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Abstract

The present thesis is made up by three separates chapters in applied microeco-

nomics touching the realms of labor, health and family economics. The first one

considers individual genetic information to explore the interplay between genes

and environmental factors in shaping individual labor outcomes. The second one

looks at old age health and provide an estimate of the causal effect of retirement on

a syndrome of health deficit accumulation called frailty. The third one investigates

and describes the role of preferences in the screening and matching process of

child adoption with the use of a novel dataset.

2



Contents

1 The gene-environment interplay

in late working age labor market outcomes 10

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 From Genetics and Economics to Geno-economics . . . . . . . . . 12

1.2.1 Polygenic Scores . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Health and Retirement Study and polygenic score . . . . . 20

1.4.2 Labor Market . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.6.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2 Estimating the Causal Effect of Retirement on Frailty 49

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.2 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.3.1 Defining Frailty . . . . . . . . . . . . . . . . . . . . . . . . . 54

3



2.4 Identification Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.1 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3 Child Adoption: the Role of Couples’ Preferences in the Screening and

Matching Process 74

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.3 Institutional Framework . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 90

4



List of Figures

The gene-environment interplay

in late working age labor market outcomes 10

1.1 Sample distribution across States. HRS, waves 2006 - 2014. . . . . 22

1.2 Workers and unemployed distribution across industries. HRS,

waves 2006 - 2014. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3 Interviews distribution over time and mass lay-offs peaking time

for the Health Care and Social Assistance sector. . . . . . . . . . . 25

1.4 Interviews distribution over time and mass lay-offs peaking time

for the Manufacturing sector. . . . . . . . . . . . . . . . . . . . . . 26

1.5 Polygenic score for educational attainment by industry of occupa-

tion. HRS waves 2006 - 2014. . . . . . . . . . . . . . . . . . . . . . 43

Estimating the Causal Effect of Retirement on Frailty 49

2.1 Frailty vs. Health Index . . . . . . . . . . . . . . . . . . . . . . . . . 56

Child Adoption: the Role of Couples’ Preferences in the Screening and

Matching Process 74

3.1 Marginal effects of female partner age at application on (a) the

probability of having a score higher or equal than three and (b)

probability of being matched . . . . . . . . . . . . . . . . . . . . . 86

3.2 Marginal effects of the evaluation score on matching probability by

(a) having already adopted and (b) having other biological kids. . . 87

5



3.3 Survival curve by evaluation score . . . . . . . . . . . . . . . . . . . 88

3.4 Survival curve by availability to legal risk . . . . . . . . . . . . . . 88

3.5 Hazard ratios of being matched . . . . . . . . . . . . . . . . . . . . 89

6



List of Tables

The gene-environment interplay

in late working age labor market outcomes 10

1.1 OLS for labor earnings over education and polygenic score . . . . 18

1.2 HRS pooled sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Fixed effect linear probability model for labor market outcomes

and mass lay-off events . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.4 Fixed effect linear probability model for experiencing unemploy-

ment and re-employment in between subsequent waves. . . . . . . 38

1.5 Fixed effect linear probability model for labor market outcomes

and initial unemployment benefit claims events . . . . . . . . . . . 40

1.6 Fixed effect linear probability model for labor market outcomes

over county level unemployment rates . . . . . . . . . . . . . . . . 42

1.7 OLS for polygenic score over labor market shock measures. . . . . 45

Estimating the Causal Effect of Retirement on Frailty 49

2.1 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.2 Early and normal retirement age . . . . . . . . . . . . . . . . . . . . 62

2.3 Eligibility and retirement behaviour . . . . . . . . . . . . . . . . . 64

2.4 Results: Retirement as self declared status. . . . . . . . . . . . . . 65

2.5 Results: Retirement as not working for pay. . . . . . . . . . . . . . 69

2.6 Robustness: partial definition of frailty . . . . . . . . . . . . . . . 70

7



Child Adoption: the Role of Couples’ Preferences in the Screening and

Matching Process 74

3.1 Descriptive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Evaluation score regression on demographics and adoption prefer-

ences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.3 Logistic regressions for adoption matching on demographics and

adoption preferences. . . . . . . . . . . . . . . . . . . . . . . . . . 85

8





Chapter 1

The gene-environment interplay

in late working age labor market outcomes

Abstract

We investigate the interaction between negative labour market shocks in the

United States and genetic predisposition to educational attainment as measured

by polygenic score in determining unemployment in late working age. We exploit

variation at State and industry level in the peak time of mass lay-off events and

initial unemployment benefit claims in the period following the great recession to

identify exogenous labour market shocks to the probability of unemployment. We

provide evidence for polygenic score for educational attainment being a protective

factor against unemployment status in late working life even after controlling for

education and college completion.
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1.1 Introduction

Late working life has been extensively investigated as a crucial transitional period

with significant potential consequences not only with respect to individual health

trajectories in later life (Moon et al. (2012);Coe and Zamarro (2011); Behncke

(2012); Hessel et al. (2018)) but also with respect to pension systems and public

finance (Hicks (2011),Brugiavini and Peracchi (2005)). With this study, by exploit-

ing recent findings in the genomic and bio-informatics literature we explore the

interplay between environmental factors and individual genetic endowment in

late working life labor market outcomes. More precisely, we study the interaction

between negative labour market shocks in the United States and individual genetic

predisposition for educational attainment in determining unemployment status.

Before going to the reasons why we think genetic predisposition for educational

attainment is relevant in the context of late working life it is useful to think of the

general implications of unemployment in this life period. Of course, experiencing

adverse labor market conditions can be associated with less employment, but

interestingly, in late working life this is also related to decreased health insurance

coverage and longevity (Coile et al. (2012)). Moreover, older workers experiencing

unemployment have significantly lower re-employment rates because of reasons

spanning from skills mismatch to age discrimination (Lahey (2005); Malul (2009);

Axelrad et al. (2018)). In this context, the possibility to identify individuals at

higher risk of negative labor market outcomes could be leveraged to better target

preventive measures or even active labour market interventions.

To justify the link between genetic predisposition to educational attainment and

labor market outcomes we build on recent findings by Papageorge and Thom

(2018) who suggest genetic predisposition for educational attainment being also

indicative of a general predisposition to keep acquiring skills related to ana-

lytical non-routine tasks beyond formal education. This suggests that genetic

predisposition for education could indeed be telling something more, for example,

predisposition to learn or acquire new competences and skills.

If this is indeed the case, one could expect individuals with higher genetic predis-

position to educational attainment, to be also more able to expand their human
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capital beyond education itself, and so to be on average more productive in the

workplace, all the rest being equal. As an example one could think of learn-

ing to use a new software, a novel programming language or generally facing a

new working context. Most interestingly, it would be in late working age where

differences in genetic endowment (beyond education itself) would reflect more

the underlying differences in the latent human capital and, as a consequence, in

productivity. Then, to the extent to which predisposition to educational attain-

ment also contribute to general human capital accumulation beyond education

and so late working age productivity, we would expect individuals with higher

predisposition for educational attainment to be less likely to be laid off or lose

their job once a negative labour market shock hits. In other words this mean

expecting workers with lower genetic predisposition to educational attainment to

be less productive and so more likely to represent the so called marginal worker.

Alternatively, but along the same reasoning, one could think of individuals with

higher predisposition for education to be more likely to find a new job after having

lost one. It is fair to say that our framework of analysis does not allows to perfectly

distinguish between these two cases as in our data individuals are observed only

every two years.

We test this interpretation of a defined measure of genetic predisposition to edu-

cational attainment by identifying a negative labor market shock and assessing

heterogeneous effects to probability of unemployment along this genetic dimen-

sion. Before going into the details of the study, we provide a sort of first landing

yet not exhaustive guide to genetics in social science.1

1.2 From Genetics and Economics to Geno-economics

Since the completion of the human genome project in 2001 (et al. (2001),Craig

Venter et al. (2001), the role of genetic information have largely and increas-

ingly been questioned and explicitly investigated. While at first, also because

of significant knowledge entrance barriers, most of the research was exclusively

1For further details readers can refer to Conley (2009), Beauchamp et al. (2011) and Benjamin

et al. (2012).
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held within the realm of biology and molecular medicine, as sequencing and

imputation technologies as well as analytical methodologies became more and

more accessible, more and less contiguous research fields became aware of the

relevance of genetics and, as a consequence, interested in incorporating it into

more traditional frameworks.

This happened with economics as well, with theorists working in insurance de-

bating on the relevance of such information for an industry deeply dissected

with regard to issues of adverse selection and moral hazard (Hoy and Polborn

(2000), Barigozzi and Henriet (2011). However, aside empirical studies on twins

(Ashenfelter and Krueger (2019); Conley and Strully (2012)), little has been done

so far to explicitly incorporate genetic information into economics.

Recent developments and continuous decreasing costs of genotyping promise

extremely easily available individual genetic information leading some scholars

to focus on the explicit role of such information for social science (Beauchamp

et al. (2011); Benjamin et al. (2012)) and related policy relevant issues (Lehrer and

Ding (2017)). In principle, opportunities for social scientists, and economists in

particular, are related to two main approaches with regard to the use of genetic

information: as instrumental variable in a so called Mendelian Randomization

Study (Conley and Zhang (2018); Van Kippersluis and Rietveld (2018))2, and

finally, gene-environment interaction studies or "GXE" (Conley (2009)). In the

current study we focus on the latter.

1.2.1 Polygenic Scores

In practical terms, applied researchers can exploit genetic information in the form

of polygenic scores (PGSs). A PGS is a synthetic measure of genetic predisposition

for a given phenotype (i.e. an observable outcome or condition determined both

by genetic and environmental factors) built on the basis of the presence, for a

given individual, of a certain set on genetic mutations called Single Nucleotide

2While the use of individual level genetic information as instrumental variable (i.e. Mendelian

Randomizazion) is not entirely new to fields like epidemiology, research to date have almost

entirely overlooked the potential violation of the key exclusion restriction assumption due to

highly likely pleyotropic effects of genetic endowment.
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Polymorphisms (SNPs). Such genetic mutation is the single most commonly

occurring mutation that happens at the level of single building block of our DNA

sequence: the nucleotide. Nucleotides are molecules made by a nitrogenous base,

sugar and a phosphate group which generally defines the nucleotide as A, T, C, or

G. Whenever there is a mutation of a given nucleotide in the DNA sequence, in a

relevant share of the whole population (i.e. more than 1%), we call it a SNP. As

already mentioned, SNPs are extremely common forms of mutation in our DNA

and their position with respect to a gene can either have no effect at all on its

functioning or influence its expression (modulation with environmental factors),

heritability or favour the development of some disease (Beauchamp et al. (2011);

Benjamin et al. (2012)).

This being said, one can define a PGS for a give phenotype as a weighted sum

of the SNPs’ effect on such phenotype where weights are defined on the basis of

genome-wide association studies (GWAS). These association studies consist in the

estimation through separate regressions of the effect of each genotyped SNP on the

outcome of interest3. Once the estimates are computed, their significance is tested

at a p-value threshold adjusted for multiple testing hypothesis by Bonferroni

correction. The so called "genome-wide significance" threshold level is normally

set at 5.5 10−8.

For individual i and a given phenotype, the PGS is defined as:

P RSi =
n∑
j=1

wjxij (1.1)

where xij is the number of reference allele (zero, one or two) for individual i and

SNP j and wj is the SNP’s coefficient from the reference GWAS. By reference allele

we mean the presence of a mutation, with respect to the most common genetic

variant, in either one or two copies of an individual’s DNA. The reference allele is

zero when there is no mutation at the precise locus in the DNA sequence where a
3Note that at this stage control covariates such as gender, age polynomials, age and gender

interactions and the first ten genetic principal components are included. Most importantly, the

first ten genetic principal components are included to control for possible population stratification

in the genetic endowment of the individuals. By this we refer to the systematic difference in allele

frequencies between different groups of a population (see Ware et al. (2018), Beauchamp et al.

(2011) and Benjamin et al. (2012) for further details).
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SNP could be observed. Whenever there is a SNP only in one copy of the DNA

sequence instead, this mean that the individual inherited the mutation from only

one of the two parents (heterozygosity) and the allele reference is therefore one

while, if the mutation is present in both copies of the DNA, it means that both

parents transmitted the mutation (homozygosity). In this latter case the reference

allele is two (Ware et al. (2018); Beauchamp et al. (2011)). The polygenic score is

then standardized to have mean zero and variance equal to one.

It is important to note that unless researchers are capable of controlling for par-

ental genotype, the nature of the PGS itself does not allow a causal interpretation

with respect to the outcome of interest. In other words, it is difficult, if not im-

possible, to completely disentangle the "true genetic effect" from environmental

channels taking place in the downstream of it. As an example, taking into account

a PGS for BMI (Locke et al. (2015)) we could in principle expect particular familiar

environment to play a role in addition to genetic endowment in determining

individual’s BMI. This is to say that as a newborn inherits his/her DNA from the

parents, he/she will also experience a certain environment which is correlated

with his/her parents’ DNA. Again, as suggested in Schmitz and Conley (2016)),

also upstream mediating channels such as in-utero environment affected by moth-

ers eating or smoking behaviour are theoretically possible, making the relation

between polygenic score potentially spurious. Given this limitations, it is possible

to claim SNPs to be as good as randomly assigned at conception only conditionally

on parental genotype (Schmitz and Conley (2017)). Whenever it is not possible to

account for parental genotypes, as it is in most of the cases due to data limitation,

SNPs and consequently polygenic scores should be interpreted as predetermined.

The lack of causal interpretation, does not make the analysis useless though. While

it is true that it is mostly impossible to pin down the true genetic effect reflecting

solely biological pathways from the DNA sequence to given phenotypes, SNPs

weights and polygenic scores do capture it. The genetic effect is likely inflated

by environmental factors which are not strictly genetic but which are inherited

alongside the genetic structure. This includes any sort of discrimination happening

in the society which can not be accounted for by population stratification or

ancestry group.
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1.3 Literature

First and foremost we broadly contribute to the already cited literature on the use

of genetic information in economics and social science (Beauchamp et al. (2011);

Benjamin et al. (2012); Lehrer and Ding (2017); Conley and Zhang (2018); Van

Kippersluis and Rietveld (2018)).

More precisely, we contribute to a recent but rapidly growing literature on the

interaction between genetic and environmental factors in determining observable

outcomes. By explicitly including genetic information in more traditional frame-

works, research shifted heavily from the so called nature versus nurture debate to

investigating the actual interplay between the two. While GXE studies are not new

to medicine or realms like epidemiology and biology (Ottman (1996)), recent dis-

coveries in genome-wide significant SNPs for traits such as educational attainment

(Okbay et al. (2016); Lee et al. (2018)) but also BMI (Locke et al. (2015)) and risk

tolerance (Karlsson Linnér et al. (2019)) which are traditionally highly relevant

in economic research are driving a surge of interest also among economists with

most of the studies referring to health and education economics.

Starting from the health domain, Biroli (2015) proposes a theoretic framework

for BMI and human capital formation that explicitly account for the role of

genetics and molecular biology in which GxE interaction play a "pivotal role" in

the evolution of BMI. More specifically, the author presents a model where genes

influence both the health production function ("genetic productivity effect": how

productively inputs are converted into outputs) as well as individuals’ preferences,

thus affecting the implicit cost of investment in health capital ("genetic cost effect").

Schmitz and Conley (2016) look at the interaction between unemployment status

and a PGS for BMI in the Health and Retirement Study showing heterogeneity

in the effect of job loss on BMI, with high risk individuals being more likely to

gain weight when losing jobs. With respect to mental health instead and again

within the Health and Retirement Study, Domingue et al. (2017) focus on the

interaction between a score for genetic predisposition to subjective well-being and

a stressor event like the death of a spouse in determining depressive symptoms.
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Results show a significant protective effect of genetic predisposition for subjective

well-being with respect a spouse’s death.

