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Abstract

Population ageing is set to become one of the most significant challenges of
the 21st century, with implications for almost all sectors of society. Especially
in developed countries, governments should immediately implement policies
and solutions to facilitate the needs of an increasingly older population. Am-
bient Intelligence (AmI) and in particular the area of Ambient Assisted Living
(AAL) offer a feasible response, allowing the creation of human-centric smart
environments that are sensitive, adaptive and responsive to the needs, habits
and behaviours of the user. These intelligent environments aim to enhance
the quality of life of the elderly in a domestic context, increasing their au-
tonomy and reducing their dependence on the healthcare system. In such a
scenario, understand what a human being is doing, if and how he/she is inter-
acting with specific objects, or whether abnormal situations are occurring is
critical. This thesis is hence focused on two related research areas of AAL: the
development of innovative vision-based techniques for human action recog-
nition and the remote monitoring of users behaviour in smart environments.
The former topic is addressed through different approaches based on data
extracted from RGB-D sensors. A first algorithm exploiting skeleton joints
orientations extracted from Microsoft Kinect is proposed. This approach is
then extended through a multi-modal strategy that includes the RGB chan-
nel to define a number of temporal images, capable of describing the time
evolution of a specific action. Finally, the concept of template co-updating
concerning action recognition is introduced. In fact, it is known that the
model created with different techniques in dynamic contexts has relatively
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limited validity, both because they are created typically starting from a min-
imal set of examples and also because time inevitably brings changes that
can not be covered by the initial model. Such limitations can be partially
overcome by the introduction of template updating techniques that should
hopefully take place in a completely unsupervised way. Indeed, exploiting
different data categories (e.g., skeleton and RGB information) improve the
effectiveness of template updating through co-updating techniques. The ac-
tion recognition algorithms have been evaluated on CAD-60 and CAD-120,
achieving results comparable with the state-of-the-art. Moreover, due to
the lack of datasets including skeleton joints orientations, a new benchmark
named Office Activity Dataset has been internally acquired and released.

Regarding the second topic addressed, the goal is to provide a detailed
implementation strategy concerning a generic Internet of Things monitor-
ing platform that could be used for checking users’ behaviour in AmI/AAL
contexts.
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Chapter 1

About this thesis

The continuous advances in sensing technologies and networking infras-
tructures enable the development of intelligent software which can provide
real-time analysis of specific situations of interest in a home environment,
intending to enhance the quality of life of the occupants. In the specific field
of health-care, particular attention is generally devoted to systems able to
detect and recognise a different kind of situations and, eventually, to pro-
vide prompt alarms. Hence, this work contributes to the extremely broad
paradigm of Ambient Intelligence, focusing on a specific and increasingly
relevant application scenario that is Ambient Assisted Living. The main
focus of this work is the development of a monitoring system with specific
characteristics:

• Unobtrusive: the proposed solutions and algorithms should be trans-
parent to the user and collect information as he/she is performing the
usual daily activities. Vision-based techniques are preferable from this
point of view with respect to sensor-based approaches, whether they
are wearable or environmental. The former requires the user to wear
(and to manage) some hardware device, and the latter does not offer
general solutions for the recognition of a comprehensive set of scenarios.

• Non-cooperative: the user cooperation is not always possible (partic-
ularly in the health-care domain), and the needed information should

1



2 Chapter 1. About this thesis

possibly be collected in an unsupervised way. Even in this case, the
adoption of vision-based solutions is undoubtedly preferable.

• Real-time: efficiency is crucial to process continuously the stream of
data acquired live and to provide timely warnings.

• Adaptive: the human behaviour continuously evolves, and the system
must be able to automatically update its internal model to keep con-
sistent performance in the time.

Some of the above requirements and considerations led us to the adoption
of camera sensor for data acquisition. More specifically, we have evaluated
different approaches that use the Kinect sensor, a low-cost solution suitable
for home environments.

In Figure 1.1 we give an overview of an Ambient Assisted Living moni-
toring system. In our vision, the system continuously acquires and analyses
the video stream acquired by Kinect (or an array of camera). The activity
detection module analyses the data to notice the presence of humans in the
room and possible ongoing activities; then activity recognition is performed
by an ad-hoc module able to identify actions of interest on the basis of a
set of activity templates. In case of specific action classified as dangerous,
proper warnings will be raised. The successful recognition of actions enables
the possibility of unsupervised updating the existing templates to make them
more robust and effective. Moreover, even being aware of the great success of
neural networks coupled with deep learning techniques in many applications,
we choose to design action recognition approaches based on hand-crafted
features. In the specific context of this thesis, in fact, the acquisition of a
large amount of training data typically needed for network training is quite
difficult and unlikely. The home environment is usually characterised by a
very limited number of users, and also most of the reference benchmarks for
indoor action recognition reproduce a “small-size” scenario, with few users
and few activity samples per user. We are confident that in this scenario also
“traditional” computer vision techniques can achieve good results and real
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Figure 1.1: Flowchart of an Ambient Assisted Living monitoring system.

time processing capabilities even with limited computational power.

The information collected by this system, as well as any alarms, must
be available remotely by potential stake-holders (e.g., caregivers, health-care
professionals or, eventually, relatives). Starting from this premise, and from
the close link between the Internet of Things and Ambient Intelligence, we
propose a generic framework designed for the monitoring of heterogeneous
sensor networks. Indeed, one of the objectives of this work is to provide a
detailed full-stack implementation strategy concerning a platform for mon-
itoring sensors of various kinds. The fundamental idea is to exploit this
platform to remotely check user behaviour in sensitive contexts and offer a
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prompt reaction from potential accidents (e.g., falls). By taking advantage
of the proposed techniques for human activities recognition and template
updating, our platform could provide useful information about the actions
performed by patients or particular categories of users such as the elderly in
several Ambient Assisted Living contexts.

1.1 Structure of this thesis

This thesis is organised in four parts.

Part I introduces the work, defining the context in which it is placed. It
presents the salient aspects of the broad fields of research on Human
Action/Activity Recognition and Internet of Things, setting out some
of the main concepts adopted in the respective parts of the thesis.

Part II presents the first contributions of the thesis, focusing on the modules
of activity recognition and template updating depicted in Figure 1.1.
These approaches are based on data extracted from RGB-D sensors.
In particular, an innovative handcrafted-feature action recognition ap-
proach based on joint orientations is introduced. Secondly, a multi-
modal strategy for human action recognition (based on skeletal and
RGB data) is illustrated. Finally, a multi-modal template co-updating
approach is presented. Besides, the state of the art of RGB-D based
action recognition is discussed.

Part III provides a detailed implementation strategy concerning an Inter-
net of Things monitoring solution. This generic framework was ini-
tially designed for urban contexts (a real case study is presented), but
its interoperability also makes it suitable for monitoring Ambient As-
sisted Living contexts and, more generally, smart homes. Also, this
part describes some of the most commonly adopted Internet of Things
platforms in order to provide the reader with a comparison with the
presented open-source framework.
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Part IV draws conclusions and paves the way for future contributions.

1.2 List of publications

The publications included in this thesis are the following:

• Franco A., Magnani A., Maio D., "Joint Orientations from Skeleton
Data for Human Activity Recognition" in proceedings 19th Interna-
tional Conference on Image Analysis and Processing (ICIAP17), Cata-
nia, September 2017;

• Calderoni L., Magnani A., Maio D., "IoT Manager: a Case Study of
the Design and Implementation of an Open Source IoT Platform" in
proceedings IEEE 5th World Forum on Internet of Things 2019 (WF-
IoT2019), Limerick, Ireland, April 2019;

• Calderoni L., Magnani A., Maio D., "IoT Manager: an Open Source
IoT framework for Smart Cities" in Journal of Systems Architecture,
2019, vol. 98, pp. 413-423;

• Franco A., Magnani A., Maio D., "A multimodal approach for human
activity recognition based on skeleton and RGB data" in Pattern Recog-
nition Letters, 2020, vol. 131, pp. 293-299;

• Franco A., Magnani A., Maio D., "Template co-updating in multi-
modal human activity recognition systems" to appear on proceedings
35th ACM/SIGAPP Symposium On Applied Computing (SAC), Brno,
Czech Republic, March 2020.
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Chapter 2

Context

“The most profound technologies are those that disappear. They
weave themselves into the fabric of everyday life until they are in-
distinguishable from it.”

– Mark Weiser, 1999

2.1 An Ageing Society

By 2050, there will be about 10 billion people on the planet (United Na-
tions, b). Human history tells us that it took thousands of years (from the
appearance of man until 1800) before the world population reached the first
billion, but it took only a couple of centuries to reach today’s 7.7 billion. The
second billion was reached in 130 years (1930), the third billion in 30 years
(1960), the fourth billion in 15 years (1974) and the fifth billion in only 13
years (1987). In the 20th century alone, the world population rose from 1.65
billion to 6 billion, in 1970 there were about half of the people who are there
today. After this peak, the growth rate has progressively slowed down, but
nevertheless, the world population is growing, although not everywhere in
the same way. The growth of the world population in the last two centuries
is, in fact, due to advances in medicine and improved living standards, which
have significantly reduced infant and maternal mortality and increased life
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10 Chapter 2. Context

expectancy. Demographic change is polarising in two directions: part of the
world has a negative growth rate and a robust ageing population (in Italy and
Japan the average age is 48 years); on the other hand, in emerging countries,
the growth rate is still very high, and the average age is quite low (in all
African countries is between 16 and 20 years). One of the main consequences
of this unprecedent growing trend, according to World Population Prospects
data (United Nations, b), is that the number of older adults - aged 60 and
over - is expected to more than double by 2050 and more than triple by 2100,
rising from 962 million in 2017 to 2.1 billion in 2050 and 3.1 billion in 2100.
Worldwide, life expectancy at birth increased by 3.6 years between 2000-
2005 and 2010-2015 (from 67.2 to 70.8 years) and is projected to increase to
around 77 years by 2050 and to reach 83 years by 2100 (United Nations, a).
Finally, the population aged 60 and over is growing faster than the other age
groups.

As can be expected, population ageing is set to become one of the most
significant social transformations of the 21st century, with implications for
almost all sectors of society, from the labour market and the economic system
(financial services, demand for goods and services, such as housing, transport
and social protection) to the foundations of society, such as family structures
and intergenerational links. The need to anticipate this demographic shift is
more evident than ever and, especially in developed countries, governments
should immediately implement policies and solutions to facilitate the needs
of an increasingly older population.

2.1.1 Challenges

(Rashidi and Mihailidis, 2013) highlighted several challenges for society
and, in particular, for the health-care system:

• Increase in diseases : one of the main consequences of the increase in
the number of older adults is the apparent increase in age-related dis-
eases. Among these, surely the two most common neurological disor-
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ders (Alzheimer’s disease and Parkinson’s disease) for which currently
there is no cure.

• Increase in health-care costs : there will be a tangible rising in health-
care costs. For example, Italian senior citizens – that are 22% of the
total population – use more than 57% of the health-care budget. In
the coming decades, the ageing of the population will put a strain on
current health care models.

• Shortage of caregivers : The increase in the number of seniors will not
result in a linear increment in the number of trained professionals to
work with the ageing population. Necessarily, family members will have
to replace caregivers with a series of different complications (e.g., high
levels of emotional distress, physical health problems).

• Dependency : with the increase in age-related diseases, the number of
individuals unable to live autonomously will also rise. In Italy, 2.5
million older adults have functional limitations of some kind (mobility,
autonomy, communication, etc.) and are partially or totally not self-
sufficient. In such a context, the question arises of how it will be
possible to offer quality services to dependent older adults.

• Larger impact on society : as a society, we will not be able to provide
adequate assisted living or skilled nursing facilities in relation to the
number of older adults. Moreover, the need to assist a family member
has a direct impact on the labour market, affecting phenomena such as
unemployment, absenteeism and downgrading.

Given these challenges, it is apparent that possible solutions must be sought
through a change of social and technological paradigm, relying on new and
promising lines of research.
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2.2 Ambient Intelligence (AmI)

The term Ambient Intelligence (AmI) defines a relatively new paradigm
of the information and communication technologies aimed at strengthening
the person capabilities with the realization of “digital environments that are
adaptive, sensitive and responsive to the needs, habits, gestures and emotions
of the users” (Acampora et al., 2013). However sophisticated and futuris-
tic this could seem, the outstanding developments of the research regarding
Sensor Networks, Multi-Agent Systems, Pervasive Computing and Artificial
Intelligence, make it possible to design and implement solutions to various
issues of everyday life. In addition, the constant proliferation of devices of
various types and nature (e.g. wearable devices, smart objects), the afford-
ability of sensors and actuators, complete the panorama making this scenario
extremely topical.

AmI’s vision, emerging but increasingly relevant, is primarily character-
ized by the idea of rendering the environment in which the user interacts
intelligent. A first, crucial, question could be raised: what is meant by intel-
ligent? While this question can be answered in different ways, the definition
of AmI given above highlights several key features that could suggest a pos-
sible answer. These characteristics can be translated into pointing out a
necessary proactiveness of the digital environment to the stimuli and events
of the observed context. Intelligence is hence closely related to the ability of
the system to understand when take sensible action. Therefore, making an
analogy, the ambient behaves like a trained human assistant who is able to
recognise the user, to know (or eventually learn) the needs of him/her. This
assistant will intervene only when necessary and will refuse to act if it does
not consider it appropriate (Augusto et al., 2010). Clearly, the intelligence
lies in the software that drives the environment.

On the hardware side, the physical infrastructure – consisting of networks,
sensors and actuators – that supports an AmI system is referred to as smart
environment (Cook and Das, 2005). Among other features, this physical
layer must be as transparent as possible for users. Indeed, it can be said that
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AmI marries the disappearing computer vision coined by (Weiser, 1999), both
from a conceptual and a physical point of view (Augusto, 2007; Cook et al.,
2009).

Among the main factors that are allowing AmI to become extremely
popular, there is undoubtedly the explosion of the Internet of Things (IoT)
paradigm. The phenomenon we are witnessing, that is the growing prolif-
eration of cheap ubiquitous sensors that can potentially be integrated into
any context, is becoming the fuel for a multitude of AmI scenarios (Ricciardi
et al., 2017). It is enough to think of the many application examples that
we are going through and getting used to: a house where heating, light-
ing, entertainment or security are managed autonomously depending on the
presence or absence of individuals, transportation efficiency and assistance
to the driver thanks to sensors onboard (e.g., image processing of the driver’s
face), a smart classroom where students can benefit from customized assisted
learning services and all the application scenarios typical of the smart city
context (Pellicer et al., 2013).

In this broad panorama, we want to focus our attention on an application
domain of primary interest and extremely topical for scientific research. The
adoption of the AmI paradigm, and consequently the application of ICT tech-
nologies, can help to address some of the aforementioned challenges through
the so-called Ambient-Assisted Living (AAL, also knows as Active-Assisted
Living) tools.

2.3 Ambient Assisted Living (AAL)

These environments pursue a person-centred conception: the distributed
network of sensors and actuators creates a transparent layer able to proac-
tively interact with the user to improve his quality of life. In general, these
augmented environments can be used to prevent, cure and improve the well-
being of users. Indeed, they may be targeted at users with more or less
severe needs, and act in different aspects to help older adults to age at home.
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For example, AAL tools can instil awareness in the elderly by monitoring
their health conditions (e.g., medication management or medication reminder
tools) or can provide enhanced safety through fall detection systems (Zhang
et al., 2015), video surveillance systems (Yano et al., 2019) or emergency re-
sponse systems (Nikoloudakis et al., 2016). Other tools assist in carrying out
daily activities, typically through the monitoring of the Activities of Daily
Living (ADLs) (Debes et al., 2016; Nguyen et al., 2016) and eventually issu-
ing reminders (De Benedictis et al., 2015). In Italy, it is estimated that one in
five older adults (over 65 years of age) suffers from depression. This number
doubles for the elderly over the age of 80. To tackle this phenomenon and, in
particular, to avoid alienation and isolation of the elderly, several solutions
of AAL are pursuing a better connection and communication with family
and friends (Pinto et al., 2019). Furthermore, considering the category of
users primarily concerned by these technologies, users’ engagement is one of
the highest priority. Of course, this vision and the solutions highlighted can
be met only with the involvement of experts from different backgrounds (i.e,
technology, health, social sciences) (Florez-Revuelta and Chaaraoui, 2016).

European Union has recognised the importance of the AAL domain and
is fostering research into it through the Horizon 2020 programme. During
the eight years of the programme, over 4€ billion has been invested in the
“Health, Demographic Change and Well-being” challenge. Moreover, the EU
directly supports AAL projects by co-funding the AAL Joint Programme
(AALJP) which has as its primary goal to foster the emergence of innovative
ICT-based products, services and systems enabling the “ageing well at home”
vision.

The AALJP also defines the objectives of the AAL paradigm:

• to increase the autonomy, self-confidence and mobility of people in
order to extend the time they can live in their preferred environment;

• to support the maintenance of the health and functional capacities of
the elderly;
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• to promote a better and healthier lifestyle for individuals at risk;

• to enhance security, prevent social isolation and create networks of
support around older people;

• to support caregivers, families and care organisations;

• to get more out of the investments in the ageing society.

The AALJP’s website lists more than 200 projects funded in the ten years
of the association’s existence. Several of these projects have seen the develop-
ment of commercial solutions that are about to be released into the market.
Of course, AAL, as well as all AmI application scenarios, is not just a flour-
ishing field for commercial solutions. From an academic point of view, the
survey mentioned above by (Rashidi and Mihailidis, 2013) well summarises
the main classes of algorithms and applications area, which are the principal
object of scientific research. As for algorithms, the following categories are
highlighted: Human Activity Recognition (HAR), which aims to recognise
human activity/action patterns from various sensor data, Context Modeling,
that is the capacity to represent the different information deriving from the
context (e.g., sensor information, temporal/spatial information, user profiles
and preferences), Anomaly Detection, whose purpose is the search for pat-
terns that differ from canonical behavior, Location and Identity Identification,
which deals with monitoring and offering location-based services to the el-
derly (if necessary as a result of an identification procedure), and Planning,
which makes it possible to assist the user with respect to daily plans and
activities (particularly useful, for example, in patients with dementia). With
regard to AAL’s application areas, one of the most important is undoubt-
edly represented by the Health and Activity Monitoring tools, which allow to
observe health parameters and assist users in carrying out daily activities;
another one consists of the Wandering Prevention tools, i.e. those solutions
that try to prevent and mitigate wandering in patients with dementia; fi-
nally, there are the Cognitive Orthotics tools that facilitate, for example, the
medication management (possibly in an autonomous manner).
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In the aforementioned scenario, determining and monitoring what is hap-
pening in an environment is critical – in particular, recognising what a hu-
man being is doing, if and how he/she is interacting with specific objects,
or whether abnormal situations are occurring is the key to the successful
realisation of several AmI/AAL applications (Chen and Nugent, 2019).



Chapter 3

Human Activity Recognition: an

overview

“The recognition of human activities will lead to a number of ap-
plications, including personal assistants, virtual reality, smart moni-
toring and surveillance systems, as well as motion analysis in sports,
medicine and choreography.”

– J.K. Aggarwal, 2005

Human Activity Recognition (HAR) is one of the most active and promis-
ing research topics in recent years. The purpose of HAR techniques and
algorithms is to determine what one or more people are doing in a given
context, using data from different sensors or cameras. In a very recent book,
(Chen and Nugent, 2019) summarise this complex and articulated process as
the composition of the following fundamental steps:

1. choose and deploy specific sensors to actor/s, objects or environments in
order to monitor and capture human behaviours, eventually considering
state changes of the environment;

2. define computational activity templates in a way that allows software
systems to conduct reasoning and manipulation;

17
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3. process perceived information exploiting aggregation and fusion to de-
fine a high-level abstraction of context or situation;

4. design and develop algorithms to infer activities from collected sensor
data;

5. carry out pattern recognition to ascertain the performed activity.

This chapter introduces the main characteristics and challenges related to
the HAR domain and regarding the appropriate choice and deployment of
sensors (step 1). The remaining four steps will be the subject of the chapters
contained in Part II.

The growing popularity of HAR systems is undoubtedly due to the many
areas of real-world applications. In addition to the AAL, and more generally
to AmI contexts, among the most common scenarios can be found:

• Intelligent Visual Surveillance: Traditional surveillance systems
require the presence of a human agent who continuously observes what
appears in one or more monitors. It is explicit how important it is to be
able to offer intelligent and autonomous public security services. Intu-
itively, the idea is to exploit the network of cameras distributed in urban
contexts or public environments to create surveillance systems capable
of tracking and detecting potentially dangerous activities or anomalous
situations – such as an example, an individual who is abandoning a bag
at the airport or jumping a turnstile in the subway. Action recognition
or prediction algorithms can be crucial to significantly increase public
safety, triggering appropriate alarms and allowing a sudden interven-
tion of the authorities.

• Human-Computer/Robot Interaction (HCI/HRI): The ability
to understand gestures and activities is fundamental in the realization
of natural interfaces between computers/robots and humans. There are
countless examples: from interfacing tools to control the presentation
of slides through appropriate sensors, to a humanoid robot that acts as
a personal assistant, perhaps in an AAL context.
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• Entertainment: In recent years, the gaming industry has deployed
numerous entertainment devices based on the recognition of human
activities. These devices make possible a video-ludic experience that
does not necessarily require the presence of a controller. Even the
scientific community has greatly benefited from the spread of these
cost-effective sensors. Among others, it is certainly worth mentioning
the Microsoft Kinect RGB-D sensor, widely adopted and studied in the
academic community (Aggarwal and Xia, 2014).

• Autonomous Driving Vehicles: In this context, two different sce-
narios can be distinguished: i) the monitoring of human beings in the
vicinity of an autonomous driving vehicle, ii) the recognition of tasks
performed by the driver. In the first case, the challenge is to create
algorithms capable of analyzing human body motion with the ultimate
goal of predicting a person’s intentions in a short period of time (Kong
and Fu, 2018). In the latter case, it is crucial to suddenly determine
the degree of attention of the driver. This also applies to self-driving
vehicles, when it is necessary to transfer control to the human driver
(Braunagel et al., 2015).

