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Abstract 

Aseptic loosening of the hip acetabular component is the main cause of failure of hip 

arthroplasty and is the consequence of lack of implant stability in the early post-operative 

period. 

Hip acetabular stability is the capability of acetabular implants to resist to the forces 

acting in the acetabulum during patient activities after surgery. If implant motions are 

sufficiently low, primary stability is achieved and the osteointegration process between 

the implant and the surrounding bone may occur. In this context, measuring implant 

motions is essential to predict the implant failure. In clinical practise this is achieved by 

the analysis of radiographical images acquired in consecutive patient follow-ups. These 

measurements are limited to the implant migration, while elastic motions and 

periacetabular strains, that contribute to implant stability, are not monitored. So far, to 

obtain a complete set of stability measurements with high accuracy, in vitro testing is the 

most reliable option. Despite the importance of the experimental analysis, a general 

consensus about the application of biomechanical tools to solve clinical problems is still 

missing.  

The aim of my Ph.D project was to develop and apply reliable in vitro methods to assess 

the hip acetabular stability in case of primary and revision reconstructions.  

First, two methodological studies were conducted (1) to define and implement a robust 

reference frame for the human hemipelvis based on a morphological analysis of this 

anatomical district and (2) to create a robust procedure to measure the implant motions 

and the periacetabular strains with the Digital Image Correlation technique. Secondly, I 

applied these methods to answer the following clinical questions: 

1. How do changes in the motor task affect the cup stability and the periacetabular 

strains? 

Both walking and standing up motor tasks generated implant migration comparable 

with the clinical observations. The cranial translation of the cup was the highest 

motion component measured during walking, while standing up generated the 

highest rotations of the implant. The largest periacetabular strains where measured 

during standing up. Such results suggested that preclinical testing of new uncemented 

press-fit cups should include the simulation of both the motor tasks. Moreover, the 
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study could also translate to indication of which motor activity should be avoided in 

critical clinical cases. 

2. Does the cup medialization affect implant stability? 

The resultant cup migration was slightly larger when the cup was medialized if 

compared with an anatomical reconstruction. The rotations had a similar trend. In 

almost all the cases, the cup motions faced by the implant in the two implantation 

configurations were not statistically different. The results suggested that cup 

medialization does not improve initial cup stability and, considering the influence of 

medialization on hip biomechanics, conventional reaming should not be routinely 

performed. 

3. Which is the effect on cup stability of defect reconstructions with an innovative 

synthetic bone substitute or with human bone graft in revision surgery? 

The two reconstruction materials provided similar mechanical stability in terms of 

permanent and inducible motions at reasonable load levels for post-op patients (up 

to 3 BW). The results suggested that the synthetic graft presented in the study could 

be used as a reliable alternative solution for acetabular defect filling in revision cases 

of severe, contained defects overcoming the issues of human bone graft in terms of 

availability, costs and body-rejection. 

To conclude, this project provided a new reliable collection on in vitro methods to 

perform biomechanical testing on human hemipelvis specimens and to assess the stability 

of acetabular reconstructions by mean of Digital Image Correlation. As the use of this 

measurement technique is spreading in the biomechanical field, my project may constitute 

the starting point for future investigations on cup implant stability. Moreover, due to the 

versatility of the Digital Image Correlation, my methods could be also applied to assess 

the stability of different prosthetic devices adopted for the acetabular reconstructions. 
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Chapter 1: Introduction 

1.1 Overview of anatomy and biomechanics of the hip 

The hip is the anatomic structure of the human body connecting the axial skeleton to the 

lower extremities. Its function is to carry the upper body weight and transfer forces from 

the ground up: this must be accomplished allowing the maintenance of equilibrium and 

balance while standing and during the motor activities. This complex functional role is 

reflected in the anatomical complexity of the hip (Fig. 1.1). 

Biologically, the hip joint is classified as synovial joint: it is a cavity internally covered 

with articular cartilage, surrounded by a ligamentous capsule and capable to produce 

synovial fluid1. It is formed by the head of the femur and the acetabulum of the pelvis 

constituting a ball-and-socket joint, thus having 3 rotational degrees of freedom while 

translations, in case of healthy hip, are negligible2. This is allowed by the congruency of 

the articulating surfaces. 

The hip stability is provided by a series of anatomical structures. A contribution is exerted 

by the labrum, a fibro-cartilaginous strip attached to the acetabular rim that helps in the 

dissipation of the forces across the hip and in avoiding excessive hip motions by 

improving joint congruity.  

The ligamentous capsule contributes significantly to hip stability. It is formed by 3 

ligamentous sheets arising from the periphery of the acetabulum and extending down to 

the femoral neck, twisting around the hip joint. They oppose to the joint distraction. Inside 

the joint, the ligamentum teres, connecting the femoral head with the acetabular fossa, 

stabilizes the hip during external rotations.  

The major contribution is provided by the 22 muscles acting on the hip joint, supplying 

stability and exercising the forces required for the hip motion. Among them, the hip 

abductors play the major role in stabilizing the pelvis during single leg stance, as a 

compensation of the moment generating by the body weight3.  

The study of the hip biomechanics is fundamental for understanding the effect of 

alterations in the hip anatomy on joint stability and for planning surgical replacement. 

Osteoarthritis, the progressive debridement of the articular surfaces causing pain, in 
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example, can be reduced by reducing the joint reaction force: this may be achieved by 

reducing the body weight, the lever arm of the body weight or by introducing a 

compensation at the opposite side of the painful hip (such as the use of a walking stick) 

so as to reduce the hip abductor force acting on the painful hip4,5. 

However, in case of excessive degeneration of the hip biomechanical function, generally 

associated with pain, the treatment is represented by the surgical hip replacement also 

known as hip arthroplasty.  

 

 

Fig. 1.1: The main anatomical structures of the hip bone 

  



 
 

9 
 

1.2 Hip arthroplasty 

Hip arthroplasty is the surgical replacement of the hip joint with artificial mechanical 

components, aiming the restoration of the hip joint function (Fig. 1.2). In most cases, the 

replacement involves both the acetabulum and the femur, but it may be also partial 

(hemiarthroplasty).  

The main cause of primary hip replacement is osteoarthritis accounting for more than 

70% of the cases. Implant fixation is related to the patient age: press-fit uncemented cup 

are mainly adopted in younger patient, due to the higher physical demand and the 

presence of reactive bone; for elder patient the cemented fixation is usually 

preferred6,7,8,9,10. An exception to this trend is represented by hip arthroplasty performed 

in the USA where uncemented fixation is adopted in almost all cases11. Overall, the use 

of cemented fixation is progressively decreasing also for elder patients.  

About 10% of primary implants fail, requiring a new surgical replacement for the patient 

and aseptic loosening of the acetabular component is the most frequent cause of failure.  

Aseptic loosening is a multi-factorial event caused by the presence of debris around the 

acetabular cup that progressively leads to the formation of fibrous tissue at the 

bone/prosthesis interface12,13. Such debris can have multiple origins but are always related 

to a lack of acetabular primary stability. 

 

Fig. 1.2: Hip arthroplasty. The picture shows a left hip reconstruction 
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1.3 Hip acetabular stability 

Implant stability is a measure of the clinical immobility of an implant. When an acetabular 

cup is press-fitted in the hip cavity, it engages peripherally with the cortical bone. 

Therefore, primary stability is mainly provided by mechanical factors, i.e. the interference 

friction, the microscopic interlock between cup and bone and occasionally macroscopic 

features such as fins, threads, pegs and screws14. Other factors influencing primary 

stability are the bone quality and the surgical technique. The achievement of primary 

stability is a requirement for secondary stability namely osteointegration (biological 

stability). Osteointegration is the fusion of the implant with the underlying bone, 

occurring 3-4 weeks after the implantation and is activated by the lesion of the pre-

existing bone matrix during cup insertion. The exposure of the matrix to extra-cellular 

fluid stimulates bone regeneration and remodelling. Factors influencing osteointegration 

are the implant biocompatibility, the implant surface roughness and porosity and the cup 

motions15. It has been demonstrated that if excessive micromotions occur during the first 

stages of osteointegration, fibrous tissue arises in the interface between cup and bone, 

compromising secondary stability. In vivo studies performed on animal models showed 

that micromovements greater than 150 m lead the formation of fibrous tissue; 

micromovements lower than 40 m allow osteointegration; micromovements between 40 

and 150 m lead to a variable outcome16,17,18. For the sake of clarity, it is important to 

distinguish among two typologies of implant motions: the cup migration and the cup 

elastic motions. Even if the cup is forced in the acetabular cavity in press-fit implantation, 

it is expected that the implant will settle during the first load applications (e.g. during 

rehabilitation) so as to reach a stable permanent configuration. If this migration is limited, 

with no impacts on the anatomy and on the biomechanics of the reconstructed hip joint, 

it will not compromise secondary stability. Conversely, an excessive cup migration is 

correlated to the risk of late aseptic loosening of the implant. For this reason, many 

authors identified clinical thresholds for the cup migration, measurable in clinical 

practise, to use as predictors for cup mobilization19. 

The elastic cup motions arise during the load application and are recovered when the 

acetabulum is unloaded. As they generate during hip motion, they cannot be assessed 
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clinically through the analysis of radiographic images, but still compromise cup stability 

if excessive. For this reason, monitoring the elastic motions is of outstanding importance. 

Beside implant motions, strains may play a role in hip implant stability. The implantation 

alters the load transfer from the cup to the pelvic bone during motor activities, leading to 

a re-distribution of the anatomical structures surrounding the implant. This biological 

mechanism was thoroughly investigated and is well known as Wolff’s law20: the living 

bone undergoes a local adaptation of the internal trabecular architecture and of the 

external cortical shell in relation to the local force stimulus. As a result, the bone becomes 

thicker and denser in regions withstanding high loads and weaker and less dense where 

the force stimulus is reduced: such phenomenon is also known as stress-shielding effect. 

1.4 In vitro assessment of cup stability: State of the art 

Monitoring the magnitude of the cup motions is necessary to predict the late implant 

failure. In vivo measurements would be the most reliable quantities to achieve this goal, 

but due to ethical considerations, studies on living subjects are currently limited to animal 

models21,16. The clinical evaluation of cup stability provides the surgeons the status of the 

implant migration through the analysis of bio-images (usually radiographs) of the patient 

in a static condition; therefore, elastic motions and/or strains in the hip are not monitored. 

Such limitations may be overcome by the in vitro studies. In vitro studies represent a 

trade-off between the use of reliable simplified testing and the measurable clinical 

parameters. Moreover, they are required before clinical trials. In orthopaedics, clinical 

trials are performed to certificate the efficiency of biomedical devices, by investigating 

their interaction with the living human body in selected patients. As clinical trials are 

extremely tightened by ethical motivations and high costs, they can be performed only if 

such devices passed positively a series of pre-clinical tests such as in vitro functional 

testing.  

However, despite the importance of in vitro experimentation, a general consensus on how 

to perform biomechanical testing is still missing. 

The aim of this chapter is to provide a general overview of the current status of the art of 

experimental analysis of cup stability. 
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1.4.1 Inclusion criteria for the review 

The selection process of the studies to include in the review is presented in Fig. 1.3 

 

Fig. 1.3: Research strategy adopted in the present literature review  

The source Pubmed was interrogated on March 2019. Three logical researches were 

adopted: 

1. ((experimental) OR (in vitro) OR (biomechanics) OR (biomechanical)) AND 

((acetabulum) OR (acetabular) OR (cup)) AND (stability) 

• N=420 studies were identified 

• N=42 studies were eventually selected after the application of the 

exclusion criteria 

2. ((experimental) OR (in vitro) OR (biomechanics) OR (biomechanical)) AND 

((acetabulum) OR (acetabular)) AND ((defect) OR (defects)) 

• N=209 studies were identified 

• N=15 were selected after the application of the exclusion criteria 

• N=2 studies were eventually selected after the removal of the studies 

already selected  

3. ((experimental) OR (in vitro) OR (biomechanics) OR (biomechanical)) AND 

((acetabulum) OR (acetabular)) AND (revision) 

• N=263 studies were identified 

• N=0 studies were eventually selected after the removal of the studies 

already selected  

In addition, the bibliography of each selected paper was analysed, but no additional 

studies were reviewed.  

Therefore, N=44 studies were eventually reviewed (Tab. 1). 
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Tab. 1: List of papers included in the review 

Author Bone model Implantation Test Measurements 

Arts et al.22 Composite cylinder Press Torsion 

Lever-out 

Optical 

Adler et al.23 Block of PU foam 

Bovine 

Manual  

Press  

Torsion 

Lever-out 

Test machine 

Amirouche et al.24 Cadaveric hemipelvis Manual  Monotonic ramp LVDT 

Baleani et al.25  Block of PU foam Press Torsion Test machine 

Beckmann et al.26 Cadaveric hemipelvis Manual  Cyclic physiologic Optical 

Beckmann et al.27 Cadaveric hemipelvis Manual  Cyclic physiologic Optical 

Beckmann et al.28 Cadaveric hemipelvis Manual  Cyclic physiologic Optical 

Bolder et al.29 Composite cylinder Press Torsion Optical 

Burkner et al.30 Block of PU foam Press Monotonic ramp LVDT 

Clarke et al.31 Cadaveric hemipelvis Manual Torsion Test machine 

Crosnier et al.32 Block of PU foam Press Cyclic physiologic 

Push-out 

LVDT 

Test machine 

Crosnier et al.33 Block of PU foam Press Cyclic physiologic LVDT 

Curtis et al.34 Cadaveric hemipelvis Manual Torsion Test machine 

Fehring et al.35 Cadaveric hemipelvis Manual Manual bending LVDT 

Goriainov et al.36 Composite cylinder Press Torsion Test machine 

Hsu et al.37 Block of PU foam Press Lever-out Laser 

Huber et al.38 Composite acetabulum Press Lever-out LVDT 

Jacofsky et al.39 Cadaveric hemipelvis Manual Monotonic ramp 

Cyclic physiologic 

Optical 

Jahnke et al.40  Block of PU foam Drop weight Torsion Eddy current 

Kanda et al.41 Block of PU foam Press Torsion Torsiometer 

Dynamometer 

Kwong et al.42 Cadaveric hemipelvis Manual Cyclic physiologic Extensometer 
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Lachiewicz et al.43 Cadaveric hemipelvis Manual Monotonic ramp 

Torsion 

Strain gauge 

Le Cann et al.44 Block of PU foam 

Bovine 

Press Lever-out 

Pull-out 

Test machine 

Macdonald et al.45 Block of PU foam 

Composite cylinder 

Cadaveric hemipelvis 

Manual Pull-out 

Lever-out 

Torsion 

Test machine 

Markel et al.46 Block of PU foam Press Lever-out Laser 

Meneghini et al.47 Composite hemipelvis Manual Lever-out Test machine 

Meneghini et al.48 Composite hemipelvis Manual Lever-out Test machine 

Michel et al.49 Bovine Drop weight Lever-out Dynamometer 

Michel et al.50 Cadaveric hemipelvis Manual Lever-out Dynamometer 

Milne et al.51 Block of PU foam Press Lever-out 

Torsion 

Push-out 

Test machine 

Olory et al.52 Block of PU foam Manual Lever-out Manual 

Perona et al.53 Cadaveric hemipelvis Manual Cyclic physiologic Eddy current 

Pitto et al.54 Pelvis in PU foam Manual Cyclic physiologic Eddy current 

Plominski et al.55 Block of resin Manual Cyclic physiologic 

Lever-out 

Test machine 

Ries et al.56 Pelvis in PU foam Press Lever-out 

Pull-out 

Test machine 

Schwarz et al.57 Block of PVC foam Manual Lever-out Test machine 

Small et al.58 Block of PU foam Press Lever-out Test machine 

Stiehl et al.59 Cadaveric hemipelvis Manual Cyclic physiologic LVDT 

Tabata et al.60 Block of PU foam Press Torsion Test machine 

von Schulze et al.61  Cadaveric acetabulum Manual  

Press 

Lever-out Test machine 
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Walschot et al.62 Composite cylinder Press Cyclic physiologic 

Lever-out 

Optical 

Test machine 

Weiβmann et al.63 Block of PU foam Press Pull-out 

Lever-out 

Test machine 

Widmer et al.64 Cadaveric hemipelvis Manual Monotonic ramp Test machine 

Wu et al.65  Cadaveric hemipelvis Manual Cyclic physiologic Laser 

Strain gauge  

1.4.2 Issues related to the bone model 

The bone model has an influence on the final output of the study. Simple model, such as 

blocks of polyurethane (PU), allow to obtain repeatable results due the low inter-

specimen variability. Models with an accurate anatomy, such as cadaveric models, are 

less repeatable but allow to obtain results closer to the real outcomes. For this reason, the 

choice of the bone model should be made in relation to the aim of the study.  

Simple synthetic models 

Several studies adopt PU models, in shapes of regular blocks, with controlled 

density23,25,30,32,33,37,40,41,44,45,46,51,52,58,60,63. This material aims to simulate the trabecular 

bone, with a density consistent with the density of the acetabular cancellous bone.  

These models are available in the market, extremely cheap and the controlled 

manufacturing guarantees a low inter-specimen variability. On the other hand, the 

stiffness, frictional and yield behavior are significantly different from those of acetabular 

bone, limiting considerably their reliability in the assessment of primary stability, which, 

conversely, relies on the capability of the cup to grip the bone cortical outer rim of the 

acetabulum. To overcome this limitation and better mimic the mechanical properties of 

the acetabulum, in some studies synthetic models constituted by tubes of glass-fiber 

reinforced epoxy resin were adopted22,29,36,45,62. The tubes were machined to create the 

proper cavity for cup insertion. Therefore, primary stability was provided by the 

mechanical engagement of the implant with the rigid outer rim of the tube.  
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Animal bone specimens 

An alternative to synthetic models is represented by animal bone specimens, which 

should present mechanical properties (yield, friction, damage criterion) more similar to 

those of human bone. As the anatomy of the animal bone, usually constituted by a 

quadruped hip, differs remarkably from the anatomy of the human bone, these models 

require to be adapted before the cup implantation. To the Author’s knowledge in only one 

case the animal model, constituted by a primate pelvis, was kept intact for the 

experimentation66. In other studies, the bovine humerus and the bovine femoral epiphysis 

were used. The bones were cut in shape of blocks and sunk in resin blocks to allow 

preparation, implantation and test23,44,49.  

Despite animal models represent an improvement from synthetic models in mimicking 

the mechanical properties of human bone, significant limitations still persist, due to the 

different anatomical structure, deriving from the adaptations of the bone to withstand a 

quadrupedal deambulation.  

In general, simple models are reliable in comparative studies, in which the question is not 

strictly related to the load distribution. However, if the aim of the study is related to the 

mechanical behaviour of the bone, simple models are not sufficiently representative, and 

anatomical models may provide richer information. 

Anatomical models 

Anatomical pelvis model made of composite material are frequently adopted in in vitro 

studies27, ,47,48,67,68. They are formed by a shell of glass-fiber reinforced epoxy resin with 

an infill of PU foam, aiming to mimic the double-layered structure of the human bone. 

Some studies reported values of overall stiffness 2 times larger than the stiffness measured 

in the human cadaveric pelvis. Also, strains measured around the acetabulum and in the 

iliac wing of composite specimens were larger than strains measured in cadaveric 

specimen, with a different orientation for the principal strains69. Like for PU models, the 

main advantages in using composite models are the cost (if compared with human 

models) and the low inter-specimen variability, allowing reproducible biomechanical 

testing. 
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So far, the use of cadaveric specimens for orthopaedic biomechanics research is the most 

accurate option in terms of morphology and anatomical structures. This allows the 

specimen preparation and implantation to be qualitatively and quantitively close to those 

performed in the clinical practise. In addition, human models represent the most reliable 

specimens for in vitro testing in terms of mechanical properties that are comparable with 

those of the living bone both in case of fresh-frozen specimens or embalmed70. For this 

reason, they are adopted in several studies24,28,26,31,34,35,39,42,43,53,59,61,64,65. Beside ethical 

constraints, the use of cadaveric specimens is limited by the cost, the availability and the 

difficulties in handling and preservation. Due to the fast specimen deterioration, in vitro 

testing are temporally limited (e.g no fatigue test can be conducted) and in any case the 

specimens must be kept wet during the testing. Moreover, cadaveric specimens may have 

a wide inter-specimen variability71. 

