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Abstract 

The human gut microbiome is an extremely dynamic ecosystem, able to establish peculiar 

configurations in response to several endogenous and exogenous stimuli – ageing, diet, 

lifestyle, disease. In order to explore the microbiome-host relationship and unravel the gut 

microbiome variations throughout the human lifespan, we studied specific functional aspects 

related to eubiosis and dysbiosis in Western diseases, using next-generation sequencing 

approaches, and developed a versatile murine model of intestinal inflammation to better explore 

the transition towards dysbiotic layouts.  

As for the aspects related to eubiotic microbiota configurations, we characterized the age-

related functional changes occurring in the gut microbial ecosystem across life up to extreme 

longevity (age range, 22-109 years), highlighting life-long adaptive responses potentially 

supporting a new homeostasis. On the other hand, when compared to traditional populations – 

whose lifestyle resembles that of our ancestors – the Western gut microbiome is found to be 

characterized by reduced biodiversity and supposed to contribute to the rising incidence of non-

communicable diseases (NCDs). Consequently, we assessed the possibility to modulate the 

Western GM towards a more ‘ancestral’ configuration through a dietary intervention with a 

modern Paleolithic diet. 

Focusing on dysbiotic variations associated with NCDs, we investigated the link between diet, 

gut microbiome and obesity in Western cohorts. In particular, we identified early markers and 

individual microbiome-host-diet configurations as a potential predictor related to the onset of 

the disease during childhood, through a 4-year prospective study. Furthermore, we merged 

metagenomic and metatranscriptomic approaches to unravel specific obese-related gut 

microbiome layouts at species level and metabolic activities possibly associated with food 

addiction in obese women.  

The shift towards a dysbiotic microbiome structure and its association with several diseases 

have made the microbiome a strategic therapeutic target, paving the way for the development 



 

of a wide range of microbiome-tailored intervention strategies aimed at the restoration of 

eubiotic, health-promoting layouts. In this perspective, we developed a murine model that 

mimics the conditions of inflammation typically associated with inflammatory bowel disease. 

The development of this murine model may provide researchers with a versatile tool for testing 

and validating candidate anti-inflammatory agents and/or new microbiome modulators such as 

classic or next-generation probiotics, before their use in clinical practice. 
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Chapter 1 – INTRODUCTION 

1.1 The human gut microbiome 

1.2 Assembly and maturation of the gut microbiome across different stages of life 

1.3 Dysbiotic variations of the gut microbiome in Western diseases 

1.4 Microbial ecology evaluation: from culturomics to next-generation sequencing 

 

 

 

ABCs of the human gut microbiome 

Being composed of trillions of microorganisms and their genomes, the human microbiome has 

recently emerged as an area of great interest for the scientific community. It is a matter of fact 

that bacteria are commonly found on external and internal surfaces of the human body, e.g. the 

skin, saliva, oral mucosa, and gastrointestinal tract. Among these body niches, the 

gastrointestinal tract represents the major reservoir of microorganisms associated with the 

human body harboring about 1013 – 1014 microbial cells, i.e. the gut microbiota (Rajilić-

Stojanović et al., 2014). Although the ratio between microbial and nucleated human cells has 

been initially estimated to be 1:10 (Savage 1977), a recent study claims that including non-

nucleated human cells in the calculation the ratio drops to 1:1 (Sender et al., 2016). In this 

perspective, the human gastrointestinal tract can be regarded as a dynamic bioreactor, within 

which resides a complex community that includes all three domains of life – Archaea, Bacteria, 

Eukarya – and viruses as well as. The human gut microbiome, i.e. the collective genome of the 

microbial ecosystem, comprises at least 400 times more genes than the 2.85 billion of base pairs 

found in the human genome (Li et al., 2014). Humans can therefore be considered as super-

organisms whose genetic makeup is represented by the pool of genes present in human cells 

and in the genome of intestinal microbiota, considerably increasing the adaptive potential of 

this hologenome to external perturbations and, ultimately, providing the host with indispensable 
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extra functions (Qin et al., 2010; Sonneburg & Bäckhed, 2016). In this perspective, the 

microbiome can be considered a diversified ecosystem composed mainly of symbiotic 

microorganisms – commensals and mutualists – that commonly evolve to compete within the 

host ecosystem and interact with most, if not all, of the host organs. The mutualistic relationship 

established between the counterparties involves the acquisition of energy by the host, by 

absorbing bacterial fermentation end-products (i.e. short-chain fatty acids, SCFAs), while the 

microbial component can thrive in an optimal environment with controlled temperature and 

rich of nutrients (Bäckhed et al., 2005; Ley et al., 2008). A key aspect of this fine-tuned 

relationship concerns the integration and boosting of the metabolic potential of the host, 

especially with regard to complex polysaccharides metabolism. Indeed, functional assignments 

of the gut microbiome highlight a high percentage of sequences assigned to carbohydrate-active 

enzymes (CAZymes) for overcoming the other KEGG (Kyoto Encyclopedia of Genes and 

Genomes) pathways and COGs (clusters of orthologous groups) involved in energy process and 

SCFA production (Turnbaugh et al., 2009a; Rampelli et al., 2013; Soverini et al., 2017). 

Considering the limited repertoire of human genes devoted to polysaccharide degradation, the 

wide variety of CAZymes encoded by our microbial counterpart is therefore deputed to the 

metabolism of dietary polysaccharides that reach the colon undigested, becoming metabolically 

available to gut microbes (recently defined as microbiota-accessible carbohydrates, or MACs) 

(El Kaoutari et al., 2013; Sonnenburg & Sonnenburg 2014), emphasizing the metabolic synergy 

established between the host and its associated microorganisms. Microbial symbionts perform 

crucial functions to promote human physiology and health, providing for the extraction, 

synthesis and absorption of many nutrients and metabolites such as bile acids, lipids, amino 

acids, vitamins, and short-chain fatty acid (Rakoff-Nahoum et al., 2014; Flint et al., 2015; Cani 

et al., 2019). In fact, several of our physiological and immunological features depend on the 

mutualistic association with our intestinal microbial community, which plays an active role in 

preventing colonization of the gut epithelium by enteropathogens (barrier effect) as well as in 
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priming, development and regulating the homeostasis and function of innate and adaptive 

immune cells (Candela et al., 2012; Brestoff et al., 2013; Marchesi et al., 2016; Gensollen et 

al., 2016). Another relevant role played by our microbial counterpart concerns the development 

and regulation of the central nervous system, also by influencing the endocrine system (Jackson 

et al., 2018; Duvallet et al., 2017). Various endogenous and exogenous factors – such as 

genetics, diet, lifestyle and medication – can influence the gut microbiota composition and 

function, which in turn modulates the function of several organs via the production of various 

mediators, i.e. SCFAs, secondary bile acids, neurotransmitters and gut hormones, endotoxins 

and microbial components (Cani et al., 2019; Sen et al., 2019). In this scenario, the extremely 

dynamic crosstalk between the gut microbiota and the host plays a fundamental role in the 

regulation of human metabolism  (Figure 1.1.1).  

 

 

Figure 1.1.1. Crosstalk between the 

gut microbiota and the host, and 

major molecular players involved in 

the regulation of host metabolism. 

TMAO: Trimethylamine N-oxide; 

BCAA: branched-chain amino acid; 

IPA: indole propionic acid; SCFAs: 

short-chain fatty acids. This figure is 

reported by Cani and colleagues 

(2019).  
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The complex structure of the gut microbial ecosystem and its major players 

The phylogenetical characterization of the intestinal microbiota, carried out through the 

advancement of sequencing techniques of the 16S rRNA gene, highlighted the presence of two 

dominant phyla: Firmicutes and Bacteroidetes (Ley et al., 2006a). Taken together, bacteria 

belonging to these two divisions represent indeed almost 90% of the phylogenetic types, namely 

phylotypes, of the colon ecosystem (arounf 65 and 25% of the total community, respectively). 

While Bacteroidetes are able to produce short-chain fatty acids, the Firmicutes are primarily 

devoted to energy harvest from ingested food (Turnbaugh et al., 2006; Ley et al., 2006a cell). 

The remaining subdominant phylotypes are mainly distributed among Proteobacteria (8%) and 

Actinobacteria (5%), both normally present in the majority of individuals, in addition to 

Verrucomicrobia and Fusobacteria (1%) (Costello et al., 2009; Muegge et al., 2011) (Figure 

1.1.2). Despite this phylum level paucity, the gut microbiota biodiversity undergoes a 

tremendous increase at lower phylogenetic levels. As a matter of fact, up to 1,000 different 

bacterial species have been detected in the human population (Turnbaugh et al., 2007; Garret 

et al., 2010) and every individual possesses a specific subset consisting of around 160 of them, 

making each layout unique (Qin et al., 2010).  

Among the archaea commonly found in the human colon, Methanobacteriales is the most 

abundant order, whose members can produce methane by reducing carbon dioxide or methanol 

with idrogen as the primary electron donor (Gaci et al., 2014). In particular, 

Methanobrevibacter smithii and Methanosphaera stadtmanae are the main archaea that guide 

bacterial metabolism by removing H2 from the local environment and thus making the 

fermentation of polysaccharides more thermodynamically favorable (Eckburg et al., 2005; 

Samuel et al., 2007; Lloyd-Price et al., 2017).  
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Figure 1.1.2. Phylogenetic structure 

of the gut microbiota. Maximum-

likelihood phylogenetic tree including 

553 genomes belonging to the HGR 

(human gut reference) database, 

composed of 2,468 isolate genomes 

combined from the Human 

Microbiome Project (HMP) catalogue 

and the Human Gastrointestinal 

Bacteria Genome Collection (HGG) 

(Forster et al., 2019), and 1,952 to 

UMGS (unclassified metagenomes). 

Figure adapted from Almeida et al., 

2019. 

 

 

Eukaryotic cells, such as fungi, also reside in the lower part of the gastrointestinal tract, 

contributing to the mass and metabolism of the gut microbiota with an average of 106 fungal 

cells per gram of colon content (Huseyin et al., 2017). Interest in the study of the fungal 

microbiota, termed mycobiota, has been rising over the past decade resulting in the 

accumulation of various data sets that describe the potential involvement of this microbial 

fraction in health and disease (Richard & Sokol, 2019). The first culture-independent analysis 

of the fungal populations present in the human gastrointestinal tract was conducted in a limited 

number of patients suffering from pouchitis and undergoing probiotic therapy (Kühbacher et 

al., 2006). Two years later, a complete analysis of the mycobiota in humans was performed 

combining culture-dependent and culture-independent methods (Scanlan et al., 2008). Scanlan 

and colleagues found little diversity within the mycobiome, with Gloeotinia spp., Paecilomyces 

spp., and Galactomyces spp. as major components, and only a few Candida spp. (mainly C. 

parapsilosis and C. albicans) (Scanlan et al., 2008). More recent studies have allowed 

broadening the characterization of the gut mycobiome, identifying two dominant phyla, 

Ascomycota and Basidiomycota (representing 70% and 30%, respectively), with some studies 
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also identifying some Zygomycetes (Hallen-Adams et al., 2015; Nash et al., 2017), and a total 

of 133 genera: Penicillium, Candida, Aspergillus, Saccharomyces, Cryptococcus, and 

Malassezia (Hoffman et al., 2013; Richard et al., 2015; Huseyin et al., 2017; Donovan et al., 

2018). In particular, Penicillium constitutes the most diversified genus (15 species), followed 

by Candida (12 species), Aspergillus and Saccharomyces (5 species each). Despite the 

individual-specificity of the gut mycobiome layout, the hypothesis of a possible core 

mycobiome has recently been advanced. In fact, ten genera have been found in the majority of 

human gastrointestinal tracts, including Candida (particularly C. albicans), Saccharomyces 

(particularly S. cerevisiae), Penicillium, Aspergillus, Cryptococcus, Malassezia (particularly 

M. restricta), Cladosporium, Galactomyces, Debaryomyces and Trichosporon, ranked in 

decreasing abundance (Hallen-Adams et al., 2017). The intestinal mycobiome can strongly 

influence the host immune system (response driven by TH1 and/or TH17 cells), but extensive 

research is still needed to better characterize these interactions and identify additional roles that 

potentially affect the overall host health. Although Candida species are commonly regarded as 

harmless commensals on many human body sites, within the gastrointestinal tract constitute a 

major reservoir and source of infections, such as invasive candidiasis (Nucci & Anaissie 2001). 

When the gut microbiome is disrupted, intestinal mucosal permeability is increased or the host 

is immune-suppressed, the predominant gut fungus, C. albicans, has the ability to invade tissues 

and disseminate in the body. Candida gut overgrowth has been associated with a number of 

diseases such as diabetes, Crohn’s disease and ulcerative colitis, hematologic malignancies and 

graft vs. host disease (Suhr et al., 2015; Richard & Sokol, 2019).  

Although mainly consisting of prokaryotic, archaea and eukaryotic cells, the human gut 

microbiome also includes a viral fraction, named the virome. Nonetheless, unlike bacterial 

microbiome and the mycobiome, the study of the entire viral fraction present within the human 

gastrointestinal tract appears to be largely unexplored, even though it contains a highly diverse 

genetic entity (Lecuit & Eloit 2013; Ogilvie et al., 2015). The main critical aspect in this recent 
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field of research concerns the absence of a gold standard for the bioinformatics pipelines, and 

the lack of consensus in the methodology and classification of the virus taxonomy underlines 

significant limitations and challenges in virome analysis (Zuo et al., 2019; Sutton et al., 2019; 

Shkoporov et al., 2019). Despite the above-listed critical issues, studies conducted so far have 

revealed the presence of more than 109 viral particles per gram of feces (Schoenfeld et al., 2010; 

Kim et al., 2011; Minot et al., 2013), comprising viruses infecting each domain of life (Bacteria, 

Archaea and Eukarya), including the human host. Among the most common viral lineages 

detected within human fecal samples we find single stranded DNA viruses such as 

Anelloviruses, Circoviruses, and Parvoviruses, as well as double stranded DNA viruses such as 

Adenoviruses and Papillomaviridae (Wylie et al., 2014; Di Bonito et al., 2015; Vetter et al., 

2015; Rampelli et al., 2017). As for the RNA viruses detected in human feces, plant viruses 

seem to predominate and are assumed to derive from food sources. Finally, the healthy gut 

virome is also characterized by bacteriophages such as double-stranded DNA Caudovirales and 

single-stranded DNA Microviridae. Despite the clinical relevance of viruses, their potential role 

in a healthy human gut ecosystem is still largely unexplored (Reyes et al., 2010; Shkoporov et 

al., 2019).  
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Adaptive flexibility and plasticity of the human gut microbiome 

The human gut microbiome can be considered an extremely dynamic ecosystem characterized 

by a significant degree of plasticity, being able to adjust its compositional structure in response 

to a wide variety of endogenous and exogenous stimuli (Candela et al., 2012; Cani et al., 2019). 

The development of the gut microbiome is indeed regulated by a complex interplay between 

the host and environmental factors, including lifestyle and diet, ethnicity and geographical 

localization (Candela et al., 2012; Rothschild et al., 2018; Cani et al., 2019). In a eubiotic 

context, fluctuations in our microbial counterpart allow the host to quickly adapt its metabolic 

and immunological functions in response to changes that occur in the surrounding environment. 

In a complex microbial community such as the intestinal microbiota, lateral gene transfer plays 

a decisive role in shaping the ecosystem itself during its assembly and allowing rapid adaptation 

to environmental changes (Tamames et al., 2010; Zhao et al., 2019; Song et al., 2019). The 

gene flow within the members of the microbial community could therefore be responsible for 

the phenotypic plasticity and functional redundancy present in the various microbial lineages, 

resulting in the typical gut microbiome of the adult: variable in the phylogenetic composition 

but preserved in the main functional traits. Confirming this assumption, a pioneering study 

focused on comparing the gut microbiome layouts of individuals with different health status 

allowed the researchers to identify a core microbiome, defined by a constant and shared pool 

of gene functions essential to support the mutualistic relationship established with the host over 

millennia of coevolution (Turnbaugh et al., 2009a). Specifically, by examining the gut 

microbiomes of six adult twin pairs and their mothers, Turnbaugh and colleagues suggested the 

presence of a gene-level core microbiome. The enrolled individuals shared >93% of the 

enzyme-level functional groups, but no bacterial phylotypes were present at >0.5% in all 

samples. Shortly after, the international MetaHIT (Metagenomes of the Human Intestinal Tract) 

project annotated a comprehensive gene catalogue derived from the metagenomic analysis of 

fecal samples collected from 124 individuals (Qin et al., 2010). Interestingly, microbial genes 
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included within the catalogue and 18 species were found to be shared among the gut 

microbiome of all individuals. In order to confirm these findings, several large-population 

studies were subsequently carried out. The Human Microbiome Project (HMP) Consortium 

underlined that samples collected from the same individual are more similar to one another than 

those from different individuals, suggesting that each person has a microbiota that is distinct 

and stable (HMP Consortium 2012; Lloyd-Price et al., 2017). Furthermore, two pivotal studies 

have estimated that the variable fraction covers 40% of this complex ecosystem, and that its 

structural stability can be preserved and maintained for up to five years (Faith et al., 2013; 

Rajilić-Stojanović et al., 2014).  

One of the clearest examples of the human gut microbiome plasticity concerns its ability to 

quickly respond to dietary changes (Walker et al., 2011; Wu et al., 2011; Muegge et al., 2011; 

Zmora et al., 2018). The dietary contribution to microbiome modulation is evident from the 

beginning of life, when the human milk oligosaccharides (HMO) participate in the maturation 

of the microbiota in early childhood (Charbonneau et al., 2016). With the introduction of solid 

foods follows an increase in bacterial richness, typically associated with adulthood (Koenig et 

al., 2011; Dominguez-Bello et al., 2011; Laursen et al., 2017), and which undergoes a gradual 

decrease along with age. The decrease in diversity of the gut ecosystem has been found to be 

particularly evident in frail elderly populations that age in long-stay care, probably due to 

reduced food diversity (Claesson et al., 2012) (Figure 1.1.3). Nutrients introduced with diet can 

exert a direct impact on the relative abundance of gut bacteria, interacting with microorganisms 

to promote or inhibit their growth and, ultimately, conferring a direct competitive advantage to 

select members of the microbial community at the expenses of less-adapted members (Korem 

et al., 2015). In a milestone study by Wu and colleagues (2011), a cross-sectional analysis of 

98 healthy volunteers and a short-term controlled-feeding experiment were performed to test 

the stability of the gut microbiome. A subset of 10 individuals was randomized to high-fat/low-

fiber or low-fat/high-fiber diets, and fecal samples were collected over 10 days. Remarkably, 
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changes in microbiome composition were detectable within 24 hours of strictly controlled 

feeding. The comparison of dietary data response allowed the authors to identify bacterial taxa 

influenced exclusively by short- or long-term dietary habits, pointing towards a dynamic 

dimension of the human gut microbiome (Wu et al., 2011). 

In addition to diet, even ethnicity and geographical location play an important role in 

modulating the structure and defy the extraordinary plasticity of the human gut microbiome. A 

pivotal comparative analysis of the intestinal microbiota of individuals enrolled in Korea, 

China, Japan and USA showed a clear clustering of the microbiota structure according to the 

geographic origin (Nam et al., 2011). 

 

 

Figure 1.1.3. Diet influence on the gut microbiota structure throughout the human lifespan. The blue line indicates the 

trend of microbiota configuration in resembling an arbitrary homeostatic configuration during adulthood (β-diversity). The red 

line indicates the gut microbiota richness (⍺-diversity). Background colors indicate typical taxa abundances. Figure from Zmora 

and colleagues (2018).  
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Furthermore, De Filippo and colleagues (2010) contributed to the characterization of country-

related differences in the gut microbiota of children from Europe and Burkina Faso. The 

peculiarities of the latter regard an enrichment of Bacteroidetes and Actinobacteria, at the 

expense of Firmicutes and Proteobacteria, in comparison with European gut ecosystems (De 

Filippo et al., 2010). However, the studies conducted so far have focused on small groups, 

mostly comparing individuals living in different geographical areas with marked lifestyle 

differences (Yatsunenko et al., 2012; Schnorr et al., 2014; Gupta et al., 2017). To disentangle 

the impact played by geography and ethnicity on the composition of the fecal microbiota, 

Deschaseaux and colleagues have recently enrolled 2,084 participants with varied ethnic 

backgrounds but living in the same city: 439 Dutch, 367 Ghanaians, 280 Moroccans, 197 Turks, 

443 African Surinamese, and 358 South-Asian Surinamese. The authors conclude that the 

influence on α- and β-diversity are independent of metabolic health and only partly explained 

by ethnic-related characteristics, including sociodemographic, lifestyle, or diet factors. 

Nonetheless, the ethnic origin could constitute a marker for differences in the composition of 

the gut microbiota (Deschasaux et al., 2018). Another recent study conducted by He and 

colleagues provided the characterization of the gut microbiota of 7,009 individuals from 14 

districts within one province in China. This unique cohort, composed of individuals with highly 

homogenous ancestry (99% Han), allowed the authors to isolate the effect of geography without 

ethnicity as a confounding factor, underlining a strong associations of host location with 

microbiota variations (He et al., 2018). Taken together, all these findings support the strong 

impact exerted by lifestyle, ethnicity, and geography on the gut microbiome, suggesting that 

the differences observed within the gut ecosystem profile may reflect specific adaptations to 

environmental conditions (Schnorr et al., 2014; Rampelli et al., 2015; Rothschild et al., 2018; 

Ayeni et al., 2018). 

Finally, several studies have focused on gene-environment interactions to explore the host-

microbe cross-talk, aiming at uncovering the mechanisms related to different effects played by 
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the genetic background when the environmental context changes (e.g. the lactase gene, LCT, 

and Bifidobacterium, where diary intake serves the environmental background) (Blekhman et 

al., 2015; Goodrich et al., 2016; Bonder et al., 2016). Although the addition of microbiome 

data to host genetics data aid prediction accuracy for several host phenotypes, a recent study 

conducted by Rothschild and colleagues suggests that the environment plays a substantially 

greater role than host genetics in shaping the human gut microbiome structure (Rothschild et 

al., 2018). The authors demonstrate that previously identified heritable bacteria represent only 

a small fraction of the entire ecosystem (overall microbiome heritability between 1.9% and 

8.1%), and that the reported associations between specific single nucleotide polymorphisms 

(SNPs) and bacterial taxa are either weak or population-dependent (Rothschild et al., 2018). 

Future studies with larger sample sizes will probably identify additional heritable taxa and SNP 

associations, but are unlikely to change the overall conclusion that microbiome composition is 

predominantly shaped by non-genetic factors.  
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Chapter 1 – INTRODUCTION 

1.1 The human gut microbiome 

1.2 Assembly and maturation of the gut microbiome across different stages of life 

1.3 Dysbiotic variations of the gut microbiome in Western diseases 

1.4 Microbial ecology assessment: from next-generation sequencing to culturomics 

 

 

 

Establishment of the gut microbiome symbiosis and microbial succession in early life 

Although the exact time the first colonization occurs is still an open question, most scientists 

support the hypothesis that the fetus develops in a virtually sterile environment and that most 

of our initial microbiota is acquired during and immediately after birth. On the other hand, a 

few studies have found traces of bacterial DNA in the placenta, in the amniotic fluid 

surrounding the fetus, as well as in meconium (Aagaard et al., 2014; Collado et al., 2016). 

These results suggest the advent of prenatal colonization, but are still under debate as they could 

be the result of contamination as well.  

Several perinatal conditions, host and external factors (i.e. mode of delivery, type of feeding, 

antibiotic use, lifestyle, and geography) can influence the highly dynamic process of 

development and maturation of the gut microbiota (Koenig et al., 2011; Planer et al., 2016; 

Pabst et al., 2016; Korpela et al., 2018). Among these, the delivery mode represents one of the 

main factors driving the first colonization of the gastrointestinal tract of the newborn (Wampach 

et al., 2018). The microbiota of babies born vaginally tends to be enriched with bacteria similar 

to the maternal vaginal microbiota (i.e. Lactobacillus spp.), in addition to Bifidobacterium, 

Escherichia, Bacteroides and Parabacteroides. On the contrary, babies born with cesarean 

section (C-section) generally lack these taxa and are instead enriched in skin commensals and 

bacteria associated with the hospital environment, i.e. Enterococcus, Staphylococcus, 
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Streptococcus, and Propionibacterium spp. (Dominguez-Bello et al., 2010; Chu et al., 2017; 

Yassour et al., 2018; Shao et al., 2019). Over time the differences initially observed between 

children born with vaginal delivery and C-section are gradually reduced (Stewart et al., 2018; 

Vatanen et al., 2018). Nonetheless, Stewart and colleagues revealed the presence of bacteria 

associated with C-section up to two years of age, suggesting that the delivery mode could exert 

long-term effects on the composition of the microbiota, thus reflecting potential detrimental 

effects on host health. Within this extensive longitudinal study, Stewart and colleagues enrolled 

903 infants from four countries (Germany, Finland, Sweden, USA) and collected fecal samples 

monthly for up to 3 years of life. By monitoring the development of the intestinal microbiota, 

the authors revealed three distinct evolutionary phases, depending on the dynamics of prevalent 

phyla and changes in ecosystem biodiversity: (i) a developmental phase (3-14 months) 

dominated by Bifidobacterium spp. in which the α-diversity and the phyla detected are 

gradually modified; (ii) a transitional phase (15-30 months) in which α-diversity continues to 

evolve and only Bacteroidetes and Proteobacteria continue to change; (iii) a stable phase (≥31 

months) with a predominance in Firmicutes, in which the phyla detected and the high levels of 

α-diversity achieved do not undergo further modifications (Stewart et al., 2018). Over the 

course of these phases, the infant gut microbiome adapts over time, shaped by the availability 

of different nutrients and numerous postnatal factors (Wopereis et al., 2014) (Figure 1.2.1). 

According to a healthy developmental trajectory, the gut microbiota of breastfed infants is 

largely dominated by bacterial species that metabolize human milk homopolysaccharides 

(HoPS) to produce lactate (i.e. Bifidobacterium spp.), and shifts in microbial composition are 

observed following the introduction of increasingly complex dietary substrates, as well as an 

enrichment of bacterial functions related to carbohydrates metabolism and the biosynthesis of 

amino acids and vitamins (Koenig et al., 2011; Dominguez-Bello et al., 2011; Backhed et al., 

2015;  Laursen et al., 2017). Particularly noteworthy is the impact of breast milk, which covers 

not only a prebiotic function, but contains a complex microbial community – dominated by 
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Bifidobacteriaceae, Streptococcaceae and Staphylococcaceae – which could contribute to seed 

the infant gut microbiota as well (Biagi et al., 2017). The dietary regimen of the newborn 

dramatically influences the maturation of the gut microbiota. Studies conducted on 

malnourished infants have revealed a different developmental trajectory of the gut microbiota 

from that observed in healthy newborns, suggesting that a malnourished microbiome in 

childhood may compromise the maturation of the adult-like microbiota structure and ultimately 

perpetuate the growth impairments and health deficits later in life (Smith et al., 2013; 

Subramanian et al., 2014; Tamburini et al., 2016). In particular, Subramanian and colleagues 

observed that the microbiota of malnourished children (6.5 – 26 months of age) appears to be 

particularly enriched with opportunistic pro-inflammatory bacteria belonging to 

Entrobactericeae family and Streptococcus genus, as well as depleted of immune-modulatory 

Bifidobacterium spp. Noteworthy is also the trend observed during weaning, a period in which 

the microbiota of these children does not undergo a progressive increase of bacteria essential 

for the development of the adult-like structure, such as Clostridium and Ruminococcus genera 

(Subramanian et al., 2014). Although essential to treat serious bacterial infections, antibiotics 

use can disrupt the stability and diversity of the developing microbiota in infants, resulting in 

long-lasting health implications (Bokulich et al., 2016). Antimicrobial treatments constitute an 

obstacle to the growth of specific taxa, whose abundances remain reduced for years after 

treatment. Furthermore, their use in early life has been linked to increased risk of developing 

different diseases, including asthma, inflammatory bowel disease and allergies (Tamburini et 

al., 2016; Bokulich et al., 2016). Obesity, metabolic syndrome and atopy are other disorders 

that have been associated with microbiota disturbance in early childhood (Milani et al., 2017; 

Bernstein et al., 2019; Roth et al., 2019). As for the potential role of host genetics in influencing 

the composition of the infant GM, a study conducted on a cohort of 1,126 UK twin pairs has 

allowed the identification of associations between inheritance of specific taxa and host genes 

(Goodrich et al., 2016). In particular, the association between the LCT gene and the presence 
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of Bifidobacterium has been observed and successfully replicated in different populations 

(Goodrich et al., 2016; Rothschild et al., 2018). Considering the crucial role of this initial phase 

of life in our long-term development, an in-depth characterization of the postnatal 

developmental trajectory of the gut microbiota in larger cohorts is mandatory.  