Of course, what makes it possible to recognise human behaviour in a given
scenario strictly depends on the type of sensor adopted. Concerning the ap-
plication domain object of this work, it is possible to use different technologies
that can be mainly distinguished into two macro-categories: sensor-based and
vision-based.

3.1 Sensor-based

As stressed in Chapter 1, we focus on vision-based solutions. Neverthe-
less, for the benefit of reader and to offer a more comprehensive view, the
most relevant aspects and modalities of sensor-based activity recognition are
introduced. For a more detailed analysis of sensor-based modalities, inter-
ested readers can refer to (Patel and Shah, 2019; Chen and Nugent, 2019).
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Figure 3.1: Flowchart of sensor-based activity recognition using canonical

machine learning approaches (Wang et al., 2019a).

As depicted in Figure 3.1, these approaches take advantage of time series
of data collected from different types of sensors. Unlike vision-based solu-
tions, the usual representation of information is a one-dimensional signal.
From these raw signal inputs (activity signal), on the one hand, features are
manually extracted. These are typically based on statistical reference metrics
– average, variance, amplitude – and are the input for the training of tra-
ditional machine learning models. On the other hand, there are approaches
based on deep learning techniques. Deep features are automatically learned
from raw sensor data, replacing the feature extraction phase of traditional
approaches with the building of the model. The recent work by (Wang et al.,
2019a) reviewed sensor-based approaches based on deep learning techniques,
distinguishing by sensor-modality and comparing them with traditional ap-
proaches. In the next subsections are introduced the main sensor-modalities
and strategies concerning this macro-category of approaches.

3.1.1 Body-worn sensors

Nowadays, people are accustomed to the so-called wearable-devices : smart-
watches, fitness wristbands, smart clothes are accessories worn daily by mil-
lions of individuals, thus allowing continuous monitoring of the activities
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carried out. Although not definable as wearable-device, smartphones also
fall within the category of body-worn sensors, as they allow the acquisition
of data from inertial sensors commonly found in all models (i.e., accelerome-
ter, gyroscope). In particular, the ability to measure acceleration and angular
velocity is crucial to infer ADLs and sports activities. In the most common
scenarios, including the well-known fitness app, the device collects data from
the various sensors and classifies them locally. A different strategy, instead,
involves the transmission of data to a processing centre – laptop, smartphone,
remote server – using appropriate communication technologies (Bluetooth,
Wi-Fi, Zigbee, etc.).

Concerning health-care, the recent work by (Wang et al., 2019b) pro-
vides an excellent overview of the state of the art of approaches based on
body-worn sensors. Particular attention is paid to inertial data and to the
different features that have been proposed. Compared to cameras, these de-
vices are available at a lower cost, require fewer data processing and limited
computational resources. On the other hand, they require to be worn and
run continuously, which is difficult if not impossible in many application sce-
narios. Among the other cons, there are acceptability and willingness to use
these sensors as well as issues such as battery life, the effectiveness and the
positioning of inertial sensors. Indeed, the correct positioning of accelerom-
eters in relation to the human body is subject of debate (Cleland et al.,
2013). In particular, while inertial sensors typically positioned in the centre
of mass of the human body (i.e., lower back and waist) offer excellent results
in terms of accuracy for the classification of specific activities (e.g., sitting,
walking, lying and falling), on the other hand it is challenging to achieve
general approaches that can classify common ADLs without adding other in-
ertial sensors in strategic position, as an example wrists or legs (Attal et al.,
2015). Clearly, such a choice would further affect the cons mentioned above,
significantly increasing the degree of obtrusiveness.



22 Chapter 3. Human Activity Recognition: an overview

3.1.2 Object sensors

The purpose of these sensors is to detect the specific use of a particular ob-
ject. The human activity carried out is inferred by exploiting the movement
of the object. For example, a contact sensor applied to a window/drawer/-
door can be used to determine its opening, just as an accelerometer applied to
a jug can be used to infer the pouring water activity. Among the most com-
mon object sensors, there are Radio Frequency Identifiers (RFID) frequently
used in smart homes and AAL environments as they provide fine-grained in-
formation for the recognition of more complex behaviours (Alsinglawi et al.,
2017). The main disadvantage of these sensors is their deployment: difficult
to apply to the multitude of human-object interactions and situations that
may occur. Nevertheless, the adoption of these sensors can often complement
information from other sensing modality.

3.1.3 Ambient sensors

In this case, the focus is posed on subject-environment interaction and
resulting contextual information. The environment is augmented with sen-
sors of different nature, whose primary purpose is to observe significant state
changes. Such information can be extremely significant; for example, (Litvak
et al., 2008) proposed a fall detection system based on floor vibrations and
an array of microphones able to discriminate between objects and human fall
events. Again using acoustic sensors, it is possible to discriminate some types
of ADLs characterised by specific sound patterns – drying hair, working on
the computer – or even distinguish between different activities related to the
preparation and consumption of various dishes (Sim et al., 2015). Multiple
ambient sensors can be set up as Wireless Sensor Network (WSN), (Tunca
et al., 2014) proposed a system of HAR in AAL context including photocells,
digital distance sensors, sonar distance sensors, contact sensors, temperature
sensors, pressure mats and infrared receivers. The main advantages of these
sensors, as well as to object sensors, are their unobtrusiveness and being
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privacy-preserving. However, as for object sensors, also their distribution
can be difficult; moreover, the noise to which these sensors are subjected can
profoundly affect the robustness of the approaches, already limited to a few,
specific, activities.

3.1.4 Hybrid sensors

The possibility of combining different types of sensors modalities allows
the recognition of extremely complex activities, even in contexts where the
presence of multiple individuals is expected. (Vepakomma et al., 2015) pro-
pose A-Wristocracy, a smart environment explicitly designed for AAL scenar-
ios. The proposed framework combines ambient sensors, object sensors and,
as the name may suggest, a wrist-worn wearable device. Although these
multi-modal solutions are capable of classifying fine-grained activity with
high accuracies, the problems highlighted in the various sensing modalities
remain.

With this in mind, the peculiarities of the sensors described above may
be integrated with vision-based approaches. The complementarity of the
information can allow a significant increase in accuracy compared to the
single sensing modes (Ehatisham-ul-Haq et al., 2019).

3.2 Vision-based

Vision-based activity recognition techniques do not require the use of
special devices and the only source of information is represented by cam-
eras placed in the environment which continuously acquire video sequences.
Considering the different real-world scenarios highlighted at the beginning of
this chapter, it is apparent that the adoption of vision-based sensors allows
broader applicability from several perspectives. The most prominent exam-
ple is undoubtedly the surveillance of public places, where it is not possible
to apply alternative solutions. In general, regardless of whether they are
installed indoors or outdoors, the cameras can provide more comprehensive
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environmental information than other sensors. The cost reduction of many
camera sensors and the possibility to implement general solutions – inde-
pendent of the specific activity carried out – have contributed to increasing
the interest for these approaches making vision-based HAR one of the most
exciting research area in the field of computer vision and machine learning.
Over the past few decades, this popularity has led to a real explosion of sci-
entific contributions, making it challenging to explore the mare magnum of
the state of the art. Besides, this has dramatically increased confusion about
the terminology used. Indeed, a first question that arises spontaneously to
those who approach vision-based HAR is: what precisely defines the term
activity? One of the firsts and main topics of debate was the search for a
shared nomenclature and a taxonomy that allows defining the granularity of
the tasks carried out. Although it may seem a simple question to answer,
numerous taxonomies and definitions have been proposed in the literature,
particularly concerning discrimination between action and activity. Specifi-
cally, (Aggarwal and Cai, 1999) in one of the first surveys on human-motion
analysis distinguished three different areas regarding the interpretation of hu-
man motion: motion analysis involving human body parts, tracking of human
motion with one or more cameras, recognising human activities. Particularly
in the latter area, the terms action and activity are used interchangeably.
Few years before, (Bobick, 1997) tried to clarify this aspect proposing a hi-
erarchy that distinguishes three different levels of abstraction: movements,
actions and activities. This hierarchy is refined, among others, by (Poppe,
2010) which proposes the distinction between:

• action primitive: considered as an atomic movement involving the
use of the limbs (e.g., raising an arm). Also known as motion in other
works;

• action: composition of action primitives, possibly in a repeated pat-
tern (e.g., clapping hands);

• activity: a sequence of actions to which a specific semantic interpre-
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tation can be attributed (e.g., Jumping hurdles is an activity composed
by the starting, running and jumping actions).

In other reviews, the concept of activity is defined if it involves several people,
alternatively is considered as action (Turaga et al., 2008). Among the many
possible taxonomies, we will adopt the one provided by (Chaaraoui et al.,
2012). In detail, the authors make a distinction based on the degree of
semantics (motion, action, activity and behaviour) in relation to the amount
of time needed in the analysis. According to this view, an action implies the
performance of some simple human primitives (e.g., sitting) that require a
time frame in the order of seconds. Vice versa, similarly to Poppe’s taxonomy,
an activity is defined as a sequence of actions in a time frame ranging from
minutes to hours (e.g., cooking). Finally, behaviours represent the highest
semantic level of this taxonomy, including habits and lifestyles sampled in
relatively long temporal periods (longer than hours). Although the adoption
of the HAR acronym is often linked to Human Activity Recognition, in the
context of this work it is more appropriate to refer to the concept of Human
Action Recognition.

Compared to the sensor-based approaches described in Section 3.1, the
perception of data is different. Of course, the data provided by visual-sensors
are not one-dimensional signals but are in the form of 2D or 3D set of data,
respectively to represent an image or a video. Analogously to other sensor
modalities, both traditional machine learning and deep learning techniques
can be adopted. Indeed, the general approach is to extract/learn image
features from raw video data and then apply classification algorithms but,
regardless of choice to adopt a handcrafted representation-based or learning-
based approach, several domain-specific problems are transversal to both
strategies. Among the main technical challenges of vision-based HAR, there
are:

• Intra-class and Inter-class variations : as is intuitable, each person can
perform the same action in a very different way than others. Consider
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a simple action as running: a person can run by raising heels, can
keep elbows distant from the body or may run more or less fast than
someone else. Furthermore, the same action could be captured from
different points of view. The different ways in which a task is carried
out, the assumed poses, and the point of view, are essential factors;
they determine a considerable increase in intra-class variability and
the consequent difficulty in representing the same category of actions
in a comprehensive way. Another significant issue is inter-class varia-
tions. As we will see in several chapters of the Part II of this work, the
similarity between the different categories of actions is one of the most
complex challenges as some motion-patterns are difficult to distinguish
(e.g., drinking from a bottle, answering the phone).

• Environment and recording settings : many problems with the robust-
ness of HAR algorithms are due to background noise. Indeed, many
approaches work well in indoor environments but struggle in outdoor
environments, typically characterised by a higher dynamic background
(Kong and Fu, 2018). Other environment-related issues may be light-
ings conditions changes, the partial or the total occlusion of the inter-
ested person and the localisation of a subject in a cluttered or dynamic
environment. Some of these problems can be attenuated through the
adoption of multiple cameras: in these cases, it is possible to offer a
combined and consistent representation that allows to avoid the occlu-
sion of the subject (concerning a particular point of view) or to make
him more easily localised. The use of moving cameras makes it more
challenging to address these issues.

• Temporal variations : a significant problem in real-world solutions is
the ability to determine when an action takes place. Typically, HAR
approaches evaluate time-segmented actions, delegating this task to
action detection algorithms. However, the high variation in the execu-
tion rate of actions can affect their dimensional extent. A robust HAR
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approach should guarantee invariance concerning the different rates of
execution.

• Obtaining and labelling training data: the variations described above
also have a substantial impact on the collection of sufficiently com-
prehensive datasets. The massive demand for labelled data by deep
learning approaches has led to the spread of datasets of considerable
size. However, several of these are domain-specific (e.g., Sports-1M
by Karpathy et al. (2014)) or with annotations generated by retrieval
methods (e.g., Youtube-8M by Abu-El-Haija et al. (2016)). In order to
overcome these problems, it would be necessary to design algorithms
that can learn actions in a non-supervised way or that can incremen-
tally update the templates of the various classes of actions.

Certainly, other challenges of a non-technical nature should be discussed.
The main issues are privacy-related implications. Especially in a sensitive
environment like AAL, the idea of having a camera array installed in the
home can be a significant obstacle for many people. In particular, the already
common adversity of seniors towards technology would clash with the idea
of being spied on continuously. This could lead to complete resistance to
such approaches (Demiris et al., 2009). It is crucial to offer solutions able to
preserve the user’s privacy. Moreover, this feature must be fully understood
and accepted by the user of a possible AAL remote monitoring service.

For many years, research has focused on the adoption of traditional RGB
cameras, both for their extreme diffusion and for the high costs of other
types of video-based sensors. In the last decade, we have witnessed a prolif-
eration of low-cost depth sensors, including the well-known Microsoft Kinect.
The spread of these sensors has intensely stimulated and influenced human
motion analysis. One of the main reasons is that depth information allows
mitigating some of the technical challenges described above, such as envi-
ronmental variations in brightness, the presence of shadows and cluttered
background. Besides, they enable the real-time extraction of skeletal joint
positions (Shotton et al., 2011) that represent, since the dawn of human mo-



28 Chapter 3. Human Activity Recognition: an overview

tion analysis, a fascinating object of study. Indeed, the expressiveness of
Joint-Based representations was already introduced in the 70s through the
Johansson’s moving light-spots experiment in what is considered the very
first work of Human Motion Analysis (Johansson, 1973). The experiment
was aimed to study visual information and possible motion patterns deriv-
ing from different bright spots distributed on the human body. Observing
the video collected by Johansson (few frames depicted in Figure 3.2), some
typical limbs motion patterns are evident.

Figure 3.2: Johansson’s moving light-spots experiment: handshake between

two persons1.

Moreover, a growing number of light-spots contributes to increasing the
perception of the actions carried out. Although Johanson’s pioneering exper-
iment was a psychology study, it is the cornerstone of much of the literature
on action recognition. In particular, many works based on skeletal informa-
tion have been inspired by the bright-spots representation.

1Johansson’s Experiment YouTube video

https://www.youtube.com/watch?v=1F5ICP9SYLU
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3.2.1 RGB-D sensors

In this thesis, approaches based on RGB-D sensors and information ex-
tracted from them (RGB, depth and skeletal) will be considered. The most
common RGB-D sensors on the market are currently limited by a depth in-
formation extraction range of about 6-7 meters. This makes their use mainly
possible in indoor environments.

In the context of AAL, a vast majority of works and datasets have fo-
cused on multi-modal approaches and in particular on the extraction of in-
formation from RGB-D sensors. While the adoption of these sensors allows
alleviating some significant low-level challenges typical of traditional RGB
approaches, on the other hand, the occlusion remains a significant problem
that can worsen with the extraction of skeletal information. The problem

Figure 3.3: Skeleton corruption problem in RGB-D sensor caused by self-

occlusion (Zhang et al., 2017).

.



30 Chapter 3. Human Activity Recognition: an overview

of corrupted skeletal models, mainly due to tracking errors, environmental
occlusion or self-occlusion, is well known in the literature. An example of
a noisy skeleton due to the self-occlusion of some body parts is shown in
Figure 3.3. To counter this problem and increase the reliability of extracted
skeletal data, (Chaaraoui et al., 2013b) propose the feature fusion between
skeletal features and silhouette-based features. Finally, another problem that
must be considered is depth camouflage (an example is reported in Figure
3.4). This circumstance occurs when the foreground objects are very close in
depth to the background. In this regard, (Camplani et al., 2017) published
a dataset to evaluate the robustness of approaches of foreground movement
objects detection compared to the significant challenges observed in RGB-D
contexts.

Figure 3.4: Depth camouflage problem examples: as observable some fore-

ground objects, including a subject, are hardly distinguishable

from the background (Camplani et al., 2017).

.

Despite these challenges, the multiple advantages due to the extraction
of structural information about the environment and the subjects allow a
more straightforward implementation of recognition view-invariant systems.
Last but not least, the RGB-D sensors, if limited to the extraction of skeletal
information and the use of depth data, are much more privacy preserving
than traditional video-cameras. This ability can be easily explained – and
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Figure 3.5: Number of publications per year extracted from the Scopus

database by searching the keyword “RGB-D”.

especially shown – even to the most adverse inhabitants to the idea of being
filmed.

Microsoft Kinect has allowed considerable development of scientific re-
search on vision-based HAR and defined the study of more performing de-
vices and technologies for the demands of various academic and industrial
research groups. In Figure 3.5 is reported the number of indexed scopus
publications that contain the keyword “RGB-D”.

Figure 3.6: Azure Kinect DK Camera2.
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In the end, what had to be a simple video-ludic entertainment device
led to a real revolution, enabling the reduction of costs and the consequent
proliferation of these sensors. While this thesis is being written, Microsoft is
starting to release the newer Azure Kinect (see Figure 3.6). This promising
device marries the vision of this work, both by optimizing data representa-
tion/acquisition – primarily depth channel and, consequently, skeletal infor-
mation – and, in particular, by trying to create a rapid interface between the
device and IoT cloud platform.

2Azure Kinect DK Website.

https://azure.microsoft.com/en-us/services/kinect-dk/
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Internet of Things: an overview

“Today computers — and, therefore, the Internet — are almost
wholly dependent on human beings for information. (...) The prob-
lem is, people have limited time, attention and accuracy — all of
which means they are not very good at capturing data about things
in the real world. And that’s a big deal. We are physical, and so is
our environment.”

– Kevin Ashton, “That ‘Internet of Things’ Thing”, 2009

Kevin Ashton first coined the term Internet of Things (IoT) in 1999.
His vision, partially similar to Ubiquitous Computing, indicated a wholly
connected futuristic world in which intelligence and communication skills
are integrated into the surrounding environment. Following this definition,
there is a partial overlap with the concept of Ambient Intelligence introduced
in Section 2.2. Indeed, for several years, it has been difficult to distinguish
between different terminologies indicating similar paradigms such as IoT,
AmI, Smart Cities, Pervasive and Ubiquitous Computing. Restricting this
analysis to the concept of the IoT, a more precise and formal definition is
offered by (Guinard and Trifa, 2016):

“The IoT is a system of physical objects that can be discovered, monitored,
controlled, or interacted with by electronic devices that communicate over

33



34 Chapter 4. Internet of Things: an overview

various networking interfaces and eventually can be connected to the wider
internet.”

One element that needs to be clarified about the terminology used is the
potential overlap that the reader may find at this point. Indeed, as noted
in Section 2.2, a key feature of AmI environments – regardless of their gran-
ularity – is the presence of a physical infrastructure consisting of sensors,
actuators and networks that act in a collaborative way. This element –
which we have defined as smart environment – constitutes a specific inter-
section with the above definition of the IoT. Of course, the IoT adds a per-
vasive connectivity that could potentially be excluded in the definition of a
smart environment. Finally, what links the IoT paradigm to the creation
of intelligent environments is the presence of a software layer that provides
intelligence and decision-making capabilities (Mahmood, 2019). Interested
reader could find a more comprehensive description of this terminology in
(Augusto et al., 2013).

Nowadays, this world of interconnected objects is representing a point
of no return for both the industry and research communities due to an un-
precedented proliferation in the number of sensors and the broad spectrum
of domains in which they can be exploited. In their 2015 report, McKinsey
estimated the potential economic impact of the IoT to be between $4 trillion
and $11 trillion annually by 2025 (Siow et al., 2018). This is widely un-
derstandable considering that the Business Insider Intelligence 2019 report,
projects that there will be more than 64 billion IoT devices by 20251. The
report also focuses on two technologies that will revolutionize the market and
IoT research by 2025, making it difficult if not impossible to predict future
scenarios for this paradigm: Blockchain and 5G networks.

1Business Insider Intelligence - IoT Report 2019, preview

https://www.businessinsider.com/internet-of-things-report?IR=T
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4.1 IoT for AAL

The IoT is now a consolidated reality of our daily lives: from cars to
fitness sensors, from air conditioning systems to cameras, it is increasingly
common to stumble upon devices that can communicate data with each other
(Yeo et al., 2014). This vision can scale from the domestic domain to urban
and regional scenarios, where sensor networks have become a common feature
(Atzori et al., 2010; Bellavista et al., 2013; Siow et al., 2018).

The continuous development of scientific research in this broad field and
the significant shift coming on the horizon are and will be extremely bene-
ficial even for the AAL domain. These technologies can strongly foster the
ageing-well-at-home vision, allowing a real transition from the traditional
model of healthcare – centralized on specific buildings – to a model focused
on the patient/elderly domestic environment. As an example, exploiting the
capabilities and features of the IoT enables continuous communication be-
tween older adults and healthcare professionals or caregivers, a key feature
of many monitoring scenarios; of course, this pervasive connectivity involves
the elderly but, above all, the things and the environment in which he/she
interacts, not necessarily with an explicit awareness. The apparent benefit
is the possibility of using the Internet to periodically communicate – or im-
mediately, in cases of chronic conditions – the collected data (Dohr et al.,
2010).

In such a scenario, many technical and ethical challenges emerge (Mc-
Cullagh and Augusto, 2011). Limiting our discussion to the former, (Gomes
et al., 2017) highlight some of the main ones and emphasize how the IoT and
cloud computing integration in an AAL system can be decisive in dealing
with some of them, such as:

1. Comprehensiveness of scenarios: as highlighted in Section 2.3, the
AAL scenarios are multiple. One of the main challenges is the diffi-
culty of developing AAL systems able to comprehend the whole range
of scenarios. Many factors have an impact in designing general solu-
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tions: the level of patient mobility; the degree of cognitive and physical
skills; the distance from healthcare professionals; and user location. An
AAL system is comprehensive if it allows supporting different scenarios
or possible variations, allowing patients to move from one scenario to
another without affecting the available AAL services and without any
loss of information.