1.4.3 Issues related to the implantation technique 

The implantation of the acetabular component is fundamental to have a good stability.  

Surgeons use ad hoc tools that are generally formed by a rod (impactor) which can be 

threaded to the cup at one extremity while the opposite side is flat and is hammered by 

the surgeon to settle the cup in the acetabular socket, previously reamed. The stability is 

manually assessed by slightly toggling the impactor. The force necessary to properly 

press-fit the cups was measured with instrumented surgical hammers and covers a range 

of 1.5 kN -9 kN50,72,73 but may vary depending on the bone quality of the patient (e.g in 

case of osteoporosis).  

Simplified approach 

A simple model for cup implantation in in vitro applications consists in applying a 

constant load trough a press machine22,25,29,30,32,33,36,38,41,44,46,56,58,60, 62,63. The compression 

force varies in relation to the bone model adopted in the study generally constituted by 

blocks of synthetic bone25,30,32,33,41,44,46,58,60,63. This approach provides a low inter-

specimen variability, but the final outcome (complete congruency) is not well 

representative of the clinical outcome (i.e. the polar gap between the implant and the 

acetabular wall is not achieved). Moreover, this procedure may be not applicable in 
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anatomical bone models, where impacts with high energies are required to grant cup 

insertion. 

The application of quasi-static loads for the implantation is far from what is performed in 

clinical practise. To simulate the sequence of impacts that surgeons apply clinically, in a 

controlled way, some authors adopted a drop-weight approach49,74,75. This approach 

consists in make a mass, with a controlled weight, fall from a fixed height to hit the flat 

base of the surgical impactor, placed vertically on the acetabular socket. First, the mass 

is aligned with the impactor by a horizontal sliding and then is released. The vertical 

sliding allowed to set the proper height to generate the force necessary to press-fit the cup 

(usually larger than 2 kN). The number of impacts to properly settle the implant is 

generally assessed experimentally40,49,75.  

Realistic approach 

A common and more realistic approach consist in implanting the device manually, as it 

is done operatively during hip replacement23,24,26,27,28,31,34,35,39,42,43,45,47,48,50,52,53,54,55, 

57,58,61,64,65,. The implantation is usually performed by a surgeon following the 

manufacturer’s guidelines. The force required for implant insertion is based on the 

surgeon experience and the quality of the fixation is manually assessed. This approach is 

mainly adopted on anatomical specimens and it is more affected by inter/intra-operator 

variability76. 

1.4.4 Issues related to the load 

Simple tests 

In simple models the cup is forced to migrate in a direction imposed by the operator. Bone 

models in shape of regular blocks are usually adopted and are aligned so as to have the 

acetabular plane perpendicular with the axis of the testing machine or aligned with it, 

depending on the type of mechanical test. The same approach is used in case of biological 

models (animal or cadaveric) completely sunk in bone cement in which only the 

acetabulum is exhibited.  
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Pull-out and push-out tests allow to evaluate the out-of-plane migration of the cup, in a 

direction that is perpendicular to the acetabular plane. In case of pull-out tests, a rod is 

firmly fixed to the cup while the specimen is constrained to the mechanical setup. A 

traction load is then applied and the load necessary to distract the cup is measured 

44,45,56,63. Push-out tests consist in applying a vertical compression at the dome of the cup, 

through a hole at the base of the acetabulum. The hole should not influence the 

stress/strain distribution over the specimen due to its negligible mechanical effect during 

load in the intact pelvis32,51. Like for the pull-out test, the load necessary to distract the 

cup is measured. As the direction of load (as well as the direction of the cup migration) 

is not physiological, such tests are usually used to compare the frictional properties of 

cups implanted in bone surrogates.  

Torsion tests allow to measure micromotions in the plane of the acetabular cup. The load 

is generally transmitted through a rod rigidly connected to the acetabular cup at one side 

and vised at the testing machine at the opposite side. The applied load is generally a 

combination of torsion and compression22,23,25,29,31,34,36,40,41,43,45,51,60. The 

displacement/load required to distract the cup is recorded through the testing machine. 

Torsion tests allow to assess the effects of the bearing frictional torques on hip stability, 

with cups implanted in synthetic bon models. 

Lever-out tests allow to measure micromotions out of the plane of the acetabular cup, 

better simulating a failure scenario with respect of the simple tests described previously. 

To perform lever-out tests, a controlled eccentric load is applied. Markel et al. loaded the 

cup with a platen on a side of the rim46. The maximum load necessary to distract the cup 

was measured. Similarly, other authors adopted this approach. To increase the 

reproducibility of the test, some authors adopted a setup composed by a shaft rigidly fixed 

at the cup dome able to transfer a tangential load through a cable fixed at his free edge 

and an adjustable pulley used to create the lever arm. Lever-out tests are usually 

performed to investigate the acetabular stability in terms of implant friction effects and/or 

impingement effects22,23,37,38,44,45,47,48,49,50,52,55,56,57,58,61,62,63.  

Phisiological test 

Physiological tests try to overcome the limitations of simple tests related to the imposed 

direction of cup migration, in order to be more consistent with the real scenario. It is 
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important to underline that “physiological” must not be intended as the simulation of the 

entire load spectrum that the cup withstands in vivo during a specific activity, but the 

simulation of a simplified loading configuration with one or a few fixed directions that 

are representative of a particular motor task. Such fixed load direction is normally 

represented by the direction of the load peak measured in vivo during a specific motor 

task performed by patients implanted with a telemetric device77,78. In order to reproduce 

the proper loading configuration, specimens are aligned with respect of the direction of 

load. In case of anatomical models (both synthetic and biological), the alignment is 

provided by constraining the specimen at the sacro-iliac joint, so as to simulate the 

mechanical boundary conditions of the pelvis. This is done through a vice67 or in most of 

the cases with bone cement26,27,28,39,42,53,54,59,65. The pubic symphysis is usually kept 

unconstrained, but in a few cases a support is added to avoid excessive bending of the 

specimen during the test27.  

1.4.5 Measurement of implant/bone motion  

In order to assess primary stability, the relative motion between the cup and the 

underlying bone during the application of one or more loading configurations has to be 

measured. As the relative motion is a combination of three-dimensional rotations and 

translations, to be able to measure separately each component of motion is of outstanding 

importance. Moreover, as hip bone faces high deformations during the load 

application68,79, strains measurements may provide additional information about cup 

stability.  

Despite the previous consideration, most of the studies estimated cup stability by 

monitoring the mechanical outputs of the testing machine, i.e. the force necessary to 

distract the cup, the cup resultant migration after the application of a certain load or a 

single component of translation only. Such approach was frequently adopted in 

comparative studies where PU foam blocks were used however, the 3D relative motions 

between the implant and the surrounding bone were not measured as well the 

periacetabular strains. To have an accurate measurement of displacements and strains, 

external mechanical sensors must be adopted. 
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Pointwise mechanical sensors 

Over decades the measurements of the cup displacement were taken by mean of pointwise 

sensors. They are constituted by linear displacement transducers, such as 

LVDTs24,30,32,33,35,38,59 or eddy current transducers40,53,54, that are rigidly fixed on the 

specimen surface while the sensing probe is kept in touch with the prosthesis. In a few 

studies a single sensor was used, limiting the measurement of the 6 components of the 

implant/bone displacement to a single component. To obtain 3D measurements, clusters 

of 3 sensors were placed around the acetabulum30,53. This approach could provide relative 

out-of-plane translations and rotations, but in-plane motions could not be measured. To 

overcome this limitation in a few studies a cluster of at least 6 sensors was adopted. 

Sensors were placed directly in touch with the implant or with a structure integral with 

the implant and orthogonal to each other so as to obtain 3D measurements referred to a 

defined reference frame (usually the cup reference frame) 24,32,33. Even though these 

sensors are extremely accurate and precise, they are intrinsically limited by their 

pointwise nature, that may introduce high errors in the measurements of bone 

displacement, especially in case of large deformations. Secondly, deformations cannot be 

measured. Crosnier et al. tried to reduce this limitation by measuring the elastic 

deformation of the bone in a single direction, using two LVDTs placed close to the 

acetabular rim and in touch with the bone substrate32,33.  

Strain gauges could provide accurate pointwise strain measurements without measuring 

implant motions. However, to the Author’s best knowledge, in no studies they were used 

in combination with pointwise displacement sensors for the assessment of cup stability. 

Conversely, they were frequently used to validate finite element models68. 

Optical sensors 

Optical measurement techniques allow to measure the 3D implant/bone motions and/or 

bone deformations by tracking the specimen (implant and bone) or by tracking markers 

applied on the implant and on the surrounding bone. A laser tracking system was 

sometimes adopted to obtain a limited number of implant or bone motion component even 

in combination with strain gauges46,65. Alternatively, optical tracking markers were used, 

similar to those adopted in motion analysis39. Due to the limited space for markers 
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application and their spatial encumbrance, the number of adoptable markers is restricted. 

Thus, as tracking systems generally calculate the 3D motion by the fitting of the positions 

measured by each marker, such restriction may affect the measurement accuracy. To 

overcome this limitation, in some studies, a huge number of small markers were used, 

whether inserted or stuck in the acetabular insert, rim and in the periacetabular 

bone22,26,27,28,29,62. Even if this technique provided 3D motion measurement with high 

accuracy and precision, strains were not measured. 

The Digital Image Correlation (DIC) technique is an optical technique that can overcome 

all the previous problems80,81. Through the DIC, 3D measurements of displacement and 

strain measurements over the surface of the specimen can be obtained. A few studies 

adopted this technique to measure the strain distribution in composite hemipelvis 

specimens under the application of simple loading configurations68,79 but, to the Author’s 

best knowledge, no studies were performed so far to assess primary stability of acetabular 

implant using DIC. 

1.5 Aims and outline of the project 

The aim of the project was to develop and apply reliable in vitro methods to assess the 

hip acetabular stability in case of primary and revision reconstructions and in particular 

to: 

1. Create a robust reference frame for the human hemipelvis; 

2. Develop a reliable method to assess the hip acetabular stability through Digital 

Image Correlation; 

3. Compare the effect on cup stability and periacetabular strains of walking and 

standing up motor tasks; 

4. Compare the effect of the implantation technique on the primary stability of press-

fit cups; 

5. Compare the effect on cup stability of the use of human bone graft or synthetic 

bone graft to reconstruct acetabular defects in revision surgery. 

The overall project follows a linear structure: after the analysis of the state of the art, two 

methodological studies were conducted to overcome the limitations of the previous 
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biomechanical testing on hip acetabular stability (see par. 1.4) and build strong 

foundations for the following steps. Three clinical problems were investigated thereafter.  

In Chapter 2 a reliable reference frame for the human hemipelvis specimens is presented. 

The definition of the reference frame is fundamental for the interpretation of the results, 

but it is often neglected in the in vitro applications probably because of the difficulty in 

the transposition from the theoretical model to the practical implementation. Moreover, 

in the specific case of the pelvis, all the existing theoretical models define the anatomical 

reference frame starting from anatomical landmarks belonging to both sides of the pelvis. 

This may constitute a problem in the in vitro implementation, as in most cases hemipelvis 

specimens are adopted. For this reason, I developed a reference frame for the human 

hemipelvis based (1) on the same anatomical landmarks used to define the pelvis 

reference frames and (2) anatomical measurements taken on clinical images. 

Furthermore, I developed a practical method to apply this theoretical model to the 

physical specimen. 

Chapter 3 presents the method I created to assess the stability of acetabular implants with 

the Digital Image Correlation measurement technique. This method is accurately outlined 

in all its steps, starting from the specimen preparation until the elaboration of the DIC 

measurements. The method was validated with synthetic hemipelvis models in order to 

reduce the effect of the anatomical variability on the measurement error. 

With these two studies a reliable methodological basis was constituted. Due to the 

versatility of the DIC technique, this method may be applied in a wide variety of clinical 

topics. For the purpose of the present project, I was asked to investigate clinical problems 

by suggestions of European experienced surgeons, collaborating with my activities. 

In Chapter 4 I compared the effect of different simulated motor tasks on the acetabular 

stability. To date, in vitro studies assessed the acetabular stability by the simulation of 

walking motor task (assumed as the most common patient activity) or standing. However, 

looking at the forces acting within the acetabulum during common activities of post-op 

patients, it results that both walking and standing may not represent the worst-case 

scenario to investigate if compared to other activities recommended for the patient 

rehabilitation. For this reason, I developed this study to evaluate which are the differences 

in terms of implant motions and periacetabular strains in case of walking and standing up 
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from seated, providing also a clinical interpretation of the implant migration by the 

comparison of the DIC measurements with radiographical measurements. 

Chapter 5 presents a comparison between two implantation techniques adopted in primary 

acetabular reconstruction. The first technique is more conservative and aims to restore 

the native hip centre of rotation, while with the second one the implant is medialized until 

it touches the inner cortical surface of the pelvis. Both the techniques are clinically 

accepted, but their efficiency in terms of implant stability is based only on theoretical 

models or surgical experience. In this study, I quantified the effect on cup stability due to 

the use of such techniques through a biomechanical in vitro analysis. 

In Chapter 6, a study related to the effect on implant stability of different acetabular 

reconstruction techniques adopted in revision surgery is reported. In clinical practise, 

revision surgery of the acetabulum is usually accompanied with bone defects that must 

be reconstructed before the insertion of the revision implant. Such reconstruction can be 

performed either with human bone graft or synthetic bone substitute. Although the 

biological properties of human and artificial bone were deeply investigated, their 

mechanical effect on implant stability were barely studied. For this reason, I developed 

an in vitro study to compare how the acetabular reconstruction with either human or 

synthetic bone affect the cup motions and periacetabular strains.  
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Chapter 2: 

Standardization of hemipelvis alignment  

for in vitro biomechanical testing 

From the journal paper: 

Morosato F, Traina F, Cristofolini L. Standardization of hemipelvis alignment for in vitro biomechanical 

testing. J Orthop Res. 2018;36(6):1645-1652. doi:10.1002/jor.2382582 

The authors wish to thank Journal of Orthopaedic Research for providing the permissions to re-use the 

manuscript titled “Standardization of hemipelvis alignment for in vitro biomechanical testing” in the 

present Ph.D thesis. 

2.1 Abstract 

Although in vitro biomechanical tests are regularly performed, the definition of a suitable 

reference frame for hemipelvic specimens is still a challenge. The aims of the present 

study were to: (i) define a reference frame for the human hemipelvis suitable for in vitro 

applications, based on robust anatomical landmarks; (ii) identify the alignment of a 

hemipelvis based on the alignment of a whole pelvis (including right/left and male/female 

differences); (iii) identify the relative alignment of the proposed in vitro reference frame 

with respect to a reference frame commonly used in gait analysis; (iv) create an in vitro 

alignment procedure easy, robust and inexpensive; (v) quantify the intra-operator 

repeatability and inter-operator reproducibility of the procedure. A procedure to 

univocally identify the anatomical landmarks was created, exploiting the in vitro 

accessibility of the specimen’s surface. Through the analysis on 53 CT scans (106 

hemipelvises), the alignment of the hemipelvis based on the alignment of a whole pelvis 

was analyzed: differences between male/female and right/left hemipelvises were not 

statistically significant. To overcome the uncertainty in the identification of the acetabular 

rim, a standard acetabular plane was defined. An alignment procedure was developed to 

implement such anatomical reference frame. 

The intra-operator repeatability and the inter-operator reproducibility were quantified 

with four operators, on male and female hemipelvises. The intra-operator repeatability 
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was better than 1.58°. The inter-operator reproducibility was better than 2.08°. Alignment 

in the transverse plane was the most repeatable. The presented procedure to align 

hemipelvic specimens is sufficiently robust, standardized and accessible. 

Keywords: anatomical reference frame; in vitro alignment; biomechanical testing; 

hemipelvis; acetabular plane 

2.2 Introduction 

Reference frames and landmarks are of paramount importance in biomechanics83,84 to 

allow comparisons between different clinical, numerical, or in vitro studies. 

Standardization of the reference frame is extremely important for in vitro biomechanical 

tests84,85,86,87,88. It enables the correct alignment of the specimen and applied loads, in 

order to reproduce a physiological loading condition. With the definition of reproducible 

testing conditions, it is possible to compare different datasets of different studies. 

Reference frames and landmarks for the pelvic bone are adopted in different 

applications83,84,89,90,91,92,93,94,95,96. Reference frames used for the analysis of medical 

images are qualitative in most cases89,90,91. In example, to evaluate the pelvic tilt and 

sacral slope surgeons generally use lateral radiographs, in combination with anatomical 

landmarks, assuming that the X-ray frame is aligned with the anatomical planes. 

However, identification of these landmarks depends on multiple factors like image quality 

and the position assumed by the patient. For this reason, information that can be extracted 

from medical images is extremely operator-dependent. In vivo applications (i.e., gait 

analysis) deal with reference frames defined by palpable anatomical landmarks83,92,93. 

Landmarks routinely used in clinical practice are the most accessible ones, while those 

that would cause patient discomfort are avoided (e.g., pubic tubercle). Identification of 

the landmarks is heavily affected by the presence of soft tissue. 

These considerations dictate some constraint to the reference frames that can be adopted 

for in vivo applications. Surgical navigation adopts reference frames both for the pre-

operative planning and for intra-operative deployment94,95,96. Similarly, in silico 

applications rely on mathematical models derived from CT scans. Due to the possibility 

to “navigate” the bone, identification of anatomical landmarks on CT scans (which 
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contain more detailed information) is more accurate. All the published reference frames 

for the human pelvis86,97,98 rely on palpable landmarks that can be reached non-invasively: 

• Anterior Superior Iliac Spine (ASIS) defined as the most prominent point on the 

iliac surface; 

• Posterior Superior Iliac Spine (PSIS) defined as the upper and most posterior point 

of the iliac crest; 

• Pubic Tubercle (PT) defined as a prominent forward- projecting tubercle on the 

upper border of the medial portion of the superior ramus of the pubis. 

The Anterior Pelvic Plane (APP) is most widely used clinically99,100,101. It is defined by 

the ASISs and the PTs. Despite the physiological range of tilt of the APP, it is assumed 

to be roughly vertical in the standing position (anatomical neutral position, ANP)102,103.  

A dedicated reference frame for in vitro biomechanical testing can rely on anatomical 

landmarks that are accessed directly on the specimen (after the removal of soft tissues). 

For this reason, in vitro reference frames are more robust and less operator-dependent 

than in vivo ones, in which landmarks need to be identified noninvasively. 

Despite the considerations above, only a few studies can be found where a suitable 

reference frame is defined for the pelvis and hemipelvis104,66. It is very important to 

underline that hemipelvic specimens are frequently adopted for in vitro purposes105,106,107. 

All the reference frames described above rely on landmarks over the whole pelvis and 

cannot be implemented on a hemipelvis alone. Currently, there is no consensus on a 

specific procedure for aligning a hemipelvis. Hence, in order to define a reference frame 

for the hemipelvis, it is necessary to determine its alignment with respect to the whole 

pelvis. The few previous studies dealing with hemipelvic specimens lack detail about its 

alignment: Lewton66 specified the direction of loads, defined as angles measured relative 

to the long axis of the pelvis but no reference frame was defined. Preece et al.108 proposed 

a practical method based on the ANP; however, more information about the alignment 

procedure were not stated. 

