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1.  Cancer disease  

Cancer is a major health concern in the current society and is the second cause of death 

worldwide. It is a broad term used to define a very large group of diseases characterized by 

abnormal cell-proliferation due to the alteration of biological processes that normally regulate 

cell-cycle, like cell growth or cell-division.1 As a consequence, old or damaged cells are not 

replaced, new cells form when they are not necessary and these latter proliferate in an 

uncontrolled manner and, after exponential increase in their number, form tumours. In some 

specific conditions, cancer cells can detach from the original primary tumour and invade nearby 

tissues through the blood or the lymph system and proliferate, determining the formation of 

new masses defined as “metastases”. Metastases development is very common and it accounts 

for almost 90 % of cancer deaths.2 

In order to become tumorigenic and eventually metastatic, cancer cells highly differ 

from normal ones. Specifically, according to Hanahan and Weinberg, there are a few traits that 

cancer cells progressively acquire: the capability to sustain continuous proliferation through 

deregulated production and release of growth-signals, abnormalities in downstream pathways 

and altered responsiveness to growth-inhibitory signals, acquired resistance to programmed 

cell death (apoptosis), unlimited replicative potential, sustained angiogenesis to provide more 

nutrients and oxygen through newly-formed blood vessels, tissue invasion and metastasis, 

metabolic reprogramming to support continuous growth, evasion of immune system. 

Inflammation and genomic instability are at the origin of these characteristics. On one 

hand, immune-system cells that cause inflammation contribute to cancer development through 

the release of tumour-promoting molecules in the microenvironment. On the other hand, 

genomic instability accounts for the progressive acquisition of genetic alterations that promote 

the development of the previously described characteristics in a subset of cells and confer them 

selective advantage over the remaining cells. Outgrowth of such cell subpopulation determines 

the acquisition of tumour phenotype.3 Interestingly, the genetic alterations that drive cancer do 

not involve the whole genome, but tend to affect specific types of genes: proto-oncogenes, 

tumour suppressor genes, and DNA repair genes. Proto-oncogenes are involved in normal cell 

growth and division. However, when these genes are somehow altered, they may become 

oncogenes, allowing cells to proliferate out of control. Tumour suppressor genes are involved 

in the protection of normal cells from uncontrolled proliferation and their inactivation can 

promote tumour development.4 DNA repair genes are involved in fixing damaged DNA and 
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their inactivation can lead to higher sensitivity to mutagenic agents and accumulation of 

additional mutations.3  

Together, the described characteristics of tumour cells provide a framework for 

understanding the complexity of cancer disease and the consequent difficulty to treat such 

disorder in a specific and efficient manner. 

2.  Current cancer treatment 

There are many types of cancer treatment. Conventional treatments include both local 

therapies, such as surgery and radiation therapy, and the use of drugs that act systemically. 

These latter comprise mainly conventional cytotoxic chemotherapeutics (such as alkylating 

agents, anti-metabolites, topoisomerases inhibitors and tubulin-targeting agents) and hormonal 

agents. Although being very successful in clinics, conventional treatments show some specific 

and common drawbacks. While hormonal therapies tend to be useful only for specific types of 

cancer (e.g., breast, prostate cancer) and surgery tends to be suitable only during a specific 

stage of the tumour development, cytotoxic conventional therapies and radiation therapy 

mainly suffer from adverse side-effects development, that can lead also to therapy dismission 

(e.g., myelosuppression, nausea and hair-loss). This toxicity is mainly due to the lack of 

specificity of such therapies, since radiations act indistinctly on normal and cancer cells and 

chemotherapeutics affect common biological processes that are shared by both normal and 

cancer cells.5 

A drawback that seems to be common of all conventional treatments is inherent or 

induced drug resistance. Underlying this characteristic is the ability of cancer cells to develop 

molecular mechanisms to sustain stressors, like drug exposure, through genetic and epigenetic 

changes. From a molecular viewpoint, resistance development involves, for example, drug 

target modification, acquisition of new drug elimination systems and increased drug 

metabolism through overexpression of enzymes involved in drug metabolism.6 

3.  Innovative approaches to cancer treatment 

In the last few years, several research efforts have been addressed to find innovative 

approaches in cancer treatment to overcome toxicity and drug resistance that characterize 

current therapies. 

Among these, nanoparticles have emerged as interesting delivery systems to increase 

cancer-specificity and bioavailability of conventional chemotherapeutics, thus reducing their 

side-effects. In some cases, new formulations consisting in nanosystems have even allowed 

time- and space-control of drug release, while highly limiting toxicity.7 
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Another more specific treatment of cancer consists in targeted-therapy that implies 

acting on pathways or proteins that are specific or show aberrant expression in cancer cells. In 

this context, to treat certain types of cancer the Food and Drug Administration (FDA) approved 

Imatinib, a small-molecule targeting BCR-ABL kinase, which represents the most common 

example of successful targeted therapy.8 

Besides nanomedicine and targeted-therapy, recently, increased research efforts have 

been devoted to the development of so-called immunotherapy agents to mobilize the immune 

system against the cancer cells instead of directly attacking the tumour. Immunotherapeutic 

approaches use adaptive or innate immunity and encompass a broad range of compounds. 

Among the most recently studied approaches, modulation of check-points through antibodies 

seems very promising.9 

Another interesting therapeutic approach in cancer is epigenetic therapy. In fact, recent 

technological developments have allowed to better study the epigenome of several cancers, 

evidencing a clear link between epigenetic alterations and cancer development and 

progression.10 

4.  Epigenetic therapy 

Epigenetics is defined as the phenomenon of heritable phenotypic features that do not 

imply any alteration of the DNA sequence.10 DNA is wrapped around an octamer composed 

by basic, and hence positively charged, histone proteins, forming the so-called nucleosome that 

is the basal unit of chromatin.11 Chromatin represents the compacted state of the genome and 

locally is present in two conformational states: euchromatin, the more accessible structure to 

transcription factors and enzymes, and heterochromatin, the less accessible form. Regulating 

transcription of the genetic code underlies epigenetic regulation mechanisms and among the 

major epigenetic control mechanisms there are DNA methylation, and a set of specific post-

translational modifications (PTMs) on histone proteins such as addition or removal of methyl 

and acetyl groups on lysine (Lys) residues of the histone tails.12 The dynamic mechanisms that 

regulate chromatin structure through PTMs involve the balanced activity of a vast number of 

protein families. In particular, PTMs on histones are controlled by three different groups of 

proteins namely: writers, erasers and readers. The two former are enzymes that add or remove 

chemical marks from histones, respectively, whereas the readers are proteins encompassing 

specific domains to recognize and interpret distinct PTMs leading to recruitment of protein 

complexes and regulation of gene expression.13 
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As previously mentioned, since deregulation of the epigenetic control of gene 

expression has been associated to cancer disease and histone marks are globally and locally 

altered within cancer epigenomes,14 epigenetic therapies are gaining ever increasing attention 

as promising and innovative strategies to reverse the aberrations and restore the physiological 

conditions. In this context, several research has been recently focused on the development of 

“epi-drugs”, chemical entities able to target specific epigenetic actors.11 

Nowadays, several epi-drugs are under clinical and pre-clinical studies, but only two 

classes have been approved by the FDA: DNA methylation inhibitors (iDNMTs) including 5-

azacitidine to treat acute myeloid leukemia (AML) and myelodisplastic syndrome (MDS), and 

histone deacetylase inhibitors (iHDACs), like Vorinostat or suberanilohydroxamic acid 

(SAHA), approved for the treatment of cutaneous T cell lymphoma (CTCL). Even if such drug 

classes resulted efficacious for some specific cancer subtypes, consistent clinical results are 

lacking, most probably due to their use in a poorly targeted approach, in consideration of the 

limited knowledge of the epigenetic alterations present in cancer cells.11,14,15 Notwithstanding 

the caveats expressed above, the potential to act on new epigenetic proteins is supported by 

recent studies on cancer genome and epigenome that have revealed mutations or altered 

expression levels of specific proteins involved in epigenetic regulation of transcription.10 This 

information has encouraged the application of epigenetic approaches for the development of 

more specific cancer therapies aimed at reducing the side-effects of conventional treatments.  

Among the most interesting targets in the epigenetics field, proteins involved in Lys 

histone methylation have been extensively studied,16 since aberrant histone methylation is a 

common feature of several cancer subtypes, such as haematological tumours.15 These proteins 

can be classified into three classes depending on their role: 

 Histone methyltransferases, that add methyl marks to histone tails and are, therefore, 

defined as “writers” 

 Demethylases, enzymes that remove methyl groups, acting as “erasers”16 

 Chromatin “methyl-readers” that recognize methylated residues through protein-

protein interaction and recruit multiprotein complexes, leading to regulation of gene 

expression.17 

This last class includes a small group of proteins encompassing a conserved methyl-

Lys recognition motif defined Chromodomain (ChD). ChD-containing proteins are involved in 

gene silencing and chromatin remodelling and show altered expression or mutations in human 

related diseases, in particular in cancer, leading to abnormal gene transcription.18 Recently, 
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small-molecule inhibitors of ChDs have been developed, thus providing evidence of the 

druggability of such targets19 and are emerging as innovative and promising tools to treat 

cancer. 

5.  New technologies in drug discovery and development of high-throughput X-ray 

crystallography  

Current cancer research has not only considered new delivery systems and targets but 

it has also taken advantage of emerging technologies in gene-sequencing, automation 

technology or bioinformatics to improve the drug discovery process.20
 Specifically, advances 

in technology and automation of almost all stages in the process of protein crystallization have 

fastened and reduced the cost of crystal structure determination, allowing X-ray 

crystallography to be used in a high-throughput way.21 

Nowadays, thanks to new technologies, DNA-sequencing and construct-expression can 

be automatically performed using very small amounts of sample, thereby making protein 

expression faster and simpler. Moreover, protein purification became a less challenging step 

after the introduction of affinity tags on constructs, allowing the wide application of standard 

purification protocols, the development of automated chromatography systems and, thus 

reducing the time required to purify the target proteins.22 In fact, thanks to robotics and 

automation, parallel expression and purification of large-scale of more than 100 proteins per 

day is currently possible.23 For the simplification of the crystallization step, over the last few 

years, research has focused on automated liquid handling development and fast data collection 

during X-ray experiments, the last ones being assured by potent X-ray sources as third-

generation synchrotrons or by the incorporation of high technology-devices on in-house 

systems.21  

6.  Fragment-based screening 

Fragment-based drug discovery (FBDD) approach consists in screening libraries of low 

molecular weight compounds so-called fragments, which are selected following the “rule of 

3”: no more than 300 Da weight, fewer than three H-bond donors and acceptors, fewer than 

three rotable bonds and a cLogP lower than three. This screening allows the identification of 

hit compounds that, after subsequent cycles of elaboration, can eventually evolve into drug 

candidates (Figure 1).25  

Fragment-based screening is considered as an alternative to high-throughput screening 

(HTS) and a very promising strategy for the hit identification phase in drug discovery.24 Indeed, 

fragment-like compounds increase the likelihood to identify genuine hits in comparison with 



12 

 

larger compounds of much bigger HTS libraries. In fact, fragments can explore more efficiently 

the chemical space, since they have increased chemical diversity relative to the volume of 

chemical space and show higher-quality interactions. The latter characteristic is conserved 

during compounds’ development, leading to reduced time to obtain drug candidates.26 

 

Figure 1. Workflow of FBDD approach.25 

Considering that fragment-like compounds show a lower affinity to the target in 

comparison with higher-weight-compounds of HTS, the techniques used for fragment 

screening are different and much more sensitive than those applied in HTS. Indeed, only 

biophysical methods are used. NMR, X-ray crystallography and SPR are considered “classical” 

methods, but also microscale thermophoresis, thermal shift assay (TSA), weak affinity 

chromatography and mass spectrometry (MS) are currently applied.24 

After hit identification, the elaboration process consists of interactive cycles of rational 

design and synthesis of compounds, guided by structural binding data and affinity or activity 

information. The strategies of fragment elaboration include: fragment merging, linking and 

growing (Figure 2).25 
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Figure 2. Fragment elaboration strategies. a) Fragment merging. b) Fragment linking c) Fragment growing.25 

On one hand, “merging” is a term used to define the combination of overlapping 

portions of different molecules into a new fragment, and “linking” consists of joining 

molecules binding different sites. On the other hand, “growing”, that is the most common used 

approach, consists of adding chemical groups to a fragment to identify new interactions24 with 

the selected target.  

Structural information is fundamental for fragment elaboration25 and, for this reason, 

the drug discovery field has taken advantage of such innovations applying high-throughput X-

ray crystallography for fragment-based screening.21 This application allowed to expand the use 

of X-ray crystallography beyond the lead optimization step in drug discovery, where it had an 

established role, into the hit-identification step.20 The application of X-ray crystallography in 

the screening phase, providing knowledge of binding properties of compounds and information 

of protein-ligand interacting features in only one step, offers the opportunity to reduce the time 

required to develop drug candidates, making the drug discovery process more efficient. 

Fragment screening by high-throughput X-ray follows a specific procedure that consists 

in soaking target protein crystals with high-concentration DMSO solutions of single 

compounds or cocktails of molecules. The soaked crystals are allowed to stand for a specified 

timeframe in order to favour compounds interaction with the target binding site, and then 

crystallographic data are collected and interpreted.23 Several approaches based on this strategy 

had been developed by research groups leading in some cases to the screen of up to 1000 

compounds in two or three days.21 Considering that fragment libraries are composed of 1000-

5000 compounds,24 this technology confirms its suitability to screen fragment libraries and 

contemporary guide the elaboration of binding fragments. 
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7.  Research project 

In conclusion, cancer research is moving remarkable steps towards more effective and 

less toxic therapies through the application of novel approaches and thanks to the development 

of new technologies that improve the drug discovery process. The present work reports some 

examples; in fact, this thesis includes two research projects (Part 1 and Part 2, respectively) 

having in common the application of innovative approaches and technologies in cancer drug 

discovery. On one hand, the first part of the work focused on ChD-containing proteins, as new 

epigenetic targets. The aim was to identify, design and synthesize small-molecules able to bind 

ChDs and interfere with their biological function. On the other hand, the objective of the second 

part was, firstly, the identification of new potential antitumour fragments able to bind tubulin, 

a validated target in cancer therapy; to achieve this aim high-throughput X-ray crystallography 

in a fragment-based screening was applied. Secondly, taking advantage from X-ray obtained 

structural information; the identified fragments were developed into new chemical entities 

through a computational-aided drug design (CADD) strategy to obtain novel anticancer small-

molecules. 
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 Part 1: Targeting Chromodomains (ChDs): a 

promising epigenetic approach for cancer 

treatment
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1. Introduction 
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1.1. Epigenetic regulation of gene expression 

Epigenetic regulation of gene expression is a dynamic and reversible process by which 

cells showing the same genotype can express different phenotypes in response to a stimulus 

due to different transcriptional programmes defined by specific post-translational 

modifications (PTMs).  

Since epigenetic mechanisms influence the cellular response to the environment cues, 

they play a key role in diseases related to lifestyle, diet or exposure to toxins (e.g., cancer, 

inflammatory disorders or neurological diseases).  

At the molecular level, such mechanisms include covalent modifications of DNA, 

chromatin remodelling, regulation by non-coding RNAs, exchange of histones and PTMs on 

histones such as acetylation, methylation, phosphorylation or ubiquitylation14,27 that are 

regulated by different proteins and enzymes determining a specific “epigenetic code” that 

expands the information beyond the DNA sequence as summarized in Figure 3.28 

 

Figure 3. Histone PTMs and proteins regulating the “histone code”.29 

1.2. Acetyl and methyl epigenetic marks 

From a therapeutic point of view, acetyl and methyl marks are among the most 

important PTMs of histones.  

Histone acetylation can occur on the ε-amino group of Lys side chains or within the 

core of the histone proteins and it is regulated by two different families of enzymes: histone 

acetyltransferases (HATs), which are the workhorses of the epigenome and act as writer 

proteins, and histone deacetylases (HDACs) that play the role of erasers. Acetylation has the 
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effect of changing the overall charge of the histone tail from positive to neutral; therefore, 

chromatin structure becomes more relaxed, and DNA is more accessible to multi-protein 

complexes interaction leading to transcriptional activation.14 

On the other hand, histone methylation represents a more complex PTM. Indeed, it is 

possible to methylate both Lys and arginine (Arg) residues on histones; each Lys residue can 

be mono-, di- or trimethylated, while Arg can exist as either mono- or dimethylated, the latter 

in asymmetric or symmetric manner (Figure 4).27 

mono- di- tri-

Methyl-Lys

mono- asymm. di- symm. di-

Methyl-Arg

 

Figure 4. Different methylation states of Lys and Arg residues on histones. 

S-Adenosylmethionine (SAM)-dependent methyl transferases act as writer proteins, 

while either Jumonji family of 2-oxoglutarate-dependent demethylases or the Flavin dependent 

enzymes Lys-specific histone demethylase 1 and 2 are responsible of erasing methyl marks.  

Differently from what happens after histone acetylation, methylated residues do not 

change the charged state of the protein.14 According to the effector-mediated paradigm, each 

methyl mark is recognized by specific modules of reader proteins and such interaction 

determines protein complexes recruitment or stabilization, activation of downstream effects 

and gene expression regulation, either transcriptional repression or activation.30 
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1.2.1.  Acetyl readers: bromodomain (BRD)-containing proteins 

Three protein modules are able to recognize acetylated residues on histones: double 

PHD (plant homeodomain) fingers, bromodomains (BRDs) and pleckstrin homology domain.  

Among them, Bromodomains (BRDs) have been widely investigated. They consist of 

110 amino acids and define a deep hydrophobic pocket shared by 61 different proteins that is 

highly conserved.32 BRDs’ proved to be involved in cancer, inflammation, cardiovascular 

disease and other disorders 31 encouraging the development of BRD binders to both gain deeper 

insight into their roles and eventually identify new therapeutic agents. 

1.2.2.  Methyl readers and methyl-Lys recognition motifs 

Methyl reader proteins, in particular the methyl-Lys readers, are gaining ever-increased 

interest among the scientific community and significant research has been focused on the 

elucidation of histone methylation in general.33,34 

These proteins are classified into three families: the PHD zinc finger proteins, the 

WD40 (tryptophan-aspartic acid 40) repeat domain-containing proteins, and the Royal family 

of reader proteins. The latter include Tudor, chromodomain (ChD), Pro (proline)-Trp 

(tryptophan)-Trp-Pro (PWWP), and malignant brain tumor (MBT) domain containing 

proteins.12 

These reader proteins bind to methylated residues through a conserved motif, including 

multiple aromatic residues, called “aromatic cage”, that is involved in cation-π interactions 

with the methylammonium group on histone chains.33 Differences in the physicochemical and 

steric properties of methylated residues and in the close residues explain why reader proteins 

have developed selective pockets for a specific methylation mark (mono-, di- or trimethylated 

Lys residues) on a specific histone.34 Generally, lower Lys methylated states (mono- and 

dimethyl) are engaged via a “cavity insertion recognition mode”. In this case, steric exclusion 

and H-bond interactions play important roles in the binding event (Figure 5).30 On the other 

hand, a “surface groove recognition mode” has been associated to readers that recognize 

trimethyl-Lys residues. Indeed, the binding site of these latters consists in a shallow 

hydrophobic recognition surface rather than a pocket (Figure 5).34 
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Figure 5. Recognition modes of methyl-Lys readers i) cavity insertion, ii) surface groove.30 

Inhibition of methyl-Lys readers is a much less explored field in drug discovery 

compared to other epigenetic targets34 and targeting the aromatic cage is challenging, especially 

if it involves the surface groove recognition mode. However, since multiple lines of evidence 

link these readers to cancer and other diseases, there is an increasing interest in studying deeper 

these proteins and their roles.27 

1.2.2.1. Chromodomain (ChD)-containing proteins 

Among the methyl-Lys readers mentioned above, chromodomain-(ChD) containing 

proteins have been associated to different aggressive cancers, like prostate and lymphoma 

ones.34 

The chromatin-organization-modifier domain (chromodomain, ChD) is a conserved 

binding module that consists of 40-60 amino acids shared by 34 proteins.27,33 Among these 

latters, the heterochromatin (HP1) Cbx 1/3/5 and the chromobox homolog (Cbx) 2/4/6/7/812 

are the most studied and are able to recognize the trimethyl-Lys 9 on histone 3 (H3K9me3) and 

the trimethylated Lys 27 on histone 3 (H3K27me3), respectively, being involved in 

transcriptional repression.34  

The aromatic cage of ChDs consists of 3-4 aromatic residues (Figure 6) able to bind the 

trimethylated-Lys residues and, having been defined as a shallower recognition surface, it has 

been considered as a difficult module to target.27 However, since mutations in some aromatic 

residues of the aromatic cage drastically reduce ChDs’ partner affinity, there is a great interest 

for developing new molecular entities able to block their biological activity.33 
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Figure 6. Examples of ChD-containing proteins. A) Aromatic cage of CBX5 bound to trimethylated peptide (PDB (Protein 

Data Bank): 3FDT). B) ChD CHD1 (Chromodomain helicase DNA-binding protein 1) binding pocket with trimethylated 

peptide (PDB: 2B2W).33 

1.3. Epi-drugs in cancer treatment  

Initially, epi-drugs were limited to inhibitors of few epigenetic enzymes as HATs, 

HDACs and DNA demethylases (e.g., Vorinostat, 5-azacitidine and decitabine).11 Over the last 

few years, the reversible processes involving histones’ PTMs were deeply studied, leading to 

the identification of new epigenetic targets with potential therapeutic application.35 As a 

consequence of the increased breath of the epigenetic target space, the amount of small-

molecules under clinical trials targeting epigenetics grew, as confirmed by the studies regarding 

Disruptor of telomeric silencing 1-like (DOT1L) inhibitors, Lysine-specific histone 

demethylase 1A (LSD1) inhibitors and Enhancer of zeste homolog 2 (EZH2) inhibitors, among 

others.36 

In particular, the epigenetic medicinal chemistry started to focus broadly on reader 

proteins in 2010 with the identification of JQ1 and I-BET762 (Figure 7) as potent inhibitors 

of BRD-containing proteins.31,37,38 If until that time reader proteins were an unexplored 

territory for drug discovery, the confirmed druggability of BRDs, promoted the searching of 

new on agents targeting methyl-Lys reader proteins.33  



22 

 

JQ1 I-BET762  

Figure 7. Chemical structures of the first identified BRDs inhibitors. 

