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PREFAZIONE  

Il settore dei beni culturali, negli ultimi decenni, è stato uno dei campi di 
sperimentazione più interessanti delle nuove tecnologie e metodologie di rilievo 
digitale tridimensionale. L’evoluzione digitale nel settore dei beni culturali ha 
profondamente trasformato le modalità di acquisizione, elaborazione e gestione 
dei dati. L’applicazione delle nuove metodologie di rilievo e documentazione 
tridimensionale, attraverso l’utilizzo di sensori attivi e passivi, è ormai una 
pratica comune. Queste tecnologie di rilievo garantiscono, in tempi ridotti, la 
produzione di nuvole di punti e modelli 3D dotati di livelli di precisione molto 
elevati. La diffusione di questo tipo di dati è in continua crescita, divenendo così 
elementi facilmente condivisibili sul web e persino accessibili su dispositivi 
mobili quali smartphone e tablet. Al fine di sfruttare le reali potenzialità di 
questa significativa quantità di dati e poter estrarre informazioni semantiche da 
nuvole di punti o modelli poligonali, emerge oggi la necessità di sviluppare 
metodi affidabili di classificazione, che permettano di conferire una 
connotazione agli oggetti rappresentati in 3D. In generale, con il termine 
classificazione o segmentazione semantica si fa riferimento al processo di 
raggruppamento di dati simili in sottoinsiemi detti segmenti. Questi ultimi 
hanno in comune una o più caratteristiche (geometriche, radiometriche, ecc.), 
attraverso cui è possibile distinguere ed identificare le diverse parti che 
compongono un’immagine, una nuvola di punti o un modello poligonale. Date 
le grandi dimensioni dei dati raccolti, l’utilizzo di algoritmi automatici è 
sicuramente preferibile alle lunghe e tediose procedure di annotazione manuale.  

Considerando inoltre la complessità e varietà delle nuvole di punti, che si 
differenziano, a seconda dell’oggetto rilevato, per densità, distribuzione dei 
punti, valori RGB etc., la ricerca è ancora in costante evoluzione.  Sebbene con 
l'avvento dell'Intelligenza Artificiale siano emersi progressi significativi nelle 
procedure automatiche di classificazione applicate al campo geo-spaziale, ad 
oggi nulla è stato implementato in ambito architettonico.   
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Nel campo dei beni culturali, l'identificazione all'interno di nuvole di punti o 
modelli poligonali di vari elementi architettonici, piuttosto che la distinzione di 
materiali o stati di conservazione, può diventare uno strumento di studio 
prezioso. Tuttavia, se si considera la grande varietà e complessità dello studio in 
ambito archeologico/architettonico, l'applicazione di procedure di 
classificazione automatica diventa un compito particolarmente impegnativo.  

Partendo da tali premesse, il percorso di dottorato è stato focalizzato allo 
sviluppo e alla convalida di procedure affidabili e automatizzate per la 
classificazione di dati architettonici e archeologici 3D (nuvole di punti o modelli 
poligonali provenienti da elaborazioni fotogrammetriche o rilievi laser scanner).  

Attraverso i due diversi approcci sviluppati è stato possibile:  

• Distinguere all’interno di un modello architettonico diverse tecniche 
costruttive (Sezione 6.1); 

• Evidenziare i restauri esistenti (Sezione 6.2); 

• Quantificare diversi stati di conservazione e materiali (Sezione 7.1); 

• Identificare e distinguere elementi architettonici strutturali e decorativi 
(Sezione 7.2 - Sezione 7.5).  

La tesi è divisa in tre diverse parti: 

• Parte 1: in questa sezione viene fornita un'introduzione all'argomento, 
insieme ad un'ampia panoramica della letteratura sulle tecniche di 
classificazione 2D e 3D, applicate ai diversi ambiti (medicina, robotica, 
urbanistica etc.).    

• Parte 2: la seconda parte della tesi è interamente dedicata alla descrizione 
dei due diversi approcci di classificazione sviluppati durante il dottorato. 
In particolare, l’approccio presentato al Capitolo 4 attiene ad un’attività 
di lavoro sulle texture dei modelli, mentre quello descritto al Capitolo 5 
opera con la geometria della nuvola di punti.  

• Parte 3: per verificare l'efficacia degli approcci sviluppati, nella terza 
parte della tesi viene trattata una vasta gamma di casi studio. 

Tra i contributi che la ricerca ha apportato è importante annoverare:  

• l'utilizzo di metodi di Machine Learning per la classificazione automatica 
di dati 3D riguardanti beni culturali; 

• lo sviluppo di due diversi approcci, uno basato sull’uso della texture e 
l’altro sulla geometria, in modo da potersi muovere all’interno dell'ampio 
spettro di scenari appartenenti al patrimonio culturale; 

• l'applicazione dei metodi proposti ad un ampio set di dati, al fine di 
dimostrarne la replicabilità; 

• il raggiungimento di risultati di classificazione utili per l'interpretazione, 
il monitoraggio e il restauro dell’architettura, le applicazioni HBIM, ecc.  
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PREAMBLE  

In the last years, various research activities were motivated by the need for 
systems and methodologies for the collection, management and processing of 
archaeological and architectural 3D data. Thanks to the advances in data 
acquisition technologies, that guarantee high levels of precision, extraordinary 
speed and versatility, the amount of available 3D dataset has exponentially 
increased.  Point clouds and 3D models have become commonly shared data 
through the web, and accessible on mobile platforms. However, to fully explore 
the potential that such precise representation offers, especially in the heritage 
field of research, sometimes it becomes necessary annotating the models, 
providing them with meaningful attributes that give a connotation to the objects 
represented in 3D.  

Given the large size of the collected point clouds, automatic algorithms are 
preferable to reduce the necessity of expensive and slow human processing in 
annotating procedures. In this context, automatic segmentation and 
classification approaches become paramount. Incidentally, segmentation is the 
process of grouping the data into multiple homogeneous regions with similar 
properties, whereas classification is the step that labels these regions.  

Due to the complexity and variety of point clouds, caused by irregular sampling, 
varying density, different types of objects, etc., point cloud segmentation and 
classification are very active research topics. Although the revival of the Artificial 
Intelligence led to significant progress in automatically classifying 3D data in the 
geospatial field, its application to the architectural environment is still mainly 
unexplored.   

In the cultural heritage field, the identification within point clouds or meshes of 
various architectural elements rather than the distinction of materials or states 
of preservation can become valuable tools for studying the objects with different 
purposes. However, if we consider the wide variety and complexity that heritage 
case studies feature, the application of automatic classification procedures 
becomes a really challenging task.  
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Within this research landscape, the main goal of the PhD was to develop, test 
and validate reliable and automatic procedures for the classification of 
architectural and archaeological 3D data (point clouds or polygonal mesh 
models coming from photogrammetric processing or laser scanning surveying).  

To achieve this goal, two different approaches have been developed based on 
texture or geometric information. They allow to:  

• characterize different constructing techniques (Section 6.1); 

• detect existing restoration evidence (Section 6.2); 

• quantify different states of conservation and materials (Section 7.1); 

• identify and distinguish structural and decorative architectural elements 
(Section 7.2 – Section 7.5).  

This thesis is divided into three different parts: 

• Part 1: in the first part an introduction to the topic is given, together with 
an extensive overview of the literature about 2D and 3D segmentation 
and classification techniques applied to different fields (Chapter 1-2-3). 

• Part 2: the second part of the thesis is fully dedicated to the introduction 
of the two different classification methodologies developed during the 
PhD. In particular, the methodology presented in Chapter 4 works on the 
2D textures of the models, while the one described in Chapter 5 operates 
with the geometry of the point cloud (Chapter 4-5).  

• Part 3: to verify the effectiveness of the developed approaches, a wide 
range of case studies is treated in the third part of the thesis (Chapter 6-
7).  

