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Abstract

Big Data Analytics poses many challenges to the research community who has to handle
several computational problems related to the vast amount of data. An increasing inter-
est involves Biomedical data, aiming to get the so-called �personalized medicine�, where
therapy plans are designed on the speci�c genotype and phenotype of an individual pa-
tient and algorithm optimization plays a key role to this purpose. In this work we discuss
about several topics related to Biomedical Big Data Analytics, with a special attention
to numerical issues and algorithmic solutions related to them. We introduce a novel fea-
ture selection algorithm tailored on omics datasets, proving its e�ciency on synthetic and
real high-throughput genomic datasets. The proposed algorithm is a supervised signature
identi�cation method based on a bottom-up combinatorial approach that exploits the dis-
criminant power of all variable pairs. We tested our algorithm against other state-of-art
methods obtaining better or comparable results.

We also implemented and optimized di�erent types of deep learning models, testing
their e�ciency on biomedical image processing tasks. Three novel frameworks for deep
learning neural network models development are discussed and used to describe the nu-
merical improvements proposed on various topics. In the �rst implementation we optimize
two Super Resolution models showing their results on NMR images and proving their ef-
�ciency in generalization tasks without a retraining. The second optimization involves a
state-of-art Object Detection neural network architecture, obtaining a signi�cant speedup
in computational performance. We also highlight how Super Resolution models are able
to overcome object detection issues and, therefore, increase detection performances. In
the third application we discuss about femur head segmentation problem on CT images: a
semi-automatic pipeline for the image annotation is proposed and a deep learning neural
network model trained on these images.

The last section of this work involves the implementation of a novel biomedical database
obtained by the harmonization of multiple data sources, that provides network-like relation-
ships between biomedical entities. Data related to diseases, symptoms and other biological
relates were mined using web-scraping methods and a novel natural language processing
pipeline was designed to maximize the overlap between the di�erent data sources involved
in this project. We describe the key steps which lead us to this network-of-networks
database and we discuss its potential application in biomedical research.
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Introduction

Big Data: these two words are at the heart of many contemporary researches. Nevertheless,
it is yet a loose term and no exhaustive description has been provided. We commonly
associate this term to the description of data generated from several machines and used
to describe very complex systems. We can �nd Big Data associated to multiple kinds
of modern researches which use this term to highlight the complexity of their projects.
The use of Big Data, in fact, is closely related to the Complexity term (intended with its
physical meaning) and to the major part of Arti�cial Intelligence researches, since they
seem to be the only way to overcome these problems. As anticipated, it is di�cult to �nd
out a satisfactory de�nition about Big Data and the common sense tends to name them
simply as a vast amount of data. However, this is just a broadly description of them and
it simpli�es too much their usage and power. We can �nd Big Data in more applications
and �elds than we usually think and a prominent research �eld is the Biomedical one.

Biomedical data are growing both in size and breath of possible usages. This growth is
driven by the development of newer and cheaper technologies for data acquisition, which
enlarge the availability of them. At the same time, also the computational power is increas-
ing and we can take advantage of more e�cient and complex algorithms and pipelines for
the analysis of a such amount of data. Unfortunately, this second growth is not enough fast
to tackle these problems and the development of novel techniques of processing and, more-
over, algorithms able to extract informative portions of data is essential in the so-called
Big Data Analytics. This is even more true when we talk about Biomedical Big Data, i.e
data related to health-care studies, which aim to identify the variable responsible for more
or less complex diseases or to give a description of biological processes. In addition to the
novel Next Generation Sequencing (NGS) technologies related to the analysis of biological
structures like DNA and RNA, the so-called omics researches involve a large part of the
contemporary biomedical researches. The term omic data, also in this case, refers to the
wide range of biological studies ending in -omics, like genomics, proteomics ormetabolomics
which aim to describe and quantify biological processes at di�erent scale levels. The anal-
ysis of these kinds of data poses many challenges to the research community, especially
for the vast amount of variables involved. In general, biological research �eld is used to
analyze only few samples compared to the number of variables involved: this is exactly the
opposite behavior of common statistical analyses and, moreover, of physics research. The
ability to extract information and reduce the problem dimensionality is crucial to address
these problems.

More complex analyses related to high dimensional problems are the image processing
ones. Biomedical imaging is another of the most prominent kind of analysis for the devel-
opment of novel medical treatments. The many di�erences between acquisition methods
and data structures/characteristics for di�erent imaging modalities create a zoo of possible
studies and analyses. At the same time, the dimensionality of the involved images requires
an adequate computational e�ort. These characteristics satisfy all the requirements posed
by the modern deep learning training. It is not always possible to create an appropriate
mathematical model to describe the underlying dataset and in many cases we need to
handle more general applications. Standard machine learning methods can not keep up
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2 Introduction

such requirements and they are giving way to deep learning models. In many applica-
tions these models are used as black-boxes and their complexity does not always allow a
complete understanding about their learning. Nevertheless, their e�ciency is overcoming
standard methods in a vast amount of applications and they are the only tools which give
the semblance of an arti�cial intelligence.

All these data and analyses involve multiple scienti�c researches which, driven by them,
are becoming more accurate but, at the same time, also more specialized. With a such
heterogeneity of data, we can handle very useful analyses of any biological compound
with a payback of a loss about the system complexity and interactions. The absence of a
standardized system for sharing biomedical information contributes to the di�culty about
merging results provided by di�erent studies. Several European projects about health-care
research has been �nanced aiming to develop an harmonization between biomedical data
sources. The principal issues about this topic are related to a non rigid nomenclature of
medical keywords and data formats. Relational databases have e�ciently driven Big Data
research up to now, but the increasing demand of non-trivial connections between di�erent
kinds of entries is paving the way to di�erent kinds of approaches and data management.
At the same time, also the research about novel natural language processing methods are
becoming very popular in these applications.

This work of thesis starts from these multiple issues about Big Data and it focus on
di�erent Biomedical topics. In each chapter we are going to handle a di�erent aspect of
Big Data research and a di�erent kind of data. For each topic we try to o�er a balanced
description between the mathematical/theoretical background and numerical issues/solu-
tions of it. The main focus of each application remains its algorithmic description and the
numerical solutions developed to handle the underlying problem.

We start our trip across Biomedical Big Data introducing a novel feature selection
algorithm. The proposed algorithm is tailored for gene expression analyses and in the
various sections of the �rst chapter we provide a description of all its pros and cons. The
algorithm was already used in earlier scienti�c publications but, for the �rst time, a deeper
analysis of all its characteristics either from a numerical either from a algorithmic point-of-
views is provided. The algorithm has undergone also an intensive optimization procedure
to make it able to handle Big Data problems in a reasonable computational time. We
test our method against a custom toy model and later we compare its e�ciency against
state-of-art equivalent models and data. We also show some applications of it to di�erent
kinds of data, starting from gene expression datasets, passing to protein expression levels,
up to other types of non-biological data, proving its e�ciency in all these topics. Within
the limits of our knowledge about biological processes, we provide also an interpretation
about the obtained results where it is possible.

Then, we move to more numerical expensive analyses with the help of modern deep
learning models. Starting from a brief introduction about neural network models we look
at the di�erent functions/layers included in the later discussed models. For each of them
we give a theoretical explanation about the mathematical functions and, also in this case,
we deeply focus on their numerical implementation. Three custom libraries are introduced,
developed by the author of the thesis, showing the results obtained by them with other
state-of-art implementations. We use deep learning neural network models to handle dif-
ferent kind of image processing analyses with a particular attention to biomedical images.
As previously discussed, there are multiple image sources in the biomedical �eld and in
our applications we use NMR and CT images. Implementing the most recent Super Res-
olution algorithms we show their application on NMR images, proving how they can help
to increase image quality and how they can be also used to improve object detection tasks.
Other kinds of applications are also shown to prove the versatility of such methods in
several biomedical tasks.
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We end our discussion introducing a novel database, related to the most common
diseases, their symptoms and other biomolecular entities, obtained by the harmonization
of publicly available datasets. A global description about Big Data sources and how we can
handle problems related to the data extraction is discussed before our pipeline of processing.
A key role in our work is played by natural language processing methods and, thus, starting
from a brief introduction about them we focus on the developed pipeline. The work
concern the merging of multiple datasets into a single network structure able to manage the
interactions between di�erent biomedical compounds. The network-of-networks structure
generated during this project allows a wider overview of several diseases, pointing out their
association to genes, drugs and other biological data. We also discuss about how this large
amount of information can be managed using modern database languages and about the
chosen strategy to share our results to the scienti�c community.

For sake of brevity, not all the developed projects are discussed and some of the remain-
ing ones are bounded in the Appendix of this text. However, the principal contributions of
this work are related to the developed codes. All the codes described in this work are, in
fact, publicly available on-line on Github (https://github.com/Nico-Curti/). We have
paid special attention to the development of our codes, carefully managing their testing
and availability. Each code has been enriched by an adequate on-line documentation, ei-
ther about its usage either about its installation and performances. A small part of the
codes has been written in pure-Python, while the major part has been written in C++:
for this reason a continuous integration of them is essential to ensure their usability. We
remark that also the current text is publicly available on Github as Latex code, and to ease
its reading and its hyper-link connections, we have converted it also into a Gitbook version
available at https://nico-curti2.gitbook.io/phd-thesis/.

https://github.com/Nico-Curti/
https://nico-curti2.gitbook.io/phd-thesis/




Chapter 1

Feature Selection - DNetPRO

algorithm

After the end of the Human Genome Project (HGP, 2003) [63] there were growing interest
on biological data and their analysis. At the same time, the availability of this type of
data increased exponentially with the technological improvement of data extractors (High-
Throughput technologies) [74] and the lower production costs. These are the main factors
that allow us to go into the new scienti�c era of Big Data. Biological Big Data works with
very large and complex datasets which are typically impossible to store, handle and analyze
using standard computers and techniques [53]. Just think that we need around 140 GB for
the storage of the DNA of a single person and an Array Express, a compendium of public
gene expression data, has more than 1.3 million of genomes which have been collected in
more than 45 000 experiments [38]. Since the number of available data is getting greater,
we need to design several storage databases to organize, classify and, moreover, extract
information from them. The Bioinformatics European Institute (EBI) at Hinxton (UK),
which is part of the European Laboratory of Biological Molecular and one of the biggest
repositories of biological data, stores 20 petabytes of genomic data and proteomics back-
ups. The amount of the genomics data is only 2 petabytes, and it doubles every year: it
is not worth to remark that these quantities represent about a tenth of data stored by
CERN of Ginevra [61]. In contrary, the ability of processing data and the computational
techniques of analysis do not grow in the same way. Therefore, the gap between the growth
of available data and our ability to work with them is getting bigger.

From a computational point-of-view, the Bioinformatics new-science is looking for new
methods to analyze these large amount of data. Common Machine Learning methods, i.e
computational algorithms able to �nd signi�cant patterns into large quantities of data, need
to be optimized and modi�ed to increase their computational and statistical performances.
To improve the computational time, we need to extend existing methods and algorithms,
and to develop new dimensionality reduction techniques. In Machine Learning, in fact,
as the dimensionality of the data increases, the amount of data required to perform a
reliable analysis grows exponentially1. Dimensionality reduction techniques are methods
able to �nd the more signi�cant variables of a given problem or a combination of them,
where �signi�cant� means that these few variables (or features) preserve the information
about the problem as much as possible. High-dimensional omics data (e.g. transcriptomics
through microarray or NGS, epigenomics, SNP pro�ling, proteomics and metabolomics, but
also metagenomics of gut microbiota) pose enormous challenges on how to extract useful
information from them. One of the prominent problems is to extract low-dimensional sets
of variables � signatures � for classi�cation and diagnostic purposes, or to better stratify

1 High dimensional data tends to become very sparse and as result it is hard to perform robust statistical
evaluation on it. This phenomena is commonly called �curse of dimensionality� [9].
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6 CHAPTER 1. FEATURE SELECTION

patients for personalized intervention strategies based on their molecular pro�le [79, 14,
51, 6].

Figure 1.1: (a) An example in which single-parameter classi�cation fails in predicting
higher-dimension classi�cation performance. Both parameters (feature1 and feature2 )
badly classify in 1-D, but they have a very good performance in 2D. Moreover, classi�cation
can be easily interpreted in terms of relative higher/lower expression of both probes. (b)
Activity of a biological feature (e.g. a gene) as a function of its expression level: top) mono-
tonically increasing, often also discretized to an on/o� state; center, bottom) �windowed�
behavior, in which there are two or more activity states that do not depend monotonically
on expression level. X axis: expression level, Y axis, biological state (arbitrary scales).

Many approaches are used to face such problems [40], as Elastic Net [48], Support
Vector Machine, K-nearest Neighbor, Neural Network and Random Forest [67]. Some
methods select variables using single-variable scoring methods [33, 45] (e.g. Student's t
test for a two-class comparison), while others search for projections in lower-dimensional
variable spaces, but all these approaches could fail even in simple 2-dimensional situations
(Fig. 1.1). As shown in Fig. 1.1 (a), both variables perform poorly taken singularly, but
their performance becomes optimal taking them together (in terms of linear separation of
the two classes).

It is known that complex separation surfaces characterize classi�cation tasks associated
to image and speech recognition, for which Deep Networks are used successfully in recent
times, but in many cases biological data, such as gene or protein expression, are more likely
characterized by an up/down-regulation behavior (as shown in Fig. 1.1 (b) top), while more
complex behaviors (e.g. a �windowed� optimal range of activity, Fig. 1.1 (b) bottom) are
much less likely. Discriminant-based methods (and logistic regression methods alike) can
very likely provide good classi�cation performances in these cases, if applied in at least
two-dimensional spaces. The �linearity� of these methods (that generate very simple class
separation surfaces, i.e. linear or quadratic) also ensures that a �buildup� of a signature
based on lower-dimensional signatures can be done.

These considerations are relevant in particular for microarray data, where we face
on few samples compared to a huge amount of variables (gene probes). This kind of
problem, often called �large N , small S� problem (where N is the number of features, i.e
variables, and S is the number of samples), tends to be prone to over�tting2 and they
are classi�ed to ill-posed. The di�culty on the features extraction can also increase due
to noisy variables that can drastically a�ect the machine learning algorithm. It is often

2 A solution to a problem is classi�ed as �over�tted� if small �uctuations on the data variance produces
classi�cation errors. This problem arises when the model perfectly �ts a small training set, but it is not
able to generalize to a large amount of test samples (generalization).
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di�cult to discriminate between noisy and signi�cant variables, even more as the number
of variables increases.

In this thesis we propose a new method of feature selection - DNetPRO, Discriminant
Analysis with Network PROcessing - developed to outperform the problems mentioned
above. Our method is designed to gene-expression data analysis and it was tested against
the most common feature selection techniques. The method was already applied on gene-
expression datasets, but my work focused on its benchmarking and optimization for Big
Data applications. The pipeline is composed by several steps and only a part of them
were designed for biological application: this allows us to apply (part of) the same method
also on di�erent topics with good results (see Appendix for further information about the
analyses on non-biological data).

1.1 DNetPRO algorithm

The DNetPRO algorithm produces multivariate signatures starting from all the couples of
variables analyzed by a Discriminant Analysis. For this reason, it can be classi�ed as a
combinatorial method and the computational time for the exploration of variables' space is
proportional to the square of the number of the underlying variables (ranging from 103 to
105 in a typical high-throughput omics study). This behavior allows to overcome some of
the limits of single-feature selection methods and it provides a hard-thresholding approach
compared to projection-based variables selection methods. The combinatorial evaluation
is the most time-expensive step of the algorithm and it needs an accurate algorithmic
implementation for Big Data applications (see the next section for further information
about the algorithmic implementation strategy). A summary of the algorithm is shown
in 1.

Data: Data matrix (N, S)
Result: List of putative signatures
Divide the data into training and test by an Hold-Out method;
for couple ← (feature_1, feature_2) ∈ Couples do

Leave-One-Out cross validation;
Score estimation using a Classi�er;

end
Sorting of the couples in ascending order according to their score;
Threshold over the couples score (Kbest couples);
for component ∈ connected_components do

if reduction then
Iteratively pendant node remotion;

else
S

end
ignature evaluation using a Classi�er;

end
Algorithm 1: DNetPRO algorithm for Feature Selection.

So, given an initial dataset, with S samples (e.g. cells or patients) each one described
by N observations (our variables, e.g. gene or protein expression pro�les), the signature
identi�cation can be summarized with the following steps:

� separation of available data into a training and test sets (e.g. 33/66, or 20/80);

� estimation of the classi�cation performance on the training set of all S(S − 1)/2
variable couples through a computationally fast and reproducible cross-validation
procedure (leave-one-out cross validation was chosen);
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� selection of top-performing couples through a hard-thresholding procedure. The
performance of each couple constitutes a weighted link of a network, where the nodes
are the variables connected at least through one link;

� every connected component which composes the network identi�es a putative signa-
ture.

� (optional) in order to reduce the size of an identi�ed signature, the pendant nodes
of the network (i.e. nodes with degree equal to one) can be removed, in a single step
or recursively up to the core network (i.e. a network with all nodes with at least two
links).

� all signatures are evaluated onto the test set to estimate their performances.

� a further cross validation step is performed (with a further dataset splitting into test
and validation sets) to identify the best performing signature.

We would stress that this method is completely independent to the choose of the clas-
si�cation algorithm, but, from a biological point-of-view, a simple one is preferable to keep
an easy interpretability of the results. The geometrical simplicity of the resulting class-
separation surfaces, in fact, allows an easier interpretation of the results, as compared
to very powerful, but black-box, methods like nonlinear-kernel SVM or Neural Networks.
These are the reasons which lead us to use very simple classi�er methods in our bio-
logical applications as diag-quadratic Discriminant Analysis or Quadratic Discriminant
Analysis (Appendix A for more information about the mathematical background and their
respectively implementations). Both these methods allow fast computation and an easy
interpretation of the results. A linear separation might not be common in some classi�ca-
tion problems (e.g. image classi�cation), but it is very likely in biological systems, where
many responses to perturbation consist in an increase or decrease of variable values (e.g.
expression of genes or proteins, see Fig. 1.1 (b)). This assumption is very plausible for
biological data, since genes are in general up- or down-regulated in order to modify their
activity and protein and metabolites most of the times respond consequently.

A second direct gain by the couples evaluation is related to the network structure:
the DNetPRO network signatures allow a hierarchical ranking of the features according
to their centrality compared to other methods. The underlying network structure of the
signature could suggest further methods to improve its dimensionality reduction based on
network topological properties to �t real application needs, and it could help to evaluate
the cooperation of variables for the class identi�cation.

In the end, we remark that our signatures have a purely statistical relevance by being
generated with a purpose of maximal classi�cation performance, but sometimes the selected
features (e.g. genes, DNA loci, metabolites) can be of clinical and biological interest,
helping to improve knowledge on the mechanism associated to the studied phenomenon [5,
79, 12, 86].

1.2 Synthetic dataset benchmark

Standard feature selection algorithms test single-variable performances. Starting from the
ranked variables according to their scores, a signature is obtained selecting the top scorer
ones following an iterative addition of variables until a desired output score is reached.
These methods-like are called K-best algorithms and they �lter the number of variables
without any constrain on their mutual interaction or correlation. The proposed DNet-
PRO algorithm tries to extract the more statistically signi�cant variables considering the
interaction between them, i.e the combination of variable-pairs. Thus, while the K-best
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algorithms scale according to the number of variables, the DNetPRO algorithm is more
computational expensive and its usage can be justify only if its e�ciency is proved.

We developed a toy model simulation to compare the performances of a standardK-best
algorithm with the DNetPRO, considering either the number of samples and the number of
variables. Since the DNetPRO algorithm was designed to gene expression applications, our
toy model should consider a large number of variables with only a relative small number of
samples. To simulate a so like synthetic dataset, we used a toy model generator provided
by the scikit-learn Python package. The model generator allows to set a precise number
of classes, distinguishing between informative features, i.e. variables which easily separate
the class populations, and redundant features, i.e. variables which represent noise in our
problem. The number of informative features should be realistically small compared to the
noise, so in our simulations we chose to introduce a maximum of 1% informative features
in each simulation.

We randomly generated data from Gaussian distributions with an increasing number of
samples and variables, i.e dimensions. In each simulation we split the number of samples
in training and test sets (Hold-Out method, with 2/3 of data as training and 1/3 as test)
and we applied the DNetPRO algorithm. From each simulation we tested the extracted
signatures on the test set, keeping the best performing one. On the same data-subdivision
we applied the K-best algorithm, �ltering the same number of variables of the DNetPRO
best signature, i.e K equal to the number of nodes in the DNetPRO best signature. In
this way, we could compare the performances obtained on the test set by the two methods.
We would highlight that, in general, there is not a stop criteria for the K-best algorithm,
so the number of variables selected could be smaller or greater than the number of DNet-
PRO signature nodes. However, we can reasonably assume that, according to the K-best
interpretation, the selected features should be the most performing ones, and the addition
of more variables should introduce only a small quantity of noise. In Fig. 1.2 we show
the results obtained in our simulations, keeping �xed the number of variables/samples and
varying the number of samples/variables (Fig. 1.2 (a) and Fig. 1.2 (b), respectively).

Figure 1.2: Synthetic dataset simulation. Comparison of accuracy performances obtained
by the DNetPRO algorithm and the K-best algorithm. (a - left) Performances obtained
in function of the number of samples, keeping �xed the number of variables. (b - right)
Performances obtained in function of the number of variables, keeping �xed the number of
samples.

For the same number of variables (Fig. 1.2 (a)) we noticed as the two methods perform
quite similar but the DNetPRO is able to reach better performances as the number of
samples increase. This trend can be explained also in statistical terms: with small samples
the variability of our (random) data is large and the performance distributions are more
unstable. With a greater number of samples, the variances of our classes are reduced,
and the statistical quantities involved in the computation of the discriminant curve can be
evaluated with more accuracy. As the number of samples increase, the statistical evaluation
of variables becomes easier and the correspondence between the top scorer variables and
the true-informative ones increases. In few sample cases, the quantity of noise is big and

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html


10 CHAPTER 1. FEATURE SELECTION

in a high dimensional space is hard to �nd the most informative directions: noise variables
can reach higher performances than the informative ones in these cases.

Despite of the simplicity of our toy model, the DNetPRO is able to highlight its e�ciency
in terms of performances against the single-feature method. A slight di�erent behavior
is shown by varying the number of variables and keeping �xed the number of samples
(Fig. 1.2 (b)). In this case we noticed that the median accuracy (black line in the plot)
of the DNetPRO algorithm always outperforms the K-best one. With a small number of
variables (left part of the plot) the K-best algorithm performances are more stable and,
only from a statistical point-of-view, we can prove the e�ciency of the DNetPRO algorithm
(the median of the distribution is still higher compared to the K-best one). As the number
of variables increase, also the e�ciency of the DNetPRO algorithm increases until it exceeds
the K-best results (and its distribution is narrowed). We reached this situation quite faster
in our simulation since we constrained our toy model with a forced unbalance between the
number of samples and variables, i.e the so-called ill-posed problems. The DNetPRO was
designed to work in these situations and it is able to reach high accuracy results also in
critical ill-posed problems. The pair-variables evaluation could be helpful to �nd good
variables which are penalized in the single score ranking, but which can prove a good
performance-interaction with the others. In these cases, the DNetPRO results could be
helpful also to understand the variable interactions, due to the network structure of the
signature which can bring to deeper considerations on the �ne grain cooperation of variables
in a real problem context.

This kind of toy model is considered as a standard for feature selection testing, but it
puts several disadvantages for the DNetPRO evaluation. We started our discussion about
the DNetPRO taking into account the two distributions of data showed in Fig. 1.1 (a). The
DNetPRO algorithm was designed to face that kind of situations in better way. The limits
of our algorithm are so bounded to the sample distributions: if the informative variables
are totally independent one from each others, the couples evaluation does not guaranteed
the best approach to the problem. Considering the signatures extracted by the DNetPRO
algorithm we noticed this kind of behavior: the core of our signatures was principally
composed by informative variables (which were manually introduced so easily traced) into
a star-network structure.

We have to face also the problem of multiple putative (disjointed) signatures: the
DNetPRO algorithm takes into account only the connected components with the highest
score as putative signature. If the informative variables are disjointed, the corresponding
star-networks will be disjointed.This means that we have to enlarge the amount of nodes
in our signature.

We evaluated both these situations in our toy model simulations. In the �rst case,
we introduced only two informative variables obtained by a sampling of the distributions
showed in Fig. 1.1 (a). In all our simulations, the DNetPRO algorithm was able to identify
the couple of these variables as the best putative signature. At the same time the K-best
algorithm �nd with more di�culty those variables, especially when the number of variables
become greater. Considering the distribution of single-variable scores, in fact, we could
notice as the informative variables, despite they were manually introduced, were not always
the top scoring ones: in large dimensional spaces also noisy-variables produced high(er)
performances.

Using the same sample distributions for informative features, we manually introduced
multiple couples in our dataset. As expected the DNetPRO algorithm is not able to identify
into a single connected component, i.e a single putative signature, the full set of informative
variables, while the K-best algorithm easily �nd them in the top scoring ranking. To
guarantee the full set of informative features into the DNetPRO signature, we had to
enlarge the number of nodes and thus we had to introduce multiple noisy-variables. This
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behavior highlights the limits of the DNetPRO algorithm and the need of a (optional)
�ltering procedure to face these critical cases3.

1.3 Algorithm implementation

The DNetPRO algorithm is made by a sequence of di�erent steps which have to be per-
formed sequentially for a signature extraction. To this purpose, each step can be optimized
independently by using the full set of available computational resources4. In this section
we analyze each part of the pipeline, focusing on the optimization strategies used for the
algorithm implementation.

The full code is open source and available at [17]. The code installation is automatically
tested using Travis CI (for Linux and MacOS environments) and Appveyor CI (for Windows
environments) at each update (commit). The installation can be performed using CMake
and a full set of instructions can be found in the on-line project documentation.

The Python version of the algorithm (see next sections) can be installed via setup.py
and its compilable parts built via CMake. The Python installer provides also the full list of
project dependencies, which will be automatically installed. A full list of example scripts
and utilities to obtain the results showed in the next sections can be found in the Github
repository. We provide also the complete benchmark pipeline used in our simulations and
able to run on cluster environment using a SnakeMake version of it (see next sections).

1.3.1 Combinatorial algorithm

The most computational time-expensive step of the algorithm is certainly the couples
evaluation. From a computation point-of-view this step requires (O(N2)) operations for
the full set of combinations. Since we want to perform also an internal Leave-One-Out
cross validation for the couple performances estimation, we have to add a (O(S − 1))
to the algorithmic complexity. Let's focused on some preliminary considerations before
discuss about the proposed implementation:

� Performance: we aim to apply our method on large datasets and thus we have
to take care about the time-performances of this step (identi�ed as bottleneck). To
reduce as much as possible the call stack inside our code, we should perform the
entire code with the smaller number of functions as possibly. Moreover, we have to
simplify for loops and take care about the automatic code vectorization performed by
the optimizer at compile time (SIMD, Single Instruction Multiple Data). A further
optimization step to take into account is related to the cache accesses: the use of
custom objects inside the code should bene�t from cache accesses (AoS vs SoA, Array
of Structure vs Structure of Arrays).

� Interdependence: the performances evaluation is a set of completely independent
computational processes and it can be faced on as N2 separately tasks. Thus, it can
be easily parallelizable to increase speed performance.

� Simplify: the use of a simple classi�er for performances evaluation simpli�es the
computation and the storage of the relevant statistical quantities. In the discussed

3 In the algorithm description we discussed about the possibility of removing pendant nodes as optional
�ltering procedure. The optional step can help but not completely solve the above problem: if there are
two disjointed signatures, we have to enlarge the number of nodes and create a connection between them,
but this connection would be probably due to a noisy variable. The pendant node remotion can help to
reduce the amount of nodes, but links which connect the two components would be preserved.

4 Further optimization can be performed in a cross validation environment and they will be discussed
later in this section.

https://github.com/Nico-Curti/DNetPRO/blob/master/.travis.yml
https://github.com/Nico-Curti/DNetPRO/blob/master/appveyor.yml
https://github.com/Nico-Curti/DNetPRO/blob/master/CMakeLists.txt
https://github.com/Nico-Curti/DNetPRO/blob/master/setup.py
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implementation, we focused on a Diag-Quadratic classi�er (see Appendix A for fur-
ther information) in which only means and variances of data play a role in its com-
putation.

� Cross Validation: the use of a Leave-One-Out cross validation allows to perform
substantially optimizations in the statistical quantities evaluations across the folds
(see discussion in Appendix A - Numerical Implementation).

� Numerical stability: we have also to take in care about the numerical stability of
the statistical quantities, since we are working under the assumption of a reasonable
small number of samples compared to the amount of variables. This hypothesis
a�ects the variance estimation: the chose of a numerically stable formula for this
quantity plays a crucial role for the computation, because the classi�er score has to
be normalized by it.

With these ideas in mind, we have written a C++ code ables to optimize this step in
a multi-threading environment, aiming to test its scalability over multi-cores machine.

Starting from the �rst discussed point, we chose to implement the full code inside a
single main function, with the help of only a single SoA custom object and one external
function (sorting algorithm discussed in the next section). This allows us to implement
the code inside a single parallel section, reducing the time of thread spawning. We chose
to import the data from �le in sequential mode, since the I/O is not (particularly) a�ected
by parallel optimizations (in our simulations).

Following the instructions suggested in Appendix A - Numerical Implementation, we
compute the statistical quantities on the full set of data before starting the couples evalu-
ation. Taking a look to the variance equation

σ2 =

∑S
i=1(xi − µ)2

S − 1
=

∑S
i=1(xi

2)

S − 1
− µ2 (1.1)

we can see that the �rst equation involves the mean computation as a simple sum of
elements, using a large number of subtractions that are numerically unstable for data
outliers (moreover because they are elevated to square). The better choice, in this case,
is given by the second formula, that allows to compute both quantities in the formula
inside a single parallel loop5. At each cross validation, we use the two pre-computed sums
of variables, removing the only data points excluded by the Leave-One-Out. Another
precaution to take in care is to add a small epsilon to the variance before its usage in the
denominator of the classi�er function to prevent numerical under�ow.

The set of pair variables can be obtained only by two nested for loops in C++ and a
naive optimization can be simply obtained by reducing the number of iterations following
the triangular indexes of the full matrix (by de�nition the score of the couple (i, j) is equal
to the score of (j, i)). This precaution easily allows the parallelization of the external
loop and drastically reduce the number of iterations, but it also creates a link between
the two iteration variables. The new release of OpenMP libraries [28]6 (from OpenMP
4.5) introduces a new keyword in the language, that allows the collapsing of nested for
loops into a single one (whose number of iterations is given by the product of the single
dimensions), in the only exception of a completely independence of iteration variables. So,

5 To facilitate the SIMD optimization the code is written using only �oat (single precision) and integer
variables. This precaution takes in care the register alignment inside the loops and it facilitates the
compiler-optimizer.

6 The OpenMP library is the most common non-standard library for C++ multi-threading applications.
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the best strategy to use in this case is to perform the full set of N2 iterations with a single
collapse clause in the external loop7.

Listing 1.1: Python parallel couples evaluation algorithm
1 import pandas as pd

2 import itertools

3 import multiprocessing

4 from functools import partial

5

6 from sklearn.naive_bayes import GaussianNB

7 from sklearn.model_selection import LeaveOneOut , cross_val_score

8

9 def couple_evaluation (couple , data , labels):

10 f1 , f2 = couple

11

12 samples = data.iloc[[f1, f2]]

13 score = cross_val_score(GaussianNB (), samples.T, labels ,

14 cv=LeaveOneOut (), n_jobs =1).mean() # nested

parallel loops are not allowed

15

16 return (f1, f2 , score)

17

18 def read_data (filename):

19 data = pd.read_csv(filename , sep='\t', header =0)

20 labels = data.columns.astype('float').astype('int')

21 data.columns = labels

22

23 return (data , labels)

24

25 if __name__ == '__main__ ':

26

27 filename = 'data.txt'

28

29 data , labels = read_data(filename)

30

31 Nfeature , Nsample = data.shape

32

33 couples = itertools.combinations(range(0, Nfeature), 2)

34 couples_eval = partial(couple_evaluation , data=data , labels=labels)

35

36 nth = multiprocessing.cpu_count ()

37

38 with multiprocessing.Pool(nth) as pool:

39 score = zip(*pool.map(couple_eval , couples))

In this section we provide an �equivalent� Python implementation with the use of com-
mon machine learning libraries and parallel settings (ref. 1.1). In the next sections we will
discuss about the computational performances of this naive implementation compared to
the C++ version discussed above.

1.3.2 Pair sorting

The sorting algorithm starts at the end of variable couple evaluation and it re-orders the
variable-pairs in ascending order to ease the next steps of signature identi�cation8. This

7 Obviously the iterations where the inner loop variable is lower than the outer one will be skipped by
an if condition.

8 Talking about performances, in some cases the simple accuracy is useless, especially when we are
working with unbalanced population classes. In this case we can use a statistical score which takes in
count the balancing between right sample classi�cations and classes (e.g Matthews Correlation coe�cient,
MCC). The developed code evaluates either the global accuracy of classi�cation either the MCC and,
with slight changes, it allows to perform the pair re-ordering according to the desired score. Since in the
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step is performed in the same code (and same parallel section) introduced in the previous
section, but it deserves an own topic for a better focus on the parallelization strategy
chosen. There are many parallel implementations of sorting algorithms and, to reach the
best performances, we have to chose the more appropriate one.

Serial version of sorting algorithms can be found in the major part of the programming
languages (Python and C++ included). Also the naive versions of this algorithm are quite
optimized and they perform the computation with an algorithmic complexity equal to
(O(N ˙log(N)))9. In this case we do not need to re-invent any sorting technique, but we
have to insert as well as possible this algorithm into our parallel section, using the variable
format chosen for couple performances storage. Since we work with SoA objects, we need
to re-order all the structure arrays in the same way. We can not use a simple sort function,
but we can compute the set of indexes that allows the reordering of the arrays, the so-
called argsort method. To rearrange the indexes according to a given array of values, we
use templates in C++.

Figure 1.3: Parallel merge-sort algorithm scheme (DAG). Starting from the original array,
the master thread splits the work (sub-arrays) along two slave threads (split step in the
graph). The split recursion is applied up to a required size of sub-arrays is reached.
Each slave-thread applies a sort function (sort step in the graph). Then, the full array
is recombined following back the thread recursion and applying an inplace-merge function
(merge step in the graph).

As parallelization strategy we can yet invoke the new keywords of the OpenMP library,
applying a divide-and-conquer scheme, using a tree of independent tasks10. Using the
maximum power of two of the available threads, we split the computation in equal size
sub-arrays and we perform independent argsorts. Then, going backward to the subdivisions
at each step, we merge the sub-arrays two-by-two up to the master thread (ref Fig. 1.3).

1.3.3 Network signature

After the rearrangement of feature pairs in ascending order, we can start to create the
variable network and looking for its connected components as putative signatures. Each
feature represents a node in the network and a given pair is a connection between them
(link). Since the full storage of the network would require a matrix (N ×N), we need to
chose a better strategy for the processing11.

next section we will discuss about the application of the DNetPRO algorithm to real data using only the
classi�cation accuracy as score, we will focus only on it in the next sections.

9 We are considering only un-stable sorting, in which the preserving order of equivalent elements in the
array is not guaranteed.

10 Tasks in OpenMP are code blocks that the compiler wraps up and makes available to be executed in
parallel.

11 We are working in the hypothesis of very large N .
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The ordered set of couples computed in the previous section represents a so-called COO
sparse matrix (Coordinate Format sparse matrix) and we can reasonably assume that the
desired signature will be composed by the top ranking of them. So, in the �rst step we cut
a reasonable percentage of available pairs, focusing only on them.

Moreover, we are interested in a small set of variables unknown at prior. Loading all
the node pairs into the same graph can slow down the computation. An iterative method
(with stop criteria) can perform better and only in worst cases the full set of pairs will be
loaded.

Since the described algorithm does not require particular performances e�ciency, the
main code used in our simulations was written in pure Python. A C++ implementation of
the same algorithm was developed with the help of the Boost Graph Library [84] (BGL),
but to not overweight the code installation, it was reserved just for a style exercise. In
this section we discuss about this second version and also about the strategies chosen to
implement an e�cient version of it. This version of the algorithm was also used, as stand
alone method, for other applications that are discussed in the Appendix of this work.

BGL is a very wide framework for graph analyses based on template structures. The
library e�ciency discourages users to re-implement the same algorithms and, for the current
purpose, it was resulted more than su�cient. Starting from the top scorer feature pairs,
we progressively add each couple of nodes to an empty graph. At each iteration step, the
number of connected components is evaluated up to a desired number of nodes (greater
or equal) is not reached12. Two degrees of freedom are left to the user: in order, pruning
and merging. The �rst one performs an iterative remotion of nodes with degree equal (or
lower) than 1, i.e pendant nodes, until the graph core is not �ltered. The merging clause
chooses between the biggest connected component, or the set of all the disjointed connect
components, as putative signature. The output of merging step determines the number of
nodes in the graph which have to be considered by the stop criteria.

A crucial role in the algorithm optimization is played by the chosen of the BGL graph
structure. Since the two degrees of freedom imply a continuous rearrangement of the graph
nodes, we have chosen to apply a �lter mask over the main graph structure that highlights
the only parts of interest. This can be done using the boost :: �ltered_graph object of
BGL. In 1.2 the C++ snippet is shown.

Listing 1.2: DNetPRO signature extraction
1 #include <boost/graph/adjacency_list.hpp >

2 #include <boost/graph/connected_components.hpp >

3 #include <boost/graph/filtered_graph.hpp >

4 #include <boost/function.hpp >

5 #include <boost/graph/iteration_macros.hpp >

6

7 typedef typename boost :: adjacency_list < boost :: vecS , boost :: vecS ,

boost :: undirectedS , boost :: property < boost :: vertex_color_t , int

>, boost :: property < boost :: edge_index_t , int > > Graph;

8 using V = Graph :: vertex_descriptor;

9 using Filtered = boost :: filtered_graph < Graph , boost :: keep_all , boost

:: function < bool(V) > >;

10

11

12 std :: vector < int > FeatureSelection (int ** couples , const int &

min_size , bool pruning=true , bool merging=true)

13 {

14 Graph G;

15 std :: set < V > removed_set;

12 This procedure is quite similar to put a threshold value on the couple performances or to highlight
inside the full network the components linked by weights greater than a given value.
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16 Filtered Signature (G, boost :: keep_all {}, [] (V v) {return removed_set

.end() == removed_set.find(v);});

17

18 int L = 0, leave , Ncomp , i = 0;

19

20 while ( true ){

21

22 boost :: add_edge (couples[i][0], couples[i][1], G);

23

24 while ( pruning ){

25

26 leave = 0;

27 BGL_FORALL_VERTICES (v, Signature , Filtered);

28 if ( boost :: in_degree (v, Signature) < 2 ){

29 removed_set.insert (v);

30 ++ leave;

31 }

32

33 if ( leave == 0 )

34 break;

35 }

36

37 if ( num_vertices (G) - removed_set.size() ){

38

39 components.resize (num_vertices (G));

40

41 Ncomp = boost :: connected_components (Signature , &components [0]);

42

43 if ( merging ){

44

45 BGL_FORALL_VERTICES (v, Signature , Filtered)

46 if ( boost :: in_degree(v, Signature) )

47 core.push_back ( static_cast < int >(v) );

48 }

49 else {

50

51 std :: map < int , int > size;

52 for ( auto && comp : components ) ++ size[comp];

53

54 auto max_key = std :: max_element (std :: begin(size), std :: end(

size),

55 [] (const decltype(size) ::

value_type && p1, const decltype(size) :: value_type && p2)

56 { return p1.second < p2.second;

})->first;

57

58 BGL_FORALL_VERTICES (v, Signature , Filtered)

59 if ( components[v] == max_key )

60 core.push_back( static_cast < int >(v) );

61 }

62

63 components.resize (0);

64 L = static_cast < int >(core.size());

65 }

66

67 removed_set.clear();

68

69 if ( L >= min_size ) break;

70

71 ++ i;

72

73 core.resize (0);

74 }
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75

76 return core;

77 }

In the above description, it should be clear that, given any set of ordered (in ascending
order) couples of variables, this algorithm allows to extract the core network, independently
by the procedure which generate them. So, it can be used as dimensionality reduction
algorithm of general purpose network structures. An example of this kind of application
is reported in Appendix B - Venice Road Network in which we summarize the results
published in [64, 27].

1.3.4 DNetPRO in Python

Up to now we have focused on the algorithm performances, leaving out the usability of the
DNetPRO algorithm for the (research) community. Despite the C++ is one of the most
e�cient and older programming language13, the number of Python-users is growing in the
last years. Python is becoming leader in scienti�c research publications and the major part
of Machine Learning analyses are performed using Python libraries (in particular scikit-learn
library). So, we have to reach a compromise between performances and usability of the
new codes and a reasonable solution is given by the Cython [8] language.

Cython �language�14 allows an easy interface between C++ codes and Python language.
With a relatively simple wrapping of the C++ functions, they can be used inside a pure
Python code, preserving as much as possible the computational performances of a pure
C++ version. In this way, we have written a simple Python object which performs the full
set of DNetPRO steps and, moreover, which is compatible with the functions provided by
other machine learning libraries.

With these purposes we have chosen to operate a �double wrap� of the C++ functions
to separate as much as possible the C++ components from Python15. The Python object
was written considering a full compatibility with the scikit-learn library to allow the usage
of the DNetPRO feature selection method as an alternative component of other Machine
Learning pipelines.

1.3.5 DNetPRO in Snakemake

The starting (silent) hypothesis done up to now is that we want to run the DNetPRO
algorithm on a single dataset (or better on a single Hold-Out subdivision of data). On this
con�guration it is legal to stress as much as possible the available computational resources
and parallelize each step of the algorithm.