2. Reliable communication: one of the most critical aspects of an
AAL system, primarily when oriented towards patient monitoring and
emergency communications, is the reliability of message transmission.
Clearly, even delaying the delivery of relevant information can have
serious consequences. Therefore, special attention is needed in the
creation of protocols to support the routing and reliable delivery of
messages carrying patient information.

3. Heterogeneous Technologies: developing software infrastructures
that allow interaction with different sensors and actuators or that allow
data-level integration is an open and extremely complex challenge. Be-
sides, in a context in which several AAL environments are monitored, it
can be assumed that each of them relies on different technologies and
creates independent subsystems. This assumption should not be an
obstacle to remote monitoring; hence, it is necessary to offer solutions
that are as flexible as possible.

4. Scalability: AAL’s services are becoming increasingly widespread, and
it will be necessary to respond to ever-increasing demand. An AAL in-
frastructure must be prepared to accept a large number of environments
and users. This implies more connections and a larger volume of data
collected by the various sensors. Scalability implies the ability of the
system to continue to offer services while meeting relevant requirements
such as responsiveness, even in the face of increasing demand.

5. Power Management: it is essential to manage energy consumption
wisely, particularly in the case of mobile sensors because of the use of



Chapter 4. Internet of Things: an overview 37

batteries. Besides, energy wastage due to continuous data collection
should be avoided (e.g., monitoring of user-less environments).

The combination of IoT and cloud computing, together with the increas-
ing attention paid to AAL systems, has allowed a plethora of different solu-
tions and platforms. A general review of the huge literature on IoT-based
AAL solutions goes beyond the scope of this section but interested readers can
refer to (Dang et al., 2019) and (de Morais Barroca Filho and de Aquino Ju-
nior, 2017) for good recent surveys.

Here, some of the main IoT-Based AAL projects – from an IoT platform
perspective – will be presented. Among these, it is necessary to mention
the UniversAAL IoT2 platform, the primary outcome of the UniversAAL
project (Ram et al., 2013) whose objective was to provisioning IoT AAL
services. The platform defines an open-source semantic framework that al-
lows, in particular, the communication between universAAL-enabled services
and sensors based on an ontological description of their data models. One
of the main features is the possibility of communication between applica-
tions and sensors, regardless of the node in which they reside. Indeed, they
can immediately communicate if they reside in the same node, alternatively
through gateways or RESTful API. (Bassoli et al., 2017) propose an interest-
ing WiFi-based architecture for continuous monitoring in AAL environments.
In particular, the authors analyzed possible countermeasures to power con-
sumption due to the adoption of WiFi based sensors (e.g., a bed-occupancy
sensor), while proposing a physical architecture (based on TI-CC3200 SoC)
for power saving. In this work, it has been adopted a commercial cloud ser-
vice, specifically IBM Bluemix. The primary goal of (da Silva et al., 2015)
is to provide a platform for monitoring environmental conditions to protect
subjects predisposed to asthma attacks. To this end, air quality is analysed
using a WSN based on temperature and humidity sensors distributed in the
different rooms of the monitored environments. The various sensors are in-
terconnected to a local gateway via a ZigBee network. In (Almeida et al.,

2UniversAAL IoT Home Page

https://www.universaal.info/
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2019), the authors propose an IoT-aware AAL system for elderly monitoring.
The system is defined by a general architecture for unobtrusively collecting
data coming from a heterogeneous sensing infrastructure. The data collected
concern the user motility described as the user body activities carried out
(e.g., motion, rest, sleep, walking, etc.), the user/environment interaction
(e.g., with home appliances or public services) and indoor/outdoor localisa-
tion. Indeed, the data collection from the sensing infrastructure takes place
at home and city level as this interesting work is part of a larger research
project called City4Age3. The primary goal of City4Age is to create Ambient
Assisted Cities or age-friendly cities through the enhancing of the early detec-
tion of risk related to frailty and Mild Cognitive Impairment, and providing
a personalised intervention that can help the elderly population to improve
their daily life and also promote positive behaviour changes. The proposal of
(Hail and Fischer, 2015) is focused on the study of an efficient and intelligent
communication paradigm for IoT and AAL. To this end, the authors pro-
pose an IoT-AAL architecture via Information-Centric Network approach.
In (Cubo et al., 2014), the authors exploit Google’s cloud platform to define
a framework that allows remote access and monitoring of data at run-time.
Among the possible scenarios is identified the automatic notification in case
of emergency. Specifically, the coupling between an accelerometer and a
surveillance camera is realised: if a fast movement is detected, the camera
starts to send the video streaming to a care centre.

Finally, the architecture proposed in (Balampanis et al., 2016), based on
the cloud services offered by Fiware, introduces Microsoft Kinect as a fun-
damental component distinguishing two possible scenarios: i) Hospitalised
Patient, ii) Rehabilitation. In the former case, Kinects are placed in each
room in a strategic position (e.g., in front of the bed) to monitor, through
the skeletal information, any movements of the patient or requests for help.
The latter scenario studies the platform’s adoption for user’s remote rehabili-
tation monitoring by a hypothetical physiotherapy centre. In such a context,

3City4Age Home page

http://www.city4ageproject.eu/
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Kinect is used to monitor the exercises carried out at home by the patient;
the doctor can thus monitor the rehabilitation process based on records of
the patient’s movement history and the time incurred. The primary purpose
is to make the patient autonomous and independent.

Several IoT-based healthcare approaches, as well as those presented, are
designed on the basis of the classic 4-layer framework (Wan et al., 2017):

• Sensing Layer: collect information about the environment and its
inhabitants, using a variety of sensors and smart devices such as those
described in Chapter 3;

• Network Layer: it conceives various wireless communication tech-
nologies and techniques that enable pervasive computing, to efficiently
collect, exchange and transmitting data;

• Data Processing Layer: aggregating, processing and analysis of
sensed information, and the possible transformation into meaningful
knowledge, such that users/environments information may be identi-
fied. This layer has to play the role of middleware between the physical
world and services;

• Application/Service Layer: which delivers direct services to users.

Our proposal can also be compared to this reference framework. However,
one of our goals is to provide a solution as transparent and detailed as possible
concerning all layers, trying to break free from possible commercial black-
boxes, typically adopted at the level of middleware. Also, we will try to give
an answer to a well-known problem in IoT monitoring systems.

4.2 The interoperability issue

The advantages of adopting such technologies are clear, but the contin-
uous spread of sensor networks has generated various and inconsistent envi-
ronments. From the one hand, this condition poses several security threats
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(Conti et al., 2018; Palmieri et al., 2017); on the other hand, the integration
of uncorrelated sensor networks or heterogeneous objects could be anything
but simple (Partynski and Koo, 2013; Gambi et al., 2016). We can imagine
these sensor networks as pieces of a puzzle: in some cases their integration
will be trivial while sometimes it could be extremely complicated. Suppose
we want to make the data produced by different architectures accessible in
an agile way through a single compact solution. For example, imagine an
integration between data derived from several IoT-AAL solutions or, scaling
up, from different urban sensor networks like Santander’s network4, the new
Array Of Things in Chicago5 and data from the Smart Citizen platform6. In
such scenarios, we would inevitably face a number of problems, both due to
the different nature of the nodes of the networks and to the different technolo-
gies and architectures adopted. The examples of sensor networks mentioned
above offer a variety of sensors, as well as communication and storage pro-
tocols that are not shared. The absence of a clear design methodology that
is widely adopted also makes this task rather difficult. With this principle
in mind, several major (see Section 9.1) have released IoT platforms that
address some of the needs mentioned above. Most of these solutions are of-
fered in a ready-to-use fashion, lacking transparency and providing limited
technical information along with high-level architectures and generic com-
munication flows (Ray, 2016). This is clearly understandable in relation to
business models: it would be unreasonable for a major to reveal relevant tech-
nological details and design choices adopted. Therefore, as stressed before,
using such platforms implies a dependency on a sort of black-box.

In Part III, we tackle this issue by providing the scientific community
with a possible solution for monitoring IoT environments comprised of het-
erogeneous sensor networks.

4http://maps.smartsantander.eu/
5https://arrayofthings.github.io/
6https://smartcitizen.me/
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Chapter 5

Related works

Human action recognition is a very active research area and summarising
the existing approaches is a quite hard task. Focusing on vision-based ap-
proaches, good reviews of the literature are provided in the recent surveys by
(Liu et al., 2019) and (Herath et al., 2017). Many works adopt common RGB
cameras to acquire information from the environment, but undoubtedly the
widespread diffusion of low-cost RGB-D sensors, as stressed in Subsection
3.2.1, greatly boosted the research on this topic. Again, the most attractive
feature of RGB-D sensors is the ability to capture depth images, coupled
with the possibility of tracking rather accurately skeletons of individuals in
the scene. The skeleton representation provided by Kinect, for example, con-
sists of a set of joints, each described in terms of position and orientation
in the 3D space. Such information is extremely useful for human activity
analysis as confirmed by many approaches in the literature.

A first criterion to categorise the existing approaches is the input data
type; most of the works exploit either the RGB images, depth data or skeleton
information. It is worth noting that, in reality, the three categories are
overlapped to some extent; methods exploiting a single data category have
become quite rare and many works combine different information to improve
robustness. Each method is then included in the category related to the main
information exploited.
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5.1 Action recognition from RGB images

The literature on purely RGB approaches is extremely vast. Here, it is
summarised in relation to the RGB-D context and to some relevant concepts
that have been employed in other information channel approaches. Many
works adopt a representation of human actions based on a 3D volume, where
the human pose and its variations are described both in space and time.
The 3D volume is then encoded in different ways. (Gorelick et al., 2007)
and (Yilmaz and Shah, 2005) use shape features, other approaches are based
on optical-flow representation, for example in (Wang and Mori, 2011). The
approach proposed in (Chaaraoui et al., 2013a) relies on the extraction of
features derived from the points belonging to the contour of the human sil-
houette, determined by background subtraction. A specific action is then
encoded by a holistic descriptor defined as a sequence of key poses. Finally,
many works adopt local representations in place of holistic descriptors to
better deal with noise. Space-Time Interest Points (STIPs) (Laptev, 2005)
extends the Harris corner detector to 3D-Harris detector. This kind of de-
tector relies on points with significant spatial variations and non-constant
motions (an example in Figure 5.1). STIPs have been used in several works
and represent an interesting category of approaches, which demonstrated a
good robustness to image variations. Different techniques for keypoints de-
tection have been proposed, see for instance (Scovanner et al., 2007; Yeffet
and Wolf, 2009), as well as different approaches for descriptor computation
such as Histograms of Optical Flow (Laptev et al., 2008) and Histogram of
Oriented Gradients features (Klaser et al.; Wang et al., 2009).

Several recent approaches exploit the potentialities of deep learning for
activity recognition. Often the concept of 3D convolution (Ji et al., 2010) is
used to capture temporal dynamics in a short period of time; other works
model temporal dynamics by using multiple streams (Simonyan and Zisser-
man, 2014; Feichtenhofer et al., 2016; Carreira and Zisserman, 2017; Girdhar
et al., 2017). A few works suggest (Khaire et al., 2018; Qi et al., 2018) the
combined use of RGB, depth and skeletal data to improve action recognition
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Figure 5.1: Example of Spatio-Temporal Interest Points (marked in red).

The spatial changes with respect to the time axis are marked

with an arrow. From the 3D volumes, it is clear that the dancer

keeps her head still throughout the video. Despite the numerous

spatial features, no STIPs are detected in her face or in her life

(Herath et al., 2017).

accuracy.

5.2 Action recognition from depth data

(Yang and Tian, 2014a) propose an approach aimed at extracting features
from depth data only. In particular, they introduce a spatio-temporal depth
sub-volume descriptors. In order to characterise the local motion and shape
information, a polynormal is determined by the clustering of hyper-surface
normals extracted from each depth sequence. To define the final representa-
tion of the depth map, the polynormals are aggregated into the Super Normal
Vector (SNV), a simplified version of the Fisher kernel representation. The
authors have also evaluated a possible integration with skeleton joint trajec-
tories, in order to improve recognition results in sequences with many human
movements. In (Gupta et al., 2013) is presented a silhouette-based descrip-
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tor which couples depth and spatial information to define human poses. The
authors create a codebook of body poses and describe a new posture in
terms of similarity to a codeword. In this approach, the human-body sil-
houette is extracted through background subtraction using the first frames
of a sequence. Therefore, these frames should not include users in order to
avoid affecting the robustness of the approach. In (Rahmani et al., 2014)
is proposed the Histogram of Oriented Principal Components (HOPC) de-
scriptor which is able to describe the shape and motion information from a
sequence of 3D points. The authors evaluate two different settings: holis-
tic and local. In the holistic approach, the sequence of 3D pointclouds is
split into spatio-temporal cells, and each cell is described by accumulating
and normalising the individual HOPC descriptors belonging to that cell. A
sequence descriptor is formed by concatenating the different cells’ HOPC
descriptors. In the latter approach, local HOPC are extracted at candidate
Spatio-Temporal Key-Points (STKPs), and quality evaluation is performed
to rank the STKPs. Another example of holistic descriptor is the Histogram
of Oriented 4D Normals (HON4D) (Oreifej and Liu, 2013). HON4D describes
the depth sequence by means of a histogram that captures the distribution
of the surface normal orientation in the 4D space of time, depth, and spatial
coordinates.

In (Li et al., 2010) is presented an approach based on a bag of 3D points
and on an action graph. The former one, is used to represent the most
relevant postures; the latter one, is exploited to describe the dynamics of
the actions, in which each node represents a particular posture. The authors
emphasise that good recognition accuracy has been achieved using only 1%
of the 3D points. In particular, the points used are obtained by planar
projections of the 3D depth maps and through the extraction of those that
are on the human body contours.

(Xia and Aggarwal, 2013) explored the use of depth-based STIPs. The
authors defined an interesting solution to deal with depth noise. They pro-
posed a correction function in order to avoid some typical problems of depth
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Figure 5.2: Depth-based STIPs: noise correction example. The points are

projected on top of one frame of the action drink (Xia and Ag-

garwal, 2013).

frames, such as the boundary of objects – due to the transition between
foreground and background – or “depth holes” – caused, for example, by
particular materials or fast movements. An example of the noise correction
function application is shown in Figure 5.2.

Several works have used depth information in multi-modal solutions. Such
an example, the previously mentioned work by (Chaaraoui et al., 2013b) pro-
posed a bimodal solution composed by the concatenation of silhouette-based
and skeletal features. (Chen et al., 2015) proposed the 3.5D depth video
representations that corresponds to the outcome of reconstructing 3.5D in-
formation from depth spatio-temporal features, learned through Convolu-
tional Neural Networks (CNNs), and the skeleton data (3D joint positions).
Data are fused at the kernel level using an ensemble Multi-Kernel Learning
(MKL) framework where each component classifier is a discriminative MKL.
(Althloothi et al., 2014) also proposed an approach that employs MKL algo-
rithms based on depth shape features, extracted using spherical harmonics
representation and used to describe the 3D silhouette structure, and mo-
tion features, based on the estimated 3D joint positions. Finally, in (Zhu
et al., 2014) an approach based on STIPs derived from the depth images is
proposed. In this method, the skeleton data are used to create a bounding
box exploited to remove irrelevant interested points (an example is shown in
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Figure 5.3: Depth-based STIPs refinement through skeleton data (Zhu et al.,

2014).

Figure 5.3).

The potential of CNNs is also exploited in (Wang et al., 2016) where
the authors propose an architecture based on three distinct CNNs with final
classification obtained through a late score fusion. Each CNN accepts as an
input a sequence of different depth maps which are constructed by projecting
the 3D points to the three orthogonal planes.

5.3 Action recognition from skeleton data

Most of the approaches based on RGB-D data perform a skeleton analysis,
adopting different representations of the set of joints such as the simple joint
coordinates, normalised according to some body reference measure. Such as
an example, (Gaglio et al., 2015) proposed an approach based on normalised
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Figure 5.4: HAR algorithm constituted by four steps: posture extraction,

posture selection, activity features and classification (Cippitelli

et al., 2016).

feature vectors of 3D joints coordinates. The normalisation process uses two
reference joints: torso and neck. The scale factor is defined as the ratio of
the distance between these two joints and the same distance concerning a
reference skeleton (detected offline). A translation matrix is finally applied
to set the origin of the coordinate system to the torso. Instead, (Shan and
Akella, 2014) normalised the 3D skeleton data using the skeleton height and
shoulder width, in order to reduce the influence of different heights and limbs
length.

Another approach is to use joints distances instead of normalised 3D
joints coordinates, see for instance (Cippitelli et al., 2016) in which sets of
distance vectors – with respect to the torso joint – are used. Also in this work,
summarised in Figure 5.4, the feature normalisation is obtained exploiting
the distance between the neck and torso joints. The posture selection phase
(step 2 in Figure 5.4) consists of applying a k-means algorithm to the distance
vectors that characterise a specific action. The purpose is the definition of k-
centroids (i.e., key poses) that allow the subsequent creation of a particular
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Figure 5.5: The framework for representing EigenJoints. In each frame, are

computed three feature channels: fci, fcc and fcp (Yang and Tian,

2014b).

activity feature vector, that is sorted according to the order in which the
different poses are assumed. This allows to preserve the temporal information
of a specific sequence.

In (Yang and Tian, 2014b) is introduce a framework to represent Eigen-
Joints (shown in Figure 5.5). This approach uses three different features
channels: one for static feature postures (represented by the configuration
of joints in a given frame, described by pair-wise joints differences), one for
consecutive motion features (represented by the difference in configuration
compared to the previous frame) and finally, one for overall dynamics fea-
ture (represented by the difference in configuration compared to the initial
frame). Normalisation and Principal Component Analysis (PCA) are then
applied to create an EigenJoints-based motion model.

In Xia et al. (2012) is defined the Histograms of 3D joints locations
(HOJ3D). This histogram is obtained by partitioning the 3D space into var-
ious bin. Using the spherical coordinates defined by the authors, a specific
joint can be located in a single bin. In Zhang and Tian (2012) kinematic fea-
tures, obtained observing the angles between couples of joints, are used. Also
in (Theodorakopoulos et al., 2014) angles are exploited. A human action is
in fact represented as a sequence of poses over time, in which each pose is
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described by 8 pairs of angles. Other representation include, for example,
Gaussian Mixture Models representing the 3D positions of skeleton joints in
(Piyathilaka and Kodagoda, 2013) or Dynamic Bayesian Mixture Model of
3D skeleton features in (Faria et al., 2014). Another common approach is to
adopt a hierarchical representation where an activity is composed of a set of
sub-activities, also called actionlets (Wang et al., 2012, 2014; Koppula et al.,
2012; Ding et al., 2015). In the recent work by (Qi et al., 2018) is proposed an
automatic joint configuration learning method, based on dictionary learning
and sparse representation.

The interaction of humans with objects is analysed in a few works. Such
as an example, the authors of Koppula et al. (2012) adopt a Markov Ran-
dom Field where the nodes represent objects and sub-activities and the edges
represent the relationships between object affordances, their relations with
sub-activities, and their evolution over time; in (Koppula and Saxena, 2013)
the authors propose a graph-based representation.

Also for skeletal data classification some recent techniques based on deep
learning have been proposed. Long Short-Term Networks (LSTMs) are well
suited to this aim for their capabilities of processing changes across time
(Shahroudy et al., 2016; Cui et al., 2018; Battistone and Petrosino, 2019).

5.3.1 Joint orientations

Most of the skeleton-based approaches use the position of joints as pri-
mary information and, as we have seen, this involves different normalisation
procedures. Our approach, that will be presented in the next chapter and
exploited in the following ones, uses another information modality for human
representation construction: the joint orientations. The main advantage of
adopting orientation-based features is that they are invariant to human po-
sition, body size and sensor orientation (Han et al., 2017). It is possible to
differentiate between two macro-categories of approaches: i) spatial orienta-
tion of pairwise joints, ii) temporal joint orientation.
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In the former case, the orientation of displacement vectors of a pair of
joints acquired at the same time step is computed. An example, although of
gesture recognition, is reported in (Gu et al., 2012), in which the orientation
of each joint is described by angles to a 3D centroid, represented by the
joint torso. Similarly, in (Sung et al., 2012) the orientation matrix of each
joint is computed concerning the RGB-D sensor, then each joint’s rotation
matrix is transformed with respect to the person’s torso. Otherwise, in (Jin
and Choi, 2012) are computed 19 first-order vectors, that are the orientation
vectors from one joint to another one, and 14 second-order vectors, defined
on the basis of a neighbourhood strategy to connect adjacent vectors. In a
recent work by (Khokhlova et al., 2019) joint orientations are exploited to
calculate kinematic gait parameters. In particular, orientations are used to
calculate angles between lines connecting relevant pairs of joints (e.g., the
angle between a line connecting left and right hip joints).

In the latter case, these approaches usually rely on the difference over
time of the same set of joints. A very first example can be found in the work
of (Campbell and Bobick, 1995) in which torso orientation trajectories are
evaluated. Finally, (Boubou and Suzuki, 2015) introduced the Histogram
of Oriented Velocity Vectors (HOVV) descriptor. The skeleton sequence is
represented using a 2D spatial histogram that captures the distribution of
the orientations of velocity vectors.



Chapter 6

Joint Orientations for HAR

In this chapter is presented an action recognition approach where angle
information is used to encode the human body posture, i.e. the relative
position of its different parts; such information is extracted from skeleton
data (joint orientations), acquired by the cost-effective Kinect sensor. The
system is evaluated on the well-known dataset CAD-60 for comparison with
the state of the art; moreover, due to the lack of datasets including skeleton
orientations, a new benchmark named Office Activity Dataset v.1.0 (OAD
v.1.0) has been internally acquired. The tests confirm the efficacy of the
proposed model and its feasibility for scenarios of varying complexity.