The main contributions of the work are:  

• the use of Machine Learning methods for the automated classification of 
3D heritage data; 

• the development of texture- and geometry-based approaches in order to 
consider the large spectrum of heritage scenarios and needs; 

• the evolution of the proposed solution on a large set of data in order to 
prove their replicability; 

• the achievement of classification results useful for interpreting 
architectures, monitoring and restoration purposes, HBIM applications, 
etc.  
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CHAPTER 1 

3D technologies for Cultural 
Heritage 

According to the UNESCO guidelines Cultural heritage assets can be divided 
into tangible and intangible heritage. ‘Intangible Cultural Heritage’ indicates ‘the 
practices, representations, expressions, knowledge, skills – as well as the 
instruments, objects, artefacts and cultural spaces associated therewith – that 
communities, groups and, in some cases, individuals recognize as part of their 
Cultural Heritage’. ‘Tangible Cultural Heritage’ refers to physical artefacts 
produced, maintained and transmitted intergenerationally in a society (UNESCO, 
2003).  It includes buildings and historical places, monuments, artifacts, 
etc., which are considered worthy of preservation for the future.  Tangible and 
intangible heritage require different approaches for preservation and 
safeguarding. In this research the focus will be only on tangible heritage.  

The documentation and preservation of tangible heritage becomes fundamental 
for protecting and preserving it from armed conflicts, climate change effects or 
other natural catastrophes, and human-caused disasters. The presence of this 
risk is further enlarged by the fact that all the artifacts are inevitably in a constant 
state of chemical transformation. Even what is considered to be preserved is 
actually changing (Lowenthal, 2015).  

The advent in the last decades of 3D optical instruments for the 3D digitization 
of objects and sites has undoubtedly changed the concept of heritage 
conservation and preservation. Indeed, the Cultural Heritage field is taking great 
advantage of reality-based surveying techniques (e.g. photogrammetry, laser 
scanning) (Gruen, 2008; Remondino, 2011).  Currently, digital photogrammetry 
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and laser scanning have become standard methods for data acquisition and 
digital recording for the 3D documentation of heritage assets.  These 
technologies for 3D documentation allow the generation of realistic 3D results 
in terms of geometric and radiometric accuracy, overcoming the so-called direct 
surveys, which involve measuring in direct contact of objects or excavation areas.  

The American Society for Photogrammetry and Remote Sensing (ASPRS) has 
defined Photogrammetry as the art, science, and technology of obtaining reliable 
information about physical objects and the environment through processes of 
recording, measuring and interpreting photographic images and patterns of 
recorded radiant electromagnetic energy and other phenomena. In contrast, laser 
scanning is the process of capturing digital information about the shape of an 
object with equipment that uses lasers to measure the distance between the 
scanner and the object.  Once data are acquired (images, scans, single points, 
etc.), post-processing operations allow derivation of dense point clouds, 
polygonal models, orthoimages, sections, maps and drawing or further products. 
Towards providing precise representations of the objects at a given time to be 
passed down to future generations, these kinds of data can be used as a base for 
any further studies (Barsanti et a., 2014).  

Among the different application: 

• archaeological documentation (Guidi et al., 2014; Cipriani et al., 2017) 
(Figure 1.1); 

 

Figure 1.1. Digital model of the Maritime theatre in Villa Adriana, Tivoli 
(Cipriani et al., 2017). 

• digital preservation and conservation (Gomes et al., 2014) (Figure 1.2); 

 

Figure 1.2. 3D model of an Indonesian board sculpture (Gomes et al., 2014). 

• monitoring and deformation analysis (Abate, 2014; Chiabrando et al., 
2017) (Figure 1.3); 

https://en.wikipedia.org/wiki/American_Society_for_Photogrammetry_and_Remote_Sensing
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Figure 1.3.  Analysis of the Saint John the Baptist painting:  coloured dense 
point clouds (a) and depth map (b) (Abate, 2014) . 

• virtual reality/computer graphics applications (Fernández-Palacios et al., 
2017; Bekele et al., 2018) (Figure 1.4); 

 

Figure 1.4. VR application deployed for the immersive access of the Paestum 
Virtual Tour (Fernández-Palacios et al., 2017). 

• computer-aided restoration (Apollonio et al., 2018; Roussel et al., 2019) 
(Figure 1.5); 

 

Figure 1.5. 3D annotations onto 3D models: the Neptune’s fountain in Bologna 
(Apollonio et al.,2018) (a); the Autumn statue in Marseille (Roussel et al., 2019)(b). 
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• geographic web systems (Remondino et al., 2011; Baik et al., 2015) (Figure 
1.6); 

 

Figure 1.6. Geo-browser which allow the visualization of information related 
to the Etruscan civilization (Remondino et al., 2011). 

• multimedia museum exhibitions (Callieri et al., 2015; Guidi et al., 2015) 
(Figure 1.7); 

 

Figure 1.7. Interactive exhibition of the painting “Alchimia” by Jackson 
Pollock (Callieri et al., 2015). 

• underwater documentation (Menna et al., 2018) (Figure 1.8); 

 

Figure 1.8. Examples of digital products obtained through photogrammetric 
acquisition carried out by scuba divers (Menna et al.,2018). 
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• 3D repositories and catalogues ( www.potree.org; www.3d-
virtualmuseum.it) (Figure 1.9); 

 

Figure 1.9. 3D models available on the repositories www.3d-virtualmuseum.it 
. 

The increasing demand for photogrammetric and laser scanning acquisitions 
brought in parallel a growing availability of not-interpreted point clouds and 3D 
models. In this context, the association of semantic information to the point 
cloud or mesh is beneficial to enrich the data. Considering the consistency of 
some dataset, it becomes fundamental overcoming the time-consuming manual 
procedure of classification, introducing automated segmentation and 
classification methods. The former refers to group points in subsets (commonly 
called segments) characterised by having one or more properties in common 
(geometric, radiometric, etc.) whereas classification means the definition and 
assignment of points to specific classes (“labels”) according to different 
criteria. In the next chapter will be described the aim of the research, related to 
the identification of automated procedure for 3d heritage classification.  

http://www.potree.org/
http://www.3d-virtualmuseum.it)/
http://www.3d-virtualmuseum.it)/
http://www.3d-virtualmuseum.it)/


Part 1. Introduction and State of the art 

14 
 

REFERENCES 
Abate, D., Menna, F., Remondino, F. and Gattari, M.G., 2014. 3D painting 
documentation: evaluation of conservation conditions with 3D imaging and ranging 
techniques. International Archives of the Photogrammetry, Remote Sensing & Spatial 
Information Sciences, 45.  

Apollonio, F.I., Basilissi, V., Callieri, M., Dellepiane, M., Gaiani, M., Ponchio, F., Rizzo, 
F., Rubino, A.R. and Scopigno, R., 2018. A 3D-centered information system for the 
documentation of a complex restoration intervention. Journal of Cultural Heritage, 29, 
pp.89-99.  

Barsanti, S.G., Remondino, F., Fenández-Palacios, B.J. and Visintini, D., 2014. Critical 
factors and guidelines for 3D surveying and modelling in Cultural Heritage. International 
Journal of Heritage in the Digital Era, 3(1), pp.141-158. 

Baik, A.H.A., Yaagoubi, R. and Boehm, J., 2015. Integration of Jeddah historical BIM and 
3D GIS for documentation and restoration of historical monument. International Society 
for Photogrammetry and Remote Sensing (ISPRS). 

Bekele, M.K., Pierdicca, R., Frontoni, E., Malinverni, E.S. and Gain, J., 2018. A survey of 
augmented, virtual, and mixed reality for cultural heritage. Journal on Computing and 
Cultural Heritage (JOCCH), 11(2), p.7. 

Callieri, M., Pingi, P., Potenziani, M., Dellepiane, M., Pavoni, G., Lureau, A. and 
Scopigno, R., 2015. Alchemy in 3D: A digitization for a journey through matter. In 2015 
Digital Heritage, Vol. 1, pp. 223-230. IEEE. 

Chiabrando, F., Sammartano, G., Spanò, A. and Semeraro, G., 2017. Multi-temporal 
images and 3D dense models for archaeological site monitoring in Hierapolis of Phrygia 
(TK). Archeologia e Calcolatori, 28(2), pp.469-484. 