If we want to use our algorithm into a larger pipeline, in which we compare the results
obtained over a Cross-Validation, we have to re-think about the parallelization done. In
this case, each fold of the cross validation can be interpreted as an independent task
and, following the main programming rule �parallelize the outer, vectorize the inner�, we
should spawn a thread for each fold and perform the couple evaluation in sequential mode.

13 Still in common use in scienti�c research groups.
14 It is not a real programming language since it is based on Python. However, it has its own syntax

and keywords which are di�erent either from Python and C++. It also needs a compiler to run and it is
certainly di�erent from Python.

15 Cython wraps are very powerful tools for C++ integration into Python code but, by experience, they
are di�cult to manage by pure-Python-users. A simple workaround is to perform a �rst wrap of the C++
functions inside a Cython object, adding a second wrap of it into a pure-Python class. This two-steps
wrap certainly gets worse the computational performances, but it allows a complete separation between
the compiled part of the code (Cython) and the interpreted (Python) one. Moreover, we can leave back
all the checks on input parameters of the C++ function since they can be performed at run time by the
Python wrap.

https://github.com/Nico-Curti/DNetPRO/blob/master/DNetPRO/DNetPRO.py
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Certainly, the optimal solution would be to separate our jobs across a wide range of inter-
connected computers, performing the same computation in parallel, but it would required
to implement our hybrid (C++ and Python) pipeline into a Message Passing Interface
(MPI) environment.

The easier solution to overcome all these problems can be obtained using a set of
SnakeMake [52] rules. SnakeMake is an intermediate language between Python and Make.
Its syntax is almost like the Make language, but with the help of the easier and powerful
Python functions. It is widely used in bioinformatics pipeline parallelization, since it can
be easily applied over single or multi-cluster environments (master-slave scheme) with a
simple change of command line.

all

merge_signature

merge_validation

DNetPRO

validation

DNetPRO

validation

DNetPRO

validation

DNetPRO

validation

DNetPRO

validation

DNetPRO

validation

DNetPRO

validation

DNetPRO

validation

DNetPRO

validation

DNetPRO

validation

generate_train
fold: 0

couples
train: 1

couples
train: 5

couples
train: 3

couples
train: 6

couples
train: 9

couples
train: 7

couples
train: 0

couples
train: 4

couples
train: 8

couples
train: 2

TCGA2DB
cancer: GBM
dtype: mRNA

Figure 1.4: Example of DNetPRO pipeline on a single cross validation. It is highlighted the
independence of each fold from each other. This scheme shows a possible distribution of
the jobs on a multi-threading architecture or for a distributed computing architecture. The
second case allows further parallelizations (hidden in the graph) applied to each internal
step (e.g. the evaluation of each pair of genes).

So, to improve the scalability of our algorithm we implemented the benchmark pipeline
scheme using Snakemake rules and a work-�ow example for a single cross-validation is shown
in Fig. 1.4. In this case, each step of Fig. 1.4 can be performed by a di�erent computer-
unit, preserving the multi-threading steps with a maximum scalability and possibility to
enlarge the problem size (number of variables).

1.3.6 Time performance

As described in the above sections, the DNetPRO is a combinatorial algorithm and thus it
requires a particular accuracy in the code implementation to optimize as much as possible
the computational performances. The theoretical optimization strategies, described up to
now, have to be proved by quantitative measures.

We tested the computational performances of our Cython (C++ wrap) implementation
against the pure Python (naive) implementation showed in 1.1. The time evaluation was
performed using the timing Python package in which we can easily simulate multiple runs of
a given algorithm16. In our simulations, we monitored the three main parameters related

16 We would stress that we can use the timing Python package only because we provided a Cython wrap
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to the algorithm e�ciency: the number of samples, the number of variables and (as we
provided a parallel multi-threading implementation) the number of threads used. For each
combination of parameters, we performed 30 runs of the both algorithms and we extracted
the minimum execution time. The tests were performed on a classical bioinformatics server
(128 GB RAM memory and 2 CPU E5-2620, with 8 cores each). The obtained results are
shown in Fig. 1.5. In each plot, we �xed two variables and we evaluated the remaining
one.

Figure 1.5: Execution time of DNetPRO algorithm. We compare the execution time be-
tween pure-Python (orange) and Cython (blue, C++ wrap) implementations. (a - left)
Execution time in function of the number of variables (the number of samples and the
number of threads are kept �xed). (b - right) Execution time in function of the number
of samples (the number of variables and the number of threads are kept �xed). (c - bot-
tom) Execution time in function of the number of threads (the number of variables and
the number of samples are kept �xed).

In all our simulations, the e�ciency of the (optimized) Cython version is easily visible
and the gap between the two implementations reached more than 104 seconds. On the
other hand, it is important to highlight the scalability of the codes against the various
parameters. While the code performances scale quite well with the number of features
(Fig. 1.5 (a)) in both the implementations, we have a di�erent trend varying the number
of samples (Fig. 1.5 (b)): the Cython trend starts to saturate almost immediately, while
the computational time of the Python implementation continues to grow. This behavior
highlights the results of the optimizations performed on the Cython version which allows the
application of the DNetPRO algorithm also to larger datasets without loosing performances.
An opposite behavior is found monitoring the number of threads (ref Fig. 1.5 (c)): the
Python version scales quite well with the number of threads17, while the Cython trend is
more unstable. This behavior is probably due to a non-optimal scheduling in the parallel
section: the work is not equally distributed along the available threads and it penalizes

of our DNetPRO algorithm implementation. We would also highlight that, albeit minimal, the Python
superstructure penalizes the computational performances and the best results can be obtained using the
pure C++ version of the code.

17 The optimal result should be a linear scalability with the number of threads but it is always di�cult
to reach this e�ciency. Thus, a reasonable good result is given by a progressive decrease, increasing the
number of threads.
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the code e�ciency, creating a bottleneck related to the slowest thread. The above results
are computed considering a number of features equal to 90 and, thus, the parallel section
distributes the 180 (N × N) iterations along the available threads: when the number
of iterations is proportional to the number of threads used (12, 20 and 30 in our case),
we have a maximization of the time performances. Despite of this, the computational
e�ciency of the Cython implementation is so much better than the Python one that its
usage is indisputable.

1.4 Benchmark of DNetPRO algorithm

Up to now we have been talked about the DNetPRO algorithm from a theoretical and
numerical points-of-view. Starting from this section, we discuss about the application of
this algorithm on real biological datasets (see Appendix B - Venice Road Network for
results obtained on non-biological data types).

Previous versions of the DNetPRO algorithm have been already applied on biological
data [5, 79, 12, 86], but in this work we want to introduce a wide range benchmark of it. In
the following sections we are going to describe the results obtained on the Synapse dataset
and published in [26].

1.4.1 Synapse dataset

As benchmark dataset was chosen the core sets extracted from The Cancer Genome At-
las (accession number syn300013, doi:10.7303/syn300013) (Synapse dataset in the follow-
ing), used in a previous study [89] which aimed at quantifying the role of di�erent omics
data types (e.g. mRNA and miRNA microarray data, protein levels measured with Re-
verse Phase Protein Array - RPPA) via di�erent state-of-the-art classi�cation methods.
This allowed us to compare our results to a large set of commonly used classi�cation
methods, by using their performance validation pipeline (accession number syn1710282,
doi:10.7303/syn1710282).

The Synapse dataset is composed by four tumors datasets: kidney renal clear cell
carcinoma (KIRC), glioblastoma multiforme (GBM), ovarian serous cystadenocarcinoma
(OV) and lung squamous cell carcinoma (LUSC). For each cancer type we applied the
DNetPRO algorithm on mRNA, miRNA and RPPA data and we compare the performances
results with the Yuan et al. ones.

The summary description of the datasets used is reported in the Tab. 1.1.
Each tumor dataset was pre-processed by adding a zero-mean Gaussian random noise

(σ = 10−4)) to remove the possible null values in the database, which could produce
numerical errors in the distances evaluation between genes. Then, we randomly split each
dataset in training and test sets with a strati�ed (i.e. balanced for class sample ratio)
10-fold procedure: with the strati�cation we are reasonably sure that each training-set is
a good representative of the whole sample set. The choice of a 10-fold splitting is aimed to
reproduce the analysis pipeline presented by Yuan et al. with an analogous cross-validation
procedure. Since we don't have exact details of their data splitting, the cross validation
was repeated 100 times, for a total of 1000 training procedures for each tumor (OV, LUSC,
KIRC, GB) and data type (mRNA, miRNA, RPPA). Each training procedure led to the
extraction of multiple signatures.

We chose threshold values in order to obtain a resulting number of variables (network
nodes) in the order of 102 − 103, and identi�ed all connected components of the network
as signatures. If more than one component existed, each one was considered as a di�erent
signature.

The �nal multidimensional signatures were tested by a Discriminant Analysis with a

https://www.synapse.org/#!Synapse:syn300013/wiki/27406
https://www.synapse.org/#!Synapse:syn1710282/wiki/27303
https://www.synapse.org/#!Synapse:syn1710282/wiki/27303
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Number
Cancer mRNA miRNA Protein of samples
GBM AgilentG4502A H-miRNA_8x15k RPPA

17814 533 a 210
KIRC HiseV2 GA+Hiseq RPPA

20530 1045 166 243
OV AgilentG4502A H-miRNA_8x15k RPPA

17814 798 165 379
LUSC HiseqV2 GA+Hiseq RPPA

20530 1045 174 121

Table 1.1: In the �rst row platforms are reported and the second shows the dimension
of dataset as number of probes. AgilentG4502A: Agilent 244K Custom Gene Expression
G4502A; HiseqV2: Illumina HiSeq 2000 RNA Sequencing V2; H-miRNA_8x15K: Agilent
8 × 15K Human miRNA-speci�c microarray platform; GA+Hiseq: Illumina Genome Ana-
lyzer/HiSeq 2000 miRNA sequencing platform; RPPA: MD Anderson reverse phase protein
array. The last column shows the number of sample.
a Missing data-type for that cancer type.

diag-quadratic distance, to avoid possible problems about covariance matrix inversion (as
for the Mahalanobis distance).
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Figure 1.6: Scheme of DNetPRO algorithm. On the �training set�, all possible couples
of variables are used for Discriminant Analysis, generating the fully connected network
weighted by classi�cation performance. Thresholding ranked couples, several signatures
can result (as connected components) and their performance is evaluated on the �whole
test set� (procedure A). A unique best signature can be identi�ed on a �validation set�
and tested in a �scoring set�, obtained by further splitting the �whole test set� (procedure
B).

We remark that DNetPRO can provide more than one signature as a �nal outcome,
given by all the connected components found in the variable network, or a unique top-
performing signature can be obtained by a further cross-validation step (procedure A and
procedure B in Fig. 1.6, respectively).

In the single cross validation con�guration (procedure A in Fig. 1.6), the best signature
was extracted as the one reaching the highest accuracy score during the training step. This
best signature was then tested over the available test set.
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When also the second cross validation was used (procedure B in Fig. 1.6) the best
signature wasted as the most performing over a subset of the whole test set (validation
set), and the �nal performance was evaluated on the remaining scoring set.

To compare our results with the work of Yuan et al., we used the AUC (Area Under
the Curve) score, that they provided in the paper as the result of their analyses. The
distribution of our results could be compared to the single score value given in the other
work.

1.4.2 mRNA dataset

We applied both training procedure (ref. Fig. 1.6) on the mRNA dataset. The results
are shown, as distribution of AUC (Area under the curve) score, in Fig. 1.7 (a) for the
best signatures obtained with procedure A (corresponding to the validation approach used
in [89]), while results with the full cross-validation procedure B are shown in Fig. 1.7 (b).

As expected, performances decrease with the introduction of the second cross validation
step, but the values remain quite stable showing the robustness of the extracted signatures,
and we remark that the validation procedure used in the reference paper by Yuan et al.
resembles our approach without the second validation step.

Figure 1.7: Results obtained by the DNetPRO algorithm pipeline on four mRNA tumor
datasets, as from the Synapse database [89]. (a) Distributions of AUC values for the
tumor datasets. Green boxplots: results using procedure A as described in Fig. 1.6; yellow
boxplots: results obtained using procedure B. (b) Comparison of DNetPRO results with
the methods used in the paper of Yuan et al.: max AUC values obtained over the 10-Fold
cross-validation procedure.

All results are comparable (LUSC) or better (KIRC, GBM) than the results reported
in [89], except for the OV dataset, also with the more conservative approach involving a
further cross-validation step. The size of the extracted signatures is quite constant, and
smaller than 500 genes in each pipeline execution.

To test the robustness of our method, since each cross-validation procedure may gen-
erate di�erent signatures, we measured the overlap of the genes belonging to each mRNA
signature over 100 simulations with di�erent training-test data splitting. We observed an
average overlap ranging from 40% to 60%, with a smaller group of genes found across all
the 100 cross-validation iterations.

In this application the DNetPRO algorithm has several advantages: easy scalability on
parallel architectures, simple signature interpretation allowing a valuable application in
a biomedical context and a signi�cant robustness in a highly noisy environment such as
genomics measurements.
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1.4.3 miRNA and RPPA dataset

The same analysis pipeline presented in the paper about gene expression data from the
Synapse dataset is applied in this Section also to the miRNA and RPPA datasets, with
the results presented in Fig. 1.8.

Figure 1.8: Results obtained by the DNetPRO algorithm pipeline on the four Synapse
miRNA and RPPA tumors datasets. (a, c) Distributions of AUC scores obtained over the
four datasets. Green box-plots: results using procedure A of DnetPRO; yellow box-plots:
results obtained using procedure B. (b, d) Comparison of DNetPRO with the methods
used in [89]. The reported values are the max AUC values obtained over the 10-Fold
cross-validation procedure.

The results obtained on the miRNA dataset (Fig. 1.8 (a, b)) are comparable to the
reference, while for the RPPA dataset only the LUSC tumor shows AUC values comparable
with the others. Moving from the procedure A to the procedure B, i.e. adding a second
cross-validation step, the RPPA performances drastically decrease for the KIRC and OV,
while their remain quite stable for the LUSC dataset. The same behavior is shown in
the miRNA datasets in which however both performances are still comparable or better
(KIRC, GBM, LUSC) than the reference ones.

The obtained results show the e�ciency of the DNetPRO algorithm also in applications
very far from the mRNA one. Despite the good performances we have to better clarify the
biological background of these data: in the mRNA dataset we hypothesized a monotonic
behavior of genes (up- or down-regulation of gene expression level) and this model is
very likely. An analogous model for the miRNA data has not yet been demonstrated. This
behavior is even more true when we consider RPPA data. RPPA data are often a�ected by a
wide series of experimental di�culties about data interpretation. In biological applications
we have to consider often the technique used to acquire data: di�erent experiments can
introduce di�erent noise sources which can a�ect our model performances and thus the
DNetPRO application and interpretation.

We conclude this section by remarking that the signatures obtained by the DNetPRO
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algorithm aim to identify a set of signi�cant statistical variables. The network structure
of the signature is designed to simplify a possible interpretation of the variables involved,
but no prior biological knowledge is taken into account in our algorithm. Therefore, a
biological interpretation of the DNetPRO signature could be proved only occasionally.

1.4.4 Couple ranking

Since the number of variable pairs is typically very large (e.g. 108 pairs with gene ex-
pression microarrays containing about 104 probes), many of them may achieve the same
performance, since the possible values are integer number typically in a limited range (cor-
responding to the number of available samples, 102 − 103 in many cases). Therefore, the
pair ranking is characterized by multiple �plateaus� (Fig. 1.9 (a)), and the selection of vari-
able pairs, based on a hard thresholding procedure, is highly in�uenced by this behavior.
Monitoring this trend we can notice that only a few number of pairs belong to the �rst
performance chunks and, while the performances decrease, multiple pairs (and features)
appear, as it can be seen in Fig. 1.9 (a).

This kind of trend highlights the di�culty on �nding informative features inside the
huge noise of other variables and it gives us a constrain in the developing of a realistic bio-
logical toy model (ref. previous sections). Moreover, it con�rms that a putative signature
could be made by only a few central genes, at least weakly connected with other noisy
nodes.

a b

Figure 1.9: Analysis of ranked pairs distributions according to the performance score
obtained in the training step. (a) The distribution of plateau lengths is approximately
exponential. (b) Average number of pairs with the same score value: this behavior is typical
in ranking order distribution and it can be �tted by the relation f(x) = A(M + 1− r)b/ra
as shown in [60], where r is the rank value, M its maximum value, A a normalization
constant and (a, b) two �tting exponents.

As in other cases of ranked values [60], we can �t these ranking distributions with a
combination of power-law functions, obtaining a good agreement with experimental points
(Fig. 1.9 (b)).

We also observed that star -networks frequently appear with one variable highly con-
nected to many others which are only connected with it. This happens when a variable has
a strong discriminating power, to which other possibly less relevant variables get linked for
noisy �uctuations.

As stated before, we suggest that these variables (pendant nodes in the star -network)
can be removed from the signature without signi�cantly a�ecting its performance. The
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procedure can be applied for one single step (in order to remove pending nodes from a
star con�guration) or it can be applied recursively, until the signature becomes constituted
only by the 2-core network (i.e. with all nodes having degree ≥ 2). Empirical analysis
performed on real data has shown that the removal of these variables does not a�ect sig-
ni�cantly the signature performance and in the meanwhile it allows a signi�cant reduction
of its dimensionality. Since there is no clear theoretical explanation of this behavior, we
suggest to introduce this step only optionally, since it is not easy to quantify the risk
of loosing relevant information from the removed variables. The underlying idea is that
the more connected are the nodes, the more the variables in the signature �work well�
together, a plausible hypothesis given by the linear sample separation surface provided by
the Discriminant classi�er. Moreover, the network structure of the signature suggests fur-
ther considerations about the relevance of a variable as a function of its role in the network
(e.g. node centrality such as degree or betweenness centrality).

1.4.5 Characterization of signature overlap

In the analysis of the Synapse dataset we used a complex pipeline of cross-validation (ref
Fig. 1.6) to obtain a su�cient statistics. The DNetPRO algorithm was instead designed
to work on a single dataset, since the signature extraction can involve di�erent variables
for di�erent data subdivisions. In our application, we divided the dataset into a training-
test subdivision and the signature were extracted along a 10-fold cross-validation over the
training set. This kind of setup could produce 10 totally di�erent signatures, in the worst
case. Moreover, we replicated our simulation for 100 repetitions and thus a set of 1000
totally independent signatures were extracted.

Starting from this large amount of variables, we evaluated the robustness of the DNet-
PRO algorithm in the variable identi�cation, studying the overlap between the obtained
signatures. From a statistical point-of-view, it is quite unlikely that the same set of vari-
ables were included into all the extracted signatures, especially on this application in which
variable roles are assumed by genes. On the other hand, the overlap of these signatures
could highlight a statistical signi�cance of some variables, and thus genes related to the
understudied tumors.

As case study, we analyzed only the KIRC mRNA dataset, in which the extracted
signatures ranged from 4 to 650 genes (µ = 382 genes). For each gene we counted its oc-
currences along the 1000 signatures. The same analysis was performed taking into account
the signatures generated using the K-best score variables (ref. 1.2 for further information)
and a random features extraction (null model). In Fig. 1.10 gene distributions obtained
by the three methods are shown.

Both DNetPRO and K-best feature extraction algorithms identi�ed a core set of genes
common to all the signatures. The random feature extraction method, instead, is not even
comparable with the others and it simply represents a null model.

TheK-best algorithm appears more stable than the DNetPRO algorithm and it is easier
to �nd the same genes along the extracted signatures. This behavior could be associated
to the problems highlighted also in the toy model simulations (ref. 1.2): the DNetPRO
algorithm is able to identify only one signature, but the informative features (genes) could
not co-operate in the same network-signature and thus they could be discarded. The
DNetPRO signatures were, in fact, very small compared to the number of variables, and thus
only small network components were extracted, which were very closed to star-networks.
Despite the discrepancy between the signatures we have a core of 18 genes which occurs
in at least the 95% of both method-signatures (8 of them are common in the 99%).

The common genes were mapped on public databases (TISIDB [77] and Oncotar-
get [69]), which link tumors to related genes. We found 14/18 genes as informative probes
for the KIRC tumor in the TISIDB and 7 of them were also found in the Oncotarget
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Figure 1.10: Signatures overlap obtained in the KIRC mRNA datasets. For each gene
we counted its occurrences along 1000 signatures obtained by three di�erent methods. In
blue we represent the distribution of the overlap of the 1000 signatures obtained by the
DNetPRO algorithm applied to the Synapse dataset. In red we represent the distribution of
the overlap of the 1000 K-best variables extracted from the Synapse pipeline: the number
of genes (K) is the same of the corresponding DNetPRO signature in each extraction. In
yellow we represent the distribution of 1000 random signatures: a random sampling could
be interpreted as null model.
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database18. Taking into account the core set of 8 genes, we found 3 of them on Oncotarget
database and 7 of them on the TISIDB. The only exception was given by the LOC388796
gene, which has not been found in any database.

1.5 Cytokinome dataset

Increasing evidence suggests that in�ammation is involved in Alzheimer's disease (AD)
pathogenesis. Elevated peripheral levels of di�erent cytokines and chemokines in subjects
a�ected by AD compared with healthy control (CTL) have emphasized the role of pe-
ripheral in�ammation in the disease. Thus, these proteins can represent speci�c factors
of disease development and progression. Considering the cross-talking between the cen-
tral nervous system and the periphery, the in�ammatory analytes may provide utility as
biomarkers to identify AD at earlier stages, in particular for the diagnosis of Mild Cogni-
tive Impairment (MCI), a condition at risk of development of dementia. AD is a major
neurocognitive disorder and the most common cause of dementia in the old age, accounting
for 60% to 80% of all causes. During the past decade, a conceptual shift occurred in the
�eld of AD considering the disease as a continuum. In this context, there is an urgent
need for biomarkers identi�cation able to accurately detect AD in an early stage, before
the appearance of neurologic signs. An early diagnosis can hopefully lead to a better and
more e�ective treatment, which could potentially limit neuronal damage and prevent the
development of overt AD. An emerging �eld in the study of neuroin�ammation is the sex-
related di�erences: in the last years, gender studies have been increasingly developed with
the aim to adopt gender di�erences as a key to interpretation many diseases, including
neurodegenerative diseases.

Experimental data showed that many mechanisms are involved in AD pathogenesis
including neuroin�ammation. The dysregulation of cytokines and chemokines is a cen-
tral feature in the development of neuroin�ammation, neurodegeneration, and demyelina-
tion both in the central and peripheral nervous systems. Among many chemokines and
cytokines, pro-in�ammatory IFNα2, TNFα, and IL-1α are described as heterogeneously
implicated in AD pathogenesis.

The interactive network of cytokines/chemokines, de�ned as �cytokinome�, is extremely
complex. Using the DNetPRO algorithm as statistical feature selection method, we might
discriminate the groups and propose a useful tool to follow the progression and evolution of
AD from its early stages, also in light of gender di�erences. With this study, we aimed �rst
at the identi�cation of a potential proteins pro�le able to discriminate AD, MCI and CTL
and, therefore identify a potential early and easy to get a diagnostic marker of subjects at
risk.

Further information about this work can be found in the original paper [10].

1.5.1 Dataset

In this case-control observational study, we evaluated 289 old-age subjects referred to our
Geriatric Memory Clinic. The dataset comprises 189 female and 100 male individuals with
a mean age of 78.6 (±7.5) years. The date were provided by the co-authors of this project
at the Institute of Gerontology and Geriatrics at the University of Perugia (Department of
Medicine). For each patient a set of 26 cytokine expression level were computed with the
additional information about subject sex, age and diagnosis label (AD, MCI or CTL). Of

18 The list of genes in the TISIDB cover �only� 988 genes. From our list we have only one gene which
was found in the Oncotarget database and not in the TISIDB. This gene misses in the TISIDB so we can
not evaluate its importance.
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the 289 enrolled subjects, the whole set of cytokines was available for 284 subjects (98%),
speci�cally 87/88 CTL (99%), 70/73 MCI (96%), 127/129 AD (98%).

To approximate normal distribution, plasma cytokines and chemokines were log-transformed
for data analyses. For the analysis of single cytokines with respect to the CTL, MCI and
AD group, we designed a linear model analysis, with the value of each cytokine as a lin-
ear combination of the subject group (with CTL samples as the baseline, and MCI, AD
as conditions), age and sex, as factors (the formula representation would be �cytokine ∼
group + sex + age�). The last two were included as possible confounding factors, even if
the analyses revealed that their role for each cytokine is marginal. Only IFNα2, IL-1α,
and MCP-1 di�ered among groups after correction for age and sex. A threshold p < 0.05
was considered for signi�cance at all levels (group, sex or age).

Then we applied the DNetPRO algorithm looking for a signature capable of discrimi-
nating between CTL and AD: to this purpose, we performed a Hold-Out cross-validation
procedure to identify the cytokine signature, considering 2/3 of samples to train the model
and then we tested the signature performance on the remaining 1/3 of the total samples.
In this analysis we did not separate male from female samples, to avoid the bias given
by the uneven number of samples in these two groups, and since previous analysis at a
single-cytokine level did not �nd signi�cant di�erences due to sex. Then, we classi�ed MCI
samples with the CTL-AD signature obtained in the previous step, that allowed labeling
MCI samples as CTL or non-CTL.

1.5.2 Results

The best signature identi�ed to discriminate between CTL and AD subjects is composed
of three cytokines, IFNα2, TNFα, and IL-1α. Its total accuracy on the CTL-AD test set
is 65.27% (with 61% CTL and 66% AD correctly classi�ed). The sensitivity/speci�city
values for classi�cation is reported in Tab. 1.2.

Accuracy Sensitivity Speci�city
AD vs. CTL AD CTL

Men 16/25 8/12 8/13
(64.00%) (66.67%) (61.54%)

Women 33/48 27/38 6/10
(68.75%) (71.05%) (60.00%)

Total 47/72 36/54 11/18
(65.24%) (66.66%) (61.11%)

Prediction Sensitivity Speci�city
MCI as non-CTL MCI CTL

15/26 15/26 24/36
(57.69%) (57.69%) (66.67%)
41/47 41/47 23/51

(87.23%) (87.23%) (45.09%)
62/73 62/73 36/87

(84.93%) (84.93%) (41.38%)

Table 1.2: The sensitivity/speci�city values for AD vs CTL classi�cation by the 3-protein
signature, for the total sample dataset and strati�ed by sex. The second table shows the
result of predictions of MCI samples with the same signature as non-CTL samples. In this
case the sensitivity and speci�city were computed in relation to the CTL in the training
set.

Applying this signature to classify MCI vs CTL samples, it correctly predicted 84.93%
of MCI as �non-CTL�. Two cytokines from the signature, IFNα2 and IL-1α, showed a
signi�cant di�erence between groups also at a single cytokine level in previous analyses.
We plotted them as a representative in all population and strati�ed the scatter plots by
sex (ref Fig. 1.11 A, B). The CTL group resulted better separated from MCI and AD in
women as compared with men. The trajectory of the subject groups moves from CLT
to AD, and interestingly the identi�ed signature is able to di�erentiate MCI from CLT
better than from AD. This is a promising result since it seems more useful to recognize
MCI from CLT than full-blown AD from CLT. Probably the poor sensibility in detecting
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Figure 1.11: (A) Scatter plot of IL-1α and IFN-α, and distribution plot for the single
cytokines along the axes, strati�ed by diagnostic group (AD, CTL, and MCI) inmales. In
this case, the HC group is less separated from MCI and AD. (B) Scatter plot of IL-1α and
IFN-α, and distribution plot for the single cytokines along the axes, strati�ed by diagnostic
group (AD, CTL, and MCI) in females. In this case, the HC group is well separated from
MCI and AD.

AD could be linked to the disease evolution that makes nebulous and vague the cytokine
pattern in the brain of these patients, as con�rmed from several studies that found both
up-regulation and down-regulation of many cytokines in AD cerebral samples. This fact
could be more accentuated in our population of old age subjects in which markers of aging
are often mixed with those of dementia.

In this study we show that: 1) an easy to get cytokines signature composed of three
molecules - IFNα2, TNFα, and IL-1α - is able to discriminate the studied groups; 2) the
combination of IFNα2 and IL-1α able to distinguish CTL from MCI and AD better in
women than in men. Sex (referred to biological di�erences) and gender (psychosocial and
cultural di�erences) a�ect human brain biology throughout individual lifespans, a�ecting
male and female cognitive functions di�erently. Epidemiological studies show that women
have a higher risk of AD as well as a higher dementia prevalence, particularly in the old
age, as compared with men.

In conclusion, the identi�ed cytokinome signature shows a good accuracy in di�eren-
tiating MCI from CTL, especially in female. Understanding sex di�erences will help to
de�ne individualized preventive and treatment interventions for AD.

1.6 Bovine Dataset

Paratuberculosis or Johne's disease (JD) in cattle is a chronic granulomatous gastroenteri-
tis caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP). JD
is not treatable; therefore the early identi�cation and isolation of infected animals is a key
point to reduce its incidence worldwide. In this work DNetPRO algorithm was applied to
RNAseq experimental data of 5 cattle positive to MAP infection compared to 5 negative
uninfected controls. The purpose was to �nd a small set of di�erentially expressed genes
able to discriminate between infected animals in a pre-clinical phase. Results of the DNet-
PRO algorithm identi�ed a small set of 10 transcripts that di�erentiate between potentially
infected, but clinically healthy, animals belonging to paratuberculosis positive herds and
negative unexposed animals. Furthermore, the same set of 10 transcripts di�erentiate neg-
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ative unexposed animals from positive animals based on the results of the ELISA test19 for
bovine paratuberculosis and fecal culture. Within the 10 transcripts that together had good
discriminative potential, 5 (TRPV4, RIC8B, IL5RA, ERF and CDC40) show signi�cant
di�erential expression between the three groups while the remaining 5 transcripts (RDM1,
EPHX1, STAU1, TLE1, ASB8) did not show a signi�cant di�erences in at least one of the
pairwise comparisons. In conclusion, the discriminant analysis described here identi�ed a
set of 10 genes that discriminate between the exposed and sero-converted animals. When
tested in a larger cohort, these �nding lead the possible use of RNA expression analysis as
new diagnostic test for paratuberculosis. Such a signature could allow early interventions
to reduce the sanitary and economic burden, and to reduce the risk of infection spreading.

In the next sections a description of the dataset and of main DNetPRO results will be
discussed. Further information can be found in the original paper [59].

1.6.1 Dataset

Paratuberculosis or Johne's disease (JD) in cattle is a chronic granulomatous gastroenteritis
caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP). JD
is present worldwide, is a welfare issue and causes signi�cant economic losses. Cattle
are usually infected as young calves but typically do not show clinical signs before 24
months of age, however not all infected animals progress to clinical disease. JD is not
treatable, therefore the early identi�cation and isolation of infected animals, before they
start shedding the bacteria, is a key point to reduce its incidence in cattle herds worldwide.
In addition, an association between MAP and Crohn's disease (CD) in humans has been
suggested and intensively explored. Given the economic losses and welfare concerns for
livestock, and possible human health risk, the research interest in JD has been driven
by the substantial di�culty in early diagnosis of infected animals and the exploration of
potentially new diagnostic techniques.

The dataset used in this work was previously discussed and generated by some of the
authors of the original paper. In detail, the dataset used comprised 15036 transcripts from
15 samples, classi�ed as �serologically negative non exposed cows/healthy� (5 samples,
labeled as NN), �serologically negative exposed cows/ infected� (5 samples, NP) and �sero-
logically positive cows/clinical� (5 samples, PP). Only transcripts with non-zero measures
for all samples were considered, reducing the dataset to 13529 transcripts.

All data generated or analyzed during this study is available upon request, furthermore
all transcript counts per sample are given as supplementary information �les of the original
paper.

1.6.2 Bovine Signature

In the context of high-throughput data analysis, a challenge is the search for an optimal
choice of variables (a �signature�) to classify groups of samples or regress trends with opti-
mal performance and minimum dimensionality. Usually high-throughput omics data (e.g.
transcriptomics, ge-nomics, methylomics) provide datasets with few tens to hundreds of
samples, and often 1000 times larger numbers of variables. The objective of dimensionality
reduction through the choice of an optimal signature is twofold: 1) the identi�cation of
relevant variables, that should separate the signal from the noise (i.e. variables not sig-
ni�cantly associated to, or descriptive of the studied process); 2) in a practical context,
it is important to establish future diagnostic criteria that can be implemented in cheap
and simple toolkits, such as PCR cards or dedicated microarray chips, that usually test
a small number of transcripts (ranging from tens to hundreds, at most). The quantity of

19 The enzyme-linked immunosorbent assay. It is a common diagnostic tool as well as a quality control
check in various bio-medical industries and in medicine.
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samples compared to the available features of this work, join with the �nal purposes of this
kind of analysis, set the well-known ill-posed problem conditions for which the DNetPRO
algorithm was thought.

Since the number of sample is drastically small no robust cross-validation procedure
can be applied. So we focused on the identi�cation of a putative gene-signature able to
discriminate between NN and NP samples, leaving the PP data as validation set. In this
case we hypothesize that PP samples will be classi�ed more closely with NP sample rather
than NN as exposed, possibly infected samples, should be more similar to positive samples,
than to negative controls.

a

Starting from the top-performing couples of transcripts, we obtained an initial signa-
ture of 123 di�erent transcripts (Fig 1.13 (a), all the nodes), capable to correctly classify
4 out of the 5 NN samples (80%) and all 5 NP samples (100% performance). The average

20 The �gure was generated using a custom network visualizer described in Appendix C - BlendNet.



32 CHAPTER 1. FEATURE SELECTION

b

Figure 1.13: (a) Plot of the 123-transcript network, with a detail of the 10-probe signature
(red nodes)20. (b) Transcript levels for the 10 genes belonging to the classi�cation signature
identi�ed by the combinatorial discriminant analysis (CDA). Some transcripts (EPHX1,
RIC8B, IL5RA, ERF, CDC40) show a clear trend between 5 animals serologically positive
to the ELISA test for MAP (PP), 5 exposed serologically negative (NP) and 5 serologically
negative unexposed control animals (NN).

performance was therefore 90% with Matthews correlation coe�cient MCC = 0.82. Pro-
cessing the 123-transcript network by removing all pendant nodes (i.e. removing all single
transcripts belonging to only one best-performing couple) we obtained a �nal signature
with 10 transcripts with a 100% performance classifying all NN and NP samples (Fig 1.13
(a), only red nodes). As it can be seen, many nodes are directly connected to the cen-
tral node (belonging to the 10-transcript signature), while only the 10 transcripts of the
signature are also connected between each other.

Principal Component Analysis of the 10-transcript signature showed that in many cases
there was a progressive increase or decrease in the transcript levels when passing from a
healthy (NN) sample to a positive (PP) sample, passing through the infected (NP) sample
class. Fig 1.13 (b) shows the expression levels of the transcripts belonging to the signature
for all samples.

To further validate the goodness of the signature, we generated 10000 di�erent sig-
natures with 10 randomly chosen transcripts, and then applied a Leave-One-Out cross
validation procedure to classify all 15 samples with these signatures. Comparing the per-
formance of the random signatures with the true 10-transcript signature, only 50 of these
signatures (corresponding to 0.5% of the random signature distribution) produced better
performance than our signature in terms of classi�cation performance, con�rming its high
signi�cance.

We even characterized the possible biological role of the signature genes, among the
signi�cantly di�erentially expressed genes, the cell division cycle 40 gene (CDC40) showed
the smallest fold change between classes. However in the identi�ed signature the CDC40
gene is the most central node associated with the health status of the animals related to
JD. CDC40 was also under expressed in the NP and PP groups, compared with the NN
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group and it has been shown to be involved in clathrin medated endcytosis from a biological
point-of-view. Clathrin is the best characterized coat protein involved in the endocytosis
process, speci�cally in receptor-mediated-internalization. Mycobacterium paratuberculosis
enters the host macrophages, its primary target cell, and manages to survive within their
phagosome. It is possible that the under-expression of CDC40 in infected and sick animals
compared to unexposed animals may be associate with down regulation of macrophage
genes post mycobacterial invasion, facilitating the survival of the pathogen with the host
target cell.

Interestingly within the set of 10 discriminating transcripts, in addition to CDC40,
others show links with immune response mechanisms, these include IL5RA, ERF and
TRPV4. These genes potentially have functions related to the biology of progression
of JD. Also for the other genes of the �nal 10-transcript signature a possible biological
interpretation related to JD was given (see the original paper for further descriptions).

In conclusion, the DNetPRO algorithm identi�ed a set of 10 genes, the expression levels
of which could discriminate between the exposed and sero-converted animals. These �nding
lead the possible use of RNA expression analysis as new diagnostic test for JD. In particular
the approach may be able to identify infected animals prior to sero-conversion, prior to a
positive ELISA test result. However, further tests for speci�city and validation in a larger
cohort are required.





Chapter 2

Deep Learning - Neural Network

algorithms

In the �rst chapter we have discussed about the di�culties on extracting information from
a huge amount of data, and we have proposed a novel feature selection algorithm to face
these problems. Those kind of applications go under the wide research �eld of Machine
Learning. Machine learning algorithms are closely related to a statistical interpretation of
the available data. With the increasing availability of computational power and data it
is not always possible to tune and build an accurate model able to describe the hetero-
geneity of our samples. Many everyday problems involve very complex tasks, and we are
interested on models able to solve many tasks at the same time. From a machine learn-
ing point-of-view this can be achieved building pipelines, i.e work-�ows made by multiple
steps of processing, which aim to simulate as much close as possible the human intelli-
gence. This leads us into the Deep Learning research �eld, in which very computational
expensive models have been built to face general purpose problems, often related to real
time applications.

The description of a deep learning model is quite often given by a Neural Network
architecture, i.e a more or less complex pipeline of functions which takes in input a sample
and it applies a series of transformations and �lters to obtain the required result. All
these pipelines are very computational expensive and they require appropriate optimization
strategies.

In this chapter we introduce some of the most common functions related to deep learn-
ing applications, giving a very fast mathematical explanation of them and carefully focusing
on their numerical issues and solutions. We start from an introduction about general Neu-
ral Network models up to some of modern deep learning models, involving object detection,
image segmentation and image super resolution. In particular, we describe two custom li-
braries (NumPyNet and Byron) developed by the author of this thesis, for educational and
analytical purposes, respectively. Both libraries are released with MIT license and the
codes are publicly available on my Github page (Byron and NumPyNet). These libraries
have already used in several applications and in the last sections we show some of the
obtained results1.

In the last section of this chapter we introduce a di�erent kind of Neural Network model,
the Replicated Focusing Belief Propagation (rFBP) model. This model has solid physical
and statistical bases and we discuss about its novel optimized implementation, available
on my Github (Replicated Focusing Belief Propagation) and released under MIT license.
This model di�ers from standard deep learning neural networks changing the updating rule
and we show its �rst application on real data.

1 Both NumPyNet and Byron libraries have been developed with the collaboration of master degree
students and several thesis have their applications as core arguments.

35

https://github.com/Nico-Curti/Byron
https://github.com/Nico-Curti/NumPyNet
https://github.com/Nico-Curti/rFBP
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2.1 Neural Network models

Neural Networks are mathematical models commonly used in data analysis. They are
becoming a standard tool in Machine Learning and Deep Learning research and many
complex problems can be easily solved using these models. From a theoretical point-of-
view we can de�ne a Neural Network as a series of non-linear multi-parametric functions.
The model parameters are tuned during a so-called training section in which we feed our
model with a set of data with human supervision, i.e we have prior knowledge about
the right and desired output of the model. After the training section, we can verify the
e�ciency of our training, using a new set of data, called test set, which is never seen by
the model. If we have prior knowledge about the output of our test set we can compute
the accuracy (or more generally the score) of our model (validation); otherwise we simply
have an extrapolation of our data (prediction).

A wide range of documentations and implementations have been written on this topic
and it is more and more hard to move around the di�erent sources. Leader on this topic
have became the multiple open-source Python libraries available on-line as Tensor�ow [1],
Pytorch [68] and Ca�e [50]. Their portability and e�ciency are closely related on the
simplicity of the Python language and on the simplicity in writing complex models in a
minimum number of code lines. Only a small part of the research community uses more
deeper implementation in C++ or other low-level programming languages. About them
should be mentioned the darknet project of Redmon J. et al. which has created a sort of
standard in object detection applications using a pure Ansi-C library2.

In this section we �rstly retrace the mathematical background of these models. To
each theoretical explanation we discuss the numerical problems associated, and we provide
an e�cient implementation. The numerical aspects will be traced following two libraries
developed by the author: NumPyNet library [20] and Byron library [21].

NumPyNet is born as educational framework for the study of Neural Network models.
It is written trying to balance code readability and computational performances and it is
enriched with a large documentation to better understand the functionality of each script.
The library is written in pure Python and the only external library used is Numpy [66] (a
base package for the scienti�c research).

Despite all common libraries are correlated by a wide documentation is often di�cult
for novel users to move around the many hyper-links and papers cited in them. NumPyNet
tries to overcome this problem with a minimal mathematical documentation associated to
each script and a wide range of comments inside the code.

An other �problem� to take in count is related to performances. Libraries like Tensor�ow
are certainly e�cient from a computational point-of-view and the numerous wrappers (like
Keras library) guarantee an extremely simple user interface. On the other hand, the deeper
functionalities of the code and the implementation strategies used are unavoidably hidden
behind tons of code lines. In this way the user can perform complex computational tasks
using the library as black-box package. NumPyNet wants to overcome this problem using
simple Python codes, with extremely readability also for novel users, to better understand
the symmetry between mathematical formulas and code.