The acetabular plane, which is defined as the plane tangent to the acetabular rim is often 

used clinically109,110. The alignment of the acetabular plane was investigated by 

Murray111. In his work, he identified three definitions for acetabular inclination and 

anteversion: Radiological, operative, and anatomical. Surgeons usually adopt the 

orientation of acetabular plane as guide for surgical navigation, since it is easily identified 
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through clinical imaging109,110. The acetabular plane was also adopted in different in vitro 

tests105,106,107,112. However, the irregular shape of the acetabular rim makes the 

identification of this plane subjective113,114. Recently van Arkel and Jeffers described an 

in vitro method to align a hemipelvic specimen, based on the reference frame 

recommended by the International Society of Biomechanics (ISB)86,104. The proposed 

procedure requires first aligning the whole pelvis, using four landmarks; the authors 

propose a procedure to dissect the specimen to obtain two hemipelvises which preserve 

the same alignment previously identified for the whole pelvis. The requirement of a whole 

pelvis as starting point may be a limitation, as sometimes only hemipelvic specimens are 

available. 

The aims of the present study were to: 

(1). Define a reference frame for human hemipelvis that relies on robust anatomical 

landmarks and is suitable for in vitro applications. 

(2). Identify the alignment of the hemipelvis based on the alignment of a whole pelvis. 

This includes investigating differences in alignment between right and left, and 

between male and female. 

(3). Identify the relative alignment of the newly proposed in vitro reference frame with 

respect to the reference frame usually adopted in gait analysis.4 

(4). Create an in vitro alignment procedure for hemipelvic specimens easy, robust, and 

inexpensive. 

(5). Quantify the intra-operator repeatability and interoperator reproducibility of the 

proposed procedure. 

2.3 Material and methods 

An overview of the workflow is provided in Fig. 2.1. A practical in vitro identification of 

suitable pelvic landmarks was created. Computed tomography (CT) scans of human 

pelvises were analyzed to identify the alignment of selected landmarks of the hemipelvis 

with respect to the whole pelvis. An in vitro alignment procedure was developed for 

human hemipelvic specimens. The intra-operator repeatability and the inter-operator 

reproducibility of the procedure were measured. 
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Fig. 2.1: Workflow of the proposed alignment procedure for the hemipelvis 

In vitro identification of the landmarks 

As shown in different areas, identification of landmarks by palpation leaves a large 

uncertainty and subjectivity115. Direct in vitro identification of the landmarks can be more 

accurate and precise. In order to implement a reproducible procedure, a robust method to 

identify landmarks, suitable both for pelvis and hemipelvis, was adapted from those 

commonly used in vivo86 (Fig. 2.2): 

• The iliac and pubic regions must be brought in contact with a plane, while the iliac 

wing is vertical. ASIS is found as the most external point of the iliac crest, which 

is in contact against the plane. 

• With the bone in the same position, PT is found as the point on the pubic tubercle 

region, which is in contact against the plane. 

• The iliac and ischial regions must be brought in contact with a plane while the 

iliac wing is vertical. PSIS is found as the most external point of the iliac wing, 

which is in contact against the plane. 
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Fig. 2.2: In vitro identification of the landmarks on a hemipelvis: (a) ASIS and PT, (b) PSIS. A 

left specimen is shown in these pictures. 

Identification of the anatomical alignment of the hemipelvis based on the alignment of 

the whole pelvis, and comparison with ISB frame 

In order to adapt to a single hemipelvis the reference frame based on the APP (which is 

defined for a whole pelvis), the alignment of the hemipelvis relative to the alignment of 

its respective whole pelvis was identified. Furthermore, the relative orientation of the 

proposed reference frame with respect to a reference frame commonly used in gait 

analysis86 was measured based on the same landmarks. To the Authors’ knowledge, this 

is the first time that similar analysis was made to overcome limitations related to other 

alignments such as those based on the acetabular plane. 

Analysis of Patient CT Scans 

Fifty-three CT scans were randomly selected among those taken for hip patients at Istituto 

Ortopedico Rizzoli between 2014 and 2017. The patients were 25 male and 28 female, 

27–88 years old. The scans had a voxel size of 0.7–0.8mm. The scans were imported and 

analysed through nmsBuilder v1.0116. For each scan, the landmarks (ASIS, PSIS, and PT) 

were identified on the whole pelvis according to the description above. The pelvises were 

oriented in order to reach the ANP (tolerance 0.1°). To measure the alignment of a single 

hemipelvis relative to the alignment of its respective whole pelvis, two different angles 

were measured (Fig. 2.3): 
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• : the angle formed by the line connecting PT and ASIS with the transverse plane 

of the whole pelvis; 

• : the angle formed by the line connecting ASIS and PSIS with the sagittal plane 

of the whole pelvis. 

In addition, the relative orientation of the proposed reference frame with respect to the 

ISB reference frame86 (which is commonly used in gait analysis) was measured in all 

scans after identifying the mid-point of the two PSIS (mid PSISs): this consisted in a 

single rotation (), in a sagittal plane (Fig. 2.3). 

 

Fig. 2.3: Three different angles were measured in the 53 patient CT scans using nmsBuilder. (a) The angle 

() formed by the line connecting PT and ASIS with the transverse plane of the whole pelvis was measured 

in a frontal view. (b) The angle () formed by the line connecting ASIS and PSIS with the sagittal plane of 

the whole pelvis was measured in a transverse plane. (c) The angle () between the proposed reference 

frame (based on the APP) and the ISB reference frame was measured in a lateral view. 

To exclude outliers, Peirce’s criterion was applied117,118. Suspect data were checked 

among subjects, for both angles. To test the procedure, three skilled operators processed 

three CT scans three time each. To avoid any bias, the scan elaboration was performed 

on different days between repetitions, so that the operator could not recognize previous 

elaborations. To assess the intra-operator repeatability (i.e., when the same operator 

repeatedly elaborates the same CT scan), the standard deviation between the three 

repetitions was computed, for each of the operators and each CT scan. The repeatability 

was computed as the root–mean–square–average between CT scans and operators. To 
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assess the inter-operator reproducibility (i.e., when different operators elaborate the same 

CT scan), for each of the operators and each CT scan, the average value was computed 

out of three repetitions. The reproducibility was computed as the standard deviation 

between the operators.  

The significance of differences between the right and left hemipelvises was tested with a 

paired t-test for  and . Differences between male and female for  and  were tested 

with an unpaired t-test. A threshold of p=0.05 was assumed. Statistical analyses were 

performed using MatLab (2009 Edition, MathWorks, Natick, MA). 

Alignment procedure for the human hemipelvis 

In order to separately control the rotations, the hemipelvises were equipped with a 

dedicated handle, which was clamped in a 6° of freedom manipulator. The first part of 

the procedure required aligning the landmarks with respect to horizontal and vertical 

planes (Fig. 2.4): 

• Vertical adjustment: The three landmarks were positioned at the same height (i.e., 

using an adjustable plate and plasticine); 

• Horizontal adjustment: ASIS and PT were positioned parallel to the edge of the 

reference plane. 

 

At this point, the hemipelvis had a known alignment. To overcome the limitations of 

defining the acetabular plane based on the acetabular rim111, a standard acetabular plane 

Fig. 2.4: Alignment of a left hemipelvis: 

(a) Vertical adjustment of the three 

landmarks. Quasi-frontal view, with the 

ASIS, PT, and PSIS (hidden by the 

hemipelvis) at the same height, as 

measured with the vertical ruler (visible in 

the far left of the picture). Also visible is 

the spherical handle mounted on the 

hemipelvis. (b) Horizontal adjustments of 

the landmarks. Lateral view of a left 

hemipelvis with ASIS and PT aligned with 

the edge of the reference plane. 
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was defined (SAP, see Appendix I). With the aim of aligning the hemipelvis with the SAP 

horizontal, the specimen was subsequently rotated by two angles (Fig. 2.5) (see Appendix 

I): 

• Rotation in the posterior direction by =51°; 

• Rotation in the medial direction by =10°. 

 

 

Fig. 2.5: Hemipelvis clamped in the 6° of freedom manipulator through the handle rigidly fixed to the bone. 

(a) Left hemipelvis viewed from distally (i.e., in quasi-transverse plane) aligned as in Figure 4 and lifted 

from the plane. (b) Rotation of the specimen by  in the medial direction. (c) Rotation of the specimen by 

 in the anterior direction. (d) The standard acetabular plane (SAP) is horizontal once the specimen is 

aligned. 

Assessment of the Intra-Operator Repeatability and Inter-Operator Reproducibility 

To test the alignment procedure, hemipelvic bone specimens in solid foam (ERP 

Mod.1291, ERP Mod.1294, Sawbones, Malmö, Sweden) were adopted. In order to 

measure the alignment achieved, a squared plastic block was rigidly fixed on the 

hemipelvises; the absolute orientation of its faces was measured, after the alignment, 

through a goniometer (Art. 06.07503, IDF, Pontoglio (BS), Italy; precision: 0.1°). 

Four operators aligned the two specimens three times each. In order to evaluate the 

robustness of the procedure, two skilled operators (who performed at least one alignment 

procedure) and two inexperienced operators were chosen. To avoid any bias, the 

specimen orientation was modified between repetitions. To assess the intra-operator 

repeatability, the standard deviation between the three repetitions was computed, for each 

of the operators and each specimen. The repeatability was computed as the root–mean–
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square–average between specimens and operators. To assess the inter-operator 

reproducibility, for each of the operators and each specimen, the average value was 

computed, out of three repetitions. The reproducibility was computed as the standard 

deviation between the operators. Statistical analyses were performed using MatLab. 

2.4 Results 

Alignment of hemipelvis based on the alignment of whole pelvis 

The landmarks could be easily identified in all the CT scans. Based on the Peirce’s 

criterion, five cases were excluded for b and none for d. The intra-operator repeatability 

was below 0.6° for , and below 0.5° for . The inter-operator reproducibility was better 

than ±2.6° for  and better than ±3.8° for .  

The difference between right and left hemipelvises was on average 0.3° for  (p>0.7) and 

0.2° for  (p>0.7). In none of the 53 pelvises examined, a difference greater than 9° was 

observed between the left and right hemipelvis for  and . The values of  in the female 

subjects were 0.6° larger than for the males, but this difference was not statistically 

significant (p=0.4, Tab. 2.1). The values of  were 0.1° larger for the female subjects than 

for the males (p=0.9, Tab. 2.1). The relative orientation of the proposed reference frame 

with respect to the ISB reference frame in the sagittal plane was on average =10.7°. The 

difference between male and female for  was 0.6° and not statistically significant (p=0.6, 

Tab. 2.1).  

Tab. 2.1: Values of , , and  measured in the CT scans of 53 subjects (Fig. 2.3) 

Angles All Male Female 

Difference between Male 

 and Female 

 35.5° ± 4.0° 35.2° ± 4.9° 35.9° ± 2.6° 0.6° (p=0.4) 

 31.3° ± 3.8° 31.4° ± 3.8° 31.3° ± 3.9° 0.1° (p=0.9) 

 10.7° ± 5.8° 11.0° ± 6.2° 10.3° ± 5.4° 0.6° (p=0.6) 

Average and standard deviation are reported, after excluding outliers, for all subjects, and split by gender. 

The last column shows the average difference, and statistical significance (unpaired t-test). 
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Alignment Procedure 

All operators performed successfully the alignment, for all the specimens. The time 

required was about 15 min for each specimen. The intra-operator repeatability was 

generally below 1.5° for each angle (Fig. 2.6). The inter-operator reproducibility was less 

than ±2.0° for each angle. Alignment in the transverse plane was most repeatable. 

     

Fig. 2.6: Variability of measured angles on the hemipelvic specimens in each plane: Intra-operator 

repeatability (top) and inter-operator reproducibility (bottom). The red mark indicates the median; the blue 

boxes includes the 25–75th percentile; the whiskers extend to the most extreme data points. The outliers 

are marked with red crosses and were excluded from the analysis. 

2.5 Discussion 

The aim of this study was to define a reference frame suitable for in vitro biomechanical 

testing of the human pelvis, based on robust anatomical landmarks. As in vitro tests are 

often performed on hemipelvises, the procedure was devised for a hemipelvis (rather than 

relying on a whole pelvis). To enable comparisons and registrations with other studies, 

the alignment with respect to a reference frame commonly used in movement analysis 

was measured. Finally, we aimed at evaluating the reliability of the protocol in terms of 

intra-operator repeatability and inter-operator reproducibility. 

The alignment protocol revolved around anatomical landmarks, which could be 

accurately identified on the physical in vitro specimens. The analysis of 53 patients’ CT 

scans allowed identifying the average alignment of a hemipelvis based on the alignment 

of its original whole pelvis. No significant differences were detected between right and 

left sides and between male and female specimens. Furthermore, the relative alignment 

of the newly proposed in vitro reference frame for the hemipelvis was measured with 

respect to a reference frame commonly used in gait analysis86. Thus, even if the rationale 
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of this study drove us to choose a different reference frame, it is possible to refer our in 

vitro frame to the one used in gait analysis.  

When the landmarks were identified in silico on CT scans, the intra-operator repeatability 

was 0.5° in the frontal plane, and 0.5° in the transverse plane; the inter-operator 

reproducibility was 2.6° in the frontal plane and 3.8° in the transverse plane. When the 

alignment procedure was applied to physical hemipelvises in vitro, the intra-operator 

repeatability was generally below 1.5°, and the inter-operator reproducibility was less 

than ±2.0°. The variability mainly depends on the uncertainty in the identification of the 

landmarks. Due to the limited resolution of the CT scans, it is not surprising that the 

uncertainty of the in silico alignment was worse than the in vitro one. 

Past studies, where a reference frame was defined for other bone segments (tibia88 and 

vertebra87), reported errors of the order of 1–3°, comparable to the present one. Only few 

studies expressly defined a reference frame for the human pelvis in 

vitro104,66,105,106,107,112,119. Comparisons with the present study are difficult, as the 

reproducibility of such references has only seldom been quantified. For instance, 

Anderson et al.120 performed an in vitro alignment of a whole pelvis based on the ASIS 

and pubic symphysis: While they focused on relative rotations, they did not report the 

accuracy of their original alignment120. A reference frame based on the acetabular plane 

is often adopted for in vitro purposes105,106,107,112. However, identification of this plane is 

complex due to the irregular shape of the acetabular rim113,114. To overcome this problem, 

we defined the alignment for a standard acetabular plane (SAP) based on the advice of a 

group of hip surgeons.  

To the Authors’ knowledge, this is the second study in which a reference frame for the 

hemipelvis was derived from the reference frame of the whole pelvis. In fact, van Arkel 

and Jeffers developed a procedure to apply the ISB reference frame to the whole pelvis 

before bisecting it, and then apply the same reference when the hemipelvises were used 

for in vitro testing86,104. They found that after bisection, the hemipelvis had a 

misalignment compared to the original whole pelvis. The error was 1.5±1.6° for the 

adduction, 0.5±1.1° for the internal rotation, and 0.6±1.7° for the flexion. However, as 

this error does not include the intra- and inter-operator uncertainty in identifying the 

landmarks and initially aligning the whole pelvis, the resultant total error of their 

procedure is larger (i.e., the sum of such errors, and of the uncertainties in aligning the 
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whole pelvis). Furthermore, for some applications it might be preferable not to drill the 

large screw holes required to hold the specimen during bisection104.  

The main limitation of our approach is probably that, in order to standardize the reference 

frame, and to be able to implement it on isolated hemipelvises, we were forced to make a 

number of simplifications such as applying to any specimen the same average values of 

the angles. We assumed that the anterior pelvic plane was vertical. However, the inter-

subject variability has been reported due to patient’s anatomy and pose (i.e., when 

changing from supine to standing position)121.122. Consistently with our aim of 

standardizing the alignment procedure, we assigned the alignment that corresponds to the 

average reported in the literature (around 0°103,122,123). Similarly, the alignment of the 

standard acetabular plane was defined based on angle values agreed upon by a pool of 

surgeons. In principle, the proposed alignment procedure can be implemented also with 

different angles for the acetabular plane: One just needs to change the final couple of 

rotations. 

The procedure has been tested on synthetic models of the pelvis. To include the 

variability, both male and female specimens were used. Such models provide detailed 

anatomy, including the presence and shape of the landmarks. This allowed testing the 

intra-operator repeatability and inter-operator reproducibility of the alignment procedure. 

An in vitro implementation of a procedure to identify robust anatomical landmarks allows 

objectively determine the reference points for the alignment. It is important to underline 

that reproducibility and repeatability of an alignment procedure strongly depend on the 

identification of the anatomical landmarks; hence practical rules to identify these 

landmarks should be always taken in consideration for in vitro purposes. The reference 

frame and alignment procedure developed can be applied each time a hemipelvic 

specimen is studied, both in vitro and in silico. Furthermore, the proposed reference frame 

can be easily registered to match a reference frame commonly used in gait analysis. 

Moreover, the intra-operator repeatability and inter-operator reproducibility quantified in 

the present study are sufficient for most in vitro applications. For these reasons, the 

presented procedure to align hemipelvic specimens is sufficiently robust, standardized, 

and accessible, hence can be easily replicated in other laboratories. The proposed 

reference frame can therefore be assumed as a starting point for numerous pre-clinical in 

vitro tests, for example, to test implant stability of acetabular reconstructions. 
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2.6 Appendix I: Standard Acetabular Plane (SAP) 

To overcome the known uncertainties and limitations of defining the acetabular plane 

based on the acetabular rim111, a standard acetabular plane was defined (SAP). Standard 

values for acetabular inclination (45°) and anteversion (20°) were chosen according to a 

pool of experienced hip surgeons. Both values are within the Lewinnek “safe zone” 

(inclination=40°±10°; anteversion=15°±10°)99, which represents the goal for most 

surgeons during cup implantation99,101,124,125. It was demonstrated that prosthesis 

implanted within the “safe zone” better resist to dislocation and impingement99,126. 

The angles necessary to align the SAP horizontal were calculated combining the 

alignment of the hemipelvis based on the whole pelvis, and the inclination and 

anteversion of the SAP (Fig. 2.7): 

• Rotation in a quasi-transverse plane:  = Acetabular anteversion +  = 20° + 31° 

= 51° 

• Rotation in the frontal plane:  = Acetabular inclination -  = 45° - 35° = 10° 

where: 

•  and  are the average values of the angles measured from the 53 CT scans, to 

align the hemipelvis based on the whole pelvis. 

•  and  are the final angles to align the hemipelvis with the SAP horizontal. 

• All values were rounded to the closest integer. 

  

Fig. 2.7: Combination of angles to 

align a hemipelvis with the standard 

acetabular plane (SAP) horizontal: (a) 

Top view of a CT scan of human pelvis 

showing the angle (), which is 

calculated as the sum between the 

angle corresponding to the acetabular 

anteversion (AA) and d; (b) Frontal 

view showing the angle (), which is 

calculated as the difference between 

the angle corresponding to the 

acetabular inclination (AI) and b. 
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Chapter 3: 

A reliable in vitro approach to assess  

the stability of acetabular implants  

using digital image correlation 

From the journal paper: 

Morosato F, Traina F, Cristofolini L. A reliable in vitro approach to assess the stability of acetabular 

implants using digital image correlation. Strain. 2019. doi:10.1111/str.12318127 

The authors wish to thank Strain for providing the permissions to re-use the manuscript titled “A reliable 

in vitro approach to assess the stabilityof acetabular implants using digital image correlation” in the 

present Ph.D thesis 

3.1 Abstract 

The main cause of failure of the hip acetabular component is aseptic loosening. Preclinical 

test methods currently used to assess the stability of hip acetabular implants rely on crude 

simplifications. Normally, either one component of motion or bone strains are measured. 