Cipriani, L., Fantini, F., 2017: Digitalization culture VS archaeological visualization: 
integration of pipelines and open issues. ISPRS International Archives of 
Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 42(2-W3), pp 
195-202. 

Fernández-Palacios, B.J., Morabito, D. and Remondino, F., 2017. Access to complex 
reality-based 3D models using virtual reality solutions. Journal of cultural heritage, 23, 
pp.40-48. 

Gomes, L., Bellon, O.R.P. and Silva, L., 2014. 3D reconstruction methods for digital 
preservation of cultural heritage: A survey. Pattern Recognition Letters, 50, pp.3-14. 

Gruen, A., 2008. Reality-based generation of virtual environments for digital earth. Int. 
Journal of Digital Earth, 1(1), pp. 88-106. 

Guidi, G., Russo, M. and Angheleddu, D., 2014. 3D survey and virtual reconstruction of 
archeological sites. Digital Applications in Archaeology and Cultural Heritage, 1(2), pp.55-
69. 

Guidi, G., Barsanti, S.G., Micoli, L.L. and Russo, M., 2015. Massive 3D digitization of 
museum contents. In Built heritage: Monitoring conservation management (pp. 335-346). 
Springer, Cham. 

Lowenthal, D., 2015. The past is a foreign country-revisited. Cambridge University Press. 

Menna, F., Agrafiotis, P. and Georgopoulos, A., 2018. State of the art and applications in 
archaeological underwater 3D recording and mapping. Journal of Cultural Heritage, 33, 
pp.231-248. 

Remondino, F., 2011. Heritage recording and 3D modeling with photogrammetry and 3D 
scanning. Remote sensing, 3(6), pp.1104-1138. 



Chapter 1. 3D technologies for Cultural Heritage 

15 
 

Remondino, F., Rizzi, A., Jimenez, B., Agugiaro, G., Baratti, G. and De Amicis, R., 2011. 
The Etruscans in 3D: From space to underground. Geoinformatics FCE CTU, 6, pp.283-
290. 

Roussel R., Bagnéris M., De Luca L. and Bomblet P., 2019. A digital diagnosis for the 
<<autumn>> statue (Marseille, France): photogrammetry, digital cartography and 
construction of a thesaurus.  International Archives of Photogrammetry, Remote Sensing 
and Spatial Information Sciences, Vol. XLII-2/W15.  



 

 



Chapter 2. An overview of segmentation and classification methods 

17 
 

  CHAPTER 2 

An overview of 
segmentation and 

classification methods 

 

Figure 2.1. Synthetic representation of the segmentation and classification methods.  
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Most 3D segmentation and classification methods have some root to image 
segmentation/classification. Segmentation is the process of grouping data (e.g., 
images, point clouds, or meshes) into multiple homogeneous regions with 
similar properties (Grilli et al., 2017). These regions are homogeneous regarding 
some criteria, called features, that constitute a characteristic property or set of 
properties that are unique, measurable, and differentiable. For 2D imagery, 
features refer to visual properties such as size, colour, shape, scale patterns, etc.  
Concerning point clouds data, features are typically connected with specific 
geometric characteristics of the local distribution in the neighbourhood of the 
points (Weinmann, 2016) such as surface normals, gradients, curvature (Further 
details in Chapter 5). 

Once 2D or 3D scenarios have been segmented, each group can be classified with 
a label/ class. Classification procedure gives the parts/segments some semantics; 
hence, classification is often called semantic segmentation. 

The concept behind segmentation and classification is to enrich the 
representation of an image/point cloud/mesh into something more meaningful 
and easier to analyse. Both 2D and 3D classification are fundamental tasks in 
various application, such as geospatial environment (Pal 2005), object detection 
(Cheng and Han, 2016), medical analyses (Shen et al., 2017), license plate and 
vehicle recognition (Li et al., 2018), classification of microorganisms (Li et al., 
2015), fruit recognition (Dubey et al., 2013) and much more (Lllamas et al. 2017). 

The author in the following sections presents a literature overview of the topic. 
The traditional segmentation methods (edge-based, region-based and model 
fitting) are separated from the Machine Learning approaches (Clustering, 
Support Vector Machine (SVM), Random Forest (RF), Deep Neural Network) 
(Figure 2.1). 

2.1 TRADITIONAL SEGMENTATION 
APPROACHES 

2.1.1 Edge-based segmentation 

Image segmentation is the process of partitioning an image into parts or regions 
(Yuheng and Hao, 2017). This division into parts is often based on the 
characteristics of the pixels in the image. One way to find regions in an image is 
to look for abrupt discontinuities in pixel values, which typically indicate edges. 
Therefore, these edges can define regions/segments (Al-Amri et al., 2010; 
Arbelaez et al., 2010; Kaur et al., 2012). Similarly, 3D edge-based segmentation 
algorithms are composed of two different steps: 

• Edge detection: the borders of different regions are outlined where 
changes in the local surface properties of the points exceed a given 
threshold. The properties most commonly used are surface normals, 
gradients, principal curvatures, and higher-order derivatives. 
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• Grouping: the points inside the boundaries are grouped, resulting in the 
final segments. 

Conventional variations have been described in the literature. Sappa and Devy 
(2001) propose a fast segmentation strategy based on the extraction of closed 
contours from a binary edge map. Wang and Shan (2009) segment LiDAR point 
clouds for extracting building boundaries using a local convex hull approach to 
detect the edges.  In Ni et al. (2016), an automated method is presented, for 
detecting 3D edges and tracing feature lines from 3D-point clouds.  

Even if these methods can perform fast segmentations, they may produce not 
accurate results as they strictly depend on the noise or sparse distribution of the 
point clouds.  Moreover, the detection of disconnected edges can make the 
identification of the regions difficult without a filling or interpretation procedure 
(Castillo et al., 2013). 

2.1.2 Region-based segmentation  

Region-based segmentation methods work with region-growing algorithms and 
can be divided into:   

• Bottom-up approaches:  they start from some seed points and grow the 
segments based on given similarity criteria. Seeded region approaches 
are highly dependent on selected seed points. Inaccurate selection of 
seed points can affect the segmentation process and cause under- or 
over-segmentation results. 

• Top-down approaches: they start by assigning all points to one group, 
then it subdivides the entire region into smaller ones. Where and how to 
subdivide unseeded regions remains the main difficulty of these methods 
that require prior knowledge (e.g., object models, number of regions, 
etc.) (Nguyen, A. and Le, B., 2013). 

In 2D, these methods divide the image into regions based on colour values or 
similar intensity-based rules, starting from one or more points (seed points).  

When it comes to point clouds segmentation, again starting from the seed 
points, the regions grow around neighbouring points with similar 
characteristics. The regions are commonly defined by geometric similarities, 
such as surface orientation, curvature, etc. (Rabbani et al., 2006; Jagannathan 
and Miller, 2007).  

The initial algorithm was introduced by Besl et al. (1988), and then several 
variations were presented in the literature. The region growing method 
proposed by Vosselman et al. (2004) has introduced the use of colour properties 
beside geometrical criteria. The surface normal and curvatures constraints were 
widely used to find the smoothly connected areas (Klasing et al., 2009; Belton 
and Lichti, 2006) whereas Xiao et al. (2013) proposed to use sub-window as the 
growth unit. Vo et al. (2015) presented an octree-based region growing approach 
for a fast surface patch segmentation of urban environment 3D point clouds. 
Recently Che and Olsen (2017) have successfully combined edge- and region-
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based methods to perform segmentation on terrestrial laser scanner data (Figure 
2.2).  

 

Figure 2.2. Segmentation results based on edge detection: the initial TLS data 
coloured by image texture (a); points lying on silhouettes (blue) are extracted (b); 

points with large variation in normals are extracted as edges (orange) (c); grouping of 
smooth surfaces following region growing (d)(Che and Olsen, 2017). 