 

 

 

Figure 1.2.1. The gut microbiota assembly and development within the first 3 years of life. Bacterial ⍺-diversity and 

functional complexity increase with age, while β-diversity decreases. Colonization pattern is based on Yassour et al., 2018, 

and the figure is taken from Derrien et al., 2019. 
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Maturation of the gut microbiota up to the adult-like configuration 

Although researchers generally agree that the infant microbiome reaches a stable adult-like 

configuration at the age of 3 years, recent studies have suggested that the process of developing 

a mature gut microbiota may take longer. In a recent publication, the dynamics of the gut 

microbiota in healthy pre-school and school-age children were assessed in 61 Dutch children 

(2-18 years old) by collecting fecal samples in the short and long term (weekly sampling for 6 

weeks and a follow-up sample after 18 months, respectively) (de Meij et al., 2016). The authors 

found a strong association between higher ⍺-diversity and higher stability between the ages of 

2 and 18 years, while observing a greater stability over time of bacterial phyla such as 

Bacteroidetes and Proteobacteria. On the other hand, the largest cross-sectional analysis of the 

gut microbiota from 281 school-age children (6-9 years old) enrolled in the KOALA Birth 

Cohort Study (Zhong et al., 2019) showed that the functional layout and the overall structure 

of the ecosystem (𝛽-diversity) mirror those observed in adults, with an enrichment of 

Bacteroidetes and Actinobacteria. In a recent meta-analysis of the limited numbers of studies 

performed so far, Derrien and colleagues suggest that the gut microbiota of pre-school and 

school-age children is similar to that of adults in terms of overall composition, and that some 

features may develop more slowly in some children compared to others (Derrien et al., 2019). 

Coherently, the gut microbiota is recognized to undergoes most of its development very early 

in life but to continue to evolve after the age of 3 years, with a peculiar and continuous decrease 

in Bifidobacterium levels until adulthood (Agans et al., 2011). Once the configuration typically 

found in adult individuals is reached, it remains relatively stable and resilient in the long term 

(Faith et al., 2013; Rajilić-Stojanović et al., 2014; Franzosa et al., 2015; Palleja et al., 2018). 

In a milestone study by David and colleagues, fecal samples were daily collected from 2 healthy 

volunteers over the course of one year. The analysis of the microbiota has revealed the 

alternation of periods of apparent stability – or stationary dynamics – that reflect daily 

fluctuations in diet and other host factors, and to abrupt compositional variations attributable to 
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significant dietary and/or environmental changes (David et al., 2014). It is therefore necessary 

to conduct longitudinal studies on large cohorts to follow the evolution of the GM during 

development, with the ultimate goal of bridging the gap in our knowledge of the microbiota 

dynamics during childhood and puberty, and attempting to define ‘normal’ layouts and 

trajectories.  

 

 

Elder microbiome and extreme longevity 

Bidirectional interactions with the gut microbiota remain overall stable during adulthood, and 

begin to suffer interference in the elderly. The ageing process occurs following different 

passages of dysfunction in the body, and is characterized by a gradual loss of functionality and 

physiological impairment of locomotion and circulation, metabolism and immune functions 

(López-Otín et al., 2013; An et al., 2018) (Figure 1.2.2). Both the host genetics and 

environmental factors, such as lifestyle, diet, exercise and stress, contribute to the ageing 

process, with a respective estimated impact of 25% and 75% (Biagi et al., 2010, 2013; Claesson 

et al., 2012; Brooks-Wilson 2013; Giuliani et al., 2018). The impaired immune system, the 

increased permeability and the alterations of gastrointestinal function associated with ageing 

influence the quantity and type of nutrients that reach the colon, induce alterations in the 

composition and functionality of the intestinal microbiota and negatively affect the microbiota-

host interactions. In frail individuals, the homeostatic relationship in the human superorganism 

undergoes a deterioration along with ageing, moving towards a dysbiotic configuration of the 

gut ecosystem that undermines the beneficial effects of the microbiota on the host physiology, 

potentially inducing pro-inflammatory innate immunity and triggering pathological conditions 

(Biagi et al., 2013; An et al., 2018; Finlay et al., 2019). Being characterized by compromised 

stability and high inter-individual variability (Claesson et al., 2011), it is therefore difficult to 

define a typical layout of the intestinal microbiota of the elderly. Several recent studies report 
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conflicting results regarding the ⍺-diversity of the intestinal ecosystem of the elderly compared 

to young adults, emphasizing the presence of a wide range of host and/or lifestyle confounding 

factors. Higher levels of ⍺-diversity were reported in the microbiota of community dwelling 

elderly (Odamaki et al., 2016; Falony et al., 2016; Jackson et al., 2016; Bian et al., 2017), while 

other studies reported no significant differences (Biagi et al., 2010; Maffei et al., 2017; O’Toole 

et al., 2015) or reduced levels of biodiversity (Mueller et al., 2006; Biagi et al., 2012). Also in 

centenarians, the picture is not yet entirely clear, with reports of higher ⍺-diversity than that of 

elderly (Biagi et al., 2016; Kong et al., 2016; Wang et al., 2015) or no differences (Biagi et al., 

2010; Odamaki et al., 2016; Wang et al., 2015). As for the phylogenetic composition of the 

elder microbiome, recent studies reported country-related peculiarities ascribable to 

dissimilarities in diet and lifestyle (Mueller et al., 2006; Biagi et al., 2011; Lozupone et al., 

2013). In the elderly population of Japan, Finland and Italy, an increase in Firmicutes members, 

such as Eubacterium, Clostridium, Ruminococcus, Dorea, Roseburia, Lachnospira and 

Butyrivibrio, as well as a notable reduction in the health-promoting genus Faecalibacterium, 

have been observed (Hayashi et al., 2003; Mueller et al., 2006; Biagi et al., 2010; Makivuokko 

et al., 2010), while an opposite trend was found in German elderly (Mueller et al., 2006). 

Furthermore, the increase in Bacteroidetes observed in the elderly populations of Austria, 

Finland, Germany and Ireland (Bartosch et al., 2004; van Tongeren et al., 2005; Tiihonen et 

al., 2008; Zwielehner et al., 2009) has not been found in the Italian population (Mueller et al., 

2006; Biagi et al., 2010). The gut microbiota of elderly generally comprises lower levels of 

Bifidobacterium and an enrichment of Streptococcaceae, a trend that is more pronounced 

especially in comorbid and frail elderly (Mueller et al., 2006; Biagi et al., 2010; Makivuokko 

et al., 2010). Generally recognized as pathobionts – commensals that may become detrimental 

in particular conditions – bacteria belonging to the latter two families are able to provoke and 

sustain inflammation processes. Considering the concomitant depletion of the 

immunomodulatory symbiont Faecalibacterium and relatives, the hypothesis of the 
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establishment of a pro-inflammatory loop in the elder microbiome has been advanced, 

ultimately contributing to the development of inflammatory disorders and challenging the host-

bacteria equilibrium (Biagi et al., 2010). In a recent study focused on the gut microbiome and 

longevity, Biagi and colleagues analysed the fecal profiles of 24 semi-supercentenarians (105-

109 years old), identifying a peculiar microbial layout mainly composed of health-associated 

taxa, such as Bifidobacterium, Akkermansia, and Christensenellaceae, positively supporting the 

ageing process in these extremely long-lived individuals (Biagi et al., 2016). However, 

longitudinal studies are needed to verify whether these alleged ‘useful microbiome species’ are 

present throughout life, or whether they are lost during the ageing process and regained only 

later by people who reach extreme longevity. To date, the metabolic potential of the elder 

microbiome through metagenomics analysis is still largely underexplored. In a pivotal study, 

Rampelli and colleagues have compared the gut microbiome of non-institutionalized elderly 

with young adults, reporting an increased proteolytic potential at the expense of the 

saccharolytic potential, with lower relative abundance of genes devoted to SCFA production in 

the elder microbiome (Rampelli et al., 2013).  

Although the typical elderly microbiota profile is still difficult to define, recent studies have 

added important elements to the understanding of microbiota variations in healthy individuals, 

and have paved the way for the design of microbiome-targeted interventions in this delicate 

phase of our life (Biagi et al., 2016). In this perspective, longitudinal studies on cohorts of 

elderly individuals with the aim of assessing the potential beneficial effects of prebiotics, 

probiotics and synbiotic administration for modulating the elder gut microbiome are 

increasingly necessary. 
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Figure 1.2.2. Key changes in gastrointestinal function and composition and functionality of gut microbiome observed 

during the ageing process. The main factors able to influence the intestinal ecosystem in the elderly, as well as the involved 

microbiome shifts are also reported. TNF: tumor necrosis factor; IL: interleukin; CRP: C-reactive protein. The figure is taken 

from Kundu and colleagues (2019).  
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Deviations from mutualism in the Western microbiome 

As discussed above, from a mutualistic point of view the homeostatic interaction between the 

host and its associated microbes can shift between different configurations. However, in the 

presence of persistent and prolonged environmental stressors, such as infection, and 

endogenous factors, such as inflammation or ageing, the mutualistic relationship with our 

microbial counterpart could break, pushing the microbiota layout toward dysbiotic 

configurations – generally characterized by lower biodiversity levels – often associated with 

various gastrointestinal, neurodegenerative, metabolic and oncological diseases states (Lynch 

& Pedersen 2016). In a recent meta-analysis, Duvallet and colleagues collected 28 published 

case–control gut microbiome data sets spanning ten different disease states, and investigated 

patterns of disease-associated shifts in the human gut microbiome (Duvallet et al., 2017). The 

authors provided a more nuanced insight into dysbiosis, revealing distinct types of alterations 

that more precisely describe the disease-associated microbiome changes. While some diseases 

(e.g. colorectal cancer, CRC) are indeed characterized by a bloom of commensals that may 

become detrimental or infectious, others (e.g. inflammatory bowel disease, IBD) largely show 

a depletion of health-promoting microbes. In this framework, the connection between a 

dysbiotic gut microbiome layout and multiple diseases has made the microbiome a strategic 

therapeutic target, paving the way for the development of a series of microbiome-tailored 
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intervention strategies aimed at the rehabilitation of a health-promoting layout (Jia et al., 2008; 

Wilson & Nicholson 2016; Duvallet et al., 2017; Jackson et al., 2018). Dietary supplementation 

with classic (e.g. Lactobacillus and Bifidobacterium) or next-generation probiotics (e.g. 

Faecalibacterium prausnitzii), prebiotics or synbiotics (i.e. a combination of pre- and 

probiotics) are the most commonly used nutritional approaches to beneficially alter the 

microbiota, but special attention should be paid when administering these treatments to subjects 

with impaired immune function. Among other strategies to manipulate the intestinal 

microbiota, the use of fecal microbiota transplantation (FMT) has also been proposed. 

However, it is absolutely necessary to adopt stringent criteria and in-depth screening in 

selecting stool donors, in order to avoid the potential transmission of pathogens or antibiotic 

resistance genes. 

In order to better understand the specificities of the human microbiome assembly from an 

evolutionary point of view, extensive meta-analyses of human and non-human primate 

microbiomes have been recently carried out (Moeller et al., 2014; Davenport et al., 2017). This 

comparative approach has led to the identification of several compositional changes along with 

a progressive reduction of biodiversity as the main distinctive features of the human gut 

microbiome along the evolutionary history (Moeller et al., 2014). Interestingly, these hallmarks 

have been found to be exacerbated in Western urban populations compared to traditional and 

rural counterparts (De Filippo et al., 2010; Yatsunenko et al., 2012; Schnorr et al., 2014; 

Obregon-Tito et al., 2015). In particular, consistent with the disappearing microbiota 

hypothesis (Blaser et al., 2017), the dramatic shrinkage of individual gut microbiome diversity 

in Western urban populations is deemed to depict a maladaptive microbiome state that may 

contribute to the rising incidence of chronic non-communicable diseases, such as obesity, 

diabetes, asthma and inflammatory bowel disease (IBD) (Sonnenburg & Sonnenburg 2014; 

Mosca et al., 2016; Zuo et al., 2018; Cani et al., 2018; Durack and Lynch, 2018). Consequently, 

in recent years, a large body of research has been devoted to understanding the mechanisms 
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leading to the dysbiotic alterations in the Western urban gut microbiome. It is in this scenario 

that the multiple-hit hypothesis has been advanced (Sonnenburg & Sonnenburg 2014). 

According to this theory, the progressive changes in the human gut microbiome and especially 

the reduction of biodiversity have occurred at multiple stages along the recent transition to 

modern urban societies, and several aspects typical of the urbanization process – such as 

sanitation, antibiotics, C-section and Western diet – have been pointed out as contributing 

factors. In particular, the reduction in quantity and diversity of MACs in the diet has been 

considered one of the leading causes of the disappearing gut microbiome in Western urban 

populations (Sonnenburg & Sonnenburg 2014). Moreover, food additives, emulsifiers and 

xenobiotics–ubiquitous in industrially processed foods–have recently been shown as important 

additional drivers of gut microbiome diversity shrinkage (Danchin et al., 2018).  

In healthy individuals, the microbiome varies over time within a ‘healthy plane of variation’, 

defined by a discrete number of stable eubiotic microbiome configurations. On the other hand, 

the personal dysbiotic trajectory associated with common Western disease (e.g. IBD) are 

characterized by a great variability over time, with random and rapid shifts between several 

unstable states, moving to and from the healthy plane of variation. Therefore, to fully address 

Western diseases, it is essential to thoroughly evaluate the microbiome shifts associated with a 

dysbiotic state (e.g. bloom of specific microbes, polymicrobial infections, altered consortium 

interactions, strong environmental filters) as well as the identification of specific perturbations 

that lead to dispersion effects (e.g. autoimmunity and immunosuppression). This approach can 

therefore be summarized by the ‘Anna Karenina principle’ – all healthy microbiomes are 

similar; each dysbiotic microbiome is dysbiotic in its own way – stressing that dysbiotic 

individuals vary more in microbial community composition than healthy individuals. 

Accumulating evidence have recently highlighted the importance of integrating microbiome 

information into personalized medicine, and personalized prediction of drug pharmacokinetics 

and pharmacodynamics, in understanding which disorders tend to destabilize microbiomes or 
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driving them to new stable states. Ultimately, recovering this valuable information may help to 

shape screening regimes for microbiome-based personalized medicine.  

 

Metabolic disorders and low-grade inflammation 

The incidence of many metabolic disorders associated with chronic low-grade inflammation, 

such as obesity and its related comorbidities, type 2 diabetes (T2D) and non-alcoholic fatty 

liver disease (NAFLD), is rapidly increasing worldwide (Tilg & Moschen 2008; Donath & 

Shoelson 2011; Hotamisligil et al., 2017; NCD-RisC 2019). In addition to exhibiting profound 

compositional and functional alterations in the intestinal microbiota (Greiner et al., 2011; Levy 

et al., 2017), obesity, T2D and NAFLD are characterized by a compromised and defective 

intestinal barrier, which allows microbes or their components (e.g. endotoxins) to translocate 

into the blood stream and cause low-grade inflammation (Volynets et al., 2012; Bischoff et al., 

2014). Although the first evidence for a role of the gut microbiota in host metabolism came 

from colonization studies in germ-free mice (Hooper et al., 2001; Backhed et al., 2004), 

pioneering human studies have allowed researchers to suggest the existence of a peculiar 

microbiome signature of obesity (Ley et al., 2006b; Turnbaugh et al., 2009a,b). In fact, it has 

been proposed that obesity, or the propensity to gain weight, as well as dyslipidemia, insulin 

resistance and low-grade inflammation, are associated with reduced microbial diversity (Le 

Chatelier et al., 2013; Aron-Wisnewsky et al., 2019). Additionally, an enrichment in pro-

inflammatory bacterial taxa – Ruminococcus gnavus or Bacteroides spp. – and a concomitant 

depletion in anti-inflammatory strains – F. prausnitzii – have been observed in the microbiome 

profiles of obese individuals compared to lean ones (Cotillard et al., 2013). In a milestone study, 

Turnbaugh and colleagues compared the functional profiles of obese microbiomes to those of 

lean individuals, showing a decreased functional biodiversity and an enrichment in genes 

devoted to carbohydrate, lipid and amino acid metabolism (Turnbaugh et al., 2009a). The 
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authors suggest that the gut microbiome of obese individuals is more efficient at extracting 

energy from the diet than the microbiota of lean individuals, named ‘energy harvest hypothesis’. 

Many studies support this theory, showing an increase in body weight and fat in in germ-free 

mice after transplanting gut microbiome derived from wild as well as from obese-mice 

(Turnbaugh et al., 2009a; Ridaura et al., 2013). In particular, the weight gain has been ascribed 

to several microbial related mechanisms, including the generation of SCFAs subsequently 

converted to complex lipids in the liver. Furthermore, recent findings in murine models suggest 

that a certain intestinal microbiome layout may also contribute to weight regain in obese mice 

after successful dieting (Thaiss et al., 2016). Taken together, evidences from animal models 

strongly support the presence of a specific gut microbiome signature of obesity, although 

peculiar obese-related dysbiotic layouts are still to be demonstrated in human beings. 

As for T2D and NAFLD, several milestone studies have reported a peculiar microbiome 

signature also (Qin et al., 2012; Karlsson et al., 2013; Loomba et al., 2017). In the first landmark 

human study from China, Qin and colleagues describe the gut microbiome dysbiosis of T2D. 

In addition to decreased relative abundances of Roseburia intestinalis and F. prausnitzii, the 

dysbiotic ecosystem was characterized by an increase in branched-chain amino acid (BCAA) 

and genes devoted to sugar transport, as well as a depletion in pathways assigned to butyrate 

biosynthesis. In addition, the link between the altered microbiome composition and the 

instauration of an inflammatory state was supported by the enrichment in genes involved in 

oxidative stress signaling (Qin et al., 2012). Concordant results were observed in the first 

European study in T2D women conducted by Karlsson and colleagues, who also showed a 

decrease in the abundance of Lactobacillus spp. (Karlsson et al., 2013). A recent study also 

suggests that subjects with prediabetes present an altered gut microbiota composition, 

characterized by reduced levels of Akkermansia muciniphila (Allin et al., 2018). Furthermore, 

the relative abundance of this mucin-degrading bacteria has been inversely correlated to several 

disease states (e.g. obesity, diabetes, cardiometabolic diseases and low-grade inflammation), 
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making it a potential next-generation probiotic candidate (Cani et al., 2017). 

The beneficial modulatory effects on the gut microbiota by the supplementation of dietary fiber 

in individuals with T2D have been recently demonstrated by Zhao and colleagues (2018). 

Following consumption of a high fiber diet, the overgrowth of SCFA-producing bacteria and 

the upregulation of glucagon-like peptide 1 (GLP-1) led to improved glycemic control, reflected 

by reduced levels of glycated hemoglobin levels (Zhao et al., 2018).  

As for NAFLD, the first landmark study conducted on a large population described the gut 

microbiome signature of this metabolic disorder (exacerbated in cases associated with advanced 

fibrosis), which is characterized by increased relative abundances of Eubacterium rectale, 

Bacteroides vulgatus, and Escherichia coli, as well by decreased levels of Firmicutes members 

(Loomba et al., 2017). The presence of dysbiotic bacterial consortia and the consequent 

aberrant intestinal signaling may contribute to barrier disruption and priming of metabolic 

inflammation (Thaiss et al., 2018). These events may in turn trigger a chronic systemic 

inflammation response, which ultimately affects the function of the end-organ and further 

exacerbates metabolic diseases. In animal models, different probiotic therapies have been 

shown to be effective in reducing intestinal permeability and, consequently, the use of next-

generation probiotics in the treatment of metabolic diseases has recently been advanced. 

Remarkable is the impact of A. muciniphila supplementation in a mouse model of alcoholic 

liver disease. This next-generation probiotic species was found to protect from gut leakiness by 

enhancing the expression of tight junctions and increasing mucus thickness (Grander et al., 

2017). The administration of the same bacterium or one of its purified membrane proteins was 

also tested in obese and diabetic mice. Among the beneficial effects, the researchers observed 

an enhancement of the gut barrier integrity, with attenuations of dyslipidemia and improved 

glucose tolerance, as well as a reduction in body weight and fat-mass gain (Plovier et al., 2017).  
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Inflammatory bowel disease 

Involving a dysregulated immune activation towards the intestinal microbiota in genetically 

sensitive individuals, IBD is considered a chronic inflammatory disorder of the gastrointestinal 

tract (Podolsky et al., 1991). IBD includes ulcerative colitis (UC) and Crohn's disease (CD) as 

major forms, both leading to substantial morbidity and health care costs (Love et al., 1992; 

Sands et al., 2002). In recent decades, the emergence of IBD in regions undergoing rapid 

urbanization, particularly Asia, the Middle East and South America (Ng et al., 2013a, b; 2015; 

Park et al., 2014), has mirrored the patterns observed in the Western world at the beginning of 

the 20th century: an increasing prevalence of CD followed by the development of UC (Kirsner 

et al., 2001; Kaplan et al., 2015). IBD has traditionally been considered a disease of European 

origin (Sartor et al., 2017) known to occur in genetically sensitive individuals in whom 

exposure to triggering environmental factors elicits an unbalanced immune response to 

intestinal microorganisms (Kostic et al., 2014; Paun et al., 2015; Gensollen et al., 2016). 

Consistent with the disappearing microbiota hypothesis and its association with the incidence 

of chronic diseases (Blaser et al., 2017), the progressive loss of ecosystem diversity during 

urbanization could largely explain the increased incidence of IBD in the Western world. Indeed, 

a wide range of Western-like environmental factors, i.e. diet, pollution, antibiotic treatments 

and the absence of an adequate microbial exposure in early childhood, have been demonstrated 

to implement the loss of key symbionts of our microbiota, ultimately predisposing to the onset 

of IBD and its rising incidence in urban contexts (Molodecky et al., 2010; Ng et al., 2015). In 

particular, the use of antibiotic during early life has recently been linked to peculiar gut 

microbiome dysbiosis associated with IBD, atopic and autoimmune diseases (Card et al., 2004; 

Ramakrishna et al., 2012; Yamamoto-Hanada et al., 2017). In addition, recent studies 

conducted in both murine models and humans have underlined the role of Western diet in 

influencing the onset and/or pathogenesis of various non-communicable diseases, including 

IBD (Agus et al., 2016; Statovci et al., 2017). In particular, the Western-like diets – high in fat 
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and refined sugar – have been associated with greater susceptibility to adherent-invasive 

infection with E. coli (AIEC), whose presence in the gut has in turn been associated with the 

pathogenesis of IBD (Simpson et al., 2011; Negroni et al., 2012; Agus et al., 2016). In 

particular, low amounts of dietary fiber have been shown to associate with enhanced growth 

and activity of mucin-degrading bacteria, ultimately promoting the onset of pathogen-induced 

colitis (Pituch-Zdanowska et al., 2015; Chiba et al., 2015; Desai et al., 2016).  

The specific microbiota signatures of IBD have been recently described (Manichanh et al., 

2012). Being characterized by high heterogeneity, CD might virtually affect any part of the 

gastrointestinal tract, causing a wide variety of inflammatory lesions endowed with peculiar 

phenotypic characteristics (e.g. inflammatory, structuring or penetrating). In addition to a 

reduced complexity of the gut ecosystem, the common features in patients with CD concern the 

interaction of gut microbes with the mucosal immune compartments (Sartor et al., 2008; 

Guarner et al., 2008). The peculiar dysbiosis observed in CD patients include the disappearance 

of health-associated taxa such as Faecalibacterium and Roseburia, and an increased abundance 

of the mucin-degrader R. gnavus, capable of thrive on mucus layer and influence the gut barrier 

integrity, ultimately increasing the intestinal permeability (Willing et al., 2010).  

Furthermore, an enrichment of Enterobacteriaceae (E. coli in particular),  has  been observed 

and this tendency has been found to be particularly evident in mucosal biopsies compared to 

stool samples (Chassaing et al., 2011). On the other hand, bacterial species able to invade the 

epithelium, such as Fusobacterium varius and F. nucleatum, have been identified in cultures of 

inflamed tissue biopsy from UC patients (Ohkusa et al., 2002; Strauss et al., 2011). Martínez 

and colleagues also reported an increased load of Desulfovibrio spp., sulphate-reducing bacteria 

involved in UC pathogenesis due to their capacity to generate pro-inflammatory sulphides 

(Martínez et al., 2008; Roediger et al., 1997; Rowan et al., 2010).  

Considering the recent advances in the field of GM modulation and the development of 

microbiome-tailored therapies, several health benefits have been associated with the 
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administration of classical probiotics, i.e. Lactobacillus and Bifidobacterium, in IBD patients 

(Borruel et al., 2002; Llopis et al., 2009). Furthermore, being able to downregulate the 

expression of key pro-inflammatory cytokines and chemokines, as well as neutralize the pro-

inflammatory effects of E. coli by stimulating the production of anti-inflammatory cytokines 

(IL-10), the next-generation probiotic F. prausnitzii also proved to be particularly promising in 

the treatment of IBD (Sokol et al., 2008; Martin et al., 2017a). 
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Exploration of microbial diversity through culture-dependent approaches and 

culturomics 

Conventionally, different (selective and non-selective) media have been used for the isolation 

and growth of bacteria. However, such artificial cultural conditions provide a less favorable 

environment for previously uncultivated bacteria, and predominant bacteria are likely to mask 

the growth of less abundant ones. The classical culture-dependent approaches for the study of 

human intestinal microbiota allow to detect only 30-50% of the microorganisms actually 

present in this complex ecosystem (Eckburg et al., 2005). As a part of the renaissance of culture 

techniques in microbiology, culturomics has been developed precisely for the cultivation and 

identification of unknown bacteria that inhabit the human intestine, by combining multiple 

culture conditions with rapid identification of bacterial species (through matrix assisted laser 

desorption ionization-time of flight mass spectrometry, MALDI-TOF MS, and 16S rRNA 

sequencing) (Lagier et al., 2012) (Figure 1.3.1). To better mimic the growth conditions present 

in the original habitat, culture media have been enriched with blood, rumen fluid, and sterile 

extracts of feces. Acting as natural stimulant, these components facilitate the isolation of 

previously uncultured bacteria (Lagier et al., 2015, 2016; Browne et al., 2016; Lau et al., 2016). 

In less than 5 years, the combination of prolonged incubation and multiple culture conditions 

have allowed the isolation of hundreds of bacterial species from the intestine. In particular, 
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Lagier and colleagues have expanded the repertoire of human gut microbiota by identifying a 

total of 1,057 prokaryotic species, 146 of which previously not reported in the gut, 187 bacterial 

and 1 archaeal (Haloferax alexandrines) not previously isolated from humans, and 197 

potentially representing new species (Lagier et al., 2016). Culturomics has not only 

significantly increased our knowledge of the repertoire of species associated with humans 

(bringing the total to 2,671 species), but also has a pivotal role in for the development of future 

microbiome-based intervention strategies. We are indeed, currently witnessing a paradigm shift 

in which the manipulation of the human microbiota is promising for treating infections and 

dysbiosis-related/associated diseases, such as autoimmune and inflammatory diseases and 

cancer (Sokol et al., 2008; Lagier et al., 2012; Vetizou et al., 2015; Daillere et al., 2016; 

Zitvogel et al., 2017). In this scenario, culturomics can provide bacterial strains that can be used 

in in vitro experiments, and animal models to confirm their role in disease pathogenesis, as well 

as provide new next-generation probiotics candidates to promote host health.  

 

 

 

 

 

 

 

 

 

 

Figure 1.3.1. The culturomic workflow. Samples are divided into different culture conditions (a) to suppress dominant 

populations and promote subdominant growth (b). Isolates identification by matrix assisted laser desorption ionization-time of 

flight mass spectrometry, MALDI-TOF MS (c), and 16S rRNA sequencing (d). New taxa discovery is confirmed by genome 

sequencing (e), and taxonogenomics. Through culturomics our knowledge of bacterial species associated with humans has 

undergone a notable increase (f). Figure taken from Lagier et al., 2018. 
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Culture-independent approaches and next-generation sequencing 

Overcoming the limits related to culture-dependent techniques, DNA sequencing technologies 

have transformed our ability to study the composition and functions of complex microbial 

communities inhabiting various environments, including the gastrointestinal tract of mammals. 

