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Abstract

The main topic of the thesis is the proper execution of a Bayesian inference
if log-normality is assumed for data. In fact, it is known that a particular care
is required in this context, since the most common prior distributions for the
variance in log scale produce posteriors for the log-normal mean which do not
have �nite moments. Hence, classical summary measures of the posterior such
as expectation and variance cannot be computed for these distributions.

The thesis is aimed at proposing solutions to carry out Bayesian inference
inside a mathematically coherent framework, focusing on the estimation of two
quantities: log-normal quantiles (�rst part of the thesis) and conditioned expec-
tations under a general log-normal linear mixed model (second part of the thesis).
Moreover, in the latter section, a further investigation on a unit-level small area
models is presented, considering the problem of estimating the well-known log-
transformed Battese, Harter and Fuller model in the hierarchical Bayes context.

Once the existence conditions for the moments of the target functionals pos-
terior are proved, new strategies to specify prior distributions are suggested.
Then, the frequentist properties of the deduced Bayes estimators and credible
intervals are evaluated through accurate simulations studies: it resulted that the
proposed methodologies improve the Bayesian estimates under naive prior set-
tings and are satisfactorily competitive with the frequentist solutions available in
the literature. To conclude, applications of the developed inferential strategies
are illustrated on real datasets.

The work is completed by the implementation of an R package named BayesLN

which allows the users to easily carry out Bayesian inference for log-normal data.
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Chapter 1

Introduction

The use of the logarithmic transformation in statistics has a long tradition. One of its main
applications is the normalization of samples for which the Gaussian assumption is unreliable
in the original scale. In fact, after the introduction of the analysis of variance method, whose
starting point could be considered the paper by Fisher and Mackenzie (1923), the necessity
to generalize this revolutionary technique to non-normal data emerged. In this sense, the
log-transformation appears in the paper by Cochran (1938) among other transformations
aimed at making experimental data suitable to apply the analysis of variance method, i.e.
homoscedasticity and normality (with a particular focus on skewed distributions). In this
paper, Cochran writes: �The transformation to logs. equalizes the variance when it is pro-
portional to the square of the mean; it is thus a much more powerful transformation than
the square root or the inverse sine�.
Another example of early use of the logarithmic transformation by applied scientists is the
paper by Williams (1937). He focuses on the fact that log-transforming the data is appealing
when the the goal of the statistical analysis is the estimation of the geometric mean: back-
transforming the arithmetic mean estimated on the log-transformed data, an estimate of
the geometric mean of the original data is obtained (McAlister, 1879). Few years later, a
di�erent perspective of the idea of data transformation is provided in the paper by Finney
(1941), that could be seen as the starting point of the inference on log-normal distribution.
In e�ect, he noted that, if the log-transformation is performed, then a crucial step of the
inferential procedure is represented by the back-transformation to the original data scale. In
particular, he presented the �rst proposal of an e�cient estimator for the arithmetic mean
of the original data, exploiting the properties of the log-normal distribution.
The popularity of the log-transformation further increased thanks to the well known proce-
dure introduced by Box and Cox (1964). In fact, the logarithm represents a particular case
of the proposed data transformation algorithm.
Unfortunately, in applied sciences (but also among statisticians), there is a huge misunder-
standing about the adoption of the logarithmic transformation in data analysis. Probably,
the main source of confusion is represented by the following wrong procedure: (1) transform-
ing the data, (2) applying the well-known normal methods on the log-transformed sample and

9



CHAPTER 1. INTRODUCTION 10

then (3) naively back-transform the results to the original data scale, ignoring basic concepts
as Jensen's inequality. On the other hand, if the real interest of the analysis is to produce
inference about key quantities of the original data scale (i.e. the scale of the untransformed
data), then the idea of transformation should be abandoned, passing to the more coherent
idea of carrying out a proper and careful inference on skewed data whose logarithm is nor-
mally distributed (Finney, 1941), and the log-normal (Crow and Shimizu, 1987) distribution
might represent a convenient assumption.
This particular distribution is frequently used in several applied �elds like economics, envi-
ronmental sciences, biostatistics and engineering, in order to analyse di�erent kind of data
(Limpert et al., 2001).

1.1 The log-normal distribution

0.0

0.2

0.4

0.6

0.8

0 2 4 6

x

f(
x)

σ2:   2 1 0.5

Figure 1.1: Plot of the density function of a log-normal distribution with ξ = 0 and di�erent values
of σ2.

A brief overview of the log-normal distribution is provided in order to introduce the pro-
tagonist of this thesis and to �x the notation. If a random variable X is assumed normally
distributed:

X ∼ N
(
ξ, σ2

)
, (1.1)

then, its exponentiation Z = exp{X} is a positive random variable, which is log-normally
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distributed:
Z ∼ logN (ξ, σ2). (1.2)

The probability density function (�gure 1.1) is:

fZ(z) =
1√

2πσz
exp

{
− 1

2σ2
(log z − ξ)2

}
, z > 0. (1.3)

The family of functionals which includes the most important quantities that characterize
the distribution is:

θa,b = exp
{
aξ + bσ2

}
. (1.4)

It provides the arithmetic mean if a = 1, b = 0.5; the median when a = 1, b = 0 and the
mode with a = 1, b = −1. More generally, each raw moment can be expressed choosing a
couple of values for a and b.
On the other hand, the functional that de�nes the quantiles of the log-normal distribution
is the following:

θp = exp
{
ξ + Φ−1(p)σ

}
, (1.5)

where Φ−1(p) is the inverse of the standard normal cumulative distribution function, i.e. the
p-th quantile of the standardized Gaussian distribution which corresponds to probability p.
To complete the general characterization of the distribution, the variance of a log-normal
random variable is:

V[Z] =
(
eσ

2 − 1
)
e2ξ+σ2

, (1.6)

from which follows that the coe�cient of variation does not depend on the mean in the
log-scale ξ:

CV [Z] =
√
eσ2 − 1. (1.7)

Finally, another useful quantity to report is the distribution skewness:(
eσ

2
+ 2
)√

eσ2 − 1. (1.8)

1.2 Log-normal distribution in Bayesian inference: a motivat-

ing example

As outlined before, one of the most critical points of making inference with the log-normal
assumption is the back-transformation of the results which are obtained in the Gaussian
framework to the original data scale, without neglecting the achievement of e�cient estima-
tors.
The study of appropriate and e�cient estimators for crucial quantities related to the log-
normal distribution is an active research �eld in statistics. A lot of papers about the esti-
mation of the mean have been published (Zhou, 1998; Shen et al., 2006); also the quantiles
estimation has received some attention (Longford, 2012). Moreover, in many applications
linear mixed models with the response variable log-normally distributed are used, and the
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problem of estimating quantities in the original data scale has not been extensively faced,
yet.
Even if it could be supposed that these inferential issues might be easily overcame in the
Bayesian framework sampling directly from the posterior distributions of the target func-
tional, other problems related to the posteriors obtained with the widespread normal con-
jugate analysis are often ignored.
In e�ect, proposing the usual Bayes estimator under the quadratic loss function (i.e. the
posterior mean), the �niteness of the posterior moments must be assured at least up to the
second order, to obtain the posterior variance too. This step is often overlooked, but it is
crucial to perform a coherent Bayesian analysis. Furthermore, this issue could be masked
if the estimation is performed through MCMC methods (Sun and Speckman, 2005; Ghosh
et al., 2018).
When an improper prior is �xed, a lot of care is usually taken in the properness of the
posterior distribution. However, the Bayes estimators of log-normal functionals do not exist
with the usual priors, both improper and proper (like the inverse gamma). For example,
in the context of the log-normal mean, this issue was highlighted by Zellner (1971), and
interesting solutions were proposed by Rukhin (1986) and Fabrizi and Trivisano (2012).
To provide the general idea of the way in which the non-existence of the posterior moments
a�ects the usual inference based on MCMC methods, a simple simulation exercise is shown
as motivating example. Firstly, a random sample from a log-normal distribution with pa-
rameters ξ = 2 and σ2 = 1 is considered as dataset and samples from the posterior of the
target quantities are generated using di�erent tools: JAGS through rjags (Plummer, 2016),
OpenBUGS (Spiegelhalter et al., 2007), Stan (Carpenter et al., 2017) and implementing
the Gibbs samples exploiting the conjugacy of the estimated model, since the conjugate
normal-inverse gamma prior is assumed at this stage.
For each method, two independent posterior samples of size 1, 000, 000 are generated, after a
burn-in period of 100, 000 iterations. The quantities included in the exercise are the sample
mean, the median and the quantiles that correspond to p = 0.1 and p = 0.9. All the
traceplots of the chains evidenced the convergence to a unique stationary distribution. The
mean and standard deviation of the posterior distributions are reported in table 1.1 for three
di�erent sample sizes n.
Then, the simple one way ANOVA random e�ect model with J balanced groups having
sample size ng is considered for the response variable logarithm:

log(yij) = µ+ νj + εij , i = 1, ..., ng, j = 1, ..., J ;

νj ∼ N (0, τ2); εij ∼ N (0, σ2).
(1.9)

In this case, to generate the toy dataset, the parameters are �xed as µ = 1, σ2 = 1 and
τ2 = 1. Following the indications in Gelman (2006), half-t priors with 3 degrees of freedom
are speci�ed for the scale parameters:

σ ∼ half− t3,
τ ∼ half− t3.

(1.10)
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JAGS OpenBUGS

n Mean SD Mean SD Mean SD Mean SD

10

θ1,0.5 23.9 3×103 19.3 1×103 23.3 5×103 2×103 2×107

θ0.5 11.5 3.3 11.5 3.2 11.5 3.3 11.5 3.2
θ0.1 4.1 1.4 4.1 1.4 4.1 1.4 4.1 1.4
θ0.9 34.9 86.4 34.8 36.0 34.9 85.5 34.9 86.9

15

θ1,0.5 14.2 16.5 14.2 4.0 14.2 3.9 14.2 5.6
θ0.5 10.5 2.1 10.5 2.1 10.5 2.1 10.5 2.1
θ0.1 4.1 1.1 4.1 1.1 4.1 1.1 4.1 1.1
θ0.9 27.8 9.3 27.8 9.3 27.8 9.2 27.9 9.4

20

θ1,0.5 12.7 2.7 12.7 2.8 12.7 2.8 12.7 2.8
θ0.5 9.5 1.6 9.5 1.6 9.5 1.6 9.5 1.6
θ0.1 3.7 0.8 3.7 0.8 3.7 0.8 3.7 0.8
θ0.9 25.0 6.6 25.0 6.6 25.0 6.6 25.0 6.6

Stan Gibbs sampler

Mean SD Mean SD Mean SD Mean SD

10

θ1,0.5 2×103 2×106 17.5 200.3 19.3 925.1 33.8 2×104

θ0.5 11.5 3.2 11.5 3.2 11.5 3.2 11.5 3.2
θ0.1 4.1 1.4 4.1 1.4 4.1 1.4 4.1 1.4
θ0.9 35.0 79.6 34.7 25.0 34.8 36.0 34.8 30.2

15

θ1,0.5 14.2 4.0 14.2 4.2 14.2 4.0 14.2 4.1
θ0.5 10.5 2.1 10.5 2.1 10.5 2.1 10.5 2.1
θ0.1 4.1 1.1 4.1 1.1 4.1 1.1 4.1 1.1
θ0.9 27.9 9.3 27.8 9.4 27.8 9.3 27.8 9.2

20

θ1,0.5 12.7 2.8 12.7 2.8 12.7 2.8 12.7 2.7
θ0.5 9.5 1.6 9.5 1.6 9.5 1.6 9.5 1.6
θ0.1 3.7 0.8 3.7 0.8 3.7 0.8 3.7 0.8
θ0.9 25.0 6.6 25.0 6.6 25.0 6.6 25.0 6.6

Table 1.1: Results of the MCMC exercise involving the estimation of mean (θ1,0.5), median (θ0.5)
and quantiles (θ0.1, θ0.9) for the toy example.

In this framework, if the goal of the analysis is to predict the group-level mean for the
original data scale, the functional considered is:

θc(νl) = exp

{
µ+ νj +

σ2

2

}
, j = 1, ..., J. (1.11)

On the other hand, if the global mean is the key quantity of the analysis, then the functional
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to estimate is:

θm = exp

{
µ+

σ2 + τ2

2

}
. (1.12)

Also in this case, two independent posterior samples are drawn for the target functionals
and the posterior means and standard deviations are reported in table 1.2.

JAGS Stan

Mean SD Mean SD Mean SD Mean SD

ng = 3
J = 4

θc(ν1) 8.3 900.1 10.5 2×103 9.3 817.9 785.3 7×105

θc(ν2) 4.3 1×103 14.5 9×103 3.6 308.2 3×104 3×107

θc(ν3) 36.6 329.5 50.0 8×103 39.4 2×103 5×104 5×107

θc(ν4) 9.8 357.1 17.2 6×103 11.5 983.3 2×105 2×108

θm 2×1014 1×1017 1×1023 9×1025 3×10129 2×10132 1×1072 1×1075

ng = 5
J = 4

θc(ν1) 3.8 37.4 3.8 3.4 3.7 3.0 3.8 3.6
θc(ν2) 6.0 20.9 6.0 4.3 6.0 5.1 6.0 4.3
θc(ν3) 21.8 106.9 21.7 32.3 21.6 14.3 21.7 14.8
θc(ν4) 3.4 9.3 3.4 3.2 3.4 2.7 3.3 2.8
θm 3×1028 3×1031 5×108 4×1011 4×1067 4×1070 7×10125 Inf

ng = 3
J = 10

θc(ν1) 5.2 2.7 5.2 2.7 5.2 2.7 5.2 2.7
θc(ν5) 3.2 1.9 3.2 1.9 3.2 1.8 3.2 1.8
θc(ν10) 3.2 1.8 3.2 1.8 3.2 1.8 3.2 1.8
θm 7.7 21.3 7.7 9.2 8.1 250.3 7.8 43.9

Table 1.2: Results of the MCMC exercise involving the estimation of global mean (θm) and group
means (θc(νl)) under a one way random e�ect ANOVA model, considering the toy dataset.

By looking at the tables containing the simulation exercise results, the motivations for the
research illustrated in this thesis emerge. Remarking that all the numbers reported in table
1.1 and table 1.2 are, in any way, �nite values found estimating a quantity that is not
�nite under the considered prior settings, the numerical instability of the MCMC estimation
outcomes are evident with small sample sizes. This instability manifests itself in two distinct
ways: disproportionately large estimates are found for the considered posterior summaries,
otherwise di�erent values (often apparently reliable) for the same quantity are estimated in
di�erent runs of the algorithm. Unfortunately, these warnings vanish with the sample size
increase and the user is led to believe in the estimates validity.

1.3 Work summary

As hinted before, the issues a�ecting the Bayesian estimation of the log-normal mean were
faced by Fabrizi and Trivisano (2012) and Fabrizi and Trivisano (2016), wherein the log-
normal linear model was considered. The core of their proposal consists of specifying a
generalized inverse Gaussian (GIG) prior for the variance in the log-scale σ2. In this way,
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existence conditions for the posterior moments of the target functionals to estimate were
found and a careful inferential procedure in the Bayesian framework was proposed.
The aim of this work is to �ll the gap which is present in the literature approaching the esti-
mation of log-normal quantiles (both unconditional and conditional) and of the log-normal
linear mixed model form a Bayesian perspective, proposing a mathematically coherent in-
ferential procedure.
The thesis is divided into two parts. In the �rst one, the quantile estimation problem is faced.
In particular, in chapter 2, a new distribution is derived and its properties are reported, and
in chapter 3 it is shown that this distribution is crucial in the posterior inference on the
target functional θp and the Bayes estimators are derived; then, in chapter 4, they are �rst
evaluated in a simulation study and then applied to real data.
The second part about the estimation of the log-normal mixed model is organized with a
similar scheme: in chapter 5, the mathematical framework to solve the inferential problem is
developed, whereas in chapter 6, a simulation study is carried out and the proposed methods
are applied to real data.
Moreover, a particular care to computational aspects was taken in order to facilitate and
encourage the practitioners to use the developed methods: an R package named BayesLN

is implemented, whose manual is reported in appendix E. It is aimed at enclose functions
useful in carrying out a proper Bayesian analysis under the log-normality assumption for
data. The methods developed in Fabrizi and Trivisano (2012) and Fabrizi and Trivisano
(2016) are implemented in the package too.



Part I

Inference on log-normal quantiles
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Chapter 2

The SMNG Distribution

Before addressing the focus on the main topic of this part, that is the Bayesian estimation
of log-normal quantiles, some preliminary results are required. The chapter is organized as
follows: an introduction to the generalized inverse Gaussian (GIG) distribution is provided in
section 2.1, whereas a new family of normal mean-variance mixtures is presented in section
2.2. In section 2.3, the new distribution with the GIG as mixing distribution is derived
and its properties are studied, in section 2.4 it is compared to the generalized hyperbolic
distribution and its exponential transformation is considered in section 2.5. Finally, some
computational details are provided in section 2.6.

2.1 Generalized Inverse Gaussian Distribution

The generalized inverse Gaussian, a general positive real valued distribution, is characterized
by the following probability density function:

fX(x) =
(γ
δ

)λ 1

2Kλ(δγ)
xλ−1 exp

{
−1

2

(
δ2

x
+ γ2x

)}
, x > 0; (2.1)

where Kν(x) is the Bessel K function (see appendix A.2). The three parameters (λ, δ, γ)
could assume values within the following ranges:

� General case: λ ∈ R, δ > 0, γ > 0;

� Limiting case I: λ > 0, δ → 0, γ > 0;

� Limiting case II: λ < 0, δ > 0, γ → 0.

By considering the relation (A.7), it is evident that the �rst limiting case corresponds to
the gamma distribution, whereas the second one leads to the inverse gamma distribution.
Other known distributions might be deduced with particular values of the parameters, like
the exponential distribution and the inverse Gaussian distribution (Paolella, 2007).

17



CHAPTER 2. THE SMNG DISTRIBUTION 18

On the other hand, the GIG distribution is strictly connected to the positive α-stable distri-
bution. The α-stable distribution represents a very �exible 4-parameters distribution that
is largely characterized by the so called stability parameter α, whose value controls the tail
heaviness. Usually, the density of this family of distributions is not available in closed form
and the law is de�ned in terms of characteristic function. The positive α-stable distribution
is deduced when the skewness parameter assumes the value 1, implying the complete pos-
itive skewness. It is possible to prove that the GIG distribution can be obtained starting
from the positive α-stable one by applying determined mathematical transforms aimed at
obtaining lighter tailed distributions and by considering the case α = 1/2 (Meyers, 2010).
It is possible to consider λ as the shape parameter, δ a scale parameter, whereas γ controls
the tail heaviness. Figure 2.1 gives an idea of the GIG behaviour with respect to di�erent
parameter values. In particular, the role of γ is emphasized by plotting the log-density
function: it is clear that the lower the value of γ is, the tail of the distribution is heavier.
The GIG distribution has all the moments de�ned for γ > 0, because of its exponential
decay in the tail, and they assume the form:

E
[
Xj
]

=

(
δ

γ

)j Kλ+j(δγ)

Kλ(δγ)
. (2.2)

Besides, the moment generating function for the general case is:

MX(r) =

(
γ√

γ2 − 2r

)λ
Kλ(δ

√
γ2 − 2r)

Kλ(δγ)
, r <

γ2

2
. (2.3)

Another useful quantity to report in order to characterize the distribution is the mode:

Mo(X) =
(λ− 1) +

√
(λ− 1)2 + δ2γ2

γ2
; (2.4)

which is particularly appealing since it is the unique synthetic measure of the GIG distribu-
tion that is free of Bessel K functions, and hence it is easily tractable. A detailed analysis
of the distribution properties could be found in Jorgensen (1982).

2.1.1 The Extended GIG distribution

The power transformation of a GIG random variable is of interest. Let us consider a ran-
dom variable X ∼ GIG(λ, δ, γ), then the transformed variable Y = X

1
θ is distributed as

an extended GIG (EGIG) distribution with parameters (λ, δ, γ, θ). The properties of this
distribution were studied in Silva et al. (2006): its probability density function can be eas-
ily obtained by applying the random variable transformation formula, and the moments

immediately follow from the (2.2) with E
[
Y j
]

= E
[
X

j
θ

]
.
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Figure 2.1: Plots of the GIG density function with di�erent values of the parameters λ, δ and γ.
In each plot the other parameters are �xed equal to 1. To point out the impact of γ on the tail the
log-density is also reported for that parameter.

2.2 Just another normal mean-variance mixture

A widespread and �exible family of distributions, which is employed to model data en-
dowed with particular features (e.g. multi-modality, heterogeneity, marked skewness and
heavy tails) that cannot usually be captured by standard density functions, is the normal
mean-variance mixture. The main properties of these distributions were �rstly studied in
Barndor�-Nielsen et al. (1982), but it is still an open research �eld (Yu, 2017). A funda-
mental paper, that is considered to be the starting point of the idea of mixture distribution,
is the one by Barndor�-Nielsen (1977), where the author derived the generalized hyperbolic
(GH) distribution to model the wind blown sand particle size (see appendix B.1).
In general, the univariate probability distributions belonging to this family are obtained
choosing a mixing density g(·) for the random variableW , that is a non-negative real-valued
distribution, and de�ning the random variable:

X = µ+ βW +
√
WZ, (2.5)

where µ, β ∈ R are constants. Furthermore, Z is distributed as a standard normal and it is
independent of the mixing variable W . The aim of a random variable de�ned in this way
is to gain �exibility in modelling by introducing variability both in the mean and in the
variance of a Gaussian distribution.
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From this general de�nition, it is possible to obtain several mixture distributions by consid-
ering di�erent mixing distributions. In fact, the GH case cited above is characterized by the
assumption that W is distributed as a GIG. On the other hand, also the normality assump-
tion, executed by setting Z ∼ N (0, 1), might be relaxed employing other distributions like
the skew normal (Arslan, 2015).
In this section, a new family of distributions strictly related to the normal mean-variance
mixture is introduced. It could be named scale-mean mixture of normal distribution and, to
my knowledge, it has not received any attention in the literature.

De�nition 2.1. Considering two independent distributions Z ∼ N (0, 1) and W ∼ g(·),
non-negative real valued random variable, then the distribution de�ned as:

X = µ+ β
√
W +

√
WZ, (2.6)

µ, β ∈ R, is a scale-mean mixture of normal distribution.

A random variable de�ned in this way, has the following conditional distribution:

X|W = w ∼ N
(
µ+ β

√
w,w

)
; (2.7)

and it is similar to the standard Gaussian mean-variance mixture, since it simply introduces
a lower degree of variability in the mean. In fact, the term

√
W appear in the (2.7) instead

of W , which characterizes the usual normal mean-variance mixture.

2.3 A new mixture with GIG as mixing distribution

In this section, the scale-mean mixture of normal distribution is considered in the case
W ∼ GIG. A parallel result to the one related to the GH distribution is deduced and the
derived distribution is labelled as SMNG, which synthesizes a Scale-Mean mixture of Normal
distribution assuming a GIG distribution on the scale.

Theorem 2.1 (SMNG Distribution). Let consider the following scale-mean mixture of nor-
mal distribution:

X|W = w ∼ N
(
µ+ β

√
w,w

)
, W ∼ GIG(λ, δ, γ); (2.8)

then the random variable X marginally assumes a SMNG distribution with parameters
(λ, δ, γ, µ, β), under the conditions δ, γ > 0. Besides, the probability density function of
X can be expressed:

(i) in integral form:

fX(x) =c(λ, δ, γ, β)

∫ ∞
0

t−2λ exp

{
−1

2

(
[(x− µ)2 + δ2]t2+

+
γ2

t2
− 2β(x− µ)t

)}
dt;

(2.9)
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(ii) as an in�nite sum:

fX(x) =c(λ, δ, γ, β)

+∞∑
i=0

[β(x− µ)]i

i!
Kλ− i+1

2

(
γ
√
δ2 + (x− µ)2

)
×

(
γ√

δ2 + (x− µ)2

)λ− i+1
2

;

(2.10)

where:

c(λ, δ, γ, β) =

(γ
δ

)λ
√

2πKλ(δγ)
e−

β2

2 . (2.11)

Proof. (i) To �nd the marginal density function of X, the following integral needs to be
solved:

fX(x) =

∫ ∞
0

fN (x|w)fGIG(w)dw

=

(γ
δ

)λ
2
√

2πKλ(δγ)

∫ ∞
0

wλ−
1
2
−1 exp

{
− 1

2

(
(x− µ− β√w)2

w
+

+
δ2

w
+ γ2w

)}
dw.

(2.12)

By using simple algebra it can be noted that:

(x− µ− β√w)2

w
=

(x− µ)2

w
− 2β(x− µ)√

w
+ β2. (2.13)

If this expression is plugged into the integral and the change of variable w = t−2 is performed
(dw = −2t−3dt), the result of equation (2.9) is deduced.

(ii) To obtain the in�nite sum, it is required to recognize that the integral in (2.9) is
the kernel of the Laplace transformation of the EGIG density function with parameters(
−λ+ 1

2 ,
√
δ2 + (x− µ)2, γ, 2

)
, whose moments are known (see section 2.1.1) and can be

used as follow:

fX(x) =

(γ
δ

)λ
e−

β2

2

√
2πKλ(δγ)

K−λ+ 1
2
(γ
√
δ2 + (x− µ)2)

(
√
δ2 + (x− µ)2/γ)−λ+ 1

2

∫ ∞
0

ertfEGIG(t)dt, (2.14)

where r = β(x− µ).
To complete the proof and get the (2.10) it is necessary to expand the exponential inside
the integral. Since the series and the integral are bounded, the summation and the integral
can be exchanged: ∫ ∞

0
ertfEGIG(t)dt =

+∞∑
i=0

ri

i!

∫ ∞
0

tifEGIG(t)dt. (2.15)
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It is possible to recognize that the obtained integrals inside the sum are the moments of order
i of the EGIG distribution. By substituting their expressions the �nal result is obtained. �

Unfortunately, it is not possible to obtain a representation of the SMNG density function
without an integral or an in�nite sum. In fact, the integral in (2.9) cannot be expressed in
term of known special functions and it is not possible to apply the formula (A.10), i.e. the
multiplication theorem of the Bessel K function to the in�nite sum in (2.10) because of the
fractional index in the order.
Even if the convergence of the series (2.10) is a consequence of the equivalence with the
convergent integral (2.9), it is also possible to prove it analytically. In fact, considering the
standard ratio test, the equivalence (A.5) and the approximation (A.8), the generic term of
the sum with j → +∞ and ν = −λ+ j+1

2 is:

aj =
[β(x− µ)]j

j!

√
2

π

(
e
[
δ2 + (x− µ)2

]
2

)ν
ν−ν−

1
2 . (2.16)

Consequently, the ratio test assumes the form:

aj+1

aj
→ 1

j
√

j
2 + 1− λ

(
−λ+ j+1

2

−λ+ j
2 + 1

) j
2

+1−λ

= 0, j → +∞, (2.17)

and the series is absolutely convergent.

2.3.1 Meaning of the parameters

The in�uence of the �ve parameters is really similar to the ones of the GH distribution.
Figure 2.1 is aimed at giving an idea of the implications that di�erent parameters values
have on the SMNG density function. The parameter µ operates on location and it induces
a shift for the density. Then, it is possible to say that γ inherits its role in the GIG
distribution and it is a shape parameter: smaller values imply heavier tails, as it is possible
to see observing the log-density plots. Its strict connection to the tail heaviness is also
evident from its involvement in the moment generating function existence condition, as will
be investigated in the following sections. Another parameter that in�uences the tails is λ.
On the other hand, β is an asymmetry parameter, whereas δ is the scale parameter: with
smaller values the distribution is more concentrated around the peak.
Another useful result about the parameters is the behaviour of the SMNG distribution with
respect to changes in location and scale.

Proposition 2.1 (Location-scale behaviour). If X ∼ SMNG(λ, δ, γ, µ, β) and two constant
a ∈ R \ {0}, b ∈ R are considered, then:

aX + b ∼ SMNG

(
λ, |a|δ, γ|a| , β, aµ+ b

)
. (2.18)
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Proof. To prove this result, it is su�cient to obtain the density function of the transformed
random variable:

faX+b(x) = a−1fX

(
x− b
a

;λ, δ, γ, β, µ

)
. (2.19)

After simple algebra and a change of variable into the integral, it is possible to get:

faX+b(x) =

( γ
a2δ

)λ
√

2πKλ (aδa−1γ)
e−

β2

2

∫ ∞
0

z−2λ×

× exp

{
− 1

2

([
(x− b− aµ)2 + a2δ2

]
z2 +

γ2

a2z2
+

− 2β(x− b− aµ)z

)}
dz

(2.20)

Fixing δ̃ = |a|δ, γ̃ = γ
|a| and µ̃ = aµ + b and comparing the previous density in (2.9)

it is clear that it is again the density function of a SMNG distribution with parameters(
λ, δ̃, γ̃, β, µ̃

)
. �

2.3.2 Moment generating function and moments of the distribution

The general results that can be obtained for the conventional cases of normal mean-variance
mixtures (Hammerstein, 2010) do not hold for the SMNG distribution because of the par-
ticular form of the density function. Therefore, it is necessary to algebraically deduce the
quantities that characterize the distribution, beginning from the moment generating func-
tion.

Theorem 2.2 (SMNG Moment Generating Function). Considering a random variable X ∼
SMNG(λ, δ, γ, µ, β), it has a moment generating function of the form:

MX(r) = eµr

(
γ√
γ2−r2

)λ
Kλ(δγ)

+∞∑
i=0

(rβ)i

i!

(
δ√

γ2 − r2

) i
2

Kλ+ i
2

(
δ
√
γ2 − r2

)
, (2.21)

that is de�ned if r < γ.

Proof. To get simpler computations, the case µ = 0 is considered. Recalling the integral
form of the density function (2.9), using the de�nition of moment generating function:

MX(r) =

(γ
δ

)λ
√

2πKλ(δγ)
e−

β2

2

∫ +∞

−∞
erx
∫ ∞

0
t−2λ×

× exp

{
− 1

2

(
[x2 + δ2]t2 +

γ2

t2
− 2βxt

)}
dtdx.

(2.22)
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Figure 2.2: Comparison of the SMNG density with di�erent values of the parameters. In the legend
the varying parameters are showed, the other are �xed equal to 1 with the exception of µ = 0. For
λ and γ also the logarithm of the density is reported.

By applying Fubini's theorem and after a change of variable it is possible to recognize the
integral of the Gaussian distribution moment generating function. It can be solved using
the formula 3.323.2 in Gradshteyn and Ryzhik (2014):

MX(r) =

(γ
δ

)λ
√

2πKλ(δγ)
e−

β2

2

∫ ∞
0

t−2λ−1 exp

{
−1

2

(
δ2t2 +

γ2

t2

)}
×

×
∫ +∞

−∞
exp

{
−z

2

2
+
z(r + βt)

t

}
dzdt =

=

(γ
δ

)λ
Kλ(δγ)

∫ ∞
0

t−2λ−1 exp

{
−1

2

(
δ2t2 +

γ2 − r2

t2
− 2rβ

t

)}
dt.

(2.23)

The latter integral is convergent if r < γ and, through another change of variable, an integral
with the same structure as the one in (2.14) is obtained. Therefore, if the same procedure
used to prove the statement (ii) of Theorem 2.1 is applied, the (2.21) can be deduced (up
to the term eµr).
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Finally, the result can be extended to any µ by applying Proposition 2.1 and the formula of
the moment generating function of a linearly transformed random variable. �

In order to derive a generic expression for the SMNG distribution moments, it is useful to
start from the particular case µ = 0.

Proposition 2.2 (SMNG j-th Moment). If Z ∼ SMNG(λ, δ, γ, β, 0), then the j-th moment
assumes the following form:

E
[
Zj
]

=


(

2 δγ

) j
2
K
λ+

j
2

(δγ)

Kλ(δγ)

Γ( j+1
2 )√
π

Φ
(
− j

2 ,
1
2 ;−β2

2

)
j even

β
(

2 δγ

) j
2
K
λ+

j
2

(δγ)

Kλ(δγ)

√
2Γ( j2+1)√

π
Φ
(

1−j
2 , 3

2 ;−β2

2

)
j odd

(2.24)

where Φ(·, ·; ·) is the Kummer's M con�uent hypergeometric function (see appendix A.3).

Proof. The j-th moment of Z is de�ned as:

E
[
Zj
]

=

(γ
δ

)λ
√

2πKλ(δγ)

∫ +∞

−∞
zp
∫ +∞

0
t−2λ exp

{
− 1

2

[
(zt− β)2+

+
γ2

t2
+ δ2t2

]}
dxdt =

(2.25)

=

(γ
δ

)λ
√

2πKλ(δγ)

∫ +∞

0
t−2λ exp

{
−1

2

[
γ2

t2
+ δ2t2

]}
×

×
(∫ +∞

−∞
zj exp

{
−1

2

[
(zt− β)2

]}
dz

)
dt;

(2.26)

by Fubini's theorem. With the substitution zt = y, in the inner integral the j moment of a
N (β, 1) can be recognized.
Recalling that the j-th moment of a Gaussian distribution with mean µ and variance σ2 is
de�ned as (Winkelbauer, 2012):

E[Y j ] = (iσ)j exp

{
− µ2

4σ2

}
Dj

(
−iµ
σ

)
, (2.27)

where Dν(x) is the Parabolic Cylinder function (see appendix A.4), then applying the inte-
gral representation (A.4) to the (2.26) it is obtained:

E
[
Zj
]

=

(
δ

γ

) j
2 Kλ+ j

2
(δγ)

Kλ(δγ)
(i)j exp

{
−β

2

4

}
Dj (−iβ) . (2.28)

By using the expression of Dν(x) as a function of the Kummer's M function (A.15) and by
applying the Euler re�ection formula (A.2) to the gamma functions the �nal form (2.24) is
reached. �
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Then, if a generic SMNG distribution is considered, through Proposition 2.2 it is possible to
get an expression for the moments of the form E

[
(X − µ)j

]
. However, the following lemma

gives the possibility to use this particular result in order to compute both the raw moments

E
[
Xj
]
and the central moments E

[
(X − E[X])j

]
of any SMNG distribution.

Lemma 2.1. For any constant a and b and any positive integer j, it is true that:

E
[
(X − b)j

]
=

j∑
l=0

(
j

l

)
(a− b)j−lE

[
(X − a)l

]
. (2.29)

Proof. See Scott et al. (2011). �

After the general de�nition of the moments and of the moment generating function, the
characterization of the distribution can be completed writing the expected value:

E[X] = µ+ β

(
δ

γ

) 1
2 Kλ+ 1

2
(δγ)

Kλ(δγ)
; (2.30)

and the variance:

V[X] =β2

(
δ

γ

)Kλ+1(δγ)

Kλ(δγ)
−
K2
λ+ 1

2

(δγ)

K2
λ(δγ)

+

+

(
δ

γ

)
Kλ−1(δγ) +Kλ+1(δγ)

2Kλ(δγ)
− λ

γ2
.

(2.31)

These expressions could be deduced by applying the E[·] and V[·] operators to the formulation
in (2.6) or through the moment generating function.

2.3.3 Particular cases

Since the GIG distribution includes two important limiting cases, which coincide with the
inverse gamma and the gamma distributions, it is interesting to explore the resultant mixture
distributions.

Inverse Gamma as mixing distribution

If the GIG distribution has λ < 0 and γ → 0, then the random variable is an inverse gamma
W ∼ IG(α, θ):

fW (w) =
θα

Γ(α)
w−α−1e−θw

−1
, w > 0. (2.32)

In this case, the integral (2.9) simpli�es and it is possible to recognize the integral form
of the parabolic cylinder function (A.14). Therefore, the marginal density function of the
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SMNG reduces to:

fX(x) =

θαΓ (2α+ 1)D−2α−1

(
β(µ−x)√

(x−µ)2+2θ

)
√

2πΓ(α) [(x− µ)2 + 2θ]α+ 1
2

×

× exp

{
β2(µ− x)2

4 [(x− µ)2 + 2θ]
− β2

2

}
,

(2.33)

where θ = δ2

2 and α = −λ if the parametrization of (2.8) is considered.
In agreement with the existence condition of the SMNG moment generating function (see
theorem 2.2), it turns out that in this particular case MX(r) is not de�ned.

Gamma as mixing distribution

If the limiting case I of the GIG distribution is examined, i.e. λ > 0 and δ → 0, the gamma

distribution of parameters λ and ν = γ2

2 is the mixing distribution and the density of X is:

fX(x) =

√
2νλ√
πΓ(λ)

e−
β2

2

+∞∑
i=0

[β(x− µ)]i

i!
Kλ− i+1

2

(√
2ν|x− µ|

)
×

( √
2ν

|x− µ|

)λ− i+1
2

.

(2.34)

It has the same structure of the (2.10) and the existence conditions of the moment generating
functions remain the same as in the general case.

2.4 Comparison with the GH distribution

The distribution considered in Theorem 2.1 de�nes a real-valued random variable that has
a similar behaviour with respect to the GH distribution. First of all, if it is �xed β = 0
the SMNG distribution assumes the same limiting case of the GH, i.e. the symmetric GH
distribution.
Since the two distributions depend on 5 parameters that have the same meaning, it is
interesting to observe the changes in the densities taking equal parameters sets. In �gure
2.3, the main di�erence between the two distributions clearly appears: the right tail (left in
case of negative β) is considerably lighter for the SMNG distribution.
In e�ect, the density of a GH distribution in the tails is:

fGH(x) = c|x|λ−1 exp
{
−
√
γ2 + β2|x|+ βx

}
, |x| → ∞ (2.35)

that de�nes a distribution with semi-heavy tails; whereas the tails of the SMNG distribution,
recalling the (A.9), have the following law:

fSMNG(x) = c|x|λ−1 exp
{
−γ|x|+√γβ|x| 12

}
. (2.36)
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Figure 2.3: Plots of GH and SMNG densities and log-densities with the same parameters �xed: the
cases β = 1 and β = 3 are reported. The other parameters are �xed equal to 1 with the exception
of µ = 0.

Therefore, for each β > 0 and it is possible to conclude that:

fGH(x0) > fSMNG(x0), ∀x0 > M, (2.37)

where M is a large positive number. The same holds for the left tail with β < 0 and M
negative. On the other hand, if the left tail with β > 0 is considered, then the GH density
decays faster than the SMNG density.

2.5 The log-SMNG distribution

In the subsequent parts of this work, the distribution of the exponential transformation of a
SMNG distributed random variable is of interest. This kind of distribution can be de�ned
as follow.

De�nition 2.2 (Log-SMNG distribution). If X ∼ SMNG(λ, δ, γ, β, µ), then the random
variable Y = exp {X} assumes a log-SMNG distribution. Equivalently, the log-SMNG dis-
tribution might be de�ned as the random variable whose logarithmic transformation is dis-
tributed as a SMNG.
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Therefore, a continuous distribution that assumes positive values only is faced. With a
simple application of the random variable transformation formula, it is possible to deduce
the key properties that characterize the distribution.

Proposition 2.3 (Log-SMNG characterization). If X ∼ SMNG(λ, δ, γ, β, µ) and Y =
exp {X}, then Y possesses:

(i) probability density function:

fY (y) =
1

y
fX (log[y]) , (2.38)

where fX(·) is de�ned in the (2.9) or (2.10);

(ii) expectation and j-th central moment (de�ned if γ > j):

E[Y ] = eµ

(
γ√
γ2−1

)λ
Kλ(δγ)

+∞∑
i=0

(β)i

i!

(
δ√
γ2 − 1

) i
2

Kλ+ i
2

(
δ
√
γ2 − 1

)
, (2.39)

E[Y j ] = ejµ

(
γ√
γ2−j2

)λ
Kλ(δγ)

+∞∑
i=0

(jβ)i

i!

(
δ√

γ2 − j2

) i
2

Kλ+ i
2

(
δ
√
γ2 − j2

)
. (2.40)

Proof. (i) The result follows from the simple application of the random variable transfor-
mation formula.
(ii) Given that Y = exp {X}, then E[Y j ] = E[exp{jX}]. It is the moment generating
function of the SMNG distribution de�ned in the (2.21) evaluated in j. Consequently, the
existence of the moments of the log-SMNG is regulated by the same existence condition of
the SMNG moment generating function. �

2.6 Computational notes and software implementation

In order to use the two distributions described in this chapter, R (R Core Team, 2017)
functions needed to be implemented. In particular, to generate random samples from the
SMNG distribution, the mixture speci�cation in (2.8) was exploited. Therefore, to obtain
an independent sample of size n the following steps were executed:

� generate a sample of n independent realizations from a GIG distribution using the
function rgig(), included in the R package ghyp (Breymann and Lüthi, 2013);

� use rnorm() to generate from the resultant normal distribution.

Another function implements the SMNG density function. This is a tricky task because of
the numerical instability of the two formulations given in Theorem 2.1. In fact, with high



CHAPTER 2. THE SMNG DISTRIBUTION 30

values of the parameters δ, γ, β, numerical problems might be detected both for the function
based on integrate() and the in�nite sum, that includes a ratio of Bessel K functions.
To overcome this issue, the best solution is to implement the sum in (2.10) with the option
expon.scaled=TRUE of the function besselK(), that returns exp{x}Kν(x). In this way,
the eventual problems related to the numerical under�ow caused by the ratio of two Bessel
K functions with elevate arguments can be avoided. Besides, an easy way to implement a
stopping rule for the in�nite sum consists in putting a test in order to evaluate the magnitude
of each term with respect to the partial sum. However, a function that produces the density
through the integral representation was implemented too.
Then, to get the cumulative distribution function:

FX(x) =

∫ x

−∞
fX(t)dt, (2.41)

a numerical integration procedure was employed through the integrate() function.
Finally, the computation of the quantiles represents a famous problem of numerical inversion.
In fact, the quantile α that corresponds to a probability p is the solution of the non-linear
equation:

FX(α)− p = 0. (2.42)

To solve it, the standard uniroot() procedure was employed (Lange, 2010).
The same ideas were used to implement the key functions related to the log-SMNG distri-
bution, by applying the simple exponential transformation to the generated sample and the
formula (2.38) for the density.
All these functions are implemented in R and included in the developed package BayesLN.
The standard R denominations are adopted: dSMNG and dlSMNG evaluate the SMNG and the
log-SMNG density functions, pSMNG and plSMNG the cumulative functions, qSMNG and qlSMNG

the quantiles and, �nally, rSMNG and rlSMNG allow to generate random numbers form the
distributions. Moreover, the SMNG moments are implemented in the function SMNGmoment,
whereas the function that evaluates the moment generating function is SMNG_MGF.