A collection of region growing algorithms is available in the Point Cloud Library 
(Rusu and Cousins, 2011). Figure 2.3 shows the results of a segmentation 
approach completed by a region growing algorithm implemented in the PCL. 
The purpose of the algorithm is to merge/join similar points and deliver a set of 
clusters with points belonging to the same smooth surface. 

 
Figure 2.3. Point cloud segmented with a region growing algorithm available in the Point 

Cloud Library (PCL)(Özdemir and Remondino, 2018) . 

In general, the region growing methods are more robust to noise than the edge-
based ones because of the using of global information (Liu and Xiong, 2008). 
However, these methods are sensitive to (i) the location of initial seed regions 
and (ii) inaccurate estimations of the normals and curvatures of points near 
region boundaries.  

2.1.3 Segmentation by model fitting 

This approach is based on the observation that many human-made objects can 
be decomposed into geometric primitives like planes, cylinders, and spheres. 
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Therefore, primitive shapes are fitted onto point cloud data, and the points that 
conform to the mathematical representation of the primitive shape are labelled 
as one segment (Figure 2.4). In case the primitives have some semantic meaning, 
such an approach is also performing a classification. As part of the model fitting-
based category, two widely employed algorithms are the Hough Transform (HT) 
(Ballard, 1981) and the Random Sample Consensus (RANSAC) approach (Fischer 
and Bolles, 1981).  
 

 
Figure 2.4.  Segmentation of a 3D point cloud by primitive geometric fitting.  Dataset of 

the porticoes of Bologna (Remondino et al., 2016).  

The HT has been used to detect planes (Vosselman et al., 2004), cylinders, and 
spheres (Rabbani et al., 2006). The RANSAC method is used to extract shapes by 
randomly drawing minimal data points to construct candidate shape primitives. 
The candidate shapes are checked against all points in the dataset to determine 
a value for the number of points that represents the best fit. Tarsha-Kurdi et al. 
(2007) compared RANSAC and 3D HT for automatically detecting roof planes 
from LiDAR-based point clouds. Despite the limitation encountered in both 
methods, RANSAC is considered more efficient concerning segmented results 
and running time. It can process a large amount of input data in negligible time. 
On the other hand, 3D HT is slower and more sensitive to the segmentation 
parameters values. Chen et al. (2014) have proposed a modified RANSAC 
segmentation algorithm less sensitive to noise, that maintains topological 
consistency and avoids over and under-segmentation of building primitives. 

Model fitting methods are fast and robust with outliers (Poux et al., 2016). Their 
efficiency for the 3D detection of simple shapes such as cylinders, spheres, cones, 
torus, planes, and cubes has been proven. However, in the architectural field, 
details cannot always be modelled into easily recognisable geometrical shapes. 
Thus, if geometric properties can characterise some entities, others are more 
readily distinguished by their colour content (Barnea and Filin, 2013). 
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2.2 MACHINE LEARNING CLASSIFICATION 
APPROACHES 

Different standard classification approaches have been proposed in the literature 
(Section 2.1). However, only recently, significant progress has come out in 
automatic procedures for 2D and 3D classification, thanks to the advent of the 
Artificial Intelligence (AI) (Noh at al, 2015; Badrinarayanan et al., 2017) and 
(Weinmann et al., 2014; Guo et al., 2015; Hackel et al., 2017; Qi et al., 2017a-b; 
Grilli et al., 2019a-b), respectively.  

Machine and Deep Learning (ML / DL) are fields of AI scientific research 
concerned with the development of algorithms that allow machines to make a 
prediction based on empirical training data. Associated with the training data 
are the features, variables found in the given training set that can 
powerfully/sufficiently help us build an accurate predictive model. To give a 
practical example, for a predictive model which have to classify types of cat, 
features could be size, colour, shape, scale patterns of the cat. After learning the 
correlation between these features and the class of cat, the model becomes able 
to determine which class of cat a given instance is, only by looking at his features. 

Machine learning algorithms can be divided into two paradigms according to the 
learning approach followed:  

• Supervised learning algorithms: they learn from both the data features 
and the labels associated with which. The trained model is then used to 
provide a semantic classification of the entire dataset (Figure 2.5). If for 
the methods mentioned above (Section 2.1), the classification is a step 
after the segmentation, when using supervised machine learning 
methods, the class labelling procedure is planned before to segment the 
model. Different standard algorithms such as Support Vector Machines 
(SVM), Decision trees and Random Forest (RF), and artificial neural 
networks are described below. 

 
Figure 2.5.  Supervised machine learning workflow (Thapliyal, 2019). 
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• Unsupervised learning algorithms: they take the features of data points 
without the need for labels, as the algorithms introduce their own 
enumerated labels. No annotations are requested, but the outcome 
might not be aligned with the user's intention (Figure 2.6). The most 
widely used unsupervised approach for classification problems is 
clustering, and notably, the K-means algorithm is broadly used for its 
simplicity of implementation and convergence speed (Section 2.2.3).   

 

Figure 2.6. Unsupervised machine learning workflow (Thapliyal, 2019). 

2.2.1 Support Vector Machine  

A Support Vector Machine (SVM) is a binary classifier formally defined by a 
separating hyperplane (Scholkopf and Smola 2001). In the simplest of terms, 
once trained with labelled data SVMs use a linear model where they can separate 
the data, by identifying the “best” line that separates the data; this separation 
forms the classification (Pedregosa, et al., 2011). Support vectors are data points 
that are closer to the hyperplane and influence the position and orientation of 
the hyperplane (Figure 2.7). 

 

Figure 2.7. Possible hyperplanes (a); hyperplane with maximum margin (b)(Singh 
Chaun, 2019) 
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The applications of SVMs are extensive including, but not limited to; Face 
Detection, Image Classification, Hand-writing recognition, and Bioinformatics. 
SVMs can generalise well on difficult image classification problems (Chapelle et 
al., 1999) and have shown promising results and developments in image 
classification specifically in remote sensing fields (Pal and Mather, 2005). The 
most common application within remote sensing are land cover/use, and many 
algorithms have been developed as part of the SVM group (Kavzoglu and 
Colkesen, 2009) to provide information about the Earth's surface in many wide-
scale applications. In more recent years, SVMs models have been applied to the 
classification of point clouds (Bogdan and Cousins, 2011; Caputo et al., 2015). The 
binary classification has been investigated to extract tree species (Bohm et al., 
2016), road surfaces (Shu et al., 2016), land cover (Zhou et al., 2016), and 
construction sites (Xu et al., 2016).  

SVMs are highly effective at classifying small and medium datasets, while they 
are not very efficient computationally if the dataset is vast (Romero et al., 2015). 

2.2.2 Decision trees and Random Forest 

Random Forest (Breiman, L., 2001)., is one of the most used supervised learning 
algorithms for classification problems (Bosh et al., 2007; Rodriguez-Galiano et 
al., 2012). During the training phase, both the features and the labels are given 
as input to the model so it can learn to classify points based on the features. It 
uses an ensemble of classification trees, gets a prediction from each tree, and 
selects the best solution through voting (Figure 2.8). It is possible to think of a 
decision tree as a series of yes/no questions asked about our data, eventually 
leading to a predicted class. The decision tree tries to form nodes containing a 
high proportion of samples (data points) from a single class by finding values in 
the features that cleanly divide the data into classes. While great for producing 
models that are easy to understand and implement, decision trees also tend to 
overfit on their training data—making them perform poorly if data shown to 
them later don’t closely match to what they were trained on. Overfitting occurs 
when we have a very flexible model (the model has a high capacity) which 
essentially memorises the training data by fitting it closely. The problem is that 
the model learns not only the actual relationships in the training data but also 
any noise that is present. A flexible model is said to have high variance because 
the learned parameters (such as the structure of the decision tree) vary 
considerably with the training data.  Starting from these considerations, RFs 
rather than just merely averaging the prediction of trees uses two key concepts 
to avoid the overfitting problems: 

• bootstrap = Random subsets of the considered features when splitting 
nodes; 

• bagging= Random sampling of training data points when building trees. 

http://qr.ae/TUNozZ
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
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Figure 2.8. The workflow of the Random Forest algorithm (Han et al., 2018). 