We developed a test method to measure implant 3D translations and rotations and bone 

strains using digital image correlation. Hemipelvises were aligned and potted to allow 

consistent testing. A force was applied in the direction of the load peak during level 

walking. The force was applied in 100‐cycle packages, each load package being 20% 

larger than the previous one. A digital image correlation system allowed measuring the 

cup‐bone relative 3D displacements (permanent migrations and inducible micromotions) 

and the strain distribution in the periacetabular bone. To assess the test repeatability, the 

protocol was applied to six composite hemipelvises implanted with very stable cups. To 

assess the suitability of the method to detect mobilisation, six loose implants were tested. 

The method was repeatable: the inter-specimen variability was 16 μm for the bone/cup 

relative translations, 0.04° for the rotations. The method was capable of tracking 

extremely loose implants (translations up to 4.5 mm; rotations up to 30°). The strain 

distribution in the bone was measured, showing the areas of highest strain. We have 



 
 

40 
 

shown that it is possible to measure the 3D relative translations and rotations of an 

acetabular cup inside the pelvis and simultaneously to measure the full‐field strain 

distribution in the bone surface. This will allow better preclinical testing of the stability 

of acetabular implants. 

Keywords: acetabular loosening, biomechanical testing, bone strain, digital image 

correlation (DIC), hip biomechanics, implant stability, permanent migrations and 

inducible micromotions, total hip replacement 

3.2 Introduction 

More than 50% of failures after total hip replacement is associated with the loosening of 

the acetabular component10,128,7. Implant mobilisation can be described as excessive 

permanent migration (i.e., the non‐reversible implant motion that is accumulated over 

time), excessive inducible micromotion (i.e., the reversible implant motions observed 

between loading and unloading), or a combination of both. Clinical studies showed that 

excessive permanent migrations of the cup in the early post‐operative period (of the order 

of 1 mm) are predictive of long‐term loosening19. Studies on canine models showed that 

if inducible micromovements greater than 150 μm occur during the first weeks after 

implantation, fibrous tissue appears at the bone‐implant interface, compromising 

osteointegration. Conversely, micromovements lower than 40 μm allow 

osteointegration18,129,16. It is possible that the strain in the peri‐acetabular bone contribute 

to the success/failure of an implant due to possible bone resorption (due to reduced stress 

level) or osteonecrosis (due to overloading)20. 

In the clinical practice, implant stability is normally assessed through the analysis of the 

cup migration in consecutive radiographs. Such approach is inevitably affected by errors 

due to differences in pelvic tilt and to inter-operator variability130. Phillips et al.131 

reported errors lower than 3 mm when assessing cup migration manually on plain 

radiographs. With Roentgen Stereophotogrammetry Analysis errors are lower than 0.27 

mm for the displacements and lower than 0.56° for the rotations. Similar results 

(displacement errors lower than 0.22 mm and rotation errors lower than 0.53°) were 

obtained with Ein‐Build‐Roentgen Analysis (EBRA)132. However, even if Roentgen 
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Stereophotogrammetry Analysis and EBRA provide smaller errors than the analysis of 

plain radiographs, it is not always possible to adopt such techniques routinely in the 

clinical practice. Many authors identified the cranial migration of the cup, combined with 

a sagittal rotation as a clinical predictor for cup loosening19,130,133,134. Therefore, to 

meaningfully quantify implant stability, it is important to measure both translations and 

rotations for cup stability assessment. 

Preclinical testing of the expected failure scenarios is mandatory to prevent clinical 

failures135,136. In vitro testing on implant stability can be used to measure the cup 

permanent migrations and the inducible micromotions with high accuracy and precision. 

Most authors measured implant stability using linear mechanical transducers to measure 

implant‐bone relative motions at selected locations35,53,54,59,137,138. Even if linear 

transducers are intrinsically very accurate, single transducers cannot be used to measure 

a combination of large rotations and translations. Crosnier et al.32 measured the three‐

dimensional micromotions of cup implanted in a block of polyurethane foam using a 

combination of eight linear variable differential transformers. Such approach provided 

measurements of all components of translation and rotation with good measurement 

errors (50 μm for the translations and 0.04° for the rotations). Laser telemeters can be 

used to measure the cup tilt in simplified tests46. As an alternative, stereophotogrammetry 

can be used to measure implant motion in acetabular revision reconstructions28,39. All the 

techniques described above allow measuring implant‐bone motions but do not provide 

any information about the strain distribution in the host bone. 

Digital Image Correlation (DIC) is a good candidate to overcome all the previous 

limitations, as it provides 3D full‐field measurements of displacement and strain with 

high accuracy and precision80. DIC was adopted to measure the strain distribution on the 

surface of the iliac wing before and after implantation68,79. In both papers, the strains 

measured with DIC were used to validate a finite element model. However, implant 

motions were not investigated. 

The aim of the present study was to devise an in vitro test to reliably assess the stability 

of hip acetabular implants preclinically. More specifically, the procedure must be able to 

measure:  

1. The 3D permanent migrations and inducible micromotions between the cup and 

the host bone, both in terms of translations and rotations; 
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2. The distribution of strain in the host bone surrounding the implant. 

The method was assessed in terms of measurement errors, repeatability, and suitability to 

track implant motions in case of both stable and unstable implants. 

3.3 Material and methods 

We devised a procedure so that it could be applicable both to synthetic and human 

cadaveric hemipelvises. A reliable reference frame was used for specimen preparation 

and testing. The mechanical test consisted of a cyclic load of increasing magnitude. The 

direction of the applied force corresponded to the direction of the peak resultant force 

during level walking. DIC was used to measure the relative displacements and the strain 

distribution. Errors affecting displacements and strains were quantified. 

Preparation of the specimen 

A reliable reference frame for the hemipelvis based on the acetabular plane was adopted82. 

In order to increase the repeatability during preparation and testing, the specimens were 

potted in an aluminium pot using acrylic bone cement (Fig. 3.1). The hemipelvises were 

then implanted. To allow the DIC software to properly correlate and track the surface of 

the implanted specimens, a high‐contrast black‐on‐white speckle pattern was prepared. 

The implanted specimens were first painted with a white water‐based paint (Q250201 

Bianco‐Opaco, Chrèon, Italy) diluted at 50% with water and sprayed using an airbrush‐

airgun (AZ3 HTE 2, nozzle 1.8 mm, Antes Iwata, Italy). The black speckle pattern was 

then sprayed with a water‐based paint (Q250201 Nero‐Opaco, Chrèon, Italy) diluted at 

40% with water (Fig. 3.1). The spraying distance (350 mm) and the pressure (120 kPa) 

were optimised so as to obtain the recommended mean dot (size 3–5 times larger than the 

pixel size in the acquired image80,139) and to minimise the scatter of dot dimension140. 
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Fig. 3.1: Overview of the preparation of a hemipelvic specimen (left composite bone model): (a) 

standardised alignment based on anatomical landmarks; (b) reproducible reaming; (c) quasi‐lateral view of 

a specimen implanted; (d) specimen painted with the black‐on-white speckle pattern optimised for digital 

image correlation acquisition 

The loading protocol and loading set‐up 

As the aim was to assess the primary stability of acetabular cups, level walking was 

simulated as it is the predominant activity in the early post‐operative period141. Thus, the 

loading protocol was devised to evaluate the stability of the implant with respect to the 

direction of the maximum resultant force during level walking. Datasets measured by 

telemetric implants77 were used to identify the desired direction. The load datasets were 

converted so as to obtain the applied force in a reference frame aligned with the acetabular 

component (with friendly permission of OrthoLoad Club). The test consisted of load 

packages of increasing magnitude. In each package, 100 cycles were applied at 1 Hz. As 

the test did not aim to induce fracture, the maximum applied force reached 3 body weight 

(BW; Fig. 3.2).  

The implanted hemipelvis was mounted on an axial servo‐hydraulic machine (Mod. 8032, 

Instron, UK). In order to apply the force in the desired direction, a dedicated wedge was 

used to mount the specimen on the load cell of the testing machine. Two horizontal low‐

friction bearings were used to avoid transverse load components (Fig. 3.2). 
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Fig. 3.2: (a) The specimen (left hemipelvis in this case) was mounted in the testing machine with the 

required alignment with respect to the applied force (red arrow). The two cameras of the digital image 

correlation system viewed the implanted specimen from a posterolateral view. (b) The plot summarises the 

loading protocol adopted: 10 load packages were applied, each consisting of 100 cycles 

Data acquisition and elaboration 

A commercial 3D‐DIC system (Q400, Dantec Dynamics, Denmark) was used with a 

dedicated LED lighting system (10000 lumen in total). Images were acquired by two 

cameras (5 MegaPixels, 2440 × 2050 pixels, 8‐bit) equipped with high‐quality metrology‐

standard 17‐mm lenses (Xenoplan, Schneider‐Kreuznach, Bad Kreuznach, Germany) for 

a stereoscopic vision. The cameras were positioned at 300 mm from the specimen, so as 

to maximise the area framed by both cameras (Fig. 3.2). The field of view was set to 150 

× 70 mm (resulting in a pixel size of approximately 0.1 mm), with depth of field of 40 

mm (lens aperture f/11). The field of view was wide enough to frame the entire region of 

interest: the superior aspect of the acetabulum, the posterior column of the hemipelvis, 

and half of the cup insert. Before each session, calibration was performed using a 

proprietary calibration target (Mod. Al4‐BMB‐9 × 9, Dantec Dynamics). The calibration 

was used to define the reference frame for DIC measurement: In particular, the Anterior 

Pelvic Plane was selected so as to obtain measurements of displacements referred to a 

reference frame commonly used in clinics. The correlation was performed with Istra‐4D 

(v.4.3.1, Dantec Dynamics, Denmark). In order to minimise errors in measuring the strain 

distribution80, a factorial analysis was performed to optimise the DIC hardware and 
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software parameters for our specific application (similar to Palanca et al.142). For our 

specific instance, the following settings were chosen: 

• Frame rate = 20 Hz. 

• Facet size = 35 pixels. 

• Grid spacing = 27 pixels. 

• Displacement smoothing = 3 × 3 pixels (kernel size). 

In order to calculate the permanent migrations and the inducible micromotions, the DIC 

measurements were postprocessed with dedicated scripts in Matlab (2017 Edition, 

MathWorks, Natick, MA; Fig. 3.3): 

1. Two virtual patches were selected on the periacetabular bone and on the cup 

insert. To reduce operator variability, each patch was generated with controlled 

dimensions and applied on the specimen so as to cover the same areas. 

2. The absolute roto‐translation of the bone patch and of the insert patch in 

correspondence of each load peak, and each load valley was computed through a 

Singular Value Decomposition (SVD) least squares algorithm143, assuming the 

bone and cup insert as rigid bodies. 

3. The relative roto‐translation between implant and bone was calculated by 

multiplying the matrices of roto‐translation resulting from the previous step. The 

components of translation and rotation referred to the anteroposterior axis, the 

craniocaudal axis, and the mediolateral axis were extracted with the Euler angle 

convention144. 

4. Permanent migration and inducible micromotions were computed similarly to 

Cristofolini et al.135, 136. 

5. The accumulated permanent migration and the 95th percentile of the inducible 

micromotions during each load package were extracted similarly to Cristofolini et 

al. 135, 136. 

6. The first failure criterion was a permanent migration of the cup larger than 1 mm 

along any axis and/or a tilt of the cup larger than 1° around any axis (such an angle 

corresponds to an arch of rotation of 1 mm for a 58‐mm cup). This is consistent 

with clinically accepted failure criteria19. 
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7. The second failure criterion was a cup inducible micromotion larger than 150 μm 

along any axis and/or a tilt of the cup higher than 0.3° around any axis (such an 

angle corresponds to an arch of rotation of 150 μm for a 58 mm cup). This 

corresponds to the threshold for osteointegration18,129,16. 

In addition, the full‐field distribution of the principal strains and the principal directions 

was computed on the bone surface focusing on the superior aspect and the posterior 

column (i.e., in the area where the applied force is expected to generate the higher stress, 

consistently with predictions from previous finite element models68,79. 

 

 

Fig. 3.3: Schematic representation of the analysis of the digital image correlation measured displacements 

to compute the permanent migrations and the inducible micromotions. The frames in correspondence of the 

load peaks and load valleys were extracted. The pose of two virtual patches on the bone and on the cup 

were computed. The roto‐translation matrix of the bone‐patch (B) and that of the cup patch (C) at each load 

valley with respect to the first valley (Bperm and Cperm) and at each load peak with respect to the 

corresponding valley (Bind and Cind) were computed through a Singular Value Decomposition least squares 

algorithm. Finally, the relative roto‐translation matrixes between the cup and the bone were computed so 

as to extract the permanent migrations and the inducible micromotions at each cycle 

Assessment of the test procedure 

In order to quantify the errors of the proposed procedure, a repeatable test bench was 

used. Six composite hemipelvises (Mod. 3405, Sawbones, Malmö, Sweden) were adopted 

as bone models. Synthetic bone models are advantageous in the first stages of preclinical 

testing as they allow reducing the inter-specimen variability. Composite pelvises were 

used in this stage to quantify the errors of the procedure (without the variability that would 

be associated with cadaveric ones). Commercial primary acetabular implants (Plasmafit® 
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Plus NV158T, Aesculap AG, Tuttlingen, Germany) were used. They were implanted 

under optimal conditions (recommended reaming and full press‐fitting) to achieve stable 

and repeatable implantation. To minimise the cup deformation, ceramic inserts (Biolox® 

delta NV106D, Aesculap AG, Tuttlingen, Germany) were used. The specimens were 

prepared with the proprietary reamer to reach a 0.5‐mm interference. An experienced hip 

surgeon implanted the cups following the manufacturer's guidelines: The cup was 

impacted until the surgeon manually assessed that implant stability was achieved. After 

implantation, the actual implant alignment was measured and compared with the planned 

alignment (inclination = 45°, anteversion = 20°). Cups with alignment errors higher than 

5° would have been discarded (no specimen exceeded this threshold). To define the 

loading protocol, composite hemipelvises were assumed to belong to patient with BW = 

800 N (Fig. 3.2). 

Analysis of the intrinsic errors of the DIC‐measured translations and rotations 

In order to assess the intrinsic accuracy and precision in measuring the translations and 

rotations, a rigid 60 × 60 mm target (i.e., similar to the acetabular cup) was painted with 

the optimal speckle pattern. This target was rigidly translated (10 mm in all directions in 

1 mm steps) and rotated (20° in all directions in 1° steps) with respect to a similar 

stationary target, using a high‐precision positioning device (custom‐made assembly of a 

lifting unit (Mod. KULDP20, Misumi, Tokyo, Japan) and three rotary stages (two Mod. 

RPG110 and one Mod. RPG85, Misumi). The translations and rotations of the moving 

target with respect to the stationary one were measured with the protocol above (Fig. 3.3) 

applied to such DIC‐acquired images. 

Analysis of test repeatability on stable implants 

To quantify the repeatability of the full process (from the specimen preparation to 

measurements elaboration), stable cups were tested first. The expected micromovements 

for such implants were small; thus, stable cups represented a consistent testbench. In other 

words, as the inter-specimen output variability derives from a combination of 

measurement variability and intrinsic inter-specimen differences, performing tests on 

stable and reproducible implants provided an estimate of the measurement variability 
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(more precisely, an upper boundary for it). In order to assess the test repeatability, the 

mean and standard deviation between specimens was computed for the permanent 

migration and for the inducible micromotion for each of the load packages. Peirce's 

criterion was applied to detect outliers118. 

Analysis of the DIC applicability on unstable implants 

In order to assess the applicability of this DIC protocol to track large migrations and 

measure large inducible motions (expected in case of implant loosening), the same 

specimens were modified to mimic a loose implant. The cups were extracted from the 

hemipelvises, and the acetabula were over‐reamed so that the diameter of the cavity was 

0.5 mm larger than the cup. A 2 mm thick layer of plasticine was applied in each 

acetabulum. As this condition is far from the standard surgical protocol, 10 controlled 

impacts (10 N from a 30 cm height) were used to insert the cup in a consistent fashion. 

Fixation of the cup was provided by the sinking of the cup in the plasticine layer. Then, 

the same mechanical test was repeated. To verify if the DIC could track large motions in 

unstable implants, tests were extended even after exceeding the failure criteria above, 

until completion of all the load packages. 

Analysis of DIC errors (zero‐strain test) 

In order to quantify the systematic and random measurement errors, a zero‐strain test was 

performed on each specimen, when the optimal parameters were used. A pair of images 

of the unloaded specimen were captured and analysed with the optimal hardware and 

software DIC settings in order to assess the measurement uncertainties in a known 

configuration (zero strain). Being in a zero‐strain configuration, any strain different from 

zero was accounted as measurement error. 
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3.4 Results 

Intrinsic errors of the DIC‐measured translations and rotations 

The analysis of the roto‐translations imposed to the rigid target indicated that the intrinsic 

errors of the measurement procedure were smaller or equal to the errors of the positioning 

system (2 μm on the translations, 0.1° on the rotations). 

Measurement repeatability on stable implants 

Measurements of displacement and strain were successfully obtained for all stable 

implants throughout the test. No implant failed even with the highest loads (Fig. 3.4). 

After the application of Peirce's criterion, one specimen had to be excluded (in retrospect, 

it was noted that this specimen was damaged during implantation). The inter-specimen 

variability was computed for the permanent migrations and for the inducible 

micromotions along the anteroposterior axis, the craniocaudal axis and the mediolateral 

axis. The inter-specimen variability was computed also for the rotations, about the same 

axes (Tab. 3.1). As expected, higher loads corresponded to larger motions and generally 

also to higher inter-specimen variability. The variability of the permanent migrations 

throughout the test did not exceed 10 μm for the translations and 0.04° for the rotations. 

The variability of the inducible motions did not exceed 16 μm for the translations and 

0.04° for the rotations. As expected, the inter-specimen variability was one order of 

magnitude larger than the intrinsic error of the measurement procedure. 
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Fig. 3.4: Trend of migrations of a typical stable implant. The three components of translation and the three 

components of rotation were obtained both in terms of the permanent migrations and of inducible 

micromotions. To allow comparison, the same scale is used as for the unstable implants (Fig. 3.5). The 

dashed lines indicate a possible failure threshold for the permanent and inducible translations and rotations: 

Such thresholds were never exceeded by the stable implants. 

Tab. 3.1: Inter-specimen variability for the stable implants along the anteroposterior axis, the craniocaudal 

axis, and the mediolateral axis and for the corresponding rotations 

 Translations (m) Rotations (°) 

 

Permanent 

AP 

CC 

ML 

7 

10 

6 

0.02 

0.02 

0.04 

 

Inducible 

AP 

CC 

ML 

2 

16 

14 

0.02 

0.02 

0.04 

Note. The largest value of inter-specimen variability observed throughout the test (i.e., among the different 

load packages) is reported. The top part reports the standard deviation between the six specimens for the 

permanent migrations, the bottom part for the inducible micromotions. 

DIC measurements of implant motions for unstable implants 

Despite the very high motions, DIC was able to correlate each frame throughout the entire 

test and provided measurements of displacements and strains even when the implant 

motions exceeded the thresholds assumed for failure. As expected, all the implants 



 
 

51 
 

prepared to be unstable exceeded the thresholds for translations or rotations previously 

before completion of the whole test (Fig. 3.5).  

• One implant failed during the first load package (when 1.0 BW was applied) with 

permanent rotations exceeding 2.0°; 

• One implant failed during the third load package (1.2 BW applied) with 

permanent rotations exceeding 1.2°; 

• Three specimens failed during the fourth load package (1.4 BW), with permanent 

rotations in the range 1.2°–2.4°; 

• Only one specimen failed during the last package (3.0 BW), with permanent 

rotation exceeding 1.16°. 