Chapter 3

Bayesian inference for the log-normal

quantiles

The estimation of log-normal quantiles can be of interest in many applications. For example,
in environmental monitoring and occupational health analyses, it is common to estimate
extreme quantiles in the right tail of a skewed distribution from small samples (Bullock
and Ignacio, 2006; Gibbons et al., 2009; Krishnamoorthy et al., 2011), or to compare a �xed
legal exposure limit to an extreme quantile (or to its upper con�dence limit, UCL) estimated
from a sample that could be small. Under these conditions, the tools available in the current
literature, that mainly consist of the exponentiation of standard frequentist results obtained
in the log-scale, can produce une�cient point and interval estimators with poor coverage
or low precision and can be signi�cantly improved. The proposed methodology improves
current methods, especially in the analysis of small samples. The estimation of quantiles is
relevant in several other applied �elds like the analysis of lifetime data (Lawless, 2003) or
�ood frequency analysis (Stedinger, 1980; Hamed and Rao, 1999).
The estimation of log-normal quantiles has received little attention so far. In the frequentist
literature, Longford (2012) identi�es a class of estimators depending on two constants that
he determines with the aim of minimizing the frequentist mean square error (MSE); he
overlooks relevant inferential problems such as interval estimation.
In this chapter the problem of Bayesian estimation of log-normal quantile is studied with a
particular focus on the posterior moment �niteness. In section 3.1 an overview on the already
developed methods for the log-normal quantile estimation is provided. All the mathematical
details to obtain a rigorous Bayesian inferential framework are presented in section 3.2,
while in section 3.3 the hyperparameter speci�cation strategy is discussed. Finally, the
methodology is extended to the conditional quantile estimation problem in section 3.4.

31
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3.1 Estimation of log-normal quantiles: current state of the

art

3.1.1 Non-parametric estimation

A non-parametric approach for the quantile estimation is often adopted. Even if the cor-
nerstone on this work is the log-normality distributional assumption, it is worth to consider
this estimation procedure that is commonly used also with small sample sizes.
There exist a lot of di�erent methods easily accessible in common statistical software and a
good review is the paper by Hyndman and Fan (1996). As a benchmark for the developed
proposals, the standard R function quantile is used, with the default type 7 method. It
is due to Gumbel (1939) and it is based on the empirical cumulative distribution function
built on the following de�nition of k-th plotting position:

pk =
k − 1

n− 1
, (3.1)

that coincides with the mode of the distribution function of the k-th order statistic: F (X(k)).
Then, the quantile p, included between the positions k − 1 and k, is obtained by linear
interpolation:

Q̂7
p = X(k−1) −

(
X(k−1) −X(k)

) pk+1 − p
pk+1 − pk

. (3.2)

3.1.2 Naive estimation

When an estimate of the log-normal p-th quantile is required, the usual procedure is to take
the exponential of the well known normal quantile formula:

θ̂p = exp
{
ξ̂ + Φ−1(p)σ̂

}
, (3.3)

plugging the unbiased estimates of the mean and variance in the log-scale: ξ̂, σ̂2. It is worth
to highlight that, after the squared root transformation, σ̂ is not an unbiased estimator of the
population standard deviation in the log-scale. Besides, even if a monotone transformation
(as the exponential is) does not change the order statistics like the quantiles, it might a�ect
all the desirable properties that the estimator has in the original scale.
The same procedure is applied to compute the extremes of the con�dence intervals (Gibbons
et al., 2009). In the two sided case with the �xed con�dence level 1− α they are:[

exp

{
ξ̂ + t(α2 ,n−1,kp)

σ̂√
n

}
; exp

{
ξ̂ + t(1−α

2
,n−1,kp)

σ̂√
n

}]
, (3.4)

where t(α2 ,n−1,kp) is the quantile
α
2 of a non-central Student's t distribution with n−1 degrees

of freedom and a non-centrality parameter kp =
√
nΦ−1(p).



CHAPTER 3. LOG-NORMAL QUANTILES ESTIMATION 33

In many applications, the one-sided intervals are particularly useful, and they are called
lower con�dence limit (LCL) or upper con�dence limit (UCL):

LCLp = exp

{
ξ̂ + t(α,n−1,kp)

σ̂√
n

}
,

UCLp = exp

{
ξ̂ + t(1−α,n−1,kp)

σ̂√
n

}
.

(3.5)

3.1.3 Longford's minimum MSE estimator

In the paper by Longford (2012), the following statistic was proposed to estimate the quan-
tiles θp of a sample of observations assumed log-normally distributed:

Qp = exp
{
ξ̂ + bpσ̂ + dpσ̂

2
}
, (3.6)

where ξ̂ and σ̂2 are the unbiased estimators of ξ and σ2.
The values of the parameters (bp, dp) were �xed by minimizing the MSE of the estima-
tor using the Newton-Raphson algorithm. The procedure was implemented by the author
substituting the sample quantity σ̂2 to the unknown σ2.
It is important to point out that the proposed estimator has �nite expectation when dp is
negative or when:

σ2 <
n− 1

2dp
, (3.7)

where n is the sample size. The same inequality divided by 2 determines the existence
condition for the MSE. These conditions are not testable since the variance σ2 is not known.

3.2 Bayes estimator of the log-normal quantiles

The goal is to make inference on the log-normal quantiles θp de�ned in the (1.5) from the
observed sample of size n: (y1, . . . , yn). The logarithmic transformations of the observations
are wi = log(yi).
Therefore, in order to obtain the posterior distribution of θp, it is necessary to assume a
prior distribution for the two parameters ξ and σ2. The conjugate Normal-GIG (NGIG) prior
distribution is chosen (Thabane and Haq, 1999). Therefore, a normal prior conditionally on
σ2 is assumed for ξ and a generalized inverse Gaussian distribution is speci�ed for σ2:

ξ|σ2 ∼ N
(
ξ0,

σ2

n0

)
, (3.8)

σ2 ∼ GIG(λ, δ, γ). (3.9)

Through the speci�cation of the set of hyperparameters (ξ0, n0, λ, δ, γ) it is possible to ex-
press a huge amount of di�erent prior situations. It is worth to highlight the fact that the
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marginal prior assumed on ξ is a symmetric generalized hyperbolic distribution (see section
B.1).
The usual non-informative improper priors like Je�rey's prior, are not considered in this case
because a key point of the work is to obtain a posterior distribution with �nite moments, in
order to deduce a Bayes estimator for the estimand, as it will be pointed out later.
Furthermore, to �x the notation, from now on the target functional in the log-scale will be
de�ned as:

ηp = log θp

= ξ + Φ−1(p)σ;
(3.10)

and the following sample quantities will be employed:

w̄ =

∑n
i=1wi
n

; (3.11)

v2 =

∑n
i=1(wi − w̄)2

n
. (3.12)

Before deducing the posterior distribution of θp, a series of useful results conditioned on σ2

could be stated. They easily follow from the conjugacy of the NGIG prior with the Normal
distribution.

Proposition 3.1. If the Normal prior on ξ (3.8) is speci�ed and the log-normal model is
assumed for data, then the following results conditioned on σ2 hold:

(i)

ξ|σ2,w ∼ N
(
ξ1,

σ2

n1

)
, (3.13)

where ξ1 = ψw̄ + (1− ψ)ξ0, n1 = n+ n0 and ψ = n
n1
;

(ii)

ηp|σ2,w ∼ N
(
η̄p,

σ2

n1

)
, (3.14)

where η̄p = ξ1 + Φ−1(p)σ.

Proof. (i) It is necessary to consider:

p(ξ|σ2,w) ∝ p(w|ξ, σ2)p(ξ, σ2)

∝ exp

{
−
∑n

i=1 (wi − ξ)2

2σ2
− n0 (ξ − ξ0)2

2σ2

}

= exp

{
−
∑n

i=1 (wi − w̄)2

2σ2
− n1 (ψw̄ + (1− ψ)ξ0 − ξ)2

2σ2

}

∝ exp

{
−n1 (ξ1 − ξ)2

2σ2

}
;

(3.15)
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that is the kernel of a Gaussian distribution with mean ξ1 and variance σ2

n1
.

(ii) To prove this point it is possible to observe from (3.10) that ηp is a simple linear
transformation of ξ and the same transformation can be applied to the normal distribution.

�

As a direct consequence of the previous proposition, the target functional θp assumes a
log-normal distribution conditionally on σ2.
Another important step is the derivation of the marginal posterior distributions for the
parameters ξ and σ2. Also in this case a standard result is faced, because of the conjugacy
of the Normal prior on the Gaussian mean.

Proposition 3.2. If the NGIG prior (3.8), (3.9) is speci�ed and the log-normal model is
assumed for data, then the posterior marginal distributions for the parameters ξ and σ2 are:

(i)
ξ|w ∼ GH

(
λ̄, γ̄, 0, δ̄, ξ1

)
, (3.16)

where λ̄ = λ− n
2 , γ̄ =

√
n1γ and δ̄ =

(√
n1

)−1√
δ2 + nv2.

(ii)
σ2|w ∼ GIG

(
λ̄, δ̄
√
n1, γ

)
. (3.17)

Proof. (i) Integrating out σ2 from the joint distribution and then applying (A.4):

p (ξ|w) ∝
∫ +∞

0
p(w|ξ, σ2)p(ξ, σ2)dσ2

∝
∫ +∞

0
(σ2)−

n+1
2 exp

{
− 1

2σ2

(
nv2 + n1 (ψw̄ + (1− ψ)ξ0 − ξ)2

)}
×

×
(
σ2
)λ−1

exp

{
−1

2

(
δ2

σ2
+ γ2σ2

)}
dσ2

=

∫ +∞

0
(σ2)λ−

n+1
2
−1 exp

{
−1

2

(
δ2 + nv2 + n1(ξ − ξ1)2

σ2
+ γ2σ2

)}
dσ2

∝
Kλ−n+1

2

(
γ
√
δ2 + nv2 + n1(ξ − ξ1)2

)
(√

δ2 + nv2 + n1(ξ − ξ1)2/γ
)n+1

2
−λ

.

(3.18)

The obtained expression is the kernel of a symmetric GH distribution (i.e. β = 0).
(ii) Starting from the same point of part (i) but integrating out ξ:

p
(
σ2|w

)
∝
∫ +∞

−∞
p(w|ξ, σ2)p(ξ, σ2)dξ

∝ (σ2)λ−
n+1
2
−1 exp

{
−1

2

(
δ2

σ2
+ γ2σ2

)}
×∫ +∞

−∞
exp

{
− 1

2σ2

(
n1 (ψw̄ + (1− ψ)ξ0 − ξ)2

)}
dξ.

(3.19)
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The integral is trivial since the kernel of a Gaussian distribution can be noted. Finally, the
kernel of a GIG distribution can be recognized. �

The main result of this section consists in the statement of the posterior distribution for θp.

Theorem 3.1. If the NGIG prior (3.8), (3.9) is speci�ed and the log-normal model is
assumed for data, then:

(i)
ηp|w ∼ SMNG(λ̄, δ̄, γ̄, β̄, ξ1), (3.20)

where β̄ =
√
n1Φ−1(p);

(ii)
θp|w ∼ logSMNG(λ̄, δ̄, γ̄, β̄, ξ1). (3.21)

Proof. (i) Recalling the conditional distribution of ηp with respect to σ2 (3.13), the quantity
could be written as:

1√
n1
ηp|σ2,w ∼ N

(√
n1ξ1 +

√
n1Φ−1(p)σ, σ2

)
. (3.22)

Since from the (3.17) it is known that the posterior distribution of σ2 is GIG, the result of
Theorem 2.1 can be used to obtain:

1√
n1
ηp|w ∼ SMNG(λ̄,

√
δ2 + n1v2, γ, β̄,

√
n1ξ1). (3.23)

To complete the proof, it is required to apply the result on the location-scale behaviour of
the SMNG distribution studied in proposition 2.1.
(ii) Since ηp|w is SMNG distributed and θp = exp{ηp}, then by de�nition 2.2 it is log-SMNG
distributed. �

The deduced parameters of the θp posterior distribution are compliant with the meaning
of the SMNG parameters: a higher posterior sample size n1 implies lighter tails (smaller
and negative λ and bigger γ) and a density that is gathered around the mode (smaller δ).
On the other hand, the asymmetry parameter β is ruled by the studied quantile through
the inverse of the standardized Gaussian cumulative distribution function, and the location
parameter is equal to the conditioned posterior mean ξ1.
As already shown in section 2.5, it is possible to deduce the moments of the log-SMNG
distribution by starting from the moment generating function of the SMNG distribution.
Since one of the aims of this work is to get a point estimate of the target quantity (Lehmann
and Casella, 2006; Robert, 2007), the Bayes estimator associated to a given loss function,
according to de�nition C.2, is investigated and evaluated. To have a brief introduction to
Bayesian point estimation under loss functions see section C.
This kind of estimators represents a convenient way to synthesize the posterior distribution.
In particular, the quadratic loss function (C.4) is considered in this work for its popularity
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and the relative quadratic loss function (C.6) is included too because of its history in the
context of Bayesian log-normal estimation. This aspect will be deepened in the following
sections. The Bayes estimators associated to the considered loss functions respectively are
the posterior mean and the ratio of posterior expectations reported in equation (C.7).

Proposition 3.3 (Bayes estimators of θp). Given that the posterior distribution for the
target functional θp is (3.21), then:

(i) the Bayes estimator of the log-normal p-th quantile under the quadratic loss function
is:

θ̂QBp =eξ1

( √
n1γ√

n1γ2−1

)λ̄
Kλ̄(
√
nv2 + δ2γ)

+∞∑
j=0

β̄j

j!

( √
nv2 + δ2

√
n1

√
n1γ2 − 1

) j
2

×

×Kλ̄+ j
2

(√
nv2 + δ2

√
n1γ2 − 1√

n1

)
,

(3.24)

that exists when γ > 1√
n
;

(ii) the Bayes estimator under relative quadratic loss is:

θ̂RQBp =eξ1

(√
n1γ2 − 4√
n1γ2 − 1

)λ̄
×

×

∑+∞
j=0

β̄j

j!

( √
nv2+δ2

√
n1

√
n1γ2−1

) j
2

Kλ̄+ j
2

(√
nv2+δ2

√
n1γ2−1√

n1

)
∑+∞

j=0
β̄j

j!

(
4
√
nv2+δ2

√
n1

√
n1γ2−4

) j
2

Kλ̄+ j
2

(√
nv2+δ2

√
n1γ2−4√

n1

) ;

(3.25)

that exists when γ > 2√
n1
.

Besides, to have a �nite posterior variance it must hold that:

γ >
2√
n1
. (3.26)

Proof. (i) Since the Bayes estimator under quadratic loss is the posterior mean, consider-
ing that θp|w follows a log-SMNG distribution, the result is a simple application of the
proposition 2.3.
(ii) To get the Bayes estimator under relative quadratic loss it is su�cient to note that by
applying proposition 2.1:

− log(θp)|w ∼ SMNG(λ̄, δ̄, γ̄, β̄,−ξ1), (3.27)

− 2 log(θp)|w ∼ SMNG(λ̄, 2δ̄, γ̄/2, β̄,−2ξ1); (3.28)

and then it is required to use proposition 2.3 to get an expression for (C.7).
�
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Unfortunately, the obtained estimators are expressible only as an in�nite sum of Bessel K
functions. However, the convergence of the sum has been explored in chapter 2 and it can
be easily implemented in any statistical software. In particular, in section 2.6 all the tools
to perform the posterior analysis on a log-SMNG distribution are provided.
As expected, the existence of the Bayes estimators is subjected to a restriction on the
parameter γ, the one which controls the right tail of the distribution. It is a less restrictive
condition, if compared to the one deduced by Fabrizi and Trivisano (2012) for the log-normal
mean. This is an expected result recalling the comparison between the SMNG distribution
and the GH distribution (section 2.4). In fact, the functional involved in the quantile
estimation is characterized by less variability and, consequently, lighter tails, because of
the presence of σ instead of σ2. Finally, the restriction on γ becomes negligible if n is
increasing. Another appealing property of the existence condition is that it does not depend
on the quantile estimated.
On the other hand, the existence condition points out the reason why the usual non-
informative priors (like the Je�rey's prior) do not produce a posterior distribution with
�nite moments. In fact, they might be deduced as particular cases of the GIG distribution
with γ → 0.
Furthermore, this result justi�es the necessity of a GIG prior on the variance σ2 instead of
the most common inverse gamma distribution, that is the limiting case of a GIG distribution
with γ → 0. In fact, in the latter case, the posterior of θp would assume the exponential
transformation of the random variable having density (2.33), whose mean is not �nite (see
section 2.3.3).

3.2.1 Minimum MSE conditional estimator

Following the idea of the paper by Zellner (1971), the Bayes estimator of θp conditioned
with respect to σ2 with minimum MSE might be found. In particular, the general class
of estimators de�ned as: θ∗p = k · exp{w̄}, where k is a constant, is considered. A vague
improper prior is assumed for ξ:

p(ξ) ∝ 1. (3.29)

Even if the result cannot be applied in practice, it can be used as a benchmark to evaluate
the performances of the proposed Bayes estimators.
The principal results about this particular estimator are contained in the following theorem.

Theorem 3.2. Considering the estimators of the functional θp that consider σ2 as known
and are included in the class:

θ∗p = k · exp{w̄}; (3.30)

then the one that minimizes the frequentist MSE is:

θ̂∗p = exp

{
w̄ + σΦ−1(p)− 3σ2

2n

}
. (3.31)

Furthermore, it coincides with the conditioned Bayes estimator that minimizes the relative
quadratic loss function.



CHAPTER 3. LOG-NORMAL QUANTILES ESTIMATION 39

Proof. Plugging the generic form of the estimator (3.30) into the de�nition of MSE:

E
[(
θ∗p − θp

)2]
= k2E [exp {2w̄}]− 2kE [exp {w̄}] exp

{
ξ + σΦ−1(p)

}
+

+ exp
{

2ξ + 2σΦ−1(p)
}

= k2 exp

{
2

(
ξ +

σ2

n

)}
− 2k exp

{
2ξ +

σ2

2n
+ σΦ−1(p)

}
+

+ exp
{

2ξ + 2σΦ−1(p)
}
.

(3.32)

It is immediate to see that this parabola is minimized when:

k = exp

{
σΦ−1(p)− 3σ2

2n

}
. (3.33)

Then, if the relative quadratic loss function (C.6) is taken into account:

L =

[
θp − θ∗p
θp

]2

=
[
1− θ∗p exp

{
−ξ − σΦ−1(p)

}]2
;

(3.34)

the expectation taken with respect to ξ|σ2,w is:

Eξ
[
L|σ2,w

]
=1− 2θ∗pEξ

[
e−ξ|σ2,w

]
e−σΦ−1(p)+

+ θ∗2p Eξ
[
e−2ξ|σ2,w

]
e−2σΦ−1(p).

(3.35)

If the expectation of e−ξ and e−2ξ is derived recalling that in case of improper prior it holds:

ξ|σ2,w ∼ N
(
w̄,
σ2

n

)
, (3.36)

then θ̂∗p is the value that minimizes the expression. �

Therefore, an implicit result of this section is that, conditionally on σ2, the posterior ex-
pectation of (3.14) does not minimize the frequentist MSE; since its minimum is reached
by the Bayes estimator under relative quadratic loss. Furthermore, this result clari�es the
inclusion of θ̂RQBp in proposition 3.3.

3.3 Choice of hyperparameters

Once the prior distribution is �xed and all the posterior distributions are deduced, the
following step is the hyperparameters selection. In fact, it is evident that posterior inference
depends on the values assumed by (ξ0, n0, λ, δ, γ), particularly with small samples.
Two di�erent strategies will be presented in order to �x the hyperparameters: the �rst one
represents a weakly informative choice, whereas the second one is aimed at minimizing the
frequentist MSE, following the idea of Rukhin (1986).



CHAPTER 3. LOG-NORMAL QUANTILES ESTIMATION 40

All the proposals reported in the following sections will be based on the fundamental idea
that the hyperparameters should be speci�ed in order to ensure the existence of the Bayes
estimators and the posterior variance.

3.3.1 Weakly informative prior

As regards to the prior on the mean in the log-scale ξ, the usual �at improper prior could be
obtained setting n0 → 0, without a�ecting the existence condition of the posterior moments.
In this case, a prior that assumes independence between σ2 and ξ is considered:

p(ξ) ∝ 1,

σ2 ∼ GIG(λ, δ, γ).
(3.37)

Within this framework, some of the distributional results reported in section 3.2 are sub-
jected to little changes. In particular, it is possible to note that:

ξ1 = w̄,

n1 = n,

λ̄ = λ− n− 1

2
.

(3.38)

Therefore, as an example, the conditional posterior distribution of the mean in the log-scale
ξ becomes:

ξ|σ2,w ∼ N
(
w̄,
σ2

n

)
. (3.39)

In general, to deduce the quantities of interest under this prior setting, it is su�cient to plug
the values reported in (3.38) into the results of section 3.2.
The particular form of the posterior mode of σ2 could represent a reasonable starting point
to specify the GIG hyperparameters (λ, δ, γ). In fact, considering the posterior distribution
of σ2 (3.17), recalling the (2.4), its mode is:

Mo
(
σ2|w

)
=

(λ̄− 1) +
√

(λ̄− 1)2 + (nv2 + δ2) γ2

γ2
. (3.40)

If the �rst order expansion of the square root around a value c is considered (known also as
Babylonese method): √

c2 +m = |c|+ m

2|c| , (3.41)

then it is possible to approximate the mode:

Mo
(
σ2|w

)
'

(λ̄− 1) + |λ̄− 1|+ (nv2+δ2)γ2

2|λ̄−1|

γ2

=

(
nv2 + δ2

)
−2λ+ n+ 1

,

(3.42)
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if it is assumed that λ̄− 1 < 0, i.e. λ < n+1
2 ; a condition that does not represent a binding

restriction. From the last expression, it is possible to observe that if λ and δ are respectively
�xed equal to 1

2 and a small value ε, the posterior mode of σ2 would approximately be equal
to the sample variance in the log-scale. In that case, an inverse Gaussian distribution is in
fact speci�ed as prior.
Similar results might be deduced considering the approximation of the posterior expectation
proposed in Fabrizi and Trivisano (2012):

E
[
σ2|w

]
' λ̄+

√
λ̄2 + (nv2 + δ2) γ2

γ2
. (3.43)

By applying the same concepts used to deduce the (3.42) the following quantity is deduced:

E
[
σ2|w

]
'
(
nv2 + δ2

)
−2λ+ n− 1

; (3.44)

if λ = 0 and, again, δ = ε are �xed, then the posterior expectation of σ2 would be approxi-
mately equal to the unbiased estimator of the variance of data in the log-scale.
Both the approximations introduced do not provide information about the value which γ
should assume. Since it is the parameter that controls the tail behaviour, it can be reasonably
�xed equal to the minimum quantity that allows the existence of the Bayes estimator and
its variance. Therefore, recalling the (3.26), it is reasonable to assume that:

γ0 =
2√
n

+ εγ . (3.45)

The choice of εγ could in�uence the inferential procedure, especially in case of small sample
size. In fact, a very small value might not be appropriate since it can produce explosive
values for the highest moment de�ned. The proposal that will be adopted from now on is
to �x εγ = 1√

n
, which corresponds to the quantity required to reach the existence threshold

for the moment with the nearest higher order.
Thanks to the GIG distribution �exibility, setting λ = 0 or λ = 0.5, a prior distribution
with heavy tails is obtained, nonetheless a posterior with �nite moments up to the second
order is produced. In fact, by looking at �gure 3.1, it appears that the right tail of the GIG
distribution decay slower than the one of the inverse gamma near to 0, but then they do not
assume the form of an asymptote like the inverse gamma tail, since they markedly continue
the decrease. In this way the posterior moments �niteness is preserved.

3.3.2 Minimum frequentist MSE estimators

Bayes estimators can be evaluated also in terms of frequentist properties, in order to com-
pare their performances to frequentist estimators (Carlin and Louis, 2008). Therefore, it
is possible to propose procedures that allow to choose hyperparameters that minimize the
frequentist MSE. The deduced prior settings can be particularly useful when a small sample
is available and a point estimation is required.
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Figure 3.1: Log density of the weakly informative GIG distributions proposed and of the most
common vague inverse gamma (IG) priors.

Since the proposed estimators have particularly complicated mathematical expressions, due
to the presence of an in�nite sum of Bessel K functions, closed form relations to �nd optimal
parameters cannot be found, even if approximations are applied. Therefore, a numerical
solution is �rstly proposed. Afterwards, connections with results included in the paper by
Fabrizi and Trivisano (2012) for the functional θa,b (1.4) are shown in order to have a strategy
for the hyperparameters speci�cation that does not involve a numerical software.

Numerical optimization

A �ve parameter optimization problem appears over-dimensioned for the inferential purpose,
especially in a small sample framework.
Some suggestions to reduce the dimensionality of the minimizing function can be argued by
specifying the MSE expression.
Recalling the (3.13), the MSE of the Bayes estimator under quadratic loss (3.24) can be
decomposed in the following way:

E
[(
θ̂QBp − θp

)2
]

= E
[
e2(ψw̄+(1−ψ)ξ0)g(V 2)2 − 2θpe

ψw̄+(1−ψ)ξ0g(V 2) + θ2
p

]
= θ2

p

[
e2(1−ψ)(ξ0−ξ)+ 2ψ2σ2

n −2φσE

[(
g(V 2)− e(1−ψ)(ξ0−ξ)− 3ψ2σ2

2n +φσ

)2
]

+

+1− e−ψ2σ2

n

]
,

(3.46)
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where g(V 2) is a function of the sample variance V 2 and it is the only part of the expression
that includes the hyperparameters of the GIG distribution.
A �rst way to simplify the research of the minimum is to specify n0 in a weakly informative
but proper way, e.g. to obtain ψ = 0.98. Through this decision, the estimator performance
would be robust to misspeci�cation of ξ0, but the contribution of the normal prior instead
of the �at prior might be useful in containing the estimator variance.
However, in this prior setting, the target functional to minimize with respect to the remaining
parameters (λ, δ, γ) is approximately equal to:

E

[(
g(V 2)− exp

{
φσ − 3σ2

2n

})2
]
, (3.47)

considering the (3.46) and letting ψ → 1. This approximation coincides with the result that
would be obtained in case of improper prior on ξ.
Therefore, the functional to minimize is an expectation taken with respect the random
variable V 2, and from the log-normality assumption it holds that:

nV 2 ∼ Ga
(
n− 1

2
,

1

2σ2

)
. (3.48)

By exploring the trend of function (3.47), the indication is that the searching problem is
still over-dimensioned: it is not possible to �nd a unique minimum point unless two GIG
parameters are kept constant.
Because of the necessity of putting constraints on the parameters range, numerical algo-
rithms that allow to satisfy this requirement are considered. In particular, a bounds con-
strained quasi-Newton method that is implemented in the R package optimx (Nash et al.,
2014) is employed.
The �rst parameter to �x is λ: it is a shape parameter and it appears in the order of the
Bessel's K functions and an eventual numerical optimization algorithm for it might be too
unstable. Following the idea of the previous section, the shape parameter λ is �xed equal
to 0. By observing the trends of the (3.47) in this case, it appears that a �nite minimum
cannot still be found optimizing with respect two parameters. Besides, a distinction in the
procedure for quantiles above the median and below the median (case that will be dealt
with later) seems to be necessary. Moreover, the di�erent behaviour of the functional over
the quantiles can provide some suggestions in order to �x another parameter and to have
the possibility of �nding the third value through minimization (�gure 3.2).
To capture the shape of the function the following strategies could be adopted:

� p < 0.5: �x γ equal to the minimum value that allows the existence of second posterior
moment according to the rule in (3.45). Then minimize with respect to the parameter
δ;

� p > 0.5: �x δ and minimize with respect to γ. Recalling the (3.44), it is possible to
specify an informative value of δ, considering it as a contribution in terms of variance
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Figure 3.2: Behaviour of the functional in (3.47) for θ̂QBp with respect to the parameters γ and δ,
keeping constant λ = 0 and considering p = (0.10, 0.25, 0.75, 0.90). The case n = 21 and σ2 = 1 is
considered.

of a prior sample. A general proposal could be δ = 1: in most applied problems,
values of the variance in the log-scale σ2 are seldom greater than 2, so 1 can be read
as a reasonable guess for the size of an hypothetical deviation from the mean when
n = 1. Of course, if the scale of the problem is totally di�erent, the user can specify
alternative values for δ.

Heuristically, searching for optimal γ for quantiles above the median, and optimal δ for those
below, is in line with the specialization of these parameters in the GIG distribution: γ rules
the right tail of the distribution that is not relevant when p < 0.5, while δ is more involved
with the general spread of the distribution and is therefore more relevant to the shape of
the lower tail.
In the practical context, it must be considered that σ2 is unknown and it appears in the
functional (3.47). This issue might be overcome by plugging into the expression the sample
variance v2 or a guess s2

0 if it is available. The latter procedure is advisable since it allows
to remove from the MSE the part of variability caused by the use of v2. Moreover, the
procedure could be considered more rigorous from a Bayesian viewpoint, since data would
not been used twice in the inferential procedure. However, it is not always possible to have
a safe value, even if the procedure is quite robust to the misspeci�cation of s2

0, as will be in
the simulation study presented in the following chapter.
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A considerable particular case is the median and its neighbourhood. In these cases, the
Bayes estimator under relative quadratic loss seems to perform better than the posterior
mean for several reasons. Considering the �gure 3.3, it could be deduced that the MSE
is minimized when λ → −∞ is chosen. Using the limiting form (A.8) for the Bessel K
function, it is possible to prove that the Bayes estimator under quadratic loss equates the
naive estimator exp{w̄} with that degenerate prior. As a consequence, the so called naive
estimator for the median represents the best case for the Bayes estimator under quadratic
loss.
On the contrary, the Bayes estimator under relative quadratic loss θ̂RQBp presents a non-
monotone decreasing trend of the MSE only around the median. For this reason it appears
to be the preferable estimator in this situation, but the characteristics of θ̂RQBp deteriorate
in a fast way departing from the median. This particular behaviour is related to the absence
of σ in θ0.5: it is a case similar to the conditional estimator of θp dealt with in section 3.2.1.
In this framework, the Bayes estimator under relative quadric loss resulted the minimum
MSE choice. Moreover, because of the absence of σ in the estimand, the hyperparameters
speci�cation does not in�uence the estimation step. Therefore the weakly informative prior
could be used in that case.
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Figure 3.3: Behaviour of the functional in (3.47) for θ̂QB0.5 and θ̂RQB0.5 with respect to the parameters
γ and δ, keeping constant λ = 0. The case n = 21 and σ2 = 1 is considered.

Connection with the Bayes estimator of θa,b

In the paper by Fabrizi and Trivisano (2012) the problem of the Bayesian inference of the
functional θa,b = exp{aξ + bσ2}, assuming a log-normal distribution for data, was studied.
In that context, the prior (3.37) was considered, and the found posterior distribution of θa,b
was a GH. Furthermore, a strategy to �nd a minimum MSE Bayes estimator was proposed.
Through an analytic approximation of the target functional to minimize, the optimal value
of λ, for a �xed δ, was found to be:

λopt =
n− 3

2
− (n− 1)(a2 + 2nb)

4nc
− (a2 + 2nb)δ

4ncσ2
, (3.49)
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where c =
(
b− 3a2

2n

)
. Moreover, the following condition must hold: b /∈

(
− a2

2n ,
3a2

2n

)
. It is

useful to set δ → 0 in order to remove the e�ect of σ2, avoiding the substitution with the
sample quantity v2 or a guess s2

0. The value of γ was selected in order to be sure of the
second posterior moment existence. According to the theory of the GH distribution it is:

γ0 = max

{
0, 4

(
a2

n
+ b

)}
+ ε. (3.50)

Note that if a = 1 and b = 0, the median of the log-normal distribution is considered, then:
θ1,0 = θ0.5. This case violates the condition on b required for the validity of relation (3.49).
This is in agreement with the MSE trend showed in �gure 3.3, where a �nite minimum cannot
be found. As a consequence, the indications included in this section cannot be applied in
the median estimation context.
In order to apply the relation (3.49) in the log-normal quantile estimation problem, the
proposal is based on the idea that each functional speci�ed by a couple (a, b) corresponds to
a quantile θp too. Utilizing the similarity among the quantiles that are above or below the
median, the relation (3.49) could be used to obtain a unique set of optimal values for all the
quantiles that belongs to the same half cumulative distribution (i.e. p < 0.5 or p > 0.5).
Even if the (3.49) is a function of n, the sample size does not signi�cantly change the �nal
result. An empirical general choice for λ could be −2 for the quantiles above the median,
and 0.5 for the quantiles below the median, always keeping δ = ε and gamma equal to

(3.45). For example, considering that in this case b = Φ−1(p)
σ , they correspond, with the

intermediate value σ2 = 1 to the optimal value for p = 0.85 and p = 0.30, respectively.
This method produces surprisingly good performances in terms of frequentist MSE, as will
be stressed in the following chapter about the simulation study, and it possesses an appealing
property if the statistical analysis goal is the joint estimation of di�erent quantiles: since a
unique prior is speci�ed, the user is sure that the estimation procedure maintains the logical
order of the quantiles and counter-intuitive results are avoided.

Prior proposals: brief outline and software implementation

In the previous sections di�erent prior speci�cations were listed. Using �gure 3.4 it is possible
to sum up the proposals and �x some notation. Starting from the weakly informative prior,
the triplet (λ = 0, δ = ε, γ = γmin) produces the posterior mean of the p-th log-normal
quantile θ̂QBwp , but is also used in the median estimations issue with the Bayes estimator

under relative quadratic loss θ̂RQBwp . The value λ = 0.5 might be used too.
Then, a frequentist optimal (i.e. minimum MSE) Bayes estimator is considered, and an
optimization algorithm is used for the hyperparameters choice. In this case the Bayes
estimator under quadratic loss associated to the prior setting is θ̂QBnp and in �gure 3.4 priors
examples are reported considering: p = 0.10 and p = 0.25 below the median (optimization
with respect to δ) and p = 0.75 and p = 0.90 above the median (optimization with respect
to γ).
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Figure 3.4: Comparison of log-densities of di�erent GIG priors. A random sample of size n = 21
generated from a log-normal having σ2 = 0.5 is used.

Finally, an approximately optimal Bayes estimator is proposed using the similarities be-
tween θp and θa,b. Two generic triplets are proposed for the lower and upper parts of the

distribution. In this case the Bayes estimator is speci�ed with θ̂QBap .
In the package BayesLN the function LN_Quant is provided in order to allow the user to carry
out a Bayesian inferential procedure on the log-normal quantiles. To simplify the usage of
the function, two prior speci�cation settings are only proposed: the use of λ = 0 for the
weakly informative prior, and the optimal prior obtained thorough numerical minimization
of the MSE. Concerning the prior on ξ, a �at improper prior is considered.

3.4 Extension to the regression case

In many applications, it is useful to estimate a log-normal linear regression model for the
p-th quantile of the dependent variable. This inferential problem is usually faced with non-
parametric techniques both in frequentist and Bayesian worlds (Gilchrist, 2000; Yu and
Moyeed, 2001; Koenker, 2005). However, when positively skewed data with scarce sample
sizes is analysed (Vogel et al., 2011; Machado et al., 2015), the log-normality assumption
is helpful in gaining e�ciency in the estimation, and a better procedure that the usual
exponentiation of estimates obtained in the log-scale might be of interest.
On the other hand, if strictly positive data are analysed, the so called Box-Cox quantile
regression is employed to keep the correct range for the predicted values (Yu et al., 2003;
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Fitzenberger et al., 2009). The procedure consists in the joint estimation of the transfor-
mation parameters and the classical model-free quantile regression (Koenker and Bassett,
1978). Then, the results are back-transformed to the original data scale.
In this context, a random sample is observed:

(yi,xi), i = 1 . . . n;

where xi is a vector containing the values of the p covariates that are related to the i-th unit.
Besides, the vector of the logarithmic transformation of the response variable is w = log(y).
Finally, the following distributional assumption is �xed:

yi|xi,β, σ2 ∼ logN
(
xTi β, σ

2
)
, i = 1, . . . n. (3.51)

In this case, the inferential question that will be answered is the estimation of the p-th
quantile given a point x̃ ∈ Rq of the covariate space:

θp(x̃) = Qp [ỹ|x̃] = exp
{
x̃Tβ + Φ−1(p)σ

}
. (3.52)

Consistently with the previous sections, it is possible to express the logarithmic transforma-
tion of the functional θp(x̃) as ηp(x̃).
To make inference on the quantities of interest, the standard NGIG conjugate prior is as-
sumed:

β|σ2 ∼MVNq
(
β0, σ

2V0

)
, (3.53)

σ2 ∼ GIG(λ, δ, γ); (3.54)

where β0 ∈ Rq, V0 ∈ Rq×q and positive de�nite are chosen constants.
The appealing characteristic of this formulation is the generality, since most of the widespread
normal regression priors (Zellner's g, semi-conjugate and �at) can be seen as particular cases.
The following proposition includes a series of results conditioned on σ2 that derive from the
traditional Bayesian analysis of the normal linear model.

Proposition 3.4. If the conjugate prior for β (3.53) and the log-normal regression model
(3.51) are assumed, then the following distributional results, conditionally on σ2, can be
deduced:

(i)
β|σ2,w ∼MVNq

(
β∗, σ

2V∗
)
, (3.55)

where β∗ = V∗
(
XTw + V−1

0 β0

)
and V∗ =

(
XTX + V−1

0

)−1
;

(ii)

x̃Tβ|σ2,w ∼ N
(
x̃Tβ∗, σ

2h̃∗

)
, (3.56)

where h̃∗ = x̃TV∗x̃;
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(iii)

ηp(x̃)|σ2,w ∼ N
(
x̃Tβ∗ + Φ−1(p)σ, σ2h̃∗

)
. (3.57)

Proof. The three results are deduced from the joint posterior distribution:

p(β, σ2|y) ∝ p(w|β, σ2)p(β|σ2)p(σ2)

∝ (σ2)λ−
n+q
2 −1 exp

{
− 1

2σ2
(β − β∗)

T
V−1

∗ (β − β∗)

}
×

× exp

−1

2

RSS + δ2 +
(
β̂ − β0

)T
XTXV∗V

−1
0

(
β̂ − β0

)
σ2

+ γ2σ2


 ,

(3.58)

that is obtained by applying the algebra of the quadratic forms and de�ning: RSS =(
w − xβ̂

)T (
w − xβ̂

)
, with β̂ = (XTX)−1XTw. �

Besides, in the last proposition, a key quantity for the log-normal linear regression has been
introduced, that is the leverage h̃∗. In fact, from the (3.57), and the direct consequence that
θp(x̃) is log-normally distributed, it is clear that the log-normal regression is an intrinsically
heteroskedastic model in data scale.
These results are preparatory to de�ne the marginal distributions of the parameters and the
functionals that need to be estimated.

Theorem 3.3. If the conjugate prior (3.53), (3.54) and the log-normal linear regression
model (3.51) are assumed, then the following distributional results can be deduced:

(i)
σ2|w ∼ GIG

(
λ̄, δ̄, γ

)
, (3.59)

where λ̄ = λ− n−1
2 and δ̄ =

√
RSS + δ2 +

(
β̂ − β0

)T
XTXV∗V

−1
0

(
β̂ − β0

)
.

(ii)
β|w ∼MVGHq

(
λ̄, γ,β∗,V∗, δ̄,0

)
(3.60)

(iii)

θp(x̃)|w ∼ logSMNG

(
λ̄, δ̄

√
h̃∗,

γ√
h̃∗
, β̄, x̃Tβ∗

)
, (3.61)

where β̄ = Φ−1(p)√
h̃∗

.

Proof. (i) The marginal posterior distribution of σ2 is obtained integrating out β from the
joint posterior (3.58):

p(σ2|w) ∝(σ2)λ−
n
2 −1×

× exp

−1

2

RSS + δ2 +
(
β̂ − β0

)T
XTXV∗V

−1
0

(
β̂ − β0

)
σ2

+ γ2σ2


 .

(3.62)
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and the kernel of a GIG distribution can be recognized. (ii) On the other hand, the marginal
posterior distribution for β might be obtained using the result by Barndor�-Nielsen (1977):
in fact it is a normal mean-variance mixture with the (3.55) as conditional multivariate Gaus-
sian and the GIG of point (i) as mixing distribution, then a multivariate GH distribution
(see section B.1.1) is obtained.
(iii) Finally, in order to have the posterior distribution of ηp(x̃), it is required to consider
the linear transformation of the (3.57):√

h̃∗ · ηp(x̃)|σ2,w ∼ N
(
x̃Tβ∗√
h̃∗

+
Φ−1(p)√

h̃∗
σ, σ2

)
, (3.63)

and the (3.59), obtaining a SMNG distribution, according to theorem 2.1:√
h̃∗ · ηp(x̃)|w ∼ SMNG

(
λ̄, δ̄, γ, β̄,

x̃Tβ∗√
h̃∗

)
; (3.64)

and, by applying a linear transformation (proposition 2.1):

ηp(x̃)|w ∼ SMNG

(
λ̄, δ̄

√
h̃∗,

γ√
h̃∗
, β̄, x̃Tβ∗

)
. (3.65)

�

Then, the de�nition of the Bayes estimators under quadratic loss and under relative quadratic
loss is a consequence of these results, obtaining the parallel of proposition 3.3.

Proposition 3.5. If the conjugate prior (3.53),(3.54) and the log-normal regression model
(3.51) are assumed, then the Bayes estimator under relative quadratic loss is the posterior
mean:

θ̂QBp (x̃) = ex̃
T β̂

(
γ√
γ2−h̃∗

)λ̄
Kλ̄(δ̄γ)

+∞∑
j=0

β̄j

j!

 δ̄h̃∗√
γ2 − h̃∗


j
2

Kλ̄+ j
2

(
δ̄

√
γ2 − h̃∗

)
; (3.66)

whereas the Bayes estimator under relative quadratic loss is:

θ̂RQBp (x̃) =ex̃
T β̂


√
γ2 − 4h̃∗√
γ2 − h̃∗

λ̄

×

×

∑+∞
j=0

β̄j

j!

(
δ̄h̃∗√
γ2−h̃∗

) j
2

Kλ̄+ j
2

(
δ̄

√
γ2 − h̃∗

)
∑+∞

j=0
β̄j

j!

(
4δ̄h̃∗√
γ2−4h̃∗

) j
2

Kλ̄+ j
2

(
δ̄

√
γ2 − 4h̃∗

) ;

(3.67)
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and in order to ensure the existence of the posterior variance the following condition is
required:

γ > 2

√
h̃∗. (3.68)

Proof. See proposition 3.3. �

The results obtained in this section include the unconditional quantile estimation as partic-
ular case, since in that case h̃∗ = 1

n .

Minimum MSE conditional estimator

A minimum MSE estimator conditioned on σ2, similar to the one deduced in section 3.2.1,
could be found also for the quantile regression case. It is useful as a benchmark and it might
be found for the general class of estimators de�ned as: θ∗p(x̃) = k · exp{x̃T β̂}, where k is a
constant and an improper �at prior is assumed for β:

p(β) ∝ 1. (3.69)

The result parallel to theorem 3.2 is included in the following proposition.