The simplicity of this library allows us to give a �rst numerical analysis of the model
functions and, moreover, to show the results of each function on an image to better un-

2 darknet is framework for neural network model developing. It is written in pure Ansi-C by a Washington
University research group. The library was developed only for Unix OS but in its many branches (literally
forks) a complete porting for each operative system was provided. The code is particularly optimized
for GPUs using CUDA support, i.e only for NVidia GPUs. It is particularly famous for object detection
applications since it �rstly theorize a novel approach to multi-scale object detections called YOLO (You
Only Look Once). The libraries developed in this work are all inspired on it. The large part of our work
has been related to a deep optimization of this library either in terms of functionality and issues either in
terms of computational performances.
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derstand the e�ects of their applications on real data3. Each NumPyNet function was
tested against the equivalent Tensor�ow implementation, using an automatic testing rou-
tine through PyTest [65]. The full code is open-source on the Github page of the project.
Its installation is guaranteed by a continuous integration framework of the code through
Travis CI for Unix environments and Appveyor CI for Windows OS. The library supports
Python versions ≥ 2.64.

As term of comparison we discuss the more sophisticated implementation given by the
Byron library. Byron (Build YouR Own Neural network) library is written in pure C++
with the support of the modern standard C++17. We deeply use the C++17 functionality
to reach the better performances and �exibility of our code. What makes Byron an e�-
cient alternative to the competition is the complete multi-threading environment in which
it works. Despite the most common Neural Network libraries are optimized for GPU en-
vironments, there are only few implementations which exploit the fully functionality of a
multiple CPUs architecture. This gap discourage multiple research groups on the usage of
such computational intensive models in their applications. Byron works in a fully paral-
lel section in which each single computational function is performed using the full set of
available cores. To further reduce the time of thread spawning, and so optimize as much
as possible the code performances, the library works using a single parallel section which
is opened at the beginning of the computation and closed at the end5.

The Byron library is released under MIT license and publicly available on the Github
page of the project. The project includes a list of common examples like object detection,
super resolution, segmentation, ecc. (see the next sections for further details about this
models). The library is also completely wrapped using Cython to enlarge the range of
users also to the Python ones. The complete guide about its installation is provided; the
installation can be done using CMake, Make or Docker and the Python version is available
with a simple setup.py. The testing of each function is performed using Pytest framework
against the NumPyNet implementation (faster and lighter to import than Tensor�ow).

We use Byron library as term of comparison with other common libraries used for
Neural Network models and for each function we have tested its computational e�ciency
and scalability on multiple cores. Two machines will be used in the computational testing:
a common laptop (8 GB RAM memory and 1 CPU i7-6500U, with 2 cores) and a classical
bioinformatics server (128 GB RAM memory and 2 CPU E5-2620, with 8 cores each).

Starting from the next section we will introduce the fundamental Neural Network
model, the so-called Simple Perceptron. From the simplest model we will add complexity
and layers to overcome the relative problems (mathematical and numerical), introducing
the main functionalities of the modern Neural Network architectures.

2.1.1 Simple Perceptron

The fundamental unit of each Neural Network model is the simple Perceptron (or single
neuron). The Perceptron is the simpler mathematical model of a biological neuron and it is
based on the Rosenblatt [76] model which identi�es a neuron as a computational unit with
input, synaptic weights and an activation threshold (or function). Following the biological
model of Hodgkin and Huxley [46] (H-H model), we have an action potential, i.e the output
of the neuron, given by

3 Aware of the author, no other example implementations have been done. This makes the NumPyNet
library a useful tool for neural network study and a virtual laboratory for new neural network functions.

4 The library provides also an Image object to load and process images. The object is based on OpenCV
API [11]. OpenCV does not yet support Python versions 2.7 and 3.3 so the whole NumPyNet package does
not work on these two versions of Python. You can just exclude the Image script from the package or use
a novel wrap based on di�erent library (e.g Pillow).

5 For real-time applications also the time required for the thread spawn must be taken into account.



38 CHAPTER 2. DEEP LEARNING

y = σ

(
N∑
i=1

wixi + w0

)
(2.1)

where σ is the activation function, wi are the synaptic weights and xi are the inputs. The
w0 coe�cient identi�es the bias of the linear combination and it is left as parameter to be
tuned by the optimization algorithm (learning phase).

The connection weights wi are tuned during the training section by the chosen updating
rule. The standard updating rule is simply given by

wi(τ + 1) = wi(τ) + γ(t− y)x (2.2)

where γ is the gain or step size (γ ∈ [0, 1]) and t is the desired output. In other words we
have to compute �rstly the di�erence between the current output and the desired one, i.e
the error or cost function or loss function6, and weight this error by the gain factor and the
corresponding input. Repeating the error computation and the updating rule we can bring
the weights to convergence. From a geometrical point-of-view this process is equivalent to
an hyper-plane placement de�ned by w0+ < w, x > which splits an n−dimensional space
into two half-spaces, i.e two desired classes.

The mathematical formulation already highlights the numerous limits of this model.
The output function is a simple linear combination of the input with a vector of weights,
and so only linearly separable problems can be learned7 by the Perceptron8. Moreover, we
can manage only two classes since an hyper-plane divides the space in only two half-spaces.

A key role is assumed by the activation function. The classical activation function used
in the discrete Perceptron model is the unit step function (or Heaviside step function). If
we chose a continuous and so di�erentiable activation we can treat the problem using a
continuous cost function. In this case we de�ne it as

E(w) =
1

2

N∑
i=1

(ti − yi)2 (2.3)

where in this case both ti and yi are continuous variables, i.e �oating point numbers. Now,
the updating rule can be given by the gradient of the cost function applied to the original
weights as

w = w + ∆w (2.4)

where ∆w is given by

∆wi = −γ ∂E
∂wi

= −γ
N∑
i=1

(ti − yi) (−xi) (2.5)

which looks identical to the previous updating rule but in this case we are managing real
numbers and not simple class labels. In this way we compute the weight updates according
to the full set of training samples and not for each sample (this approach leads to the so-
called batch-update, i.e small subsets of data).

6 There are multiple loss functions in the Neural Network world. We will further discuss their use and
their e�ective on a learning model in the next sections.

7 A simple mathematical proof of it can be found here.
8 A classical example of learning problem is given by the XOR logical function. Since the XOR output

is not linearly separable the Perceptron could not converge.

http://www.cs.columbia.edu/~mcollins/courses/6998-2012/notes/perc.converge.pdf
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To implement this kind of model into a pure Python application we do not need extra
libraries, but we can just use the native keywords of the language. A possible implemen-
tation of this model was developed and release in an on-line gist. In this simple snippet
we examine the functionality of the Simple Perceptron model across di�erent logical func-
tions and we proved its fast convergence on linear separable datasets9. An equivalent C++
implementation of the model is also released and it can be found in this other gist.

The model is too naive for computational e�ciency discussions. Thus, we just ob-
serve how a learning algorithm could be easily implemented using programming language
keywords either in Python and C++.

2.1.2 Fully Connected Neural Network

To overcome problems arising from the Simple Perceptron model we can join together
multiple Perceptron units into a more complex network of interactions, in which the output
of a neuron feeds-forward the input of the next one. This is the Multi-layers Perceptron
(MLP) con�guration and, if the graph is fully connected, i.e each neuron is connected to
all the others, we talk about fully connected neural networks (or dense neural network,
DNN).

Given the Perceptron formulas, the extrapolation to the MLP architecture is straight-
forward and given by

y = σ (X ·W +W0) (2.6)

where we simply pass from the vector formulation to the matrix one. The updating rule
consequentially becomes

δW = δW +XT ·
(
∂f(y)

∂y
· δl
)

δW0 =
m∑
i=0

∂f(y)

∂yi
· δli (2.7)

where, also in this case, we simply pass to the matrix formalism and we convert the discrete
format to a continuous one, i.e with continuous values we convert the error to a partial
derivative. In the above equation δl represents the error passed from the �next� layer in
the network structure10.

From the reiteration of such structures we can join together multiple fully connected
layers and obtain multiple neuron layers jointly together with di�erent levels of complexity
and units (an input layer followed by multiple hidden layers).

Fully connected Neural Networks overcome the above told Perceptron problems using
a combination of linear functions (single Perceptron units) and they gain more useful
properties:

� If the activation functions of all the hidden units in the Neural Network is linear,
then the network architecture is equivalent to a network without hidden units.

� If the number of hidden units is smaller than either the number of input units either
the number of output ones, then the network can generate transformations from
inputs to outputs as much general as possible, since the information are lost in the
dimensionality reduction performed by the hidden units.

9 We proof the non-linear separable convergence introducing an extra stop criteria during the weights
tuning given by a maximum number of steps.

10 In the Back-Propagation Algorithm the error is passed by each layer to the previous one, starting
from the output error computed according to the chosen loss function.

https://gist.github.com/Nico-Curti/358b7a2ffed1abbb57ee87a5338ca073
https://gist.github.com/Nico-Curti/856c3baf523bc5d01b1e7dfe2515c0e2


40 CHAPTER 2. DEEP LEARNING

� We can �nd multiple weight con�gurations, i.e W matrices, which give us the same
mapping function from inputs to outputs.

Given all the theoretical information about this kind of model, we can now pass to
practical (numerical) considerations about their implementations.

Matrix Product

Despite the mathematical formulation of the model we have to take into account also
an e�cient implementation. From a numerical point-of-view we can notice that all the
computation required by this kind of Networks (or layer if we consider it into an hybrid
Neural Network architecture as we will see in the next sections) can be summarized into
the matrix product evaluation. The matrix product is a well-known numerical problem
and its algorithmic complexity can be hardly reduced under O(N3)11. A crucial role on
this kind of algorithms is played by the cache accesses. The CPU cache is the hardware
cache used by the CPU to store small portion of data in order to reduce the average cost (in
time or energy consumption) to data access from the main memory. Cache optimization
is one of the most di�cult parts to perform writing an algorithm, but it leads to highest
performance gains.

In the matrix product we have to multiply each row of a matrix A by each column of
a second matrix B. We work in the assumption that each matrix is stored into an array
of 1D or 2D without nested structures. In this case we can access to a contiguous memory
portion of the �rst matrix since each row is given by a series of sequential index locations
(the row elements are given by x[0], x[1], . . . , x[N ]). This con�guration allows the cache
optimization in the access to the �rst matrix, since we can store in a small portion of cache
memory a series of row elements and use them in a vectorization environment.

From the second matrix we have to extract the elements from each column. This
means that the elements are given by a discontinuous portion of memories (the column
elements are given by x[0], x[M ], x[2M ], . . . , x[N(M − 1)]). In this case we can not insert
a full column into the cache memory and in consequence we have a cache-miss at each
iteration12.

The simple matrix product as given by row-column multiplication is already a�ected by
an intrinsic numerical problem which can drastically a�ect its performances. The simplest
workaround of this issue is to perform a transposition of the second matrix to obtain a
row-row matrix product13. In this way both matrices can be accessed in a sequential order.
The total complexity of the computation increase to O(N2) (for the matrix transposition,
in the better case) +O(N3) (for matrix product) but the numerical performances increase
due to the cache-miss minimization14.

Following back to our Neural Network implementation we can obtain the output values
using the above technique. Moreover, we can assume from the beginning that the trans-
position of weights matrix and so remove the O(N2) calculus from the matrix product.

11 The complexity is often given in the assumption of only square matrices (N × N) involved in the
computation. For no-square matrix the algorithmic complexity is given by the product of the three possible
di�erent matrix dimensions involved ((N×K) = (N×M)(M×K) brings to O(NMK) complexity). More
sophisticated implementations of the algorithm are able to reduce the algorithmic complexity (e.g Strassen
algorithm) but neither implementation is able to overcome the O(N2.7) complexity up-to-now.

12 The cache-miss happens when a required data can not be found into the cache and so its search has
to be done in the main memory (RAM).

13 In the discussion we have silently ignored the problems of matrix storage and the cache optimization
for the resulting matrix accesses, but in the above discussion we want to focus only on the main problems
raising from the matrix product.

14 The cache memory is a very tight portion of memory and it is impossible to completely remove
cache-misses.
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This simple (but carefully studied) optimization allows to obtain better results in the feed-
forward evaluation, but it paybacks a revision of the standard mathematical formulation
and a carefully implementation of the code.

Figure 2.1: GEMM algorithms time performances. GEMM NN: matrix multiplication con-
sidering both the matrices in �normal� format, i.e A ·B. GEMM NT: matrix multiplication
considering the �rst matrix in �normal� format and the second one transposed, i.e A ·BT .
We perform 100 tests of 1K runs each of both the GEMM algorithms using the einsum
function of Numpy library. The values are rescaled according to the mean time of the
GEMM NN algorithm.

In the proposed numerical implementations of this layer we implement both the matrix
product cases to compare their performance results. We tested the two implementations
inside Python using the einsum function provided by the Numpy package. In particular,
we evaluated the time-performances over 1000 applications of the two GEMM (Generalized
Matrix Multiplication) functions (GEMM NN, i.e considering both matrices with �normal�
shapes; GEMM NT, i.e considering the �rst matrix as �normal� and the second transposed)
considering matrices of shapes (100 × 100). We performed 500 run and we saved the
minimum time obtained over 10 realizations. In Fig. 2.1 we show the results rescaled by
the mean time (over the 500 realizations) of the GEMM NN algorithm (reference). As can
be seen in Fig. 2.1, the speedup of the GEMM NT matrix is evident and it is always faster
than GEMM NN algorithm, with a maximum of 3.2× in the speedup.

In the Byron library we provide a parallelized version of this algorithm with also an avx
support. In this way we could manually manage the register memory of the two matrices
and obtain a faster GEMM algorithm (especially for dimensions proportional to powers of
2, which are very common in neural network models).

2.1.3 Activation Functions

Activation functions (or transfer functions) are linear or non linear equations which process
the output of a Neural Network neuron and bound it into a limit range of values (commonly
∈ [0, 1] or ∈ [−1, 1]). The output of a simple neuron15 can be computed as the dot product
of the input and neuron weights (see previous section); in this case the output values range
from −inf to +inf and they are equivalent to a simple linear function. Linear functions
are very simple to trait, but they are limited in their complexity and thus in their learning
power. Neural Networks without activation functions are just simple linear regression
model (see the fully connected Neural Network properties in the previous section). Neural
Networks are considered as Universal Function Approximators so the introduction of non-
linearity allows them to model a wide range of functions and to learn more complex relations
in pattern data. From a biological point-of-view the activation functions model the on/o�
state of a neuron in the output decision process.

15 We assume for simplicity a fully connected Neural Network neuron.
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Name Equation Derivative

Linear f(x) = x f ′(x) = 1
Logistic f(x) = 1

1+exp(−x) f ′(x) = (1− f(x)) ∗ f(x)

Loggy f(x) = 2
1+exp(−x) − 1 f ′(x) = 2 ∗ (1− f(x)+1

2 ) ∗ f(x)+1
2

Relu f(x) = max(0, x) f ′(x) =

{
1 if f(x) > 0
0 if f(x) ≤ 0

Elu f(x) = max(exp(x)− 1, x) f ′(x) =

{
1 if f(x) ≥ 0

f(x) + 1 if f(x) < 0

Relie f(x) = max(x ∗ 1e− 2, x) f ′(x) =

{
1 if f(x) > 0

1e− 2 if f(x) ≤ 0

Ramp f(x) =

{
x2 + 0.1 ∗ x2 if x > 0

0 if x ≤ 0
f ′(x) =

{
f(x) + 1 if f(x) > 0

f(x) if f(x) ≤ 0
Tanh f(x) = tanh(x) f ′(x) = 1− f(x)2

Plse f(x) =


(x+ 4) ∗ 1e− 2 if x < −4

(x− 4) ∗ 1e− 2 + 1 if x > 4
x ∗ 0.125 + 5 if −4 ≤ x ≤ 4

f ′(x) =

{
1e− 2 if f(x) < 0 or f(x) > 1
0.125 if 0 ≤ f(x) ≤ 1

Leaky f(x) =

{
x ∗ C if x ≤ 0

x if x > 0
f ′(x) =

{
1 if f(x) > 0
C if f(x) ≤ 0

HardTan f(x) =


−1 if x < −1
+1 if x > 1
x if −1 ≤ x ≤ 1

f ′(x) =

{
0 if f(x) < −1 or f(x) > 1
1 if −1 ≤ f(x) ≤ 1

LhTan f(x) =


x ∗ 1e− 3 if x < 0

(x− 1) ∗ 1e− 3 + 1 if x > 1
x if 0 ≤ x ≤ 1

f ′(x) =

{
1e− 3 if f(x) < 0 or f(x) > 1

1 if 0 ≤ f(x) ≤ 1

Selu f(x) =

{
1.0507 ∗ 1.6732 ∗ (ex − 1) if x < 0

x ∗ 1.0507 if x ≥ 0
f ′(x) =

{
f(x) ∗ 1e− 3 if f(x)0

(f(x)− 1) ∗ 1e− 3 + 1 if f(x) > 1

SoftPlus f(x) = log(1 + ex) f ′(x) = exp(f(x)
) 1 + ef(x)

SoftSign f(x) = x
|x|+1 f ′(x) = 1

(|f(x)|+1)2

Elliot f(x) =
1
2
∗S∗x

1+|x+S| + 1
2 f ′(x) =

1
2
∗S

(1+|f(x)+S|)2

SymmElliot f(x) = S∗x
1+|x∗S| f ′(x) = S

(1+|f(x)∗S|)2

Table 2.1: List of common activation functions with their corresponding mathematical
equation and derivative. The derivative is expressed as function of f(x) to optimize their
numerical evaluation.

Many activation functions have been proposed during the years and each one has its
characteristics, but not an appropriated application �eld. The best activation function to
use in a given situation (to a particular problem) is still an open question. Each one has its
pros and cons in some situations, so each Neural Network library implements a wide range
of them and it leaves to the user to perform his own tests. In Tab. 2.1 we show the list of
activation functions implemented in our NumPyNet and Byron libraries, with mathematical
formulation and corresponding derivative (ref. activations.py for the code implementation).
An important feature of any activation function, in fact, is that it should be di�erentiable
since the main procedure of model optimization implies the back-propagation of the error
gradients.

As can be seen in Tab. 2.1 it is easier to compute the activation function derivative as
function of it. This is a (well known) important type of optimization in computation term,
since it reduces the number of operations and it allows to apply the backward gradient
directly.

To better understand the e�ects of activation functions, we can apply these functions on
a test image. This can be easily done using the example scripts inserted into our NumPyNet
library. In Fig. 2.2 the e�ects of the previously described functions are reported on a test
image. For each function we show the output of the activation function and its gradient.
For visualization purposes the image values have been rescaled ∈ [−1, 1] before the input
to the functions.

https://github.com/Nico-Curti/NumPyNet/blob/master/NumPyNet/activations.py
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Figure 2.2: Activation functions applied on a testing image. (top) Elu function and
corresponding gradient. (center) Logistic function and corresponding gradient. (bottom)
Relu function and corresponding gradient.

From the results showed in Fig. 2.2 we can better appreciate the di�erences between
the several mathematical formulas: a simple Logistic function does not produce evident
e�ects on the test image, while a Relu activation tends to overshadow the image pixels.
This feature of the Relu activation function is very useful in Neural Network model and
it also determines important theoretical consequences, which led it to be one of the most
prominent solution for many Neural Network models.

The ReLU (Recti�ed Linear Unit) activation function is, in fact, the most used into
the modern Neural Network models. Its di�usion is imputed to its numerical e�ciency
and to the bene�ts it brings [37]:

� Information disentangling: the main purpose of a Neural Network model is to tune a
discriminant function able to associate a set of input to a prior-known output classes.
A dense information representation is considered entangled because small di�erences
in input highly modify the data representation inside the network. On the other hand,
a sparse representation tends to guarantee a conservation of the learning features.

� Information representation: di�erent inputs can lead di�erent quantities of useful
information. The possibility to have null values in output (ref Tab. 2.1) allows a
better representation of the dimensions inside the network.

� Sparsity: sparsity representation of data is exponentially e�cient in comparison to
dense one, where the exponential power is given by the number of no-null features [37].

� Vanish gradient reduction: if the activation output is positive we have a no-bound
gradient value.

In the next sections we will discuss about di�erent kind of Neural Network models and
in all of them we have chosen to use Relu activation function in the major part of the
layers.



44 CHAPTER 2. DEEP LEARNING

2.1.4 Convolution function

A big revolution into the Neural Network research �eld has been given by the introduction
of convolution functions. Convolutional Neural Network (CNN) are particularly designed
for image analyses. Convolution is the mathematical integration of two functions in which
the second one is translated by a given value:

(f ∗ g)(t) =

∫ +∞

−∞
f(τ)g(t− τ)dτ (2.8)

In signal processing, this operation is also called crossing correlation ad it is equivalent
to the autocorrelation function computed at a given point. In image processing the �rst
function is represented by the image I and the second one is a kernel k (or �lter), which
shifts along the image. In this case we have a 2D discrete version of the formula given by:

C = k ∗ I

C[i, j] =
N∑

u=−N

M∑
v=−M

k[u, v] · I[i− u, j − v]
(2.9)

where C[i, j] is the pixel value of the resulting image and N , M are the kernel dimensions.
The use of CNN in modern image analyses can be traced back to multiple causes. First

of all the image dimensions are increasingly bigger and thus the number of variables/fea-
tures, i.e pixels, is often too big to manage with standard DNN16. Moreover, if we consider
detection problems, i.e the problem of detecting a set of features (or an object) into a larger
pattern, we want a system ables to recognize the object regardless of where it appears into
the picture. In other words, we want that our model would be independent by simple
translations.

Both the above problems can be overcame by CNN models using a small kernel, i.e
weight mask, which maps the full input. A CNN is able to successfully capture the spatial
and temporal dependencies in a signal through the application of relevant �lters.

The main parameters of this function are given by the input dimensions and the �l-
ter/kernel dimensions, i.e the number of weights which we have to tune during the training.
This is the basic idea behind the convolution function, but in many cases (especially in
modern deep learning Neural Networks) we can sophisticate it, playing with the possible
movements of the �lter mask. In particular, aside the kernel mask-size, we can force the
�lter to jump along the image, i.e a discontinuous movement of the �lter excluding some
pixels. This parameter, called stride, de�nes the number of pixels to jump and it is often
used to further reduce the output dimensions.

Given this theoretical background we can implement the convolution function in many
di�erent ways, using di�erent mathematical approaches: a study about the computational
e�ciency will tell us which is the best approach to choose. The �rst (naive) approach is to
use a brute force technique and implement the direct evaluation of the convolution function
as described in the above equation. This version is certainly the easier to implement, but
its computational performances are so worst that, for sake of brevity, we excluded it from
our tests17.

16 If we consider a simple image 224 × 224 with 3 color channels we obtain a set of 150 528 features.
A classical DNN layer with this input size should have 1024 nodes for a total of more than 150 million
weights to tune.

17 Compared to the other implementations the direct (brute force) convolution algorithm exceeds the
computational time of order of magnitudes. For this reason it is not taken into account during our tests.
A possible implementation in C++ is however provided into the Byron library.

https://github.com/Nico-Curti/Byron/blob/master/utility/winograd_test.cpp
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Figure 2.3: im2col algorithm scheme using a 2 × 2 �lter on a image with 3 channels. At
the end of the im2col algorithm the GEMM is performed between weights and input image.

Taking into account what we have learned from the DNN models, we can re-formulate
our problem using an e�cient manipulation of the involved matrices to optimize the GEMM
algorithm. A direct convolution on an image of size (W × H × C), using a kernel mask
of dimensions (k × k), requires O(WHCk2) operations and thus several matrix products.
We can re-arrange the involved data to optimize this computation and evaluate a single
matrix product: this re-arrangement is called im2col (or im2row) algorithm. The algorithm
is just a simple transformation which �ats the original input into a bigger matrix, where
each column carries all the elements which have to be multiplied for the �lter mask into
a single step18. In this way we can immediately apply our GEMM algorithm on the full
image. In Fig. 2.3 the main scheme of this algorithm is reported. This algorithm optimizes
the computational e�ciency of the GEMM product but we have to store a lot of memory
for the input re-organization in payback.

Using the mathematical theory behind the problem a third idea can arise using the well
known Convolution Theorem: the Fourier transformation of our functions (that in this case
are given by the input image and the weights kernel) can be reinterpreted into a simple
matrix product in the frequency space. This is certainly the most �physical� approach to
solve this problem and probably the easier one since the Fourier Transformation is a well-
known optimized algorithm, with several e�cient implementations provided in literature.
One of the most e�cient one is provided by the FFTW (Fast Fourier Transform in the
West) library [35]: FFTW3 is an open source Ansi-C subroutine library for computing the
Discrete Fourier Transform (DFT) in multiple dimensions, without constraints in input
sizes or data types. The library is not only computationally accurate, but it also provides
an e�cient parallel version for multi-threading applications.

A further implementation kind is given by linear algebra considerations (very closed to

18 We work under the assumption that the weights matrix is already a �atten array and thus each row
of the weights matrix represents the full mask.
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numerical considerations) and it is called Coppersmith-Winograd algorithm. This algorithm
was designed to optimize the matrix product and, in particular, to reduce the computa-
tional cost of its operations. Suppose we have an input image given by just 4 elements and
a �lter mask with size equal to 3:

img =
[
d0 d1 d2 d3

]
weights =

[
g0 g1 g2

]
(2.10)

we can now use the im2col algorithm previously described and reshape our input image
and weights into

img =

[
d0 d1 d2
d1 d2 d3

]
, weights =

 g0
g1
g2

 (2.11)

given this data, we can simply compute the output as the matrix product of this two
matrices. The Winograd algorithm rewrites this computation as follow:

output =

[
d0 d1 d2
d1 d2 d3

] g0
g1
g2

 =

[
m1 +m2 +m3
m2−m3−m4

]
(2.12)

where

m1 = (d0− d2)g0 m2 = (d1 + d2)
g0 + g1 + g2

2

m4 = (d1− d3)g2 m3 = (d2− d1)
g0− g1 + g2

2

(2.13)

where we can easily notice that the two fractions in m2 and m3 involve only weight
quantities and thus they could be computed only one time for each �lter (at each step).
Moreover, we have to manage 4 ADD and 4 MUL operations to calculate the mi quantities
and 4 other ADD to compute the result. In doing normal matrix products we have to do
6 MUL operations instead of 4: the reduction of computational expensive MUL operations
by a factor 1.5x is very signi�cant19. In this simple example we use a so-called F (4, 3), i.e
image of size 4 and kernel of size 3 which gives us 2 convolutions. More general formulations
are F (m × m, r × r) and if we use an image of size 4 × 4 and a kernel of size 3 × 3 we
can compare the 16 MULs of the Winograd algorithm against the 36 MULs which are
required by the normal matrix product (2.25x). The Winograd e�ciency has been widely
proved for CNNs, especially when the kernel size is small. In our Byron library we provide
its implementation for kernel sizes equal to 3, since the numerical generalization is not
straightforward20.

We tested the computational-time of each algorithm on di�erent random images. The
tests were performed on a classical bioinformatics server (128 GB RAM memory and 2
CPU E5-2620, with 8 cores each) and we considered only kernel sizes equal to 3 (Winograd
constrain) varying input dimensions and number of �lters. In Fig. 2.4 we show the results
of our simulations using the im2col values as reference21.

In all our simulations we found a visible speedup using the Winograd algorithm against
the other two algorithms: for small dimensions we obtained more than 5x against the
im2col and 25x against the �tw implementation. The worst algorithm is certainly the �tw

19 A multiplication takes 7 clock-cycles in a normal CPU while an add takes only 3 clock-cycles.
20 We would also highlight that this formulation is valid only if we consider unitary strides.
21 The im2col algorithm can be found in the major part of Neural Network library and it is also the only

convolution function implemented in the darknet library, which is a reference for our work.
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Figure 2.4: Time performances of di�erent convolution algorithms: im2col (orange, ref-
erence), FFTW3 (green, fast Fourier transformation using the FFTW3 library) and Wino-
grad (blue). The values are normalized according to the im2col results since it is the
most common convolution algorithm. The tests were performed on di�erent input sizes
(width/height), keeping �xed the number of channels and the number of �lters. The tests
were performed using a C++ implementation of the three methods.

one which, despite the e�cient FFTW3 parallel-library, is always more than 5 times slower
than the reference. However, it is interesting notice how the �tw implementation is able
to reach the best performances when the dimensions are proportional to powers of 2, as
expected from the mathematical theory behind the Discrete Fourier Transformation.

We can conclude that the Winograd algorithm is certainly the best choice when we have
to perform a 2D convolution. The payback of this method is given by the rigid constraints
related to the mask sizes and strides: when it is possible it remains the best solution,
but in all the other cases the im2col implementation is a relatively good alternative. The
e�ciency of Byron library follows the e�ciency of the Winograd algorithm, since the major
part of layers in modern deep learning Neural Network models are Convolutional layers
with sizes equal to 3 and unitary strides.

2.1.5 Pooling function

Output Neural Network feature maps often su�er of sensitivity about features location in
the input. One possible approach to overcome this problem is to down-sample the feature
maps, making the resulting feature map more robust to changes in the position. Pooling
functions perform this kind of down-sampling and they reduce the spatial dimension (but
not depth) of the input. Their use represents an important computational performance
improver (less feature, less operations) and a useful dimensionality reduction method. The
reduction of features quantity can also prevent over-�tting problems and it improves the
classi�cation performances.

Pooling layers are intrinsically related to Convolutional layers. The analogy lives in
the �lter mapping procedure which produces the output in both methods. While in the
Convolutional layer we map a �lter over the input signal and we apply a multiplication of
the layer weights and the signal values, in the pooling layer we simply change the �lter
function keeping the same �lter mapping procedure (see section 2.1.4 for more information).
The method parameters are the same of the Convolutional one: the input dimensions, the
kernel size and (optional) the stride value.

The most common pooling layers are the Average Pool and the Maximum Pool. The
Average Pool layer performs a down-sampling on the batch of images. It slides a 2D kernel
of arbitrary size over the image and the output is the mean value of the pixels underlying
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the kernel. In Fig. 2.5 are shown some results obtained by an average pooling, with di�erent
kernel sizes. Also in this case the test was obtained using our NumPyNet library.

Figure 2.5: Average Pool functions applied on a testing image. (left) The original image.
(center) Average Pool output obtained with a kernel mask (3× 3). (right) Average Pool
output obtained with a kernel mask (30× 30).

If in the Convolutional layers a key role was played by the matrix product, in the
Pooling layers we have to carefully manage the mapping operations to obtain optimal
results. In particular, we will discuss about the optimized implementation provided into
NumPyNet.

In the previous sections we introduced the im2col algorithm which is an e�cient method
to reorganize the input data. The same algorithm can also be applied for Pooling layers,
evaluating the Pooling function (avg, max, etc.) on each row of the rearranged matrix.
The implementation of the im2col algorithm in Python requires the evaluation of multiple
indexes using complex formulas. Since the NumPyNet was founded on the Numpy package,
we can provide an alternative implementation using the view functionality of the library.
A view of a given array is simply another way of viewing its data: technically it means
that the data of both objects (original array and the viewed one) are shared and thus no
copies are created. In particular, we can use the deeper functions of the Numpy package
to create a reorganization of our data according to the desired output22. In the following
code we show our implementation of the Average Pooling layer:

Listing 2.1: NumPyNet version of AvgPool function
1 import numpy as np

2

3 class Avgpool_layer(object):

4

5 def __init__(self , size=(3, 3), stride =(2, 2)):

6

7 self.size = size

8 self.stride = stride

9 self.batch , self.w, self.h, self.c = (0, 0, 0, 0)

10 self.output , self.delta = (None , None)

11

12 def _asStride(self , input , size , stride):

13

14 batch_stride , s0 , s1 = input.strides [:3]

15 batch , w, h = input.shape [:3]

16 kx , ky = size

17 st1 , st2 = stride

18

19 # Shape of the final view

22 The same technique was also used for the implementation of the Convolutional layer in the NumPyNet
library.
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20 view_shape = (batch , 1 + (w - kx)//st1 , 1 + (h - ky)//st2) + input.

shape [3:] + (kx, ky)

21

22 # strides of the final view

23 strides = (batch_stride , st1 * s0 , st2 * s1) + input.strides [3:] + (s0,

s1)

24

25 subs = np.lib.stride_tricks.as_strided(input , view_shape , strides=

strides)

26 # returns a view with shape = (batch , out_w , out_h , out_c , kx, ky)

27 return subs

28

29 def forward(self , input):

30

31 self.batch , self.w, self.h, self.c = input.shape

32 kx , ky = self.size

33 sx , sy = self.stride

34

35 input = input[:, : (self.w - kx) // sx*sx + kx , : (self.h - ky) // sy*

sy + ky, ...]

36 # 'view' is the strided input image , shape = (batch , out_w , out_h ,

out_c , kx, ky)

37 view = self._asStride(input , self.size , self.stride)

38

39 # Mean of every sub matrix , computed without considering the pad(np.nan

)

40 self.output = np.nanmean(view , axis=(4, 5))

A key role in this snippet is played by the _asStride function: it returns a view of
the original array in which all the masks are organized into a single list. Using this
data rearrangement we can easily compute the desired pooling function (average in this
example) according to the appropriate axis. We would stress that no copies are produced
during this computation and thus we can obtain a faster execution than other possible
implementations (e.g im2col).

2.1.6 BatchNorm function

A common practice before the training of a Neural Network model is to apply some pre-
processing to the input patterns. A classical example is the normalization of training set,
i.e it resembles a normal distribution with zero mean and unitary variance. The initial
preprocessing is useful to prevent the early saturation of non-linear activation functions
(see section 2.1.3). Moreover, in this way we can ensure that all inputs are in the same
range of values.

In a deep Neural Network architecture we can �nd the same problem also into the
intermediate layers, because the distribution of the activations constantly changes during
training. This behavior produces a slowdown in the training convergence because each
layer has to adapt itself to a new distribution of data in every training step (or epoch).
This problem is also called internal covariate shift.

A second problem arises from the heterogeneity of available input data. If we tune the
model parameters according to a given set of data, which inevitably is limited, we can meet
problems during the generalization phase, i.e the validation of our model using new data,
to new samples if they belong to an equivalent, but deformed, distribution: this kind of
problem passes under the name of over-�tting. A classical example is given by the image
detection task: if we train a Neural Network model using gray-scale images, we can �nd
generalization issues using colored images. This problem can be solve using regularization
techniques.

BatchNorm function (Batch Normalization) allows to overcome these problems with a
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continuous rescaling of the Neural Network intermediate values during the training23 [49].
In this way we can ensure more stability to the extracted features [54] during the training
and a faster convergence.

In particular, the method processes the input of a given layer in order to �ght the inter-
nal covariate shift problem removing the batch mean, normalizing by the batch variance:

µB =
1

m

m∑
i=1

xi σB
2 =

1

m− 1

m∑
i=1

(xi − µB)2 (2.14)

where m represents the batch-size and xi is the value of the pixel x in the i-th image of
the batch (∈ [0,m]). Thus, the input data becomes:

x̂i =
xi − µB√
σB2 + ε

(2.15)

where we add an extra ε in the denominator for numerical stability24. After this common
rescaling, we apply a shift-scaling to the previous results:

yi = γx̂i + β (2.16)

where the γ and β coe�cients are left as variables to be tuned during the training (they
are learned during training). The updating rule of the function parameters (γ and β) is
given by the derivative of the previous functions:

δβ =
m∑
i=1

δi
l δγ =

m∑
i=0

δi
l · µB (2.17)

where δl is the error passed from the next layer of the network structure. To complete the
error propagation, we have to compute the derivative of the BatchNorm function output:

δi
l−1 =

m · δx̂i −
∑m

j=1 δx̂i − x̂i ·
∑m

j=1 δx̂i · x̂i
m ·

√
σB2 + ε

(2.18)

Since the BatchNorm function is became a sort of standard into deep learning models,
an e�cient implementation of this algorithm is essential to achieve the best computa-
tional performances. We have to take into account that batch-normalization procedure is
commonly performed after a fully-connected layer or a convolutional one: the best per-
formances are obtained merging the two functionality as much as possible, as suggested
in [3].

The Byron library is inspired by the darknet library provided by Redmon J. et al. and by
its many branches. Despite in each implementation we can �nd the BatchNorm function,
aware of the author, in any version we can not �nd a right implementation of this function
as standalone method. We have already highlighted that this normalization function can
be e�ciently joined to other function to increase the computational performances, but
in these case we have to di�erentially manage the dimensions of the involved arrays. A
standalone implementation of the BatchNorm function required a rearrangement of its
functions and it has provided into our Byron and NumPyNet libraries. This was one of the
various improvements provided by Byron against other darknet-like libraries.

23 The input data to feed the Neural Network model are commonly packed into a series of batches, i.e
small subsets of data. The BatchNorm function takes its name from this nomenclature and it processes
each batch independently.

24 Floating point numbers into a computer have �nite precision and the variance can under�ow bringing
to in�nite values in the BatchNorm equation.
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Other common regularization techniques are given by the regularization of neuron
outputs with penalty loss functions. Classical examples are given by L1 (Laplacian) and
L2 (Gaussian) penalties. Both these functions are implemented either in NumPyNet and
Byron, but for sake of brevity we will not discuss about them.

2.1.7 Dropout function

Many times along this work we have talked about the over-�tting problem. Over-�tting
problems arise when the complexity of our model becomes too high regard the amount
of available data, i.e when the number of parameters of our model is comparable to the
number of available data. A classical example is given by the polynomial �tting problem.
Given an initial set of N data points we can always �nd a polynomial curve of degree equal
to N − 1, which can perfectly �ts our data. In this case the model �exibility is minimum
and new additional data points di�culty lie on the same curve. In other words, we have
tuned each model parameter according to the given dataset, but we have completely lost
the possibility of generalization.

In Neural Network models we have to manage a large quantity of parameters and it is
quite easy to stumble on this problem. Possible workaround could be given by the regu-
larization techniques described in the previous section (ref. 2.1.6 for further information)
or by a Dropout function. This second function simply drops out some neuron units into
a Neural Network during the training phase. Ignore some neurons means that they will
not be considered during a (single) forward/backward step. So, given a set of neurons, we
have a probability p to update (keep) the neuron and 1− p to ignore (remove) it. In this
way, we can reduce the co-dependency of nearest neurons inside the network and reduce
the possibility of over-�tting.

The above description lead us to a straightforward implementation of the algorithm
into the NumPyNet library (ref. 2.2).

Listing 2.2: NumPyNet version of Dropout function
1 import numpy as np

2

3 class Dropout_layer(object):

4

5 def __init__(self , prob):

6

7 self.probability = prob

8 self.scale = 1. / (1. - prob) if prob != 1 else 1.

9

10 self.out_shape = None

11 self.output , self.delta = (None , None)

12

13 def forward(self , input):

14

15 self.out_shape = input.shape

16

17 self.rnd = np.random.uniform(low=0., high=1., size=self.out_shape) <

self.probability

18 self.output = self.rnd * input * self.scale

19 self.delta = np.zeros(shape=input.shape)

20

21 def backward(self , delta=None):

22

23 if delta is not None:

24 self.delta = self.rnd * self.delta * self.scale

25 delta [:] = self.delta.copy()

The above code numerically reproduces the theoretical formulation given. After the
initialization of the private object variables, the forward function generates a set of random
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positions and it applies them (if they are less than the given probability) to the output:
these positions will be turned o� and the others will be multiply by a scale probability factor
to increase their importance. The backward function simply inverts the transformation on
the back-propagated gradient delta.

Despite this straightforward implementation, we have to carefully manage some crucial
points into the C++ equivalent. The Byron library works into a single parallel region,
so, after the (sequential) initialization of the layer object, the forward/backward phases
are evaluated by all the available threads in parallel. This lead us to a standard problem
in multi-threading programming: the generation of independent random numbers among
threads. Inside a parallel region all the declared variables are (by construction) shared
among all the available threads. Thus, if we simply create a random number generator
we have to face the thread-concurrency. As consequence, the random number generated
will not be independent but (most probably25) repeated by each thread. The simpler
workaround, implemented into the Byron library, is given by assigning a random number
generator to each thread (with its own seed initialized by the thread ID). In this way we
can ensure a totally independence of the random numbers generated during the forward
phase (ref. on-line).

Figure 2.6: Dropout function applied on a testing image. The 10% of image pixels are
turned o� by the forward function. The output of the back-propagation is computed con-
sidering a uniform (white pixels) image: in this way we can notice that only the previously
activated pixels allow the gradient passing. In this way the dropout function allows to
update only a part of the model parameters (turned on pixels).

As visualization example, we can use our simple test image and apply the dropout
transformation (see Fig.2.6). Our input image shows many pixels turned o� according to
the given probability, as expected. On the other hand, the backward output turns on only
the same pixel: for visualization purposes we manually set the gradient to a uniform value.

An usage example of this function is provided into the NumPyNet examples: in those
simple examples we compare the learning performances of standard neural network models
with and without the Dropout function on classical datasets.

2.1.8 Shortcut connections

The harder becomes the problem to solve and the deeper26 will be the Neural Network
model created to solve it. The payback of these deep Neural Network structures is a re-
duction in accuracy after reaching a maximum, the so-called degradation problem. This
accuracy reduction does not arise from an over-�tting problem but it is due to numerical

25 The deterministic generation of random number is hard to reproduce into a parallel environment
despite the seed initialization. The �probability� of repeating the same sequence is related to the a�nity
of each thread to the given process.

26 The deep of a Neural Network model is related to the number of layers which made it.

https://github.com/Nico-Curti/Byron/blob/master/src/dropout_layer.cpp
https://github.com/Nico-Curti/NumPyNet/tree/master/examples
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instabilities (vanishing gradient - as the gradient is back-propagated to earlier layers, re-
peated multiplications may make the gradient very small) and troubles related to the data
dimensionality (called curse of dimensionality). Despite Neural Networks could be de�ned
as universal function approximators, adding numerous layers and thus parameters, the
result in accuracy does not grow proportionally. With simple empirical examples we can
easily see how the accuracy starts to saturate (and eventually degrade) with an increasing
number of layers. Those problems pose a limit to the number of layers suitable on a Neural
Network model and it seems that the shallower networks learn better than their deeper
counterparts. Keeping these results in mind we can think about a strategy to skip these
�extra� layers.