Compared to BRD-containing proteins and epigenetic enzymes, readers of methyl 

marks are considered more challenging targets for two main reasons: low-affinity for their 

natural ligand, that complicated the development of high-throughput assays, and their lack of 

enzymatic activity that hampered target validation.33 Nevertheless, some methyl-Lys reader 

proteins have been successfully targeted by chemical entities. MBT domain was the first 

methyl-Lys binding domain studied and a nicotinamide antagonist (Figure 8) was the first 

small-molecule co-crystallized with Lethal (3) malignant brain tumor-like protein 1 

(L3MBTL1) at its MBT domain. Nicotinamide antagonist (PDB code: 3P8H)39 paved the road 

to the identification of inhibitors of other methyl-Lys readers, belonging to ChD, MBT, PHD 

finger and Tudor domain families.34 Some examples of such ligands and their corresponding 

epigenetic target proteins are reported in Table 1. 

The field of methyl-Lys reader proteins has just started to be uncovered and there is 

much to do to develop potent and selective small-molecules as potential epi-drugs for cancer 

treatment. 

 

Figure 8. Chemical structure of a nicotinamide antagonist: the first small-molecule ligand co-crystallized with L3MBTL1 

(PDB: 3P8H).39 

 



23 

 

Table 1. Examples of inhibitors of methyl-Lys recognition motifs.34 

 

 

Inhibitors Structure Target protein 

Ac-FAYKme3S 

 

CBX7 ChD 

UNC3866 

 

CBX7 ChD 

MS37452 

 

CBX7 ChD 

MS351 

 

CBX7 ChD 

UNC926 

 

L3MBTL1 MBT 

domain 

UNC2533 

 

Lethal (3) malignant 

brain tumor-like 3 

protein (L3MBTL3) 

MBT domain 
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UNC1215 

 

L3MBTL3 MBT 

domain 

UNC2170 

 

p53-binding protein 1 

(53BP1) Tandem Tudor 

domain 

CF16 

 

Pygopus homolog 2 

(Pygo2) PHD finger 

 

1.4. Targeting ChDs as a promising epigenetic approach for cancer 

treatment 

Aberrant expression of ChD-containing proteins has been observed in a large variety of 

cancer types, as prostate, breast, thyroid, colon and brain tumours.12,34 Moreover, increased 

literature links ChD-containing proteins to the regulation of the balance between 

haematopoietic stem-cell self-renewal and differentiation, implying a pivotal role of such 

proteins in hematopoietic neoplasms development.40 Therefore, ChD-containing proteins have 

been recognised as promising targets to fight cancer. 

The druggability of several ChD-containing proteins was evaluated in the past and was 

proved in the first decade of the 2000s by the development of peptidic antagonists of CBX7 

ChD (e. g., Ac-FAYKme3S, Table 1).41 Subsequent optimization of the physicochemical 

properties of such compounds led to the identification of the first cell permeable peptide 

chemical probe for CBX7 ChD with antiproliferative properties against PC3 prostate cancer 

cells (UNC3866, Table 1).34,42 Moreover, MS3745243 and MS351 (Table 1)44 proved that also 

cell-active small-molecules with modest potency could be developed as interesting inhibitors 

of ChDs and encouraged the searching of new ChD-containing proteins inhibitors.  

Overall, this scenario suggests that the development of small-molecules binding ChDs 

as potential epi-drugs is a goal that could be achieved.  
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2. PhD project background
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2.1. Starting point of the project 

With the aim to identify new small-molecules able to inhibit ChD-containing proteins 

as potential anticancer agents, a Virtual Ligand Screening (VLS) campaign was carried out at 

the University of Bologna.  Specifically, four structures of ChDs were selected on the basis of 

the PDB quality and RMSD (root-mean-square deviation) (maximum structural diversity). 

Each selected structure was prepared with the PPW (protein preparation wizard) (hydrogen 

treatment, protonation and minimization) and was used for a high throughput docking of the 

LifeChemicals database (about 500 K molecules) with the software Glide (SP). For each 

structure, the 1K top-scoring compounds were stored. The final selection of 120 compounds to 

test was performed by the elimination of duplicates, clustering with Tanimoto on the basis of 

a description of each molecule in terms of 2D fingerprints (Molprint2D), visual inspection of 

the binding mode and finally on the basis of the commercial availability. The compounds were 

tested at 100 µM concentration from the research group of Professor S. Minucci, at Istituto 

Europeo di Oncologia (IEO) in Milan, by employing a ChD-Competition Fluorescent 

Polarization (FP) assay (see VI. Experimental section, 1.2 ChD-competition FP assay).45 This 

latter was chosen for screening the compounds’ ability to inhibit, in a competitive way, the 

interaction between the recombinant ChD of our selected target and a FITC-labeled peptide 

H3K27me3, that mimicks the trimethylated Lys27 residue on histone 3. According with this 

assay, briefly depicted in Figure 9, the target protein binding to the FITC-labeled peptide forms 

a large complex, that rotating slowly in solution does not disrupt the light, that remains 

polarised (Figure 9). When a small molecule (or hit compound) displaces the fluorescent 

peptide, it begins to spin rapidly disrupting the light and forcing it to become depolarised 

(Figure 9). The depolarized fluorescence emission passes through parallel and perpendicular 

filters with respect to the plane of the excitation light. Intensity of parallel and perpendicular 

emission light are employed to calculate FP readout according to equation 1 (Figure 10)45 and 

the wavelengths of excitation (λexc) and emission (λem) set in the assay, according to the specific 

FITC-labeled peptide employed, are 485 and 535 nm, respectively. The displacement of the 

fluorescent peptide from its binding site by a compound results in a decrease of the FP signal.  
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Figure 9. Schematic description of the ChD-competition FP assay principle. 

 

 

Equation 1: 

𝐹𝑃:
𝐼 (𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙)  −  𝐼 (𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟)

𝐼 (𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙)  +  𝐼 (𝑝𝑒𝑟𝑝𝑒𝑛𝑑𝑖𝑐𝑢𝑙𝑎𝑟)
 

 

 

 

Figure 10. Schematic description of the ChD-competition FP assay principle. Equation 1 reports the calculation of the FP 

readout.45 

Interestingly, results from FP assay showed that only commercial compound 1 (Figure 

11), was able to display 32 % of reference FITC-labeled peptide at 100 µM concentration. 

 

1
 

 

Figure 11. On the left, result of the initial screening of 102 selected compounds by FP assay at 100 µM (18 compounds were 

not tested due to low DMSO solubility). Green circle highlights compound 1 whose structure is reported on the right.  

Compound 1 was resynthesized in iit’s (Istituto Italiano di Tecnologia) laboratories in 

Genoa via a coupling reaction between commercial 3-(3-benzyloxy-4-

%
 

%
 o

f 
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methoxyphenyl)propionic acid and commercial 2-oxo-5,6,7,8-tetrahydro-1H-1,6-

naphthyridine-3-carbonitrile; hydrochloride, in a mixture of dichloromethane/N,N-

dimethylformamide (9:1) by employing 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

(EDC) and 1-hydroxybenzotriazole (HOBt) hydrate as coupling reagents and triethylamine as 

base. Then, re-synthetized 1 was tested in IEO in order to confirm the results obtained by testing 

the commercial one. In the ChD-competition FP assay, re-synthesized compound 1 was 

evaluated at three different concentrations (6.25, 25 and 100 µM) but, unexpectedly, it did not 

show any effect at all tested concentrations. On the contrary, the commercial compound proved 

to inhibit the interaction between the recombinant ChD and FITC-labeled peptide at 

concentrations 25 µM and 100 µM, of 10 % and 32 %, respectively (Figure 12). 

 

Figure 12. Results of ChD-competion FP assay of commercial and re-synthesized compound 1 at 6.25, 25 and 100 µM 

concentrations. Data are reported as % of FITC-peptide bound relative to DMSO after compound addition. 

UPLC-MS and 1H-NMR analysis of commercial and re-synthesized compound 1 (see 

V. Appendix, Figures A1-A5) revealed a higher purity grade for resynthesized one, suggesting 

a possible role of the observed impurities of the commercial one in influencing its biological 

activity. Accurate analysis of proton NMR spectrum of commercial batch of compound 1 

allowed us to identify as main impurity a small molecule with a structure similar to that the 

amine portion of amide derivative 1. Therefore, we decided to test in the same FP assay also 

the commercial hydrochloride salt 2 (Figure 13), based on a 2-oxo-5,6,7,8-tetrahydro-1H-1,6-

naphthyridine structure and employed to prepare 1. Remarkably, 2 showed an interesting 

activity at 6.25 µM concentration (20 % inhibition, see Figure 14). 
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2  

Figure 13. Structure of compound 2. 

 

 

Figure 14. Results of ChD-competion FP assay of compound 2 tested at 6.25, 25 and 100 µM concentrations. Data are reported 

as % of FITC-peptide bound relative to DMSO after compound addition. 

With this promising result in hand, compound 2 was subject to docking studies and 

molecular dynamics (MD) simulations (Figure 15).  

 

Figure 15. Predicted pose of compound 2 docked at the ChD (left) of the selected target protein. Main interactions of 

compound 2 with the target ChD according to computational studies (right). 

Interestingly, docking studies revealed possible cation-π interactions between the 

protonated amine group of compound 2 and some aromatic residues in the aromatic cage of the 

selected ChD [Trp26, Trp29 and Phenylalanine (Phe) 5], and direct or water-mediated H-bonds 

between the same protonated secondary amine group of 2 and glutamine (Gln) 3 and Glutamate 

(Glu) 37, respectively (Figure 15). These results allowed us to hypothesize a key role of the 
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positive charged amine group in mimicking the methylammonium moiety of the Lys residues 

on histones. Furthermore, additional interactions were observed (Figure 15): 

1. Water-mediated H-bonds between the carbonyl moiety of the 2-pyridone ring of 

compound 2 and alanine (Ala) 6 and Lys27 residues of ChD. 

2. π-π interactions between the 2-pyridone ring of compound 2 and Trp26 and Phe5 of 

the ChD aromatic cage. 

To better explore the binding role of the amine group of compound 2, we looked for a 

commercially available analog without the presumed essential basic nitrogen atom. Thus, 

compound 3 (2-oxo-5,6,7,8-tetrahydro-1H-quinoline-3-carbonitrile) (Figure 16, top) was 

bought and was tested by using the FP assay. Surprisingly, compound 3 showed 36.8 % 

inhibition at 6.25 µM and 100 % inhibition at 100 µM (Figure 16), thus displaying even higher 

inhibitory properties in comparison to compound 2 (20 % inhibition at 6.25 µM concentration 

and 70 % at 100 µM concentration) (Figure 14).  

 

Figure 16. Results of ChD-competion FP assay of compound 3 at 6.25, 25 and 100 µM concentrations. Data are reported as 

% of FITC-peptide bound relative to DMSO after compound addition. 

To explain these unexpected data, computational investigations were also carried out 

on analog 3. Docking studies suggested the compound capability to interact with the selected 

ChD in a different binding pose compared with compound 2 (Figure 17, left). In detail, π-π 

interactions were observed between Trp26 and Phe5 of ChD aromatic cage and the aromatic 

portion of the 2-oxo-5,6,7,8-tetrahydro-1H-quinoline framework of 3; moreover, similarly to 

2, the carbonyl group of the 2-pyridone ring was able to establish a H-bond interaction with 

Lys27 of ChD (Figure 17, right).  
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Figure 17. Superimposition of predicted poses of compound 2 (in light blue) and compound 3 (in green) docked at the ChD 

(left). Compound 3 main interactions with the target ChD according to computational studies (right).  

Taken together, these data suggested the suitability of both compounds 2 and 3 as 

interesting scaffolds to develop potential new ChD-binding agents. 
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3. PhD project 
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3.1. Compounds design 

The promising results of the competitive FP assay and the computational studies 

encouraged us to develop small libraries consisting in both compounds 2 and 3 analogs. The 

aim was to explore the chemical space of the selected target and perform structure-activity 

relationship (SAR) studies.  

3.1.1. Design of analogs of compound 2 

Based on the binding interactions between compound 2 and the selected ChD, suggested 

by docking studies (Figure 18), and considering the synthetic feasibility of 5,6,7,8-tetrahydro-

1,6-napthyrydine-based compounds, three different series of analogs were designed in order to 

gain deeper knowledge on the essential structural features for ChD binding (Figure 18). 

4, R1= Me 

5, R1= Et 

6, R1= Pr 

7, R1= iBu 

8, R1= iPr

9, R1= Bn

HCl

Series 1

Series 2

Series 3

10, X= CH, R1= R2= R3= H

11, X= N, R1= CH
3
, R2= OCH

3
, R3= CN

HCl

Compound 12

2

3

6

1

General structure 1

General structure 2

Compound 2

 

Figure 18. Design strategy for compound 2 analogs. 

In series 1 the role of the NH2
+ present in 6-position of the main scaffold was explored. 

In detail, different alkyl groups and a benzyl (Bn) substituent were introduced in order to 

investigate their steric hindrance effect on ChD binding (derivatives 4-9, Figure 18). 

Then, in series 2 the role of the pyridone system (Figure 18) was investigated. 

Computational studies suggested the possibility of removing that moiety without detrimental 

effects for the binding, so novel scaffolds were explored based on that hypothesis. In this 

context, firstly it was decided to evaluate the commercially available 1,2,3,4-

tetrahydroisoquinoline (compound 10, Figure 18) where the pyridone system is completely 

removed. Secondly, it was decided to explore the effect of the 2-pyridone/2-hydroxypyridine 
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tautomerism. Therefore, compound 11 was synthesized in order to shift the tautomeric 

equilibrium towards the 2-hydroxypyridine isomer and study its binding properties (Figure 19).  

2-pyridone tautomer 2-hydroxypyridine tautomer Compound 11  

Figure 19. Tautomeric equilibrium of compound 2 (left) and compound 11 structure (right). 

Finally, in series 3 the effect of substituents in position 3 of compound 2 was explored. 

Concerning this series, commercially available 2-oxo-5,6,7,8-tetrahydro-1H-1,6-

naphthyridine-3-carboxamide free base, where the cyano group of 2 was replaced by a 

carboxamide function, was the only compound taking into consideration. Since this free base 

displayed a poor solubility in DMSO, its hydrochloride salt was prepared obtaining compound 

12 (Figure 18). 

3.1.2. Design of analogs of compound 3 

As previously discussed, MD simulations and docking studies suggested the 

unexpected suitability of 2-oxo-5,6,7,8-tetrahydro-1H-quinoline scaffold of compound 3 to 

engage the selected ChD. So, a computational-aided drug design (CADD) campaign was 

carried out to design four new scaffolds able to establish the same main interactions identified 

in compound 3 engagement (H-bond with Lys27 and π-π interactions with some residues of 

the aromatic cage) while increasing the chemical diversity (Figure 20).  

13, X = NH, Y =

14, X = NH, Y =

15, X = CH
2
, Y =

16, X = CH
2
, Y = OH

20

18, X = NH, R =

19, X = CH
2
, R = 

17

Series 4

Series 5

Series 6

Series 73

 

Figure 20. Design of different series of compound 3 analogs. 
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From the structural point of view, all compounds were designed to maintain the key 

structural features of compound 3: an aromatic hydrophobic portion, an H-bond donor (HBD) 

and two H-bond acceptors (HBAs). All series of derivatives bear an aromatic bicyclic core (2-

hydroxyquinoxaline for series 4, 2-quinolone for series 5, 2-naphtol for series 6 and indole for 

series 7) connected to a pyridine ring, a furan ring or a hydroxyl group through linkers of 

different nature and length (Figure 20). The most drastic modification was proposed in series 

7. Although, the 5,6,7,8-tetrahydro-1H-quinolin-2-one central scaffold was replaced by a N-

(1H-indol-2-yl)carboxamide system, superimposition of both structures confirmed an 

equivalent three dimensional space orientation for the functional groups involved in main 

hydrogen bond interactions (Figure 21).  

3 20  

Figure 21. Superimposition of compound 3 (in yellow) and 20 structures (in white). 

3.2. Synthetic strategies 

3.2.1. Synthesis of compound 2 

Compound 2 was synthesized via a three-step synthetic procedure as shown in Scheme 

1. In summary, treatment of commercial N-Boc protected 4-oxopiperidine with refluxing N,N-

dimethylformamide dimethyl acetal (DMF-DMA) afforded enamine 21 that was isolated and 

cyclocondensed with 2-cyanoacetamide in the presence of sodium hydride (NaH) as base to 

afford intermediate 22. Final acid treatment (HCl 4 M in 1,4-dioxane) allowed Boc elimination 

obtaining compound 2 as hydrochloride salt.46,47 

221 22

1
2 3

 

Scheme 1. Reagents and conditions: 1. DMF-DMA (10.8 mmol), N2, 105 °C, 21 h, yield: 66 %. 2. 2-cyanoacetamide (1.05 

equiv.), NaH (60 % dispersion in mineral oil, 2 equiv.), dry DMF, N2, 0 °C to 80 °C, 15 h, yield: 10 %. 3. HCl (4 M) in 1,4-

dioxane (30 equiv.), dry methanol, rt, 5 h, yield: 40 %. 



36 

 

3.2.2. Synthesis of compounds of series 1  

Preparation of derivatives 4-9: reductive amination reaction 

Reductive amination reaction between compound 2 and a selected ketone or aldehyde, 

using sodium triacetoxyborohydride (STAB) as a reducing agent, was performed to afford 

compounds 4-9 (Scheme 2). Depending on the starting aldehyde or ketone, the reaction was 

carried out at rt or at 55 °C.  

1

2

4, R1= Me, 56 % yield 

5, R1= Et, 82 % yield  

6, R1= Pr, 58 % yield 

7, R1= iBu, 40 % yield

8, R1= iPr, 40 % yield

9, R1= Bn, 30 % yield

 
 

Scheme 2. Reagents and conditions: 1. Aldehyde or ketone (5.0-33.5 equiv.), STAB (2.4-4.88 equiv.), dry methanol, N2, 55 

°C or rt, 5-24 h. 

3.2.3. Synthesis of compound of series 2  

Two-step preparation of analog 11 

Compound 11 was obtained via a two-step synthesis (Scheme 3). In the first step, a 2-

chlorination reaction of compound 4,47 by employing phosphorous oxychloride (POCl3) under 

reflux, gave intermediate 23, that was converted in 11 through a palladium-catalyzed C-O cross 

coupling reaction with sodium methoxide.48 

4 1123

1 2

 

Scheme 3. Reagents and conditions: 1. POCl3 (20 equiv.), Ar, 0 °C to 105 °C, 24 h. 2. Pd(OAc)2 (3 mol %), tBuXPhos (6 mol 

%), CH3ONa (5 equiv.), dry methanol/toluene (1:1), Ar, rt to 80 °C , 15 h, yield: 21%. 

3.2.4. Synthesis of compound of series 3 

Preparation of compound 12 

The hydrochloride salt 12 was obtained via treatment of commercial 2-oxo-5,6,7,8-

tetrahydro-1H-1,6-naphthyridine-3-carboxamide with HCl solution (1.25 M) in methanol 

(Scheme 4) and the salt formation was monitored by 1H-NMR. 
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1

12  

Scheme 4. Reagents and conditions: 1. HCl (1.25 M) in methanol (10 equiv.), rt, 3 h, yield: 93%. 

3.2.5. Synthesis of compounds of series 4 

Preparation of derivatives 13 and 14 

The synthetic route for compounds 13 and 14 is outlined in Scheme 5. In particular, 

chlorination of 1,4-dihydroquinoxaline-2,3-dione with neat POCl3 gave 2,3-

dichloroquinoxaline 24 as a key intermediate.49 Subsequent nucleophilic aromatic substitution 

(SNAr) with the appropriate amine followed by hydrolysis under basic conditions50 afforded 

compound 13 and 14.  

At the beginning, a two-step strategy consisting of monochlorination of 1,4-

dihydroquinoxaline-2,3-dione followed by SNAr of the obtained halogenated intermediate was 

attempted. Nevertheless, the low yield of monochlorination reaction and the high amount of 

compound 24 isolated prompted us to develop the procedure previously described. 