In all cases, all the tests were extended until completion of all the load packages, even 

after exceeding the failure criteria. Throughout all the tests, the highest measured rotation 

reached 30° whereas the maximum measured displacement was 4.5 mm 

 

Fig. 3.5: Trend of migrations of one of the unstable implants. The three components of translation and the 

three components of rotation were obtained both in terms of the permanent migrations and of inducible 

micromotions. The dashed lines indicate a possible failure threshold for the permanent and inducible 

translations and rotations: Such thresholds were exceeded by all unstable implants, at different stages during 

the test 
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Errors of DIC measurements from zero‐strain test 

The errors in strain measurements introduced intrinsically by the DIC were estimated 

measuring the strains in a zero-strain condition (after the optimization of hardware and 

software parameters). In other words, any strain value different from zero was accounted 

for as measurement error. As expected, the largest component of error was the random 

error. The systematic error on the strains on the bone surface in all six specimens was 

between −6 and +42 με. The random error in all six specimens ranged between 58 and 

174 με. 

Strain distribution in stable and unstable implants 

The full‐field distributions of strains were successfully measured in all specimens in the 

periacetabular bone throughout the test. The highest strains were found in the superior 

aspect of the periacetabular bone both for stable and unstable implants, with different 

patterns (Fig. 3.6): 

• Stable implants exhibited a high‐strain peak near the acetabular rim, in the 

superior area. In the unstable implants, the highest strains were shifted towards 

posterior and covered a wider area.  

• When 3.0 BW were applied to the stable implants (last load package), the peak 

value of the maximum principal strain in the periacetabular bone was +1931 με 

(mean of six specimens, SD = 572 με), whereas the peak minimum principal strain 

was −1,327 με (mean of 6 specimens, SD = 421 με). 

• When 3.0 BW were applied to the unstable implants (only four implants withstood 

such large loads), the maximum principal strain (ε1) in the periacetabular bone 

was +2,357 με (mean of 4 specimens, SD = 705 με), whereas the minimum 

principal strain (ε2) was −1,599 με (mean of 4 specimens, SD = 217 με). 

• The mean strain was computed over the patch in the periacetabular bone (Figure 

6) with 3.0 BW. For the stable implants, the mean of ε1 was 156 με (mean of 6 

specimens, SD = 92 με), whereas mean for ε2 was −100 με (mean of 6 specimens, 

SD = 80 με). For the unstable implants, the mean of ε1 was +195 με (mean of 4 
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specimens, SD = 150 με), whereas mean for ε2 was −80 με (mean of 4 specimens, 

SD = 29 με). 

 

Fig. 3.6: Full‐field principal strains measured during a load peak during the last load package (3.0 BW) in 

one of the stable and one of the unstable specimens. The dashed lines indicate the virtual patch selected on 

the periacetabular bone. The maximum principal strains (ε1) are plotted in the top images, the minimum 

principal strain (ε2) in the bottom ones. The largest strains were measured in the superior aspect of the 

periacetabular bone 

3.5 Discussion 

In vitro preclinical assessment of acetabular stability can provide measurements of cup 

micromotion that cannot be obtained clinically with adequate accuracy and precision. The 

aim of the present study was to devise an in vitro test to reliably assess the stability of hip 

acetabular implants preclinically. As it has been widely highlighted the importance of 

implant rotation for clinical stability assessment19, results were not limited to the 

displacements between the cup and the periacetabular bone but included also the relative 

rotations. In addition, the strain distribution over the bone surface was measured.  

To the author's best knowledge, this is the first study in which DIC was used to assess the 

implant stability of acetabular implants. To detect the implant mobilisation for increasing 

loads, cyclic loads with increasing amplitude were applied. The acetabular cup, the 

posterior column, and the superior aspect of periacetabular bone were framed by the DIC 

cameras and analysed. The DIC measurements allowed quantifying the spatial relative 

motions of the cup (three components of translation and three components of rotation), 

both in terms of permanent migrations and inducible micromotions. In order to reduce 

DIC measurement errors, a preliminary optimization was performed. This allowed 
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obtaining small intrinsic errors of the measurement procedure for the implant motions 

(better than 2 μm for the translations and 0.1° for the rotations). The optimization also 

allowed minimising the systematic and random errors in measured strains, which were 

always lower than 174 με. The errors affecting the measured strains were up to five times 

larger when suboptimal settings were used. It must be noted that the hardware and 

software optimal settings may be different for different test conditions, different 

specimens, etc.  

Stable implants were tested to quantify the error of the procedure as they represented a 

reliable testbench. The inter-specimen variability of the optimised protocol under these 

highly repeatable implanting conditions was very good. Both permanent migrations and 

inducible micromotions could be measured with an inter-specimen variability smaller 

than 16 μm for the translations and 0.04° for the rotations. These values are orders of 

magnitude smaller than the thresholds to predict loosening (1 mm for the permanent 

migrations, 150 μm for the inducible micromotions). Therefore, the sensitivity of our 

protocol is sufficient to distinguish between stable or unstable acetabular reconstructions 

without the need for a large sample size. Unstable implants were also tested, to verify the 

suitability of DIC in measuring high migrations of the cup. We were able to track cup 

motions up to 4.5‐mm translations and 30° rotations, confirming that even highly unstable 

implants can be assessed without loss of correlation.  

All the measured translations and rotations were referred to the Anterior Pelvic Plane 

reference frame, so that the measured implant motions can be directly compared with 

those measured clinically (in fact, most clinical measurements of motions are based on 

frontal and lateral radiographs19,130,131. In principle, our measurement protocol can be 

modified so as to refer motions to any reference frame, by easily modifying the calibration 

procedure. 

Most previous studies of acetabular stability were based on polyurethane foam blocks and 

simplified loading such as lever‐out23,145,146, an oblique force32,41, or a pure torsion23,74. 

Due to their complex morphology, composite models are more representative to evaluate 

the stability of acetabular implants. Furthermore, most studies above measured only one 

component of motion (typically a rotation). For these reasons, a direct comparison 

between our method and these studies is not easy. Tab. 3.2 summarises the measurement 

errors for the methods adopted in the literature to measure acetabular stability in vitro.  
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Table 3.2: Comparison between different in vitro studies stability of acetabular implants 

Note. To estimate the errors of the published methods, the maximum standard deviations of relative 

bone/cup displacement, and rotation measurements are reported. 

Abbreviations: BW, body weight; DIC, digital image correlation; LVDT, linear variable differential 

transformer. 

*Errors are estimated from the graphs provided. 

The strain distribution was successfully measured in each specimen, showing the areas of 

the bone undergoing larger/lower strain. The strain maps highlighted the biomechanical 

importance of the superior aspect of the acetabulum in load bearing (Fig. 3.6). Due to the 

reduction in load bearing of the periacetabular cortex, when unstable implants were 

tested, strains over the bone surface reached higher values if compared with the stable 

configuration. Moreover, due to the high versatility of the DIC system, in case the region 

of interest changes (e.g., anterior column), it is possible to study each portion of the 

specimen by simply adjusting the camera frame.  

The errors we found (total error less than 174 με on each component of strain) were 

slightly lower than those reported in the literature for similar studies. For example, 

Dickinson et al.79 used DIC to study the strain distribution on implanted hemipelvis when 

a physiological load was applied and reported an error on the principal strain of 204–224 

με. Ghosh et al.68 reported a sensitivity of 145–165 με.  

The strains we found in the bone (Fig. 3.6) were within the physiological range of strain 

for cortical bone (1000–2000 με)20. The strain peaks we observed, corresponded to the 

same region where other DIC‐based studies reported the largest strains, that is, in the 

superior periacetabular aspect68,79.  

It must be acknowledged that for the calculation of the relative roto‐translations, both the 

bone and the cup were assumed to be rigid bodies. We used ceramic inserts so as to make 

this assumption realistic for the cup. The strains in the periacetabular bone were on 
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average in the order of 100 με (mean over the patch chosen on the periacetabular bone) 

when 3.0 BW were applied; thus, the permanent migration and the inducible 

micromotions could be computed within the assumption of rigid body for the bone. More 

generally, if higher strains were observed, the method could be easily adapted to exclude 

regions undergoing high strains when computing bone/cup micromotions so as to 

minimise the effect of the strain on rigid displacement measurements.  

The test was devised so as to apply a simplified loading configuration, under the 

assumption that due to the small friction coefficient, the resultant joint force would be in 

a radial direction with respect to the cup/head interface. We focused on a single but 

critical direction of the force, derived from in vivo telemetric measurements77. This 

simplified loading set‐up allowed using the DIC to measure micromotions and strains 

throughout the test. Alternative methods included multiaxial loading: Such an approach 

offers the advantage of replicating more complex loading scenarios but would not be 

compatible with DIC measurements74.  

In the present study, composite bones were used as bone surrogate. This choice was 

dictated by the need of adopting a highly reproducible test bench, so as to quantify the 

errors of the experimental protocol. As composite models do not offer the range of 

anatomy, materials properties, surgical complexity encountered in clinical application, 

preclinical assessment must include testing on cadaveric specimens. In the future, the 

very same protocol can be adapted to test implants in cadaveric hemipelvises. 

In conclusion, this work has shown for the first time that it is possible to measure the 3D 

relative translations and rotations of an acetabular cup inside the pelvic bone, both in 

terms of permanent migrations and inducible micromotions, and, at the same time, to 

measure the full‐field distribution of strain in the bone surface. This has been possible 

using a combination of biomechanical testing and DIC. This will allow in the future to 

test the primary stability of acetabular implants, allowing an optimization and preclinical 

assessment of the device and/or of the implantation technique. 
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Chapter 4: 

Effect of different motor tasks on hip cup 

primary stability and on the strains 

in the periacetabular bone: An in vitro study 

From the journal paper: 

Morosato F, Traina F, Cristofolini L. Effect of different motor tasks on hip cup primary stability and on 

the strains in the periacetabular bone: An in vitro study. Clin Biomech (Bristol, Avon). 2019;70:137-145. 

doi:10.1016/j.clinbiomech.2019.08.005147 

The authors wish to thank Clinical Biomechanics for providing the permissions to re-use the manuscript 

titled “Effect of different motor tasks on hip cup primary stability and on the strains in the periacetabular 

bone: An in vitro study” in the present Ph.D thesis 

4.1 Abstract 

Background: Excessive prosthesis/bone motions and the bone strains around the 

acetabulum may prevent osteointegration and lead to cup loosening. These two factors 

depend on post-operative joint loading. We investigated how Walking (which is often 

simulated) and Standing-Up from seated (possibly more critical) influence the cup 

primary stability and periacetabular strains. 

Methods: Twelve composite hemipelvises were used in two test campaigns. Simplified 

loading conditions were adopted to simulate Walking and Standing-Up. For each motor 

task, a single-direction force was applied in load packages of increasing amplitude. Stable 

and unstable uncemented cups were implanted. Digital image correlation was used to 

measure implant/bone motions (three-dimensional translations and rotations, both 

permanent and inducible), and the strain distribution around the acetabulum. 

Findings: When stable implants were tested, higher permanent cranial translations were 

found during Walking (however the resultant migrations were comparable with Standing-

Up); higher rotations were found for Standing-Up. When unstable implants were tested, 

motions were 1–2 order of magnitude higher. Strains increased significantly from stable 

to unstable implants. The peak strains were in the superior aspect of the acetabulum 
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during Walking and in the superior-posterior aspect of the acetabulum and at the bottom 

of the posterior column during Standing-Up. 

Interpretation: Different cup migration trends were caused by simulated Walking and 

Standing-Up, both similar to those observed clinically. The cup mobilization pattern 

depended on the different simulated motor tasks. Preclinical testing of new uncemented 

cups could include simulation of both motor tasks. Our study could also translate to 

indication of what tasks should be avoided. 

Keywords: Acetabular hip prosthesis, Primary implant stability, Bone strain, Digital 

image correlation, Level walking, Standing up 

4.2 Introduction 

Aseptic loosening is the most frequent cause of failure of the hip acetabular cup10,128, 7. 

Loosening can be predicted clinically by the analysis of the implant migrations in the 

early post-operative period. This is usually assessed by consecutive plain radiographs 

(often supported by digital tools such as EBRA) or roentgen-stereo-photogrammetry 

(RSA)130,132,133,134,131,19. As most cups are uncemented10,128,7, primary stability is 

important to grant osteointegration (secondary long-term implant stability). In case of 

excessive interface implant/bone micromotions (i.e. when the inducible motions at each 

application of load exceed than 150 μm), osteointegration by bone ingrowth is 

prevented16,18,148. In these cases, primary stability is not achieved, and fibrous tissue 

develops between the loose prosthesis and the host bone, leading to aseptic 

loosening17,129. The load within the acetabulum may affect implant stability and is related 

to the patient activities78. In addition, the strains experienced by the host bone play an 

important role as alterations in the strain distribution may affect the clinical outcome (i.e. 

stress-shielding effects and bone resorption)17,20.  

The complex loading in the hip joint is generally simplified in in vitro tests, focusing on 

the hip joint resultant force, in selected motor task(s)149, often relying on in vivo measured 

forces through telemetric implants78. Many experimental in vitro studies investigated the 

relation between implant stability and mechanical features of the cup (e.g. different 

surface porosity, augmentations, screws)23,25,37,44,46,63. In these studies, simplified loading 
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configurations (e.g. pure torsion23,25, and lever-out tests23,37,44,46,63 were applied on 

simplified specimen, usually constituted by blocks of synthetic or animal bone. In one 

study, multiple loading configurations were tested: Crosnier et al. (2016) used a simulator 

to replicate different motor tasks by tilting the specimens (polyurethane blocks) around a 

single axis (maximum range: 5°–40°), while cyclic loading was applied on the cup. No 

significant differences were found between three different simulated motor tasks on 

implant motions (translations and rotations).  

Synthetic and cadaveric pelvic models are better representative of the anatomy and 

distribution of material properties surrounding the acetabulum. Walking is most often 

simulated in these cases27,28,39. Even if this approach is acceptable (level walking is the 

predominant activity in the post-operative period141), it is possible that such a motor task 

is not most critical among the daily patient activities. Activities recommended during 

rehabilitation or early post-operative period include walking, standing up from seated, 

cycling, climbing upstairs78,150. 

The aim of the present study was to investigate the effect of different motor tasks on the 

cup primary stability, and on the strain distribution around the acetabulum. Two relevant 

motor tasks were compared: 

• Walking (Walk): this was simulated as it is the most common one in hip patients, 

and most often simulated in vitro 

• Standing up from seated (SUp): this task was selected, among the activities 

allowed in the early post-operative period, because it induces a large peak force 

in a completely different direction from the peak during walking78. 

4.3 Materials and methods 

Overview and experimental design 

To investigate the effect of two different motor tasks among those recommended during 

the early post-operative period and rehabilitation, an in vitro test to simulate level walking 

and stand up from seated was designed. For each motor task, two test campaigns were 

made (Walk and SUp, respectively). Twelve composite specimens were used in total. Six 

specimens from a previous test campaign (Walk) did not require any additional test127, 
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but the measurements were re-elaborated so as to be compared with the measurements of 

the new test campaign (current study, SUp) where six specimens were prepared and tested 

ex novo. Both stable and unstable implants were tested in each campaign. Digital image 

correlation (DIC) was used to track implant micromotions and measure the strain 

distribution. As all the twelve specimens were implanted with the same prosthetic 

component, and were implanted with the same surgical protocol, the implant motions and 

strains measured in Walk and SUp campaigns could be compared. 

Preparation of the specimens and implantation 

To allow long-term simulation of cyclic loading, twelve composite hemipelvis models 

were used (Mod. 3405, Sawbones, Malmö, Sweden). These hemipelvises consisted of a 

short-glass-fiber-reinforced shell (replicating the mechanical properties of the cortical 

bone). The inner part was made of a polyurethane foam (replicating the mechanical 

properties of the cancellous bone). Each specimen was aligned in a reliable reference 

frame82 and potted in an aluminium pot with bone cement.  

To prepare the stable implants, each acetabulum was reamed by an experienced hip 

surgeon until the lamina quadrilatera was reached. The reamer size provided an 

interference of 0.5mm on the radius. Commercial uncemented primary cups (Plasma fit® 

Plus NV158T, Aesculap AG, Tuttlingen, Germany) were implanted following the 

manufacturer's recommendations and using the proprietary tools. The surgeon aimed to 

achieve a standard alignment for the cup (inclination= 45°, anteversion=20°127). After 

implantation, the deviation from the planned alignment was measured. Cups with a 

deviation higher than 5° would have been discarded (no specimen exceeded this 

threshold). Ceramic liners (Biolox® delta NV106D, Aesculap AG) were used so as to 

minimize deformation of the liners and reduce the errors associated with the registration 

of the cup pose.  

After the tests on stable implants, each cup was extracted to prepare an unstable implant 

in the same specimen. The hemipelvises were over-reamed (1mm on the radius) and a 

2mm thick layer of plasticine was inserted in the acetabulum. The extracted cups were re-

inserted in each acetabulum by ten controlled impacts (10 N from 30 cm height).  
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In order to allow the DIC software to properly correlate and track the specimens motion, 

the implanted hemipelvises were painted with a high-contrast black-on-white speckle 

pattern. The pattern was optimized for this application140,127. 

Loading protocols 

Both stable and unstable implants were tested in both test campaigns (Walk and SUp, Fig. 

4.1). To simulate the two motor tasks, the in vitro loading direction was defined so as to 

replicate the direction of the in vivo peak force measured respectively during level 

walking (Walk) and stand up from seated (SUp) (open dataset provided by Orthoload- 

Club78). 

1. Level walking (Walk): the applied force pointed medially and towards the upper 

part of the anterior column. 

2. Stand up from seated (SUp): the force pointed medially and towards the lower 

part of the posterior column. 

The potted specimens were mounted in a uni-axial servo-hydraulic testing machine (Mod. 

8032, Instron, UK, Fig. 4.1). In order to apply the force with the selected directions, 

dedicated wedges were created both for Walk and for SUp. They allowed to properly align 

the specimen with respect to the actuator of the testing machine. To apply a pure force, 

two horizontal low-friction bearings were used.  

The same loading protocol of Morosato et al. (2019) was used. The force was applied in 

100-cycle packages (Fig. 4.1). The amplitude of each load package was 20% larger than 

the previous one. A patient body weight (BW) of 800 N was assumed for the composite 

specimens. In order to perform a conservative test, the applied force was incremented up 

to 50% of the peak measured in vivo (i.e. 1.5 BW for Walk and 2 BW for SUp78). 
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Fig. 4.1: The hemipelvis was aligned so as to apply the force (dashed arrow) in the correct direction 

respectively to simulate level walking (Walk) and standing up (SUp). Each load package consisted of 100 

identical cycles with a constant baseline (0.5 BW); the peak force of the firs load package was 1.0 BW; the 

amplitude the cyclic force was incremented by 20% between load packages. The last load package 

corresponded to approximately 50% of the peak measured in vivo (six load packages for Walk and seven 

for SUp). 

Measurement of implant motions and strains 

A commercial DIC system (Q400, Dantec Dynamics, Denmark) was used to measure the 

motions of the implant and of the bone and the strains during the test. Two cameras (5 

MegaPixels, 2440×2050 pixels, 8-bit) equipped with high-quality metrology-standard 

17mm lenses (Xenoplan, Schneider-Kreuznach, Bad Kreuznach, Germany) were used to 

obtain 3D measurements. The cameras were positioned so as to frame similar regions in 

the Walk and in the SUp simulations, i.e. the superior aspect of the acetabulum and the 

posterior column of the hemipelvis. Such regions corresponded to the most stressed area 

around the acetabulum, based on preliminary tests. The DIC hardware and software 

settings were optimized to reduce the random errors affecting the measured strains142. For 

our specific instance, the following settings were chosen: 

• Frame rate=20 Hz. 

• Facet size=35 pixels. 

• Grid spacing=27 pixels. 

• Contour smoothing=5×5 pixels (kernel size). 

• Displacement smoothing=5×5 pixels (kernel size). 
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• No smoothing on the strains. 