Proposition 3.6. Considering the estimators of the functional (3.52) that assumes σ2

known and are included in the class:

θ∗p(x̃) = k · exp{x̃T β̂}, (3.70)

then, the one that minimize the frequentist MSE is:

θ̂∗p(x̃) = exp

{
w̄ + σΦ−1(p)− 3h̃σ2

2

}
, (3.71)

where h̃ is the leverage in the vague improper prior setting:

h̃ = x̃
(
XTX

)−1
x̃. (3.72)

Furthermore, it coincides with the conditioned Bayes estimator that minimizes the relative
quadratic loss function.

Proof. See theorem 3.2, recalling the (3.56). �

3.4.1 Choice of the hyperparameters

Like in the unconditional log-normal quantiles estimation, inference depends on the hyper-
parameters speci�cation, particularly with a small sample sizes.
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In order to simplify the prior choice issue, the popular improper di�use prior is assumed for
the vector of regression coe�cient β. This decision leads to the following parameters for the
posterior distribution of σ2 (3.59):

δ̄ =
√
RSS + δ2,

λ̄ = λ− n− q
2

,

V∗ =
(
XTX

)−1
,

β∗ = β̂ =
(
XTX

)
XTw;

(3.73)

recalling that the new de�nition of the leverage was already presented in the (3.72).
The remaining parameters to specify are (λ, δ, γ), which control the GIG prior on σ2. Dif-
ferent strategies can be proposed and following the same scheme of section 3.3 a weakly
informative setting is �rstly considered and then two procedures aimed at proposing an e�-
cient estimator are described. The notation and the computations developed so far consider
a single point estimation problem, characterized by a covariate vector x̃. However, if the
interest is in the joint estimation of ñ quantiles, it is possible to store the covariate patterns
in the rows of the matrix X̃ ∈ Rq×ñ.

Weakly informative prior

Re�ecting the considerations reported in section 3.3.1 and in the work by Fabrizi and Triv-
isano (2016), a non-informative prior could be speci�ed �xing λ = 0, δ = ε and the smaller
γ that allows the existence of the posterior variance:

γ0 = 3

√
h̃M , (3.74)

where h̃M = maxi=1,...,ñ{h̃ii}, i.e. the maximum leverage of the observations to estimate,
obtained substituting the i-th row of the matrix X̃ into the (3.72).

Numerical Optimization

If the goal is to obtain an estimator with good frequentist properties, the MSE should be
considered. Considering the estimation of a single unit and specifying a di�use improper
prior on the regression coe�cients, the MSE expression of the Bayes estimator of θp(x̃) could
be decomposed as:

E
[(
θ̂p(x̃)− θp(x̃)

)2
]

= θp(x̃)2 exp
{
−2Φ−1(p)σ + 2h̃σ2

}
[
E
(
g(RSS)− exp

{
Φ−1(p)σ − 3

2
h̃σ2

})2

+

+ 1− exp
{
−h̃σ2

}]
.

(3.75)
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In this expression, a quantity that is similar to the (3.47) is individuated and it is the unique
fraction of the MSE that depends on the parameters to chose. Therefore, a numerical
optimization could be implemented in order to get hyperparameters that minimizes the
frequentist MSE. It is important to note that both the target functional to minimize and
the estimator include the leverage point h̃. The use of a numerical algorithm when the
observation speci�c leverage assumes particularly high values is deprecated since the method
produces unstable evaluations of the optimal parameters. As a consequence, the proposal is
the substitution of h̃ into the (3.75) and the (3.66) with the average leverage of the observed
sample:

h̄ =

∑n
i=1 hii
n

=
q

n
. (3.76)

This solution solves also the issues that arise if a multiple units estimation problem is faced.
By observing the surfaces representing the behaviour with respect to the hyperparameters
of the target functional to minimize (similar to those in �gure 3.2 and not reported here),
it is possible to conclude that the same rules of section 3.3.2 could be adapted for this issue
too: for the quantiles above the median, an optimal γ if searched keeping �xed λ = 0 and
δ = 1, whereas for the quantiles below the median the function is optimized with respect to

δ with λ = 0 and γ = 3
√
h̃M , considering a multiple estimation problem. Finally, also in

this case, the posterior mean does not appear to be a good choice in minimizing the MSE
in the median estimation framework, and the Bayes estimator under relative quadratic loss
should be considered for this task.

Connection with the Bayes estimator of θa,b(x̃)

Finally, another proposal for the hyperparameters selection is based on the analytical ap-
proximation found by Fabrizi and Trivisano (2016) for the conditioned log-normal mean
estimation, with the following target functional: θ1, 1

2
(x̃) = exp

{
x̃β + 1

2σ
2
}
. In analogy

with the procedure in section 3.3.2, it is possible to consider the log-normal mean as a quan-
tile above the median, and therefore, the idea is to assume that an optimal parameter for
its estimation is a value that produces good estimates also for the right tail quantiles. The
same reasoning might be extended to quantiles in the left tail, considering the functional
θ1,− 1

2
(x̃) = exp

{
x̃β − 1

2σ
2
}
.

This approach ensures that the estimated conditional quantiles for the same tail do not
cross. This represents a possible drawback of many quantile regression techniques, and a lot
of work has been done in order to propose methods that are able to correct this undesirable
property (Bondell et al., 2010; Chernozhukov et al., 2010). In this case, it would be a direct
consequence of the parametric assumption together with the unique prior setting.
The procedure implemented was based on a small argument approximation of the MSE that
leads to an optimal relation between the parameters (λ, δ). With the choice of δ = ε, the
value of λ does not depend on the estimated variance v2, and therefore it is a suitable choice.
The third parameter γ disappear in the approximation and could be �xed to the minimum
value that ensures the existence of the posterior variance.



CHAPTER 3. LOG-NORMAL QUANTILES ESTIMATION 54

A remaining discussion point is about the presence of the leverage into the expression that
determines λ. Coherently with the considerations about the numerical optimization prior,
the average leverage h̄ is a suitable choice. The relation used to �nd the optimal λ works if
the condition n > 3q is satis�ed, that is usually veri�ed also in the smallest samples.
To conclude, with the setting δ = ε, the generic prior has λ equal to:

λopt =


n−q−2

2 − (n−q)(q+n)
2(n−3q) , p < 0.5

n−q−2
2 − (n−q)(q−n)

2(−n−3q)) , p > 0.5
, (3.77)

and γ0 = 3
√
h̃M .

Software implementation

The function LN_QuantReg, which is included in the package BayesLN, allows to estimate a
conditioned quantile under the assumption of log-normality. It supports the joint estimation
of multiple points and it automatically uses the maximum leverage h̃M to set the existence
condition a�ecting the parameter γ. As in the unconditional quantile estimation case, the
weakly informative prior setting is implemented with λ = 0. On the other hand, the optimal
prior setting, in which numerical procedures are utilized, is implemented using the average
leverage h̄ in the optimization step and in the estimator expression.



Chapter 4

Quantile estimation: simulations and

examples

To assess the frequentist properties of the methods developed in chapter 3, a Monte Carlo
simulation study is performed. The di�erent strategies that are proposed to estimate the log-
normal quantiles within the Bayesian paradigm are compared to Longford's minimum MSE
estimator Q̂p (section 3.1.3), the naive estimator θ̂p (section 3.1.2) and the non-parametric
estimator Q̂7

p (section 3.1.1). Several combinations of the log-scale variance σ2, sample size
n and quantile level p are investigated in the study. The location parameter ξ is set equal
to 0 without loss of generality. In particular, the study will focus on small sample sizes,
that is the condition in which the proposed Bayes estimators and credible intervals bring
signi�cant improvements to the currently used methods.
The evaluation of the estimators performance is carried out in terms of relative root-MSE,
that is de�ned as follows for the generic estimator θ̃p:

RRMSE
[
θ̃p

]
=

√
E
[(
θ̃p − θp

)2
]

θp
, (4.1)

where the value of θp is obtained plugging the true quantity into the functional (1.5); and
relative bias:

RB
[
θ̃p

]
=

E
[
θ̃p − θp

]
θp

. (4.2)

Since θp is always positive, there are no issues in the de�nition of the relative bias.

In some situations, mainly for graphical purposes, the minimum MSE Bayes estimator θ̂∗p,
that assumes σ2 as known (described in section 3.2.1), is used as a benchmark for RRMSE.
In this cases a Comparative RMSE is used:

CRMSE
[
θ̃p

]
=
RMSE

[
θ̃p

]
RMSE

[
θ̃∗p

] . (4.3)

55
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On the other hand, when the focus is on the interval estimation, the Bayesian credible
intervals are compared in terms of frequentist coverage and average width to the ones derived
from the Gaussian theory (section 3.1.2).
A preliminary note about the simulations involving the Bayes estimator with optimal hy-
perparameters which are selected through the numerical optimization (see section 3.3.2), is
necessary. In fact, the algorithm is computationally demanding and the whole procedure
cannot be repeated for each sample to have a reasonable duration of the simulations. The
following procedure is adopted: since the target functional depends on v2, a grid of 8 eq-
uispaced values ranging from the minimum to the maximum values observed for v2 in the
samples drawn is considered. Then, the optimal parameters for these cases are found and
the speci�c parameter value for each sample is obtained by interpolation. This solution
appears to be reasonable because of the evidence of a monotone relationship between v2 and
the optimal value for parameter γ or δ.
This chapter is divided into four main parts: �rst, a deep study of the unconditional quantile
Bayes estimators properties is presented (section 4.1); then, the related credible intervals are
studied (section 4.2). The simulation study is completed by the analysis of the estimators
for the log-normal quantile regression model (section 4.3). Finally, some applications of the
methods to real data from di�erent �elds are presented (section 4.4).

4.1 Frequentist MSE evaluation

This section contains di�erent comparisons in terms of RRMSE and relative bias among the
proposed procedures and the methods which are currently used in the literature. All the
Monte Carlo results in this part are obtained with B = 50, 000 MC replicates.
The section is organized as follows: a comparison of the di�erent priors on ξ is illustrated,
with a particular focus on the median case (subsection 4.1.1); then, the e�ects of introducing
a prior guess of σ2 are investigated (subsection 4.1.2); furthermore, the Bayes estimators are
compared to other estimators (subsection 4.1.3). Finally, the e�cacy of the posterior vari-
ance as an estimate of the frequentist estimator variance (section 4.1.4) and the robustness
with respect to model misspeci�cation (section 4.1.5) are studied.

4.1.1 Comparison among di�erent priors on ξ

The �rst aspect evaluated through an empirical study is the behaviour of the Bayes estimator
with di�erent speci�cations of the priors of the mean in the log-scale ξ. In fact, in this
case, the main interest is to check the estimator sensibility with respect to di�erent prior
parameters speci�cations, comparing the normal conjugate prior ξ|σ2 ∼ N (ξ0, σ

2n−1
0 ) to

the �at improper prior p(ξ) ∝ 1. In particular, n0 is �xed in order to obtain a prior weight
of 1 − ψ = 0.02, to limit the in�uence of ξ0 on the posterior. On the other hand, a grid of
values for ξ0 ranging from −3 to 3 is considered. It is worth to emphasize that, since ξ0 is
related to the log-scale of the data, the considered range includes extremes misspeci�cation
scenarios too.



CHAPTER 4. QUANTILE ESTIMATION: SIMULATIONS AND EXAMPLES 57

Table 4.1: RRMSE and RB for the estimator of quantile p = 0.1. θ̂QBn0.1 is subjected to di�erent
prior settings on ξ: �at improper (−) and with the NGIG prior having di�erent values for ξ0:

(−3, 0, 3). θ̂∗0.1 is also reported as a comparison term.

Relative Root-MSE Relative-Bias

ξ0: - - -3 0 3 - - -3 0 3

σ2 n θ̂∗0.1 θ̂QBn0.1 θ̂QBn0.1 θ̂QBn0.1 θ̂QBn0.1 θ̂∗0.1 θ̂QBn0.1 θ̂QBn0.1 θ̂QBn0.1 θ̂QBn0.1

0.25

11 0.042 0.062 0.060 0.060 0.064 -0.006 -0.014 -0.022 -0.005 0.011

21 0.030 0.043 0.045 0.042 0.046 -0.003 -0.009 -0.021 -0.004 0.011

51 0.019 0.027 0.031 0.027 0.032 -0.001 -0.003 -0.018 -0.001 0.015

0.5

11 0.035 0.051 0.050 0.051 0.054 -0.007 -0.011 -0.015 -0.005 0.004

21 0.025 0.036 0.036 0.035 0.037 -0.004 -0.008 -0.014 -0.005 0.005

51 0.016 0.023 0.024 0.023 0.025 -0.002 -0.003 -0.011 -0.001 0.008

1

11 0.023 0.034 0.033 0.035 0.037 -0.007 -0.007 -0.008 -0.004 0.001

21 0.017 0.024 0.023 0.024 0.025 -0.004 -0.006 -0.008 -0.004 0.001

51 0.011 0.013 0.014 0.013 0.014 -0.001 -0.004 -0.007 -0.003 0.001

2

11 0.011 0.017 0.017 0.018 0.019 -0.004 -0.003 -0.003 -0.002 0.000

21 0.008 0.012 0.011 0.012 0.012 -0.002 -0.004 -0.004 -0.003 -0.001

51 0.005 0.009 0.009 0.009 0.009 -0.001 -0.004 -0.005 -0.003 -0.002

The only considered estimators are the minimum MSE Bayes estimator, that assumes σ2

as known (θ̂∗p), and the Bayes estimators having the hyperparameters �xed by numerically
minimizing the MSE as described in section 3.3.2. At the moment, the possibility to incor-
porate a guess of σ2 is not considered and the sample variance is plugged into the MSE for
the minimization step. Initially, both the Bayes estimator under quadratic loss θ̂QBnp and

under relative quadratic loss θ̂RQBp were included in the Monte Carlo study, but the second
resulted to be competitive only in the median case, therefore its results are not reported
for other quantiles. Moreover, since hyperparameters speci�cation does not in�uence the
performances of θ̂RQB0.5 , the weakly informative setting is chosen.
The behaviour of the estimators is di�erent in the various quantiles. In particular, for
quantiles below the median, like p = 0.10, whose results are reported in table 4.1, the
improvements brought by the NGIG prior are only slight and the frequentist MSE of θ̂QBn0.10

rapidly increase in case of ξ0 over-speci�ed. The reason why this happens can be explained
by the e�ect that the value of ξ0 has on the estimator bias: with a correct determination, the
MSE is comparable to the one of the estimator with improper prior on ξ, but the reduction
of the bias is notable. On the other hand, the underestimation of ξ0 does not compromise
the e�ciency of θ̂QBn0.10 , since it increases the magnitude of the negative bias; whereas, the
overestimation produces an estimator with positive bias and, consequently, ine�cient in the
log-normal estimation framework (Fabrizi and Trivisano, 2012).
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Table 4.2: RRMSE and RB for the estimators of quantile p = 0.5. θ̂QBw0.5 and θ̂RQBw0.5 are subjected
to di�erent prior settings on ξ: �at improper (−) and with the NGIG prior having di�erent values

for ξ0: (−3, 0, 3). θ̂∗0.5 is also reported as a comparison term.

Relative Root-MSE

ξ0 - - -3 0 3 - -3 0 3

σ2 n θ̂∗0.5 θ̂QBw0.5 θ̂QBw0.5 θ̂QBw0.5 θ̂QBw0.5 θ̂RQBw0.5 θ̂RQBw0.5 θ̂RQBw0.5 θ̂RQBw0.5

0.25
11 0.079 0.083 0.078 0.081 0.097 0.080 0.085 0.078 0.084
21 0.057 0.059 0.059 0.057 0.072 0.057 0.064 0.056 0.064
51 0.037 0.037 0.044 0.037 0.052 0.037 0.047 0.036 0.049

0.5
11 0.086 0.094 0.085 0.092 0.105 0.087 0.088 0.085 0.088
21 0.062 0.065 0.061 0.064 0.075 0.062 0.066 0.061 0.065
51 0.040 0.041 0.042 0.040 0.051 0.040 0.046 0.039 0.046

1
11 0.082 0.099 0.087 0.096 0.108 0.084 0.083 0.082 0.084
21 0.060 0.066 0.059 0.064 0.074 0.060 0.061 0.059 0.061
51 0.039 0.040 0.038 0.039 0.047 0.039 0.041 0.038 0.042

2
11 0.067 0.095 0.083 0.091 0.100 0.069 0.067 0.067 0.069
21 0.049 0.059 0.052 0.058 0.065 0.050 0.050 0.049 0.050
51 0.032 0.035 0.032 0.034 0.039 0.032 0.033 0.031 0.033

Relative Bias

0.25
11 -0.012 0.013 -0.019 0.012 0.045 -0.016 -0.044 -0.013 0.018
21 -0.006 0.006 -0.025 0.006 0.039 -0.007 -0.037 -0.007 0.025
51 -0.003 0.003 -0.028 0.003 0.035 -0.003 -0.033 -0.003 0.030

0.5
11 -0.018 0.020 -0.006 0.019 0.045 -0.023 -0.042 -0.019 0.004
21 -0.010 0.010 -0.015 0.009 0.035 -0.011 -0.033 -0.010 0.014
51 -0.004 0.004 -0.020 0.004 0.029 -0.004 -0.027 -0.004 0.021

1
11 -0.024 0.028 0.008 0.026 0.044 -0.028 -0.039 -0.024 -0.009
21 -0.013 0.014 -0.004 0.013 0.031 -0.015 -0.029 -0.013 0.003
51 -0.005 0.006 -0.011 0.005 0.023 -0.006 -0.021 -0.005 0.011

2
11 -0.027 0.033 0.019 0.031 0.043 -0.028 -0.033 -0.025 -0.016
21 -0.015 0.017 0.005 0.016 0.027 -0.016 -0.023 -0.015 -0.006
51 -0.006 0.007 -0.003 0.006 0.017 -0.006 -0.015 -0.006 0.003

Observing the quantiles above the median, the implications of the NGIG prior speci�cation
are di�erent. In table 4.3 the results of the Monte Carlo study for p = 0.90 are reported.
In these cases, the optimal estimator is negatively biased, and the NGIG prior is not able
to reduce the magnitude of the bias, excluding the case of an important overs-speci�cation
of ξ0. The improvements that are brought by the speci�ed NGIG prior are limited for the
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MSE too.

Table 4.3: RRMSE and RB for the estimator of quantile p = 0.9. θ̂QBn0.9 is subjected to di�erent
prior settings on ξ: �at improper (−) and with the NGIG prior having di�erent values for ξ0:

(−3, 0, 3). θ̂∗0.9 is also reported as a comparison term.

Relative Root-MSE Relative-Bias

ξ0: - - -3 0 3 - - -3 0 3

σ2 n θ̂∗0.9 θ̂QBn0.9 θ̂QBn0.9 θ̂QBn0.9 θ̂QBn0.9 θ̂∗0.9 θ̂QBn0.9 θ̂QBn0.9 θ̂QBn0.9 θ̂QBn0.9

0.25

11 0.151 0.201 0.211 0.197 0.199 -0.023 -0.052 -0.116 -0.063 -0.003

21 0.109 0.143 0.158 0.141 0.147 -0.012 -0.030 -0.092 -0.038 0.024

51 0.070 0.093 0.113 0.092 0.104 -0.005 -0.017 -0.075 -0.022 0.042

0.5

11 0.212 0.271 0.279 0.267 0.266 -0.045 -0.088 -0.155 -0.104 -0.047

21 0.153 0.198 0.211 0.196 0.197 -0.024 -0.053 -0.118 -0.065 -0.005

51 0.099 0.131 0.148 0.130 0.135 -0.010 -0.030 -0.090 -0.036 0.026

1

11 0.296 0.363 0.368 0.358 0.355 -0.088 -0.148 -0.216 -0.168 -0.116

21 0.216 0.273 0.283 0.271 0.269 -0.047 -0.091 -0.158 -0.107 -0.051

51 0.140 0.182 0.197 0.181 0.182 -0.019 -0.050 -0.112 -0.059 0.001

2

11 0.410 0.476 0.479 0.472 0.468 -0.167 -0.245 -0.310 -0.268 -0.222

21 0.301 0.371 0.377 0.368 0.365 -0.092 -0.153 -0.221 -0.173 -0.121

51 0.196 0.253 0.264 0.251 0.250 -0.038 -0.083 -0.147 -0.095 -0.038

A very particular case is represented by the median. In table 4.2 the outputs related both
to the estimator under quadratic loss θ̂QBw0.5 and the estimator under relative quadratic

loss θ̂RQBw0.5 with the weakly informative prior setting are reported. As expected from the
�ndings reported in section 3.3.2, in the case of improper prior on ξ the posterior mean is
not an e�cient estimation because of its positive bias. On the other hand, the estimator
under relative quadratic loss reaches the frequentist MSE of the minimum MSE conditioned
estimator. This is a strong result, caused by the fact that σ2 does not enter the functional
to estimate.
Furthermore, in this case, the NGIG prior results to be convenient for both the estimators.
As far θ̂QBw0.5 it concerns, a proper prior on ξ induces an acceptable estimator, unless a

strong over-speci�cation of ξ0 is produces, whereas, θ̂RQBw0.5 results to be robust to extreme
misspeci�cations of the prior parameter ξ0. Moreover, for a wide set of values of ξ0, the
Bayes estimator results to be more e�cient than the conditioned estimator θ̂∗0.5, which is
based on the �at improper prior on ξ.
The characteristics of the estimators described above can be veri�ed in �gure 4.1 too, where
CRMSE and relative bias are shown. It is reported the scenario with σ2 = 0.5 and a sample
size of 11 or 21. It well represents the behaviour of the estimators with respect to the
hyperparameter ξ0 variation.
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Figure 4.1: Comparison between the �at improper prior on ξ (dashed lines) and the NGIG prior
(solid lines). The changes of the CRMSE and relative bias with respect to ξ0 are shown for the
scenarios with n = 11 and n = 21 with σ2 = 0.5. The results for quantiles 0.1, 0.5 and 0.9 are
reported.

4.1.2 Methods incorporating a guess on σ2

A further aim of the simulation study is to investigate the consequences of setting a guess
s2

0 for σ2 in the procedures to deduce the optimal prior parameters. A set of values for s2
0,

determined as a portion of the true σ2 (from 0.4σ2 to 2σ2), is used in the simulation.
When the numerically optimal prior is adopted, the procedure of plugging the sample esti-
mate of σ2 in the MSE formula has two main drawbacks: the double use of data both in
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Relative Root MSE Relative Bias

s2
0: - 0.4σ2 σ2 2σ2 - 0.4σ2 σ2 2σ2

p σ2 n θ̂QBnp θ̂QBnp θ̂QBnp θ̂QBnp θ̂QBnp θ̂QBnp θ̂QBnp θ̂QBnp

0.05

0.25
11 0.059 0.053 0.050 0.060 -0.013 -0.001 -0.017 -0.048
21 0.041 0.039 0.037 0.042 -0.009 -0.001 -0.010 -0.029
51 0.026 0.025 0.025 0.025 -0.003 0.000 0.001 0.001

0.5
11 0.045 0.041 0.036 0.048 -0.010 0.003 -0.014 -0.042
21 0.032 0.030 0.028 0.034 -0.008 0.001 -0.009 -0.028
51 0.020 0.019 0.020 0.025 -0.003 -0.001 0.002 -0.020

1
11 0.027 0.025 0.020 0.028 -0.005 0.004 -0.009 -0.027
21 0.019 0.018 0.016 0.025 -0.005 0.002 -0.006 -0.023
51 0.012 0.011 0.011 0.019 -0.001 -0.001 -0.005 -0.017

2
11 0.012 0.012 0.007 0.012 -0.002 0.004 -0.004 -0.011
21 0.008 0.008 0.006 0.008 -0.002 0.001 -0.004 -0.007
51 0.007 0.004 0.005 0.011 -0.002 -0.001 -0.003 -0.011

0.25

0.25
11 0.066 0.063 0.061 0.069 -0.012 0.001 -0.014 -0.045
21 0.047 0.045 0.045 0.048 -0.008 0.000 -0.008 -0.025
51 0.030 0.029 0.029 0.029 -0.003 0.000 0.001 0.001

0.5
11 0.063 0.060 0.056 0.069 -0.013 0.004 -0.015 -0.053
21 0.043 0.043 0.042 0.047 -0.006 0.001 -0.009 -0.030
51 0.028 0.027 0.028 0.028 -0.002 0.000 0.002 -0.010

1
11 0.051 0.049 0.043 0.058 -0.012 0.007 -0.015 -0.050
21 0.035 0.035 0.032 0.044 -0.008 0.003 -0.008 -0.037
51 0.021 0.022 0.022 0.022 -0.003 0.000 -0.002 0.000

2
11 0.032 0.034 0.026 0.037 -0.009 0.008 -0.011 -0.035
21 0.022 0.023 0.020 0.027 -0.006 0.003 -0.009 -0.023
51 0.016 0.013 0.014 0.027 -0.006 -0.001 0.002 -0.026

Table 4.4: RRMSE and RB for Bayes estimators of quantiles 0.05 and 0.25. A guess s2
0 of σ2 is

included in the choice of the hyperparameters.
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Relative Root MSE Relative Bias

s2
0: - 0.4σ2 σ2 2σ2 - 0.4σ2 σ2 2σ2

p σ2 n θ̂QBnp θ̂QBnp θ̂QBnp θ̂QBnp θ̂QBnp θ̂QBnp θ̂QBnp θ̂QBnp

0.75

0.25
11 0.121 0.122 0.114 0.116 -0.028 -0.065 -0.021 0.002
21 0.088 0.093 0.084 0.086 -0.015 -0.053 -0.014 0.004
51 0.057 0.063 0.055 0.056 -0.008 -0.036 -0.008 0.003

0.5
11 0.147 0.147 0.142 0.143 -0.043 -0.073 -0.037 -0.022
21 0.108 0.111 0.105 0.106 -0.024 -0.057 -0.023 -0.008
51 0.070 0.074 0.069 0.070 -0.012 -0.037 -0.012 -0.002

1
11 0.169 0.168 0.166 0.166 -0.062 -0.081 -0.057 -0.053
21 0.126 0.127 0.123 0.124 -0.036 -0.063 -0.035 -0.022
51 0.083 0.085 0.081 0.082 -0.017 -0.041 -0.018 -0.007

2
11 0.178 0.178 0.177 0.178 -0.085 -0.089 -0.080 -0.089
21 0.134 0.135 0.133 0.133 -0.049 -0.069 -0.049 -0.041
51 0.090 0.091 0.089 0.102 -0.024 -0.045 -0.024 0.023

0.95

0.25
11 0.274 0.282 0.206 0.239 -0.072 -0.234 -0.053 0.059
21 0.194 0.229 0.163 0.183 -0.042 -0.193 -0.041 0.036
51 0.126 0.162 0.115 0.123 -0.026 -0.134 -0.026 0.015

0.5
11 0.395 0.390 0.326 0.350 -0.130 -0.310 -0.117 -0.006
21 0.289 0.314 0.255 0.273 -0.082 -0.249 -0.084 0.001
51 0.191 0.219 0.178 0.185 -0.048 -0.168 -0.049 -0.001

1
11 0.581 0.564 0.512 0.532 -0.241 -0.438 -0.237 -0.119
21 0.440 0.455 0.401 0.420 -0.155 -0.351 -0.163 -0.057
51 0.296 0.321 0.279 0.289 -0.089 -0.235 -0.092 -0.025

2
11 0.874 0.851 0.809 0.826 -0.457 -0.671 -0.461 -0.341
21 0.692 0.696 0.638 0.662 -0.298 -0.546 -0.314 -0.170
51 0.475 0.502 0.450 0.466 -0.170 -0.371 -0.177 -0.071

Table 4.5: Root MSE and relative bias for Bayes estimators of quantile 0.75 and 0.95. A guess s2
0

of σ2 is included in the choice of the hyperparameters.
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the prior speci�cation and in the likelihood, and the increase of the estimator MSE caused
by the sample variability of the estimate v2.
Therefore, the performances of the Bayes estimators are compared in order to understand the
robustness with respect to the misspeci�cation of s2

0 and to quantify the gains in e�ciency
of including a guess of σ2 instead of v2

The results about quantiles 0.05, 0.25, 0.75 and 0.95 are reported in table 4.4 and table 4.5;
but a general consideration can be inferred in this case. It is evident that, considering θ̂QBnp ,
the gain in terms of e�ciency obtained plugging s2

0 into the MSE occurs in all the considered
scenarios, even if they are more marked with small samples, as would be expected. Moreover,
a moderate robustness with respect to the misspeci�cation of s2

0 can be noted. Therefore,
if in a particular inferential problem a reliable value for σ2 can be hypothesised, the Bayes
estimator with the optimal hyperparameters chosen minimizing the MSE with s2

0 instead
of v2 results to be a safe and e�cient estimator for all the quantiles. Finally, it must be
stressed that the improvements in the MSE do not increase the negative bias. It is worth to
remember that this procedure cannot be considered for the median, where the optimization
algorithm is not used in the hyperparameters choice.

4.1.3 General comparison

Another goal of the simulation study is the comparison of the proposed Bayes estimators
to the methods which are already present in the literature, in particular the Longford's
minimumMSE estimator Q̂p, the naive estimator θ̃p, and, as benchmark, the Bayes estimator

with minimum MSE θ̂∗p conditioned on σ2. To enrich the simulation study, the R default

non-parametric estimator Q̂7
p de�ned in section 3.1.1 is considered too. An exhaustive grid

of quantiles, with a particular focus on the extremes, and di�erent combinations of σ2 and n
are considered. In tables 4.6, 4.7, D.1 and D.2 the RRMSE and the relative bias of di�erent
estimators are reported for di�erent quantiles and sample sizes, with σ2 respectively equal
to: 0.25, 1, 0.5, 2. Moreover, the behaviour of the estimators performances is shown in
�gure 4.2 for the case σ2 = 0.5. In the median case, from now on, with θ̂Bnp the Bayes

estimator under relative quadratic with the weakly informative prior θ̂RQBwp is intended,
whereas, in the other cases, the �at improper prior is adopted for ξ and v2 is plugged in
the MSE to minimize. The Bayes estimator θ̂QBap , with the approximately optimal priors
cannot be evaluated in the median case, as explained in section 3.3.
By looking at the RRMSE, the Bayes estimators outperform almost everywhere the other
considered estimators. Considerable improvements in the RRMSE are evident with small
sample sizes and extreme quantiles: in these cases θ̂QBnp always has the lowest RMSE than

the others when p > 0.90, followed by θ̂QBap . In the smaller quantiles, the estimators reported
quite similar RMSEs, with the exception of the naive estimator that always presents the
worst performance among the parametric estimators. Another interesting point to highlight
is about the median estimation: since in this case the estimand does not involve σ2 the
Bayes conditioned estimator θ̂∗p is reached by the other competitors.
The non-parametric estimator is not e�cient if compared to the model based estimators,
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Relative Root MSE

p

n Method 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

11

θ̂∗p 0.025 0.035 0.042 0.057 0.079 0.111 0.151 0.181 0.254

Q̂7
p 0.112 0.082 0.082 0.079 0.101 0.140 0.231 0.301 0.615

θ̂p 0.054 0.059 0.061 0.066 0.081 0.126 0.212 0.294 0.536

Q̂p 0.052 0.058 0.061 0.066 0.080 0.120 0.202 0.282 0.527

θ̂Bap 0.049 0.055 0.058 0.064 - 0.123 0.200 0.273 0.482

θ̂Bnp 0.053 0.059 0.062 0.066 0.080 0.121 0.201 0.274 0.480

21

θ̂∗p 0.018 0.025 0.030 0.041 0.057 0.080 0.109 0.130 0.183

Q̂7
p 0.075 0.059 0.056 0.058 0.073 0.108 0.175 0.247 0.490

θ̂p 0.037 0.041 0.042 0.046 0.058 0.090 0.151 0.207 0.371

Q̂p 0.036 0.040 0.042 0.047 0.057 0.088 0.147 0.204 0.371

θ̂Bap 0.035 0.039 0.041 0.046 - 0.089 0.146 0.199 0.353

θ̂Bnp 0.037 0.041 0.043 0.047 0.057 0.088 0.143 0.194 0.338

51

θ̂∗p 0.012 0.016 0.019 0.026 0.037 0.052 0.070 0.084 0.118

Q̂7
p 0.044 0.035 0.034 0.036 0.046 0.069 0.117 0.163 0.344

θ̂p 0.023 0.025 0.027 0.029 0.037 0.058 0.095 0.130 0.231

Q̂p 0.023 0.025 0.027 0.029 0.037 0.057 0.094 0.129 0.231

θ̂Bap 0.022 0.025 0.026 0.029 - 0.057 0.094 0.128 0.226

θ̂Bnp 0.023 0.026 0.027 0.030 0.037 0.057 0.093 0.126 0.221

Relative Bias

11

θ̂∗p -0.004 -0.005 -0.006 -0.009 -0.012 -0.017 -0.023 -0.027 -0.039

Q̂7
p 0.090 0.051 0.040 0.023 0.009 -0.013 -0.080 -0.131 -0.499

θ̂p 0.012 0.011 0.010 0.008 0.006 0.004 0.006 0.010 0.029

Q̂p -0.003 -0.006 -0.007 -0.010 -0.013 -0.012 -0.005 0.004 0.041

θ̂Bap -0.003 -0.005 -0.005 -0.001 - -0.014 -0.046 -0.070 -0.125

θ̂Bnp -0.012 -0.013 -0.014 -0.012 -0.016 -0.028 -0.052 -0.072 -0.122

21

θ̂∗p -0.002 -0.003 -0.003 -0.005 -0.006 -0.009 -0.012 -0.015 -0.021

Q̂7
p 0.057 0.030 0.022 0.012 0.005 -0.008 -0.045 -0.100 -0.345

θ̂p 0.006 0.006 0.005 0.004 0.003 0.002 0.003 0.005 0.015

Q̂p -0.002 -0.003 -0.004 -0.006 -0.007 -0.006 -0.001 0.004 0.026

θ̂Bap -0.002 -0.003 -0.003 -0.001 - -0.007 -0.024 -0.037 -0.066

θ̂Bnp -0.009 -0.009 -0.009 -0.008 -0.007 -0.015 -0.030 -0.042 -0.078

51

θ̂∗p -0.001 -0.001 -0.001 -0.002 -0.003 -0.004 -0.005 -0.006 -0.008

Q̂7
p 0.028 0.013 0.009 0.005 0.002 -0.003 -0.019 -0.041 -0.172

θ̂p 0.003 0.002 0.002 0.002 0.001 0.001 0.001 0.001 0.005

Q̂p -0.001 -0.001 -0.002 -0.002 -0.003 -0.002 0.000 0.002 0.010

θ̂Bap -0.001 -0.001 -0.001 0.000 - -0.003 -0.010 -0.016 -0.028

θ̂Bnp -0.003 -0.003 -0.003 -0.003 -0.003 -0.008 -0.017 -0.026 -0.050

Table 4.6: RRMSE and RB of estimators for θp with respect to di�erent sample sizes n and
quantiles p, with σ2 = 0.25.
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Relative Root MSE

p

n Method 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

11

θ̂∗p 0.008 0.016 0.023 0.042 0.082 0.161 0.296 0.426 0.842

Q̂7
p 0.057 0.051 0.056 0.069 0.116 0.222 0.468 0.773 1.708

θ̂p 0.022 0.031 0.038 0.054 0.091 0.199 0.470 0.807 2.262

Q̂p 0.020 0.028 0.035 0.051 0.084 0.169 0.379 0.647 1.767

θ̂Bap 0.020 0.028 0.035 0.052 - 0.190 0.416 0.690 1.874

θ̂Bnp 0.018 0.027 0.034 0.051 0.084 0.169 0.363 0.581 1.394

21

θ̂∗p 0.006 0.012 0.017 0.030 0.060 0.117 0.216 0.310 0.613

Q̂7
p 0.034 0.033 0.035 0.047 0.080 0.164 0.355 0.582 1.499

θ̂p 0.014 0.020 0.025 0.036 0.063 0.138 0.316 0.530 1.396

Q̂p 0.013 0.019 0.024 0.035 0.060 0.126 0.286 0.481 1.287

θ̂Bap 0.013 0.019 0.024 0.036 - 0.135 0.301 0.497 1.300

θ̂Bnp 0.012 0.019 0.024 0.035 0.060 0.126 0.273 0.440 1.067

51

θ̂∗p 0.004 0.007 0.011 0.020 0.039 0.076 0.140 0.201 0.397

Q̂7
p 0.018 0.018 0.020 0.028 0.050 0.103 0.234 0.392 1.173

θ̂p 0.008 0.012 0.015 0.023 0.040 0.086 0.194 0.320 0.812

Q̂p 0.008 0.012 0.015 0.022 0.039 0.083 0.187 0.309 0.792

θ̂Bap 0.008 0.012 0.015 0.022 - 0.086 0.191 0.313 0.793

θ̂Bnp 0.007 0.012 0.013 0.021 0.039 0.083 0.182 0.296 0.721

Relative Bias

11

θ̂∗p -0.002 -0.005 -0.007 -0.012 -0.024 -0.048 -0.088 -0.126 -0.249

Q̂7
p 0.043 0.032 0.029 0.025 0.020 0.006 -0.106 -0.177 -1.288

θ̂p 0.007 0.009 0.009 0.011 0.013 0.022 0.057 0.110 0.387

Q̂p -0.001 -0.002 -0.005 -0.012 -0.025 -0.043 -0.051 -0.038 0.084

θ̂Bap 0.005 0.006 0.007 0.011 - 0.002 -0.034 -0.060 -0.053

θ̂Bnp -0.002 -0.005 -0.007 -0.012 -0.028 -0.062 -0.148 -0.241 -0.579

21

θ̂∗p -0.001 -0.003 -0.004 -0.007 -0.013 -0.026 -0.047 -0.068 -0.134

Q̂7
p 0.025 0.018 0.015 0.013 0.010 -0.001 -0.059 -0.179 -0.890

θ̂p 0.003 0.004 0.005 0.005 0.006 0.011 0.029 0.055 0.187

Q̂p 0.000 -0.002 -0.003 -0.007 -0.014 -0.021 -0.021 -0.008 0.091

θ̂Bap 0.002 0.002 0.003 0.004 - 0.003 -0.013 -0.021 0.001

θ̂Bnp -0.003 -0.005 -0.006 -0.008 -0.015 -0.036 -0.091 -0.155 -0.400

51

θ̂∗p -0.001 -0.001 -0.001 -0.003 -0.005 -0.011 -0.019 -0.028 -0.055

Q̂7
p 0.012 0.008 0.006 0.005 0.004 0.000 -0.025 -0.067 -0.409

θ̂p 0.001 0.002 0.002 0.002 0.003 0.005 0.011 0.021 0.069

Q̂p 0.000 -0.001 -0.001 -0.003 -0.005 -0.008 -0.007 -0.001 0.041

θ̂Bap 0.001 0.001 0.001 0.002 - 0.002 -0.004 -0.007 0.002

θ̂Bnp -0.003 -0.001 -0.004 -0.003 -0.006 -0.017 -0.050 -0.089 -0.244

Table 4.7: RRMSE and RB of estimators for θp with respect to di�erent sample sizes n and

quantiles p, with σ2 = 1 . The Bayes estimator θ̂Bp is the estimator under relative quadratic loss for
the median and the one under quadratic loss for the others.
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Figure 4.2: Comparison at the di�erent quantile levels among the considered estimators in terms
of CRMSE and RB. For the sample sizes of 11 and 21 the variance is �xed equal to 0.25, 0.5, 1.

in particular when the variance in the log-scale increases. Moreover, the major critical
points are the extreme quantiles, since this particular estimator assumes the lowest sample
observation as p = 0 and the bigger as p = 1. This fact implies a considerable positive
bias in the estimation of the lower quantiles and a negative one in estimating the higher
quantiles, even if in the latter case the RRMSE is limited.
It might be noted that the Bayes estimators, θ̂Bnp mainly, limit the RRMSE through an

important presence of negative bias. This is true also for the conditioned estimator θ̂∗p. In
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particular, θ̂QBnp appears to be often the most biased estimator, whereas θ̂QBap keeps the
bias low.
A negative aspect of the main competitor Q̂p is underlined in this simulation scheme: some
computational issues are encountered for low quantiles with particular combinations of σ2

and n because of the existence conditions reported in section 3.1.3.
Finally, comparing tables 4.6 and 4.7 it can be noted that, in estimating quantiles below
the median, the RRMSE decreases when σ2 increases. A possible interpretation of this
behaviour is connected to the distribution skewness (1.8), which rapidly increases with σ2.
Moreover, at the same time, the mode of the distribution, equal to exp

{
ξ − σ2

}
, approaches

to 0. Consequently, in that cases, the amount of information contained in the left tail of the
distribution is higher, leading to a more precise quantile estimate.

4.1.4 Posterior variance

0.1 0.5 0.9

0.06 0.09 0.12 0.15 0.1 0.2 0.3 0.0 0.5 1.0 1.5

0

1

2

3

0

3

6

9

0

10

20

30

Posterior S.D.