Bridging the health and the education realms, Amin et al. (2017) investigate

gene-environment interactions between education and BMI in a sample from UK

and Finland. The study evidences a statistically significant negative association

between education and BMI as well as a statistically positive association between

the genetic endowment and BMI but no significant interaction effect.

Shifting instead completely to education, Schmitz and Conley (2017) investigate

the effect on education of veteran status as instrumented by the Vietnam lottery

draft and interacted with a PGS for educational attainment. The authors report

veterans with below average PGS being more likely to collect less years of schooling

as compared to non veterans with similar polygenic scores.

More interestingly for our framework, Papageorge and Thom (2018) investigates

the interaction between a PGS for educational attainment4 and childhood socio-

economic status in the Health and Retirement Study finding a significant main

genetic effect with respect to college graduation as well as a significant interaction

with childhood socio economic status suggesting possible concerns of wasted

potential when growing up in lower socio-economic status. More relevant to our

setting, Authors also find that the PGS for educational attainment predicts labour

market outcomes such as earning and employment even after controlling for edu-

cation and college completion. By analysing the time variation in earnings and the

relationship with the PGS they argue the score to be indicative of something more

than just predisposition for educational attainment and rather, predisposition to

accommodate ongoing skill biased technological changes.

Table 1.1 replicate some of the results in Papageorge and Thom (2018) with few

modifications. First and foremost, not having access to external data other than

the HRS, we rely on self reported earnings for the outcome variable. On the other

hand we use a more updated version of the polygenic score (Lee et al. (2018))

and we also able to control for State and industry of occupation. Results are

qualitatively comparable to those of the original study. Even after controlling for

4The authors use a polygenic score based on the weights as estimated in Okbay et al. (2016).
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Table 1.1: OLS for labor earnings over education and polygenic score

Log(Earnings)

(a) (b) (c) (d) (e)

PGS_EA 0.112*** 0.055*** 0.031*** 0.029** 0.022**

(0.013) (0.015) (0.011) (0.011) (0.011)

Educational Attainment 0.011** 0.016*** 0.016*** 0.014***

(0.005) (0.004) (0.005) (0.004)

College 0.399*** 0.345*** 0.351*** 0.330***

(0.037) (0.029) (0.030) (0.029)

Constant 10.148*** 8.857*** 9.843*** 10.127*** 10.084***

(0.080) (0.789) (0.269) (0.140) (0.217)

PC 1-10 Y Y Y Y Y

PC 1-10 * Educ. Att. Y Y Y Y Y

PC 1-10 * College Y Y Y Y Y

Gender Y Y Y Y Y

Age Y Y Y Y Y

Birth year Y Y Y Y Y

Interview year Y Y Y Y Y

State & Ind. dummies Y

Age Range 25-65 25-65 40-65 50-65 50-65

Employment earnings >0 >10,000 >10,000 >10,000 >10,000

N 13755 9923 8879 8427 8427

R2 0.08 0.09 0.14 0.14 0.18
Note: Columns (a) to (d) replicate the results from Papageorge and Thom (2018) with our working

sample and few consequential modifications. The dependent variable is self reported labor

earnings. PGS_EA is Lee et al. (2018). Column (e) also controls for State and industry dummies.
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formal education, its interaction with the first ten genetic principal components

as well as State and industry fixed effects (not to mention other usual controls),

the polygenic score remains predictive of the Log(earning).

Beyond the GXE setting, other studies focused on the polygenic score for educa-

tional attainment and its interpretation. Along the same line of Papageorge and

Thom (2018), investigating wealth inequality, Barth et al. (2019) provide evidence

of polygenic scores for educational attainment being associated with wealth not

only through education and earnings but also via financial decision making. To the

best of our knowledge, Rustichini et al. (2018) and citeWilloughby2019, provide

to date the only educational attainment polygenic score analysis capable of con-

trolling for parental genotypes and family environment. Rustichini et al. (2018)

propose a model of intergenerational mobility and subsequently investigate the

channels between PGS and educational outcomes disentangling cognitive skills

from personality traits. Results points to both spheres being relevant, with intelli-

gence accounting for a larger proportion. Most interestingly, by controlling for

mothers’ and fathers’ PGSs, the study provide evidence of the presence of parental

environmental effect. Nevertheless, the coefficients of the parental PGS for edu-

cational attainment becomes very close to zero and non significant once controls

like parental education and family income are taken into account in regressions

for both GPA and years of education. This can give an idea of the extent to which

estimates of main genetic effect could be inflated by environmental channels if

one can not control for the appropriate familiar variables. In a model for GPA the

polygenic score’s effect remains highly significant decreasing by roughly 30% in

point size estimate. On the other hand, in a model for educational attainment the

coefficient drops by only 8% still remaining highly significant. This is important

evidence of the fact that while parent environmental channels are non negligible,

they are not the only responsible for educational outcomes of off-springs with the

larger proportion of the effect captured by polygenic score being indeed genetic.

1.4 Data

The study uses two separate sources of data. On the one hand, information

regarding individuals’ working status, demographic controls and polygenic scores
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are from the Health and Retirement Study (HRS) while, negative labor market

shocks are built using data on mass lay-off and initial unemployment benefit

claims from the Bureau of Labor Statistics (BLS).

1.4.1 Health and Retirement Study and polygenic score

The Health and Retirement Study is a representative panel data survey collecting

information every two years on domains like health, labor and socio-economic

status every two years among individuals of 50 or more years old, together with

their spouses and partners. Since 2006, by mean of a so called "enhanced face to

face interview" the study started collecting saliva samples for genotyping together

with other general biomarkers. In 2006, half of the interviewees were randomly

selected for such enhanced interview of which, roughly 85% agreed. The other

half was instead selected in the following wave in 2008. The same was done in the

two subsequent waves in 2010 and 2012.

Polygenic scores are provided for a rich set of phenotypes ranging from BMI to

neuroticism, Alzheimer disease and of course educational attainment. The HRS

provides polygenic scores computed using all available SNPs overlapping with

those of the original genome-wide meta-analysis without any p-value thresholding.

To obtain externally valid SNP weights, whenever the original discovery sample

included HRS individuals, the GWAS analysis was repeated excluding HRS data.

We use the latest PGS for educational attainment as developed by Lee et al. (2018)

with an original discovery sample of 1,1 million individuals and 1,271 genome-

wide significant SNPs found.

For our analysis we restrict the sample to individual between 50 and 65 years of

age, interviewed between 2006 and 2014 who were either self-declared employed

or self-employed in 2006 which is the last wave before the Great Recession. We

do so because the nature of the labour market data we exploit does not allows

us to capture positive fluctuations of the labor market but only negative shocks.

As a matter of fact we are interested in the transition from employment or self-

employment to unemployment and/or exiting the labor force via (early)retirement

or disability.
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Table 1.2: HRS pooled sample.

Total

HRS
Genotyped

European

Ancestry

(1) (2) (3)

age 59.131 59.240 59.252

number of children 0.440 0.384 0.354

years of education 13.642 13.918 14.036

unemployed 0.027 0.024 0.024

income 33,154 34,346 35,720

diabetes 0.166 0.158 0.146

Hispanic 0.098 0.000 0.000

Afro-american 0.131 0.144 0.000

Caucasian 0.804 0.850 0.995

N 15350 10893 8499

In order to control for confounders at ancestry group level we follow usual recom-

mendations from the literature and the Health and Retirement Study itself and

further restrict to individual with European ancestry excluding individuals with

Afro-American ancestry. This restriction also reflects a general limitation of the

genomic literature to date which is the lack of predictive power of estimated SNPs’

effect outside of the European ancestry group. Such lack of predictive power is

due to under-representation of non European in the data suitable GWAS analysis.

As a result of this under-representation, SNPs weight for Afro-American ancestry

groups are considerably less predictive of which ever phenotype of interest is

under investigation. It is worth noting that for the same reasoning the Health and

Retirement Study do not provide polygenic score for Hispanic individuals.

This lead us to a pooled working sample of 8,499 observations consisting in

roughly 3,500 individuals observed throughout the considered waves. As summar-

ized in Table 1.2, it is fair to say that both the 85% take-up rate of the enhanced

face-to-face interview and the restriction to European ancestry contribute to a

non negligible selection of the sample with respect to certain dimensions which
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Figure 1.1: Sample distribution across States. HRS, waves 2006 - 2014.

are indeed interesting for the outcomes under investigations. With respect to the

general population of the Health and Retirement Study, column 3 of Table 1.2

describes a sample which is on average slightly more educated, with less kids,

with higher income less chances of self reporting unemployment status as well

as lower risk of being diagnosed with diabetes. As expected, no self reported

Afro-American as well as Hispanic individual is present in the final sample. Over-

all, despite representing a limitation for the external validity of our findings this

forced selection is also making our results more salient. In fact, focusing within a

sub-population with higher average PGS and which is for whatever reason less

likely to experience the environmental shock at the basis of the gene-environment

interaction under investigation would suggest to interpret point estimates as a

lower bound.

For each individual at every point in time we know his/her residence location at

county level as well as the industry of occupation at two digits NAICS level. We

use information on the geographical location and industry of occupation to merge

individual level data from the Health and Retirment Study with labor market data

from the Bureau of Labor Statistics. California, Florida and Michigan are the three

most populous States in the HRS give the sample restriction adopted (see Figure

1.1). In terms of industries, most of the working sample is employed in healthcare,

manufacturing and educational services sector. Interestingly, with the exception

of art and entertainment and agriculture, which nevertheless represent a small
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Figure 1.2: Workers and unemployed distribution across industries. HRS, waves

2006 - 2014.

proportion of the sample) in every sector we find an appreciable proportion of the

pooled sample is unemployed going from the 0.7% for public administration to

3.9% of real estate.

1.4.2 Labor Market

It is important to note that while providing evidence of negative labor market

shocks impacting individual employment status could be seen as effort to prove

the obvious, we should still pay attention at the way we estimate the effect of these

shocks. As a matter of fact, a proper identification of the environmental effect

is key to providing a thoughtful interpretation of the interaction with genetic

endowment.

In order to identify negative labor market shocks we rely on data from the Bureau

of Labor Statistics in the US. We use data at state, industry and month level

about mass layoff events and initial unemployment benefit claims in alternative

specifications for robustness purposes. To make sure that the effect we identify is

not artificially driven by the way we define peaks in either mass lay-off or benefit

claims, we also provide an alternative set of results based on unemployment rate

at county level.
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The Bureau of Labor Statistics defines a mass layoff event whenever a firm lays

off at least 50 employees within a 5 weeks period. On the other hand, initial

unemployment benefit claims are the number of claims filed in order to obtain

unemployment benefits. The two measures are obviously correlated but yet

capture slightly different margins of the same phenomenon. On the one hand,

mass lay-off events capture the intensive margin of negative labour market shocks

while unemployment benefit claims do capture the extensive one. In the main

set of results we define a negative labor market shock as a peak in mass lay-off,

devoting benefit claims data to robustness. As a matter of fact, initial benefit

claims data are more likely to capture seasonal turnover in the labor force, making

peaks harder to identify due to noisier trends.

We define a peak in mass lay-offs (P eakMLdst) for industry d, State s at time t

as a dichotomous variable taking value one for that industry state and time cell

whenever mass lay-offs are greater or equal than k times the mass-layoffs’ average

along the considered period. In the main set of results the factor k takes a value of

three.5

P eakMLdst = 1 if mldst > k ∗mlds (1.2)

As we will describe in more detail in the following section, we rely on the timing of

the peaks among state-industry pairs to identify the effect of negative labor market

shocks on one’s employment status. The reader will have noticed that P eakMLdst

allows for multiple peaks within state-industry pairs but, exploiting the panel

dimension of our dataset, we will focus on the first peak along the considered

time frame as measure of negative labor market shock. This reconciles the need

to capture shocks throughout the entirety of the considered waves as well as to

emphasize the consequences of the Great Recession for those industries that are

typically more affected by the economic cycle.

It comes with no surprise that industries such as manufacturing, retail trade or

construction can suffer more the economic cycle with respect to industries such as

healthcare or education for which lay-offs, if present, are more likely to be due to

5For robustness purposes, we provide results using alternative values for the factor k.
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Figure 1.3: Interviews distribution over time and mass lay-offs peaking time for

the Health Care and Social Assistance sector.

regular turnover or seasonality than macro economic conditions. In the first case

we do expect peaks to appear really close to recessions, no matter how they are

actually measured. On the other hand, as the industry is not immediately affected

by the economic cycle, mass lay-offs could either manifest later on, not happen at

all or show some kind of repeated pattern just above the zero without any clear

peak. Defining a peak as in (2) with large enough k allows to exclude these minor

movements and focus on more salient cases.

Figure 1.3 and Figure 1.4 describe interviews distribution and highlight the timing

of peak in mass-layoff as described in equation (2) across different States for the

two most popular industries in the sample: health care and manufacturing. As

anticipated, for manufacturing most of the States exhibit a peak in mass lay-off

around the Great Recession, between late 2008 and 2009. For the health care

sector instead, peaks are more evenly distributed. Another interesting point to

emphasize is the interviews distribution. For each wave to be collected, interviews

take no less than a year, giving us the opportunity to exploit the combination of

heterogeneity in the timing of the peaks and timing of interviews for identification.

As a consequence, our identification of the effect of labor market shocks do not

solely exploit peaks happening at different times between waves but also during

waves.
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Figure 1.4: Interviews distribution over time and mass lay-offs peaking time for

the Manufacturing sector.

1.5 Methodology

Rather then starting directly with the aim of a specification for the interaction

between the polygenic score and the environmental shock, for the sake of clarity

and interpretative purposes with respect to the final results, we firstly focus

our attention to the proper identification of the labor market shocks’ effect on

unemployment status. In this context the main issues for a credible identification

are simultaneity, omitted variable bias and selection. The first one implies a

bi-directional causal link between treatment and outcome which in our case are

peaks in mass lay-off and individual unemployment status. To cope with this

threat, first of all we rely on the nature of our measure for negative labor market

shocks. By considering peaks of mass lay-off we use information at State-industry

level over a 9 years time period to identify an event which predicts individual

level probability of unemployment. While at first glance the simultaneous link

between the two seems obvious, it is indeed hard to claim that a single worker

displacement is not simply a cause of a single mass lay-off but a peak in mass

lay-offs for a given industry in a given State. It is worth recalling that a mass

lay-off is registered whenever a single firm displaces at least 50 employee within a
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five weeks period. A further but by no mean less important factor which makes

us confident in the exogenous nature of our shock variable (at least with respect

to simultaneity concerns) is the particular time frame under consideration which

highlight the role of the Great Recession (e.g. Figure 1.4).

Before tackling the other two issues it is useful to introduce a first tentative

approach in modelling probability of unemployment. Given the panel structure

of our data, the obvious starting point is a difference in difference approach (DD).

Yit = β0 + β1Ti + β2P ostt + β3(P ost ∗ T )it + β8Xit + εit (1.3)

Yit is a dichotomous variable being equal to one if individual i is unemployed

at the time of the interview t and zero otherwise. Ti is a dichotomous variable

equal to one if individual i has been exposed to a shock in the labor market.6

P ostt is another dichotomous variable being activated once individuals in the

treated group have received the treatment, (P ost ∗ T )it is the interaction term Xit

represents a vector of time varying controls for individual i and εi an error term.