To investigate bacterial taxa and their phylogeny, in the 1970s Carl Woese and colleagues 

introduced Sanger sequencing of the 16S rRNA gene, in which conserved regions are alternated 

with 9 hypervariable regions (V1-V9) (Sanger et al., 1977). In the following 30 years, numerous 

methods based on polymerase chain reaction (PCR) have been developed, such as 

denaturation/temperature gradient gel electrophoresis (DGGE/TGGE), restriction fragment 

length polymorphism (RFLP), and quantitative PCR (qPCR). In parallel, fluorescence in situ 

hybridization (FISH) and microarrays have also been developed (Metzker et al., 2005; Centanni 

et al., 2013). In order to overcome the challenges of Sanger method in terms of cost and time, 

while improving sequencing performance, Metzker and colleagues paved the way for next-

generation sequencing (NGS) techniques (Metzker et al., 2005). In particular, during the 

Illumina sequencing process DNA flanked by two adapters passes over a layer of 

complementary oligonucleotides bounded to a flow cell. The bound DNA fragment undergoes 

a bridge amplification process, generating a cluster of clonal populations. During amplification, 

each fluorescent labeled deoxyribonucleotide triphosphate is detected by fluorophore excitation 

in a parallel and massive way. Sequencing of marker genes, as in the case of bacterial 16S 

rRNA, eukaryotic 18S rRNA, or fungal internal transcribed spacer (ITS), constitutes a fast and 

convenient method to obtain a high-level but low-resolution overview of the phylogenetic 

composition of a microbial community. By sequencing the entirety of microbial genomes 

present within a sample (including viral and eukaryotic DNA), shotgun metagenomics provides 

taxonomic resolution to species or strain level (Scholz et al., 2016; Mukherjee et al., 2016), and 

allows to retrieve detailed information on molecular functions. Thanks to this NGS technique, 

an integrated gene catalog (IGC) of 9.8 million non-redundant microbial genes was published 
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from metagenomic analysis of 1,267 human stool samples, including 760 Europeans from 

MetaHIT, 139 from the US, and 368 from China (Li et al., 2014). Although the assembly of 

whole microbial genomes provides more detailed genomic information than marker gene 

sequencing, samples preparation, sequencing and analysis remain relatively expensive. Unlike 

marker gene and metagenomics approaches, the metatranscriptomic sequencing of total RNA 

can be used to characterize gene expression in microbial communities, ultimately providing 

valuable information on the active functional output of the microbiome. However, host RNA 

contamination can be a hindrance to sequencing, and methods to deplete the particularly highly 

abundant rRNA fraction should be implemented in samples preparation (Giannoukos et al., 

2012). Recently developed, third-generation DNA sequencing techniques have shown 

substantial progress over second-generation ones. Exploiting the properties of zero-mode 

waveguides, Pacific Biosciences (PacBio) has developed a single molecule real-time 

sequencing platform, while Oxford Nanopore technology (MinION) is based on a nanoscale 

pore structure and involves the measurement of base-dependent changes in the electric field 

surrounding the pore during DNA transit. Through the production of longer reads compared to 

NGS, these technologies can easily cover entire genomes bypassing the computational 

challenges of genome assembly and transcription reconstruction. In addition, they require 

minimal pre-processing, and epigenetic modifications (i.e. CpG island methylation) can be 

directly detected. Therefore, data collection and analysis can be operated in real-time, allowing 

efficient diagnosis and rapid corrective actions for several microbiome-related diseases. 
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Bioinformatics pipelines for NGS data analysis 

In recent years, NGS technologies have allowed the development of different methods for 

surveying microbial communities, producing varying results depending on the sequencing 

approach adopted. Marker gene sequences (i.e. 16S rRNA) provide a high-level, but low-

resolution overview of complex microbial ecosystems. On the other hand, metagenomic 

sequencing provides more detailed information by analysing the total DNA in a sample, 

allowing strain-level resolution and detection of genes to collect information on molecular 

functions. To characterize gene expression in microbial communities, the metatranscriptomic 

sequencing of total RNA is required. Each of the abovementioned methods requires a dedicated 

bioinformatics workflow, reported in Figure 1.3.2.  

Although the sequencing error rates declared by the main companies are very low, ranging from 

0.1 to 0.5% per nucleotide in Illumina and Roche 454 sequencing, respectively (Glenn et al., 

2011; Luo et al., 2012), the very first step in the analysis of marker gene amplicon data consists 

of removing sequencing errors. In fact, most of the apparent diversity between sequences has 

been demonstrated to arise from sequencing errors (Reeder et al., 2009). By using software 

packages for the analysis of microbiomes, such as QIIME (Caporaso et al., 2010; Bolyen et al., 

2019) and Mothur (Schloss et al., 2009), this problem is tackled by grouping 97% similar 

sequences in operational taxonomic units (OTUs) through OTU picking, consolidating them 

into individual features. Nonetheless, this method does not allow to discriminate subtle and real 

variations in biological sequences, such as single nucleotide polymorphisms (SNPs) (Callahan 

et al., 2017). Recently developed algorithms, such as Deblur (Amir et al., 2017) and DADA2 

(Callahan et al., 2016), use error profiles to resolve sequence data into exact sequence features 

named amplicon sequence variants (ASV). The resulting output consists of a table of DNA 

sequences and their counts or OTUs per sample, subsequently used for the taxonomic 

assignment. For this purpose, machine learning approaches such as the RDP classifier (Wang 

et al., 2007), a naïve Bayesian classifier trained on oligonucleotide frequencies at genus level, 
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are used to operate an exact match of the sequences against reference databases (i.e. Greengenes 

and SILVA). Predictive functional profiling is a technique based on evolutionary models, such 

as PICRUSt (Langille et al., 2013), linking 16S rRNA data with available microbial genomes 

to make predictions on the metagenomic content, and therefore infer putative biological 

functions, of a microbial community (Okuda et al., 2012; Langille et al., 2013; Asshauer et al., 

2015). Although promising, these methods provide confidence intervals on gene content 

prediction accuracy based on the availability of reference genomes, which represents a 

tremendous limiting factor.  

On the other hand, metagenomic and metatranscriptomic sequencing allow to investigate the 

complete nucleic acid profile of a sample, yielding accurate information that can be used to 

address a broad range of taxonomic, functional and evolutionary aspects of microbial 

communities as a whole. The bioinformatics pipelines developed for retrieve information from 

the enormous amount of data generated by metagenomic and metatranscriptomic sequencing 

combine different analytical approaches, each with several good aspects, but also many defects. 

Samples can contain thousands of species – many of which are unknown – at dramatically 

different abundance levels, and sequence data include short reads with a high error rate that 

may contain artifacts and experimental biases (Niu et al., 2011). To overcome these problems, 

several methods can be used, including taxonomy binning, diversity analysis, sequence 

clustering, open reading frame (ORF) calling, assembly, and so on. Therefore, the optimal 

strategy involves merging different analytical approaches, directly using reads and adopting an 

assembly approach (Davenport et al., 2013).  

Read-based profiling approaches compare unassembled DNA or mRNA sequence against 

reference databases to assign taxonomy or annotate genes, continuously refined to improve the 

profiling accuracy. In particular, MetaPhlAn2 (Truong et al., 2015) and TIPP (Nguyen et al., 

2014) exploit specific genomic regions to perform the taxonomic assignment, focusing on 

universal single-copy elements such as marker genes. Other tools, for example HUMAnN2 
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(Abubucker et al., 2012) and MEGAN (Huson et al., 2016) can be used to annotate taxonomy, 

genes and metabolic pathways at the same time. To increase the annotation accuracy, it is 

essential to select a curated genome database, such as MetaHit for human gut samples (Qin et 

al., 2010) or RefSeq (O’Leary et al., 2016). Finally, in order to efficiently compare sample 

profiles, it is necessary to carry out a normalization of the reading counts (e.g. counts per 

million) and convert the data in relative abundances. To perform data normalization, tools such 

as edgeR (Robinson et al., 2010) and DESeq2 (Anders et al., 2010) can be used. 

Nowadays, machine learning plays an increasingly important role in exploiting microbiome 

data to stratify samples or patients based on the current state (i.e. health versus disease) (Knights 

et al., 2011; Yazdani et al., 2016), or to predict future microbiome configurations (Huang et 

al., 2014; Teng et al., 2015). For example, the machine learning technique based on random 

forest regression has been effectively applied to build up a microbiota maturity index in child 

development (Subramanian et al., 2014). Furthermore, the Bayesian estimator of microbial 

sources forming an unknown community, SourceTracker (Knights et al., 2011), represents a 

useful tool to classify microbial samples based on the environment of origin (Lax et al., 2014). 

The integration of different data types – obtained from marker gene sequencing, metagenomics, 

metatranscriptomics, metabolomics and other analytic techniques – is crucial to fully 

understand the function of microbial communities. This multi-omics approach indeed allows to 

obtain a holistic outline of the biological system under study. 
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Figure 1.3.2. Optimized workflow for the 

bioinformatics analysis of 16S rRNA, 

metagenomics and metatranscriptomic 

sequencing data. Figure taken from 

Knight et al., 2018. 
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Chapter 2 – PROJECT OUTLINE 

 

The key role played by the gut microbiome in human biology has been extensively investigated 

in the last years, deepening our knowledge on the microbiome-host interactions during all 

phases of human life, and instrumental to maintaining a homeostatic physiological balance. 

Starting from newborn colonization to the late stages of our life, the gut microbiome constitutes 

a plastic and extremely dynamic ecosystem able to provide the host with extra metabolic 

functions and adapt to a wide range of endogenous and exogenous stimuli – e.g. diet, lifestyle 

and medication. Nonetheless, a dramatic shrinkage of individual gut microbiome diversity has 

been observed in Western populations as compared to worldwide traditional hunter-gatherer 

populations, and interpreted as a maladaptive microbiome state that may contribute to the rising 

incidence of chronic non-communicable diseases (NCDs), including obesity and inflammatory 

bowel disease (IBD). The shift towards a dysbiotic microbiome structure and its association 

with several diseases have made the microbiome a strategic therapeutic target, paving the way 

for the development of a wide range of microbiome-tailored intervention strategies aimed at 

the restoration of eubiotic, health-promoting layouts. In this perspective, murine models that 

mimic the conditions of inflammation typically associated with NCDs could represent primary 

tools for screening the potential benefits of innovative microbiome modulators, including next-

generation probiotics candidates. 

The present work is structured in three main chapters focused on the exploration of human gut 

microbiome variations throughout life, with the aim of shedding light especially on the 

functional aspects related to eubiosis (Chapter 3) and dysbiosis in Western diseases (Chapter 

4), and on the development of a versatile murine model of intestinal inflammation to better 

explore the transition towards dysbiotic layouts. 

The functional changes that occur in the gut microbiome during the human lifespan up to 

extreme longevity are still largely unexplored. In order to provide some glimpses in this 
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direction, the fecal microbiomes of 62 individuals, with age ranging from 22 to 109 years, were 

characterized by shotgun metagenomics. The obtained profiles showed a peculiar remodeling 

in microbial gene functions with the ageing process. In particular, the increase in reads count 

of genes involved in xenobiotic degradation (i.e. ethylbenzene, chlorobenzene, 

chlorocyclohexane and toluene), as well as the rearrangement in metabolic pathways related to 

carbohydrate, amino acid and lipid metabolism were found to be even boosted in centenarians 

(99-104 years) and semi-supercentenarians (105-109 years). These microbiome features 

probably represent the result of a life-long adaptive response to xenobiotic exposure, ultimately 

reflecting the progressive changes that occur in diet and lifestyle along with ageing in Western 

urban areas. In modern anthropic societies, where strong selective pressure is exerted on our 

microbial counterpart, our findings once again underline its key role as a plastic ecosystem, 

capable of adapting to external conditions while supporting host homeostasis. 

Tracing back to aspects related with human evolution and dietary habits, the modern gut 

microbiomes are characterized by a remarkably diminished biodiversity – a hallmark of healthy 

gut – compared to traditional modern populations, whose lifestyle resembles that of our 

ancestors. Western diets, low in fiber while rich in industrialized and processed foods, are 

indeed considered one of the leading cause of maladaptive gut microbiome changes along 

human evolution. In this scenario, the modern Paleolithic diet (MPD) is gaining substantial 

public attention because of its potential multiple health benefits. With the aim of shedding some 

light on the possibility to modulate the Western gut microbiome towards a more ‘ancestral’ 

configuration through dietary approaches, the fecal profiles of urban Italians adhering to MPD 

were characterized and compared with other urban Italians following a Mediterranean diet, as 

well as worldwide traditional hunter-gatherer populations.  Notwithstanding a strong geography 

effect on the gut microbiome structure, our results show an unexpectedly high degree of 

biodiversity in MPD subjects, which well approximates that of traditional populations, 

suggesting that this dietary pattern may contribute to partially rewild the microbial ecosystem. 
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Focusing on the dysbiotic variations associated with NCDs, the link between diet, intestinal 

microbiome and obesity, as well as with its associated metabolic disorders (e.g. type 2 diabetes 

and inflammatory bowel disease, IBD), is gaining increasing attention in Western societies. In 

particular, food addiction is a fundamental neuro-endocrine factor able to ultimately influence 

lifestyle. The potential involvement of gut-brain axis alterations in mechanisms related to food 

addiction could in turn be partially responsible for the onset of diet-related disorders. Stool and 

blood samples were collected from 35 obese women with diagnosed food addiction, 28 obese 

women without diagnosed food addiction, and 37 healthy normal-weight women, with the aim 

of unraveling specific bacterial groups and metabolic activities involved in the development of 

obesity and associated comorbidities, and possibly related to food addiction, through 

metagenomics and metatranscriptomic analysis. Following the integration of microbiome data 

with information gathered from dietary habits, hematological parameters and the absorbed x-

ray energy scan, the structure of the gut microbiota was stratified into distinct groups. In 

particular, two microbiome configurations were characterized by lower diversity levels and 

associated with higher energy intake. Focusing the analysis on a species level, the 

configurations associated with high food addiction were depleted of the well-known health-

promoting Faecalibacterium prausnitzii, while enriched in Ruminococcs torques and 

Akkermansia muciniphila, both of them being potentially associated with alteration of the 

intestinal barrier. Furthermore, in these configurations, functional analysis revealed an 

increased contribution of pathways involved in amino acid metabolism, supporting the 

previously observed obesity-associated variations in short-chain fatty acid (SCFA) levels.  

Considering the increasing prevalence of obesity in children and the related risks to develop 

cardiovascular risks factors (i.e. hypertension, insulin resistance, and dyslipidemia) during 

adulthood, it is essential to identify early markers related to the onset of the disease. In this 

scenario, the microbiome structure of 70 children was monitored in a perspective study 

collecting samples at the baseline and following 4 years. Despite all children had normal weight 
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at the beginning, 36 of them gained excessive weight at the subsequent time point. Microbiome 

data were integrated with dietary information, physical activity, and inflammatory parameters, 

allowing the stratification of the gut microbiota structures into a discrete number of groups. 

Regardless of age, gender, and body weight, these microbiome groups were characterized by 

different biodiversity and correlated with inflammatory markers and dietary habits. It is 

interesting to note that the microbiome groups of normal-weight children who subsequently 

gained weight were found to be characterized by lower biodiversity levels and associated with 

inflammatory profiles. Collectively, our data underline the importance of the individual 

microbiome-host-diet configuration as a possible predictor of obesity. 

Murine colitis models are valuable tools for better understanding intestinal homeostasis and 

inflammation, even though current models utilize highly inbred mouse strains and only one sex 

to limit bias. With the aim to develop a more realistic murine model that reflects the high 

heterogeneity of genetic diversity and the sex-related differences observed in humans, while 

mimicking the chronic nature of colitis forms as those occurring with IBD, we chemically 

induced colon inflammation in an outbred strain of both female and male mice (RjOrl_SWISS 

[CD-1]). Our results showed that intrarectal administrations of dinitrobenzene sulfonic acid 

(DNBS) effectively causes colitis in both female and male CD-1 mice in a dose-dependent 

manner, as reflected by loss of body mass, macroscopic scores and histological scores. 

Furthermore, colon cytokine levels and mesenteric lymph node characteristics indicate that this 

model involves immune system activation. Although some variables were sex-specific, most of 

the results support including both females and males in the model. The development of this 

murine model may provide researchers with a versatile tool for studying the role of the gut 

microbiome in the onset and progression of NCDs, as well as for testing and validating 

candidate anti-inflammatory agents and/or new microbiome modulators such as classic or next-

generation probiotics, before their use in clinical practice. 
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Chapter 3 – EUBIOTIC GUT MICROBIOME TRAJECTORY ACROSS THE HUMAN 

LIFESPAN 

 

In modern anthropic societies, where a strong selective pressure is exerted on our microbial 

counterpart, the human gut microbiome plays a key role as a plastic ecosystem capable of 

adapting to external conditions while supporting host homeostasis. Nonetheless, the functional 

changes that occur in the gut microbiome of extremely long-lived hosts are still largely 

unexplored. In order to provide some glimpses in this direction, we shotgun sequenced stool 

samples from healthy individuals aged from 22 to 109 years, highlighting life-long adaptive 

responses potentially supporting a new homeostasis. On the other hand, when compared to 

traditional populations, whose lifestyle resembles that of our ancestors, the Western gut 

microbiome is found to be characterized by reduced biodiversity and supposed to contribute to 

the rising incidence of non-communicable diseases (NCDs). By providing limited fiber intake 

and high consumption of industrialized and processed foods, Western diets are in fact 

considered one of the leading cause of maladaptive – or dysbiotic – gut microbiome changes 

along human evolution. In this scenario, the modern Paleolithic diet (MPD) is gaining 

substantial public attention because of its potential multiple health benefits. With the aim of 

shedding some light on the possibility to modulate the Western gut microbiome towards a more 

‘ancestral’ configuration through dietary approaches, the fecal profiles of urban Italians 

adhering to the MPD were characterized and compared with other urban Italians following a 

Mediterranean diet, as well as worldwide traditional hunter-gatherer populations.   
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3.1 Shotgun metagenomics of human gut microbiota up to extreme longevity and the 

increasing role of xenobiotics degradation 

3.1.1 Brief introduction 

3.1.2 Materials and Methods 

3.1.3 Results and Discussion 

 

 

 

Longevity has been described as the result of a complex combination of variables of 

endogenous and exogenous origin, related to genetics, lifestyle and the environment 

(Franceschi et al., 2018a; Giuliani et al., 2018). In this scenario, the human gut microbiome 

(GM) has been proposed as a possible mediator of healthy ageing by counteracting 

inflammageing (a condition characterized by elevated levels of blood inflammatory markers 

that carries high susceptibility to chronic morbidity, disability, frailty, and premature death) 

(Biagi et al., 2010; Franceschi et al., 2018b), intestinal permeability (Nicoletti et al., 2015), and 

deterioration of cognitive and bone health (Nicoletti et al., 2015; Villa et al., 2017). Correlations 

have indeed been found between age-related GM dysbioses and levels of pro-inflammatory 

cytokines, as well as hospitalization, poor diet and frailty in the elderly (Claesson et al., 2012). 

More recently, the longest trajectory of human GM in the course of ageing has been 

reconstructed, by comparing the fecal bacterial taxa of healthy adults and older individuals, 

including semi-supercentenarians – persons aged 105 or older (Rampelli et al., 2013; Biagi et 

al., 2016). However, to date the functional rearrangements that occur in the GM along with age 

remain largely unexplored. In an attempt to provide some insight in this direction, advancing 

our knowledge on whether and how the GM may support the maintenance of health in extreme 

ageing, the fecal microbiome of 62 individuals, with age ranging from 22 to 105 years, was 

characterized by shotgun metagenomics.  
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3.1 Shotgun metagenomics of human gut microbiota up to extreme longevity and the 

increasing role of xenobiotics degradation 

3.1.1 Brief introduction 

3.1.2 Materials and Methods 

3.1.3 Results and Discussion 

 

 

  

Subjects and study groups 

The genomic DNA extracted from 62 fecal samples collected by Biagi et al. (2016) was used 

in the study. Individuals were enrolled in Emilia Romagna region (Italy) and categorized into 

four study groups: Y, 11 young adults (6 females and 5 males; aged 22-48 years, mean age 

32.2); K, 13 younger elderly (6 females and 7 males; aged 65-75 years, mean age 72.5); C, 15 

centenarians (14 females and 1 male; aged 99-104 years, mean age 100.4); S, 23 semi-

supercentenarians (17 females and 6 males; aged 105-109 years, mean age 106.3). The study 

protocol was approved by the Ethics Committee of Sant’Orsola-Malpighi University Hospital 

(Bologna, Italy) as EM/26/2014/U (with reference to 22/2007/U/Tess). 

 

Library preparation and shotgun sequencing 

DNA libraries were prepared using the Qiagen QIAseq FX DNA Library Kit, following the 

manufacturer's instructions (Qiagen, Hilden, Germany). Briefly, total microbial DNA was 

quantified by Qubit fluorometer (Invitrogen, Waltham, MA, USA) and 100 ng of each sample 

were fragmented to 450-bp size, end-repaired and A-tailed using FX Enzyme Mix with the 

following thermal cycle: 4°C for 1 min, 32°C for 8 min and 65°C for 30 min. Samples were 

then incubated at 20°C for 15 min in the presence of DNA ligase and Illumina adapter barcodes 

for adapter ligation. After two purification steps with Agencourt AMPure XP magnetic beads 
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(Beckman Coulter, Brea, CA, USA), 10-cycle PCR amplification and a further step of 

purification as above, the final library was obtained by pooling the samples at equimolar 

concentration of 4 nM. Sequencing was performed on Illumina NextSeq platform using a 2×150 

bp paired-end protocol, following the manufacturer’s instructions (Illumina, San Diego, CA, 

USA).  

 

Bioinformatics and biostatistics 

The functional annotation of the sequences deriving from the 62 genomic DNA samples (Biagi 

et al., 2016) was conducted as described by Rampelli and colleagues (2013). In brief, shotgun 

reads were first filtered by quality and human sequences by means of the human sequence 

removal pipeline and the whole genome sequencing (WGS) read processing procedure of 

Human Microbiome Project (HMP) Consortium (Turnbaugh et al., 2007). The obtained reads 

were taxonomically characterized at species level by MetaPhlAn2 (Truong et al., 2015) and 

assigned for functionality at different levels of the Kyoto Enciclopedia of Genes and Genomes 

(KEGG) database (Wixon et al., 2000) using Metagenome Composition Vector (MetaCV) with 

default parameters (Liu et al., 2013). Principal Coordinate Analysis (PCoA) was carried out 

using vegan (https://cran.r-project.org/web/packages/vegan/index.html) in R. Data separation 

in the PCoA was tested using a permutation test with pseudo-F ratios (function adonis in the 

vegan package). When appropriate, P values were adjusted for multiple comparisons using the 

Benjamini-Hochberg correction. A false discovery rate (FDR) <0.05 was considered 

statistically significant. Where present, the species-level classification of MetaCV (Liu et al., 

2013) was retrieved, and the taxon ID in the NCBI taxonomy database was obtained using the 

web interface of the NCBI Taxonomy Browser tool (https://www.ncbi.nlm.nih.gov/Taxonomy/ 

TaxIdentifier/tax_identifier.cgi). In order to retrieve the entire phylogeny of the assignment, we 

transformed the NCBI taxonomy IDs into the full lineage by using the ETE3 toolkit (Huerta-

Cepas et al., 2016).  
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3.1 Shotgun metagenomics of human gut microbiota up to extreme longevity and the 

increasing role of xenobiotics degradation 

3.1.1 Brief introduction 

3.1.2 Materials and Methods 

3.1.3 Results and Discussion 

 

 

 

Shotgun metagenomics was applied to 62 DNA samples from the same study, revealing 

functional and species-level taxonomic connections between the GM and extreme ageing. 

Specifically, the GM from 11 young adults (group Y, 6 females and 5 males; aged 22-48 years, 

mean age 32.2), 13 younger elderlies (group K, 6 females and 7 males; aged 65-75 years, mean 

age 72.5), 15 centenarians (group C, 14 females and 1 male; aged 99-104 years, mean age 

100.4), and 23 semi-supercentenarians (group S, 17 females and 6 males; aged 105-109 years, 

mean age 106.3) was characterized. The sequencing yielded a total of 1.3 billion sequences, 

with an average of 20 million (± 5 M, sd) reads per subject. 

First, it was confirmed that in all age groups the GM is dominated by a few bacterial families 

(i.e. Bifidobacteriaceae, Bacteroidaceae, Lachnospiraceae and Ruminococcaceae), whose 

relative abundance trend is inversely proportional to age (mean relative abundance ± sd: Y, 

73% ± 3%; K, 65% ± 4%; C, 62% ± 4%; S, 58% ± 6%). Focusing on the species level, the 

major contribution to fecal profiles is represented by 13 bacterial species: Bifidobacterium 

adolescentis, Bifidobacterium longum, Bacteroides uniformis, F. prausnitzii, Ruminococcus 

bromii, Subdoligranulum spp., Blautia obeum, R. torques, Coprococcus comes, and Roseburia 

spp.  

Bray-Curtis PCoA of species-level relative abundance profiles provided evidence of an age-

related segregation (p value < 0.0001, permutation test with pseudo-F ratios) (Figure 3.1.1).  
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Figure 3.1.1. Gut microbiome variation along ageing. Left, PCoA plot of Bray-Curtis dissimilarity between the microbiome 

species-level relative abundance datasets of the four age groups. Right, Boxplots of the normalized relative abundance of 

bacterial species differentially represented among the four age groups (Y, young adults; K, younger elderly; C, centenarians; 

S, semi-supercentenarians) (p value < 0.05, Kruskal-Wallis test) 

 

However, it should be noted that the species-level compositional structure of the GM from 

younger elderly overall matched that from young adults (p value = 0.2), suggesting that the 

physiology of the ageing process may not involve coarse changes in GM species and their 

relative abundance. On the other hand, centenarians and semi-supercentenarians are featured 

by a distinctive rearrangement in their GM taxonomic configuration. Compared with younger 

individuals, long-living people show a decreased contribution of B. uniformis, E. rectale, C. 

comes and F. prausnitzii, along with a progressive increase of E. coli, M. smithii, A. muciniphila 

and Eggerthella lenta (p value < 0.05, Wilcoxon test). These trends had already been reported 

in previous 16S rRNA gene-based microbiome works in the same subjects (Biagi et al., 2010; 

Biagi et al., 2016) as well as in Chinese centenarians (Wang et al., 2015), further strengthening 

that the observed GM variations could be part of the extreme ageing process, regardless of 

environmental variables (i.e. geographical origin and cultural habits, such as diet and lifestyle) 

(Santoro et al., 2018).  
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By focusing the analysis on a functional scale, it is interesting to note a segregation of the 

relative abundances of KEGG pathways according to age groups (Figure 3.1.2). In particular, a 

significant positive correlation was found between the pathways distribution along the first axis 

of the PCoA plot, suggesting a functional rearrangement within the GM coherently with 

increasing age. 

 

Figure 3.1.2. Functional structure of the gut 

microbiome along ageing. PCoA analysis based 

on the Bray-Curtis distances of the KEGG 

pathway relative abundances. Age shows a 

significant positive correlation with MDS1 axis (p 

value = 0.01, tau = 0.21; Kendall correlation test).  

 

 

 

 

Furthermore, a progressive age-related increase in the number of reads for genes devoted to 

xenobiotic biodegradation and metabolism, as well as a simultaneous decrease in genes 

involved in carbohydrate metabolism have been found (Figure 3.1.3). This functional 

rearrangement is even more penetrating in the GM of centenarians and semi-supercentenarians, 

being characterized by a reduced contribution of pathways for starch and sucrose (KEGG 

pathway, ko00500), pentose phosphate (ko00030) and amino sugar and nucleotide sugar 

(ko00520) metabolism, and a concomitant increase in toluene (ko00623), ethylbenzene 

(ko00642), caprolactam (ko00930) and chlorocyclohexane and chlorobenzene (ko00361) 

degradation pathways. While the changes related to carbohydrate metabolism have already 

been reported in previous studies and suggested to be associated with age-related changes in 

dietary habits (Claesson et al., 2012; Rampelli et al., 2013), the peculiar increase in genes for 

xenobiotic metabolism had not yet been observed previously. 
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Figure 3.1.3. Ageing-related configurations of selected gut microbiome functional pathways. Bar plots of the KEGG 

pathway-classified metabolic configurations for carbohydrate and xenobiotic metabolism, as the mean relative contribution of 

each pathway to the total normalized number of reads assigned to each specific metabolism.  

 

Ethylbenzene, chlorobenzene, chlorocyclohexane and toluene are pervasive chemicals mainly 

deriving from industrial manufacturing and municipal discharges, under monitoring all over the 

world as part of the main environmental contaminants of the atmosphere, due to their toxic 

effects (Bruno et al., 2008; Buczynska et al., 2009; Leusch et al., 2010). These molecules are 

known to be abundant in emissions from motor vehicle and cigarette smoke, as well as being 

generated during the processing of refined petroleum products (e.g. plastics), and contained in 

common consumer products, such as paints and lacquers, thinners and rubber products (Leusch 

et al., 2010). Furthermore, caprolactam is the raw material of nylon, used for the production of 

many indoor products, such as synthetic fibers, resins, synthetic leather and plasticizers. 

Previous studies have demonstrated the higher indoor burden of these molecules compared to 

the outdoor environment, underlining the outstanding importance of indoor exposure on human 

health (Massolo et al., 2010; Esplugues et al., 2010). It is a matter of fact that living in 

environments under strong anthropic pressures – such as the Emilia Romagna region in Italy 
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(Larsen et al., 2012; Zauli Sajani et al., 2018) – results in the continuous and constant exposure 

to these pervasive xenobiotic substances, favoring their maintenance and progressive 

accumulation in body tissues, including the gut (Heinrich-Ramm et al., 2000; Galloway et al., 

2015; Sutic et al., 2016; Wright et al., 2017). In anthropic environments, therefore, appropriate 

conditions could be established for the selection of GM components capable of detoxifying 

such chemical compounds, with a mutual benefit in terms of microbiome and host fitness. 