RF has been used extensively in point cloud classification (Chehata et al., 2009; 
Niemeyer et al., 2014; Weinmann et al., 2015; Hackel et al., 2016); a detailed 
review of the different applications in Remote Sensing is given in Belgiu and 
Drăgut (2016).  According to Weinmann et al.’s extensive work (Weinmann et 
al., 2013; Weinmann et al., 2015; Weinmann, 2016), RF can be considered as one 
of the most suitable classifiers for point cloud analysis.  

With RF, it is possible to train a model with a relatively small number of samples 
and get pretty good results. However, it quickly reaches a point where more 
samples do not improve the accuracy. In contrast, a deep neural network 
(Section 2.2.4) needs more samples to deliver the same level of accuracy, but it 
benefits from massive amounts of data, and continuously improve the accuracy. 

2.2.3 K-means clustering 

Clustering is a type of unsupervised machine learning that segments similar data 
points into groups, called clusters. Objects in the same clusters are more like 
each other than those in other groups; the clusters should have minimal 
variance. Clustering algorithms should be applied to the nature of the problem 
considering the characteristics of the objects in question (Naik and Shah, 2014).    

K-Means is a clustering algorithm that divides observations into k clusters using 
features, where each observation belongs to the cluster with the nearest mean. 
One important detail about K-Means Clustering is that, even though it identifies 
which data point should part of which cluster, the operator has to specify the 
parameter K, representing the total number of clusters that he wants to use to 
"distribute" your data.  
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The original K-means algorithm presented by MacQueen (1967) has been widely 
exploited by various researchers for image (Chitade and Katiyar, 2010; Saraswathi 
and Allirani, 2013) and point clouds (Teutsch et al., 2011; Zhang et al.,2015; Zhang 
et al., 2016). 

K-means algorithm are easy to implement and good at segmenting large 
datasets. However, they can have trouble at clustering data where clusters are of 
varying sizes and density (Raykov et al., 2016). 

2.2.4 Artificial neural networks 

Among the different tools used in machine learning, there are also artificial 
neural networks. As suggested by the name, they are systems which intend to 
replicate the way humans learn. A neural network consists of an input layer, a 
hidden layer(s) and an output layer. Every layer consists of nodes, loosely 
modelled from neurons in the brain (Figure 2.9). 

 

Figure 2.9. Structure of an Artificial Neural Network (Lofwander, S., 2017).  

While neural networks have been around since a while (McCulloch and Pitts, 
1943), they have become a significant part of artificial intelligence only in the last 
several decades (Fukushima, 1980). A significant advance has been the arrival of 
deep learning neural networks (LeCun et al., 2015). The difference between 
neural networks and deep learning lies in the depth of the model. The term deep 
learning refers to complex neural networks, in which the different layers extract 
different features until they can recognise what they are looking for.  

Deep learning models can be considered an evolution of the machine learning 
ones, as they can learn by themselves the features, as part of the training process. 
On the other side, in ML is the operator that identifies the features that are 
necessary for the classification process. This ability to learn features is often seen 
as the cause for the rapid improvement in 2D and 3D understanding benchmark 
results. 
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Figure 2.10. Structure of a Deep Neural Network (Lofwander, S., 2017). 

Deep neural networks have already shown impressive performance on regularly 
structured data representations such as images and time series (Liu et al., 2017; 
Garcia-Garcia et al., 2018). Nevertheless, promising results on supervised 
learning tasks such as object classification and semantic segmentation, 
operating on raw point cloud data, have been presented (Qi et al., 2017a-b; Wang 
et al., 2018; Zhou et al., 2018). A complete review of the state-of-the-art deep 
learning methods for classification, object detection and point-wise 
segmentation of 3D sensed data was recently published by Griffith and Boehm 
(2019). 

2.3 CLASSIFICATION STRATEGIES APPLIED 
TO CULTURAL HERITAGE  

In the field of cultural heritage, processes such as segmentation and 
classification can be applied at different scales, from entire archaeological sites 
and landscapes to small artefacts.  

Different solutions for the classification of architectural images were presented 
in the literature. Among them, pattern detection (Chu et al., 2012), Gabor filters 
and support vector machine (Mathias et al., 2012), K-means algorithms (Oses et 
al., 2014), clustering and learning of local features (Shalunts et al., 2011), 
hierarchical sparse coding of blocks (Zhang et al., 2014). 

While the use of machine learning techniques for point cloud classification has 
been successfully investigated in the geospatial environment (Niemeyer et al., 
2014; Guo et al., 2015; Weinmann et al., 2014; Qi et al., 2017a-b; Özdemir and 
Remondino, 2019), only recently has been explored in Cultural Heritage (CH) 
application (Poux et al., 2017; Grilli et al., 2018; Grilli et al., 2019a-b; Malinverni 
et al., 2019). Several benchmarks have been proposed in the Geomatics 
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community, providing labelled terrestrial and airborne data on which users can 
test and validate their algorithms. Most of the available datasets provide 
classified natural, urban, and street scenes such as Semantic3D (Hackel et al., 
2017) or The Cityscapes Dataset (Cordts et al., 2016). While in those scenarios, 
the object classes and labels are almost defined (mainly ground, roads, trees, and 
buildings), the identification of precise categories in the heritage field is much 
more complicated:  

• for the same case study several classes can be identified based upon 
different purposes; 

• not always a semantic architectural class is linked to a precise 
shape/colour. 

Probably for these reasons, up to now the only available databases of annotated 
heritage are in 2D images and refer only to building facades such as the Ecole 
Centrale Paris (ECP) Facades dataset (Teboul et al., 2010), eTRIMS (Korc and 
Forstner, 2009), and CMP Facade Database (Tyleček and Šára, 2013).  Despite 
this existing-data shortage, different machine learning approaches were 
proposed in the 2D architectural and heritage context. Oses et al. (2014) have 
used different machine learning classifiers to perform an image-based 
delineation of masonry walls. Amato et al. (2015) use k-nearest neighbour (kNN) 
classification and landmark recognition techniques to address the problem of 
monument recognition in images. Convolutional Neural Networks (CNN) was 
applied for the first time to heritage scenarios in Llamas et al. (2016) and Llamas 
et al., (2017). CNNs are also used by Yasser et al. (2017) for visual categorisation. 
The author also proposes to develop a digital heritage search platform (ICARE) 
that allows users to archive digital heritage content and perform semantic 
queries over multimodal cultural heritage data archives. 

Regarding the 3D dimension, in most of the literature available classification 
processes are performed for annotation and restoration purposes, and the 
information are transferred from 2D to 3D (Campanaro et al., 2016; Grilli et al., 
2018). For instance, the web platform Aioli gives a similar example of annotation 
onto 3D heritage (e.g., www.aioli.cloud), where the 2D mapping data is in real-
time displayed onto the 3D model (Roussel et al., 2019). The developers of the 
platform are willing to integrate some ancillary tools, based on supervised 
methods, to make the processes of annotation semi-automatic.    

Concluding, there is a rich literature about classification methods applied to 
architectural images, but only a few references refer to automatic classification 
strategies for 3D architectural heritage.  
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CHAPTER 3 

Aim of the research 

In recent years, the use of heritage 3D for documentation and dissemination 
purposes is increasing. If we focus on point clouds, there is a growing need 
of innovative methods for the treatment and analysis of these data and for 
their classification, aimed ultimately to exploit in-depth the educational 
value of these surveys and representations. Point clouds are a powerful 
collection of geometrical primitives able to represent the shape, size, 
position, and orientation of objects in space. This information may be 
augmented with additional contents obtained from other sensors or sources, 
such as colours, multispectral or thermal information. Due to the complexity 
and variety of point clouds caused by irregular sampling, varying density, 
different types of objects, etc., point cloud classification is a very active and 
challenging research topic. The association of heterogeneous information to 
3D data by means of automated classification methods can help to 
characterise, describe, and better interpret the object under study.  