The model in equation (3) suffers from two important problems. To begin with, it

does not consider the structure of labor market shocks data. As treated workers

are affected by labor market shocks at different times depending on which State-

industry pair they belong to, it is not possible to identify P ostt for non treated

individuals. In other words, equation (3) neglects the main source of variation

we can exploit to identify the environmental shock, that is time variation in the

peak of mass lay-off across States and industries. A second major problem is

omitted variable bias which may arise from Ti being correlated with the error

term. Suffering a negative labor market shock in a given State and industry could

in fact be correlated with unobserved individual characteristics spanning from

preferences over the choice of industry to work in, the choice of the State or

even to skills as well as familiar socio-economic status. To some extent the same

problem could be seen as a selection issue but for completeness we will specifically

address this when considering the genetic endowment. Of course, the choice of

6Note that a this stage this simply means belonging to a State-industry pair for which we

identify a peak in mass-lay-off at some point between 2006 and 2015.
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the industry and State can not solely be due to preferences or skills as educational

attainment and its genetic predisposition are likely to play a role.

To face these problem a second step is to exploit the panel dimension of the data

by estimating a generalized difference in difference with treatment at different

times by group with a fixed effect (FE) model as in equation (4). This allows to

avoid omitted variable bias as long as the omitted information correlated with the

shock variable is time constant.

Yit = β0 + β1P ost.P eakMLidst + β2Xit

+ ai +λt +γds + νdst + εit
(1.4)

P ost.P eakMLidst is a dummy equal to one if individual i in industry d and State s

has suffered a peak of mass lay-off in between time t and t−1. The variable is zero

for every individual in the sample at first observation in 2006, it gets a value of one

once a peak happens in individual i’s State-industry group and it remains equal to

one throughout the available waves. As a consequence, P ost.P eakMLidst captures

the effect of being exposed to a negative labor market shock on the probability of

unemployment. Following Hansen (2007) and Bertrand et al. (2004), equation (4)

includes an individual specific term ai , time effects λt, group effects γds as well as

a set of time/group interactions νdst and an error term εit.

In our case groups are indeed the product of States and industries pairs. Consider-

ing that in the United States there are 50 States and according to the the two digits

NAICS industry classification we can distinguish 20 industries, on paper this

translates into a thousand groups. If this was not enough of a concern, considering

the interaction between groups and time effects we would theoretically have four

thousand control.7

For feasibility constraints as well as interpretative concerns we follow Imbens

and Wooldridge (2008) and Bertrand et al. (2004) and disregard νdst assuming

individual level observation as independent. Again, it is not feasible to estimate a

model including all of our group fixed effects γds and, even if possible, that would

most likely be a huge source over-fitting considering the dimension of our panel.

7One out of the five waves would be considered as reference category.
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As a second best we control for industry effects ρd and State effects ηs which,

nevertheless are the main components of our groups. This leads to equation (5).

Yit = β0 + β1P ost.P eakMLidst + β2Xit

+ ai +λt + ρd + ηs + εit
(1.5)

Notice that both in equation (4) and (5), P ost.P eakMLidst is equivalent to (P ost∗T )it

of equation (3). The main difference between (3) and the subsequent models

(4) and (5) lays on the fact that in the latter models individual time constant

characteristics are accounted for by construction thanks to the within estimator.

Interestingly enough, this implies that not only that Ti is wiped out while time

trend are accounted for by λt but also that we would not be able to explicitly

include any individual time constant variable such as a polygenic score.

To cope with this we dichotomize the poligenic score at one standard deviation

creating HighPGSi : a dummy variable equal to one for individuals with polygenic

score beyond one and zero otherwise and interact it with P ost.P eakMLidst. The

resulting model (6) resembles a generalized triple difference in difference (DDD)

with treatment occurring at different times.

Yit = β0 + β1P ost.P eakMLidst + β2Xit

+ β3HighPGSi ∗ P ost.P eakMLidst

+ β4Collegei ∗ P ost.P eakMLidst

+ ai +λt + ρd + ηs + εit

(1.6)

Notice that in order to assess the additional informative power of the polygenic

score we would like to control for formal education but, as for any other individual

specific time constant variables, the within estimator cancels it out. Consequently,

as for the polygenic score we create a dummy variable for having obtained a col-

lege degree and we interact it with the shock variable. In terms of interpretation

β1 has positive expected sign and represents the increase in the probability of

unemployment due to having suffered a negative labor market shock as defined by

a peak in mass lay-off in a given state-industry pair for individuals without a col-

lege degree and a polygenic score for educational attainment below one standard
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deviation. Conversely, β3 would have negative expected sign and represent the

change in probability of unemployment when suffering a shock for individuals

with a polygenic score above one standard deviation. β4 would also have negative

expected sign and represent the change in probability of unemployment when

suffering a shock for individuals with a college degree.

While simultaneity and omitted variable bias have been tackled with regard to

our identification of labor market shocks, few consideration should be made with

regard to the interpretation of the polygenic score introduced from equation (6).

Notice that since we are not able to control for parental genotype for individual

in our sample, this should not be intended as being in the pursuit of a causal

interpretation of the genetic endowment but rather we hope to precisely highlight

which aspect represents the more salient threat to assessing the protective effect

of high polygenic score for educational attainment.

It is quite straightforward that being the sequence of SNPs determined at con-

ception, simultaneity is not an issue for the interpretation of β3. As a matter of

fact, there is no way labor market outcomes in late working age could be a causal

factor for a polygenic score which is in fact fixed at conception. On the other

hand, omitted variable may be an issue as long as the omitted information is both

correlated with the polygenic score and probability of unemployment and it is

time variant. Of course, a major candidate would be industry or state specific

labor market fluctuations which we already control for. Formal education would

also be a candidate but as mentioned above we already control for it both directly

including an interaction term of a dummy for college degree and labor market

shock and indirectly using the within estimator.

The most problematic aspect for interpreting the β3 in equation (6) as protective

effect of genetic predisposition to education with respect to negative labor market

shocks is given by selection. As the exposure to shocks (as well as its timing) is a

function of the combination of State and industry to which the worker belongs

to, one may argue that β3 reflects the selection into specific State-industry groups

rather than a some protective effect rooted into skills or human capital. With

this regard it is worth noticing that in model (6) the poligenic score dummy is

itself interacted with P ost.P eakMLidst. This means that β3 describes the change in
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probability of unemployment for those who actually experienced a shock having

a high polygenic score. In other words it captures the effect of heterogeneity in

the polygenic score within those experiencing a peak in mass lay-off as described

in (2). However, while our shock measure identifies spikes beyond three times the

average of mass lay-off, it does not distinguish differences across industries and

States that could in principle be present above this threshold. This is to say that

shocks as identified via peaks in mass layoff might indeed differ across states and

industries in intensity and actual labor market consequences in ways we cannot

control for.

Furthermore, while selection as a function of polygenic score might happen in

a non mutually exclusive way both for geographical location and industry, in

our framework it seems reasonable to say that the most salient channel would

be selection into industry. In a time frame surrounding the Great Recession, the

propagation of negative macro economic conditions, and so mass lay-off, would

first happen at industry level rather than geography. Interestingly, as we will see

in the following of the study we do find evidence of selection into industry which

nevertheless, does not seem to be a driver of our result.

Another significant aspect that we should take into account for the interpretation

of the results is the definition of unemployment. As mentioned above, the outcome

of the models from (3) to (6) is self-reported unemployment at time of the interview.

This should rise two concerns: on the one hand it neglects other important possible

outcomes of late working age such as early retirement or disability; on the other

hand it overlooks what happens in between two waves. Since individuals are

interviewed approximately every two years, using self-declared unemployment

status does not tell a complete story of what happened in between two subsequent

interviews. In fact, a worker might well go unemployed for few months and then

find a new job before the next interview, or use unemployment as a corridor for

retirement.

For the sake of the first point we not only look at unemployment but rather

we turn also to broader changes in working status, considering as outcomes for

alternative specifications having experienced any change in working status and

going out of the labor force, with the latter being defined as either self-declared
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retired or self-declared disabled. In general one would expect both education and

polygenic score to be protective against being affected by negative labor market

shocks but being affected by such shock could mean different things for different

workers. While one might expect genetic predisposition to educational attainment

(being associated with predisposition to accumulate human capital beyond formal

education) to be protective with respect to unemployment, then same might not

hold true, for example, with early retirement. For example, factors not necessarily

related to polygenic scores such as contribution years could in fact play a role

in the decision of taking the chance to retire when a recession or a mass lay-off

knocks at the door. Along this line, to the extent to which contribution years are

related to, for example, to formal education this would turn out to be the only

protective characteristics in this case. As we will see this seems to be the case as it

is expectable that individuals with less educational achievements entered earlier

on in the labor force keeping age constant. This would mean that as a labor market

shock kicks in these individuals could be more likely to accept early retirement

agreement to accommodate firm’s contingent needs.

With regard to the second point mentioned just above we propose robustness tests

looking at a more encompassing definition of unemployment. Rather than looking

at self reported unemployment status, we take into account the receipt of unem-

ployment benefit claims in the last calendar year as a proxy for unemployment.

Yet, since the question is only limited to the last calendar year we still are not able

to get a complete picture of the entire two years before the interview. Nevertheless

this allows us to capture a significant larger amount job losses. Note that we do

not adopt such a definition of unemployment for the main set of results because it

would not be consistent with the other set of job market outcomes we investigate.

In case of significant protective effect of the polygenic score in the main set of

results, another crucial problem to be addressed would be the channel through

which this relation is actually working. As our interviews are carried out every

two years one could think of individuals with higher polygenic score to be either

less likely to loose job when a shock hits the State-industry pair or, alternative,

even if displaced with the same likelihood, they might be more likely to find

re-employment before the next interview. while we are aware that our setting is
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not the perfect one to disentangle these two cases we propose a specification that

goes in the direction of providing at least some suggestive evidence.

Wit = β0 + β1JLit + β2Xit

+ β3HighPGSi ∗ JLit

+ β4Collegei ∗ JLit

+ ai +λt + ρd + ηs + εit

(1.7)

Equation (7) is very similar to equation (6) except that for two aspects. First

of all, rather than modelling the probability of unemployment as self- reported

unemployment status we build a Wit: a dichotomous variable taking value one if

in between two subsequent waves an individual has received some unemployment

benefit but, by the time of the following interview he/she reported to be either

employed of self-employed. This, rather than adopting a broader definition

of unemployment means to focus on those cases in which workers did in fact

experienced some unemployment (which is proxied by receiving unemployment

benefit) but where able to find another job before the next wave. The second

difference is that rather than regressing the outcome on a measure of labor market

shock we regress it on a dummy for having lost the job in between two subsequent

waves and interact it with the usual dummy for a polygenic score beyond one

standard deviation and one for college degree. Notice that in equation (7), β1 is

by construction heavily correlated with the outcome Wit which is in fact build

as an intersection of individuals who have lost their job in between interviews

(according toJLit) but who have a job at the time of the interview. So, while in (7)

the significance of β1 would not be an interesting result, what we aim to test is

in fact the significance of beta3. In fact, the significance of the coefficient of the

interaction betweenHighPGSi and JLit would provide at least suggestive evidence

of the polygenic score being protective against unemployment not only by making

job loss less probable but also by increasing the probability of re-employment

after a job loss.

To test against the possibility that our results are a product of the particular way

we identify the labor market shock measures or the point in which we set the

threshold of the polygenic score dummy, we propose a robustness based on county
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level unemployment rate and non-dichotomized polygenic score for educational

attainment.

1.6 Results

Table 1.3 presents estimates as from model (6) for changing working status, going

out of the labor force, and going unemployed. Starting from the whole sample,

we see that experiencing a peak of mass lay-off in between two subsequent waves

increases the probability of experiencing a general change in the working status

by 3.6%. The interaction between the shock and the dummy for a high polygenic

score has the negative expected sign but it is not statistically significant. On

the other hand, the interaction with the college degree has negative expected

sign and it is statistically significant describing a decrease in the probability

of changing working status of about 7%. To see what is hidden behind this

change of working status we distinguish between going out of the labor force

(i.e. retirement or disability8) and going unemployed. Looking at the second and

third column of the top panel in Table 1.3 we see an interesting pattern. The

coefficient for experiencing a peak in mass lay-off is, if anything, only barely

significant in the model for unemployment; its interaction with the polygenic

score dummy is significant with negative expected sign only for unemployment

while the interaction with the college degree dummmy is only significant in the

model for exiting the labor force.

While the limited significance of the non interacted shock measure is not per se

a concern, the alternative significance of the polygenic score and college degree

in the last two specifications needs further interpretation. Moreover, one would

expect formal education to be negatively associated with unemployment when

hit by a negative labor market shock. The estimates suggest that workers with

a college degree are less likely to exit the labor force when exposed to a labor

market shock. In fact, as a worker become older his/her contribution years (and/or

savings) increase and the sooner a worker entered the labor force, the more likely

8While we are aware that suffering a certain degree of disability per se does not preclude

employment, we use the self-reported disability status as alternative to the employed self-employed

one to assume the exit from the labor market due to disability. Moreover, we grouped it with

retirement to acknowledge the known channel of early retirement through disability benefit.
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he/she will be to retire before 65 years of age. It is straightforward that since the

workers with a college degree entered later on into the labor force with respect to

those without college degree, the former will be less likely to be ready to take the

chance to retire when exposed to negative labor market conditions in the 50 to 65

age range. If this is true then, it comes with no surprise that the interaction with

formal education does not have any effect on the probability of unemployment

while, the only significant interaction for individuals remaining in the labor

market is that with the polygenic score. In other words, as workers experience

a negative labor market shock, those with lower educational attainment, being

entered erlier on in the labor market, will be more likely to exit the labor market

and retire. On the other hand, those with higher educational attainment will more

likely seek to remain in the labor force as they entered it later on in their life. If

in this setting of older workers educational attainment is mainly associated with

lower chances of retirement, having a polygenic score beyond one is associated

with lower chances of unemployment. Finally, it should be noted that while the

R2 in the models for change in working status and exit from the labor force are

respectively 26% and 28%, in the model for unemployment the goodness of fit

remains at 6%.

Following Papageorge and Thom (2019) we further split the sample by gender

in order to acknowledge possible different selection paths into education and/or

labor market which are likely to be present for the cohorts under consideration. It

is worth noticing that in contrast to the above mentioned authors, for the sake of

completeness we decide to include women in the analysis sample. The resulting

estimates are reported in the middle and bottom panel of Table 3. It emerges quite

clearly that the pattern observed in the whole sample is heavily driven by men. In

the middle panel we see the lack of significance and almost zero point estimates

for the mass lay-off shock along every scenario of analysis. The interaction with

the polygenic score dummy remain insignificant while the one with college degree

is significant and with expected sign only in the model for exiting the labor

force. In the case of male workers instead, experiencing a labor market shock is

associated with a 7.1% increase in the probability of general change in the working

status. When the shock is suffered by an individual with a polygenic score greater
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than one, this probability decreases by 8% while the change in probability for

an individual with college degree decreases by 8.5%. With regard to exiting the

labor force, as for the previous two cases, only the interaction with college degree

is significant with a point estimate of -7.6%. More interestingly, looking at the

estimates for unemployment, the statistical significance is stronger if compared

with the panels above and experiencing a shock in the labor market in between two

subsequent waves is associated with an increased probability of unemployment

of about 3.9% while, this probability decreases by 6.2% if the worker has a high

polygenic score for educational attainment. As for the other cases, no significant

association is detected for the interaction with college degree. Notice that the

point estimate for the interaction with the polygenic score more than offset the

estimate of the coefficient for the shock alone.

As mentioned in the methodological section of the study, so far we have been

considering only job status at time of interview which happens every two year.

For this reason we might be losing track change of working status that happens

and resolve within the same waves. This is to say that while we show that at least

for male workers having a high polygenic score is associated with lower chances

of being re-interviewed while unemployed, it says little of weather this is due to

lower chances actually experiencing unemployment in the first place or also higher

chances of finding an employment once again after being displaced. To dig deeper

in this direction we exploit a proxy to detect the experiencing of unemployment

status disregarding the actual job status at the time of the interview that is having

received any unemployment benefit during last calendar year.