Indeed, recent works suggests that the human-associated microbial communities of urban 

Western populations are functionally suited to the degradation of xenobiotic molecules, 

including caprolactam (Wu et al., 2016; Rampelli et al., 2015; Lee et al., 2019). Our results 

demonstrated that this adaptive microbiome feature becomes more prevalent with ageing, 

probably matching the cumulative exposure to these xenobiotic substances during the course 

of life in anthropic environments. Further supporting the importance of human microbiomes in 

providing an adaptive response to xenobiotic exposure, in a recent work the upper airway 

microbiome of non-asthmatic individuals was found to possess greater ability to metabolize 

caprolactam than asthmatic people (Lee et al., 2019). According to the authors, the selection of 

caprolactam-degrading microbes in the airway microbiome would decrease host exposure to 

indoor air pollutants, providing an ultimate impact on human health. Centenarians and semi-

supercentenarians are long-living individuals who as such, could claim an important history of 

exposure to xenobiotic stressors. Furthermore, considering their reduced mobility, these 

subjects tend to spend more time in their own houses than younger people, with increased 

exposure to indoor pollutants. It is thus tempting to speculate that their microbiome is better 

equipped for the degradation of these xenobiotics as a result of an adaptive process driven by 

the more lasting and assiduous exposure to these chemicals. This raises important open 

questions on the biological mechanisms that lead to the consolidation and enrichment of 

xenobiotic-degrading abilities in the centenarian and semi-supercentenarian GM. Our results 

suggest that the highest contribution to xenobiotic degradation by commensals in long-living 
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people might mainly be the result of a top-down selection process related to the lifestyle habits 

of these exceptionally old individuals, i.e. stable and constant living settings within their own 

homes, together with a longer exposure and consequent accumulation of these chemicals in the 

host tissues due to their longer life.  

Besides xenobiotic-degrading genes and those involved in carbohydrate metabolism, age-

related differences in other metabolic pathways, including those associated with lipid 

metabolism were also found. In particular, centenarians and semi-supercentenarians showed 

more reads for alpha-linoleic acid (ko00592) and glycerolipid metabolism (ko00561); on the 

other hand, younger people show a greater contribution of genes involved in sphingolipid 

(ko00600) and glycerophospholipid metabolism (ko00564). These profiles possibly reflect the 

higher intake of plant-derived fats than animal ones by centenarians and semi-

supercentenarians, given that glycerophospholipids and sphingolipids are known to be more 

abundant in animal-derived foods (Vesper et al., 1999; Castro-Gomez et al., 2015), while alpha-

linoleic acid is mainly derived from plant foods (Stark et al., 2008). Moreover, regarding the 

functional pathways involved in amino acid metabolism, a progressive increase in genes for the 

metabolism of tryptophan (ko00380), tyrosine (ko00350), glycine, serine and threonine 

(ko00260) were observed in the GM of older individuals. On the other hand, genes for alanine, 

aspartate and glutamate metabolism (ko00250) were found to be more abundant in younger 

individuals. This evidence is in agreement with our previous study (Rampelli et al., 2013), in 

particular with regard to the metabolism of tryptophan and tyrosine as an indicator of enhanced 

proteolytic metabolism. Furthermore, these findings fit with metabolite measures in the 

centenarians of our cohort, i.e. the decrease of the bioavailability of tryptophan in serum 

(Collino et al., 2013) as well as the increased urinary levels of phenolic metabolites, derived 

from the metabolism of tyrosine (Moco et al., 2014). Finally, the progressive increase with 

ageing of genes for lipopolysaccharide biosynthesis (ko00540), which can be associated with 

the presence of pathobionts (i.e. members of the Enterobacteriaceae family) and the low levels 
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of chronic inflammation (i.e. inflammageing), is consistent with previous findings in long-lived 

people (Biagi et al., 2010; Rampelli et al., 2013; Biagi et al., 2016). 

In conclusion, the present study describes for the first time the adaptive metagenomics changes 

of the human GM along ageing, up to extreme longevity (>105 years of age). In addition to 

confirming the known taxonomic features of an ageing microbiota down to species level, an 

accurate depiction of the functional changes occurring along with age is provided. The results 

suggest the fascinating hypothesis that ageing in Western urban environments progressively 

selects for commensal GM strains with metabolic abilities towards specific xenobiotics. This 

selective pressure could represent an adaptive response of the human holobiont to the increased 

exposure to – and accumulation of – xenobiotic substances along the ageing process. Future 

studies should be aimed at better understanding the interplay between xenobiotics exposure and 

the human GM. In particular, long-term longitudinal studies must be conceived, with the aim 

of highlighting the mechanisms underlying the GM adaptive variation, as a result of a top-down 

selection process of microbial functions for xenobiotic detoxification, and the ultimate impact 

in terms of host health protection.  
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3.2 Gut microbiome response to a modern Paleolithic diet in a Western lifestyle context 

3.2.1 Brief introduction 

3.2.2 Materials and Methods 

3.2.3 Results and Discussion 

 

 

 

In recent years, extensive meta-analyses of human and non-human primate microbiomes have 

been carried out to understand the specificities of the human microbiome assembly (Moeller et 

al., 2014; Davenport et al., 2017). This comparative approach has highlighted the importance 

of individual biodiversity reduction among the distinctive features of the human gut 

microbiome (GM) along the evolutionary history (Moeller et al., 2014). It is interesting to note 

that this hallmark has been found to be exacerbated in Western urban populations, which show 

an even more marked compression of GM diversity than traditional and rural counterparts (De 

Filippo et al., 2010; Yatsunenko et al., 2012; Schnorr et al., 2014; Obregon-Tito et al., 2015). 

This dramatic shrinkage of GM diversity in Western urban populations portrays a maladaptive 

microbiome state that has been supposed to contribute to the rising incidence of chronic NCDs 

– such as obesity, diabetes, asthma and IBD – (Sonnenburg & Sonnenburg 2014; Mosca et al., 

2016; Zuo et al., 2018; Cani & Jordan 2018) which fully agrees with the hypothesis of the 

disappearing microbiota (Blaser et al., 2017). In recent years, a large body of research has been 

indeed devoted to understanding the mechanisms that lead to the loss of diversity in the Western 

urban GM. It is in this scenario that the multiple-hit hypothesis has been advanced (Sonnenburg 

& Sonnenburg 2014). According to this theory, the progressive reduction of human GM 

diversity has occurred at multiple stages along the recent transition to modern urban societies, 

and several aspects typical of the urbanization process – such as sanitation, antibiotics, cesarean 

section and Western diet – have been pointed out as contributing factors. In particular, the 
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reduction in quantity and diversity of dietary microbiota-accessible carbohydrates (MACs) – 

coming from a variety of sources including plants, animal tissues or food-borne microbes – has 

been considered one of the leading causes of the disappearing GM in Western urban populations 

(Sonnenburg & Sonnenburg 2014). Moreover, the importance of food additives, emulsifiers 

and xenobiotics – ubiquitous in industrially processed foods – in reducing the GM diversity has 

recently been demonstrated, identifying an additional driver that contributes to biodiversity 

shrinkage (Danchin et al., 2018). However, all currently available studies exploring the 

disappearing GM are based on the comparison between Western urban and traditional rural 

populations (De Filippo et al., 2010; Yatsunenko et al., 2012; Schnorr et al., 2014; Obregon-

Tito et al., 2015; He et al., 2018; Deschasaux et al., 2018; Ayeni et al., 2018). Consistently, the 

observed GM differences are likely to be the result of the combined action of several covariates 

in addition to the diet – i.e. ethnicity, geographical origin, climate, subsistence, medication, 

hygiene and life sharing – and do not allow to weight the importance of the single determinants.  

In the last few years, the modern Paleolithic diet (MPD), with high intake of vegetables, fruit, 

nuts, seeds, eggs, fish and lean meat, while excluding grains, dairy products, salt and refined 

sugar, attracted substantial public attention in the Western world because of its potential 

multiple health benefits (Lindeberg et al., 2007; Jonsson et al., 2009; Whalen et al., 2016; Otten 

et al., 2018; Genoni et al., 2016, 2019). In the present work, the GM structure of 15 Italian 

subjects who followed the MPD for at least one year was profiled and compared with that of 

urban Italian individuals largely adhering to the Mediterranean diet (MD) from our previous 

works (Schnorr et al., 2014; De Filippis et al., 2016). Notwithstanding the small sample size, 

our GM exploratory study gave us the unique opportunity to assess to what extent the 

consumption of MACs deriving from plant-based foods – but not grains – along with the 

exclusion of industrially processed food, might counteract the GM diversity reduction observed 

in Western urban populations. Indeed, the comparison between MPD and Western diets in 

subjects living in the same country allowed excluding the impact of confounding drivers of GM 
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variation, such as geography, ethnicity, medication and hygiene (De Filippis et al., 2016; He et 

al., 2018; Deschasaux et al., 2018). In order to extend the GM comparison at the meta-

population level, publicly available microbiome data from traditional hunting and gathering 

populations showing high GM diversity, such as the Hadza from Tanzania, from our previous 

publication (Schnorr et al., 2014), the Matses from Peru (Obregon-Tito et al., 2016), and the 

Inuit from the Canadian Arctic (Girard et al., 2016) were also included in our analysis. 

Although the mechanisms underlying the human-microbiome interactions are still far from 

being fully understood, the possibility of rewilding the modern microbiota through the diet 

could be the key to restore evolutionarily important functionality to the gut, ultimately 

improving our health. 
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3.2 Gut microbiome response to a modern Paleolithic diet in a Western lifestyle context 

3.2.1 Brief introduction 

3.2.2 Materials and Methods 

3.2.3 Results and Discussion 

 

 

 

Subjects and sample collection 

Fifteen healthy individuals following a MPD for at least one year were recruited from different 

urban areas across Italy (Lombardia, Piemonte, Emilia-Romagna, Toscana, Umbria, Lazio, 

Campania, Molise, Puglia and Calabria regions). Exclusion criteria included: age below 18 and 

over 65 years; BMI <18.5 and >24.9 kg·m-2; habitual intake of drugs and nutritional and 

pharmacological supplements of pre- and probiotics; taking antibiotics in the last three months; 

presence of intestinal and metabolic disorders (i.e. IBD, bacterial contamination syndrome, 

irritable bowel syndrome, constipation, celiac disease, type 1 and 2 diabetes, cardio- and 

neurovascular diseases, rheumatoid arthritis, allergies, neurodegenerative diseases, cancer). 

Written informed consent was obtained from all volunteers. All work was approved by the 

Ethics Committee of the Sant’Orsola-Malpighi Hospital, University of Bologna (ref. number, 

118/2015/U/Tess).  

Each subject was asked to fill in a 7-day weighted food intake record (7D-WR), with the total 

food and beverage consumption (including methods of preparation whenever possible) for 7 

days representing their usual intake, as previously described (Dall’Asta et al., 2012). Daily total 

calorie intake as well as that of macro- and micro-nutrients were assessed through the 

MètaDieta software version 3.7 (METEDA). The participants were also asked to fill in two 

questionnaires, one regarding their socio-economic status (according to the guidelines of the 

Health Survey for England – 2013, http://www.hscic.gov.uk/catalogue/PUB16076) and the 
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other on physical activity (based on the Global Physical Activity Questionnaire – GPAQ – 

developed by World Health Organization, http://www.who.int/chp/steps/resources/GPAQ_ 

Analysis_Guide.pdf). A single fecal sample was self-collected by each participant after 

completing the 7D-WR (i.e. on day 7) and immediately frozen at -20°C. All specimens were 

delivered to the laboratory of the Microbial Ecology of Health Unit (Department of Pharmacy 

and Biotechnology, University of Bologna, Bologna, Italy) where they were stored at -80°C 

until processing. Data and fecal samples were collected between March and April 2017. 

 

Microbial DNA extraction  

Total bacterial DNA was extracted from each stool sample using the DNeasy Blood and Tissue 

kit (Qiagen) with the modifications previously described by Biagi et al. (2016). In brief, 250 

mg of fecal sample were suspended in 1 ml of lysis buffer (500 mM NaCl, 50 mM Tris-HCl 

pH 8, 50 mM EDTA, 4% (w/v) SDS), added with four 3-mm glass beads and 0.5 g of 0.1-mm 

zirconia beads (BioSpec Products) and homogenized using a FastPrep instrument (MP 

Biomedicals) with three bead-beating steps at 5.5 movements/sec for 1 min, and 5-min 

incubation in ice between treatments. After incubation at 95°C for 15 min, stool particles were 

pelleted by centrifugation at 14,000 rpm for 5 min. Nucleic acids were precipitated by adding 

260 μl of 10 M ammonium acetate and one volume of isopropanol. The pellets were then 

washed with 70% ethanol and suspended in TE buffer. RNA was removed by treatment with 2 

μl of DNase-free RNase (10 mg/ml) at 37°C for 15 min. Protein removal and column-based 

DNA purification were performed following the manufacturer’s instructions (Qiagen). DNA 

was quantified with the NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies).  
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16S rRNA gene sequencing 

For each sample, the V3-V4 region of the 16S rRNA gene was amplified using the S-D-Bact-

0341-b-S-17/S-D-Bact-0785-a-A-21 primers (Klindworth et al., 2013) with Illumina overhang 

adapter sequences. PCR reactions were performed in a final volume of 25 µl, containing 12.5 

ng of genomic DNA, 200 nM of each primer, and 2X KAPA HiFi HotStart ReadyMix (Kapa 

Biosystems, Roche), in a Thermal Cycler T (Biometra GmbH) with the following gradient: 3 

min at 95°C for the initial denaturation, 25 cycles of denaturation at 95°C for 30 sec, annealing 

at 55°C for 30 sec and extension at 72°C for 30 sec, and a final extension step at 72°C for 5 

min. PCR products of around 460 bp were purified using a magnetic bead-based system 

(Agencourt AMPure XP; Beckman Coulter) and sequenced on Illumina MiSeq platform with 

the 2×250 bp paired-end protocol, according to the manufacturer’s guidelines (Illumina). 

Briefly, each indexed library was prepared by limited-cycle PCR using Nextera technology, 

and further purified as described above. The libraries were subsequently pooled at equimolar 

concentrations, denatured with NaOH 0.2 N, and diluted to 6 pM before loading onto the MiSeq 

flow cell. Sequencing reads were deposited in MG-RAST (project ID, mgp89161). 

 

Bioinformatics and statistics 

Raw sequences were processed using a pipeline that combines PANDAseq (Masella et al., 

2012) and QIIME (Caporaso et al., 2010). The UCLUST software (Edgar et al., 2010) was used 

to bin high-quality reads into OTUs at 0.97 similarity threshold through an open-reference 

strategy. Taxonomy was assigned through the RDP classifier, using the Greengenes database 

as a reference (release May 2013). Chimera filtering was performed by using ChimeraSlayer 

(Haas et al., 2011). All singleton OTUs were discarded. 

16S rRNA gene sequencing data of our cohort were compared with publicly available data from 

the following previous studies: De Filippis et al. (2016) (127 Italians; NCBI Sequence Read 

Archive (SRA) accession number: SRP042234), Schnorr et al. (2014) (16 Italians and 27 Hadza 
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hunter-gatherers from Tanzania; MG-RAST ID: 7058), Obregon-Tito et al. (2015) (25 Matses 

hunter-gatherers from Peru; NCBI SRA: PRJNA268964), and Girard et al. (2016) (21 Inuit 

from the Canadian Arctic; Qiita ID: 10439). Genus-level community composition was 

generated for all cohorts combined. Alpha diversity was assessed using the Shannon and 

Simpson indices. Beta diversity was evaluated using the Bray-Curtis dissimilarity measure. All 

statistical analysis was performed in R 3.3.2, using R Studio 1.0.44 and the libraries vegan, 

made4 and stats. The significance of data separation in the PCoA of Bray-Curtis distances was 

tested using a permutation test with pseudo-F ratios (function adonis of vegan package) and 

ANOSIM test. Superimposition of bacterial genera on the PCoA plot was performed using the 

envfit function of vegan. Wilcoxon test was used to assess significant differences between 

groups (for intra- and inter-individual diversity), while Kruskal–Wallis test was used for 

multiple comparisons. P values were corrected for FDR (Benjamini-Hochberg) and p value < 

0.05 is considered statistically significant. 
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3.2 Gut microbiome response to a modern Paleolithic diet in a Western lifestyle context 

3.2.1 Brief introduction 

3.2.2 Materials and Methods 

3.2.3 Results and Discussion 

 

 

 

Diet, socio-economic context and gut microbiome structure in Italian adults following the 

modern Paleolithic diet 

Fifteen healthy individuals, 12 males and 3 females, who followed the MPD for at least one 

year were recruited from different urban areas across Italy. The average age of the enrolled 

subjects was 39.2 years (range, 26-57), and the average body mass index (BMI) 22.1 kg·m-2 

(range, 19.4-25.7). The MPD adopted by the 15 subjects is mainly based on the consumption 

of unprocessed foods, with high intake of vegetables, fruit, nuts and seeds, eggs, fish and lean 

meat, while excluding grains, dairy products, salt and refined sugar. The average daily energy 

intake of the enrolled cohort is 1,843.45 kcal (range, 1,563-2,186 kcal). The percentage of 

macronutrients is distributed as follows: fat, 51.02%; protein, 30.14%; carbohydrate, 18.84% 

(Figure 3.2.1A). With regard to lipids, 51.65% of total calories are from monounsaturated fatty 

acids (MUFAs), 30.93% from saturated fatty acids (SFAs) and 17.42% from polyunsaturated 

fatty acids (PUFAs) (Figure 3.2.1B). The average daily fiber intake is 14.64 g/1,000 kcal. Based 

on the data collected through a questionnaire on the socio-economic status, one third of the 

subjects lived in highly urbanized areas, more than half in semi-urbanized areas (8/15) and only 

one individual in a rural setting. Two thirds lived in apartments and the remainder in 

independent houses. Eight out of 15 subjects declared they had pets and daily contact with 

nature (defined as 2 to 15 hours a week spent in a green area). According to a questionnaire on 

physical activity (the Global Physical Activity Questionnaire - GPAQ), 12 individuals reported 
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practicing moderate to intense fitness activities for an average of 1 hour a day for at least 3 days 

a week. 

 

Figure 3.2.1. Macronutrient 

composition of the modern 

Paleolithic diet. (A) Bar plots of the 

percent caloric contribution of fat, 

protein and carbohydrate per subject, 

based upon weighted food intake 

records over 7 days. The pie chart 

shows the summary of the average 

macronutrient intake for the entire 

cohort. (B) Pie chart of the lipid type 

summary. PUFAs: polyunsaturated 

fatty acids; MUFAs: monounsaturated 

fatty acids; SFAs: saturated fatty acids. 

 

 

The GM structure of MPD Italian adults was profiled through 16S rRNA gene sequencing of 

fecal DNA. A total of 864,439 high-quality reads (mean ± sd, 57,629 ± 19,752; range, 25,142 

- 95,924) were generated and clustered in 7,483 OTUs. The phyla Firmicutes (relative 

abundance, mean ± sem, 65.1 ± 2.1%) and Bacteroidetes (24.6 ± 2.2%) dominate the gut 

microbial ecosystem, with Proteobacteria (4.4 ± 1.6%), Actinobacteria (3.4 ± 0.8%) and 

Verrucomicrobia (1.2 ± 0.5%) as minor components. At family level, Ruminococcaceae (26.7 

± 1.7%), Lachnospiraceae (18.7 ± 1.4%), Bacteroidaceae (13.7 ± 1.8 %) and Prevotellaceae 

(7.4 ± 2.4%) are the dominant GM constituents. The most abundant (≥ 5%) bacterial genera are 

Bacteroides, Prevotella, and Faecalibacterium, while Coprococcus, Ruminococcus, Blautia, 

Lachnospira, Phascolarctobacterium, Streptococcus, Roseburia, Akkermansia, Oscillospira 

and Eubacterium (family Erysipelotrichaceae) represent minor components of the microbial 

ecosystem (range, 1.0 ± 0.4% - 4.4 ± 0.7%) (Figure 3.2.2).  

A

B
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Figure 3.2.2. Genus-level phylogenetic structure of the gut microbiome of Italian adults adhering to the modern 

Paleolithic diet and major differences among study groups. Pie charts show the average relative abundance of bacterial 

genera represented in the GM of the enrolled study groups. Only bacterial genera with relative abundance >0.5% are shown. 

Boxplots show the relative abundance distribution of significantly different bacterial genera among study groups. *, 

unclassified OTU reported at higher taxonomic level. 
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Gut microbiome diversity in MPD Italian adults and comparison with other Western 

urban populations and traditional communities 

In order to investigate whether the adherence to the MPD is sufficient to promote a more diverse 

GM ecosystem – even in a Western urban context – the GM diversity of the 15 MPD subjects 

has been compared to that of 43 urban Italians with different level of adherence to the MD, 

whose GM composition has been described in De Filippis et al. (2016) (n = 127) and Schnorr 

et al. (2014) (n = 16). Moreover, to extend the comparative analysis to a global level, the GM 

structural profiles of the following traditional hunter-gatherer populations have been also 

included: 27 Hadza from Tanzania (Schnorr et al., 2014), 25 Matses from Peru (Obregon-Tito 

et al., 2015), and 21 Inuit from Canada (Girard et al., 2016). According to our findings, 

significant differences in the GM biodiversity among the study groups have been detected 

(Simpson index, p value = 2.6×10−15; Shannon index, p value = 2.2×10−16; Kruskal-Wallis test) 

(Figure 3.2.3). Interestingly, the GM diversity observed for MPD subjects far exceeds that of 

urban Italians adhering to the MD (Simpson index, p value = 2.5×10−7; Shannon index, p value 

= 6.1×10−9; Wilcoxon test), is comparable to that of the Hadza (p value = 0.39; 0.26), and even 

greater than Matses (p value = 0.0082; 0.0039) and Inuit (p value = 0.00075; 0.0027). As 

recently discussed, a high species diversity could promote healthy competition among 

microbial symbionts and modulate bacterial interactions, ultimately maintaining the 

overall ecosystem stability (Coyte et al., 2015).  

The PCoA based on Bray-Curtis distances was next performed to assess overall genus-level 

compositional differences in the GM structure between study groups. Our data show clear 

separation of GM profiles by provenance and, within the Italian cohort, by dietary pattern 

(adonis: p value < 1×10−5, R2 = 0.27; ANOSIM: p value < 1×10−5, R = 0.48) (Figure 3.2.4A). 

Interestingly, MPD subjects show a low level of interpersonal GM variation (Bray-Curtis 

distances, mean ± sd, 0.42 ± 0.095), approximating that observed for the Hadza (0.36 ± 0.092) 

(Figure 3.2.4B). 
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Figure 3.2.3. The gut microbiome of 

Italian subjects following the modern 

Paleolithic diet shows intermediate 

biodiversity between Western urban and 

traditional populations. Box and scatter 

plots showing the alpha diversity values, 

measured with Simpson and Shannon 

indices, for each study population. Different 

letters in the boxplots indicate significant 

differences (p value < 0.05, Wilcoxon test). 

MPD: Modern Paleolithic Diet; MD: 

Mediterranean Diet. 

 

 

 

In order to identify the bacterial drivers with a statistically significant contribution (permutation 

correlation test, p value < 0.001) to the sample ordination, we superimposed the genus relative 

abundance on the PCoA plot (Figure 3.2.5). According to our data, the microorganisms 

characterizing the Italian cohort are Bacteroides, Collinsella, Coprococcus and Blautia, 

bacterial genera commonly found within Western healthy microbiomes (De Filippo et al., 2010; 

Yatsunenko et al., 2012; Schnorr et al., 2014; Obregon-Tito et al., 2015). The genera 

Clostridium, Prevotella, [Prevotella], Catenibacterium and Oscillospira have been found to be 

associated with Hadza and Matses, while Sutterella and Parabacteroides with Inuit. According 

to the literature, the separation due to geography seems to be less evident among the traditional 

populations, with Matses and Hadza sharing a high abundance of Prevotella (Schnorr et al., 

2014; Obregon-Tito et al., 2015).  

It is worth noting that the MPD microbiome shows several compositional differences with 

respect to the other cohorts including urban Italians and hunter-gatherers, which well match the 

peculiar macronutrient intake (Figure 3.2.1). In particular, compared with all other populations, 

except for the Inuit (as expected based on available dietary information), the MPD fecal profiles 
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are enriched in asaccharolytic genera, such as Sutterella and Odoribacter (Rajilic-Stojanovic et 

al., 2014), and in bile-loving microorganisms such as Bilophila, typically associated with 

animal protein and saturated fat consumption (Cotillard et al., 2013; David et al., 2014), as well 

as in Akkermansia, known to be associated with the consumption of unsaturated fat (Dao et al., 

2016) (p value < 0.02; Wilcoxon test). Although Akkermansia has recently been identified as 

potential next-generation probiotics, its role in inflammatory contexts is still controversial and 

requires further investigation (Caesar et al., 2015; Dao et al., 2016; Cani et al., 2017; Groves 

et al., 2018). Moreover, when compared to hunter-gatherer populations (whose subsistence, at 

least during sampling, was mainly based on tubers and other plant foods), the microbiome of 

MPD subjects shows increased relative abundance of the bile tolerant Bacteroides, Collinsella 

and Dorea (p value < 0.003). Bacteroides is indeed typically associated with Western-type 

animal-based diets (David et al., 2014), the genus Collinsella is known to comprise bacterial 

species capable of deconjugating bile acids and positively correlated with plasma cholesterol 

levels (Lahti et al., 2013), and Dorea has recently been suggested to be involved in the 

production of the secondary bile acid, deoxycholic acid (Martin et al., 2018). In light of the 

known associations between changes in the bile acid pool, in particular with increased 

production of secondary bile acids, and increased risk of non-infectious bowel disease and 

colorectal cancer (Wirbel et al., 2019), the increased presence of bile-loving bacteria could 

constitute a red flag for human health, worthy of being further explored possibly in long-term 

studies. 
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Figure 3.2.4. Beta diversity of the fecal microbiome of Italian subjects following the modern Paleolithic diet compared 

with other Western urban populations and traditional communities. (A) The PCoA plot shows the Bray-Curtis distances 

between the genus-level microbiota profiles of each study population, highlighting a significant segregation among groups (p 

value < 1×10-5; permutation test with pseudo-F ratios). (B) Boxplots show the interpersonal variation, in terms of Bray-Curtis 

distances between the genus-level microbiota profiles, for each study group. Different letters in the boxplots indicate significant 

differences (p value < 0.05, Wilcoxon test). MPD: modern Paleolithic diet; MD: Mediterranean diet. 

 

 

Figure 3.2.5. Superimposition of the 

genus relative abundance on the 

PCoA plot. Arrows represent the 

direction of significant correlations (p 

value < 0.001, permutation correlation 

test). A significant segregation among 

study populations was found (p value 

< 1x10−5, permutation test with 

pseudo-F ratios). MPD: Modern 

Paleolithic Diet; MD: Mediterranean 

Diet. 
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On the other hand, it should be noted that, compared to traditional populations, MPD profiles 

show greater proportions of the SCFA producers Lachnospira and Coprococcus (p value < 

0.008). Furthermore, the levels of fiber-degrading SCFA producers, such as Faecalibacterium, 

Ruminococcus, Lachnospira and Coprococcus, are comparable between MPD subjects and 

other Italians, suggesting that even excluding grains and legumes, the high serves of fruit, 

vegetables, nuts and seeds in the MPD could ensure adequate supply of MACs to the GM. 

We also evaluated the Prevotella ratio, i.e. the ratio of Prevotella to the sum of Prevotella and 

Bacteroides (Gorvitovskaia et al., 2016) (Figure 3.2.6). These genera are indeed recognized as 

biomarkers of diet and lifestyle, with Bacteroides typically associated with high-protein high-

fat Western diets and Prevotella with carbohydrate/fiber-based diets typical of more agrarian 

societies (Gorvitovskaia et al., 2016; Smits et al., 2017). Although no detailed dietary 

information is available for traditional populations, Hadza and Matses diets are known to be 

heavily based on the consumption of highly fibrous tubers and vegetal foods (Schnorr et al., 

2014; Girard et al., 2016). On the other hand, the fiber intake of MPD individuals (29.5 ± 20.5 

g/day) does not exceed by far that reported for urban MD Italians (range, 10.4-21.0 g/day) (De 

Filippis et al., 2016). Consistent with this, a significantly lower Prevotella ratio was observed 

for MPD individuals as well as for other urban Italians compared to Hadza and Matses (p value 

< 6.6 x 10−7). 

 

Figure 3.2.6. Prevotella-Bacteroides ratio. 