1 2 3

24

25, R=

26, R=

13, R=

14, R=

, yield: 60 %

, yield: 58 %

, yield: 70 %

, yield 16 %

 

Scheme 5. Reagents and conditions: 1. POCl3 (10 equiv.), 100 °C, 4 h. 2. Triethylamine (4.5-6 equiv.), dry 1,4-dioxane, Ar, 

100 °C, 24 h 3. LiOH (4-5 equiv.), dry 1,4-dioxane/H2O, 60-70 °C, 48 h. 

Synthesis of compound 15 

15 was prepared under SN2 reaction conditions reacting 3-(bromomethyl)-1H-

quinoxalin-2-one with 6-methylpyridin-2-amine (Scheme 6).51 

1

15  

Scheme 6. Reagents and conditions: 1. 2-amino-6-methylpyridine (2 equiv.), DMSO, rt, 14 h, yield: 8 %. 
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Synthesis of compound 16 

The quinoxaline-based compound 16 was obtained through a reduction reaction of ethyl 

3-oxo-4H-quinoxaline-2-carboxylate into its corresponding alcohol, using diisobutylaluminum 

hydride (DIBAL-H) as reducing agent (Scheme 7).52 

16

1

 

Scheme 7. Reagents and conditions: 1. DIBAL-H (1.0 M) in hexane (2 equiv.), diethyl ether, Ar, 0 °C to rt, 3 h, yield: 20 % 

3.2.6. Synthesis of compound of series 5  

Preparation of compound 17 

Compound 17 was prepared through a two-step synthetic procedure. The first step 

consisted of a copper catalyzed C(sp2)-NH2 bond formation between 3-bromo-1H-quinolin-2-

one and sodium azide (NaN3) in the presence of pipecolinic acid as a ligand, ascorbic acid as 

an additive and ethanol as a solvent at 100 °C.53 The second step was a reductive amination 

reaction of the 3-amino1H-quinolin-2-one intermediate 27 with furaldehyde using STAB as 

the reducing agent (Scheme 8). 

1727

1 2

 

Scheme 8. Reagents and conditions: 1. NaN3 (2 equiv.), Cu (0) powder (10 % mol. equiv.), pipecolinic acid (30 % mol. equiv.), 

L-ascorbic acid (20 % mol. equiv.), ethanol dry, Ar, rt to 100 °C, 4 days. 2. furaldehyde (2 equiv.), STAB (4.88 eq.), dry 

methanol, Ar, 60 °C to rt, 4 days, yield: 13 %. 

3.2.7. Synthesis of compounds of series 6 

Synthesis of derivatives 18 and 19: reductive amination reaction  

The synthesis of 2-naphthol derivatives 18 and 19 was performed by direct reductive 

amination reaction between the appropriate primary arylamine and aldehyde, as described in 

Schemes 9 and 10. 
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1

18  

Scheme 9. Reagents and conditions: 1. Furaldehyde (2 equiv.), STAB (7.31 equiv.), dry methanol, Ar, 50 °C to rt, 21 h, yield: 

22 %. 

1

19  

Scheme 10. Reagents and conditions: 1. 2-amino-3-methylpyridine (1 equiv.), NaBH4 (2.44 equiv.), dry ethanol, N2, 78 °C to 

rt, 5 h, yield: 46 %.  

3.2.8. Synthesis of compound of series 7 

Two-step preparation of compound 20 

As described in scheme 11, commercial 1H-indole-2-carboxylic acid, treated with 

diphenylphosphoryl azide (DPPA), was first converted into its carboxazide derivative 28. This 

acyl azide intermediate underwent a Curtius rearrangement followed by amide formation in 

presence of commercial 2-furoic acid and 4-dimethylaminopyridine (DMAP) to afford 

compound 20 in only one step.54 A proposed reaction mechanism is reported in Figure 22. In 

detail, carboxazide 28 udergoes thermal decomposition to afford the corresponding isocyanate 

A that reacts with 2-furoic acid to obtain intermediate B. Final elimination of carbon dioxide 

(CO2) gives compound 20.  

2028

1 2

 

Scheme 11. Reagents and conditions 1. DPPA (0.9 equiv.), triethylamine (2 equiv.), dry dichloromethane, Ar, rt, 7 h, yield: 

83 %. 2. 2-furoic acid (2 equiv.), 4-DMAP (10 mol equiv.%), dry toluene, Ar, 110 °C, 5 h, yield: 5 % 
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Figure 22. Proposed reaction mechanism of 20 synthesis starting from carboxazide 28 intermediate. 
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4. Results and Discussion 
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4.1. ChD binding assay results and discussion 

The ChD-Competition FP assay,45 described in paragraph 2.1, was employed at IEO to 

test compounds ability to inhibit, by displacement, the interaction between the selected ChD 

and FITC-labeled peptide H3K27me3. In particular, compounds 4-9 were tested at 6.25, 25 

and 100 µM concentrations as shown in Table 2 (see VI. Experimental section, 1.2 ChD- 

competition FP assay). 

Table 2. Inhibition data of compounds 4-9 tested in FP assay at 6.25, 25 and 100 µM. Data are reported as % of inhibition. 

Remarkably, all evaluated compounds displayed inhibition even at the lowest tested 

concentration (6.25 µM) and dose-response effects. In detail, for compounds 4-9 the percentage 

of inhibition at 6.25 µM, ranging from 16 to 38.5 %, was comparable to the percentage of 

inhibition of both compound 2 and 3 (20 % inh and 36.8 % inh, respectively) (Table 2). At 100 

µM concentration, all derivatives, except for compound 5, displayed higher inhibition with 

respect to hit compound 2 (70 % inh at 100 µM) and two compounds (6 and 7) out of six 

showed full inhibition (100 % inh) as hit compound 3. According to these encouraging FP data, 

a large variety of substituents were tolerated in 6-position of the 5,6,7,8-tetrahydro-1,6-

Cpd Structure 
% Inh  

(6.25 µM) 

% Inh 

(25 µM) 

% Inh 

(100µM) 

4 

 

17.5 36.5 82 

5 

 

16 22.5 59.5 

6 

 

33.5 68.5 100.0 

7 

 

38.5 62.5 100.0 

8 

 

19 46.5 88.5 

9 

 

34 48 84 



43 

 

napthyrydine framework and even sterically hindered compounds (i.e., compound 9, Table 2) 

showed inhibition. 

Among the tested compounds, compound 6 and 7, showing 100 % of inhibition at 100 

µM, together with hit compound 3 (Paragraph 2.1) were selected for the determination of the 

IC50 value, that is considered the inhibitor concentration required to produce the 50 % 

dissociation of the complex between the selected ChD and FITC-labeled peptide.  

Unexpectedly, in these FP experiments of IC50 values determination, reproducible data 

were obtained only for compound 3 that showed an IC50 value of 13.47 µM (Figure 23). 

Compounds 6 and 7 did not confirm the inhibition of previous FP tests. In detail, two different 

experiments were run testing the selected compounds at two different concentrations ranges 

(0.097-200 µM for experiment I and 0.0312-200 µM for experiment II) and, in both cases, the 

obtained results were not in agreement with those of initial experiments at three different 

concentrations (6.25, 25 and 100 µM) (Figure 23).  

 

Figure 23. Experiments I (concentration range: 0.097-200 µM) and II (concentration range: 0.0312-200 µM) for IC50 

determination of compounds 3, 6 and 7. Data are reported as % of  FITC-peptide bound relative to DMSO after incubation 

with the compound. 
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The lack of reproducibility of the preliminary results of compounds 6 and 7 (Figure 23) 

suggested a possible compounds interference with the assay readout. Thus, the spectroscopic 

properties of re-synthesized compounds 1 and 2 and all derivative of series 1 were investigated. 

In particular, the compounds capability to emit light around the emission wavelength 

used for assay readout (λem: 535 nm) after excitation at the same wavelength used in the assay 

(λexc: 485, see Paragraph 2.1) was studied. First, the absorption spectrum of each selected 

compound was registered from 200 to 800 nm; then, the fluorescence spectra of compounds 1-

9 were recorded (some representative examples of fluorescence spectra are reported in Figure 

24). The samples for analysis were prepared in line with the protocol of the ChD-competition 

FP assay (VI Experimental section, 1.2 ChD-competition FP assay), except for the buffer. 

Indeed, water Milli-Q was employed for samples preparation having proved that assay buffer 

(pH 8) did not affect the spectroscopic properties of the selected molecules. In detail, freshly 

prepared solution 20 mM in DMSO of each compound were diluted with water Milli-Q to 100 

µM, thus providing the appropriate percentage of DMSO in the final volume (0.5 %).  

Fluorescence analysis revealed that except for re-synthetized compound 1 (Figure 24 

a), all other tested compounds 2-9 were able to emit light around 535 nm upon excitation at 

485 nm (Figure 24 b, c, d), thus interfering with the assay readout. 

 

Figure 24. Fluorescence emission spectra of some representative compounds after excitation at λexc: 485 nm. a) Fluorescence 

emission spectrum of re-synthetized compound 1. b) Fluorescence emission spectrum of compound 2. c) Fluorescence 

emission spectrum of compound 3. d)  Fluorescence emission spectrum of compound 6. 
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The proven compounds interference made the search of alternative assay conditions 

needed. In particular, it was thought to substitute the FITC probe with AlexCy3, a red-shifted 

fluorophore, able to emit fluorescence at 580 nm after excitation at 535 nm. Therefore, the 

capability of compounds 1-9 to interfere with AlexCy3 at the assay conditions was also 

investigated (λexc: 535, λem: 580 nm). Fluorescence spectra of compounds 1, 2, 4-9 (only 

representative examples have been reported in Figure 25 a, b, d) revealed a lack of interference 

of all compounds with the assay readout. On the contrary, compound 3 (Figure 25 c) showed a 

low-intensity emission around 580 nm, thus suggesting its minimal interference also with the 

assay conditions set for AlexaCy3 probe. 

 

Figure 25. Representative fluorescence emission spectra of some representative compounds after excitation at λexc: 535 nm. 

a) Fluorescence emission spectrum of re-synthetized compound 1. b) Fluorescence emission spectrum of compound 2. c) 

Fluorescence emission spectrum of compound 3. d) Fluorescence emission spectrum of compound 6.
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5. Conclusions 
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In this first research project, the lack of reproducibility of preliminary inhibition data of 

the ChD-competitive FP assay suggested compounds interference with the assay readout. A 

deep investigation of compounds spectroscopic properties confirmed compound 2-9 capability 

to give false positive results by emitting fluorescence in the FITC-labeled peptide emission 

region (λem: 535 nm), thus explaining the abnormal decrease of FP signal observed in their 

presence. Only re-synthetized compound 1, which did not display any inhibition in the FP 

assay, did not show fluorescent properties when excited at the FITC probe’s excitation 

wavelength (λexc: 485 nm). Since a significant FP signal change was instead observed in the 

presence of the less pure commercial compound 1, we concluded that the main impurity, 

perhaps based on same 5,6,7,8-tetrahydro-1,6-napthyrydine scaffold of compound 2 and 

analogs of series 1 (4-9), could be responsible for interference with FP assay readout.  

In an attempt to overcome the compounds interference, the possibility to employ 

AlexaCy3 probe in the FP assay was taken into account. However, the minimal compound 3 

fluorescent emission in the AlexaCy3 probe emission region (λem: 580 nm) after excitation at 

535 nm did not confirm the suitability of AlexaCy3 as an alternative probe for FP assay.  

Not being able to use the FP assay to evaluate the synthetized compounds as potential 

binders of the selected ChD-containing protein, synthetic activities were stopped. Currently, 

various cell- and non-cell-based assays are being evaluated to test all the developed 

compounds. 

Overall, the obtained results underlay the importance of hit compounds validation at the 

initial phase of drug discovery. Indeed, to define a compound as a hit, it is fundamental to 

assess if the signal observed in the screening assay in the presence of the compound is due to 

a desirable mechanism. Frequently, medicinal chemistry teams have to deal with false-positive 

results in the primary screening assay and different mechanisms underlying these false-

positives have been identified. Some of them are linked to specific chemical and physical 

compounds features, such as their low solubility in the assay buffer, their tendency to form 

aggregates, non-specific binding, interference with the assay readout or high chemical 

reactivity. In other cases, the signal responsible of a false-positive result is related to impurities 

present in the sample of the tested compound.55 

Therefore, to confirm that the compounds selected from primary screening are really 

active against the selected target, different strategies can be adopted, according to the specific 

compound and assay employed. For instance, if a commercial compound results active in the 

primary screening assay, it could be re-synthesized and re-tested in order to exclude the 

possibility that the observed signal is due to impurities in the commercial batch. Moreover, it 
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is possible to evaluate compounds interference through orthogonal assays, that, relying on a 

different detection methods, could allow to avoid compound interference. In other cases, the 

use of biophysical methods, such as X-ray crystallography or NMR, could be useful to confirm 

the activity of the identified hit compound against the selected target.  

In this specific project, even three different strategies were employed at different stages 

to validate presumed hits: re-synthesis of commercial compounds that resulted positive in the 

primary screening, chemical characterization of impurities of commercial batches that resulted 

active and spectrofluorometric assessment of compounds interference with the assay readout. 

In particular, new batches of compounds 1 and 2 were synthesized and re-tested to validate the 

activity of the commercial ones. Since re-synthesized compound 1 did not confirm the activity 

of the commercial counterpart, the main impurity of the commercial batch was characterized 

by 1H-NMR in order to identify a likely active scaffold. The spectrum revealed the presence of 

a small molecule with a structure similar to that of compound 2, and it was selected as an 

interesting starting point for the identification of new ChD binders. Finally, being compounds 

2-9 suspected to be false positives, their ability to emit fluorescence at the wavelength of the 

FP assay was evaluated. Data confirmed that compounds 2-9 were able to emit fluorescence in 

the region of the assay readout, interfering with it and causing a consistent signal change.  

In summary, the project described in this part of the thesis provides clear evidence to 

support the idea that hit validation is crucial for a successful drug discovery campaign. 
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 Part 2: Development of small-molecules as 

Tubulin Colchicine-site binders for cancer therapy 
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1. Introduction 
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1.1. Microtubules roles and dynamics  

Microtubules are part of the cellular cytoskeleton and play fundamental roles in several 

biological functions like cell division, motility, intracellular trafficking and maintenance of cell 

structure. From a structural viewpoint, they consist of hollow cylinders of around 25 nm in 

diameter, composed of typically 13 protofilaments aligned in a parallel manner. Each 

protofilament results from the “head-to-tail” assembly of αβ-tubulin dimers and this assembly 

explains the polarized nature of microtubules.55 

Microtubules structure undergoes continuous cycles of elongation and shrinkage, which 

are responsible of their called “dynamic instability”.58 The sudden switch from growing to 

shrinkage is stochastic and is called “catastrophe”, while the reverse process is defined “rescue” 

(Figure 26).57 GTP hydrolysis regulates dynamic instability process. In particular, GTP-bound 

αβ-tubulin heterodimers, displaying a “curved” structure, are added to plus-ends of growing 

microtubules and hydrolysis of GTP bound to β-tubulin subunit triggers gradual “curved-to-

straight” conformational change of dimers and stabilization of the growing protofilament. The 

hydrolysis is delayed with respect to dimers incorporation into microtubules, thus growing ends 

maintain a so-called “GTP cap”, whose loss causes a destabilization and switch from assembly 

to disassembly.59 The process is completed with exchange of GDP bound to β-tubulin to GTP.56  

Figure 26. Dynamic instability of microtubules.58 

1.2. Altering microtubule dynamics and cancer therapy 

Given the fundamental role played by microtubules in cell division, compounds 

targeting tubulin and, consequently, able to interfere with microtubules dynamics represent 

important tools in the anticancer therapy.60 In this context, microtubule-targeting agents 

(MTAs), that are used in cancer therapy, act mainly by suppressing microtubule dynamics 
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during the mitotic cell division, thus interfering with mitotic spindle formation, causing mitotic 

arrest in the G2/M phase and leading in many cases to cell death.56 Tumour cells are more 

susceptible to these agents than normal cells since they go through cell division much more 

frequently.61 MTAs are commonly classified in microtubule-stabilizing agents (MSAs) and 

microtubule-destabilizing agents (MDAs), according to their ability to promote microtubule 

polymerization or depolymerization, respectively.  

There are several known tubulin-binding sites for MTAs. Taxane, Vinca and Colchicine 

binding sites were known since 2013, but, recently, X-ray crystallography and cryo-electron 

microscopy allowed the characterization of three additional sites: Maytansine, 

Laulimalide/Peloruside and Pironetin sites (Figure 27).56 Compounds targeting one of these 

sites might lead to microtubule dynamics perturbation and, therefore, alter their biological 

function.58 

 

Figure 27. MTAs binding sites.56 

The most common classes of MTAs studied for cancer treatment include binding agents 

to Vinca, Taxane, Colchicine and Maytansine site domains. Vincristine and Vinblastine 

alkaloids, able to target the Vinca domain, together with Paclitaxel,62 paved the road to MTAs 

success in cancer therapy.56 Despite the huge therapeutic advantages showed by these agents, 

their use in cancer treatment was partially hampered by “off-target” toxicity and resistance 

development. Thus, the need to address such issues has been promoting research until now.  
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Neurological toxicity is the most common side effect of MTAs, since microtubules are 

crucial for neuron functions. Peripheral neuropathy is different according to the dose, drug and 

schedule of administration with symptoms depending on the damaged fiber (sensory, motor, 

autonomic) and sometimes leads to significant sequelae.59 To address toxicity, antibody drug 

conjugates (ADCs) of several of these chemotherapeutic agents have been studied and 

approved by FDA.56 However, the problem is not completely solved and dose-limiting toxicity 

still causes suspension of these drugs.63 

Resistance development is another drawback of this class of anticancer agents and it 

can arise at different stages of MTAs pharmacodynamics, displaying impaired drug cellular 

transport, target engagement or abnormal apoptosis mechanisms. Mutations in β-tubulin, 

aberrant expression of some β-tubulin isotypes or microtubule-regulating proteins, membrane 

drug efflux pumps of the ATP binding cassette (ABC) family expression and changings in the 

actin cytoskeleton are the most common mechanism of resistance identified for MTAs.60,64 

In the light of this therapeutic limitations, new microtubule binding agents with 

improved safety profiles and less prone to develop resistance are still required. 

1.3. Colchicine-binding site 

Extensive literature suggests that MTAs targeting the Colchicine-site are less 

susceptible to certain types of resistance development and Colchicin-site binding agents 

research for cancer is a very fruitful field.58,65 

The Colchicine-binding site, first identified in 2004 by X-ray crystallography,66 is a 

deep pocket allocated near the interface of α and β tubulin of the same heterodimer and 

Colchicine is the first recognized ligand.58 Comparison of the very different binding mode of 

compounds that compete with Colchicine for tubulin binding, allowed Dorélans’ group to 

define the Colchicine-binding site as a “binding domain”,67 later divided into three different 

zones: zone 2 (in the center), that accommodates Colchicine and other ligands, and two side 

pockets, zone 1 and zone 3, respectively (Figure 28).68 Zone 1 faces α-tubulin and zone 3 is 

buried in β-tubulin subunit (Figure 28).68 
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Figure 28. Colchicine-binding domain. Zone 1 (yellow), zone 2 (green) and zone 3 (violet) are highlighted with different 

colours. α-tubulin is in light pink and β-tubulin in cyan.69 

Colchicine-site binders are divided into two groups, according to the zones that they 

occupy. Some ligands (Figure 29, blu) are accommodated in zone 1 and 2 and bind tubulin 

similarly to Colchicine, while others (Figure 29, red) bind zone 2 and 3, accommodating deeper 

in β subunit. Curiously, no binder of the whole Colchicine-domain has been found so far.69 

Pododphyllotoxin

Lexibulin

T13

BAL27862

Tivatinib

 

 



55 

 

 

K2N

Plinabulin

G2N

MI-181 Nocodazole

 

Figure 29. Ligands of the Colchicine domain. In blue, ligands that occupy zone 1 and 2 and in red ligands that occupy zones 

2 and 3.69 

Colchicine-site binders act as MDAs, showing antimitotic and vascular disrupting 

activity.58 Their binding prevents tubulin structural rearrangements required for “curved-to-

straight” conformational transition that is fundamental for microtubules assembly67 (Figure 

30). Since this mechanism of action differs from that of other tubulin binders without vascular 

disrupting properties, it is thought to rationalize Colchicine-site binders’ different biological 

activity69 and explains their potential therapeutic value in cancer therapy. 

 

Figure 30. Curved-to-straight conformational change of tubulin dimer upon GTP binding (on top). Colchicine (represented in 

yellow) preventing the curved-to-straight transition of tubulin (below), required for microtubule assembly.69 

Indeed, this tubulin site is already validated for cancer treatment with several 

compounds in clinical trials for cancer.65 However, currently there is no Colchicine-site binder 

approved in oncology.58 
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1.4. Nocodazole 

Nocodazole (Figure 31) is one of the most studied reversible Colchicine-site binders. It 

was identified in 1976 showing antifungal, anthelminthic and antineoplastic properties.70 Its 

low solubility, modest activity in tumour animal models and toxicity limited its therapeutic 

use.71 However, it is currently used in pharmaceutical research.58  

 

Figure 31. Nocodazole structure. 