The first three columns of Table 1.4 reports estimates results for linear probability

models for having experienced some unemployment as proxied by unemploy-

ment benefit receipt. Here we see a very similar pattern as in Table 1.3 with the

interaction between the shock and the dummy for high polygenic score being

significant with comparable size effect as in Table 1.3. The last three columns of

Table 1.4 instead report estimate for the model described by equation (7) where

the dependent variable is a dummy for having experienced unemployment and

having found another job in between the same two waves. In these columns

we focus on experiencing unemployment as main variable of interest to build
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Table 1.3: Fixed effect linear probability model for labor market outcomes and

mass lay-off events

Whole Sample

Changed working status Out of the labour force Unemployment

Post.PeakML 0.036** 0.019 0.015*

(0.017) (0.015) (0.009)

Post.PeakML * HighPGS -0.013 -0.006 -0.033**

(0.030) (0.027) (0.012)

Post.PeakML * College -0.069*** -0.061*** 0.005

(0.023) (0.022) (0.011)

constant 11.823*** 13.254*** -1.045**

(1.149) (1.060) (0.531)

N 8499 8499 8499

R2 0.26 0.28 0.06

Women

Post.PeakML 0.008 -0.003 0.002

(0.022) (0.019) (0.011)

Post.PeakML * HighPGS -0.016 0.030 -0.022

(0.040) (0.036) (0.018)

Post.PeakML * College -0.073** -0.060** 0.016

(0.035) (0.033) (0.017)

constant 10.137*** 11.829*** -1.398*

(1.495) (1.371) (0.643)

N 4850 4850 4850

R2 0.27 0.30 0.08

Men

Post.PeakML 0.071*** 0.038 0.039***

(0.027) (0.024) (0.013)

Post.PeakML * HighPGS -0.080* -0.036 -0.062***

(0.048) (0.043) (0.016)

Post.PeakML * College -0.085*** -0.076** -0.008

(0.034) (0.032) (0.015)

constant 15.011*** 15.254*** -0.011

(1.877) (1.783) (1.004)

N 3649 3649 3649

R2 0.29 0.31 0.09
Note: all specifications include the following controls: time dummies, marital status, age, age

squared, number of children, a dummy for ever being diagnosed with diabetes, industry dummies,

state dummies, income (all source) and tenure with last employer or job.
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Table 1.4: Fixed effect linear probability model for experiencing unemployment

and re-employment in between subsequent waves.

Experiencing Unemployment

(receiving unemployment benefit)

Re-employment after

experiencing unemployment

W & M W M W & M W M

Post.PeakML 0.025* 0.021 0.032

(0.014) (0.017) (0.023)

Post.PeakML * HighPGS -0.038* -0.021 -0.079***

(0.021) (0.029) (0.030)

Post.PeakML * College -0.010 -0.018 0.000

(0.018) (0.026) (0.025)

Experiencing unemployment 0.497*** 0.510*** 0.480***

(0.030) 0.041) (0.045)

Experiencing unemployment * HighPGS 0.068 -0.046 0.253**

(0.071) (0.089) (0.104)

experiencing unemployment * College -0.033 0.010 -0.118

(0.058) (0.075) (0.089)

constant -1.167 -0.924 -1.216 0.308 0.766 -0.800

(0.736) (0.924) (1.408) (0,396) (0.469) (0.727)

N 8499 4850 3649 8499 4850 3649

R2 0.05 0.06 0.07 0.48 0.50 0.50

Note: all specifications include the following controls: time dummies, marital status, age, age

squared, number of children, a dummy for ever being diagnosed with diabetes, industry dummies,

state dummies, income (all source) and tenure with last employer or job.

the interaction. As mentioned in the methodological section, the non-interacted

variable for experiencing unemployment is significant by construction throughout

the different sample split as it is a necessary but not sufficient condition for the

dependent variable to be equal to one. On the other hand, what we are really

interested in is, one again, its interaction with the polygenic score dummy. As

the reader can see at least for male individual, such interaction has sizeable and

significant coefficient with positive sign, suggesting that even when experiencing

unemployment, individuals with above one polygenic scoreare statistically more

likely to find another job by the time they are interview in the following wave. On

the other hand estimates remain difficult to interpret for women.
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1.6.1 Robustness

As first set of robustness, in Table 1.5 we repeat the main analysis using data

on the unemployment benefit claims as a measure of labor market shock. As

already mentioned there is no reason to expect these data to be less than highly

correlated with mass lay-off but nevertheless they capture dynamics of the labor

market at level of single workers rather than firms, as it is in the case of statistics

on mass lay-off events. Overall, in terms of point estimates results seem be in

line with those obtained with mass lay-offs. The biggest difference is given by

the interaction between the shock and the polygenic score dummy showing some

limited statistical significance also in the the model for men exiting the labor

force. With regard to unemployment robustness confirm the significance of the

coefficient for the interaction term with similar point estimates, even though in

this case the non interacted shock measure shows a non significance coefficient

also for the men sample split.

As a second set of robustness we address possible concerns towards the study

design in relation to the splitting of the sample on the basis of some discretionary

value of the polygenic score as well as the identification of shocks in the labor

market. To be more explicit, one may argue that results are purely a function of

the way the working sample is split with regard to the polygenic score. While

splitting the sample at one standard deviation is quite a common practice in many

gene environment interaction studies which are mostly characterized by statistical

power issues and tiny effects (e.g. Domingue et al. (2017) it is nevertheless fair

to address such a concern. Moreover, another possible concern relates to the

environmental shock as some may look at the way we identify the labor market

shocks as too discretionary as well. In Table 1.6 we address both these concerns

by estimating linear probability models for changing working status, exiting the

labor force and self-declared unemployment at time of interview as a function

county level unemployment rate and its interaction with the polygenic score for

educational attainment as continuous measure and an interaction with years of

schooling. In this way we are actually ruling out the above mentioned concerns

all at once while still exploiting the panel dimension of our dataset. Notice that

the Bueau of Labor Statistics only provide access to county level unemployment
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Table 1.5: Fixed effect linear probability model for labor market outcomes and

initial unemployment benefit claims events

Changed working status Out of the labour force Unemployment

Women

Post.PeakUBC 0.029 0.006 0.013

(0.022) (0.019) (0.010)

Post.PeakUBC * HighPGS -0.002 0.015 -0.013

(0.042) (0.035) (0.023)

Post.PeakUBC * College -0.058* -0.060** 0.023

(0.034) (0.033) (0.017)

constant 10.146*** 11.884*** -1.365**

(1.494) (1.368) (0.643)

N 4850 4850 4850

R2 0.27 0.30 0.08

Men

Post.PeakUBC 0.059** 0.045** 0.014

(0.027) (0.024) (0.013)

Post.PeakUBC *HighPGS -0.094** -0.066* -0.044***

(0.042) (0.075) (0.015)

Post.PeakUBC * College -0.078** -0.075*** -0.004

(0.034) (0.032) (0.015)

constant 14.992*** 15.294*** -0.063

(1.883) (1.790) (1.001)

N 3649 3649 3649

R2 0.29 0.31 0.08
Note: all specifications include the following controls: time dummies, marital status, age, age

squared, number of children, a dummy for ever being diagnosed with diabetes, industry dummies,

state dummies, income (all source) and tenure with last employer or job.
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rate as yearly data. In this sense, with respect to the main set of results, we are

on the one hand gaining geographical variation while on the other hand we are

losing time variability.

Starting from column (a) of Table 1.6 we have a coefficient for county level unem-

ployment of 0.812 which is, not surprisingly, highly significant as we are using

the change in unemployment rate in the county of residence between two wave

to predict the entering into unemployment of a single individual living in that

very same area. As county level unemployment is in percentage points, one would

expect its coefficient to be very close to one while, in our case the coefficient is

appreciably below it. This is most likely due to the fact that while county level

unemployment refers to the whole labor market, in this study we restrict to indi-

viduals with 50 to 65 years of age. A below average unemployment rate for such

cohort would then explain such a deviation from the expected point estimate of

the coefficient.

Introducing in the specification the interaction terms we in columns (b) to (d),

we obtain a significance pattern which is closely resembles that of Table 1.3 and

Table 1.5. The interaction terms in the model for changing working statu are

both significant and with expected negative sign. With regard to the modelfor

exiting the labor force the interaction with the polygenic score loses significance

while the significant ne is the one for educational attainment. Lastly and most

interestingly for us, in the model for unemployment (column (c)) the interaction

with the polygenic score is significant with sizeable point estimates if compared

the coefficient of county level unemployment itself. Such remarkable similarity

with the main set of results is extremely promising in coping with the possible

concerns highlighted just above.

As anticipated in Section 5 an important aspect to consider with regard to the

interpretation of the results is possible selection into exposure to labor market

shocks driven by the polygenic score itself. To asses whether this could be is

indeed an issue we plot in Figure 1.5 the average polygenic score by industry

with a 95% confidence interval. We document a surprisingly evident degree of

selection into industry. In our working sample the polygenic score is on average

below zero for workers in industries like utilities, accommodation, construction,
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Table 1.6: Fixed effect linear probability model for labor market outcomes over

county level unemployment rates

Unemployment

Changed

Working

Status

Out of the

Labour

Force

Unemployment

(a) (b) (c) (d)

County UR 0.812*** 5.582*** 3.677** 1.263*

(0.093) (1.352) (1.236) (0.683)

County UR * PGS_EA -0.401** -0.245 -0.224**

(0.199) (0.182) (0.100)

County UR * EA -0.374*** -0.242** -0.075

(0.091) (0.082) (0.046)

Constant -0,031*** 12.280*** 13.219*** -0.836*

(0,006) (1.157) (1.064) (0.469)

N 8499 8499 8499 8499

R2 0.02 0.28 0.29 0.08
Note: County level unemployment are yearly average. All specifications include the following

controls: time dummies, marital status, age, age squared, number of children, a dummy for ever

being diagnosed with diabetes, industry dummies, state dummies, income (all source) and tenure

with last employer or job.
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Figure 1.5: Polygenic score for educational attainment by industry of occupation.

HRS waves 2006 - 2014.

retail and manufacturing. On the other hand, industries like health services,

finance, professional services, education, public administration and agriculture

have average polygenic score above zero. With the exception of the latter one, the

resulting ranking is somehow close to what one could expect, with workers having

below average score employed in sectors where the labor market is typically more

volatile or where temporary or low skill jobs are more present. On the other

hand it is worth noting that such pattern might reflect, at least to some degree,

intergenerational persistence of occupational choices within families.

To the extent to which the belonging to an industry as function of the polygenic

score determines in the State-industry pairs a systematic pattern of exposure to

labor market shocks, our estimates could in fact reflect such a selection rather

than any protective effect. While there is no perfect way to test against this, in

Table 1.7 we report estimated results of OLS models where the polygenic score

and a dummy for a score above 1 (as used in Table 1.3 to 1.5) are alternatively

regressed on the shock measure and a dummy for being exposed to a shock at

some point. This, controlling education and all the usual controls used throughout
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the paper. Estimates show that conditionally on educational attainment or college

degree and all the other controls (including States and industry dummies) our

labor market shock measure do not significantly correlate with the polygenic score

or a dichotomous transformation of it. This is sound evidence that, despite the

documented non negligible degree of selection in industries, our results can not

anyhow driven by correlation between our measures of labor market shocks and

the polygenic score.
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Table 1.7: OLS for polygenic score over labor market shock measures.

PGS for educational attainment

Post.PeakML 0.016 0.009

(0.040) (0.040)

Ever exposed to a peak in ML 0.037 0.024

(0.050) (0.050)

College 0.485*** 0.484***

(0.047) (0.047)

Educational attainment 0.119*** 0.118****

(0.011) (0.011)

Constant 3.184 2.329 3.443 2.495

(2.147) (2.119) (2.142) (2.115)

N 9216 9216 9216 9216

R2 0.12 0.13 0.12 0.13

HighPGS

Post.PeakML -0.006 -0.008

(0.015) (0.015)

Ever exposed to a peak in ML 0.009 0.006

(0.019) (0.019)

College 0.160*** 0.159***

(0.019) (0.019)

Educational attainment 0.034*** 0.034***

(0.004) (0.004)

Constant 0.168 -0.141 0.239 -0.094

(0.792) (0.790) (0.793) (0.792)

N 9216 9216 9216 9216

R2 0.08 0.08 0.08 0.08
Note: all specifications include the following controls: time dummies, marital status, age, age

squared, number of children, a dummy for ever being diagnosed with diabetes, industry dummies,

state dummies, income (all source) and tenure with last employer or job.
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1.7 Discussion

Results highlight a lower probability of unemployment after being exposed to

a negative labor market shock for individuals with polygenic score above one

standard deviation. For male workers the decrease in probability is significant and

between 4.4% and 6.2% depending on whether labor market shocks are measured

with unemployment benefit claims or mass lay-offs. For women the decrease is

estimated between 1.3% and 2.2% but it does not reach statistical significance. The

lack of a significant estimated coefficient for the interaction term among female

workers is consistent with previous studies from the same literature disregarding

such group because of systematic selection patterns into education and labor force

for specific cohorts.

Results are consistent with an interpretation of the polygenic score for educational

attainment that goes beyond simple predisposition for education. In fact also

in our study, the polygenic score remain significant and predictive of outcome

observed

On the other hand, it is worth remembering that mainly for reasons of constraint

in data availability rooted in the current developmental stage of genomic science

we are using a considerably selected sample that limits the external validity of our

results as well as possible policy implication.

1.8 Conclusion

In this study we provided evidence of interaction between individual level genetic

information on predisposition to educational attainment and labor market data

in predicting labor market outcomes in later working life. After controlling

for education, a polygenic score above 1 implies a 4.4 to 6.2% decrease in the

probability of unemployment when exposed to a negative labor market shock

as measured via unemployment benefit claims or mass lay-off respectively. On

the other hand, no significant interaction is found for women. Education plays a

role only with respect to transitioning out of the labor force when exposed to a

labor market shock. Results are robust to alternative definitions of environmental

shocks and unemployment. Furthermore, we present suggestive evidence of high
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polygenic score decreasing the probability of unemployment both via decreasing

the probability of losing the job in the first place and via increasing probability of

re-employment after a job loss. We document a non negligible degree of selection

into industries as function of the polygenic score with lower average polygenic

scores concentrated in more volatile sectors or sectors in which is traditionally

more likely to observe temporary job contracts. Nevertheless, such selection is

unable to explain our results as after considering all the available controls, the

polygenic score is not significantly correlated with the exposure to our measure of

negative labor market shock.
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Chapter 2

Estimating the Causal Effect of Retirement on

Frailty

Abstract

In this study we estimate the causal effect of retirement on frailty, a syndrome

defined as a multi-systemic health deficit accumulation with good predictive

properties with respect negative health outcomes like further health decline,

dependency and death. We use data from the Survey on Health, Ageing and

Retirement in Europe (SHARE), instrumenting retirement with the reaching of

early and statutory retirement eligibility criteria in nine countries. Exploiting

the panel structure of the dataset we are able to exploit both cross and within

country variation in such criteria. Results highlight a significant protective effect

of retirement among male retirees. Results are robust to alternative definitions of

retirement and to partial definitions of the frailty index.
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2.1 Introduction

Ageing represents one of the many challenges that both developed and developing

countries will face in the next decades. To give a sense of the magnitude of the

phenomenon, for European countries, old-age dependency ratio (the share of

people 65 and older over the population in the 18-65 age range) is expected to

increase from less than 30 percent in 2015 to more than 50 percent by 2050 while

countries such as Greece, Portugal and Italy are expected to reach respectively 70,

65 and 62 percent (Eurostat 2015). This, in addition to increased life expectancy,

poses a number of question both regarding quality of life and sustainability of the

healthcare sector.