Figure 2.7: Scheme of shortcut connections into a deep learning model. Each colored line
connects the previous layer block to the following one. The output combination can be
customized but the most used one is a simple linear combination of them. A particular
attention must be paid with the dimensions management.

We can obtain a simple solution to this issue making extra connections between layers
called shortcuts or residuals. A shortcut is a link between two distant layers without
involving the set of layers between them, a so-called �identity shortcut connection�. A
graphical example is show in Fig. 2.7. The authors of [43] argue that stacking layers should
not degrade the network performance, because we could simply stack identity mappings
(layer that does not do anything) upon the current network, and the resulting architecture
would perform the same. In the original paper, the shortcut connections perform an
operation like:

H(x) = F (x1) + x2 (2.19)

where F (x) is the output of the previous block and x is the output of the current block.
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The function F generalizes the combination of these two values27.
The introduction of these extra connections leads to the ResNet (Residual Neural Net-

work) models era, in which a key role is played by the object detection models. A wide
range of modern deep learning architectures uses this kind of connections and in this way
they can reach a large number of layers: famous examples about them are the VGG mod-
els and the ResNets. We have done a large use of these connections also in the models
described in the next sections, either for object detection purposes (ref. 2.3), Super Reso-
lution (ref. 2.2) and mostly in our image segmentation (ref. 2.4) application. This kind of
functions are becoming so popular into modern deep learning models that more and more
often we describe a model according to its residual blocks, i.e the layer ensemble between
two shortcut connections.

From a computational point-of-view the implementation of this kind of �layers� is
straightforward in Python (and thus in our NumPyNet): we can easily implement a network
structure as a list of objects in which a shortcut connection simply combines the output of
two of its elements. We met more problems when we translated this idea into C++. The
C++ language is more rigid with the data types involved in each operation and we have
to carefully manage the �signature� (list of input arguments) of each function. In this way
we can not simply implement a list of di�erent object types as a network structure.

A possible solution can be reached using object inheritance: we can create a single
Base_layer object and specialize it according to our needs. This is certainly the most
C++-like solution but it requires many checks (if statements) at execution time. An other
(more modern) solution is provided by the new (standard) data types provided by the
C++17: in particular we refer to the variant objects. A variant is a template union data type
which allows to combine and reinterpret di�erent data types into a single object. The most
important consequence in the usage of this kind of data type is that we can easily jump to
one type to an other using constexpr statements, which (by de�nition) are solved at compile
time. Besides the particulars involved into this kind of implementation, it is important
to notice that the di�erence between the two solution is the same between compile-time
and run-time, i.e one-for-all against at-every-run. The Byron library widely uses templates
and with the support of the C++17 standard, a large part of costly operations are execute
one-for-all at compile time28.

Using variant objects and templates we can easily implement a shortcut connection also
in C++ as can be seen on the on-line version of the code.

2.1.9 Pixel Shu�ing

Pixel Shu�e layer is one of the most recent layer type introduced in modern deep learning
Neural Network. Its application is closely related to the single-image super-resolution
(SISR) research, i.e the ensemble techniques which aim to restore a high-resolution image
from a single low-resolution one (see section 2.2 for further details).

The �rst SISR Neural Networks started with a preprocessing of low-resolution images
in input with a bi-cubic up-sampling. Then the image, with the same dimensions of the
desired output, fed the model which aimed to increase the resolution and �xed its details.
In this way the amount of parameters, and moreover the computation required by the
training section, increased (by a factor equal to the square of the desired up-sampling
scale), despite the required image processing was smaller. To overcome this problem a

27 In our implementations we choose to generalize this formula as

H(x) = αx1 + βx2 (2.20)

28 We provide also an e�cient retro-compatibility for �old-standard users� with a custom implementation
of variant objects.

https://github.com/Nico-Curti/Byron/blob/master/src/shortcut_layer.cpp
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Pixel Shu�e transformation, also known as sub-pixel convolution, was introduced [82]: in
this work the authors proved the equivalence between a regular transpose convolution, i.e
the previous standard transformation to enlarge the input dimensions, and the sub-pixel
convolution transformation without losing any information. The Pixel Shu�e transfor-
mation reorganizes the low-resolution image channels to obtain a bigger image with few
channels. An example of this transformation is shown in Fig. 2.8.

Figure 2.8: Pixel Shu�e transformation. On the left the input image with scale2 (:= 9)
channels. On the right the result of Pixel Shu�e transformation. Since the number of
channels is perfect square the output is a single channel image with the rearrangement of
the original ones.

Pixel Shu�e rearranges the elements of the input tensor expressed as H × W × C2

to form a scale · H × scale ·W × C tensor. This can be very useful after a convolution
process, in which the number of �lters chosen drastically increases the number of channels,
to �invert� the transformation like a sort of deconvolution function.

The main gain in using this transformation is the increment of computational e�ciency
of the Neural Network model. The introduction of Pixel Shu�e transformation in the
Neural Network tail, i.e after a sequence of small processing steps which increase the
number of features, reorganizes the set of features into a single bigger image, i.e the desired
output in a SISR application. The features processing steps, which generally are faced
with convolutional layers, can be performed with smaller images in input and thus can
be obtained faster, since the up-scaling task will be performed by a single Pixel Shu�e
transformation.

Despite this transformation has became a standard in super-resolution applications
and thus it can be found into the most common deep learning libraries (e.g Pytorch and
Tensor�ow) a C++ implementation is hard to �nd. Moreover, each library implements
the transformation following its own data organization29. For this reason we proposed
in our libraries a dynamic version of the algorithm ables to perform both versions of the
algorithm.

The algorithmic implementation of the pixel-shu�e transformation is essentially a re-
indexing of the input values. While in a C++ implementation of the algorithm we could
obtain the desired result inside a sequence of nested for loops playing with the loop indexes,
for an e�cient Python version we need to use a sequence of transposition and reshaping
to rearrange the input values. The following snippet shows the NumPyNet version of this

29 The main di�erence between Pytorch and Tensor�ow is related to the storage organization of the
image. Tensor�ow has a �standard� input assessment as H ×W × C. Pytorch has a so-called channel-�rst
implementation and so the input tensor is organized as C ×H ×W .
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algorithm.

Listing 2.3: NumPyNet version of Pixel-Shu�e function
1 import numpy as np

2

3 class Shuffler_layer(object):

4

5 def __init__(self , scale):

6

7 self.scale = scale

8 self.scale_step = scale * scale

9

10 self.batch , self.w, self.h, self.c = (0, 0, 0, 0)

11

12 self.output , self.delta = (None , None)

13

14 def _phase_shift(self , input , scale):

15 b, w, h, c = input.shape

16 X = input.transpose(1, 2, 3, 0).reshape(w, h, scale , scale , b)

17 X = np.concatenate(X, axis =1)

18 X = np.concatenate(X, axis =1)

19 X = X.transpose (2, 0, 1)

20 return np.reshape(X, (b, w * scale , h * scale , 1))

21

22 def _reverse(self , delta , scale):

23 # This function apply numpy.split as a reverse function to numpy.

concatenate

24 # along the same axis also

25

26 delta = delta.transpose(1, 2, 0)

27

28 delta = np.asarray(np.split(delta , self.h, axis =1))

29 delta = np.asarray(np.split(delta , self.w, axis =1))

30 delta = delta.reshape(self.w, self.h, scale * scale , self.batch)

31

32 # It returns an output of the correct shape (batch , in_w , in_h , scale

**2)

33 # for the concatenate in the backward function

34 return delta.transpose (3, 0, 1, 2)

35

36 def forward(self , input):

37

38 self.batch , self.w, self.h, self.c = input.shape

39

40 channel_output = self.c // self.scale_step # out_c

41

42 # The function phase shift receives only in_c // out_c channels at a

time

43 # the concatenate stitches together every output of the function.

44

45 self.output = np.concatenate ([self._phase_shift(input[:, :, :, range(i,

self.c, channel_output)], self.scale)

46 for i in range(channel_output)], axis =3)

47

48 self.delta = np.zeros(shape=self.out_shape , dtype=float)

49

50 def backward(self , delta):

51

52 channel_out = self.c // self.scale_step # out_c

53

54 # I apply the reverse function only for a single channel

55 X = np.concatenate ([self._reverse(self.delta[:, :, :, i], self.scale)

56 for i in range(channel_out)], axis =3)
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57

58

59 # The 'reverse ' concatenate actually put the correct channels together

but in a

60 # weird order , so this part sorts the 'layers ' correctly

61 idx = sum([list(range(i, self.c, channel_out)) for i in range(

channel_out)], [])

62 idx = np.argsort(idx)

63

64 delta [:] = X[:, :, :, idx]

The two functions _phase_shift and _reverse30 produce the rearrangement of the in-
dexes according to the pixel-shu�e transformation and its inversion31. In the forward
function we apply the _phase_shift to the sequence of channels (in the right order) and
then we concatenate the results into a single tensor (output). The backward function,
instead, needs a reordering of channel sequences after the concatenation.

As told above, in the C++ implementation provided into the Byron library we can
compute the desired re-indexing using a series of nested for loops. An equivalent solution
can be obtained also by the contraction of the loops into a single one using divisions to
obtain the right indexes. This solution was taken into account in the �rst version of the
library but the amount of required divisions weights on the computational performances.
The division operations are the most computationally expensive ones in terms of CPU
clock-cycles. The old versions of OpenMP multi-threading library forced the users to spend
time in the evaluation of �loop-contraction� to obtain the better performances by a single
parallel for loop. The new features of OpenMP library provide the very powerful collapse
keyword which performs an automatic loop-contraction. The keyword can be applied only
with a series of independent and perfectly nested32 for loops which is exactly our case.
Moreover, we have not to take in care any thread concurrency trouble since the iterations,
as the output indexes, are totally independent. We widely used the collapse keyword in the
Byron library to simplify the code and the function evaluation, but the Pixel-Shu�e case
is one of the most e�cient one, since we could collapse six nested loops33 (ref. on-line.

2.1.10 Cost function

A machine learning algorithm is used to minimize or maximize a cost function. In other
words, when we implement a machine learning algorithm we want to know how good is
our result according to prior knowledge about the desired results. So, we have to establish
a function ables to represent the error of our model. This kind of functions are commonly
called error functions or loss functions or just simply cost function. In the previous sec-
tions, we have shown many algorithms used into a Neural Network model and we have
talked about how to update the functional parameters according to the evaluated error.
This error is provided by the cost function.

The cost function represents the �nal output of our Neural Network model, so it is
reasonable to talk about it at the end of this chapter. There are many kinds of loss
functions and there is not a particular one able to works with all kinds of data. We have
to pay attention to chose the right one in our problems. In particular, we have to take into
account the possible presence of outliers, the structure of our model, the computational
e�ciency of our algorithm and, most of all, the number of classes that we want to predict.
Broadly, we can classify the loss functions into two major categories: the classi�cation

30 These function are �private� function of the object class.
31 During the back-propagation, in fact, we have to apply the reverse transformation to the gradient.
32 Two for loops are perfectly nested if there are not other code lines between them.
33 In the Pixel-Shu�e we have to loop over batch, width, height, channels plus a couple of loops over

the scale factors that we want to apply. In total we have to manage six dimensions that can be easily
collapsed into a single one given by their product.

https://github.com/Nico-Curti/Byron/blob/master/src/shuffler_layer.cpp
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losses and the regression losses. In the �rst case we want to predict a �nite number of
categorical values (classes). In the second case the prediction is performed on a series of
continuous values. Since in this work we are focusing only on classi�cation problems we
will only talk about the �rst case.

The most common cost function is given by the Mean Square Error (MSE) or L2 loss
(very closed to the regularization function hinted at the end of 2.1.6). Its mathematical
formulation is quite simple and it is given by

MSE =

∑N
i=1 (y − t)2

N
(2.21)

where we follow the nomenclature given in 2.1.1 and N is the number of outputs, which
is equivalent to the number of classes. It is one of the most used cost function due to its
simplicity either from a mathematical and numerical point-of-view. The possible output
values range from 0 to ∞. With MSE function, the predictions which are far away from
actual values are heavily penalized, due to the squaring.

A slight di�erent function is given by the Mean Absolute Error (MAE) or L1 loss in
which we replace the squaring with a module of the error.

MAE =

∑N
i=1 | (y − t) |

N
(2.22)

With MAE we loose the information about the error direction (preserved by the squar-
ing in MSE) and just simply evaluate the absolute value of it.

The main di�erences between these two functions can be summarized as follow: using
the MSE function we can easily solve the problem but the MAE function is more robust
against possible outliers. Despite both functions reach the minimum in a perfect classi�-
cation con�guration (error equal to zero), in presence of outliers we have to manage with
large di�erences in the numerator of the function. With large di�erences, the square values
are greater than the absolute values, but while the MSE tries to adjust its performance to
minimize those cases, the other samples pay the higher cost.

A problem related to the MAE function arises during the gradient evaluation. Its
gradient, in fact, is the same throughout, which means that we will have large gradient
values also with small di�erences which is a worse con�guration during training. A simple
possible workaround is given by the introduction of a shrinking parameter, given by a
dynamic learning rate, when we move closer to the minimum.

When we have to manage multi-classes problems there are other common cost functions
based on likelihood scores. The simpler one is the Cross Entropy loss or Log loss:

CrossEntropyLoss = −(y · log(t) + (1− y) · log(1− t)) (2.23)

This function just multiplies the log of the actual predicted probability by the ground
truth class. In this way, when we have two classes (e.g t ∈ [0, 1]), we can alternatively
nullify the two parts of the function34. In this way, the loss function heavily penalizes the
predictions that are con�dent but wrong. This function works with binary classi�cation
problems where the output classes are binned in [0, 1]. For this reason the output of the
model must be constrained into the [0, 1] domain and thus a proper activation function
should be provided. Classically this loss function is used jointly to the sigmoid activation
(ref. 2.1.3) which constrains the output of the model in the desired interval. For this reason

34 When the actual label is equal to 1, i.e y = 1, the second half of the Log Loss function disappears,
whereas in case of the actual label is equal to 0 the �rst half is null.
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in our implementation of the algorithm we have chosen to merge the sigmoid function and
the Log Loss function into a single object35.

A last duty to mention loss function is the extension of the Log loss to multiple classes,
the so-called Categorical Cross Entropy Loss.

CategoricalCrossEntropyLoss = −
∑

i = 1N (y · log(t)) (2.24)

This function generalized the previous one for multiple-classes, i.e for problems where
the correct output can be only one. The loss compare the distribution of the predictions, i.e
output of the model, with the prior known distribution. In this way only the probability
of the true class will be 1 and all the other classes will be set to 0. Also in this case
we have to pay attention to the output of our model which is intended as a probability
value ranging in [0, 1]. In particular, this function commonly works jointly to a softmax
activation function. As in the previous case we have chosen to implement this loss function
in a separated object associated to the softmax transformation.

Many other loss functions can be mentioned to overcome di�erent kind of problems.
The list of presented loss functions is related to the implementation of the darknet-like
libraries which are ported also into the NumPyNet and Byron libraries, i.e either in Python
and C++. NumPyNet and Byron libraries provide an optimized version of these functions
(�xing also some darknet issues) and they include also other kind of loss functions to
improve the library usability. A full list of available loss functions can be found in the
on-line version of the libraries with a list of easily visual examples.

A further improvement has been performed from a numerical point-of-view: many
mathematical formulas need expensive math operations as logarithms and trigonometric
functions. An e�cient (but approximated) math formula has been implemented both
in C++ and Python to reach faster computational performances. These numerical math
operations are widely used into the Byron library to increase computational performances,
despite their usage can be turned o� by user at compile time. The full set of functions,
in fact, is enclosed into a macro de�nition (__fmath__) that can be enabled/disabled at
compile-time.

A classical example of this faster math operation is given by the fast inverse square root
algorithm, �rstly introduced in 1999 in the source code of Quake III Arena, a �rst-person
shooter video game. The method is based on a Newton algorithm, which can be stopped
at the desired precision order: less precision is associated to faster execution, obviously.
In our fast math implementation we provide a set of Newton algorithms related to the
most common mathematical operations, like exp, log, sqrt and so on. We tested these
implementations against the common standards (Numpy package for Python and std:: for
C++) and we compared their execution-time (we required a precision of at least 10−4). The
obtained results are shown in Fig. 2.9, where we normalized the execution-time, keeping
Numpy implementation as reference.

As can be seen, all the results obtained by the fast math algorithms are faster or at
least equals to the standard ones. The C++ version of the fast math is certainly the better
choice for an optimized implementation of the algorithms in all the cases. It is interesting
to notice how some functions (pow2 and log10) are drastically slower in C++ than in
Python, despite the intrinsic overhead of the Python language. This is probably due to
particular optimizations performed by the Numpy package in the implementation of these
special cases: if we compare those functions to the general ones (pow and log), in fact, the
results con�rm the e�ciency of the C++ language.

These results highlight the importance of code testing before release it: we have to pay
always attention in writing a code and query also the standard choices.

35 We also try to prevent wrong uses of this loss function for laypersons. This implementation was
already suggested by the darknet library so we simply propagate it in our implementations.

https://github.com/Nico-Curti/Byron/blob/master/src/cost_layer.cpp
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Figure 2.9: Time performances of standard mathematical operations implemented using
Newton approximations. We compare the results obtained with the Numpy library (blue,
reference) and the standard C++ library (CMath, green) to the respective functions imple-
mented in our PyFMath (orange) and FMath (red). In the comparison we have to keeping
in mind that the Numpy library is based on a C++ wrap and that the Python version of
the FMath is written in pure Python language. In all the cases the FMath version of the
functions performs better or at-least-equal to the standard one.

2.2 Super Resolution

Figure 2.10: Single Image Super Resolution. Between the red lines the super resolved
version of the original image.

The Super Resolution (SR) is a slight novel technique based on Neural Network models
which aims to improve the spatial resolution of a given image36.

The �rst SR methods on digital images estimate the high frequency information of the
images, starting from a series of low-resolution (LR) patches and their high-resolution (HR)
counterparts. These patches (ROIs of the LR image commonly smaller than 50× 50) were
extracted after an edge enhancement procedure or a simple 2D Fourier transformation,
which extracts the high frequency information. Collecting these patches an �association

36 The best-known �implementation� of Super Resolution concerns the microscopy super-resolution. In
this work we are focusing on algorithms and numerical implementations so we will talk about the numerical
counterpart of this technique, totally ignoring the original �hardware� version.
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dictionary� between LR and HR was created. This dictionary was used to learn the correct
associations between LR and HR and then applied on new images. The images considered
were of the same dimensions in these �rstly applications, i.e the purpose was only to
improve the spatial resolution of the image without changing the sampling step.

The idea of use neural network models and in particular convolution functions to face
this problem was born in 2014 at the Engineering University of Honk Kong, due to the
large popularity of these models during those years. The increasing computational power
allowed to create automatic models able to learn the LR-HR associations without any
dictionary. In this year the SRCNN model [32] arises, a three-layer neural network able
to learn a large ensemble of features to reproduce the desired associations. The �rst layer
aimed to extract the LR patches from the input image; the second layer produces the
association between the LR patches and the tuned HR ones; the last layer reorganized the
HR patches ensemble produced into a single HR image, i.e the output.

From this starting implementation many improvements was performed in this research
�eld, but the fundamental idea is not changed. Modern models simply have a greater
number of layers, due to the increasing computational power availability, and they use
appropriated workaround to overcome the (large-)parameters tuning problem.

In the next sections we will show the super resolution technique step-by-step starting
from the image pre-processing up to the most modern algorithmic solutions. At the end
of this chapter the NumPyNet and Byron implementations of some modern models will be
presented and applied over biomedical images.

2.2.1 Resampling

Up to now we have talked about neural network models as classi�cation algorithms. In the
SR problem we have no classes, but the desired output is an image. This behavior is often
hard to digest, but it does not change anything about the previous considerations. The
only change is related to the size of the neural network and its amount of parameters, that
could drastically increase due to the larger output required. Let start from the beginning:
to feed a super-resolution model we have to use a series of prior-known LR-HR image
associations. In the real life, we have always a series of images, typically LR images, and
we want to improve their resolution, i.e enlarge the spatial dimensions of the input image,
to better see some particulars or just to create an output without artifacts or evident pixel
grains. If we consider these series of images as the HR ones, we can easily down-sample
them without particular troubles37. This re-sampling could introduce an aliasing factor
that our model should learn to nullify. The number of model parameters is typically around
the 107, so if we introduce any �ltering process (degradation) in the input image, the model
should be able to overcome also these issues.

Starting from these considerations, we can down-sample our images by a desired scale
factor: common scale factors are between 2 and 8 and in this work we will refer to a scaling
factor equal to 4. A crucial role is played by the re-sampling (or down-sampling) algorithm
chosen for the arti�cial image degradation. Any down-sampling algorithm, in fact, looses
part of the original information by de�nition. Thus, we can facilitate the learning choosing
a lossless one, but in this way we will loose in generalization (the model will not learn how
to overcome some cases), or we can apply a drastic down-sample technique and achieve
better performances later.

The simpler down-sampling algorithm is given by a nearest neighbors interpolation.
This algorithm pass a kernel mask over the image and it substitutes each pixel mask to

37 Ignoring particular cases, the hardest step is always to enlarge the image resolution and not the inverse
step.



62 CHAPTER 2. DEEP LEARNING

their average38. This procedure can be achieved using a Pooling algorithm (in particular
an AveragePooling) (ref. 2.1.5 for further information) for the down-sample or we can use
an UpSample layer. The UpSample function is commonly related to GAN (Generative
Adversarial Networks) models, in which we have to provide a series of arti�cial images
to a given Neural Network, but it is a function which can be introduced inside a Neural
Network model to rescale the number of features. We mention it in this section since it is
not intrinsically related to a Neural Network model, but it could be use as image processing
technique.

We provide an implementation of this algorithm either in NumPyNet either in Byron
library using di�erent techniques. The UpSample function inside a Neural Network model
has to provide both up- and down- sampling techniques, since one is used in the forward
function and its inverse during the back-propagation. To achieve this function in NumPyNet
we can use a series of reshaping and striding on the input matrix as shown in the following
snippet.

Listing 2.4: NumPyNet version of Upsampling function
1 import numpy as np

2 from numpy.lib.stride_tricks import as_strided

3

4 class Upsample_layer(object):

5

6 def __init__(self , stride =(2, 2), scale=1., ** kwargs):

7

8 self.scale = float(scale)

9 self.stride = stride

10

11 if not hasattr(self.stride , '__iter__ '):

12 self.stride = (int(stride), int(stride))

13

14 assert len(self.stride) == 2

15

16 if self.stride [0] < 0 and self.stride [1] < 0: # downsample

17 self.stride = (-self.stride [0], -self.stride [1])

18 self.reverse = True

19

20 elif self.stride [0] > 0 and self.stride [1] > 0: # upsample

21 self.reverse = False

22

23 else:

24 raise NotImplementedError('Mixture upsample/downsample are not yet

implemented ')

25

26 self.output , self.delta = (None , None)

27

28 def _downsample (self , input):

29 batch , w, h, c = input.shape

30 scale_w = w // self.stride [0]

31 scale_h = h // self.stride [1]

32

33 return input.reshape(batch , scale_w , self.stride [0], scale_h , self.

stride [1], c).mean(axis=(2, 4))

34

35 def _upsample (self , input):

36 batch , w, h, c = input.shape # number of rows/columns

37 b, ws , hs, cs = input.strides # row/column strides

38

39 x = as_strided(input , (batch , w, self.stride [0], h, self.stride [1], c),

38 The inverse (up-sampling) interpolation simply replicates each pixel in each dimension by a number
equal to the scale factor.
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(b, ws , 0, hs, 0, cs)) # view a as larger 4D array

40 return x.reshape(batch , w * self.stride [0], h * self.stride [1], c)

# create new 2D array

41

42 def forward(self , input):

43 self.batch , self.w, self.h, self.c = input.shape

44

45 if self.reverse: # Downsample

46 self.output = self._downsample(input) * self.scale

47

48 else: # Upsample

49 self.output = self._upsample(input) * self.scale

50

51 self.delta = np.zeros(shape=input.shape , dtype=float)

52

53 def backward(self , delta):

54 if self.reverse: # Upsample

55 delta [:] = self._upsample(self.delta) * (1. / self.scale)

56

57 else: # Downsample

58 delta [:] = self._downsample(self.delta) * (1. / self.scale)

Thus the down-sampling algorithm is obtained reshaping the input array according the
two scale factors (strides in the code) along the two dimensions and computing the mean
along these axes. Instead, the up-sample function uses the stride functionality of the Numpy
array to rearrange and replicate the value of each pixel in a mask of size strides×strides.

The same functionality can be obtained in the C++ version of the code provided by
the Byron library, in which we compute the right indexes along a nested sequence of for
loops (ref. on-line). We have to take in care the summation reduction provided by the
down-sampling according to the thread concurrency: in this case we can not generalize the
loop collapsing to the full set of loops but we have to separately manage the summation
in a sequential section.

A more sophisticated interpolation algorithm, which reduces the loosing information,
is provided by the bicubic interpolation. The re-sampling algorithm interpolates the in-
formation provided by the nearest pixels using a bi-cubic function. Given a pixel, the
interpolation function evaluates the 4 pixels around it applying a �lter given by the equa-
tion:

k(x) =
1

6


(12− 9B − 6C)|x|3 + (−18 + 12B + 6C)|x|2 + (6− 2B) if|x| < 1

(−B − 6C)|x|3 + (6B + 30C)|x|2 + (−12B − 48C)|x|+ (8B + 24C) if1 ≤ |x| < 2
0 otherwise

(2.25)

where x identi�es each pixel below the �lter. Common values used for the �lter parameters
are B = 0 and C = 0.75 (used by OpenCV library) or B = 0 and C = 0.5 used by Matlab39.
Despite this function is also implemented in the most common Python libraries, we provide
an e�cient multi-threading implementation in the Byron library.

Equivalent performances could be achieved using a generalized version of the bi-cubic
�lter which use the 8 positions mask around each pixel, the so called Lanczos �lter. Also
this function is provided into the Byron library.

To better understand the told above functions, we can consider their application on
the simple image given in Fig.2.11.

In the �gure the three algorithms were applied over the same image to highlight the dif-
ferences against the down-sampling and up-sampling. The nearest interpolation algorithm

39 In this case the �lter is also called Catmull-Rom �lter.

https://github.com/Nico-Curti/Byron/blob/master/src/upsample_layer.cpp
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Figure 2.11: Re-sampling image example. (left) The original image. (up right) The
down-sampled blue-ROIs using di�erent interpolation algorithms (Nearest, Bicubic and
Lanczos, respectively). We use a scale factor equal to 2 (half size in down-sampling and
double size in up-sampling). The Lanczos interpolation is the lossless algorithm, but from a
qualitative point-of-view the result are quite the same of the bi-cubic ones. (down right)
The up-sampled red-ROIs using the same interpolation algorithm of the upper row. Also
in the Up-sampling the Lanczos and bi-cubic algorithms produce equal qualitative results.
The Nearest algorithm produces the worse results both in up- and down- cases.
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produces always the worse results both in up-sampling and down-sampling. In the bi-cubic
and Lanczos down-sampling we can better appreciate the �preservation� of the line shapes
that are lost using the Nearest algorithm. The result obtained by bi-cubic and Lanczos are
quite similar in both cases, but the computational cost of the Lanczos algorithm is greater
than the bi-cubic one. This is the reason why the bi-cubic interpolation is the most used
technique for image resizing, with a balance between computational cost and qualitative
result. In our implementation of SR algorithms we chose to use the bi-cubic interpolation
for those reasons.

The main aim of SR algorithms is to overcome these results obtaining a better quality
image either from an optical point-of-view either from a mathematical one. Until now
we are considering the quality of the digital image only from a qualitative point-of-view.
In the next sections we will introduce some useful mathematical scoring to numerically
evaluate the image quality.

2.2.2 Image Quality

The most powerful image quality evaluator is given by our eyes. This is true also for SR
problems: the �nal purpose still remains to obtain images that are better visible for human
eyes, the so called visual loss. We can however provide some mathematical formulas which
allow to quantitative evaluate the image quality. In both cases we need to establish a
relationship between the original image and the produced one. Thus, we can formulate
a quality score only with a reference image. In SR problems, or more in general in up-
sampling problems, we can compare the original HR image with the image obtained by
the output of our model. In this way our quality score would be a measure of similarity
between the two images.

The simpler similarity score can be obtained evaluating the peak-signal-to-noise-ratio
(PSNR). This quantity is commonly used to establish the compression lossless of an image
and it can be computed as

PSNR = 20 · log10

(
max(I)√
(MSE)

)
(2.26)

where max(I) is the maximum value which can be taken by a pixel in the image (in general
it should be 1 or 255 depending on the image format chosen) andMSE is the Mean Square
Error (ref. 2.1.10) between the original image and the reconstructed one. The MSE for an
image can be computed as:

MSE =
1

WH

W∑
i=1

H∑
j=1

(I(i, j)−K(i, j))2 (2.27)

where W , H are width and height of the two images and I, K are the original and
reconstructed image, respectively.

In other words, the PSNR is the maximum power of the signal over the background
noise. It is expressed in decibel (dB) because the image values ranging in a wide interval
and the logarithmic function rearrange the domain. Thus, we can conclude that high
PSNR values are associated to a good reconstruction of the original image.

The PSNR is probably the most common quality score [47], but it is not always related
to a qualitative visual quality. Despite it is commonly used as loss function for SR models.

Considering the series of images shown in Fig. 2.11 we can evaluate the PSNR score
starting from a down-sampled image. Taking the down-sampled image obtained with the
Lanczos algorithm we can compare the original image with their up-sampled version given
by the three methods (ref. Tab. 2.2). As expected, the lowest PSNR value is achieved
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Nearest Bicubic Lanczos
PSNR 25.118 27.254 26.566
SSIM 0.847 0.894 0.871

Table 2.2: Image quality scores: PSNR (peak-signal-to-noise-ratio) and SSIM (Structural
SIMilarity index). The values are computed on the image shown in Fig. 2.11. The original
image was down-sampled using a Lanczos algorithm and then re-up-sampled using three
di�erent algorithms: nearest, bi-cubic and Lanczos interpolations. For each interpolation
algorithm the PSNR and SSIM was evaluated. As expected the highest scores were ob-
tained using the bi-cubic algorithm, while the worst reconstruction is performed by the
nearest algorithm.

by the nearest interpolation method, while the best performances are obtained by the bi-
cubic algorithm. This con�rms the wider use of the bi-cubic method in image processing
applications. Moreover, we have to take in account that an increment of 0.25 in PSNR
value corresponds to a visible improvement for human eyes.

A more advanced quality score, commonly used in super resolution image evaluation,
is given by the Structural SIMilarity index (SSIM). The SSIM aims to mathematically
evaluate the structural similarity between two images, taking into account also the visible
improvements seen by human eyes. The SSIM function can be expressed as

SSIM(I,K) =
1

N

N∑
i=1

SSIM(xi, yi) (2.28)

where N is the number of arbitrary patches which divides the image40. For each patch the
SSIM is computed as

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µx2 + µy2 + c1)(σx2 + σy2 + c2)
(2.29)

where µ and σ are the mean and variance of the images, respectively, and σxy represents the
covariance. The c1 and c2 parameters are �xed to avoid mathematical divergences. Also
in this case, higher values of SSIM correspond to high an similarity between the original
image and the reconstructed one.

Based on the previous equation, we can highlight a link with the pooling function
discussed in 2.1.5. Also in this case, in fact, we work with a window/kernel moved along the
image, which applies a mathematical function on the underlying pixels. This equivalence
suggests an easy implementation of this method with slight modi�cations of the previous
code.

The evaluation of SSIM quality score on the previous up-sampled images (ref. Fig. 2.11
and Tab. 2.2) con�rms the results obtained by the PSNR. Also in this case the worst
reconstruction is obtained by the nearest algorithm, while the highest SSIM is obtained
by the bi-cubic algorithm. The gap between SSIM values is smaller than PSNR ones, but
this is due to the di�erent domains of the two functions.

2.2.3 Super Resolution Models

There were di�erent kinds of models proposed for image Super Resolution purposes,
but in this work we focused only on two of them. Both are based on deep learning Neural

40 Patch dimensions commonly used are 11× 11 or 8× 8.
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Figure 2.12: Super Resolution models analyzed in this work. (left) EDSR model. The
model is a modi�ed version of the ResNet architecture designed for SISR applications. The
architecture is made by a sequential CNN framework, which processes the input image. The
EDSR has more than 43 million of parameters in total. (right)WDSR model. The model
is the updated version of the EDSR one. The model optimizes its numerical e�ciency
using a di�erent approach in the analysis of low- and high-frequency components in the
input image. The WDSR has slight more than 3.5 million of parameters, less than 10% of
the EDSR model.

Network models and they became famous in the research community since they both won
the last NTIRE editions, 2017 and 2018 respectively.

Channels Filter Number of
Layer input/output dimensions Parameters
Conv. input 3/256 3× 3 6912
Conv. (residual block) 256/256 3× 3 589824
conv. (pre-shu�e) 256/256 3× 3 589824
Conv. (upsample block) 256/1024 3× 3 2359296
Conv. output 256/3 3× 3 6912

Table 2.3: EDSR model scheme summary. We highlight the number of parameters of each
macro-block. The total number of parameters of this model is given by the sum of the
values in the last column (more than 3 million of parameters).

The �rst model is called EDSR (Enhanced Deep Super Resolution) and was �rstly
proposed at the NTIRE challenge in 2017 [2]. The EDSR model structure could be broadly
summarized as an updated version of the SRResNet model, which is already a modi�ed
version of the classical ResNet (standard CNN based on multiple residual blocks). The
major updates concern a series of optimizations to improve the training speed and the
quality of the output image. In particular, the batch normalization steps are removed
to improve the speed of the algorithm: it was proved that in low-level vision tasks as
the super resolution one, i.e without complex evaluations as object detection, a wide and
dynamic range of outputs can be useful [56]. A scheme of the EDSR architecture is shown
in Fig. 2.12 (a) and the full set of parameters are reported in Tab. 2.3: the EDSR model
has more than 43 million of parameters in total.

A �rst convolutional layer takes the LR image which is processed using 256 �lters. Then
a set of 32 residual blocks (convolution with 256 �lters + ReLU activation + convolution
with 256 �lters + linear combination of the output with the input) processes the feature
map. The tail of the architecture is made by an up-sample block which re-organizes the
pixels using a series of convolution and pixel-shu�e functions. The up-sampling follows
the scale factor imposed: the model increases the spatial resolution of the image by a �xed
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scale factor (x2 and x4 in our applications) and each pixel-shu�e application is equivalent
to a x2 in the output sizes41.

The �rst convolutional layer extracts the low frequency components of the input image
which will be combined to the output of the residual blocks at the end of the model. The
residual blocks with their relative convolutional layers extract the feature map and the high
frequency information from the LR image: in this way the low- and high-frequency com-
ponents are �independently� analyzed by the model and then re-combined in the output.
The last set of up-sampling blocks simply reshape and reorganize the extracted information
according to the desired sizes.

The large amount of �lters of the up-sampling blocks and the input dimensions drasti-
cally a�ect the computational performances of the model: we numerically evaluated that
the most time spent by the processing is related to the tail of the model and thus to the
up-sampling blocks.

The second analyzed and implemented model is the WDSR (Wide Deep Super Resolu-
tion) model which won the NTIRE challenge in 2018 [88]. The WDSR model is a modi�ed
version of the EDSR one. The improvements principally concern two aspects: the network
structure and the residual blocks.

As shown in Fig. 2.12 (b), the WDSR simpli�es the network architecture removing
the convolutional layers after the pixel-shu�e ones. Moreover, if the EDSR applies a x2
up-sampling every pixel-shu�e layer, in the WDSR a single pixel-shu�e function performs
a x4 up-sampling. This update drastically reduces the computational time and the amount
of parameters. Furthermore, the combination of low- and high- frequency components in
this case are processed separately (two di�erent branches) and only at the end they are
re-combined (ref. Fig. 2.12 (b)).

Channels Filter Number of
Layer input/output dimensions Parameters
Conv. input 1 3/32 3× 3 864
Conv. 1 (residual block) 32/192 3× 3 55296
conv. 2 (residual block) 192/32 3× 3 55296
Conv. (pre-shu�e) 32/48 3× 3 13824
Conv. input 2 (pre-shu�e) 3/48 5× 5 3600

Table 2.4: WDSR model scheme summary. We highlight the number of parameters of each
macro-block. The total number of parameters of this model is given by the sum of the
values in the last column (∼ 100K parameters, less than 1/10 of EDSR model).

The WDSR also changes the residual block structure: the ReLU activation tends to
block the information �ow from the �rst layers [78] and it is important to prevent it in super
resolution structures, since they contain the low-frequency components of the image. To
overcome this problem without increasing the number of parameters, the WDSR proposes
the so-called �passage enlargement�, i.e the reduction in the number of channels in input and
the corresponding enlargement of the output channels before the ReLU activation. This
optimization allows to increase the number of channels to be activated and thus a better
information �ux along the network keeping the required non-linearity. The number of
parameters is however constant because there is only a re-arrangement of the input/output
parameters. The list of network parameters are reported in Tab.2.4: the WDSR has slight
more than 3.5 million of parameters, less than 10% of the EDSR model. This con�rms the
computational e�ciency of the WDSR against the EDSR one.

41 It is straightforward that adding multiple up-sampling blocks and thus pixel-shu�e functions, we can
train the model according to every desired upscale.
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In this work we used pre-trained models, so we could not change the network structure
or change their learning weights. For this reason we could use only a x2, x4 EDSR model
and a x4 WDSR model. The weights were converted to the Byron format and our custom
implementation of the network used for the applications. We would stress that our could
be the �rst C++ implementation of these models and probably the �rst optimized version
for CPUs environments42.

2.2.4 DIV2K dataset

Figure 2.13: DIV2K validation set examples.

In our super resolution applications we used as training set the images provided by
the DIV2K (DIVerse 2K resolution high quality images) dataset [2]. This dataset was
appositely created for the 2017 NTIRE challenge (New Trends in Image Restoration and
Enhancement). The NTIRE challenge is an international competition which aims to mon-
itor the state-of-art in digital image processing and image analysis and it takes place at
the CVPR (Computer Vision and Pattern Recognition) conference every year. One of the
most important monitored task is the super resolution research progress. Thus, every year,
many research groups propose new super resolution models, mostly based on neural net-
work models, to improve the state-of-art results on this research topic. The model which
performs the higher PSNR value over a validation set extracted on the DIV2K dataset
wins the challenge. For these reasons the DIV2K dataset is considered as a standard for
super resolution applications.

The dataset contains 800 high-resolution images as training set and their correspond-
ing low-resolution ones, obtained by di�erent down-sampling methods and di�erent scale
factors (2, 3 and 4). A second set of 100 high-resolution images makes the test set on which

42 We have to mention also that the publicly available implementations of these models are developed
only in Tensor�ow and PyTorch but the major part of them does not work in CPU environments without
heavy modi�cations.
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the model can evaluate its accuracy: also this second set of images has their low-resolution
counterpart. Finally, a third group of 100 images constitutes the validation set, i.e they
are blinded images without their corresponding high resolution counterpart, and they are
used to evaluate the results of the models in race.

All the 1000 images are 2K resolution samples, i.e width and height dimensions must
have at least 2 × 103 pixels. The images are collected paying particular attention to the
quality, diversity of sources (web sites and cameras) and contents. The DIV2K images,
in fact, collect a large diversity of contents, ranging from people, handmade objects and
environments (cities, villages) to natural sceneries (including underwater and dim light
conditions), �ora and fauna. In each image we can �nd more or less complex shapes, ge-
ometries and also some words. We would stress that no one bio-medical image is contented
in the dataset, since it is very di�cult to obtain high quality images of this kind (let alone
the problems about copyrights and releases).

In our SR applications we used pre-trained43 neural network models on the DIV2K and
we tested their performances on NMR (Nuclear Magnetic Resonance) images. The models
have never seen this kind of images, but during the training they learned a large quantity
of shapes that can be �found� also in bio-medical images. The bio-medical images were
provided by the collaboration with the MRPM group of the Physics Department of the
University of Bologna and the Bellaria Hospital of Bologna. We thank the volunteers who
perform the NMR acquisitions and shared their data.

2.2.5 Results

As discussed in the previous sections we implemented the EDSR and WDSR models into
our custom Byron library, but we did not re-trained the models. The weights used in this
work were taken from the o�cial implementations of the models, publicly available on the
corresponding Github pages(EDSR and WDSR).

First of all we tested our implementation in terms of execution time. The o�cial
implementations are written using Tensor�ow and PyTorch frameworks and they are usable
only with a GPU support. Thus, no tests were performed in relation to them, but only
between the two models inside the same Byron framework.

We started our numerical tests comparing the e�ciency of the two models, keeping
�xed the input sizes. In this way we could reproduce what has already proved by the
original papers, i.e the numerical e�ciency of the WDSR model against its predecessor
EDSR one. In particular over 100 runs we could easily prove that the WDSR model is
more than 10x faster than EDSR, due to the discussed properties explained in the previous
section.

A second analysis was performed on the performance e�ciency of both the models over
a validation set of images. We evaluated the two quality scores described in the above
sections (PSNR and SSIM) over the validation set provided by the DIV2K dataset. The
full validation set comprises 60 images and we compared the e�ciency of the two models
against the standard up-sampling technique given by the bi-cubic algorithm. In Fig. 2.14
we show the score distributions obtained using the three methods over these 60 images.

As can be seen by the two plots in Fig. 2.14 the quality improvement given by the
Super Resolution methods against the bi-cubic algorithm is evident. On the other hand,
the gap between the two Super Resolution models is relatively small: the EDSR model
performs statistically better than WDSR, but we have also to take into account that the

43 The developed models were not re-trained due to limited time and low computational architectures
available.

https://github.com/thstkdgus35/EDSR-PyTorch
https://github.com/JiahuiYu/wdsr_ntire2018
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Figure 2.14: Comparison of performances between the bi-cubic up-sampling and EDSR
and WDSR Super Resolution models on the DIV2K validation set. The performances are
obtained down-sampling the input images and then re-up-sampling them according to the
desired scale factor: the chosen scale factor is 4x. (left) PSNR score on the 60 validation
images. (right) SSIM score on the 60 validation images.