Different letters in the boxplots indicate 

significant differences (p value < 0.05, 

Wilcoxon test). 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Taken together, these findings seem to suggest that even in extremely different geographic 

locations, with disparate cultural practices, environmental exposure, economic development 

and other lifestyle factors, the ancestral microbiome could be at least partly restored. Since the 

Italian subjects of our cohort share the provenance and all that it entails, including the lifestyle, 

it can be hypothesized that the MPD-associated bloom in GM diversity is accounted for by the 

peculiarities of the MPD compared to the MD. Though the two diets are similar in many 

respects – i.e. high intake of fruit, vegetables, fish and nuts, as well as low glycemic load – the 

MPD is in fact distinguished by: (i) consumption of MACs from plant foods but excluding 

grains and legumes; (ii) total exclusion of industrially processed products; (iii) higher intake of 

unsaturated fatty acids, especially MUFAs, from olive oil, nuts and meat; (iv) no consumption 

of foods containing refined sugars (Lindeberg et al., 2007; Jonsson et al., 2009; Whalen et al., 

2016; Otten et al., 2018). It is, therefore, tempting to speculate that these MPD distinctive 

features may be sufficient to support the consolidation of a highly-diversified GM layout, thus 

counteracting the loss of GM biodiversity, typically observed in Western urban populations as 

compared to traditional communities (De Filippo et al., 2010; Yatsunenko et al., 2012; Schnorr 

et al., 2014; Obregon-Tito et al., 2015). However, at least two important considerations must 

be made in relation to biodiversity: i) simplifying the GM to a measure of biodiversity has 

obvious limitations as it does not reflect its compositional structure, including the complex 

ecological interactions existing among its members (Lozupone et al., 2012); ii) a reduced 

diversity is not necessarily detrimental to the host, especially when it is a consequence of the 

selective enrichment of health-promoting symbionts (Lozupone et al., 2012; Coyte et al., 2015; 

Johnson et al., 2016). 

In conclusion, the present work has shed some light on the effects of the MPD on the GM 

structure and diversity in Western urban populations. Despite the limitations of this 

observational study (i.e. cross-sectional nature and small sample size), our findings suggest that 

the MPD could be a means to counteract the risk of losing the bacterial memory that has 
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accompanied our ancestors throughout human evolutionary history. The consumption of MACs 

from plant-based foods – but not grains – at the expense of refined sugars, and the minimization 

of the intake of processed foods, both hallmarks of the MPD, could indeed act synergistically 

in maintaining an eubiotic level of GM diversity. The high intake of MUFAs, as found in the 

MPD, suggests that these fatty acids could play a role in supporting high GM diversity, which 

is worthy of being further explored in larger cohorts. However, we cannot exclude that other 

genetic or lifestyle-related factors not considered in the present study are involved. On the other 

hand, we do not know how this high-diverse GM will behave over time in a context so different 

from that of our ancestors. Furthermore, the presence of some red flags, such as the 

overrepresentation of bile- and fat-loving microbes, requires attention for potential long-term 

health effects. Albeit several studies have suggested intriguing potential benefits of the MPD 

in obese and type 2 diabetes patients in the medium and long term (i.e. increase in insulin 

sensitivity, glycemic control and leptin levels, and lowering of total fat mass and triglyceride 

levels) (Jonsson et al., 2009; Mellberg et al., 2014; Otten et al., 2017), particular caution must 

be taken when following Paleolithic diets for a long time with percentages of macronutrients 

so far from nutritional recommendations, at least until more comprehensive longitudinal studies 

in larger cohorts, including randomized controlled trials, fully assess the MPD impact on host 

health. 
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Chapter 4 – DYSBIOTIC VARIATIONS IN NON-COMMUNICABLE DISEASES:  

A FOCUS ON OBESITY AND FOOD ADDICTION 

4.1 Brief introduction 

4.2 Materials and Methods 

4.3 Results and Discussion 

 

 

 

Obesity and associated metabolic diseases are linked to diet and gut microbiome (GM) in an 

intimate way (Sonnenburg and Backhed, 2016). Prevalence rates of obesity have increased 

dramatically in the past decades. In 2014, 1.9 billion adults worldwide were overweight and 

600 million of them were obese (World Health Organization, 2016; 

http://www.who.int/mediacentre/factsheets/fs311/en). 

Obesity, deriving from a positive energy balance that results from a surplus in ingested with 

respect to the expended energy, is considered a major risk factor for health, with important 

consequences on quality of life, life expectancy, and healthcare costs (Stevens et al., 2015). 

The GM is a pivotal emerging factor that can affect human metabolic homeostasis and promote 

the risk of metabolic complications connected to obesity. Even if there is a lack of consensus 

on the obese-type microbiome configuration, several taxonomic and functional alterations have 

been suggested to contribute to the pathogenesis of obesity in both humans and animal models 

(Turnbaugh et al., 2006; Candela et al., 2012; Ridaura et al., 2013). The altered microbial 

profile occurring in obese people is considered as an extreme deviation from the microbiota-

host mutualism, resulting from the response to a high-fat high-sugar diet (Candela et al., 2012). 

The obesity-related GM is generally characterized by a low degree of biodiversity and 

enrichment in pathobiont bacteria, such as members of the family Enterobacteriaceae, as well 

as Erysipelotrichaceae and the sulphate reducer species Bilophila wadsworthia (Ridaura et al., 
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2013; Turnbaugh et al., 2009b). This dysbiotic microbial structure is probably involved in the 

manifestation of obesity in a multifactorial way (Cox et al., 2013). Coherently with the energy 

harvest hypothesis (Turnbaugh et al., 2006), the GM of obese individuals possesses higher 

efficiency in energy extraction from the diet, providing an extra supply of calories to the host 

(Musso et al., 2010; Schwiertz et al., 2010; Patil et al., 2012). Furthermore, the concomitant 

overload of the intestinal microbial ecosystem with pro-inflammatory Enterobacteriaceae and 

sulphate-reducing bacteria may consolidate the obesity-associated inflammation and insulin 

resistance (Cani et al., 2009). 

The prevalence of obesity is increasing worldwide, particularly, in children (Ahrens et al., 

2011), and this has been closely associated with cardiovascular risk factors, such as 

hypertension, insulin resistance, and dyslipidemia, during adulthood (Ahrens et al., 2014). One 

of the common explanations for the increase in obesity over recent decades is the environment 

and, in particular, the availability of highly varied, palatable and fattening foods – which have 

been considered to be addictive (Schulte et al., 2015). While many individuals manage to 

maintain a healthy weight, obese individuals have been shown to have a preference for such 

energy-dense foods compared to normal-weight individuals (Drewnowski et al., 1992; Blundell 

et al., 1993). Although food addiction has not yet been recognized in the Diagnostic and 

Statistical Manual of Mental Disorders (DSM), similarities between some feeding and eating 

disorders and substance-use disorders (SUDs) have been acknowledged, including the 

experience of cravings, reduced control over intake, increased impulsivity and altered reward-

sensitivity. Binge eating disorder (BED) and bulimia nervosa (BN) have been proposed as 

phenotypes that may reflect these similarities to the greatest extent (Meule et al., 2014; Shell et 

al., 2017). Focusing on the analogy in patterns of regional brain activation among substance 

abusers and obese individuals, Gearhardt and colleagues have underlined the potential 

mechanism through which addictive processes might be involved in the etiology of obesity 

(Gearhardt et al., 2011). In particular, the release of dopamine in mesolimbic regions has been 
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associated with the reward dependent on both food and drug use. A reduced activation of the 

same reward circuits suggests that obese patients, similarly to substance abusers, may consume 

excessive food to compensate a reward deficit. Most of the studies conducted so far have 

focused on the definition of obesity as a phenotype, both at metabolic and brain response level, 

while little efforts have been devoted to the identification of different brain activation patterns 

in response to food. Moreover, links among diet, microbiome structure, child health and food 

addiction, are still unclear.  

First, to test the hypothesis that the composition and/or the diversity of the GM had an impact 

on the onset of obesity, we explored the fecal microbiota structure in 70 children in a 

prospective study, at a baseline survey and a follow-up after 4 years (IDEFICS/I.Family 

cohort). All children were normal weight at baseline, but 36 developed an excessive weight 

gain until follow-up. Second, we explored the GM structure and functional activity in 72 obese 

women, stratified according to BMI and food addiction severity (diagnosed through the Yale 

Food Addiction Scale, YFAS) and 28 normal-weight women (NeuroFAST cohort), and 

performed metagenomic and metatranscriptomic surveys in a subset of 45 women, with the 

specific aim of identifying potential microbial signatures of food addiction. Comprehensive 

data on lifestyle, such as dietary intake and physical activity, as well as medical history, 

anthropometry, measures of physiological, immunological, psychological parameters, and 

socioeconomic status were also collected. 
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The IDEFICS/I.Family cohort 

The sample comprised children from the surveys of the ‘Identification and Prevention of 

Dietary- and Lifestyle-Induced Health Effects in Children and Infants’ (IDEFICS) cohort study 

and from the project ‘Investigating the determinants of food choice, lifestyle and health in 

European children, adolescents and their parents’ (I.Family). The IDEFICS study is a 

prospective cohort of 16,228 children aged 2-9 years from eight European countries (Belgium, 

Cyprus, Estonia, Germany, Hungary, Italy, Spain, and Sweden), from kindergartens and 

schools. The IDEFICS study consisted of one baseline survey (T0) performed from September 

2007 to May 2008 and one follow-up survey (T1), which was conducted 2 years later 

(September 2009 to July 2010). The surveys provided information about dietary habits, physical 

activity, socio-demographic factors, clinical and physical examinations, and health outcomes. 

The follow-up project I.Family represents an extension of the IDEFICS study (T3) and was 

conducted in 2013-2014, in which children who participated in T0 and/or T1 were followed up 

for the third time complemented with information from their parents and siblings. Details of 

the design and methods of these surveys have been described elsewhere (Ahrens et al., 2017). 

The present study is based on a subgroup of IDEFICS/I.Family children who provided stool 

samples. The first stool samples were collected in 2010 during the second survey of IDEFICS 

(T1) in five of the eight participating countries (Cyprus, Estonia, Germany, Hungary, and 
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Sweden). A second stool sample was collected in these countries during the follow-up at T3. 

None of the children took antibiotics in the 14 days before sample collection. All applicable 

institutional and governmental regulations concerning the ethical use of human volunteers were 

followed during this research. Approval by the appropriate ethics committees (Cyprus National 

Bioethics Committee, Cyprus, 12/Jul/2007, No. EEBK/EM/2007/16 and 21/Feb/2013, No. 

EEBK/ETI/2012/33; Tallinn Medical Research Ethics Committee (TMREC), Estonia, 

14/Jun/2007, No. 1093 and 17/Jan/2013, No. 128; Ethic Commission of the University of 

Bremen, Germany, 16/Jan/2007 and 11/Dec/2012; Medical Research Council, Hungary, 

21/Jun/2007, 22-156/2007-1018EKU and 18/Dec/2012, 4536/2013/EKU; Regional Ethics 

Research Board in Gothenburg, Sweden, 30/Jul/2007, No. 264-07 and 10/Jan/2013, No. 927-

12) was obtained by each of the centers doing the fieldwork. The parents or guardians as well 

as children from the age of 12 years gave their written informed consent and younger children 

expressed their oral consent for the examinations and data collection. 

 

The NeuroFAST cohort 

The NeuroFAST project aims to provide insights into food addiction in a cohort of obese 

women, by characterizing the GM compositional and functional layouts and integrating GM 

data with BMI and stress levels as well as metabolic, emotional-affective and hormonal 

abnormalities, and alterations in brain responses. Study population included women aged > 18 

years in a premenopausal state, with BMI ranging between 24.9 and 40.0 kg·m-2. Exclusion 

criteria were the presence of acute/chronic diseases (e.g. central nervous system illness and 

cancer), neurological or psychiatric disease (e.g. anorexia and bulimia) and use of psychiatric 

medication, endogenous hypercortisolism or corticosteroid therapy, diabetes, drug or alcohol 

abuse, post-menopausal state, pregnancy or nursing. In order to exclude any country-related 

effects on the GM profile, all women were enrolled in Italy. Stool, blood, urine and saliva 

samples were collected from 72 obese women and 28 normal-weight women. Psychological, 
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psychiatric and nutritional questionnaires were administered to the subjects. Briefly, patients 

underwent a visit with a fully trained psychologist from the Department of Psychology 

(University of Bologna), aimed at investigating the previous or current presence of 

psychopathological disorders, use of psychotropic agents, and/or psychotherapies (through the 

Mini-International Neuropsychiatric Interview). Several validated tests were used to score 

perception of stress (Perceived Stress Scale), binge eating (Binge Eating Scale) and the 

presence of bulimic symptoms (Bulimic Investigatory Test). Nutritional questionnaires were 

administered to obtain information on the frequency of consumption (no. of portions per week) 

and the portion size (small, medium or large) of every category of food (Food Frequency Test), 

to measure cognitive and behavioral components of eating (The Three Factor Eating 

Questionnaire) and patient’s confidence in her own capacity to control and/or change some 

aspects of food habits (Confidence Rating Questionnaire). Food addiction (FA) was assessed 

using the Yale Food Addiction Scale (YFAS), a questionnaire developed by Gearhardt et al. 

(2009) to operationalize FA, including 25 sub-items to address eating habits over the past 12 

months. Following the authors’ suggestions, women were stratified into a ‘high’ FA group (with 

3 or more symptoms) or ‘low’ FA group (with 2 or fewer symptoms) (Gearhardt et al., 2011). 

The YFAS is extensively used as a reliable psychometric tool, showing internal consistency, as 

well as convergent and incremental validity. Elevated YFAS scores have been associated with 

higher neural activation in reward circuitry in response to food cues and reduced activation of 

inhibitory regions in response to food intake (Gearhardt et al., 2011). Finally, the GM of the 

enrolled cohort was profiled by 16S rRNA gene-based next-generation sequencing of fecal 

samples from 72 obese women and 28 normal-weight women. In order to deeply investigate 

the FA-related GM structural and functional layouts, a subset of fecal samples from the three 

subject groups (i.e. obese women with high and low FA, and healthy normal-weight women), 

underwent metagenomic and metatranscriptomic sequencing.  
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Sample collection 

 The IDEFICS and I.Family examinations of children, as well as the NeuroFAST examinations 

of obese women with high or low FA and normal-weight women, included the collection of 

biological samples (blood, urine, saliva, feces). Venous blood was drawn after an overnight fast 

using standardized procedures (Peplies et al., 2010) by all survey centers, and stored at -80°C. 

Feces from the IDEFICS/I.Family cohort were collected with the PSP Spin Stool DNA PLUS 

Kit (Stratec Molecular) at home. The stool collection kit included a collection tube with a DNA 

stabilizer, an illustrated description of how to collect the stool samples, a short questionnaire 

and a paper stool collector. The participant had to collect one spoon of the middle of the fecal 

sample and to mix the sample by shaking.  

Screw-top containers were used to collect one spoon of stool sample from the NeuroFAST 

cohort. Venous blood, urine, and saliva specimens were also collected for each NeuroFast 

woman. All samples were stored at -20°C on the day of collection and then transferred to -80°C 

upon arrival in the laboratory.  

 

Collection of clinical, behavioral, and nutritional data 

 Examinations of the enrolled subjects included anthropometric data (i.e. body weight, height, 

BMI, waist and hip circumferences, and waist-to-hip ratio), systolic and diastolic blood 

pressure, accelerometry, genetic data from saliva, and physiological markers in blood and urine. 

Dietary intake and behavior were measured in detail using a validated semi-quantitative food 

frequency questionnaire (FFQ) (Lanfer et al., 2011; Huybrechts et al., 2011) and a self-

administered computer-assisted 24-h dietary recall, which is linked to a tailor-made European 

database of food composition tables (Hebestreit et al., 2014; Heberstreit et al., 2017) as 

described below. Data from dual energy x-ray absorptiometric (DXA) scan, the Three-Factor 

Eating Questionnaire (TFEQ; Karlsson et al., 2000) and YFAS (Gearhardt et al., 2011) 

questionnaire were also collected for each NeuroFAST woman, along with information about 
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personal/familiar anamnesis, menstrual history and pregnancies, body weight curve (recall of 

body weight values since the age of 18 to the present, in order to identify the occurrence of 

‘stress-related weight gain’), and prior and current medications.  

 

Microbial DNA extraction and sequencing 

 Total microbial DNA was extracted from fecal samples by the repeated bead-beating plus 

column method (Yu and Morrison, 2004) with some additional steps as reported by Barone et 

al. (2019). The V3-V4 hypervariable region of the 16S rRNA gene was amplified using the 

341F and 805R primers with added Illumina adapter overhang sequences as previously reported 

(Barone et al., 2019). Indexed libraries were prepared by limited-cycle PCR using Nextera 

technology and the final library was diluted to 6 pM with 20% PhiX control. Sequencing was 

performed on Illumina MiSeq platform using a 2×300 bp paired-end protocol, according to the 

manufacturer’s instructions. 

Metagenomic DNA libraries were prepared using the QIAseq FX DNA Library Kit, following 

the manufacturer's instructions (Qiagen). Briefly, for each sample, 100 ng of DNA were 

fragmented to 450-bp size, end-repaired and A-tailed using FX Enzyme Mix with the following 

thermal cycle: 4°C for 1 min, 32°C for 8 min and 65°C for 30 min. Samples were then incubated 

at 20°C for 15 min in the presence of DNA ligase and Illumina adapter barcodes for indexing 

and adapter ligation. After two purification steps with Agencourt AMPure XP magnetic beads 

(Beckman Coulter), 10-cycle PCR amplification and a further step of purification as above, 

samples were pooled at equimolar concentration of 4 nM. Sequencing was performed on 

Illumina NextSeq platform using a 2×150 bp paired-end protocol, following the manufacturer’s 

instructions (Illumina). 

RNA extraction was carried out using the RNeasy PowerMicrobiome kit (Qiagen), according 

to the manufacturer’s instructions. Minor adjustments were made for the homogenization step, 

performed using a FastPrep instrument (MP Biomedicals), with one treatment at 5.5 
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movements/sec for 1 min. For each sample, rRNA was depleted using the RiboMinus 

Transcriptome Isolation Kit for bacteria (Thermo Fisher Scientific). RNA libraries were 

prepared using the QIAseq Stranded Total RNA Lib Kit (Qiagen), according to the 

manufacturer’s instructions and pooled at equimolar concentration of 4 nM. Sequencing was 

performed on Illumina NextSeq 500 platform using a 2x150 bp paired-end protocol, following 

the manufacturer’s instructions (Illumina). 

 

Bioinformatics and biostatistics 

 Paired-end reads from 16S rRNA gene-based sequencing were processed combining 

PANDAseq (Masella et al., 2012) and QIIME (Caporaso et al., 2010). High-quality sequences 

were clustered into OTUs at 97% sequence similarity by UCLUST (Edgar et al., 2010). 

Taxonomy was assigned with the RDP classifier against the Greengenes database (May 2013 

release). Chimeric OTUs were identified using ChimeraSlayer (Haas et al., 2011) and then 

filtered out. All singleton OTUs were discarded. Alpha diversity was evaluated using three 

different metrics: Shannon, Phylogenetic Diversity (PD) whole tree, and number of observed 

OTUs. Beta diversity was estimated by computing weighted and unweighted UniFrac distances, 

which were used as input for Principal Coordinates Analysis (PCoA). PCoA, heatmap, and bar 

plots were built using the R packages made4 (Culhane et al., 2005) and vegan 

(http://www.cran.r-project.org/package=vegan). Microbiome steady states were identified 

through hierarchical Ward linkage clustering based on the Spearman correlation coefficients of 

the proportion of OTUs, filtered for OTU subject prevalence of at least 20%. It was then verified 

that each cluster showed significant correlations between samples within the group (multiple 

testing using the Benjamini-Hochberg method) and that the clusters were statistically 

significantly different from each other (permutational MANOVA using the Spearman distance 

matrix as input, function adonis of the vegan package in R). The R packages stats and vegan 

were used for statistical analysis. In particular, to compare the macronutrient intake and the α-
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diversity of the GM structures among different groups for, we used the Kruskal-Wallis test was 

used. The significance of data separation in the PCoA was assessed by a permutation test with 

pseudo-F ratios (function adonis in vegan). Cluster separation in hierarchical clustering analysis 

was tested using Fisher’s exact test. Significant differences in bacterial relative abundance at 

different phylogenetic levels among groups were assessed by Wilcoxon or Kruskal-Wallis test 

was used. P values were corrected for multiple comparisons using the Benjamini-Hochberg 

method when appropriate. FDR ≤ 0.05 was considered as statistically significant. 

Functional annotation of sequences from shotgun metagenomics sequencing was conducted as 

previously described by Rampelli and colleagues (2015). In brief, shotgun reads were first 

filtered by quality and human sequences by means of the human sequence removal pipeline and 

the WGS read processing procedure of the HMP Consortium (Turnbaugh et al., 2007). The 

obtained reads were taxonomically characterized at species level by MetaPhlAn2 (Truong et 

al., 2015) and assigned for functionality at different levels of the KEGG database (Wixon et 

al., 2000) using MetaCV with default parameters (Liu et al., 2013). 

Metatranscriptomic reads passed through the KeadData quality control pipeline to remove low-

quality bases, reads of human origin and reads encoding for rRNA. Metatrascriptomes were 

functionally profiled using HUMAnN2 (Abubucker et al., 2012) to quantify expression levels 

of genes and pathways. Reads were aligned to sample-specific pangenomes, i.e. all gene 

families detected in a given sample, using Bowtie and the UniRef90, MinPath and KEGG 

databases. Hits were counted per gene family and normalized for length and alignment quality 

score. HUMAnN2 RNA-level outputs (transcript abundance) were then normalized by the 

corresponding DNA-level outputs (from metagenomic results) to quantify microbial expression 

regardless of gene copy number. To investigate functional differences among microbiota 

configurations associated or not with food addiction, the frequency of the reads mapped to the 

KEGG Orthology database was assessed by applying the MetaCV pipeline to the 

metatranscriptomic sequences (Liu et al., 2013).  
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Correlation analysis of clinical data and gut microbiota 

Correlations between microbiota composition and host metadata, including inflammatory 

markers and other health parameters were analyzed using quantile (median) regression tests, 

adjusted for age. Median regression is less influenced by outliers than the classical linear 

regression because it gives less relevance to extreme values. As for the IDEFICS/I.Family 

cohort, the potential impact of gender and maturation stage according to Tanner classification 

(Duke et al., 1980) – whose information was available only at T3 for children who were 8 years 

old or older, i.e. 68 out of 70 – on the microbiota structure was also evaluated. The analysis was 

carried out by using the R package quantreg, as already performed by Claesson et al. (2012). 

 

Analysis of nutritional data 

Dietary data was collected through a semi-quantitative food frequency questionnaire (FFQ), 

weighted by 7-day consumption frequencies. Regarding the IDEFICS/I.Family cohort, 46 items 

were in common between FFQs at T1 and T3. Additional four items were obtained from 

questions about the type of milk and yoghurt consumed (skimmed or full-fat). For all FFQs the 

lowest frequency option was ‘never or less than once a week’, for foods with the highest 

frequency, the option was ‘4 or more times per day’ (Lanfer et al., 2011; Huybrechts et al., 

2011). As for the NeuroFAST cohort, women were asked to compile 24-h dietary recalls, to 

retrieve more details on the composition of their diet (Heberstreit et al., 2014, 2017). The 

dietary questionnaire was designed ad hoc for the study, to complete the information collected 

by dietary interview. After considering several methodological approaches to quantify food 

frequency, we elected to convert the frequency of consumption assessed with the FFQ to a 

continuous scale of daily consumption (e.g. if the food was eaten 2 times per day, then the daily 

consumption was 2). When the frequency was reported as a range (e.g. eaten 1-3 times per 

week), the mean of the range (e.g. 2) was used to calculate the daily consumption.  
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The superimposition of the food frequencies on the microbiota PCoA space was conducted 

using the envfit function of the vegan package of R. A corrected p value ≤ 0.01 was considered 

as statistically significant. Macronutrient data were taken from dietary recalls, in particular in 

I.Family (T3), dietary intake of the previous 24 h was assessed using the validated web-based 

SACANA (Self-Administered Children, Adolescents and Adult Nutrition Assessment) 24-h 

dietary recall tool, which is based on the validated SACINA (Self-Administered Children, 

Infants and Adult Nutrition Assessment) offline version (Hebestreit et al., 2014) used in the 

IDEFICS study (T1). Children reported their diet and entered the type and amount (g) of all 

drinks and foods consumed during the previous day. While in SACINA all information was 

reported by the parents, in SACANA, children reported for themselves with the help of their 

parents (Livingstone et al., 2000) or from a dietician or trained study nurse during the survey 

examinations. 

 

Co-abundance analysis 

Co-abundance groups (CAGs) were identified as previously described (Claesson et al., 2012). 

In brief, associations among bacterial genera, present in at least two samples with relative 

abundance >0.1%, were evaluated by the Kendall correlation test, displayed using hierarchical 

Ward clustering with the Spearman correlation-based distance metrics and utilized to determine 

co-abundant groups of bacterial genera. Significant associations were controlled for multiple 

testing using the q-value method (FDR ≤ 0.05) (Dabney et al., 2013). Permutational MANOVA 

was used to determine whether the CAGs were significantly different from each other. Wiggum 

plot networks were created using the Cytoscape software (http://www.cytoscape.org/), as 

previously reported (Claesson et al., 2012). The circle size represents the bacterial abundance 

and connections between nodes represent positive and significant Kendall correlations among 

genera (FDR ≤ 0.05). 
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The IDEFICS/I.Family cohort 

Microbiota structure and healthy growth 

Within the present work, the fecal microbial composition in 70 children at two time points (T1, 

T3), within a 4-year window, was assessed to investigate links between the gut microbiota and 

obesity, health, diet, and other lifestyle factors. Children were stratified by timing and weight 

status: at T1, all children were normal weight of which 34 are referred to as T1_N who remained 

normal weight (mean ± sd, age: 7 ± 2 years; BMI: 16 ± 1 kg·m-2), and 36 as T1_O (age: 8 ± 2; 

BMI: 16 ± 2), who gained excessive weight; accordingly, at T3, 34 subjects had maintained 

their normal weight (T3_N; age: 11 ± 2; BMI: 17 ± 2), while 36 had gained excessive weight 

(T3_O; age: 12 ± 2; BMI: 20 ± 3). 

The sequencing yielded a total of 7.9 million sequence reads from 16S rRNA gene V3-V4 

amplicons, with an average of 56,485 (± 22,321, sd) paired-end reads per sample, for 20,360 

OTUs grouped at 97% of sequence identity. When examining OTUs abundance, we identified 

four subject clusters, one of which (C3) included the majority of obese subjects, before and 

after they had developed obesity. For 18 out of the 70 children, the most relevant variable that 

drove the separation was the sample origin, with samples T1 and T3 from the same individual 

clustering together in the dendrogram (p value = 0.0001, Fisher’s test) (data not showed). 
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To identify trends in the GM, we established co-abundance associations of genera, and then 

clustered correlated bacterial taxa into four co-abundance groups (CAGs), describing the 

microbiota structures found across the whole dataset. The dominant (i.e. the most abundant) 

genera in these CAGs were Bacteroides (green), Prevotella (yellow), Dorea (violet), and 

Bifidobacterium (blue). The CAG relationships are termed Wiggum plots, where genus 

abundance is represented as a disc proportional to normalized over-abundance (Figure 4.1). The 

four subject divisions, as identified by OTU clustering, were superimposed on the unweighted 

(Figure 4.1), allowing defining four clusters, C1-C4. Within a spectrum of microbiota 

structures, each of these clusters constitutes a steady state, representing groups of individuals 

who have a significantly different microbiota layout from each other, as defined by the 

permutation multivariate analysis of variance (MANOVA) test on UniFrac data (p value < 

0.001). Wiggum plots for the GM for each of the 4 groups were constructed (Figure 4.1). The 

microbiota variation from the groups dominated by normal-weight children (C1/C2) to the 

groups dominated by obese children (C3/C4) was accompanied by distinctive CAG dominance, 

specifically by abundances of Prevotella CAG (C1) and Dorea and Bacteroides CAGs (C4). In 

particular, steady states C3 and C4 were more heterogeneous, with the first showing the 

concomitant presence of all the four CAGs (Prevotella, Bacteroides, Bifidobacterium, and 

Dorea), and the second lacking only the Bifidobacterium CAG. Significant associations 

between several health/inflammation parameters and the major axes from unweighted UniFrac 

PCoA analysis are shown in Table 4.1. In particular, when considering the whole cohort, a shift 

of the microbiota structure towards positive values of the PCo1 axis was associated with 

inflammation, i.e. increased serum levels of C-reactive protein (CRP) and IL-6, as well as with 

C3 and C4. Interestingly, other inflammatory markers, such as IL-15, tumor necrosis factor α 

(TNFα), interferon gamma-induced protein 10 (IP-10), IL- 6, and IL-8, correlated only with the 

microbiota profiles from children developing obesity. As expected, there was minimal 

variability amongst normal-weight subjects. It should be noted that the education level score 
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and physical activity score (i.e. time spent in moderate to vigorous physical activity, MVPA) 

were also associated with the microbiota structure, but in an independent way with respect to 

inflammatory parameters and the lean/obese phenotype. Furthermore, the microbial 

biodiversity was inversely associated with the inflammatory status. Indeed, we observed a 

gradual change of the level of biodiversity along PCo1, from the highest level in the samples 

belonging to the C2 cluster to the lowest values in the C4 microbiomes (p value < 0.000001, 

Kruskal-Wallis test). On the other hand, when comparing the biodiversity of the child 

microbiota among the original groupings (T1_N, T3_N, T1_O, T3_O), a significant difference 

was detected only by using the Shannon index. In particular, the T1_N microbiome displayed 

a higher biodiversity than T1_O samples (p value < 0.01, Wilcoxon test), but this evidence was 

not confirmed with the other metrics. Moreover, samples from pre-obese (T1_O) and obese 

(T3_O) children were largely more prevalent in the low-diversity clusters (C3 and C4). It should 

be noted that both the unweighted and weighted UniFrac PCoA space was not correlated with 

either the child’s age (p value = 0.7 for unweighted UniFrac; p value = 0.6 for weighted 

UniFrac, permutational correlation test), gender (p value = 0.2 for unweighted UniFrac; p value  

= 0.4 for weighted UniFrac; permutational MANOVA) or maturation stage according to Tanner 

classification (Duke et al., 1980) (p value = 0.2 and 0.6 for unweighted and weighted UniFrac, 

respectively), meaning that the associations described above were irrespective of these 

variables. 