In such a context, frailty represents a central aspect in describing the health de-

cline of an elder individual, with considerable documented consequences for the

healthcare system (Comans et al. (2016), Bock et al. (2016)). Frailty is a clinical

syndrome entailing a vulnerable health status resulting from a multisystem reduc-

tion in older people’s health capacity or physiological reserve (Fried et al. (2001),

Staudinger et al. (1995),Lally and Crome (2007),Theou et al. (2015), Harttgen et al.

(2013)). A frail individual is affected by a pathological multisystemic syndrome

different from aging itself (meant as "chronological" ageing), stemming from both

genetic (Viña et al. (2016), Inglés et al. (2019)) and environmental stressor factors

(Fried et al. (2001), Staudinger et al. (1995) and Roiland et al. (2015)).

A common definition of such a concept in the applied literature is the one by Fried

et al. (2001). As pointed out by Sirven (2012), it is mainly because of its distinction

from disability and comorbidity, the easily implemntable operationalization and,

finally, its parsimony. In Fried et al. (2001), the definition of frailty relies on only

five dymensions: weakness, exhaustion, slowness, low physical activity levels and

shrinking. A frailty index going from zero to five synthetize into a single measure

the realized status.1 The aim of the present study is to identify the causal effect of

1A valuable alternative to Fried et al. (2001) is the definition of frailty given by Rockwood et al.

(2007) which although being extremely encompassing (it is measured over about 70 variables

covering also cognitive changes, attitudes and behavioural risks in addition to physiologic status)

it is hardly implementable without a professional health assessment.
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retirement on frailty as an important outcome for the health trajectory in old age

population.

2.2 Literature

From a theoretical standpoint frailty has already been introduced by Strulik (2015)

in the economic literature as a model of ageing and longevity which highlight the

role of deficit accomulation as opposed to that of health capital accumulation as

in Grossman (1972) and most of the following literature in health economics.

The relevance of frailty in both geronthological medicine and social sciences is

due to its predictive power with respect to disability and health outcomes in

general such as dependence, falls and finally death (Bergman et al. (2007)) as

well as to the opportunity for early detection and reversibility (Fried et al. (2004)).

In addition, as anticipated above, letting aside the epidemilogical and medical

realm of interest, recent studies found positive association between frailty and

healthcare costs (Bock et al. (2016), Comans et al. (2016), Sirven and Rapp (2016)).

Interestingly, the latter seem to be driven by a combination of disabilities, chronic

conditions and frailty. This contrast the belief that age is the main driver of

healthcare cost among elderly population. Bock et al. (2016) provide evidence of

how frailty is associated with increased health care costs and highlight frailty as

one of the main factor for healthcare costs independently from pure age. Overall

thi indicates how the overlapping concepts of multimorbidity and frailty are

necessary to explain health care use and corresponding costs among older adults.

Comans et al. (2016) analyze the cost of frailty by comparing, on the basis of

resource use data, patient cohorts respectively entering a community-based post-

acute program and entering residential care. Findings confirm association between

pre-frailty and frailty statuses and increase in healthcare costs. Finally, Sirven and

Rapp (2016) investigate the incremental cost of frailty with respect to ambulatory

health care expenditures in the 65 and older French population in 2012. Findings

suggest frailty’s significant additional explanatory power toward expenditures

whatever other health covariates are considered, meaning that frailty can indeed

represent a source of omitted variable bias whenever it is not accounted for.

51



In addition to purely financially driven concerns, recent studies in gerontology

and aging such as Woods et al. (2013) or Ruan et al. (2015) highlighted the link

between physiological reserve and cognitive decline. By this, the authors explicitly

claim the existence of a relationship between what they call physical frailty and

the so called cognitive frailty: "an heterogeneous clinical syndrome of cognitive

impairment that develops in elderly individuals, is caused by physical factors (e.g.,

physical frailty and pre-physical frailty) and is excluded from dementia resulting

from Alzheimer’s disease or other conditions" (Ruan et al. (2015)).

Although being still far from an easily implementable and operationally friendly

definition for cognitive frailty, this proposed link is suggestive of the central

role of physiological functioning in triggering impaired cognitive states. This

seems especially interesting considering the lack of any systematic consideration

for the concept of frailty in the literature on health effects of retirement which

nevertheless investigated some aspects of cognition.

On the other hand, although a not clear causal direction, also cognitive capabilities

characterizing the so called executive functions (EF)2 are expected to play a role

in early stages of pre-frail conditions. In fact, looking for a mediation channel

between EF and frailty, Roiland et al. (2015) propose (cross-sectional) evidence of

stress exposure and regulation function emerging as a significant predictors of

pre-frail condition.

Retirement is recognized as a delicate transition period and many studies already

attempted to assess its effect on a number of health outcomes. For studies regard-

ing non physically related outcomes of retirement, the main variable of interest

have so far been depression (Charles (2002), Belloni et al. (2016)) and cognitive

functioning (Coe and Zamarro (2011), Coe et al. (2012), Mosca (2017)) highlight-

ing mixed results.

With regard to physical health, Coe and Zamarro (2011) also looked at general

health predicting self reported health status over serveral objective measures of

health such as the number of hospitalizations in the last year, obesity, the number

2For a comprehensive analysis and definition of Executive Functions please, refer to Diamond

(2014)
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of chronic diseases and mobility limitations. 3 On the other hand, outcomes such

as cholesterol and blood pressure (Behncke (2012)) as well as BMI (Godard (2016))

have also been directly investigated highlighting positive effects of retirement

on these outcomes. The most closely related paper to the present one is Bertoni

et al. (2018) where the authors assess the causal effect of retirement on the loss

of muscle strength, an important component of frailty. Findings point to a short

term protective effect of retirement on grip strength but do not consider frailty as

a systemic concept in the health of retirees.

Despite a quite extensive literature, most of the empirical literature on retire-

ment and health has so far mainly addressed short term effects while long term

ones remain an overlooked question(Avendano and Berkman, 2014). With this

regard, investigating the first stages of deficit accumulation in the aging process

as described by a frailty score, would allow to shed some light on the long term

effects. To the best of our knowledge only few studies investigate the socioeco-

nomic aspects determining frailty (Sirven (2012), Lu et al. (2017) and Kalousova

and de Leon (2015)) and even though they seem to point in the direction of the

presence of socio-economic gradient Sirven (2012), correlation with employment

histories Lu et al. (2017) and psychosocial working condition on the job Kal-

ousova and de Leon (2015), all the three studies fail to give any particular causal

interpretation.

Using panel and retrospective data from SHARE accross three waves, Sirven (2012)

investigates the determinants of frailty by mean of a Fixed Effect Poisson and

Mundlak Random Effect model highlighting the presence of an income gradient

having positive effects on frailty and a positive effect given by social capital. On

the other hand, the study highlights higher frailty associated to being in the labour

force. Interestingly, this seems counter-intuitive with respect to the so called

Healthy Worker Effect (the selection into retirement of the weaker/ill workers and

a consequent healthier remaining labour force) leading the reader to question

whether retirement could represent (for some worker) a valuable preventive

measure for the considered health outcome.
3More on this in Figure 1.1.
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Kalousova and de Leon (2015) using wave I and wave IV in a multilevel linear

model framework found that working in a position with high effort and low

reward predicts the greater increase in frailty while also "effort-to-control" ratio is

associated with increased level of frailty. With respect to retirement the authors

report a negative effect (decrease in frailty) associated with retiring from working

positions with low reward.

Finally, using data from ELSA with multilevel models, Lu et al. (2017) found lower

levels of frailty among women who experienced distinct periods of work and

family care over the life course. On the other hand, among men, retiring before 65

seems beneficial for slowing down frailty trajectories.

2.3 Data

We use data from the Release 6 of the last three waves (2011, 2013 and 2015) of the

Survey of Health, Ageing and Retirement in Europe (SHARE), a multidisciplinary

and cross-national panel database with individual information on health, socio-

economic status as well as social and family networks. To date, SHARE collected

more than 120,000 Computer Assisted Personal Interview (CAPI) covering 27

European countries and Israel.

Our sample includes all individuals aged 50-65 from nine European countries

(Austria, Germany, France, Spain, Italy, Slovenia, Belgium, Czech Republic, and

Estonia), who were working at baseline and who declared in each wave to be

either retired or employed. Thus, we only consider transitions to retirement from

employment, neglecting other possible paths such as through unemployment or

disability. Moreover, we drop respondents for whom variables needed for the

computation of our frailty index are missing as well as respondents with missing

values for covariates in our final specification.

2.3.1 Defining Frailty

From an operational perspective, we define frailty on the basis of the frail phen-

otype definition proposed in Fried et al. (2001). As mentioned above, the frail

phenotype definition identifies an index going from zero to five according to

the number of markers present for the individual. A frailty index equal to zero
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identifies a fit individual, if the index takes either values of one or two we refer to

a pre-frail individual, while for an index equal to three and more we have a frail

individual.

The five dymensions of the index are: shrinking, exhaustion, low grip strength

(weakness), slowness, and low physical activity. For each of these markers we

define a dummy variable whose activation depend on the following measures and

answer, as in Santos-Eggimann et al. (2009). The dummy for shrinking identifies

individuals reporting a "diminuition in the desire for food" to the question "What

has your appetinte been like?" or "less" to the question "So have you been eatin more or

less than usual?". For exhaustion, the dummy takes value one if a positive reponse

is given to the question "In the last month, have you had too little energy to do things

you wanted to do?". As for grip strength, we attributed a deficit to individuals with

a maximum hand grip strength over four trials below some thresholds depending

on gender and bmi.4 The dummy for slowness takes value one if a positive answer

was give to "Because of a health problem, do you have difficulties walking 100 meters"

or "...climbing one flight of stairs without resting?". Finally, an individual is defined

as carrying out low physical activity if reporting "hardly ever or never" or "one to

three times a month" to the question "How often do you engage in activities requiring

a low or moderate level of energy such as gardening, cleaning the car or going for a

walk?" Overall, this frailty index relies in part on subjective measures of health.

Nevertheless, covering different domains of individuals’ health, the encompassing

and systemic nature of the indicator can rule out, or at the very least attenuate,

concerns regarding justification bias.

To further motivate the study we can compare the frailty index computed as just

described with the health index estimated in Coe and Zamarro (2011). In their

assessment of the effect of retirement on health, the authors predict self-reported

health status going from "excellent" to "poor" with a five point scale over a vector

4For men the cutoff are 29 Kg for a bmi below 24; 30 Kg for a bmi between 24 and 28; 32 Kg for

bmi above 28. For women, thresholds are 17 Kg for a bmi below 23; 17.3 Kg for a bmi between 23

and 26; 18 Kg for a bmi between 26 and 29 and 21 for a bmi above 29 (Fried et al. (2001)). In this

ought to point out that while the measure for grip strength is the only truly objective one that we

can retrieve from our data, the BMI measures on which the thresholds are attributed are in fact

resulting from self declared height and weight.
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Figure 2.1: Frailty vs. Health Index

of objective measure of health including the number of limitations in activities of

the daily living (ADLs), BMI, grip strength, EURO-D depression score, number of

chronic diseases etc.

Figure 2.1 shows a scatter plot with frailty index on the x-axis and the estimated

values of the health index computed as in Coe and Zamarro (2011) on the y-

axis. To begin with, despite exploiting partially overlapping information, the two

measures are only correlated at about 50%. Moreover, looking at Figure 2.1 we

can appreciate how, with respect to the Frailty score, a general health index whose

estimates are obtained on the basis of self reported health as an outcome seems to

overestimate the erosion of health capacity on the fit end of the spectrum while

underestimating it on the other extreme of the distribution.

Given the relatively low age range we consider, the probability of observing a

large share of severely frail individuals is ex-ante rather low. In fact, in the cross

section of our sample only 1.5% of the individuals exhibit three or more markers

contemporaneously while more than 38% (34.4% and 42.5% respectively for
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men and women) exhibit at least a pre-frail status. Therefore, as anticipated

above, considering the systemic nature of the syndrome and so how each marker

represents a risk factor for the others in the path toward frailty, we focus on the

development of pre-frail status. In order to do so we dichotomize the frailty index

between zero and one, identifying the causal effect of retirement on the probability

of being at least in a pre-frail status.

As for retirement, we adopt two distinct definitions, in the attempt to assess the

robustness of the results. A first one, in line with Godard (2016), is solely based on

self-declared status while a second one, further condition on not having done any

paid job during the last four weeks. While self-declared status nicely correlates

with eligibility criteria and receiving pension benefits, not working for pay in the

last four weeks allows to explicitly account for labor supply. A possible problem

with the first definition would be given by individuals declaring themselves retired

because they left the job that mostly characterized their career while eventually

carrying out some other activities.

Table 2.1 describes a sample of 7698 and 7690 pooled observations respectively

for men and women. Retirees are not surprisingly on average older and slightly

less educated which is suggestive of an earlier entry in the labor market. In terms

of socio-economic conditions retiring individuals seem comparable with those

remaining in the labor force. Again,not surprisingly, income is appreciably lower

among retirees and it is worth noting the significant lower averages for women

throughout both groups. In terms of health, the average frailty index seems is

0.46 and 0.56 among retiring men and women respectively against 0.43 and 0.57

among non-retiring male and women. The distribution across fit, pre-frail and

frail statuses is very comparable between the two groups both within male and

female individuals. Figures in Table 2.1 highlight how, for the given range of

age, pre-frail statuses tend to be significantly more common among women then

men and finally, as expected given the age we are considering, frailty conditions

affect only less than 2% of the working sample. Finally, retiring individuals tend

to be more likely to have chronic conditions while the presence of two or more

limitations with daily activities only sightly higher for them as compared to non

retiring individuals. On the same line, also scores on the EURO-D depression
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Table 2.1: Summary Statistics

Male Female

Variable
Whole
sample

Retired
across
waves

Working
all

along
Whole
sample

Retired
across
waves

Working
all

along

Demographics

Age 60.54 62.43 59.42 60.14 61.90 59.17

Years of education 12.76 12.18 13.11 12.72 12.22 13.00

One child 0.12 0.10 0.13 0.17 0.17 0.18

More than one child 0.55 0.55 0.55 0.58 0.59 0.58

Retirement 0.19 0.51 0.00 0.18 0.51 0.00

Socio-Economics

MEM very hardly 0.06 0.06 0.06 0.06 0.05 0.07

MEM easily 0.37 0.37 0.37 0.34 0.35 0.34

Income (1000 €) 16.67 12.20 19.33 11.23 8.09 12.96

Health

Frailty index (0-5) 0.44 0.46 0.43 0.57 0.56 0.57

Fit 0.65 0.64 0.65 0.56 0.57 0.56

Pre-frail 0.34 0.34 0.34 0.42 0.41 0.42

Frail 0.01 0.02 0.01 0.02 0.02 0.02

2+ Chronic cond. 0.32 0.35 0.30 0.34 0.38 0.32

2+ LDA 0.03 0.04 0.03 0.04 0.04 0.04

EURO-D (0-12) 1.59 1.62 1.57 2.33 2.28 2.36

Country

Austria 0.08 0.09 0.07 0.08 0.13 0.05

Germany 0.12 0.08 0.14 0.12 0.09 0.14

Spain 0.09 0.06 0.11 0.06 0.04 0.08

Italy 0.13 0.12 0.13 0.09 0.06 0.10

France 0.11 0.13 0.10 0.12 0.13 0.11

Belgium 0.14 0.15 0.13 0.12 0.13 0.12

Czech Rep 0.13 0.14 0.13 0.12 0.18 0.10

Slovenia 0.05 0.05 0.04 0.03 0.04 0.03

Estonia 0.17 0.17 0.16 0.25 0.21 0.27
Note: Retirement across waves refers to self-declared retirement status. MEM stands for "Make

ends meet". LDA stands for "Limitations in activities of daily living". EURO-D represents a

geriatric depression scale going from 0 to 12.
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scale are only marginally higher for retiring workers. Overall Table 2.1 describes

a situation with retiring workers having on average worse health outcomes as

compared to non-retiring individuals. This being said, it does not say anything

regarding any possible change occurring around the time of retirement which is

indeed the aim of the current study.

