb. IEEE

Trans. Biomed. Engineering, 55(8):1956–1965, 2008.

[124] Manfredo Atzori, Matteo Cognolato, and Henning Müller. Deep learning with

convolutional neural networks applied to electromyography data: A resource for

the classification of movements for prosthetic hands. Frontiers in neurorobotics,

10:9, 2016.

[125] Bojan Milosevic, Simone Benatti, and Elisabetta Farella. Design challenges for

wearable emg applications. In 2017 Design, Automation & Test in Europe Con-

ference & Exhibition (DATE), pages 1432–1437. IEEE, 2017.

[126] Thalmic Labs. Thalmic’s MYO Armband. URL https://www.myo.com/.

[127] Jun Liu, Fan Zhang, and He Helen Huang. An open and configurable embedded

system for emg pattern recognition implementation for artificial arms. In Engi-

neering in Medicine and Biology Society (EMBC), 2014 36th Annual International

Conference of the IEEE, pages 4095–4098. IEEE, 2014.

[128] Xiaorong Zhang, He Huang, and Qing Yang. Real-time implementation of a self-

recovery emg pattern recognition interface for artificial arms. In Engineering in

Medicine and Biology Society (EMBC), 2013 35th Annual International Confer-

ence of the IEEE, pages 5926–5929. IEEE, 2013.

[129] Paolo Gentile, Marco Pessione, Antonio Suppa, Alessandro Zampogna, and Fer-

nanda Irrera. Embedded wearable integrating real-time processing of electromyo-

graphy signals. In Multidisciplinary Digital Publishing Institute Proceedings, vol-

ume 1, page 600, 2017.

[130] Pentti Kanerva. Hyperdimensional computing: An introduction to computing in

distributed representation with high-dimensional random vectors. Cognitive Com-

putation, 1(2):139–159, 2009. ISSN 1866-9956. doi: 10.1007/s12559-009-9009-8.

URL http://dx.doi.org/10.1007/s12559-009-9009-8.

[131] Abbas Rahimi, Simone Benatti, Pentti Kanerva, Luca Benini, and Jan M. Rabaey.

Hyperdimensional biosignal processing: A case study for EMG-based hand gesture

https://www.frontiersin.org/article/10.3389/fnhum.2012.00033
https://www.frontiersin.org/article/10.3389/fnhum.2012.00033
https://www.myo.com/
http://dx.doi.org/10.1007/s12559-009-9009-8


Bibliography 83

recognition. In IEEE International Conference on Rebooting Computing, October

2016.

[132] Fabio Montagna, Abbas Rahimi, Simone Benatti, Davide Rossi, and Luca Benini.

Pulp-hd: Accelerating brain-inspired high-dimensional computing on a parallel

ultra-low power platform. In Proceedings of the 55th Annual Design Automation

Conference, DAC ’18, pages 111:1–111:6, New York, NY, USA, 2018. ACM. ISBN

978-1-4503-5700-5. doi: 10.1145/3195970.3196096. URL http://doi.acm.org/

10.1145/3195970.3196096.
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