6.1 Introduction

As stressed in Section 3.2, automated high-level human action analysis
and recognition play a fundamental role in many relevant and heterogeneous
application fields such as video-surveillance, AAL, automatic video annota-
tion or human-computer interfaces. Of course, different applications need
specific approaches to be designed and implemented; general-purpose solu-
tions, though highly desirable, are tough to implement due to, for example,
the differences in the source of information, the requirements in terms of
efficiency, the environmental factors which have a significant impact on per-
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formance. This approach focuses on human action recognition in indoor envi-
ronments which has typical applications in AAL, abnormal human behaviour
recognition or, eventually, human computer interfaces. We have underlined
unobtrusiveness as one of the most important and interesting features of
AmI applications; to meet this requirement, the proposal of this chapter is a
vision-based technique where simple cameras are used as input devices and
the users are not require to wear neither to actively interact with sensors of
different nature.

With respect to the other previously mentioned application scenarios such
as video-surveillance, indoor environments offer several advantages: the input
data are somehow more “controlled” and easier to process (e.g. to segment
the subjects in the scene), the number of possible users is generally limited
and input devices, such as RGB-D cameras, can be successfully adopted for
data acquisition. The problem of action recognition is however still complex
if we consider that the users are not cooperative and a real-time processing
is needed to produce timely and useful information.

We have seen that many works in the action recognition literature are
based on skeleton data. However, almost all only exploit 3D joint positions
to describe human postures; since Kinect provides for each joint also the esti-
mated orientation, we decided to explore the robustness of this information.
We therefore derived a posture representation based exclusively on angle in-
formation, derived from both the joint position and orientation. Again, the
great advantage of angle features derived from skeletons is that they are in-
trinsically normalised and independent from the user’s physical structure.
A good degree of invariance with respect to pose and view changes is also
achieved since all the angles are computed with respect to the subject’s co-
ordinate system.

Aim of this proposal is hence to evaluate the reliability of the joint ori-
entation estimates provided by Kinect and to verify their effectiveness for
action recognition.
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6.2 Proposed approach

The fundamental idea behind the proposed approach is to encode each
frame of a video sequence as a set of angles derived from the human skele-
ton, which summarise the relative positions of the different body parts. This
proposal presents some advantages: the use of skeleton data ensures a higher
level of privacy for the user with respect to RGB sequences, and the angle in-
formation derived from skeletons is intrinsically normalised and independent
from the user’s physical build.

The skeleton information extracted by the Kinect (Shotton et al., 2013)
consists of a set of n joints J = {j1, j2, ..., jn} where the number n of joints
depends on the software used for the skeleton tracking (i.e. typical configu-
rations include 15, 20 or 25 joints). Each joint ji =

(
pi,
−→oi

)
is described by

its 3D position pi and its orientation −→oi with respect to “the world”. Our
approach exploits the information given by joint orientations to compute rel-
evant angles whose spatio-temporal evolution characterises an action. We
consider three different families of angles (see Figure 6.1 and Figure 6.2):

• θab: angle between the orientations −→oa and −→ob of joints ja and jb. Angles
θab are computed for the following set of couples of joints:

Aθ = {(j1, j3), (j1, j5), (j3, j4), (j5, j6), (j0, j11), (j0, j12), (j7, j8), (j9, j10)}

• ϕab: angle between the orientation −→oa of ja and the segment
−−→
jajb con-

necting ja to jb. We can consider the segment as the bone that inter-
connects the two joints. Angles ϕab are computed for the following set
of couples of joints:

Aϕ = {(j3, j1), (j3, j4), (j4, j3), (j4, j11), (j11, j4), (j5, j1), (j5, j6), (j6, j5),

(j6, j12), (j12, j6), (j2, j7), (j7, j2), (j7, j8), (j2, j9), (j9, j2), (j9, j10)}

• αbac: angle between the segment
−−→
jajb connecting ja to jb and

−−→
jajc that

connects ja to jc. Angles αabc are computed for the following triplets
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Figure 6.1: Representation of a subset of joints ja = (pa,
−→oa), jb = (pb,

−→ob)
and jc = (pc,

−→oc) and related angles θ, ϕ and α.

of joints:

Aα = {(j2, j7, j8), (j7, j8, j13), (j2, j9, j10), (j9, j10, j14)}

We consider only subset of the possible angles, mainly obtained from the
joints of the upper part of the body, because not all the angles are really infor-
mative: for example, the angles between head and neck are almost constant
over time and does not provide useful information for action discrimination.
Different configurations of angles have been evaluated and compared in Sec-
tion 6.3. Therefore, each frame fi of the video sequence Si, i = 1, .., l is
represented by a vector obtained as the ordered concatenation of the values
of θi | i ∈ Aθ, ϕj | j ∈ Aϕ, αk | k ∈ Aα

vi = (θ1, ..., θm, ϕ1, ...ϕn, α1, ..., αs)

of size (m+ n+ s).

It is worth noting that the number of frames for each video sequence
can be extremely high and certainly not all the resulting feature vectors are
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Figure 6.2: The 28 angles used in our experiments computed from a skeleton

configuration with 15 joints.

significant: the variation of the angles between two subsequent frames is min-
imal and usually unnoticeable. We decided therefore to adopt a Bag of Word
(BoW) model (Wang et al., 2009) with a two-fold objective: minimising the
representation of each sequence keeping only the relevant information and
producing fixed-length descriptor which can be used to train an action clas-
sifier. The idea is to represent each activity as an histogram of occurrences of
some reference postures (see Figure 6.3 for a visual representation), derived
from the analysis of the training set. A reference dictionary is first built by
applying the well-known K-means clustering algorithm (Fukunaga, 1990) to
the set of posture features extracted from the training sequences. Since some
subjects could be left-handed, all the angle features are mirrored with respect
to the x-axis. We denote with k the number of clusters determined (i.e. the
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dictionary size). The dictionary should encode the basic postures assumed
during the different actions in the training set and will be used to represent
each sequence as an histogram of occurrences of such basic elements. Given a
set of training sequences TS = {Si, i = 1, .., d}, representative of the different
actions, the k-means clustering algorithm is applied to the associated set of
feature vectors FV = {vi, i = 1, .., d} to obtain a set of k clusters: the cluster
centroids are used as words of the reference dictionary W = {wi, i = 1, .., k}.
The number of clusters k determines the size of the dictionary and is one
of the most relevant parameters of the proposed approach. Each sequence
is then encoded as a normalised histogram of occurrences of the words in
W . Of course the angle features are continuous values and a precise corre-
spondence between the words in the dictionary and the descriptors is very
unlikely; therefore when computing the histogram each feature vector fi is
associated to the closest word w∗j in the dictionary: j∗ = argminj ||fi − wj||.
A Random Forest Classifier (Breiman, 2001) is trained to discriminate the
different actions represented in the training set; the classifier consists of an
ensemble of decision trees, each trained on a subset of the patterns and a
subset of the features and the final classification is obtained combining the
decisions of the single sub-trees.

Figure 6.3: Visual representation of a subset of key poses corresponding to

some cluster centroids of the dictionary W .
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6.3 Experiments

Several experiments have been conducted to evaluate the sensitivity of the
proposed approach to its main parameters (i.e. the set of angles selected and
the dictionary size). Despite of the large number of existing benchmarks for
action/activity recognition from skeleton information, joint orientations are
generally not available. We used for testing the well-known CAD-60 (Sung
et al., 2012, 2011), released by the Cornell University, and a newly acquired
dataset. CAD-60 contains 60 RGB-D videos where 4 different subjects (two
male and two female, one left-handed) perform 12 ADL in 5 environments
(office, kitchen, bedroom, bathroom and living room). The authors of the
benchmark propose two settings named new person, where a leave-one-out
cross-validation is adopted, and have seen where the training set includes
data from all the subjects. We adopted the new person testing protocol, in
accordance with all the related works in the literature, to allow for a com-
parison of the results. Moreover, analogously to other works, the recognition
accuracy is measured separately for the different rooms.

6.3.1 Office Activity Dataset v.1.0

Due to the lack of datasets including information on joint orientations, we
decided to acquire a new database of human actions to perform further tests.
Data acquisition was carried out in a single environment (office) from several
perspectives based on the action being performed. From this point of view
the benchmark is more complex than CAD-60 because all the activities need
to be compared for recognition and the higher number of subjects increases
the variability of each action. It contains 14 different actions: drinking,
getting up, grabbing an object from the ground, pour a drink, scrolling book
pages, sitting, stacking items, take objects from a shelf, talking on the phone,
throwing something in the bin, waving hand, wearing coat, working on com-
puter, writing on paper. Data was collected from 10 different subjects (five
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Figure 6.4: Example frames of some activities carried out by the 10 subjects

in the OAD v.1.0. Specifically: drinking, talking on the phone,

throwing something in the bin, sitting/getting up, grabbing an

object from the ground, wearing coat, pouring a drink, scrolling

book pages, waving hand and working on computer

males and five females) aged between 20 and 35, one subject left-handed.
The volunteers received only basic information (e.g. “pour yourself a drink”)
in order to be as natural as possible while performing actions. Each subject
performs each action twice, therefore we have collected overall 280 sequences.
Some examples RGB frames are shown in Figure 6.4.

The device used for data acquisition is the Microsoft Kinect V2 whose
SDK allows to track 25 different joints (19 of which have their own orienta-
tion). For testing, we adopted the same “new person” setting of the CAD-60
dataset: a leave-one-out cross-validation with rotation of the test subject.
The set of angles used for testing the proposed approach is however the same
used for CAD-60. At this moment, only skeletal data are available in the
Smart City Lab web site1. As will be described in the next chapter, we have
collected an extension of this dataset and we will release the final version of

1http://smartcity.csr.unibo.it

http://smartcity.csr.unibo.it
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Office Activity Dataset (OAD).

6.3.2 Results

CAD-60. Performance evaluation starts from the analysis of the confu-
sion matrix M where a generic element M (i, j) represents the percentage of
patterns of class i classified by the system as belonging to class j. Further
synthetic indicators can be derived from the confusion matrix; in particular,
we computed precision P and recall R as follows:

P =
TP

TP + FP
,R =

TP

TP + FN

where TP, FP and FN represent respectively the True Positives, False Posi-
tives and False Negatives which can be easily derived from the extra-diagonal
elements of the confusion matrix. In analogy to the proposal in (Cippitelli
et al., 2016), each video sequence is partitioned into three sub-sequences
which are used independently in the tests.

The results obtained are summarised in Figure 6.5 where the Precision
(P ) and Recall (R) values are reported for different experimental settings,
i.e. variable dictionary size (k) and three subsets of angles considered for
skeleton representation. In particular, the efficacy of the joint orientations
is assessed by comparing the results of two different settings – 24 angles, (α
angles omitted) and 28 angles – with those obtained using only Aα angles,
computed between all the existing pairs of neighbouring segments (13 angles,
no joint orientation is used in this case).

The results show that, overall, the accuracy of the proposed technique
is good. As expected the dictionary size has a significant impact on the
performance; it is worth noting that different actions have often very similar
postures (e.g. drinking and talking on the phone) and a value of k excessively
low probably determines the reference posture of such activities to collapse
in a single word, thus making difficult to correctly distinguish them. On
the other hand, a high value of k produces very sparse feature vectors, more
sensitive to the presence of noise. The best results have been reached with
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Table 6.1: Precision and Recall for the different rooms of CAD-60 with leave-

one-out cross validation, k = 100 and the 28 angles configuration.

Room Activity Precision (%) Recall(%)

Bathroom brushing teeth 80.0 100
rinsing mouth 100 75.0
wearing contact lenses 100 100
Average 93.33 94.86

Bedroom talking on phone 100 91.67
drinking water 80.0 100
opening pill container 100 100
Average 97.43 97.22

Kitchen cooking (chopping) 86.0 100
cooking (stirring) 100 83.0
drinking water 100 100
opening pill container 100 100
Average 96.43 95.83

Living room drinking water 92.31 100
relaxing on couch 100 92.0
talking on couch 92.0 100
talking on phone 100 91.67
Average 96.15 95.83

Office drinking water 80.0 100
talking on phone 100 75.0
working on computer 100 100
writing on whiteboard 100 100
Average 95.0 93.75
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(a)

(b)

Figure 6.5: Precision (a) and recall (b) values on CAD-60 with different con-

figurations of angles, as a function of the dictionary size (k).

a value of k = 100 which also allows to efficiently perform the classification
task. Also the angle configuration is important; the use of 28 angles produces
better results both in terms of precision and recall with respect to the version
with 24 angles.

The limited accuracy of the configuration with 13 angles, where the ori-
entation is not exploited, confirm the effectiveness of joint orientation for
accurate posture representation. These results also show that the signifi-
cance of the angles varies greatly and a few strategical angles can greatly
improve the recognition performance. As to the computational complexity,
the proposed approach is very efficient, and all the angle configuration are



64 Chapter 6. Joint Orientations for HAR

suitable for a real time processing.

Table 6.2: Confusion matrix using k = 100 words and a configuration of 28

angles on CAD-60.
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Talking on the phone 0.86 0.0 0.14 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Writing on whiteboard 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Drinking water 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rinsing mouth with water 0.0 0.0 0.0 0.75 0.25 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Brushing teeth 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wearing contact lenses 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Talking on couch 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
Relaxing on couch 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.92 0.0 0.0 0.0 0.0
Cooking (chopping) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
Cooking (stirring) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17 0.83 0.0 0.0

Opening pill container 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Working on computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

Results for each activity, considering the different rooms, have been re-
ported in Table 6.1. The confusion matrix, reported in Table 6.2, allows
to analyse the main causes of errors. The mismatch occurred are all rather
comprehensible since they are related to very similar actions (e.g. cooking-
chopping, cooking-stirring). In these cases the skeleton information is prob-
ably too synthetic to discriminate the two actions which are very similar in
terms of posture. A comparison with the state of the art is provided in Ta-
ble 6.3 which summarises the results published in the benchmark website.
Despite of the very good accuracy reached by different approaches in recent
years, the proposed approach outperforms existing methods, both in terms
of precision and recall.

OAD v.1.0. The results on the Office Activity Dataset v.1.0 are reported
in Table 6.4 and Table 6.5 for the standard configuration with 28 angles and
k = 100. The overall results confirm that this benchmark is more difficult for
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Table 6.3: Precision (P ) and recall (R) of the proposed approach on CAD-60,

compared to the results published in the benchmark website. “*”

indicates that a different protocol was used.

Algorithm P R

Proposed approach 95.0 95.0

(Sung et al., 2012, 2011) 67.9 55.5

(Koppula et al., 2012) 80.8 71.4

(Zhang and Tian, 2012) 86.0 84.0

(Ni et al., 2012) Accur: 65.32 -

(Yang and Tian, 2014b) 71.9 66.6

(Piyathilaka and Kodagoda, 2013) 70* 78*

(Ni et al., 2013) 75.9 69.5

(Gupta et al., 2013) 78.1 75.4

(Wang et al., 2014) Accur: 74.70 -

(Zhu et al., 2014) 93.2 84.6

(Faria et al., 2014) 91.1 91.9

(Shan and Akella, 2014) 93.8 94.5

(Gaglio et al., 2015) 77.3 76.7

(Parisi et al., 2015) 91.9 90.2

(Cippitelli et al., 2016) 93.9 93.5

(Urbano Nunes and Peixoto, 2017) 81.83 80.02

(Qi et al., 2018) 90.18 92.9

(Khaire et al., 2018) 93.06 90.0

(Battistone and Petrosino, 2019) 94.4 93.7

several reasons: i) the activities are not partitioned according to the room
where they are performed and the probability of misclassification increases;
ii) the number of subjects is higher and the variability in executing the actions
increases proportionally. For instance, the worst results have been measured
for the action “throwing something in bin” that the several subjects executed
very differently.

Other mismatches occur between the actions “sitting” and “getting up”;
in principle the reference postures of the two actions are similar, but their
temporal ordering in the execution is different and probably the BoW rep-
resentation adopted is not able to capture this aspect. However, in general,



66 Chapter 6. Joint Orientations for HAR

Table 6.4: Precision (P ) and Recall (R) values of the proposed approach for

each action on OAD v.1.0.

Action P R

Drinking 60.87 77.78
Getting up 81.25 72.22
Grabbing object from ground 83.33 83.33
Pouring a drink 75.00 83.33
Scrolling book pages 80.95 94.44
Sitting 59.09 72.22
Stacking items 90.00 100.00
Taking objects from shelf 100.00 94.44
Talking on phone 86.67 72.22
Throwing something in bin 75.00 33.33
Waving 66.67 66.67
Wearing coat 100.00 100.00
Working on computer 94.12 88.89
Writing on paper 78.95 83.33

Overall 80.85 80.16

Table 6.5: Confusion matrix using k = 100 words and a configuration of 28

angles on OAD v.1.0.
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Drinking 0.78 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.11 0.0 0.06 0.0 0.0 0.0
Getting up 0.0 0.72 0.0 0.0 0.0 0.28 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Grabbing obj. 0.0 0.0 0.83 0.06 0.0 0.06 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0
Pour a drink 0.0 0.0 0.0 0.83 0.17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Scrolling book 0.0 0.0 0.0 0.0 0.94 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0

Sitting 0.0 0.17 0.06 0.0 0.0 0.72 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0
Stacking items 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Taking objects 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.94 0.0 0.06 0.0 0.0 0.0 0.0

Talking on phone 0.17 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.72 0.0 0.06 0.0 0.0 0.0
Throwing something 0.11 0.0 0.11 0.0 0.06 0.17 0.11 0.0 0.0 0.33 0.06 0.0 0.0 0.06

Waving 0.17 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.67 0.0 0.0 0.06
Wearing coat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Working on computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.89 0.11
Writing on paper 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 0.0 0.06 0.83
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the good performance of the proposed approach is confirmed on this dataset
as well.

6.4 Final Remarks

A human action recognition technique based on skeleton information has
been proposed in this chapter. In particular, the effectiveness of joint orien-
tations, typically neglected by the majority of the action recognition works,
has been evaluated on different benchmarks. The efficacy of the proposal
have been confirmed; the results obtained overcome the state-of-the-art in
the well-known CAD-60 benchmark and good accuracy levels can be reached
also on the newly acquired OAD v.1.0 dataset.





Chapter 7

A multimodal approach for HAR

In this chapter the potentialities of the Kinect sensor are fully exploited
to design a robust approach for action recognition combining the analysis of
skeleton previously proposed and RGB data streams. The skeleton represen-
tation is designed to capture the most representative body postures, while
the temporal evolution of actions is better highlighted by the representa-
tion obtained from RGB images. The experimental results confirm that the
combination of these two data sources allow to capture highly discriminative
features resulting in an approach able to achieve state-of-the-art performance
on public benchmarks.

7.1 A multimodal system for action recognition

As we have seen, the Kinect sensor provides parallel access to different
data streams; in this chapter we are interested in coupling information from
both skeleton and RGB images. We will define an action as a sequence S
of L data frames, St, t = 1, .., L; each element St = (Ft, SKt) includes Ft,
the RGB frame acquired at time t (of size W × H), and SKt which is the
corresponding skeleton. In practice the two data streams could be slightly
misaligned, mainly due to the serialisation procedure which is not always able
to work at the same frame rate the data are provided (a few frames could

69
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thus be skipped some times). This misalignment was observed in several
databases available for research purposes, but its impact on our approach
is negligible since the contribution of the two information is combined at
decision-level.

7.1.1 Skeleton

For the sake of the reader, the main aspects and categories of angles
used by the approach proposed in the previous chapter are briefly reported.
Each frame of a video sequence is represented by a set of angles derived from
the human skeleton, which summarise the positions of the different body
parts. The Kinect SDK represents the human skeleton as a set of d joints
J = {j1, j2, ..., jd}; each joint ji =

(
pi,
−→oi

)
is described by its 3D position

pi and its orientation −→oi with respect to “the world”. To encode the user
posture, we defined three types of angles:

• θab: angle between the orientations −→oa and −→ob of joints ja and jb. θab
angles are computed from a set of m couples of joints Aθ (m = 8 in our
work).

• ϕab: angle between the orientation −→oa of ja and the segment
−−→
jajb con-

necting ja to jb. ϕab angles are computed from a set of n couples of
joints Aϕ (n = 16 in our work).

• αbac: angle between the segment
−−→
jajb connecting ja to jb and

−−→
jajc that

connects ja to jc. αbac angles are computed from a set of s triplets of
joints Aα (s = 4 in our work).

Unfortunately, the skeleton estimation provided by Kinect is not always
accurate. The reliability is generally good for the joints of the upper part of
the body, which contains most of the information needed for action recogni-
tion. Legs are generally quite unreliable, but in many cases they are occluded
or almost static and do not provide significant contribution for action recog-
nition. For this reason only a subset of the possible angles is considered,
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mainly obtained from the joints of the upper part of the body. Each skeleton
SKt of the video sequence is represented by a vector obtained as the ordered
concatenation of the values of θi | i ∈ Aθ, ϕj | j ∈ Aϕ, αk | k ∈ Aα

vi = (θ1, ..., θm, ϕ1, ...ϕn, α1, ..., αs)

of size (m+ n+ s) where m = |Aθ|, n = |Aϕ| and s = |Aα|.
The complete video sequence S is finally encoded using a BoW model where
each action is represented as an histogram of occurrences of some reference
postures. The skeleton BoW representation allows to effectively represent the
main postures assumed by the human body during actions, but, as stressed
before, the final representation does not capture the temporal evolution of
the body movement (due to the global nature of the histogram represen-
tation). The temporal images described in the following subsection allow
to better represent this aspect and provide a complementary representation
with respect to the skeleton information.

7.1.2 HOG features from temporal images

In order to improve the recognition capabilities of the previously described
approach, we developed a technique based on the analysis of RGB images
with a two-fold objective: i) better encoding the temporal evolution of the
action, needed to discriminate between actions characterised by similar pos-
tures but presented in a different order (e.g., sit down and get up); ii) capture
to some extent the user interaction with objects which could help to classify
the action. The feature extraction approach can be summarised into three
main steps: construction of the temporal images, gradient computation, and
HOG encoding.