D
en

si
ty

Estimator Qa Qn

Figure 4.3: Kernel density plots of the posterior standard deviation distributions of the θ̂Bnp and

θ̂QBap estimators at di�erent quantiles p. The case σ2 = 0.5 and n = 21 is reported. The vertical
lines show the square root of the Monte Carlo variances averages of the estimators

Another property assessed through a Monte Carlo study is the reliability of the variance of
the θp posterior distribution as an estimate of the frequentist variance of estimates. It is an
important aspect in order to provide an uncertainty measure to the estimator. The Monte
Carlo standard deviation

√
VMC of the point estimators and the average posterior standard

deviation
√
V̄QB are considered. The results for both the proposed Bayes estimators θ̂Bnp

and θ̂QBap are reported in table 4.8.
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Table 4.8: Monte Carlo standard deviation of the estimator θ̂Bnp in the sample space and square root of the expectation of the
posterior variance distribution at di�erent n, σ2, p.

p: 0.10 0.25 0.50 0.75 0.90

σ2 n
√
VMC

√
V̄QB

√
VMC

√
V̄QB

√
VMC

√
V̄RQB

√
VMC

√
V̄QB

√
VMC

√
V̄QB

θ̂Bnp

0.25
11 0.113 0.111 0.123 0.137 0.149 0.171 0.225 0.188 0.373 0.316
21 0.080 0.080 0.088 0.094 0.108 0.117 0.164 0.150 0.266 0.245
51 0.051 0.051 0.056 0.057 0.070 0.072 0.110 0.104 0.174 0.166

0.5
11 0.123 0.116 0.152 0.170 0.208 0.246 0.349 0.287 0.639 0.572
21 0.087 0.085 0.108 0.116 0.151 0.167 0.261 0.238 0.473 0.448
51 0.057 0.054 0.070 0.070 0.098 0.102 0.186 0.168 0.351 0.325

1
11 0.122 0.111 0.178 0.207 0.287 0.363 0.565 0.440 1.192 1.108
21 0.084 0.081 0.124 0.136 0.211 0.243 0.433 0.386 0.924 0.897
51 0.046 0.053 0.075 0.082 0.138 0.147 0.297 0.267 0.631 0.619

2
11 0.108 0.097 0.192 0.257 0.393 0.565 0.956 0.679 2.483 2.363
21 0.069 0.066 0.131 0.149 0.290 0.364 0.765 0.663 2.052 2.046
51 0.052 0.041 0.092 0.089 0.193 0.213 0.540 0.500 1.426 1.543

θ̂QBap

0.25
11 0.108 0.113 0.121 0.130 - - 0.229 0.222 0.361 0.372
21 0.078 0.080 0.087 0.091 - - 0.168 0.165 0.271 0.276
51 0.050 0.051 0.056 0.057 - - 0.108 0.108 0.177 0.178

0.5
11 0.119 0.120 0.152 0.158 - - 0.374 0.369 0.658 0.709
21 0.085 0.086 0.108 0.111 - - 0.273 0.273 0.498 0.522
51 0.054 0.055 0.069 0.070 - - 0.176 0.177 0.327 0.333

1
11 0.126 0.121 0.188 0.189 - - 0.652 0.659 1.328 1.515
21 0.086 0.085 0.129 0.131 - - 0.474 0.483 1.018 1.113
51 0.053 0.053 0.080 0.081 - - 0.305 0.309 0.673 0.701

2
11 0.129 0.119 0.236 0.228 - - 1.250 1.307 3.092 3.790
21 0.079 0.077 0.148 0.148 - - 0.898 0.941 2.412 2.794
51 0.046 0.046 0.089 0.089 - - 0.576 0.590 1.620 1.738
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With smaller σ2, the posterior variance for the prior setting of θ̂QBnp tends to underestimate
the the estimator variance

√
VMC especially in the case n = 11; whereas it results to be

more precise when σ2 ≥ 1. However, already with n = 21 the di�erences are limited.
The other proposal θ̂QBap shows an opposite behaviour: overestimation is present at the
upper quantiles when σ2 ≤ 1.
On the other hand, the posterior variance with the weakly informative prior, in the median
case, tends to overestimate the variance of the Bayes estimator under relative quadratic loss.
To compare the Monte Carlo estimate of the estimator variance with respect to the distri-
bution of the posterior variances in the sample space, �gure 4.3 is produced.

4.1.5 Robustness with respect to model misspeci�cation

A further aspect that is assessed through simulations is the robustness of the estimators in
case of model misspeci�cation. The Bayes estimators, the naive estimator, the Longford's
estimator and the non-parametric estimator are included in the analysis. Then, samples
from gamma and Weibull distributions are generated. The simulation results are based on
B = 50, 000 replicates and RRMSE and relative bias are reported for di�erent parameters
scenarios (table 4.9).
Both the proposed estimators have similar frequentist properties of the estimator by Long-
ford. The main critical points to highlight concern θ̂Qnp that possess the higher RRMSE in
the right tail quantiles with small sample size (n = 11).
Di�erent results are obtained for the median estimation: in this case the naive estimator re-
sults to be almost always the most e�cient choice, whereas the Bayes estimator outperforms
the non-parametric estimator only when the true model is a gamma.
A �nal observation is about the fact that the quote of RRMSE and RB of each estimator is
caused by the kind of distribution, whereas the parameters do not change it.

4.2 Interval estimation: frequentist coverage

A simulation study is also performed to evaluate the interval estimation: the naive con�dence
intervals obtained exponentiating the limits for the normal quantiles (see section 3.1.2)
are compared to the Bayesian credible intervals based on the quantiles of the θp posterior
distribution in the weakly informative prior setting. The other hyperparameters selection
procedures do not result to be appropriated for this task because the related posterior
distributions are too peaked and the intervals would not reach the nominal coverage. An
example of this fact is reported in �gure 4.4 where the results of the intervals based on the
prior of θ̂Qnp are displayed too.
In table 4.10 the output of the Monte Carlo study based on B = 10, 000 replications is
reported. As it is possible to notice (from �gure 4.4 too), the nominal coverage, �xed equal to
0.95, is reached by both the procedures and no critical situations are evidenced. Moreover, an
interesting result is about the average width of the intervals: especially in extreme scenarios
(i.e. n small and high p), the Bayesian credible intervals are always consistently narrower
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Table 4.9: Performances of di�erent estimators of the target functional θp in case of misspeci�ed
log-normal distribution. Di�erent generating distribution and various samples sizes are considered.

Relative Root MSE Relative bias

p n θ̂p Q̂p θ̂QBap θ̂QBnp Q̂7
p θ̂p Q̂p θ̂QBap θ̂QBnp Q̂7

p

0.1

Gamma
sh.=2
sc.=2

11 0.501 0.466 0.455 0.463 0.672 0.162 0.030 0.107 0.026 0.354
21 0.348 0.332 0.329 0.328 0.445 0.097 0.026 0.065 0.007 0.190
51 0.218 0.212 0.212 0.228 0.267 0.054 0.025 0.041 -0.021 0.133

Gamma
sh.=2
sc.=0.5

11 0.501 0.466 0.455 0.463 0.685 0.162 0.030 0.107 0.026 0.354
21 0.348 0.332 0.329 0.328 0.450 0.097 0.026 0.065 0.007 0.190
51 0.218 0.212 0.212 0.228 0.268 0.054 0.025 0.041 -0.021 0.079

Weibull
sh.=2
sc.=2

11 0.415 0.402 0.381 0.399 0.530 0.122 0.032 0.064 0.023 0.263
21 0.298 0.291 0.284 0.291 0.367 0.074 0.026 0.043 0.008 0.145
51 0.191 0.188 0.187 0.177 0.228 0.041 0.021 0.028 0.005 0.062

Weibull
sh.=2
sc.=0.5

11 0.415 0.402 0.381 0.399 0.530 0.122 0.032 0.064 0.023 0.263
21 0.298 0.291 0.284 0.291 0.367 0.074 0.026 0.043 0.008 0.145
51 0.191 0.188 0.187 0.177 0.228 0.041 0.021 0.028 0.005 0.062

0.5

Gamma
sh.=2
sc.=2

11 0.232 0.264 - 0.268 0.289 -0.062 -0.139 - -0.148 0.029
21 0.178 0.199 - 0.201 0.209 -0.077 -0.118 - -0.121 0.014
51 0.133 0.145 - 0.145 0.133 -0.085 -0.103 - -0.103 0.006

Gamma
sh.=2
sc.=0.5

11 0.232 0.264 - 0.268 0.289 -0.062 -0.139 - -0.148 0.029
21 0.178 0.199 - 0.201 0.209 -0.077 -0.118 - -0.121 0.014
51 0.133 0.145 - 0.145 0.133 -0.085 -0.103 - -0.103 0.006

Weibull
sh.=2
sc.=2

11 0.191 0.222 - 0.226 0.211 -0.082 -0.130 - -0.137 0.010
21 0.154 0.173 - 0.174 0.155 -0.090 -0.116 - -0.118 0.006
51 0.126 0.135 - 0.135 0.101 -0.096 -0.107 - -0.107 0.002

Weibull
sh.=2
sc.=0.5

11 0.193 0.225 - 0.229 0.213 -0.084 -0.133 - -0.140 0.008
21 0.155 0.174 - 0.175 0.155 -0.091 -0.117 - -0.119 0.006
51 0.126 0.135 - 0.135 0.101 -0.096 -0.107 - -0.107 0.002

0.9

Gamma
sh.=2
sc.=2

11 0.325 0.264 0.277 0.334 0.263 0.102 0.040 0.022 -0.210 -0.098
21 0.242 0.217 0.219 0.196 0.199 0.098 0.069 0.058 -0.012 -0.057
51 0.172 0.163 0.161 0.139 0.133 0.098 0.087 0.082 0.051 -0.025

Gamma
sh.=2
sc.=0.5

11 0.325 0.264 0.277 0.334 0.263 0.102 0.040 0.022 -0.210 -0.098
21 0.242 0.217 0.219 0.196 0.199 0.098 0.069 0.058 -0.012 -0.057
51 0.172 0.163 0.161 0.139 0.133 0.098 0.087 0.082 0.051 -0.025

Weibull
sh.=2
sc.=2

11 0.267 0.224 0.222 0.282 0.187 0.109 0.076 0.041 -0.167 -0.079
21 0.214 0.196 0.189 0.173 0.138 0.117 0.103 0.082 -0.003 -0.043
51 0.167 0.161 0.155 0.140 0.090 0.120 0.115 0.105 0.087 -0.019

Weibull
sh.=2
sc.=0.5

11 0.267 0.224 0.222 0.282 0.187 0.109 0.076 0.041 -0.167 -0.079
21 0.214 0.196 0.189 0.173 0.138 0.117 0.103 0.082 -0.003 -0.043
51 0.167 0.161 0.155 0.140 0.090 0.120 0.115 0.105 0.087 -0.019
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Table 4.10: Comparison between the con�dence interval (Conf. Int.) and the Bayesian credible
interval (Cred. Int.) in terms of coverage (Cov.), with the nominal level �xed at 0.95, and average
width. Di�erent combinations of σ2 and n at di�erent quantiles are reported.

p = 0.1 p = 0.25

Conf. Int. Cred. Int. Conf. Int. Cred. Int.

σ2 n Cov. Width Cov. Width Cov. Width Cov. Width

0.25
11 0.951 0.435 0.952 0.432 0.951 0.501 0.950 0.493
21 0.949 0.310 0.948 0.309 0.949 0.350 0.952 0.349
51 0.951 0.197 0.950 0.202 0.952 0.220 0.955 0.221

0.5
11 0.949 0.469 0.950 0.458 0.952 0.617 0.947 0.601
21 0.951 0.335 0.952 0.334 0.950 0.431 0.950 0.428
51 0.949 0.213 0.949 0.222 0.954 0.271 0.954 0.271

1
11 0.952 0.464 0.946 0.456 0.951 0.728 0.945 0.704
21 0.950 0.329 0.949 0.331 0.951 0.504 0.951 0.500
51 0.950 0.208 0.951 0.216 0.948 0.316 0.949 0.316

2
11 0.953 0.418 0.940 0.421 0.951 0.843 0.934 0.814
21 0.954 0.283 0.954 0.284 0.953 0.559 0.949 0.554
51 0.949 0.176 0.947 0.177 0.952 0.342 0.952 0.342

p = 0.50 p = 0.75

0.25
11 0.954 0.677 0.951 0.663 0.954 1.188 0.952 1.135
21 0.950 0.457 0.948 0.455 0.949 0.749 0.948 0.744
51 0.952 0.281 0.952 0.362 0.953 0.447 0.953 0.446

0.5
11 0.948 0.985 0.942 0.944 0.951 2.087 0.948 1.895
21 0.948 0.655 0.946 0.650 0.951 1.262 0.951 1.241
51 0.953 0.400 0.954 0.404 0.951 0.736 0.951 0.734

1
11 0.954 1.487 0.944 1.370 0.949 4.185 0.942 3.406
21 0.949 0.953 0.946 0.938 0.951 2.324 0.950 2.237
51 0.953 0.573 0.953 0.572 0.952 1.298 0.951 1.292

2
11 0.949 2.385 0.930 2.047 0.947 10.188 0.929 6.653
21 0.949 1.429 0.943 1.383 0.949 4.866 0.944 4.454
51 0.952 0.829 0.951 0.825 0.950 2.533 0.950 2.506

p = 0.90 p = 0.95

0.25
11 0.950 2.228 0.948 2.071 0.955 3.340 0.955 3.049
21 0.949 1.316 0.949 1.301 0.949 1.859 0.949 1.833
51 0.948 0.753 0.948 0.756 0.949 1.044 0.949 1.043

0.5
11 0.950 4.800 0.948 4.068 0.951 8.141 0.949 6.590
21 0.949 2.578 0.948 2.508 0.947 4.010 0.947 3.878
51 0.950 1.426 0.949 1.421 0.950 2.132 0.950 2.124

1
11 0.951 12.585 0.947 8.771 0.953 25.564 0.950 16.039
21 0.949 5.894 0.948 5.527 0.946 10.542 0.946 9.723
51 0.950 3.041 0.949 3.018 0.951 5.154 0.952 5.107

2
11 0.950 48.421 0.937 22.141 0.946 135.003 0.939 47.351
21 0.952 17.162 0.950 14.683 0.953 37.937 0.950 31.048
51 0.949 7.913 0.949 7.772 0.955 15.739 0.954 15.395



CHAPTER 4. QUANTILE ESTIMATION: SIMULATIONS AND EXAMPLES 72

0.05 0.5 0.95

F
re

q.
 C

ov
.

R
el

at
iv

e 
A

vg
 W

id
th

20 40 60 20 40 60 20 40 60

0.75

0.80

0.85

0.90

0.95

0.2

0.4

0.6

0.8

1.0

n

Type Naive Conf. Int. Opt. Cred. Int W.I. Cred. Int

Figure 4.4: Average width of the Bayesian credible interval compared to the frequentist con�dence
interval. The trend with respect to the sample size n is reported at di�erent quantiles p.

than the naive con�dence intervals, indicating an important gain in precision. The results
reported in this section are about two sided intervals; however simulations have been carried
out for testing the behaviour of the one-sided intervals too and similar �ndings are obtained.

4.3 Quantile regression model

The assessment of the frequentist properties of the Bayes estimators used to estimate the
log-normal quantile conditioned to a covariate point x̃ is performed through a Monte Carlo
study. The simulation scheme adopted is the same of the paper by Fabrizi and Trivisano
(2016) and random samples from the following model are generated:

yi|x̃1i ∼ logN
(
β0 + β1x̃1i, σ

2
)
, i = 1, ..., n; (4.4)

where the coe�cients vector is �xed as (β0, β1) = (1, 1) and the covariate x̃1i is �xed equal
to a value generated from a uniform distribution between 0 and 1. Di�erent combinations
of sample sizes and variances in the log-scale are considered, with n = (11, 21, 51) and σ2 =
(0.1, 0.25, 0.5, 1). To evaluate the estimators also outside the covariate range [0, 1], the follow-
ing points in the covariate space are considered: x̃ = (1, x0), with x0 = (0, 0.1, ..., 1.1, 1.2).
The simulation study is based on B = 10, 000 replicates.
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The Bayes estimators are compared to the conditioned estimator θ̂∗p(x̃) de�ned in the (3.71),
to the naive estimator:

θ̂p(x̃) = exp
{
x̃T β̂ + Φ−1(p)σ̂

}
, (4.5)

where β̂ and σ̂ are the estimates obtained through the OLS procedure; and, �nally, to the
output of a particular case of the Box-Cox quantile regression θ̂BOp (x̃). The latter estimation
method consists in the back-transformation of the estimates obtained with the classical non-
parametric quantile regression (Koenker, 2005) applied on the log-transformed data.
The Bayes estimators evaluated in the simulation when p 6= 0.5 are: the posterior expectation
with optimal hyperparameters chosen numerically and average leverage h̄, θ̂QBn(x̃), and the
one with approximately optimal prior θ̂QBa(x̃). On the other hand, in the median case only,
the Bayes estimator under relative quadratic loss with weakly informative prior is taken into
account.
The outputs of the simulation study are graphical and illustrate the behaviour of the esti-
mators relative RMSE (the conditioned estimator is considered as the reference value) and
the relative bias with respect to di�erent values of x0.
In �gures 4.5, 4.6 and 4.7 the results for quantiles 0.10, 0.50 and 0.90 are reported; whereas
in �gures D.1, D.2 and D.3 in the appendix, outputs which are related to other quantiles
are showed.
As expected, in general, with low values of σ2 and high sample size n the estimators tend
to behave similarly. Moreover, the non-parametric procedure that produces the estimate
θ̂BOp (x̃) is always the worst estimator in terms of RMSE, especially in the boundaries of the
covariate range. This estimator is positively biased.
Another estimator that is always positively biased is the naive one θ̃p(x̃). However it results
to be a competitive estimator, even if it is largely outperformed by the Bayes estimators in
extreme scenarios.
The two versions of the Bayes estimator evaluated in this study produced good results:
in general they behave very similarly, and they displayed better performances than the
competitors, especially in critical situations. Moreover, the good results in term of RMSE
of the Bayes estimators with high covariate values is attached with a considerable reduction
of the bias. In particular, the negative bias that characterizes the Bayes estimator increase,
producing an almost unbiased estimator when x0 is above its sample range.
Finally, the performances of the credible intervals are assessed through a Monte Carlo study
based on B = 5, 000 simulations with the weakly informative prior setting. As a �rst step, a
nominal coverage level of 0.90 is chosen and in �gure 4.8 the frequentist coverages obtained
in the simulation are reported. It is possible to observe that in critical scenarios (n = 11,
σ2 > 0.25 and x0 at the extremes of the range at the same time), the intervals showed a
lower coverage than the nominal one. On the other hand, no di�erences can be noticed with
respect to the di�erent quantiles considered.
Shifting the focus on the average width, in �gure 4.9 its behaviour with respect to the
covariate value x0 in di�erent combinations of n and σ2 is showed. As expected, similar
trends are noted in the di�erent scenarios: intervals are narrower with low variance and high
sample size, whereas they become wider as the quantile increase.
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Figure 4.5: Relative RMSE and relative bias of various estimators of the target quantity θp(x̃),
with p = 0.10.
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Figure 4.6: Relative RMSE and relative bias of various estimators of the target quantity θp(x̃),
with p = 0.50.
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Figure 4.7: Relative RMSE and relative bias of various estimators of the target quantity θp(x̃),
with p = 0.90.
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Figure 4.8: Frequentist coverages of the credible intervals. The nominal coverage is 0.90.
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Figure 4.9: Average widths of the Bayesian credible intervals at di�erent quantiles and combina-
tions of σ2 and n.
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4.4 Examples

4.4.1 An application in environmental monitoring

In environmental monitoring, the estimation of a con�dence interval around a percentile
(usually in the right tail) is a common task. Besides, log-normality is often assumed in
analysing pollutant concentration data. In fact, two di�erent problems of this kind can be
mentioned: the control for the presence of regulatory standard exceedences (that might be
percentiles) and the estimation of the site background conditions with respect to a particular
pollutant. In the second case, the estimated threshold is used to verify the compliance of
subsequent samples and to assess the eventual contamination (USEPA, 2009). As already
highlighted in section 3.1.2, in these applications, the one-sided lower and upper con�dence
intervals are often employed to respectively estimate the so called lower con�dence limit
(LCL) and upper con�dence limit (UCL).
Since these procedures have a considerable impact both on the environmental protection
and on the eventual corrective actions to a�ord, the improvements of statistical methods
used in these procedures are particularly useful.
Besides, given that this kind of monitoring studies are often conducted with small sample
sizes, the Bayesian approach for the construction of credible intervals around log-normal
percentiles, whose frequentist performances are studied in section 4.2, might represent a
substantial improvement in this context.
To illustrate the prospective improvements brought by the developed method, a popular
example (USEPA, 2009; Millard, 2013) is faced. The original goal is to estimate the upper
tolerance limit of the 95-th quantile, i.e. the background threshold that is represented by
the value which includes the 95% of the distribution with the 95% con�dence.
A small sample (n = 8) of chrysene concentrations (ppb) is obtained from two background
wells:

19.7, 39.2, 7.8, 12.8, 10.2, 7.2, 16.1, 5.7.

All the most popular tests do not reject the hypothesis of log-normality.

Table 4.11: Point estimates of θ0.95 with di�erent methods. The standard error estimates are
reported too if available.

θ̂0.95 Q̂0.95 θ̂QBw0.95 θ̂QBn0.95 θ̂QBa0.95

Estimate 34.517 33.696 40.491 31.181 30.806
S.e. - 8.056 26.862 8.257 9.581

As a �rst step, the 95-th percentile of the distribution is estimated assuming log-normality.
The Bayes minimum MSE conditioned estimator θ̂∗0.95 is not considered since the value of
σ2 is not known. Using the unbiased estimates of the mean and variance in the log-scale
(µ̂ = 2.509, σ̂2 = 0.394), the naive estimator θ̂0.95 and the Longford's minimum MSE
estimator Q̂0.95 are computed. Then, the Bayes estimator is evaluated under three di�erent
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prior strategies: the weakly informative setting θ̂QBw0.95 , the one with hyperparameters chosen

by numerically minimizing the MSE
(
θ̂QBn0.95

)
and the strategy that takes advantage of the

analytic approximation of the work by Fabrizi and Trivisano (2012), θ̂QBa0.95 . The weakly
informative prior on the variance is given by σ2 ∼ GIG(λ = 0, δ = 0.01, γ = 1.06), as n = 8
and γ0 = 3/

√
n); the numerically MSE-optimizing one is σ2 ∼ GIG(λ = 0, δ = 1, γ = 4.61)

and the approximately optimal is σ2 ∼ GIG(λ = −2, δ = 0.01, γ = 1.06).
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Figure 4.10: Comparison between the distributions obtained in the three di�erent Bayesian ap-
proaches in the environmental monitoring example. (a) Log-density of the prior distributions of
σ2. (b) Density of the posterior distributions of σ2, the vertical line represents the unbiased sample
estimate σ̂2. (c) Posterior distributions of the target functional θ0.95. The solid vertical line reports
the Bayesian estimate of the UCL, whereas the dashed one the frequentist estimate.

All the numerical results are reported in table 4.11, and in the case of the Bayes estimators
the posterior standard deviation is reported too, in order to have an estimate of the estima-
tor variability. According to the simulation results reported in section 4.1.4, the posterior
variance is a reliable estimate of the estimator variance, even if a slight underestimation can
be possible with small sample sizes and high quantiles. For Longford's Q̂0.95, the square root
of the minimized MSE is reported as an estimate of the standard error, even if in extreme
quantiles the author observed a severe underestimation of the true MSE.
As a natural consequence of the extreme inferential conditions of the problem, a moderate
variability can be observed among the estimates. As expected, the estimators that are aimed
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at minimizing the MSE assume the lowest values, especially θ̂QBn0.95 and θ̂QBa0.95 , because of their
negative bias, whereas the Bayes estimator having the weakly informative prior registers the
higher value.
From the sub-�gure 4.10.b, the underestimation of σ2 produced by the prior settings of
θ̂QBn0.95 and θ̂QBa0.95 is evident; whereas, in the weakly informative setting, the posterior p(σ2|x)
is �atter and centred around σ̂2.
The heavy tail of the weakly informative prior distribution is inherited by the posterior
of the target functional p(θp|x), as it is possible to deduce from �gure 4.10 and from the
posterior standard deviation reported in table 4.11. Conversely, the other two strategies
produced peaked posteriors that are not suitable to produce interval estimates, as con�rmed
by the Monte Carlo study.
Considering the posterior quantiles of p(θp|x) in a weakly informative prior setting, the
Bayesian credible interval can be provided. As studied in section 4.2, the constructed inter-
vals possess an average width consistently lower than the frequentist intervals based on the
normal theory, particularly with small n and extreme quantiles, maintaining the nominal
coverage level. This characteristic holds also for one sided intervals, that are required for
the determination of the UCL.
Lastly, the standard method currently employed by the EPA leads to an estimate of the
background threshold equal to 90.925, whereas the Bayesian credible interval produces the
value of 76.195. This implies that the procedure currently used to determine the UCL might
be excessively conservative.
The results about the Bayesian estimation of θ0.95 under the optimal prior and the weakly
informative one can be easily obtained using the LN_Quant function of the package BayesLN,
where the used data are already present. The code and the outputs are now reported.

library(BayesLN)

# Load the dataset included in the package

data("EPA09")

EPA09

## [1] 19.7 39.2 7.8 12.8 10.2 7.2 16.1 5.7

# Optimal prior setting

LN_Mean(x = EPA09, x_transf = FALSE,

method = "optimal", CI = FALSE)

## ------------------

## Lognormal mean estimation with optimal prior

## ------------------

## $Prior_Parameters

## lambda delta gamma

## -3.800 0.010 2.031

##
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## $Posterior_Parameters

## lambda alpha delta beta mu

## -7.300 7.000 0.587 4.000 2.509

##

## $LogN_Par_Post

## Mean Var p=0.05 p=0.50 p=0.95

## xi 2.5085773 0.025427261 2.2479884 2.5085773 2.7691663

## sigma2 0.2034181 0.006442247 0.1089936 0.1867561 0.3538392

##

## $Post_Estimates

## Mean S.d.

## [1,] 13.79142 2.352631

# Weakly informative prior and UCL

LN_Mean(x = EPA09, x_transf = FALSE,

method = "weak_inf", alpha_CI = 0.05,

type_CI = "UCL")

## ------------------

## Lognormal mean estimation with weak_inf prior

## ------------------

## $Prior_Parameters

## lambda delta gamma

## 0.000 0.010 2.031

##

## $Posterior_Parameters

## lambda alpha delta beta mu

## -3.500 7.000 0.587 4.000 2.509

##

## $LogN_Par_Post

## Mean Var p=0.05 p=0.50 p=0.95

## xi 2.5085773 0.04906591 2.1479301 2.5085773 2.8692245

## sigma2 0.3925273 0.03930270 0.1745759 0.3456645 0.7687825

##

## $Post_Estimates

## Mean S.d.

## [1,] 15.42667 4.241931

##

## $Interval

## Lower limit Upper limit

## 0.0000 22.9147
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4.4.2 Application in occupational health

Also in public health analyses, it is common to estimate extreme quantiles in the right tail of
a skewed distribution from small samples (Bullock and Ignacio, 2006; Gibbons et al., 2009;
Krishnamoorthy et al., 2011).
To show a possible use of the developed methods in the occupational health research, a small
dataset from the appendix IV of the book by Bullock and Ignacio (2006) is considered. It
consists of n = 10 monitoring observations of exposure (ppm) of the coil feed operator and
helper to Methyl Isobutyl Ketone (MIBK) during cleanup:

23, 42, 86, 62, 34, 107, 29, 65, 54, 55.

Likewise the previous example, the original inferential goal is the estimation of the 95-th
percentile (θ0.95) of the underlying distribution and the associated upper tolerance limit.
Then, this value needs to be compared to the MIBK short term exposure limit �xed at
75 ppm. The weakly informative prior on the variance is given by σ2 ∼ GIG(λ = 0, δ =
0.01, γ = 0.93), the one for θ̂QBn0.95 is given by σ2 ∼ GIG(λ = 0, δ = 1, γ = 6.24) and, �nally,

the prior for θ̂QBa0.95 is σ2 ∼ GIG(λ = −2, δ = 0.01, γ = 0.93): the prior settings are rather
similar to the ones of the former application.
The di�erent choices for the prior on σ2 are re�ected into di�erent posteriors p(σ2|x): if a
weakly informative choice is taken, the posterior would be more di�use, thus giving more
weight to large values of the estimates, while the two aimed at minimizing the MSE are
more peaked around their mean and light-tail. These di�erences o�er a clue to read the
dissimilarities between estimators compared in table 4.12.

Table 4.12: Estimates of θ0.95 with di�erent methods: naive (θ̂0.95), Longford (Q̂0.95), the Bayes

estimators under weakly informative prior (θ̂QBw0.95 ), MSE-optimizing prior (θ̂QBn0.95 ) and the approxi-

mately optimal prior (θ̂QBa0.95 ).

θ̂0.95 Q̂0.95 θ̂QBw0.95 θ̂QBn0.95 θ̂QBa0.95

Estimate 111.074 110.934 123.048 105.873 102.335
S.e. - 17.771 44.554 19.626 22.514

For the estimation of the upper con�dence limit, the Bayesian proposal, based on the weakly
informative prior speci�cation, is compared to the method currently employed in literature.
The average shorter length of the intervals based on the proposed method leads to a smaller
and more powerful estimate for the UCL (195.81 against 204.19).

4.4.3 Application in lifetime analysis

The log-normality assumption is also popular in the analysis of survival data: in this case
the time of the event occurrence (e.g. failure, death, break) is the usual response. One
of the goals of these kind of analysis is the estimation of low quantiles together with the
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corresponding lower con�dence limit, in order to have an idea of reliability. Another quantity
of interest is the median, since the median duration is considered to be a performance
indicator.
A popular example in this �eld (Lawless, 2003; Hahn and Meeker, 2011) is based on data
from an endurance test on deep-groove ball bearings. It is a sample of size n = 23 and the
observed result is the number of revolutions in millions:

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.40, 51.84, 51.96, 54.12, 55.56, 67.80,

68.64, 68.64, 68.88, 84.12, 93.12, 98.64, 105.12, 105.84, 127.92, 128.04, 173.40.

The log-normality assumption is not rejected according to most popular tests.
The unbiased estimates of the log-normal parameters are µ̂ = 4.150 and σ̂2 = 0.284 and the
same estimators reported in the previous examples are considered for the lower quantiles. On
the other hand, in the median case, the Bayes estimator with the hyperparameters selected
through the approximation cannot be used. Therefore, the Bayes estimator obtained under
relative quadratic loss with weakly informative prior is considered.
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Figure 4.11: Comparison between the distributions obtained in the three di�erent Bayesian ap-
proaches adopted for the example about lifetime data. For each quantile, the following plots are
reported: log-density of the prior distributions of σ2; density of the posterior distributions of σ2,
with the vertical line which represents the unbiased estimate σ̂2; posterior distributions of the target
functional θp. In the last plot, the solid vertical line reports the Bayesian estimate of the LCL,
whereas the dashed one the frequentist estimate.

As expected from the fact that the log-normal left tail is �nite, the di�erences among the
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estimates are only slight (table 4.13). In this framework, the naive estimator and the Bayes
estimator under quadratic loss and weakly informative prior register the higher values too,
whereas the estimators with smaller MSE assume lower values. Moreover, the underestima-
tion of the Q̂p standard error is clear also for the lower quantiles.
Looking at the results and at the distributions reported in �gure 4.11, the likeness among
di�erent hyperparameters selection procedures is evident. However, the numerical optimiza-
tion rule for the prior choice, which in this case is based on the minimization of the MSE
with respect to δ, produces a GIG prior that is di�erent from the others. In particular, by
looking at the log-density plot, almost no probability is given to the 0 value.
As far as the median estimation concerns, some interesting cues can be deduced from �gure
4.12. It can be noted that the Bayes estimator under quadratic loss (in blue) is slightly
higher than the mode, causing a positive bias which makes the estimator to be not optimal,
whereas the Bayes estimator under relative quadratic loss is lower than the peak.

0.00

0.02

0.04

40 60 80
θp

D
en

si
ty Estimator

QB
RQB

Posterior of θp, p=0.5

Figure 4.12: Posterior distribution of the target functional θ0.5. The solid vertical lines represent
θ̂QBw0.5 (blue) and θ̂RQBw0.5 (red).

θ̂p Q̂p θ̂QBwp θ̂QBap θ̂QBnp

p Est. S.e. Est. S.e. Est. S.e. Est. S.e. Est. S.e.

0.01 18.347 - 17.486 2.174 18.065 3.948 17.706 3.955 16.660 3.866
0.1 32.034 - 30.950 3.626 31.708 4.907 31.357 4.949 30.416 4.983

θ̂p Q̂p θ̂QBwp θ̂RQBwp

0.5 63.458 - 62.267 7.036 63.889 7.469 62.180 7.469

Table 4.13: Estimates of θp with di�erent methods at p ∈ {0.01, 0.1, 0.5}. The estimates of the
standard errors are reported.

The LCLs and the intervals with the nominal coverage level of 0.95 are reported in table 4.14
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and they con�rm that the Bayesian credible intervals are narrower than the intervals based
on the exponentiation of the intervals derived in the normal theory. However, as already
noted in the simulations, with the increase of the sample size and the quantiles below or
equal to the median, the di�erences between the approaches are slighter and they almost
coincide in this case.

Con�dence interval Bayesian C.I.

LCL0.01 11.476 11.552
LCL0.1 23.416 23.486
C.I. θ0.5 [50.386;79.922] [50.417;79.873]

Table 4.14: Con�dence intervals and credible intervals (95%): LCL for the quantiles 0.01 and 0.1,
two sided for the median.

4.4.4 Application in hydrology

An important branch of hydrology is �ood frequency analysis (Hamed and Rao, 1999), whose
principal aim is the estimation of the magnitude of future extreme rivers �ow.
Among the adopted approaches to this inferential problem, a widespread procedure consists
of analysing the observed annual maximum �ow time series of the studied river. Then, the
yearly maximum �ow with a �xed return period T is estimated. This analysis is carried out
assuming that the observed maxima are independent and identically distributed according
to a positively skewed distribution.
To link this problem to the topic of this work, it is worth to stress that an event having a
�xed return period T is equivalent to the

(
1− 1

T

)
-th quantile of the distribution. Moreover,

even if the most recent guidelines for �ood frequency analysis (England Jr et al., 2018)
consider the log-Pearson type III distribution as automatic assumption for this kind of data,
the log-normal distribution is widely used in this research area (Stedinger, 1980; Karim and
Chowdhury, 1995; Vogel and Wilson, 1996; Strupczewski et al., 2001).
In order to exploit the e�ciency of the proposed estimation method in small samples in-
ference, a river recently monitored is chosen for this example. The series of the annual
maximum peak of Peeptoad Brook (1994-2016), a river in the Rohde Island State (USA),
was obtained from the United States Geological Survey (USGS), through the National Water
Information System.
The most popular tests do not reject the log-normality assumptions for this set of data.
The outputs about a set of quantiles connected to frequently estimated return periods are
reported in table 4.15. Considering the estimators behaviours, similar results to the ones of
the application in environmental monitoring in section 4.4.1 are found. In particular, the
higher estimates are registered by the Bayes estimator under relative quadratic loss, whereas
the Bayes estimators aimed at minimizing the MSE assume the lowest.
Thereafter, the stationarity assumption of the observed �ow maxima series can be relaxed by
exploring the presence of relations with a set of covariates (Villarini et al., 2009; Vogel et al.,
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Table 4.15: Estimates of θp with di�erent methods at p ∈ {0.80, 0.90, 0.98, 0.99}. The estimates of
the standard errors are reported.

θ̂p Q̂p θ̂QBwp

T p Est. S.e. Est. S.e. Est. S.e.

5 0.80 241.211 - 239.220 33.991 247.059 34.215
10 0.90 300.846 - 299.756 44.610 311.653 51.660
50 0.98 443.361 - 445.243 72.482 470.256 107.310
100 0.99 508.406 - 511.940 86.206 544.395 138.131

θ̂QBap θ̂QBnp

T p Est. S.e. Est. S.e.

5 0.80 236.724 28.551 235.580 26.366
10 0.90 291.984 41.099 292.105 37.197
50 0.98 422.995 79.101 424.818 68.165
100 0.99 482.490 99.277 484.468 84.053

2011; Prosdocimi et al., 2014). In this framework, the inferential problem consists in the
estimation of extreme quantiles conditioned to the values of a set of covariates. In particular,
following the idea of the latter references, the behaviour of the annual maximum �ood with
respect to the year is explored. In this framework, the location of the log-transformation of
the annual peak �ood yi is modelled using the year ti as explanatory variable:

log[yi] = β0 + β1(ti − t̄), (4.6)

where t̄ is the average year.
The Bayes estimators are compared to the naive procedure (i.e. OLS estimation of the
vector β and exponentiation of the normal quantile). The usual prior proposals for σ2 are

considered: the weakly informative
(
θ̂QBwp (x̃)

)
, the one based on the approximation by

Fabrizi and Trivisano (2016)
(
θ̂QBap (x̃)

)
and the numerical optimization choice

(
θ̂QBnp (x̃)

)
.

Moreover, for the weakly informative setting, the 90% credible intervals are also reported as
a credibility region. In fact, it is an useful quantity that is natural to obtain in the Bayesian
context but that is not reported in the applications involving the naive estimation method.
The estimates of the return periods 5,10,100 (i.e. quantiles 0.80, 0.90, 0.99) are computed
for the observed times and the following 5 years.
As it is possible to see from the marginal posterior distributions of the regression coe�cient
β1, reported in �gure 4.13, θ̂QBap (x̃) has the most peaked distribution, whereas, as expected,

θ̂QBwp (x̃) has the heavier tails. In the middle, the three choices of γ obtained for the di�erent
quantiles through the numerical optimization produce very similar distributions.
The behaviour of the estimates at di�erent years are shown in �gure 4.14. The credibility
intervals reported as shaded areas indicate the increasing uncertainty in the estimation of
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Figure 4.13: Posterior density of the regression coe�cient β1 under di�erent prior distributions
for the variance σ2.

future quantiles. On the other hand, considering the point estimates, the observed behaviour
is similar to the one proper of the unconditional quantile estimation: the higher values are
obtained by the naive estimation and by θ̂QBwp (x̃), whereas θ̂QBap (x̃) and θ̂QBnp (x̃) are almost
overlapped and produce the lowest estimates.
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Figure 4.14: Estimated conditional quantiles of the annual peak �ow with di�erent methods and di�erent probability levels. The
shaded area represents the 90% credible interval for the weakly informative prior setting.
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Chapter 5

Bayesian analysis of the log-normal

linear mixed model

The log-normal linear mixed model is strictly linked to the well known normal model, which
has received a lot of attention in the literature: many methodological aspects have been
already deeply analysed both from the distributional viewpoint (Broemeling, 1985; Harville
and Zimmermann, 1996) and from the prior speci�cation issue (Gelman, 2006; Polson et al.,
2012). The aim of this part of thesis is to focus on the log-normal linear mixed model and
the estimation of quantities in the original data scale, such as the conditional expectation
given the random e�ects or the marginalized one, deriving their posterior properties. In
order to ful�l this task, the starting point is a review of the posterior analysis of a normal
linear mixed model, then the original �ndings of this work will be stated.
In Bayesian inference, it is widely known that improper priors might be speci�ed without
loosing the properness of the posterior distribution. However, a mathematical check of
the posterior is always requested because possible problems, like posterior improperness or
posterior moments in�niteness, could be masked by the use of numerical techniques like
Monte Carlo methods (Hobert and Casella, 1996), as already hinted in the introduction.
In the same spirit of the conclusions by Hobert and Casella (1996) about the unreliability
of performing the Gibbs sampler when the posterior distribution is not proper, practitioners
should be careful in computing moments from the posterior distributions. In fact, when the
integral which de�nes the moment is not �nite, the outcome from MCMC algorithms might
appear to be reasonable even if it is completely meaningless. In the literature, warnings
about this potential issue were highlighted at the beginning of the di�usion of Monte Carlo
methods in Bayesian statistics (Geweke, 1989), then this topic attracted a lot of attention in
the last years, since some priors where found to produce posteriors without �nite moments
in particular conditions (Fernandez and Steel, 2000; Sun and Speckman, 2005; Ghosh et al.,
2018). Moreover, these eventualities might be even more unexpected since they may occur
with proper priors too.
However, it must be stressed that, in order to apply powerful computational methods like
MCMC, some theoretical properties about the problem of interest must always be checked.
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Particularly, to compute an integral through Monte Carlo methods (e,g. what is carried out
in Bayesian inference when the posterior mean is computed from the generated samples) it
is requested that the integral considered is analytically �nite.
The chapter is organized as follows. Firstly, the results concerning the simple one-way
random e�ect model will be considered (section 5.1), then the general log-normal mixed
model will be faced (section 5.2). A new prior speci�cation strategy will be provided in
section 5.3 and, �nally, some details about the application of the developed methodologies
in the small area estimation context will be given in section 5.4.

5.1 One-way ANOVA random e�ect model

The one-way ANOVA random e�ect model is very popular and di�used among applied
scientists. Moreover, in many applications, it is common to consider the logarithmic trans-
formation of the response variable. In this section, the unbalanced case will be considered,
generalizing the model described in the introduction through the (1.9). The estimation of
the normal one-way random e�ect model in the Bayesian framework has been studied in
the works by Tiao and Tan (1965) and Hill (1965), in which the posterior distributions of
the main parameters were deduced and, if necessary, approximated. Here, the main focus
is the de�nition of quantities of interest in the log-normal context and the related posterior
properties.
A sample of observations yij structured in j = 1, ...,m groups with sample size nj , with∑

j nj = n, is considered. In this context, the one-way random e�ect model is speci�ed for
the natural logarithm of the observed variable wij = log(yij):

wij = log(yij) = µ+ νj + εij , (5.1)

assuming that the random e�ects νj are distributed as N
(
0, τ2

)
and are independent with

respect to the unstructured error terms εij , for which a N
(
0, σ2

)
is assumed.

This model might be naturally speci�ed as a three stages hierarchical Bayesian model with
likelihood, priors of the parameters (µ,ν, σ2) and a hyperprior for τ2:

log(yij)|µ,ν, σ2,∼ N
(
µ+ νj , σ

2
)

;

νj |µ, σ2, τ2 ∼ N
(
0, τ2

)
, ∀j;

(
µ, σ2

)
∼ p

(
µ, σ2

)
;

τ2 ∼ p
(
τ2
)
.

(5.2)

Even if one of the main aims in applying this ANOVA model is the estimation of the variance
components, often, for understanding and explanatory purposes, summary quantities in the
original data scale are of interest. If the inferential goal is the estimation of an overall
population mean, the vector of random e�ects is integrated out and the following results
immediately follow:

E
[
log(yij)|µ, σ2, τ2

]
= µ; V

[
log(yij)|µ, σ2, τ2

]
= σ2 + τ2. (5.3)
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Therefore, recalling the basic properties of the log-normal distribution, the marginal expec-
tation of the observed random variable Y in its original scale is:

θm = E[yij |µ, σ2, τ2] = exp

{
µ+

σ2 + τ2

2

}
, ∀j, ∀i. (5.4)

Alternatively, if a group-speci�c mean is required, it is possible to consider the following
functional that is conditioned to the l-th group speci�c random e�ect νl:

θc(νl) = E[yil|µ, νl, σ2] = exp

{
µ+ νl +

σ2

2

}
, ∀i. (5.5)

From a Bayesian viewpoint, these two quantities might be estimated simply through the
mean of their posterior distributions. However, as it will be illustrated later, the existence
of the posterior mean and, consequently, of higher order moments, is not assured, even if
the priors for the variance components are proper.
To �x some useful notation for sample quantities, the arithmetic mean of the l-th group
units and the sum of squares within the groups are de�ned as:

w̄.l =

∑nl
i=1wil
nl

, SSW =
m∑
l=1

nl∑
i=1

(wil − w̄.l)2 . (5.6)

The derivation of the l-th group speci�c likelihood function is immediate:

L(νl, σ
2, µ, τ2) =

nl∏
i=1

f(wil|µ, σ2, τ2, νl)

∝
(
σ2
)−nl

2 exp
{
− nl

2σ2
(w̄.l − µ− νl)2

}
×

× exp

{
− 1

2σ2

nl∑
i=1

(wil − w̄.l)2

}
;

(5.7)

and the likelihood marginalized with respect to the random e�ects is:

L(σ2, µ, τ2) =

∫
R
· · ·
∫
R

m∏
j=1

L(νj , σ
2, µ, τ2)

m∏
j=1

f(νj |µ, σ2, τ2)dν

∝
(
σ2
)−n−m

2

 m∏
j=1

(
σ2 + njτ

2
)− 1

2

×
× exp

−1

2

 m∑
j=1

nj (w̄.j − µ)2

(σ2 + njτ2)
+ SSW

 .