Starting from the existing literature (Chapter 2), the main purpose of the 
research is to develop, explore and validate reliable and efficient automated 
procedures for the classification of 3D data (point clouds or polygonal mesh 
models) of heritage scenarios. Through automatic classification the author 
aims to:  

• distinguish different constructing techniques: it can be useful to deepen 
the analysis and interpretation of the architecture (Grilli et al., 2018a) 
(Section 6.1); 

• identify existing restoration evidence (Grilli and Remondino, 2018b) 
(Section 6.4); 
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• identify and quantify different states of conservation and materials: 
essential for monitoring or restoration purposes (Grilli and Remondino, 
2019) (Section 6.5); 

• identify and distinguish structural and decorative architectural 
elements, highlighting their spatial distribution and organization (Grilli 
et al., 2019a) (Section 7.3).  

• automatically recognize similar architectural elements in vast datasets: 
propaedeutic for Heritage Building Information Modeling (HBIM) 
(Grilli et al., 2019b) (Section 7.4 – 7.5).  

The procedures that are going to be explained are based on Artificial Intelligence 
methods, and in particular on Machine Learning algorithms (Section 2.2). For 
the development of the research, various archaeological and architectural 
scenarios have been taken into consideration, in order to offer a reliable 
methodology which can be replicated and deployed in various heritage cases 
(Part 3).   
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CHAPTER  4 

Textured-based 
classification approach 

 
Figure 4.1. Schematic representation of the developed supervised classification 

methodology: 3D model of a portion of Circus Maximus Cavea in Rome, Italy, (a); 3D 
model after re-meshing (b); UV map (c); manually identified training areas on the 

unwrapped texture (d); supervised classification results (e); re-projection of the 
classification results onto the 3D model (f). 
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Considering the availability and reliability of segmentation methods applied to 
(2D) images and the efficiency of machine learning strategies, a new 
methodology was developed to assist cultural heritage experts in analysing 
digital 3D data. In particular, the approach presented hereafter relies on 
supervised and unsupervised machine learning methods for segmenting texture 
information of 3D digital models. Given a coloured 3D heritage, the proposed 
pipeline relies on the following steps: 

1. generation of textured surface models, if not available yet; 

2. creation of the orthoimages (for 2.5D geometries) or UV maps (for 3D 
geometries) (Figure 4.1 b–c); 

3. classification of the orthoimages or UV maps following different 
approaches tailored to the case study (i.e., Random Forest or 
Clustering) (Figure 4.1 d-e); 

4. re-projection of the 2D classification results onto the 3D heritage 
geometry (Figure 4.1 f). 

Here follows a detailed explanation of the texture-based approach, while in 
Chapter 6 practical implementations are presented.  

4.1. FROM 3D TO 2D  
The proposed classification method works on the texture information of the 3D 
models. According to the geometry and complexity of the considered 3D object, 
it is possible to work with: 

1. Orthophotos; 

2. UV maps. 

4.1.1 Orthophotos  

Orthophotos are geometrically corrected photographs that has been 'ortho-
rectified' such that the scale of the photograph is uniform. An ortho-photograph 
can be used to measure exact distances. For the classification of planar objects 
like walls, our approach suggests to export from the models the orthophoto or 
ortho-mosaic (a raster image made by merging orthophotos), classify it and 
finally re-maps the information onto the 3D geometry.  

4.1.2 UV maps 

UV maps are the flat representations of the surfaces of  3D models used to wrap 
textures easily. The process of creating a UV map is called UV unwrapping. The 
U and V refer to the horizontal and vertical axes of the 2D space, as X, Y, and Z 
are already being used in the 3D space (Figure 4.2).  

https://en.wikipedia.org/wiki/Raster_image
https://conceptartempire.com/what-is-3d-modeling/
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Figure 4.2. Schematic representation of a globe UV mapping.  

The technological advances in computer graphics in the last decades have had a 
significant impact on fields such as animation, movies, video games, etc. leading 
to a broad diffusion of 3D applications software (e.g., 3ds Max, Maya, Cinema 
4D, and Blender). In most 3D applications, UV maps can be generated 
automatically. Automatic mapping creates UVs for a mesh by attempting to find 
the best possible UV placement by projecting from multiple planes. These 
automatic tools are useful when you have complex shapes where the basic 
projections don't produce useful UVs (Section 6.3). Automatic mapping is an 
excellent place to start from, but manual editing of the UVs can facilitate the 
subsequent analysis with machine learning strategies.  

To simplify the unwrapping procedure, it is beneficial applying as a first step a 
remeshing to the 3D models. UV maps are then generated by adjusting and 
optimising seam lines and overlaps. Seams are the edges (or breaks) in geometry 
between UV islands and are inevitable for most models. Seams could cause 
problems during the classification process; areas of the models belonging to the 
same class may be split into different islands. These discontinuities between UV 
islands could bring to a misclassification. To avoid these kinds of problems the 
users can command the UV unwrapper to cut the mesh along edges chosen 
following the shape of the case study. 

Once created, the UVs are textured using the original textured polygonal model 
(as vertex colour or external texture). This way, the radiometric quality is not 
compromised despite the remeshing phase.  

The generation of textured UV maps allows us to classify in one single step 
complex objects, instead of creating various orthoimages from different points 
of view (Campanaro et al., 2016). 

 

 

https://en.wikipedia.org/wiki/Animation
https://en.wikipedia.org/wiki/Movies
https://en.wikipedia.org/wiki/Video_game
http://www.autodesk.co.uk/products/autodesk-3ds-max/overview
http://www.autodesk.co.uk/products/autodesk-maya/overview
https://www.maxon.net/en/products/cinema-4d/overview/
https://www.maxon.net/en/products/cinema-4d/overview/
http://www.blender.org/
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4.2 COLOUR SPACES  
When we consider colour image segmentation, choosing a proper colour space 
becomes an important issue (Bora and Gupta, 2014). Different colour spaces 
present colour information in different ways that make some calculations more 
convenient and provide a way to identify colours that is more intuitive. Several 
colour representations are currently in use in colour image processing. The most 
common is the RGB, but also HSV and CIE L*A*B* are frequently chosen colour 
spaces (Sural et al. 2002; Jurio et al., 2010) (Figure 4.3). In the RGB colour space, 
for example, shadowed areas have most likely very different characteristics than 
areas without shadows. In the HSV colour space, the hue components of areas 
with and without shadow are more likely to be similar: the shadow primarily 
influence the value, or the saturation component, while the hue - indicating the 
primary "colour" without its brightness and diluted-ness by white/black - should 
not change so much. Another popular option is the LAB colour space. In the 
L*a*b* colour space, L* indicates lightness and a* and b* are chromaticity 
coordinates.  The a* and b* coordinates are red/green and yellow/blue axis. 
Again, ignoring the L channel (Luminance) makes the algorithm more robust to 
lighting differences. According to the needs of the classification and case study 
characteristics in our experiments (Chapter 6) it was used or the colour 
component b* of the Colour space La*b* or the RGB values.  

 

Figure 4.10. Diagram of RGB, HSV and CIE L*a*b colour spaces (Russ et al., 2018). 

4.3. SUPERVISED LEARNING 
CLASSIFICATION 

The 2D classification method relies on different machine learning models 
embedded in WeKa (Witten et al., 2016) coupled with the Fiji distribution of 
ImageJ, an image processing software that exploits WeKa as an engine for 
machine learning models (Schindelin et al., 2012). The method combines a 
collection of machine learning algorithms (random tree, random forest, etc.) 
with a set of selected image features to produce pixel-based segmentations. The 
features available can be categorised as: 



Chapter 4.  Texture-based classification approach  

47 
 

• edge detectors, which aim at indicating boundaries of objects in an image 
(e.g., Laplacian and Sobel filters, difference of Gaussians, Hessian matrix 
eigenvalues and Gabor filters); 

• texture filters, to extract texture information (including filters such as 
minimum, maximum, median, variance, entropy, structure tensor, etc.);  

• noise reduction filters, such as Gaussian blur, Bilateral filter, Anisotropic 
diffusion, Kuwahara and Lipschitz;  

Besides, for coloured images, the hue, saturation, and brightness are also part of 
the features. 