7.1.2.1 Construction of the temporal images

We can represent a sequence of frames Ft with t = 1, .., L as a volume
image V (see Figure 7.1a), i.e. a parallelepiped in a 3D space (x, y, t), where
the first two coordinates refer to the spatial coordinates of the frame pixels
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and the third one represents time. To achieve independence from the body
position in the images, each frame is cropped to a fixed-size window (25% of
the frame width) centred on the spine mid joint. The width of the region of
interest has been empirically determined, based on a rough analysis of the
training set, and is not always accurate for the test sequences; however, it
represents a good trade-off between computational complexity and accuracy.
Our representation is obtained by a slicing operation of the volume V at
predefined values of the y-coordinate (see Figure 7.1), properly selected
to capture the body motion during the action. In particular, a set T =

{Ty1 , Ty2 , ..., TyM} of M temporal images of size W × L will be computed
from V ; the generic element of T is defined as: Tyi(r, c) = V (r, yi, c) with
r ∈ [1, ..,W ] and c ∈ [1, .., L]. Examples of temporal images at fixed values
of y are given in Figure 7.1b. As clearly visible in the example, the temporal
image highlights the specific movement of a body region during time; the
slice at the level of hands will show a very typical periodic movement origi-
nated by the steering action performed. Other temporal images, for instance
from the leg region, will be more static for this specific action. As expected,
the selection of the sections to analyse (y values) has an important impact
on the accuracy of representation. We evaluated two strategies: i) y value of
the main skeleton joints; ii) uniform sampling along the skeleton. The two
approaches will be compared in the experiment section.

7.1.2.2 Temporal image gradient computation

Looking at the temporal images, it is easy to observe that the relevant
information for action recognition is represented by the dynamic elements,
the variations observed across time; the constant regions of the image are
not interesting and must not be encoded. For this reason we convert each
temporal image Tyi ∈ T in a grayscale image and we compute the gradient
moduli Gyi using the Sobel operator (see Figure 7.1c). Even if the RGB
frames look quite defined, an analysis of the gradient images reveals the
presence of a significant noise component that must be removed for reliable



Chapter 7. A multimodal approach for HAR 73

feature extraction. A denoising operation is therefore applied both before and
after gradient computation to reduce the effects of inter-frame variations due
to the sensor, thus obtaining a regularised image G̃yi ; the technique used for
denoising is non-local means denoising (Buades et al., 2011).

7.1.2.3 HOG encoding of gradient images

Each regularised gradient image G̃yi is finally encoded by HOG descriptors
proposed in (Dalal and Triggs, 2005). The length of the different sequences
could be different of course, thus determining temporal images of different
size. We need however a fixed-length descriptor to train a classifier, so each
image is partitioned into a fixed number of overlapping blocks and the final
descriptor is obtained by the concatenation of the block descriptors. The
OpenCV implementation of HOG descriptor computation has been used here;
in particular, best results were achieved with a window of 4x8 cells. The size
of the cells for a specific sequence obviously depends on the size of the input
temporal image. A L2 normalisation is carried out on blocks made of 4x4
cells. The adoption of a histogram-based representation allows to further
reduce the influence of noise.

7.1.3 Action classification

The two techniques discussed in the previous sections are quite comple-
mentary and their fusion can be useful to achieve good recognition accuracy.
As shown in Figure 7.2, two classifiers are trained using the features extracted
from skeleton and RGB images respectively. As for the skeleton data, we used
the same configuration described in the previous chapter with the training of
a Random Forest classifier. The second classifier consists of a set ofM linear
Support Vector Machines where each SVM represents a Ty slice, i.e. each
model is trained on a specific volume slice; the classification of a particular
action is carried out by the fusion of results obtained from the individual
SVMs.
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Figure 7.1: Representation of the feature extraction approach from RGB im-

ages. The temporal image (b) is a “slice” of the 3D volume rep-

resenting the frame sequence (a). Relevant changes in time are

well highlighted in the gradient image (c) extracted from (b).

The outputs of the two classifiers are then combined for the final result;
among the existing combination strategies, the decision-level fusion is the
most suited in this case due to the possible misalignment of the RGB and
the skeleton streams which makes difficult a fusion at feature level. The two
classifiers are equally weighted for the computation of the combined score,
obtained by a simple sum rule. In our internal experiments, the typical
fusion rules (max, sum, prod) have been evaluated. The sum rule provided
the best results; in the next section, all the results concerning the score-fusion
of the two classifiers use this rule. In the final part of the section, and in
particular in Table 7.8, the results obtained with the different fusion rules
will be compared and discussed.

7.2 Experiments and results

The proposed approach has been evaluated over three different public
benchmarks, each of them including different sets of activities. In order to
evaluate the effectiveness of the proposed approaches we had to focus on
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Figure 7.2: Schema of the proposed Multi-modal HAR approach. The final

score is obtained by a score-level fusion of the output of the two

modules based on RGB and Skeleton data respectively.

datasets providing both RGB frames as well as information about joint ori-
entations. As underlined in Chapter 6, most of the existing HAR datasets
provide only one of the two categories of data, so we finally selected two
well-known public benchmarks, the already described CAD-60 and the more
challenging CAD-120. We extended the experiments to an incremented ver-
sion of the previously described OAD v.1.0.
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7.2.1 Results on CAD-60

As mentioned in Section 7.1.2, we evaluated two different strategies for
the selection of y-values, both based on skeleton information. In the first one,
volume slices are extracted in correspondence of the position of the 15 joints
describing the skeleton (RGB - joint-based selection); the second one simply
applies a uniform slice sampling along the whole skeleton (RGB - uniform
selection). A comparison between the two strategies on the CAD-60 dataset
is given in Table 7.1 which also reports the results of other methods in the
literature. Besides precision and recall, for each method an indication about
the Kinect data exploited is given (Sk : skeleton, RGB : color frames, De:
depth frames). It is worth noting that the skeleton information is derived
by Kinect SDK from depth data, but we checked the De column only when
the approach directly exploits depth images for feature extraction (different
from skeleton).

The results show that the uniform sampling is more effective, probably
because the initial join position in some cases (e.g. hands) is not significant.
Moreover, the information related to specular joints (e.g., shoulders, pelvis,
knees, elbows) is redundant and not informative, thus making us lean towards
uniform sampling along the entire skeleton. The confusion matrix shown in
Table 7.2, allows to analyse the results obtained with uniform sampling with
20 different slices.

Table 7.3 reports the confusion matrix obtained by the combination of
RGB and skeletal representations; excellent results are observed, compared
to existing approaches, both in terms of precision and recall.

7.2.2 Results on CAD-120

We have extended our evaluation to include the CAD-120. As the name
suggests, CAD-120 consists of 120 videos of human actions where the subjects
perform 10 high-level activities (making cereal, taking medicine, stacking ob-
jects, unstacking objects, microwaving food, picking objects, cleaning objects,
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Table 7.1: Precision (P ) and recall (R) of the proposed approaches on CAD-

60, compared to the state-of-art results. For each method, the in-

dication about the Kinect data exploited is also given: Sk : skele-

ton, RGB : color frames, De: depth frames.“*” indicates that a

different evaluation protocol was used.

Algorithm Sk RGB De P R

(Sung et al., 2012, 2011) X X X 67.9 55.5

(Koppula et al., 2012) X X X 80.8 71.4

(Zhang and Tian, 2012) X 86.0 84.0

(Ni et al., 2012) X X X Acc. 65.3 -

(Piyathilaka and Kodagoda, 2013) X 70.0* 78.0*

(Ni et al., 2013) X X 75.9 69.5

(Gupta et al., 2013) X 78.1 75.4

(Wang et al., 2014) X Acc. 74.70 -

(Yang and Tian, 2014b) X X 71.9 66.6

(Zhu et al., 2014) X X X 93.2 84.6

(Faria et al., 2014) X 91.1 91.9

(Shan and Akella, 2014) X 93.8 94.5

(Gaglio et al., 2015) X 77.3 76.7

(Parisi et al., 2015) X X 91.9 90.2

(Cippitelli et al., 2016) X 93.9 93.5

(Urbano Nunes and Peixoto, 2017) X 81.83 80.02

Joint orientations approach X 95.0 95.0

(Qi et al., 2018) X 90.18 92.9

(Khaire et al., 2018) X X X 93.06 90.0

(Battistone and Petrosino, 2019) X X 94.4 93.7

RGB - joint based selection X X 87.4 86.3

RGB - uniform selection X X 92.5 89.4

Proposed multi-modal approach X X 98.8 98.3

taking food, arranging objects, having a meal). As for CAD-60, four subjects
were considered, each of which performs each action three times. Several el-
ements make CAD-120 a more challenging dataset: in particular, almost all
activities exhibit relevant occlusions and the point of view varies depending
on the actor. Besides, unlike the CAD-60, there is no distinctions between
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Table 7.2: Confusion matrix of the RGB-based approach (using 20 uniform

slices) on CAD-60.
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Talking on the phone 0.89 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Writing on whiteboard 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Drinking water 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rinsing mouth with water 0.0 0.0 0.0 0.92 0.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Brushing teeth 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wearing contact lenses 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Talking on couch 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
Relaxing on couch 0.0 0.0 0.0 0.0 0.0 0.0 0.75 0.25 0.0 0.0 0.0 0.0
Cooking (chopping) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.75 0.25 0.0 0.0
Cooking (stirring) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.08 0.92 0.0 0.0

Opening pill container 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Working on computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

rooms (i.e., all the actions take place in the same environment). As for
CAD-60, even CAD-120 provides the 3D positions of 15 joints and the orien-
tations of 11 of them. Different protocols are available for this benchmark;
the most feasible for our evaluation is referred to as Activity classification
without ground-truth segmentation1.

The results on CAD-120 for the proposed approach are shown in Table
7.4 and 7.7. It is possible to observe in Table 7.7 that temporal images alone
do not provide satisfactory results on CAD-120. This is probably due to the
complexity of the dataset and in particular the frequent occlusion of subjects
(typically through motionless objects that hinder the production of tempo-
ral images). The results obtained from skeletal information are consistently

1Cornell Activity Datasets: CAD-60 & CAD-120

http://pr.cs.cornell.edu/humanactivities/data.php
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Table 7.3: Confusion matrix using the score-level fusion approach on CAD-

60.
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Talking on the phone 0.89 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Writing on whiteboard 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Drinking water 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Rinsing mouth with water 0.0 0.0 0.0 0.92 0.08 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Brushing teeth 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Wearing contact lenses 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Talking on couch 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
Relaxing on couch 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
Cooking (chopping) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
Cooking (stirring) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Opening pill container 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Working on computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

better; however it clearly emerges that the two approaches are quite indepen-
dent and their score-level fusion allows to significantly increase precision and
recall (see Table 7.7). The confusion matrix describing the results obtained
by merging the two techniques is shown in Table 7.5. Overall the results
are encouraging, even if the method by (Koppula and Saxena, 2013) slightly
outperforms our approach on this database. In our opinion, there are two
main reasons for this behaviour. First, they perform a hierarchical analysis,
identifying both high-level and low-level activities, and the information from
low-level analysis can be very useful to improve recognition. Second, their
graph-based representation explicitly models objects and interactions with
objects, while in our approach these aspects are only indirectly represented
by observing their effects of this interaction on the subject’s movements in
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RGB frames. The explicit knowledge about the objects in the scene allows to
better deal with activities where the interaction with objects is a fundamental
aspect (e.g., stacking or unstacking objects). Based on these considerations,
we plan to explore possible improvements in our future research focusing on
a better analysis of the context.

Table 7.4: Precision (P ) and recall (R) of the proposed approaches on CAD-

120, compared to the state-of-art results.

Algorithm P R

(Koppula et al., 2012) 81.8 80.0

(Koppula and Saxena, 2013) 87.0 82.7

Prop. appr. (RGB and skeleton fusion) 85.4 83.3

Table 7.5: Confusion matrix using the score-level fusion between the two clas-

sifiers on CAD-120.
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Arranging objects 0.83 0.0 0.0 0.0 0.0 0.17 0.0 0.0 0.0 0.0
Cleaning objects 0.0 1.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0
Having meal 0.0 0.0 0.92 0.0 0.0 0.08 0.0 0.0 0.0 0.0
Making cereal 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Microwaving food 0.0 0.08 0.0 0.0 0.83 0.0 0.0 0.08 0.0 0.0
Picking objects 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
Stacking objects 0.0 0.0 0.0 0.08 0.0 0.0 0.67 0.0 0.0 0.25
Taking food 0.0 0.0 0.0 0.0 0.08 0.08 0.08 0.67 0.0 0.08

Taking medicine 0.0 0.00 0.0 0.08 0.0 0.0 0.08 0.0 0.83 0.0
Unstacking objects 0.0 0.00 0.0 0.25 0.0 0.0 0.17 0.0 0.0 0.58
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Figure 7.3: Example frames of some of the activities carried out by the new

10 subjects in the OAD v.2.0.. Specifically: stacking objects, tak-

ing objects from shelf, writing, drinking, getting up/sitting, grab-

bing an object from the ground, pouring a drink, scrolling book

pages, talking on the phone and throwing something in the bin.

7.2.3 Results on Office Activity Dataset v.2.0

Finally, the third dataset used for testing is the extended version of the
OAD presented in the previous chapter. In order to offer the scientific com-
munity a more complex dataset with more significant variability, we have
doubled the number of subjects (from 10 to 20) concerning the previous ver-
sion. In addition, the 14 activities listed in the previous chapter are carried
out in a totally different environment from several perspectives based on the
action being performed. Some examples RGB frames are shown in Figure
7.3.

Of course, even in this extended version, each of the 14 actions is per-
formed twice; hence, OAD v.2.0 includes a total of 560 video sequences. The
skeletal data provided by the dataset are the same as in v.1.0 and are com-
posed of the 3D positions of 25 tracked joints and the orientations of 19
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Table 7.6: Confusion matrix using the score-level fusion between the two clas-

sifiers on OAD v.2.0.
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Drinking 0.88 0.0 0.0 0.0 0.03 0.0 0.0 0.02 0.07 0.0 0.00 0.0 0.0 0.0
Getting up 0.0 0.88 0.0 0.0 0.0 0.10 0.0 0.02 0.0 0.0 0.0 0.0 0.0 0.0

Grabbing obj. 0.0 0.06 0.82 0.0 0.0 0.0 0.0 0.0 0.0 0.12 0.0 0.0 0.0 0.0
Pour a drink 0.09 0.0 0.0 0.88 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Scrolling book 0.0 0.0 0.0 0.03 0.97 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Sitting 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stacking items 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Taking objects 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

Talking on phone 0.05 0.0 0.0 0.0 0.02 0.0 0.0 0.0 0.90 0.0 0.03 0.0 0.0 0.0
Throwing something 0.0 0.0 0.16 0.0 0.07 0.0 0.05 0.0 0.0 0.70 0.02 0.0 0.0 0.0

Waving 0.20 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0 0.03 0.72 0.0 0.0 0.0
Wearing coat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.93 0.0 0.0

Working on computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Writing on paper 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 0.0 0.0 0.0 0.97

of them. RGB and depth images will be released with permission and in
accordance with the General Data Protection Regulation (GDPR, EU no.
2016/679).

It is worth stress again that the execution of the different actions was
loosely supervised, just giving to the subjects a generic definition of the action
without specific indications on how it should be carried out. This results in a
significant intra-class variability. From the confusion matrix shown in Table
7.6, it can be seen that the most critical activity remains “throw something
in the bin”.

As underlined in the previous chapter, this action has been interpreted
by the volunteers with great fantasy, in very different fashions (see Figure 7.4
for two samples of this activity). Many of them interpreted this particular
activity as a sequence comprising the approach to bin, bending down and
finally the release of the object. Others preferred a literal interpretation
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Figure 7.4: Sample frames (RGB and skeleton) for the “throw something in

bin” action.

of the label name and performed the action by throwing the object from a
distance. This explains some of the errors due to the misclassification with
“grab object from the ground”.

The misclassification of “waving” and “drinking” is purely due to an in-
trinsic inter-class variation, mainly due to the similar configuration of a sig-
nificant portion of the angles between these two activities. Despite of some
errors in specific activities, the good behaviour of the proposed approach is
confirmed in this test as well.

Finally, as mentioned in Section 7.1.3, we evaluated the typical fusion
rules (max, sum, prod); the results over the three datasets are given in the
Table 7.8. Overall, the common sum rule provides better results, probably
because the two approaches are quite complementary and their sum results in
a more robust estimation. The max rule provides the worst results meaning
that, in some cases, one of the two methods provides the wrong class with
a high confidence value and this problem is amplified by the max selection
rule.
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Table 7.7: Summary of the performance obtained on the three testing

datasets.

Dataset Approach Precision Recall

CAD-60
Skeleton 95.0 95.0

RGB (20 sectors) 92.5 89.4
Score-level fusion 98.8 98.3

CAD-120
Skeleton 77.6 73.1

RGB (20 sectors) 61.1 59.3
Score-level fusion 85.4 83.3

OAD v.2.0
Skeleton 80.6 80.5

RGB (20 sectors) 85.8 85.9
Score-level fusion 90.6 90.4

Table 7.8: Results obtained over the three datasets with different fusion rules.

Dataset Fusion rule Precision Recall

CAD-60
Max 97.1 96.9
Sum 98.8 98.3

Prod 97.2 96.3

CAD-120
Max 78.0 74.6
Sum 85.4 83.3

Prod 82.4 80.2

OAD v.2.0
Max 84.1 83.6
Sum 90.6 90.4
Prod 90.7 90.5

7.3 Final Remarks

In this chapter, Human action recognition has been addressed by a mul-
timodal approach based on the combination of skeletal information and tem-
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poral images encoding obtained from RGB frames. Of course, combining
different modalities increments the computational effort, in particular when
dealing with RGB images. The cost of processing skeleton information is,
in fact, negligible, i.e. a few milliseconds to process a whole activity; pro-
cessing RGB frames for gradient, denoising and HOG features extraction is
quite expensive, but overall the system is able to operate in real time since
the recognition of a sequence (including RGB and skeleton data processing
and their fusion) requires about 0.5 seconds using non optimised Python
and C# code on an Intel Core i7-2600. We believe that the increment of
computational effort is fully justified by the considerable improvement in
recognition accuracy, in particular on the most difficult datasets. Of course,
the deployment of this approach on embedded systems with reduced compu-
tational resources would require ad-hoc optimisations. The results on public
benchmarks confirm the complementarity of the two information, leading to
a significant improvement of classification performance with respect to the
single techniques.





Chapter 8

Template co-updating in

multi-modal HAR systems

In the specific context of the home environment, the acquisition of a
large amount of training data is quite difficult and unlikely. The home en-
vironment is usually characterised by a very limited number of users, and
also most of the reference benchmarks for activity recognition reproduce a
“small-size” scenario, with few users and few activity samples per user. We
are confident that in this scenario “traditional” computer vision techniques
can achieve good results and real time processing capabilities even with lim-
ited computational power, while techniques based on deep learning are more
difficult to apply. On the other hand, if we think at an home environment
where the hypothetical monitoring system is continuously checking the am-
bience to detect possible anomalies and/or to understand human actions, it
is clear that a huge amount of unlabelled data can be easily collected. On the
contrary, labelled training data are often scarce, with a few video samples
for each activity to be recognised; this is in our opinion the realistic scenario
where huge amount of training data is very unlikely to be available. We be-
lieve therefore that the implementation of incremental updating techniques
is mandatory in advanced recognition systems to fully exploit the richness
of data that the specific scenario naturally provides. Moreover, as seen in

87
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the Chapter 7, many works in the literature are multi-modal in nature.The
template updating procedure could thus rely in many cases on different data
sources whose combined use can in principle improve the effectiveness of the
updating procedure, reducing at the same time the probability of selecting
wrong data that could deteriorate the initial templates. Finding a good trade
off between the need of adding new information to the initial templates and
avoiding updating errors that could compromise them is, in fact, the main
challenge in this problem.
In this chapter, we propose an incremental co-updating technique, based on
the joint analysis of RGB images and human skeleton information acquired
with the Kinect sensor. The proposed approach is semi-supervised, i.e. we
suppose to have a small initial training set for the creation of the base tem-
plates which are subsequently updated in a totally unsupervised way. To
the best of our knowledge, only a few works in the literature propose tem-
plate updating techniques for human action recognition (see next section)
based exclusively on RGB images while the possibility of co-updating based
on multiple data sources has not been investigated so far.
The rest of the chapter is organised as follows: in Section 8.1 a specific discus-
sion of the template updating techniques proposed for human action recogni-
tion is reported, Section 8.2 describes the proposed co-updating approach for
a generic multi-modal system and presents a specific implementation based
on RGB images and skeleton data, the experimental results are reported
and discussed in Section 8.3 and finally Section 8.4 draws some concluding
remarks and provides ideas for future research.

8.1 Related works

Most of the existing HAR approaches focus on static activity models,
where all the training samples are supposed to be labelled and available at
the time the model is first computed.
Only a few works address the problem of dynamic template updating. In
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(Reddy et al., 2009) an incremental approach based on a feature tree is pro-
posed; the feature tree grows as new data become available, but this requires
maintaining all the training and updating samples and this aspect limits its
practical applicability. (Minhas et al., 2012) describe an updating technique
based on human tracking in video sequences. In this case a manual annota-
tion of the human body is needed at the beginning of the action clip, so all the
updating process is supervised to some extent and unfeasible for our purposes.
An active learning technique based on the idea of adding new weak classi-
fiers for new incoming instances is presented in (Hasan and Roy-Chowdhury,
2014). The whole method is based on STIP features (Laptev, 2005) extracted
from RGB images. (Rosa et al., 2017) propose a general framework for active
incremental recognition of human activities where the feature space used to
represent information is gradually covered with balls centred on samples se-
lected from the stream. Finally, (Hasan and Roy-Chowdhury, 2015) propose
a framework for continuous learning based on deep hybrid feature models.
In particular, the approach is aimed at automatically learning the optimal
feature models for activity recognition exploiting a deep auto-encoder, and at
continuously updating the templates; to this last purpose, a selection criteria
is defined to identify, among the accumulated samples, the best subset for
updating. Some of the approaches in the literature are very interesting and
exhibit promising performance however, to the best of our knowledge, all of
them focus on a single data source (RGB images in most cases).
Multiple data sources have been successfully exploited in other contexts, in
particular for multi-modal biometric systems (Roli et al., 2007); the idea is
that systems based on different characteristics provide complementary per-
formance, since each recogniser is expected to assign correct labels to certain
input data which are difficult for the other and vice-versa. We will explore
the applicability of this principle to the problem of action recognition where
different data sources (e.g. RGB, skeleton, depth data), possibly indepen-
dent, are likely to be available when common acquisition devices such as
Kinect are used.
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8.2 Proposed approach

The aim of this work is to propose a general framework for template co-
updating based on the analysis of multiple data sources. The algorithm will
be described in the next section without any assumption about the specific
features used; then a possible implementation based on the combination of
information from RGB images and human skeleton will be described and
used for the experimental validation of our proposal.