In 2016, Wang’s group published the structure of tubulin in complex with Nocodazole 

(PDB code: 5CA1), together with other Colchicine-site binders complexes. It emerged that 

Nocodazole binds zone 2 and 3 and, in comparison with other binders like Colchicine, does not 

interact with α-tubulin and, specifically, contacts Asparagine (Asn)165 and Glu198 through H-

bond interactions (Figure 32).72 This work represented a major breakthrough in tubulin 

research, since it provided essential structural information to define Colchicine-site binders 

interacting features that is required for rational and successful drug design. 

 

Figure 32. Interactions between Nocodazole and tubulin (PDB code: 5CA1).
72
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2. PhD project background 
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2.1. High-throughput X-ray crystallography for fragment screening in the 

identification of new tubulin binders 

As previously described, the application of X-ray crystallography in the screening phase 

allows the assessment of compounds binding properties and provides structural information of 

interacting features contemporarily, thus reducing the time required to develop the identified 

active compounds into drug candidates. Moreover, this technique is particularly suitable for 

the screening of fragment-like libraries due to its high sensitivity. Therefore, a fragment-based 

campaign targeting tubulin assisted by X-ray crystallography offers promises for the fast 

identification of tubulin binders and their successful development into anticancer agents. 

2.2. Identification of compound 29 

The need to identify new tubulin binders and the promises offered by both FBDD and 

high-throughput X-ray crystallography in drug discovery strongly suggest the use of high-

throughput X-ray crystallography for tubulin binding fragment screening in cancer research. 

Taking into account this consideration, prof. Steinmetz’s group from PSI (Paul Scherrer 

Institute) and prof. Cavalli’s group from University of Bologna developed a specific workflow 

for a FBDD project targeting tubulin based on three main steps: 

1)  Identification of tubulin-binding fragments through X-ray crystallography based 

screening. 

2)  Exploration and elaboration of such fragments into new compounds. 

3)  Evaluation of synthesized compounds for tubulin binding and their capability of 

affecting cell viability. 

Within this context, an X-ray crystallography based FBDD campaign was performed at 

PSI by prof. Steinmetz’s group, allowing the identification of compound 29 (Figure 33) as a 

binder of the Colchicine-site, previously validated for tumour treatment. Compound 29 

presents a 2-aminobenzimidazole core like Nocodazole (Figure 33), that also binds the 

Colchicine-site of tubulin.  

29 Nocodazole  

Figure 33. Structures of compound 29 (left) and Nocodazole (right). 
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The good matching superimposition of crystal structure of compound 29 with that of 

Nocodazole (PDB code: 5CA1)72 confirmed a similar binding mode, involving a network of 

hydrogen bond interactions with the target (Figure 34 and Figure 35). Specifically, the NH 

groups in 1 and 2-position of both molecules acted individually as hydrogen bond donors 

interacting both with E198, while the O atom of compound 29’s furan ring and that of the 

carbamate moiety of Nocodazole were hydrogen bond acceptors contacting Asn165 (Figure 34 

and Figure 35). 

 

Figure 34. Superimposition of Nocodazole-tubulin (PDB code: 5CA1)72 and compound 29-tubulin complex crystal 

structures. 

 

Figure 35. Compound 29 and Nocodazole’s binding features. Groups that interact similarly with the target are highlighted 

with the same colour.  

Since compound 29 targets a druggable site, whose binding notoriously alters 

microtubule dynamics,66 it was selected for further development in order to validate the 

workflow strategy.
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3. PhD project 
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3.1. Design of compounds 

Two series of analogs of compound 29 were designed through a computer-aided drug 

approach to explore the fragment. Our aim was to identify the key binding features essential 

for target engagement and then rationally grow the fragment in order to access new binding 

interactions and increase the chance to improve the compound’s affinity.  

3.1.1. Design of series 1 

Prior to fragment elaboration, we initially thought to resynthesize compound 29 in order 

to confirm the data obtained with its commercial counterpart. Then, we moved to analogs 

design. In this context, since crystal structure highlighted the importance of the hydrogen bond 

interactions for target binding (Figure 34), we focused on position 1 and 2 of the benzimidazole 

framework and the furan ring in order to confirm their role in establishing the essential network 

of H-bonds with the Colchicine-site of tubulin (Figure 36). Specifically, we thought to explore 

how the elimination of a hydrogen bond donor or its substitution with a hydrogen bond acceptor 

in 1-positon could affect the binding; thus, we designed compounds 30 and 31, respectively 

(Figure 36). In addition, we developed compound 34 in an effort to study how both a 

replacement of a hydrogen bond donor with a hydrogen bond acceptor and an increase of steric 

hindrance at the furan ring side could alter binding properties. We also considered to investigate 

binding properties of a derivative missing a hydrogen bond donor in 2-position (compound 32, 

Figure 36). In a second step, we focused on modifications of the furan ring. In particular, we 

thought to design analogs 33, 35 and 36 bearing heterocycles of different size (compounds 35, 

36, Figure 36) to explore the shape of the target, and with different proton acceptor properties 

(compound 33 and 36, Figure 36) to evaluate the contribution of such properties to the binding 

event. Moreover, in compounds 37 and 38, we aimed at exploring the importance of aromaticity 

and conformational constraint of furan ring for target recognition (Figure 36). 
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Compound 29 General structure of series 1 

Compound X Y R1
 

29 NH H 

 

30 NCH3 H 

31 O H 

32 NH CH3 

33 NH H 

 

34 O H 

 35 NH H 

36 NH H 

 

37 NH H 

 

38 NH H CH2OCH3 

Figure 36. Design of series 1 compounds and their corresponding chemical structures. 

In the analogs design framework, docking studies were performed, allowing the 

calculation for each compound of a score that approximately assess the binding affinity of the 

compound in a specific docking pose. The score was obtained taking into consideration positive 

and negative contributions to binding (Table 3). 

For this first series of compounds, those bearing a 1H-benzimidazole ring (compounds 

29, 32, 33 and 35) showed a better score than those containing a N-substituted benzimidazole 

(compound 30) or a benzoxazole (31, 34) core. Moreover, compounds with a bulky 

heterocycle, an aliphatic ring or an alkoxy-chain (compounds 36, 37 and 38, respectively) 

linked to the 1H-benzimidazole the score was lower in comparison with those bearing a 5-term 

heterocycle (compounds 29, 30, 31, 32, 33, 34, 35). Compound 37 presents a chiral center in 

the tetrahydrofuran ring and computational scores of both enantiomers of compound 37 were 

very similar (Table 3), suggesting that the target does not bind preferentially to a specific chiral 

form. Thus, it was decided to synthesize the racemic mixture in a first step. 

Consistently with the above-mentioned results, computational studies had suggested 

that there should not be enough space to accommodate additional moieties in 1 and 2 positions 
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and that only small and hydrophilic groups could replace the furan ring, while maintaining 

target engagement. Moreover, it was reported that the protonation state of E198 at the 

Colchicine-site plays a crucial role in benzimidazole-based compounds binding, indicating that 

the amino-acid residue could be protonated in the protein environment.73  

Table 3. Docking scores of compounds of series 1. 

Compound Score  

29 -7.248 

30 -5.283 

31 -6.669 

32 -7.142 

33 -7.241 

34 -6.036 

35 -7.691 

36 -6.42 

37 -6.996/-6.529 (R/S) 

38 -5.211 

 

3.1.2. Design of series 2 

With the aim to rationally grow compound 29, we designed analogs of series 2. In this 

context, Nocodazole’s structure and docking studies suggested an interesting growth vector 

from position 5 (Figure 37). Considering that, the insertion of a substituent at 5-position of the 

benzimidazole core generates two different tautomeric forms that could be both allocated at the 

binding site, tautomerism of the main scaffold was taken into consideration for docking studies 

(Figure 38 and Table 4). Interestingly, for almost all compounds very similar docking scores 

were obtained for tautomer 1 and 2, suggesting no preference for a specific form (Table 4, 

Figure 38).  

Moreover, since computational studies suggested that there should be enough space to 

allocate very different hydrophobic and flexible moieties in 5-position, we designed 

compounds bearing flexible groups with a variety of electronic, steric and lipophilic properties 

(compounds 39-46, Figure 37). Our aim was to explore the chemical space and the shape of 

the target in this specific environment. Specifically, we inserted different electron withdrawing 

groups, like –Cl, -COOCH3, -CF3, -CN (compounds 40, 41, 42 and 44, respectively, Figure 

37), electron-donating groups, as -CH3 and -OCH3 (compounds 39 and 45, respectively, Figure 

37) and bulky and lipophilic groups like -COPh and -OPh (compounds 43 and 46, respectively, 

Figure 37). Since this set of compounds presents two different tautomeric forms (Figure 38) 
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that could allocate in a different way in the nocodazole binding site, both structures were taken 

in consideration for docking studies (Table 4). For each pair of tautomers evaluated, no 

significant difference in the docking scores was observed with the exception of that of 

compound 43 for which tautomer 1 seemed to have a higher affinity for the tubulin Colchicine-

site than tautomer 2 (Table 4). Binding poses of some representative compounds are reported 

in Appendix, Figure A6-A11. 

55

Compound 29 General structure of series 2  

 

 

 

Figure 37. Design of series 2 and corresponding compounds. 

5 5

Tautomer 2Tautomer 1  

Figure 38. Tautomeric forms of general structure 2. 

Table 4. Docking scores of compounds of series 2. 

Compound Score (tautomer 1) Score (tautomer 2) 
39 -6.376 -6.995 

40 -6.995 -7.58 

41 -7.696 -6.895 

42 -8.065 -7.445 

43 -8.903 -7.396 

44 -7.398 -6.824 

45 -7.842 -7.306 

46 -7.991 -7.486 

3.2. Synthesis of compounds 

Compounds of series 1 and 2 were synthesized approaching two different strategies. 

One of them consisted in the heterocycle derivatization through a nucleophilic aromatic 

substitution reaction (SNAr), while the other supposed the 2-amino benzimidazole heterocycle 

formation from an orto-dianiline (Figure 39). The specific strategic approach was selected 

depending on the commercial availability of the reagents to get the target compounds. 

Compound R2
 Compound R2 

39 CH3 43 COPh 

40 Cl 44 CN 

41 COOCH3 45 OCH3 

42 CF3 46 OPh 
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Figure 39. General strategies used for the synthesis of compounds 29-46. 

3.2.1. Nucleophilic aromatic substitution reaction (SNAr) approach 

Compounds 29, 30, 32, 33, 35 and 36 were obtained through a nucleophilic aromatic 

substitution (SNAr) between the appropriate 2-methylsulfonylbenzimidazole and an 

appropriate amine in the presence of a weak base(Scheme 12).74 This approach led in many 

cases to the complete consumption of benzimidazole starting material due to the large amount 

of amine (5 equivalents) and high-temperature reaction conditions. 2-methylsulfonyl-1H-

benzimidazole precursor was in turn synthesized in-house from oxidation of the 2-

methylsulfane counterpart,75 while 1-methyl-2-methylsulfonyl-benzimidazole was 

commercially available (Scheme 12). Difficult purification of the crude residues was 

responsible of yields from moderate to low, as reported in Scheme 12. 

 

1

2

47, X: H 

X: CH
3
 

29, X: H, Y: H 

30, X: CH
3
, Y: H

32, X: H, Y: CH
3

R1: R1:

R1: R1:33, X: H, Y: H 36, X: H, Y: H

35, X: H, Y: H

 

Scheme 12. Reagents and conditions: 1. mCPBA (3 equiv.), DCM, 0 °C to rt, 1 h, yield: 85%. 2. NHYCH2R1 (5 equiv.), 

triethylamine (5 equiv), Ar, 120 or 130 °C, 24 h-3days, yield: 11-51 %. 

Benzoxazole derivatives 31 and 34 were synthesized according to nucleophilic aromatic 

substitution (SNAr) of commercial 2-chlorobenzoxazole with the appropriate amine in DMF 

(Scheme 13).76 In comparison with the approach previously described for 2-amino 

benzyimidazole derivative, higher reactivity of benzoxazole allowed the application of milder 

conditions. Indeed, the reactions were carried out at room temperature. 
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1
31, R1:

34, R1:

 

Scheme 13. Reagents and conditions: 1. NH2CH2R1 (1 equiv.), DMF, rt, 16 h, yield: 26-38 %. 

3.2.2. 2-amino benzimidazole formation approach 

The cyclodesulfurization-based approach, consisting of a one-pot procedure, was 

adopted for compounds 37-46 synthesis (Scheme 14).77 In this strategy, the appropriate 

isothiocyanate reacts with the corresponding o-phenylene-1,2-diamine to form the 

monothiourea intermediate (compounds 48 or 49), which on phosphonium-mediated 

cyclization promoted by BOP and DBU, gives the desired 2-aminobenzimidazole (Scheme 

14).77 Final compounds were obtained in low to moderate yields due to both no complete 

formation of the monothiourea intermediate and difficult purification of the crude residues. 

A presumed reaction mechanism is depicted in Figure 40. To simplify the description, 

only compound 48 is reported as the starting reagent, however the same mechanism can be 

proposed for intermediate 49. In detail, compound 48 could follow two different pathways. In 

one case, compound 48 may be in equilibrium with intermediate E, which after activation by 

BOP, would lead to compound 50. In the other case, BOP and compound 48 may react with 

elimination of 1 equiv. of HOBt to form intermediate C. This latter can undergo intramolecular 

cyclization with loss of 1 equiv of hexamethylthio-phosphonamide [(CH3)2N)3POS)] to afford 

compound 50 or it can form intermediate D after nucleophilic attack of HOBt. Eventually, 

intermediate D could lose 1 equiv. of HOBt leading to product 50. Alternatively, both 

intermediates C and D could form intermediate F, whose intramolecular cyclization could 

afford the same product 50.  

48 49

1 2

OR

 

Scheme 14. Reagents and conditions: 1. DIPEA (1 equiv.), CH3CN, rt, 24 h-5 days. 2. BOP (1.5 equiv.), DBU (2 equiv.), rt 

to 80 °C, 1-27 h, yield: 8-47 %. 
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Table 5 Compounds obtained according to scheme 14. 

Compound R1 R2 Compound R1 R2 

37 

 

H 42 

 

CF3 

38 CH2OCH3 H 43 COPh 

39 

 

CH3 44 CN 

40 Cl 45 OCH3 

41 COOCH3 46 OPh 
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Figure 40. Proposed mechanism of cyclodesulfurization reaction.77 

The synthetic procedure was validated after the re-synthesis by cyclodesulfurization of 

compound 29 (Figure 36), previously obtained according to scheme 14. Indeed, 1H-NMR 
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spectra of compounds afforded by both SNAr or cyclodesulfurization were consistent with the 

same chemical structure. 

2-Amino-benzimidazole nucleus formation was confirmed by COSY and 13C-NMR 

experiments. A clear correlation between Ha and Hb  peaks was observed in COSY spectrum 

when DMSO was used as solvent while, in 13C-NMR spectra, a diagnostic C2 signal around 

155 ppm was observed independently of the solvent employed (Figure 41).  

C2

  
Figure 41. Product of cyclodesulfurization reaction. Diagnostic signals for structure determination are highlighted in colour. 
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4. Results and Discussion 
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4.1. Preliminary results  

Compounds 29, 30, 32, 35 and 36 of series 1 (Table 6) were preliminary evaluated for 

their ability of both tubulin binding and affecting cell viability. X-ray crystallography was used 

as a method to test ligand binding to tubulin, while the fluorescence-based test Resazurin 

reduction assay was selected for cell viability assessment on HeLa cell line (see IV. 

Experimental section, 2.3 Resazurin assay). Concerning the latter assay, each compound was 

tested in triplicate at three different concentrations (100, 10 and 1 µM), and Colchicine and 

DMSO were used as positive and negative control, respectively. Moreover, the fluorescence 

intensity of compounds without Resazurin was evaluated before the addition of the fluorogenic 

substrate at the same settings as used in the cell assay. It was proved that compounds alone did 

not emit fluorescence in that conditions and, therefore, they cannot act as potential source of 

false positives. 

Table 6. Compounds evaluation for tubulin binding and ability to affect cell viability. 

Compound Structure 
Tubulin  

binding 

Cell viability 

reduction (100 µM) 

29 

 

Yes 60 % 

30 

 

No No 

32 

 

No No 

35 

 

Yes 60 % 

36 

 

No No 

 

X-ray studies revealed that only compounds 29 and 35 were able to interact with tubulin 

allocating at the Colchicine-site. On the contrary, compounds 30, 32 and 36 did not show any 

tubulin binding properties (Table 6). Thus, re-synthesized compound 29 confirmed binding 

properties of the commercial counterpart. Compound 35, with a methyl substituent in 5-

position of the furan ring was able to engage the Colchicine-site, while compounds bearing 
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bigger heterocycles, like compound 36, did not interact with tubulin. Interestingly, only 

compounds keeping the pattern of two hydrogen bond donors and one hydrogen bond acceptor, 

present in compound 29, the starting point, were able to bind the Colchicine-site of tubulin.  

Resazurin assay indicated that compounds 29 and 35 showed a similar effect and 

comparable to that of the reference compound Colchicine but only at a concentration of 100 

micromolar (Figure 42). No effect was observed on cell viability for compounds 30, 32 and 36 

at all tested concentrations. Remarkably, an interesting effect on cell viability was only 

observed for compounds that also proved to bind to tubulin at the Colchicine-site. 

 

Figure 42. Effect of compounds 29, 30, 32, 35 and 36 on HeLa cell viability after 72 h treatment. Each compound was tested 

in triplicate.
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5. Conclusions 
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In the present part of the project, two series of analogs of compound 29, identified in a 

fragment-based screening through X-ray crystallography, were designed and synthesized with 

the aim to define the role of the hydrogen bond network in target binding and to grow the 

fragment in order to add potential chemical interactions, respectively. 

Preliminary assessment of compounds 29, 30, 32, 35 and 36 for tubulin binding 

properties and ability to affect cell viability revealed interesting data for the project. Indeed, 

the only compounds that were able to bind tubulin at the Colchicine-site (29 and 35) showed 

also antiproliferative properties at 100 µM on HeLa cells. 

Further results from these studies are likely to offer an opportunity for identifying new 

Colchicine-site binders with effect on cell viability. Furthermore, our findings strongly suggest 

the application of this strategy for the identification and elaboration of compounds targeting 

other sites of tubulin for cancer therapy.
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 Experimental section 
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General conditions 

All of the commercially available reagents and solvents were used as purchased from 

vendors without further purification. Automated column chromatography purifications were 

done using a Teledyne ISCO apparatus (CombiFlash Rf) with prepacked silica gel columns of 

different sizes and mixtures of increasing polarity of different solvents. NMR experiments were 

run on a Bruker Avance III 400 system, equipped with a BBI probe and Z-gradients and on a 

Bruker UltrashieldTM Plus FT-NMR 600 MHz Avance III, equipped with a CryoProbeTM QCI 

1H/19F/13C/15N and with a SampleJet autosampler and temperature control. Spectra were 

acquired at 300 K, using deuterated dimethyl sulfoxide (DMSO-d6), deuterated chloroform 

(CDCl3) or deuterated methanol (methanol-d4) as solvents. For 1H-NMR, standard 

abbreviations indicating spin multiplicity are given as follows: br = broad signal, s = singlet, d 

= doublet, dd = doublet of doublets, t = triplet, td = triplet of doublets, q = quartet, m = multiplet. 

The analyses by UPLC/MS were run on a Waters Acquirity UPLC/MS system consisting of a 

SQD (single quadrupole detector) mass spectrometer equipped with an electrospray ionization 

interface and a photodiode array detector. The PDA range was 210-400 nm. Analyses were 

performed according to method 1, 2 or 3. In methods 1 and 3, a Waters Acquirity UPLC BEH 

C18 column (particle size 1.7 μm, 50 x 2.1 mm ID) with a Vanguard BEH C18 pre-column 

(particle size 1.7 μm, 5 x 2.1 mm ID) was used. In method 2, the experiments were run on a 

Waters Acquirity UPLC HSS T3 C18 (particle size 1.8 μm, 50 x 2.1 mm ID) column with a 

VanGuard HSS T3 C18 (particle size 1.8 μm, 5 x 2.1 mm ID) pre-column. The mobile phase 

was: 10 mM NH4OAc in H2O at pH 5 adjusted with AcOH (A) and 10 mM NH4OAc in MeCN-

H2O (95:5) at pH 5 (B); depending on the analysis method used, different gradients were 

applied. In particular, in analysis method 1, the mobile-phase B proportion increased from 5 % 

to 95 % in 2.5 min. In analysis method 2, the mobile-phase B proportion increased from 0 % 

to 50 % in 2.5 min. In method 3, mobile-phase B proportion increased from 50 % to 100 % in 

2.5 min. Electrospray ionization in positive and negative modes were applied. Microwave 

heating was performed using Explorer-48 positions instrument (CEM).  
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1.  Section 1. Targeting Chromodomains (ChDs): a promising epigenetic approach 

for cancer treatment 

1.1.  Synthesis 

2-oxo-5,6,7,8-tetrahydro-1H-1,6-naphthyridine-3-carbonitrile hydrochloride (2) 

 

2 was purchased from Enamine.  