All the available classifiers in WeKa are based on a decision tree learning 
method. In this approach, during the training, a set of decision nodes over the 
values of the input features (e.g. “feature x is greater than 0.7?”) are built and 
connected in a tree structure. This structure represents a complex decision 
process over the input features. The result of this decision is a value for the label 
that classifies the input example. During the training phase, the algorithm learns 
these decision nodes and connects them. Among the different approaches, we 
achieved the best results in terms of accuracy exploiting the Random Forest 
method (Section 2.2.2).   

For each case study, the RF was trained by giving in input the manually 
annotated orthophotos or UVs. Image annotations highlight and label a 
particular object by manually outlining. There are many types of annotation 
techniques such as the ones based on bounding boxes (Figure 4.4a), pixel-level 
labelling (Figure 4.4b), or polygonal selection (Figure 4.4c). 

 
Figure 4.4. Image annotation techniques: bounding box (a); pixel-level labelling (b); 

polygonal annotation (c).  
 
The choice of one method over another depends on the requirements and types 
of images. For all the case studies considered in this thesis (Chapter 6) the 
annotations were done following the polygonal selection techniques. In this way, 
just some significant and well-distributed portions of the textures were rapidly 
highlighted (Figure 4.1d), instead of labelling entire datasets like for deep 
learning approaches.  

The first time the training process starts, the features of the input image are 
extracted and converted to a set of vectors of float values (WeKa input). This 
step can take some time depending on the image sizes, the feature number, and 
the computational power of the computers. After the training procedure, the 



Part 2. Proposed methods 

48 
 

classifier gives as output a prediction about the classification of the entire 
orthophoto or UV map. 
 

4.4. UNSUPERVISED LEARNING 
CLASSIFICATION 

The unsupervised segmentation approach is performed using the k-means 
clustering plugin of ImageJ or Fiji (ImageJ K-means plugin, 2019). The algorithm 
(Section 2.2.3) performs pixel-based segmentation of multi-band images. Each 
pixel in the input image is assigned to one of the clusters. Values in the output 
image represent the cluster number to which the original pixel is assigned. 
Before starting the elaboration, the operator decides the number K of classes the 
image has to be divided into and the cluster centre tolerance. 

4.5. SURFACES COMPUTATION 
Among the various uses of the 3D classification results, there’s the possibility to 
compute the areas that the different segmented classes occupy. This kind of data 
can be beneficial for quantity surveying, overcoming the performance of the 
surveyors concerning both the survey speed and the measurement accuracy.  

Starting from the classified orthophotos or UV Maps, it is possible to estimate 
the quantity that each class occupies over the total area investigated. In 
particular, the percentage is calculated as a comparison between the number of 
pixels classified as Class-X and the total number of pixels in the classified image 
(subtracting the background). These percentages can then be transformed in 
surface measures, as we are working with scaled 3D models.   

While the orthophotos are directly measurable, the measuring accuracy 
computed on the UV maps could be affected by errors due to distortions 
generated during the UV unwrapping. Therefore, it becomes essential working 
on equal-area projection UVs.  The software Blender has an interesting tool 
called "Average island scale” that takes the selected faces and averages the scale 
of them, so they match according to the 3D view. For instance, if one face is 
scaled way down in the UV editor compared to its size in 3D space, it will get an 
appropriate scaling in relation to other selected parts of the mesh. 

 

4.5.1 Quantity survey validation  

A 3D model of the Rubik cube (Figure 4.4 a) has been taken into consideration 
to validate the quantity survey procedure described above.  

The assessment can be summarized in the following step: 

1. From the textured model, three different UV maps have been generated: 

• an automatic one (Figure 4.4 b); 
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• an optimised version of the automatic one, coming from the 
application of the "average island scale" tool to get an equal-area 
projection (Figure 4.4 c); 

•  a guided UV map created choosing a planar projection (Figure 4.4 
d).  

2. The three different UVs have been classified through a clustering 
procedure. 

 
Figure 4.4. 3D model of the Rubik cube (a); automatic generated UV map (b); optimized 

UV map (c); planar projected UV map (d). 

3. For all the UV maps, the percentage of each class (the six colours more 
the black trim) is calculated and multiplied for the total surface of the 
cube (known as a sum of the triangle areas of the mesh) (Table 4.1). 

4. The measures coming from the segmented UV maps are compared with 
the actual surfaces of the cube (ground truth).  

Concluding, as each coloured class of the cube occupies 23 cm2, it has been 
verified that to get accurate surface quantifications is beneficial working on 
equal-areas UV maps or planar projection (Table 4.1). 
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 Ground truth: cube surface = 197cm2 /coloured areas surface = 23 
cm2  

 % OCCUPIED  cm2 OCCUPIED  

CLASS 
AUTO. 

UV 
OPTIM. 

UV 
PLANAR 

UV 
AUTO. 

UV 
OPTIM. 

UV 
PLANAR 

UV 
black 
trim 37.66 % 32.18 % 27.42 % 74.18 cm2 63.40 cm2 54.02 cm2 

white 10.20 % 12.77 % 12.02 % 20.09 cm2 25.15 cm2 23.68 cm2 

red 10.40 % 11.26 % 12.36 % 20.49 cm2 22.18 cm2 24.35 cm2 

blue 10.01 % 10.95 % 12.00 % 19.73 cm2 21.57 cm2 23.64 cm2 

yellow 10.17 % 11.02 % 11.90 % 20.03 cm2 21.71 cm2 23.44 cm2 

orange 10.37 % 11.59 % 12.07 % 20.42 cm2 22.83 cm2 23.77 cm2 

green 11.20 % 11.90 % 12.23 % 22.05 cm2 23.45 cm2 24.10 cm2 

  AVERAGE 20.47 cm2 22.82 cm2 23.83 cm2 

Table 4.1. Comparison of the areas computed from the automatic clustering of the 
different UV maps. Optimez UV maps allow a more accurate quantification of 

areas. 
 

  



Chapter 4.  Texture-based classification approach  

51 
 

REFERENCES 
Bora, D.J. and Gupta, A.K., 2014. A new approach towards clustering-based colour image 
segmentation. International Journal of Computer Applications, 107(12). 

Campanaro, D.M., Landeschi, G., Dell’Unto, N. and Touati, A.M.L., 2016. 3D GIS for 
cultural heritage restoration: A ‘white box’workflow. Journal of Cultural Heritage, 18, 
pp.321-332. 

Imagej K-means plugin, 2019. [Online] 
Available at: http://ij-plugins.sourceforge.net/plugins/segmentation/k-means.html 
[Accessed January 27th 2020). 

Jurio, A., Pagola, M., Galar, M., Lopez-Molina, C. and Paternain, D., 2010. A comparison 
study of different color spaces in clustering-based image segmentation. In International 
Conference on Information Processing and Management of Uncertainty in Knowledge-
Based Systems, pp. 532-541. Springer, Berlin, Heidelberg. 

Russ, J.C., Parry-Hill, M. and Davidson M.W., 2018. Molecular expression. [Online] 
Available at: 
https://micro.magnet.fsu.edu/primer/digitalimaging/russ/colorspaces.html [Accessed 
January 27th 2020]. 

Schindelin, J., Arganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T., 
Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B. and Tinevez, J.Y., 2012. Fiji: an open-
source platform for biological-image analysis. Nature methods, 9(7), p.676.  

Sural, S., Qian, G. and Pramanik, S., 2002, September. Segmentation and histogram 
generation using the HSV color space for image retrieval. In Proceedings. International 
Conference on Image Processing, Vol. 2, pp. 589-592. IEEE. 