2.4 Identification Strategy

Endogeneity is a recurrent threat when estimating any effect of retirement. It may

stem from a variety of sources such as omitted variables affecting both retirement

and our dependent variable or reverse causality. In the former case we may think

to omitted unobservable time preference while in the latter we could expect

individuals exhibiting higher frailty indexes being more likely to self select into

early retirement.

A first step toward a causal interpretation of the coefficient of retirement would

be to exploit the panel dimension of our data considering a fixed effect model. In

so doing, we would control for unobserved individual specific constant variables

such as time preferences (assuming them to be constant), allowing explanatory

variable to be endogenous as far as their endogeneity arises from correlation with

unobserved heterogeneity. Still, reverse causality remains a problem. To address

reverse causality we estimate a fixed effect instrumental variable model. By

instrumenting retirement in a fixed effect framework, we are able to both control

for time constant unobserved omitted variables as well as reverse causality.5

As for the majority of studies using SHARE data, we rely on instruments based

on retirement age thresholds such as in Coe and Zamarro (2011),Mazzonna et al.

(2014) andGodard (2016). The main intuition underlying this approach is to

exploit discontinuities in the probability to retire around country-specific eligiblity

ages. This is to say that we rely on the fact that, as showed by Gruber et al. (1999),

5The choice to model individual time constant heterogeneity through a fixed effect rather than

a random effect is driven by Hausman test leading to reject the null hypothesis of no systematic

difference between the coefficient under the two models with a p-value of 0.044. Using a fixed

effect also allows us to exploit functionalities of the xtivreg2 Stata package like standard errors

clustered at individual level and tests for the validity of the instrumental variables.
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individuals seem to be willing to retire as soon as possible given their country’s

retirement rules. Such age thresholds can be easily demonstrated to be relevant

in workers’ decision to retire and at the same time seem arguably exogenous. We

define early retirement age (ERA) as the earliest age - conditional on contribution

years - at which individuals are entitled to reduce pension benefits while ordinary

retirement eligibility age (ORA) is the earliest age at which workers are entitled to

full old-age pension, regardless of contribution history.

Our main model of interest is:

P r(Yit = 1|Rit,xit, ai ,λt) = β0 + β1Rit +γ
′
xit + ai +λt + εit (2.1)

where Yit is bivariate variable for being at least in a pre-frail status for individual

i at time t; Rit is a dummy identifying the retirement status; xit is a vector of time

varying characteristics; ai is an individual fixed effect while λt represents a time

dummy and εit an error term.

We instrument the retirement status Rit with two variables defined as:

Zict = 1{ageit≥ERAct} (2.2)

Wict = 1{ageit≥ORAct} (2.3)

Therefore, Zict and Wict are two dummies describing the eligibility to either

early or normal retirement as a function of individuals’ age and country-specific

eligibility rules at time t. It follows a first stage of the kind:

P r(Rit = 1|Zict,Wict,xit, ai ,λt) = α0 +α1Zict +α2Wict + η
′
xit + ai +λt + εit (2.4)

where in addition to the instrument just described we have the set of covariates

xit as in equation (1) as well as the individual fixed effect ai , a time dummy λt and

the error term εit.

With regard to our instruments, having information on workers from nine coun-

tries and three waves, we rely both on cross-country variation in retirement

eligibility rules as well as on within country variation. As a matter of fact, in

our sample, every country exhibit a shift in at least one eligibility criteria for

retirement for either men or women. Interestingly, in contrast to the majority of
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study on this matter that exploit upward variations in retirement age as seen in

many European countries in the last fifteen years, our framework allows to exploit

a rather unique downward shift in eligibility criteria for normal retirement in

Germany in 2015.

As reported in Table 2.2, each country in the panel faced some sort of change in

retirement eligibility rule. For some of them the change is due to reforms meant

to ensure long-run financial stability such as for Italy, in other cases instead, we

see more subtle shifts reflecting adjustments to life expectancy like for Czech

Republic or adjustment to target ages defined by law before 2011.

In the case of Italy for example, the statutory retirement age for men passed

from 65 to 66 regardless of the working sector. On the other hand, the statutory

retirement age for women changed as function of the working sector getting

from 60 to 66 years old for public sector workers, to 63 for self-employed and

to 62 for private sector employees. Finally, with respect to early retirement, age

requirement passed from 60 to 62 (OECD (2011), OECD (2013b), OECD (2015)).6

On the other hand, in Germany statutory retirment age was set to 65 years old

in 2011 provided an increasing path reaching 67 in twenty years from 2012. In

addition, with an insurance record of at least 35 years7, early retirement was

allowed at 63 years old with a permanent benefit reduction of 3.6% per year of

early retirement (OECD (2011) OECD (2013a)). Effectively from July 1st 2014,

both male and female German workers with an insured working life of 45 years

who were born before 01/01/1953 can retire at 63 years old without any reduction

of the pension benefits. Such a threshold is increased by 2 months for each year of

birth after 1952 (OECD (2015)). Considering the time span in our analysis this

change would affect three cohorts: from 1950 to 1952.

6No benefits reduction for early retirement with 42 years and one months and 41 years and

one months of contribution respectively for men and women. Early retirement regardless of the

contribution period triggers a 1% payments reduction for each year of early retirement up to 60

years old and a 2% reduction per year if retirement occurs before 60 years old. For individuals

under the contributive and mixed system with twenty years of contribution the early retirement

age is instead 63.
7Insured time from employment, child care and child raising periods up to age 10 or periods of

short unemployment (OECD (2015))
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Table 2.2: Early and normal retirement age

Early retirement age (ERA)

Males Females

Country Wave Wave

2011 2013 2015 2011 2013 2015

Austria 62 62 62 57 58.6 59.3

Germany 63 63 63 63 63 63

Spain 60 / 61 60 / 63 60 / 63 60 / 61 60 / 63 60 / 63

Italy 60 / 61 62 62 60 / 61 62 62

France 59 60 60 59 60 60

Belgium 60 60.5 61.5 60 60.5 61.5

Czech Rep 59.3 59.5 59.8 59.6 60.3 61

Slovenia 58 60 60 58 60 60

Estonia 60 60 60 58.5 59 59.5

Ordinary Retirement Age (ORA)

Males Females

Country Wave Wave

2011 2013 2015 2011 2013 2015

Austria 65 65 65 60 60 60

Germany 65 65 65 / 63 65 65 65 / 63

Spain 65 65 65 65 65 65

Italy 65 66 66 60 62 / 63 / 66 63 / 64 / 66

France 65 65 66 65 65 66

Belgium 65 65 65 65 65 65

Czech Rep 62.3 62.5 62.8 60.6 61.3 62

Slovenia 58 58 58,6 56 57.3 58.3

Estonia 63 63 63 61.5 62 62.5
Source: OECD (2011-2015) and MISSOC (2011-2015)
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For our instruments to be valid, they need not only to be relevant for retirement

decisions but also exogenous, that is, related with the outcome of interest only

through retirement. In this regard, a threat to our identification could be given

by possible systematic discontinuities in workers’ health at their countries’ early

and ordinary retirement ages. However, considering the cross and within country

variation for ERA and ORA, this seems highly unlikely. For men, the lowest

considered retirement age is 58 years while the highest arrives to 66 years. For

women, the range of retirement ages goes instead from 57 to 66. Therefore we are

able to estimate the effect of retirement over a considerable range of ages for both

genders.8

As reported in Table 2.3, looking at the cross-sectional dymension of our sample

in column 1, on average 37% of the individuals retired during the considered

years. Columns 2-5 exploit instead the panel dymension of our sample to describe

respectively the share of workers becoming eligible for early retirement and

ordinary retirement (columns 2-3) as well as the share of individuals who become

eligible in between two waves and decide to retire in between the same two

waves (columns 4-5). Overall, more than 64% of workers who became eligible

for ordinary retirement decided to retire in between the same two waves while,

only 36% of individuals who became eligible for early retirement decided to retire

in between the same waves. This seems suggestive of workers considering less

the early retirement age threshold as compared to the normal retirement age in

driving their retiring behaviour. While at first this might seem in contrast with

Gruber and Köszegi (2001), this could simply reflect a change in behaviour given

by heavier disincentives toward early retirement as a result of the many pension

system reforms occurring in Europe in the last fifteen years.

Considering the identification strategy and the IVFE model described above, we

are able to interpret the estimated coefficient for retirement as a local average

8Another possible threat would be given by retirement age thresholds being set as a function of

workers’ health in each country. While we cannot neglect the fact that position on requirement for

retirement could be salient points upon which to set voting behaviour, this seems unlikely given

that we are looking at a number of countries where retirement age thresholds have been shifted

upward mainly for general financial sustainability constraints. Yet , in any case, such a limitation

would apply to every study relying on early and normal retirement age as instrument.

63



Table 2.3: Eligibility and retirement behaviour

Country Retired

Become

Eligible

ERA

Become

Eligible

ORA

Retired

when

reaching

ERA

Retired

when

reaching

ORA

Austria 0.50 0.17 0.30 0.07 0,18

Germany 0.26 0.06 0.22 0.04 0.12

Spain 0.31 0.15 0.15 0.04 0.14

Italy 0.24 0.11 0.07 0.03 0.06

France 0.41 0.29 0.05 0.16 0.03

Belgium 0.39 0.37 0.13 0.15 0.10

Czech Rep 0,45 0,19 0.33 0.05 0.25

Slovenia 0.44 0.16 0.34 0.05 0.21

Estonia 0.34 0.27 0.30 0.05 0.13

Total 0.37 0.20 0.21 0.07 0.13

treatment effect (LATE) where our treatment is simply retiring between two

subsequent waves between which the worker became eligible for either early or

normal retirement. In other words, if our compliers are those individuals whose

behaviour is shifted by our instrument, becoming eligible and retiring in between

the same two waves defines our compliers.

2.5 Results

Table 2.4 summarizes our main set of results, taking into consideration self re-

ported retirement. Columns (1) and (2) report estimated coefficients of the first

stage for men and women respectively so, the dependent variable is a dummy

for retirement. In both groups our instruments are highly statistically significant.

In particular, as anticipated by descriptives in Table 2.3, reaching the ordinary

retirement age seem to be a more salient threshold in driving retiring decisions as

compared to reaching the eligibility criteria for early retirement. While reaching
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Table 2.4: Results: Retirement as self declared status.

Effect of self-reported retirement on the probability of being at least in a pre-frail status. Odd

columns refer to male individuals while even ones are for women. Columns (1) and (2) report

estimates for the first stage. Columns (2) to (8) refer instead to the second stage.

(1) (2) (3) (4) (5) (6) (7) (8)

FE FE IV pooled IV pooled IV pooled IV pooled IVFE IVFE

retirement -0.204∗∗ -0.073 -0.237∗∗ -0.081 -0.284∗∗ -0.051

(-2.28) (-1.15) (-2.50) (-0.97) (-2.26) (-0.48)

Z 0.062∗∗∗ 0.062∗∗∗

(3.52) (3.86)

W 0.239∗∗∗ 0.210∗∗∗

(9.27) (10.22)

Education #yy -0.009 0.006 -0.003∗∗ -0.001 -0.003∗ -0.0009 -0.005 -0.007

(-0.81) (0.46) (-2.03) (-0.50) (-1.80) (-0.58) (-0.24) (-0.43)

One child -0.025 0.055∗∗ -0.006 0.021 -0.003 0.025 0.034 0.039

(-1.05) (2.17) (-0.37) (1.28) (-0.14) (1.52) (1.05) (1.15)

More than one child 0.014 0.037∗∗∗ -0.006 -0.001 -0.004 0.005 0.005 0.010

(1.14) (2.59) (-0.49) (-0.01) (-0.33) (0.43) (0.27) (0.47)

Difficulties in MEM -0.017∗∗ -0.028∗∗∗ -0.029∗∗∗ -0.024∗∗∗ -0.023∗∗∗ -0.012∗ -0.004 0.007

(-2.45) (-4.14) (-5.13) (-4.02) (-3.69) (-1.86) (-0.34) (0.77)

2+ Chronic cond. 0.018 0.017 0.064∗∗∗ 0.065∗∗∗ 0.067∗∗∗ 0.067∗∗∗ 0.032∗ -0.0122

(1.43) (1.38) (5.50) (5.72) (5.68) (5.93) (1.83) (-0.73)

2+ LDA -0.012 0.008 0.137∗∗∗ 0.113∗∗∗ 0.139∗∗∗ 0.115∗∗∗ 0.053 0.072∗∗

(-0.41) (0.32) (4.46) (4.41) (4.55) (4.52) (1.34) (2.09)

EUROD -0.005 -0.002 0.125∗∗∗ 0.120∗∗∗ 0.125∗∗∗ 0.120∗∗∗ 0.122∗∗∗ 0.122∗∗∗

(-1.61) (-0.84) (41.02) (50.72) (40.26) (50.59) (24.06) (30.76)

Constant -0.146 -0.336 0.519∗∗∗ 0.220∗∗∗ -2.152∗∗ -2.745∗∗

(-0.69) (-1.46) (6.55) (2.81) (-1.98) (-2.01)

Time dummies Yes Yes Yes Yes Yes Yes Yes Yes

Age dummies Yes Yes Yes Yes Yes Yes Yes Yes

Country dummies Yes Yes

N 7698 7690 7698 7690 7698 7690 7678 7676

R2 0.457 0.434 0.220 0.275 0.219 0.283 0.117 0.184

JPval 0.469 0.035 0.460 0.487 0.492 0.437

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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the latter increases probability of retirement by only 6.2%, the former is associated

with an increased probability of retirement of about 24% and 21% for male and

females respectively.

As we move from column (3) to column (6) we have estimated coefficients for

IV models with pooled observations both with and without taking into account

country dummies. We do so to account for possible country specific health trends

that might be correlated with retirement decisions. As already mentioned, the

dependent variable is a dichotomous variable taking value one for individuals

being at least in a pre-frail status. The coefficients for retirement entail a decrease

between 20.4% and 23.7% of the probability of being in a pre-frail status or beyond

form men. For women the coefficient would translate in a decrease between 7.3%

and 8.1% but, for this group there is no statistical significance.

Columns (7) and (8) display estimated coefficients for our IV fixed effect model.

Similarly to previous estimates the coefficient of retirement is significant for males

but not for females. For the formers, according to IVFE estimates, retirement

as instrumented by reaching either early or statutory retirement age, causes a

decrease in the probability of being in (at least a) pre-frail status by 28%. The

coefficient for female is of the expected sign with a point estimate of -0.051.

A possible interpretation of the lack of significance for women draws on the

different timing in the onset of the first markers of frailty between the two gender

and its relation with retirement patterns. As a matter of fact, as confirmed in

Table 2.1, women have a higher average frailty index and a prevalence of pre-frail

statuses higher by 8% with respect to men. Such difference is true for the age

range considered in our study but in the literature (Theou et al. (2015), Harttgen

et al. (2013)) it is a well known fact holding at any age. To the extend to which, as

compared to men, women’s pre-frail status arises earlier with respect to possible

retirement channels (and taking into account the cumulative nature of such

syndrome in which every marker represent a risk factor for the others leading to

deficits accumulation), women’s exit from the labor force might occur on average

at a relative later stage of development of frailty. This could translate in lower

chances of reversibility from retirement.
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Another possible explanation refers to the persistence of gender norms within

the family. As women retire, they could substitute (at least more, as compared to

men) working for pay with work at home. This would entail a difference in the

persistence of stressor factor after retirement that could translate into a limited

change in the path of defict accumulation for women versus a decrease among

men.