Taken together, these results indicate that the low-diversity GM configurations C3 and C4 

might represent obesogenic GM layouts, predisposing children to metabolic inflammation and 

obesity. GM may exist under a number of configurations, which are associated with host 

metabolic and immunological factors and, in the context of other individual lifestyle and genetic 

variables, may be involved (or not) in the development of the multifactorial obese phenotype. 
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Figure 4.1. Variation of the gut microbiota structure across normal weight and obese children is mirrored by changes 

in health indices. The PCoA plots show four significantly different groups of subjects (C1–C4, p value < 0.001), as defined 

by unweighted UniFrac microbiota analysis of normal weight children (T1_N, T3_N; left), the whole cohort (center) and obese 

children (T1_O, T3_O; right). At the top, Wiggum plots corresponding to the four groups from the whole cohort analysis, in 

which disc sizes indicate genus over-abundance compared to the average relative abundance in the whole cohort. Pie charts 

show the proportion and number of subjects per group (pink, T1 normal weight children that will develop obesity (T1_O); red, 

T3 obese children (T3_O); cyan, T1 normal weight children (T1_N); light blue, T3 normal weight children (T3_N)). Curved 

arrows indicate a transition from health (blue) to an inflammatory state (red), as defined by the increase in several inflammatory 

markers (CRP, IL-6, IL-8, IL-15, TNFα), as well as in triglycerides and diastolic blood pressure. Please see also Table 4.1. 

 

 

Table 4.1. Associations between clinical variables and microbiota composition. Quantile (median) regression tests of 

associations between metadata measurements and microbiota composition as measured by unweighted UniFrac PCoA across 

all groups. RC range, regression coefficients scaled to the full variation along each PCoA axis, thus indicating direction and 

magnitude of the association; RC sd, regression coefficients scaled to one standard deviation; p, quantile regression p value. 

C2 C1 C3 

C4 CRP 
IL-6 
Triglycerides 
Diastolic BP 

Glucose 

C4 

C3 C1 
C2 Triglycerides 

C4 
C3 

C1 C2 CRP 
IL-6 
TNF-α 
IL-8 
IL-15 

Mitsuokella 

Sarcina 
Akkermansia 

Peptococcus 
Bilophila 

Phascolarctobacterium 

Catenibacterium 
Prevotella 

[Eubacterium] 

RFN20 
Lachnobacterium 

Oxalobacter 

Paraprevotella 
Coprococcus 

Butyricimonas Slackia 

Desulfovibrio 

Odoribacter 

Turicibacter 

SMB53 

Lactococcus 

rc4-4 

Bifidobacterium 
Collinsella 

C2 

1	

2	

3	

4	

46 

Roseburia Lactobacillus 

Clostridium 
Lachnospira 

Lachnobacterium 

[Prevotella] 
Prevotella 

Catenibacterium 

Coprococcus 

Desulfovibrio Succiniclasticum 

Anaerostipes 
Dialister 

rc4-4 

Streptococcus 

C1 
1	

2	

3	

4	

40 

Lachnospira 
Parabacteroides 

Bacteroides 
Blautia 

[Ruminococcus] 
Streptococcus 

Veillonella 
Coprobacillus 

Eggerthella 

cc_115 

Actinomyces 

Pseudoramibacter 

Enterococcus 

Leuconostoc 

Akkermansia 
Catenibacterium 

Oscillospira 

[Eubacterium] 
Paraprevotella 

1	

2	

3	

4	

16 

C4 

Megamonas 

Roseburia 

Faecalibacterium 

Lactobacillus 
Blautia Bacteroides 

Sutterella 

Acidaminococcus 
Adlercreurtzia 

Bifidobacterium 
Collinsella 

Anaerostipes 

Dialister 

Enterococcus 
Lactococcus Pseudoramibacter 

Leuconostoc 

C3 
1	

2	

3	

4	
38 



 87 

Impact of diet on the gut microbiota 

To identify the food types with the most significant contribution (p value < 0.05, permutational 

correlation test) to the microbiota ordination, we superimposed the food data from FFQs on the 

unweighted UniFrac PCoA plot of Figure 4.1 (Figure 4.2a). Remarkably, a higher consumption 

of milk, fish, seeds, and whole meal bread was associated with the GM configurations C1 and 

C2. On the other hand, the microbiota configurations C3 and C4 were associated with a higher 

consumption of dairy products, pizza, sausages, and sweetened drinks. In line with the available 

literature on the diet as a major driver of the microbiota structure (Zmora et al., 2018), 

differences in food consumption may contribute to differences in microbiota diversity between 

groups. In particular, by focusing on macronutrients, we found that the most discriminant 

category was carbohydrate, whose consumption increased in a gradual manner along the first 

axis contrarily to the GM biodiversity (Figure 4.2b). In light of the fact that diet, in terms of 

excess energy intake, is a major cause of obesity (Sonnenburg and Backhed 2016), it is 

important to note that the microbiota configurations (C1-C4) were independent of the total daily 

caloric intake, and that an increase of caloric intake was observed at T3, compared to the first 

time point, in accordance with the growth of children.  
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Figure 4.2. Dietary contribution to the microbiota ordination. (a) PCoA based on unweighted UniFrac distances of the 

fecal microbiota. The biplot of the average food coordinates weighted by frequency of consumption per sample was 

superimposed on the PCoA plot to identify the foods contributing to the ordination space (blue arrows). Only the food categories 

showing a highly significant correlation with the sample separation (p value < 0.005, permutational correlation test) were 

displayed. Samples are colored by subject group (C1-C4), as in Figure 4.1. The black arrow at the bottom indicates the direction 

of the microbiota diversity gradient along PCo1. (b) Summary of the macronutrient intake, expressed as a percentage of 

kilocalories consumed per day, and fiber consumption, as grams of fiber intake per 1000 kilocalories consumed. **: p value < 

0.05, Wilcoxon test. 
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Microbiota, diet, and physical activity relation to obesity 

FFQ data were further explored in a Correspondence Analysis, where the first axis, describing 

over 9% of the dataset variance, contained most of the discriminating food types identified in 

the previous correlation analysis of FFQ data on the microbiota PCoA, such as milk, pizza, and 

sweetened drinks. Application of Ward linkage clustering and Euclidean distance metrics to 

this axis allowed identifying five dietary groups (p value < 0.001, Fisher’s test): D1 (‘low 

protein/low carbohydrate’), D2 (‘high carbohydrate/high fat’), D3 (‘high carbohydrate/high 

fiber’), D4 (‘low protein/low fat’), and D5 (‘high protein/high fat’) (Figure 4.3a). Furthermore, 

the Healthy Food Diversity (HFD) index, an index used to measure dietary diversity, based on 

the evidence that a diverse diet promotes health (Drescher et al., 2007) was calculated. By 

analysing samples by dietary group rather than microbiota group, it was found that the least 

diversified diet was D2, while D1 and D3 showed the highest diversity, reflecting a high 

potential to promote health (p value = 0.0002, Kruskal-Wallis test; Figure 4.3b).  

Focusing on the sample distribution in a longitudinal way, the T1 and T3 samples fell in the 

same dietary group for 16 out of 70 children. Twelve children changed their diet group from 

D1 to D3 or vice versa, thus maintaining a high HFD index. Only four children (2 T1_O/ T3_O 

and 2 T1_N/T3_N) modified their dietary group in the worst way, i.e. from diets with the 

highest HFD index (D1, D3) to the least diverse diet, D2. By matching the stratifications of 

subjects in dietary and microbiota groups, redundant combinations associated with the obese 

phenotype were sought. In particular, in the light of the obtained results, the combinations D2 

diet and C3/C4 microbiota were more prevalent in pre-obese (T1_O) and obese children (T3_O) 

compared to the other subjects, and were exclusively associated with a disease-promoting and 

inflammation status. Seven obese children out of 36 were classified with the combination D2-

C3/C4, whereas none of T1_N/T3_N children possessed this configuration (p value = 0.0006, 

Fisher’s exact test). 
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It is important to note that the only T1_N child who fell in the D2 group (C2 microbiota group) 

showed a high MVPA score (time spent in moderate to vigorous physical activity higher than 

75% of T1 subjects), suggesting a protective role of physical activity in children consuming a 

diet associated with a low Healthy Food Diversity (HFD) index. This was also confirmed for 

the combination D5 diet and C3/C4 microbiota, in which fell seven obese children and only 

one T1_N child with high MVPA score (p value = 0.008). However, it should be pointed out 

that the combination D2 diet and C3/C4 microbiome steady state was exclusively observed in 

obese children, while seven of the eight children that showed the combination D5 and C3/C4 

were obese. It is thus tempting to speculate that the differences in food intake may contribute 

to the observed microbiota differences. These findings stress that obesity is a complex mosaic, 

in which several endogenous and exogenous factors, including host genetics, contribute to 

health decline. Interestingly, when looking at T1 samples in a prospective manner, these 

hypotheses were confirmed by detecting D2/D5-C3/C4 configurations exclusively in normal-

weight children who showed excessive weight gain at T3. Our results support the relevance of 

the predictive potential of the microbiome-host-diet configuration, even if the model clearly 

needs to be implemented with more subjects, sampling points and other omics data to increase 

statistical power.  

 

 

 

 

 

 

 



 91 

 

Figure 4.3. Dietary patterns discriminate children for the Healthy Food Diversity index. (a) Five dietary groups (D1–D5) 

revealed through Ward linkage clustering using Euclidean distances applied to the first eigenvector in a Correspondence 

Analysis of data from Food Frequency Questionnaires. (b) Comparison of the Healthy Food Diversity (HFD) index (Drescher 

et al., 2007) across the five dietary groups identified in a). *: p value < 0.01; ***: p value < 0.0001, Wilcoxon test. 
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Microbiota signatures of obesity 

UniFrac PCoA analysis showed weak but significant separation between subjects with (T3_O) 

or without obesity (T1_N, T3_N, T1_O), according to both unweighted (p value = 0.02, 

permutation test with pseudo-F ratios; Figure 4.4a) and weighted (p value = 0.05; Figure 4.4b) 

distance metrics. Family-level microbiota assignment highlighted a readjustment within the 

phylum Bacteroidetes, with a higher proportion of Bacteroidaceae and a lower proportion of 

Prevotellaceae in obese children when compared to the normal-weight counterparts (Figure 

4.4c). In addition, obese children showed a higher contribution of the genus Lachnospira 

compared to normal-weight children at the same time point (T3_N). When looking at 

T1_O/T3_O children in a longitudinal way, an increase in the relative abundance of 

Proteobacteria emerged, as well as a decrease in the proportions of the families Clostridiaceae 

and Ruminococcaceae after the onset of obesity. On the other hand, when focusing on normal 

weight children, only a sensible reduction in Proteobacteria at the second time point (T3_N) 

compared to the baseline was detected. A complete summary of the significant differences in 

the GM between groups is reported in Table 4.2. It is important to note that differences between 

obese (T3_O) and non-obese (T1_O and T3_N) children involved major microbiota 

components, whereas differences between non-obese children (T1_N, T3_N, and T1_O) 

involved only minor components, proving that obesity is associated with certain GM profiles, 

although alone cannot be used as unique predictive tool. 

Consistent with the GM arrangements reported in other studies, we observed higher levels of 

Bilophila in children that consumed more milk (Turnbaugh et al., 2012), and higher 

contribution of Prevotella in children with higher intake of whole meal bread (Vitaglione et al., 

2015). On the other hand, we found more Bacteroides and Oscillospira in children who ate 

more ham and sausages, as already described in adults following an animal-based, low-fiber 

diet (David et al., 2014). As demonstrated by Zhernakova and colleagues (2016), we also found 

evidence of an inverse correlation between microbiota diversity and consumption of sugar-
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sweetened drinks. It is worth noting that a high diversity in the GM ecosystem, together with 

high levels of SCFA production were reported in rural children of Burkina Faso, whose diet is 

rich in complex carbohydrates and fiber (De Filippo et al., 2010). Similarly, a high-diverse GM, 

with enrichment of genes involved in the metabolism of complex polysaccharides, was found 

in the Hadza, a hunter-gatherer population following a heavily plant-based diet (Rampelli et 

al., 2015). In line with these findings, our results showed that the microbiota diversity was 

higher in children who ate more foods containing oligosaccharides, such as honey and whole 

milk (Zivkovic et al., 2011), with the latter being also a source of fat-soluble vitamin D, whose 

deficiency is associated with obesity in children and adolescents (Plesner et al., 2018). The 

microbiota diversity was also higher in children with high consumption of complex 

polysaccharides, such as whole meal bread, nuts, and seeds. The link between diet and 

microbiota also clearly involves human physiology. Indeed, it has been demonstrated that the 

dietary fat increases the endotoxins level in the blood (Erridge et al., 2007), and that circulating 

endotoxin levels are associated with elevated TNFα, IL-8, and IL-6 concentrations (Ghanim et 

al., 2009; Boulangé et al., 2016). In agreement with these data, we found higher plasmatic 

levels of IL-6, IL-8, and TNFα associated with an overabundance of gram-negative bacteria, 

such as Veillonella, Akkermansia, Bacteroides, and Parabacteroides, in the C3/C4 

configurations. On the other hand, we found that the consumption of fish was directly connected 

to a microbiota configuration with low inflammatory grade, as it has been reported for lard-

consuming mice transplanted with the microbiota of fish oil-consuming mice (Caesar et al., 

2015). Importantly, the health-microbiota associations were statistically significant even when 

the model was adjusted for age, and robust to gender and maturation stage according to Tanner 

classification (Duke et al., 1980). 
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Figure 4.4. Microbiota analysis separates children based on obesity. (a) Unweighted and (b) weighted UniFrac PCoA of 

the fecal microbiota, at two different time points. (c) Hierarchical Ward linkage clustering based on the Spearman correlation 

coefficients of the relative abundance of OTUs, filtered for OTU presence in at least 20% of the subjects. Labelled groups in 

the top tree (basis for the four groups in Figure 4.1) are highlighted by black squares. OTUs are color-coded by family 

assignment in the vertical tree. Bacteroidetes phylum, blue gradient; Firmicutes, green; Proteobacteria, red; and Actinobacteria, 

yellow. Four hundred fifty-six OTUs classified to the family level are visualized. The bar plot shows the relative abundance of 

the family-classified microbiota profiles. 
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Table 4.2. Microbial taxa significantly different across 

the four groups of children. Only taxa found in at least 20% 

of the samples were considered. Differences in relative 

abundance were assessed by Wilcoxon test, paired or 

unpaired as needed. SEM: standard error mean; p: p value. 
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In conclusion, our data highlight the importance of the individual microbiome configuration as 

a mediator of the dietary impact on the metabolic and immunological homeostasis. In particular, 

the individual GM configuration – in terms of steady state – together with the long-term dietary 

habit could be considered as a predictive tool for the development of obesity, particularly in 

children (Figure 4.5). Hence, our data pave the way for a new perspective, where dietary 

recommendations to reduce the obesity risk in children are specifically tailored based on the 

individual microbiome structure, with the precise purpose of avoiding combinations of diet and 

microbiome configuration that are likely to favor the onset of obesity (Figure 4.5). Our data 

also stress the multifactorial nature of obesity, where GM dysbioses and interacting factors (e.g. 

diet) are only a part of the complex mosaic of determinants of this phenotypic trait. Future 

studies on larger cohorts, based on shotgun metagenomics and possibly providing for more 

extensive sampling, are needed to better unravel the contribution of the GM, as well as of 

specific species and/or strains, to this complex mosaic. 

 

 

 

Figure 4.5. The mosaic etiology of obesity. The gut microbiota diversity is likely altered at multiple stages by the diet. 

Unhealthy diets may promote an inflammatory state that, in turn, is strictly interconnected with the gut microbial configuration. 

The combination of these three factors (unhealthy diets, inflammation and a dysbiotic, low-diverse and pro-inflammatory 

microbial layout) may favor the onset of obesity. High physical activity may protect the human host from obesity, even when 

diet and microbiota are in a low-diversity and pro-inflammatory configuration. However, human genetics can lead the host to 

develop obesity, regardless of the microbiome configuration. 
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The NeuroFAST cohort 

Microbiota structure and food addiction 

To investigate links between the GM, obesity and FA, the fecal microbial composition in 100 

women was analysed. The enrolled individuals were stratified according to weight status and 

food addiction, diagnosed according to Yale Food Addiction Scale, YFAS (Gearhardt et al., 

2011) into three study groups: 35 obese women with high FA (referred to as HFA), 28 obese 

women with low FA (LFA), and 37 normal-weight women. 

The sequencing yielded a total of 6.5 million sequence reads from 16S rRNA gene V3-V4 

amplicons, with an average of 73,152 (± 38,578, sd) paired-end reads per sample, for 11,874 

OTUs grouped at 97% of sequence identity. When examining OTUs abundance, we identified 

four subject clusters, two of which (C2 and C3) included the majority of obese women (p value 

< 0.001, Fisher’s test). In particular, C3 included the majority of obese women with high FA 

(i.e. HFA).  

To identify trends in the GM, we established co-abundance associations of genera, and then 

clustered correlated bacterial taxa into five co-abundance groups (CAGs), describing the 

microbiota structures found across the whole dataset. The dominant (i.e. the most abundant) 

genera in these CAGs were Bifidobacterium (violet), Ruminococcus (blue), Dorea (green), 

Prevotella (light blue), and Bacteroides (pink). In Figure 4.6 Wiggum plots are shown, 

representing genus abundance as a disc proportional to normalized over-abundance. The four 

subject divisions, as identified by OTU clustering, were superimposed on the unweighted 

(Figure 4.6), allowing defining four clusters, C1–C4. As specified above, within a spectrum of 

microbiota structures, each of these clusters constitutes a steady state, representing groups of 

individuals who have a significantly different microbiota layout from each other, as defined by 

MANOVA test on UniFrac data (p value < 0.001). The microbiota variation from the group 

dominated by normal weight women (C1) to the groups dominated by obese women 

(C2/C3/C4) was accompanied by distinctive CAG dominance, specifically by abundances of 
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Prevotella CAG (C1) and Ruminococcus, Dorea and Bifidobacterium CAGs (C2/C3/C4). In 

particular, the steady state C2 was the most heterogeneous, showing the concomitant presence 

of four CAGs (Prevotella, Bacteroides, Bifidobacterium, and Dorea). On the other hand, C3 

lacked the Bifidobacterium and Bacteroides CAGs, the latter being not represented also within 

C4. Significant associations of several measurements related to the available hematological 

parameters, DXA and eating behavior surveys with the major axes from unweighted UniFrac 

PCoA analysis are shown in Table 4.3. In particular, when considering the whole cohort, a shift 

of the microbiota structure towards negative low values of PCo1 was associated with higher 

BITE symptoms and TFEQ UE – indicative of binge-eating and a greater cognitive restraint, 

uncontrolled, or emotional eating, respectively. On the contrary, positive values of PCo1 were 

associated with higher android BMC – bone mineral content within the android region, an 

indicator of the potential risk of fractures and osteoporosis in the post-menopausal period. 

When considering the microbiota structure of obese women with low FA, the majority of 

samples were included within the C2 configuration and associated with higher BITE severity, 

therefore reflecting an abnormal eating behavior. On the other hand, obese women with high 

FA were more associated with the C3 and C4 configurations, in addition to being characterized 

by higher YALE scores. Furthermore, a lower insulin secretion rate was observed in these 

women, suggesting metabolic imbalance and impaired blood glucose management. Glucose 

and insulin levels have been associated with altered brain activity in regions involved in reward 

processing, such as the mesolimbic system. In particular, insulin increases dopamine reuptake 

in the presynaptic membrane and suppresses food-motivated behavior (Figlewicz et al., 2008). 

Furthermore, Anthony and colleagues demonstrated that brain insulin resistance exists in 

regions that mediate appetite and reward, diminishing the link between intake control and 

energy balance (Anthony et al., 2006). 

With specific regard to biodiversity, our results confirm the tendency to reduced microbial 

biodiversity in obese individuals as observed previously (Le Chatelier et al., 2013; Aron-
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Wisnewsky et al., 2019). In particular, a gradual change of the level of biodiversity was 

observed along PCo1, from the highest level in the samples belonging to the C1 and C3 clusters 

to the lowest values in C2 and C4 microbiomes (p value < 8x10-4, Kruskal-Wallis test). 

Furthermore, when comparing the biodiversity of the women microbiota among the original 

groupings (HFA, LFA, and normal-weight), a significant difference was also detected, with the 

normal-weight group displaying the highest biodiversity level with respect to the LFA group (p 

value < 0.03, Wilcoxon test), while HFA individuals showed intermediate values.  

 

 

Figure 4.6. Variation of the gut microbiota structure across normal weight and obese women with high and low food 

addiction is mirrored by changes in eating habits and insulin secretion rate. The PCoA plots show four significantly 

different groups of subjects (C1–C4, p value < 0.001), as defined by unweighted UniFrac microbiota analysis of the whole 

cohort (center), normal weight women (bottom, left), and obese women with low or high food addiction (bottom, right). At the 

top, Wiggum plots corresponding to the four groups from the whole cohort analysis, in which disc sizes indicate genus over-

abundance compared to the average relative abundance in the whole cohort. The arrow indicates a transition from low to high 

food addiction. Please see also Table 4.2. BMC: body mineral component; BITE: bulimic investigatory test; TFEQ UE: three 

factor eating questionnaire, uncontrolled eating; VAT: visceral adipose tissue; BMD: bone mineral density; LDL: low density 

lipoprotein. 
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Table 4.3. Associations between clinical variables and microbiota composition. Quantile (median) regression tests of 

associations between metadata measurements and microbiota composition as measured by unweighted UniFrac PCoA across 

all groups. RC range, regression coefficients scaled to the full variation along each PCoA axis, thus indicating direction and 

magnitude of the association; RC sd, regression coefficients scaled to one standard deviation; p-value: quantile regression p 

value. 

 

 

Impact of diet on the gut microbiota 

The data from FFQs were superimposed on the unweighted UniFrac PCoA plot of Figure 4.6, 

with the aim of identifying the food types with the most significant contribution (p value < 0.05, 

permutational correlation test) to the microbiota ordination (Figure 4.7a). Remarkably, a higher 

consumption of seasonings and condiments (i.e. butter, margarine, pesto and ragù sauces), olive 

oil, fried potatoes and sausages, as well as sweetened drinks, milk and yogurt was associated 

with the configurations C2. The C4 configuration was characterized by an increased 

consumption of cheese, while C1 and C3 displayed lower consumption of the above-mentioned 

food categories. As discussed above, the microbiota diversity was directly correlated to the first 

Parameter
RC	range RC	sd p-value RC	range RC	sd p-value RC	range RC	sd p-value

I.	Unweighted	UniFrac	PCoA	for	all	women
Age 2.87438 0.38843 0.007 -0.03924 -0.00981 0.9 1.02296 0.30087 0.01
Android	BMC 1.70030 0.22977 0.02 1.57268 0.39317 0.00002 -0.47066 -0.13074 0.1
BITE	symptoms 1.02542 0.13857 0.3 -1.61860 -0.40465 0.007 -0.60743 -0.16873 0.2
TFEQ	UE 0.78270 0.10577 0.5 -1.37016 -0.34254 0.01 -0.52106 -0.14474 0.3
BITE	severity 0.78240 0.10573 0.6 -0.05700 -0.01425 0.9 1.08313 0.30087 0.01

II.	Unweighted	UniFrac	PCoA	for	obese	women	with	high	food	addiction
Insulin	secretion	rate -2.32715 -0.31448 0.02 1.76392 0.44098 3.40E-10 -0.44604 -0.12390 0.7
LDL 1.12154 0.15156 0.5 2.08916 0.52229 0.01 -0.17078 -0.04744 0.7
YALE	score 0.92337 0.12478 0.7 -1.61428 -0.40357 0.01 1.05340 0.29261 0.3
TFEQ	CR -1.30366 -0.17617 0.5 -1.55760 -0.38940 0.2 -2.01888 -0.56080 0.002
Android	BMC 2.95645 0.39952 0.03 1.65680 0.41420 0.2 -1.16039 -0.32233 0.007

III.	Unweighted	UniFrac	PCoA	for	obese	women	with	low	food	addiction
BITE	severity -2.07259 -0.28008 0.01 0.81664 0.20416 0.4 -0.17770 -0.04936 0.9
Trunk	BMC 3.02490 0.40877 0.04 2.21476 0.55369 0.01 -0.65894 -0.18304 0.6
BDI -0.48921 -0.06611 0.8 1.64160 0.41040 0.3 -2.45358 -0.68155 0.0004
Ghrelin -0.35002 -0.04730 0.6 -0.23056 -0.05764 0.7 -1.18174 -0.32826 0.001
WB	BMC 1.22366 0.16536 0.05 0.43260 0.10815 1 -1.01783 -0.28273 0.002

IV.	Unweighted	UniFrac	PCoA	for	normal	weight-only	women
VAT	volume 2.00466 0.27090 0.001 -0.34744 -0.08686 0.9 -1.29449 -0.35958 0.00004
VAT	mass 1.99763 0.26995 0.001 -0.34752 -0.08688 1 -1.29542 -0.35984 0.00004
Trunk	BMD 3.48015 0.47029 0.002 -0.93356 -0.23339 0.3 -0.71802 -0.19945 0.3
Gynoid	BMC 2.51667 0.34009 0.05 -2.52892 -0.63223 0.006 -0.08892 -0.02470 0.9
Gynoid	fat	mass 2.17812 0.29434 0.3 -0.12524 -0.03131 0.9 -1.38046 -0.38346 0.00003
Gynoid	lean	mass 2.34906 0.31744 0.1 -0.12800 -0.03200 0.9 -1.36724 -0.37979 0.00009
Trunk	fat	mass 2.05424 0.27760 0.3 -0.33604 -0.08401 0.9 -1.22764 -0.34101 0.0001
Trunk	lean	mass 2.67961 0.36211 0.07 -0.38936 -0.09734 0.8 -1.46333 -0.40648 0.0004

PCo1 PCo2 PCo3
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PCoA axis, similar to fiber intake, while the total energy intake (kcal/day) showed an opposite 

trend. By focusing on macronutrients, we found several differences between the four clusters 

identified according to GM configurations.  Specifically, compared to C1, i.e. the configuration 

that includes the majority of normal-weight women, a significant reduction in the daily fiber 

intake was observed in C2, which mainly includes low FA women (p value = 0.03, Wilcoxon). 

Furthermore, significantly reduced fat intake (p value < 0.039) was found in the C3 and C4 

configurations, and the latter also showed higher carbohydrate consumption (p value = 0.05) 

(Figure 4.7b). As expected, the C4 microbiota configurations (including high FA obese women) 

was characterized by a significantly higher energy intake compared to C1 (normal-weight 

individuals) (p value = 0.04).  

 

Figure 4.7. Dietary contribution to the 

microbiota ordination. (a) PCoA based on 

unweighted UniFrac distances of the fecal 

microbiota. The biplot of the average food 

coordinates weighted by frequency of 

consumption per sample was superimposed on the 

PCoA plot to identify the foods contributing to the 

ordination space (blue arrows). Only the food 

categories showing a highly significant correlation 

with the sample separation (p value < 0.005, 

permutational correlation test) were displayed. 