1H-NMR (400 MHz, DMSO-d6) δ 12.73 (br s, 1H, CONH), 9.69 (br s, 2H, protonated 

NH), 8.07 (s, 1H, CH), 3.96 (s, 2H, CH2), 3.44-3.20 (m, 2H, CH2), 2.89 (t, J = 6.0 Hz, 2H, 

CH2). 
13C-NMR (151 MHz, DMSO-d6) δ 160.0 (C), 147.7 (CH), 146.7 (C), 116.1 (C), 106.5 

(C), 101.4 (C), 40.9 (CH2), 38.8 (CH2), 23.4 (CH2).  

2-oxo-5,6,7,8-tetrahydro-1H-quinoline-3-carbonitrile (3) 

 

3 was purchased from Enamine. 

1H-NMR (400 MHz, DMSO-d6) δ 12.27 (br s, 1H, CONH), 7.88 (s, 1H, CH), 2.55 (t, J 

= 6.0 Hz, 2H, CH2), 2.42 (t, J = 6.0 Hz, 2H, CH2), 1.73-1.59 (m, 4H, 2CH2).  

1,2,3,4-tetrahydroisoquinoline (10) 

 

10 was purchased from Fluorochem. 

1H-NMR (400 MHz, DMSO-d6) δ 7.12-7.01 (m, 3H, 3CH), 7.01-6.95 (m, 1H, CH), 

3.83 (s, 2H, CH2), 2.93 (t, J = 5.9 Hz, 2H, CH2), 2.67 (t, J = 5.9 Hz, 2H, CH2).  

Synthesis of 2-oxo-1,5,7,8-tetrahydro-1H-1,6-naphthyridine-based derivatives (series 1) 

Step 3. Synthesis of 2-oxo-5,6,7,8-tetrahydro-1H-1,6-naphthyridine-3-carbonitrile 

hydrochloride (2) 
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Compound 22 (0.058 g, 0.21 mmol) was treated with HCl (4 M) in 1,4-dioxane (1.58 

ml, 6.32 mmol) in dry methanol (0.38 ml) at rt for 5 h. Then, the mixture was concentrated to 

dryness and sequentially triturated in diethyl ether (1 ml) and in methanol (1 ml) to afford 2 as 

a beige solid (18 mg, 40 % yield). Rt = 0.58 min (analysis method 2). MS (ESI) m/z: 176.3 [M-

H]+, calculated: 176.08 [C9H10N3O]+. 1H-NMR (400 MHz, DMSO-d6) δ 12.71 (br s, 1H, 

CONH), 9.65 (br s, 2H, protonated NH2), 8.06 (s, 1H, CH), 3.97 (s, 2H, CH2), 3.32 (signal 

overlapped with H2O signal, 2H, CH2), 2.89 (t, J = 6.2 Hz, 2H, CH2). 
13C-NMR (101 MHz, 

DMSO-d6) δ 159.57 (C), 147.67 (CH), 146.86 (C), 116.16 (C), 106.66 (C), 101.33 (C), 40.92 

(CH2), 38.7 (CH2), 23.47 (CH2). 
1H-NMR and 13C-NMR were in agreement with commercial 

compound 2. 

Step 2. Synthesis of tert-butyl 3-cyano-2-oxo-1,5,7,8-tetrahydro-1,6-naphthyridine-6-

carboxylate (22) 

 

Sodium hydride 60 % dispersion in mineral oil (0.17 g, 4.28 mmol) was added to a 

stirred solution of 2-cyanoacetamide (0.19 g, 2.25 mmol) in dry DMF (7 ml) at 0 °C and under 

nitrogen atmosphere. The mixture was stirred at rt for 1 h followed by dropwise addition of a 

solution of compound 21 (0.545 g, 2.14 mmol) in dry DMF (8 ml) at 0 °C. Then, the reaction 

crude was stirred at rt for 3 h and at 80 °C for 12 h, cooled to rt and concentrated under reduced 

pressure. The obtained residue was diluted with water (100 ml) and extracted with ethyl acetate 

(3 x 100 ml). The organic layer was washed with water (100 ml), dried over Na2SO4 and 

concentrated to dryness at low pressure. Two sequential purifications by silica gel flash 

chromatography (DCM/DCM:MeOH (8:2) from 100/0 to 70/30 and then ethyl acetate 100 %, 

followed by trituration in water afforded 22 (58 mg, 10 % yield) as a pale yellow solid. Rt = 

1.64 min (analysis method 1). MS (ESI) m/z: 276.5 [M-H]+, calculated: 276.13 [C14H18N3O3]
+. 

1H-NMR (400 MHz, DMSO-d6) δ 12.49 (br s, 1H, CONH), 8.00 (s, 1H, CH), 4.23 (s, 2H, 

CH2), 3.54 (t, J = 5.8 Hz, 2H, CH2), 2.63 (t, J = 5.8 Hz, 2H, CH2), 1.41 (s, 9H, 3CH3). 
1H-NMR 

was in agreement with data reported in the literature. 47 
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Step 1. Synthesis of (E)-tert-butyl-3-(dimethylaminomethylene)-4-oxo-piperidine-1-

carboxylate (21) 

 

A mixture of 1-tert-butoxycarbonylpiperidin-4-one (1.0 g, 5.02 mmol) in DMF-DMA 

(7.4 ml, 54.2 mmol) was heated to 105 °C under nitrogen atmosphere for 21 h. The crude 

residue was cooled to rt and concentrated under reduced pressure. Purification by silica gel 

flash chromatography (ethyl acetate/ethyl acetate:ethanol (8:2) from 98/2 to 85/15) afforded 

21 (849 mg, 66 % yield) as a yellow solid. Rt = 1.62 min (analysis method 1). MS (ESI) m/z: 

255.5 [M-H]+, calculated: 255.17 [C13H23N2O3]
+. 1H-NMR (400 MHz, DMSO-d6) δ 7.30 (s, 

1H, CH), 4.47 (s, 2H, CH2), 3.47 (t, J = 6.5 Hz, 2H, CH2), 3.06 (s, 6H, N(CH3)2), 2.26 (t, J = 

6.5 Hz, 2H, CH2), 1.41 (s, 9H, 3CH3).  

Reductive amination: general procedure for the synthesis of compounds of series 1 (4-7 

and 9) 

Under nitrogen atmosphere, a mixture of corresponding aldehyde (from 5.0 to 33.5 

molar equiv., according to the specific compound), commercial compound 2 (1.0 molar equiv.) 

and dry MeOH (amount specified for each compound) was then stirred at rt for 40 min. Then, 

STAB (from 2.4 to 4.88 molar equiv., according to the specific case) was added portionwise 

and the reaction mixture stirred at rt until total starting material conversion was observed. 

Afterwards, the mixture was concentrated to dryness at low pressure, the resulting crude 

purified by silica gel flash chromatography using mixtures of increasing polarity of DCM and 

DCM:MeOH (8:2) or chloroform and chloroform:ethanol (8:2), followed by trituration in 

diethyl ether only for some compounds. 

Synthesis of 6-methyl-2-oxo-1,5,7,8-tetrahydro-1,6-naphthyridine-3-carbonitrile (4) 

 

Aqueous formaldehyde 36.5-38.0 % (5.2 ml, 63.24 mmol), 2 (0.42 g, 1.89 mmol) and 

STAB (1.42 g, 6.5 mmol) in dry MeOH (158 ml) were reacted following the general procedure 

previously described. After stirring for 18 h, addition of STAB (0.20 g, 0.94 mmol) was 
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required to get total starting material conversion. Then, the mixture was stirred for further 2 h. 

Upon completion of the reaction, reaction mixture was concentrated to dryness and the crude 

residue was purified by silica gel flash chromatography (chloroform/chloroform:ethanol (8:2) 

from 70/30 to 0/100) to afford title compound (312 mg) as a solid. A batch of 200 mg was used 

in a next synthetic step without further purification to prepare compound 11. The remaining 

112 mg were triturated with diethyl ether (2 x 1 ml) to afford the pure compound 4 as a pink 

salmon solid (63 mg, 56 % yield after trituration). Rt = 1.17 min (analysis method 2). MS (ESI) 

m/z: 190.4 [M-H]+, calculated: 190.10 [C10H12N3O]+. 1H-NMR (400 MHz, DMSO-d6) δ 12.38 

(br s, 1H, CONH), 7.90 (s, 1H, CH), 3.20 (s, 2H, CH2), 2.69-2.61 (m, 2H, CH2), 2.59-2.53 (m, 

2H, CH2), 2.30 (s, 3H, NCH3). 
13C-NMR (101 MHz, DMSO-d6) δ 159.96 (C), 148.76 (C), 

147.52 (CH), 116.75 (C), 111.88 (C), 99.92 (C), 53.55 (CH2), 49.95 (CH2), 45.02 (CH3), 27.11 

(CH2). 

Synthesis of 6-ethyl-2-oxo-1,5,7,8-tetrahydro-1,6-naphthyridine-3-carbonitrile (5) 

 

Compound 5 was obtained by reaction of acetaldehyde (0.07 ml, 1.2 mmol), 2 (0.05 g, 

0.24 mmol) and STAB (0.13 g, 0.58 mmol) in dry MeOH (2.1 ml) following the general 

procedure previously described (15 h of reaction). Purification by silica gel flash 

chromatography (DCM/DCM:MeOH (8:2) from 95/5 to 40/60) afforded 5 as a light salmon 

solid (40 mg, 82 % yield). Rt = 0.60 min (analysis method 1). MS (ESI) m/z: 204.4 [M-H]+, 

calculated: 204.11 [C11H14N3O]+. 1H-NMR (400 MHz, methanol-d4) δ 7.87 (s, 1H, CH), 3.45 

(s, 2H, CH2), 2.80 (m, 4H, 2CH2), 2.64 (q, J = 7.2 Hz, 2H, NCH2), 1.18 (t, J = 7.2 Hz, 3H, 

CH3). 
13C-NMR (101 MHz, DMSO-d6) δ 159.86 (C), 148.96 (C), 147.65 (CH), 116.71 (C), 

111.83 (C), 99.93 (C), 51.08 (CH2), 50.80 (CH2), 47.75 (CH2), 27.07 (CH2), 12.07 (CH3).  

Synthesis of 2-oxo-6-propyl-1,5,7,8-tetrahydro-1,6-naphthyridine-3-carbonitrile (6) 

 

2 (0.05 g, 0.24 mmol) in dry MeOH (3.2 ml) was treated with propionaldehyde (0.09 

ml, 1.2 mmol) and STAB (0.13 g, 0.58 mmol) following the general procedure previously 

described (24 h of reaction). Purification by silica gel flash chromatography 

(DCM/DCM:MeOH (8:2) from 100/0 to 45/55) yielded 6 as an orange solid (30 mg, 58 % 
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yield). Rt = 0.95 min (analysis method 1). MS (ESI) m/z: 218.4 [M-H]+, calculated: 218.13 

[C12H16N3O]+. 1H-NMR (400 MHz, DMSO-d6) δ 12.41 (br s, 1H, CONH), 7.89 (s, 1H, CH), 

3.26 (s, 2H, CH2), 2.68-2.56 (m, 4H, 2CH2), 2.38 (t, J = 7.4 Hz, 2H, NCH2), 1.48 (m, 2H, 

CH2), 0.86 (t, J = 7.4 Hz, 3H, CH3). 
13C-NMR (101 MHz, DMSO-d6) δ 159.97 (C), 149.07 (C), 

147.74 (CH), 116.80 (C), 112.04 (C), 99.97 (C), 58.89 (CH2), 51.62 (CH2), 48.15 (CH2), 27.13 

(CH2), 19.72 (CH2), 11.79 (CH3). 

Synthesis of 6-isobutyl-2-oxo-1,5,7,8-tetrahydro-1,6-naphthyridine-3-carbonitrile (7) 

 

7 was obtained following the general procedure previously described reacting 

isobutyraldehyde (0.22 ml, 2.4 mmol), 2 (0.11 g, 0.48 mmol) and STAB (0.26 g, 1.17 mmol) 

in dry MeOH (4.2 ml) (5 h of reaction). Purification by silica gel flash chromatography 

(DCM/DCM:MeOH (8:2) from 98/2 to 70/30) afforded 7 as a light yellow solid (44 mg, 40 % 

yield). Rt = 1.25 min (analysis method 1). MS (ESI) m/z: 232.4 [M-H]+, calculated: 232.14 

[C13H18N3]
+. 1H-NMR (400 MHz, DMSO-d6) δ 12.41 (s, 1H, CONH), 7.89 (s, 1H, CH), 3.25 

(s, 2H, CH2), 2.69-2.55 (m, 4H, 2CH2), 2.18 (d, J = 7.3 Hz, 2H, NCH2), 1.80 (m, 1H, CH), 0.86 

(d, J = 6.6 Hz, 6H, 2CH3). 
13C-NMR (101 MHz, DMSO-d6) δ 159.89 (C), 149.01 (C), 147.67 

(CH), 116.74 (C), 112.00 (C), 99.95 (C), 65.24 (CH2), 52.08 (CH2), 48.39 (CH2), 27.09 (CH2), 

25.18 (CH), 20.69 (CH3). 

Synthesis of 6-isopropyl-2-oxo-1,5,7,8-tetrahydro-1,6-naphthyridine-3-carbonitrile (8) 

 

Under nitrogen atmosphere, a mixture of 2 (0.11 g, 0.48 mmol) and acetone (0.53 ml, 

7.2 mmol) in dry MeOH (4.2 ml) was stirred at 55 °C for 1 h. Then, was cooled to rt and STAB 

(4.88 molar equiv.) was added portionwise. The reaction mixture was heated to 55 °C and was 

allowed to stir at the same temperature for 1 h. Subsequent addition of acetone (15 molar 

equiv.) and STAB (4.88 molar equiv.) at rt, followed by stirring at 55 °C, was carried out 4 

times every 1 h. Then the mixture was evaporated to dryness. Purification by silica gel flash 

chromatography (DCM/DCM:MeOH (8:2) from 100/0 to 60/40 yielded 8 as a pale yellow solid 

(42 mg, 40 % yield). Rt = 0.77 min (analysis method 1). MS (ESI) m/z: 218.4 [M-H]+, 
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calculated: 218.13 [C12H16N3O]+. 1H-NMR (400 MHz, DMSO-d6) δ 12.33 (br s, 1H, CONH), 

7.89 (s, 1H, CH), 3.35 (signal overlapped with H2O signal, 2H, CH2), 2.83 (m, 1H, CH), 2.68-

2.58 (m, 4H, 2CH2), 1.01 (d, J = 6.6 Hz, 6H, 2CH3). 
13C-NMR (101 MHz, DMSO-d6) δ 159.92 

(C), 149.23 (C), 147.70 (CH), 116.80 (C), 112.52 (C), 99.76 (C), 53.21 (CH), 46.92 (CH2), 

43.69 (CH2), 27.82 (CH2), 18.05 (CH3). 

Synthesis of 6-benzyl-2-oxo-1,5,7,8-tetrahydro-1,6-naphthyridine-3-carbonitrile (9) 

 

9 was synthesized following the general procedure previously described reacting 2 

(0.05 g, 0.24 mmol) with benzaldehyde (0.24 ml, 2.4 mmol) and STAB (0.26 g, 1.17 mmol) in 

dry MeOH (2.1 ml) (17 h of reaction). Purification by silica gel flash chromatography 

(chloroform/chloroform:ethanol (8:2) from 100/0 to 70/30) afforded 9 as a yellow solid (19 

mg, 30 % yield). Rt = 1.59 min (analysis method 1). MS (ESI) m/z: 266.4 [M-H]+, calculated: 

266.32 [C16H16N3O]+. 1H-NMR (400 MHz, DMSO-d6) δ 12.40 (br s, 1H, CONH), 7.84 (s, 1H, 

CH), 7.38-7.23 (m, 5H, 5CH), 3.63 (s, 2H, NCH2), 3.26 (s, 2H, CH2), 2.66 (br s, 4H, 2CH2). 

13C-NMR (101 MHz, DMSO-d6) δ 160.42 (C), 149.43 (C), 147.26 (CH), 137.95 (C), 128.69 

(CH), 128.28 (CH), 127.09 (CH), 116.97 (C), 111.70 (C), 99.55 (C), 61.05 (CH2), 51.61 (CH2), 

47.99 (CH2), 27.35 (CH2).  

Synthesis of compound 11 (series 2) 

Step 2. Synthesis of 2-methoxy-6-methyl-7,8-dihydro-5H-1,6-naphthyridine-3-

carbonitrile (11) 

 

A mixture of palladium(II) acetate (10.8 mg, 0.048 mmol) and 2-di-tert-

butylphosphino-2′,4′,6′-triisopropylbiphenyl (41.7 mg, 0.095 mmol) in dry toluene (8 ml) was 

stirred for 5 min under argon atmosphere at 80 °C. After cooling to rt, the previous mixture 

was added to a stirred solution of compound 23 (0.51 g, 1.59 mmol) and sodium methoxide 

(0.44 g, 7.95 mmol) in dry MeOH (8 ml) under argon atmosphere. Then, the reaction mixture 

was stirred for 15 h at 80 °C under argon atmosphere, cooled down to rt and evaporated to 

dryness at low pressure. Purification by silica gel flash chromatography (DCM/DCM:MeOH 
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(8:2) from 98/2 to 75/25) afforded 11 as a beige solid (68 mg, 21 % yield). Rt = 1.12 min 

(analysis method 1). MS (ESI) m/z: 204.4 [M-H]+, calculated: 204.11 [C11H14N3O]+. 1H-NMR 

(400 MHz, DMSO-d6) δ 7.96 (s, 1H, CH), 3.93 (s, 3H, OCH3), 3.42 (s, 2H, CH2), 2.87 (t, J = 

5.9 Hz, 2H, CH2), 2.66 (t, J = 5.9 Hz, 2H, CH2), 2.35 (s, 3H, NCH3). 
13C-NMR (101 MHz, 

DMSO-d6) δ 161.49 (C), 157.81 (C), 141.78 (CH), 123.60 (C), 115.58 (C), 92.46 (C), 55.01 

(CH2), 54.17 (OCH3), 51.48 (CH2), 45.26 (NCH3), 32.30 (CH2).  

Step 1. Synthesis of 2-chloro-6-methyl-7,8-dihydro-5H-1,6-naphthyridine-3-carbonitrile 

(23)  

 

A mixture of POCl3 (2 ml, 21.14 mmol) and compound 4 (0.200 g, 1.06 mmol) under 

argon atmosphere was stirred at 0 °C for 5 min, at rt for 1 h and it was heated to 105 °C for 23 

h. After cooling down to rt, the mixture was diluted with DCM (30 ml) and poured into a 

saturated solution of NaHCO3 (120 ml) at 0 °C. The phases were separated and the aqueous 

phase was extracted with DCM (2 x 150 ml). The combined organic phases were dried over 

Na2SO4, filtered and concentrated under reduced pressure to give title compound 23 as a solid 

(336 mg) pure enough to be employed in the next synthetic step without further purification. 

Rt = 1.94 min (analysis method 2). MS (ESI) m/z: 208.4/210.4 [M-H]+ (3/1), calculated: 

208.06/210.06 [C10H11ClN3]
+. 1H-NMR (600 MHz, DMSO-d6) δ 8.42 (s, 1H, CH), 4.70-4.22 

(m, 2H, CH2), 3.83-3.05 (m, 4H, 2CH2), 2.93 (s, 3H, NCH3).  

Synthesis of 2-oxo-5,6,7,8-tetrahydro-1H-1,6-naphthyridine-3-carboxamide 

hydrochloride (12, series 3) 

 

HCl solution (1.25 M) in MeOH (0.8 ml, 1.0 mmol) was added to commercial 2-oxo-

5,6,7,8-tetrahydro-1H-1,6-naphthyridine-3-carboxamide (0.021 g, 0.10 mmol). The obtained 

mixture was stirred at rt for 3 h. Evaporation of the residual solvent yielded 12 as a white solid 

(22 mg, 93% yield). 1H-NMR (400 MHz, DMSO-d6) δ 12.52 (br s, 1H, CONH), 9.25 (br s, 2H, 

protonated NH2), 9.06-8.91 (m, 1H, CONH), 8.21 (s, 1H, CH), 7.62-7.51 (m, 1H, CONH), 

4.11-4.05 (m, 2H, CH2), 3.40-3.32 (m, 2H, CH2), 2.87 (t, J = 6.3 Hz, 2H, CH2). 
13C-NMR (101 
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MHz, DMSO-d6) δ 164.32 (C), 161.85 (C), 144.02 (C), 143.00 (CH), 119.13(C), 107.03 (C), 

41.29 (CH2), 38.93 (CH2), 23.00 (CH2). 

Synthesis of 2-hydroxyquinoxaline derivatives (series 4) 

Step 3. Synthesis of 3-(2-furylmethylamino)-1H-quinoxalin-2-one (13)  

 

A mixture of compound 25 (0.147 g, 0.56 mmol) and LiOH (0.068 g, 2.8 mmol) was 

stirred in a mixture of H2O/1,4-dioxane (1/1, 3.9 ml) at 60 °C for 48 h. Then, the reaction 

mixture was cooled to rt, concentrated under reduced pressure, diluted with brine (120 ml) and 

extracted with ethyl acetate (3 x 120 ml). The combined organic phases were dried over Na2SO4 

and evaporated to dryness. Purification of the crude product by silica gel flash chromatography 

(cyclohexane/ethyl acetate from 95/5 to 60/40) afforded 13 (94 mg, 70 % yield) as beige solid. 