8.2.1 The general template co-updating algorithm

The template co-updating procedure exploits n types of information de-
rived from different data sources. For each source, a specific classifier Clk, k =

1, .., n is pre-trained on a set of a activities; the resulting templates are:
T k = {T k1 , ..., T ka }. The basic idea of our co-updating algorithm is that when
the prediction of an input sequence operated by a specific classifier (at least
one) fulfils a series of reliability criteria, then that sequence will be used to
update all classifiers (of course each with the specific data source). This
way we think that it will be possible to accept for the other classifiers also
data rather far from the existing templates thus increasing their represen-
tativeness. With the aim of determining the robustness and reliability of a
prediction, we considered the following criteria.

8.2.1.1 Reliability of each classifier

A classifier may exhibit poor reliability in predicting specific classes of
activities, and provide very good results on others. The reasons may be
different, including the possible and repeated occlusion of body parts or the
poor representativeness of the templates used. This can obviously lead to
rapid degeneration of the quality of predictions concerning a specific classifier.
Such a phenomenon becomes critical in a co-updating context, where, if not
adequately addressed, one classifier may corrupt the templates of others.
Based on the reliability of the various data sources in relation to the initial
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Algorithm 1: Template Co-Updating

1 Initialize variables ;
2 foreach new sequence sj do
3 F ← ExtractFeatures(sj);
4 y ← AssignClassLabel(F);
5 if y = −1 then // sequence not labeled

6 U f ← U f ∪ f ∀f ∈ F ;
7 else // sequence labeled

8 Bf ← Bf ∪ f ∀f ∈ F ;
9 Y f ← Bf ∪ y ∀f ∈ F ;

10 newTemplate← 1

11 end

12 if Bf ≥ bufferMax then

13 Bf ← UpdateBuffer(Bf ,Y f) ∀f ∈ F ;
14 end

15 if newTemplate = 1 then // classifiers update

16 Clf ← UpdateClassifier(Bf ,Y f)∀f ∈ F ;
17 Retry recognizing all unlabeled elements ∈ U and update

classifiers if needed;
newTemplate← 0

18 end

19 end

templates, our approach assigns to each classifier an activity-specif weight,
proportional to its ability to correctly identify activity sequences of each
class. To pursue this goal, we determine, for each classifier Clk, a set of
weights wki = {wk1 , ..., wka} for the different activities based on the classifier
precision (as defined in Section 8.3). Among the others, we adopted this
metric because it minimises the likelihood of accepting false positives for a
specific class, a fundamental characteristic in this scenario, where accepting
a false positive is certainly the most critical type of error.
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8.2.1.2 Degree of certainty of a prediction

The decision of exploiting an incoming sequence sj for template updating
relies on the robustness of its classification by the different classifiers. To this
end, let’s suppose that the classifier Clk produces a distribution of probabil-
ities pk = [pk1, .., p

k
a] for the sequence sj over the a activity classes, and let’s

suppose that the two most probable classes are, respectively, ck1 and ck2. We
define the degree of certainty of the prediction (sj belongs to class ck1) such
as:

doc(ck1) = 1− pk[ck2]
pk[ck1]

where pk[ck2] and pk[ck1] are the two highest probability estimates offered by
the classifier. The rationale behind this choice is that when the two highest
probabilities are both high and similar, the prediction is very uncertain.
Such a simple metric can be particularly useful in cases of strong similarities
between classes (e.g., drink/talking on phone) and allows to exclude potential
risky updates that could affect the robustness of the approach. The degree
of certainty of the prediction is then weighed for the previously determined
set of weights and define the credibility as:

cre(ck1) = doc(ck1) ∗ wkck1

8.2.1.3 Restrictive sequence acceptance rules

In order to define the criteria of acceptance of a new sequence, several
aspects need to be taken into account. The first distinction is whether or not
all classifiers agree on the predicted class (line 8 Algorithm 2). In the first
case, to avoid a common misclassification, the algorithm exploits two different
parameters of acceptability: δcre defines a threshold for the credibility (0.35
in our experiments) while δclose defines a closeness threshold (0.2). On the one
hand, δcre certifies that all predictions are considered robust, on the other,
δclose defines a common closeness of the consensus. Indeed, a classifier may
have a degree of credibility higher than the relative threshold, but distant
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Algorithm 2: AssignClassLabel(F)
input : F ={f 1, ..., fn}
output: A predicted class or −1

1 Initialize variables ;
2 foreach feature channel fk in F do

3 pk ← ProbabilisticPrediction(fk);
4 ck1, c

k
2 ← MostProbableClasses(pk) ;

5 doc(ck1)← 1− pk[ck2] \ pk[ck1];
6 cre(ck1)← doc(ck1) ∗ wkck1 ;
7 end

8 if (ci1 = cj1 = c ∀(Cli, Clj)) ∧ (cre(ci1) ≥ δcre ∀i) ∧
(|cre(ci1)− cre(cj1)| < δclose∀ (Cli, Clj))
then return c ;

9 if ∃ Clk| (cre(ck1) ≥ δcre) ∧
(|cre(ck1)− cre(ci1)| ≥ δdiff ∀i) then

10 return ck1

11 else

12 return −1 ;
13 end

from the others; this implies a partial dissent in the common choice. Of
course, both the thresholds could be weighed by the number of classifiers,
relaxing these constraints. On the other hand, if classifiers do not agree,
the prediction with the highest credibility (which must necessarily be higher
than δcre) will be considered (line 9 Algorithm 2). In fact, the degree of
credibility must be sufficiently higher than the one presented by others. For
this purpose, δdiff , which parameterises the supremacy of one prediction
over the others, is exploited. For our experiments we fixed this parameter to
0.2. These constraints are defined in Algorithm 2. If the algorithm is able
to assign a reliable class label to the new sequence observed, according to
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the rules described above, the new sample will be included in the buffer of
labelled samples B and used for template updating (for all the classifiers).
Otherwise, the sample will be queued to the buffers of unlabelled samples U .
After each incremental update of the classifier, our framework will attempt
to re-assign a label to the queued unlabelled samples (line 17 Algorithm 1);
after the updating, in fact, they could be better recognised.

8.2.1.4 Template preservation

Finally, it is realistic to assume that buffers are limited, so that when
they reach their maximum capacity, some samples have to be removed. The
strategy adopted is to preserve the most expressive samples for a given class.
Therefore, even if it may seem counter-intuitive, the underlying assumption
is to search for those buffered samples for which the classifiers show the
highest uncertainty. Indeed, if the templates with the highest degree of con-
fidence were preserved, it would be legitimate to assume that the classifier
is reducing the expressiveness of a specific activity representation; the most
useful templates could potentially be excluded from an adequate represen-
tation of intra-class variations. Clearly, the search policy is based on the
class of the element that is causing the buffer overflow. In addition, to avoid
over-representation of a specific class, the places in the buffer are evenly dis-
tributed among the different classes; therefore, adding a template is bound
to an additional parameter that defines the maximum number of buffer ele-
ments for a given class. The maximum buffer size has been fixed in our tests
to 170, and the buffer is initialised with the samples of the training set, in
order to avoid any forgetting effect.

8.2.2 An implementation based on RGB and skeleton

data

In Chapter 7, is presented an approach based on temporal images defined
through the RGB information. This approach, however, uses a set of SVM
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Figure 8.1: Improved Dense Trajectories features in a frame of the drink

action. Red dots describe the position of interest points in the

current frame. In green are represented the IDTs over L = 8

frames.

classifiers, whose cardinality is equal to the number of sectors exploited. In
evaluating the template co-updating approach, we initially prefer to adopt
a single classifier solution, reserving the evaluation of other multi-classifier-
based approaches for future development.

Among the possible alternatives to represent RGB information, we adopted
Improved Dense Trajectories (IDTs) (Wang and Schmid, 2013), well-known
for their excellent performance in action recognition tasks. These trajectories
are a composition of different features extracted from each video sequence,
specifically: HOG, HOF and Motion Boundary Histogram (MBH). The fea-
tures have been extracted from each video using the code published on the
INRIA website1. Similar to (Rosa et al., 2017), we kept the default parame-
ters and only reduced the length L of the trajectory (from 15 to 8 frames).
An example of some IDTs extracted from the OAD dataset, is show in Figure
8.1.

1IDTs documentation – INRIA website

http://lear.inrialpes.fr/people/wang/improved_trajectories
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The extracted trajectories are accumulated and each of the four features
used (HOG, HOF, MBHx and MBHy) has been encoded using a BoW model
(Wang et al., 2009) with K = 500. Therefore, each video is described by
a histogram of 2000 elements obtained by concatenating the individual de-
scriptors. The classifier adopted is a linear incremental SVM with stochastic
gradient descent (SGD) learning2.

As for the Chapters 6 and 7, we adopted the joint orientations repre-
sentation. The substantial difference concerning previous proposals is the
adoption of a different classifier instead of the aforementioned Random For-
est. Indeed, the same classifier used for RGB information has been used here
as well.

8.3 Experiments

The proposed approach has been validated with extensive experiments
where the proposed co-updating technique is compared with a batch template
creation and a fully supervised incremental updating.

8.3.1 Database and protocol

The independence of the data sources used for co-updating is a key factor
for the effectiveness of the process. The size of the two previously described
CAD datasets is unfortunately very limited, with data taken from only 4 sub-
jects, and we think that a validation on this data would not be so meaningful.
For this reason we performed all the experiments on the OAD v.2.0. For test-
ing the proposed updating technique, we followed the common “new person”
protocol, meaning that disjoint subjects are used for training, updating and
testing. In particular, the available subjects are randomly partitioned as fol-
lows:training set (TR) 20% (4 subjects, 112 sequences), updating set (UPD)
50% (10 subjects, 280 sequences), testing set (TE) 30% (6 subjects, 168 se-

2Scikit-Learn SGD Classifier

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
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Exp. Setup ID TR UPD TEST

Set1 {0,1,10,11} {2,3,4,5,6,12,13,14,15,16} {7,8,9,17,18,19}
Set2 {2,3,12,13} {4,5,6,8,9,14,15,16,18,19} {0,1,7,10,11,17}
Set3 {7,8,17,18} {2,3,4,5,6,12,13,14,15,16} {0,1,9,10,11,19}
Set4 {4,9,14,19} {0,1,6,7,8,10,11,16,17,18} {2,3,5,12,13,15}
Set5 {5,6,15,16} {0,1,7,8,9,10,11,17,18,19} {2,3,4,12,13,14}
Set6 {0,7,10,17} {1,2,3,8,9,11,12,13,18,19} {4,5,6,14,15,16}
Set7 {1,9,11,19} {2,3,4,5,7,12,13,14,15,17} {0,6,8,10,16,18}

Table 8.1: Partition configurations used to validate the co-updating approach

on OAD v.2.0.

quences). The experiments are repeated seven times with different subject
partitions (see Table 8.1) and the average results are finally computed.

The performance is reported in the form of overall recognition accuracy
(percentage of activities correctly classified), precision and recall values. For
evaluation purposes, the unsupervised co-updating approach is compared to
two supervised approaches. In particular, the performance are reported for:

• Proposed co-updating (Co-Updating): the initial templates are cre-
ated from the subjects in the train set TR and subsequently incremen-
tally updated with the set UPD based on the approach proposed in
this work (see Section 8.2).

• Supervised template updating (Supervised Updating): the initial
templates are created from the subjects in TS, and then are updated
sequentially using the subjects in UPD exploiting the real activity la-
bels; all the incoming information is used in this case correctly, so this
approach gives an upper bound to the performance that can be achieved
with an incremental learning strategy.

• Batch template creation (Batch): all the subjects of training and up-
dating sets (TR∪UPD) are exploited for the initial template creation;
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this approach gives an idea of the top-performance that could be ob-
tained if a huge amount of training data were available at the time of
initial template creation. The system is static, no updating is carried
out in this case.

In all cases, the performance are measured on the testing subjects in TS.

8.3.2 Results

Table 8.3 summarises the results in terms of precision and recall mea-
sured for the proposed approach, as well as for the two supervised techniques
taken as reference systems. Of course the supervised approaches provide an
upper bound to the performance that can be achieved; in particular the batch
approach represents the most favourable case where a huge amount of data
is available from the beginning. The performance indicators are given for
the separate modalities (RGB and skeleton) as well as for their fusion. The
results measured with the initial template are compared to those obtained
after updating to appreciate the effects of template updating.

RGB features seem to be generally more stable and reliable than skele-
ton data, even if the difference is overall quite limited. The independence
between the two modalities is very useful during co-updating; in fact, new
incoming samples quite far from the existing template for a given feature can
often be accepted due to the high confidence of the other; this is indeed the
ultimate objective of template updating: adding new, different samples to
the template to increase its representativeness. The accuracy trend during
the different updating steps in one of the different runs of experiments is
given in Figure 8.2. The trend is positive for the single modalities and, as
expected, also for their fusion. The skeleton templates greatly benefit from
the updating procedure, thanks to the support of RGB templates.

When the performance of the unsupervised approach are compared to the
batch of the supervised one, we can observe very similar values of precision



Chapter 8. Template co-updating in multi-modal HAR systems 99

Table 8.2: Confusion matrix using only the training set (i.e., before the ap-

plication of the template co-updating algorithm).
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Drinking 0.68 0.0 0.0 0.10 0.0 0.0 0.0 0.03 0.12 0.0 0.0 0.07 0.0 0.0
Getting up 0.0 0.64 0.06 0.0 0.0 0.26 0.01 0.0 0.0 0.01 0.0 0.0 0.0 0.01

Grabbing obj. 0.0 0.0 0.81 0.0 0.0 0.08 0.01 0.01 0.0 0.07 0.0 0.01 0.0 0.0
Pour a drink 0.03 0.0 0.0 0.78 0.14 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.0 0.01
Scrolling book 0.0 0.0 0.0 0.10 0.88 0.0 0.0 0.0 0.01 0.0 0.0 0.01 0.0 0.0

Sitting 0.0 0.07 0.01 0.0 0.0 0.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stacking items 0.0 0.01 0.0 0.0 0.0 0.0 0.97 0.01 0.0 0.0 0.0 0.0 0.0 0.0
Taking objects 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.97 0.01 0.0 0.0 0.0 0.0 0.0

Talking on phone 0.03 0.0 0.03 0.01 0.00 0.0 0.0 0.0 0.69 0.03 0.06 0.15 0.0 0.0
Throwing something 0.01 0.04 0.11 0.03 0.0 0.06 0.04 0.04 0.07 0.43 0.07 0.07 0.0 0.0

Waving 0.12 0.0 0.03 0.04 0.03 0.0 0.0 0.0 0.08 0.04 0.49 0.17 0.0 0.0
Wearing coat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.99 0.0 0.0

Working on computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.99 0.0
Writing on paper 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.10 0.89

and recall. This very positive result confirms that the unsupervised approach
exploits at best the updating set, i.e. accepts a high number of unknown se-
quences and correctly uses them for template updating.
The effects of our co-updating procedure can be better analysed looking at
the confusion matrices of Figure 8.2 and Figure 8.4 referred, respectively, to
the initial templates and to the final templates obtained with unsupervised
updating. Some activities were already recognised with a good level of ac-
curacy even with the initial templates (e.g. stack items, take objects from
shelf, wear coat, work on computer) and such performance is preserved by
the updating procedure; we can conclude that wrong updates are very rare,
totally absent for most activities, and the initial templates are not corrupted.
For other activities, probably characterised by a higher degree of variability
between different subjects, the initial templates provide poor performance;
template updating greatly improves the results in several cases (e.g. drink,
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Initial templates Final templates

Precision Recall Precision Recall

Skeleton

Co-Upd. 0.701 0.697 0.758 0.749
Sup. Upd. 0.701 0.697 0.767 0.752
Batch 0.785 0.776 // //

RGB

Co-Upd. 0.798 0.788 0.887 0.872
Sup. Upd. 0.798 0.788 0.907 0.891
Batch 0.925 0.917 // //

Fusion

Co-Upd. 0.799 0.794 0.893 0.887
Sup. Upd. 0.799 0.794 0.923 0.922
Batch 0.944 0.943 // //

Table 8.3: Comparison between the proposed co-updating procedure, the su-

pervised updating (where real activity labels are exploited) and

the batch updating (where all the training samples are available

for initial template creation)

.

get up, waving or talking on phone). Particularly interesting is the improve-
ment observed for “get up”, very similar from the point of view of body
posture to “sit”. Several of the surviving errors are quite comprehensible if
we consider that the mistaken activities often share common body positions
and movements. Even for this evaluation, the most particular case is rep-
resented by the “throw something in bin” action. The already mentioned
intra-class variability is the reason why the performance increment is limited
in this case, and the final accuracy is still sub-optimal.

8.4 Final Remarks

In this chapter a general framework for template co-updating in multi-
modal activity recognition systems has been proposed. The validity of the
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Table 8.4: Confusion matrix after the application of the template co-updating

algorithm.
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Drinking 0.88 0.0 0.0 0.07 0.0 0.0 0.0 0.03 0.01 0.0 0.0 0.01 0.0 0.0
Getting up 0.0 0.89 0.0 0.0 0.0 0.10 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0

Grabbing obj. 0.0 0.0 0.88 0.0 0.0 0.04 0.03 0.04 0.0 0.0 0.0 0.0 0.0 0.0
Pour a drink 0.04 0.0 0.0 0.81 0.14 0.0 0.0 0.0 0.0 0.0 0.0 0.01 0.0 0.0
Scrolling book 0.0 0.0 0.0 0.03 0.97 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Sitting 0.0 0.08 0.0 0.0 0.0 0.92 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Stacking items 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.01 0.0 0.0 0.0 0.0 0.0 0.0
Taking objects 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.01 0.0 0.0 0.0 0.0 0.0

Talking on phone 0.08 0.0 0.0 0.03 0.04 0.0 0.0 0.0 0.82 0.0 0.0 0.03 0.0 0.0
Throwing something 0.07 0.06 0.01 0.06 0.0 0.01 0.10 0.06 0.0 0.54 0.01 0.03 0.0 0.06

Waving 0.03 0.0 0.0 0.0 0.04 0.0 0.0 0.0 0.08 0.0 0.79 0.06 0.0 0.0
Wearing coat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

Working on computer 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
Writing on paper 0.0 0.0 0.0 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.03 0.96

proposal has been assessed with a specific implementation based on RGB
and skeleton data extracted from video sequences acquired with the Kinect
sensor. The results show that jointly exploiting different data modalities al-
lows to greatly improve the initial performance, thanks to the inclusion of
new data, previously not adequately represented by the initial templates.
The results obtained are fully satisfactory, however several further improve-
ments are possible: for instance the weights used in the algorithm for the
different classifiers are now static while a dynamic updating could better ex-
ploit the effects of template updating. The main extension of the approach
will be the definition of a strategy for discovering new activity classes and
including them in the set of known behaviours.
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Figure 8.2: Activity recognition accuracy trend during unsupervised tem-

plate co-updating (as a function of the number of updates per-

formed) for the Set1 configuration. The three curves represent

the RGB templates (red), the skeleton templates (blue) and their

fusion (green).
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A Monitoring Framework for IoT
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Chapter 9

Related works

The goal of this part of the thesis is to discuss some of the most promis-
ing IoT platforms while proposing a completely home made solution rely-
ing on open source technologies. This approach allows us to discuss design
and implementation details at each layer of the stack our platform is built
upon, enabling researchers and practitioners to fully understand what lies
behind an IoT solution. Other academic institutions have felt the need to
propose IoT platforms that could offer an under-the-hood view, for exam-
ple (Castellani et al., 2010) have proposed a solution explicitly focused on
indoor environments. Conversely, our proposal is designed for both outdoor
– as sensor networks distributed in urban and suburban areas – and indoor
environments. Therefore, particular importance will be posed on the integra-
tion and interoperability between the different networks. In this context, we
want to offer the possibility to monitor information from the various sensors
currently considered (see Section 10.1.1). As proposed in (Latré et al., 2016;
Chan et al., 2018), we want to offer an IoT testbed that is useful for both
academic teaching and research activities. Above all, we want to propose a
platform that could be adopted in two potential scenarios: i) where a citizen
can act as an active component, for example by adding one or more nodes to
the network in an agile way and possibly monitoring specific areas of interest
(Gubbi et al., 2013); ii) where it is possible to remotely monitor multiple
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smart homes or AAL environments through a dedicated client application.

9.1 IoT Commercial Platforms Comparison

Since the term IoT was coined in 1999 by Kevin Ashton during a pre-
sentation at Procter & Gamble (Ashton, 2009), the basic idea behind IoT
solutions has been widely explored by both the academic world and the ICT
community. The IoT domain can be intuitively discussed as follows: let us
consider a number of distributed sensors or gadgets (i.e., “things”) lying in
an unpredictable vast environment (a house, a large urban area or a greater
region). These things are able to gather a massive amount of raw data
and translate them into relevant information. This ecosystem could reacts
proactively, minimising (or at least trying to minimise) human involvement,
complementing the AmI vision.

Although straightforward this scenario may appear, it hides a number
of open questions. Which kind of architecture should be adopted? Which
requirements are the most meaningful among others? Which communication
standards should be adopted in order to enable device interoperability? What
kind of API should be implemented to easily allow a sensor (or a sensor
network as a whole) to join the ecosystem?