WDSR model has less than 10% of the EDSR parameters. Moreover we have to consider
the combination between performances and execution time: in this case the WDSR is
certainly the best choice for Super Resolution applications.

Figure 2.15: Super Resolution visual example extracted from the DIV2K validation set.
The quality score in terms of PSNR and SSIM are compared between a standard bi-cubic
up-sampling and the EDSR and WDSR models.

A visual proof of our results is shown in the Figures 2.15, 2.16 and 2.17: as discussed in
the previous sections, the visual comparison is certainly the more accurate score for super
resolution applications. As can be seen in Fig. 2.15 and Fig. 2.16 the two models have
perfectly learned how to reconstruct the complex line shapes of the input image. At the
same time they have also learned how to reconstruct words and di�erent kinds of textures.
These results highlight either the e�ciency of the two models, either the importance of the
training set for this kind of applications: the DIV2K dataset has a wide heterogeneity of
di�erent textures inside its images and, thus, the model is able to perfectly reconstruct a
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Figure 2.16: Super Resolution visual example extracted from the DIV2K validation set.
The quality score in terms of PSNR and SSIM are compared between a standard bi-cubic
up-sampling and the EDSR and WDSR models.

Figure 2.17: Super Resolution visual example extracted from the DIV2K validation set.
The quality score in terms of PSNR and SSIM are compared between a standard bi-cubic
up-sampling and the EDSR and WDSR models.
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huge amount of di�erent shapes after the training section.
The obtained results encouraged us to test the e�ciency of the two models also with

di�erent kind of images. In particular we tested their quality score performances on NMR
images of human brain. The images were provided by the Bellaria Hospital, but due to
privacy constrains we can show the results only on a single set of them44.

We used a series of T1 weighted NMR images sampled with a spatial frequency of 1 mm
in each direction (x, y, z with a resolution of 256 × 256 pixels). The images were down-
sampled to 128× 128 (2x down-sampling) and to 64× 64 (4x down-sampling). Then, both
the down-sampled series were re-up-sampled to the starting dimensions using the EDSR
(2x) and WDSR (4x) models. Also in this case the results were compared to a standard
bi-cubic up-sampling algorithm. The data acquisition included 176 slices and each one was
independently processed. The results obtained by the 2x and 4x up-sampling are shown
in Fig. 2.18 and Fig. 2.19, respectively.

Figure 2.18: PSNR (left) and SSIM (right) quality scores obtained by the EDSR model on
the 2x NMR slices of the human brain. We compared the e�ciency of the EDSR model to
the results obtained by a standard bi-cubic up-sampling. The Super Resolution model is
able to better reconstruct the brain shapes and textures, obtaining a higher image quality
score in the major part of the slices. The critical points, i.e where the bi-cubic up-sampling
performs better than the super resolution algorithm, are highlighted in the plot and they
correspond to the less informative area of the brain.

In both the cases the Super Resolution models over-performed the bi-cubic algorithm
in the major part of the slices. The only exception is given by the 2x results where there
are a set of slice in which the bi-cubic e�ciency is higher than the super resolution one
in terms of SSIM quality score. As can be seen in Fig. 2.18 the e�ciency of the EDSR
model decreases in the �rst and last parts of the acquisition: the corresponding slices are
highlighted in the plot and we can easily notice how they correspond to the less informative
portions of the brain. The most central (and thus informative from a bio-medical point-of-
view) part is better reconstructed by the Super Resolution models. We would stress that
an increment of 0.25 in the PSNR score is considered visible by naked eyes. The images
showed at the beginning of this section (ref. Fig. 2.10) were obtained using the WDSR
model over our images and they visibly highlight the e�ciency of our Super Resolution

44 I'm the �patient� in this acquisition.
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Figure 2.19: PSNR (left) and SSIM (right) quality scores obtained by the WDSR model on
the 4x NMR slices of the human brain. We compared the e�ciency of the WDSR model
with the results obtained by a standard bi-cubic up-sampling. The Super Resolution model
is able to better reconstruct the brain shapes and textures, obtaining a higher image quality
score in the major part of the slices. The critical points, i.e where the bi-cubic up-sampling
performs better than the super resolution algorithm, also in this case correspond to the
less informative area of the brain.

models.
In conclusion this work proved how we can obtain good results without need to re-

train a Neural Network model. The presented models are, in fact, able to generalize
the learning patterns and textures also to di�erent image kinds. The PSRN and SSIM
performances obtained by the NMR image reconstructions are also in agreement with the
results obtained on the DIV2K validation set and they con�rm the goodness of the DIV2K
dataset as training set for Super Resolution applications. Further analyses are still in
work in progress and these results encourage us to test our trained models also on wider
bio-medical datasets.

2.3 Object Detection

Object detection is one of the larger deep learning sub-discipline, especially when we talk
about Neural Network models. This kind of problems aim to identify single or multiple
objects into a picture or video stream. The possible applications of these tools are every-
where these days and they involve object tracking, video surveillance, pedestrian detection,
anomaly detection, people counting, self-driving cars or face detection and the list goes on.

There are many machine learning and deep learning techniques proposed during the
years about this topic and each one has its own pros and cons. The most prominent
and moder techniques involve the use of very deep Neural Network models, with a huge
amount of parameters to tune. The most famous ones are probably the Faster R-CNN
(Faster Region Convolutional Neural Network) [73] and its �evolution� into the YOLO
(You Only Look Once) model [70, 71, 72].

The R-CNN models are one of the state-of-art CNN-based deep learning object de-
tection model and their evolution into Fast R-CNN tries to improve their speed. The
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standard approach for object detection is based on moving a sliding window to search in
every position of the image the objects. However, the intrinsic problems of these kinds
of methods are the window dimensions and the large computation required to map with
multiple window sizes the full image. Di�erent objects, or even the same kind of objects,
could have di�erent aspect ratios and sizes in relation to the position of the camera which
captured the image or to their distances. R-CNN models try to overcome these problems
generating about 2 000 region proposals, i.e bounding boxes, and applying to each one a
image classi�cation procedure, using a standard CNN. Finally, each detected region can
be re�ned using a regression approach.

A Faster R-CNN model is based on the same idea but, instead of feeding the bounding
boxes to the CNN, it feeds the input image to the CNN to generate a convolutional feature
map. Starting from this feature map we can easier identify the region of proposals (Region
Proposal Network) and warp them into squares. The list of these regions are then reshaped
using a Polling layer and processed by a fully connected layer. The advantages of Faster
R-CNN are thus visible: we do not need to feed 2 000 region proposals to the CNN every
time, but the feature map is generate once per image using the convolution operation. In
this way we can also separate the feature map creation to the selective search algorithm.

A key role on these models is given by the anchor concept: an anchor is essentially
a box and it identi�es the shape of a portion of the input image at di�erent scale levels.
The CNN feature map feeds the Region Proposals Network which uses a sliding window
over it, generating k anchor boxes. These boxes are certainly fewer than the previous cited
2 000 windows.

A breakthrough idea on the real-time object detection was the introduction of the
YOLO model. The model was developed by Redmon et al. at Washington University and
it is probably the state-of-art on object detection, especially for its very incredible speed (it
can reach 45 FPS on modern GPUs!). Certainly it is the faster method publicly available,
but its popularity is also due to its innovative strategy in object detection. Despite all the
other algorithms use regions to localize the object into the image, the YOLO network does
not look at the complete image but only on a parts of it, which has the higher probability
to contain an object. In YOLO a single CNN predicts the bounding boxes and the class
probabilities of them. YOLO slits a single image into a S × S grid and on each grid m
bounding boxes are taken. For each of them, the CNN outputs a class probability and
o�set values. Finally, these bounding boxes are �ltered according to their probability and
a chosen threshold.

One of the most bigger limitation of this model is that it struggles with small objects.
This is due to the spatial constraints of the algorithm. Fortunately, in the previous sections
we have already discussed on how we can overcome this kind of problem using Super
Resolution. In the next section we will discuss about further characteristics of the YOLO
model and about its implementation into the Byron library, considering its e�ciency against
the original implementation. Finally, we will join the e�ciency of the previous Super
Resolution models to the performances of our optimized implementation of YOLO.

2.3.1 Yolo architecture

YOLO Neural Network architecture was �rstly published in the 2015, but from the �rst
version many improvements have been performed and now we have its third version. We
do not want to recall the history of this model, so we will discuss only about the YOLOv3
model (for sake of simplicity we will call it just YOLO).

YOLO is a deep Neural Network model with more than 100 layers and more than 62
million of parameters. The �rst version of YOLO was based on a Darknet-19 architecture
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Figure 2.20: Yolo Neural Network scheme.

(19-layers Neural Network followed by 11 more layers for object detection). In the last re-
lease of YOLO, the �rst part of the network structure is used for the feature map extraction
and it is essentially a modi�ed version of the Darknet-53 model, i.e the updated version
of the previous model, with more layers and parameters. These improvements increase
the classi�cation performances, but it throwbacks a reduction in computational perfor-
mances45. These improvements could be done also thank to the introduction of multiple
residual blocks which, as discussed in the previous sections (ref. 2.1.8), allow to increase
the deep of the model without losing performances.

YOLO performs object detection using a multi-scale approach: three di�erent scales
are taken into account during the training section to improve classi�cation performances.
The network structure can be broadly summarized as a simple CNN and its output is
generated by applying a series of three di�erent detection 1 × 1 kernels on the feature
map. Moreover, this detection is performed in three di�erent places into network, i.e three
YOLO detection layers are distributed along the network structure. The detection kernel
shape is 1 × 1 × (B × (5 + C)), where B is the number of bounding boxes which a cell
in the feature map can predict and C is the number of classes. The �xed number (�5�)
is given by 4 bounding boxes attributes plus 1 object con�dence coe�cient (the so-called
objectness into the code). In our applications we have used the COCO dataset (see next
sections, 2.3.2) and thus we have �xed the value of B and C to 3 and 80, respectively (thus
the kernel size is equal to 1 × 1 × 255). We would stress that, the three scale detections
are equivalent to three levels of down-sampling of the original image (or better the feature
map), respectively equal to 32, 16 and 8.

The input image is down-sampled using the �rst 81 layer and only the 82nd layer per-
forms the �rst detection46. Then the feature map produced by the 79th layer is subjected
to few convolutional layers before being 2x up-sampled to a 26 × 26. The up-sampling is
performed by a previously discussed UpSample function/layer (ref. 2.2.1). The feature
map is then concatenated with the one produced by the 61st layer and it is processed by
a second series of convolutions up to the 94th layer which performs the second detection.
A third (similar) procedure is performed again up to the end of the architecture (106th
layer), where the �nal 52 × 52 × 255 feature map is produced as output. The �rst detec-
tion layer is responsible for detecting larger objects, while the second two analyze smaller

45 For the record, the older YOLO versions are faster than the last release, but less accurate.
46 Considering an input image of size 416× 416 the resulting feature map would be of size 13× 13.
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regions: a comparative analysis of these three di�erent scale results improves the detection
performance and it helps to �lter false positive detections.

The introduction of three di�erent detection layers improves the detection of the small
objects in comparison to the previous versions, but it remains a crucial limit of the model.
Moreover, the up-sampling layers connected with the previous layers (shortcut) help to
preserve the �ne grained features and thus the identi�cation of the small objects into the
image.

The model uses a total of 9 anchor boxes with three scales per each. Anchors have
to be computed before the training phase on the dataset: the author suggests to use a
K-Means clustering for this purpose. The �rst three anchors are associated to the �rst
(larger scale) detection layer and so on along all the structure. Taking into account an
image of 416× 416 as example, the number of predicted boxes will be 10 647 (which is 10x
the number of boxes predicted by the previous version of the model).

A further innovative improvement is given by the loss function used to train the model.
The loss computation for true positive identi�cation has to take into account that multiple
bounding boxes per grid cell are performed: thus, we have to �lter them. In other words we
want to preserve only bounding boxes �responsible� for true objects. This can be achieved
using the highest IoU (Intersection Over Union) with the ground truth. YOLO uses a
modi�ed version of MSE error between predictions and ground truths. In particular, the
loss function is composed by three terms: classi�cation loss, localization loss and con�dence
loss.

The classi�cation loss quanti�es the detection error and it is given by

L1 =

S2∑
i=0

1i
obj ∑

c∈classes
(pi(c)− p̂i(c))2 (2.30)

where 1i
obj is equal to 1 if an object appears in the cell i, pi(c) is the output of the model

and p̂i(c) denotes the conditional class probability for class c in cell i.
The localization loss measures the errors in predicted boundary box locations and sizes:

in this way we �lter only the boxes responsible for detecting the object.
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2

] (2.31)

where 1i
obj is equal to 1 if jth boundary box in cell i is responsible for detecting the

object, λcoord increases the weight for the loss in the boundary box coordinates47 and
(x, y, w, h) are the boundary box coordinates.

The con�dence loss quanti�es if an object is detected into the found box (objecteness),
i.e

L2 =
S2∑
i=0

B∑
j=0

1i
obj

(
Ci − Ĉi

)2
(2.32)

where Ĉi is the box con�dence score of the box j in cell i. If the object is not detected
into the box, the con�dence loss is computed as:

47 The default value used in the model is 5.
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L2 = λnoobj

S2∑
i=0

B∑
j=0

1i
obj

(
Ci − Ĉi

)2
(2.33)

where λnoobj weights down the loss when detecting background (most boxes do not con-
tain any object and in the training images a large amount of pixels are occupied by back-
ground)48.

The �nal loss is given by the sum of these three terms

L = L1 + L2 + L3 (2.34)

To further improve detection performances we have to remove duplicate detections.
This is performed by YOLO applying a non-maximal suppression to remove the duplicates
with lower con�dence. The method sorts the predictions, according to the con�dence
scores, and, starting from the top scorer, it �lters them with the same class and a IoU
score greater than a given threshold. In this way we tune the bounding boxes to be as
much �t as possible to the object shapes.

2.3.2 COCO dataset

Figure 2.21: COCO validation set examples.

The �rst issue to take into account when we want to train an object detection model is
certainly to provide a good training set. The dataset has to include multiple and di�erent
prospective of the searching objects and all these images have to be manually annotated
(ground truth for a supervised learning). To train a robust classi�er, we need to provide
a lot of pictures to our model since the model has a lot of parameters to be tune. So the
training samples should have di�erent backgrounds, random objects and varying lighting
conditions. The set of training images could not be made by high quality images, but it
needs a wide heterogeneity of data.

During a training section we have also to take into account that a part of the available
data has to be �discard� and used as test set, so the number of sample has to be su�cient
for both steps. The YOLO model has more than 62 million of parameters to be tuned
and a su�cient number of annotated samples to train it is hard to produce. Fortunately,
there are di�erent publicly available datasets designed to face object detection training
problems. One of the most popular one is the COCO dataset.

48 The default value used in the model is 0.5.
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COCO dataset is a large-scale open source dataset designed for multiple deep learning
training tasks. In particular we can �nd a large number of images manually annotated use-
ful for object detection, segmentation and captioning. The dataset is continually updated
and a new version is released quite every year.

The intrinsic limitation of the dataset is given by the available classes: COCO includes
80 di�erent object classes concerning general purpose objects, starting from di�erent an-
imals to everyday objects and transports. This limits the possible applications but it
remains a very useful tool for testing new models49. The dataset includes more than
300 000 images in which more than 200 000 are already labeled. Certainly, the unlabeled
ones could be used as test set for a visual estimation of performances50. In our applications
we have focused on people detection and this category is already included into the available
ones, so we considered the COCO dataset an optimal solution for our purposes.

The YOLO network was training on these images using di�erent scale dimensions: the
images are fed to the network with sizes ranging from 320×320 to 608×608 with increments
of 3251. This variability helps the sensibility of network (convolutional) �lters to the details
of the image. Moreover, it helps the detection in identifying the object at di�erent scale
levels. We would stress that it does not put a limit into the input dimensions since the
�lter weights are independent to them. However, our tests highlight that the best results
are obtained rescaling the image to 608× 608.

The original implementation of the YOLO model (provided by Redmon J. in his web-
page) provides a pre-trained version of the model on the COCO dataset. For our applica-
tions we did not re-train the model52, but we converted the available weights to the Byron
format.

2.3.3 Results

The original implementation of the YOLO model was provided by Redmon et al. and it
is publicly available in his o�cial web page of the darknet project. The code is written in
Ansi-C and, only thank to the many branches developed by the Github community, it can be
compiled on all the OS. The Ansi-C language is a very low-level programming language and
it is hard to obtain better performances rewriting the code. This guarantees its supremacy
in terms of speed in the research community. The code is particularly optimized for GPU
applications: the darknet library provides an e�cient CUDA support and it can be optimally
used only with NVIDIA GPUs.

The proposed Byron library has been developed following the backbone and innovative
ideas provided by the darknet project. The main di�erence between them is the pro-
gramming language chosen: Byron is written in pure C++, a �higher�-level programming
language. Generally, we can not obtain better computational performances using C++ in
relation to an Ansi-C implementation. However, the C++ language is more popular than
Ansi-C and more easy to write and modify. The second main di�erence of Byron is related
to the target computational environment: it is designed and optimized to reach the better
performances on a single or multiple CPUs architecture. In this way we aim to enlarge also
the usability of our code. Many research groups, in fact, have very powerful server grade
machines, without a GPU support and it is hard for them to get close to the deep learning
applications. An emblematic case is given by the bioinformatics research, in which a large

49 COCO dataset is considered as a sort of standard in object detection applications and every new
proposed model provides its performances against it.

50 The object detection problem is considered an hard task for computer vision application, but it is a
straightforward task for human eyes.

51 The increment value chosen is exact the down-sampling factor performed by the architecture.
52 The training of YOLO model requires a lot of time and computational resources. All this work of

thesis was performed using a cluster machine shared among many users and thus it was impossible to
dedicate the full computational resources to a single application.

https://pjreddie.com/darknet/yolo
https://pjreddie.com/darknet/yolo
https://pjreddie.com/darknet/yolo
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amount of money are spent to buy e�cient server grade machines to process large DNA
datasets which are commonly processed using only CPUs support.

In the previous sections we have discussed about di�erent kinds of optimization related
to the various (possible) components of a Neural Network model. All these optimizations
were implemented in the Byron library to reach the best performances. Moreover, study-
ing the Redmon et al. implementation, many issues were found in the darknet project,
especially related to the multi-threading support and thread concurrency. Byron library
widely uses OpenMP features, paying attention to thread concurrencies, minimizing the
time for thread spawning. In Byron a single parallel section is open at the beginning of the
processing and it is closed at the end, with a carefully management of the threads along
all the network structure.

In view of these considerations, a �rst test was performed to compare the Byron e�-
ciency against the darknet one, in terms of time-performances. To compare the results, we
implemented the same YOLO model into our custom Byron framework and we compared
its time e�ciency against the original implementation. Tests were performed turning o�
the multi-threading support, since the darknet implementation uses it only in the GEMM
steps. We performed 5 independent simulations using the same input image to test the
time stability of both implementations. Each simulation performed 100 runs of both algo-
rithms. The results are shown in Fig. 2.22, where we have normalized our times in relation
to the darknet ones (reference).

Figure 2.22: Comparison of time performances between the Byron and darknet implemen-
tations of YOLO model. Simulations were performed keeping �xed the input image sizes
and without any multi-threading support. Each simulation includes 100 runs of both the
algorithms. The Byron version is approximately 3.8x faster than darknet in all the simula-
tions.

Both implementations are quite stable across the simulations and our measures show
a very tight variability. The di�erences in time performances are evident and we can
summarize them with a 3.8x speedup obtained by Byron against darknet. The multiple
optimizations discussed and used by Byron are proved by numerical results and they high-
light the e�ciency of our implementation against the state-of-art. We would stress that,
using our version of the model into a server grade machine (128 GB RAM memory and 2
CPU E5-2620, with 8 cores each), YOLO can process 416 × 416 images in real-time (less
than a second), while darknet can reach the same performances only with a GPU support.

Once the e�ciency has been proved, we �update� the YOLO model to overcome its
issues. In particular, we have discussed in the previous section (ref. 2.3.1) that the biggest
issue related to YOLO concerns the detection of small objects. Despite the model is
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incredibly e�cient in object detection also with low quality images, there is a sort of limit in
the number of pixels needed for object identi�cation. This kind of problems are particularly
critical in people counting tasks, and moreover in crowd counting applications. YOLO is
able to identify the major part of persons into an image, but it decreases its e�ciency when
they partly overlap or they are far from the camera (and thus at low resolution).

We had the opportunity to empirically verify its limit, working on a people tracking
project for real-time applications. The project was developed in collaboration with the
Complex Systems (PhySyCom) group of the University of Bologna, with the support of
Canon Inc., Telecom Italia and Fabbrica Digitale, and it aims to detect and track people,
using video camera devices. The experiments were executed around the streets of Venice
city, with the support of the Venice City Council. Using our custom implementation of
YOLO we were able to detect the major part of persons, but we lost e�ciency when the
people �ow increased or when we face with open space area (a crucial point was Piazza
San Marco).

In the previous section we have largely discussed about the e�ciency of Super Resolu-
tion techniques to improve the image quality, so it stands to reason that their application
will be helpful to overcome the told above issue. We applied the previously described
EDSR model to critical images, i.e where YOLO did not perfectly detect all the people in
the picture. For privacy reasons, we can not show the results obtained on Venice data, but
we can show a simple example to prove our combination of models. The example is shown
in Fig. 2.23.

Figure 2.23: YOLO people detections on a image ROI. (left) The original ROI and its
corresponding detections. (center) Up-sampling of the original ROI using a bi-cubic
algorithm and its corresponding detections. (right) Up-sampling of the original ROI using
the EDSR model and its corresponding detections. The use of Super Resolution model is
able to improve the YOLO detection of small persons of more than 200%. YOLO is not
still able to detect the smaller (far) persons.

On the �rst image (left of Fig. 2.23) we show only a small ROI of a (larger) input
image, where YOLO is able to �nd only few people. We would remark that the detected
people are all in the bottom part of the image, where person �sizes� are bigger. Using a
standard bi-cubic up-sampling (center of Fig. 2.23) detection performances are the same,
proving as standard up-sampling methods are not appropriate to overcome this task. The
application of EDSR model (right of Fig. 2.23) is able to improve the quality of the image
and ease the YOLO work. In this case the detection is more than twice of the previous
case. The issue remains for the top part of the image, where only few pixels identify a
person. Set out to test the limit of this model combination, we have extracted a further
ROI from it, selecting only the top part of the image. The results are shown in Fig. 2.24.

The task in this case is certainly harder and also human eyes hardly count the number
of persons into the image. With the raw image, YOLO is not able to �nd anything and
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Figure 2.24: YOLO people detections on a ROI of the previous image ROI. (left) The
original ROI and its corresponding detections. (center) Up-sampling of the original ROI
using a bi-cubic algorithm and its corresponding detections. (right) Up-sampling of the
original ROI using the EDSR model and its corresponding detections. Without the Super
Resolution application the YOLO model is not able to recognize any person. The bi-cubic
up-sampling allows the detection of only 2 persons against the 7 obtained by the use of
EDSR model.

also with the bi-cubic up-sampling only 1 person is recognized by the model. With the
EDSR pre-processing, the detection performance increases and 7 persons are recognized.
Certainly, the people count is underestimated, but Super Resolution pre-processing seems
to be the only available solution to improve YOLO performances on these critical cases.

2.4 Image Segmentation

In the previous section we have discussed about object classi�cation and object detec-
tion problems (ref. 2.3). Now we want to go deeper on this topic, aiming to extract the
exact pixels belonging to an object into a given picture. This kind of problem is called
Image Segmentation, i.e give a label to each pixel of the input image.

Image segmentation is a typical task in many research �elds and could be used for
di�erent purposes. Information about pixel-wise positions of an object into a picture could
be used to extract object shapes or to simplify and/or change the representation of an
image into something more meaningful and easier to understand. This is an hot topic
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especially for self-driving car applications, where we have to �nd the exact object shapes
to better estimate their perspective position. All these applications require algorithms fast
as much as possible, closed to real-time.

We can face these problems using image processing pipelines or training a Neural
Network model. In the �rst case, we have to stack a series of functions to process the input
image: the pipeline has to �lter and extract the useful information about the searched
object, but most of all it has to be as most general as possible to face common heterogeneity
of image samples. In the second case, we leave to the Neural Network model parameters the
search of the optimal functions combination, but we have to provide a supervised input
pattern made by several samples, i.e a combination of inputs and annotated pixel-wise
masks of each image. Image annotation is one of the most hardest and boring steps of
image segmentation and for these reasons it is very hard to �nd public dataset usable.

In this chapter we introduce a Neural Network model commonly used in image segmen-
tation problems, describing its characteristics and performances. We applied this model
to a novel dataset of CT images. The dataset annotation has been performed using a cus-
tom semi-supervised pipeline of image processing developed by the author and the Neural
Network model was trained and tested on this dataset. The original data were taken from
here [42] and the corresponding annotations are released on here.

2.4.1 U-Net model

U-Net neural network model is one of the state-of-art model in image segmentation. It
was �rstly developed for biomedical image segmentation, but it has shown its e�ciency
also in di�erent tasks and research topics. Its backbone is intrinsically a �common� CNN,
but the structure can be divided into two macro paths. The �rst path of the model is a
contraction path (or encoder), while the second one is an expansion path (or decoder). The
�rst set of layers, in fact, are a sequence of convolutional and pooling layers, which aim
to extract features and reduce the input dimensionality, in the same way as an encoder
converts a signal to a smaller range of values. The extracted features are then processed
by the decoder, i.e a second set of convolutional and up-sampling layers, to reconstruct the
feature map size and the segmentation mask. An illustrative representation of the model
structure is shown in Fig. 2.25.

Figure 2.25: U-Net model scheme. The �rst part of the structure represents the encoder,
while the tail of the model is the decoder part. The model name is given by the numerous
shortcut connections which link the encoder layers to the decoder ones: if we contract the
long-range connections the global structure acquire a U form. The �gure was generated
using the PlotNeuralNet package of H. Iqbal.

https://mrl.sci.utah.edu/software/normal-hip-image-data/
https://github.com/HarisIqbal88/PlotNeuralNet
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We have already discussed about the functionality of each layers in the previous sec-
tions: also in this kind of model a key role is played by shortcut connections. The decoding
path tends to loose some of the higher level features that encoder learned: using shortcut
connections the output of encoding layers are directly passed to decoding layers, so that
all the important pieces of information can be preserved.

In the previous sections, we have described the common loss functions used to train
Neural Network models. Considering the �simple� segmentation of an object from its
background, the ground truth mask, i.e the �label� of the input image, it would be a
binary matrix. In these cases a valid loss function (also used in our applications) is the
binary cross-entropy (ref. 2.1.10).

Figure 2.26: IoU score example. The IoU score is computed as the area of the intersection
of the two boxes over their union. Starting from the left we can see an increment of the
overlap between the two boxes related to an increment in their IoU score.

A word of caution must be spent about the metrics for the performance evaluations of
our model. Standard metrics, as the accuracy53, are not good measures to face segmenta-
tion problems. If we want to �nd and segment an object into a picture, we can reasonably
assume that the number of pixels concerning the object would be very few against the
number of pixels related to the background. Thus, the told above binary mask would be
a matrix with a large amount of zeros (background) and only few ones (object). In this
case the standard metric functions have to consider an unbalanced number of samples: if
the model outputs a matrix of all zeros, its accuracy would be high despite the informative
values are only the few pixels equal to one. A possible solution to overcome this issue is
given by the mean IoU score (ref. 2.3.1 for information about IoU), which measures the
average IoU between the output mask and the binary ground truth:

IoU =
Area of Overlap
Area of Union

(2.35)

The e�ciency and meaning of this score can be visible in Fig. 2.26.

2.4.2 Femur CT Dataset

The training of a deep Neural Network model as the U-Net requires a large set of images
with corresponding labels. We developed some experiments on automatic segmentation
into a (work in progress) project commissioned by the Rizzoli Hospital of Bologna. The
project aims to develop an automatic pipeline of image processing to extract the 3D femur

53 The accuracy measures the number of true positives + false negatives outputs on the total number
of predictions.
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structure starting from CT (Computer Tomography) images. In particular, the crucial
point is to improve femur head identi�cation and segmentation, trying to discriminate this
part of the bone from the articular cartilage and, moreover, from the acetabular fossa.
The project was developed in collaboration with the Engineering group of the professor M.
Viceconti of the Department of Industrial Engineering and it aims to study the osteoporosis
syndrome and its consequences.

In this work no data have been provided by the Rizzoli Hospital and it is hard to �nd
annotated biomedical (public) images on-line, especially about the region of our interest.
We found only few samples of femur CT images (4 patients) and they are certainly not
enough for an accurate training of the model. Thus, we applied a huge data augmentation
pre-processing: each image was randomly rotated, shifted and mirrored. Moreover, we had
to face on the problem of data annotation, which is always a di�cult and time expensive
task: we did not have accurate medical annotations, so we had to perform them by ourself.

Figure 2.27: Naive segmentation pipeline applied to a series of CT slices. The thresholding
algorithm combined with morphological operations allows to obtained a naive segmentation
of the femur bone. The centroid of the segmented connected components is used to �lter
the false positive results. This pipeline was used to simplify the annotation procedure of
the CT dataset.

The annotation was performed using a semi-automatic approach. We developed a cus-
tom image processing pipeline, applying a combination of thresholding and morphological
operations to extract as better as possible the bone structure from each CT frame (iden-
ti�ed as a pixels connected component). The thresholding operation produced many false
positives into a single image which had to be �ltered. We could (reasonably) assume that
the femur position did not change between two following images. Thus, once the multiple
pixel connected components were identi�ed, we �ltered them according to their relative
position into the image: each group of pixels obtained by thresholding had its own centroid,
which it remained quite the same also into the next slice (ref. Fig.2.27). An interpolation
of these components was performed to �lter only the femur parts. This method worked
quite good when we considered slices far from the femur head: when the acetabular fossa
became very close to the femur head, the two components were not divided. An example
of this kind of issues is shown in Fig. 2.28.
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Figure 2.28: Example of automatic segmentation using custom image processing pipeline.
Starting from the bottom of femur bone the detection seems good but when the method
starts to fail the failure is propagated to the next slices. The method is too naive to
perform a good segmentation on the full set of slices. However, it can be useful to reduce
the quantity of slices to annotate manually.

This image processing is just a naive approach and it could not solve the full segmenta-
tion task, but it can be considered as a good preliminary tool to produce annotated images.
With it we reduced the amount of required annotations by more than 50%. The other part
of the images were manually annotated. The manual annotation was performed without
any medical background and thus we can not ensure the goodness of our results. This work
only aims to proof the possibility of using deep learning techniques to face segmentation
problems.

Following this approach we have been able to annotate 104 CT images randomly sam-
pled from the 4 patient slices. In particular, we have extracted 40 slices from a single
patient and 96 from the remaining three. In this way we could use the 96 images as train-
ing set (applying the told above image augmentation pipeline) and the 40 remaining slices
as test set. We chose to use a single patient slices as test set because with the output
generated by the U-Net model we want to reconstruct the (approximated) 3D structure of
the femur bone. The 3D reconstruction is still in work in progress and we will not discuss
about it in the obtained results.

2.4.3 Results

We implemented the U-Net model and data augmentation pipeline using Tensor�ow frame-
work. We did not use our Byron or NumPyNet libraries since the training section is very
computational expensive and in this project we had the possibility to use a NVidia GeForce
RTX 2080 Ti, which can be easily managed using a Tensor�ow implementation54. The
training performances in terms of loss (binary CrossEntropy) and accuracy (we have al-
ready mentioned that it is not a good estimator in segmentation tasks, but it is �required�
in standard training plot) are shown in Fig. 2.29.

As can be seen in the left plot of Fig. 2.29 the binary cross-entropy loss tends to saturate
just after the 40th training epoch and in the same way also the accuracy score reaches its
plateau (notice that the starting value of the accuracy score is more than 93% and it proves
the incompatibility of this metric for segmentation problems).

Using the weights obtained by the training step we validated our model on the 40 test
images. We fed our Neural Network model with each CT slice and we �ltered the output55

using a thresholding of 10−2, i.e values less or equal to the threshold were turned o�.
From each slice the IoU score was computed taking the corresponding ground truth, i.e

54 We thank the PhySyCom group of the Bologna University for its support on this project and for the
availability of its computational resources.

55 The model output is a �oating point images with values ranging from 0 to 1. To compare the output
with a binary mask we have to apply a thresholding procedure to binarize the image.
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Figure 2.29: U-Net training scores in terms of loss (binary cross-entropy) and accuracy
score. After approximately only 40 epochs both the measures reached their plateaus. In
the same way also the validation score (computed over the test set) saturates.

the binary mask extracted with our semi-automatic (and not medically accurate) pipeline.
In Fig. 2.30 we show the distribution of IoU score over the 40 test images.

The major part of the test slices obtained a IoU score greater then 0.8 which corresponds
to a good agreement between U-Net output binary mask and the corresponding ground
truth. Only a 20% (10/40 slices) of the test slices have shown a IoU score less than 0.8
and thus a binary mask quite di�erent from the desired output. In Fig. 2.31 we show some
of the �good� results obtained using our trained model.

Despite the �rst slice showed in Fig. 2.31 could be easily segmented also by our custom
image processing pipeline (the bone extraction in this case is quite easy) the second two
slices show more issues: it is hard to discriminate between femur head and acetabular
fossa when the two components are so much close each other. In all these cases the U-Net
model is able to discriminate between the two bones with a good agreement with our naive
ground truth. The model still produces some false positive segmentations in these cases:
the output could be corrected reapplying our image processing pipeline and thus �ltering
the bone identi�cations in disagreement with the connected components centroids obtained
by the previous slice. To completely proof our results we need of more data and certainly
more annotated slices, but these preliminary results encourage us to use Neural Network
models, as U-Net, to face also this task.

2.5 Replicated Focusing Belief Propagation

Up now we have implicitly talked about Neural Network models based on the standard
updating rule of back-propagation. Other learning rules for weight updates have been
proposed and the choice of the best one it is still an open problem. The �nal purpose is to
obtain a feasible learning rule ables to model the biological learning of the human brain.

The learning problem could be faced through statistical mechanic models joined with
the so-called Large Deviation Theory. In general, the learning problem can be split into
two sub-parts: the classi�cation problem and the generalization one. The �rst aims to
completely store a pattern sample, i.e a prior known ensemble of input-output associations
(perfect learning). The second one corresponds to compute a discriminant function based
on a set of features of the input which guarantees a unique association of a pattern.

From a statistical point-of-view many Neural Network models have been proposed
and the most promising ones seem to be the spin-glass models based. Starting from a



88 CHAPTER 2. DEEP LEARNING

Figure 2.30: IoU (Intersection over Union) distribution obtained on the test set. The IoU
score quanti�es the agreement between U-Net output binary mask and the corresponding
ground truth. A perfect match corresponds to an IoU score equal to 1 and a completely
disagreement is given by a null value of IoU score. The 80% of the test set has obtained
a IoU score greater than 0.8 and thus a good correspondence between our results and
the ground truth. We would stress that the ground truth was obtained applying a custom
semi-automatic image processing pipeline which has not validated from a biomedical point-
of-view.

balanced distribution of the system, generally based on Boltzmann distribution, and under
proper conditions, we can prove that the classi�cation problem becomes a NP-complete
computational problem. A wide range of heuristic solutions to that type of problems were
proposed.

In this section we show one of these algorithms developed by Zecchina et al. [4] and
called Replicated Focusing Belief Propagation (rFBP). The theoretical background of the
algorithm is beyond the scope of this thesis, so we focus on its numerical implementation
and optimization.

Moreover, despite their proved theoretical e�ciency, the applications on real data are
still fews. Thus, we show the application of the optimized version of the rFBP algorithm
on a Genome Wide Association (GWA) dataset provided by the European COMPARE
project. This work was also presented on the 2019 CCS-Italy (Conference of Complex
System) [29].

2.5.1 Algorithm Optimization

The rFBP algorithm is a learning algorithm developed to justify the learning process of
a binary neural network framework. The model is based on a spin-glass distribution of
neurons put on a fully connected neural network architecture. In this way each neuron is
identi�ed by a spin and so only binary weights (-1 and 1) can be assumed by each entry.
The learning rule which controls the weight updates is given by the Belief Propagation
method.

A �rst implementation of the algorithm was proposed in the original paper [4] jointly
with an open-source Github repository. The original version of the code was written in
Julia language and, despite it is a quite e�cient implementation, the Julia programming

https://www.compare-europe.eu/
https://www.compare-europe.eu/
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Figure 2.31: Output mask of trained U-Net model and corresponding ground-truth and IoU
score. (�rst column) U-Net model output after a thresholding equal to 10−2. (second
column) Superposition of the original image with the generated binary mask. (third
column) Corresponding ground truth of the CT slice. (fourth column) IoU (Intersection
Over Union) score between the model output and ground truth slice.
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language stays on di�cult and far from many users. To broaden the scope and usage of
the method, a C++ implementation was developed jointly with a Cython wrap for Python
users. The C++ language guarantees better computational performances against the Julia
implementation and the Python version enlarges its usability. This implementation is
optimized for parallel computing and is endowed with a custom C++ library called Scorer
(see Appendix D for further details), which is able to compute a large number of statistical
measurements based on a hierarchical graph scheme. With this optimized implementation
we try to encourage researchers to approach these alternative algorithms and to use them
more frequently on real contexts.

As the Julia implementation also the C++ one provides the entire rFBP framework in
a single library callable via a command line interface. The library widely uses template
syntaxes to perform dynamic specializations of the methods between two magnetization
versions of the algorithm. The main object categories needed by the algorithm are wrapped
into handy C++ objects, easy to use also from the Python interface. A further optimiza-
tion is given by the reduction of the number of the available functions: in the original
implementation a large amount of small functions are used to perform a single complex
computation step, enlarging the amount of call stack; in the C++ implementation the main
functions are re-written, minimizing the call stack to ease the vectorization of the code.

The full rFBP library is released under MIT license and it is open-source on Github [22].
The on-line repository provides also a full list of installation instructions which could be
performed via CMake or Make�le. The continuous integration of the project is guaranteed
in every operative system using Travis CI and Appveyor CI which test more than 15 di�erent
C++ compilers and environments.

The Python wrap guarantees also a good integration with the other common Machine
Learning tools provided by the scikit-learn Python package; in this way we can use the rFBP
algorithm as equivalent alternative also in other pipelines. Like other Machine Learning
algorithm also the rFBP one depends on many parameters, i.e its hyper-parameters, which
have to be tuned according to the given problem. The Python wrap of the library was
written according to the scikit-optimize Python package to allow an easy hyper-parameters
optimization, using the already implemented classical methods.

Figure 2.32: Comparison of time performances between the two available implementations.
In orange the execution time of the Julia implementation (reference) provided by the origi-
nal paper of Baldassi et al. In blue the execution time of our Cython version provided in the
rFBP package. The simulations were performed varying the input dimension sizes (number
of samples,M , and number of variables, N). For each input con�guration 100 runs of both
algorithms were performed and the results were normalized by the Julia implementation
result. In these cases we �xed the magnetization to MagP64.

https://github.com/Nico-Curti/rFBP/blob/master/CMakeLists.txt
https://github.com/Nico-Curti/rFBP/blob/master/Makefile
https://github.com/Nico-Curti/rFBP/blob/master/.travis.yml
https://github.com/Nico-Curti/rFBP/blob/master/appveyor.yml
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Figure 2.33: Comparison of time performances between the two available implementations.
In orange the execution time of the Julia implementation (reference) provided by the origi-
nal paper of Baldassi et al. In blue the execution time of our Cython version provided in the
rFBP package. The simulations were performed varying the input dimension sizes (number
of samples,M , and number of variables, N). For each input con�guration 100 runs of both
algorithms were performed and the results were normalized by the Julia implementation
result. In these cases we �xed the magnetization to MagT64.

We �rstly test the computational e�ciency of our implementation against the original
Julia one. The tests were performed comparing our Cython version of the code (and thus
with a slight overhead given by the Python interpreter) and the Julia implementation as
reference. Varying the dimension sizes (number of samples, M , and number of variables,
N) we tested the time e�ciency over 100 runs of both the algorithms. We divided our
simulation according to the two possible types of magnetizations (MagP64 and MagT64
as described by the original implementation available here) and the obtained results are
shown in Fig. 2.32 and Fig. 2.33, respectively.

As can be seen by the two simulations our implementation (blue bars in the Figures)
always overcomes the time performances of the original one (orange bars in the Figures),
taken as reference in the plot. However, we can not guarantee a perfect parallel execution
of our version: also with multi-threading support the scalability of our implementation
does not follow a linear trend with the number of available cores. In our simulation, in
fact, we used 32 cores against the single thread execution of the Julia implementation
but we gained only a 4x and 2x of speedup for MagT64 and MagP64, respectively. The
network training is a sequential process by de�nition and thus it is hard to obtain a relevant
speedup using a parallel implementation. In this case it is probably jointed to a not perfect
parallelization strategy which bring to a not e�cient scalability of our version. However,
the improvements performed to the code allow us to use this algorithm with bigger dataset
sizes.