(5.8)

Setting a �at improper prior for the overall mean in the log-scale p(µ) ∝ 1 and two inde-
pendent and generic priors for the variance components parameters:

p(σ2, τ2) = p(σ2)p(τ2), (5.9)
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the following posterior distributions, derived with standard computations, are useful for the
subsequent results of this section:

νl|µ, σ2, τ2,w ∼ N (ν̄l, Vνl) , l = 1, ...,m; (5.10)

µ|ν, σ2, τ2,w ∼ N
(∑m

j=1 nj (w̄.j − νj)
n

,
σ2

n

)
; (5.11)

µ|σ2, τ2,w ∼ N (µ̄, Vµ) ; (5.12)

p(µ, σ2, τ2|w) ∝ p(σ2)p(τ2)
(
σ2
)−n−m

2

 m∏
j=1

(
σ2 + njτ

2
)− 1

2

 exp

{
−SSW

2σ2

}
×

× exp

{
−1

2
V −1
µ (µ̂− µ)2

}
exp

−1

2

m∑
j=1

nj (w̄.j − µ̂)2

(σ2 + njτ2)

 ;

(5.13)

p(σ2, τ2|w) ∝ p(σ2)p(τ2)
(
σ2
)−n−m

2 V
1
2
µ

 m∏
j=1

(
σ2 + njτ

2
)− 1

2

 exp

{
−SSW

2σ2

}
×

× exp

−1

2

m∑
j=1

nj (w̄.j − µ̂)2

(σ2 + njτ2)

 ;

(5.14)

where mean and variance of the full conditional of νl are:

ν̄l =
nl
σ2 (w̄.l − µ)

1
τ2

+ nl
σ2

, Vνl =
τ2σ2

σ2 + nlτ2
; (5.15)

and considering the parameters of the posterior of µ conditioned with respect to the variance
components:

µ̄ =

∑m
j=1

njw̄.j
(σ2+njτ2)∑m

j=1
nj

(σ2+njτ2)

, Vµ =

 m∑
j=1

nj
(σ2 + njτ2)

−1

. (5.16)

Performing a simple linear transformation of the (5.10) and the (5.11), the posterior dis-
tributions of the target functionals θm and θc(νl) conditioned with respect to the variance
components are:

θm|σ2, τ2,w ∼ logN
(
µ̄+

σ2 + τ2

2
, Vµ

)
, (5.17)

θc(νl)|ν, σ2, τ2,w ∼ logN
(∑m

j=1 nj (w̄.j − νj)
n

+ νl +
σ2

2
,
σ2

n

)
. (5.18)
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Following the same reasoning of the �rst part of the thesis, in order to have a �exible prior
for the variance component, two independent GIG priors (see section 2.1) are speci�ed for
σ2 and τ2:

p(σ2) ∼ GIG (λσ, δσ, γσ) , p(τ2) ∼ GIG (λτ , δτ , γτ ) . (5.19)

The main results about the existence of the Bayes estimator under quadratic loss of the
functionals θm (5.4) and θc(νl) (5.5) are synthesized in the following theorem.

Theorem 5.1. Considering the one way random e�ect model described in (5.2) with a �at
improper prior on µ and the GIG priors (5.19) for the variance components, then:

(i) the posterior moments of θc(νl), l = 1, ...,m; are de�ne up to the order r > 0 if:

γ2
σ > r +

r2

n
; (5.20)

(ii) the posterior moments of θm are de�ne up to the order r > 0 if:

γ2
σ > r +

r2

n
,

γ2
τ > r +

r2

m
.

(5.21)

Proof. (i) It is necessary to �nd the existence conditions for the integral that de�nes the
r-th moment:

E [θc(νl)
r|w] = E

[
exp

{
rµ+ rνl + r

σ2

2

}
|w
]

=

∫
Θ

exp

{
rµ+ rνl + r

σ2

2

}
p(νl|µ, σ2, τ2,w)×

× p(µ|σ2, τ2,w)p(σ2, τ2|w)dθ.

(5.22)

The �rst step consists in solving the integral in νl. The integral is straightforward since it
is the moment generating function of a normal distribution:∫

R
exp {rνl} pN (νl; ν̄l, Vνl) dνj = rν̄l + r2Vνl

2
= r

nl
σ2 w̄.l

1
τ2

+ nl
σ2

− r
nl
σ2µ

1
τ2

+ nl
σ2

+ r2Vνl
2
. (5.23)

Now, de�ning rs0µ = rµ − r
nl
σ2
µ

1
τ2

+
nl
σ2

, where s0 = σ2

σ2+nlτ2
; it is possible to integrate out µ,

having a normal MGF again:∫
R

exp {rs0µ} pN (µ; µ̄, Vµ) dµ = rs0µ̄+ r2s2
0

Vµ
2
. (5.24)
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De�ning with g(σ2, τ2) a function that does not a�ect the �niteness of the integral, the
(5.22) can now be written as:∫ +∞

0

∫ +∞

0
g(σ2, τ2) exp

{
−1

2
σ2

(
γ2
σ − r − r2

[
Vνl
σ2

+
s2

0Vµ
σ2

])}
dτ2dσ2, (5.25)

and it converges when:

lim
σ2→+∞

γ2
σ − r − r2

 τ2

σ2 + nlτ2
+

σ2

(σ2 + nlτ2)2

 m∑
j=1

nj
(σ2 + njτ2)

−1 > 0. (5.26)

Focusing on the components which involve σ2, the �rst term is clearly null, whereas Vµ
might be rewritten as: m∑

j=1

nj
σ2 + njτ2

−1

=

(σ2
)m−1∑m

j=1

[
nj
∏
j′6=j

(
1 + nj′τ

2/σ2
)]

(σ2)m
∏m
j=1 (1 + nj′τ2/σ2)

−1

. (5.27)

Therefore, the limit of the whole addend is:

lim
σ2→+∞

σ2

(σ2)2 (1 + nlτ2/σ2)2

(
σ2
)m∏m

j=1

(
1 + njτ

2/σ2
)

(σ2)m−1∑m
j=1

[
nj
∏
j′6=j (1 + nj′τ2/σ2)

] =
1

n
, (5.28)

and the �nal result is a direct consequence.
(ii) In this case the integral to check is:

E [θrm|w] = E
[
exp

{
rµ+ r

σ2 + τ2

2

}
|w
]

=

∫
Θ

exp

{
rµ+ r

σ2 + τ2

2

}
p(µ|σ2, τ2,w)p(σ2, τ2|w)dθ.

(5.29)

Repeating the passages of the previous section, the integral reduces to:∫ +∞

0

∫ +∞

0
g(τ2, σ2) exp

{
−1

2

[
σ2
(
γ2
σ − r

)
+ τ2

(
γ2
τ − r

)
− r2Vµ

]}
dσ2dτ2, (5.30)

where g(τ2, σ2) does not a�ect the integral existence. It is possible to collect both the
variance components from Vµ, and the �niteness of the integral is assured when the following
two conditions hold:

lim
σ2→+∞

(
γ2
σ − r − r2Vµ

σ2

)
> 0, lim

τ2→+∞

(
γ2
τ − r − r2Vµ

τ2

)
> 0. (5.31)

The �rst limit is a particular case of the previous result and the same expression is obtained.
Focusing on the second one, it is possible to deduce that:

lim
τ2→+∞

(
τ2
)m−1∏m

j=1

(
σ2/τ2 + nj

)
(τ2)m−1∑m

j=1

[
nj
∏
j′6=j (σ2/τ2 + nj′)

] =
1

m
; (5.32)

and the �nal result is an immediate consequence. �
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These results have several implications that will be illustrated deeply in the following section
about the general model. However, it is evident that if one of the targets of the analysis is
the estimation of the local or global mean, then the most common priors for the variance
components cannot be used for σ2 and τ2. Not only the improper priors like the Je�rey's
one, but also some proper distributions like the inverse gamma or the half-t on the scale
parameter (i.e. σ and τ) do not produce posterior distributions with �nite moments for
θm and θc(νl). Therefore, using these priors, the common summary statistics like mean and
variance cannot be used to synthesize the samples drawn with usual Monte Carlo techniques
from the posteriors.
Moreover, as might be expected, the condition for the existence of the conditional mean
functional θc(νl) is equal to the one found by Fabrizi and Trivisano (2012) for the simple
log-normal mean. In fact, in this case, the random e�ects are conditioned and the variance
component τ2 has no restrictions since it does not contribute in increasing the uncertainty
of the θc(νl) posterior. On the other hand, considering the global mean, constraints on the
τ2 prior are required to obtain the posterior moments existence. The value of the threshold
for γτ decreases with the number of groups m in the same way that the threshold on γσ
decreases with n.

5.1.1 Minimum MSE estimator conditioned to the variance components

In order to have a complete characterization of the estimation problem, a useful �nding
might be the minimum MSE Bayes estimator, conditioned with respect to the variance
components. It is the parallel result of the one by Zellner (1971) for the log-normal mean
and of theorem 3.2 for the quantiles. Even if the deduced estimator could be of little
practical interest, it might represent an useful benchmark for the considered methods in the
simulation study.
For computational easiness, the one-way random e�ect model (5.2) in the balanced case (i.e.
nj = ng, ∀j) is considered. Assuming the variance components σ2 and τ2 as known, the
only unknown parameter is the global mean in the log-scale µ. Similarly to Zellner (1971),
the research of an optimal conditional estimator is restricted to the class of estimators
θ∗m = exp {w̄} k. The main result and its relationship with the Bayesian estimation is
contained in the following theorem.

Theorem 5.2. Considering the estimators of the functional θm (5.4) that consider σ2 and
τ2 as known and are included in the class:

θ∗m = k · exp{w̄}; (5.33)

then the one that minimizes the frequentist MSE is:

θ̂∗m = exp

{
w̄ +

σ2 + τ2

2
− 3(σ2 + ngτ

2)

2n

}
. (5.34)

Furthermore, it coincides with the conditioned Bayes estimator under the prior p(µ) ∝ 1
that minimizes the relative quadratic loss function.
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Proof. Recalling that w̄ ∼ N
(
µ, σ2n−1 + τ2m−1

)
, the MSE of the considered class of esti-

mator is:

E[(θ∗m − θm)2] = k2 exp
{

2
(
µ+ σ2n−1 + τ2m−1

)}
+

− 2k exp

{
2µ+

σ2m+ τ2n+ nm(σ2 + τ2)

2nm

}
+ c,

(5.35)

where c is a constant. The quantity is minimized when:

k = exp

{
σ2 + τ2

2
− 3(σ2 + ngτ

2)

2n

}
. (5.36)

Starting from the (5.17) the expression of the Bayes estimator under relative quadratic loss
can be easily derived. �

For benchmarking purposes, it might be useful to �nd a minimum MSE estimator condi-
tioned to the variance components for the functional θc(νj) too. In this case, a hard decision
to be made is represented by the estimator class restriction, since the global sample mean
w̄ appears to be not appropriated. A heuristic strategy to obtain a conditioned estimator
might be based on the derivation of the Bayes estimator under relative quadratic loss.
Even if it is not proved to be an optimal estimator, its use for benchmarking purposes
appears to be largely justi�ed by the good frequentist properties that the Bayes estimator
under relative quadratic loss has in the log-normal estimation framework. The formal result
is presented in the following proposition.

Proposition 5.1. The Bayes estimator of θc(νl) conditioned with respect to the variance
components under the prior p(µ) ∝ 1 that minimizes the relative quadratic loss function is:

θ̂RQc (νl) = exp

{
σ2

σ2 + ngτ2

(
τ2ng
σ2

w̄.j − w̄
)

+
σ2

2
− 3

2

σ2

σ2 + ngτ2

(
τ2 +

σ2

n

)}
. (5.37)

Proof. To obtain the estimator, the distribution of θc(νl)|σ2, τ2,wmust be deduced removing
the conditioning on ν from the (5.18). Setting the value tl = µ+ νl, the following result can
be obtained

tl|σ2, τ2,w ∼ N (t̄l, Vtl) , (5.38)

where:

t̄l =

ng
σ2 w̄.l

1
τ2

+
ng
σ2

− σ2

σ2 + ngτ2
w̄, Vtl =

τ2σ2

σ2 + ngτ2
+

(
σ2

σ2 + ngτ2

)2(
σ2 + ngτ

2

n

)
. (5.39)

Recalling that the Bayes estimator under relative quadratic loss in a log-normal context is:

θ̂RQc (νl) = exp

{
t̄l +

σ2

2
− 3

2
Vtl

}
, (5.40)

the �nal result is obtained by substitution. �
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5.2 The log-normal linear mixed model

The one-way random e�ect model faced in the previous section is a particular case of the
more general hierarchical linear mixed model. Considering a vector of responses y ∈ Rn, the
assumption of log-normality for the response means analysing the log-transformed vector
w = logy as normally distributed. The classical formulation of the model is:

w = Xβ + Zu + ε. (5.41)

The coe�cients of the �xed e�ects are in the vector β ∈ Rp, whereas u ∈ Rm is the vector of
random e�ects and ε ∈ Rn is the vector of residuals. The design matrices areX ∈ Rn×p, that
is assumed to be full rank in order to guarantee the existence of (XTX)−1, and Z ∈ Rn×m.
The following Bayesian hierarchical model is studied:

w|u,β, σ2 ∼ Nn
(
Xβ + Zu, Inσ

2
)

;

u|τ2
1 , ..., τ

2
q ∼ Nm (0,D) , D = ⊕qs=1Imsτ

2
s ; (β, σ2) ∼ p(β, σ2);

τ 2 ∼ p(τ2
1 , ..., τ

2
q ).

(5.42)

Since q random factors are considered, q di�erent variances related to the random compo-
nents τ 2 = (τ2

1 , ..., τ
2
q ) are included in the model. Therefore, it is possible to split the vector

of random e�ects in u = [uT1 , ...,u
T
s , ...,u

T
q ]T , where us ∈ Rms with

∑q
s=1ms = m. The de-

sign matrix of the random e�ects might be partitioned too: Z = [Z1 · · ·Zs · · ·Zq]. Moreover,
it is worth to highlight that the design matrix of the random e�ects is not necessarily non-
singular. Hence, to invert the quantity ZTZ, the Moore-Penrose inverse might be required.
Finally, the covariance matrix of the random e�ects D is assumed to be diagonal, but with
a simple linear transformation it is possible to consider a block diagonal matrix ⊕qs=1Gsτ

2
s ,

where Gs ∈ Rms×ms is a �xed positive de�nite matrix (Hobert and Casella, 1996).
This model formulation is particularly general and it is widely used with a log-transformed
response in many applied �elds: actuarial sciences (Antonio et al., 2006); occupational health
(Lyles et al., 1997a,b; Krishnamoorthy and Mathew, 2002); medicine (Coursaget et al.,
1991; Berchialla et al., 2009), psychology (Van Breukelen, 2005), environmental sciences and
ecology (Price et al., 1995; Hector et al., 2012), without ignoring the small area estimation
framework (Berg and Chandra, 2014; Molina and Martin, 2018).
In order to obtain meaningful and explainable results, it is often necessary to compute the
estimates of the expectation conditioned with respect to either the �xed and random e�ects
or conditioned only to a �xed covariate pattern (i.e. integrating out the random e�ects).
Therefore, in practice, the interpretable outputs are usually provided in the original data
scale, back-transforming the results obtained with the model (5.42). It is well known that,
exploiting the properties of the log-normal distribution, the conditioned expectation of the
observation ỹ given the random e�ects and the covariate patterns x̃, z̃ (quantity that could
be also labelled as subject-speci�c expectation) is:

E
[
ỹ|u,β, σ2

]
= θc(x̃, z̃) = exp

{
x̃Tβ + z̃Tu +

σ2

2

}
; (5.43)
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whereas, if the random e�ects are ignored and they are integrated out, then the conditioned
expectation of interest is:

E
[
ỹ|β, σ2, τ

]
= θm(x̃) = exp

{
x̃Tβ +

1

2

(
σ2 +

q∑
s=1

τ2
s

)}
. (5.44)

The posterior predictive distribution p(ỹ|y) and its posterior moments is a further quantity
that might be investigated. It is obtained exponentiating the posterior predictive distribution
of the variable w̃ = log ỹ, having as covariate patterns x̃ and z̃. In general, it is de�ned as:

p(ỹ|y, x̃, z̃) ∝
∫

Θ
p(ỹ|θ)p(θ|y)dθ, (5.45)

where θ = (β,u, σ2, τ 2) and Θ is the parameter space. Moreover, the distribution of the
transformed response variable conditioned on the parameters is:

w̃|β,u, σ2, τ 2 ∼ N
(
x̃Tβ + z̃Tu, σ2

)
. (5.46)

In practice, the posterior expectation E [ỹ|y] might be used to predict unobserved values
like missing values or unsampled units in small area estimation.
In many applications placed in the Bayesian context, the estimation of the target quantity
is performed through the mean of their posterior distributions. However, it will be shown
that a careful speci�cation of the priors for the variance components is necessary, in order
to assure the existence of the posterior moments of the functionals θc(x̃, z̃), θm(x̃) and of
the predictive distribution.
Likewise the one-way random e�ect ANOVA model explained in the previous section, a
�at improper prior p(β) ∝ 1 is considered for the vector of coe�cients β related to the
�xed e�ects. On the other hand, independent GIG priors are adopted for the variance
components:

p(σ2) ∼ GIG(λσ, δσ, γσ); p(τ2
s ) ∼ GIG(λτ,s, δτ,s, γτ,s), ∀s. (5.47)

As a consequence, in this setting, the joint posterior distribution for the model is:

p(β,u, σ2, τ 2|w) ∝ p(σ2)

(
q∏
s=1

p(τ2
s )

)
|Inσ2| 12 |D|− 1

2×

× exp

{
− 1

2σ2
(w −Xβ − Zu)T (w −Xβ − Zu)

}
×

× exp

{
−1

2
uTD−1u

}
.

(5.48)

It is possible to exploit the conditioned-conjugacy of the GIG priors in order to derive the
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full conditionals:

σ2|β,u, τ 2,w ∼ GIG
(
λσ −

n

2
,

√
(w −Xβ − Zu)T (w −Xβ − Zu) + δ2

σ, γσ

)
; (5.49)

τ2
s |β,u, σ2, τ 2

−s,w ∼ GIG
(
λτ,s −

ms

2
,
√
uTs us + δ2

τ,s, γτ,s

)
, s = 1, ..., q; (5.50)

u|β, σ2, τ 2,w ∼ Nm
(
VuZ

T (w −Xβ) , σ2Vu

)
; (5.51)

β|u, σ2, τ 2,w ∼ Np
((

XTX
)−1

XT (w − Zu) , σ2
(
XTX

)−1
)

; (5.52)

where Vu =
(
ZTZ + σ2D−1

)−1
.

In order to better characterize the posterior properties of the model and to prove the main
results of this section about the posterior moments of interest, some useful distributions are
derived in the following proposition.

Proposition 5.2. Considering the log-normal linear mixed model (5.42) with a �at improper
prior on β and the independent GIG priors (5.47) for the variance components, then, starting
from the joint posterior (5.48), it is possible to deduce the following distributional results:

(i)
β|σ2, τ 2,w ∼ Np

(
β̄,Vβ

)
, (5.53)

where:

Vβ =

(
(XTX)

σ2
+ XTMX

)−1

, β̄ = Vβ

(
XTX

σ2
β̂ + XTMXβ̃

)
,

M =

(
V−1
Z

σ2
− PZ

σ2

)
, β̂ =

(
XTX

)−1
XTy, β̃ =

(
XTMX

)−1
XTMy,

PZ = Z
(
ZTZ

)−
ZT , V−1

Z = Z(ZTZ)−
(

(ZTZ)− +
D

σ2

)−1

(ZTZ)−ZT ,

(5.54)

and
(
ZTZ

)−
is the Moore-Penrose inverse of ZTZ.

(ii)

p(σ2, τ 2|w) ∝ p(σ2)

(
r∏
s=1

p(τ2
s )

)
(σ2)−

n−m
2 |σ2(ZTZ)− + D| 12×

×
∣∣∣σ2(XTX)−1 +

(
XTMX

)−1
∣∣∣− 1

2 ×

× exp

{
−1

2

[
RSS

σ2
+
(
w −Xβ̃

)T
M
(
w −Xβ̃

)
+

×
(
β̂ − β̃

)T (
σ2(XTX)−1 +

(
XTMX

)−1
)(
β̂ − β̃

)]}
,

(5.55)

where:

RSS =
(
y −Xβ̂

)T (
y −Xβ̂

)
. (5.56)
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Proof. The matrix algebra passages used to prove the statements of this proposition are
based on the following well known equalities involving quadratic forms:

(y −Xβ − Zu)T (y −Xβ − Zu) = (y −Xβ)T (y −Xβ) +

− (y −Xβ)T Z
(
ZTZ

)−
ZT (y −Xβ) +

+
(
u−

(
ZTZ

)−
ZT (y −Xβ)

)T
ZTZ×

×
(
u−

(
ZTZ

)−
ZT (y −Xβ)

)
,

(5.57)

(y −Xβ)T (y −Xβ) =
(
y −Xβ̂

)T (
y −Xβ̂

)
+ (β̂ − β)TXTX(β̂ − β), (5.58)

(y −Xβ)T S−1 (y −Xβ) =
(
y −Xβ̃

)T
S−1

(
y −Xβ̃

)
+

+ (β̃ − β)TXTS−1X(β̃ − β).
(5.59)

Moreover, the following result about the product of two d-dimensional normal densities is
employed:

Nd (x|a,A)Nd (x|b,B) = Nd (x|c,C) (2π)−
d
2 |A + B|− 1

2×

× exp

{
−1

2
(a− b)T (A + B)−1(a− b)

}
,

(5.60)

where c = C
(
A−1a + B−1b

)
and C =

(
A−1 + B−1

)−1
.

In order to deduce the result (i), the likelihood marginalized with respect to the random
e�ects can be easily obtained:

L(β, τ 2, σ2) =

∫
Rm

p(w|u,β, σ2)p(u|τ 2)du

∝ (σ2)−
n−m

2 |σ2(ZTZ)− + D| 12×

× exp

{
− 1

2σ2

[
RSS + (β − β̂)T (XTX)(β − β̂)

]}
×

× exp

{
−1

2

[(
w −Xβ̃

)T
M
(
w −Xβ̃

)
+

+
(
β̃ − β

)T
XTMX

(
β̃ − β

)]}
.

(5.61)

Then, the (5.53) follows through a simple application of the (5.60).
(ii) As far as the result (5.55) it concerns, it might be derived from the marginalized likeli-
hood (5.61) adding the priors (5.47) and integrating out β. �

Before stating the main result of the chapter, an useful quantity to de�ne is the matrix
Ls ∈ Rp×p: its entries are all 0s with the exception of the �rst l × l square block Ls;1,1,
where l = p− rank{XT (I−PZ)X}. It coincides with the number of variables of X that are
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included in Z too. Furthermore, to simplify the �nal form of the result, it is useful to place the
columns related to these variables as �rst l columns of the ordered design matrix Xo, without
loss of generality. As a consequence, the matrix Ls;1,1 coincides with the inverse of the upper
left l × l block on the diagonal of the matrix XT

o

(
Z(ZTZ)−Cs(Z

TZ)−ZT
)
Xo, where Cs is

the null matrix with the exception of Ims as block on the diagonal in correspondence to the
s-th variance component of the random e�ect. To complete the notation, x̃o is the covariate
pattern of the observation to estimate that is ordered coherently with respect to Xo.
The results of the previous proposition can be used in order to prove the main �ndings
contained in the following theorem. It states the conditions to ful�l in the prior speci�cation
step in order to have the �niteness of the posterior moments for the functionals (5.43), (5.44)
and for the posterior predictive distribution.

Theorem 5.3. If the normal linear mixed model in the log-scale (5.42) is considered with the
priors (5.47), then, in order to compute the r-th posterior moment (with r > 0) of θc(x̃, z̃),
θm(x̃) and of p(ỹ|y), the following constraints on the prior parameters must be ful�lled:

(i) E [θrc(x̃, z̃)|w] exists if γ2
σ > r + r2x̃T

(
XTX

)−1
x̃;

(ii) E [θrm(x̃)|w] exists if γ2
σ > r + r2x̃T

(
XTX

)−1
x̃ and γ2

τ,s > r + r2x̃To Lsx̃o, ∀s;

(iii) E [ỹr|y] exists if γ2
σ > r2 + r2x̃T

(
XTX

)−1
x̃.

Proof. (i) Proceeding similarly with respect to the proof of theorem 5.1, the r-th moment
of θc(x̃, z̃) is de�ned as:

E [θrc(x̃, z̃)|w] = E
[
exp

{
rx̃Tβ + rz̃Tu + r

σ2

2

} ∣∣w]
=

∫
Θ

exp

{
rx̃Tβ + rz̃Tu + r

σ2

2

}
p(β,u, σ2, τ 2|w)dθ.

(5.62)

Recalling the (5.51), (5.53) and the (5.55) and performing a simple change of variable,
it is possible to solve the integral twice recognizing the moment generating function of a
Gaussian distribution: the �rst related to N

(
z̃TVuZ

T (z−Xβ) , σ2z̃TVuz̃
)
and the second

to Np
(
q̃T β̄, q̃TVβq̃

)
, where q̃T = z̃TVuZ

TX−x̃T . Then, the following integral is obtained:∫ +∞

0
· · ·
∫ +∞

0
g(σ2, τ 2) exp

{
−1

2
σ2
(
γ2
σ − r+

−r2

[
z̃TVuz̃ +

q̃TVβq̃

σ2

])}
dτ 2dσ2,

(5.63)

where g(σ2, τ 2) is a functional of the variance components that does not a�ect the �niteness
of the integral. Therefore, the integral is �nite when:

lim
σ2→+∞

(
γ2
σ − r − r2

[
z̃TVuz̃ +

q̃TVβq̃

σ2

])
> 0. (5.64)
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In order to compute this limit, lemma 1 by Hobert and Casella (1996) is useful. It states
that, given a scalar c and a non-negative de�nite matrix S, the limit:

lim
c→+∞

(
S +

I

c

)−1

, (5.65)

coincides with a generalized inverse of S. Moreover, it is immediate to extend the result to
the case in which any diagonal matrix substitutes I.
Considering the limit of the factor that multiplies r2 in the (5.64) and focusing on the �rst

addend, recalling that Vu =
(
ZTZ + σ2D−1

)−1
, by applying the previous result and doing

some computations, it is possible to show that:

lim
σ2→+∞

z̃T
(
ZTZ + σ2D−1

)−1
z̃ = lim

σ2→+∞

1

σ2
z̃T
(
ZTZ

σ2
+ D−1

)−1

z̃ = 0. (5.66)

Then, the limit of the second added must be computed. It is:

lim
σ2→+∞

q̃TVβq̃

σ2
= lim

σ2→+∞
q̃T
(
XTX + σ2XTMX

)−1
q̃. (5.67)

Focusing on the structure of the matrix M:

σ2XTMX = XT

(
Z(ZTZ)−

(
(ZTZ)− +

D

σ2

)−1

(ZTZ)−ZT − Z(ZTZ)−ZT

)
X, (5.68)

and using the result on limit (5.65), it can be noted that:

lim
σ2→+∞

Z(ZTZ)−
(

(ZTZ)− +
D

σ2

)−1

(ZTZ)−ZT = Z(ZTZ)−ZT . (5.69)

Therefore, it is possible to conclude that the limit reduces to:

lim
σ2→+∞

q̃T
(
XTX

)−1
q̃ = lim

σ2→+∞

(
z̃TVuZ

TX− x̃T
) (

XTX
)−1 (

z̃TVuZ
TX− x̃T

)T
. (5.70)

Hence, solving the deduced quadratic form and computing the limits similarly to (5.66), it
is �nally obtained the result:

lim
σ2→+∞

q̃TVβq̃

σ2
= x̃T

(
XTX

)−1
x̃. (5.71)

The concluding algebraic passages are straightforward.
(ii) In this case, the integral de�ning the r-th posterior moment of θm(x̃) might be decom-
posed as:

E [θrc(x̃, z̃)|w] = E

[
exp

{
rx̃Tβ +

r

2

(
σ2 +

q∑
s=1

τ2
s

)}∣∣w]

=

∫ +∞

0
· · ·
∫ +∞

0
g(σ2, τ 2) exp

{
−1

2

[
σ2(γ2

σ − r)+

+
r∑
s=1

τ2
s (γ2

τ,s − r)− r2x̃TVβx̃

]}
dσ2dτ 2.

(5.72)
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In order to verify the �niteness of the previous integral, the behaviour of term r2x̃TVβx̃
must be checked when all the variance components go to +∞.
The limit for σ2 → +∞ gives the same result of point (i), whereas the limit for the generic
term τ2

s can be written as:

lim
τ2s→+∞

σ2x̃T

[
τ2
sX

T (I−PZ)X +

+XT

(
Z(ZTZ)−

(
(ZTZ)−

τ2
s

+
D

τ2
s σ

2

)−1

(ZTZ)−ZT

)
X

]−1

x̃.

(5.73)

By taking the limit τ2
s → +∞ to the term

(
(ZTZ)−

τ2s
+ D

τ2s σ
2
s

)
, a matrix Cs is obtained. All

its elements are null with the exception of the presence of Ims as block on the diagonal in
correspondence to the s-th variance component related to the vector of random e�ects us
in matrix D. Moreover, its generalized inverse is the matrix Cs itself. Therefore, the limit
can be written as:

lim
τ2s→+∞

σ2x̃To
[
τ2
sX

T
o (I−PZ)Xo + σ2XT

o

(
Z(ZTZ)−Cs(Z

TZ)−ZT
)
Xo

]−1
x̃o, (5.74)

where X and x̃ have been respectively replaced by their ordered versions Xo and x̃o, without
loss of generality. Thanks to this ordered matrix, the �rst term A = XT

o (I−PZ)Xo can
be written as:

τ2
sA =

[
0l 0T

0 τ2
sA2,2

]
, (5.75)

where 0l is the null squared matrix of dimension l, that is the rank de�ciency of A. This
feature is due to the ordering ofXo and the linear algebraic dependence of the �rst l columns
of Xo to the columns of Z. Denoting with Bs the second matrix, then the sum A + B can
be written as: [

Bs;1,1 BT
s;1,2

Bs;1,2 τ2A2,2 + Bs;2,2

]
. (5.76)

To complete the proof, the result of the limit can be written as:

x̃To Lsx̃o. (5.77)

In addition, it can be noted that exploiting the property of the block matrix inverse:

Ls =

[
Ls;1,1 0
0 0p−l

]
, (5.78)

and Ls;1,1 = B−1
s;1,1 ∈ Rl×l.

(iii) Recalling the de�nitions of the posterior predictive distribution (5.45) and (5.46), the
moments of interest might be de�ned as:

E [ỹr|y] =

∫
Θ

(∫ +∞

−∞
exp {rw̃} p(w̃|β,u, σ2)dw̃

)
p(u,β, σ2, τ 2|y)dθ. (5.79)

Following algebraic passages similar to the proof of (i) the �nal result is obtained. �
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The results included in the previous general theorem could raise various considerations and
some of them were already hinted in section 5.1. As a �rst instance, coherently with the
results by Fabrizi and Trivisano (2012), Fabrizi and Trivisano (2016) and the �rst part of
this work on the log-normal quantiles, the tail parameter γ of the GIG distribution is the one
to be constrained in order to determine the existence of posterior moments. Moreover, the
only functional that requires a condition on the priors of the whole set of variances is θm(x̃).
In fact, both the subject speci�c predictor θc(x̃, z̃) and the posterior predictive distribution
necessitate only a single condition on the variance term σ2 to ensure the �niteness of the
posterior moments.
Focusing on condition (i), it perfectly matches the result by Fabrizi and Trivisano (2016) for
the log-normal linear model: the square of the moment order r is multiplied by the leverage
x̃T
(
XTX

)−1
x̃. Concerning this result, it is worth to point out that the condition found for

the one-way ANOVA model in theorem 5.1 and, more generally, for the case X = 1, is a
direct consequence of this result, since the leverage is equal to n−1. The same condition on
γσ appears also when the interest is on the moments of θm(x̃). However, in that case, the
priors on τ2

s require a constraint on the tail parameters too. In particular, the form of the
second result in statement (ii) appear to be rather complicated, mainly due to its generality.
To better understand the condition, a couple of common formulations for the matrix Z
might be analysed stressing that, if a unique random e�ect is considered, then Cs = Im.
For example, when Z is built in order to express a random intercept, the problem largely
simpli�es. In this case, the numbers of columns m coincides with the number of groups of
data and for each subject a 1 is marked in the corresponding column. Consequently, Xo is
the simple design matrix since the �rst column is the usual vector 1 describing the intercept
and the �rst element of x̃o is clearly 1. Moreover, it is easy to verify that the rank de�ciency
of XT (I−PZ)X is l = 1 and therefore the unique non-null entry of Ls is the �rst element
of the �rst column. Finally, exploiting the particular structure of Z, after some algebra it
is possible to verify that Ls;1,1 = m−1 (e.g. the inverse of the number of groups determined
by Z). In this way the result (ii) of theorem 5.1 on the one-way ANOVA model is obtained
too, as a special case.
Another interesting instance to investigate is the case in which Z identi�es a random coe�-
cient: the matrix is built preserving the same structure of the random intercept but, instead
of 1 the matrix is �lled with the values of the covariate X,k of interest. Note that X,k

represents the generic k-th column of the matrix X and is the �rst column of the ordered
matrix Xo, since it is linearly dependent to the columns of Z. In this condition, x̃To Lsx̃o
could be interpreted as a sort of leverage weighted with respect to the group structure.
On the other hand, if q > 1 distinct random e�ects are included in the model, then the
generic formulation with Cs is required and the meaning of the result becomes less intuitive.
Finally, as far as the posterior predictive distribution it concerns, the existence of its posterior
moments is related only to the term σ2. It must be noted that, unlike case (i), the term r2

directly enters the condition, making rapidly increase the value of the constraint with the
moment order. The result is in accordance with the higher variability that characterizes the
posterior predictive distribution, if compared to the posterior of the functionals θc(x̃, z̃) and
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θm(x̃).
Furthermore, a crucial consequence of theorem 5.3 is that many priors for variance compo-
nents which are used in the literature are not appropriate if the statistical analysis include
the computation of the posterior moments considered in this work. The following proposi-
tion synthesizes which prior p(ω2) could be adopted and which ones should be avoided for
the generic variance component ω2.

Proposition 5.3. Considering the log-normal linear mixed model (5.42) and the results of
theorem 5.3, if a condition on the variance component prior is necessary, then the following
common priors cannot be used: improper priors (e.g. Je�rey's or uniform), inverse gamma,
log-normal, half-t (included half-Cauchy), and, more generally, all the priors on the scale
parameter ω. On the other hand, the following distributions might be chosen, observing the
hyperparameter condition: the GIG distribution and the half-normal distribution (on ω2).

Proof. From the proof of theorem 5.3, it appears that the prior on the generic variance
component p(ω2), in order to preserve the existence of the moments, must contain the
following exponential term: exp

{
−cω2

}
, where c is an hyperparameter (or a function of it)

that can be �xed according to the derived conditions. �

Intuitively, all the distributions that do not have an exponential term in the density function
do not preserves the existence of the moments of interest. Moreover, distributions like the
inverse gamma or the log-normal, even if an exponential is present, cannot be used since they
do not compensate the explosiveness of the term in ω2 when ω2 → +∞. Once a suitable
distribution is chosen, then the constraints on the hyperparameters must be checked. This
work considers the GIG distribution as prior and therefore the meaning of the constraints
on its hyperparameters have been commented already. Anyway, it must be highlighted
that it has as special cases also the exponential, gamma and inverse Gaussian distributions
that might represent proper choices. On the other hand, the inverse gamma is a limiting
distribution too, but when the tail parameter γ goes to 0, so it is excluded by the existence
condition.
As showed in proposition 5.3, another distribution that could be considered as prior for the
variance components is the half-normal. It is mentioned as reasonable prior for the scale
with a large scale parameter Vω in the well-known paper by Gelman (2006):

ω|Vω ∼ half-N (0, Vω) . (5.80)

However, to get �nite posterior moments, the half normal must be speci�ed as prior for
the variance itself, taking into account the constraints of theorem 5.3. Hence, the scale
parameter of the prior should be �xed lower than the square root of the reciprocal of the
conditions for γ2. As an example the condition of point (i) would be:

Vω <

√√√√ 1

2
[
r + r2x̃T (XTX)−1 x̃

] . (5.81)
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Intuitively, the tail decay of such a prior might be too rapid and an excessive amount of
prior information might be included in the model, whereas the GIG distribution provides
useful tools to control it and to specify a more suitable prior distribution.
Until now, the case of a single point estimation with covariate patterns x̃ and z̃ is considered.
More generally, ñ covariate patterns can be stored in the matrices X̃ and Z̃, therefore the
existence conditions of theorem 5.3 can be immediately generalized as follows.

Proposition 5.4. Considering the model considered in theorem 5.3 and ñ points to estimate,
then the conditions (i), (ii) and (iii) can be generalized as:

(i) E [θrc(x̃, z̃)|w] exists if γ2
σ > r + r2 maxi=1,...,ñ

(
x̃Ti
(
XTX

)−1
x̃i

)
;

(ii) E [θrm(x̃)|w] exists if γ2
σ > r + r2 maxi=1,...,ñ

(
x̃Ti
(
XTX

)−1
x̃i

)
and, for the variances

of the random e�ects: γ2
τ,s > r + r2 maxi=1,...,ñ

(
x̃To,iLsx̃oi

)
, ∀s;

(iii) E [ỹr|y] exists if γ2
σ > r2 + r2 maxi=1,...,ñ

(
x̃Ti
(
XTX

)−1
x̃i

)
.

5.2.1 The Gibbs sampler and software details

As pointed out by Chib and Carlin (1999), the mere use of the full conditionals to build
the Gibbs sampler might lead to autocorrelation issues in the samples from the posterior of
β. To overcome this issue, they proposed the use of their algorithm 2, which is based on
the generation of β from the posterior conditioned with respect to the variance components
(5.53) only, whereas the vector of random e�ects u is integrated out. In this way, it is
possible to update the vectors of �xed and random e�ects a the same time, preserving the
structure of Gibbs sampler:

1. Initialize the vector of parameters (β,u, τ 2, σ2);

2. Repeat for the desired number of iteration:

(a) Sample β from the (5.53);

(b) Sample u from the (5.51);

(c) Sample τ 2 from the (5.50);

(d) Sample σ2 from the (5.49).

The sampler is implemented in C++ exploiting the R interface Rcpp (Eddelbuettel et al.,
2011) and the matrix algebra library RcppArmadillo (Eddelbuettel and Sanderson, 2014).
The C code that is used to generate random numbers from the GIG distribution is due to
Gramacy (2010).
In the developed package BayesLN the function LN_hierarchical allows the user to specify
the desired model through the simple speci�cation of the model equation: the same syntax
of the well known function lemr of the lme4 package is adopted (Bates et al., 2015). Further
details about the usage of this function will be provided in the subsequent sections.
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5.3 Prior speci�cation

In the previous sections, some plausible priors for the variance components have been listed,
if the posterior moments of a log-normal mixed model are of interest. It is worth to highlight
that the constraints on the hyperparameters might produce highly informative priors for the
variances, since their tails are required to be notably light. In this sense, it is necessary to
propose a weakly informative prior speci�cation that avoids an excessive underestimation of
the variance components and that preserves the balance among them. On the other hand,
if any information about the problem is available, then it is possible to specify the triplet
of hyperparameters considering the GIG properties like mean and variance, always taking
into consideration the existence conditions.
In order to present the weakly informative strategy, the simplest case with two variance
components σ2 and τ2 will be studied, then the results will be extended to the general
situation. However, this is a remarkable case since it represents the random intercept model
and in this framework it is possible to de�ne the intraclass correlation coe�cient:

ρ =
τ2

σ2 + τ2
, (5.82)

that is a quantity of interest in the analysis of hierarchical models, both from a statistical
viewpoint and from the applied perspective.
By studying the marginal prior of this quantity when two GIG priors like (5.47) are speci�ed
for σ2 and τ2, some indications might be deduced in order to �x a weakly informative prior
that respects the constraints on the parameters and, at the same time, it controls the prior
balance among the variance components. In fact, the γ parameters could be �xed according
to conditions of proposition 5.4 by evaluating the expressions with (r+1), in order to assure
the proper existence of the required moment of order r. Considering the three conditions:

(i) γ2
σ = (r + 1) + (r + 1)2 maxi=1,...,ñ

(
x̃Ti
(
XTX

)−1
x̃i

)
;

(ii) γ2
σ = (r + 1) + (r + 1)2 maxi=1,...,ñ

(
x̃Ti
(
XTX

)−1
x̃i

)
and γ2

τ,s = (r + 1) + (r +

1)2 maxi=1,...,ñ

(
x̃To,iLsx̃oi

)
, ∀s;

(iii) γ2
σ = (r + 1)2 + (r + 1)2 maxi=1,...,ñ

(
x̃Ti
(
XTX

)−1
x̃i

)
.

Several prior selections strategies pointed out that a uniform prior on the intraclass cor-
relation coe�cient leads to good frequentist properties for the parameters estimates. The
idea of specifying a uniform distribution for ρ was presented by Chaloner (1987) and it con-
stitutes the heuristic argument that justi�es the uniform shrinkage prior, which have been
extensively studied and used (Daniels, 1999; Natarajan and Kass, 2000).
As a �rst step, it is possible to observe that the prior on ρ follows a normalized generalized
inverse Gaussian distribution: ρ ∼ N − GIG(λτ , δτ , γτ , λσ, δσ, γσ), a distribution whose
density has been derived and studied in a work by Favaro et al. (2012). The density is:
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p(ρ) =

(
γσ
δσ

)λσ (γτ
δτ

)λτ
2Kλσ(γσδσ)Kλτ (γτδτ )

ρλτ−1(1− ρ)λσ−1

 δ2τ
ρ + δ2σ

1−ρ
γ2
τρ+ γ2

σ(1− ρ)


λτ+λσ

2

×

×Kλτ+λσ

(√(
δ2
τ

ρ
+

δ2
σ

1− ρ

)
(γ2
τρ+ γ2

σ(1− ρ))

)
, ρ ∈ (0, 1).