Samples are colored by subject group (C1–C4), as 

in Figure 4.2. The black arrows at the bottom 

indicates the direction of the microbiota diversity, 

energy and fiber intake gradient along PCo1. (b) 

Summary of the macronutrient intake, expressed 

as a percentage of kilocalories consumed per day, 

and fiber consumption, as grams of fiber intake per 

1,000 kilocalories consumed. *, p value < 0.05, 

Wilcoxon test. 
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Microbiota and diet in relation to obesity and food addiction 

FFQ data were further explored in a Correspondence Analysis, where the first axis, describing 

over 13.7% of the dataset variance, contained most of the discriminating food types identified 

in the previous correlation analysis of FFQ data on the microbiota PCoA, such as cheese, 

sweetened drinks, seasonings and condiments. Application of Ward linkage clustering and 

Euclidean distance metrics to this axis allowed identifying three dietary groups (p value < 

0.001, Fisher’s test): D1 (‘low protein/high carbohydrate’), D2 (‘low carbohydrate/high 

protein’), D3 (‘high fat/high protein’) (Figure 4.8a). By comparing the Healthy Food Diversity 

(HFD) index between dietary groups it emerged that D2 and D3 were the most diversified diets, 

while D1 showed the lowest values (p value < 0.02, Wilcoxon test) (Figure 4.8b). In particular, 

D1 includes a greater consumption of biscuits and sweet snacks, D2 of sliced ham and 

homemade sandwiches, while D3 involves a greater consumption of cheese, milk and yogurt. 

By matching the stratifications of women in dietary and microbiota groups, redundant 

combinations associated with the obese phenotype were sought. In particular, the less 

diversified diet D1 was mainly consumed by the C2 and C4 configurations, both associated 

with obesity and characterized by lower levels of microbial diversity, as well as by higher 

energy intake. Focusing the analysis on food addiction, most of the women classified as high 

FA were represented by the C2 configuration, while the women with low FA were mainly 

associated with the C4 configuration. On the contrary, the configuration C1 was composed 

mainly of normal-weight women and was not associated with a particular dietary group. 
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Figure 4.8. Dietary patterns discriminate women for the Healthy Food Diversity index. (a) Three dietary groups (D1–D3) 

revealed through Ward linkage clustering using Euclidean distances applied to the first eigenvector in a Correspondence 

Analysis of data from Food Frequency Questionnaires. (b) Comparison of the Healthy Food Diversity (HFD) index (Drescher 

et al., 2007) across the three dietary groups identified in a). *: p value = 0.02; ***: p value < 0.00001, Wilcoxon test. 

 

 

Microbiota signatures of obesity and food addiction 

Unweighted UniFrac PCoA analysis showed weak but significant separation between women 

with normal weight and obese women with either high or low FA, (p value = 0.03, permutation 

test with pseudo-F ratios; Figure 4.9b). On the other hand, no significant differences were found 

according to weighted UniFrac distances (p value = 0.1) (Figure 4.9c), suggesting only a few 

differences in subdominant components of the GM. Phylum-level microbiota assignment 

showed comparable levels of Firmicutes (mean % ± sem; obese, O: 69.5 ± 1.5; normal-weight, 

N: 72.4 ± 1.4), Bacteroidetes (O: 10.3 ± 1.2; N: 11.8 ± 1.4), Actinobacteria (O: 13.2 ± 1.3; N: 

11.4 ± 1.2), and Verrucomicrobia (O: 2.5 ± 0.7; N: 3.2 ± 0.8). Conversely, at family level, 

Turicibacteraceae were significantly lower in obese women compared to normal-weight 

women (O: 0.15 ± 0.05; N: 0.25 ± 0.07; p value = 0.003, Wilcoxon test), with an ever more 

marked reduction in obese women with high FA (0.04 ± 0.07; p value = 0.002) (Figure 4.9a). 

Furthermore, obese women showed lower levels of the genera Roseburia, Adlercreutzia, 
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Turicibacter and Coprococcus, in addition to higher levels of Dorea, when compared to 

normal-weight women (p value < 0.02). When looking at differences in microbiota profiles of 

women with high and low FA, the increase in relative abundance of Dorea was even more 

exacerbated in the latter group. A complete summary of the significant differences in the GM 

between groups is reported in Table 4.4. Taken together, our data raise the hypothesis in favour 

of a possible role for these gut microorganisms in eating behaviours, opening the way to further 

investigation particularly on the role of Turicibacter and Dorea in FA.  

 

Figure 4.9. Microbiota analysis separates women based on obesity and food addiction. (a) Hierarchical Ward linkage 

clustering based on the Spearman correlation coefficients of the relative abundance of OTUs, filtered for OTU presence in at 

least 20% of the subjects. Labelled groups in the top tree (basis for the four groups in Figure 4.2) are highlighted by black stars. 

OTUs are color-coded by family assignment in the vertical tree. Bacteroidetes phylum, blue gradient; Firmicutes, green; 

Proteobacteria, red; and Actinobacteria, yellow. The bar plot shows the relative abundance of the family-classified microbiota 

profiles. (b) Unweighted and (c) weighted UniFrac PCoA of the fecal microbiota of the enrolled women. 
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 Table 4.4. Microbial taxa 

significantly different across the 

study groups. Only taxa found in at 

least 20% of the samples were 

considered. Differences in relative 

abundance were assessed by Wilcoxon 

test, paired or unpaired as needed. NW: 

normal-weight; OB: obese; SEM: 

standard error mean; P-value: p value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Differences	between	normal	weight	and	obese	women

Taxon Mean	NW SEM	NW Mean	OB SEM	OB P-value
Synergistetes 0.06 0.03 0 0 0.0008
Tenericutes 0.02 0.01 0.02 0.01 0.01
Euryarchaeota 0.03 0.01 0.01 0 0.04
Synergistaceae 0.06 0.03 0 0 0.0008
Turicibacteraceae 0.25 0.07 0.15 0.05 0.003
[Barnesiellaceae] 0.32 0.06 0.25 0.06 0.03
Methanobacteriaceae 0.03 0.01 0.01 0 0.04
Roseburia 0.69 0.12 0.28 0.04 0.001
Cloacibacillus 0.03 0.02 0 0 0.003
Adlercreutzia 0.22 0.05 0.12 0.02 0.003
Turicibacter 0.25 0.07 0.15 0.05 0.003
Coprococcus 1.88 0.34 0.97 0.18 0.005
Ruminococcus 5.62 0.65 4.19 0.5 0.03
[Ruminococcus] 1.06 0.15 2.01 0.34 0.03
Methanobrevibacter 0.03 0.01 0.01 0 0.03

Differences	between	normal	weight	and	obese	women	with	high	food	addiction

Taxon Mean	NW SEM	NW Mean	OB_HA SEM	OB_HA P-value
phylum Synergistetes 0.06 0.03 0 0 0.004

Turicibacteraceae 0.25 0.07 0.1 0.04 0.002
Synergistaceae 0.06 0.03 0 0 0.004
Pasteurellaceae 0.02 0.01 0.01 0.01 0.03
[Barnesiellaceae] 0.32 0.06 0.23 0.08 0.04
Turicibacter 0.25 0.07 0.1 0.04 0.002
Roseburia 0.69 0.12 0.29 0.05 0.01
Adlercreutzia 0.22 0.05 0.12 0.03 0.01
Coprococcus 1.88 0.34 0.96 0.25 0.02
Cloacibacillus 0.03 0.02 0 0 0.03
Haemophilus 0.02 0.01 0.01 0.01 0.03

Differences	between	normal	weight	and	obese	women	with	low	food	addiction

Taxon Mean	NW SEM	NW Mean	OB_LA SEM	OB_LA P-value
Synergistetes 0.06 0.03 0 0 0.04
Proteobacteria 0.68 0.1 3.21 1.99 0.04
Euryarchaeota 0.03 0.01 0.01 0.01 0.04
Eubacteriaceae 0.01 0 0 0 0.02
Synergistaceae 0.06 0.03 0 0 0.04
Methanobacteriaceae 0.03 0.01 0.01 0.01 0.04
Roseburia 0.69 0.12 0.27 0.07 0.002
Dorea 1.12 0.11 2.11 0.35 0.007
Adlercreutzia 0.22 0.05 0.11 0.04 0.01
Ruminococcus 5.62 0.65 3.4 0.55 0.01
Coprococcus 1.88 0.34 0.99 0.26 0.02
cc_115 	(Erysipelotrichaceae) 0.04 0.01 0.01 0 0.02
[Ruminococcus] 1.06 0.15 2.76 0.71 0.03
Methanobrevibacter 0.03 0.01 0.01 0.01 0.04
Cloacibacillus 0.03 0.02 0 0 0.05

Differences	between	obese	women	with	high	and	low	food	addiction

Taxon Mean	OB_HA SEM	OB_HA Mean	OB_LA SEM	OB_LA P-value
family Pasteurellaceae 0.01 0.01 0.05 0.03 0.02

Haemophilus 0.01 0.01 0.05 0.03 0.02
Dorea 1.18 0.12 2.11 0.35 0.02

family

genus

phylum

family

phylum

genus

genus

family

genus
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To investigate differences among microbiota configurations C1-C4 (Figure 4.6) at species 

level, the frequency of reads mapped to the KEGG Orthology database was investigated by 

applying the MetaCV pipeline to shotgun metagenomic sequences (Liu et al., 2013). In 

particular, 15 Gb of bacterial DNA from 45 samples belonging to 15 obese women with high 

FA, 16 obese women with low FA, and 14 normal-weight women were sequenced. Focusing 

on the species level characterization of the four microbiome configurations (C1-C4), several 

differences were found, mainly involving 7 bacterial species: Faecalibacterium prausnitzii, 

Bifidobacterium adolescentis and B. bifidum, Subdoligranulum spp., Ruminococcus bromii, 

Eubacterium rectale, and Akkermansia muciniphila (Figure 4.10). Particularly noteworthy is 

the trend observed for F. prausnitzii, well-known for its anti-inflammatory properties (Santoru 

et al., 2017), whose relative abundance was particularly high in C1 – the microbiome 

configuration comprising mostly normal-weight women – and underwent a progressive 

decrease in relation to the severity of FA. On the other hand, Ruminococcus torques, a 

mucolytic bacterial species known to decrease gut barrier integrity (Cani et al., 2014), appeared 

to be significantly higher in C2 – including obese women with low FA – with respect to C1, 

and also widespread in obese women with high FA included within the configurations C3 and 

C4. Furthermore, the mucin degrader A. muciniphila was found to be particularly abundant in 

C3 and almost completely absent in C2, with C1 and C4 showing comparable levels of its 

relative abundance. The configuration C4 displayed also higher relative abundances of R. 

bromii, B. adolescentis and B. bifidum, the last two probably related to the greater consumption 

of cheese and milk derivatives as emerged from the analysis of dietary surveys.  

With the aim of investigating functional differences among microbiome metatranscriptomes 

with regards to the configurations C1-C4 (Figure 4.6), the frequency of reads mapped to the 

KEGG Orthology (KO) genes for amino acid and carbohydrate metabolism was investigated 

by applying the HUMAnN2 pipeline (Abubucker et al., 2012) to the same samples that 

underwent to metagenomic shotgun sequencing. 
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Figure 4.10. Species-level signatures of the microbiome configurations. Top, Barplots of the metagenomics profiles at the 

species level of the gut microbiome of the enrolled women, stratified according to the microbiome configurations (C1-C4) 

identified through hierarchical Ward linkage clustering (Figure 4.6). Bottom, Boxplots showing the distribution of the relative 

abundances of significantly enriched or depleted bacterial species between the study groups (Wilcoxon test). *: p value < 0.05; 

**; p value < 0.005; ***: p value < 0.0005. 

 

Figure 4.11. Metatrascriptome configuration of the genes involved in amino acid metabolism for samples belonging to 

the NeuroFAST cohort. The strong dependence of transcript number on underlying genomic copy number, was corrected 

producing and using the ‘relative expression’ measurements ‘RNA abundance/DNA abundance’ for each specific KO gene. 

The pathway abundances used to build these boxplots were computed for each sample considering the mean relative expression 

of the KO genes involved in each pathway. 
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Although no significant differences were found between the four microbiome configurations (p 

value > 0.05, Kruskal-Wallis test), an obesity-related increase in the number of reads for genes 

devoted to amino acids metabolism and biosynthesis with respect to normal-weight women was 

observed (Figure 4.11). In particular, these functional rearrangements provide an increased 

contribution of pathways involved in alanine, aspartate and glutamate metabolism in obese 

women, regardless of the FA severity. On the other hand, the configurations C3 and C4 – which 

mainly include obese women with high FA – showed a greater contribution of genes involved 

in phenylalanine, histidine, arginine and proline metabolism, as well as of genes devoted to 

lysine, phenylalanine, tyrosine and tryptophan biosynthesis. In particular, the catabolism of 

phenylalanine can produce trans-cinnamic acid and phenylethylamine by decarboxylation. 

Although little is known about these phenylalanine-derived metabolites, phenylethylamine is a 

neurotransmitter that functions as an ‘endogenous amphetamine’ (Marcobal et al., 2012). In 

terms of its production in the gut, phenylethylamine has been positively associated with Crohn's 

disease and negatively correlated with F. prausnitzii (Santoru et al., 2017). It is interesting to 

note that the latter trend is consistent with our previous observations on obese women following 

metagenomic analysis, especially for C4 configuration. 

Many studies have proposed several mechanisms by which changes in the composition of the 

GM could contribute to the development of obesity (Backhed et al., 2007; Samuel et al., 2008). 

One of these mechanisms concerns the modulation of energy expenditure through the oxidation 

of fatty acids and the accumulation of energy in the form of triglycerides. In fact, intestinal 

bacteria have been shown to alter fatty acid metabolism by promoting fat accumulation in the 

liver and fatty tissue of mice (Backhed et al., 2007). Other studies suggest a role for the GM in 

the modulation of nutrient absorption through the SCFA signaling action on two G-protein-

coupled receptors – Gpr41 and Gpr43 – expressed by intestinal epithelial and enteroendocrine 

cells, but also in adipocytes (Xiong et al., 2004; Samuel et al., 2008). These receptors, activated 

by SCFAs, induce the secretion of the intestinal hormones glucagon-like peptide-1 (GLP-1) 
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and peptide YY (PYY). PYY regulates intestinal motility that can influence the absorption of 

nutrients from the intestine, while GLP-1 regulates satiety (De Silva et al., 2012). Recent 

studies have also shown that overweight and obese individuals have higher fecal concentrations 

of SCFAs than their lean counterparts on a similar diet, confirming that colon fermentation also 

differs based on body weight in humans (Schwiertz et al., 2010; Teixeira et al., 2012).  

In conclusion, our data highlight the importance of the individual microbiome configuration as 

a mediator of the dietary impact on metabolic homeostasis and potentially reflecting eating 

behaviors. Our results pave the way for a new perspective, in which dietary recommendations 

and interventions for the treatment of obesity in subjects with food addiction can be specifically 

tailored based on the individual microbiome structure, with the specific aim of avoiding 

combinations of diet and microbiome configuration that could lead to altered metabolic 

functionalities and potentially stress altered eating behaviors.  
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Chapter 5 – A VERSATILE NEW MODEL OF CHEMICALLY INDUCED CHRONIC 

COLITIS USING AN OUTBRED MURINE STRAIN 

5.1 Brief introduction 

5.2 Materials and Methods 

5.3 Results and Discussion 

 

 

 

Murine colitis models are crucial tools for understanding intestinal homeostasis and 

inflammation (Martin et al., 2017b). Their use over recent years has resulted in an exponential 

growth of knowledge on host–bacteria interactions. The most common in vivo models use 

rodents, mimicking different types of colitis with the aim of testing how the microbiota affects 

colon inflammation. Based on their disease induction method, models can be classified as: (i) 

chemically induced colitis; (ii) bacterially induced colitis; (iii) spontaneous colitis (including 

congenital and genetically engineered forms); and (iv) adoptive-cell-transfer colitis (Martin et 

al., 2017b). All these models have advantages and disadvantages. For instance, the intrinsic 

similarities and differences between mice and humans as well as external factors (e.g. living 

conditions and diet) might influence the ability of murine models to represent disease-related 

changes that occur in human microbiota (Nguyen et al.,2015). Here, we focus on chemically 

induced colitis models, which recreate the morphological, histopathological, and clinical 

features of human inflammatory bowel diseases (IBD) by orally or intrarectally administering 

various chemical compounds (Randhawa et al., 2014). For example, colitis can be induced by 

giving rodents drinking water containing dextran sodium sulfate (DSS) (Wirtz et al., 2007), 

causing the complete loss of the surface epithelium in the intestine through its cytotoxic effects 

(Randhawa et al., 2014). The integrity of the mucosal barrier is therefore affected and large 

molecules can pass through, provoking colitis (Ni et al., 1996). Colitis can also be induced by 
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rectally injecting a haptenating agent dissolved in ethanol, which allows the agent to pass 

through the mucosal barrier. The agent is then thought to act upon autologous or microbial 

proteins in the colon, making them immunogenic to the host immune system (Wirtz et al., 

2007). The most commonly used haptenating agents are trinitrobenzene sulfonic acid (TNBS) 

and dinitrobenzene sulfonic acid (DNBS). Both TNBS and DNBS produce isolated points of 

inflammation and necrosis, as well as self-antigens that provoke immune responses (Elson et 

al., 2005). Although the models are similar, they are not identical: model functionality may 

vary, depending on host species identity and genetic background (Mizoguchi and Mizoguchi, 

2008; Mizoguchi, 2012). Traditionally, acute protocols are used, in which the DNBS/TNBS 

injection or DSS period is performed just once and the recovery phase is optional. However, 

because inflammation can be chronic, a more realistic model would employ a protocol in which 

colitis is reactivated at least once, thus mimicking flare-ups and relapses. Colitis development 

is evaluated using changes in body mass, clinical symptoms (e.g. diarrhea, constipation, and 

bloody feces), colon morphology, and histological features. Furthermore, because this form of 

colitis is clearly tied to the immune system, colon cytokine concentrations, lymphocyte levels, 

and myeloperoxidase (MPO) activity (indicator of neutrophil infiltration that reflects the local 

immune response) are helpful markers of colitis severity (Wirtz et al., 2007; Martin et al., 

2014a). Researchers use these models to identify and characterize candidate anti-inflammatory 

agents and test their effects on different IBD or other forms of intestinal mucosal inflammation. 

Such anti-inflammatory agents include for instance different type of molecules and also 

microorganisms known as probiotics. Probiotics are ‘live microorganisms that, when 

administered in adequate amounts, confer a health benefit on the host’ (Hill et al., 2014). At 

present, thanks to our improved knowledge of the human microbiota, candidate probiotics have 

been identified from among the dominant members of the gastrointestinal tract (GIT) 

microbiota found in healthy adults. They are referred to as next-generation probiotics (NGPs) 

and were originally identified as commensal bacteria species that can reestablish or enhance 
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colonization resistance (Pamer, 2016). However, this definition has been expanded rapidly to 

include more potential health benefits, overlapping with the emerging concept of live 

biotherapeutics (O’Toole et al., 2017). NGPs must be shown to be safe for the host; able to 

survive production, storage, and GIT transit; and elicit a positive host response that confers 

demonstrable health benefits (Martin et al., 2014b). Since these properties are strain specific, 

each candidate will have to be tested individually (Pineiro and Stanton, 2007; Hill et al., 2014; 

Miquel et al., 2015). In the normal sequence of events, these functional analyses involve 

preliminary in vitro testing and then preclinical in vivo testing in murine models, with the 

ultimate goal of performing clinical trials in humans. 

There are two main challenges in this process. First, it is necessary to reproduce the in vitro 

results in the in vivo models and, second, reproduce the in vivo results in clinical trials. The use 

of several in vitro markers and models has been proposed with the aim of linking in vitro results 

with in vivo results. For instance, it was recently suggested that the ratio of anti-inflammatory 

and pro-inflammatory cytokines (interleukin IL-10 and IL-12, respectively) produced by 

peripheral blood mononuclear cells (PBMCs) upon in vitro exposure to probiotic strains could 

be a predictor of protective effects in vivo in a chemically induced murine colitis model (Foligne 

et al., 2007). Nevertheless, in vivo interactions are much more complex than in vitro ones, and 

it is challenging to identify the best in vitro test for predicting the impact that a candidate anti-

inflammatory agent will have in vivo. The most widely accepted scientific strategy is to employ 

a combination of several in vitro tests. However, transferring murine results onto a human 

framework is a separate challenge because success depends upon how well effects in rodents 

translate into effects in humans. Indeed, past studies found that humans did not experience the 

beneficial effects of anti-inflammatory agents that were observed in a murine model of colon 

inflammation mimicking IBD. For example, a Lactococcus lactis strain secreting IL-10 was 

found to decrease DSS-induced colitis by 50%; however, humans treated with a biocontained 
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strain (thyA-/hIL-10+) did not experience beneficial effects in a phase II-A trial (Steidler et al., 

2000, 2003, 2009). 

Although this discordance in the results obtained in murine vs. humans could be due to their 

intrinsic differences (Nguyen et al., 2015), it could also be that researchers failed to carefully 

consider model suitability. At present, most models use an inbred strain of mice (individuals 

are genetically identical because of extensive inbreeding); furthermore, often only one sex is 

utilized to limit bias. However, this targeted approach itself introduces bias because it ignores 

natural genetic diversity and sex-related differences. As a result, it becomes even more difficult 

to extrapolate any knowledge gleaned from murine models to human populations. Here, our 

aim is to describe a versatile model of chemically induced chronic colitis that utilizes an outbred 

strain of mice and both females and males. The ultimate aim is establishing a more realistic 

model for effectively testing anti-inflammatory agents, for example probiotics, to better 

translate effects in rodents to effects in humans. 
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Chapter 5 – A VERSATILE NEW MODEL OF CHEMICALLY INDUCED CHRONIC 

COLITIS USING AN OUTBRED MURINE STRAIN 

5.1 Brief introduction 

5.2 Materials and Methods 

5.3 Results and Discussion 

 

 

 

Animals, experimental design, and sampling procedure 

We performed two trials looking at chronic colitis development in RjOrl:SWISS (CD-1) mice 

(Janvier, Le Genest Saint Isle, France) using C57BL/6JRj (Black-6) mice as control in the first 

trial (Table 5.1). The experiment was carried by duplicate in two different periods for each trial. 

In each period, 5 weeks-old mice were distributed into eight cages based on strain and sex (5 

mice/cage) and evenly assigned to control or treatment groups (one cage/experimental group). 

For each trial a total of 40 females and 40 males were used (two cage/experimental group, n=10 

mice per group) for a total of 160 mice used in all the study including both trials. Mice were 

maintained in the animal facilities of the French National Institute of Agricultural Research 

(IERP, INRA Jouy-en-Josas, France) under specific pathogen free (SPF) conditions at 21°C 

and housed in cages of 5. They were given food and water ad libitum and experienced a 12:12h 

light-dark cycle. Before the experiments began, animals were kept under these conditions for 1 

week to allow them time to acclimate. 

 

Table 5.1. Murine strains used in this study. 
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The experimental protocol for inducing chronic inflammation is illustrated in Figure 5.1. At 

week 6, mice were anesthetized using an intraperitoneal (i.p.) injection of 0.1% ketamine 

(Imalgene 1000, Merial) and 0.06% xylazine (Rompun, Bayer) (Figure 5.1B1). Colitis was 

induced using DNBS (Sigma-Aldrich) resuspended in 50 μl of 30% ethanol (EtOH) in PBS. In 

the first experiment, we wanted to compare inflammation between the two mouse strains 

(Black-6 is the classical inbred murine strain typically used in these types of experiments). 

Animals in the treatment group were injected twice with 200 mg/kg of DNBS, which 

corresponds to 2.7, 3, 4.1, and 4.3 mg/mouse for Black-6 females and males and CD-1 females 

and males, respectively (Table 5.2). In the second experiment, in order to obtain different 

degrees of colitis severity in CD-1 mice, the DNBS dose was therefore modulated the in the 

treatment groups accordingly. Doses were fixed at 1.5, 2.5, and 3.5 mg/mice, irrespective of 

mouse mass or sex (Table 5.2).  

 

Table 5.2. Dinitrobenzene sulfonic acid 

doses employed in this study. 

 

 

 

 

In both experiments, the DNBS solution was administered on day 1 by injection with a 

tuberculin syringe (Terumo) and a flexible plastic probe (model V0104040, ECIMED) inserted 

3.5 cm into the colon (Figure 5.1B2). Control groups were injected with equivalent amounts of 

the 30% EtOH solution. All mice received a subcutaneous injection of 1 ml of saline solution 

(0.9% NaCl) to prevent dehydration (Figure 5.1B3). Mice were kept in a horizontal position 

until they awoke (Figure 5.1B4). These saline injections were repeated daily for the first 3 days 

(no anesthesia). In this model, colitis develops in the first 3 days following the DNBS injection. 
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During this activation period, the mice lost significant body weight. Mice were allowed to 

recover for 18 days and then received a second DNBS injection at day 21, reactivating 

inflammation. During this reactivation period, mice lost weight until the experiment’s endpoint; 

no saline injections were performed because they could have affected body mass values at the 

endpoint. Mice were constantly monitored for the duration of the experiment, but especially so 

during the first 3 days after the DNBS injections. The model we employed in this study is a 

chronic colitis model because we used two DNBS injections: the first injection induces colitis, 

a recovery period follows, and then the second injection initiates a reactivation period. Classical 

acute models utilize a single injection, and colitis induction may or may not be followed by a 

recovery period. On day 24, blood samples were collected from the submandibular vein, and 

mice were euthanized by cervical dislocation. The abdomen was then sterilized with 70% 

EtOH, the abdominal cavity was opened to collect the spleen and the mesenteric lymph nodes 

(MLNs), and the entire large intestine was removed. Bowel length was measured, and a small 

portion of distal colon was immediately placed in a 4% paraformaldehyde (PFA, Prolabo) PBS 

solution for later histological analyses. The intestine was then cut open longitudinally, and the 

tissue was washed with saline solution after removing the contents. Colon sections of 1 cm 

were collected and immediately frozen in liquid nitrogen. All procedures were performed in 

accordance with European Union (EU) rules on ethical animal care (Directive 2010/63/EU) and 

were approved by the French Ministry of Research and COMETHEA, the animal ethics 

committee at INRA Jouy-en-Josas (authorization #3445-2016010615159974). 
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Figure 5.1. Experimental design (A) and key methodological steps (B). Mice were anesthetized with an intraperitoneal (i.p.) 

injection of ketamine and xylazine (B1). The DNBS solution or the control solution was administered by injection, using a 

tuberculin syringe and a flexible plastic tube inserted 3.5 cm into the colon (B2). Following the treatment, all mice received a 

subcutaneous injection of 1 ml of saline solution to prevent dehydration (B3); they were kept in a horizontal position until they 

awoke (B4). 

 

 

Weight trend and survival rate 

In both trials, mice were carefully monitored. Their body mass was measured daily throughout 

the entire experimental period. Saline solution was administered when there was significant 

loss of body mass to prevent dehydration. In accordance with EU regulations (Directive 

2010/63/EU), if mice lost 20% or more of their initial mass and/or showed signs of severe 

distress, they were euthanized and their id numbers were recorded. Percentage loss of body 

mass was calculated 3 days after each DNBS injection to compare results among groups. 
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Macroscopic scores 

Dinitrobenzene sulfonic acid-induced chronic inflammation is usually visible at the 

macroscopic level, and inflammation intensity can be evaluated by measuring different 

parameters, like mucosal damage in colon tissue and stool consistency. In both trials, 

macroscopic scores were determined using Wallace’s score (Wallace et al., 1989), with the 

following modifications: tissue sections from each mouse were scored by evaluating ulcerations 

(score of 0-5), adhesions (presence/absence: 0/1), hyperemia (presence/absence: 0/1), altered 

transit, such as diarrhea or constipation (presence/absence: 0/1), and increases in colon wall 

thickness (presence/absence: 0/1; measured using an electronic caliper, Control Company, 

WVR, United States) (Table 5.3). Although colon length is not typically part of the macroscopic 

score in these types of models, it was also recorded (see above). 

 
Table 5.3. Macroscopic score. 

 

 

 

 

 

 

Histological scores 

In both trials, the tissues collected for the histological analyses were fixed for 24 h in a 4% 

paraformaldehyde (PFA) solution and then transferred to 70% EtOH. After 24-48 h, the tissues 

were gradually dehydrated by soaking for 1 h each in 80% EtOH, 90% EtOH, 100% EtOH, and 

xylene in an automated tissue processer (Leica Biosystem). Samples were embedded in paraffin 

using a tissue embedding system (Leica), cut into 5-μm sections using a microtome (UC6, 

Reicher E - Leica UC6), and then stained with hematoxylin and eosin (HE) for histological 

scoring using an automated staining system (Leica). All these procedures were performed 
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following conventional methodologies by the histological platform of the GABI Joint Research 

Unit (INRA, Jouy-en-Josas). Tissues were visualized using a high-capacity digital slide scanner 

(3DHISTECH Ltd.) and Panoramic and Case software (3DHISTECH Ltd.). For each animal, 

at least three tissue sections were evaluated to characterize alterations in mucosal architecture, 

the degree of immune cell infiltration, and Goblet cell depletion (Ameho score: 0-6) (Ameho 

et al., 1997). 