Rt = 1.77 min (analysis method 1). MS (ESI) m/z: 242.4 [M-H]+, calculated: 242.09 

[C13H12N3O2]
+. 1H-NMR (400 MHz, DMSO-d6) δ 12.36 (s, 1H, CONH), 7.81 (t, J = 6.1 Hz, 

1H, NH), 7.55 (s, 1H, CH), 7.40-7.33 (m, 1H, CH), 7.19-7.07 (m, 3H, 3CH), 6.40-6.35 (m, 1H, 

CH), 6.31-6.26 (m, 1H, CH), 4.59 (d, J = 6.1 Hz, 2H, CH2). 
13C-NMR (101 MHz, DMSO-d6) 

δ 152.32 (C), 151.32 (C), 149.59 (C), 141.81 (CH), 133.06 (C), 128.06 (C), 124.67 (CH), 

123.52 (CH), 123.25 (CH), 114.94 (CH), 110.47 (CH), 106.96 (CH), 36.90 (CH2).  

Step 2. Synthesis of 3-chloro-N-(2-furylmethyl)quinoxalin-2-amine (25) 

 

Triethylamine (0.79 ml, 5.7 mmol), furfurylamine (0.17 ml, 1.9 mmol) and compound 

24 (0.189 g, 0.95 mmol) were reacted under argon atmosphere in dry 1,4-dioxane (9.5 ml) at 

100 °C for 24 h. Then, the mixture was cooled to rt and the volatiles were removed under 

reduced pressure. The obtained residue was partitioned between water (120 ml) and ethyl 

acetate (120 ml), and the combined organic phases were washed with brine (120 ml), dried 

over Na2SO4 and concentrated to dryness. Purification by silica gel chromatography 

(cyclohexane/ethyl acetate from 99.5/0.5 to 90/10) afforded compound 25 as a yellow oil (147 
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mg, 60 % yield). Rt = 2.35 min (analysis method 1). MS (ESI) m/z: 260.4/262.4 (3/1) [M-H]+, 

calculated: 260.06/262.06 [C13H11ClN3O]+. 1H-NMR (400 MHz, DMSO-d6) δ 7.97 (t, J = 5.8 

Hz, 1H, NH), 7.78-7.72 (m, 1H, CH), 7.69 -7.58 (m, 2H, 2CH), 7.57-7.53 (m, 1H, CH), 7.45-

7.38 (m, 1H, CH), 6.39-6.31 (m, 2H, 2CH), 4.67 (d, J = 5.8 Hz, 2H, CH2). 

Step 3. Synthesis of 3-[(6-methyl-2-pyridyl)methylamino]-1H-quinoxalin-2-one (14) 

 

Compound 26 (0.156 g, 0.55 mmol) was treated with LiOH (0.053 g, 2.2 mmol) in a 

mixture of H2O/1,4-dioxane (1/1, 3.8 ml) at 70 °C for 48 h. The addition of DMA (1.25 ml) 

and 1,4-dioxane (1 ml) was required to promote the solubilization. The reaction mixture was 

cooled to rt, concentrated under reduced pressure, diluted with brine (120 ml) and extracted 

with ethyl acetate (3 x 120 ml). The combined organic phases were dried over Na2SO4 and 

evaporated to dryness. Purification of the crude product by silica gel flash chromatography 

(cyclohexane/ethyl acetate from 99/1 to 40/60) yielded 14 (23 mg, 16 % yield) as a white solid. 

Rt = 1.62 min (analysis method 1). MS (ESI) m/z: 267.5 [M-H]+, calculated: 267.12 

[C15H15N4O]+. 1H-NMR (400 MHz, DMSO-d6) δ 7.99 (t, J = 6.0 Hz, 1H, NH), 7.61 (t, J = 7.7 

Hz, 1H, CH), 7.34-7.26 (m, 1H, CH), 7.20-7.05 (m, 5H, 5CH), 4.66 (d, J = 6.0 Hz, 2H, CH2), 

2.47 (s, 3H, CH3). 
13C-NMR (101 MHz, DMSO-d6) δ 157.14 (C), 151.47 (C), 149.84 (C), 

137.01 (CH), 133.25 (C), 128.14 (C), 124.64 (CH), 123.52 (CH), 123.30 (CH), 121.39 (CH), 

118.04 (CH), 115.03 (CH), 45.18 (CH2), 24.03 (CH3).  

Step 2. Synthesis of 3-chloro-N-[(6-methyl-2-pyridyl)methyl]quinoxalin-2-amine (26) 

 

Compound 26 was synthesized by treating triethylamine (0.6 ml, 4.28 mmol), 2-

aminomethyl-6-methyl-pyridine (0.21 g, 1.62 mmol) and compound 24 (0.190 g, 0.95 mmol) 

in dry 1,4-dioxane (9.5 ml) at 100 °C for 24 h under argon atmosphere. The reaction mixture 
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was then cooled to rt and the volatiles were removed under reduced pressure. The obtained 

residue was diluted with water (120 ml) and extracted with ethyl acetate (120 ml). The 

combined organic phases were washed with brine (120 ml), dried over Na2SO4 and 

concentrated under reduced pressure. Purification by silica gel chromatography 

(cyclohexane/ethyl acetate from 99.8/0.2 to 80/20) followed by trituration with diethyl ether (2 

ml) afforded compound 26 as a white solid (156 mg, 58 % yield). Rt = 2.25 min (analysis 

method 1). MS (ESI) m/z: 285.4/287.4 (3/1) [M-H]+, calculated: 285.09/287.09 [C15H14ClN4]
+. 

1H-NMR (400 MHz, DMSO-d6) δ 8.07 (t, J = 5.6 Hz, 1H, NH), 7.82-7.73 (m, 1H, CH), 7.66-

7.54 (m, 3H, 3CH), 7.46-7.39 (m, 1H, CH), 7.21-7.08 (m, 2H, 2CH), 4.74 (d, J = 5.6 Hz, 2H, 

CH2), 2.48 (s, 3H, CH3). 

Step 1. Synthesis of 2,3-dichloroquinoxaline (24) 

 

A mixture of 1,4-dihydroquinoxaline-2,3-dione (0.316 g, 1.86 mmol) and phosphorous 

oxychloride (POCl3) (1.74 ml, 18.6 mmol) was heated at 100 °C for 4 h, cooled down to rt and 

evaporated under vacuum to remove the excess of POCl3. The resulting residue was dissolved 

in ethyl acetate (150 ml) and poured into a saturated solution of NaHCO3 (120 ml) at 0 °C. 

After separation of the phases, the aqueous layer was extracted with ethyl acetate (3 x 120 ml), 

the combined organic layers were dried over Na2SO4 and concentrated to dryness at low 

pressure to afford title compound 24 (379 mg) that was pure enough to be used in the next 

synthetic step without further purification. Rt = 2.25 min (analysis method 1). No mass trace 

was observed. 1H-NMR (400 MHz, DMSO-d6) δ 8.14-8.05 (m, 2H, 2CH), 7.99-7.91 (m, 2H, 

2CH).  

Synthesis of 3-[[(6-methyl-2-pyridyl) amino] methyl]-1H-quinoxalin-2-one (15) 

 

3-(bromomethyl) quinoxaline-2(1H)-one (0.34 g, 1.26 mmol) and 2-amino-6-

methylpyridine (0.278 g, 2.52 mmol) were reacted in dry DMSO (15.75 ml) at rt for 14 h. Then, 

the solvent was partially evaporated under vacuum. The obtained concentrated solution was 



86 

 

 

diluted with water (150 ml) and extracted with ethyl acetate (3 x 150 ml). The combined 

organic phases were dried over Na2SO4 and concentrated to dryness. The crude product was 

purified twice by silica gel flash chromatography (DCM/DCM:MeOH (8:2) from 99/1 to 

80/20) followed by semi-preparative HPLC-MS (Rt = 3.93 min). Semi-preparative HPLC-MS 

purification was run on a Waters Autopurification system consisting of a 3100 single 

quadrupole mass spectrometer equipped with an electrospray ionization interface and a 2998 

photodiode array detector. The HPLC system included a 2747 Sample Manager, 2545 Binary 

Gradient Module, System Fluidic Organizer and 515 HPLC Pump. The PDA range was 210-

400 nm. Electrospray ionization in positive and negative mode was used in the mass scan range 

100-500 Da. The purification was performed on a XBridgeTM Prep C18 OBD column (100 x 19 

mm ID, particle size 5 µm) with a XBridgeTM Prep C18 (10 x 19 mm ID, particle size 5 µm) 

Guard Cartridge. The mobile phase was 10 mM NH4OAc in H2O at pH 5 adjusted with AcOH 

(A) and 10 mM NH4OAc in MeCN-H2O (95:5) at pH 5 (B). A linear gradient was applied 

starting at 20 % B (initial hold for 0.5 min) to 50 % B in 7 min; 50-100 % B in 0.1 min; hold 

at 100 % B for 0.4 min; 100-20 % B in 0.1 min; hold at 20 % for 1.9 min. Flow rate was 20 

ml/min.  

The collected fractions were concentrated and basified with NaOH (2 N) to pH 10. 

Then, the aqueous phase was extracted with ethyl acetate (3 x 100 ml), the organic layer was 

dried over Na2SO4 and evaporated to dryness to afford 15 (26 mg, 8 % yield) as a white solid. 

Rt = 1.41 min (analysis method 1). MS (ESI) m/z: 267.4 [M-H]+, calculated: 267.12 

[C15H15N4O]+. 1H-NMR (400 MHz, DMSO-d6) δ 7.80-7.73 (m, 1H, CH), 7.50 (t, J = 7.7 Hz, 

1H, CH), 7.36-7.25 (m, 3H, 3CH), 6.50-6.45 (m, 1H, NH), 6.42-6.35 (m, 1H, CH), 6.38 (d, J 

= 7.1 Hz, 1H, CH), 4.60 (d, J = 5.2 Hz, 2H, CH2), 2.25 (s, 3H, CH3). 
13C-NMR (151 MHz, 

DMSO-d6) δ 158.13 (C), 157.87 (C), 155.67 (C), 154.35 (C), 137.18 (CH), 131.92 (C), 131.33 

(C), 129.73 (CH), 128.19 (CH), 123.24 (CH), 115.50 (CH), 111.07 (CH), 105.23 (CH), 42.62 

(CH2), 24.24 (CH3). 
 

Synthesis of 3-(hydroxymethyl)-1H-quinoxalin-2-one (16) 

 

Under argon atmosphere, to a solution of ethyl 3-oxo-3,4-dihydro-2-

quinoxalinecarboxylate (0.156 g, 0.69 mmol) in dry diethyl ether (5.1 ml) DIBAL-H solution 
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(1.0 M) in hexane (1.38 ml, 1.38 mmol) was added at 0 °C over a period of 2 h and 30 min. 

The resulting mixture was stirred at rt for additional 30 min. The mixture was cooled to 0 °C, 

and HCl (2 N, 3 ml) was dropwise added under magnetic stirring. Then, the pH was increased 

to 5 with NaOH (2 N), and the resulting mixture was extracted with ethyl acetate (3 x 20 ml). 

The combined organic phases were dried over Na2SO4 and concentrated to dryness. The crude 

product was purified by silica gel flash chromatography (chloroform/chloroform:ethanol (8:2) 

from 99.8/0.2 to 90/10), and triturated with diethyl ether (2 x 1 ml) to afford 16 (25 mg, 20 % 

yield) as white solid. Rt = 0.95 min (analysis method 1). MS (ESI) m/z: 177.3 [M-H]+, 

calculated: 177.07 [C9H9N2O2]
+. 1H-NMR (400 MHz, DMSO-d6) δ 12.33 (br s, 1H, CONH), 

7.78 (d, J = 8.4 Hz, 1H, CH), 7.50 (t, J = 7.8 Hz, 1H, CH), 7.35-7.26 (m, 2H, 2CH), 5.04 (br s, 

1H, OH), 4.61 (s, 2H, CH2). 
13C-NMR (101 MHz, DMSO-d6) 159.97 (C), 154.13 (C), 131.96 

(C), 131.41 (C), 129.74 (CH), 128.20 (CH), 123.19 (CH), 115.47 (CH), 60.80 (CH2).  

Synthesis of a 2-quinolone derivative (series 5) 

Step 2. Synthesis of 3-(2-furylmethylamino)-1H-quinolin-2-one (17) 

 

 Under argon atmosphere, a mixture of compound 27 (0.132 g, 0.82 mmol) and 

furaldehyde (0.14 ml, 1.64 mmol) in dry MeOH (8 ml) was stirred at 60 °C for 8 h. Then, the 

reaction mitxure was cooled to rt, STAB was added (0.44 g, 2.00 mmol) and the mixture was 

stirred for 16 h at rt. Afterwards, the mixture was heated at 60 °C for 3 h, cooled down to rt, 

STAB (0.44 g, 2.00 mmol) was added and the reaction mixture stirred at rt for 20 h every day 

for a total of  4 days. Finally, the mixture was evaporated to dryness, purified by silica gel flash 

chromatography (cyclohexane/ethyl acetate from 95/5 to 70/30), and trituration with diethyl 

ether (2 ml) afforded compound 17 (25 mg, 13% yield) as a pink solid. Rt = 1.88 min (analysis 

method 1). MS (ESI) m/z: 241.4 [M-H]+, calculated: 241.10 [C14H13N2O2]
+. 1H-NMR (400 

MHz, DMSO-d6) δ 11.85 (s, 1H, CONH), 7.60-7.54 (m, 1H, CH), 7.39 (d, J = 7.8 Hz, 1H, 

CH), 7.23-7.18 (m, 1H, CH), 7.17-7.10 (m, 1H, CH), 7.09-7.02 (m, 1H, CH), 6.64 (s, 1H, CH), 

6.41-6.31 (m, 2H, 2CH), 6.07 (t, J = 6.2 Hz, 1H, NH), 4.38 (d, J = 6.2 Hz, 2H, CH2). 
13C-NMR 

(101 MHz, DMSO-d6) δ 157.88 (C), 152.15 (C), 142.15 (CH), 136.97 (C), 131.59 (C), 124.64 
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(CH), 124.25 (CH), 122.03 (CH), 121.66 (C), 114.61 (CH), 110.41 (CH), 107.21 (CH), 103.76 

(CH), 39.13 (CH2).  

Step 1. Synthesis of 3-amino-1H-quinolin-2-one (27)  

 

A reaction tube was charged with ethanol (12.2 ml), that was previously deoxygenated 

with a stream of argon, copper powder (0.014 g, 0.22 mmol), L-ascorbic acid (0.078 g, 0.44 

mmol), pipecolinic acid (0.088 g, 0.68 mmol), NaN3 (0.3 g, 4.48 mmol) and 3-bromo-2-

quinolin-2-(1H)one (0.52 g, 2.242 mmol). The obtained mixture was stirred at 100 °C under 

argon atmosphere for 2 days and at rt for additional 2 days. During this time, the subsequent 

addition of extra copper powder (0.014 g, 0.22 mmol), L-ascorbic acid (0.078 g, 0.44 mmol), 

pipecolinic acid (0.088 g, 0.68 mmol), NaN3 (0.3 g, 4.48 mmol) was carried out three times to 

force the reaction to proceed until the conditions stayed fixed according to UPLC-MS 

monitoring. Then, the mixture was cooled to rt and concentrated under reduced pressure. The 

obtained crude residue was diluted with ethyl acetate (150 ml) and some drops of ethanol, 

filtrated through celite and the resulting solid rinsed with ethyl acetate (100 ml). The collected 

filtrate was concentrated under vacuum to dryness and the resulting solid purified by silica gel 

flash chromatography (DCM/ethyl acetate from 90/10 to 40/60) to afford title compound 27 as 

a solid (100 mg), which was pure enough to be employed in the next synthetic step without 

further purification. Rt = 1.93 min (analysis method 2). MS (ESI) m/z: 161.3 [M-H]+, 

calculated: 161.07 [C9H9N2O]+. 1H-NMR (400 MHz, DMSO-d6) δ 11.75 (s, 1H, CONH), 7.37-

7.32 (m, 1H, CH), 7.21-7.16 (m, 1H, CH), 7.15-7.10 (m, 1H, CH), 7.07-7.00 (m, 1H, CH), 6.73 

(s, 1H, CH), 5.41 (s, 2H, NH2).  

Synthesis of 2-naphtol derivatives (series 6) 

Synthesis of 3-(2-furylmethylamino) naphthalen-2-ol (18) 

 

3-amino-2-naphthol (0.21 g, 1.26 mmol) was treated with 2-furaldehyde (0.21 ml, 2.52 

mmol) in dry MeOH (13 ml), and the resulting suspension was stirred at 50 °C under argon 

atmosphere for 2 h. After cooling to rt, STAB was added (0.67 g, 3.07 mmol) and the mixture 
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was stirred at rt for additional 15 h. Afterwards, extra STAB (1.34 g, 6.14 mmol) was added in 

two equal 0.67 g portions while stirring, and the reaction was continued for additional 4 h. The 

mixture was concentrated under reduced pressure, diluted with water (50 ml), neutralized with 

a saturated solution of NaHCO3 and extracted with ethyl acetate (3 x 100 ml). The combined 

organic phases were dried over Na2SO4 and evaporated to dryness at low pressure. Two 

sequential purifications by silica gel flash chromatography (cyclohexane/ethyl acetate from 

99.9/0.1 to 92/8 and then chloroform 100 %) afforded compound 18 (65 mg, 22 % yield) as a 

white solid. Rt = 2.13 min (analysis method 1). MS (ESI) m/z: 240.3 [M-H]+, calculated: 

240.10 [C15H14NO2]
+. 1H-NMR (400 MHz, DMSO-d6) δ 10.07 (br s, 1H, OH), 7.57 (s, 1H, 

CH), 7.53-7.43 (m, 2H, 2CH), 7.19-6.95 (m, 3H, 3CH), 6.81 (s, 1H, CH), 6.46- 6.27 (m, 2H, 

2CH), 5.55 (t, J = 6.2 Hz, 1H, NH), 4.41 (d, J = 6.2 Hz, 2H, CH2). 
13C-NMR (101 MHz, 

DMSO-d6) δ 153.04 (C), 145.77 (C), 141.95 (CH), 137.97 (C), 129.50 (C), 127.08 (C), 125.31 

(CH), 125.05 (CH), 122.82 (CH), 121.49 (CH), 110.39 (CH), 107.45 (CH), 106.96 (CH), 

103.16 (CH), 39.94 (CH2). 

Synthesis of 3-[[(6-methyl-2-pyridyl)amino]methyl]naphthalen-2-ol (19) 

 

3-hydroxynaphthalene-2-carboxyaldehyde (0.053 g, 0.29 mmol) was added 

portionwise to a stirred mixture of 2-amino-3-methylpyridine (0.032 g, 0.29 mmol) in ethanol 

(2.9 ml) that was previously deoxygenated with nitrogen. The obtained mixture was stirred at 

reflux under nitrogen atmosphere for 4 h. After cooling to rt, sodium borohyride (0.027 g, 0.71 

mmol) was added to the mixture and the reaction was continued for additional 1 h. Then, the 

solvent was evaporated, the crude residue was diluted with water (25 ml) and neutralized with 

a saturated solution of NH4Cl. The aqueous phase was extracted with ethyl acetate (3 x 25 ml), 

the combined organic layers dried over Na2SO4 and concentrated to dryness at low pressure. 

Final purification by silica gel flash chromatography (cyclohexane/ethyl acetate from 99.5/0.5 

to 88/12), afforded compound 19 (35 mg, 46 % yield) as a white solid. Rt = 2.20 min (analysis 

method 1). MS (ESI) m/z: 265.4 [M-H]+, calculated: 265.13 [C17H17N2O]+. 1H-NMR (400 

MHz, DMSO-d6) δ 10.89 (br s, 1H, OH), 7.73-7.67 (m, 2H, 2CH), 7.65 (d, J = 8.1 Hz, 1H, 

CH), 7.36-7.26 (m, 2H, 2CH), 7.25-7.19 (m, 1H, CH), 7.15 (s, 1H, CH), 7.06 (t, J = 6.2 Hz, 
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1H, NH), 6.40-6.32 (m, 2H, 2CH), 4.52 (d, J = 6.2 Hz, 2H, CH2), 2.29 (s, 3H, CH3).
13C-NMR 

(101 MHz, DMSO-d6) δ 158.01 (C), 155.08 (C), 154.12 (C), 137.60 (CH), 133.79 (C), 129.61 

(C), 127.83 (CH), 127.63 (C), 127.20 (CH), 125.58 (CH), 125.60 (CH), 122.71 (CH), 110.74 

(CH), 109.39 (CH) ,105.50 (CH), 40.42 (CH2), 23.59 (CH3).  