2.5.2 SNP classi�cation

Few available applications of the rFBP algorithm to real data are amenable to two aspects:
I) learning technique; II) algorithm implementation. The �rst one is related to the intrinsic
de�nition of the algorithm which is designed to reach a complete memorization of the
training dataset; in the other Machine Learning processes we normally want to avoid this
kind of results since it could bring to over-�tting problems. The second one is given by the
binary values involved in each step of the algorithm, which intrinsically limits the possible

https://github.com/carlobaldassi/BinaryCommitteeMachineFBP.jl
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applications56.
Classi�cation problems which involve only binary quantities are quite small, but the

GWA is one of them. In the GWA we have a series of genome data belonging to di�erent
classes as input. A genome is the ensemble of genes of an organism and each gene is
identi�ed by a series of nucleotides with 4 possible values (G, guanine; C, cytosine; A,
adenine; T, thymine). The comparison between a reference (healthy) genome and an
infected one highlights the biological mutation related to the underlying disease. In this
contest the mutations can be classi�ed as SNPs (Single Nucleotide Polymorphisms). The
biological classi�cation of possible gene-mutations is certainly more complex than this
rough description, but for the purposes of this work we can simply consider all kinds
of variations as polymorphisms57. Thus, we can identify a genome as a sequence of its
polymorphisms in relation to a reference one, i.e a sequence of two possible values given
by the on/o� of nucleotide mutation.

The COMPARE project aims to develop new methods to avoid the genetic disease
transmission. In this project plays a crucial role the Source Attribution, i.e the classi�cation
of a given disease based on the list of its polymorphisms.

We tested the rFBP on 210 Salmonella enterica genome sequences, 4857450 bp (base
pairs) long, living inside animals. Our early goal was to discriminate bacteria which lives
in pigs (159 samples) against to all the other animals (51 samples).

Figure 2.34: SNP sequences of Salmonella enterica samples used in this work. The x-axis
shows the genome bases and the y-axis the corresponding samples (210 samples in total).
The black dots are related to a base without polymorphisms (in relation to the genome
reference), while the white dots are the polymorphisms (SNPs) identi�ed. The �rst 159
rows contain the genome sequences related to pigs, i.e the sequences obtained by a pig
which host the bacteria, and the following ones contain sequences of other animals. Also
with naked eyes we can see the di�erences between the two data types.

First of all, we �ltered our data removing from each genome a base if it showed a
polymorphism in all the samples. In this way we reduced the number of bases to 8189 bp.
A graphical representation of these samples is given in Fig. 2.34. The dataset was divided
in training and test sets, using a strati�ed cross-validation procedure to guarantee a pro-
portional subdivision of the samples into the two classes. The hyper-parameters of the

56 The Neural Network weights can assume only binary values since they model up/down spins. Moreover
also the input is required to be a spin con�guration and thus binary. The common Machine Learning
problems involve �oating-point values as input pattern and it is not straightforward their conversion to
binary values without loosing information.

57I apologize to the expert readers and biologists.
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algorithm were tuned on the training set in relation to the performances obtained using
an internal strati�ed 10-fold cross-validation: in each fold the training was performed us-
ing a sequence of hyper-parameters and the performances evaluated on the corresponding
test set; the hyper-parameters con�guration which obtained the best performances on the
full training set was chosen as the best one. We used our custom Scorer library for the
performances evaluation. Considering the unbalanced sample quantities, the Matthews
Correlation Coe�cient (MCC) was chosen as good score indicator for the evaluation.

2.5.3 Results

Figure 2.35: Accuracy score obtained on the validation set varying the training set size.
We compared the trends of the whole set of classi�cation algorithms used.

With the tuned hyper-parameters we performed the training of rFBP algorithm on
di�erent percentages of the training set: 25%, 45%, 65% and 85%. In the same way we
trained also a list of the most common Machine Learning classi�ers: simple Perceptron with
�oating-point weights (Perc); standard Neural Network with gradient descent as updating
rule (MLP); support vector machine with linear kernel (lSVM); support vector machine
with radial kernel (rSVM); linear discriminant analysis (LDA); decision tree (DT); ran-
dom forest (RF); k-nearest neighbors with 2-clusters (kNN); Guassian process (GP); diag-
quadratic discriminant analysis (GNB); Bernoulli naive bayes (BNB); AdaBoost (AdaB).
For each training percentage we performed the optimization of the hyper-parameters of
each classi�er with the same number of optimization steps. In Fig. 2.35 2.36 the accuracies
and MCC results are shown, respectively.

From this analysis we can conclude that the rFBP algorithm shows comparable perfor-
mances with the other classi�ers. These performances globally grow with the training set
size, but only the rFBP was able to reach a �perfect learning� con�guration, i.e accuracy
of 100% and MCC=1. We have also noticed that the rFBP classi�er and the GNB were
the only two algorithms which qualitatively does not show performance saturation on their
training.

A second analysis was performed on the data distribution using a multiple χ2-test.
Starting from the whole set of genomes we can compute the contingency-matrix of the
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Figure 2.36: Matthews Correlation Coe�cient (MCC) score obtained on the validation set
varying the training set size. We compared the trends of the whole set of classi�cation
algorithms used.

two classes58. The χ2-test was performed on the full set of 8189 bp and so the extracted
p-values were corrected according multiple-tests. Using the �idák [83] correction method
and by the de�nition of signi�cant threshold of 0.05 we found 1103 signi�cant bases. An
analogous χ2-test was performed on the rFBP weights to identify a putative correlation
between a set of weights and mutated bases. This second χ2-test was performed only on
the simulation which involved the 85% of data as training set because it was the case in
which the rFBP algorithm shows the better performances than the other classi�ers. We
�rstly de�ned a base as signi�cant if its corresponding p-value was less or equal than 0.05:
in this way we could associate to each base a numerical weight of 0 if it was not signi�cant
an +1 or −1 if it was, where +1 identi�ed the pig class and −1 the other one. The set of
weights de�ned following these instruction could be associated to the �ideal set�. In this
way we could ensure that if the corresponding rFBP weights were equal to +1 in all the
signi�cant positions (and thus in all the signi�cant bases) for the pig class, the model output
would be +1 and −1 in the opposite case. This mechanism follows the Simple Perceptron
algorithm scheme (ref. 2.1.1) in which each weight is associated to a given entry of the
input samples. The rFBP algorithm follows the same rules with an activation function
given by the Heaviside Θ and it changes only the updating rule. Moreover, following this
method we could ensure that only the 1103 signi�cant bases extracted were associated to
a not null weight.

We took into account the 10 weights set extracted by the 10-Fold cross validation per-
formed to extract the previous results. From these 10 sets we extracted the representative
one using a simple average of their values: each weight entry was computed as the mean
of the 10 weight realizations. In this way each weight entry was converted to a �oating
point number and we can easily extract the set of weights perfectly equal to ±1. From our
analyses 5201 weights were consistently equal to ±1 in all the simulations, i.e the algorithm
assigned to 5201 weights always the same value. In this way we could consider these weight

58 The contingency-matrix displays the (multivariate) frequency distribution of variables. Each row
counts the number of hosts with/without the SNPs. Each column identi�es a class.
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entries as the signi�cant positions identi�ed by the rFBP algorithm.
These rFBP signi�cant weight set could be compared to the χ2 ideal set. From this

comparison we noticed a good agreement between the two sets: the major part of the signif-
icant bases for the χ2 multiple test could be found also in the signi�cant weights identi�ed
by the 10 realizations of the rFBP algorithm. In particular, we found that 838/841 bases
were signi�cant for both the methods. The rFBP algorithm correctly identi�ed 838/848
signi�cant bases related to the −1 class and only 3/255 bases related to the +1 class.

In conclusion, we could prove that the rFBP algorithm is able to identify the major
part of the signi�cant polymorphisms in the training set. However, the use of the only
training set to extract the signi�cant weights certainly penalized the rFBP algorithm and
a second simulation (without prediction purposes) was performed considering the full set of
data, i.e 10 realizations without cross-validation. In this second case the rFBP signi�cant
weights correctly identi�ed 702/1103 where 696/848 were related to the −1 class and 6/255
to the +1 class. In both cases we could conclude that the dataset did not contain enough
information for the +1 class identi�cation for the rFBP algorithm.

Following the above results, a �nal training was performed using only the signi�cant
bases identi�ed by the rFBP algorithm and only the signi�cant bases extracted by the χ2

multiple test, using the full set of available classi�ers. We noticed how the performances of
all the classi�ers are signi�cantly better using the bases extracted by the rFBP algorithm
(always over the 87% of accuracy) than the results obtained considering the χ2 signi�cant
bases (only few classi�er were able to obtain more than 85% of accuracy).

We conclude that our results highlight the e�ciency of the rFBP algorithm for genome
analyses and SNPs classi�cation problems. Moreover we could propose also the rFBP
algorithm as a valid feature selection alternative to classical statistical tests. These results
also encourage us to further investigate about the biological meaning of the signi�cant
bases identi�ed.





Chapter 3

Biomedical Big Data - CHIMeRA

project

Figure 3.1: Big Data 5 V's

Every second a large quantity of data are produced and shared along the Internet and
web-pages. Data are collected by social networks, chat messages, video streaming and
images. Everyone, in fact, can easily create new data sources and share or put them in

97



98 CHAPTER 3. BIG DATA

Internet pages. The growth of these data is not limited to multimedia data, but it involves
many di�erent �elds. This is one of the most important features of the contemporary
time, the so-called Big Data era: this huge volume of data is making a new �eld in data
processing, called Big Data Analytics, that nowadays is positioned among the top ten
strategic technologies (Gartner Research, 2012).

It is still di�cult to provide a de�nition of what exactly are Big Data and we can �nd
many slight di�erent nomenclatures and categories which aim to formulate its explanation.
Moreover, Big Data does not de�ne a particular data type, but more than we normally
think sources can be labeled as it. The International Journal of Computer Applications
de�ned them as �[· · · ] a collection of large and complex datasets that can not be processed
and analyzed using traditional computing techniques. It is not a single technique or a tool,
rather it involves many areas of business and technology�. This de�nition involves many
aspects of Big Data processing, but it does not provide any de�nition about their nature.
Moreover, it is easy to identify them as �big� and thus di�cult to analyze, but they are
around us every day and just using the Internet connection every smart-phone or laptop
can extract and visualize our web queries. So could not be properly correct to de�ne them
in this way. However, it is sure that standard computing techniques have to be reviewed
to face this vast amount of data and a even more important attention has to be paid on
the algorithmic implementations.

While a global de�nition of Big Data is evidently di�cult, we can provide a description
of them using some of their �essential� features. One of the most common and used set
of labels for this purpose is given by the so-called 5 V's of Big Data: volume, velocity,
variety, veracity and value. Despite the �rst twos are quite obvious (Big Data are certainly
big in volume and they are produced very fast), the remaining three need a particular
attention. We have already treated problems related to the volume of data (ref. Chapter1)
and the need of very fast processing and algorithmic optimizations (ref. Chapter2), so in
this chapter we want to focus on the remaining three characteristics of Big Data Analytics.

As pre-announced, there are many di�erent sources able to provide data and this feature
describes the extremely heterogeneity and variety of them. We can, however, broadly
classify this variety into three classes: structured, semi-structured and unstructured data.
A dataset is structured if we can easily manage the information in it or, in other words,
if it is described using a standard data format (it is �quearable�). On the other side, we
have the completely unstructured datasets, where data are disorganized and we need one
or multiple pre-processing steps before handle them. The intermediate format is given by
the semi-structured data, in which only a part of them could be handled with standard
techniques or we can lead them to their structured version. The organization of data has
been a crucial task in this work of thesis and we will return on this topic in the next
sections.

The fourth essential characteristic of Big Data is their veracity, due to data incon-
sistency and incompleteness. Data are shared very fast using Internet and we can �nd
some ambiguities and/or deceptions between di�erent data sources. If we want to merge
and aggregate di�erent kinds of information (harmonization), we have to face this kind of
problems. The �nal task of every Big Data Analytic application is, in fact, to process large
quantities of data and obtain a unique answer to a problem, which can not vary in relation
to the portion of samples or datasets used.

The last, and probably most important feature, is certainly their value: it is good to
have access to several data, but unless we can turn them into valuable information they
are useless. In this vast amount of data only a small part of them can be considered as
informative, and it is always hard to extract the informative core. Moreover, we have to
take into account also the di�culties about the management of these data and their more
or less complex structure. However, also in this case, it is hard to generalize this property
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to all data stored in Internet: every day we see a large quantity of useless information in the
Web and it is hard to �gure out that some of them can be useful for research applications.
A key role is played by the questions which we ask: for every data source, there is always
an appropriate question which can be answer using it and which can give a value to it, and
vice versa. In this way also the seemingly useless datasets can acquire importance for an
appropriate research project.

In this chapter we are going to discuss about the latest project developed during my
PhD and which is still in work in progress: the CHIMeRA (Complex Human Interactions
in MEdical Records and Atlases) project. The project is an extension of a task of the
INFN FiloBlu project (ref. next sections and Appendix E for further information about
the FiloBlu project) which �nanced my last PhD year. CHIMeRA aims to create a uni-
�ed database of biomedical records, using Natural Language processing techniques. Its
�nal purpose is to merge multiple data sources available on-line into a single network
structure, which highlights the relevant interactions between biomedical information, i.e
starting from diseases to the biological agents and compounds involved into their causes
and consequences. The realization of the �rst version of CHIMeRA has required a lot of
time and the development of novel pipelines of data processing. The project does not still
achieve its conclusions, but in this chapter we are going to cross through the main key
points which allowed its construction.

3.1 The CHIMeRA project

The increasing availability of large-scale biomedical literature under the form of public
on-line databases has opened the door to a whole new understanding of multi-level associ-
ations between genomics, protein interactions and metabolic pathways for human diseases.
Many structures and resources aiming to such type of analyses have been built, with the
purpose of disentangling the complex relationships between various aspects of the human
system, relating to diseases [90, 44, 55]. Such structures, while allowing to study disease-
to-some-other-omic associations, may not be su�cient when trying to bridge the gap of
interpreting results and concepts proo�ng clinical studies, when many types of data are
involved. Looking for causation of diseases across di�erent omics has also became a major
challenge, with the aim of expanding etiology and obtaining insights on pathogenesis [57].
This task may prove to be particularly hard when dealing with medical ontology strings,
coming from di�erent sources. Information of this type are usually provided by brief sen-
tences and periphrases, while synonyms may occur to describe the same concepts, causing
di�erent data source to provide di�erent relationships for similar instances. Text mining
and string processing is becoming a required step when trying to exploit medical ontology
as a bridge to di�use information.

All these data come from di�erent kinds of studies, performed by independent research
groups, who want to prove their theory about a particular aspect of biological agent inter-
actions. Modern biological analyses perform very capillary studies on biomedical agents,
deeply studying the relationships between them, but loosing information about what there
is around them. This approach is extremely e�cient for the detection of the minimal causal
agents of a problem, but it tends to loose its global and complex1 behavior. This is the
starting point of complex systems, i.e systems composed by multiple components with a
mutual interactions between them. The study of an individual aspect, in fact, could give
us only a partial overview of the system, but we have to take into account the interactions
between its multiple components for a global description.

Network structures are acquiring even more importance on this kind of studies. Com-
plex System and System Biology researches have proposed multiple models about the

1 From a physical point-of-view.
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dynamical and evolutionary interactions of the human system agents, aiming to study the
hidden relationships between them using graph models. A network structure, in fact, is
able to highlight and quantify non-trivial correlations between system components. The
mathematical de�nition of network structures is given by the Graph Theory. We de�ne a
network/graph as a pair G = (V,E), where V is a set of elements called nodes (or ver-
texes) and E is the set of their pairwise associations (links or edges). The total number of
graph nodes (or cardinality of the graph) is denoted by N and it de�nes the order of the
graph. The graph dimension is given by the number of its edges (m). We de�ne a graph
as complete graph if it has all its possible edges (m = N ×N). A network made by nodes
of the same type could be described via its adjacency matrix, i.e a matrix (N × N) in
which each row/column identi�es a node and each link eij quanti�es the importance of the
interaction between the node vi and the node vj . We de�ne the importance of a node into
the graph using the number of its connections: this is a classical centrality measure and it
is called node's degree centrality. Starting from these de�nitions, we can enrich our model
combining multiple network structure: given two graphs G(V,E) and G′(V ′, E′), we de�ne
their combination as a new graph, where its nodes are given by the intersection of V ∩ V ′
and its edges are given by E ∩E′. If V ∩V ′ = ∅ the two graphs are disjointed ; in contrary,
if V ′ ⊆ V and E′ ⊆ E then G′ is a subgraph of G. Combining multiple graphs together,
possibly including nodes of di�erent types, we obtain a network-of-networks structure ables
to map a wide range of interactions from multiple sets of elements. We will describe its
properties later.

In real data applications, we can often reasonably assume that a wide amount of matrix
entries are null, i.e the interaction between the involved agents is quite sparse, and we can
use important properties related to sparse matrices to manage our network. However,
when the amount of data increases, also the management of a such sparse matrix could be
di�cult. More e�cient solutions are provided by modern Database formats and languages
(e.gMySQL, SQLite, In�uxDB, · · · ), which store all the information into a binary format and
they allow to submit queries to extract the desired portion of data. A global visualization of
these huge amount of data is, in fact, without practical-sense and none valuable information
can be extracted from the global representation of the system. The most important feature
of network model is, in fact, the de�nition of a hierarchy of interactions: the relationship
between two nodes is given by the amount of connections which links them or, in other
words, by their paths. Starting from a node, its nearest neighbors are given by the set of
nodes connected to it: re-iterating this concept we can explore all the network structure2.
In this way we can study the interactions of each node at di�erent precision orders and
causalities.

In light of these considerations, we started to develop the CHIMeRA project (Complex
Human Interactions in MEdical Records and Atlases), in which we aim to merge state-of-
art studies and databases about biomedical researches into a uni�ed network-of-networks
structure. A key role on our network structure is played by diseases: the major part of
biomedical researches are focused on causes and consequences of a given disease, involving
the corresponding databases to store the interactions between them and other biological
factors. Diseases are also the most bigger manifestations of biological malfunctions and a
large part of the biomedical researches are �nanced on their study, looking for their �ne
grain causes. Thus, a disease could be a valid �bridge� between multiple data sources:
merging disease-nodes derived from di�erent datasets we can provide a unique structure
which hosts all the information.

The crucial point of this project has been, in fact, the merging of di�erent kinds of
information provided by multiple distinct data structures. As told above, the major part

2 We assume that our network structure does not have isolated nodes and it has only undirected
connections.
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of scienti�c researches have focused on a partial aspect of the problem and they provide
an independent result from the others, reducing the possibility of interactions between the
outputs. We tend to spend a lot of computational power to visualize the results using web
pages and on-line services, but they drastically a�ects the real usage of these information.
The CHIMeRA project began from these independent sources, aiming to maximize their
overlap and, thus, the communications between them.

We have to pay a �nal attention about the format of these data: in physics we are
friendly with numerical data, but in these contexts we have to work with words and text
strings. The told above databases include only the outputs of various researches and the
�interpretations� of the analyzed numerical data. For example, if a numerical signi�cant
correlation was found between a disease and a gene we would �nd an association between
them into a database (modeled as a link in our network). The only information available
into this database is a link between the two words, the disease name and the gene name,
without any numeric value. While numbers have a unique representation (the number 42 is
always 423) we can use multiple periphrases, i.e set of strings, to identify the same concept.
The biomedical community, in fact, has not yet provided a (public4) uni�ed standard for
disease identi�cation or, at least, it has not yet provided a rigid standard as for other kinds
of data as genes or SNPs. So, if the diseases could be an e�cient way to link together
multiple data sources, they throwback an extreme variability in their nomenclature. The
CHIMeRA project has tried to overcome this issue, using a Natural Language Processing
(NLP) approach.

In the next sections we are going to discuss about the multiple steps which lead us
to the formulation of our uni�ed CHIMeRA database. We will start from the preliminary
studies performed in collaboration with the INFN FiloBlu project, which allow the creation
of the SymptomsNet structure, i.e a �smaller� network based only on Italian words which
links diseases to their related symptoms. Then we will brie�y introduce the most common
NLP techniques, also used into the CHIMeRA pipeline and, �nally, we will show the main
developed features of our CHIMeRA network.

3.2 How to �nd the data - Web Scraping

The INFN FiloBlu project was developed by the collaboration between the Physics De-
partment of the University of Bologna and the INFN group of the Sapienza University of
Rome. The project aims to implement a NLP pipeline to process messages with medical
theme, helping doctor-patient interactions. Domiciliary care for oncology patients is pre-
ferred due to cheaper costs than hospitalization, and a more comfortable living for them.
To successfully follow therapies during domiciliary care, the patient is in constant contact
with health-care professionals and he is frequently monitored. Patients are interested in
an actively collaboration to the management of their health and they are willing to use
also ICT technologies. The FiloBlu project meets the citizens' needs developing a tool
to optimize the e�ciency and the e�ectiveness of care processes, developing two APPs
(patient and medical sides) to support doctor-patient communication. The �nal purpose
of the project is to process doctor-patient chat messages (using an interface similar to
�WhatsApp�), computing from them a score related to the patient state. The APPs are
equipped with features speci�cally designed for health-care applications and using a Nat-
ural Language Processing pipeline on the text messages they compute an �attention� score
for each text message. The �attention� score is then used to rank the patients' messages
on the medical-side APP, prioritizing (potential) critical situations.

3And it is certainly the right answer!
4 For sake of completeness we have to mention the MedDRA database which is a pay-to-use repository

of these information.

https://agenda.infn.it/event/16961/contributions/34949/attachments/24579/28029/filoblu_0312.pdf
https://www.meddra.org/
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FiloBlu was �nanced by POR-FESR project in Lazio region in collaboration with the
Sant'Andrea Hospital of Rome, so the project was developed only for Italian language
communications. This constraint drastically a�ects the data availability, which are very
hard to �nd on-line. Text message analysis concerns the evaluation of critical keywords and
medical terms, so we faced this problem generating a diseases ontology. In particular, we
are interesting in the relation between symptoms, diseases and their mutual interactions for
the realization of our score function. More details about the pipeline used for the message
processing are given in Appendix E - Neural Network as a Service.

The English is becoming the predominant language in the research community and it
is really hard to �nd (enough) data in other languages: everyone who wants to share his
data via Internet has to provide them in English if he wants to increase its visibility and
availability. The Italian constraint posed by the project, drastically limits the data sources
and no public databases were found. We would stress that as �database� we consider a
publicly available set of structured data, which can be downloaded and easily used.

Sur�ng on Internet many web pages can be found about diseases and their interactions
with symptoms and causes, the so-called on-line doctor5 (or Medical Services) pages. An
on-line doctor is a querable Internet service which allows user-auto-diagnosis based on the
information inserted. The reliability of the information stored in these tools is only partially
guaranteed by the service provider and, thus, it can not be considered as a scienti�c method
for medical diagnosis. However, the amount of information collected by these applications
is very interesting, and it can be used to simulate reasonable medical queries, needed by
our project. Also in this case, it is important to notice that, despite the availability of
these public information, the data are structured according to the web page needs and,
moreover, there is not an immediate download availability of the raw data.

So, how can we obtain these useful information and re-organize them into a structured
data format? The answer is given by the web-scraping techniques. With the term web-
scraping we identify the wide set of algorithms developed to extract information from
a website, or, more in general, from the Internet: while web-scraping can be done also
manually, with this term we typically refer to automated methods. All the Internet pages
are intrinsically pieces of codes written in di�erent programming languages (HTML, PHP, ·).
The major part of websites are written in HTML, an extreme verbose language, with more
or less JavaScript supports. The way chosen to write a code and to reach the desired output
is always left to the programmer: in these way we do not have a rigid standard (excepted by
the programming language constraints) and in each website underlies a potential completely
di�erent ensemble of code lines. Thus, the realization of a web-scraper poses several issues
to the programmer, who has to �nd underlying patterns inside the web page to get the
information stored. In other words, the web-scraping technique is an emblematic example
of Big Data Analytics algorithm, since it aims to extract a value from a large amount of
unstructured information (raw website code).

A web-scraping algorithm is made by a series of multiple steps, which have to be per-
formed automatically (without human overview). First of all, the algorithm has to rec-
ognize unique website structures: we can broadly summarize this task as the parsing of
the underlying HTML code. Inside the large amount of code lines6 are stored the useful
information for our application. So, the algorithm should be able to detect relevant and
interesting parts and �lter them. Then it can easily reorganize the information into a
usable data format and save the result.

There are multiple ways in which all these tasks could be addressed, and multiple open
source libraries provide user friendly interfaces for the creation of own web-scraper. The

5 Famous English applications are SteadyMD, MDLIVE, Sherpaa, LiveHealth Online and so on. Each
service provides slight di�erent information and the choice of the best one vary according to the user needs.

6 Very large if we consider a pure HTML web page.

https://www.steadymd.com/?utm_source=bestonlinedoctors&utm_medium=partner&utm_campaign=bizdev
https://www.mdlive.com/
https://sherpaa.com/
https://livehealthonline.com/
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most common one (and also used in our applications) is the BeautifulSoup [75] Python pack-
age. This package provides a very powerful Python library designed to navigate and read
website source codes. The integration of this library with other pre- and post-processing
techniques allows the extraction of the desired information from a website and, moreover,
their reorganization into a structured data format.

3.3 SymptomsNet

Find relationships between symptoms and diseases, and their re�ections on system-wise
perspectives such as genomics and metabolomics, still remains a crucial issue for medical
research, but nonetheless an open one. The relation between symptoms and diseases can be
used to see analogies and co-occurrences of di�erent pathologies, including morbidity and
co-morbidity. The construction of a unique and consistent database of these kinds of data
is an open problem for the research community and a crucial task for many actual projects.
The main problems arise from the complexity and heterogeneity of the available data and
from the many nomenclatures used by di�erent public databases. In many cases it is not so
clear how to infer associations between symptoms and diseases, and, in addition, di�erent
data sources provide di�erent connections. These information are stored as sentences and
periods of variable length and we have to face the problem about di�erent synonyms and
periphrases used to describe same concepts.

In our work, we used large-scale public on-line databases to construct a bipartite net-
work of human symptoms-diseases. A bipartite network (or bigraph) is a graph whose
nodes can be divided into two disjoint and independent sets: the underlying adjacent ma-
trix is rectangular (N ×M) and it describes the connections between N elements of the
�rst type and M elements of the second one. We can always lead back to a square matrix
(N ·M × N ·M) using zero blocks for intra-group connections. We used common tools
of natural language processing (see next sections for further informations about them) to
clean and standardize data, to maximize the overlap between di�erent data sources. After
its construction, this network has been used to establish a score of di�erent words based on
node centrality measures. This complex map of associations can be used, also, to link other
data sources and enrich the disease descriptions from other biomedical points-of-view.

Many on-line databases o�er auto-diagnosis tools and search engine in which the user
can insert a list of symptoms or diseases obtaining back the corresponding �diagnoses�.
While many international databases are quite consistent and supported by medical/bio-
logical research groups, the available data in Italian language are quite scarce.

Using the Italian version of the few public on-line doctor websites found, we obtained
the needed information. We applied a set of custom web-scraping pipelines to several web
pages to extract medical information, mainly focusing on sites which highlight relationships
between symptoms and diseases. We would stress that the extremely variability of websites
requires an equally varied set of web-scraping algorithms. Thus, for each web page taken
into account a relative web-scraper was developed. As discussed above the Italian data
sources are fewer than the English ones, so only three web pages have been taken into
account in our analysis: My PersonalTrainer7, SaniHelp8 and Sapere.it9. All these three
sites provide an organized series of tables which associate a disease to its corresponding
symptoms, so they are easily to treat with web-scraping algorithms. These databases are
not reliable from a scienti�c point-of-view and their vulnerabilities are shown also by a
non-rigid labeling of the two classes: in multiple cases we found a disease as symptom of a
di�erent one, without a perfect agreement between the three data sources. Possible issues

7 Arnoldo Mondadori Editore S.p.A.
8 Terms and conditions available here.
9 De Agostini Group.

https://m.my-personaltrainer.it/
http://www.sanihelp.it/
http://www.sapere.it/
https://www.iubenda.com/terms-and-conditions/210132
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related to an incorrect disease information could not be attributed to our web-scraping
pipeline, but they should be already present into the original data which, we want remark
it, they are the only Italian datasets publicly available and found.

The data extracted from the three websites cover a wide range of possible diseases
and from each of them we obtained a network with a few thousand nodes, our Symptom-
sNet. The overlap of single words contained in �disease-sentences� was quite low, so a
pre-processing was needed. Nodes were processed by standard natural language processing
techniques, extracting word stems to maximize the overlap between sources. If two dis-
eases showed di�erent symptoms, we decided to concatenate the list of edges to not loose
information.

The processed outputs create a network with 2 285 nodes and more than 29 000 links
(only the 1% of the total number of possible links). The �nal SymptomsNet is reported in
Fig.3.2, where node sizes are proportional to the number of their connections (Tab.3.1 for
the top ranking links).

Figure 3.2: Symptoms-disease network generated by merging of three public Italian web-
pages of auto-diagnosis search engine. The network connects symptom and disease words
according to the information found in the web sites. The network comprises 2 285 nodes and
more than 29k links. Node sizes are proportional to their centrality (number of connections
or degree score). In this way the most common symptoms/diseases are represented as the
biggest nodes.

In this simple example we can already notice as the most central (big) nodes are
associated to the most common symptoms-diseases, as expected. This result can be already
interpreted as a validation of the performed processing. We can notice from Tab.3.1 that
also in the top ranking nodes we �nd some diseases and related synonyms: this could be
an issue for the network structure, since it means that the developed processing pipeline
is not able to merge together di�erent words with equal meaning. However, the project
purpose was to create a reasonably good diseases ontology and this issue could be turned
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Disease/Symptom degree
Astenia 384
Febbre 313
Dispnea 225
Nausea 222
Anoressia 201
Ematemesi 193
Vomito 182
Debolezza 176
A�aticamento 176
Esaurimento 172
Mancanza Forze 168
Edema 158

Table 3.1: Top ranking links in SymptomsNet. We can notice �periphrases/synonyms�
associated to same symptoms, as Debolezza and Mancanza Forze which are left to increase
the heterogeneity of samples in the FiloBlu project.

to a strength of our applications: it proves that we have an agreement between di�erent
databases (synonyms have comparable degree score and thus same importance) and it
highlights the variety of mined terms (di�erent names which identify the same disease).
In fact, this kind of occurrences allow to consider a wide range of possible synonyms in
the score attribution, enforcing the text analysis required by the FiloBlu project: the node
degree can be used as weight (1/degree) for text words, obtaining a simple score for the
message given by the sum of the mapped keywords.

We conclude that from this very simple and preliminary work we are able to propose
a novel symptoms-diseases network based on Italian public databases and, far as the au-
thor knows, no other equivalent results are reported in literature. This work allowed also
the realization of a novel database obtained by the union of publicly available data. The
extracted centrality measures can be used as weights for the corresponding symptoms/dis-
eases and a valid input to model words frequency/importance in text analyses.

SymptomsNet is based on a bipartite graph which associates disease nodes to symptom
ones. These results highlight the potentiality of such structures and they leaded us to
further investigate about them and their creation. In particular, reiterating the same
procedure we could be able to join together di�erent bipartite graphs obtaining a network-
of-networks structure which stores multiple types of information. This is the main idea
behind the CHIMeRA project. To this purpose we have to manage more reliable data
sources and improve our natural language processing pipeline to increase dataset overlaps.
All these tasks can be easier performed using English words and validated databases. In
the next sections, we are going to discuss about what natural language processing means in
modern researches and we will describe the pipeline and databases used in the development
of the CHIMeRA network-of-networks.

3.4 Natural Language Processing

Natural Language Processing (NLP) is a quite novel research �eld driven by the in-
creasing availability of textual data (ref. Fig. 3.3). As told in the previous sections the
incoming of Internet world exponentially increases the amount of data shared by people,
and the major part of them are textual data, i.e data composed by words, phrases and,
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Figure 3.3: Number of publications containing the sentence �natural language processing�
in PubMed in the period 1978�2018. As of 2018, PubMed comprised more than 29 million
citations for biomedical literature.

more in general, texts. The NLP combines together techniques coming from linguistic,
computer science, information theory and arti�cial intelligence researches. It concerns the
interactions between human languages and computers or, in other words, it studies how
a computer can analyze a huge amount of natural language data, extracting numerical
information from them. This is a very hard task to perform since it is not straightforward
to teach to a machine how humans communicate between them. A key role is played by
arti�cial intelligence researches which develop new algorithmic techniques to face these
problems.

Most of the modern NLP techniques are based on a Machine Learning approach: thus
we can �nd statistical methods and deep learning algorithms which aim to solve these
tasks. A �rst step to perform is the conversion of the human speech into a machine
readable input; audio signals are so converted into string texts and only at this point the
input can be analyzed from the machine. Applying this work-�ow in forward and reverse
mode we can perform a communication between a human and machines, and vice versa. In
this section we will ignore how the conversion from human voice to numerical inputs could
be performed and its related problems and solutions, focusing on the latest part of this
pipeline, i.e in the description of the common techniques used to convert a string text into
numeric values. This is also the case related to our CHIMeRA project, in which we have a
huge amount of names and strings associated to medical terms and we want to standardize
them increasing their overlap.

First of all, we have to take care that each human language has its own characteristics
and thus it is hard to create a pipeline ables to process all the languages at the same time,
while it is easier to tune an algorithm on a particular language. In our work we focused on
Italian (SymptomsNet) and English (CHIMeRA Network) languages. Since SymptomsNet
project has been developed as simple proof of concepts, the developed Italian pipeline
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was really naive and, for sake of brevity, we will focus only on the CHIMeRA pipeline,
i.e the English one. We would stress that in our application we are not interested on
the understanding of words meaning, but we want to minimize the word heterogeneity,
maximizing their overlap. Thus, we have ignored the semantic strings meaning and we
have focused only on their syntaxes.

The syntax is the set of rules, principles and processes that govern the structure of
sentences in a given language. We can create groups of words applying grammatical rules:
grammatical rules have to be converted into algorithms which take in input a word and
give in output a processed version of it. In this case there is not a numerical output, but
just a reorganization of string letters and words. The most common techniques involved
in syntactic analysis are:

� Sentence breaking: it divides a continuous text into sentences placing boundaries.

� Word segmentation (tokenization): it splits a large set of continuous text into
units.

� Parsing: it provides the grammatical analysis of the provided sentence.

� Morphological segmentation: it splits words into individual units called mor-
phemes.

� Part-of-speech tagging: it �nds the grammatical parts of speech for every word.

� Lemmatization: it reduces the in�ectional forms of a word into a single form.

� Stemming: it cuts the in�ected words to their root form.

All these algorithms are very similar each other, so to better understand their func-
tionality is useful an example. Let start from a useless text taken from the NLP Wikipedia
web-page:

Listing 3.1: Original text
1 text = "Natural language processing (NLP) is a subfield of linguistics ,

computer science , information engineering , and artificial intelligence

concerned with the interactions between computers and human (natural)

languages , in particular how to program computers to process and

analyze large amounts of natural language data. Challenges in natural

language processing frequently involve speech recognition , natural

language understanding , and natural language generation."

First of all we notice that the text is made by two sentences, that can be broken using
a sentence breaking algorithm. In this way, we obtain a list of two strings given by

Listing 3.2: Sentence breaking
1 sentence_1 = "Natural language processing (NLP) is a subfield of

linguistics , computer science , information engineering , and artificial

intelligence concerned with the interactions between computers and

human (natural) languages , in particular how to program computers to

process and analyze large amounts of natural language data."

2

3 sentence_2 = "Challenges in natural language processing frequently involve

speech recognition , natural language understanding , and natural

language generation."

Now, we can divide each sentence into its set of words, using a word tokenization.
Focusing only on the �rst sentence, we obtain in output:

https://en.wikipedia.org/wiki/Natural_language_processing
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Listing 3.3: Tokenization
1 tokens = ['Natural ', 'language ', 'processing ', '(', 'NLP', ')', 'is', 'a',

'subfield ', 'of', 'linguistics ', ',', 'computer ', 'science ', ',', '

information ', 'engineering ', ',', 'and', 'artificial ', 'intelligence ',

'concerned ', 'with', 'the', 'interactions ', 'between ', 'computers ', '

and', 'human ', '(', 'natural ', ')', 'languages ', ',', 'in', 'particular

', 'how', 'to', 'program ', 'computers ', 'to', 'process ', 'and', '

analyze ', 'large', 'amounts ', 'of', 'natural ', 'language ', 'data', '.']

There are multiple useless tokens in the processed list and we can �lter them using
a type of part-of-speech tagging algorithm, which removes the so-called stop words and
punctuations. In our example our list of tokens becomes

Listing 3.4: Filtering stop-words and punctuations
1 tokens = ['Natural ', 'language ', 'processing ', 'NLP', 'subfield ', '

linguistics ', 'computer ', 'science ', 'information ', 'engineering ', '

artificial ', 'intelligence ', 'concerned ', 'interactions ', 'computers ','

human', 'natural ', 'languages ', 'particular ', 'program ', 'computers ', '

process ', 'analyze ', 'large ', 'amounts ', 'natural ', 'language ', 'data']

A �nal processing could be given by a stemming algorithm, which extracts the root
form of each word. Using a stemmer on the previous set of words we obtain

Listing 3.5: Stemming
1 tokens = ['natur', 'languag ', 'process ', 'nlp', 'subfield ', 'linguist ', '

comput ', 'scienc ', 'inform ', 'engin', 'artifici ', 'intellig ', 'concern '

, 'interact ', 'comput ', 'human', 'natur ', 'languag ', 'particular ', '

program ', 'comput ', 'process ', 'analyz ', 'larg', 'amount ', 'natur ', '

languag ', 'data']

As can be seen by this example, the stemming algorithm converts in lower case each
letter of each word and it removes the in�ections from each of them. This is a very naive
example, but we can already notice as our processing allows to merge multiple words
together. In the original sentence we have the word �Natural � (with capital letter) and
two occurrences of �natural � (lower case). Moreover, we have three occurrences of the
�computer � word, but only two of them are in singular form. The tokenization + stemming
processing allows to compare di�erent word forms making them compatible.

Combinations of these algorithms can be found in everyday applications, starting from
email assistants or website chat box, to the more advanced sentiment analyses and fake
news identi�ers [85, 30, 80, 91]. NLP pipelines are used also in biomedical applications and
modern multinational companies like Amazon, IBM or Google are �nancing di�erent kinds
of research on this topic. Amazon Comprehend Medical is a NLP service developed by
Amazon to extract disease conditions, medications and treatment outcomes from patient
notes, electronic health records and other clinical trial reports. At the same time, also
companies like Yahoo and Google base their �lters and email classi�ers on NLP algorithms
to stop email-spam. Also the hot topic of these last years about the fake news is faced
using NLP pipelines and the NLP Group at MIT is developing new tools to determine if
a source is accurate or politically biased based on text analyses.

In our applications we built a custom pipeline based on a part of the described above
functions. In the following sections we will describe in detail our pipeline: we would stress
that the e�ciency of our pipeline could not be generalized to other datasets, since our
purpose was to obtain the best result for our application. In other words, we had �ne-
tuned our pipeline based on the data used in this project. Moreover, we have to clarify
that our pipeline is not fully-automatic, but it was made according to a semi-supervised
approach: we customized the work-�ow following the encountered issues.

https://aws.amazon.com/it/comprehend/medical/
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3.5 CHIMeRA datasets

We have seen how we can extract useful information also from unstructured databases
using a web-scraping pipeline. The on-line doctor web pages could be very useful for a
toy model application like the SymptomsNet, but if we want to produce scienti�c relevant
results, we have to take care to the validity of data. Since English datasets availability is
easier than the Italian ones, we moved to more �robust� databases.

As told in the previous sections, there are a lot of studies performed on disease asso-
ciations to other biomedical agents and in many cases the resulting datasets are publicly
available on Internet. This is the case of DisGeNET [34] and DrugBank [58] datasets, which
contain relationships between a large number of diseases with genes/SNPs and drugs (and
other information), respectively. DisGenet web-page allows to download the dataset al-
ready stored into a well structured network format (sparse adjacency matrix, with 210 498
associations between 117 337 SNPs, 10 358 diseases and 17 549 genes), while DrugBank
poses more issues to the treatment of data: DrugBank was designed to provide a large set
of information related to each drug using its own website and thus it needs a huge pre-
processing of the JSON dataset structure to highlight all the possible network associations
(14 812 drugs, 649 metabolite pathways, 3 256 gene targets, 40 SNP targets, and 532 food
interactions). Using DisGenet we can connect diseases to their related genes and SNPs.
From the reviewed format of DrugBank, instead, we can link each disease to the associ-
ated drugs. Associated to each drug we have also a list of gene and SNP targets, which
can be merged to the information provided by DisGenet. Moreover, we can insert also
food interactions, metabolite pathways and drug interactions (synergies or not) extracted
from DrugBank. We would stress that, despite the trivial overlaps between the same data
types (genes, diseases and SNPs up to now), just using the rearrangement of these pairs
of databases into a network structure, we can already provide a possible extrapolation
of the underlying information, using the paths between nodes. Starting from a disease
inside DisGenet, using a single-database approach we can study �causality� relationships
with the connected genes or SNPs. Using a multiple-databases (or a network-of-networks
structure) approach, we can map that disease to other kinds of information like drugs,
foods and metabolite pathways. The purpose of a such network-of-networks structure is to
unveil relationships hidden by the underwhelming overlap between single-type information
across di�erent databases. The set of di�erent information merged can be exploited for
applications such as wide-scale drug e�ect evaluation and design addressing general diag-
nostic questions for systems medicine and diseases etiology expansion. In other words, a
network-of-networks structure allows the inference of the missing connections using node
contraction. A full list of the information collected by our web-scraping and rearrangement
pipelines into the CHIMeRA database is shown in Tab. 3.2.