In order to compute the three components of translation and rotation of the implant, the 

DIC-measured displacements were post-processed through a dedicated Matlab script. The 

rigid relative motions between the cup insert and the periacetabular bone were computed 

with a least square singular value decomposition at each load cycle. In particular the 

permanent migration (i.e. the migration accumulated cycle after cycle), and the inducible 

micromotion (i.e. the recoverable motion between load peak and valley) were analyzed. 

A previous methodological study127 has shown that measurement errors affecting the 

permanent migrations are smaller than 10 μm (translations) and 0.04° (rotations), errors 

affecting the inducible micromotions are smaller than 16 μm (translations) and 0.04° 

(rotations). The following parameters were extracted: 

• The permanent migration at the last load cycle of each load package; 

• The 95th percentile of the inducible micromotion in each load package. 

The maps of the strain distribution on the specimen surface were extracted from the DIC 

software. The mean and the peak values of the principal strains in the periacetabular bone 

were analyzed.  

In order to quantify the errors of the strain measurements a zero-strain test was performed 

before each test, when the optimal parameters were used. A pair of images of the unloaded 

specimen were captured and analyzed with the optimal hardware and software DIC 

settings in order to assess the measurement uncertainties in a known configuration (zero-

strain). Being in a zero-strain configuration, any strain different from zero was accounted 

as measurement error. The random errors affecting the measured strains never exceeded 

150 m. 

Statistical analysis 

In order to detect possible outliers, the Peirce's criterion was applied118 to the measured 

implant motions and strains. To assess if the effects on implant motions and strains 

deriving from the application of the two simulated motor tasks were statistically different, 

a Mann-Whitney test was performed. All stats were performed with Matlab (2017 

Edition, MathWorks, Natick, MA). 
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4.4 Results 

4.4.1 Comparison of the implant motions for the two simulated motor tasks 

The correlation software was able to track the motions of the bone and of the prosthetic 

component throughout all tests, both for the stable and the unstable implants, for both test 

campaigns. 

Implant motions of stable implants 

After the application of the Peirce's criterion, 8% of the data had to be excluded. Both 

permanent migrations and inducible micromotions were very small (close to the errors of 

the measurement chain127) in the first load packages. The permanent migration generally 

increased within each load package and between load packages, and never exceeded 74 

μm (translation) and 0.2° (rotation) for Walk, and 62 μm and 0.4° for SUp. The inducible 

micromotions showed a generally increasing trend between load packages, and never 

exceeded 32 μm (translation) and 0.03° (rotation) for Walk, and 30 μm and 0.09° for SUp 

(Fig. 4.2). Both the permanent migrations and the inducible micromotions were larger for 

SUp than for Walk in terms of rotations, whereas some components of translation were 

larger for Walk than SUp (Fig. 4.3). The resultant translations were comparable (not 

significantly different) between Walk and SUp. Considering the single components, the 

largest translation was along the cranio-caudal axis for Walk (both permanent and 

inducible) and along the medio-lateral axis for SUp. Significant differences in terms of 

rotations were found around the cranio-caudal and medio-lateral axes. The largest 

permanent rotations occurred around the antero-posterior axis in Walk and around the 

cranio-caudal axis in SUp. 
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Fig. 4.2: Typical trend of cup motions experienced by stable implants during simulated walking (Walk, top) 

and standing up (SUp, bottom). The permanent migrations and inducible micromotions were analyzed in 

the three components of translation and the three components of rotation with respect to the anteroposterior 

axis (AP), the cranio-caudal axis (CC) and the medio-lateral axis (ML). 
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Fig. 4.3: Stable implants: Comparison between cup motions when the largest load was applied during 

simulated walking (Walk) and standing up (SUp). The permanent and inducible translations are presented 

as components along the anteroposterior (AP), cranio-caudal (CC) and medio-lateral axis (ML), and as a 

resultant. Similarly, the components of rotation around the three axes (AP, CC, ML) are presented. The 

bars show the mean and standard deviation of six specimens for each motor tasks, after the exclusion of 

outliers. The P-value from a Mann-Whitney test is also shown. 

Implant motions of unstable implants 

After the application of the Peirce's criterion, 11% of the data was excluded. The unstable 

implants faced motions that were 1–2 orders of magnitude larger than for stable implants 

both for Walk and for SUp. The motion pattern of the unstable implants varied greatly 

between specimens with no consistent common trend for the translations and rotations. 

The permanent migrations increased within each load package and between packages up 

to 363 μm (translation) and 10° (rotation) for Walk, and 843 μm and 2.2° for SUp. The 

inducible micromotions showed a generally increasing trend between load packages, up 

to 42 μm (translation) and 0.15° (rotation) for Walk, and 240 μm and 0.22° for SUp (Fig. 

4.4). The single components of translation and the resultant translation for SUp were 

significantly larger than for Walk. The differences between Walk and SUp for the 

permanent rotations showed statistical significance only for the rotations around the 

medio-lateral axis, whereas all the components of inducible rotations were significantly 

larger for SUp than for Walk (Fig. 4.4). The largest rotation occurred around the antero-

posterior axis both in Walk and in SUp. 
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Fig. 4.4: Unstable implants: Comparison between cup motions when the largest load was applied during 

simulated walking (Walk) and standing up (SUp). The permanent and inducible translations are presented 

as components along the antero-posterior (AP), cranio-caudal (CC) and medio-lateral axis (ML), and as a 

resultant. Similarly, the components of rotation around the three axes (AP, CC, ML) are presented. The 

bars show the mean and standard deviation of six specimens for each motor tasks, after the exclusion of 

outliers. The P-value from a Mann-Whitney test is also shown. 

4.4.2 Comparison between strain distributions for the two simulated motor tasks 

The full-field distribution of strains was successfully measured on the surface of each 

specimen throughout the tests.  

Strains around stable implants 

No data had to be excluded according to the Peirce's criterion. The strain distributions 

around the acetabulum were quite different between Walk and SUp both in qualitative and 

quantitative terms (Fig. 4.5). The mean strain over the periacetabular bone when the 

largest load was applied were significantly higher for SUp than for Walk (P=0.002 for the 

maximum principal strain, ε1, P=0.123 for the minimum principal strain, ε2); also the 

peak strains were higher for SUp (P=0.002 both for the maximum and minimum principal 

strains) (Tab. 4.1). Also the position of the peak strain was affected by the simulated 

motor task: in Walk the largest strains were in the superior aspect of the acetabulum; in 

SUp the largest strains were in the superior-posterior aspect of the acetabulum and in the 

lower part of the posterior column. 
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Fig. 4.5: Stable implants: Typical distribution of principal strains measured on the periacetabular bone and 

on the cup insert when the last peak of load was applied in the simulated level walking (Walk, top) and 

standing up (SUp, bottom). The maximum (ε1) and minimum (ε2) principal strains are plotted; the light 

dashes indicate the direction of the maximum principal strain. For a better visualization of the specimen 

two different views are provided for SUp. 

Tab. 4.1: Stable implants: maximum (ε1) and minimum (ε2) principal strains in the bone when the peak 

load was applied. The mean and the peak in the periacetabular area was calculated for each specimen. Here, 

the median between the six specimens and the range of the six specimens (after the application of Peirce's 

criterion for excluding the outliers) is reported. 

 Level Walking (Walk) Standing Up (SUp) 

Principal 

Strains 

Mean 

() 

Peak 

() 

Mean 

() 

Peak 

() 

1 
median = 75  

(range = -10 ÷ 120) 

median = 638.5 

 (range = 407 ÷ 722) 

median = 415 

 (range = 410 ÷ 710) 

median = 1478.5 

 (range = 1164 ÷ 1900) 

2 
median = -65  

(range = -90 ÷ 20) 

median = -513  

(range = -411 ÷ -639) 

median = -230 

(range = -20 ÷ -380) 

median = -1146  

(range = -862 ÷ -1845) 

Strains around unstable implants 

The Peirce's criterion indicated that about 14% of the data had to be excluded due to large 

differences between unstable implants. Also for the unstable implants, the strain 

distributions around the acetabulum were quite different between Walk and SUp (Fig. 

4.6). The mean strain over the periacetabular bone when the largest load was applied were 

significantly higher for SUp than for Walk (P=0.002 for the maximum principal strain, 
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ε1, P=0.123 for the minimum principal strain, ε2); also the peak strains were higher for 

SUp (P=0.002 both for the maximum and minimum principal strains) (Tab. 4.2). Similar 

to stable implants, the peak strain was localized in different areas for the two simulated 

motor tasks: in Walk the largest strains were in the superior aspect of the acetabulum; in 

SUp the largest strains were in the superior- posterior aspect of the acetabulum and in the 

lower part of the posterior column. 

 

Fig. 4.6: Unstable implants: Typical distribution of principal strains measured on the periacetabular bone 

and on the cup insert when the last peak of load was applied in the simulated level walking (Walk, top) and 

standing up (SUp, bottom). The maximum (ε1) and minimum (ε2) principal strains are plotted; the light 

dashes indicate the direction of the maximum principal strain. For a better visualization of the specimen 

two different views are provided for SUp. 
 

Tab. 4.2: Unstable implants: maximum (ε1) and minimum (ε2) principal strains in the bone when the peak 

load was applied. The mean and the peak in the periacetabular area was calculated for each specimen. Here, 

the median between the six specimens and the range of the six specimens (after the application of Peirce's 

criterion for excluding the outliers) is reported. 

 Level Walking (Walk) Standing Up (SUp) 

Principal 

Strains 

Mean 

() 

Peak 

() 

Mean 

() 

Peak 

() 

1 
median = 105  

(range = 70 ÷ 150) 

median = 1021.5  

(range = 881 ÷ 1552) 

median = 800  

(range = 790 ÷ 940) 

median = 2309  

(range = 2100 ÷ 2916) 

2 
median = -60  

(range = -40 ÷ -160) 

median = -876  

(range= -773 ÷ -1334) 

median = -420  

(range = -340 ÷ -540) 

median = -1734  

(range = -1500 ÷ -2100) 



 
 

70 
 

4.5 Discussion 

In order to investigate if different post-operative motor tasks affect the cup primary 

stability and the strains in the periacetabular bone, two biomechanical tests campaigns to 

simulate (i) a commonly investigated motor task (walking) and (ii) a possibly more 

critical one (standing up from seated) were performed. Both stable and unstable cups, 

implanted in composite hemipelvises, were tested for each motor task.  

To compare the 3D cup motions and the strain in the periacetabular region, DIC was used. 

The resultant migrations of stable cups were comparable for Walk and SUp. However, 

looking at the single components, walking induced larger cup translations (mainly in the 

cranial direction), while standing up induced larger rotations (mainly around the medio-

lateral axis). These are also the main components of migrations observed clinically. In 

the unstable implants, SUp induced generally larger permanent and inducible translations 

and rotations than Walk. 

The principal strains in the periacetabular bone were always larger in SUp than in Walk. 

The magnitude of the principal strains increased from stable to unstable implants, 

exceeding 2300  (i.e. above the physiological range for cortical bone20) when the 

maximum load was applied in SUp. The strain peaks were localized in different regions 

in Walk and SUp. Such distribution was generally related to the direction of the applied 

load (i.e. largest strains were measured in the upper part of the acetabulum in Walk and 

in the lower part of the posterior column in SUp), but during standing up large principal 

strains (comparable to strains peaks) were measured also in the superior-posterior aspect 

of the acetabulum. 

To the Author's knowledge this is the first in vitro study in which walking and standing 

up were compared in terms of 3D cup motions (permanent and inducible translations and 

rotations), using anatomical models as a testbench. For this reason, a comparison with 

previous studies is difficult. Moreover, in most past experimental studies and numerical 

simulations, standing up was not investigated. A direct comparison with the literature can 

be done only with respect to walking. In two studies32,33, LVDTs were adopted to measure 

the 3D implant translations and rotations when walking was simulated with a hip 

simulator on stable cups implanted in polyurethane blocks. Their results are in line with 

the Walk of the present study: the largest interface motions were caused by cup 
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translations while the contribution of cup rotations was lower. In Crosnier et al.33, the 

largest component of permanent translation was 160 μm while the largest component of 

rotation was around 0.1° (which corresponded to 50 μm of interface slippage). In the 

present study the largest component of rotation reached 42 μm while the largest 

component of rotation was 0.05° (0.08° corresponded to 25 μm of interface slippage). 

While there was a qualitative agreement between the studies, the difference between 

Crosnier et al. and the present study may be explained due the use of different bone 

models (polyurethane block vs composite hemipelvis) and different loading protocols. 

Some in silico studies found the largest stresses (and consequently the strains) in the 

superior posterior aspect of the acetabulum151,152,68,153 during walking. Such results are in 

line with the strains maps measured by the DIC in Walk (Fig. 4.5). The largest strains 

from a DIC experiment and a validated FE model of an implanted composite reached 

600–900  cranial to the cup68, which are similar to the largest strain peak measured in 

this study (Tab. 4.1), for similar loads. In clinical practice, primary stability is normally 

assessed by the analysis of the cup cranial translation and sagittal rotation (i.e. a 

combination of the different components of rotation, mainly around the antero-posterior 

axes) as they represent reliable predictors of cup aseptic loosening19. Our approach 

allowed analysing implant migrations in a way that can be compared to follow-up 

measurements. In the present study, the largest cranial translation was found for simulated 

Walk, while the largest sagittal rotation was measured in simulated SUp. When stable 

implants were tested, both motor tasks yielded permanent cup translations and rotations 

that were below the threshold of migration clinically accepted for implant failure (1mm 

for cranial translation and 1° for sagittal rotation19). Moreover, inducible micromotions 

never exceed 150 μm (i.e. the threshold that prevent the osteointegration16,17,129,18,148. 

Conversely, for the unstable implants both simulated motor tasks induced cup motions 

that exceeded at least one of the thresholds mentioned above. As these results were 

obtained in composite bone models, the differences and trends above should be taken in 

comparative terms.  

This study presents some limitations. First of all, a single fixed direction of the force was 

used for each motor task. This simplification is adopted in many 

studies23,25,37,39,42,44,46,53,63,65 and, for our specific case, it allowed DIC to track the 

specimen and measure cup motions and bone strains throughout the test. In fact, rotating 
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the specimen would have prevented the DIC cameras from viewing and tracking the cup 

continuously. Similarly, the muscles were not simulated; muscles implementation is 

affected by a series of problems (e.g. identification of the insertion point and actuation) 

that introduce inevitably high uncertainties and costs. For this reason, their effect is 

normally not included in in vitro experimentation. 

Simplified boundary conditions were used, constituted by a rigid fixation of the sacro 

iliac joint. A recent study by Watson et al.154 demonstrated that the constraints at the 

sacro-iliac joint does not affect significantly the stress distribution in the ilium. 

Conversely, the effect of constraining the pubic symphysis is possibly relevant. As the 

compliance of the symphysis changes largely between subjects and with age, pubic 

loading is quite unknown155. Due to this uncertainty, and to avoid over-constraining the 

specimen, the pubic symphysis was unconstrained in our tests. 

Composite bone models were prepared with the same protocol for alignment and 

implantation. This allowed reducing the inter-specimen variability (compared with the 

cadaveric specimens), thus allowing a direct comparison when the two motor tasks were 

applied to different specimens. It is possible that implant motions and bone deformations 

are different in absolute terms in real bone, and also in relation to surgical factors (e.g. 

reaming, cup alignment, degree of press-fit).  

To address the concerns about primary stability, when a new uncemented cup is designed, 

special attention should be given to the possible modes of loosening. If the prosthesis 

includes features to enhance stability, this claim should be extensively tested, for the most 

critical loading configurations. With the present study, we demonstrated that the stability 

of an uncemented acetabular implant is significantly affected by the simulated motor task. 

While walking (Walk) was more critical in terms of cup cranial migrations, larger 

rotations were caused by standing up (SUp). 

Our findings may also provide an indication for post-operative patient activities: for 

instance, patients where there is a concern for cup tilt (e.g. in association with poor bone 

support) should receive an indication about which motor task(s) they should avoid. 

  



 
 

73 
 

Chapter 5: 

Does cup medialization affect  

the primary stability  

of press-fit acetabular cups? 

From the manuscript: 

Morosato F., Cristofolini L., Castagnini F., Traina F., Does cup medialization affect the primary stability 

of press-fit acetabular cups? (2020) (submitted to Bone and Joint Journal) 

5.1 Abstract 

Background. Restoration of the native center of rotation (COR) is of paramount 

importance in total hip arthroplasty. COR reconstruction depends on reaming technique: 

conventional approaches require more cup medialization than anatomical preparations.  

To date, the influence of cup medialization on socket stability in cementless implants is 

still unknown.  

Research question.  Does cup medialization improve primary stability in press-fit 

acetabular sockets?  

Methods. Five pairs of cadaveric hemipelvises were sequentially reamed using 

anatomical technique (only subchondral bone removal and COR restoration) and 

conventional preparation (reaming to the lamina and medializing the cup).  A 

biomechanical test was performed on the reconstructions.  Implant motions were 

measured with digital image correlation while a cyclic load of increasing magnitude was 

applied. 

Results. No significant difference was measured between the two implantation techniques 

in terms of permanent cup migrations.  The only significant difference was found for the 

cup inducible rotations, where the conventional technique was associated with larger 

rotations.  
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Conclusion. Cup medialization does not improve initial cup stability.  Considering the 

influence of medialization on hip biomechanics (loos of bone stock, loss of offset, high 

stresses at the bone-implant interface and higher polyethylene wear), conventional 

reaming should not be routinely performed, but only in case of shallow, aspherical 

cavities after anatomical reaming.  

Keywords: Reaming depth; Hip Center of rotation; Cup medialization; implant stability 

5.2 Introduction 

Restoration of center of rotation (COR) is of paramount importance in total hip 

arthroplasty (THA)156,157,158.  An anatomical reconstruction of the COR improves hip 

biomechanics and function, reduces wear and impingement156,157. COR restoration is 

strongly dependent on the reaming technique156,158.  The conventional technique aims to 

the acetabular floor (lamina quadrilatera), whereas the anatomical method requires only 

peripheral reaming, limited to the acetabular rim159.  Thus, the conventional technique 

increases cup medialization and may sacrifice a clinically significant amount of 

acetabular offset, while the anatomical reaming preserves cup medialization and may 

result in socket under-coverage or overhanging160,157,158.  To date, the influence of 

reaming technique (and thus, cup medialization) on stability of cementless press-fit 

sockets is still unknown.  In particular, it is not ascertained if deeper cup positioning may 

reduce the initial inducible (or elastic) implant micromotions that prevent 

osseointegration and may lead to cup loosening16,161,18.  

Thus, a cadaveric biomechanical study was designed to compare the effects of two 

different reaming techniques (conventional and anatomical methods), and consequently, 

two different cup medializations, on primary stability of press-fit acetabular cups in the 

same acetabulum.  We hypothesized that deeper implantation (conventional technique, 

more medialization) provided more stable cup implantation.  In particular, cup stability 

was assessed in terms of three-dimensional permanent migrations and inducible 

micromotions between the cup and the host bone.   
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5.3 Material and methods 

To assess the effect of implantation depth (medialization) on primary stability of press-

fit acetabular cups, ten cadaveric hemipelvises were used.  Specimens were implanted in 

two different fashions.  First, the cups were implanted after a peripheral reaming 

technique (anatomical implantation).  After the biomechanical test, the specimens were 

reamed until reaching the lamina quadrilatera and implanted with the same cup 

(conventional implantation).  Digital image correlation (DIC) was used to measure the 

relative 3D implant/bone motion 127. 

Preparation of the specimens 

Five pairs of cadaveric hemipelvises were obtained through ethically-approved donation 

programs (Tab. 5.1).  This Study was authorized by the Bioethics Committee of the 

University of Bologna (Prot. 179610 of 7 December 2018).   
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Tab. 5.1 - List of specimens, including the donors’ details, and the size of the implanted cups.  The position of cup with respect to the native center of rotation is reported 

for the anatomical and conventional implantation (negative values indicate that the cup was inserted deeper than the native COR).  The last column reports the difference 

between the two implantations.  