(5.83)

To build a strategy that is based on the prior balance among variances, it is reasonable to
assume the same marginal prior GIG(λ, δ, γ) for σ2 and τ2, inducing a prior on ρ controlled
only by three hyperparameters, whose density is:

p(ρ) =
K2λ

(
γ2δ2

[
1
ρ + 1

1−ρ

])
2 [Kλ (γδ)]

[ρ(1− ρ)]λ−1 , ρ ∈ (0, 1). (5.84)

Moreover, evaluating the target functionals of the analysis, the most restrictive threshold
should be chosen as unique value of γ.
Because of the presence of ρ inside a Bessel K function, the analytic derivation of the
distribution characteristics like moments is not possible. However, it is interesting to consider
that the parameters δ and γ enter the density through a multiplication only. This fact
allows to compensate high values of the tail parameter γ, caused by the constraints, by
decreasing the value of the concentration parameter δ. A notable simpli�cation of the prior
on ρ is evident taking into consideration the limiting case δ → 0: it removes from p(ρ) the
potential e�ect of the constraint on γ and in previous applications of the GIG distribution
as variance prior in the log-normal context this provides good frequentist properties (Fabrizi
and Trivisano, 2012).
The density (5.84), in the limiting case δ → 0, becomes:

f(ρ) =
Γ(|2λ|)
Γ(|λ|)2

[ρ(1− ρ)]|λ|−1 , ρ ∈ (0, 1); (5.85)

exploiting the small argument approximation of the Bessel K function (A.7).
Remembering that the limiting case of the GIG distribution when λ > 0 and δ → 0 is the
gamma distribution Ga(λ, β), with β = γ2/2 and having density:

f(x) =
βλ

Γ(λ)
xλ−1 exp {−βx} ; (5.86)

if the priors of the variances are gamma distributions with equal parameters, then the prior
on ρ is a beta distribution with equal parameters λ. Moreover, if λ = 1 then ρ ∼ U(0, 1)
a priori. In addition, if two di�erent shape parameters λσ and λτ are chosen, then it is
possible to control the prior information given on ρ.
Another quantity of interest in the variance components models is the ratio φ = τ2/σ2. It is
a one-to-one transformation of ρ and strategies to �x its prior distribution have been studied
(Chaloner, 1987; Ye, 1994). In particular, the latter proposed a solution for the problem in
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the reference prior framework (Berger and Bernardo, 1992). Repeating the previous steps,
then the prior of the ratio of variances GIG distributed has the following density:

p(φ) =

∫ +∞

0
|σ2|pτ2

(
φσ2

)
pσ2

(
σ2
)

dσ2

=

(
γτ
δτ

)λτ (γσ
δσ

)λσ
2Kλσ(γσδσ)Kλτ (γτδτ )

φλτ−1

(
δ2
τ + φδ2

σ

φ

1

γ2
τφ+ γ2

σ

)λτ+λσ
2

×

×Kλτ+λσ

(√
(δ2
τ + φδ2

σ) (γ2
τ + γ2

σ/φ)
)
,

(5.87)

with equal hyperparameters. Then, letting δ → 0, the distribution p(φ) reduces to the
following particular form of beta prime distribution:

f(φ) =
Γ(|2λ|)
Γ(|λ|)2

φ|λ|−1(1− φ)−|2λ|. (5.88)

Finally, choosing λ = 1, the prior of the ratio is:

f(φ) = (1 + φ)−2. (5.89)

The latter result con�rms the prior for φ found by Chaloner (1987) when ρ ∼ U(0, 1) and is
similar to the reference priors that was deduced by Ye (1994).
This strategy developed for models that have two variance components could be extended
to the more general models with q + 1 variances. The basic idea is to consider that for
every ρs = τs(τs + σ2)−1 a uniform prior is speci�ed. This occurs when all the priors are
equal gamma distributions with shape 1 and scale parameter �xed respecting the existence
condition.
To sum up, under the described setting, if the λ parameter is set to be positive, a gamma
prior G

(
λ, γ2/2

)
for each variance component is approximately assumed when δ = ε. Clearly,

γ2 is considered �xed accordingly to the rules of theorem 5.3. As a consequence, a normal-
gamma prior is speci�ed marginally for the random e�ects vector u. This prior setting is
not new to the literature: it was introduced by Gri�n and Brown (2010) as prior for the
coe�cients of a linear model. Its main characteristic is the notable degree of shrinkage
towards 0 because of the light prior tail.
In the proposed setting with λ = 1, the gamma distribution degenerates to the exponential
distribution, and in that case the normal-gamma is a Laplace distribution. This particular
prior is known also as Bayesian Lasso and is characterized by a spike in 0. The degree of
shrinkage determined by this prior could be further enhanced setting λ near to 0, whereas
increasing the parameter value, the amount of shrinkage �xed decreases.
Fruhwirth-Schnatter and Wagner (2011) and Fabrizi et al. (2018) already used this prior
also as prior for the random e�ects. The main di�erence between these applications and the
present proposal is represented by the approach used to deal with the scale (or rate) param-
eter of the gamma prior. In fact, the cited works specify an hyperprior on it. Unfortunately,
in this situation this solution is not viable because of the restrictions on the parameter space
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due to the posterior moments existence condition. However, thanks to this interpretation of
the proposed prior speci�cation setting, an interpretation of the λ parameter is o�ered: its
value controls the prior shrinkage and it could be �xed accordingly.
The R function LN_hierarchical automatically implements the prior strategy described
in this section, choosing the more general existence condition after the user speci�es the
functionals of interest. In fact, the argument functional can receive as input the strings
"Marginal" for θm(x̃), "Subject" for θc(x̃, z̃) and "PostPredictive" for the posterior pre-
dictive distribution. The matrices X̃ and Z̃ can be provided as input of the respective
arguments and, as point values for the tail parameters γ-s, the expression determining the
existence conditions are evaluated with r = 3, in order to assure the well de�nition of
the posterior mean and the posterior variance. The multiple points prediction setting is
considered and the conditions of proposition 5.4 are implemented.

5.4 Applied focus: the small area estimation framework

The small area estimation (SAE) framework may represent an important �eld in which
applying the methodologies developed in this work. For a generic introduction on the topic,
see Pfe�ermann et al. (2013) and Rao and Molina (2015).
If the area sample sizes are too narrow to apply the design based direct estimators, then
the model-based approach has become largely di�used in SAE, in order to borrow strength
among the areas and to fully exploit the whole disposable auxiliary information. Depend-
ing on the data structure, it is possible to distinguish between two main model building
strategies: if the response is an areal aggregated quantity, then an area level model is con-
sidered; on the other hand, if the auxiliary information is available for each individual of the
population, then a unit level model can be �tted. In this section, the second eventuality is
examined.
Moreover, in this context, it is common to deal with positive and skewed response variables
(e.g. business variables, areal surfaces, environmental variables) and the estimate of the area
means is an even more delicate task.
In presence of skewed variables, it appears reasonable to assume log-normality for data.
A synthetic estimator was derived under the log-normality assumption by Karlberg et al.
(2000), whereas Chandra and Chambers (2009) deduced a model-based direct estimator.
Focusing on the model-based approach to SAE, mixed models are widely used since they
allow to easily incorporate an area speci�c random e�ect. In the literature, it is possible to
identify two main approaches to face their estimation: the �rst one is based on the empirical
best linear unbiased prediction (EBLUP) estimation, that in the normal case coincides with
the empirical Bayes (EB) approach. EBLUP and EB strategies to estimate area means
under a log-normal mixed model have been developed by Berg and Chandra (2014), Molina
and Martin (2018) and Zimmermann and Münnich (2018), who considered the informative
sampling framework. The alternative estimation method is the hierarchical Bayes (HB)
choice: it has a long tradition in SAE (Datta and Ghosh, 1991) and, among its strengths,
it is possible to highlight the easiness of obtaining estimates of parameter transformations
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naturally, deducing interval estimates, uncertainty measures and making predictions, taking
advantage of the posterior predictive distribution.
However, recalling the �ndings of previous sections, it is worth to be careful in using HB with
a log-normal model. For example, the solution proposed by Dagne (2001), who suggested a
Box-Cox mixed model procedure, implies the non-�niteness of the posterior predictive dis-
tribution moments if the logarithmic transformation is found to be appropriate to normalize
the response.
Thanks to the results of theorem 5.3, the aim of these sections is to �ll the gap of the liter-
ature and propose a safe HB solution for analysing skewed variables in the SAE framework.
After de�ning the notation (subsection 5.4.1), a brief review of the EB solution is hinted in
section 5.4.2, whereas the HB method is exposed in section 5.4.3. Finally, in section 5.4.4,
some considerations about the estimation of poverty measures are shown.

5.4.1 The unit level model

A �nite population U constituted by N units is considered. It is partitioned into D sub-
populations U1, ..., UD having dimensions N1, ..., ND such that N =

∑D
d=1Nd. A random

sample s with size n is drawn from the overall population U , obtaining D sub-samples
s1, ..., sD with sample sizes n1, ..., nD;

∑D
d=1 nd = n. It is possible to denote with s̄d the

unsampled portion of the sub-population Ud that is of size Nd − nd. The value assumed
by the variable of interest for the unit i ∈ {1, ..., Nd} belonging to area d, d = 1, ..., D is
denoted with ydi whereas the set of values observed for the p covariates is stored in the
vector xdi.
In this context, the usual inferential goals are the estimation of the amount of the variable
of interest in an unsampled unit ydi in order to compute the area mean:

ȳd = N−1
d

Nd∑
i=1

ydi. (5.90)

Considering a positively skewed variable for which it is reasonable the log-normality assump-
tion, then it is possible to de�ne wdi = log ydi and specify the usual random intercept model
by Battese et al. (1988) for the transformed variable. In particular:

wdi = xTdiβ + ud + edi;

ud ∼ N (0, τ2), edi ∼ N (0, σ2); d = 1, ..., D; i = 1, ..., ND.
(5.91)

The model is a particular case of the log-normal linear mixed model faced in section 5.2,
however other more general models like the ones included in Datta and Ghosh (1991) might
be speci�ed within the same framework.

5.4.2 Empirical Bayes estimation

In the EB estimation framework, the goal is to �nd the minimum MSE predictor of the area
mean (5.90) under model (5.91). Exploiting the properties of the log-normal distribution it
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is possible to check that it coincides with:

ˆ̄yd(θ) = N−1
d

∑
i∈sd

ydi +
∑
i∈s̄d

ŷdi(θ)

 , (5.92)

where the ŷdi(θ) are the minimum MSE prediction of the unsampled units, which are func-
tion of the unknown parameter vector θ = (β, σ2, τ2):

ŷdi(θ) = exp

{
xTdiβ + γd

(
ȳds − x̄Tdsβ

)
+
σ2

2

(
γd
nd
− 1

)}
. (5.93)

For completeness, ȳds and x̄ds are the means of the response and of the covariates in area
d, whereas γd = τ2(τ2 + n−1

d σ2)−1 is the shrinkage factor.
Hence, the EB prediction is obtained by substituting the unknown parameters θ with a
consistent estimate θ̂. In the subsequent sections of this work, the restricted maximum
likelihood (REML) method is adopted, getting the �nal estimator ˆ̄yd(θ̂).
Another important point is the estimation of the MSE of ˆ̄yd(θ̂). It was derived analytically
by Berg and Chandra (2014), but following Jiang et al. (2002) the jackknife method is used
to compute it in the next sections. It is important to stress that the MSE of an EB predictor
can be decomposed into two addends: a leading term, which is related to the variance of
the minimum MSE predictor (5.92), and a second term that adjusts it for the uncertainty
due to the estimation of the parameter vector θ.
Finally, an interval estimate proposal is the heuristic prediction interval used by Berg and

Chandra (2014): ˆ̄yd(θ̂)± 2.04

√
ˆMSE[ˆ̄yd(θ̂)].

5.4.3 Hierarchical Bayes estimation

In this section, the hierarchical Bayesian formulation of the popular random intercept model
by Battese et al. (1988) is provided for the log-transformed response wdi. For each area d
the following model in matrix form is speci�ed:

wd = Xdβ + 1Ndud + ed, d = 1, ..., D; (5.94)

where:
wd = (wd1, ..., wdNd)

T ∈ RNd , ed = (ed1, ..., edNd)
T ∈ RNd ,

Xd = (xd1, ...,xdNd)
T ∈ RNd×p.

(5.95)

Moreover, it is possible to partition the quantities related to area d by splitting them into
sampled (with sd as subscript) and unsampled (with ud as subscript) units:

zd = (zTsd zTud)
T , ed = (eTsd zTud)

T , Xd = (XT
sd XT

ud)
T . (5.96)

As a consequence, the model parameters are estimated only using the n sampled units.
Formally, the model equation is:

ws = Xsβ + Zsu + es, (5.97)
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where:
ws = (ws1, ...,wsD)T ∈ Rn, es = (es1, ..., esD)T ∈ Rn,
Xs = (XT

s1, ...,X
T
sD)T ∈ Rn×p, Zs = diagd∈{1,...,D}1nd ∈ Rn×D.

(5.98)

Hence, the complete formulation of the hierarchical model is:

ws|u,β, σ2 ∼ Nn
(
Xsβ + Zsu, σ

2In
)

;

u|τ2 ∼ ND
(
0, τ2ID

)
, (β, σ2) ∼ p(β, σ2);

τ2 ∼ p(τ2).

(5.99)

In this work, a �at improper prior is speci�ed for the vector of coe�cients β, whereas prior
independence is assumed for the variance components. In small area estimation applications,
non-informative priors are often preferred in order to do not change too much the information
carried out by data in topics like public policies or social studies by using subjective priors.
For this reason, the prior speci�cation method described in section 5.3 might be suitable for
this task.
In order to properly �x the prior distributions for the variance components, it is worth to
introduce the target quantity that is usually estimated in the SAE context. In fact, the aim
of the estimation procedure is to preserve the existence of its posterior moments. As already
hinted in the previous section, the inferential goal in SAE is the area mean ȳd. In the HB
case, a natural way to estimate it is based on the use of the posterior predictive distribution.
In fact, the vector of unsampled units of area d, yud, can be estimated with the expectation
of the posterior predictive distribution.
Considering the log-transformation wud = log(yud), the predictive distribution conditioned
on the parameters is:

wud|u,β, σ2 ∼ NNd−nd
(
Xudβ + 1Nd−ndud, σ

2INd−nd
)
, (5.100)

and the posterior predictive distribution p(yud|ys) (5.45) might be obtained through sim-
ulation methods. Then, it is natural to propose the following estimator for the vector on
unsampled units of area d:

ŷHBud = E [yud|ys] . (5.101)

Recalling the result (iii) of theorem 5.3, the existence of the previous quantity can be only
assured by a proper choice of the priors on the variance components.
Exploiting the MCMC methods, it is immediate to have an estimate of the area mean:

ˆ̄Y HB
d =

1

Nd

∑
i∈sd

ydi +
∑
i∈s̄d

ŷHBdi

 , (5.102)

whose existence is assured by the �niteness of each addend.
Hence, assuming two equal GIG priors on the variance components, it is possible to �x their
tail parameter ful�lling the condition:

γ2 > r2 + r2hmaxd , hmaxd = max
i∈s̄d

xTdi(X
T
sXs)xdi. (5.103)
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More generally, if each area mean needs to be estimated, then the leverage to include in
the condition is hmax = maxd hd. In practice, since the posterior variance is an inferential
quantity of interest, r is usually set equal to 2.

5.4.4 The estimation of poverty measures

One of the main advantages of HB methods is that the estimates for non-linear functions
of data can be easily provided. For example, it is common for SAE studies in economic
and social �elds to have the goal of investigating poverty. Among the plethora of poverty
measures, the family due to Foster et al. (1984) (FGT) has been recently considered in the
small area framework by Molina and Rao (2010) from an EB perspective and by Molina
et al. (2014) using HB methods.
The family FGT of poverty measures is de�ned for subject i of area d as:

Fdi,α =

(
c− ydi
c

)α
1{ydi<c}(Ydi); (5.104)

where ydi, in this case, is the welfare variable considered in the study (e.g. income or
expenditure) and c is the poverty line, i.e. the value of the response below which a subject
is labelled as experiencing poverty. By changing α, it is possible to express di�erent poverty
measures: when α = 0 the expression reduces to the indicator function and it is called
poverty incidence, if α = 1 the poverty gap is obtained and can be viewed as the distance
of an individual under poverty to the poverty line, and �nally, with α = 2 larger deviations
are emphasized and the poverty severity measure is computed.
Therefore, the inferential problem involves the estimation of a non-linear function of the
response variable under study. Moreover, as it is well known, many economic variables are
positive and skewed: in fact, the two works cited before specify the classical Battese, Harter
and Fuller model for a transformation of the studied response. Even if they developed a
theoretical framework considering a general transformation, in practice they always use the
logarithm to transform data, �tting the random intercept model with wd = logyd as a
response, like model (5.91).
In this case, the area mean of the poverty measure is the target quantity under study:

F̄d,α =
1

Nd

Nd∑
i=1

Fdi,α, d = 1, .., D. (5.105)

Exploiting the model-based inference and the partition of the population in sampled or
unsampled units, in the EB estimation procedure it is possible to consider a minimum MSE
estimator parallel to the (5.92):

Fd,α =
1

Nd

∑
i∈sd

Fdi,α +
∑
i∈s̄d

F̂EBdi,α

 , (5.106)
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and the single predictions of the subjects poverty measures are computed using the condi-
tioned predictive density (5.100):

F̂EBdj,α = E [Fdj,α|ys]

=

∫ +∞

−∞

(
c− exp(wdi)

c

)α
1{exp(wdi)<c}(wdi)pN

(
wdi;µdi|s, Vdi|s

)
dwdi,

(5.107)

where µdi|s and Vdi|s are the mean and the variance that need to be estimated for the
unsampled unit wdi through the available sample.
According to the authors, these integrals cannot be analytically solved because of their
complex structure: they used MC methods with a consequent computationally expensive
inferential procedure. However, when the logarithm transformation is adopted, it is possible
to express these quantities through cumulative functions of the normal distribution Φ(·)
with a huge gain in terms of computing time.
Returning to the main topic of this work, it is worth to focus on the HB estimation of
poverty measures analysing the proposal by Molina et al. (2014). As before, the expectation
of the predictive posterior distribution is chosen to estimate Fdi,α for the unsampled units.
Under the model (5.99) it is:

F̂HBdi,α = E [Fdi,α|ys]

=

∫
Θ

∫ +∞

−∞

(
c− exp(wdi)

c

)α
1{exp(wdi)<c}(wdi)pN

(
wdi;x

T
j β + ud, σ

2
)
×

p(ud,β, σ
2, τ2|ys)dwdidθ.

(5.108)

With simple computations, it can be proved that the existence conditions of the latter
integral coincides with the point (iii) of theorem 5.3, provided that r = α. Moreover, if the
generic moment of order r′ of the posterior predictive distribution is required, then r = α ·r′.
As a consequence, no issue of existence involves the poverty incidence (α = 0), as might be
expected, whereas particular attention must be paid in specifying the priors when α = 1, 2.
In their work, Molina et al. (2014) �xed the improper uniform shrinkage prior p(σ2, τ2) ∝
(σ2 + τ2)−2, which coincides to the (2.5) in Chaloner (1987), and that clearly leads to a
posterior predictive distribution with in�nite moments, according to proposition 5.3. Hence,
the prior speci�cation strategy described in section 5.3 should be followed to carry out a
proper inference.



Chapter 6

Log-normal mixed model: simulations

and examples

In this chapter, the theoretical �ndings about the Bayesian estimation of the log-normal
mixed model are applied: �rstly, a simulation study to assess the frequentist properties of
the proposed estimators is reported (section 6.1), �nally the methodology is used in real
data examples (section 6.2).

6.1 Simulation study

The simulation study is planned to investigate two di�erent applied aspects. In the �rst
place, to assess the frequentist properties of the estimates of the population means in the
linear mixed model framework, the simple one-way ANOVA random e�ect model is consid-
ered (section 6.1.1). Then, the focus moved to the behaviour of the developed methodology
in small area estimation problems: both a model-based simulation and a design-based sim-
ulation on the classical BHF model are carried out (section 6.1.2).

6.1.1 ANOVA model

The balanced one-way random e�ect ANOVA is chosen as generating model for data in the
simulation study. It is the particular case of the model studied in section 5.1, in which all
groups has sample size ng:

wij = log(yij) = µ+ νj + εij ; j = 1, ...,m; i = 1, ..., ng; (6.1)

where the random e�ects νj ∼ N
(
0, τ2

)
are independent with respect to the unstructured

error terms εij ∼ N
(
0, σ2

)
.

The inferential task consists of estimating the marginal expectation θm, reported in equation
(5.4) and expectation conditioned on the random e�ects θc(νj), in equation (5.5), for each
group. Besides, the estimators derived in chapter 5 following the fully Bayesian methodology
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with priors speci�ed as indicated in section 5.3:

p(µ) ∝ 1, σ2 ∼ GIG(1, 0.01, γm), τ2 ∼ GIG(1, 0.01, γm), (6.2)

are denoted as θ̂B,GIGm and θ̂B,GIGc (νj), where the notation γm = max{γσ, γτ,s}. The Bayes
estimators under the improper uniform shrinkage prior (Chaloner, 1987):

p(µ) ∝ 1, p(σ2) ∝ 1

σ2
, ρ ∼ U(0, 1), (6.3)

are labelled as θ̂B,USm and θ̂B,USc (νj). Finally, the proper half-t priors for scales suggested by
Gelman (2006):

µ ∼ N (0, 100), σ ∼ half-t3, τ ∼ half-t3, (6.4)

produces the estimators θ̂B,tm and θ̂B,tc (νj) that are included in the study too. The algorithm
for computing the posteriors in the uniform shrinkage prior is adapted from the one in
Molina et al. (2014), whereas the model with half-t priors with three degrees of freedom are
implemented in Stan (Carpenter et al., 2017) using the interface package brms (Bürkner,
2018). In addition, the frequentist estimates obtained with the classical function lmer

with REML as �tting method are evaluated. Concerning the global expectation, a plug-in
estimator of θm is examined:

θ̂REML
m = exp

{
µ̂REML +

σ̂2
REML + τ̂2

REML

2

}
. (6.5)

Then, considering the expectation conditioned on the random e�ects, the particular case of
the empirical Bayes estimator θ̂EBc (νj) described in section 5.4.2 is computed. It has been
proposed for this model also by Rappaport et al. (1995). Finally, the properties of Bayes
estimator under relative quadratic loss conditioned on the variance components (section
5.1.1) are evaluated in order to provide a benchmark for the other estimators.
A total amount of B = 2000 samples are generated from the one-way random e�ect ANOVA
model and a total of 36 scenarios are obtained crossing the following parameters choices:
ng = (2, 5), m = (10, 20), φ = τ2/σ2 = (0.5, 1, 2) and σ2 = (0.5, 1, 2). The overall mean
in the logarithmic scale is kept �xed at µ = 0. The estimates that require Monte Carlo
methods are based on 4000 iterations and the �rst 1000 iterations are discarded as burn-in.
The convergence of the MCMC algorithm has been checked on a sample of replicates and
no issues were observed.
Both the frequentist properties of the point estimator and of the interval estimates, for
the methodologies in which they are available, are monitored. Bias, root mean square
error (RMSE), frequentist coverage and average interval width are reported for the generic



CHAPTER 6. MIXED MODEL: SIMULATIONS AND EXAMPLES 120

estimator θ̂m of the marginal expectation:

Bias(θ̂m) =
1

B

B∑
k=1

(
θ̂(k)
m − θm

)
,

RRMSE(θ̂m) =

√√√√ 1

B

B∑
k=1

(
θ̂

(k)
m − θm

)2
,

Cov(θ̂m) =
1

B

B∑
k=1

1[L̂(k);Û(k)] (θm) ,

Wid(θ̂m) =
1

B

B∑
k=1

(
Û (k) − L̂(k)

)
;

(6.6)

where θ̂
(k)
m is the estimate of the true overall expectation θm at Monte Carlo iteration k and

L̂(k) and Û (k) are the estimated lower bound and upper bound for the 95% intervals.
On the other hand, to jointly evaluate the m di�erent estimates for θc(νj), j = 1, ...,m,

an average evaluation of the estimates ˆ̄θc is required. Therefore, the relative absolute bias
(RABias), the relative RMSE (RRMSE), the average frequentist coverage (ACo.) and the
average interval width (AWi.) are studied:

RABias(ˆ̄θc) =
1

J

J∑
j=1

∣∣∣∣∣ 1

B

B∑
k=1

(
θ̂

(k)
c (νj)− θ(k)

c (νj)

θ
(k)
c (νj)

)∣∣∣∣∣ ,
RRMSE(ˆ̄θc) =

1

J

J∑
j=1

√√√√ 1

B

B∑
k=1

(
θ̂

(k)
c (νj)− θ(k)

c (νj)

θ
(k)
c (νj)

)2

,

ACo(ˆ̄θc) =
1

J

J∑
j=1

1

B

B∑
k=1

1[L̂(k)(νj);Û(k)(νj)]

(
θ(k)
c (νj)

)
,

AWi(ˆ̄θc) =
1

J

J∑
j=1

1

B

B∑
k=1

(
Û (k)(νj)− L̂(k)(νj)

)
;

(6.7)

where θ̂
(k)
c (νj) is the estimate of the j-th true group speci�c expectation θ

(k)
c (νj) at Monte

Carlo iteration k; L̂(k)(νj) and Û
(k)(νj) are the estimated lower bound and upper bound for

the 95% intervals.
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Cond. Bayes REML U.S. prior Half-t prior GIG prior

ng m φ σ2 Scen. θm Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

2

10

0.5

0.5 1 1.45 -0.07 0.32 0.05 0.41 0.54 9.70 0.37 1.55 0.24 0.52

1 2 2.12 -0.20 0.65 0.20 1.06 > 105 > 106 > 103 > 105 0.37 1.07

2 3 4.48 -0.82 1.89 1.34 5.23 > 1016 > 1018 > 105 > 106 0.11 2.82

1

0.5 4 1.65 -0.12 0.45 0.10 0.63 202.51 > 103 0.88 5.80 0.28 0.71

1 5 2.72 -0.38 1.02 0.47 2.05 > 1010 > 1012 > 109 > 1010 0.35 1.60

2 6 7.39 -1.91 3.76 4.63 16.92 > 1028 > 1029 > 109 > 1011 -0.98 5.16

2

0.5 7 2.12 -0.24 0.74 0.27 1.29 > 104 > 106 830.70 > 104 0.32 1.15

1 8 4.48 -0.98 2.13 1.87 6.99 > 1016 > 1018 > 107 > 109 -0.06 3.08

2 9 20.09 -7.82 12.66 44.93 188.79 > 1040 > 1041 > 1025 > 1026 -8.61 15.46

20

0.5

0.5 10 1.45 -0.04 0.23 0.02 0.27 0.11 0.32 0.12 0.33 0.12 0.32

1 11 2.12 -0.11 0.46 0.09 0.66 0.41 0.94 0.40 0.91 0.23 0.72

2 12 4.48 -0.46 1.37 0.56 2.82 3.92 22.18 2.40 6.13 0.22 2.12

1

0.5 13 1.65 -0.07 0.32 0.04 0.40 0.18 0.49 0.21 0.51 0.16 0.45

1 14 2.72 -0.21 0.73 0.19 1.19 0.98 5.16 0.80 1.82 0.25 1.11

2 15 7.39 -1.08 2.75 1.77 7.63 > 104 > 106 12.55 67.75 -0.45 3.95

2

0.5 16 2.12 -0.14 0.52 0.11 0.76 0.41 1.04 0.47 1.08 0.20 0.76

1 17 4.48 -0.55 1.54 0.71 3.35 5.86 41.50 3.68 11.26 0.03 2.21

2 18 20.09 -4.57 9.45 13.16 51.99 > 106 > 108 > 105 > 107 -6.44 12.39

5

10

0.5

0.5 19 1.45 -0.05 0.27 0.03 0.32 0.20 1.22 0.20 0.45 0.16 0.39

1 20 2.12 -0.15 0.55 0.10 0.78 730.67 > 104 1.16 20.26 0.27 0.83

2 21 4.48 -0.60 1.62 0.67 3.43 > 1011 > 1013 > 104 > 105 0.23 2.39

1

0.5 22 1.65 -0.10 0.40 0.06 0.52 > 104 > 106 0.57 4.06 0.21 0.59

1 23 2.72 -0.31 0.93 0.29 1.61 > 1016 > 1018 142.19 > 103 0.29 1.36

2 24 7.39 -1.59 3.44 2.81 12.36 > 1040 > 1042 > 107 > 108 -0.58 4.69

2

0.5 25 2.12 -0.22 0.70 0.20 1.12 > 104 > 106 5.87 85.07 0.25 1.01

1 26 4.48 -0.88 2.02 1.37 5.78 > 1016 > 1018 > 107 > 109 -0.05 2.78

2 27 20.09 -7.09 12.11 31.80 158.18 > 1040 > 1042 > 1017 > 1018 -7.53 14.57

20

0.5

0.5 28 1.45 -0.03 0.20 0.01 0.22 0.07 0.25 0.08 0.25 0.08 0.25

1 29 2.12 -0.08 0.40 0.05 0.51 0.24 0.63 0.23 0.63 0.17 0.56

2 30 4.48 -0.31 1.18 0.29 1.90 1.49 3.17 1.23 4.04 0.27 1.73

1

0.5 31 1.65 -0.05 0.29 0.03 0.35 0.13 0.40 0.15 0.42 0.12 0.38

1 32 2.72 -0.16 0.67 0.12 0.95 0.56 1.34 0.55 1.32 0.21 0.95

2 33 7.39 -0.85 2.53 1.06 5.21 8.51 40.11 5.21 13.45 -0.14 3.52

2

0.5 34 2.12 -0.12 0.50 0.08 0.68 0.32 0.87 0.37 0.92 0.16 0.69

1 35 4.48 -0.48 1.47 0.51 2.74 2.76 7.13 2.56 6.93 0.04 2.03

2 36 20.09 -3.99 9.07 8.70 34.20 > 104 > 105 > 103 > 104 -5.36 11.51

Table 6.1: Bias and RMSE for the considered estimators of θm in the di�erent scenarios.
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Cond. Bayes REML U.S. prior Half-t prior GIG prior

ng m φ σ2 Scen. RABias RRMSE RABias RRMSE RABias RRMSE RABias RRMSE RABias RRMSE

2

10

0.5

0.5 1 0.13 0.36 0.13 0.52 0.23 0.57 0.25 0.59 0.20 0.53

1 2 0.24 0.49 0.28 0.93 0.61 1.27 0.59 1.26 0.34 0.89

2 3 0.43 0.65 0.74 2.24 5.82 64.48 2.97 17.02 0.52 1.59

1

0.5 4 0.16 0.40 0.17 0.61 0.35 0.75 0.35 0.78 0.27 0.67

1 5 0.30 0.54 0.39 1.16 1.02 2.10 1.07 6.04 0.51 1.25

2 6 0.51 0.70 1.07 3.20 79.33 > 103 48.65 > 103 0.95 2.81

2

0.5 7 0.19 0.43 0.20 0.65 0.53 1.03 0.48 1.05 0.36 0.84

1 8 0.34 0.57 0.47 1.30 2.62 26.42 1.75 6.03 0.74 1.82

2 9 0.56 0.74 1.35 3.89 > 106 > 107 > 104 > 106 1.68 5.90

20

0.5

0.5 10 0.12 0.35 0.13 0.49 0.18 0.50 0.19 0.52 0.17 0.50

1 11 0.23 0.48 0.28 0.86 0.41 0.95 0.44 1.00 0.34 0.87

2 12 0.41 0.63 0.68 1.87 1.17 2.50 1.21 2.70 0.66 1.69

1

0.5 13 0.16 0.39 0.16 0.57 0.26 0.64 0.27 0.67 0.24 0.63

1 14 0.29 0.53 0.37 1.05 0.64 1.36 0.65 1.44 0.51 1.19

2 15 0.50 0.70 0.95 2.59 2.11 4.74 2.20 5.71 1.10 2.82

2

0.5 16 0.18 0.43 0.19 0.62 0.36 0.79 0.33 0.78 0.31 0.74

1 17 0.33 0.57 0.44 1.18 0.94 1.89 0.85 1.93 0.68 1.56

2 18 0.56 0.74 1.17 3.08 4.00 13.14 4.06 19.81 1.67 4.71

5

10

0.5

0.5 19 0.07 0.27 0.09 0.35 0.11 0.35 0.11 0.35 0.10 0.33

1 20 0.14 0.37 0.19 0.58 0.26 0.61 0.23 0.60 0.18 0.54

2 21 0.26 0.50 0.45 1.13 0.66 1.33 0.56 1.26 0.30 0.91

1

0.5 22 0.08 0.29 0.11 0.38 0.15 0.39 0.12 0.37 0.11 0.36

1 23 0.16 0.39 0.24 0.65 0.34 0.71 0.26 0.65 0.21 0.60

2 24 0.29 0.53 0.57 1.33 0.89 1.69 0.64 1.44 0.38 1.07

2

0.5 25 0.09 0.30 0.12 0.39 0.19 0.43 0.12 0.38 0.12 0.38

1 26 0.17 0.41 0.27 0.69 0.45 0.84 0.27 0.68 0.23 0.64

2 27 0.31 0.55 0.66 1.46 1.25 2.20 0.68 1.52 0.43 1.18

20

0.5

0.5 28 0.07 0.27 0.09 0.34 0.10 0.33 0.09 0.33 0.09 0.32

1 29 0.14 0.37 0.20 0.55 0.21 0.54 0.19 0.54 0.18 0.52

2 30 0.25 0.50 0.44 1.05 0.48 1.05 0.45 1.04 0.34 0.91

1

0.5 31 0.08 0.28 0.11 0.37 0.12 0.36 0.10 0.35 0.10 0.35

1 32 0.15 0.39 0.24 0.62 0.26 0.61 0.22 0.59 0.20 0.57

2 33 0.29 0.53 0.56 1.24 0.61 1.26 0.51 1.15 0.41 1.04

2

0.5 34 0.09 0.29 0.13 0.38 0.14 0.39 0.11 0.37 0.11 0.37

1 35 0.17 0.41 0.27 0.66 0.31 0.68 0.23 0.62 0.22 0.61

2 36 0.31 0.55 0.64 1.36 0.76 1.47 0.54 1.23 0.45 1.13

Table 6.2: RABias and RRMSE for the considered estimators of the group-speci�c expectations in the di�erent scenarios.
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Global Predictor Conditioned Predictor

U.S. prior Half-t prior GIG prior U.S. prior Half-t prior GIG prior

ng m φ σ2 Scen. θm Cov. Wid. Cov. Wid. Cov. Wid. ACo AWi ACo AWi ACo AWi

2

10

0.5

0.5 1 1.45 0.95 2.59 0.94 2.71 0.95 2.19 0.97 3.20 0.94 2.75 0.95 2.62

1 2 2.12 0.95 10.38 0.95 8.85 0.95 4.42 0.97 8.66 0.94 6.92 0.93 5.20

2 3 4.48 0.95 186.11 0.95 72.18 0.90 11.01 0.97 51.29 0.93 33.60 0.90 13.20

1

0.5 4 1.65 0.94 4.27 0.94 4.52 0.94 2.90 0.97 4.36 0.94 3.60 0.94 3.23

1 5 2.72 0.95 27.21 0.95 21.31 0.94 6.27 0.97 14.23 0.93 10.47 0.92 7.10

2 6 7.39 0.95 > 103 0.94 485.62 0.82 17.50 0.97 127.80 0.93 71.85 0.89 21.70

2

0.5 7 2.12 0.94 11.30 0.94 11.72 0.93 4.46 0.98 7.20 0.94 5.31 0.94 4.49

1 8 4.48 0.94 236.77 0.94 133.21 0.86 10.89 0.98 33.70 0.94 20.42 0.92 12.07

2 9 20.09 0.95 > 105 0.93 > 104 0.58 37.09 0.98 677.93 0.93 258.62 0.89 55.06

20

0.5

0.5 10 1.45 0.96 1.32 0.96 1.33 0.96 1.32 0.95 2.49 0.93 2.26 0.94 2.32

1 11 2.12 0.95 3.72 0.95 3.59 0.96 2.95 0.95 5.81 0.93 5.11 0.93 4.82

2 12 4.48 0.95 22.43 0.95 18.00 0.94 8.79 0.95 23.19 0.92 18.87 0.92 13.53

1

0.5 13 1.65 0.95 1.99 0.95 2.05 0.95 1.85 0.96 3.34 0.93 3.00 0.94 2.96

1 14 2.72 0.95 7.24 0.95 6.91 0.94 4.53 0.96 9.00 0.93 7.73 0.93 6.83

2 15 7.39 0.95 82.10 0.95 58.88 0.89 15.49 0.96 48.52 0.93 37.17 0.92 23.22

2

0.5 16 2.12 0.95 4.10 0.95 4.28 0.94 3.11 0.97 5.12 0.94 4.35 0.94 4.16

1 17 4.48 0.95 26.48 0.95 24.18 0.91 8.85 0.97 18.33 0.94 14.38 0.93 11.84

2 18 20.09 0.95 > 103 0.95 815.10 0.73 38.11 0.97 175.11 0.94 113.55 0.92 59.64

5

10

0.5

0.5 19 1.45 0.95 1.76 0.95 1.85 0.95 1.64 0.98 2.16 0.94 1.71 0.94 1.71

1 20 2.12 0.95 5.56 0.95 5.26 0.95 3.42 0.98 4.99 0.93 3.80 0.94 3.52

2 21 4.48 0.96 48.69 0.95 31.69 0.92 9.40 0.98 19.46 0.93 13.41 0.92 9.88

1

0.5 22 1.65 0.94 3.13 0.94 3.47 0.95 2.41 0.98 2.90 0.94 2.09 0.94 2.04

1 23 2.72 0.95 15.32 0.94 14.15 0.94 5.38 0.98 7.82 0.94 5.25 0.93 4.70

2 24 7.39 0.95 527.82 0.94 231.62 0.85 16.54 0.98 42.08 0.94 23.77 0.92 16.40

2

0.5 25 2.12 0.94 8.59 0.94 9.60 0.93 4.00 0.99 4.66 0.95 2.80 0.94 2.69

1 26 4.48 0.94 135.65 0.94 98.70 0.87 10.10 0.99 17.29 0.94 9.03 0.93 7.81

2 27 20.09 0.94 > 105 0.94 > 104 0.64 37.95 0.99 177.29 0.94 68.32 0.92 43.03

20

0.5

0.5 28 1.45 0.95 0.99 0.95 1.01 0.95 1.01 0.96 1.81 0.94 1.62 0.94 1.63

1 29 2.12 0.95 2.55 0.95 2.50 0.95 2.25 0.96 3.96 0.94 3.46 0.94 3.39

2 30 4.48 0.95 11.94 0.95 10.60 0.93 7.10 0.96 13.50 0.94 11.28 0.93 10.01

1

0.5 31 1.65 0.95 1.62 0.94 1.69 0.95 1.56 0.97 2.35 0.94 1.98 0.95 1.97

1 32 2.72 0.95 5.32 0.95 5.26 0.94 3.85 0.97 5.87 0.94 4.80 0.94 4.60

2 33 7.39 0.95 44.17 0.94 36.91 0.90 14.08 0.97 26.34 0.94 20.06 0.93 16.97

2

0.5 34 2.12 0.94 3.50 0.94 3.71 0.94 2.81 0.98 3.49 0.95 2.64 0.95 2.61

1 35 4.48 0.94 19.69 0.94 18.96 0.91 8.17 0.98 11.46 0.95 8.19 0.94 7.68

2 36 20.09 0.95 665.01 0.94 474.91 0.77 38.12 0.98 88.99 0.95 56.56 0.93 44.55

Table 6.3: Coverage and average width for the credible intervals of θm and averaged for the group-speci�c expectations.
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The results reported in table 6.1 concern the performances of the marginal expectation point
estimators. For each scenario, the true values θm are included in the table. Evident issues
with the priors that do not assure the posterior moments existence for the target functionals
can be individuated. In particular, in case of small sample sizes or moderate values of the
variance terms, both the bias and the RMSE of θ̂B,USm and θ̂B,tm result excessively elevated
and completely inappropriate to the scale of the inferential task. On the other hand, in
scenarios with moderate sample size and very low values of variance components, the issues
related to the non-�niteness of moments are masked and inference might be unconsciously
carried out, even if it would be meaningless form a mathematical point of view.
As expected, the conditioned Bayes estimator under relative quadratic loss always assumes
the minimum RMSE value and it is distinguished by negative bias coherently with previous
�ndings in literature (Fabrizi and Trivisano, 2012). Among the unconditioned estimators,
with the exception of scenarios characterized by small variances in which the θ̂REML

m has
the lower RMSE, θ̂B,GIGm is the more e�cient estimator. In particular, it is the only choice
having RMSE comparable to the conditioned estimator in extreme cases with large variance
terms: this result is attained enhancing a negative bias. On the other hand, this bias has
an unfavourable consequence on the frequentist coverage of the credible intervals reported
in table 6.3. The coverage is largely below the �xed level of 0.95 in scenarios with σ2 = 2.
However, with the same conditions, the other prior settings considered produce intervals
that reach the nominal level at the price of an average width excessively high. Therefore, in
that population settings, which are particularly extreme in the log-normal framework, all the
proposed intervals have little utility in practice even if for di�erent reasons. In less extreme
scenarios, in which the credible intervals with GIG priors attain the nominal coverage, the
average width is always lower than the widths of intervals with other priors, hence they are
more precise.
In table 6.2 the averaged results about the group-speci�c expectations estimates are reported.
Also in this case, the lowest RRMSEs are observed for the conditioned Bayes estimator under
relative quadratic loss. The naive Bayesian posterior means θ̂B,USc (νj) and θ̂

B,t
c (νj) for all j

are always overcome in terms of RRMSE by θ̂B,GIGc (νj), even if they rarely show excessive
values due to the non-�nite moments of the posterior, as it was evident in the case of θm.
Comparing the RRMSE of θ̂B,GIGc (νj) to the one of the empirical Bayes estimators θ̂EBc (νj),
two di�erent conditions can be distinguished. When ng = 2, the EB estimator tends to show
a lower RRMSE than the Bayes estimator with GIG priors, whereas if the group size increases
(ng = 5), θ̂B,GIGc (νj) is characterized by systematically better frequentist properties. The
�rst feature might be caused by an underestimation of the variance component τ2 due to the
uniform prior on the intraclass correlation coe�cient and a little sample information available
(ng = 2). The average coverage of the credible intervals under GIG prior underestimates
the nominal level in the same extreme scenarios of θm, even if the departure from the
target value 0.95 is slighter. However, when the nominal coverage level is reached, they are
always shorter and, consequently, more powerful. Finally, it must be highlighted that the
uniform shrinkage prior tends to produce intervals too wide with a consequent frequentist
over-coverage.
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Prior speci�cation tuning

It is worth to emphasize that the GIG prior proposed in section 5.3 and analysed in this
simulation exercise is considered in a generic formulation: if some prior information is avail-
able for the user, then some adjustments might be operated. For example, if a particularly
high variance component in the logarithmic scale is expected, then a slight change in the
prior scale can be considered: the default proposal is to �x it very small through the set-
ting δ = ε. This choice is generally good for typical log-normal scenarios, but in di�erent
conditions the prior scale could be increased to avoid the possible underestimation of the
variance component (e.g. δ = 1).
Besides, as already hinted in section 5.3, if a prior knowledge about the unbalance among
variance component suggests a non-uniform prior on the intraclass correlation coe�cient,
then the shape parameters λ can be set recalling that they act as the parameters of a beta
prior on ρ.
Finally, recalling the considerations about the normal-gamma priors on the random e�ects,
the value of λ could be decided according to the desired amount of shrinkage. For example,
the case λ = 0.5 (higher shrinkage) and λ = 2 (lower shrinkage) are evaluated. In fact, a
further simulation study is carried out in order to evaluate the estimates obtained with these
prior in the 36 scenarios. From the results reported in tables D.3 and D.4 in the appendix,
the choice λ = 0.5 represents a reasonable strategy if there is a belief that σ2 < 0.5. In
fact, in that case it produces point estimates for θm which reach the REML performances,
but the frequentist coverage of the credible intervals rapidly deteriorate as σ2 increases. On
the other hand, with λ = 2, interesting results are obtained: the properties of the point
estimators appear to be slightly worst, but the frequentist coverages considerably improve
in the extreme scenarios.