To conclude the analysis of the first set of results, despite the almost zero point

estimates, it is interesting to note how the fixed effect model do not drop controls

like education years or any of the dummies for children, indicating at least a tiny

within variation in the sample. Lastly, going back to the vality of the instruments,

throughout the whole set of results, looking at the p-value for the Hansen’s J

statistic we fail to reject the joint null of valid instrument.

In Table 2.5 we replicate the analysis of Table 2.4 with a more restrictive definition

of retirement. Rather than simply relying on self-reported job status, we further

condition on not having done any paid job during the last four weeks. In so doing

we cope with possible downward biases in the estimates arising from sampled

individuals framing retirement as retiring from the main job characterizing the

career of an individual rather than a real exit from the labor force. As individuals

who retire from their "career job" self-declare as retired while carrying out some

other paid activity, the coefficient for retirement would not really capture the

effect of exiting the labor force. As a consequence, if this is indeed an issue one

would expect to obtain much larger point estimates (in absolute value) when this

further condition is applied.

Looking a Table 2.5 we see that in term of significance, estimated coefficients are

are overall following the same patterns as in Table 2.5. With particular regard to

the point estimates of the coefficient for retirement, we see larger point estimates

(again in absolute value) in the pooled IV models where the coefficient passes from

-0.204 and -0.237 (-0.073 and -0.081) to -0.356 and -0.412 (-0.092 and -0.090) for

men (women). Interestingly, in the IV model with fixed effects the coefficient is

larger for male individuals as compared to Table 2.4 but not for female. As a male

worker reaches either early or statutory retirement eligibility criteria in between
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two subsequent waves and decide to retire in between the same two waves, its

probability of being in at least a pre-frail status is lower by almost 52%.

It is worth remembering that given the LATE interpretation of the coefficient of

retirement, we can only attribute the estimated effect to those individuals whose

behaviour has been shifted by our instruments, which in our case are having

reached retirement eligibility criteria. According to the definition of retirement of

Table 2.5 these individuals are roughly 18% of the male sample and 21% female

one.9

9Percentages are taken by summing the coefficient of the instrumental variables in columns (1)

and (2) and should be referred to the pooled sample.
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Table 2.5: Results: Retirement as not working for pay.

Effect of retirement defined self-reported status conditioned on not having done any paid job

during the last 4 weeks on the probability of being at least in a pre-frail status. Odd columns refer

to male individuals while even ones are for women.Columns (1) and (2) report estimates for the

first stage. Columns (2) to (8) refer instead to the second stage

(1) (2) (3) (4) (5) (6) (7) (8)

FE FE IV pooled IV pooled IV pooled IV pooled IVFE IVFE

Retirement v2 -0.356∗∗ -0.092 -0.412∗∗ -0.090 -0.517∗∗ -0.036

(-2.14) (-0.94) (-2.54) (-0.77) (-2.28) (-0.24)

Z 0.055∗∗∗ 0.080∗∗∗

(3.18) (5.12)

W 0.126∗∗∗ 0.132∗∗∗

(4.92) (6.67)

Education #yy 0.008 -0.005 -0.004∗∗ -0.001 -0.004∗∗ -0.001 0.002 -0.007

(0.76) (-0.50) (-2.24) (-0.53) (-2.12) (-0.57) (0.12) (-0.46)

One child -0.019 0.036 -0.007 0.019 -0.003 0.023 0.031 0.038

(-0.86) (1.57) (-0.38) (1.17) (-0.18) (1.41) (0.90) (1.11)

More than one child 0.007 0.027∗∗ -0.007 -0.001 -0.005 0.005 0.004 0.009

(0.58) (2.07) (-0.60) (-0.09) (-0.45) (0.36) (0.23) (0.44)

Difficulties in MEM -0.019∗∗∗ -0.019∗∗∗ -0.033∗∗∗ -0.024∗∗∗ -0.028∗∗∗ -0.012 ∗ -0.009 0.008

(-2.93) (-2.87) (-5.36) (-4.05) (-4.00) (-1.84) (-0.81) (0.84)

2+ Chronic cond. 0.016 0.021 0.066∗∗∗ 0.066∗∗∗ 0.069∗∗∗ 0.068∗∗∗ 0.036 ∗ -0.013

(1.33) (1.73) (5.44) (5.74) (5.61) (5.89) (1.92) (-0.73)

2+ LDA -0.032 -0.018 0.138∗∗∗ 0.111∗∗∗ 0.140∗∗∗ 0.112∗∗∗ 0.039 0.071∗∗

(-1.12) (-0.74) (4.44) (4.32) (4.53) (4.42) (0.95) (2.05)

EUROD -0.002 -0.004 0.125∗∗∗ 0.120∗∗∗ 0.125∗∗∗ 0.120∗∗∗ 0.122∗∗∗ 0.122∗∗∗

(-0.72) (-1.61) (40.52) (50.56) (39.72) (50.47) (23.56) (30.35)

Constant -0.172 -0.136 0.583∗∗∗ 0.212∗∗∗ -1.749 -2.857∗∗

(-0.85) (-0.67) (5.55) (2.74) (-1.45) (-2.03)

Time dummies Yes Yes Yes Yes Yes Yes Yes Yes

Age dummies Yes Yes Yes Yes Yes Yes Yes Yes

Country dummies Yes Yes

N 7698 7690 7698 7690 7698 7690 7678 7676

R2 0.344 0.307 0.188 0.27 0.176 0.283 0.050 0.186

JPval 0.342 0.026 0.773 0.354 0.847 0.385

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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2.5.1 Robustness

A significant threat to the relevance of this study could lay on the effect of retire-

ment working only through one of the five markers of frailty taken into considera-

tion to build the index. To address this concern, we replicate the analysis of Table

2.4 excluding one marker at the time by the frailty index and still dichotomizing

the resulting score distinguishing between individuals at least in a pre-frail status

and fit ones. Results are displayed in Table 2.6.

The estimated coefficients remain significant at least at 10% significance level for

each model among male individuals. In absolute terms, the minimum is reached

excluding exhaustion (-0.163) while the highest estimated coefficient is obtained

disregarding slowness (-0.319). Coefficient remain insignificant among women for

every model under consideration with even a positive coefficient for the model

excluding limited physical activity. Overall, these results seem indicative of an

actual protective role of retirement with respect to frailty at least among men

and it does not appear to be mainly driven by one of the distinct markers under

consideration.

Table 2.6: Robustness: partial definition of frailty

IVFE estimates of the effect of self-declared retirement status on the probability of being at least in

a pre-frail status excluding one marker at the time from the defini-

tion of the frailty index. Model and specification as in columns (7) and (8) of Table 2.4 and Table 2.5.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

noLPA noLPA noSLO noSLO noWEAK noWEAK noSHK noSHK noEXH noEXH

retirement -0.204∗ 0.0543 -0.319∗∗∗ -0.111 -0.238∗ -0.0612 -0.285∗∗ -0.0704 -0.163∗ -0.008

(-2.29) (0.62) (-3.32) (-1.18) (-2.56) (-0.65) (-2.97) (-0.76) (-2.06) (-0.10)

N 7676 7673 7676 7673 7676 7673 7676 7673 7676 7673

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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2.6 Conclusion

In this study we investigated the causal effect of retirement on frailty among older

Europeans exploiting cross and within country variation in retirement eligibility

criteria as instrumental variables. Results highlight a significant and sizeable

protective role of retirement among men but no significant results for women. As

a male worker become eligible for either eraly or statutory retirement consequently

decide to retire in between the same two waves, the probability of being at least

in a pre-frail status decreases between 28.4% and 51.7% depending on whether

retirement is defined as self-declared status or further conditioning on not having

done any work for pay for the past four weeks. The larger point estimates for

the model using a more restrictive definition of retirement are indicative of some

individuals considering retirement as withdrawal from their main occupation

rather than actual exit from the labor force.

Possible non mutually exclusive explanations with regard the asymmetric sig-

nificance of the results between gender are briefly described. On the one hand

the lack of significant results for women could be due to earlier onset of the

pre-frail statuses which could make retirement less effective in protecting against

the development of deficit accumulation. On the other hand, another explanation

could refer to the possible different meaning that retirement have between the two

gender. While in general we think of retirement as a moment of abstention from

stressor working activities, to the extent to which women simply substitute work-

ing for pay on the the job with working at home, retirement might not represent

the unbend period that could instead represent for men.

Results are robust to partial definition of the index used to operationalize the

frail phenotype definition. Overall, at least for men, results indicate a significant

protective role of retirement with respect to frailty and in particular to pre-frail

conditions. Due to the high predictive power of frailty with respect to deficit

accumulation, health decline and extreme outcomes such as dependency and

death, this study can at least partially shed some light on the long term effect of

retirement on health. This being said it is also true that a conclusive assessment of

the health effect of retirement should also consider all the dimensions of health
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that are disregarded by the present study, such as cognitive abilities and mental

health.

Finally we want to briefly mention possible further steps of the research on frailty

in economics. In particular, given recent developments in the investigation of

the genetic roots of frailty (Inglés et al. (2019)) it would be possible to estimate

individual level polygenic scores of genetic predisposition to frailty which could

be leveraged to further investigate the heterogeneous effect of retirement along

the genetic dimension.10

10By polygenic score we refer a measure of genetic predisposition to a given phenotype that

is computed starting from the estimation of the effect on the phenotype of interest (in this case

frailty) of genetic mutation hapening at the level of the single building block of our DNA. With

this regard,more details can be found in the second chapter.
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Chapter 3

Child Adoption: the Role of Couples’ Prefer-

ences in the Screening and Matching Process

joint with

Davide Dragone - University of Bologna

Nektaria Glynia - University of Bologna

Abstract In this paper we investigate prospective adoptive parents’ preferences

thanks to a completely novel dataset from the Emilia-Romagna Region in Italy.

Thanks to detailed information on the screening process from 2007 to 2010, we

are able to understand how couples self select into the national vs international

adoption process and how their preferences over adoptive children affect their

chances of being matched to a child with specific characteristics.
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3.1 Introduction

In Italy, roughly one out of ten individuals is interested by the phenomenon of

adoption either as adoptive parent, adopted child or other degree of kinship.1

Despite the magnitude, there is a significant lack of available data on the matter,

especially outside the US (e.g. Baccara (2014) and Skidmore et al. (2013)).

The strength of this novel dataset is that we not only have data on the matching

between couples and children but we also have extensive information on the the

application process on the universe of applicant couples, regardless of their success

in the adoption process. This allows to explicitly investigate the degree of selection

into adoption. More precisely, in this paper we answer the following questions:

what are parental preferences over adoptive children? Do preferences reflect

quality throughout the screening process? Do preferences affect the probability

of adoption? Do they affect the waiting time? Do preferences really map into the

adopted child characteristics?

3.2 Literature

Despite the size of the phenomenon, as well as the particular interesting matching

mechanisms that occur in the adoption market between the demand side (pro-

spective adoptive parents) and the supply (relinquished children), adoption has

not received much attention by economists. Early works on adoption includes

studies that focus on the demand side of adoption. Jones (2009) provides a de-

scriptive overview of the adoption market in the US using survey data. Declining

fertility rates has been identified as an important factor driving the demand for

children through the adoption channel. Gumus and Lee (2012) study the sub-

stitutability of children adoption with reproductive technologies as alternative

ways to parenthood. Their results indicate a substitutability of child adoption

with assisted reproductive technology (ART), i.e. a 10% increase in adoption will

result in a 1.5% decrease in ART. Doyle and Peters (2007) study the relationship

between state subsidies paid to foster families with the quality of foster care ser-

vices provided. Their starting point is the shortage of foster care homes and excess

1Italia Adozioni Survey Report, 2019.



demand identified in the 1980s and 1990s. They show that state governments with

high demand for foster care can use, up to a point, subsidies to attract foster famil-

ies More recently, Oldani (2017) reports that the demand for adoptive children is

empirically investigated in lights of the relation between parental satisfaction and

the characteristics of both the procedure itself and those of the adoptive children.

Findings show that adoptive parents’ satisfaction is inversely correlated with the

child’s age and the duration of the adoption procedure.

This study also touches the literature related to the effect early of childhood

conditions on later children outcomes. Aizer and Doyle (2014) review methods

and studies regarding child adoption and support, family planning, education

and health policy to analyze causal effects of child welfare interventions on child

outcomes. Hansen (2008b) proves that child adoptions provide important long-

term benefits to children. Her analysis considers a wide range of post-adoption

outcomes including the child’s behavior, health, education, criminal activity and

eventually employment. Recent papers focus on the prospective parents’ pref-

erences over children’s relinquished for adoption characteristics. For instance,

Skidmore et al. (2013) study which factors affect adoptive parents’ preferences

over adoptive child characteristics and how these are expressed and translated to

differences in the costs of adoption. The analysis shows the source of variation in

adoption costs is child characteristics. These costs are significantly lower for older

children, children of African descent, and children with special needs. Baccara et

al. (2014) study the preferences of prospective adoptive parents over (US-born

or unborn) children’s attributes like gender and race. Using a novel dataset of

the US child-adoption market they show that prospective adoptive parents show

significant preference in favor of girls and unborn children while at the same

time they are much less in favor for African American children. The results are

robust when they control for differences with respect to prospective parents’ char-

acteristics such as same-sex, heterosexual or single mothers. How they show that

racial preferences are 3 times higher in magnitude for straight couples while same-

sex couples show higher persistence in submitting applications for prospective

adoption.
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3.3 Institutional Framework

Child adoption in Italy is ruled under the law 184/1983. In Italy adoption is

allowed only to heterosexual couples married since at least three years or with at

least three years of demonstrable partnership with cohabitation. Adoptive parent

shall not have less than 18 years of age difference with the adopted child and more

than 45, at least for one adoptive parent, and 55 for the the other.

Adoption can be generally declined in three big categories: national adoption, in-

ternational adoption and special cases. The first one is organized under the actives

of the juvenile court together with social assistants for screening, matching and

assessment. The second one is dependent on an official declaration of eligibility

to adoption by the juvenile court and then follows different paths depending on

the couple’s preference over country and the private entity assisting the couple in

the proceedings. The last one mainly refers to cases of stepchild adoption. In the

present chapter, we will focus on the first one, referring to international adoption

only as general outside option.

The journey to adoption of a prospective adoptive couple in Italy starts with

seminars and workshops held by social assistants units, where the couple is intro-

duced to the procedures and expectations on both the proceedings and adoptive

parenthood. Once couples decide to start the procedures they are required to

undergo to an inquiry by the social assistants covering their background, current

status, motivations and expectation. The completion of the inquiry generally

takes between two and six months depending on social assistance units. Once the

inquiry is complete, couples can deposit their application to the juvenile court.

The application can refer to the national adoption process, the international one or

even both. The court examines the inquiry sent directly from the social assistants

and set an interview with the couple. After taking vision of the inquiry, an honor-

ary member of the court interviews the couple with the aim of the assessment of

the required capabilities of the prospective parents as well as their availabilities

with respect to kid’s health conditions, legal condition, age, gender and even their

77



number.2 In the Juvenile Court of Emilia Romagna the overall quality of a couple

is summarized in a color scheme which can be translated into a score going from

one to four where four is the maximum quality. 3 From the time of the submitting

of the application the the couple stays in the pool of potential pick for up to three

years. As new cases of abandoned kids emerge, the court examines the list of

couples available at a given time. If a couple do not finalize the adoption within

such a period it can repeat the procedure and re-file the application.

3.4 Data

Overall, the dataset contains information on the screening and matching activities

of the Emilia Romagna Region Juvenile Court from 2005 to 2010. For years 2005

to 2007 we have detailed demographic information (e.g. from age at application

to date of marriage and occupation to whether parents are alive and available

to assist the couple in raising a kid), detailed information on their preferences

(e.g. self declared preferences at beginning of the screening procedure and final

preferences over age, gender, health, legal risk, religion and ethnicity) as well as

information on the timing of the application and its proceedings (e.g. time of the

beginning of the inquiry with social assistant units, time of presentation of the

application, time of the meeting with honorary judges, evaluators’ id as well as

their evaluation etc...).