To enlarge our disease information we looked at other on-line data sources. A very in-
teresting database is given by HMDB [87] (Human Metabolite Data Bank), which comprises
a vast amount of metabolites and metabolite-pathways with the associated drugs and dis-
eases (114 003 metabolite entries, with chemical taxonomies and ∼25 000 human metabolic
and disease pathways10). The interconnections with the previous discussed datasets are
straightforward, but in this case the data are not publicly available and we needed to apply
a web-scraping algorithm to get its information. An analogous procedure was applied to
extract the data stored into RXList database. RXList is an on-line website very similar

10 The human metabolite-pathways can be divided into di�erent types according to the informations
stored in the HMDB dataset. The interactions between HMDB and DrugBank is already established
through a vast series of hyper-links which connect them using metabolites and metabolite-pathways infor-
mation. In this way we mapped also the information related to metabolite-pathway types to DrugBank
dataset, obtaining a �ner grain nomenclature and classi�cation of these data. These information can be
used to improve our disease description. In Tab.3.2 is shown only the aggregated data.

https://doi.org/10.1093/nar/gkw943
https://www.rxlist.com/script/main/hp.asp
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disease drug food gene metabolite phenotype SNP metabolic
pathway

disease CTD RXList × DisGeNET HMDB CTD DisGeNET HMDB
RXList
SNAP

drug RXList DrugBank DrugBank × × × × DrugBank
food × DrugBank × × × × × ×
gene DisGeNET × × × × × × ×
metabolite HMDB × × × × × × HMDB
phenotype CTD × × × × × × ×
SNP DisGeNET × × × × × × ×
metabolic HMDB DrugBank × × HMDB × × ×
pathway

# nodes 63974 35161 532 18799 114100 13214 117337 1329

Table 3.2: Description of the data mined by the CHIMeRA project before merging. The
datasets were collected using custom web-scraping pipelines and by a rearrangement of the
public data. For each pair of data types we report the list of datasets used to evaluate the
interaction.

to the previous discussed auto-diagnosis tools, where we can �nd associations between
diseases, drugs and other several pathogenic associations. In this case we have a further
distinction between diseases: we have diseases related to drugs and diseases connected to
other caused-diseases. We have taken care of this kind of associations using directional
links11. We remark that each web-scraping pipeline has been customized according to a
precise website, so for each analyzed case a di�erent code has been developed to address
the data extraction.

All these information can enrich our database and the description of a given disease,
but we have to face the problem of data merging. As previously discussed, we do not
have a unique nomenclature for diseases and we found analogous names (periphrases or
synonyms) which identify the same concept (disease). A useful tool to overcome these
issues is given by a synonym dictionary: a powerful example is the CTD [39] (Comparative
Toxicogenomics Database, 7 212 diseases with mapped synonyms and 4 340 diseases with
related phenotypes) database. Using CTD jointly with SNAP [92] (Stanford Large Network
Dataset Collection, 8 803 disease terms with related synonyms) database we could enlarge
the number of synonyms associated to each disease name.

We remember that the crucial point of our merging procedure is given by the disease
nodes, since they are the node types shared along (almost) all the databases. The help
given by the synonym dictionaries increases the overlap between the mined datasets, but
we chose to maximize it using a further NLP pipeline. We began our pipeline using a word
standardization, i.e converting all words into their lower case formats and replacing all
punctuation characters with a unique one12. Then, we noticed that a not negligible part of

11 For sake of clarity, we encountered the same discrimination also into DrugBank dataset, in which we
had intra-drug connections related to synergies or not in the use of multiple drugs together.

12 An unexpected issue arise in this step: di�erent databases use di�erent enumeration systems. In some
entries we found disease names associated to numbers which identify their multiple types. An example
could be �Polyendocrine Autoimmune Syndrome type 1� but at the same time in a second database the
same disease could be represented by �polyendocrine autoimmune TYPE I�. Despite the global di�erences
between the two names, given in this case by upper- and lower-cases of some letters and the deletion of
some words, a very critical odds is the enumeration style. The performances of our pipeline dramatically
increased using a roman_number_converter algorithm.
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words involved into disease names was useless for the description: words like �syndrome�,
�disease�, �disorder�, �de�ciency�, · · · are not informative and they can be ignored (�ltered).
Then, we split disease names into a series of token according to the list of words which
compose them (tokenization) and sort them.

To further increase the overlap we transformed in�ected words to their root form, using
a stemming algorithm: the stemmer strength has to be tuned according to the desired
result. A �rst processing was performed using a Lancaster stemmer (more aggressive). If
the resulting output was too short to be compared with other names, the starting token
was processed by a Porter Snowball stemmer (less aggressive). The choice of the stemmer
algorithm is a very crucial task for NLP, because, using it, we irreversibly loose information.
Other processing steps were performed for critical cases encountered during the analysis:
these steps constrain our pipeline and they tuned it for the underlying application.

The work-�ow output includes multiple false-positive matches: the pipeline performs
a brute force processing and some information lost along the steps could be signi�cants.
These cases lead to having multiple processed (same) names belonging to several (di�erent)
diseases: an example is shown in Fig. 3.4. Considering the original name and the processed
one (pipeline output), we merged two names using a score match. This can be achieved
introducing the standard word metrics: a common distance between words can be evaluated
using the Levenshtein Distance which follows the equation

da,b(i, j) =


max(i, j) if min(i, j) = 0

min


da,b(i− 1, j) + 1
da,b(i, j − 1) + 1

da,b(i− 1, j − 1) + 1(a6=b)

otherwise
(3.1)

where a and b are two strings of length |a| and |b| respectively. The indicator function
1(a6=b) is equal to 0 when ai = bj and 1 otherwise. In this way the Levenshtein distance
between a and b evaluates the distance between the �rst i characters of a and the �rst
j characters of b. Despite the apparently complexity of the mathematical equation, the
Levenshtein Distance is a particular case of the more general Edit Distance, i.e a way to
quantify how dissimilar two strings are to another by counting the minimum number of
operations required to transform one string into the other. Also in this case an example
could be more explanatory: given the two strings �kitten� and �sitting�, their Levenshtein
distance is equal to 3, in fact

1. kitten → sitten (substitute �s� for �k�)

2. sitten → sittin (substitute �i� for �e�)

3. sittin → sitting (insert �g� at the end)

Using the Levenshtein formula we evaluated the distances between two original names
and we associated the disease to the higher scorer. A summary scheme of our pipeline is
shown in Fig. 3.4.

The described NLP pipeline further increases the database overlaps (e.g CTD-SNAP
24.17%; DisGenet-RXList 19.78%). We manually supervised the merging procedure taking
care to reduce the false positive percentage. In some cases, the overlap percentage remained
low also after the application of our pipeline (e.g. RXList-HMDB 8.03%; SNAP-HMDB
0.39%). Di�erent data sources could be focused on di�erent types of information and it is
therefore reasonable to assume that, in some cases, the overlap is low. We supervised these
critical cases with a manual check and we demonstrated our hypothesis. This behavior
supports our choice of the databases: they include complementary information, which
could improve the informative power of our structure. At the same time, this result also
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Figure 3.4: Scheme of the NLP pipeline developed in the CHIMeRA project. The disease
words are processed in multiple step as showed in the example.

proves the e�ciency of our pipeline, con�rming that the union of multiple data sources
can e�ectively enlarge our knowledge about biomedical agents.

The output of our merging procedure allows the realization of the CHIMeRA network-
of-networks, i.e a network with more than 3.6 × 105 nodes and more than 3.8 × 107

links (ref. Fig.3.5). In our resulting structure we have 7 node types: disease (63 974),
drug (35 161), gene (18 799), SNP (117 337), metabolite (114 100), phenotype (13 214),
metabolite-pathway (1 329) and food (532). The full network adjacency matrix is still a
block matrix, i.e we do not have all the combinations of information in our database. An
emblematic case is given by food nodes: we have food information only into DrugBank
and thus they would be connected only with drug types. On the other hand, our network
architecture could be easily improved adding new data sources: food nodes are pendant
nodes that could be easily connected to other kinds of data, introducing new node types
or just �lling the available blocks. CHIMeRA is still a work in progress project so we are
still looking for improvements and new databases to add.

3.6 CHIMeRA analyses

The large amount of information provided by CHIMeRA network has to be analyzed to
prove its e�ciency. A preliminary analysis was performed evaluating the nodes degree
centrality (the number of links associated to each node). The degree centrality is the
simpler measure to quantify the importance of a node into a network: since our network-
of-networks structure includes multiple node types we monitored it for each of them13.

13 We have chosen the degree centrality rather than other standard measures due to its numerical-
simplicity/informative ratio. CHIMeRA network-of-networks includes a large amount of nodes, so the
algorithmic complexity drastically a�ects the time performance. Degree centrality is given by summing
the in- out-connections and thus it is the faster solution also with large matrix as in our case.
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Figure 3.5: Graphical rendering of the �rst version of CHIMeRA network. The visualization
was performed before the inclusion of DrugBank dataset. For computational issues we have
not performed newer image of the global structure. In the image we represented disease
nodes (azure), gene nodes (orange), SNP nodes (purple), metabolite nodes (light green),
drug nodes (pink) and phenotype nodes (dark green). The visualization was obtained by
the Atlas layout provided by Gephi.
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mean std min 25% 50% 75% max
global degree 121.44 784.86 1 1 2 7 108147
disease 18.54 109.25 0 0 1 3 22911
drug 93.59 737.60 0 0 0 0 17750
food 0.03 0.32 0 0 0 0 12
gene 1.96 38.81 0 0 0 0 5605
metabolite 0.37 154.73 0 0 0 0 85236
phenotype 5.50 100.09 0 0 0 0 9732
SNP 0.65 21.96 0 0 0 0 4866
metabolic pathway 0.09 2.81 0 0 0 0 594
disease pathway 0.05 1.27 0 0 0 0 283
drug-action pathway 0.14 6.79 0 0 0 0 1006
drug-metabolism pathway 6× 10−3 0.28 0 0 0 0 60
signaling pathway 4× 10−3 0.29 0 0 0 0 49
physiological pathway 1× 10−3 0.07 0 0 0 0 13
macro pathway 0.48 106.06 0 0 0 1 59993

Table 3.3: Statistics of degree connections related to each node type stored in the CHIMeRA
database. For each node type the average, standard deviation, minimum value, maximum
value and percentiles of the degree distribution are reported. The �rst row shows the
aggregated value of degree scores.

In this way we can perform a preliminary overview of the full set of information in the
network. The results obtained by this test on degree centrality are shown in Tab. 3.3.

For each node type we computed the average number of connections and the most
important parameters of each distribution (minimum, maximum, average, standard devia-
tions and percentiles). This preliminary analysis con�rms what we have already discussed
during the creation of the CHIMeRA structure and thus that the minimum number of
connections is just 1 (ref. min row in Tab 3.3): disease nodes are the core of our network-
of-networks model but they do not have a direct link with food nodes; at the same time,
drug nodes, which are connected to the several other types do not include all of them.
Using the �ner grain distinction between the metabolite-pathways (obtained by the infor-
mation provided by HMDB) we noticed that the major part of their connections concern
the macro pathway category as expected: macro pathways identify the more general cate-
gory in our nomenclature, including biological processes like apoptosis, DNA replication fork
and phosphatidylethanolamine biosynthesis. A better visualization of the network structure
could be done counting the average number of connections between each node group, i.e
the block matrix visualization of the underlying bipartite-graphs. In Fig. 3.6 is shown this
block matrix representation.

In Fig. 3.6 we can better appreciate the connections between the available information,
visualizing and quantifying them. As expected, the only node type which is connected to
all the others is the disease one: the only exception is given by food nodes for the previously
discussed reasons. Our network-of-networks structure is very sparse and we do not have
direct information of the major part of combinations (null blocks). The only two node
types which show a reasonably good interaction with other blocks are the disease and drug
ones14.

14 For sake of clarity we have to highlight also the two diagonal blocks in our matrix, given by these two
node types. They arise from the synonyms and related causes in the �rst case (information provided by
synonym dictionaries and RXList), while in the second case they highlight the synergies or not (information
given by DrugBank). A network adjacency matrix tends to nullify diagonal information and node self-
loops to prevent numerical issues and to increase the amount of mathematical theorems for its analysis.
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Figure 3.6: Block matrix representation of the CHIMeRA network. We computed the
average number of connections between each node group and the bipartite-graphs structure
is highlighted.

The sparsity of CHIMeRA network-of-networks highlights all the pros and cons of our
work. More a matrix is sparse and more its management could be e�cient from a numerical
point-of-view: we are able to use a wide range of algorithms developed and tuned by sparse
algebra; also the memory occupation could be optimized and it is a crucial task when we
work with such a big quantity of data. At the same time, it highlights the potentiality
of our work: each block connection derives from a single database evaluation (in �rst
approximation), and we can reasonably assume that each block represents a possible output
of a query performed on that database. In our global database we have the union of all
these information and using at least the 2nd neighbors of a node (the nearest neighbors of
each nearest neighbor of a node) we could obtain a mapping of all available information
about it. Moving along the matrix blocks, in fact, we can start from a gene and see only
the associated diseases, which is comparable to a single-database query; since each disease
is connected to all the other node types, the 2nd neighbors of our gene give a panoramic
overview of all the biomedical agents associated to it. This process is equivalent to an
inference of missing blocks: if a gene is connected only to disease types, since all the other
blocks are null, we can infer missing blocks using the links provided by disease nodes.
This is the real power of a such network-of-networks structure. We would stress that the
inference procedure could lead to incorrect biological associations, since it represents only
an hypothesis unbacked up by data. However, using more database sources we can easily
integrate missing information using the developed processing pipeline and, thus, increase
the reliability of our hypothesis.

To further investigate the information provided by our network using the computed
degree scores, we evaluated degree distributions of each node type. In Fig. 3.7 we show
the degree distributions obtained considering the di�erent node types individually.

All the distributions showed in Fig. 3.7 have long tails, but we cut them for visualization
purposes. As expected and already highlighted by the previous analyses, the major part of
node types have a not negligible amount of nodes with very low connectivity. Many node
types have also isolated elements, i.e nodes with 0 degree. This behavior could be due to

We would stress that the showed matrix is not the adjacency matrix of CHIMeRA network but it is an
aggregate representation of it. Thus, in our network each node has connections only with other nodes and
no self-loops are present.
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Figure 3.7: CHIMeRA degree distributions for di�erent node types. The plot is cut for
visualization purposes. The maximum degree node information are highlighted in the box.

two possible causes: 1) our pipeline tends to remove some information and, thus, some true
positive associations; 2) there are some missing information in the original databases that
could not be overcome by our merging. Since the most part of isolated nodes are given by
metabolites (ref. Fig. 3.5 in which the green dots around the plot are isolated metabolite
nodes) we checked into HMDB the origin of these issues. In a not negligible number of
cases, HMDB does not provide a disease association to a given metabolite and it proves
our second hypothesis, preserving the e�ciency of our pipeline.

A more interesting result is obtained considering the most central nodes, i.e the node
related to the maximum degree score. This information could be used also as validity
check of the structure. As in the SymptomsNet case (ref. 3.3), we expect a reasonable
interpretation of the most central nodes. These results are shown in the yellow box of
Fig. 3.7.

The most central node for the SNP node type is rs113488022, well known polymorphism,
validated by more than 70 public researches. This SNP is related to a wide range of cancer
diseases and its clinical signi�cance has been proved in di�erent studies. It is always hard
to discuss about the more or less importance of a SNP compared to the others, but its
relation to several cancer types con�rms its centrality score in our network structure. A
more easily interpretable result is given by the most central gene, the TP53. TP53 is a
crucial gene in many tumor diseases and its importance is well mirrored in our network
structure. The major part of diseases inserted into public databases are related to tumor
researches, and thus it was quite obvious to obtain n high centrality of this gene in our
network. For the same reasons also the most central node for the phenotype type should
be a tumor related characteristic: as expected, the most central node in this case is given
by the apoptotic process, i.e the process which regulates the programmed cell death, which
is largely involved in tumor diseases.

As previously discussed about disease and drug types, we have to consider a large set
of available connections for them. Thus, we expected that a central node in these cases
would be given by a quite generic entry. About disease type, in fact, we found as most
central node the 3-methylglutaconic aciduria, a congenital metabolism anomaly related to
leukemia. Despite this disease could be considered quite rare, its importance in our network
structure is certainly given by the large amount of metabolite connections (we remember

https://www.ncbi.nlm.nih.gov/snp/rs113488022
https://ghr.nlm.nih.gov/gene/TP53
https://en.wikipedia.org/wiki/3-Methylglutaconic_aciduria
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that HMDB provides a very large amount of metabolite nodes that overcome the number
of all the other node types, except by SNPs). The large quantity of metabolites in our
structure weights on the number of disease connections and it proves the high centrality
of a metabolic disease despite a genetic one. Moreover, we have also to take into account
that this disease is related to leukemia, so we would have also a large set of genes and
SNPs associated to it.

Considering the drug type, we obtained a very common drug as expected, given by the
Ibuprofene. Ibuprofene is a very common anti-in�ammatory drug that is used for treating
pain, fever and in�ammation which are all very general symptoms associated to a wide
range of possible diseases. Thus, it is reasonable to assume that its number of connections
is greater than other (more target speci�c) drugs.

A more in-depth explanation must be provided for the metabolite pathway type, where
there are no seemingly reasonable explanations that prefer the found lipid metabolism to
other macro-metabolite pathways. To explain its centrality we, once more time, come back
to the original databases and to HMDB in this case. From a thorough inspection of HMDB
we noticed that the most of them were studied using NMR chemical shift procedure. NMR
chemical shift is a very common spectroscopy procedure to analyze biological compounds,
but its signal is hardly related to particular nucleus types (e.g 1H, 13C, 15N , · · · ). We
could broadly describe this technique saying that as much hydrogen-like or carbonic-like
structures are into the biological sample and much the signal should be easy to analyze. The
metabolite relation to lipid metabolism is thus easy to study than other metabolism kinds,
due to the large quantity of resonant nuclei involved15. This proves the high centrality of
lipid metabolism regard other metabolite pathways.

These results are only preliminary analyses of CHIMeRA network-of-networks structure,
but they are already able to clarify some potential use of our work. The only things that
remain to be discussed are the usability and release of this new database to the research
community.

3.7 CHIMeRA as a Service

We have discussed about the information stored into CHIMeRA database, but we have
ignored how we could manage these data. More than the realization of a useful database,
we have to provide an easy-to-use interface to encourage the research community to manage
our processed information. We have already discussed about how modern databases are
shared along the Internet and how these large quantities of data could be handled using
database languages (ref. 3.1). Now we have to �nd the best solution for our application.

We developed a �rst version of CHIMeRA database using SQL (Structured Query Lan-
guage) language16 and in particular the SQLite one. SQLite is probably the easier solution
for database management and the creation of e�cient queries is straightforward. It is a well
performing solution for standard relational databases, but it does not provide any facility
for network structures. Moreover, SQLite is not directly comparable to client/server SQL
database engines such as MySQL, Oracle, PostgreSQL or SQL Server since it is designed
only for local data storage and individual applications. It is extremely e�cient and simple
in its applications, but it does not cover the requirements posed by our CHIMeRA structure
and our needs about sharing information.

A more e�cient solution is provided by modern graph databases (GDB). GDBs are

15 Fatty acids in lipid mixtures are widely studied using NMR chemical shift since their molecular
structure involves multiple resonant nuclei such 13C, 31P and 1H.

16 SQL is a domain-speci�c language designed for managing data held in a relational database manage-
ment system (RDBMS) and it is particularly e�cient in handling structured data.

https://en.wikipedia.org/wiki/Ibuprofen
https://www.sqlite.org/index.html
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Figure 3.8: NoSQL Performance Benchmark 2018 (source here). Absolute & normalize
results for ArangoDBD, MongoDB, Neo4j and OrientDB. Comparison of time-performances
using di�erent (common) NoSQL queries. The �rst row shows the computing time on
di�erent NoSQL queries using ArangoDB. We mark with green boxes the solutions which
perform better than ArangoDB and with red boxes the worse.

databases which use graph structures to represent and store information: there are two
needed information for the database given by nodes and edges. The key concept behind this
kind of storage is the relationship between entries. They go under the NoSQL (not SQL, or
better �Not only SQL�) database category, which store data according to more sophisticated
models than simple tabular relations (typical model of SQL databases). GDBs allow simple
and e�cient retrieval of complex hierarchical structures by de�nition, representing the
most e�cient solution for our CHIMeRA database which is born as a network-of-networks
architecture. Several solutions have been proposed to address graph storages and there are
a wide range of possible GDB languages publicly available on-line (e.g Neo4j, OrientDB,
Sparksee, AllegroGraph, · · · ). Based on our experience about these topics and driven by the
available documentation (ref Fig. 3.8), we have chosen to use ArangoDB in our application.

ArangoDB is an open-source and free software released on Github for multi-model
database management with a uni�ed query language AQL (ArangoDB Query Language).
ArangoDB database system is NoSQL, but its queries are very closed to SQL ones and,
thus, they are easy to write also by no-expert users. The code core is written in C++ and,
thus, it is extremely e�cient from a numerical point-of-view (ref. Fig. 3.8). Moreover,
it provides also a user-friendly web interface for network visualization and query develop-
ment. The possibility to have a web interface allows an easy way to share our database on
Internet as a service, increasing the usability of our tool. Moreover, query outputs can be
also downloaded and used by external tools. Thus, using ArangoDB as service manager we
provide a Software as a Service (SaaS) interface of our CHIMeRA database (CaaS ). This
project is still in work in progress and this CaaS is not yet publicly available17.

We reformatted CHIMeRA network following the ArangoDB requirements and we cre-
ated the graph database structure of our data. Using this database we have been able
to perform the �rst queries and discuss about the results. The University of Bologna is
currently involved into the HARMONY European project for the analysis of hematological
data provided by multiple pharmaceutical companies. The HARMONY project aims to
describe, analyze and model multiple data collected by various partners, producing a per-

17 As soon as possible we intend to create it jointly to an adequate computational environment ables to
support multiple external queries.

https://www.arangodb.com/2018/02/nosql-performance-benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/
https://www.arangodb.com/
https://www.harmony-alliance.eu/
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sonalized medicine framework for the study of hematological diseases. This project is based
on the harmonization of di�erent databases in the same way as our CHIMeRA project aims
to merge multiple public data sources. The main focus of the HARMONY project is on
diseases related to di�erent kinds of leukemia. Leukemia is the most common type of cancer
in children and it causes hundred of thousands of death every year. It is an hematological
disease and its exact causes are still unknown. The developed CHIMeRA project could be
used to contribute to this kind of researches, giving a wider biological overview about these
diseases. Thus, we decided to formulate our �rst query on the leukemia disease.

We customized our query to extract only the 2nd neighbors related to this node. The
pseudo-code used for our query is shown in 3.6.

Listing 3.6: CHIMeRA 2nd neighbors query

FOR x IN node_type_vertex

FILTER x.name LIKE "looking_for_entry"

FOR v, e, p IN 1..3 ANY x GRAPH "CHIMeRA"

RETURN p

The query takes the node-collection (ArangoDB nomenclature) related to the searched
node type (node_type_vertex in the code) and it �lters all the names which satisfy the
LIKE condition. Starting from the found nodes, it returns the output graph preview made
by the 1st and 2nd neighbors (range of values 1..3 in the code).

We applied this query-like looking for leukemia node and we processed the results using
Gephi as network viewer. The obtained network is shown in Fig.3.9: the network involves
9 460 nodes and 26 646 links. As can be seen by the plot, just considering the 2nd neighbors
the obtained subnetwork is quite large and it highlights the biological complexity of this
disease.

Using the �generic� name of leukemia we found 291 di�erent types of leukemia diseases
into CHIMeRA, which denote di�erent facets of this disease. Despite these multiplicities
of results, we noticed that they clustered in only 82 connected components, highlighting
multiple similitudes between them. In particular, we found a giant components of 9 108
nodes and only other 6 components with more than 10 nodes. The giant component
includes 165 di�erent facets of leukemia disease, while the other connected components
describe the remaining ones. The powerful of CHIMeRA network born exactly from the
analysis of these cases, where we can infer missing information starting from the knowl-
edge about analogous researches given by the full set of information related to the giant
component found. In the giant component we can appreciate a description of the leukemia
disease given by all the other node types: we have 587 diseases, 4 drugs, 2409 genes, 40
metabolites, 154 metabolite pathways, 5195 possible phenotypes and 719 SNPs related to
them. The diseases associated to leukemia can help to highlight possible analogies (co-
morbidities) between this �di�cult� disease and �easier� ones (cause and related disease
connections) or simply provide a bridge to other node types (e.g drugs or genes) which are
not directly related to the leukemia using databases individually. We would stress that,
despite the phenotype node-type which includes the more general biological information,
all the other amount of node-types represent only a small percentage of the available in-
formation (disease 0.9%, drug 0.01%, gene 12.8%, metabolite 0.03%, pathway 11.5%, SNP
0.6%, phenotype 39.3%). It is important to monitor also this kind of percentages because
they could bring to possible biases in our description. A such biomedical overview could
not be found using single-database approach and, to the best of the author's knowledge,
only the CHIMeRA database is capable to map them.

The subnetwork extracted has more than half nodes as pendants (5 270/9 108 or 57%),
i.e with degree score equal to 1. We have already discussed about this feature of CHIMeRA
and, also in this case, we can use this behavior to connect other (possible) kinds of in-
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Figure 3.9: Output of leukemia query obtained by CHIMeRA graph database using 3.6.
The subnetwork is made by the 2nd neighbors starting from all the nodes which include
�leukemia� in their names. The subnetwork includes 291 di�erent types of leukemias clus-
tered into 82 connected components. The giant components is made by 9 108 nodes.
CHIMeRA query is able to give a biomedical overview of the leukemia diseases mapping
838 diseases, 2 463 genes, 5195 SNPs, 154 metabolite pathways, 40 metabolites and 5 drugs
associated to them.



3.7. CHIMERA AS A SERVICE 121

formation to improve our disease description. We are still working on the analysis of the
extracted information and, especially, about their biomedical interpretation related to the
leukemia disease. Moreover, we have to see how we can combine our data to the HAR-
MONY project samples. Thus, we end this chapter remarking the potential applications of
a such network-of-networks structure and its capability of give us a more global overview
of biomedical compounds in scienti�c researches.
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We have concluded our discussion about the applications of Big Data Analytic algorithms
to Biomedical data. In this work we have touched several and di�erent topics related to
this theme.

In the �rst chapter we have focused on the di�culties about information extraction,
analyzing high-throughput datasets. The so-called omics datasets are becoming a very
interesting research �eld in biology and medicine since, using modern data acquisition
techniques, they are capable to give a wide range of useful data for the analysis of multiple
diseases. A crucial role on this topic is given by tumors and, using omic data, we can design
novel methods to identify the agents responsible for these diseases. Biomedical Big Data
pose new challenges to the scienti�c research, since we have to convert them into useful
information or, in other words, we have to be able to identify their informative cores. To
this purpose we have designed the new DNetPRO algorithm as a novel feature selection
method.

We have tried to show all the pros and cons about the proposed algorithm. Only
knowing its limits we could be able to provide a reasonable interpretation about its results
and for this reason we �rstly tested our method on synthetic data. The proposed DNetPRO
pipeline was tailored on gene expression applications and we have shown its application on
real data, comparing its e�ciency against other state-of-art models in which it is able to
outperform them in the major part of the analyzed cases. Some these results are already
published in international papers or they are in press. We would remark that DNetPRO
could be used also as standalone feature selection algorithm, but, for sake of brevity, we
have discussed its application on non-biological data only in the Appendices of this work.

In the second chapter we have moved to numerical applications in the deep learning
research �eld. We have paid particular attention to the description and optimization of
some state-of-art deep learning models. In this chapter we have also introduced three new
custom libraries about this topic, which have been developed with di�erent purposes: the
NumPyNet is essentially an educational framework for the development of neural network
models, while the Byron library is focused on the numerical performances; the rFBP library
was designed for very particular applications and in this work we have just brie�y shown
one of them. Starting from the bases of neural network models, we have discussed about
di�erent kinds of functions (more or less straightforward) which are commonly involved
in the construction of a deep learning neural network architecture. For each function,
we have only summarily described its mathematical background, focusing instead on the
critical points related to its algorithmic implementation.

We have used the two developed libraries (NumPyNet and Byron) to highlight possible
ways to overcome these numerical issues. For sake of brevity, it has not been possible to
go in deeper details about the numerical improvements performed, but all the developed
codes have been shared and they are publicly available on the author's Github page. The
modern scienti�c research, in fact, is not made only by papers and publications but it is
acquiring even more importance the code development and, thus, its public availability.
By sharing our code on the Internet, we want to encourage the research community to
take in consideration also our promising results about these topics. We have touched
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di�erent state-of-art models and implementations of them along our discussion and in all
the analyzed cases our results overcome them with not negligible results.

The results obtained using Super Resolution and Segmentation models are very promis-
ing for the analysis of biomedical images. Moreover, we have shown that deep learning
models are capable of a very e�cient generalization due to their vast amount of parameters
and a well-programmed training section. In particular, our Super Resolution models were
trained on general-purpose (natural) images, but they are, however, able to reconstruct
biomedical NMR images better than standard methods. This, already discussed, result
is due to the ability of the model in the identi�cation of analogous textures and patterns
between the training and validation images, without need of a tailored retrain. We have
also seen how we can improve object detection e�ciency using a pre - Super Resolution -
processing: we could not show biomedical results on this topic due to lack of data and pri-
vacy reasons, but we have shown how a people-counting problem (Complex System task)
is improved by this.

We would remark that our work was focused on the optimization of those codes only
for CPU usages and, thus, we can not compare them to the wide world of GPU deep
learning models. We would, however, stress that we have intentionally chosen to focus
only on these computational environments, aiming to increase the usage of this kind of
models also in research �elds which do not need GPUs in their everyday works. There
are, in fact, a lot of scienti�c applications which are tailored on CPUs architectures and
which are pushed out to the deep learning researches, or which do not even try to use
deep learning models afraid by their intensive computational demand. We developed the
Byron library to overcome these issues and to highlight how a well-thought-out algorithmic
implementation can overcome also the more computational expensive applications.

All the developed algorithms were intensively pro�led against other state-of-art imple-
mentations and their pros and cons have been examined in order to �nd the best solution
for a given problem. Code testing has been performed also on di�erent operative systems,
since how well an algorithm is made, it is useless if it works only on a well-de�ned machine.
A continuous integration of our codes has been at the basis of all the proposed libraries,
as much as a reliable and user-friendly code documentation.

We have concluded our discussion introducing the CHIMeRA project which, even though
the analysis of its results is still in work in progress, gives us multiple points of discussion
about Biomedical Big Data. There is an increasing interest about database harmonization
in the last years and its need is given by the growing amount of publicly available data. The
research community is still trying to keep up with the new demand of data analysis and an
increasingly important role is played by the development of new computational strategies
and techniques. Many European projects �nanced by the Horizon 2020 Research and
Innovation program are focused on this topic and a particular attention is paid on the
health-care research.

The CHIMeRA project could not be compared to such big research programs, but it is
driven by the same kind of ideas. Its �nal purpose, in fact, is to use the wide range of
available information and results, obtained by independent research studies, and combine
them into a unique framework of analysis. Observational databases di�er in both purposes
and designs: they have been collected for di�erent purposes and the logical organizations
as much the medical terminologies can vary from source to source. A Common Data model
(CDM) is designed to overcome these issues and to o�er a unique solution for the informa-
tion storage in the same way as our CHIMeRA project merges together information provided
by multiple on-line databases. Unfortunately, the research community is developing a wide
range of CDMs and as long as a single solution is not taken as standard, the problem can
not be solved. Also in this case, we have not developed CHIMeRA as putative alternative to
this purpose, but it is simply a temporary solution which allows us to perform a panoramic
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overview of biomedical agents.
We have highlighted multiple possible usages of the developed CHIMeRA network-of-

networks structure and we hope it can be useful as an integrative tool also for the biggest
projects like the HARMONY one. In this work we have focused on the key steps which lead
us to the ideas behind the CHIMeRA project and, moreover, we have described di�culties
and their relative proposed solutions about the creation of a such network-of-networks
database. Despite the work has been intense up to now, the more interesting part from a
scienti�c point-of-view is just began. The CHIMeRA database is the only �code� discussed
in this work which is not yet publicly available, due to its embryonic stage, but hopefully
we can provide its �rst release as soon as possible.
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Appendix A - Discriminant Analysis

The classi�cation problems aim to associate a set of pattern to one or more classes. With
a pattern we identify a multidimensional array of data labeled by a pre-determined tag.
In this case we talk about supervised learning, i.e the full set of data is already annotated
and we have prior knowledge about the association between data and classes.

In machine learning a key rule is played by Bayesian methods, i.e methods which use a
Bayesian statistical approach to the analysis of data distributions. It can be proved that,
if the underlying distributions are known, i.e a su�cient number of its moments are known
with a su�cient precision, the Bayesian approach is the best possible method to face the
classi�cation problem (Bayesian error rate[36]).

Mathematical background

The exact knowledge of prior probabilities and conditional probabilities are generally hard
to evaluate, thus a parametric approach is often needed. A parametric approach aims to
create reasonable hypotheses about the data distribution and its fundamental parameters
(e.g mean, variance, · · · ). In the following discussion, we are going to focus only on normal
distributions for mathematical convenience, but the results could be easily generalized.

Given the multi-dimensional form of Gauss distribution:

G(x|µ,Σ) =
1

(2π)d/2 · |Σ|1/2
· exp

[
−1

2
(x− µ)TΣ−1(x− µ)

]
(3.2)

where x is a d-dimensional column vector, µ is the mean vector of the distribution, Σ is the
covariance matrix (d × d) and |Σ| and Σ−1 the determinant and its inverse, respectively.
We can notice the quadratic dependence of G by x,

∆2 = (x− µ)TΣ−1(x− µ) (3.3)

where the exponent (∆2) is called Mahalanobis distance of vector x from its mean. This
distance can be reduced to the Euclidean one when the covariance matrix is the identity
matrix (I).

The covariance matrix is always symmetric and positive semi-de�nite by de�nition
(useful information for the next algorithmic strategies) so it is invertible. If the covariance
matrix has only diagonal terms the multidimensional distribution can be expressed as the
simple product of d mono-dimensional normal distributions. In this case the main axes are
parallel to the Cartesian axes.

Starting from a multi-variate Gaussian distribution18, the Bayesian rule for classi�ca-
tion problems can be rewritten as:

18 In Machine Learning it will correspond to the conditional probability density.
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gi(x) = P (wi|x) =
p(x|wi)P (wi)

p(x)
=

1

(2π)d/2 · |Σi|1/2
·exp

[
−1

2
(x− µi)TΣi

−1(x− µi)
]
P (wi)

p(x)

(3.4)

where, removing constant terms (π factors and the absolute probability density p(x) =∑s
i=1 p(x|wi) · P (wi)) and using the monotonicity of the function, we can extract the

logarithmic relation:

gi(x) = −1

2
(x− µi)TΣi

−1(x− µi)−
1

2
log |Σi|+ logP (wi) (3.5)

which is called Quadratic Discriminant function.
The dependency by the covariance matrix allows 5 di�erent cases:

� Σi = σ2I - DiagLinear Classi�er

This is the case in which features are completely independent,
i.e they have equal variances for each class. This hypothesis
allows us to simplify the discriminant function as:

gi(x) = − 1

2σ2
(xTx− 2µi

Tx + µi
Tµi) + logP (wi) (3.6)

and removing all the xTx constant terms for each class

gi(x) = − 1

2σ2
(−2µi

Tx + µi
Tµi) + logP (wi) = wi

Tx + w0 (3.7)

These simpli�cations create a linear discriminant function and the separation surfaces
between classes are hyper-planes (gi(x) = gj(x)).

With equal prior probability the function can be rewritten as

gi(x) = − 1

2σ2
(x− µi)T (x− µi) (3.8)

which is called nearest mean classi�er and the equal-probability surfaces are hyper-
spheres.

� Σi = Σ (diagonal matrix) - Linear Classi�er



Mathematical background

In this case the classes have same covariances but each feature
has its own di�erent variance. After the substitution of Σ in
the equation, we obtain

gi(x) = −1

2

s∑
k=1

(xk − µi,k)2

σk2
− 1

2
log

s∏
k=1

σk
2 + logP (wi) (3.9)

where we can remove constant xk
2 terms (equal for each class) and obtain another

time a linear discriminant function and discriminant surfaces given by hyper-planes
and equal-probability boundaries given by hyper-ellipsoids. We remark that the only
di�erence from the previous case is the normalization factor of each axis that in this
case is given by its variance.

� Σi = Σ (non-diagonal matrix) - Mahalanobis Classi�er

In this case we assume that each class has the same covari-
ance matrix, but they are non-diagonal ones. The discriminant
function becomes

gi(x) = −1

2
(x− µi)TΣ−1(x− µi)−

1

2
log |Σ|+ logP (wi) (3.10)

where we can remove the log |Σ| term because it is constant for all the classes and
we can assume equal prior probabilities. In this case we obtain

gi(x) = −1

2
(x− µi)TΣ−1(x− µi) (3.11)

where the quadratic term is the above told Mahalanobis distance, i.e a normalization
of the distance according to the inverse of the covariance matrix. We can prove
that expanding the scalar product and removing the constant xTΣ−1x term, we still
obtain a linear discriminant function with the same properties of the previous case.
In this case the hyper-ellipsoids have axes aligned to the eigenvectors of the Σ matrix.
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� Σi = σi
2I - DiagQuadratic Classi�er

In this case we have a di�erent covariance matrix for each class
but they are all proportional to the identity matrix, i.e diagonal
matrix. The discriminant function in this case becomes

gi(x) = −1

2
(x− µi)Tσi−2(x− µi)−

1

2
s log

∣∣σi2∣∣+ logP (wi) (3.12)

where this expression can be further reduced obtaining a quadratic discriminant
function. In this case the equal-probability boundaries are hyper-spheres aligned to
the feature axes.

� Σi 6= Σj (general case) - Quadratic Classi�er

Starting from the more general discriminant function we can
relabel the variables and highlight its quadratic form as

gi(x) = xTW2,ix+wT
1,ix+w0,i with


W2,i = −1

2Σi
−1

w1,i = Σi
−1µi

w0,i = −1
2µi

TΣi
−1µi − 1

2 log |Σi|+ logP (wi)
(3.13)

In this case each class has its own covariance matrix Σi and the equal-probability
boundaries are hyper-ellipsoids oriented to the eigenvectors of the covariance matrix
of each class.

The Gaussian distribution hypothesis of data should be tested before using these clas-
si�ers. It can be evaluated using statistical tests as Malkovich-A�� based on Kolmogorov-
Smirnov index or using the empirical visualization of the data points.

Numerical Implementation

From a computational point-of-view we can exploit each mathematical information and
assumption to simplify the computation and improve the numerical stability of our com-
putation. We would remark that these considerations were taken into account in this

https://www.jstor.org/stable/2284163?seq=1#page_scan_tab_contents
https://en.wikipedia.org/wiki/Kolmogorov\T1\textendash Smirnov_test
https://en.wikipedia.org/wiki/Kolmogorov\T1\textendash Smirnov_test


Numerical Implementation

work only for the C++ algorithmic implementation, since these methods are already im-
plemented in high-level programming languages as Python and Matlab19.

In the previous section we highlighted the covariance matrix properties, i.e the co-
variance matrix is a positive semi-de�nite and symmetric matrix by de�nition and these
properties allow the matrix inversion. The computation of the inverse-matrix is a well
known complex computational step from a numerical point-of-view and in a general case
can be classi�ed as an O(N3) algorithm. Moreover, the usage of a Machine Learning clas-
si�er commonly matches the usage of a cross validation method, i.e multiple subdivision of
the dataset into training and test sets. This involves the computation of multiple inverse
matrices and it could represent the performance bottleneck in many real applications (the
other computations are quite simple and their algorithmic complexity are certainly less
than O(N3)).

Using the mathematical information about covariance matrix we can �nd the best
numerical solution for its inversion, that in this case is given by the Cholesky decomposi-
tion algorithm. The Cholesky decomposition or Cholesky factorization allows to rewrite a
positive-de�nite matrix into the product of two triangular matrices (the �rst is the conju-
gate transposed of the second).

A = LLT = UTU (3.14)

The algorithmic complexity is still the same, but the inverse estimation is simpler using a
triangular matrix and the entire inversion can be performed in-place. It can also be proved
that general matrix inversion algorithms su�er of numerical instability issues compared to
the output of Cholesky decomposition. In this case the original matrix inversion can be
computed by the multiplication of the two inverses as

A−1 = (L−1)T (L−1) = (U−1)(U−1)T (3.15)

As second bonus, cross validation methods involve the data splitting in multiple non-
independent chunks of the original data. The extreme case of this algorithm is given by
the Leave-One-Out cross validation in which the data superposition between folds is N −1
(where N is the size of the data). The statistical in�uence of the swapped data is quite low
and the covariance matrix would be quite similar across folds (the inverse matrix would be
drastically a�ected from each slight modi�cation of the original matrix instead). A second
step of optimization can be performed computing the original full-covariance matrix of the
whole set of data (O(N2)) and modify it into the right k indexes at each cross-validation
step (O(N ∗ k)) that in the Leave-One-Out becomes a single editing case. This second
optimization can also be performed in the Diag-Quadratic case substituting the covariance
matrix with the simpler variance vector.

In 3.7 the implementation of Cholesky decomposition used to invert the covariance
matrix is shown.