Donor Cause of 
death 

Sex Age 
(years) 

Height 
(cm) 

Body weight 
(kg) 

BMI 
(kg/m^2) 

Side Cup size 
(mm) 

Cup center  
Anatomical 
implantation 

(mm) 

Cup center  
Conventional 
implantation 

(mm) 

Difference between 
anatomical and 

conventional implantation 
(mm) 

#1 Sepsis Female 83 164 63 23 L 56 2.0 -1.8 3.8 

R 56 1.1 fractured - 

#2 Respiratory 
paralysis 

Male 70 175 79 26 L 52 1.3 -2.1 3.4 

R 54 0.9 -2.2 3.1 

#3  
Unknown 

Male 74 176 78 25 L 48 0.4 fractured - 

R 48 -1.6 -5.6 4.0 

#4 Coronary 
thrombosis 

Male 71 187 92 26 L 60 1.7 -1.8 3.5 

R 62 -0.7 -1.8* 1.1* 

#5 Cardiac 
arrhythmia 

Male 61 181 96 29 L 56 1.4 -1.6 3.0 

R 54 1.5 -1.6 3.1 

Median - 71 176 79 26 - 55 1.2 -1.8 3.4 

SD - 7.9 8.5 13.2 2.2 - 4.5 1.1 1.4 0.4 

Note (*): this specimen could not be tested because the difference between anatomical and conventional implantation was less than 3 mm.  
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The soft tissues around the acetabulum and in correspondence of the anatomical 

landmarks were removed.  Each hemipelvis was aligned in a reproducible reference frame 

and potted in correspondence of the sacro-iliac joint in an aluminum pot with bone cement 

(Fig. 5.1) 82. To avoid excessive bending of the specimen during the biomechanical test, 

a constraint was added in the pubic symphysis (Fig. 5.2). 

 

Fig. 5.1: Ten paired hemipelvises from five donors were prepared (A).  The size of each acetabulum was 

measured to plan implantation and to record the position of the native anatomical center of rotation (B).  

All the specimens were first implanted so as to restore as close as possible the native center of rotation 

(anatomical implantation, C) and subjected to biomechanical test.  The specimens were then re-implanted 

after reaming towards the lamina quadrilatera (conventional implantation, D). 

Spherical plugs with controlled dimensions were used to measure the cup size required 

for each acetabulum, and to estimate the position of the native anatomical COR (Fig. 5.1).  

An experienced hip surgeon (FT) performed reaming and implantation so as to correctly 

prepare the hemipelvises according to the two implantation techniques: 

• In anatomical implantations, peripheral reaming was performed aiming to restore 

the native COR as close as possible, with a minimal medialization and 

circumferential, complete cup coverage.  Commercial primary cups (Plasma fit® 

Plus, Aesculap AG, Tuttlingen, Germany) were implanted following the 

manufacturer’s recommendations. To ensure that cups were within ±2 mm from 

the native COR, the position of the cup center after implantation was measured 

(Fig. 5.1) (Tab. 5.1). Ceramic liners (Biolox® Delta, Ceramtec, Plochingen, 

Germany) were inserted.  After the biomechanical test (see details below), the 

cups were extracted. 



 
 

78 
 

• To prepare the hemipelvises for the conventional implantation, each acetabulum 

was progressively medialized by reaming to the lamina quadrilateral (using the 

same reamer size as in anatomical technique). The same cups were re-implanted.  

The position of the COR of such conventional implantation was measured and 

compared with the position of the COR previously achieved with anatomical 

implantation (Fig. 5.1). A difference of position smaller than 3 mm required the 

specimen to be reamed deeper (if possible) and re-implanted.  In one case it was 

not possible to ream deeper and the specimen was not tested; two specimens were 

fractured during re-implantation and were not tested; therefore, 7 specimens were 

available with both implantation techniques (Tab. 5.1). The ceramic liners were 

re-inserted and the same biomechanical test was repeated. 

As the digital image correlation (DIC) software requires the surface to have a high-

contrast speckle pattern, a black-on-white pattern was painted on the surface of each 

specimen (covering both the periprosthetic bone and the rim of the cup insert) before the 

biomechanical tests 127. 

Biomechanical testing 

In order to reproduce a critical loading configuration, standing up from seated was 

selected among the typical activities of post-operation patients 78. In fact, it was shown 

that such motor task generates the highest load peak in the acetabulum compared with 

other post-op activities 77, and it results in a migration direction of the cup consistent with 

that observed clinically 147. In particular, the direction of the peak force measured in vivo 

during standing up from seated was identified from the open dataset by Orthoload Club 

77. The specimens were aligned in the testing machine so as to apply the force in the 

selected direction (Fig. 5.2). A system of low-friction linear bearings was used to avoid 

transmission of any other undesired force component.  A uni-axial servo-hydraulic testing 

machine (Mod. 8800, Instron, UK) was used to apply packages of cyclic load with 

increasing magnitude similar to Morosato et al. 147. To account for the donor’s anatomy, 

loading was scaled according to the donors’ body weight (BW).  Each package consisted 

of 50 load cycles.  The first load package reached a peak force of 1 BW, the following 

packages were always 10% larger than the previous one (Fig. 5.2). 
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As each specimen had to be tested twice (with the two implantation techniques), it was 

crucial to prevent specimen damage.  Therefore, a coarse stop criterion was implemented 

during the first test session (anatomical implantation) in real time throughout the test: the 

test was continued (with load packages of increasing magnitude) until the measured cup 

permanent migration exceeded 0.5 mm.  In addition, if the strains measured with DIC 

(see below) exceeded 2000  (i.e similar to the physiological deformations experienced 

by bone 20) the test was stopped.  To allow paired comparisons between the two implant 

conditions, each specimen was tested after conventional implantation up to the same load 

reached in the previous testing with anatomical implantation. 

 

Fig. 5.2: The specimen was mounted in the testing frame so as to apply a force (red arrow) in the selected 

direction (A); the hemipelvis was constrained through the pot on the sacroiliac joint, and through a support 

at the pubic symphysis;  the cameras of the DIC system were placed so as to frame both the cup and the 

surrounding bone.  Load cycles of increasing magnitude were applied in packages of 50 cycles (B); each 

load package was 10% larger than the previous one; the force was scaled on the patient body weight (BW).  

Measurement of implant motion 

A commercial DIC system (Q400, Dantec Dynamics, Denmark) was used to measure the 

motions of the implant and of the bone throughout the test, following a validated 

procedure 127. The system also allowed to measure full-field strains during the test. Two 

cameras (5 MegaPixels, 2440 ×2050 pixels, 8-bit) equipped with high-quality metrology-

standard 17 mm lenses (Xenoplan, Schneider-Kreuznach, Bad Kreuznach, Germany) 

were used to obtain 3D measurements. The cameras were positioned so as to frame the 
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implant, the superior aspect of the acetabulum, part of the iliac wing and part of the 

posterior column (Fig. 5.2). 

In order to compute the three components of translation and rotation of the implant, the 

DIC-measured displacements were post-processed through a dedicated script in Matlab 

(2017 Edition, MathWorks, Natick, MA)127. In particular, the permanent migration (i.e. 

the migration accumulated cycle after cycle), and the inducible micromotion (i.e. the 

recoverable motion between load peak and valley) were analyzed.   

Statistical analysis 

To assess if the effect of the two implantation techniques on implant motions was 

statistically different, a Wilcoxon signed-rank test was performed using Matlab. The 

following results were analyzed as paired data (the same load peak was reached for the 

two implantation techniques in each specimen): 

• The cup migration after the application of the last load package in the anatomical 

vs the conventional implantation. 

• The median of the inducible micromotions during the last load package in the 

anatomical vs the conventional implantation.  

5.4 Results 

The digital image correlation system was able to track the motions between the cup and 

the bone throughout the biomechanical tests of the anatomical and conventional 

implantations.  

The permanent translations at the end of the biomechanical test ranged 0.064-0.354 

millimeters for the anatomical implantations and 0.065-0.210 millimeters for the 

conventional ones.  The inducible micromotions never exceeded 0.130 millimeters for 

both types of implantation.  The resultant permanent translation was slightly larger for 

the conventional implantation than for the anatomical one (this difference was not 

statistically significant, Wilcoxon signed-rank, Fig. 5.3). However, looking at the single 

components, the permanent translations were slightly larger for the anatomical 

implantation (again, with no statistical significance). A similar trend was found for the 

inducible translations, with no statistically significant difference (Fig. 5.3).  
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The permanent rotations at the end of the biomechanical test ranged 0.001°-0.59° for the 

anatomical implantations and 0.006°-0.30° for the conventional ones. The inducible 

rotations never exceeded 0.20° millimeters for both types of implantation. No significant 

difference was detected between the permanent rotations of the two implantation 

techniques (Wilcoxon signed-rank, Fig: 5.4). The only statistically significant differences 

were detected for the inducible rotations around the antero-posterior and around the 

medio-lateral axis (Fig: 5.4).  

A detailed analysis of the individual specimens highlighted that there was no correlation 

nor visible trend between the difference between the two implantation depths (Tab. 5.1) 

and the implant motions (both inducible and permanent). 

 

 

Fig. 5.3: Cup translations when the largest load was applied to the anatomical and conventional 

implantations. The permanent migrations (a) and inducible micromotions (b) are presented as components 

of translation along the antero-posterior (AP), cranio-caudal (CC) and medio-lateral (ML) axis, and as a 

resultant.  The three components of cup translation are sketched together with a hemipelvis from the three 

views.  The bars show the median and standard deviation of seven specimens.  The P-value from the 

Wilcoxon signed-rank test is indicated for pairwise comparisons. 
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5.5 Discussion 

The influence of cup medialization (or cup implantation depth) on initial stability of press-

fit acetabular cups has not been clearly ascertained.  Many Authors promoted an 

anatomical COR restoration in order to improve hip biomechanics and reduce long-term 

wear, but they mostly focused on the COR height 156. Other Authors promoted cup 

medialization to improve long-term survival rates, but analyzed old-cemented implants 

affected with some sort of COR tridimensional displacement 160. Thus, the optimal 

medial-lateral cup configuration has not been really assessed in cementless press-fit 

acetabular sockets: in particular, it is still unknown whether deeper acetabular 

implantation improves initial stability (and, thus, promotes a better bony ingrowth 

through minimization of micromotions).   

Thus, an in vitro biomechanical study was performed on human hemipelvises.  Press-fit 

acetabular cups were implanted, first aiming to restore the native COR (anatomical 

implantation), then reaming to the lamina (conventional technique). Thus, cup 

medialization was progressively increased (median value: 3.4±0.4 mm). The hypothesis 

was: cup medialization, and thus conventional reaming technique, improved primary cup 

Fig. 5.4: Cup rotations when the largest load was applied to the anatomical and conventional 

implantations. The permanent migrations (a) and inducible micromotions (b) are presented as components 

of rotation about the antero-posterior (AP), cranio-caudal (CC) and medio-lateral (ML) axis. The three 

components of cup rotation are sketched together with a hemipelvis from the three views.  The bars show 

the median and standard deviation of seven specimens.  The P-value from the Wilcoxon signed-rank test 

is indicated for pairwise comparisons. 
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stability. However, the biomechanical results showed that anatomical and conventional 

implantations produced comparable implant motions. The permanent translations and 

rotations were similar for the two techniques, with no statistically significant difference.  

Only inducible rotations around the antero-posterior and the medio-lateral axes were 

significantly different.  However, such rotations were so small in all cases (less than 0.04°, 

close to the intrinsic error of the measurement protocol127). 

Literature about the relationship between cup medialization and implant stability is 

definitively limited. Only one study assessed the effect of reaming depth, bone defects 

and under-reaming in Sawbones foam block and bovine spongy bone specimens 23. Adler 

et al. concluded that proper bone preparation (hemispherical cavity with no focal defects) 

and cup medialization (5 mm) improved cup stability. Adler et al proposed that cup 

medialization may have overcome dense subchondral bone and polar gaps, providing 

more stability 23. O’Rourke et al. partially supported these suggestions in a non-focused 

paper, highlighting a non-significant correlation between polar gaps and intact acetabular 

depth (that is, minimal medialization) in a cohort of patient-specific finite element models 

162.  

These findings were not supported by the present study: cup medialization did not 

significantly improve cup stability.  As a matter of fact, Adler et al. implanted the cups at 

three medial-lateral configurations, reaming 5 mm deeper every time 23.  However, 

Bonnin et al. implanted press-fit cups on 100 hips using conventional and anatomical 

techniques: the mean cup medialization was 3.2 mm±1.9, with higher values in males 160.  

Thus, a medialization of 5 mm or more seems definitely too aggressive and not suitable 

for many pelvic morphologies.  In fact, in the present study a medialization of 3.4 mm 

was provided by the conventional reaming technique with respect to the anatomical one.  

Moreover, the medial-lateral position of the cup plays a complex role in the whole hip 

biomechanics, impacting on offset and range of motion 163.  Aggressive medialization 

may definitively violate the acetabular offset and, in some cases, increasing femoral offset 

is not sufficient to compensate for the global loss of lateralization 157.  As a consequence, 

hip abductors lever arm may be compromised160,164,165. Moreover, recent literature 

highlighted that cup medialization and loss of offset were associated to increased wear of 

polyethylene liners and increased stresses at the bone-implant interface in press-fit 

sockets, overturning the classic perspective “more cup medialization-less loosening” 
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(based on cemented cups and very old implants)166,160,167,159. Conversely, anatomical 

reaming provides accurate COR reconstruction, adequate offset restoration and, as the 

present study highlighted, sufficient cup stability160,156,157. It also preserves bone stock, 

which is of paramount importance to date, considering that THAs are more and more 

common in younger patients and the rate of revisions is steadily increasing160,168.   

A limitation of this study is related to the two consecutive reaming techniques performed 

on the same acetabulum. The anatomical reaming and the subsequent biomechanical tests 

may have partially influenced the shape of the second acetabular cavity and the grip of 

the second cup implantation. Furthermore, the conventional reaming was performed using 

the last reamer used for peripheral acetabular preparation (without progressively 

increasing the reamer sizes from the beginning of the preparation). In this way, reaming 

is concentric with a medial-lateral vector (superior-inferior and anterior-posterior 

displacements do not take place) and cup medialization is the sole positioning variable. 

A single loading configuration was applied in our biomechanical tests, reducing the 

complexity of the forces acting in the acetabulum to a single resultant force. This 

simplification was demonstrated to be suitable to generate in vitro implant motions 

consistent with the clinical observations 147. Our study had a limited sample size (N=7 

hemipelvises); however, as the same specimen was used in testing of anatomical and 

conventional implantation, we could exploit pair-wise comparisons. A similar sample size 

is often used in in vitro implant stability tests24,26. The need to prevent bone damage (to 

allow testing each specimen in two implant conditions) forced us to limit the magnitude 

of the forces applied during the test. Therefore, absolute implant motions in real patients 

might be larger than those found in our tests. However, implant motions were analyzed 

in comparative terms, thus allowing to assess differences between anatomical and 

conventional implantation. 

In summary, this study demonstrated that cup medialization did not improve initial 

stability of press-fit sockets.  As previously highlighted in the literature, cup medialization 

may increase wear rate, stresses at the bone-implant interface, loss of bone stock and loss 

of offset, with significant effects on implant survival, biomechanics and 

stability166,167,156,157,158. Conversely, anatomical reaming closely restores the native COR 

and provides sufficient initial cup stability. Thus, cup medialization and conventional 

reaming technique should not be performed routinely, but mostly on individual basis 
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(when the acetabulum is still shallow and aspherical after peripheral reaming). Long-term 

studies comparing the two reaming techniques in the same patients (bilateral THAs) may 

provide additional decisive data about the clinical consequences of these two surgical 

approaches, in particular aseptic cup loosening, polyethylene wear and implant stability.  

  



 
 

86 
 

  



 
 

87 
 

Chapter 6: 

Primary stability 

of revision acetabular reconstructions using 

an innovative bone graft substitute:  

A comparative biomechanical study 

on cadaveric pelvises 

From the manuscript: 

Federico Morosato, M.Sc., Francesco Traina, MD., Ronja A. Schierjott, M.Sc., Georg Hettich, Ph.D., 

Thomas M. Grupp, Ph.D., Luca Cristofolini, Ph.D., Primary stability of revision acetabular 

reconstructions using an innovative bone graft substitute: A comparative biomechanical study on 

cadaveric pelvises (2020), (submitted to The Journal of Arthroplasty) 

6.1 Abstract 

Background: The main cause of hip implant failure is aseptic loosening of the acetabular 

component.  Such failure is typically accompanied with defects in and around the 

acetabulum that must be restored during revision.  Morselized bone graft represents the 

golden standard.  Due to its limited availability, synthetic substitutes are adopted as an 

alternative material.  We aimed to assess experimentally if a synthetic full-resorbable tri-

calcium-phosphate-based bone graft substitute grants a good mechanical stability when 

used to treat severe contained defects, in comparison with morselized bone graft. 

Methods: Each side of five cadaveric pelvises were alternatively treated with morselized 

bone graft or with graft substitute. The bone graft substitute consists of dense calcium-

phosphate granules within a collagen matrix. The biomechanical test consisted of cyclic 

loading, where the load magnitude was increased until failure occurred. Digital Image 

Correlation (DIC) was used to measure the bone/implant motions in terms of permanent 

and inducible translations and rotations throughout the test. 
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Results: Both reconstruction types exhibited a settling trend during the first phase of the 

test.  Failure occurred as bone fracture (i.e. no failure of the reconstruction material).  The 

permanent translations when 2.2 Body-Weight was applied did not differ significantly 

between the two reconstruction technique (below 1.0 mm). Similarly, the inducible 

translations did not differ significantly (below 0.160 mm). Rotations differed qualitatively 

between reconstructions but had the same order of magnitude. 

Conclusion: The proposed bone graft substitute granted adequate mechanical stability, 

providing a suitable synthetic alternative to morselized bone grafts to reconstruct severe 

contained acetabular defects. 

Keywords: Revision hip surgery; severe contained acetabular defects; morselized bone 

graft; synthetic bone graft substitute; in vitro stability; biomechanical testing. 

6.2 Introduction 

Revision hip arthroplasty accounts for 10-15% of hip replacements performed worldwide 

every year6,7,8,9,10. The main cause of hip implant failure is aseptic loosening of the 

acetabular component, generally accompanied with bone loss, and the consequent 

generation of defects in and around the acetabulum169. To achieve a viable implant 

stability of the revision cup, the bone defects should be addressed before implantation of 

the prosthesis. Revision surgery in the presence of bone defects is challenging as material 

must be added to restore the bone loss. Impacted morselized bone grafts represent a 

popular solution, especially for contained defects 170,171,172. However, due to the limited 

availability of human tissue, synthetic bone graft substitutes are adopted as alternative 

material173. In particular, calcium phosphate (CaP) -based materials such as 

hydroxyapatite (HA) or tri-calcium-phosphate (TCP) represent a reliable solution due to 

their availability, biocompatibility and osteoconductive properties174. 

One crucial point for such revision surgery is that sufficient primary stability must be 

provided to grant initial and long-term stability of the revision implant and of the 

augments when subjected to post-operative loading (which is cyclic by nature). 

Arts et al investigated the effect of the size and of the washing of morselized bone graft, 

on the stability of acetabular reconstructions with segmental defects (AAOS Type III) 22. 

Bolder et al. tested a different mix of bone grafts and TCP/HA granules, in combination 
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with acrylic bone cement in simplified geometry replicating the acetabulum, aiming to 

identify the combination that allows optimal cement penetration29. 