Synthesis of an indole-based derivative (series 7)  

Step 2. Synthesis of N-(1H-indol-2-yl) furan-2-carboxamide (20) 

 

Compound 28 (0.3 g, 1.62 mmol), 2-furoic acid (0.37 g, 3.24 mmol) and DMAP (20 

mg, 0.162 mmol) were reacted for 5 h at 110 °C under argon atmosphere in dry toluene (3.24 

ml). After cooling to rt and solvent evaporation at low pressure, the crude residue was diluted 

with DCM (150 ml), washed with a saturated NaHCO3 solution (150 ml), dried over Na2SO4 

and concentrated to dryness at low pressure. Purification by silica gel flash chromatography 

(cyclohexane/ethyl acetate from 95/5 to 0/100) and trituration with diethyl ether (2 ml) yielded 

compound 20 (20 mg, 5 % yield) as a brown solid. Rt = 1.63 min (analysis method 1). MS 

(ESI) m/z: 227.3 [M-H]+, calculated: 227.08 [C13H11N2O2]
+. 1H-NMR (400 MHz, DMSO-d6) 

δ 10.90 (br s, 1H, NH), 7.89-7.88 (m, 1H, CH), 7.65 (br s, 2H, CH and NH), 7.40-7.36 (m, 1H, 

CH), 7.17-7.13 (m, 1H, CH), 7.03 (dd, J = 3.4 and 0.8 Hz, 1H, CH), 6.96-6.87 (m, 2H, 2CH), 

6.69 (dd, J = 3.4 and 1.7 Hz, 1H, CH).13C-NMR (101 MHz, DMSO-d6) δ 175.13 (C), 156.29 

(C), 153.81 (C), 144.34 (CH), 133.47 (C), 125.40 (C), 120.70 (CH), 120.55 (CH), 118.45 (CH), 

113.91 (CH), 111.83 (CH), 110.20 (CH), 95.82 (CH).  

Step 1. Synthesis of 1H-indole-2-carboxazide (28) 

 

A mixture of 1H-indole-2-carboxylic acid (0.52 g, 3.2 mmol), triethylamine (0.8 ml, 

6.4 mmol) and DPPA (0.6 ml, 2.88 mmol) in dry DCM (15 ml) was stirred under argon 

atmosphere for 7 h at room temperature. Then, the solvent was removed in vacuo and the crude 

residue was purified by silica gel flash chromatography (cyclohexane/chloroform from 

99.5/0.5 to 80/20), affording compound 28 (495 mg, 83 % yield) as a white solid. Rt = 2.06 

min (analysis method 1). MS (ESI) m/z: 185.2 [M-H]-, calculated: 185.05 [C9H5N4O]-. 1H-
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NMR (400 MHz, CDCl3) δ 8.92 (br s, 1H, NH), 7.73-7.67 (m, 1H, CH), 7.45-7.40 (m, 1H, 

CH), 7.40-7.34 (m, 1H, CH), 7.31-7.27 (m, 1H, CH), 7.20-7.14 (m, 1H, CH).  

1.2.  ChD-competition FP assay  

N-terminal His6-tagged ChD was overexpressed in Escherichia coli and purified. Two 

different FITC-labeled peptide mimicking H3K27me3 were used (probe 1 or probe 2). In the 

experiments, the reference compound was a five-amino-acid peptide that corresponds to a 

truncated sequence of a specific methylated protein region able of interacting with ChD. The 

assay was performed in 384 well black plates, by employing a FP buffer 1x (according to the 

number of samples) obtained by diluting appropriately FP 11x (Table 8 ) in Tris/NaCl buffer 

(Table 7). Constant concentrations of ChD and FITC-peptide (probe 1 or 2) were 11 μM and 

11 nM, respectively. A DMSO tolerance experiment allowed to conclude that 0.5% final 

DMSO (in assay buffer) does not alter the affinity of the probe against ChD. Hence, samples 

of tested compounds were prepared diluting 20 mM DMSO stock solutions of compounds in 

the assay buffer to 6.25, 25 and 100 µM, thus obtaining 0.5% DMSO solutions. The final well 

volume was 30 µL. Plates were incubated for 15-30 min in darkness at rt prior to reading with 

a plate reader in FP reading mode with λexc: 485 nm, λem: 535 nm and λexc: 535, λem: 580 nm.  

Table 7 Tris/NaCl buffer  

REAGENT [Stock] Vol for 50ml Dil factor [Final] 

Tris pH 8.0 1M 1 ml 1:50 20mM 

NaCl 5M 3 ml 1:16.66 300mM 

H2O  46ml   

  50ml   

 

Table 8 FP buffer 11x 

REAGENT [Stock] Vol for 2ml Vol for 5ml [Final] 

Tris/NaCl  1916 4790  

Tween 20 10% 22 55 0.11% 

DTT 1M 22 55 11mM 

Prot. Inh. 500X 40 100 10X 

  2000 5000  

1.3.  Fluorescence measurements 

Samples were prepared diluting 20 mM DMSO stock solutions of the tested compounds 

in water to 100 µM, thus obtaining 0.5% DMSO solutions. 

Fluorescence experiments were performed in quartz cuvettes by using FluoroMax-4 

Spectrofluorometer (Horiba Jobin Yvon). Samples were excited at 485 nm and 535 nm; 

bandwith was 5. The fluorescence spectra were recorded in the 490-700 nm e 540-700 nm 

ranges, respectively. 
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2.  Section 2. Development of small-molecules as Tubulin Colchicine-site binders for 

cancer therapy 

2.1. Synthesis 

Synthesis of compounds via SNAr 

Step 2. General procedure A for the synthesis of compounds 29, 30, 32, 33, 35, 36  

Unless otherwise specified, triethylamine (5.0 molar equiv.) was dropwise added to a 

mixture of the appropriate sulfone (1.0 molar equiv.) and amine (5.0 molar equiv.) under argon 

atmosphere. The obtained mixture was stirred at 120 °C by conventional heating for 24 h-3 

days. If required, additional amine was added (amount specified for each compound) to get 

reaction completion. The reaction crude was cooled to rt and purified by silica gel flash phase 

chromatography. If required, final trituration was performed in a suitable solvent (specified for 

each compound) to afford pure compounds 29, 30, 32, 33, 35 and 36.  

Step 2. Synthesis of N-(2-furylmethyl)-1H-benzimidazol-2-amine (29) 

 

Compound 29 was synthesized following the general procedure A previously described 

by reacting 47 (0.133 g, 0.68 mmol), and furfurylamine (0.31 ml, 3.4 mmol) for 24 h. 

Purification by silica gel flash chromatography (DCM/ethyl acetate from 100/0 to 40/60) 

afforded compound 29 as a beige solid (51 mg, 35 % yield). Rt = 1.30 min (analysis method 

1). MS (ESI) m/z: 214.1 [M-H]+, calculated: 214.10 [C12H12N3O]+. 1H-NMR (400 MHz, 

DMSO-d6) δ 10.76 (br s, 1H, NH), 7.64-7.50 (m, 1H, CH), 7.22-7.06 (m, 2H, 2CH), 7.00 (t, J 

= 6.0 Hz, 1H, NH), 6.94-6.78 (m, 2H, 2CH), 6.44-6.33 (m, 1H, CH), 6.33-6.24 (m, 1H, CH), 

4.49 (d, J = 6.0 Hz, 2H, CH2). 
13C-NMR (101 MHz, DMSO-d6) 155.08 (C), 153.24 (C), 141.92 

(CH), 119.91 (CH), 118.33 (CH), 114.82 (CH), 110.41 (CH), 108.70 (CH), 106.66 (CH), 39.05 

(CH2).  

Step 2. Synthesis of N-(2-furylmethyl)-1-methyl-benzimidazol-2-amine (30)  

 

Compound 30 was synthesized following the general procedure A previously described 

using commercial 1-methyl-2-(methylsulfonyl)benzimidazole (0.135 g, 0.63 mmol) and 
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furfurylamine (0.28 ml, 3.15 mmol). The reaction was performed using conventional heating 

for 48 h. Then, additional amine (0.11 ml, 1.26 mmol) was added and the mixture was stirred 

under microwave irradiation for 6 h (120 °C, power 200 W). The crude mixture was purified 

by silica gel flash chromatography (DCM/ethyl acetate from 100/0 to 90/10). Final sequential 

trituration in petroleum ether (2 ml) and diethyl ether (2 ml) afforded compound 30 as a white 

solid (60 mg, 42 % yield). Rt = 1.40 min (analysis method 1). MS (ESI) m/z: 228.1 [M-H]+, 

calculated: 228.11: [C13H14N3O]+. 1H-NMR (400 MHz, DMSO-d6) δ 7.63-7.52 (m, 1H, CH), 

7.25-7.06 (m, 3H, 2CH and 1NH), 7.00-6.88 (m, 2H, 2CH), 6.43-6.35 (m, 1H, CH), 6.35-6.28 

(m, 1H, CH), 4.56 (d, J = 5.7 Hz, 2H, CH2), 3.50 (s, 3H, NCH3). 
13C-NMR (101 MHz, DMSO-

d6) 154.80 (C), 153.17 (C), 142.30 (C), 141.91 (CH), 135.35 (C), 120.27 (CH), 118.46 (CH), 

115.11 (CH), 110.46 (CH), 107.35 (CH), 106.92 (CH), 39.15 (CH2), 28.25 (NCH3). 

Step 2. Synthesis of N-(2-furylmethyl)-N-methyl-1H-benzimidazol-2-amine (32) 

 

Compound 32 was afforded by reacting 47 (0.133 g, 0.68 mmol) and 1-(furan-2-yl)-N-

methylmethanamine (0.4 ml, 3.4 mmol) according to the general procedure A for 48 h, then 

the mixture was heated to 130 °C for additional 3 days. The crude mixture was purified by 

silica gel flash chromatography (chloroform/chloroform:MeOH (8:2) from 99.5/0.5 to 90/10). 

Trituration in petroleum ether (2 ml), followed by additional trituration in diethyl ether (2 ml) 

and ethyl acetate (2 ml) afforded compound 32 as a beige solid (27 mg, 17 % yield). Rt = 1.37 

min (analysis method 1). MS (ESI) m/z: 228.1 [M-H]+, calculated: 228.11 [C13H14N3O]+. 1H-

NMR (400 MHz, DMSO-d6) δ 7.58 (br s, 1H, CH), 7.25-7.06 (m, 2H, 2CH), 6.99-6.78 (m, 2H, 

2CH), 6.39 (br s, 1H, CH), 6.36-6.26 (m, 1H, CH), 4.68 (s, 2H, CH2), 3.01 (s, 3H, NCH3). 
13C-

NMR (101 MHz, DMSO-d6) δ 155.99 (C), 151.27 (C), 142.62 (CH), 119.34 (CH), 112.17 

(CH), 110.42 (CH), 108.15 (CH), 46.40 (CH2), 35.55 (NCH3).  

Step 2. Synthesis of N-(2-thienylmethyl)-1H-benzimidazol-2-amine (33) 

 

Compound 33 was afforded by reacting 47 (0.133 g, 0.68 mmol) and 2-

thiophenemethylamine (0.37 ml, 3.4 mmol) for 3 days according to the general procedure A. 

The crude mixture was purified by silica gel flash chromatography (DCM/ethyl acetate from 

99/1 to 70/30). Sequential trituration in petroleum ether (2 ml) and diethyl ether (2 ml), 



94 

 

 

followed by freeze-drying afforded compound 33 as a white solid (17 mg, 11 % yield). Rt = 

1.38 min (analysis method 1). MS (ESI) m/z: 230.0 [M-H]+, calculated: 230.08 [C12H12N3S]+. 

1H-NMR (600 MHz, DMSO-d6) δ 10.81 (s, 1H, NH), 7.38-7.34 (m, 1H, CH), 7.22-7.09 (m, 

3H, 2CH and NH), 7.07-7.03 (m, 1H, CH), 6.98-6.93 (m, 1H, CH), 6.92-6.84 (m, 2H, 2CH), 

4.67 (d, J = 6.0 Hz, 2H, CH2). 
13C NMR (151 MHz, DMSO-d6) δ 154.89 (C), 143.45 (C), 

126.61 (CH), 125.16 (CH), 124.68 (CH), 119.27(CH), 119.29 (CH), 114.79 (CH), 108.87 

(CH), 40.93 (CH2).  

Step 2. Synthesis of N-[(5-methyl-2-furyl)methyl]-1H-benzimidazol-2-amine (35)  

 

Compound 35 was obtained according to the general procedure A previously reported 

using 47 (0.133 g, 0.68 mmol) and (5-methylfuran-2-yl)methanamine (0.39 ml, 3.4 mmol). The 

reaction was performed for 24 h. Purification by silica gel column chromatography (first 

column: DCM/ ethyl acetate from 100/0 to 60/40; second column: 

chloroform/chloroform:MeOH (8:2) from 99.9/0.1 to 85/15) followed by trituration in 

petroleum ether (2 ml) and then diethyl ether (2 ml) afforded compound 35 as a white solid (60 

mg, 39 % yield). Rt = 1.38 min (analysis method 1). MS (ESI) m/z: 228.1 [M-H]+, calculated: 

228.11 [C13H14N3O]+. 1H-NMR (400 MHz, DMSO-d6) δ 10.74 (br s, 1H, NH), 7.13 (s, 2H, 

2CH), 7.02-6.75 (m, 3H, 2CH and NH), 6.20-6.12 (m, 1H, CH), 6.02-5.92 (m, 1H, CH), 4.43 

(d, J = 5.3 Hz, 2H, CH2), 2.23 (s, 3H, CH3). 
13C-NMR (101 MHz, DMSO-d6) 155.10 (C), 

151.33 (C), 150.53 (C), 133.77 (C), 119.95 (CH), 118.37 (CH), 114.78 (CH), 108.75 (CH), 

107.55 (CH), 106.34 (CH), 38.95 (CH2), 13.31 (CH3).  

Step 2. Synthesis of N-(2-pyridylmethyl)-1H-benzimidazol-2-amine (36) 

 

Compound 36 was afforded by reacting 47 (0.133 g, 0.68 mmol) and 2-picolylamine 

(0.35 ml, 3.4 mmol) for 48 h, following the general procedure A. The crude mixture was 

purified by silica gel flash chromatography (DCM/DCM:MeOH (8:2) from 90/10 to 30/70). 

Final sequential trituration in petroleum ether (2 ml) and diethyl ether (2 ml) afforded 

compound 36 as a beige solid (78 mg, 51 % yield). Rt = 1.21 min (analysis method 1). MS 

(ESI) m/z: 225.0 [M-H]+, calculated: 225.11 [C13H13N4]
+. 1H-NMR (600 MHz, DMSO-d6) δ 

10.89 (br s, 1H, NH), 8.55-8.49 (m, 1H, CH), 7.74 (td, J = 7.7 and 1.8 Hz, 1H, CH), 7.38 (d, J 
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= 7.8 Hz, 1H, CH), 7.27-7.22 (m, 1H, CH), 7.18-7.08 (m, 3H, 2CH and NH), 6.86 (br s, 2H, 

2CH), 4.61 (d, J = 6.0 Hz, 2H, CH2). 
13C-NMR (101 MHz, DMSO-d6) 159.32 (C), 155.39 (C), 

148.74 (CH), 136.62 (CH), 122.00 (CH), 120.93 (CH), 120.03 (CH), 117.91 (CH), 114.57 

(CH), 108.63 (CH), 47.42 (CH2).  

Step 1. Synthesis of 2-methylsulfonyl-1H-benzimidazole (47) 

 

3-chloroperbenzoic acid (1.7 g, 7.8 mmol) was added to a stirred mixture of 2-

methylsulfanyl-1H-benzimidazole (0.45 g, 2.6 mmol) in dry DCM (52 ml) at 0 °C. The 

obtained mixture was stirred at 0 °C for 10 minutes and at rt for additional 1 h. Saturated 

aqueous sodium sulfite solution (130 ml) was added at 0 °C and the obtained mixture was 

stirred at rt for extra 1 h. After separation of the phases, the organic phase was washed with 

brine (50 ml), dried over Na2SO4 and concentrated to dryness at low pressure to afford the title 

compound 47 as a white solid (435 mg, 85 % yield). Rt = 1.22 min (analysis method 1). MS 

(ESI) m/z: 197.0 [M-H]+, calculated: 197.04 [C8H9N2O2S]+. 1H-NMR (400 MHz, DMSO-d6) 

δ 7.78-7.66 (m, 2H, 2CH), 7.45-7.35 (m, 2H, 2CH), 3.49 (s, 3H, CH3).  

General procedure B for the synthesis of compounds 31 and 34  

A mixture of commercial 2-chlorobenzoxazole (1.0 molar equiv.) and the appropriate 

amine (1.0 molar equiv.) in dry DMF (1 ml) was stirred at rt for 16 h. The reaction crude was 

poured into water (10 ml) and filtrated under vacuum to afford a crude residue. The filtrate was 

then extracted with DCM (2 x 10 ml), dried over Na2SO4, concentrated to dryness and 

combined with the residue. Purification by silica gel flash phase chromatography, using 

mixtures of increasing polarity of cyclohexane and ethyl acetate, afforded compounds 31 and 

34.  

Synthesis of N-(2-furylmethyl)-1,3-benzoxazol-2-amine (31) 

 

Compound 31 was synthesized following the general procedure B previously described 

by reacting commercial 2-chlorobenzoxazole (0.076 ml, 0.65 mmol) and furfurylamine (0.06 

ml, 0.65 mmol). Purification by silica gel flash chromatography (cyclohexane/ethyl acetate 

from 95/5 to 40/60) afforded compound 31 as a white solid (53 mg, 38 % yield). Rt = 1.85 min 

(analysis method 1). MS (ESI) m/z: 215.0 [M-H]+, calculated: 215.08 [C12H11N2O2]
+. 1H-NMR 
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(400 MHz, DMSO-d6) δ 8.50-8.33 (m, 1H, NH), 7.63-7.57 (m, 1H, CH), 7.38-7.32 (m, 1H, 

CH), 7.26 (d, J = 7.9 Hz, 1H, CH), 7.15-7.08 (m, 1H, CH), 7.03-6.94 (m, 1H, CH), 6.42-6.38 

(m, 1H, CH), 6.37-6.33 (m, 1H, CH), 4.51 (d, J = 6.3 Hz, 2H, CH2). 
13C-NMR (101 MHz, 

DMSO-d6) 162.16 (C), 151.86 (C), 148.12 (C), 143.01 (C), 142.35 (CH), 123.67 (CH), 120.35 

(CH), 115.65 (CH), 110.51 (CH), 108.64 (CH), 107.30 (CH), 39.62 (CH2).  

Synthesis of N-[(5-methyl-2-furyl)methyl]-1,3-benzoxazol-2-amine (34)  

 

Compound 34 was synthesized following the general procedure B previously described 

using commercial 2-chlorobenzoxazole (0.076 ml, 0.65 mmol) and (5-methylfuran-2-

yl)methanamine (0.078 ml, 0.65 mmol). Purification by silica gel flash chromatography 

(cyclohexane/ethyl acetate from 100/0 to 60/40) gave compound 34 as a beige solid (38 mg, 

26 % yield). Rt = 1.99 min (analysis method 1). MS (ESI) m/z: 229.0 [M-H]+, calculated: 

229.10 [C13H13N2O2]
+. 1H-NMR (400 MHz, DMSO-d6) δ 8.36 (br s, 1H, NH), 7.34 (d, J = 8.0 

Hz, 1H, CH), 7.26 (d, J = 7.7 Hz, 1H, CH), 7.11 (m, 1H, CH), 6.98 (m, 1H, CH), 6.23-6.18 

(m,1H, CH), 6.02-5.96 (m, 1H, CH), 4.47-4.39 (m, 2H, CH2), 2.23 (s, 3H, CH3). 
13C-NMR 

(101 MHz, DMSO-d6) δ 162.13 (C), 150.94 (C), 149.99 (C), 148.10 (C), 143.04 (C), 123.64 

(CH), 120.30 (CH), 115.61 (CH), 108.61 (CH), 108.15 (CH), 106.42 (CH), 39.18 (CH2), 13.27 

(CH3).  

Synthesis of compounds via cyclodesulfurization  

General procedure C for the synthesis of compounds 37-46  

Unless otherwise stated, the appropriate diamine (1.0 molar equiv.), DIPEA (1.0 mmol) 

and the corresponding isothiocyanate (1.0 molar equiv.) in dry MeCN (5 ml) were allowed to 

react at rt. Formation of monothiourea intermediate was monitored by UPLC-MS (the reaction 

time is specified for each compound). If required, further isothiocyanate was added during the 

course of the reaction (amount specified for each compound). Then, BOP (1.5 molar equiv.) 

and DBU (2 molar equiv.) were sequentially added and the mixture was allowed to stir at rt, 

for a specific time depending on the starting compounds used. In some specific cases, the 

mixture was heated to 80 °C to drive the reaction to completion. The mixture was concentrated 

to dryness, diluted with DCM (10 ml) and washed with a saturated NaHCO3 solution (3 x 10 

ml). The organic phase was dried over Na2SO4 and concentrated under vacuum. The crude 

residue was purified by gel flash chromatography using mixtures of increasing polarity of 
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cyclohexane and ethyl acetate or DCM and DCM:NH3 (1 N) solution in MeOH (8:2). The 

isolated product was treated differently depending on the case.  