19 For sake of completeness we have to highlight that the classi�cation functions provided by Matlab, i.e
classify, are already included into the base software packages, i.e no external Toolbox is needed, while for
the Python case the most common package which implements these techniques is given by the scikit-learn
library. Matlab allows to set the classi�er type as input parameter of the function using a simple string
which follows the same nomenclature previously proposed. Python has a di�erent imports for each classi�er
type: in this case we found correspondence between our nomenclature and the Python one only in quadratic

and linear cases, while the Mahalanobis classi�er is not considered as putative classi�er. The diagquadratic
classi�er is called GaussianNB (Naive Bayes Classi�er) instead. The last important discrepancy between
the two language implementations is found in variance evaluation (and corresponding covariance matrix):
Matlab proposes the variance estimation only in relation to the mean so the normalization coe�cient is
given by the number of samples except by one (N − 1), while Python computes the variance with a simple
normalization by N .
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Listing 3.7: Cholesky inverse matrix
1 #include <iostream >

2 #include <cmath >

3

4 void Cholesky (const int & n, float * mat , float * p)

5 {

6 for (int i = 0; i < n; ++i)

7 for (int j = i; j < n; ++j)

8 {

9 const int idx = i * n + j;

10 float sum = mat[i * n + j];

11

12 for (int k = i - 1; k >= 0; --k)

13 sum -= mat[i * n + k] * mat[j * n + k];

14

15 if (i == j)

16 {

17 if ( sum <= 0.f )

18 {

19 std :: cerr << "Matrix is not positive definite" << std :: endl;

20 std :: exit (1);

21 }

22

23 p[i] = 1.f / std :: sqrt(sum);

24 }

25 else

26 mat[j * n + i] = sum * p[i];

27 }

28 }

29

30 void CholeskyInv (const int & n, float * mat , float * mat_inv)

31 {

32 float * p = new float[n];

33 std :: copy_n(mat , n*n, mat_inv);

34

35 Cholesky(n, mat_inv , p);

36 for (int i = 0; i < n; ++i)

37 {

38 mat_inv[i * n + i] = p[i];

39

40 for (int j = i + 1; j < n; ++j)

41 {

42 float sum = 0.f;

43

44 for (int k = i; k < j; ++k)

45 sum -= mat_inv[j * n + k] * mat_inv[k * n + i];

46

47 mat_inv[j * n + i] = sum * p[j];

48 }

49 }

50 }

Both these two techniques have been used in the C++ implementation of the Quadratic
Discriminant Analysis classi�er and in the Diag-Quadratic Discriminant Analysis classi�er
used in the DNetPRO algorithm implementation (see 1.1).



Appendix B - Venice Road Network

Tourist �ows in historical cities are continuously growing in a globalized world and ade-
quate governance processes, politics and tools are necessary in order to reduce impacts on
the urban livability and to guarantee the preservation of cultural heritage. The ICTs o�er
the possibility of collecting large amount of data that can point out and quantify some sta-
tistical and dynamic properties of human mobility emerging from the individual behavior
and referring to a whole road network. In this work we analyze a new dataset that has been
collected by the Italian mobile phone company TIM, which contains the GPS positions of a
relevant sample of mobile devices when they actively connected to the cell phone network.
Our aim is to propose innovative tools allowing to study properties of pedestrian mobility
on the whole road network. Venice is a paradigmatic example for the impact of tourist
�ows on the resident life quality and on the preservation of cultural heritage. The GPS
data provide anonymized geo-referenced information on the displacements of the devices.
After a �ltering procedure, we develop speci�c algorithms able to reconstruct the daily
mobility paths on the whole Venice road network. The statistical analysis of the mobility
paths suggests the existence of a travel time budget for the mobility and points out the role
of the rest times in the empirical relation between the mobility time and the corresponding
path length. We succeed to highlight two connected mobility subnetworks extracted from
the whole road network, that are able to explain the majority of the observed mobility.
Our approach shows the existence of characteristic mobility paths in Venice for the tourists
and for the residents. Moreover the data analysis highlights the di�erent mobility features
of the considered case studies and it allows to detect the mobility paths associated to dif-
ferent points of interest. Finally we have disaggregated the Italian and foreigner categories
to study their di�erent mobility behaviors.

The datasets

The dataset used in this study has been provided by the Italian mobile phone company
TIM and contains geo-referenced positions of tens of thousands anonymous devices (e.g.
mobile phones, tablets, etc. ...), whenever they performed an activity (e.g. a phone call or
an Internet access) during eight days from 23/2/2017 up to 02/03/2017 (Carnival of Venice
dataset), and from 14/7/2017 up to 16/7/2017 (Festa del Redentore dataset). According
to statistical data, 66% of the whole Italian population has a smart-phone and TIM is
one the greatest mobile phone company in Italy whose users are ∼ 30% of the whole
smart-phone population. The datasets refer to a geographical region that includes an area
of the Venice province, so that it is possible to distinguish commuters from sedentary
people and the di�erent transportation means used to reach Venice. Each valid record
gives information about the GPS localization of the device, the recording time, the signal
quality and also the roaming status, which in turns allow to distinguish between Italian
and foreigners. The devices are fully anonymized and not reversible identi�cation numbers
(ID) are automatically provided by the system for mobile phones and calls within the scope
of the trial; the ID is kept for a period of 24 hours. During each activity a sequence of GPS
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data is recorded with a 2 sec. sampling rate and the collection stops when the activity
ends. As matter of fact during an activity most of people reduce their mobility except if
they are on a transportation mean, so that the dataset contains a lot of small trajectories
that have to be joined to reconstruct the daily mobility. After a �ltering procedure these
data provide information on the mobility of a sample containing 3000 � 4000 devices per
day. Since the presences during the considered events were of the order of 105 individuals
per day, as reported by the local newspapers, we estimate an overall penetration of our
sample of 3 � 4%. The �ltering procedure and the other statistical information about the
sample penetration are discussed in the original paper [64].

Mobility paths reconstruction on the road network

The procedure of mobility path reconstruction considers separately the land mobility and
the water mobility since the two mobility networks have di�erent features, so that it is
necessary to check carefully the transitions from one network to the other. To create
a mobility path, we connect two successive points left by the same device using a best
path algorithm on the road network with a check on the estimated travel speed to avoid
unphysical situations and discarding the paths whose velocity is clearly not consistent with
the typical pedestrian velocity (or ferryboat velocity). To end a land path and to start a
water path, we require that at least two successive points of the same device are attributed
to a ferryboat line by the localization algorithm. In the case of a single point on a ferryboat
line, we force the localization of this point on the nearest road on the land.

The reconstruction of the mobility paths also allows to study how people perform their
mobility on the road network. We consider the problem of determining the most used
subnetwork of the Venice road network. The existence of mobility subnetworks could be
the consequence of the peculiarity of Venice road network, where it is quite easy to get
lost if you do not have a map. Therefore people with a limited knowledge of the road
network move according to paths suggested by Internet sites or following the signs on the
roads. To point out a mobility subnetwork we rank the roads of Venice according to a
weight proportional to the number of mobility paths passing through each road. Thus
We de�ne a relevant subnetwork as a connected subnetwork that explains a considerable
fraction of the observed mobility. In this case each road (identi�ed by two nodes in the
poly-line format) represents the link of our weighted graph and we can apply the DNetPRO
technique shown in 1.3.3 to identify the network core with only closed paths20.

Starting from the previously evaluated daily �ows for each road, we order in a decreasing
way the roads according to the observed �ows. The DNetPRO algorithm scrolls down the
list adding the road to a temporary list. At every step the �pruning process� starts on
the selected roads cutting the isolated roads in order to get a connected subnetwork21.
Therefore the number of nodes of the subnetwork increases in a discontinuous way, when
the adding of a new road in the list allows to connect several previously selected roads.
After several parametric scans, we found that the best result for our purposes is achieved
by choosing about the 10% of the nodes in the whole Venice road network. In Fig 3.10
we show four consecutive selected subnetworks in the case of Carnival dataset to illustrate
how the algorithm operates.

20 Pendant nodes are unphysical solutions in our model since we are interested on the pedestrian mobility
paths that bring people from one location to an other.

21 Since we are interested on the largest connected component the merging parameter is o�.
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Figure 3.10: From top-left to right-bottom, we plot four mobility subnetworks with in-
creasing number of roads, selected by the DNetPRO algorithm using the Carnival dataset.

Using the DNetPRO algorithm we are able to extract a subnetwork which explains the
64% of the observed mobility using 13% of the total road network length for the case of
the Carnival dataset and 15% of the total length in the case of the Festa del Redentore
dataset.

The selected road subnetworks are plotted in Fig 3.11 for both the datasets. As a
matter of fact, many of the highlighted paths are also suggested by Internet sites. However,
we remark some di�erences that can be related by the di�erent nature of the considered
events. During the Carnival of Venice the mobility seems to highlight three main directions
connecting the railway station and the Piazzale Roma (top-left in the map), which are the
main access points to the Venice historical centre, with the area around San Marco square,
where many activities where planned during 26/02/2017. In the case of the Festa del
Redentore the structure is more complex due to the appearance of several paths connecting
the station and Piazzale Roma with the Dorsoduro district in front of the Giudecca island.

This geometrical structure could have a double explanation: on one hand the Festa del
Redentore introduces an attractive area near the Giudecca island, where the �reworks take
place in the evening; on the other hand the Festa del Redentore is a festivity very much
felt by the local population, that knows the Venice road network and performs alternative
paths.

On these subnetwork we also map the mobility of Italians and foreigns separately. The
results of this application are deeply discussed in the paper.
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Figure 3.11: Picture (a): selected subnetworks (highlighted in purple) from the road net-
work of the Venice historical centre (in the background), that explain 64% of the recorded
mobility in the datasets. The top picture refers to the Carnival mobility during 26/02/2017
and corresponds to 13% of the total length of the Venice road network. The picture (b)
refers to the Festa del Redentore mobility during 15/07/2017 and corresponds to 15% of
the total length of the Venice road network.
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Figure 3.12: (a) Chain graph rendered by BlendNet software. Node colors are randomly
generated by the tool. (b) Star graph rendered by BlendNet software. Node colors and
labels are given as extra columns in node-list �le.

Graph visualization is still an open problem in many applications. The problem is
commonly related to large graph visualization in which problems arise from the rendering of
a large number of nodes and a greater number of links between them (a graph with N nodes
could have (N ×N) possible links). An other open problem concern the multi-dimensional
visualization of the graphs. Despite common graph tools compute the node coordinates
in any space dimensions (and clearly the maximum number of possible dimensions for
a visualization is only 3) the real visualization is often allowed only in 2D spaces. The
counterpart of these problems concern a pretty visualization of the graphs, that it is often
ignored by many tools which prefer focusing on simple renderings.

In this section we introduce a new custom graph viewer developed for pretty small-
networks visualization in 2D and 3D, called BlendNet [16] (Blender Network viewer).
BlendNet is an open-source project and it is released on Github under GPL license. All the
small-graphs showed in this work are made using this tool and in particular the feature-
signatures generated by the DNetPRO algorithm.

BlendNet is written in Python with the help of Blender APIs. Blender is now a standard
for 3D rendering and it is commonly used in a wide range of graphical applications, starting
from the simpler 3D dynamics to video-game applications. Blender is certainly more than
a simple graphical viewer, but it provides an easy Python interface and a wide on-line
documentation which make it a useful tool for graphical representation of 3D structures.

We are forced to use the Python version provided by Blender to use its APIs and any
extra-package required by our application has to be installed with the appropriated pip.
We use the networkx Python library for node coordinates computation and thus we have
to update our Python-Blender with the appropriated packages. Moreover, since the code

https://github.com/Nico-Curti/BlendNet
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can be di�cult to manage for non-expert users, we have written an easy command-line
interface to set the whole set of parameters required by the graph viewer that can be piloted
via Make�le rules. The list of nodes and edges can be passed via command-line with the
relative �lenames, in the same format of the concurrent graph viewers (e.g Gephi software,
the other graph viewer used in this work to generate the larger network structures of the
CHIMeRA project).

The software project is a single script �le and it includes a full list of possible examples
and usages. Some of this examples are shown in Fig. 3.12. A full list of installation in-
structions is also provided for any operative system (Unix, MacOS and Windows). These
instructions cover a full installation of Blender, Python and BlendNet package for adminis-
trator and no-root users (ref. Shut project [19]). With slight code editing we can obtain
di�erent node coordinates and shapes. Node colors, sizes and positions can also be given
using the node-list �le as independent columns.

https://github.com/Nico-Curti/BlendNet/blob/master/Makefile
https://github.com/Nico-Curti/BlendNet/blob/master/example
https://github.com/Nico-Curti/BlendNet/blob/master/install.sh
https://github.com/Nico-Curti/BlendNet/blob/master/install.ps1
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Performances

Figure 3.13: Multi classes score interaction graph. Each node identi�es a di�erent perfor-
mance evaluator and the links are given by the interactions between mathematical formu-
lations of each quantity. The graph has more than 100 nodes and more than 200 links.
The node colors are given by the classes identi�ed in the work of Sepand et al. [41].

The performances evaluation is a crucial task in any Machine Learning application.
Given a set of patterns and its corresponding (true) labels, we can evaluate the e�ciency
of a given model with a comparison between labels and model outputs, i.e the predicted
labels. There are a lot of di�erent score functions that can be computed and each of them
evaluates some aspects of the model e�ciency. Any paper author choses the score that
better highlights the advantages of its model and it is di�cult to move around this large zoo
of indicators. Moreover, (it is quite a constant in scienti�c research) when a paper is send to
a peer-review, in many cases the reviewers suggest to check if other performance indicators
are good enough for the showed results. This means that a lot of large simulations should
be performed again and the appropriate variables recomputed to obtain the required scores.

At this point the main question is: are these scores totally independent one from each
other? The brief answer is simply no. In a very interesting work of Sepand et al. [41]
the authors show how we can compute a wide range of these scores starting from the
evaluation of the simple confusion matrix22, providing a full mathematical documentation
and references about their numerical evaluations.

22 The confusion matrix is a square matrix of shapes (N,N), with N the total number of classes in the
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Despite the Python code provided by Sepand et al. explains these links between the
mathematical quantities, they stop their analyses on the score evaluations, without any
interest on the optimization of these computations. Starting from their work we analyzed
the inter-connections between these mathematical formulas and we extracted the depen-
dencies between the involved variables. In particular, a score function can be interpreted
as a node and its connections could be given by the variables needed to evaluate it. This
type of graphs are commonly called factor graphs. In a mathematical formulation of factor
graphs there are di�erent kinds of nodes (variables and factors, or equations). The focus of
our analysis was not on the mathematical formalism of these kinds of graphs, but we aimed
to a visualization of function interactions and an analysis of the numerical improvements
derived from it.

In the work of Sepand et al. the authors identify three function classes: common
statistics, class statistics and overall statistics. In Fig. 3.13 the interaction graph of these
three classes is shown. The �gure shows deep interactions between the three function
classes and it highlights the dependencies of the di�erent quantities involved. We can also
use this kind of visualization to formulate computational considerations about the order in
which these quantities could be evaluated. Since the graph is a direct graph by de�nition,
we can start from the root node (the node without links which bring to it) and cross the
network up to the leaf nodes (nodes without links which go out from them) like in a tree-
graph (or more precisely a DAG, Direct Acyclic Graph). At each step of the percolation,
the incoming nodes identify totally independent quantities. This independence means that
the node-quantities can be potentially computed in parallel. To clarify this consideration
we can reorganize the graph visualization minimizing the link lengths and obtaining a
strati�ed graph in which each level identi�es a potential parallel section. A graph with
these properties was obtained using the dot visualization and it is shown in Fig. 3.14. As
can be seen in the �gure we can identify 7 levels in the graph and thus 7 potential parallel
regions for the computation of the full set of functions.
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Figure 3.14: Re-organization of the graph in Fig. 3.13. The rendering was obtained using
the dot visualization, i.e the minimization of the link lengths. The direct graph identi�es
the tree of dependencies and each level of the tree represents a set of independent functions
that can be potentially computed in parallel. This graph is used as parallel scheme for the
Scorer library.

These considerations allow us to create an optimized version of the code of Sepand et
al., the Scorer library [23]. The Scorer library is the C++ porting of the PyCM library
of Sepand et al. with a Cython wrap for the Python compatibility. Following the above
told graph, the computation of score quantities are performed in parallel according to the
7 levels found. The parallelization strategy chosen uses the section keywords of OpenMP
library to perform no-wait tasks that are computed by each thread of the parallel region.

current problem, whose entries are the number of right and false classi�cations. In particular, each entry
of the matrix represents the predicted instances in a given class. If the class is the right one we call it as
true positive item. As counterpart we have a false positive item.

https://en.wikipedia.org/wiki/Factor_graph
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The extracted graph includes more than 100 di�erent quantities so writing the full
set of parallel sections becomes an hard (and boring) work in C++. Moreover, update
the graph with new quantities brings to a consequential update of the full code and also
of the parallelization strategy. Each function was written as an anonymous-struct, i.e
a functor, with an appropriate operator overloading. Each functor has a name given
by a pre-determined regex (get_{function}) and the list of arguments follows the same
nomenclature23. With these expedients we created a fully automated Python script which
parses the list of functors, it computes the dependency graph and the parallelization levels
and it gives back a compilable C++ script with the desired characteristics. In this way
we can guarantee an easy way to update the library and moreover we overcome the boring
writing of a long code. The automatic creation script is provided in the Scorer library and
it should be used at each pull request or version update.

For a pretty/useful visualization of the computed quantities we rendered the interaction
graph in an HTML framework. In this way we can insert with a CSS table the computed
values in each node that can be discovered passing the mouse over the �gure. An example
of this rendering is given in the on-line version of the library [23].

In conclusion the developed Scorer library is a very powerful tool for Machine Learning
performances evaluation which can be used either in C++ either in Python codes through
its Cython wrap. The code is automatically generated at each update and automatically
tested using continuous integration for any platform using Travis CI and Appveyor CI24.
The code can be compiled using CMake�le or Make�le and a setup.py is provided for the
Python version. So when you write a new paper on Machine Learning and you do not know
what could be the most appropriate indicator to show in your research or you are afraid
that a referee could ask you to compute an other one there is only one solution: compute
them all using Scorer.

23 If the functor receives in input the variable A and B we have to ensure that two functors named
get_A and get_B will be provided. The only exception is given by the root functor.

24 We perform tests for Unix and Windows environments. We check more than 15 combinations of
environments and compilers.

https://github.com/Nico-Curti/scorer/blob/master/.travis.yml
https://github.com/Nico-Curti/scorer/blob/master/appveyor.yml
https://github.com/Nico-Curti/scorer/blob/master/CMakeLists.txt
https://github.com/Nico-Curti/scorer/blob/master/Makefile
https://github.com/Nico-Curti/scorer/blob/master/setup.py




Appendix E - Neural Network as a

Service

One of the �nal goals of Machine Learning is certainly the process automation. We develop
everyday complex models to perform tasks that should be automatically executed by a
computer without human supervision. Neural Networks are classical mathematical tools
used for these purposes and we have widely discussed about them in Chapter 2 of this work.
Beyond Neural Network structures and purposes for which they are made, there is still an
uncovered topic to discuss: the automation of these kinds of algorithms into a computer
device. In this section we are going to discuss an implementation of these algorithms as a
service in a computer server. In particular we will talk about the implementation of the
FiloBlu service which is part of a project developed in collaboration with the Sapienza
University (Rome) and the INFN Data Center CNAF of Bologna. This work is still in
progress and its purpose goes beyond the current topic, so we will focus only on the
implementation of the service, without any reference on the Machine Learning algorithm
used. This is a further proof that the developed techniques are totally independent by the
�nal application purpose.

A service is a software that is executed in background in a machine. In Unix machines
it is often call daemon, while in Windows machine is called Windows service. A service
starts only with administrator privileges and it goes on without any user presence. An
other important requirement is the ability to restart, when some troubles occur in the
machine functionality and/or at the boot of the machine.

A Machine Learning service could be used for applications in which we have to manage
an asynchronous stream of data for long time intervals. An example could be the case in
which the data provider is identi�ed by an APP or a video-camera. These data should
be stored inside a central database, that can be located in a di�erent device or in the
same computer in which the service runs. Since the service runs in background, the only
communication channel with the user is given by log �les. A log �le is a simple readable
�le in which are saved the base information about the current status of the service. Thus,
it is crucial to set appropriate check-points into the service script and chose the minimum
quantity of information that the service should write to make user-understandable its
status.

FiloBlu Service

In the FiloBlu project we have a stream of data provided by an external APP that are stored
in a central database server. The Machine Learning service has to read the information
stored into a database, it processes them and �nally it writes the results into the same
database. All these operations have to be performed with high frequency since the output
results have to be shown in a real-time application. This frequency would be the clock-time
of the process function, i.e at each time interval (as small as we like) the process task will
be called and we will have the desired results in output. At the same time we have to take
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care about the time required by our Machine Learning algorithm: not all the algorithms
can process data in real time and the frequency of process function has to be less than the
time required by the algorithm or we can loose some information.

We obtain the best e�ciency from a service splitting as much as possible the required
functionality in small-and-easy tasks. Small tasks can be evaluated as independent func-
tions with an associated frequency that in this case can be reduced as much as possible.
The FiloBlu functionalities can be reviewed as a sequence of 3 fundamental steps and other
2 optional ones: 1) read the data from the database, 2) process the data with the Machine
Learning algorithm and 3) write the obtained results into the database; 4) update the
Machine Learning model and 5) clear old log �les are optional steps. To further improve
the service e�ciency we give each (independent) step to a di�erent thread. The whole set
of tasks are piloted by a master thread given by the service itself. In this way the service
is computational e�cient and moreover it does not weight on the computer performances.
We have to take in mind that the computer which hosts the service has to be a�ected
by the daemon process as less as possible either in memory either on computational e�-
ciency. The last step is the synchronization of the previous tasks with appropriate clock
frequencies.

Let's start from the data reading function. Since our data are assumed to be stored
into a database, this function has to perform a simple query and extract the latest data
inserted. Obviously the e�ciency of the step is based on the e�ciency of the chosen query.
The data extracted are saved in a common container shared between the list of threads
and thus it belongs to the master. The choice of an appropriate container is a second point
to carefully takes in mind. This container should be light an thread-safe to avoid thread
concurrency. While the second request is implementation dependent, the �rst one can be
faced on using a FIFO container25. In this way we can ensure that the application will save
a �xed amount of data and it will not occupy large portion of memory (RAM).

The second task is identi�ed by the Machine Learning function which processes the
data. The algorithm takes the data from the FIFO container of the previous step (if there
are) and it saves the results into a second FIFO container for the next step. The time
frequency of the step is given by the time required by the Machine Learning algorithm.

The third step takes the data from the second FIFO container (if there are) and it
performs a second query (a writing one in this case) to the database. Also in this case the
frequency is given by the e�ciency of the chosen query.

The last two steps can be executed without time requirements and they are useful only
on a large time scale.

Each step performs its independent logging on a single shared �le. If an error occurs the
service logs an appropriate message and it saves the current log-�le in a di�erent location
to prevent possible log-cleaning (optional step). Then the service restarts.

We implemented this type of service in pure Python and the code is publicly available
on Github [18]. The developed service was customized according to the server require-
ments of the project26. We chose the Python language either for its simplicity in the code
writing either for its thread native module, which ensures a total thread-safety of each
variable. Using a set of function decorators we are able to run each function (callback) in a
separated-detached thread as required by the previous instructions. The project includes a
documentation about its usage (also for general applications) and it can be easily installed
via setup.py. In the FiloBlu project we used a Neural Network algorithm written in Tensor-
�ow as Machine Learning model. Tensor�ow does not allow to run background processes

25 FIFO container, i.e First-In-First-Out, is a special data structure in which the �rst element added
will be processed as �rst and then automatically removed from it.

26 The FiloBlu service is a Windows service and it can not run on Unix machines. Moreover, the database
used in the project is a MySQL one so the queries and the libraries used are compatible only with this kind
of database.

https://github.com/Nico-Curti/FiloBluService/blob/master/setup.py


CryptoSocket

Figure 3.15: FiloBlu Service computation scheme.

directly, so the problem was overcame using a direct call to a Python script which per-
formed the full list of steps into an in�nite loop. In this way the service could be restarted
also if the process-service was killed. The service can be driven using a simple Powershell
script provided in the project.

Data Transmission

In the above con�guration we focused on the pipeline which processes the stream of data,
ignoring any problem about the communication between the external device and the ma-
chine which hosts the service. The FiloBlu project uses an external APP to send data
to the main server, so we have two systems which have to communicate between them
automatically via Internet connection. In general, we could manage sensitive data, that
could be vulnerable using an Internet communication. To face this problem we devel-
oped a simple TCP/IP client-server package which also supports a RSA cryptography, the
CryptoSocket package [24].

The communication security could be an important point in many research applications
and a valid cryptography procedure is essential. The RSA cryptography is considered one
of the most secure cryptography algorithm for data transmission and it is quite easy to
implement. In the CryptoSocket package we implemented a simple wrap around the socket
Python library to perform a serialization of our data which are (optionally) processed by
our custom RSA algorithm. In this way di�erent kinds of data could be sent by the client
at the same time. The client script could be adapted with slight modi�cations for any
user need and also complex Python structures could be transmitted between two machines
(to the server). The cryptography module was written in pure C++ for computational
e�ciency and a Cython wrap was provided for pure-Python applications. CryptoSocket has
only demonstrative purpose and so it works only for a 1-by-1 data transmission (1 server
and 1 client).

Since this second implementation could be used also for other applications it was treated
as a separated project and it has its own open-source code. The CryptoSocket package can
be installed via CMake in any platform and operative system and a full list of installa-
tion instructions is provided in the project repository. The continuous integration of the
project is guaranteed by testing the package installation across multiple C++ compilers
and platforms via Travis CI and Appveyor CI.

https://github.com/Nico-Curti/FiloBluService/blob/master/filobluservice.ps1
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://github.com/Nico-Curti/CryptoSocket/blob/master/CryptoSocket/examples/client.py
https://github.com/Nico-Curti/CryptoSocket/blob/master/CryptoSocket/examples/server.py
https://github.com/Nico-Curti/CryptoSocket/blob/master/CMakeLists.txt
https://github.com/Nico-Curti/CryptoSocket/blob/master/.travis.yml
https://github.com/Nico-Curti/CryptoSocket/blob/master/appveyor.yml
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Pipeline Pro�ling

In this work many times we have talked about the performances evaluation of a scripts
in terms of time performances and other system statistics. The importance in the under-
standing the state of our infrastructure is essential not only for ensuring the reliability and
stability of a software but also for a more e�ciency use of the available resources. In partic-
ular about what concern the memory, CPUs and diskIO management is useful to know the
required amount of each step of our software to perform the better parallelization strategy.
Metrics represent the raw measurements of resource usage that are used by a software or
a collection of them. These might be low-level usage summaries provided by the operating
system, or they can be higher-level types of data tied to the speci�c functionality or work
of a component. These kind of data could be collected and aggregated by a monitoring
system like Telegraf 27. In general, the di�erence between metrics and monitoring mirrors
the di�erence between data and information. Monitoring takes metrics data, aggregates it,
and presents it in various ways that allow humans to extract insights from the collection
of individual pieces.

In this section we focused on the importance of software monitoring. In particular we
will talk about a work conducted in collaboration with INFN-CNAF of Bologna about
the monitoring and the performance evaluation of a bioinformatics pipeline across various
computational environments [25].

In this work a previously published bioinformatics pipeline was reimplemented across
various computational platforms, and the performances of its steps evaluated. The tested
environments were: I) dedicated bioinformatics-speci�c server II) low-power single node
III) HPC single node IV) virtual machine. The pipeline was tested on a use case of the anal-
ysis of a single patient to assess single-use performances, using the same con�guration of
the pipeline to be able to perform meaningful comparison and search the optimal environ-
ment/hybrid system con�guration for biomedical analysis. Performances were evaluated
in terms of execution wall time, memory usage and energy consumption per patient.

GATK-LODn pipeline

The pipeline used in this work, GATK-LODn, has been developed in 2016 by Do Valle
et al. [31], and codi�es a new approach aimed to Single Nucleotype Polimorphism (SNP)
identi�cation in tumors fromWhole Exome Sequencing data (WES). WES is a type of �next
generation sequencing� data [94, 7, 81], focused on the part of the genome that actually
codi�es proteins (the exome). Albeit known that non-transcriptional parts of the genome
can a�ect the dynamic of gene expression, the majority of cancers inducing mutations are
known to be on the exome, thus WES data allow to focus the computational e�ort on the
most interesting part of the genome. Being the exome in human approximately 1% of the

27 An automatic installation guide for Telegraf is provided in the Shut [19] project for any OS and also
for no-root users.

https://github.com/influxdata/telegraf
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Coverage No. of Read BAM �le NGS
Reads Length size size

Whole genome 37.7x 975,000,000 115 82 GB 104 GB
Whole genome 38.4x 3,200,000,000 36 138 GB 193 GB
Exome 40x 110,000,000 75 5.7 GB 7.1 GB

Table 3.4: Typical dataset size for a single patient of di�erent types of next generation
sequencing. BAM �le size refers to the size of the binary �le containing the reads from the
machine.

total genome, this approach helps signi�cantly in reducing the number of false positives
detected by the pipeline. The di�erent sizes of next generation sequencing dataset are
shown in Tab 3.4.

The GATK-LODn pipeline is designed to combine results of two di�erent SNP-calling
softwares, GATK [62] and MuTect [15]. These two softwares employ di�erent statistical
approaches for the SNP calling: GATK examines the healthy tissue and the cancerous
tissue independently, and identi�es the suspect SNPs by comparing them; Mutect compares
healthy and cancerous tissues at the same time and has a more strict threshold of selection.
In identifying more SNPs, GATK has a higher true positive calling than Mutect, but also
an higher number of false positives. On the other end Mutect has few false positives, but
often does not recognize known SNPs. The two programs also call di�erent set of SNPs,
even when the set size is similar. The pipeline therefore uses a combination of the two
sets of chosen SNPs to select a single one, averaging the strictness of Mutect with the
recognition of known variants of GATK.

The pipeline work-�ow includes a series of common steps in bioinformatics analysis and
in the common bioinformatics pipelines. It includes also a su�cient representative sample
of tools for the performances statistical analysis. In this way the results extracted from the
single steps analysis could be easily generalized to other standard bioinformatics pipelines.

With the increasing demand of resources from ever-growing datasets, it is not favorable
to focus on single server execution, and is better to distribute the computation over cluster
of less powerful nodes. The computational pipeline also has to manage a high number of
subjects, and several steps of the analyses are not trivial to be done in a highly parallel way.
Thus, the importance of system statistics management as the e�ciency usage of available
resources are crucial to reach a compromise between computational execution time and
energy cost. For these reasons our main focus is on the performance evaluation of a single
subject without using all the available resources, as these could be more e�ciently allocated
to concurrently execute several subjects at the same time. Due to the nature of the
employed algorithms, not all steps can exploit the available cores in a highly e�cient way:
some scales sub-linearly with the number of cores, some have resource access bottleneck.
Other tools are simply not implemented with parallelism in mind, often because they are
the result of the e�ort of small teams that prefer to focus their attention on the scienti�c
development side rather than the computational one.

Moreover in order to obtain an optimal execution of bioinformatics pipelines, each anal-
ysis step might need very di�erent resources. This means that any suboptimal component
of a server could act as a bottleneck, requiring bleeding edge technology if all the steps
are to be performed on a single machine. Hybrid systems could be a possible solution to
these issues, but designing them requires detailed information about how to partition the
di�erent steps of the pipeline.
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Figure 3.16: Examples of concurrency work-�ow of two processes. The �rst case (a)
represents a simple (naive) sequential work-�ow; the second (b) highlights a brute force
parallelization; the third (c) is the case of a perfect match between the available resources
and the requested resources. Often brute force parallelization of pipelines done as in the
image b ends up overlapping the most computationally intensive steps. Measuring the
minimum viable requirements for the execution allow to better allocate resources as seen
in the image c.

Computational Environments

There are two main optimization strategies: the �rst is to improve the e�ciency of a single
run on a single patient and the second is to employ massive parallelization on various
samples. In both cases we have to know the necessary resources of the pipeline (and in a
�ne grain the resources of each step) and the optimal concurrency strategy to be applied
to our work-�ow (see Fig. 3.16). In the analyses we want to highlight limits and e�ciencies
of the most common computational environments used in big data analytics, without any
optimization strategy of the codes or systems.

We also focused on a single patient analysis, the base case study to design a possible
parallelization strategy. This is especially relevant for the multi-sample parallelization,
that is the most promising of the two optimization strategies, as it does not rely on speci�c
implementations of the softwares employed in the pipeline.

The pipeline was implemented on 5 computational environments: 1 server grade ma-
chine (Xeon E52640), 1 HPC node (Xeon E52683), 2 low power machines (Xeon D and
Pentium J) and one virtual machine built on an AMD Opteron hypervisor. The charac-
teristics of each node are presented in Tab. 3.5.

The server - grade node is a typical node used for bioinformatics computation, and as
such features hundreds of GB of memory with multiple cores per motherboard: for these
reasons we chose it as reference machine and the following results are expressed in relation
to it.

The two low - power machines are designed to have a good cost - to - performance ratio,
especially for the running cost28. These machines have been proven to be a viable solution
for high performance computations [13]. Their low starting and running cost mean that a
cluster of these machines would be more accessible for research groups looking forward to
increase their computational power.

The last node is a virtual machine, designed to be operated in a cloud environment.
The monitoring tool used is Telegraf, which is an agent written in Go for collecting,

processing, aggregating, and writing metrics. Each section of the pipeline sends messages

28 Running cost is evaluated as the energy consumption that the node requires per subject, assuming
that the consumption scales linearly with the number of cores used in the individual step.
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CLASS server grade machines low power machines virtual machine

CPU Intel Xeon Intel Xeon Intel Pentium Intel Xeon AMD Opteron
version E5-2683v3 E5-2640v2 J4205 D-1540 6386 SE
Microarchitecture Haswell Ivy Bridge EP Apollo Lake Broadwell Piledriver
Launch Date Q3'14 Q3'13 Q4'16 Q1'15 Q3'12
Lithography 22 nm 22 nm 14 nm 14 nm 32 nm
Cores/threads 14/28 8/16 4/4 8/16 16
Base/Max Freq 2.00/3.00 2.00/2.50 1.50/2.60 2.00/2.60 2.80/3.50
L2 Cache 35 MB 20 MB 2 MB 12 MB 16 MB
TDP 120 W 95 W 10 W 45 W 115 W
Total CPUs 2 2 1 1 1
total cores/threads 28/56 16/32 4/4 8/16 16
Total Memory 256 GB 252 GB 8 GB 32 GB 60 GB
System power 240 + 60 W 190 + 60 W 10 + 2 W 45 + 10 W 115 + 10 W
Electrical costs 650 ¿/year 550 ¿/year 26 ¿/year 120 ¿/year 273¿ /year
System price 4000-6000 ¿ 3000-5000 ¿ 100-130 ¿ 900-1200 ¿ 2000-3000¿

Table 3.5: Characteristics of the tested computational environments. Electrical costs are
estimated as 0.25 ¿/kWh; CPU frequencies are reported in GHz; TDP: Thermal Design
Power, an estimation indicator of maximum amount of heat generated by a computer chip
when a �real application� runs.

to the Telegraf daemon independently.
Regardless of the number of cores of each machine we restrict the number of cores used

to only two to compare the statistics: this restriction certainly penalize the environment
with multiple cores but with a view of maximizing the parallelizations and minimize the
energy cost it is the playground to compare all the available environments. Another restric-
tion is applied to the chosen architectures: since available low - power machines provides
only x86 - architectures also the other environments are forced to work in x86 to allow the
statistics comparison.

Pipeline steps

The pipeline steps that have been examined are a subset of all the possible steps: we only
focus on those whose computational requirements are higher and thus require the most
computational power. These steps are:

1. mapping: takes all the reads of the subjects and maps them on the reference genome;

2. sort: sorts the sequences based on the alignment, to improve the reconstruction
steps;

3. markduplicates: checks for read duplicates (that could be imperfections in the
experimental procedures and would skew the results);

4. buildbamindex: indexes the dataset for faster sorting;

5. indexrealigner: realigns the created data index to the reference genome;

6. BQSR: base quality score recalibration of the reads, to improve SNPs detection;

7. haplotypecaller: determines the SNPs of the subject;
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8. hard�lter: removes the least signi�cant SNPs.

The following statistics were evaluated:

1. memory per function: estimate percentage of the total memory available to the
node used for each individual step of the pipeline;

2. energy consumption: estimated as the time taken by the step, multiplied by the
number of cores used in the step and the power consumption per core (TDP divided
by the available cores). As mentioned before this normalization unavoidably penalize
the multi-core machines but give us a term of comparison between the di�erent
environment;

3. elapsed time: wall time of each step.

The pipeline was tested on the patient data from the 1000 genome project with ac-
cess code NA12878, sample SRR1611178. It is referred as a Gold Standard reference
dataset [93]. It is generated with an Illumina HiSeq2000 platform, SeqCap EZ Human Ex-
ome Lib v3.0 library and have a 80x coverage. As Gold Standard reference it is commonly
used as benchmark of new algorithm and for our purpose can be used as valid prototype
of genome.

Results

Memory occupation is one of the major drawbacks of the bioinformatics pipelines, and one
of the greater limits to the possibility of parallel computation of multiple subjects at the
same time. As it can be seen in Fig. 3.17, the memory occupation is comprised between
10% and 30% on all the nodes. This is due to the default behavior of the GATK libraries
to reserve a �xed percentage of the total memory of the node. The authors could not �nd
any solution to prevent this behavior from happening. As it can be noticed, in the node
with the greatest amount of total memory (both Xeon E5 and the virtual machine) the
requested memory is approximately stable, as is always su�cient for the required task. The
memory allocation is less stable in the nodes with a limited memory (Xeon D and Pentium
J), as GATK might requires more memory than what initially allocated to perform the
calculation. The exception to this behavior is the mapping step, that uses a �xed amount
of memory independently from the available one (between 5 and 7 GB). This is due to the
necessity of loading the whole human reference genome (version hg19GRCh37) to align
each individual read to it. All the other steps do not require the human reference genome
but can work on the individual reads, allowing greater �exibility in memory allocation.

As can be seen in Fig. 3.18 and Fig. 3.19, this increase of memory consumption does
not correspond to a proportional improvement of the time elapsed in the computation.

The elapsed time for each step and for the whole pipeline can be seen in Fig. 3.18. It can
be seen that there is a non consistent trend in the behavior of the di�erent environments.
Aside from the most extreme low power machine, the pentium J, the elapsed times are on
average higher for the low power and slightly higher for the cloud node, but the time for
the individual rule can vary. In the sorting step, Pentium J is 20 times slower than the
reference. This is probably due to the limited cache and memory size of the pentium J,
that are both important factors determining the execution time of a sorting algorithm and
are both at least four to six times smaller than the other machines. The HPC machine,
the Xeon E52683, is consistently faster than the reference node.

The energy consumption per step can be seen in Fig. 3.19. The low power machines
are consistently less than half the baseline consumption. Even considering the peak of
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Figure 3.17: Memory used for each step of the pipeline. Due to the GATK memory
allocation strategy, all steps use a baseline amount of memory proportional to the available
memory. Smaller nodes, like the low power ones, require more memory as the baseline
allocated memory is not su�cient to perform the calculation.

Figure 3.18: Time elapsed per step of the pipeline, and total elapsed time. In the sorting
step, Pentium J is 20 times slower than the reference, probably due to the limited cache
size.

consumption due to the long time required to perform the sorting, the most e�cient low
power machine, the pentium J, consumes 40% of the reference, and the Xeon D consumes
60% of the reference. The HPC machine, the Xeon E52683, have consumption close to
the low power nodes, balancing out the higher energy consumption with a faster execution
speed. The virtual machine has the highest consumption despite the fact that the execution
time of the whole pipeline is comparable to the reference due to the high TDP compared
to its execution time.

Conclusions

Bioinformatics pipelines are one of the most important uses of biomedical big data and, at
the same time, one of the hardest to optimize, both for their extreme requisites and the
constant change of the speci�cation, both in input-output data format and program API.
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Figure 3.19: Energy consumption per pipeline step and on the whole pipeline. Energy
consumption is estimated as the time taken by the step, multiplied by the number of cores
used in the step and the power consumption per core (TDP divided by the available cores).

This makes the task of pipeline optimization a daunting one, especially for the �nal
target of the results; physicians and biologists could lack the technical expertise (and time)
required to optimize each new version of the various softwares of the pipelines. Moreover,
in a veri�ed pipeline updating the software included without a long and detailed cross-
validation with the previous one is often considered a bad practice: this means that often
these pipelines are running with under-performing versions of each software.

Clinical use of these pipelines is growing, in particular with the rise of the concept
of personalized medicine, where the therapy plan is designed on the speci�c genotype
and phenotype of the individual patient rather than on the characteristic of the overall
population. This would increase the precision of the therapy and thus increase its e�cacy,
while cutting considerably the trial and error process required to identify promising target
of therapy. This requires the pipelines to be evaluated in real time, for multiple subjects at
the same time (and potentially with multiple samples per subject). To perform this task
no single node is powerful enough, and thus it is necessary to use clusters. This brings the
need to evaluate which is the most cost and time e�cient node that can be employed.

In the cost assessment there are several factors that need to be considered aside of the
initial setup cost, namely cost for running the server and opportunity cost for obsolescence.
Scaled on medium sized facilities, such the one that could be required for a hospital, this
cost could quickly overcome the setup cost. This cost does also include not only the
direct power consumption of the nodes, but also the required power for air conditioning to
maintain them in the working temperature range. Opportunity costs are more complex,
but do represent the loss of possibility of using the most advanced technologies due to the
cost of the individual node of the cluster. Higher end nodes require a signi�cant investment,
and thus can not be replaced often.

With this perspective in mind, we surmise that energy e�cient nodes present an in-
teresting opportunity for the implementation of these pipelines. As shown in this work,
these nodes have a low cost per subject, paired with a low setup cost. This makes them an
interesting alternative to traditional nodes as a workhorse node for a cluster, as a greater
number of cores can be bought and maintained for the same cost.

Given the high variability of the performances in the various steps, in particular with
the sorting and mapping steps, it might be more e�cient to employ a hybrid environment,
where few high power nodes are used for speci�c tasks, while the bulk of the computation is
done by the energy e�cient nodes. This is true even for those steps that can be massively
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parallelized, such as the mapping, as they bene�t mainly from a high number of processors
rather than few powerful ones. In this work we focused only on CPUs computation,
but another possibility could be an hybrid-parallelization approach in which the use of a
single GPU accelerator can improve the parallelization of the slower steps. Each pipeline
work-�ow requires its own analyses and tuning to reach the best performances and the
right parallelization strategy based on the use which it is intended but a low energy node
approach is emerging as a good alternative to the more expensive and common solutions.
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