In (Guth et al., 2016), the authors propose an interesting comparison
aimed at highlighting common architectural aspects of several IoT platforms
and infer a reference architecture. Conversely, a comprehensive descrip-
tion and comparison of the main requirements (both functional and non-
functional) of a IoT platform is discussed in (Razzaque et al., 2016).

Many platforms and solutions were proposed within the IoT domain.
Each of them was designed with a business model in mind and thus holds
specific features: in this thesis we adopt the taxonomy proposed in (da Cruz
et al., 2018), where IoT platforms are discussed in relation of the correspond-
ing application area.

Device Management Platforms, as defined by the Open Mobile Al-
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liance Device Management, must guarantee the provisioning and onboarding
of the devices, including remote parameterisation and real-time configura-
tion. Again, they should allow remote firmware updates as well as a real
time monitoring concerning devices faults and errors (Open Mobile Alliance,
2012). Therefore, these platforms enable a quick deployment of individual or
entire groups of devices, and allow to define taxonomies and hierarchies upon
them. They also allow to define access policies for different types of devices.
One of the key aspects this kind of solution tend stress is the optimization of
network resources. Device Management Platforms are becoming increasingly
important and have consequently drawned the attention of many companies,
such as Amazon, which at the end of 2017 has released the new Amazon IoT
Device Management platform1.

Application Development Platforms are aimed at fastening the im-
plementation process of ICT services addressing the IoT domain. End-user
applications are developed through automatic code generation and combined
with a number of predefined API. One of the best-known toolkits is Tem-
boo2, which allows parametrisation, events management and automatic code
generation for a number of heterogeneous devices.

Application Enablement Platforms, as the name suggests, allow IoT
architectures to integrate with pre-existing external services and applications.
Therefore, these solutions operate between the hardware layer consisting of
sensors and actuators, and the end-user application layer. They often act as
an integration middleware: devices communicate directly with the platform
through transport protocols such as HTTP/S or MQTT and encapsulate
data using classical data-exchange formats (XML, JSON). The integration
middleware rearrange this information and delivers it to end-user applica-
tions.

The solution we discuss in the following falls into the latter category. For
ease of reading, we point out that Application Enablement Platforms are

1AWS IoT Device Management website
2Temboo website

https://aws.amazon.com/iot-device-management/
https://temboo.com/
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Figure 9.1: AWS IoT Core architecture.

often referred to as IoT middleware, middleware or IoT middleware platform:
we use these definitions interchangeably. Before introducing our solution,
we discuss some of the most prominent platforms belonging to this latter
category.

9.1.1 Amazon Web Services IoT Core

Amazon Web Services (AWS) IoT Core is the middleware proposed by
Amazon. It consists in a cloud solution relying on a Platform as a Service
(PaaS) business model. Scalability and interoperability are the most relevant
features of this solution: Amazon ensures that a single IoT Core instance can
support billions of devices, allowing the exchange of tens of billions of mes-
sages between AWS endpoints. The main role of AWS IoT Core is therefore
to provide a reliable connection between “things” and the AWS cloud. In
order to achieve this, the well-known HTTP, MQTT and WebSockets pro-
tocols are used and all communications are secured through TLS and X.509
certificates.

The platform architecture (see Figure 9.1) consists of four leading modules
(message broker, device shadows, rules engine, security and identity) plus a
fifth component (the device gateway) which is not represented in figure. This
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latter module connects devices to the message broker. Specifically, it exposes
an incoming interface implementing the aforementioned protocols and acts
as an intermediary to the message broker. The message broker is a publish/-
subscribe service that allows all devices to receive or send messages related
to a specific topic they have previously registered to (e.g., Sensor/RGBD-
Sensor/LivingRoom). A device communicates its own status to the platform
publishing a message under a proper topic. The device shadow service enable
virtualisation and persistence of each device in the cloud, allowing mainte-
nance of the last known device state even when it is no longer online. When
an object is properly connected, the status of its shadow can be updated
consistently with respect to the physical device. Conversely, when the com-
munication fails, it is still possible to interact with the device relying on
its shadow. The rules engine module implements the business logic of the
platform, making it possible to collect and process raw data. As the name
suggests, the user is allowed to define rules that orchestrate the distribution
of messages among other objects or AWS services. Finally, all these com-
ponents interact with the security and identity module which is responsible
of providing reciprocal authentication and encryption at all communication
levels of the stack. Therefore, a two-way communication without identity
assessment will never occur. This middleware holds all the benefits provided
by Amazon Web Services, but, as predictable, several implementation details
remain unknown.

9.1.2 Microsoft Azure IoT Suite

Azure IoT Suite is the cloud platform developed by Microsoft. As per
the AWS IoT Core, the business model is PaaS. One of the main advantages
offered by this platform is the ability for users to install preconfigured solu-
tions designed to fit common IoT scenarios. These solutions are released for
free. As an example, Azure IoT Suite is equipped with a weather forecasts
setting which enables data collection as well as information transmission to
the middleware and its analysis through the Azure Machine Learning mod-
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Figure 9.2: Microsoft Azure IoT reference architecture.

ule. Each of these preconfigured solutions involves different devices and rely
on several modules among those offered as a service by Azure and Azure IoT
Hub, which are indeed the real middleware. Figure 9.2 shows the reference
architecture of an IoT system according to Microsoft’s vision: within the
blue rectangle it is represented an ensemble of cloud components needed to
support an IoT solution. Azure IoT Hub plays the leading role as Cloud
Gateway technology.

Azure IoT Hub enables connection between millions of devices and a
cloud based back-end, supporting bi-directional communication for AMQP,
MQTT and HTTPS protocols. Features of this hub include twin devices,
a similar solution to the AWS Device Shadow. A twin device consists in a
JSON document in which information concerning the status of the paired
device is stored. For each connected device, Azure maintains a twin whose
information can be used by the device itself or by other applications, in order
to perform device configurations or to query it for data. This feature is very
helpful for batch operations. Regarding communication security, Azure Hub
IoT grant access to each hub endpoint through a token-based authorization
mechanism or through X.509 certificates. Such authorisations may restrict
access to the hub and to some specific functionality.

This platform will have to be carefully examined in the near future. In
fact, the possibility of quickly pairing the new Azure Kinect device will be of



Chapter 9. Related works 111

Figure 9.3: Sitewhere architecture.

particular interest. This will allow a rapid deployment of IoT RGB-D based
solutions.

9.1.3 SiteWhere

Sitewhere differs from previously discussed middlewares primarily for its
business model. It is indeed an open-source IoT platform, developed and
maintained by SiteWhere. This solution is licensed under CPAL-1.0 (Com-
mon Public Attribution License Version 1.0). To be more accurate, two
variants of this platform were released: a free for use Community Edition,
and an Enterprise Edition, which consists in an extended paid-for version of
the first. The latter solution need to be purchased directly from SiteWhere.
Several are the requirements to deploy a SiteWhere instance: an Apache
Tomcat web server should be configured as well as a MongoDB repository.
Java and HiveMQ (a MQTT broker) are also required.

The SiteWhere server represents the central node through which it is
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Figure 9.4: Samsung SmartThings architecture.

allowed to manage both components and REST services. This solution is
designed as a multi-tenant system in which tenants are responsible for most
of the processing logic. Within each server, one or more tenant engines are
bootstrapped, each running as a different IoT application. In order to keep
the information separate, each tenant is coupled with its own data store.
As depicted in Figure 9.3, every tenant also features a processing pipeline
that can be customised without affecting other pipelines. Sensors send data
through a gateway which operates between tenants and devices. SiteWhere
supports MQTT, AMQP and REST communications.

9.1.4 Samsung SmartThings

Samsung SmartThings is an IoT applications ecosystem. SmartThings
project started in 2012 through a Kickstarter campaign. The basic idea was
to realize a solution for smart domestic environments through a hub con-
nected to a set of “things” (e.g., temperature and humidity sensors, smoke
and CO alarms). As the project was started, it was coupled with a smart-
phone app able to communicate with the remote hub. 2014 represents a
milestone for SmartThings as it was acquired by Samsung Electronics. The
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initial architecture has evolved considerably to become a genuinely cloud-
centric platform. Indeed, as depicted in Figure 9.4, it is now possible to
connect devices to the cloud back-end following three different strategies,
even without the aid of a direct hub connection. Another type of connection
is the cloud-connected one, that makes possible to implement an indirect
communication channel between (cloud-based) third-party devices and the
SmartThings cloud. While the presence of a hub that acts as a gateway
between devices and the cloud is recommended, several operations could be
performed locally, without the need to query the back-end. In this specific
case, SmartThings refers to these devices as hub-connected and they rely on
ZigBee or Z-Wave communication protocols. In SmartThings applications,
objects are usually organized and grouped according to the room they are
in. The room concept is therefore a key aspect for SmartThings clients.

SmartThings includes the concept of automation which allows the user to
interact with the ecosystem without any manual intervention. With respect
to automation, two are the possible strategies to adopt: the first relies on
WebHook, the second on AWS Lambda functions. For instance, it is possible
to define an automation strategy designed to adjust light intensity within a
particular room according to weather changes.

This cloud solution also supports encrypted communications between all
connected components through the SSL/TLS protocol (Ammar et al., 2018).
Although the architecture offered by SmartThings is solidly aimed at the
domestic environment or, more generally, at the smart building concept, its
features make it possible to adopt it in broader contexts. In particular, thanks
to cloud-connections, it would be possible to hook up a sensor network.
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IoT Manager

As we are witnessing to the convergence of the IoT and the cloud com-
puting paradigms, sensor networks are being deployed everywhere and grow
both in number and significance. One of the main concerns is thus to pro-
vide the community with versatile and resilient frameworks capable to store
and rearrange data collected by these sensors. However, the world largest
information technology companies tend to release products in a as a service
fashion, avoiding to reveal the know-how concerning design and implemen-
tation details. As a consequence, a common trend for academic institutions
is to use these mainstream IoT platforms as ’black boxes’. In this chapter,
is presented IoT Manager, a general framework designed for sensor networks
monitoring which was entirely developed within the University of Bologna.
Through this case study, we provide the scientific community with a detailed
implementation strategy concerning our specific IoT solution. Our results
are supported from a LGPL release of the IoT Manager client in order to
serve as a test bed both for research and teaching purposes.

10.1 Architecture

(Calderoni et al., 2014) proposed a general ICT architecture designed to
manage several subsystems in urban contexts. IoT Manager represents an
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evolution of this model and implements its main features. In this section,
we want to clearly explain how our platform was designed and implemented,
in order to provide the reader with a tangible example of a fully open IoT
stack. As pointed out, an IoT Player does not frequently reveal details about
its solution. In addition to this, it is increasingly common to see platforms
that are not supported by exhaustive details about the connection of sensors.
Discussion typically focuses on the IoT middleware layer, its infrastructure
and the services offered. However, this leads to neglect some relevant details
concerning on the one hand the physical component that has to communicate
with the middleware, and on the other hand the possible application compo-
nent. In this section we want to face this discussion in its entirety: through
a top-down approach we will analyse IoT Manager not only discussing the
role of integration middleware but also describing the physical and applica-
tion layers of the stack. Indeed, this will allow us to describe the sensors
used in a real case study (see Section 10.2) and in a hypothetical scenario
(see Section 10.3), make a comparison between our proposed middleware and
those introduced in Section 9.1 and illustrate a client application connected
to the platform.

From a high-level architectural point of view (see Figure 10.1 for refer-
ence), this system is composed of three layers. The networking layer, intro-
duced in Section 4.1, is natively embedded in our proposal as it represents
wireless communication technologies and techniques that enable the trans-
mission and reception of data from/to sensing layer.

The sensing layer consists of a number of heterogeneous sensor networks.
These networks can be distributed anywhere in the globe and their purpose is
to collect raw data. In addition, the platform is fully geo-referenced, allowing
application-level filtering based on sensors effective location. Range queries
may also be addressed in relation with the user’s current position, as exam-
ples consider a user who wants to check the air quality in a specific area or
who wants to monitor some critical information gathered from the sensors de-
ployed in the serviced smart homes in his surroundings. The geo-referencing
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Figure 10.1: A high-level diagram showing IoT Manager architecture.

of the sensors does not offer guarantees regarding the logical division of the
sensors of interest. Therefore, IoT Manager is designed to natively support
sensors with a multi-tier taxonomy. In detail, in the sensing layer a network
node can be treated either as a simple sensor or as a concentrator. In this
second case, the purpose is to represent a logical set of different simple sen-
sors. Thanks to the multi-level taxonomy, the back-end gateway allows for
requests which only address the set of simple sensors connected to a given
concentrator. Raw data from sensors and concentrators are sent to the mid-
dleware via APIs that depend on the storage engine adopted. IoT Manager
currently has its own internal storage, but through a set of predefined APIs
it is possible to integrate data from sensor networks whose storage is external
to the back-end. This is another key aspect of our solution: it is possible
for third parties – such as a citizen, health-care professionals or a caregiving
company operator – to connect a specific sensor or sensor network. Within
Section 10.1.1 we describe some sensors which are already handled by IoT
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Manager and we also detail the procedure used to build one of this devices
from scratch.

The data layer represents the back-end of the system and is responsible
for two main features: on the one hand, it serves as a repository for all of the
sensed information, on the other hand, it provides several API which may be
called by client applications in order to query those data and retrieve them in
a properly arranged format. As we have seen, this level plays the key role of
maintaining compatibility between the various subsystems. It also provides
the application layer with an efficient and transparent way to access data.
The role of integration middleware is covered by the back-end logic module
(see Figure 10.1) that represents the more sophisticated component of the
system.

Specifically, this component is able to retrieve raw data produced by sen-
sors and concentrators using a set of predefined APIs which allow it to query
different storage engines. Furthermore, information recovery is empowered
both for internal and external storages. Albeit raw data might be retrieved
from a wide range of different repositories, the back-end logic can revise these
records in order with the goal for them to conform to a particular format, in
accordance with the back-end gateway dispositions. The back-end gateway
is another key component of this layer. It exposes HTTP/HTTPS APIs to
enable communication with client applications. It is also responsible for re-
quests translation (in a set of jobs handled by the back-end logic component)
and for final response formatting (JSON). An in-depth discussion about the
back-end gateway and the back-end logic is provided in Section 10.1.2.

The service layer (also known as application layer) offers users a wide
range of possible client applications that communicate with the back-end
gateway through appropriate APIs. These APIs are currently based on
HTTP and HTTPs protocols, which makes integration with desired user
application quite simple. Within Section 10.1.3 we provide a detailed design
of one of these client applications, which has been developed for Android
mobile devices. Clients are subject to a specific access policy and handle
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geo-referenced data.

10.1.1 Sensing layer: some examples

Our solution deals with different types of sensors, one of which consists
in a low-cost weather station. This prototype relies on a UDOO Neo Ex-
tended board. This board is equipped with a NXP i.MX 6SoloX processor
with two different core: an ARM Cortex-A9 and a Cortex-M4 (an Arduino
UNO-compatible platform). In addition, it is provided with 1GB RAM, a
Bluetooth 4.0 receiver, a Wi-Fi module and 9 integrated sensors (3-Axis ac-
celerometer, magnetometer, gyroscope) which were not considered in our case
study. Finally, there is an I2C (Inter Integrated Circuit) connector used to
plug sensor modules (UDOO bricks). One of the main features concerning
UDOO bricks is the ability to work through a cascade configuration: it is
allowed to connect several sensor modules using the sole I2C interface on the
board. Of course, it is also allowed to connect sensors directly to the Arduino
socket provided by the board (Borrello et al., 2015).

In our experiment, we used three different sensor modules: a Barometer
brick (based on MPL3115) that is able to sense pressure (hPa) and tem-
perature (°C), a Light brick (based on TSL2561T) that returns illuminance
(Lux ) ambient values and a Humidity brick (based on SI7006-A20) provid-
ing relative humidity percentage. Similarly to (da Silva et al., 2015), this
weather station can also be used for monitoring air quality in indoor or AAL
environments.

We have developed a simple bash script which allowed us to read data
from the barometer. Conversely, as part of our implementation relies on ex-
ternal libraries, other bricks were handled through an Arduino sketch. Data
received from each sensor are collected by the UDOO operating system and
then sent to an external storage via HTTP/S API. In order to comply with
IoT Manager specifications, the payload also includes some mandatory infor-
mation (sensor identifier, sensor name, subsystem identifier, status, latitude
and longitude). These fields are introduced in Section 10.1.2.
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Figure 10.2: IoT Manager requests processing from the back-end perspective.

Besides weather stations, the sensing layer is currently composed of a
number of other urban devices such as ArLu and Lamps. An ArLu, repre-
senting a lighting cabinet, acts as a concentrator and is logically connected
to a set of simple sensors (Lamps) allowing a full lighting system manage-
ment. This two-level taxonomy enables a logical partition even when ArLu
and Lamps are not physically connected one each other.

10.1.2 Data layer: the back-end logic

When a client application queries the back-end for data, the data layer
acts as outlined in Figure 10.2.

The client application delivers a request over a HTTP/HTTPS post chan-
nel. The web server, implementing the back-end gateway, handles this re-
quest and, first of all, checks for user authentication. This operation is per-
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Table 10.1: IoT Manager input parameters derived from the HTTP service

contract exposed by the back-end gateway.

Parameter Description

user, pwd Username and password for authentica-
tion.

filter Susbsystem identifier (0: all subsys-
tems).

id Single sensor or single city/zone identi-
fier, depending on the job.

minLon, maxLon Longitude bounding values.

minLat, maxLat Latitude bounding values.

job Job identifier, as outlined below.

formed by the AuthManager class, a specific software component which ad-
dresses authentication queries to the central IoT Manager storage. Thanks to
a complete integration with prepared statements, this module preserves the
framework from being affected by SQL injection. On authentication granted,
the back-end gateway instantiates a JobManager : this module checks for the
type of the handled request and instantiates in turn a Mapper object in order
to retrieve data. The set of request parameters and the job types supported
by our framework are reported in Table 10.1 and in Table 10.2.

While jobs 3, 4, 5 and 7 depend on meta data and affect IoT Manager
storage only, jobs 1, 2 and 6 may also affect a number of external storages.
In fact, as previously discussed (see Figure 10.1 for reference), our framework
is able to retrieve raw data both from its own storage and from a number of
external sources. As we may notice, each of these jobs is completely trans-
parent with respect to the calling application concerning real data location.
Thanks to a set of back-end APIs, the Mapper object connects to each sub-
system and retrieves each relevant record. Desired records are thus collected
by the JobManager object and prepared for being returned to the calling
application by the DataProcessor (see Figure 10.2 for reference). The lat-
ter class is responsible for data formatting in compliance with the service
contract through JSON notation.
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Table 10.2: Job types derived from the HTTP service contract exposed by

the back-end gateway.

Job Description

1 Returns a list of sensors lying within a
specific bounding box specified by the
calling application. Depending on the
filter parameter, it is possible to address
this request to a specific subsystem (a
specific set of sensors) or to each sub-
system.

return [id, name, subsystem, longitude, lati-
tude, status]:list

2 Returns a single sensor and all of its re-
lated information in a key-value fashion.
The identity of the sensor is provided in
the request through the couple subsys-
tem, id.

return [attribute name, value]:list

3 Returns the list of subsystems handled
by IoT Manager.

return [subsystem, name]:list

4 Returns the list of known cities/zone in
the back-end atlas.

return [city, name]:list

5 Returns a single city/zone and all of its
related information.

return city, nation, name, longitude, latitude,
gmt

6 Returns the list of sensors connected to
a specific concentrator (uniquely identi-
fied by subsystem, id).

return [id, name, subsystem, longitude, lati-
tude, status]:list

7 Returns a key-value list exposing a se-
mantic description of each attribute for
each specific subsystem.

return [attribute name, description]:list

Our back-end logic thus relies on several APIs for data retrieval. It is
important here to point out that each retrieved record may belong to a sep-
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arate subsystem, each holding specific features. As a consequence, data may
contain a large number of heterogeneous attributes. This is the reason why
we defined a restricted set of attributes which subsystems need to exhibit as
a mandatory requirement for them to be connected to IoT Manager. Specif-
ically, these attributes shall represent a sensor identifier (unique within its
own subsystem), a sensor name (or description), the identifier of the sub-
system they belong to, a status information and a couple of fields specifying
the longitude and latitude coordinates of the sensor. It is meaningful to note
that these data do not need to be stored under a single or predefined column
name. For each external source, the Mapper queries IoT Manager meta data
in order to know which column or columns contain each mandatory informa-
tion and which names represent those columns within the external storage
schema. This mapping feature provided by the back-end logic allows for a
proper implementation of jobs 1 and 6 which, as should be noticed, produce
a list of compliant information derived from heterogeneous subsystems. This
allows client applications to easily handle sensor lists throughout each part of
the user interface where sensor-specific details are not required. Conversely,
when a calling application would require something specific about a single
sensor, a different mapping principle applies. This is indeed the case of job
2. The back-end logic access the aforementioned meta data and search for
column mapping concerning sensor and subsystem identifiers. Through the
proper connection API, the Mapper queries target storage for each data re-
lated to the sensor and blindly collect them. Sensor-specific data are then
JSON formatted and returned through the HTTP service in a key-value fash-
ion. The calling application is thus responsible for data interpretation. In
order to build a proper user interface and to correctly show meaningful data,
end-user application developers may rely on job 7, which provide the client
with a human readable description of each returned field. Finally, a couple of
words about georeferencing. IoT Manager natively supports positional data.
Mobile services built against the IoT Manager framework may use GPS co-
ordinates to enrich their queries with bounding box information. However,
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Figure 10.3: Service Layer: Launch sequence (Android API level ≥ 23).

when a client application is not aware of its location, or when the hardware it
is executed on is not equipped with any form of location sensing device, job 4

and 5 may be used to simulate user’s position as derived from the framework
atlas.
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10.1.3 Service layer: an example of client application

As previously discussed (see Figure 10.1 for reference), the service layer
is an ensemble of applications designed to interact with IoT Manager data
layer. Within this section we explore this layer through a real application
which was designed and implemented by our research team. The service we
are about to discuss consists of a mobile application built over Android OS.