N-(tetrahydrofuran-2-ylmethyl)-1H-benzimidazol-2-amine (37) 

 

Compound 37 was synthesized following the general procedure C previously described 

by reacting commercial 1,2-diaminobenzene (0.387 g, 3.5 mmol) and 2-tetrahydrofurfuryl 

isothiocyanate (0.45 ml, 3.5 mmol) for 24 h. BOP (2.37 g, 5.25 mmol) and DBU (1.07 ml, 7 

mmol) were added and the mixture was stirred at rt for additional 1 h. The crude was purified 

by two subsequent silica gel flash chromatography columns (cyclohexane/ethyl acetate from 

50/50 to 0/100 and DCM/DCM:NH3 (1 N) solution in MeOH (8:2) from 100/0 to 87/13, 

respectively). The obtained solid was dissolved in ethyl acetate (50 ml) and washed with a 

saturated NaHCO3 solution (50 ml). The organic phase was dried over Na2SO4 and 

concentrated to dryness to afford a solid that, after trituration in ethyl acetate (2 x 2 ml), gave 

pure compound 37 (63 mg, 8 % yield). Rt = 1.17 min (analysis method 1). MS (ESI) m/z: 218.2 

[M-H]+, calculated: 218.13 [C12H16N3O]+. 1H-NMR (400 MHz, methanol-d4) δ 7.25-7.09 (m, 

2H, 2CH), 7.00-6.89 (m, 2H, 2CH), 4.19-4.01 (m, 1H, CH), 3.96-3.83 (m, 1H, CH), 3.83-3.69 

(m, 1H, CH) ,3.60-3.47 (m, 1H, CH), 3.41-3.33 (m, 1H, CH), 2.13-1.99 (m, 1H, CH), 1.99-

1.83 (m, 2H, CH2), 1.65-1.72 (m, 1H, CH). 13C-NMR (101 MHz, methanol-d4) δ 157.02 (C), 

121.32 (CH), 112.77 (CH), 79.35 (CH), 69.12 (CH2), 47.83 (CH2), 29.64 (CH2), 26.71 (CH2). 

N-(2-methoxyethyl)-1H-benzimidazol-2-amine (38) 

 

Compound 38 was synthesized following the general procedure C previously described 

by reacting commercial 1,2-diaminobenzene (0.12 g, 1.05 mmol) and 2-methoxyethyl 

isothiocyanate (0.12 ml, 1.05 mmol) for 24 h. BOP (0.71 g, 1.6 mmol) and DBU (0.32 ml, 2.1 

mmol) were added and the mixture was stirred at rt for additional 24 h and at 80 °C for extra 3 

h. The crude residue was purified by two subsequent silica gel flash chromatography columns 

(cyclohexane/ethyl acetate from 50/50 to 0/100 and DCM/DCM:NH3 (1 N) solution in MeOH 

(8:2) from 97/3 to 87/13, respectively). The obtained solid was dissolved in ethyl acetate (25 

ml), washed with a saturated NaHCO3 solution (25 ml). The aqueous phase was extracted with 
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fresh ethyl acetate (3 x 20 ml) and the combined organic layers were dried over Na2SO4 and 

concentrated to dryness to afford pure compound 38 as a white solid (29 mg, 14 % yield). Rt = 

1.08 min (analysis method 1). MS (ESI) m/z: 192.2 [M-H]+, calculated: 192.11 [C10H14N3O]+. 

1H-NMR (400 MHz, DMSO-d6) δ 10.65 (br s, 1H, NH), 7.20-7.00 (m, 2H, 2CH), 6.94-6.73 

(m, 2H, 2CH), 6.60-6.45 (m, 1H, NH), 3.56-3.39 (m, 4H, 2CH2), 3.28 (s, 3H, OCH3). 
13C-

NMR (101 MHz, DMSO-d6) δ 155.43 (C), 120.36 (CH), 118.30 (CH), 114.94 (CH), 109.08 

(CH), 70.93 (CH2), 57.96 (OCH3), 41.80 (CH2).  

N-(2-furylmethyl)-5-methyl-1H-benzimidazol-2-amine (39) 

 

Compound 39 was synthesized following the general procedure C previously described 

by reacting 3,4-diaminotoluene (0.18 g, 1.47 mmol) and furfuryl isothiocyanate (0.15 ml, 1.47 

mmol) for 16 h. Additional furfuryl isothiocyanate (0.5 ml, 5.16 mmol) was added to force the 

reaction to proceed and the mixture was stirred for additional 8 h. Then, BOP (1.00 g, 2.21 

mmol) and DBU (0.45 ml, 2.94 mmol) were added and the mixture was stirred for further 18 

h. Purification by silica gel flash chromatography (cyclohexane/ethyl acetate from 95/5 to 

10/90), followed by trituration in DCM (2 ml) afforded compound 39 as a light pink solid (149 

mg, 45 % yield). Rt = 1.47 min (analysis method 1). MS (ESI) m/z: 228.0 [M-H]+, calculated: 

228.11 [C13H14N3O]+. 1H-NMR (400 MHz, DMSO-d6) δ 10.63 (br s, 1H, NH), 7.57 (s, 1H, 

CH), 7.01 (d, J = 7.7 Hz, 1H, CH), 6.95 (s, 1H, CH), 6.93-6.85 (m, 1H, NH), 6.69 (d, J = 7.7, 

1H, CH), 6.41-6.34 (m, 1H, CH), 6.31-6.25 (m, 1H, CH), 4.53-4.40 (m, 2H, CH2), 2.30 (s, 3H, 

CH3). 
13C NMR (101 MHz, DMSO-d6) 154.99 (C), 153.28 (C), 141.92 (CH), 119.98 (CH), 

111.92 (CH), 111.39 (CH), 110.42 (CH), 106.66 (CH), 39.01 (CH2), 21.26 (CH3).  

Synthesis of 5-chloro-N-(2-furylmethyl)-1H-benzimidazol-2-amine (40) 

 

Compound 40 was synthesized following the general procedure C previously described 

by reacting commercial 4-chloro-1,2-diaminobenzene (0.2 g, 1.35 mmol) and furfuryl 

isothiocyanate (0.14 ml, 1.35 mmol) for 17 h. Then, additional furfuryl isothiocyanate (0.21 

ml, 2.03 mmol) was added and the mixture was stirred for further 16 h. After the addition of 

BOP (0.91 g, 2.03 mmol) and DBU (0.41 ml, 2.7 mmol), the mixture was stirred for additional 
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1 h. Purification by silica gel flash chromatography (cyclohexane/ethyl acetate from 80/20 to 

40/60), followed by trituration in DCM (2 x 2 ml) afforded compound 40 as a yellow solid (93 

mg, 28 % yield). Rt = 1.64 min (analysis method 1). MS (ESI) m/z: 248.0/250.0 [M-H]+ (3/1), 

calculated: 248.06/250.06 [C12H11ClN3O]+. 1H-NMR (400 MHz, DMSO-d6) δ 10.91 (br s, 1H, 

NH), 7.58 (s, 1H, CH), 7.29-7.18 (m, 1H, NH), 7.18-7.06 (m, 2H, 2CH), 6.95-6.79 (m, 1H, 

CH), 6.42-6.35 (m, 1H, CH), 6.32-6.27 (m, 1H, CH), 4.49 (d, J = 5.8 Hz, 2H, CH2). 
13C NMR 

(101 MHz, DMSO-d6) δ 156.07 (C), 152.93 (C), 142.04 (CH), 118.49 (CH), 114.81 (CH), 

110.55 (CH), 110.45 (CH), 106.81 (CH), 39.62 (CH2).  

Methyl 2-(2-furylmethylamino)-1H-benzimidazole-5-carboxylate (41) 

 

Compound 41 was synthesized following the general procedure C previously described 

by reacting commercial methyl-3,4-diaminobenzoate (0.21 g, 1.23 mmol) and furfuryl 

isothiocyanate (0.13 ml, 1.23 mmol) for 2 h. Additional furfuryl isothiocyanate (0.065 ml, 0.62 

mmol) was added and the mixture was stirred for 16 h; then, extra furfuryl isothiocyanate 

(0.065 ml, 0.62 mmol) was added. The mixture was stirred for further 24 h; then, BOP (0.83 g, 

1.85 mmol) and DBU (0.38 ml, 2.46 mmol) were added and the reaction was continued for 1 

h. Purification by silica gel flash chromatography (cyclohexane/ethyl acetate from 90/10 to 

10/90), followed by trituration in ethyl acetate (2 x 2 ml) afforded compound 41 as a pink solid 

(36 mg, 11 % yield). Rt = 1.48 min (analysis method 1). MS (ESI) m/z: 272.0 [M-H]+, 

calculated: 272.10 [C14H14N3O3]
+. 1H-NMR (400 MHz, methanol-d4) δ 7.89-7.84 (m, 1H, CH), 

7.73 (dd, J = 8.3 and 1.6 Hz, 1H, CH), 7.44-7.41 (m, 1H, CH), 7.23 (d, J=8.3 Hz, 1H, CH), 

6.37-6.29 (m, 2H, 2CH), 4.56 (s, 2H, CH2), 3.87 (s, 3H, OCH3). 
13C NMR (101 MHz, 

methanol-d4) δ 169.65 (C), 158.27 (C), 153.48 (C), 143.41 (CH), 123.93 (CH) 122.92 (C), 

113.88 (CH), 112.76 (CH), 111.35 (CH), 108.08 (CH), 52.32 (OCH3), 40.56 (CH2). 

N-(2-furylmethyl)-5-(trifluoromethyl)-1H-benzimidazol-2-amine (42) 

 

Compound 42 was synthesized following the general procedure C previously described 

by reacting commercial 3,4-diaminobenzotrifluoride (0.22 g, 1.19 mmol) and furfuryl 
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isothiocyanate (0.13 ml, 1.19 mmol) for 18 h, then extra furfuryl isothiocyanate (0.065 ml, 0.6 

mmol) was added and the reaction was continued for further 30 h. Then, BOP (0.81 g, 1.79 

mmol) and DBU (0.36 ml, 2.38 mmol) were added to the mixture and the reaction was 

continued for additional 1 h. Purification by silica gel flash chromatography (cyclohexane/ethyl 

acetate from 100/0 to 30/70), followed by trituration in DCM (2 ml) afforded compound 42 as 

a white solid (42 mg, 13 % yield). Rt = 1.90 min (analysis method 1). MS (ESI) m/z: 282.1 

[M-H]+, calculated: 282.09 [C13H11F3N3O]+. 1H-NMR (400 MHz, methanol-d4) δ 7.50-7.40 (m, 

2H, 2CH), 7.34-7.22 (m, 2H, 2CH), 6.39-6.30 (m, 2H, 2CH), 4.57 (s, 2H, CH2). 
13C NMR (101 

MHz, methanol-d4) δ 158 .18 (C) 153.49 (C), 143.40 (CH), 118.44 (CH), 111.35 (CH), 110.55 

(CH), 108.08 (CH), 40.56 (CH2). 

[2-(2-furylmethylamino)-1H-benzimidazol-5-yl]-phenyl-methanone (43) 

 

Compound 43 was synthesized following the general procedure C previously described 

by reacting commercial (3,4-diaminophenyl)-(phenyl)-methanone (0.23 g, 1.05 mmol) and 

furfuryl isothiocyanate (0.11 ml, 1.05 mmol) for 21 h. Then, extra furfuryl isothiocyanate 

(0.055 ml, 0.53 mmol) was added twice over a period of 5 h and the mixture was allowed to 

stir for extra 4 days. BOP (0.71 g, 1.58 mmol) and DBU (0.32 ml, 2.1 mmol) were added and 

the reaction was continued for additional 1 h. Purification by silica gel flash chromatography 

(cyclohexane/ethyl acetate from 95/5 to 0/100), followed by trituration with diethyl ether (2 

ml), afforded compound 43 as a yellow solid (83 mg, 25 % yield). Rt = 1.78 min (analysis 

method 1). MS (ESI) m/z: 318.1.0 [M-H]+, calculated: 318.12 [C19H16N3O]+. 1H-NMR (400 

MHz, methanol-d4) δ 7.78-7.65 (m, 3H, 3CH), 7.63-7.57 (m, 1H, CH), 7.56-7.47 (m, 3H, 3CH), 

7.47-7.42 (m, 1H, CH), 7.29 (d, J = 8.3 Hz, 1H, CH), 6.38-6.28 (m, 2H, 2CH), 4.58 (s, 2H, 

CH2). 
13C NMR (101 MHz, methanol-d4) δ 198.96 (C), 158.51 (C), 153.39 (C), 143.45 (CH), 

140.21 (C), 132.95 (CH), 130.73 (CH), 129.26 (CH), 125.66 (CH), 114.73 (CH), 112.82 (CH), 

111.37 (CH), 108.14 (CH), 40.55 (CH2). 

(2-furylmethylamino)-1H-benzimidazole-5-carbonitrile (44) 
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Compound 44 was synthesized following the general procedure C previously described 

by reacting 3,4-diaminobenzonitrile (0.19 g, 1.4 mmol) and furfuryl isothiocyanate (0.15 ml, 

1.4 mmol) for 24 h. Extra furfuryl isothiocyanate (0.075 ml, 0.7 mmol) was added three times 

over a period of 2 days while stirring. Afterwards, BOP (0.95 g, 2.1 mmol) and DBU (0.43 ml, 

2.8 mmol) were added and the reaction was continued for additional 1 h. Purification by silica 

gel flash chromatography (cyclohexane/ethyl acetate from 95/5 to 0/100), followed by 

trituration in diethyl ether (2 ml) and DCM (3 x 2 ml) afforded compound 44 as a beige solid 

(59 mg, 18 % yield). Rt = 1.51 min (analysis method 1). MS (ESI) m/z: 239.0 [M-H]+, 

calculated: 239.09 [C13H11N4O]+. 1H-NMR (400 MHz, methanol-d4) δ 7.61-7.40 (m, 2H, 2CH), 

7.40-7.23 (m, 2H, 2CH), 6.42-6.20 (m, 2H, 2CH), 4.57 (s, 2H, CH2). 
13C NMR (101 MHz, 

methanol-d4) δ 158.58 (C), 153.29 (C), 143.45 (CH), 126.01 (CH), 121.50 (C), 116.10 (CH), 

113.71 (CH), 111.36 (CH), 108.15 (CH), 40.50 (CH2).  

N-(2-furylmethyl)-5-methoxy-1H-benzimidazol-2-amine (45) 

 

Compound 45 was synthesized following the general procedure C previously described 

by reacting commercial 3,4-diaminoanisole (0.19 g, 1.37 mmol) and furfuryl isothiocyanate 

(0.14 ml, 1.37 mmol) for 3 h. Extra furfuryl isothiocyanate (0.07 ml, 0.69 mmol) was added 

five times while stirring over a period of 21 h. Then, BOP (0.93 g, 2.06 mmol) and DBU (0.42 

ml, 2.74 mmol) were added and the mixture was stirred for additional 1 h. Purification by silica 

gel flash chromatography (cyclohexane/ethyl acetate from 60/40 to 0/100), followed by 

trituration in DCM (2 ml) afforded compound 45 as a beige solid (46 mg, 14 % yield). Rt = 

1.37 min (analysis method 1). MS (ESI) m/z: 244.1 [M-H]+, calculated: 244.11 [C13H14N3O2]
+. 

1H-NMR (400 MHz, methanol-d4) δ 7.44-7.40 (m, 1H, CH), 7.07 (d, J = 8.5 Hz, 1H, CH), 6.82 

(d, J = 2.4 Hz, 1H, CH), 6.61 (dd, J = 8.5, 2.4 Hz, 1H, CH), 6.36-6.28 (m, 2H, 2CH), 4.52 (s, 

2H, CH2), 3.77 (s, 3H, OCH3). 
13C-NMR (101 MHz, methanol-d4) δ 156.64 (C), 156.50 (C), 

153.82 (C), 143.27 (CH), 112.68 (CH), 111.31 (CH), 108.70 (CH), 107.91 (CH), 98.74 (CH), 

56.34 (OCH3), 40.71 (CH2). 

N-(2-furylmethyl)-5-phenoxy-1H-benzimidazol-2-amine (46) 
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Compound 46 was synthesized following the general procedure C previously described 

by reacting commercial 4-phenoxybenzene-1,2-diamine (0.23 g, 1.09 mmol) and furfuryl 

isothiocyanate (0.11 ml, 1.09 mmol) for 2 h. Extra furfuryl isothiocyanate (0.06 ml, 0.55 mmol) 

was added seven times during the following 46 h while stirring. After that, BOP (0.74 g, 1.64 

mmol) and DBU (0.33 ml, 2.18 mmol) were added and the mixture was stirred for additional 

1 h. Purification by silica gel flash chromatography (cyclohexane/ethyl acetate from 95/5 to 

0/100), followed by trituration with DCM (2 x 2 ml), afforded compound 46 as a white solid 

(158 mg, 47 % yield). Rt = 1.97 min (analysis method 1). MS (ESI) m/z: 306.1 [M-H]+, 

calculated: 306.12 [C18H16N3O2]
+. 1H-NMR (400 MHz, DMSO-d6) δ 10.80 (br s, 1H, NH), 

7.61-7.55 (m, 1H, CH), 7.35-7.26 (m, 2H, 2CH), 7.15-7.07 (m, 2H, CH and NH), 7.05-6.98 

(m, 1H, CH), 6.92-6.87 (m, 2H, 2CH), 6.83 (d, J = 2.3 Hz, 1H, CH), 6.60 (dd, J = 8.3 and 2.3 

Hz, 1H, CH), 6.41-6.35 (m, 1H, CH), 6.33-6.27 (m, 1H, CH), 4.49 (d, J = 5.6 Hz, 2H, CH2). 

13C-NMR (DMSO-d6) δ 158.94 (C), 155.89 (C), 153.11 (C), 149.33(C), 141.98 (CH), 129.67 

(CH), 121.93 (CH), 116.90 (CH), 111.31 (CH), 111.35 (CH), 110.44 (CH), 106.74 (CH), 

104.17 (CH), 39.08 (CH2). 

2.2. Docking studies 

Protein preparation 

The protein structural model for the simulations was taken from the experimental 

crystallographic structure resolved by Steinmetz and his collaborators according to their 

standard protocol.78 Simulations were performed on a single α/β-tubulin heterodimer, the one 

were the identified compound 29 binds. Therefore, the other chains corresponding to the 

additional heterodimer, stathmin, and tubulin tyrosine ligase (TTL), were removed along with 

calcium and chloride ions. The GTP and GDP molecules and the Mg 2+ ions found in the X-

ray structure were retained. Water molecules involved in the interaction with the Mg 2+ ions 

were also kept. 

An initial guess for missing hydrogens and ambiguous protonation states have been 

evaluated through Schrödinger 2018-3 Protein Preparation Wizard79 and examined by visual 

inspection. Finally, the protein structure was refined to relieve steric clashes with a restrained 

minimization with the OPLS3a using Schrödinger default settings. 

Ligands Preparation 

All ligand structures were optimized by means of LigPrep tool of the Schrödinger 2018-

3 Suite. After the generation of the 3D conformation, the molecules were submitted to Epik 

and all the tautomers and ionization states at pH 7.0 ± 2.0 were calculated. 
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Docking 

The compounds were docked with Glide80 by centering the grid on the co-crystallized 

fragment. To evaluate the impact of the introduced groups to the original fragment binding 

mode, a number of constraints have been employed. However, to avoid any bias to the docking 

process, the satisfaction of the constraints has been evaluated only after docking, so that only 

the poses similar to crystallographic one were retained. Two constraints were set (hydrogen 

bond to Glu198 and hydrogen bond to Val236) but the final poses had to match at least one of 

them (so as to evaluate correctly the tautomeric status of the neutral form). Docking were run 

with Glide SP (standard precision) protocol with a 2 times enhanced conformational sampling. 

2.3. Resazurin assay 81–83 

To quantify the amount of live cells in the presence of tested compounds, the Resazurin 

assay was employed. The protocol is based on the reduction of the non-fluorescent blue 

Resazurin to a red fluorescent dye by the mitochondrion of live cells. 

HeLa cells were seeded in Corning Costar 3603 plates at 5000 cells/well in 100 µL 

DMEM (Dulbecco's Modified Eagle Medium) containing FCS (fetal calf serum) and left to 

attach for 24 h. For initial screening, the cells were exposed to 1, 10 and 100 µM compound 

for 72 h. All measurements were done in triplicate. Subsequently, Resazurin was added to the 

wells to a final concentration of 20 µM and incubated for 2 h. The readout was obtained on a 

PHERAstar FSX instrument with a filter for excitation at 575 nm and emission at 620 nm. Data 

were normed to the DMSO control and fitted to a non-linear regression model with GraphPad 

Prism 7.00. 

Cell culture medium without neither cells or compounds (both in the presence or not of 

Resazurin) was used as further control. 
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Figure A1. UPLC-MS chromatogram of commercial compound 1.  
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Figure A2. UV spectrum and UPLC-MS (Scan ES+) chromatogram of the impurity with Rt 2.87 min identified in commercial 

compound 1. 
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Figure A3. 1H-NMR of commercial compound 1. The arrows point to the main impurities.  
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Figure A4. UPLC-MS chromatogram of re-synthetized compound 1.  
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Figure A5. 1H-NMR of re-synthetized compound 1.  

 

Figure A6. Binding pose of compound 29 according to docking studies. 
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Figure A7. Binding pose of compound 35 according to docking studies. 

 

Figure A8. Binding pose of tautomer 1 of compound 43 according to docking studies. 
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Figure A9. Binding pose of tautomer 2 of compound 43 according to docking studies. 

 

Figure A10. Binding pose of tautomer 1 of compound 46 according to docking studies. 
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Figure A11. Binding pose of tautomer 2 of compound 46 according to docking studies.  
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