6.1.2 SAE framework

The second part of the simulation study deals with the frequentist properties of the log-
normal linear mixed model estimates in the small area estimation framework described in
section 5.4. Firstly, a model-based simulation study based on the unit-level random intercept
model with a log-normal response and a single covariate is performed. The parameters of the
model and the dimensions of population and sample are mainly inspired by the simulation
study in Berg et al. (2016). The following particular case of model in (5.91) is �xed:

wdi = β0 + β1xdi + ud + edi;

ud ∼ N (0, τ2), edi ∼ N (0, σ2); d = 1, ..., D; i = 1, ..., ND.
(6.8)

The total amount of areas is D = 10, and for each one of the following dimensions two areas
are included: Nd = (41, 81, 161, 323, 645) and nd = (3, 5, 10, 20, 40), leading to a population
of size N = 2520 and a sample of n = 156. At each Monte Carlo iteration, the set of
covariates is generated from a N

(
µx, σ

2
x

)
, with µx = 3.253 and σx = 1.58. The model

coe�cients are �xed equal to β0 = −1.62 and β1 = 0.9. Finally, the variance components
are set according to three di�erent scenarios:

(
σ2, τ2

)
= (0.6, 0.3) with φ = 0.5,

(
σ2, τ2

)
=
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(0.78, 0.12) with φ = 0.15 and, �nally, another setting having φ = 0.25 and characterized by
higher variances

(
σ2, τ2

)
= (2, 0.5). The frequentist properties of the estimates are evaluated

with B = 5000 iterations and the hierarchical Bayes posterior summaries are computed on
4000 samples.

Scenario 1, Avg Width Scenario 2, Avg Width Scenario 3, Avg Width

Scenario 1, Coverage Scenario 2, Coverage Scenario 3, Coverage
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Figure 6.1: Trends of the mean estimate, RMSE, frequentist coverage and average interval width
are reported for each area and for the three considered scenarios.

The area means are the target quantity to estimate and the proposals described in the pre-
vious chapter are compared. In particular, the EB methodology and the HB methodologies
under GIG priors having tail parameter that assures the posterior moments �niteness and
the naive uniform shrinkage prior (Molina et al., 2014) are included in the simulation study.
Bias and RMSE are used to assess the performances of point estimates, whereas coverage
and average width are employed to evaluate the intervals.
The main results are reported for all the areas in plots contained in �gure 6.1, and sum-
marized according to the area sample sizes in table 6.4. It emerges that the area means
estimates obtained through the HB method with naive priors show a worst behaviour than
the other proposals. In particular, the point estimates are characterized by a severe positive
bias that does not reduce with the sample size increase and, moreover, it is enhanced by
higher values of σ2 (Scenario 3). This could be interpreted as an evidence of the moment
in�niteness. A direct consequence of this bias is the increase of the RMSE of the estimator.
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Scenario 1 Scenario 2 Scenario 3

nd EB HBU.S. HBGIG EB HBU.S. HBGIG EB HBU.S. HBGIG

B
ia
s

3 0.45 1.22 0.50 0.43 1.28 0.86 3.01 9.41 0.15
5 0.28 0.95 0.29 0.29 1.02 0.59 2.10 7.43 -0.91
10 0.23 0.83 0.23 0.29 0.88 0.44 2.08 6.39 -0.84
20 0.21 0.78 0.21 0.26 0.76 0.30 1.74 5.54 -1.07
40 0.16 0.71 0.16 0.21 0.66 0.20 1.35 4.87 -1.30

M
S
E

3 9.45 9.67 9.27 9.08 9.37 9.10 45.49 50.44 43.38
5 7.69 7.86 7.56 7.57 7.76 7.52 40.00 43.55 37.98
10 5.58 5.74 5.50 5.58 5.71 5.52 28.51 31.30 26.92
20 4.29 4.51 4.25 4.43 4.53 4.36 23.04 26.33 21.53
40 3.23 3.42 3.22 3.43 3.55 3.40 16.71 18.99 15.94

C
ov
er
ag
e 3 0.95 0.97 0.95 0.95 0.96 0.96 0.95 0.96 0.94

5 0.95 0.97 0.95 0.94 0.96 0.96 0.94 0.96 0.94
10 0.95 0.98 0.94 0.94 0.97 0.95 0.94 0.97 0.93
20 0.96 0.99 0.94 0.95 0.98 0.94 0.95 0.98 0.93
40 0.96 0.99 0.93 0.95 0.98 0.93 0.95 0.99 0.92

A
v
g
W
id
th 3 30.30 34.45 29.43 29.45 34.57 31.96 114.89 167.70 111.88

5 25.91 29.34 24.14 25.62 29.50 26.58 100.09 141.91 94.66
10 20.74 24.14 18.39 21.26 24.11 20.64 83.76 113.86 74.53
20 16.22 20.43 13.82 17.09 19.91 15.71 68.67 93.93 57.74
40 12.78 18.11 10.56 13.69 17.08 12.03 56.53 80.08 44.79

Table 6.4: For each scenario, the estimates properties averaged with respect to areas having the
same sample size nd are reported for the di�erent methods considered.

Moreover, the in�nite posterior variance leads to an over-dispersed distribution with conse-
quent issues in the deduced credible intervals, that are wider than the others and tend to
an over-coverage, if compared to the nominal level.
On the other hand, the EB and HB estimates, with the second ones under GIG priors
properly setted in order to preserve the existence of the posterior predictive distribution
moments, behave similarly. The proposed HB strategy slightly outperforms the EB estimates
in terms of RMSE almost in every case, and it is interesting to observe that the value of σ2

a�ects the bias of the HB proposal. In fact, when σ2 increases, the bias reduces and in the
third scenario it becomes negative due to the constraints introduced to preserve the moment
existence.
Comparing the interval estimators performances, the average width of the credible intervals
under GIG priors are in general lower that the empirical proposal by Berg and Chandra
(2014) with MSE estimated using a jackknife procedure, with the partial exception of sce-
nario 2. On the other hand, a slight under-coverage by the Bayesian proposal emerges in
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areas having higher sample sizes.

Design-based simulation: AAGIS data

To evaluate the design properties of the considered solutions for the small area framework,
a design-based simulation study is carried out. The synthetic �nite population of size
N = 81982 built by sampling with replacement from the 1652 farms entering the Australian
Agricultural Grazing Industries Survey (AAGIS) is largely used for this kind of simulation,
especially to assess methods based on the log-transformation of data (Chandra and Cham-
bers, 2008; Berg and Chandra, 2014; Berg et al., 2016). However, it is worth to emphasize
that the population is not generated from a log-normal model.
The population is split in the 29 Australian agricultural regions and the goal of the analysis
is the estimation of the area mean annual �rm cost. A log-normal linear mixed model like
the one in (6.8) with the logarithm of the annual �rm cost as response and the logarithm of
the �rm size as auxiliary variable is �tted.
In each one of the B = 1000 iteration, a simple random sample without replacement within
each strata is drawn, constituting a sample of size n = 1686. Then the model is estimated
through the EB procedure and the HB method with GIG prior. Finally, the out of samples
prediction is carried out.

EB HBGIG

Average RRMSE 0.145 0.145
Average bias 0.011 0.011

Table 6.5: Averaged RRMSE and bias obtained with the EB and HB with GIG prior methods
using the AAGIS data for design-based simulation.

The Monte Carlo relative bias and the relative RMSE of the single 29 areas are averaged in
order to produce the �nal summary results of table 6.5. This �nding basically point out the
design equivalence of the EB procedure and the proposed HB strategy under GIG priors.

6.2 Real data applications

6.2.1 One-way random e�ect model: worker exposure data

In occupational health studies, statistical methods for the assessment of workers exposure to
a particular pollutants are required. Since it is usually important to take into account both
the between and the within worker variability, it is common to estimate a one way random
e�ect ANOVAmodel. Moreover, the log-normality assumption for exposure concentrations is
usually appropriated and the following model has been frequently considered in the literature
(Lyles et al., 1997a,b):

wij = log(yij) = µ+ νj + εij ; j = 1, ...,m; i = 1, ..., nj ; (6.9)
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where yij is the measured exposure concentration for subject j and repetition i. Therefore,
the random e�ect νj is the deviation for worker j from the overall mean µ in the logarithmic
scale. In this framework, the marginal expectation θm is interpreted as the overall mean
exposure, whereas θc(νj) is the mean worker-speci�c exposure.
In this example, a balanced dataset from Lyles et al. (1997a) containing styrene exposures on
laminators at a boat manufacturing plant is analysed. For each one of the m = 13 workers,
nj = ng = 3 repeated measures are executed.
In order to point out the issues related to the use of Bayesian methods with naive priors in
estimating quantities in the original data scale and how these problems might be masked by
the high sample size, both the whole dataset and a subset containing only the �rst 6 workers
are analysed. The Bayesian analysis of these datasets is carried out considering the prior
speci�cations included in the simulation study: uniform shrinkage, GIG priors and half-t.

Figure 6.2: Traceplots of the overall mean θm under the three priors considered for the whole
dataset (left) and for the sub-sample of the �rst 6 workers (right).

Posterior inference is carried out on 50000 iterations, after discarding the �rst 10000 as
burn-in. The hyperparameters of the two GIG priors for the variance components are
(λ = 1, δ = 0.01, γ = 1.92) for the whole dataset and (λ = 1, δ = 0.01, γ = 2.12) for
the subset. Since the inferential goal is to estimate both the overall mean and the worker
speci�c means, the most restrictive constraint between the ones on σ2 or τ2 is considered.
It coincides with the latter and it is equal to 3 + 9/m.
Figure 6.2 provides a �rst visual indication about the problems noticed using the naive
priors. The traceplots of the draws from the posterior of θm using the whole dataset (on the
left) and using a subset (on the right) are displayed: in the latter case an evident irregular
behaviour is present, whereas in the �rst plot all the chains seem to be regular, with the
exception of a moderately elevate value sampled under the uniform shrinkage prior. It must
be noted that the posterior under the GIG prior does not show extreme departures in both
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Frequentist U.S. prior Half-t priors GIG priors

Parameter Estimate Mean S.D. Mean S.D. Mean S.D.
C
om

p
le
te

d
at
as
et

µ 4.81 4.81 0.17 4.81 0.17 4.81 0.18
σ2 0.57 0.58 0.16 0.63 0.17 0.60 0.16
τ2 0.13 0.21 0.18 0.17 0.18 0.22 0.17
θm 173.63 186.22 46.01 186.44 42.18 188.24 43.00
θc(ν1) 91.76 92.92 43.98 516.44 9983.02 91.56 42.63
θc(ν2) 154.52 157.91 57.63 190.13 71.82 157.40 53.27
θc(ν3) 186.61 194.70 73.32 189.42 64.61 194.73 66.23
θc(ν4) 189.43 198.32 75.06 189.84 61.44 198.00 67.46
θc(ν5) 149.04 151.77 56.03 194.00 95.31 150.18 51.76
θc(ν6) 197.03 207.34 79.23 192.96 72.91 207.73 71.92
θc(ν7) 176.56 183.18 68.80 187.21 54.73 182.30 61.45
θc(ν8) 173.79 179.77 66.47 187.45 66.69 179.24 60.61
θc(ν9) 203.20 214.39 83.92 195.24 76.89 215.14 75.96
θc(ν10) 183.40 191.31 71.69 188.44 56.53 190.71 65.02
θc(ν11) 233.26 252.71 106.19 218.73 135.28 252.40 94.48
θc(ν12) 139.56 141.84 52.77 200.71 114.38 140.87 48.93
θc(ν13) 169.38 174.73 64.04 187.45 106.48 174.28 58.48

F
ir
st

6
w
or
ke
rs

µ 4.62 4.62 0.32 4.61 0.34 4.62 0.31
σ2 0.27 0.34 0.16 0.37 0.19 0.35 0.16
τ2 0.41 0.50 0.51 0.61 0.61 0.46 0.32
θm 142.19 678.87 > 105 191.60 317.70 162.34 74.94
θc(ν1) 41.08 51.59 29.73 15635.77 > 105 49.31 23.61
θc(ν2) 117.37 130.26 70.04 174.22 479.50 123.34 40.61
θc(ν3) 171.64 183.66 94.89 180.02 204.04 174.44 56.44
θc(ν4) 176.91 188.76 98.77 191.40 1109.71 179.70 57.89
θc(ν5) 109.14 121.34 60.56 213.61 4969.37 115.61 38.44
θc(ν6) 191.51 204.11 108.09 199.30 296.65 192.82 62.61

Table 6.6: Point estimates and posterior standard deviations (for Bayesian methods) of the model
parameters, global expectation and conditioned expectations are reported for both the analysis
carried out on the complete dataset and the reduced one.

the cases.
This graphical feature is con�rmed by the posterior summaries of table 6.6. In the frequentist
framework, after the REML estimation of the model parameters, the plug-in estimator for
θm and the EB estimator for the worker-speci�c mean are reported, whereas posterior means
and standard deviations are indicated for Bayesian methods. Observing the results for the
analysis of the complete dataset, it appears that the the uniform shrinkage prior and the
GIG priors lead to similar estimates for all the considered quantities, and they are higher
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than the frequentist ones. This is probably due to the uniform prior on the correlation
coe�cient that might induce an overestimation of the lower variance component with few
data. Analysing the outputs from the Bayesian model with half-t priors on the standard
deviations, anomalies can be detected in the worker speci�c expectation estimation: both
the posterior mean and standard deviation for worker appear to be unjusti�ably high. All
these features become more evident in the analysis carried out on the reduced dataset, in
which issues for the estimation of θm can be noted for the uniform shrinkage prior setting
too. In conclusion, it is clear how the evidences of moments existence issues vanishes when
the sample size increases. Moreover, it must be stressed that, even if reasonable estimates
could be obtained with naive priors, these values are meaningless since they attempt to
numerically estimate an integral that is analytically not �nite.
To conclude the illustration of the example, the R code used to estimate the model and
standard output provided by the function LN_hierachical is reported. The full dataset is
named laminators and is already included in the package BayesLN. The matrices Xtilde and
Ztilde are created in order to obtain the posterior estimates of the overall mean and of all
the group means. The target functionals of the analysis are speci�ed through the argument
functional. The prior parameters are �xed coherently to the instructions of section 5.3, in
order to assure the existence of the posterior variance of the target functionals. An overview
on the summary output of the function is reported.

library(BayesLN)

# Load the dataset included in the package

data("laminators")

head(laminators)

## Worker log_Y

## 1 1 3.071

## 2 1 3.871

## 3 1 2.965

## 4 2 4.319

## 5 2 4.396

## 6 2 5.045

# Data frame for prediction

data_pred_new <- data.frame(Worker = unique(laminators$Worker))

Mod_est<-LN_hierarchical(formula_lme = log_Y~(1|Worker),

data_lme = laminators,

data_pred = data_pred_new,

functional = c("Subject","Marginal"),

order_moment = 2, nsamp = 50000, burnin = 10000)

## ----------:10.0%

## ----------:20.0%
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## ----------:30.0%

## ----------:40.0%

## ----------:50.0%

## ----------:60.0%

## ----------:70.0%

## ----------:80.0%

## ----------:90.0%

## ----------:100.0%

#parameters priors

Mod_est$par_prior

## lambda delta gamma

## sigma2 1 0.01 1.921538

## tau2_1 1 0.01 1.921538

#posterior summaries

Mod_est$summaries

## $Iterations

## [1] "10001:50000"

##

## $Thinning

## [1] 1

##

## $Sample_size

## [1] 40000

##

## $par

## Mean SD Naive SE 2.5% 25% 50% 75% 97.5% N_eff

## tau2 0.214 0.175 0.001 0.012 0.092 0.172 0.288 0.668 6159.169

## sigma2 0.597 0.158 0.001 0.356 0.484 0.575 0.684 0.969 17999.916

## beta 0 4.808 0.179 0.001 4.451 4.693 4.811 4.924 5.162 40000.000

## u 1 -0.687 0.436 0.002 -1.589 -0.979 -0.662 -0.361 0.036 5968.638

## u 2 -0.098 0.314 0.002 -0.759 -0.289 -0.082 0.098 0.513 32849.597

## u 3 0.116 0.314 0.002 -0.486 -0.083 0.097 0.308 0.776 36062.351

## u 4 0.130 0.316 0.002 -0.476 -0.070 0.110 0.324 0.796 31045.251

## u 5 -0.143 0.317 0.002 -0.813 -0.337 -0.124 0.058 0.463 29205.163

## u 6 0.172 0.319 0.002 -0.424 -0.036 0.148 0.372 0.849 26106.992

## u 7 0.050 0.310 0.002 -0.575 -0.140 0.043 0.242 0.680 38835.775

## u 8 0.032 0.312 0.002 -0.594 -0.159 0.027 0.223 0.670 39397.557

## u 9 0.205 0.325 0.002 -0.395 -0.008 0.180 0.402 0.902 22147.851

## u 10 0.093 0.313 0.002 -0.522 -0.105 0.079 0.285 0.743 34381.007
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## u 11 0.360 0.348 0.002 -0.234 0.110 0.328 0.581 1.119 10951.952

## u 12 -0.216 0.323 0.002 -0.909 -0.417 -0.191 0.000 0.378 20501.317

## u 13 0.004 0.309 0.002 -0.617 -0.185 0.002 0.192 0.631 40000.000

##

## $subj

## Mean SD Naive SE 2.5% 25% 50% 75% 97.5%

## Subj 1 92.370 43.232 0.216 33.321 59.962 83.780 116.596 194.190

## Subj 2 157.847 53.079 0.265 77.150 121.082 150.317 185.568 282.942

## Subj 3 195.061 65.891 0.329 101.723 150.857 183.208 225.484 359.276

## Subj 4 197.963 67.458 0.337 103.013 152.157 186.203 229.658 362.055

## Subj 5 151.167 51.634 0.258 73.076 115.502 143.899 177.970 273.129

## Subj 6 206.610 70.518 0.353 108.193 158.790 193.410 239.472 384.127

## Subj 7 182.670 60.955 0.305 93.067 141.801 172.837 212.207 331.244

## Subj 8 179.489 60.205 0.301 91.663 138.595 169.711 208.770 324.718

## Subj 9 213.894 74.915 0.375 112.145 163.013 199.366 247.994 398.949

## Subj 10 190.649 64.197 0.321 98.540 147.615 179.642 221.303 346.869

## Subj 11 251.406 94.041 0.470 130.064 186.540 231.723 294.087 485.826

## Subj 12 141.012 49.170 0.246 66.489 106.436 134.279 167.427 254.726

## Subj 13 174.407 58.428 0.292 88.843 135.178 165.309 203.011 316.074

## N_eff

## Subj 1 5317.968

## Subj 2 28214.733

## Subj 3 35533.958

## Subj 4 34815.714

## Subj 5 26462.330

## Subj 6 30214.511

## Subj 7 37812.456

## Subj 8 38952.487

## Subj 9 26464.589

## Subj 10 37902.678

## Subj 11 13340.106

## Subj 12 19092.590

## Subj 13 38697.007

##

## $marg

## Mean SD Naive SE 2.5% 25% 50% 75% 97.5%

## Marginal 1 188.01 42.617 0.213 127.582 159.457 181.035 207.656 290.467

## N_eff

## Marginal 1 26567.65
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6.2.2 Random intercept model: reading times data

Another interesting research �eld in which the use of log-transformed response variables in
linear mixed models can be encountered is linguistics. The analysed dataset is due to Gibson
and Wu (2013) and consists of a two-conditions repeated measure collection of observations
of the time (in milliseconds) required to read the head noun of a Chinese clause. The
following model is speci�ed:

wijk = log(yijk) = β0 + β1xi + uj + vk + εijk, (6.10)

where yijk is the reading time observed for subject j = 1, ..., 37, reading item k = 1, ..., 15
and condition i = 1, 2. Moreover, it is �xed xi = −1 in case of subject relative, and xi = 1
for object relative condition. Two random e�ects are included in the model in order to
account for the potential correlation of observations within subject and item. The random
e�ects are assumed independently distributed as uj ∼ N

(
0, τ2

u

)
and vk ∼ N

(
0, τ2

v

)
, which

are independent from the error term εijk ∼ N
(
0, σ2

)
. This model can be easily estimated

using the LN_hierarchical function. In this case, since the matrices Xtilde and Ztilde

are not speci�ed, the covariate patterns of the sample are used for the estimation.

library(BayesLN)

# Load the dataset included in the package

data("ReadingTime")

#Model estimation

Mod_est_RT <- LN_hierarchical(formula_lme = log_rt ~ so +(1|subj)+(1|item),

data_lme = ReadingTime,

functional = c("Marginal", "Subject"),

nsamp = 11000, burnin = 1000)

In practice, the expectation conditioned on xi and marginalized with respect both the ran-
dom e�ect is:

θm(xi = ±1) = exp

{
β0 ± β1 +

τ2
u + τ2

v + σ2

2

}
. (6.11)

Moreover, the expectation speci�c of a particular subject and item might be of interest too:

θc(xi, uj , vk) = exp

{
β0 + xiβ1 + uj + vk +

σ2

2

}
, (6.12)

as well as the expectation conditioned to only a particular random e�ect, e.g. integrating
out only the subject:

θc(xi, vk) = exp

{
β0 + xiβ1 + vk +

τ2
u + σ2

2

}
. (6.13)

The design matrix Z for the random e�ects is constituted by two blocks in order to de�ne
two distinct random intercepts: the elements of Zv ∈ Rn×15 assume value 1 in column k
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if the observation is related to the item k and 0 otherwise; on the other hand Zu ∈ Rn×37

assume value 1 in column j if the observation is related to subject j and 0 otherwise.
As a consequence, the rank de�ciency of X (I−PZ)X is l = 1 and it is due to the �xed
e�ect intercept, which is linearly dependent with respect to both Zv and Zu.
To �x a value for the hyperparameter γ that assures the posterior moments existence for
the target functionals, the di�erent conditions related to σ2, τ2

u and τ2
v must be computed.

The easiest result to obtain is the one on σ2, since only the maximum leverage is required.
Considering the value of the condition i) of proposition 5.4 deduced with the order moment
r+ 1 = 3, in order to preserve the existence of the posterior variance, the computed optimal
value γσ = 1.742 is used. Then, concerning the conditions about the random e�ects vari-
ances, Lv ∈ R2×2 and Lu ∈ R2×2 must be computed, andXo coincides withX since the rank
de�ciency is due to the intercept. Given that l = 1, the unique non-null elements of the two
matrices coincide with the inverse of the �rst elements of XT

(
Z(ZTZ)−Cv(Z

TZ)−ZT
)
X

and XT
(
Z(ZTZ)−Cu(ZTZ)−ZT

)
X, where Cv = diag (I15,037) and Cv = diag (015, I37).

The deduced numerical conditions are γτ,v = 2.046 and γτ,v = 2.434. Therefore, the latter
value is chosen since it is the most restrictive condition.
In this example, the naive Bayesian priors are not considered and the point estimates ob-
tained under the GIG priors are compared to the REML results in table 6.7. It is possible
to observe that the estimates of the basic parameters of the model are similar in both the
estimation strategies, even if the estimates of the random e�ects variances are still slightly
higher in the Bayesian proposal. This fact leads to higher estimates for the expectation
marginalized with respect to the random e�ects θm(xi). It must be highlighted that the EB
estimator of the expectation conditioned with respect to the random e�ects cannot be used
in this example, since it has been derived for the random intercept model only. Therefore,
the plug-in estimators are employed for both the functionals families. Moreover, the estima-
tion of the estimator standard error might be tricky in the frequentist context as the model
complexity increases.
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REML GIG priors

Estimate Mean S.D.

β0 6.06 6.06 0.07
β1 -0.04 -0.04 0.02
τ2

1 0.18 0.22 0.06
τ2

2 0.24 0.26 0.04
σ2 0.52 0.52 0.02
θm(xi = −1) 495.97 504.19 40.53
θm(xi = +1) 532.78 541.60 43.27
θc(1, u12, v8) 1396.36 1394.93 222.60
θc(1, v8) 769.03 760.35 79.48

Table 6.7: Point estimates and posterior standard deviations (for Bayesian method) of the model
parameters and the target expectations are reported.



Chapter 7

Conclusions

In this thesis, the problem of estimating functionals in the original data scale is faced,
when log-normality is assumed for data. In particular, focusing on the Bayesian framework,
mathematical issues that a�ect the posterior distributions of such functionals are studied and
new solutions are proposed for some common estimation problems which have not received
any attention in the literature so far. In particular, the �rst part of the work concerns the
quantile estimation, whereas the second part is about the estimation of conditional means
under a log-normal linear mixed model.
The main di�culties in carrying out Bayesian inference on these quantities are related to
the in�niteness of their posterior distribution moments. In fact, the conditions that are
derived for the posterior moments existence for either the target functionals exclude the use
of the most common priors for the variance in the logarithmic scale, if the usual synthesis
of the posterior obtained by minimizing the quadratic loss function is desired. Therefore,
it turns out that the classical inverse gamma prior for the variance or the half-t prior for
the scale should be replaced by a distribution with lighter right tail. Following the proposal
by Fabrizi and Trivisano (2012) in the log-normal mean estimation context, a generalized
inverse Gaussian prior is assumed for the variance (or variances, in the mixed model case).
Once a prior which satis�es the required existence conditions is speci�ed, it is important
to formulate a weakly informative hyperparameters setting. This task is particularly tricky
because of the large amount of prior information brought by the observance of the moments
existence condition. Moreover, the presence several variance components implies a more
critical situation in the mixed model framework.
Concerning the prior speci�cation issue, in the quantile estimation context, it might be
interesting to develop a Bayes point estimator with optimal frequentist properties, because of
the high recurrence of small samples. This is achieved by means of a numerical optimization
procedure.
A further crucial step of the work is represented by the frequentist properties evaluation of
the developed methods. In particular, simulation studies are illustrated to compare both
the point estimators and the interval estimates to other proposals which are present in the
literature. In this phase, several interesting features of the proposed methodologies are
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pointed out. Concerning the point estimation problem, the Bayes estimators deduced along
the work are competitive and often overcome the frequentist gold standards in terms of mean
squared error. Interesting cues can be extrapolated also in the interval estimation problem.
In fact, comparing the credible intervals obtained under the new prior strategy and under
the classical priors which do not assure the posterior moments existence, it emerges that
preserving the moments �niteness leads to more precise intervals.
Finally, the statistical methods derived and studied in the thesis are applied to real datasets
taken from the literature. The results obtained under di�erent approaches are compared
and interpreted in view of the simulation study result. Moreover, the functionalities of the
implemented R routines included in the developed package BayesLN are illustrated: details
of the syntax and the generated outputs are reported and commented. This step could
be interesting for practitioners operating in the several �elds in which log-normal data are
analysed.

7.1 Further developments and future work

The research reported in this thesis, jointly with the past works by Fabrizi and Trivisano
(2012) and Fabrizi and Trivisano (2016), contributes to the literature with a wider under-
standing to Bayesian inference under log-normality assumption. In particular, thanks to the
proposed formulation of the log-normal linear mixed model, a solution for a quite general
class of inferential questions is provided. However, the model might be speci�ed in a more
general way than (5.42) with the addition of a structured covariance matrix in the random
e�ect prior. If the developed model is capable to deal with a known structure for the matrix
D = ⊕qs=1Imsτ

2
s , the presence of additional unknown parameters ρ to control the random

e�ects correlation might be desired. For example, the general formulation proposed by Sun
et al. (2001) can be considered: D(ρ) = ⊕qs=1Bs(ρs)

−1τ2
s , where Bs(ρs) = (As − ρsCs)

ζs .
In particular, As is known and positive de�nite and Cs is known and symmetric and, �nally,
ζs is a known non-negative integer. It could be interesting to verify the existence conditions
of the posterior moments of the target quantities with this model formulation too.
A further appealing extension of the considered hierarchical model might be in the direction
of the analysis of point-referenced data. In particular, the classical hierarchical Bayesian
model for a stationary spatial process can be considered. A spatial process can be formalized
as
{
Y (s), s ∈ D ⊂ Rd

}
, where s is the vector of coordinates of the spatial location and,

usually, d = 2 or 3. It is common that the phenomenon of interest is positive and right
skewed, and therefore the analysis of log-transformed data is not rare (Pilz et al., 2005;
Banerjee et al., 2014).
Assuming that the sample Y = (Y (s1), ..., Y (si), ..., Y (sn)) is collected as realization of the
spatial process, the equation of the considered model in this framework can be written as:

log (Y (si)) = W (si) = µ(si) + v(si) + ε(si), i = 1, ..., n. (7.1)

Here µ(si) identi�es a trend that could be expressed as µ(si) = x(si)
Tβ, v(si) represents

a zero-centred and stationary Gaussian spatial process and ε(si) is an uncorrelated error
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term. In general, the following conditional model is assumed for data:

log (Y) |β, σ2, τ2,ρ ∼ Nn
(
Xβ, σ2In + τ2K(ρ)

)
. (7.2)

The form of the matrix K(ρ) is the main peculiarity of this kind of geo-statistical models. In
fact, the generic entry can be expressed as Kij(ρ) = ϕ (si, sj ,ρ), where ϕ (·, ·,ρ) is a suitable
model for the correlation structure (e.g. exponential, spherical, Matern) that is controlled
by the parameters vector ρ.
Usually, the �nal goal of this type of analyses is to provide a prediction of the phenomenon
in space. In the Bayesian framework this is performed naturally by means of the posterior
predictive distribution. Given the �ndings of chapter 5 of this thesis, it could be of interest
studying the form of such distribution to determine the moment existence condition.
Furthermore, in many applications it is frequent to deal with truncated or censored observa-
tions (Lawless, 2003; Helsel et al., 2005). In particular, this is common also for log-normally
distributed data and several e�orts have been addressed to develop estimation procedures
which are able to incorporate these features (Balakrishnan and Mitra, 2011; Krishnamoor-
thy et al., 2011; Sen et al., 2019). The Bayesian framework was explored too, starting from
the proper speci�cation of the likelihood. For example, if left-censored data (e.g. measures
below the instrumental detection limit in environmental sciences) the following information
is available: y = (y1, ..., yi, ..., yn) are the observed values (the detection limits are included
for censored data) and δ = (δ1, ..., δi, ..., δn) is a vector of indicators that assume value 1 if
the observation is censored and 0 otherwise. If a simple log-normal distribution is assumed
for data: yi ∼ logN

(
ξ, σ2

)
, i = 1, ..., n, then the likelihood is:

p(y|ξ, σ2) =
n∏
i=1

[(
1

yi
√

2πσ
exp

{
−(log yi − ξ)2

2σ2

})i−δi ( 1

yi
Φ

(
log yi − ξ

σ

))δi]
. (7.3)

Also in this case it might be useful to investigate if the posterior moments for quantities like
mean and quantiles are well de�ned or they require some existence condition.
In conclusion, it is interesting to develop the small area estimation model of section 5.4 and
to apply it in the analysis some real dataset. This further step might be the occasion to
deal with one of the major drawbacks that a�ects hierarchical Bayes formulation of unit-
level SAE model: the feasibility of computations with high data dimensions. In particular,
the theme of approximating the posterior predictive distribution when the out-of-sample
observations are too many to use MCMC methods could be the target of a future research
work.



Appendix A

Special Functions

A.1 Gamma Function

Even if the gamma function is a well known concept in statistics, it is important to summarize
some useful relations that are employed in this work. The de�nition of the gamma function
is based on the Eulerian integral of second kind (Andrews et al., 1999):

Γ(x) =

∫ +∞

0
tx−1e−tdt. (A.1)

The gamma function has poles at 0 and at all the negative integers; as a consequences the
inverse gamma function Γ(x)−1 has the zeroes at those points.
The gamma function has several useful relations and an important one is the Euler re�ection
formula:

Γ(x)Γ(1− x) =
π

sin(πx)
. (A.2)

A.2 Bessel Functions

Among the components of the wide family of the so called Bessel functions, in this work we
are interested in the Modi�ed Bessel function of the second kind, from now on called simply
Bessel K function. The function of order ν ∈ R and argument x, represents the second
solution to the second order di�erential equation of the form:

x2 d2y

dx2
+ x

dy

dx
− (x2 + ν2)y = 0. (A.3)

As it is possible to observe from Figure A.1, Kν(x) is an exponentially decreasing function
and tends to zero when the argument x is a real positive numbers with x→ +∞. Moreover
it approaches in�nite values when x = 0 (Abramowitz and Stegun, 1964).
This kind of functions possess a lot of particular properties that have been used over this
work:
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� Integral representation, formula 3.471.9 in Gradshteyn and Ryzhik (2014):∫ +∞

0
xν−1 exp

{
−β
x
− γx

}
dx = 2

(
β

γ

) ν
2

Kν

(
2
√
βγ
)
. (A.4)

� Recurrence relations:

Kν(x) = K−ν(x), (A.5)

−2K ′ν(x) = Kν−1(x) +Kν+1(x), (A.6)

where K ′ν(x) is the �rst derivative of the Bessel K function with respect to the argu-
ment.

� Asymptotic approximations:

Kν(x) ∼ 1

2
Γ (|ν|)

(x
2

)−|ν|
, x→ 0, ν 6= 0; (A.7)

Kν(x) ∼
√

π

2ν

(ex
2ν

)ν
, ν → +∞, x 6= 0; (A.8)

Kν(x) ∼
√

π

2x
e−x, x→∞. (A.9)

� Multiplication theorem:

Kν(λz)

λ−ν
=

∞∑
n=0

(−1)n

n!

(
(λ2 − 1)z

2

)n
Kν+n(z), |λ2 − 1| < 1. (A.10)

It is possible to remark that the reported integral representation is similar to the gamma
integral in (A.1) and the relationship is made explicit by the limiting form (A.7).
In the R software, this particular special function is implemented by the besselK() proce-
dure.

A.3 Con�uent Hypergeometric Function

The two independent solutions of the Kummer di�erential equation:

x
d2y

dx2
+ (b− x)

dy

dx
− ay = 0, (A.11)

are named Con�uent Hypergeometric Functions. It is frequent to meet this family in dealing
with special function since they include as particular case a lot of other functions.
One of the main issues in handling the con�uent hypergeometric functions is the confusing
notation that is present in the literature. In fact, it is possible to distinguish:

� The Kummer's M con�uent hypergeometric function: M(a, b;x) = Φ(a, b;x) =
=1 F1(a, b;x) and is implemented in the R software by the function kummerM().

� The Kummer's (but also Tricomi's) U con�uent hypergeometric function: U(a, b;x) =
Ψ(a, b;x); that could be written also as a sum of two Kummer's M .
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Figure A.1: Curve of the Bessel K function with di�erent orders ν.

A.4 Parabolic Cylinder Function

The solutions of the di�erential equation:

d2y

dx2
+
(
ax2 + bx+ c

)
y = 0, (A.12)

are the Parabolic Cylinder Functions (Abramowitz and Stegun, 1964). In the literature it is
possible to �nd two kinds of notation. The link between these conventions is the following:
Dν(x) = U

(
−1

2 − ν, x
)
.

The parabolic cylinder functions have integral representations that are quite common in
probability:∫ +∞

0
xν−1e−βx

2−γxdx =
Γ(ν)

(2β)ν/2
exp

{
γ2

8β

}
D−ν

(
γ√
2β

)
,
β > 0
ν > 0

, (A.13)∫ +∞

−∞
(ix)νe−β

2x2−iqxdx =

√
π

2−
ν
2 β−ν−1

exp

{
− q2

8β2

}
Dν

(
q

β
√

2

)
,
β > 0
ν > −1

; (A.14)

and they are, respectively, eqn. 3.462.1 and 3.462.3 in Gradshteyn and Ryzhik (2014).
Besides, the parabolic cylinder function is strictly connected with the con�uent hypergeomet-
ric function, and, in particular, it is often use the following relationship with the Kummer's
M :

Dν(x) = 2
ν
2 e−

x2

4

[ √
π

Γ
(

1−ν
2

)M (
−ν

2
,
1

2
;
x2

2

)
−
√

2πx

Γ
(
−ν

2

)M (
1− ν

2
,
3

2
;
x2

2

)]
, (A.15)

from equation 19.12.3 in Abramowitz and Stegun (1964).
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Useful Distributions

B.1 Generalized Hyperbolyc Distribution

In general, a Gaussian variance-mean mixture is obtained considering the random variable
X that has a Gaussian conditional distribution:

X|W = w ∼ N (µ+ βw,w) , (B.1)

where µ and β are constants and W is a random variable with positive support that follows
a given probability distribution, called also mixing distribution. This particular setting pro-
duces distributions that have common interesting properties that are collected, for example,
in the book by Paolella (2007).
The generalized hyperbolic (GH) distribution was introduced in a paper by Barndor�-Nielsen
(1977) and it is obtained considering a normal variance-mean mixture with a generalized
inverse Gaussian distribution as mixing distribution (see section 2.1). So:

X|W = w ∼ N (µ+ βw,w)
W ∼ GIG (λ, δ, γ)

}
=⇒ X ∼ GH(λ, α, β, δ, γ),

where α2 = γ2 + β2 and X is a real valued random variable with the following probability
density function:

f(x) =

(γ
δ

)
√

2πKλ(δγ)

Kλ− 1
2

(
γ
√
δ2 + (x− µ)2

)
(√

δ2 + (x− µ)2/α
) 1

2
−λ

exp {β(x− µ)} , (B.2)

with the following restrictions on the parameters:

� λ = 0 =⇒ |β| < α, δ > 0;

� λ > 0 =⇒ |β| < α, δ ≥ 0;

� λ < 0 =⇒ |β| ≤ α, δ > 0.
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To have a detailed discussion about the mathematical properties of the GH distribution it is
worth to look up in Bibby and Sørensen (2003) and in Hammerstein (2010). The expectation
of the GH distribution is:

E [X] = µ+
βδKλ+1(γδ)

γKλ(γδ)
; (B.3)

and the moment generating function:

M[r] = exp {µt}
(

γ2

α2 − (β + r)2

)λ
2 Kλ

(
δ
√
α2 − (β + r)2

)
Kλ(δγ)

, |β + r| < α. (B.4)

Examples of well known distributions that are particular cases of the GH distribution are
the hyperbolic asymmetric t distribution, the asymmetric Laplace distribution, the Student's
t distribution.

B.1.1 The Multivariate GH distribution

It is possible to generalize idea of normal variance-mean mixture distribution in the multi-
variate �eld. In particular, a random vector X ∈ Rd is said to have a normal mean variance
mixture distribution if:

X = µ+Wβ +
√
WAZ, (B.5)

where β,µ ∈ Rd, A ∈ Rd×d such that ∆ = AAT is positive de�nite, Z ∼ N (0, Id) and W
is a real valued positive random variable independent with respect to Z. The multivariate
GH of dimension d (MVGHd) was introduced in the paper by Barndor�-Nielsen (1977) and
it is obtained in the following way:

W ∼ GIG
(
λ, δ,

√
α2 − βT∆β

)
X|W = w ∼MVNd (µ+ wβ∆, w∆)

 =⇒ X ∼MVGHd (λ, α,µ,∆, δ,β) ,

where λ ∈ R, α > 0, δ ≥ 0 and 0 <
√
βT∆β < α. The resultant density function is:

f(x) =

(
α2 − βT∆β

)λ
2

(2π)
d
2

√
|∆|αλ− 1

2

×

×
Kλ− 1

2

(
α
√
δ2 + (x− β)T∆−1(x− β)

)
e−β

T (x−β)

Kλ

(
δ
√
α2 − βT∆β

)(√
δ2 + (x− β)T∆−1(x− β)

) d
2
−λ
.

(B.6)
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Bayesian point estimation

In the framework of decision theory, an important introduced tool is an evaluation criterion
of the decision, usually named loss. Basically, point estimation can be considered as a
particular decision problem in which the so called decision space d ∈ D might coincide with
the parameter space Θ, with the true value of the parameter θ ∈ Θ. The true value of
the decision is a function of θ, say h(θ) and it is proposed an estimate δ(x), based on the
observations x ∈ X. Now it is possible to de�ne:

De�nition C.1. A loss function L is a non-negative function:

L(θ, δ(x)) ≥ 0, ∀θ, δ(·),

which takes value 0 if the estimate coincides with the true value (no loss in that case):

L(θ, δ(x)) = 0, ∀θ.

A uniform minimization of L(θ, d) is impossible in most cases, therefore it is usually adopted
the frequentist criterion that minimizes the average loss, called also risk:

R(θ, δ) = Eθ
[
L(θ, δ(x))

]
=

∫
X
L(θ, δ(x))f(x|θ)dx,

(C.1)

where f(x|θ) is the distribution of the observation given the parameters.
From the bayesian point of view (Robert, 2007), since data x is known and the parameter θ
is not, the rule is to integrate with respect to the parameter space Θ. In this way is obtained
the so called posterior expected loss:

ρ(π, d|x) = Eπ
[
L(θ, d)|x

]
=

∫
Θ
L(θ, d)π(θ|x)dθ,

(C.2)
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where π(θ|x) is the posterior distribution of θ conditioned with respect to the observations
x and it is the quantity that averages the error. Considering a prior distribution π(θ), it is
possible to de�ne the integrated risk, i.e. the frequentist risk averaged over the Θ space:

r(π, δ) = Eπ
[
R(θ, δ)

]
=

∫
Θ

∫
X
L(θ, d(x))f(x|θ)dxπ(θ)dθ.

(C.3)

In this case a number is associated to each estimator, therefore it is possible to order a set
of estimators by a direct comparison. An important result that holds is the following:

Theorem C.1. An estimator that minimizes the integrated risk r(π, δ) can be obtained by
selecting for each x the value δ(x) which minimizes the posterior expected loss ρ(π, d|x),
since:

r(π, d) =

∫
X
ρ(π, d(x)|x)m(x)dx,

where m(x) is the function such that:

f(x|θ)π(θ) = π(θ|x)m(x).

Now it is possible to provide a de�nition of Bayes estimator:

De�nition C.2. A Bayes estimator associated with a prior distribution π and a loss function
L is any estimator δπ which minimizes r(π, δ). For each x it is given by:

δπ(x) = min
d
ρ(π, d|x).

Besides, the value r(π) = r(π, δπ) is called Bayes risk.