For 2005 and 2006 we only observe unmatched couples: those whose application

has remained outstanding for the entire three years consideration period. For

2007 we observed both unmatched and matched couples. For the latter group

we therefore also observe the kid with which the couple has been matched. Such

information refers to the demographics of the child (e.g. date of birth, gender

and for a sub-sample of the records also the nationality of the biological mother.)

2By legal condition we refer to the presence of a so called legal risk. A kid is considered under

legal risk if he/she has been withdrawn from his/her biological family who is (or could) take action

against the decision of the court.
3Formally, no application for national adoption is rejected as filing the application legally

simply means declaring the availability to adopt. On the other hand, for international adoption,

after the screening interview the court decides whether to grant to the couple a declaration of

adaptability which is necessary condition to continue the adoption proceedings abroad.
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and information on the timing of the matching (e.g. child age at declaration of

adaptability, date at first contact with adoptive parents). For 2007, we also tract

some information on the international adoption such as the country from which

the child comes from.

For years 2008 to 2010 we focus on national adoptions tracking both matched and

unmatched couples with slightly less detailed information. For these years we

observe general demographics like age at application, education and occupation;

final preferences (excluding ethnicity and religion) and couples’ evaluation. For

those who are matched we also observe the date of birth of the kid, the date of de-

claration of adoptability, the date of the kid entering the adoptive family. Despite

not tracking any application specific for the international adoption proceeding, we

observe whether or not a couple who applied for both national and international

adoption finally adopt a child from the international channel.

Table 3.1: Descriptive

Demographics and adoptive preferences by application outcomes.
(1) (2) (3) (4)

Avg. whole sample Avg. Unmatched Avg. Matched Int. Avg. Matched Nat.

Demographics

age male partner 41.56 42.01 42.14 39.17

age female partner 40.10 40.59 40.65 37.63

years since married 8.37 8.89 7.71 8.08

years of education male partner 13.33 12.92 13.55 14.03

years of education female partner 14.14 13.85 14.15 14.97

biological kid(s) 0.13 0.19 0.07 0.04

at least another adopted kid 0.14 0.15 0.15 0.06

Preferences

maximum age 5.29 5.21 5.45 5.22

age range 4.99 4.82 5.16 5.13

any gender preference 0.04 0.05 0.03 0.01

available for gender male 0.96 0.94 0.97 1

available for gender female 0.99 0.99 0.99 0.99

number 1.19 1.17 1.19 1.23

Avlbl. legal risk 0.55 0.53 0.5 0.73

Avlbl. health risk 0.91 0.87 0.92 0.96

Avlbl. handicap 0.14 0.13 0.11 0.21

Score (1 to 4) 2.78 2.43 2.95 3.52

N. 1530 777 489 264
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Table 3.1 summarises demographics informations and preferences across different

subsets of applicants couples from 2007 as a function of their application out-

comes. The average applicant couple is married since 8 years with partners being

40 and 42 years old for female and male partner respectively. Age is generally com-

parable in the case of unmatched couples and couples going in the international

market while couples matched in the national adoption process are significantly

younger by roughly two years. On average, the female partner has a higher educa-

tional attainment than the male one, and this holds true throughout the different

samples. In the whole sample 13% of the applicant couples have a biological kid

while 14% have already adopted. Interestingly, among couples who successfully

pursue international adoption the percentages of those with a biological kid is

roughly half that of the entire sample while 15% have already adopted. On the

other hand, couples matched in national adoption process have significantly lower

probabilities of both having a biological kid (4%) and having already adopted

(6%). This could be both due to preferences over the international market for

couples who have already adopted or preference of the court over couples without

either a biological or adopted kids with respect to matching. Both explanations

have anecdotal support. From the analysis of the application packages and the

inquiries of the social assistance emerges clearly how couples with adopted kids

tends to prefer the international market to ensure some homogeneity of origins

and traits between kids adopted sequentially. At the same time, judges in charge

of the evaluation tend to consider carefully the potential negative externalities on

the existent household other kids.

Preferences in the unrestricted sample define an average desired kid of a maximum

of five years of age. Preference over a given gender is present in 4% of the

population of applicant couples and when it is present it is practically always for

a female kid. 55% of the applicants are available to bear legal risk and more than

91% is willing to face some sort of health risk while only 14% would accept an

handicapped kid. The profile of the desired kid changes only slightly for matched

couples with lower prevalence of any preference for gender. On the other hand

prospective adoptive parents who manage to be matched in the national adoption

80



process are significantly more likely to be willing to bear legal risk (73%) as well

as general health risk (86%) and handicap conditions (21%).

As expected, the distribution of the evaluation score reflects the outcome taken

under considerations. For couples presenting their application in 2007, 17%

managed to get a kid under the national adoption process (average evaluation

score of 3.52 out of 4) while a little under 32% completed international adoption

(average evaluation score of 2.95 out of 4).

3.5 Methodology

In line with the descriptive aim of the paper, we adopt simple regression analysis as

well as multinomial logit to assess to investigate the association between preference

and screening and matching outcomes. In the same spirit, with respect to waiting

times we adopt survival analysis and Cox regressions. With this regard we model

the duration of the time remaining in the pool waiting to be matched. Thus,

longer survival time actually translates in waiting longer to be matched, up to a

maximum of three years of elapsed time. In this survival framework, matching

represent the "death" event. We proxy the time of the matching with the day since

when the adopted kid starts living with the adoptive family, regardless of the

actual officialization of the adoption.

In order to avoid unbalanced samples given by the structure of the information

collected for the different years we only consider data from 2007 onward. The

main dependent variables taken into account are the outcome of the screening

process, the probability of the matching and the duration of the waiting time to

matching.

3.6 Results

The first measurable outcome in the adoption process is the screening after applic-

ation is filed. As mentioned above, in the Juvenile Court of Emilia Romagna, such

screening is performed by honorary judges evaluating the couple’s motivation and

capabilities from the inquiry by the social assistants and the interview with the

couple. The score goes from 1 to 4 but there is no official cut-off to reach to be

eligible for adoption.
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For both regressions (1) and (2) in Table 3.2 we control for a set of dummies

capturing male and female partner occupational role. Adding the set of covariates

describing couple’s preference over adoption, the point estimates and the signific-

ance of the coefficient vary only slightly. The age of the female is significant and

negatively related to the score. Estimates suggests the same for the years since

when the couple is married and having any gender preferences. Higher scores for

younger couples could probably be explained by stronger motivations. In terms

of what has a significant and positive impact on the evaluation of the couple, the

estimates highlight educational attainment of both the male and female partner

(with the second one having a higher point estimate), having already adopted, age

range being available for legal risk, health risk and handicapped minors.

In Table 3.3 columns (1) and (2) we take the same exact specification as in Table

3.2 with the only addition of the score. As a dependent variable we adopt a

dichotomous variable for being matched in a national adoption. With no surprises

the score is positive and significant and the age of both partners is significant

and negatively related with probability of adoption. Educational attainment is

significant only for the female partner while having a biological kid and having

already adopted is significantly negatively related with probability of matching.

With respect to preferences over adoption the only significant coefficient is that of

availability to legal risk.4

These two set of estimates suggest how screening and matching are indeed separate

processes taking into account different dimensions. The most interesting results

are the ambivalent role of having already adopted (and having biological kids)

with regard to the different dependent variable. While on the side of the score

specification such variable capture a higher level of familiar capabilities gained

4The careful reader could highlight the possibility of omitted variable bias with regard to di-

mensions such as preferences of the judges or information conveyed in the inquiry are not included

in the specification. This could indeed be the case and for this reason, in an extended version of the

current paper we are actually taking into account also these measurements. Including dummies

for evaluating judges reduces the magnitude of the point estimates but not the significance of

the coefficients. We are currently also working on the summarizing the textual information of

the inquiries by means of principal component analysis to further account for possible omitted

variable bias.
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through experience, on the side of the matching this represent a possible added

risk to the stability of the future adoptive family. Similarly, while availability to

legal risk health risk and handicapped conditions are positive predictors of a high

score, only the first one remain significant in the second stage of the adoptive

process.

Column (3) and (4) of Table 3.3 focus being matched to an infant conditionally on

being matched to some kid. We define an infant as a kid who has been abandoned

at the hospital right after being born. These kids are generally declared adoptable

within few weeks from their birth and with regard to the preferences over adoption

taken into account by the process they could be seen as kids with highest degree

of desirability because of their age and the lack ant legal risk. The significant

variable for these models are the age of the male partner, with negative sign and

the preference profile over the age of the kid which sums to zero for couple with

preferred age range equal to the maximum desired age (which imply negative

effect overall for couples with preference for a smaller age range with respect to

their maximum age). Despite the lack of significance, it is interesting to note the

negative sign of the coefficient for availability to legal risk, suggesting the attempt

to optimal matching taking into account the characteristics of the kids and the

preferences of the couples.
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Table 3.2: Evaluation score regression on demographics and adoption preferences.

(1) (2)

score score

age male partner -0.00856 -0.00985

(-1.06) (-1.27)

age female partner -0.0257*** -0.0201**

(-2.99) (-2.36)

year since married -0.0164** -0.0143**

(-2.50) (-2.27)

educational attainment male partner 0.0268** 0.0285***

(2.50) (2.79)

educational attainment female partner 0.0403*** 0.0350***

(3.51) (3.24)

any biological kids 0.0531 0.0598

(0.51) (0.58)

at least another adopted kid 0.436*** 0.535***

(4.98) (6.13)

maximum age -0.0452

(-1.55)

age range 0.107***

(3.54)

any gender preference -0.412**

(-2.24)

gender preference for female -0.439

(-0.92)

number 0.0270

(0.36)

Avlbl. legal risk 0.139**

(2.38)

Avlbl. Health risk 0.507***

(4.23)

Avlbl. Handicap 0.247***

(2.90)

constant 3.882*** 5.486***

(7.31) (8.37)

male partner occupation Y Y

female partner occupation Y Y

N 1044 1007

R-sq 10.6 15.4

t statistics in parentheses

* p<0.10, **p<0.05, *** p<0.010
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Table 3.3: Logistic regressions for adoption matching on demographics and adop-

tion preferences.

(1) (2) (3) (4)

Matched

in national adoption

Matched

in national adoption

Matched

with infant

Matched

with infant

score 1.117*** 1.025*** 0.333 0.329

(8.63) (7.40) (1.06) (1.04)

age male partner -0.127*** -0.130*** -0.210*** -0.207***

(-3.91) (-3.95) (-3.62) (-3.54)

age female partner -0.0735*** -0.0785*** 0.0300 0.0414

(-2.60) (-2.66) (0.49) (0.67)

year since married 0.0345 0.0377 -0.0841* -0.0950*

(1.20) (1.29) (-1.70) (-1.77)

educational attainment male partner 0.0700* 0.0673* 0.0207 0.0354

(1.79) (1.65) (0.28) (0.46)

educational attainment female partner 0.121*** 0.123*** -0.0864 -0.103

(2.60) (2.59) (-1.19) (-1.41)

any biological kids -1.844*** -1.792*** 1.242 1.232

(-3.42) (-3.22) (1.29) (1.25)

at least another adopted kid -2.139*** -1.815*** -0.427 -0.577

(-4.13) (-3.34) (-0.37) (-0.49)

maximum age 0.0248 -4.169***

(0.13) (-13.56)

age range 0.0958 4.196***

(0.44) (13.77)

any gender preference 1.272 0.001

(1.38) (0.02)

gender preference for female 0.002 0.003

(0.01) (0.01)

number -0.0873 -0.162

(-0.33) (-0.36)

Avlbl. legal risk 0.582*** -0.310

(2.71) (-0.69)

Avlbl. Health risk 0.328 -0.247

(0.66) (-0.32)

Avlbl. Handicap 0.403 -0.189

(1.21) (-0.35)

constant -128 -0.817 6.937*** 7.150***

(-0.11) (-0.62) (2.80) (2.59)

male partner occupation Y Y Y Y

female partner occupation Y Y Y Y

N 1038 970 171 168

pseudo R-sq 0.274 0.271 0.171 0.183

t statistics in parentheses

* p<0.10, **p<0.05, *** p<0.010
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Figure 3.1: Marginal effects of female partner age at application on (a) the prob-

ability of having a score higher or equal than three and (b) probability of being

matched

(a) (b)

To better grasp the role in terms of probability, of the most important and interest-

ing independent variables from the model above we compute and plot marginal

effect. Figure 3.1 shows the marginal effect of age at application with both respect

to score (a) and matching (b) by groups determined by having already adopted or

not. In addition to the clear negative impact of age with respect to both outcomes,

the graphs highlights the dual role of preavious experience with adopted kid.

Figure 3.2 shows how low the probability of matching in the national adoption

process really is for couples who either have a biological kid or either have already

adopted. For applicants without any previous experience the probability of

successful national adoption are between 20 and 30% in case of a score of 4 out of

4. The probability shrinks to around 10% for a score of 3 out of 4 going practically

to zero for a score of 1 out of 4.

In the last part of this section we focus on waiting times. Figure 3.4 shows survival

curves of the applicant couples by evaluation score. Average survival time in

the pool of couple available to adoptions is 3 and 2.97 years respectively for

couples with evaluation score respectively of 1 and 2. Couples with a score of 3

wait on average 2.46 years while applicants with the highest evaluation wait on

average 2 years. Assuming a constant inflow of kids, this averages and graphs
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Figure 3.2: Marginal effects of the evaluation score on matching probability by (a)

having already adopted and (b) having other biological kids.

(a) (b)

are consistent with a first in first out processing of the application of prospective

adoptive parents.

In Figure 3.5 we condition on having a score higher or equal to three and plot the

survival curves by availability to legal risk. As expected couples with availability

to legal risk exit the pool at a higher rate but timing at which they start exiting

does not seem to be statistically different from one group to another.

Finally, Figure 3.6 summarizes hazard ratios from Cox regressions for being

matched. As it was for the estimates from the logistic probability models, the

most relevant predictors are having a high score (dichotomous variable for score

greater or equal to three), availability to legal risk and college degree of the female

partner.

3.7 Conclusion

In this last chapter we provided quantitative descriptive evidence from a novel

dataset on the phenomenon of national adoption taking a close look at the screen-

ing and matching process and the role of preferences of prospective adoptive

parents. In the Emilia Romagna region in Italy, screening and matching processes

are distinct phases. Applicants couple have on average preferences for kids in

pre-scholar age. If they have any preference over the gender of the kid it is for
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Figure 3.3: Survival curve by evaluation score

Figure 3.4: Survival curve by availability to legal risk
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Figure 3.5: Hazard ratios of being matched

females. Most of the applicant couples declare themselves willing to bear some

sort of health risk while only 50% is available to face legal risk, which is the

possibility appeal from the biological family of the minor declared adoptable. The

availability to be matched with an handicapped minor is stated only by 14% of the

applicants. Only couples with a sufficient screening evaluation have a real chance

of being matched to a kid. On top of it, the most important aspect to consider

in order to increase the chances of a successful national adoption application is

the availability to bear legal risk. The most significant predictor for a successful

screening process are the age of the couple and the duration of their marriage

at time of the application, the educational attainment of the female partner, the

lack of any gender preference and the availability for health risk, legal risk and

handicapped condition. Interestingly, having already adopted a kid in the past

has a positive and significant impact on the screening phase but is negatively

associated with matching probability. Waiting times are heterogeneous across

different evaluation scores and reflects the quality of the couple summarized by

the score. Couples with a score of one wait in list "forever" as they are never

chosen for matching.
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