Other authors adopted a similar approach to study the mechanical stability of acetabula 

reconstructed with the impaction grafting technique and cemented cups36,55,62. To the 

Author’s best knowledge in only one study morselized bone graft were compared with a 

resorbable synthetic CaP-based material adopted to reconstruct a cavitary defect (AOSS 

Type 2 defect) implemented in a cadaveric model39. 

Recently, a bone graft substitute made of tetrapods of TCP has been shown to grant 

sufficient load mechanical capacity in a very simplified bone defect model175. A previous 

study using a standardized bone defect geometry in acetabular foam models has shown 

the potential of bone graft substitutes made of molded bodies and a matrix material in 

granting implant stability176. 

Almost all the studies above concentrated on the combined use of resorbable materials 

and bone cement. So far, only one study, where an entire resorbable bone defect filler was 

tested was published. In the past, both segmental and contained defects have been 

addressed, but biomechanical analyses were mostly performed only on synthetic foam 

models of the acetabulum. To the author’s knowledge cadaveric specimens were used in 

one in vitro study by Jacofsky et al.39. 

The aim of the present study was to assess if a resorbable CaP-based bone graft substitute 

can be used to treat severe contained central defects. In order to improve the handling 

properties of the bone graft substitute, the tetrapods of the previous studies175 were 

embedded in a collagen matrix, resulting in a moldable CaP-putty. The hypothesis was 

that such a CaP-putty would provide similar primary stability as the conventional 

impaction bone grafting technique. Primary stability of the implant was measured and 

compared between the two techniques in terms of permanent migration and inducible 

micromotions using Digital Image Correlation (DIC).   
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6.3 Material and methods 

Preparation of the specimens 

Five pairs of fresh-frozen hemipelvises were obtained through ethically-approved 

donation programs (Table 1). This Study was authorized by the Bioethics Committee of 

the University of Bologna (Prot. 179610 of 7 December 2018). No information about 

donor’s laterality was available. The bones were thawed at room temperature prior to 

testing. They were wrapped in cloths soaked with physiological saline solution when not 

in use. The soft tissues around the acetabulum and in correspondence of the anatomical 

landmarks were removed.  Each hemipelvis was aligned in a reliable reference frame and 

potted in correspondence of the sacro-iliac joint in an aluminum pot with bone cement82.  

Tab. 6.1: List of specimens, including the donors’ details, and the size of the implanted cups. The last 

column reports the difference between the two reconstruction materials for the acetabular defects. 

Donor Cause of 

death 

Sex Age 

(years) 

Height 

(cm) 

Body 

weight 

(kg) 

BMI 

(kg/m^2) 

Side Primary 

cup size 

(mm) 

Revision 

cup size 

(mm) 

Reconstruction 

material 

#1 Sepsis Female 83 164 63 23 
L 56 58 Bone graft 

R 56 58 CaP putty 

#2 
Respiratory 

paralysis 
Male 70 175 79 26 

L 52 54 Bone graft 

R 54 56 CaP putty 

#3 Unknown Male 74 176 78 25 
L 48 50 CaP putty 

R 48 50 Bone graft 

#4 
Coronary 

thrombosis 
Male 71 187 92 26 

L 60 62 Bone graft 

R 62 64 CaP putty 

#5 
Cardiac 

arrhythmia 
Male 61 181 96 29 

L 56 58 Bone graft 

R 54 56 CaP putty 

Median - 71 176 79 26 - 55 56.6 5 vs 5 

SD - 7.9 8.5 13.2 2.2 - 4.5 4.3  

In order to replicate consistent defects in each hemipelvis, a standardized protocol for 

defect implementation, based on statistical shape modelling and quantitative defect 

analysis, was adopted176,177. Critical, contained defects were replicated representing 

mostly medial defect with rim damage of approximately one third of the circumference, 

located at the inferior-posterior area of the rim (Fig. 6.1). To enhance consistency, each 
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defect was scaled on anatomical features of the native acetabulum: the thickness of the 

acetabular roof, the thickness of the anterior column and the thickness of the posterior 

wall. 

Each hemipelvis and its contralateral side were randomly selected to be treated CaP-putty 

or with morselized bone graft (Fig. 6.1). Acetabular reconstruction was performed by an 

experienced surgeon. The morselized bone chips were prepared from a proximal femoral 

epiphysis using a rongeur in order to achieve a medium diameter of the bone chips of 

about 8mm. The bone chips were impacted into the bone defect gently hammering with 

a dedicated hemispherical impactor. The bone chips were added since the contained 

defect was fulfilled and even with the acetabular surface of the acetabulum. The same 

procedure was done with the CaP-putty 

The CaP-putty consisted of TCP-tetrapods within a collagen matrix. The putty should 

provide a loadable, osteoconductive, and osteoactive putty to reconstruct large acetabular 

bone defects.  A recent study showed the load capacity and the osteoconductive properties 

of the tetrapods without collagen175. To improve the handling properties and to include a 

kind of osteoactive stimulus, the tetrapods were embedded within a collagen matrix in a 

weight ratio of 95% tetrapods and 5% collagen. A tetrapods/collagen slurry was prepared 

and filled in cavities with a length of 5 cm. Using lyophilization, bars of tetrapod/collagen 

bars were created. In contact with water, the bars become moldable and were used in the 

present study to fill the defect in form of a CaP-putty. The collagen matrix collapses when 

the putty is impacted and the tetrapods have contact to each other. After resorption of the 

collagen, an osteoconductive scaffold for bone ingrowth is expected to remain. 

Commercial cups (Plasmafit PLUS 7, Aesculap, Tuttlingen, Germany) were press fitted 

into the acetabular cavity and two anchoring screws were inserted medially to enhance 

stability (Fig. 6.1). Whenever possible, the same cup size was implanted in the 

contralateral hemipelvises (in three cases a discrepancy of one size was required to 

accommodate for the asymmetry of the same donor). 

To allow the DIC software to correlate, a high-contrast black-on-white speckle pattern 

was applied on the specimen surface. 
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Fig. 6.1: The standardized acetabular defect was implemented based on the statistical shape model 

developed in Schierjott et al.177. The hemipelvis was machined in consecutive steps using different 

commercial surgical reamers, with reproducible defects scaled according to the specimen-specific 

dimensions.  Each hemipelvis and its contralateral side were alternatively reconstructed with morselized 

bone graft or CaP-based material.  Commercial cups were press-fit in the acetabular cavity and two 

anchoring screws were used. 

Biomechanical testing 

A validated protocol was used for the biomechanical testing127. Walking was selected 

among the recommended activities for post-op rehabilitation. In particular, the direction 

of the peak force measured in vivo during level-walking was extracted from open datasets 

77 and a custom mechanical setup was produced so as to apply the force in the selected 

direction during the biomechanical test. A servo-hydraulic testing machine was used to 

load the specimens. The test consisted of 50-cycles load packages with increasing 

amplitude. The first load package (up to 1 BW) served as pre-conditioning. Then, the 

biomechanical test was extended, increasing the load until visible specimen failure. (Fig. 

6.2). 

Measurement of implant motion and strains 

A commercial DIC system (Q400, Dantec Dynamics, Denmark) was used to measure the 

motions of implant and bone. Two cameras (5 MegaPixels, 2440 ×2050 pixels, 8-bit) 

equipped with high-quality metrology-standard 17 mm lenses (Xenoplan, Schneider-
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Kreuznach, Bad Kreuznach, Germany) were used to obtain 3D measurements. The 

cameras were positioned so as to frame the implant and the superior aspect of the 

acetabulum (Fig. 6.2). 

In order to compute the bone/implant motions (translations and rotations along/about 

cranio-caudal, antero-posterior and medio-lateral axes), the DIC-measured displacements 

were post-processed through a dedicated script in Matlab (2017 Edition, MathWorks, 

Natick, MA)127. In particular the permanent migration (i.e. the migration accumulated 

cycle after cycle), and the inducible micromotion (i.e. the recoverable motion between 

load peak and valley) were analyzed. 

 

Fig. 6.2: (a) The specimen was aligned in the testing frame so as to apply a force (arrow) in a direction that 

replicated level walking. The cameras of the DIC system were placed so as to frame both the cup and the 

surrounding bone. (b) Load cycles of increasing magnitude were applied: each load packages consisted of 

50 cycles; each package was 10% larger than the previous one; the force was scaled on the patient body 

weight (BW). The first load package (50 cycles 1.00 BW) was used for pre-conditioning before the actual 

test. 

Statistical analysis 

In order to exclude outliers, the Peirce’s criterion was applied. To assess if the effects on 

implant motions deriving from the two bone reconstruction materials were statistically 

different, a Wilcoxon signed-rank test was performed at each load level. The level of 

significance was p=0.05 for all analysis. All stats were performed with Matlab. 
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6.4 Results 

The digital image correlation system was able to track the motions between the cup and 

the bone throughout the biomechanical tests.  

The specimens failed at different load magnitudes, between 2.4 and 5.0 BW.  Failure was 

not due to the implant, but to fracture of the posterior column. In order to compare the 

effect of the bone reconstruction material on implant stability, the results will be presented 

up to 3 BW, which corresponds to the magnitude of the peak load measured in the hip 

during walk 77.  This force magnitude was reached before bone fracture in all specimens 

but one: in this case all the load packages preceding fracture could be compared to the 

other specimens. 

The permanent migration steadily increased throughout the test as load increased (Fig. 

6.3). Migration showed a visible settling trend from the beginning to the end of each 

single load package (of 50 cycles each) at low forces, whereas migrations kept growing 

during each of the last load packages (higher forces). At 2.2 BW (all specimens reached 

this level), the resultant permanent migration for the specimens with bone graft were 0.57 

mm (median; range: 0.12-2.26 mm) and with CaP-putty were 0.95 mm (median; range: 

0.33-2.67 mm). At 3.0 BW the permanent migration (for 4 specimens that reached 3 BW) 

with bone graft were 0.84 mm (median; range: 0.26-2.67 mm) and with CaP-putty were 

1.39 mm (median; range: 0.69-3.43 mm). The difference of migrations between the two 

groups was statistically not-significant at all load levels (Wilcoxon signed rank sum test, 

p=0.06-1.0 for the different load packages). 

The inducible micromotions had a more irregular trend (Fig. 6.3). They were generally 

constant or slightly decreasing within the same load package for lower loads. When the 

implant started migrating, also the micromotions fluctuated within the same load package. 

Large inducible micromotions were typically followed by larger permanent migrations. 

At 2.2 BW the inducible micromotions for the specimens with bone graft were 0.11 mm 

(median; range: 0.06-0.21 mm) and with CaP-putty were 0.16 mm (median; range: 0.05-

0.32 mm). At 3.0 BW the micromotions (for 4 specimens that reached 3 BW) with bone 

graft were 0.15 mm (median; range: 0.15-0.43 mm) and with CaP-putty were 0.24 mm 

(median; range: 0.05-0.53 mm). The difference of inducible micromotions between the 
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two groups was statistically not-significant at all load levels (Wilcoxon signed rank sum 

test, p=0.06-1.0 for the different load packages). 

 

Fig. 6.3: The resultant permanent migration and the resultant inducible micromotions measured during each 

test are shown for the morselized bone graft (left, n=5 specimens) and CaP putty (right, n=5 contralateral 

specimens). 

Looking at the single motion direction, the largest permanent translation occurred along 

the medio-lateral axis for both the reconstruction techniques (Fig. 6.4, 6.5). At 3.0 BW, 

the permanent translations along the cranio-caudal and the antero-posterior axes were on 

average respectively 31 % and 47 % of the translation along the medio-lateral axis for 

reconstructions with bone graft and 24 % and 87 % for reconstructions with CaP-putty. 

The largest component of permanent rotation was about the antero-posterior axis (i.e. 

change of inclination). 

The inducible translations and rotations had differences between components similar to 

those observed for the permanent ones, but varied significantly between specimens and 

during the test (Fig. 6.4, 6.5).  
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Fig. 6.4: Morselized bone graft: The permanent migrations and inducible micromotions throughout the test 

are presented as the median trend of the specimens. For the translations, the components along the antero-

posterior (AP), cranio-caudal (CC) and medio-lateral (ML) directions are reported. The rotations are 

reported in terms of individual components about the antero-posterior (AP), cranio-caudal (CC) and medio-

lateral (ML) axis.   

 

Fig. 6.5: CaP putty: The permanent migrations and inducible micromotions throughout the test are 

presented as the median trend of the specimens. For the translations, the components along the antero-

posterior (AP), cranio-caudal (CC) and medio-lateral (ML) directions are reported. The rotations are 

reported in terms of individual components about the antero-posterior (AP), cranio-caudal (CC) and medio-

lateral (ML) axis.   
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6.5 Discussion 

The aim of the present study was to assess if a resorbable CaP based bone graft substitute 

in form of a putty can provide adequate stability in case of revision surgery with severe 

contained central acetabular defects. The CaP putty was compared with impaction bone 

grafting, assumed as the golden standard.  

Digital Image correlation was used to assess the bone/implant motions when a cyclic load 

of increasing magnitude was applied. In all tests, specimen failure was reached when the 

bone fractured. In fact, all specimen fractured in the posterior column at different load 

magnitudes. In none of the specimens failure was due to excessive deformation or failure 

of the reconstruction material. The resultant permanent migration at 2.2 BW were below 

1.0 mm for both reconstruction techniques, thus below the clinical threshold associated 

to late implant loosening19. At the same load magnitude, inducible micromotions were 

below 160 micrometers for both techniques, close to the value generally assumed to grant 

osteointegration in real bone18. It must be noticed that the inducible migration measured 

is not just interface micromotion, but is partly due to the deformation of the graft material. 

Therefore, the actual interface micromotions were definitely lower. Furthermore, the 

permanent migrations exhibited a settling trend within each load package up to 2.2 BW 

(i.e. most of the permanent migration occurred within the first cycles of each load package 

as the applied force was increased). Also, the inducible micromotions were generally 

constant or slightly decreasing within the same load package, confirming the tendency to 

settle within each load package. 

Both the permanent migrations and the inducible micromotions motions in the specimens 

reconstructed with CaP putty were generally larger than with bone graft. However, this 

difference was not statistically significant. The average measured cup migration found in 

past studies had the same order of magnitude of the one of the present study, but larger 

cup motions were associated with defects reconstructed with morselized bone graft 

22,29,55,62. Such results differ from results of other studies that investigated the acetabular 

stability in case of reconstructed defects. Such difference may be related to the type of 

defect, the reconstruction techniques and the test methods adopted to assess the acetabular 

stability. In most studies central, cavitary, contained defects were implemented (similar 

to AAOS Type 2 defects), while in our study the defect also significantly involved the 
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posterior column.  For this reason, even if the largest migration was measured along the 

medio-lateral axis (i.e. in line with all of the studies mentioned above), a large cup 

migration was also measured in the direction of the posterior column. In most studies 

cups were cemented within a layer of reconstruction material (whether bone graft or 

synthetic), used to fill the cavity, while in the present study, cups were press-fitted, and 

two screws were added to enhance the stability. Only Jacofsky et al. applied a loading 

direction comparable with the one adopted in the present study, simulating a level 

walking. In that study, they compared the effect on acetabular stability of defect filling 

with bone graft and with a bioresorbable calcium-phosphate injectable material, applied 

in cadaveric hemipelvises. The accumulated cup migration was larger with bone graft but 

the difference with the synthetic material was lower than 20 micrometers at the end of the 

test. Moreover, the settlement trend was in line with our study, i.e. the bone graft 

stabilized progressively during the test, while, the synthetic material used in that study 

showed an increasing rate of migration39.  

Some limitations of the present work must be mentioned. The sample size was limited 

due to specimen availability. However, as the test was devised to compare two 

reconstruction techniques, paired specimens were adopted; thus, providing a reliable 

comparison. Moreover, the number of the specimen is comparable with the sample size 

of other biomechanical analyses related to implant stability39,24,26. The load applied was 

limited to a single direction, reducing the complexity of forces and moments acting in the 

acetabulum. Such approach, already adopted by most authors, has been proved to induce 

cup motions comparable with the clinical observation while granting a good robustness 

and reliability of the results (i.e. minimizing the sources of experimental error 127). 

Moreover, as paired tests were performed, the effect of the loading configuration on the 

acetabular stability is reduced if compared with the effect of the reconstruction material.  

The current study focused on contained defects.  Thus, results may be different in case of 

different types of acetabular defects (i.e. segmental or uncontained defects) or defects 

with a different distribution of bone loss in general.  

Overall, the study demonstrated that the resorbable CaP putty bone graft substitute 

proposed in the present study granted a mechanical stability comparable with the golden 

standard technique (morselized bone graft) when applied in the acetabulum with severe, 

contained defects. The material was tested up to 3 BW representing a critical peak load 
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for patient undergoing revision surgery. For lower forces (more reasonable for revision 

patients) the difference from the morselized bone graft was minimal.  In both cases the 

clinical thresholds related to implant failure (i.e. 1 mm for the permanent migration and 

150 micrometers for the elastic motions) was not exceeded.  Such results confirmed the 

good load capacity of the proposed material175, overcoming the lack of mechanical 

stability that calcium-based materials generally have. In conclusion, this study has shown 

very promising biomechanical properties of the newly developed CaP putty, when applied 

to severe contained defects, with remarkable advantages in terms of cost, availability, 

conservation and body-rejection.  
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Chapter 7: Conclusions 

The overall project provided interesting and useful results for studying the hip 

biomechanics, focusing on the acetabular side of the joint. In particular: 
• A robust reference frame suitable for the human hemipelvis was defined. Due to 

its good reliability and simple in vitro implementation, it may constitute a good 

starting point for researchers working on hip biomechanical testing. Moreover, as 

it is based on anatomical landmarks belonging only to one side of the human 

pelvis, it simplifies the specimen preparation while keeping the operator 

variability very low; 

• A reliable method to assess the hip acetabular stability through Digital Image 

Correlation (DIC) was developed. Due to the high accuracy of the DIC 

measurements in combination with the proposed method, small bone/implant 

motions (order of the m) can be detected with high accuracy and precision (better 

than 16 m), distinguishing between permanent and elastic motions. Moreover, 

thanks to a good optimization process for strain measurements, also periacetabular 

strains can be measured with high accuracy and precision (better than 150 ); 

• It was shown that the simulated motor tasks affected the direction of the cup 

migration and the magnitude of the periacetabular strains. Both walking and 

standing up generated cup migrations comparable with cup migrations observed 

clinically. Therefore, it could be useful to include both the motor tasks in 

experimental analysis of cup stability. Periacetabular strains increased 

significantly when unstable implants were tested, especially in case of standing 

up. Such result may provide indications for the post-operative patient activities 

(e.g activities to avoid during the rehabilitation therapy).  

• It was shown that cup medialization did not significantly affect the cup stability 

of press-fit implants. This result contributes in the clinical debate about the 

influence of cup medialization on acetabular stability, suggesting that, as it is 

associated with a number of negative effects such as an increased wear rate and 

loss of bone stock, it should not be performed routinely.  

• It was shown that the innovative bone substitute presented in the study provided 

a hip cup stability similar to the stability provided by human bone graft, when 
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adopted to restore severe contained acetabular defects. This result proves that 

synthetic alternatives for defect filling may have a significant impact in the 

clinical practise: in fact, in addition to the already proved advantages in terms of 

cost, availability, conservation and body-rejection, they can also provide good 

mechanical stability, if properly engineered. 

To conclude, the project provided a significant contribute in better understanding the hip 

biomechanics and in answering some clinical questioned problems. Reliable 

methodological basis were set in order to support researchers and clinicians working on 

hip biomechanics. For the first time DIC was used to investigate biomechanical problems 

about cup stability, providing the scientific community of new methods and (hopefully) 

incentives in using such measurement technique to explore human biomechanics. 

Different clinical critical problems were investigated, and the results may provide 

surgeons of new suggestions for the clinical decision-making process. 
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