If no information is available to specify a proper loss function for the problem, a classical
loss function could be employed. The most common one is the quadratic loss, de�ned as:

L(θ, d) = (θ − d)2. (C.4)

Even if it extremely penalizes large deviations, it has some advantages and it can be con-
sidered as a Taylor expansion approximation to other symmetric losses. Besides, the Bayes
estimators under quadratic loss is the posterior mean, even if it is not the only loss function
with this property. In e�ect, since the posterior expected quadratic loss is:

Eπ
[
(θ − d)2|x

]
= Eπ

[
θ2|x

]
− 2dEπ

[
θ|x
]

+ d2,

then it has the minimum value at:

δπ(x) = Eπ
[
θ|x
]
. (C.5)
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Another useful loss function is the relative quadratic loss:

L(θ, d) =

(
θ − d
θ

)2

=

(
1− d

θ

)2

, (C.6)

with:

Eπ
[(

1− d

θ

)2∣∣∣∣x] = 1− 2dEπ
[

1

θ

∣∣∣∣x]+ d2Eπ
[

1

θ2

∣∣∣∣x].
This quantity is minimized by:

δπ(x) =
Eπ
[
θ−1|x

]
Eπ
[
θ−2|x

] . (C.7)
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Additional �gures and tables
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Table D.1: Root MSE and relative bias of estimators for θp with respect to di�erent sample sizes

n and quantiles p, with σ2 = 0.5 . The Bayes estimator θ̂Bp is the estimator under relative quadratic
loss for the median and the one under quadratic loss for the others.

Root MSE

p

n Method 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

11

θ̂∗p 0.015 0.040 0.067 0.158 0.410 1.064 2.511 4.197 11.002

11

θ̂∗p 0.017 0.027 0.035 0.053 0.086 0.138 0.212 0.274 0.443

Q̂7
p 0.089 0.071 0.074 0.079 0.113 0.178 0.324 0.458 0.984

θ̃p 0.039 0.048 0.053 0.064 0.090 0.161 0.310 0.468 1.013

Q̂p 0.036 0.045 0.051 0.063 0.086 0.147 0.279 0.423 0.935

θ̂Bap 0.034 0.043 0.048 0.061 - 0.155 0.285 0.419 0.875

θ̂Bnp 0.035 0.045 0.051 0.063 0.087 0.147 0.271 0.395 0.785

21

θ̂∗p 0.012 0.019 0.025 0.038 0.062 0.100 0.153 0.198 0.321

Q̂7
p 0.057 0.049 0.049 0.056 0.080 0.136 0.247 0.371 0.813

θ̃p 0.026 0.032 0.036 0.044 0.064 0.114 0.216 0.322 0.676

Q̂p 0.025 0.031 0.036 0.044 0.062 0.109 0.206 0.309 0.658

θ̂Bap 0.024 0.031 0.035 0.043 - 0.112 0.208 0.306 0.632

θ̂Bnp 0.025 0.032 0.036 0.043 0.062 0.108 0.198 0.289 0.576

51

θ̂∗p 0.008 0.012 0.016 0.025 0.040 0.064 0.099 0.128 0.207

Q̂7
p 0.032 0.028 0.029 0.034 0.051 0.086 0.165 0.247 0.596

θ̃p 0.016 0.020 0.022 0.028 0.040 0.072 0.135 0.200 0.411

Q̂p 0.015 0.020 0.022 0.028 0.040 0.071 0.133 0.197 0.408

θ̂Bap 0.015 0.019 0.022 0.028 - 0.072 0.134 0.196 0.401

θ̂Bnp 0.015 0.020 0.023 0.028 0.040 0.070 0.131 0.191 0.383

Relative Bias

11

θ̂∗p -0.004 -0.006 -0.007 -0.011 -0.018 -0.029 -0.045 -0.058 -0.094

Q̂7
p 0.070 0.045 0.037 0.026 0.014 -0.007 -0.097 -0.163 -0.783

θ̃p 0.010 0.011 0.011 0.010 0.009 0.011 0.021 0.037 0.110

Q̂p 0.000 -0.004 -0.007 -0.012 -0.019 -0.024 -0.019 -0.005 0.068

θ̂Bap 0.003 0.002 0.002 0.005 - -0.009 -0.047 -0.077 -0.138

θ̂Bnp -0.007 -0.010 -0.011 -0.013 -0.023 -0.043 -0.088 -0.130 -0.258

21

θ̂∗p -0.002 -0.003 -0.004 -0.006 -0.010 -0.016 -0.024 -0.031 -0.050

Q̂7
p 0.043 0.026 0.020 0.013 0.007 -0.006 -0.054 -0.136 -0.543

θ̃p 0.005 0.005 0.005 0.005 0.005 0.006 0.011 0.019 0.055

Q̂p -0.001 -0.003 -0.004 -0.007 -0.010 -0.012 -0.007 0.002 0.046

θ̂Bap 0.001 0.000 0.000 0.002 - -0.004 -0.024 -0.038 -0.067

θ̂Bnp -0.006 -0.008 -0.008 -0.006 -0.011 -0.024 -0.053 -0.082 -0.174

51

θ̂∗p -0.001 -0.001 -0.002 -0.002 -0.004 -0.006 -0.010 -0.013 -0.020

Q̂7
p 0.021 0.011 0.008 0.006 0.003 -0.002 -0.023 -0.054 -0.265

θ̃p 0.002 0.002 0.002 0.002 0.002 0.002 0.004 0.007 0.019

Q̂p 0.000 -0.001 -0.002 -0.003 -0.004 -0.004 -0.002 0.001 0.020

θ̂Bap 0.000 0.000 0.000 0.001 - -0.002 -0.010 -0.016 -0.029

θ̂Bnp -0.002 -0.003 -0.003 -0.002 -0.004 -0.012 -0.030 -0.048 -0.108
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Table D.2: Root MSE and relative bias of estimators for θp with respect to di�erent sample sizes

n and quantiles p, with σ2 = 2 . The Bayes estimator θ̂Bp is the estimator under relative quadratic
loss for the median and the one under quadratic loss for the others.

Root MSE

p

n Method 0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.99

11

θ̂∗p 0.002 0.007 0.011 0.026 0.067 0.174 0.410 0.685 1.796

Q̂7
p 0.027 0.029 0.034 0.051 0.108 0.276 0.733 1.692 3.556

θ̃p 0.009 0.016 0.021 0.037 0.082 0.240 0.765 1.599 6.683

Q̂p 0.008 0.014 0.018 0.032 0.069 0.178 0.501 1.004 2.856

θ̂Bap 0.009 0.015 0.021 0.039 - 0.228 0.644 1.276 5.194

θ̂Bnp 0.007 0.012 0.017 0.032 0.069 0.178 0.476 0.874 2.802

21

θ̂∗p 0.002 0.005 0.008 0.019 0.049 0.128 0.301 0.503 1.320

Q̂7
p 0.015 0.017 0.020 0.032 0.071 0.190 0.531 1.008 3.534

θ̃p 0.005 0.009 0.013 0.024 0.055 0.158 0.479 0.955 3.535

Q̂p 0.005 0.008 0.012 0.022 0.050 0.135 0.393 0.778 2.852

θ̂Bap 0.005 0.009 0.013 0.024 - 0.157 0.454 0.892 3.359

θ̂Bnp 0.004 0.008 0.012 0.022 0.050 0.134 0.371 0.692 2.242

51

θ̂∗p 0.001 0.003 0.005 0.012 0.032 0.083 0.196 0.328 0.860

Q̂7
p 0.007 0.008 0.011 0.018 0.043 0.116 0.339 0.668 3.007

θ̃p 0.003 0.005 0.008 0.015 0.034 0.097 0.282 0.546 1.877

Q̂p 0.003 0.005 0.007 0.014 0.032 0.090 0.262 0.507 1.760

θ̂Bap 0.003 0.005 0.008 0.015 - 0.097 0.279 0.537 1.862

θ̂Bnp 0.003 0.007 0.009 0.016 0.032 0.090 0.253 0.475 1.523

Relative Bias

11

θ̂∗p -0.001 -0.003 -0.004 -0.010 -0.027 -0.071 -0.167 -0.279 -0.731

Q̂7
p 0.019 0.018 0.018 0.020 0.024 0.030 -0.089 -0.089 -2.263

θ̃p 0.003 0.005 0.006 0.009 0.015 0.040 0.139 0.315 1.489

Q̂p -0.001 -0.002 -0.003 -0.009 -0.028 -0.068 -0.121 -0.137 -1.640

θ̂Bap 0.004 0.006 0.008 0.013 - 0.022 0.009 0.026 0.502

θ̂Bnp 0.000 -0.002 -0.003 -0.009 -0.028 -0.085 -0.245 -0.457 -1.419

21

θ̂∗p -0.001 -0.001 -0.002 -0.006 -0.015 -0.039 -0.092 -0.154 -0.403

Q̂7
p 0.010 0.009 0.009 0.010 0.012 0.010 -0.047 -0.214 -1.518

θ̃p 0.001 0.002 0.003 0.004 0.008 0.020 0.068 0.152 0.685

Q̂p 0.000 -0.001 -0.002 -0.006 -0.015 -0.034 -0.052 -0.043 0.171

θ̂Bap 0.002 0.002 0.003 0.006 - 0.015 0.022 0.053 0.416

θ̂Bnp -0.001 -0.002 -0.004 -0.006 -0.016 -0.049 -0.153 -0.298 -0.992

51

θ̂∗p 0.000 -0.001 -0.001 -0.002 -0.006 -0.016 -0.038 -0.064 -0.168

Q̂7
p 0.005 0.004 0.004 0.004 0.005 0.005 -0.019 -0.067 -0.571

θ̃p 0.001 0.001 0.001 0.002 0.003 0.008 0.026 0.057 0.250

Q̂p 0.000 0.000 -0.001 -0.002 -0.006 -0.013 -0.018 -0.011 0.099

θ̂Bap 0.001 0.001 0.001 0.002 - 0.007 0.013 0.029 0.183

θ̂Bnp -0.001 -0.002 -0.004 -0.006 -0.006 -0.024 -0.083 -0.170 -0.611
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Figure D.1: Relative RMSE and relative bias of various estimators of the target quantity θp(x0),
with p = 0.25.
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Figure D.2: Relative RMSE and relative bias of various estimators of the target quantity θp(x0),
with p = 0.75.
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Figure D.3: Relative RMSE and relative bias of various estimators of the target quantity θp(x0),
with p = 0.99.
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Global predictor Conditioned Predictor

ng m φ σ2 Scen. θm Bias RMSE Cov. Wid. RABias RRMSE Aco AWi

2

10

0.5

0.5 1 1.45 0.14 0.44 0.95 1.82 0.18 0.53 0.93 2.33

1 2 2.12 0.17 0.92 0.94 3.67 0.32 0.91 0.91 4.60

2 3 4.48 -0.36 2.52 0.86 9.14 0.53 1.70 0.87 11.59

1

0.5 4 1.65 0.16 0.62 0.93 2.45 0.27 0.69 0.92 2.96

1 5 2.72 0.09 1.42 0.90 5.29 0.52 1.35 0.90 6.45

2 6 7.39 -1.63 4.79 0.75 14.74 1.03 3.28 0.87 19.56

2

0.5 7 2.12 0.15 1.03 0.91 3.85 0.36 0.89 0.92 4.17

1 8 4.48 -0.44 2.81 0.82 9.34 0.77 2.02 0.90 11.18

2 9 20.09 -9.79 14.99 0.52 31.81 1.90 7.68 0.87 50.77

20

0.5

0.5 10 1.45 0.08 0.29 0.96 1.19 0.17 0.51 0.92 2.14

1 11 2.12 0.12 0.64 0.95 2.62 0.34 0.89 0.91 4.39

2 12 4.48 -0.11 1.94 0.91 7.70 0.68 1.80 0.90 12.16

1

0.5 13 1.65 0.10 0.42 0.94 1.68 0.24 0.65 0.93 2.81

1 14 2.72 0.10 1.01 0.93 4.06 0.52 1.27 0.92 6.41

2 15 7.39 -0.97 3.73 0.85 13.69 1.18 3.19 0.90 21.49

2

0.5 16 2.12 0.10 0.71 0.93 2.84 0.30 0.76 0.94 3.99

1 17 4.48 -0.24 2.08 0.89 8.01 0.68 1.64 0.93 11.27

2 18 20.09 -7.53 12.29 0.68 34.08 1.75 5.56 0.91 56.15

5

10

0.5

0.5 19 1.45 0.10 0.35 0.94 1.43 0.09 0.34 0.93 1.63

1 20 2.12 0.14 0.75 0.93 2.96 0.17 0.55 0.92 3.32

2 21 4.48 -0.11 2.18 0.89 8.12 0.30 0.96 0.90 9.26

1

0.5 22 1.65 0.13 0.54 0.93 2.13 0.10 0.37 0.93 1.97

1 23 2.72 0.12 1.25 0.91 4.74 0.20 0.61 0.93 4.52

2 24 7.39 -1.10 4.40 0.80 14.55 0.37 1.10 0.91 15.59

2

0.5 25 2.12 0.13 0.93 0.92 3.58 0.11 0.38 0.94 2.62

1 26 4.48 -0.34 2.60 0.83 8.99 0.22 0.64 0.93 7.55

2 27 20.09 -8.54 14.25 0.58 33.74 0.41 1.18 0.91 41.35

20

0.5

0.5 28 1.45 0.05 0.23 0.95 0.94 0.09 0.32 0.94 1.58

1 29 2.12 0.10 0.52 0.94 2.08 0.17 0.52 0.93 3.28

2 30 4.48 0.05 1.62 0.92 6.48 0.34 0.93 0.93 9.61

1

0.5 31 1.65 0.08 0.36 0.94 1.46 0.10 0.35 0.94 1.94

1 32 2.72 0.11 0.89 0.93 3.57 0.20 0.57 0.94 4.50

2 33 7.39 -0.52 3.34 0.88 12.88 0.40 1.04 0.93 16.47

2

0.5 34 2.12 0.10 0.65 0.93 2.63 0.10 0.36 0.94 2.57

1 35 4.48 -0.15 1.93 0.89 7.57 0.21 0.60 0.94 7.55

2 36 20.09 -6.22 11.39 0.73 34.99 0.44 1.11 0.93 43.49

Table D.3: Frequentist properties of the estimators θ̂B,GIGm and θ̂B,GIGc (νj) obtained with GIG
priors having λ = 0.5.
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Global predictor Conditioned Predictor

ng m φ σ2 Scen. θm Bias RMSE Cov. Wid. RABias RRMSE Aco AWi

2

10

0.5

0.5 1 1.45 0.52 0.76 0.95 3.19 0.26 0.58 0.97 3.22

1 2 2.12 0.90 1.53 0.96 6.41 0.43 0.97 0.96 6.45

2 3 4.48 1.31 3.84 0.96 15.90 0.63 1.67 0.93 16.55

1

0.5 4 1.65 0.61 1.00 0.95 4.11 0.33 0.70 0.96 3.88

1 5 2.72 1.02 2.18 0.96 8.83 0.59 1.28 0.95 8.57

2 6 7.39 0.70 6.46 0.91 24.55 1.01 2.64 0.92 26.43

2

0.5 7 2.12 0.75 1.52 0.95 6.09 0.43 0.87 0.96 5.27

1 8 4.48 0.92 3.88 0.93 14.82 0.82 1.78 0.94 14.23

2 9 20.09 -5.63 17.03 0.71 50.40 1.69 4.86 0.91 65.21

20

0.5

0.5 10 1.45 0.24 0.40 0.96 1.63 0.20 0.51 0.96 2.64

1 11 2.12 0.51 0.93 0.96 3.75 0.38 0.89 0.95 5.58

2 12 4.48 1.04 2.74 0.96 11.51 0.72 1.72 0.94 16.06

1

0.5 13 1.65 0.31 0.56 0.96 2.26 0.27 0.63 0.95 3.27

1 14 2.72 0.64 1.40 0.96 5.70 0.54 1.19 0.95 7.70

2 15 7.39 0.83 4.81 0.94 20.02 1.14 2.71 0.93 26.80

2

0.5 16 2.12 0.42 0.93 0.95 3.76 0.34 0.76 0.95 4.53

1 17 4.48 0.68 2.67 0.95 11.02 0.73 1.57 0.94 13.14

2 18 20.09 -3.76 13.42 0.82 48.83 1.74 4.42 0.93 67.56

5

10

0.5

0.5 19 1.45 0.31 0.51 0.96 2.22 0.11 0.34 0.95 1.86

1 20 2.12 0.60 1.09 0.96 4.60 0.20 0.55 0.95 3.89

2 21 4.48 1.10 3.05 0.96 12.64 0.34 0.92 0.94 11.18

1

0.5 22 1.65 0.42 0.75 0.96 3.16 0.12 0.37 0.95 2.18

1 23 2.72 0.74 1.71 0.95 7.02 0.23 0.61 0.94 5.10

2 24 7.39 0.71 5.61 0.92 21.62 0.41 1.08 0.93 18.18

2

0.5 25 2.12 0.54 1.24 0.95 5.10 0.13 0.39 0.95 2.85

1 26 4.48 0.64 3.31 0.93 12.80 0.26 0.65 0.94 8.38

2 27 20.09 -5.10 15.80 0.73 48.37 0.48 1.21 0.93 47.16

20

0.5

0.5 28 1.45 0.14 0.29 0.95 1.17 0.10 0.32 0.95 1.71

1 29 2.12 0.32 0.66 0.95 2.68 0.19 0.52 0.95 3.60

2 30 4.48 0.79 2.09 0.96 8.65 0.37 0.92 0.94 10.83

1

0.5 31 1.65 0.21 0.45 0.95 1.81 0.11 0.35 0.95 2.04

1 32 2.72 0.46 1.12 0.96 4.57 0.22 0.58 0.95 4.82

2 33 7.39 0.76 4.08 0.93 17.05 0.44 1.06 0.94 18.12

2

0.5 34 2.12 0.33 0.80 0.95 3.28 0.12 0.37 0.95 2.69

1 35 4.48 0.52 2.33 0.94 9.72 0.24 0.62 0.95 8.01

2 36 20.09 -3.19 12.24 0.84 46.25 0.49 1.16 0.94 47.24

Table D.4: Frequentist properties of the estimators θ̂B,GIGm and θ̂B,GIGc (νj) obtained with GIG
priors having λ = 2.



Appendix E

BayesLN: Bayesian Inference for

Log-Normal Data

The package is available for installation from GitHub at: https://github.com/aldogardini/
BayesLN.
To install and load it in R, a version greater than 3.5.0 is required and the following code
could be used:

if("devtools"%in%installed.packages()[,1]){

library(devtools)

}else{

install.packages("devtools")

library(devtools)

}

install_github("aldogardini/BayesLN")
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Package ‘BayesLN’
January 9, 2020

Title Bayesian Inference for Log-Normal Data

Version 0.1.1

Description Bayesian inference under log-normality assumption must be performed very care-
fully. In fact, under the common priors for the variance, useful quantities in the origi-
nal data scale (like mean and quantiles) do not have posterior moments that are finite. This pack-
age allows to easily carry out a proper Bayesian inferential procedure by fixing a suitable distri-
bution (the generalized inverse Gaussian) as prior for the variance. Functions to estimate sev-
eral kind of means (unconditional, conditional and conditional under a mixed model) and quan-
tiles (unconditional and conditional) are provided.

Depends R (>= 3.5.0)

Imports optimx, ghyp, fAsianOptions, coda, Rcpp (>= 0.12.17), MASS, lme4, data.table

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.0.2

Suggests knitr, rmarkdown, RcppArmadillo

VignetteBuilder knitr

LinkingTo Rcpp, RcppArmadillo

Date 2020-01-09

R topics documented:
EPA09 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
fatigue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
GH_MGF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
laminators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
LN_hierarchical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
LN_hier_existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
LN_Mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
LN_MeanReg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
LN_Quant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
LN_QuantReg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
NCBC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
ReadingTime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
SMNGdistribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
SMNGmoments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1
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2 fatigue

Index 17

EPA09 Chrysene concentration data

Description

Vector of 8 observations of chrysene concentration (ppb) found in water samples.

Usage

EPA09

Format

Numeric vector.

Source

USEPA. Statistical analysis of groundwater monitoring data at rcra facilities: Unifed guidance.
Technical report, Office of Resource Conservation and Recovery, Program Implementation and
Information Division, U.S. Environmental Protection Agency, Washington, D.C. (2009).

fatigue Low cycle fatigue data

Description

Data frame of 22 observations in 2 variables

Usage

fatigue

Format

Dataframe with variables:

stress: stress factor.

cycle: number of test cycles.

Source

Upadhyay, S. K., and M. Peshwani. Posterior analysis of lognormal regression models using the
Gibbs sampler. Statistical Papers 49.1 (2008): 59-85.

APPENDIX E. BAYESLN: BAYESIAN INFERENCE FOR LOG-NORMAL DATA 158



GH_MGF 3

GH_MGF GH Moment Generating Function

Description

Function that implements the moment generating function of the Generalized Hyperbolyc (GH)
distribution.

Usage

GH_MGF(r, mu = 0, delta, alpha, lambda, beta = 0)

Arguments

r Coefficient of the MGF. Can be viewd also as the order of the log-GH moments.
mu Location parameter, default set to 0.
delta Concentration parameter, must be positive.
alpha Tail parameter, must be positive and greater than the modulus of beta.
lambda Shape parameter.
beta Skewness parameter, default set to 0 (symmetric case).

Details

This function allows to evaluate the moment generating function of the GH distribution in the point
r. It is defined only for points that are lower than the value of γ, that is defined as: γ2 = α2−β2. For
integer values of r, it could also be considered as the r-th raw moment of the log-GH distribution.

laminators Laminators

Description

Data frame of 39 observations in 2 variables.

Usage

laminators

Format

Dataframe with variables:

Worker: label of the measured worker.

log_Y: logarithm of the measured Styrene concentration.

Source

R. H. Lyles, L. L. Kupper, and S. M. Rappaport. Assessing regulatory compliance of occupational
exposures via the balanced one-way random effects ANOVA model Journal of Agricultural, Biolog-
ical, and Environmental Statistics (1997).
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4 LN_hierarchical

LN_hierarchical Bayesian estimation of a log - normal hierarchical model

Description

Function that estimates a log-normal linear mixed model with GIG priors on the variance compo-
nents, in order to assure the existence of the posterior moments of key functionals in the original
data scale like conditioned means or the posterior predictive distribution.

Usage

LN_hierarchical(
formula_lme,
data_lme,
y_transf = TRUE,
functional = c("Subject", "Marginal", "PostPredictive"),
data_pred = NULL,
order_moment = 2,
nsamp = 10000,
par_tau = NULL,
par_sigma = NULL,
inits = list(NULL),
verbose = TRUE,
burnin = 0.1 * nsamp,
n_thin = 1

)

Arguments

formula_lme A two-sided linear formula object describing both the fixed-effects and random-
effects part of the model is required. For details see lmer.

data_lme Optional data frame containing the variables named in formula_lme.
y_transf Logical. If TRUE, the response variable is assumed already as log-transformed.
functional Functionals of interest: "Subject" for subject-specific conditional mean, "Marginal"

for the overall expectation and "PostPredictive" for the posterior predictive
distribution.

data_pred Data frame with the covariate patterns of interest for prediction. All the covari-
ates present in the data_lme object must be included. If NULL the design matrix
of the model is used.

order_moment Order of the posterior moments that are required to be finite.
nsamp Number of Monte Carlo iterations.
par_tau List of vectors defining the triplets of hyperparaemters for each random effect

variance (as many vectors as the number of specified random effects variances).
par_sigma Vector containing the tiplet of hyperparameters for the prior of the data variance.
inits List of object for initializing the chains. Objects with compatible dimensions

must be named with beta, sigma2 and tau2.
verbose Logical. If FALSE, the messages from the Gibbs sampler are not shown.
burnin Number of iterations to consider as burn-in.
n_thin Number of thinning observations.
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LN_hier_existence 5

Details

The function allows to estimate a log-normal linear mixed model through a Gibbs sampler. The
model equation is specified as in lmer model and the target functionals to estimate need to be de-
clared. A weakly informative prior setting is automatically assumed, always keeping the finiteness
of the posterior moments of the target functionals.

Value

The output list provided is composed of three parts. The object $par_prior contains the parameters
fixed for the variance components priors. The object $samples contains the posterior samples for
all the paramters. They are returned as a mcmc object and they can be analysed trough the functions
contained in the coda package in order to check for the convergence of the algorithm. Finally, in
$summaries an overview of the posteriors of the model parameters and of the target functionals is
provided.

Examples

## Not run: library(BayesLN)
# Load the dataset included in the package
data("laminators")
data_pred_new <- data.frame(Worker = unique(laminators$Worker))
Mod_est<-LN_hierarchical(formula_lme = log_Y~(1|Worker),

data_lme = laminators,
data_pred = data_pred_new,
functional = c("Subject","Marginal"),
order_moment = 2, nsamp = 50000, burnin = 10000)

## End(Not run)

LN_hier_existence Numerical evaluation of the log-normal conditioned means posterior
moments

Description

Function that evaluates the existence conditions for moments of useful quantities in the original data
scale when a log-normal linear mixed model is estimated.

Usage

LN_hier_existence(X, Z, Xtilde, order_moment = 2, s = 1, m = NULL)

Arguments

X Design matrix for fixed effects.
Z Design matrix for random effects.
Xtilde Covariate patterns used for the leverage computation.
order_moment Order of the posterior moments required to be finite.
s Number of variances of the random effects.
m Vector of size s (if s>1) that indicates the dimensions of the random effect vec-

tors.
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6 LN_Mean

Details

This function computes the existence conditions for the moments up to order fixed by order_moment
of the log-normal linear mixed model specified by the design matrices X and Z. It considers the pre-
diction based on multiple covariate patterns stored in the rows of the Xtilde matrix.

Value

Both the values of the factors determining the existence condition and the values of the gamma
parameters for the different variance components are provided.

LN_Mean Bayesian Estimate of the Log-normal Mean

Description

This function produces a Bayesian estimate of the log-normal mean, assuming a GIG prior for the
variance and an improper flat prior for the mean in the log scale.

Usage

LN_Mean(
x,
method = "weak_inf",
x_transf = TRUE,
CI = TRUE,
alpha_CI = 0.05,
type_CI = "two-sided",
nrep = 1e+05

)

Arguments

x Vector containing the sample.

method String that indicates the prior setting to adopt. Choosing "weak_inf" a weakly
informative prior setting is adopted, whereas selecting "optimal" the hyperpa-
rameters are aimed at minimizing the frequentist MSE.

x_transf Logical. If TRUE, the x vector is assumed already log-transformed.

CI Logical. With the default choice TRUE, the posterior credibility interval is com-
puted.

alpha_CI Level of alpha that determines the credibility (1-alpha_CI) of the posterior in-
terval.

type_CI String that indicates the type of interval to compute: "two-sided" (default),
"UCL" (i.e. Upper Credible Limit) for upper one-sided intervals or "LCL" (i.e.
Lower Credible Limit) for lower one-sided intervals.

nrep Number of simulations for the computation of the credible intervals.
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Details

Summarizing the posterior mean of the log-normal expectation might be delicate since several com-
mon priors used for the variance do not produces posteriors with finite moments. The proposal by
Fabrizi and Trivisano (2012) of adopting a generalized inverse Gaussian (GIG) prior for the variance
in the log scale σ2 has been implemented. Moreover, they discussed how to specify the hyperpa-
rameters according to two different aims.

Firstly, a weakly informative prior allowed to produce posterior credible intervals with good fre-
quentist properties, whereas a prior aimed at minimizing the point estimator MSE was proposed
too. The choice between the two priors can be made through the argument method.

The point estimates are exact values, whereas the credible intervals are provided through simula-
tions from the posterior distribution.

Value

The function returns a list which includes the prior and posterior parameters, the point estimate
of the log-normal mean that consists in the mean of the posterior distribution of the functional
exp{µ+ σ2/2} and the posterior variance.

Source

Fabrizi, E., & Trivisano, C. Bayesian estimation of log-normal means with finite quadratic expected
loss. Bayesian Analysis, 7(4), 975-996. (2012).

Examples

# Load data
data("NCBC")
# Optimal point estimator
LN_Mean(x = NCBC$al, x_transf = FALSE, method = "optimal", CI = FALSE)
# Weakly informative prior and interval estimation
LN_Mean(x = NCBC$al, x_transf = FALSE, type_CI = "UCL")

LN_MeanReg Bayesian Estimate of the conditional Log-normal Mean

Description

This function produces a bayesian estimate of the conditional log-normal mean assuming a GIG
prior for the variance and an improper prior for the regression coefficients of the linear regression
in the log scale.

Usage

LN_MeanReg(
y,
X,
Xtilde,
method = "weak_inf",
y_transf = TRUE,
h = NULL,
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CI = TRUE,
alpha_CI = 0.05,
type_CI = "two-sided",
nrep = 1e+05

)

Arguments

y Vector of observations of the response variable.

X Design matrix.

Xtilde Matrix of covariate patterns for which an estimate is required.

method String that indicates the prior setting to adopt. Choosing "weak_inf" a weakly
informative prior setting is adopted, whereas selecting "optimal" the hyperpa-
rameters are aimed at minimizing the frequentist MSE.

y_transf Logical. If TRUE, the y vector is already assumed as log-transformed.

h Leverage. With the default option NULL, the average leverage is used.

CI Logical. With the default choice TRUE, the posterior credibility interval is com-
puted.

alpha_CI Level of alpha that determines the credibility (1-alpha_CI) of the posterior in-
terval.

type_CI String that indicates the type of interval to compute: "two-sided" (default),
"UCL" (i.e. Upper Credible Limit) for upper one-sided intervals or "LCL" (i.e.
Lower Credible Limit) for lower one-sided intervals.

nrep Number of simulations.

Details

In this function the same procedure as LN_Mean is implemented allowing for the inclusion of
covariates. Bayesian point and interval estimates for the response variabile in the original scale are
provided considering the model: log(yi) = Xβ.

Value

The function returns a list including the prior and posterior parameters, the point estimate of the
log-normal mean conditioned with respect to the covariate points included in Xtilde. It consists
of the mean of the posterior distribution for the functional exp{x̃Ti β + σ2/2} and the posterior
variance.

Source

Fabrizi, E., & Trivisano, C. Bayesian Conditional Mean Estimation in Log-Normal Linear Re-
gression Models with Finite Quadratic Expected Loss. Scandinavian Journal of Statistics, 43(4),
1064-1077. (2016).

Examples

library(BayesLN)
data("fatigue")

# Design matrices
Xtot <- cbind(1, log(fatigue$stress), log(fatigue$stress)^2)
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X <- Xtot[-c(1,13,22),]
y <- fatigue$cycle[-c(1,13,22)]
Xtilde <- Xtot[c(1,13,22),]
#Estimation
LN_MeanReg(y = y,

X = X, Xtilde = Xtilde,
method = "weak_inf", y_transf = FALSE)

LN_Quant Bayesian estimate of the log-normal quantiles

Description

This function produces an estimate for the log-normal distribution quantile of fixed level quant.

Usage

LN_Quant(
x,
quant,
method = "weak_inf",
x_transf = TRUE,
guess_s2 = NULL,
CI = TRUE,
alpha_CI = 0.05,
type_CI = "two-sided",
method_CI = "exact",
rel_tol_CI = 1e-05,
nrep_CI = 1e+06

)

Arguments

x Vector of data used to estimate the quantile.

quant Number between 0 and 1 that indicates the quantile of interest.

method String that indicates the prior setting to adopt. Choosing "weak_inf" a weakly
informative prior setting is adopted, whereas selecting "optimal" the hyperpa-
rameters are fixed trough a numerical optimization algorithm aimed at minimiz-
ing the frequentist MSE.

x_transf Logical. If TRUE, the x vector is assumed already log-transformed.

guess_s2 Specification of a guess for the variance if available. If not, the sample estimate
is used.

CI Logical. With the default choice TRUE, the posterior credibility interval is com-
puted.

alpha_CI Level of alpha that determines the credibility (1-alpha_CI) of the posterior in-
terval.
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type_CI String that indicates the type of interval to compute: "two-sided" (default),
"UCL" (i.e. Upper Credible Limit) for upper one-sided intervals or "LCL" (i.e.
Lower Credible Limit) for lower one-sided intervals.

method_CI String that indicates if the limits should be computed through the logSMNG
quantile function qlSMNG (option "exact", default), or by randomly generating
a sample ("simulation") using the function rlSMNG.

rel_tol_CI Level of relative tolerance required for the integrate procedure or for the infi-
nite sum. Default set to 1e-5.

nrep_CI Number of simulations in case of method="simulation".

Details

The function allows to carry out Bayesian inference for the unconditional quantiles of a sample that
is assumed log-normally distributed.

A generalized inverse Gaussian prior is assumed for the variance in the log scale σ2, whereas a flat
improper prior is assumed for the mean in the log scale ξ.

Two alternative hyperparamters setting are implemented (choice controlled by the argument method):
a weakly informative proposal and an optimal one.

Value

The function returns the prior parameters and their posterior values, summary statistics of the log-
scale parameters and the estimate of the specified quantile: the posterior mean and variance are
provided by default. Moreover, the user can control the computation of posterior intervals.

Examples

library(BayesLN)
data("EPA09")
LN_Quant(x = EPA09, quant = 0.95, method = "optimal", CI = FALSE)
LN_Quant(x = EPA09, quant = 0.95, method = "weak_inf",

alpha_CI = 0.05, type_CI = "UCL")

LN_QuantReg Bayesian estimate of the log-normal conditioned quantiles

Description

This function produces a point estimate for the log-normal distribution quantile of fixed level quant.

Usage

LN_QuantReg(
y,
X,
Xtilde,
quant,
method = "weak_inf",
guess_s2 = NULL,
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y_transf = TRUE,
CI = TRUE,
method_CI = "exact",
alpha_CI = 0.05,
type_CI = "two-sided",
rel_tol_CI = 1e-05,
nrep = 1e+05

)

Arguments

y Vector of observations of the response variable.

X Design matrix.

Xtilde Covariate patterns of the units to estimate.

quant Number between 0 and 1 that indicates the quantile of interest.

method String that indicates the prior setting to adopt. Choosing "weak_inf" a weakly
informative prior setting is adopted, whereas selecting "optimal" the hyperpa-
rameters are fixed trough a numerical optimization algorithm aimed at minimiz-
ing the frequentist MSE.

guess_s2 Specification of a guess for the variance if available. If not, the sample estimate
is used.

y_transf Logical. If TRUE, the y vector is assumed already log-transformed.

CI Logical. With the default choice TRUE, the posterior credibility interval is com-
puted.

method_CI String that indicates if the limits should be computed through the logSMNG
quantile function qlSMNG (option "exact", default), or by randomly generating
("simulation") using the function rlSMNG.

alpha_CI Level of credibility of the posterior interval.

type_CI String that indicates the type of interval to compute: "two-sided" (default),
"UCL" (i.e. Upper Credible Limit) for upper one-sided intervals or "LCL" (i.e.
Lower Credible Limit) for lower one-sided intervals.

rel_tol_CI Level of relative tolerance required for the integrate procedure or for the infi-
nite sum. Default set to 1e-5.

nrep Number of simulations for the C.I. in case of method="simulation" and for
the posterior of the coefficients vector.

Details

The function allows to carry out Bayesian inference for the conditional quantiles of a sample that
is assumed log-normally distributed. The design matrix containing the covariate patterns of the
sampled units is X, whereas Xtilde contains the covariate patterns of the unit to predict.

The classical log-normal linear mixed model is assumed and the quantiles are estimated as:

θp(x) = exp(xTβ + Φ−1(p))

.

A generalized inverse Gaussian prior is assumed for the variance in the log scale σ2, whereas a flat
improper prior is assumed for the vector of coefficients β.

Two alternative hyperparamters setting are implemented (choice controlled by the argument method):
a weakly informative proposal and an optimal one.
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Value

The function returns the prior parameters and their posterior values, summary statistics of the pa-
rameters β and σ2, and the estimate of the specified quantile: the posterior mean and variance are
provided by default. Moreover the user can control the computation of posterior intervals.

NCBC Naval Construction Battalion Center data

Description

Data frame of 17 observations in 2 variables

Usage

NCBC

Format

Dataframe with 2 variables:

al: aluminium concentration measures.

mn: manganese concentration measures.

Source

Singh, Ashok K., Anita Singh, and Max Engelhardt. The lognormal distribution in environmental
applications. Technology Support Center Issue Paper. (1997).

ReadingTime Reading Times data

Description

Data frame of 547 observations in 4 variables

Usage

ReadingTime

Format

Dataframe with variables:

subj: label indicating the subject.

item: label indicating the item read.

so: variable assuming value 1 (object relative condition) and -1 (subject relative condition).

log_rt: logarithm of the reading time measured.

Source

E. Gibson and H.-H. I. Wu. Processing chinese relative clauses in context. Language and Cognitive
Processes, 28(1-2):125-155. (2008).
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SMNGdistribution SMNG and logSMNG Distributions

Description

Density function, distribution function, quantile function and random generator for the SMNG dis-
tribution and the logSMNG. It requires the specification of a five prameters vector: mu, delta,
gamma, lambda and beta.

Usage

dSMNG(
x,
mu = 0,
delta,
gamma,
lambda,
beta = 0,
inf_sum = FALSE,
rel_tol = 1e-05

)

pSMNG(q, mu, delta, gamma, lambda, beta, rel_tol = 1e-05)

qSMNG(p, mu, delta, gamma, lambda, beta, rel_tol = 1e-05)

rSMNG(n, mu, delta, gamma, lambda, beta)

dlSMNG(x, mu = 0, delta, gamma, lambda, beta, inf_sum = FALSE, rel_tol = 1e-05)

plSMNG(q, mu, delta, gamma, lambda, beta, rel_tol = 1e-05)

qlSMNG(p, mu, delta, gamma, lambda, beta, rel_tol = 1e-05)

rlSMNG(n, mu, delta, gamma, lambda, beta)

Arguments

x, q Vector of quantiles.
mu Location parameter, default set to 0.
delta Concentration parameter, must be positive.
gamma Tail parameter, must be positive.
lambda Shape parameter.
beta Skewness parameter, default set to 0 (symmetric case).
inf_sum Logical: if FALSE (default) the integral representation of the SMNG density is

used, otherwise the infinite sum is employed.
rel_tol Level of relative tolerance required for the integrate procedure or for the infi-

nite sum convergence check. Default set to 1e-5.
p Vector of probabilities.
n Sample size.
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Details

The SMNG distribution is a normal scale-mean mixture distribution with a GIG as mixing distribu-
tion. The density can be expressed as an infinite sum of Bessel K functions and it is characterized
by 5 parameters.

Moreover, if X is SMNG distributed, then Z = exp(X) is distributed as a log-SMNG distribution.

Value

dSMNG and dlSMNG provide the values of the density function at a quantile x for, respectively a
SMNG distribution and a log-SMNG.

pSMNG and plSMNG provide the cumulative distribution function at a quantile q.

qSMNG and qlSMNG provide the quantile corresponding to a probability level p.

rSMNG and rlSMNG generate n independent samples from the desired distribution.

Examples

## Not run:
### Plots of density and cumulative functions of the SMNG distribution
x<-seq(-10,10,length.out = 500)
par(mfrow=c(1,2))

plot(x,dSMNG(x = x,mu = 0,delta = 1,gamma = 1,lambda = 1,beta= 2),
type="l",ylab="f(x)")

lines(x,dSMNG(x = x,mu = 0,delta = 1,gamma = 1,lambda = 1,beta= -2),col=2)
title("SMNG density function")

plot(x,pSMNG(q = x,mu = 0,delta = 1,gamma = 1,lambda = 1,beta= 2),
type="l",ylab="F(x)")

lines(x,pSMNG(q = x,mu = 0,delta = 1,gamma = 1,lambda = 1,beta= -2),col=2)
title("SMNG cumulative function")

### Plots of density and cumulative functions of the logSMNG distribution
x<-seq(0,20,length.out = 500)
par(mfrow=c(1,2))

plot(x,dlSMNG(x = x,mu = 0,delta = 1,gamma = 1,lambda = 2,beta = 1),
type="l",ylab="f(x)",ylim = c(0,1.5))

lines(x,dlSMNG(x = x,mu = 0,delta = 1,gamma = 1,lambda = 2,beta = -1),col=2)
title("logSMNG density function")

plot(x,plSMNG(q = x,mu = 0,delta = 1,gamma = 1,lambda = 2,beta = 1),
type="l",ylab="F(x)",ylim = c(0,1))

lines(x,plSMNG(q = x,mu = 0,delta = 1,gamma = 1,lambda = 2,beta = -1),col=2)
title("logSMNG cumulative function")

## End(Not run)
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SMNGmoments SMNG Moments and Moment Generating Function

Description

Functions that implement the mean, the generic moments (both raw and centered) and the moment
generating function of the SMNG distribution.

Usage

SMNG_MGF(
r,
mu = 0,
delta,
gamma,
lambda,
beta = 0,
inf_sum = FALSE,
rel_tol = 1e-05

)

meanSMNG(mu, delta, gamma, lambda, beta)

SMNGmoment(j, mu, delta, gamma, lambda, beta, type = "central")

Arguments

r Coefficient of the MGF. Can be viewed also as the order of the logSMNG mo-
ments.

mu Location parameter, default set to 0.

delta Concentration parameter, must be positive.

gamma Tail parameter, must be positive.

lambda Shape parameter.

beta Skewness parameter, default set to 0 (symmetric case).

inf_sum Logical: if FALSE (default), the integral representation of the SMNG density is
used, otherwise the infinite sum is employed.

rel_tol Level of relative tolerance required for the integrate procedure or for the infi-
nite sum. Default set to 1e-5.

j Order of the moment.

type String that indicate the kind of moment to comupute. Could be "central"
(default) or "raw".

Details

If the mean (i.e. the first order raw moment) of the SMNG distribution is required, then the function
meanSMNG could be use.

On the other hand, to obtain the generic j-th moment both "raw" or "centered" around the mean,
the function momentSMNG could be used.
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Finally, to evaluate the Moment Generating Function (MGF) of the SMNG distribution in the point
r, the function SMNG_MGF is provided. It is defined only for points that are lower then the parameter
gamma, and for integer values of r it could also considered as the r-th raw moment of the logSMNG
distribution. The last function is implemented both in the integral form, which uses the routine
integrate, or in the infinite sum structure.

Examples

### Comparisons sample quantities vs true values
sample <- rSMNG(n=1000000,mu = 0,delta = 2,gamma = 2,lambda = 1,beta = 2)
mean(sample)
meanSMNG(mu = 0,delta = 2,gamma = 2,lambda = 1,beta = 2)

var(sample)
SMNGmoment(j = 2,mu = 0,delta = 2,gamma = 2,lambda = 1,beta = 2,type = "central")
SMNGmoment(j = 2,mu = 0,delta = 2,gamma = 2,lambda = 1,beta = 2,type = "raw")-

meanSMNG(mu = 0,delta = 2,gamma = 2,lambda = 1,beta = 2)^2

mean(exp(sample))
SMNG_MGF(r = 1,mu = 0,delta = 2,gamma = 2,lambda = 1,beta = 2)
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