The main aim of this application is to sense location information through
GPS and network hardware and to display sensors which lie within a given
distance with respect to the device itself. The user is also allowed to displace
his position using one of those provided by the back-end atlas. As this
application is intended to be used in the IoT domain, it is designed with
multi-threading and asynchronism in mind. Each client activity relies on a
shared Android service in order to obtain positional data as well as each kind
of external data to be downloaded through IoT Manager HTTP API. The
launch sequence of our application is described in Figure 10.3.

As we may see, a welcome activity is initially started along with a service
running on a separate thread. The activity first checks for user permission
concerning GPS and Network and, on permission granted, asks the service
for location coordinates. The service then starts a dedicated thread which
implements several primitives provided by Android OS able to deal with GPS
and Network sensing. When a fresh position is sensed, the location thread
sends a message to the service, which in turn sends these new coordinates
to each connected activity. As the welcome activity receives coordinates, the
program control passes to the main activity which immediately binds to the
service. The main activity first checks for authentication information within
the application preferences. Figure 10.4 shows its starting sequence assuming
these credentials were already provided by the user.

While the Android service and the location service keep on running on
their own threads, this sequence diagram shows a new type of thread which
has been designed to handle back-end calls. During its starting sequence,
main activity asks the service for a number of external data. For each
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Figure 10.4: Service Layer: main activity starting sequence. Here we assume

login information has been already filled in the application pref-

erences and no specific location from the back-end atlas was

selected instead.

task, the service instantiates a single thread implementing the IoT Manager
communication service and propagates the request to the endpoint through
HTTP/S. Specifically, it first asks for the complete list of subsystems handled
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Figure 10.5: Service Layer: Sensor details request. The collected information

replaces the map layout container or, when the request arises

from that container itself (isInsiderChild = true), it is shown in

a dedicated dialog.

by the back-end (Table 10.2, job n.3). Then it requests the list of cities/-
zones stored in the back-end atlas, used to populate a specific combo box
within application preferences (Table 10.2, job n.4). Finally, it asks for a list
of sensors (belonging to any subsystem) which lie within a predefined range
from the user (Table 10.2, job n.1).

As we may see, each back-end call is handled by a specific thread and does
not affect the application responsiveness at all. Please note that each back-
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Figure 10.6: Service Layer: the Android client class factory. The abstract

class representing a single sensor and some of its specializations.

end call depicted in Figure 10.4 may be exploded with the sequence diagram
provided in Figure 10.2. When these calls are completed and information is
returned to the calling activity, the application GUI is updated with sensors
data. A sorted list of sensors (with respect to the distance to the user) is
populated on the left, while a map showing an overlay icon for each sensor
is proposed on the right. It is meaningful to point out that, at this stage, no
detailed sensor information is required. In order to populate list and map it
is enough to know few basic information as those returned by job 1 or 6 (see
Table 10.2 for reference). Consequently, our GUI is subsystem-independent
and is able to deal with heterogeneous sensors with no need for specific
personalization. Processing of sensors list and map relies on a specific class
called SCLO (see Figure 10.6). The role of this class is to store basic sensor
information for those devices included in the current bounding box. Such
information constitutes the instances objects of the SCLO class. As we may
see in the class diagram depicted in Figure 10.6, the SCLO class exposes
a number of methods. Among them, it is meaningful to underline those
dealing with distance evaluation with respect to the user’s position. These
methods and fields are relevant as they enable location-based filtering and
sorting. Again, it is important to note that the abstract class SCO includes
the sonsList field, consisting of an array of SCLO. It also contains the related
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overloads of the getSonsList method. As we may see, each instance of the
SCO class keep all the information related to sensor’s sons in a compact and
interoperable fashion via the SCLO class.

When the user clicks or taps on a specific sensor, a request for sensor’s
details is propagated to the back-end, as depicted in Figure 10.5.

This sequence implements the call for job n.2 (see Table 10.2 for refer-
ence). When the download process terminates and the information is deliv-
ered to the main activity, the GUI is properly updated. Again, as the given
sensor could be a concentrator, another back-end call (job n.6) is propagated
in order to show the list of related sensors. Conversely as per the sequence
proposed in Figure 10.4, the information to be shown is sensor-specific and,
thus, a specific layout needs to be designed to arrange it. Our Android client
is conveniently designed to this purpose and it is provided with a class factory
which instantiates the proper object on a subsystem basis. A simple class
diagram showing some specializations of the abstract class implementing a
single sensor is provided in Figure 10.6.

Each sensor class need to specialize an abstract method createView().
This method should contain those instructions used to render a proper layout
for the sensor. Consequently, when we need to show some sensor-specific
detail within the GUI, it is sufficient for us to call this method on the object
representing the given sensor, without any other knowledge about its features.

10.2 Case study: a Smart City scenario

The open source framework IoT Manager was firstly designed and intro-
duced to reflect the needs of several partners of the University of Bologna in
a smart city scenario. As each partner possessed a different, separate sensor
network, the main goal was to allow these networks to join the middleware
without any ad-hoc intervention. This challenge represented an excellent case
study for both industrial and research purposes, and positively contributed
to the platform implementation process.
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Table 10.3: Geographical distribution and quantification of the various types

of sensors currently involved in our case study.

Sensor Quantity Distribution

ArLu ' 50 Europe
Lamp ' 500 Europe
Traffic Controller ' 30 Europe and Morocco
Weather Station ' 10 Italy

Currently, IoT Manager involves four different types of sensors: in addi-
tion to the already mentioned ArLu, Lamp and Weather Station (see Section
10.1.1) a sensor called Traffic Controller (TC) is also handled. This sensor
is based on a smart camera that continuously monitors a road section using
some virtual spires placed on the lanes. The TC is responsible for counting,
classifying and estimating the speed of vehicles crossing the virtual coils that
are placed in strategic points of the roadway. Although the number of sensors
is not very high, they are widely spread across the European continent (see
Table 10.3 and Figure 10.7). Data collected by these sensors were derived
from an agglomeration of corporate databases and research outcomes as the
result of a number of collaborations between the University of Bologna and
other institutions.

Each among the aforementioned sensors belongs to a different network
involved in some kind of outdoor urban sensing. Specifically, the TCs sensor
network provides traffic monitoring information upon several major arterial
roads in different European countries. Conversely, the network comprising
ArLus and Lamps is used for public lighting management and is mainly
deployed in Italy, France, and Germany. Finally, weather stations are part
of a prototype network deployed in Italy solely, and they are designed for
air quality and weather conditions monitoring. As discussed above, these
sensor networks were already operative, and belong to different companies.
Therefore, they are part of different and separate systems and they store raw
data on separate remote data bases. Thanks to IoT Manager, we were able
to harmonise these networks transparently. While they still collect data in
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each respective storage system, IoT Manager is able to retrieve each data on
the middleware and offers a unified application for an easier sensor network
management.

Figure 10.7: Distribution of the various types of sensors that are part of the

IoT Manager sensing layer in a real Smart City scenario. In

red, those countries in which TC sensors are deployed. In dark

blue, those countries involving ArLu and Lamp. Italy (yellow)

is the only nation where all of the currently handled sensors

have been deployed.

It is finally important to stress that IoT Manager is designed with research
and teaching purposes in mind. We released an open distribution of the
client application introduced in Section 10.1 on GitHub1. This approach
allows students and researchers to synchronize their IDE with IoT Manager’s
repository and to develop their own IoT solutions against the framework.

10.3 Case study: an AAL scenario

As stressed in the previous sections, IoT Manager currently includes the
definition of four specific classes of sensors operating in Europe. In order
to demonstrate the applicability of IoT Manager to a different application

1https://github.com/smartcitylabunibo
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scenario, we have assumed the adoption of the framework and the Android-
based application in a different context. Therefore, we have hypothesised
the realisation of a monitoring system that concerns several AAL environ-
ments. As we have seen, this constitutes one of the most current and critical
application scenarios in this domain. The starting hypothesis is that these
environments are, of course, independent subsystems, realistically designed
with different technologies and solutions specific to AAL (as seen in Section
4.1). The prototype realised exploits the functionalities previously described
and the interoperability guaranteed by the framework, defining a first tool for
the effective human behaviour monitoring. The two-level taxonomy allows
the rapid definition of a generic AAL environment. In fact, we have identified
two new instances of the abstract class SCO: the SCOAAL, whose purpose
– similarly to what observed for the ArLu – is to act as a logical concentra-
tor for the SCORooms, introduced to model the concept of room logically
belonging to a specific environment. Both the SCOAAL and the SCORoom
can include different sets of sensors. The primary goal in the realisation of
this scenario was to define environments in which embedded systems, inter-
connected with RGB-D sensors, were deployed. To this end, we introduced
another new class called SCOEmbKinect. Of course, these systems exploit
the HAR and template co-updating techniques described in the Part II of
this thesis. Currently, our simulation is based on the random selection of
video sequences belonging to the datasets described in the previous chap-
ters. For example, we exploited the CAD-60 room division to define different
SCOAAL composed of five different SCORoom, one for each environment
represented in the dataset. Of course this prototype is a simplification lim-
ited to recognition, so it does not take into account the necessary detection
and segmentation operations. As a result, it is possible to create a lifelog
of the actions carried out in the various environments: this allows simple
remote monitoring of the user, with the possibility to analyse and highlight
any changes in behaviour or wrong behaviour pattern in the short/long term.
A concrete example can be the analysis of the subject’s feeding habits and in
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particular of the assimilation of liquids during the day. The work presented
by (Gasparrini et al., 2015), for example, shows how monitoring these habits,
especially in the elderly, can be decisive in defining a healthy lifestyle.

The natural evolution of this prototype is a system that provides the
monitoring of different aspects, more or less critical. Among the most rele-
vant scenarios, the supervision of the correct medicine intake, the detection
of falls or, in general, abnormal behaviour, for example in subjects suffer-
ing from dementia, in a typical context of an Emergency Monitoring System
(EMS). The recognition of critical events would generate an alarm for care-
givers or health-care professionals, allowing for the fastest intervention based
on their position or assigned zone. However, it must be specified that the
prototype does not currently provide the transmission of any video sequence
to the service layer. Indeed, it is realistic to assume that, in the case of alarm
management, the sequences of interest must be analysed remotely, possibly
restricting only to depth frames to preserve the users’ privacy.

10.4 Discussion and future improvements

IoT Manager’s goal is twofold: first, to provide researchers and practi-
tioners with a full-stack platform that enables rapid deployment of prototype
IoT solutions; second, to provide guidance at all architectural levels for the
production of open-source IoT layers/platforms. Commercial solutions pre-
sented in Section 9.1 offer a typically partial or compartmentalised view. A
rather evident lack is the absence of operational details concerning the appli-
cation layer. A full-stack solution, as IoT Manager represents, could be useful
for research groups to understand how to build an IoT platform from scratch
and to quickly hook up sensor networks. IoT Manager also help the designer
in the customisation of the client application which needs to be implemented
according to the requirements of specific application contexts. This feature
is usually provided by Application Development Platform (which fall outside
of the scope of our evaluation) while it is rarely adopted by Application En-
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ablement Platform, which focus is posed on the middleware (see Section 9.1
for details).

Therefore, as stressed before, the main features of IoT Manager are (i)
its interoperability and (ii) its full-stack architecture. Concerning (i), as
we have seen in the Section 10.2, the proposed framework allows the rapid
coupling of entire networks of sensors, even for those which already operate.
The only constraint is the existence of the six mandatory information (sensor
identifier, sensor name, subsystem identifier, status, latitude, and longitude),
as discussed in Section 10.1.2. In specific application contexts, this feature
makes IoT Manager’s interoperability more agile than its commercial coun-
terparts, which often require the creation of an ad-hoc digital twin (e.g.,
AWS IoT Core) for each connected device. In relation to (ii), IoT Manager
is combined with a complete end-user application framework which enables
to quickly define the taxonomy of the different types of sensors involved in
a project. The client application manages this taxonomy with a class fac-
tory design pattern. This feature allows the rapid rendering of customized
graphical interfaces, potentially relying on those which are already provided
on GitHub. Besides, although IoT Manager was initially designed for ur-
ban contexts, as we have seen in Section 10.3, the presence of hierarchies
makes it possible to adopt it in several other scenarios, including the AAL
scenario, home automation or, more generally, in smart buildings. Again, it
is allowable to use sensor hierarchies to define groups of sensors belonging
to the same place. For instance, the introduction of a hierarchical subdivi-
sion by rooms, as detailed in the previous section, may reflect the sensors
partitioning provided by Samsung SmartThings.

Our research and teaching team is constantly working on IoT Manager
platform. Several modules were implemented during the recent years in order
to expand the data layer capabilities as well as to extend the set of subsys-
tems handled by the framework. Several efforts have been also carried out in
order to improve the service layer. As one of the main concern of IoT Man-
ager is interoperability, we will devote our attention to the platform’s APIs.
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Two are the main challenges with respect to this subject: first, a wider set
of communication protocols should be exposed by the back-end gateway. As
an example, several IoT platforms accept connection from MQTT or Web-
Sockets protocols, which are not handled by our middleware at the moment.
Second, the back-end mapper should be provided with a wider set of external
storage engine APIs. This condition would indeed lead to an easier connec-
tion of pre-existing subsystems. Specific attention should be posed on NoSQL
databases and column-based storage engines. We are currently working on
an additional module located between the Sensing Layer and the Data Layer
(see Figure 10.1) in order to enhance our three-layered stack. The mission
of this module is to act as a dispatcher between sensors and the back-end
allowing a two-way message exchange. The dispatcher should be combined
with appropriate APIs for sensors connection. Implementing this component
would enable a publish/subscribe paradigm similarly as discussed for AWS
IoT Core (see Section 9.1.1) and represents one of the most insightful chal-
lenges of the IoT Manager project. Moreover, this module would allow the
realization of the scenario described in Section 10.3, allowing the real-time
management of potential alarms.

10.5 Final Remarks

In this chapter we introduced IoT Manager, a full stack IoT platform re-
lying on open source technologies. We discussed our platform in accordance
with several mainstream IoT middlewares provided by well-known compa-
nies. In Chapter 9, we emphasised several common patterns which may be
found in commercial platforms while, in this one, we discussed our own so-
lution with respect to these reference architectures. As a lot of research
and teaching projects within this field rely on hidden details which private
companies do not tend to unveil, our main aim was to provide the scientific
community with a tangible implementation of such a solution, along with a
detailed description of our design strategies at each level of the stack.
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Chapter 11

Results achieved and future works

In this thesis, two relevant topics concerning AAL and smart environ-
ments have been explored. The former is about the design and implementa-
tion of different human action recognition algorithms while the latter deals
with the presentation of a monitoring platform that could allow the analysis
of human behaviour through the deployment of various smart devices and
sensors. This chapter will summarise the most notable contributions of the
thesis and future research directions.

11.1 Discussion and Contributions

World population ageing is set to be one of the 21st century’s main chal-
lenges. The costs of providing care for an ageing population will grow signif-
icantly in conjunction with a decrease in the number of workers and an in-
crease in the number of people with disabilities or chronic conditions. Such a
trend is expected to be even more significant in the next decade and will have
a considerable impact on the healthcare system and thus on GDP. Hence-
forth, it is mandatory to take sensible action and react to this inevitable and
worrying phenomenon. AmI and in particular the area of AAL offer a feasi-
ble response, allowing the creation of human-centric smart environments that
are sensitive, adaptive and responsive to the needs, habits and behaviours of
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the user. These technologies and approaches aim to foster the self-conductive
life of the patient in his or her preferred environment, reducing dependence
on health-care facilities and intensive personal care. In this context, human
activity recognition and monitoring play a fundamental role.

In the opening chapter of the thesis, we have outlined the vision of this
work by defining the presentation of these two lines of research followed by
an overview of the main elements that characterise them in Part I. On the
one hand, specifically in Part II, we proposed several RGB-D based action
recognition approaches. These contributions are accompanied by a brief lit-
erature review, focused on the different information modalities which RGB-D
sensors are capable of using. A first algorithm, based on skeleton data and in
particular on joint orientations, has been proposed in Chapter 6. The main
intention of this approach was to determine the reliability and robustness of
features based on joint orientations, often neglected in other action recogni-
tion works. This algorithm achieves state-of-the-art results in CAD-60 where,
considering the cross-validation leave-one-actor-out protocol (i.e., “new per-
son” setting), it achieves 95.0% of both precision and recall. Due to the lack
of joints orientations data in the most common HAR datasets, we have inter-
nally acquired a new dataset called OAD. The accuracy is rather good also
in this benchmark, reaching 80.85% precision and 80.16% recall. Moreover,
through the analysis of the confusion matrices of this new dataset, it was pos-
sible to understand which were the main weaknesses of the algorithm, such as
the temporal ordering of specific sequences not adequately represented by the
approach (e.g., sitting/getting up). To this end, a multi-modal approach has
been proposed in Chapter 7. This algorithm integrates the joint orientations,
used to define the main body postures, with features extracted from RGB
images. More precisely, a number of temporal images are exploited to allow
a more accurate description of actions temporal evolution. In this way, the
results of both the CAD-60 – which reaches 98.8% precision and 98.3% recall
– and the extended version of the OAD (90.6% precision and 90.4% recall)
have been further increased. This multimodal approach has also achieved
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good results compared to the more complex CAD-120. The Chapter 8 aimed
to offer a different approach to action recognition, focusing mainly on the in-
troduction of the concept of template co-updating which, to the best of our
knowledge, has not been investigated so far. We are confident that in an AAL
scenario, where a monitoring system is continuously checking the ambience
to understand human actions, a considerable amount of unlabelled data can
be easily collected. Moreover, labelled training data are often scarce, with a
few video samples for each activity to be recognised. We believe that the im-
plementation of incremental (co-)updating techniques is mandatory to fully
exploit the richness of (multiple) data that the specific scenario naturally
provides. We have thus proposed a semi-supervised approach that allows the
incremental learning of templates using multiple data sources (skeletal and
RGB information). The proposed multimodal approach exploits, also in this
case, the joint orientations features combined with the robust IDTs, used to
represent the RGB data. The experimental phase, limited to OAD v.2.0, is
promising, with interesting trends and offering good results (89.3% precision
and 88.7% recall). Of course, these metrics are not comparable with the
results previously described, having adopted an incremental approach and a
different testing protocol.

On the other hand, in Part III, we presented a monitoring platform for
generic IoT environments compared to some of the leading solutions on the
market. We have emphasised two main aspects of this solution: i) its interop-
erability and ii) its full-stack architecture. This platform is in fact operative
for the monitoring of heterogeneous sensors distributed throughout Europe.
These sensor networks are managed by different subsystems that are using
different technologies. In Chapter 10, we have thus offered the reader the
possibility of understanding the design of such a platform. The proposed
solution can be quickly adapted for the rapid prototyping of different IoT
solutions; specifically, we have simulated its use for the monitoring of sensors
distributed in several smart homes in an AAL context.
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11.2 Future works

This section analyses the main open issues and possible research directions
concerning the techniques of action recognition, template co-updating and
the monitoring platform. In the different action recognition algorithms, we
have strongly exploited the joint orientations. The features derived from
them has proved to be effective in the benchmarks on which it has been
validated. The generation of the key poses codebook is based on the use of
the clustering algorithm k-means applied to all the feature vectors extracted
from the whole training set. A possible extension could be the production of
a “smart codebook” which is generated through a clustering algorithm that is
aware of the class of a particular training sequence. In this way, the clusters of
key poses would presumably be more significantly separated. This extension
should be further explored, especially if the actions share common poses that
could entail a certain degree of redundancy.

Another aspect that can be addressed is the adoption of techniques that
allow preserving the temporal ordering of key poses, in order to avoid being
bound to specific representations such as the proposed temporal images.

As for the co-updating template approach, it will be assessed against
different skeletal features and with the introduction of depth data. Indeed,
this would allow a more comprehensive view of the algorithm, highlighting
in a more precise way the pros and cons and enabling a thorough evaluation
of the parameters described. We stressed the lack of datasets which include
joints orientations, and we have overcome by introducing OAD. However, it is
worth investigating the template co-updating approach against more complex
and comprehensive benchmarks such as NTU RGB-D. Nevertheless, it is clear
that the scientific community needs a sufficiently large ADLs dataset from a
real-world scenario. Unfortunately, many of the RGB-D datasets used so far
are obtained in an over-controlled, far-fetched environment.

Finally, in this thesis we focused on the recognition of pre-segmented
video sequences. In a real context, it is necessary to implement robust detec-
tion and segmentation approaches concerning the continuous video stream.
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Moreover, it is possible that the activity templates do not include all the typ-
ical actions. In these cases, the system has to discriminate against actions
that are unidentified to it, for example, by an automatic discovering of ac-
tion patterns which will have to be validated by a human being. A simplified
solution could be the adoption of the “unknown” label, which would also be
followed by human evaluation.

Another essential aspect to investigate is the explicit modelling of user
interaction with objects which could represent a valuable source of informa-
tion for action/activity comprehension. In fact, an user-object interaction
approach could greatly simplify the recognition of some actions, characterised
by a similar sequence of poses (e.g., drinking, answering the phone).

On the other hand, concerning the monitoring platform, the main future
works have been defined in Section 10.4. Of course, one of the priorities in
the implementation of an effective AAL monitoring system will undoubtedly
be the introduction of a publish/subscribe protocol that allows bidirectional
communication between the different layers, sensors and actuators. More-
over, as far as the deployment of vision-based devices is concerned, some
evaluations that were not covered in this thesis are necessary, such as the
setup of multi-camera view environments. Besides, some domestic environ-
ments are more sensitive to privacy issues than others (e.g., bathroom). In a
context of remote risk assessment, video streaming of sequences from those
environments should include mechanisms to protect users’ privacy. Such as
an example, by using only skeletal video representations or depth data. Fi-
nally, a smart monitoring system should include a local reasoning module
that, on the one hand, acts as a gateway to the proposed middleware and,
on the other hand, allows to distinguish the occurrence of specific events and
autonomously undertakes related intervention actions. The inclusion of this
module is clearly domain-specific and will be investigated to further vertical-
ize the platform towards practical implementation in the AAL domain.
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