 

Myeloperoxidase activity and cytokine levels 

In the second trial, to measure myeloperoxidase (MPO) activity, a 1-cm section of colon tissue 

from each mouse was weighed and homogenized with Precellys (Bertin Corp.) in 300 μl of a 

0.5% hexadecyltrimethyl-ammonium bromide (HTAB, Sigma-Aldrich) solution in 50 mM 

potassium phosphate buffer (PPB, pH 6.0); 0.35-0.40 mg of 1.4 and 2.8 mm ceramic beads 

(Ozyme) were added. Each sample was then vortexed for 10 s, centrifuged at 13,000 × g and 

4°C for 10 min, and then transferred to a 96-well plate. To assay MPO activity, 50 μl of each 

aliquot was mixed with 200 μl of 50 mM PPB (pH 6.0) containing 0.167 mg/ml of o-

dianisidine-dihydrochloride (Sigma-Aldrich) and 0.0005% hydrogen peroxide (H2O2, Sigma-

Aldrich). The colorimetric reaction was measured by reading absorbance at 405 nm with a 

spectrophotometer (Infinite M200, Tecan) at two-time points: immediately and after 1 h. MPO 

activity was characterized by comparison with a standard (MPO activity of human 

polymorphonuclear leukocytes, Merck Chemicals) and then expressed in units/mg of tissue. 

One activity unit represents the conversion of 1 μM of H2O2 to water in 1 min at room 

temperature. To measure cytokine levels, 25 μl of each aliquot or 25 μl of serum were 

transferred to a 96-well plate. We quantified concentrations of IFN-γ, IL-5, TNFα, IL-2, IL-6, 

IL-4, IL-10, IL-9, IL-17A, IL-17F, IL-21, IL-22, and IL-13 using a cytometric bead array 

system, the Mouse Th Cytokine Panel (13-plex; BioLegend), in accordance with manufacturer 

instructions. 
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Lymphocyte populations in the spleen and mesenteric lymph nodes 

In the second trial, cell suspensions were obtained by mechanically extruding the spleen and 

MLNs using the plunger end of a syringe and a 75-μm nylon cell strainer (BD). Cells were 

washed through the strainer using 1 ml of Dulbecco’s Modified Eagle’s Medium (DMEM, 

Gibco) supplemented with 10% fetal bovine serum (FBS, Gibco) and 1% 

penicillin/streptomycin (PS, Lonza). The red blood cell lysing buffer Hybri-Max (Sigma-

Aldrich) was used to lyse the erythrocytes present in the cell suspension isolated from spleen, 

in accordance with manufacturer instructions. For each sample, aliquots of 106 cells were 

transferred to two 96-well plates (Greiner). Following standard protocols, cells were stained 

with anti- CD4-FITC, anti-CD3e-PE, anti-T-bet-APC, and anti-Gata3-PerCP as well as with 

anti-CD4-FITC, anti-CD3e-PerCP, and anti-Foxp3-PE, both stainings were performed in the 

presence of CD16/CD32 (all products came from eBioscience) to avoid unspecific staining. In 

brief, the cells were washed with PBS and incubated for 30 min with 0.5 μg of purified anti-

mouse CD16/CD32 and surface antibodies (anti-CD4, anti-CD3) in PBS with 10% FBS and 

1% sodium azide (Sigma-Aldrich). Intracellular staining was performed as follows using the 

Foxp3 Transcription Factor Staining Buffer Kit (eBioscience) in accordance with manufacturer 

instructions. Briefly, samples were washed with PBS and incubated for 20 min with a 

permeabilization/fixation buffer. They were then stained with intracellular antibodies (anti-T-

bet-APC and anti-Gata3-PerCP or anti-Foxp3-PE) in permeabilization buffer over a period of 

30 min. Samples were subsequently washed in permeabilization buffer, resuspended in PBS, 

and analysed using an Accuri C6 cytometer (BD). The data obtained from the cytofluorimetric 

analysis were processed using CFlow Sampler software (BD). 
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Gastrointestinal tract permeability 

In the second trial, 0.6 mg/g of fluorescein isothiocyanate-dextran 4 (FITC-dex 4; Sigma-

Aldrich) dissolved in PBS was administered intragastrically to each mouse. Blood samples were 

collected after 3.5 h as described above, and 80 μl of serum was transferred to a 96-well black 

plate (Greiner). The concentration of FITC-dex 4 was determined using fluorescence 

spectrophotometry (excitation: 488 nm; emission: 520 nm; Infinite M200, Tecan); serially 

diluted FITC-dextran was the standard (range: 0–12,000 μg/ml). 

 

Statistics 

Statistical analyses were performed using GraphPad (GraphPad Software, San Diego, CA, 

United States). Survival curves analyses have been performed by Logrank test (Mantel Cox). 

For weight curves, a multiple unpaired T-test was performed per day with fewer assumptions 

corrected for multiple comparison with Holm-Sidak method. Normality and variance analysis 

were performed using Shapiro-Wilk normality test and one-way ANOVA (Brown-Forsythe 

test), respectively. For normal samples (Gaussian distribution) with equal variances two-way 

ANOVA has been performed to compare the effect of the strain and the dose for the first trial 

and of the sex and the dose for the second trial; multiple comparisons were carried out using 

Tukey’s test. For non-normal samples or/and with unequal variances non-parametric tests have 

been performed inside the groups (Kruskal-Wallis test); multiple comparisons were carried out 

using Dunn’s test. P value < 0.05 were considered statistically significant.  
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Chapter 5 – A VERSATILE NEW MODEL OF CHEMICALLY INDUCED CHRONIC 

COLITIS USING AN OUTBRED MURINE STRAIN 

5.1 Brief introduction 

5.2 Materials and Methods 

5.3 Results and Discussion 

 

 

 

CD1 mice are susceptible to DNBS-induced chronic colitis 

To design a murine model that will better predict results in humans, it is crucial to consider the 

real-life context of the target disease. IBD, including Crohn’s disease (CD) and ulcerative colitis 

(UC), are characterized by an abnormal activation of the gut immune system, which results in 

local chronic inflammation. Throughout their lives, patients with these diseases display active 

and inactive phases of variable duration that result in successive periods of relapse and 

quiescence. A good murine model must account for these disease dynamics. To trigger immune-

mediated inflammation, it is possible to use haptenating agents, chemical compounds typically 

dissolved in ethanol. The ethanol allows the compounds to pass through the mucosal barrier. 

They then act upon either autologous or microbial proteins in the colon, rendering them 

immunogenic and thus provoking the abnormal activation of the immune system (Wirtz et al., 

2007). As mentioned above, DNBS is one of the most common haptenating agents (Martin et 

al., 2017b); it consistently induces chronic inflammation (Martin et al., 2014a). Most murine 

models of colitis use inbred strains, such as C57BL/6JRj (Black-6), and only employ males or 

females with the purported goal of limiting bias. However, this approach makes it problematic 

to transfer results to humans because representation of natural diversity in the mouse population 

is poor. Here, we wished to develop a more realistic murine colitis model, and we thus focused 

on three improvements to classical models: (i) mimicking the chronic nature of the disease; (ii) 
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accounting for normal genetic variability by using outbred mice; and (iii) employing both 

female and male mice. More specifically, we used DNBS to chemically induce chronic 

inflammation in females and males of an outbred murine strain (RjOrl:SWISS [CD-1]) 

following the protocol described in Figure 5.1. 

In our first trial, we compared inflammation patterns in CD-1 and Black-6 mice; the latter is 

the inbred murine strain traditionally used in colitis models. We induced initial inflammation 

and then relapse by sequential injections of 200 mg/kg of DNBS; the dosage was thus mass 

calibrated. We observed that, although CD-1 mice were heavier than Black-6 mice (mean body 

mass: 29.9 g and 20.1 g, respectively), they were also more sensitive to inflammation in a 

significant way as observed in the survival curves (p value = 0.0048, Log-rank test). In fact, the 

mortality rate was 5% for Black-6 mice (0% for females and 10% for males) and 45% for CD-

1 mice (50% for females and 40% for males) (Figure 5.2A). Survival curves analyses using 

Log-rank test also showed that the differences were also significant when sex differences were 

considered (p value = 0.03). Nevertheless, no statistical significant sex-related differences were 

found inside the different strains (p value = 0.7 and 0.3 for CD-1 and Black-6 mice, 

respectively), supporting the accurateness of pooling female and male individuals. The pattern 

was the same when evaluating body mass (Figures 5.2B-D). CD-1 mice lost more body mass 

after the first and second injections than did Black-6 mice, being this effect more persistent 

during reactivation (Figure 5.2C). This effect was stronger in CD-1 females than in CD-1 males, 

indicating they are more sensitive to DNBS-induced colitis (Figures 5.2B,C). In Black-6 mice, 

the pattern was reversed: females lost less body mass than did males (Figures 5.2C,D). Two-

way ANOVA analyses of inflamed mice showed the presence of strain effect (p value = 0.0002) 

as well as interaction between sex and strain factors (p value = 0.0021), confirming the 

differences observed. Furthermore, a delay at the beginning of the recovery period was 

observed in CD-1 mice, while Black-6 mice started to recover at days 2-3, CD-1 mice began at 

day 4 (Figures 5.2B,D). Three days after the second DNBS injection, all the mice were 
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sacrificed, and their colons were recovered for sampling and scoring. The macroscopic scores, 

which took into account the presence of ulcers, adhesions, hyperemia, altered transit, and colon 

wall thickness, provided complementary evidence that CD-1 mice were more sensitive than 

Black-6 mice to inflammation (Figure 5.3A). The sex-specific patterns in macroscopic scores 

mirrored those seen for body mass: CD-1 females had higher scores than did CD-1 males, 

indicating greater sensitivity, and Black-6 females had lower scores than did Black-6 males, 

indicating lesser sensitivity or a failure of colitis induction (see next paragraph). Histological 

scoring yielded similar results (Figure 5.3B). Of note, levels of eosinophils were higher in CD-

1 mice than in Black-6 mice (Figures 5.3C,D). Traditionally, the dosage of the haptenating 

substance is based on body mass. However, because Black-6 females and males differed 

dramatically in mass (mean body mass: 17.8 and 22.3 g, respectively), this approach may have 

been inappropriate. Black-6 females received lower doses of DNBS because of their lighter 

mass, and that dose might have been too low to trigger inflammation. Nonetheless, it is difficult 

to conclude if the lack of inflammation was due to the low DNBS dose and/or to a possible 

difference in sensitivity between females and males. However, significant sex-specific 

differences in body mass were also observed in CD-1 mice (mean body mass for females and 

males: 27.6 and 32.2 g, respectively), and females were clearly more sensitive than males to 

inflammation. Because standard deviation values were not very large, it was possible to pool 

females and males for most of the characteristics analysed (Figures 5.2C, 5.3A,B). 

Ultimately, one of the goals of murine colitis models is to test the efficacy of candidate anti-

inflammatory agents, including probiotics. Using the model described here, we would expect 

effective treatments to result in an improvement in inflammation-related symptoms. More 

specifically, mortality rates should decline, body mass should recover more quickly, and 

macroscopic and histological scores should be lower. The degree of improvement would be 

proportional to agent efficacy, but it would not necessarily reveal the mechanisms involved. An 

important caveat is that the underlying mechanism for DNBS-induced colitis is abnormal 
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stimulation of the immune system. As a result, the model is not suitable for testing certain anti-

inflammatory agents. For instance, probiotics, molecules or others that provide functional 

benefits unrelated to inflammation, such as excluding pathogens or modulating metabolic 

processes, could not be properly tested using this model. 

 

 

 

 

Figure 5.2. Survival rate (A) and body mass trends in CD-1 (B) and Black-6 (D) mice, and loss of body mass after second 

DNBS injection (C). For the survival rate analysis Logrank test (Mantel Cox) was performed. For weight curves, a multiple 

unpaired T-test was performed per day with fewer assumptions corrected for multiple comparison with Holm–Sidak method, 

(∗) indicates significance vs. vehicle group and (#) significance between female and male individuals in DNBS treated groups. 

n = 10; p value < 0.05. For the weight loss analyses, due to the lack of uniform variances when included the vehicle groups, 

two-way ANOVA was performed only in inflamed groups with strain and sex as factors followed by a Tukey test (results 

indicated as ∗). In order to compare the effect of the DNBS vs. the vehicle groups, a non-parametric Kruskal–Wallis test 

followed by a Dunn’s test was performed inside CD-1 and Black 6 groups separately (results indicated as +). n = 10; *: p value 

< 0.05; ∗∗∗∗: p value < 0.0001; +: p value < 0.05; ++: p value < 0.01; ++++: p value < 0.0001. The black arrows indicate the 

moment when mice started to recover weight after the first DNBS injection. B6M, Black-6 males; B6F, Black-6 females; 

CD1M, CD-1 males; CD1F, CD-1 females; B6 M+F, Black-6 mice; CD-1 M+F, CD-1 mice. 



 126 

 

Figure 5.3. Macroscopic (A) and histological scores (B) and representative images of Black-6 mice (C) and CD-1 mice 

(D). As both scores do not follow a Gaussian distribution, in order to compare the effect of the DNBS vs. the vehicle groups, 

a non-parametric Kruskal–Wallis test followed by a Dunn’s test was performed inside CD-1 and Black 6 groups separately 

(results indicated as ∗). The same test was performed for testing differences among inflamed groups (results indicated as +). n 

= 10; ∗∗∗∗: p value < 0.0001; +: p value < 0.05. The black arrows indicate eosinophils. B6M, Black-6 males; B6F, Black-6 

females; CD1M, CD-1 males; CD1F, CD-1 females; B6 M+F, Black-6 mice; CD-1 M+F, CD-1 mice. 
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Chronic colitis severity in CD-1 mice can be modulated using DNBS dosage 

Once we had verified that CD-1 mice were good candidates for developing a murine model of 

chronic colitis, we performed a second experiment in which we modulated DNBS dose to obtain 

different degrees of colitis severity. This experiment allowed us to better characterize the model 

and to gather data that, in future studies, will clarify the appropriate DNBS dosage depending 

on agent type, presumed agent efficacy, and target disease. We tested three different doses of 

DNBS – 1.5, 2.5, and 3.5 mg per mouse – based on findings from comparative experiments 

with Black-6 mice in the first trial, where a dose of around 4 mg per mouse resulted in a high 

mortality rate. Furthermore, the doses were not calibrated for body mass because the results 

from the first experiment showed that smaller doses might not produce sufficient inflammation, 

and that there are probably sex-related differences in DNBS sensitivity. 

In the second experiment, mortality rates were lower: only two female mice, given a dose of 

3.5 mg, died. As expected, after both DNBS injections, a dose-dependent effect on body mass 

was observed (Figures 5.4A,B). It is worth noting that loss of body mass was similar in females 

and males given the same dose. Taken together, these results suggest that CD-1 females are 

more sensitive to severe and severe-to-moderate inflammation (50% mortality at 4 mg of DNBS 

and 20% mortality at 3.5 mg); however, this sensitivity was not manifest when inflammation 

was moderate or low. A similar dose-dependent effect was seen in the macroscopic and 

histological scores (Figures 5.4C,D). Furthermore, the observed standard deviations were 

small, indicating that both sexes could be pooled in analyses. 
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Figure 5.4. Response of CD-1 mice to colitis induced by different doses of DNBS. Body mass trends (A), loss of body mass 

after the first DNBS injection and the second DNBS injection (B), macroscopic (C) and histological scores (D) and in vivo 

permeability (E). For weight curves, a multiple unpaired T-test was performed per day with fewer assumptions corrected for 

multiple comparison with Holm–Sidak method, (∗) indicates significance vs. vehicle group. n = 10; p value < 0.05. No Gaussian 

data comparisons (loss of body mass and macro and histological scores) were performed using a non-parametric Kruskal-

Wallis test followed by a Dunn’s test (results indicated as ∗). For the permeability analyses, two-way ANOVA was performed 

with dose and sex as factors followed by a Tukey test (results indicated as +). CD-1 males (M, in blue) and CD-1 females (F, 

in orange). n = 10; ∗: p value < 0.05; ∗∗: p value < 0.01; ∗∗∗: p value < 0.001; +: p value < 0.05. 
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DNBS-induced chronic colitis in CD-1 mice modifies intestinal permeability, colon 

cytokine levels, and lymphocyte populations in the spleen and mesenteric lymph nodes 

As mentioned above, this murine model can be useful in two ways. First, the model’s general 

metrics such as loss of body mass, macroscopic scores, and histological scores could reveal the 

efficacy of potential treatments (e.g. anti-inflammatory compounds or probiotic strains). 

Second, the model could also help decipher the mechanisms underlying any positive effects. 

Because our model induces colitis using DNBS, it is best suited for examining 

immunomodulatory properties. For example, DNBS-provoked inflammation in Black-6 mice 

appears to arise from such mechanisms as altered gut barrier permeability and the activation of 

specific immune responses (Martin et al., 2014a). Consequently, this model could be used by 

researchers to study the specific effects of candidate anti-inflammatory agents on gut 

permeability and the immune system. Nevertheless, it is not possible to describe the expected 

results to be obtained when testing an anti-inflammatory agent as they will depend on their 

mechanisms of action. Such permeability alterations are also present in CD-1 mice with DNBS-

induced colitis (Figure 5.4E). Dysfunction of the epithelial barrier is a hallmark of inflammatory 

intestinal diseases. GIT permeability can be characterized by orally administering the 

paracellular tracer FITC-dextran. This technique reveals the degree of colon permeability and 

has been successfully linked to directly measure alterations in local permeability in colon 

tissues employing Ussing chambers (Martin et al., 2015). In this study, GIT permeability was 

modified in CD-1 mice challenged with different doses of DNBS (trial 2). Two-way ANOVA 

analysis showed that there is a dose effect (p value = 0.03), although no sex effect or interaction 

between both factors have been found (p value = 0.9, respectively). Even if there was a clear 

response in males and females at the highest DNBS concentration tested (p value < 0.005), 

basal permeability appears to be high, necessitating a strong dose of DNBS to obtain results 

(Figure 5.4E). These findings suggest that it may be problematic to use CD-1 mice to 

characterize permeability using moderate or low-grade inflammation models. However, we 
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must interpret the results with caution since there is the possibility that permeability might be 

altered at other points along the GIT. 

DNBS-induced chronic colitis might change levels of several cytokines in CD-1 mice (Figures 

5.5, 5.6), confirming the generally dose-dependent nature of the inflammation response. We 

observed IL-9, IL-10, IL-17A, TNFα, IL-2, IL-17F, IL-6, and IL-4 variations in the colon 

samples (Figure 5.5) and TNFα and IL-6 in the serum samples (Figure 5.6). Two-way ANOVA 

analyses revealed dose-dependent responses for IL-2, IL-9, IL-10, TNFα IL-6, IL-17A, and IL-

17-B and sex influence on IL-4, IL-10, and serum IL-6 (p value < 0.005). IL-10 is an important 

immunoregulatory cytokine that reduces inflammation by suppressing the exaggerated mucosal 

immune response in the colon (Schreiber et al., 2000), thus preserving the mucus barrier 

(Hasnain et al., 2013), and represent a cytokine of reference in almost all murine colitis models. 

Similarly, we observed a decline in IL-9, IL-2, and IL-4 levels. IL-9 controls intestinal barrier 

function (Gerlach et al., 2015), IL-2 is a potent inducer of T-cell proliferation and drives T-

helper 1 (Th1) and Th2 effector T-cell differentiation (Hoyer et al., 2008), and IL-4 has exhibit 

anti-inflammatory properties through stimulation of alternative macrophages (M2s). In contrast 

to classical macrophages (M1s), M2s participate in a Th1-polarized response and enhance the 

production of pro-inflammatory cytokines, ultimately counteracting inflammation and 

promoting tissue repair (Goerdt et al., 1999; Gordon, 2003; Mantovani et al., 2007). In this 

sense, neutrophil activation, measured by myeloperoxidase (MPO) activity, reveal a week 

activation of neutrophils as MPO activity was similar for CD-1 mice that those in Black-6 mice 

treated with low doses of DNBS (Martin et al., 2015; data not shown). As neutrophils are 

involved in inflammation, macrophage recruitment and M2s differentiation this result point 

also for a slight Th1 response in CD-1 mice. On the other hand, we saw an increase in IL-17A, 

IL-17F, IL-6, and TNFα, underscoring that pro-inflammatory responses were occurring as well 

(Gabay, 2006; Bradley, 2008; Jin and Dong, 2013). The results for IFN-γ highlight that mouse 

strain matters: IFN-γ is a pro-inflammatory cytokine that plays a central role in DNBS-induced 
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inflammation in Black-6 mice (Martin et al., 2014a), but that seemed to have the opposite effect 

in CD-1 mice (Figures 5.5, 5.6). Consequently, it appears that DNBS and TNBS can elicit a 

Th1-mediated immune response (Randhawa et al., 2014) but that model functionality may vary 

depending on the host species and its genetic background (Mizoguchi and Mizoguchi, 2008; 

Mizoguchi, 2012). For instance, when treated with these compounds, SJL/J mice displayed a 

major Th1-mediated response (Neurath et al., 1995, 1996), while IFN-γ-/- mice with a Balb/c 

background showed a Th2-mediated response (Dohi et al., 1999). In our study, to identify the 

major Th cell lines involved in the response of the CD-1 mice, T-cells from the spleen and 

MLNs were isolated and analysed using flow cytometry. Several differences were found 

between male and female mice (Figure 5.7). CD-1 males had a weak response, and a slight 

increase in CD3/CD4 cells in both the spleen and MLNs was observed.  

CD-1 females had a different, stronger response: CD3/CD4 cells decreased in the spleen and 

increased in the MLNs (Figure 5.7). Furthermore, CD-1 females had diminished Th2 and Treg 

levels in both the spleen and MLNs (revealed by GATA-3 and Fox-p3 staining, respectively). 

In contrast, males displayed slightly increased Th2 levels in the spleen alone (Figure 5.7). These 

results, taken in tandem with the high levels of eosinophils (Figure 5.3) suggest that the Th2 

response played a major role in CD-1 mice. The Th1 response, measured using T-bet staining, 

was not strong enough to be detected (data not shown). These findings indicate that, in future 

studies, it may be better to use females when testing for immunomodulation by candidate 

probiotics in vivo, especially if in vitro trials indicate that the mechanism of action involves 

changes in IL-10 production; IL-10 is produced by Treg cells, among others. However, it is 

necessary to broadly examine cytokine production and lymphocyte levels to fully clarify the 

mechanisms of action of any anti-inflammatory agent.  

Overall, our findings allow us to recommend this model to test anti-inflammatory agents, 

including probiotics. We strongly recommend performing the experiment at least in duplicate 

with a minimum of 10 mice per group. Nevertheless, this is a minimum, as the efficacy of the 
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agent tested will determine the number of mice required to have statistical significant results. 

The use of 3.5 mg seems the better choice, however, as the dose-effect observed is usually 

animal facility-dependent, a preliminary study to optimize the dose is mandatory. 

 

 

 

Figure 5.5. Colon levels of cytokines induced by different doses of DNBS in CD-1 mice. Analyses were performed by two-

way ANOVA with dose and sex as factors followed by a Tukey test. CD-1 males (M, in blue) and CD-1 females (F, in orange) 

injected with vehicle (v), 1.5 mg (1.5), 2.5 mg (2.5), or 3.5 mg (3.5) of DNBS. n = 10; +: p value < 0.05, ++: p value < 0.01, 

+++: p value < 0.001. 
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Figure 5.6. Serum levels of cytokines induced 

by different doses of DNBS in CD-1 mice. 

Analyses were performed by two-way ANOVA 

with dose and sex as factors followed by a Tukey 

test. CD-1 males (M, in blue) and CD-1 females 

(F, in orange) injected with vehicle (v), 1.5 mg 

(1.5), 2.5 mg (2.5), or 3.5 mg (3.5) of DNBS. n = 

10; +: p value < 0.05; ++: p value < 0.01; +++: p 

value < 0.001. 

 

 

 

 

 

 

Figure 5.7. Levels of lymphocytes induced by 

different doses of DNBS in CD-1 mice. 

Lymphocyte populations were characterized 

using flow cytometry. Analyses were performed 

by two-way ANOVA with dose and sex as 

factors followed by a Tukey test. CD-1 males 

(M, in blue) and CD-1 females (F, in orange) 

injected with vehicle (v), 1.5 mg (1.5), 2.5 mg 

(2.5), or 3.5 mg (3.5) of DNBS. n = 10; +: p value 

< 0.05; ++: p value < 0.01; +++: p value < 0.001. 
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In the present work, we describe a murine model of chronic colitis in which inflammation was 

induced by the intrarectal administration of DNBS. This versatile and innovative model 

involves the use of an outbred murine strain, CD-1, employing both male and female mice. 

Ultimately, our aim is to make this model available to researchers who are testing the efficacy 

of anti-inflammatory agents, including probiotics (mainly NGP), with immunomodulatory 

properties. The model could also serve to identify the potential mechanisms of action of the 

anti-inflammatory agent. Indeed, our goal is to provide the scientific community with a realistic 

alternative model to test the efficacy of anti-inflammatory agents, such as candidate probiotics 

– a model that can be customized based on agent type and target disease. We showed that it is 

possible to use an outbred murine strain without reproducibility problems, and that females and 

males can be grouped to yield more representative results for some features. However, 

combining results for the two sexes should be performed with caution, as evidence of sex-

specific sensitivity to severe inflammation protocols, as well as sex-specific differences in some 

of the measured characteristics were observed. 
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Chapter 6 – CONCLUDING REMARKS 

 

The present work focused on the exploration of gut microbiome variations throughout the 

human life, with the aim of shedding light especially on the functional aspects related to 

eubiosis and dysbiosis in Western diseases, and on the development of a versatile murine model 

of intestinal inflammation to better explore the transition towards dysbiotic layouts. 

In order to provide some glimpses on the functional changes that occur in the human gut 

microbiome across life up to extreme longevity, we characterized by shotgun sequencing the 

fecal microbiomes of centenarians and semi-supercentenarians in comparison to younger 

individuals. The obtained profiles showed a peculiar remodeling in microbial gene functions 

along with the ageing process, characterized by an increased potential for xenobiotic 

degradation and a rearrangement in metabolic pathways related to carbohydrate, amino acid 

and lipid metabolism. Being particularly exacerbated in later stages of life, these microbiome 

features probably reflect the progressive changes occurring in diet and lifestyle along with 

ageing in Western urban areas.  

Tracing back to aspects related to human evolution and dietary habits, we unravel the potential 

multiple health benefits of adopting a modern Paleolithic diet (MPD) to modulate the Western 

gut microbiome towards a more ‘ancestral’ configuration, counterbalancing the effects of diets 

low in fiber while rich in industrialized and processed foods. Interestingly, the gut microbiome 

of individuals following MPD were characterized by an unexpectedly high degree of 

biodiversity, which well approximates that of traditional populations, suggesting the 

contribution of this peculiar dietary intervention in partially rewild the microbial ecosystem – 

a hallmark of healthy gut.  

Focusing on the dysbiotic variations associated with non-communicable diseases (NCDs), we 

investigated the link between diet, intestinal microbiome and obesity in Western cohorts. 

Considering the increasing prevalence of obesity in children and the related risks of developing 
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cardiovascular risks factors during adulthood, we aimed at identifying early markers and 

individual microbiome-host-diet configurations as a potential predictor related to the onset of 

the disease during childhood, through a 4-years prospective study.  

While many adult individuals manage to maintain a healthy weight, obese individuals have 

been shown to have a preference for energy-dense palatable and fattening foods, ultimately 

considered to be addictive. Moreover, similarities between some feeding and eating disorders 

and substance-use disorders (SUDs) have been acknowledged, including the experience of 

cravings, reduced control over intake, increased impulsivity and altered reward-sensitivity. 

With the aim of unravel specific bacterial groups and metabolic activities potentially involved 

in the development of obesity and possibly related to food addiction, we characterize the 

microbiome configurations of 100 women, stratified according to body mass index (BMI) and 

the severity of food addiction. Metagenomics and metatranscriptomic approaches were adopted 

for describing obese-related GM layouts at species level, as well as providing functional 

information on the active fraction of the microbial ecosystem.  

The transition towards a dysbiotic microbiome structure and its association with various 

diseases have made the microbiome a strategic therapeutic target, laying the basis for the 

development of a wide range of microbiome-tailored intervention strategies aimed at restoring 

eubiotic, health-promoting layouts. Considering the suitability of murine colitis models as tools 

for better understanding intestinal homeostasis and inflammation, we developed a versatile 

murine model that reflects the high heterogeneity of genetic diversity and sex-related 

differences observed in humans. In particular, we chemically induced colon inflammation in an 

outbred strain of female and male mice (RjOrl_SWISS [CD-1]), mimicking the chronic nature 

of colitis forms as those occurring with infalammatory bowel disease (IBD). The development 

of this murine model may provide researchers with a versatile tool for studying the role of the 

gut microbiome in the onset and progression of NCDs, as well as for testing and validating 
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candidate anti-inflammatory agents and/or new microbiome modulators such as classic or next-

generation probiotics, before their use in clinical practice. 
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