Witten, I.H., Frank, E., Hall, M.A. and Pal, C.J., 2016. Data Mining: Practical machine 
learning tools and techniques. Morgan Kaufmann.

http://ij-plugins.sourceforge.net/plugins/segmentation/k-means.html
https://micro.magnet.fsu.edu/primer/digitalimaging/russ/colorspaces.html


 

 
 



Chapter 5.  Geometry-based classification approach  

53 
 

CHAPTER  5 

Geometry-based 
classification approach 

 
Figure 5.1. Supervised machine learning workflow. The laser scanning dataset of the 

Mausoleum of Cesare Battisti in Trento (Italy) is taken as an example. 
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For some case studies, it may happen that the colorimetric features are not 
available or enough to perform texture-based classification tasks (Chapter 4). To 
bridge this gap, a second classification approach based on the point cloud 
geometric characteristics has been developed.  

The pipeline followed, similarly to the texture-based one (Chapter 4), is based 
on a supervised machine learning approach. The classification process (Figure 
5.1) consists of five main steps:  

·        manual annotation (Section 5.1); 

·        feature extraction (Section 5.2); 

·        model training (Section 5.3); 

·        prediction (Section 5.3); 

·        validation (Section 5.4). 

In the following table, the elaboration times for each step of the classification 
process are compared.  

 
Table 5.1. Comparison of the elaboration times for the different classification phases. 

5.1 MANUAL ANNOTATION 
Annotation in machine learning is the process of manually labelling data, which 
could be in the form of text, images, audio, points etc. It is tedious and time-
consuming work, but fundamental as to train machine learning classifiers and 
make them functional, as to give a semantic to the analysed data. 

In our experiments, for each case study, small but significant samples of the 
entire datasets have been selected to be manually classified. To make the 
classification possible, we must make sure that the training data are 
representative of the entire scenarios, hence the samples must contain all the 
classes under investigation over the whole datasets. The manual annotation is 
performed using the segment tool within the open-source software Cloud 
Compare. After the manual segmentation, a class index is associated with every 
segment of the point clouds.   

5.2 FEATURE EXTRACTION  
What are the features and why we need to extract them? As already mentioned 
in Chapter 2.2, all machine learning algorithms use some input data to learn and 
predict outputs. This input data, in addition to the manual annotation, comprise 
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features, which are information extracted from the input data to simplify the 
learning between the input and output data. Algorithms require features with 
some specific characteristic to work correctly. When we work on point cloud 
classification, features are generally geometric or radiometric attributes that are 
useful to highlight the heterogeneity between the classes. Based on the training 
data, the machine learning classifier gives as output a semantic segmentation 
prediction for the entire datasets. So, the choice of the features directly 
influences the predictive model and the results you can achieve. Without 
relevant features, you can’t train an accurate model/classifier, no matter how 
sophisticated the machine learning algorithm is.  

For the classification experiments, different sets of features have been used, 
depending on the case study and the chosen approach (Machine / Deep 
Learning). It has been combined the use of:  

• Decentralised coordinates: used to represent the local geometry around 
a point as a patch of k-number of nearest points. To decentralise the 
coordinates, the minimum x, y, z values are subtracted within each 
sequence, and the sequences are sorted with respect to the decentralised 
coordinate values. Decentralised coordinates have been used just for the 
deep learning approaches (Grilli et al., 2019b).  

• Radiometric values: for some case studies, the colorimetric values 
associated with the points of the cloud were beneficial for the 
understanding of the datasets.  

• Geometric features: including (i) covariance features (Section 5.2.1), (ii) 
normal based features and (iii) height-based features (Table 5.2).  

5.2.1 The covariance features 

The covariance features (Chehata et al., 2009) are widely used in segmentation 
and classification procedures because of their capability to provide deep 
knowledge on the geometrical structure of the reconstructed scene (Weinmann 
et al. 2013, Hackel et al., 2016, Weinmann et al. 2017). Despite their widespread 
use in the geospatial field, there is no literature about their application to 
architectural case studies. 

These features are shape descriptors obtained as a combination of eigenvalues 
(λ1 > λ2 > λ3) extracted from the covariance matrix (Blomley et al., 2014). The 
covariance matrix can be considered as 3D tensors containing geometrical 
information about the point distribution within a neighbourhood. Using a 
statistical analysis, the Principal Component Analysis (PCA), it is possible to 
extract from the covariance matrix the three eigenvalues  1,  2,  3 representing 
the local 3D structure and measuring the variation of the local point set along 
the direction of the corresponding eigenvector (Figure 5.2). 
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Figure 5.2. Local distribution of the points along the three main directions.  

The combination of these features values highlights the main linear (1D), planar 
(2D) or volumetric (3D) structure of the point cloud in the neighbourhood. Their 
definition is presented in Table 5.2.  

TYPE NAME FORMULA  

COVARIANCE 
FEATURES 

Linearity Lλ =  𝜆1 – 𝜆2 
𝜆1

 (1) 

Planarity Pλ =  𝜆2 – 𝜆3 
𝜆1

 (2) 

Sphericity Sλ =  𝜆3 
𝜆1

 (3) 

Omnivariance Oλ =  √∏ λj3
𝑗=1

3  (4) 

Anisotropy Aλ =  𝜆1 – 𝜆3 
𝜆1

 (5) 

Eigenentropy Eλ = -∑ λ3
𝑗=1 j ln (λj) (6) 

Sum of Eigenvalues Ʃλ  = ∑ λ3
𝑗=1 j (7) 

Surface Variation Cλ =  𝜆3 
Σ λ

 (8) 

NORMAL-BASED 
FEATURE 

Verticality V= 1 – nz (9) 

HEIGHT-BASED  
FEATURE 

Height Z Coordinate  

Table 5.2. Considered geometric features. 

Different strategies may be applied to recover the local neighbourhood for points 
belonging to a 3D point cloud. It can generally be computed as a sphere or a 
cylinder with a fixed radius or be described by the number of the k ∈ N nearest 
neighbours (Weinmann et al., 2015).  
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In the presented research the features have been calculated on spherical 
neighbourhoods at various radius sizes (Brodu and Lague, 2012), to explore 
different responses in function to the different geometric properties of the 
heritage monuments (Further details in Section 5.5). Cloud Compare software 
was used for feature extraction (Hackel et al., 2016). 

 

Figure 5.3. PCA analysis of the main distribution of the points using spheres with 
different radii. 

5.3 MODEL TRAINING  
After preparing the training set with annotated classes and extracted features, 
different predictive models (machine and deep learning classifiers) were trained, 
to extend the semantic segmentation from small portions to entire datasets 
(prediction phase). 

5.3.1 Random Forest classifier 

To test the classification capabilities of the Random Forest algorithm (already 
mentioned in Section 2.2.2), a RF implementation available in the Scikit-learn 
Python library (version 0.21.1) (Pedregosa et al., 2011) was used. Two parameters 
needed to be set to produce the forest trees: the number of decision trees to be 
generated (Ntree) and the number of variables to be selected and tested for the 
best split when growing the trees (Mtry) (Belgiu et al., 2016). During the training 
process, the Ntree and Mtry were tuned considering the best F1-score (accuracy 
metric described in Section 5.4) computed on the evaluation set.  

5.3.2 OvO classifier  

Classification using the One-versus-One (OvO) classifier from dlib C++ library 
was also carried out (King, 2009). OvO converts a group of binary classifiers into 
a multiclass classifier. It works training the binary classifiers in a one vs. one 
trend. In the case of N possible classes, it trains N*(N-1)/2 binary classifiers, 
which are then employed for the identification of the classes on the test sample.  
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5.3.3 1D AND 2D CNN   

Two methods belonging to the category of Convolutional Neural Networks 
(CNN) (Fukushima et al., 1980) are also proposed. As written in Section 2.2.4, 
CNNs are networks specialised in processing data that have a grid-like topology, 
such as images. The layers of a CNN consist of an input layer, an output layer 
and a hidden layer that includes multiple convolutional layers, pooling layers, 
fully connected layers and normalization layers. The CNNs we propose are:  

• 1D CNN: consists of 1 input layer, 2 convolutional layers, 3 dense layers, 1 
maximum pooling layer, 1 global average pooling layer, and 1 dropout 
layer. 

• 2D CCN: composed with 1 input layer, 4 2D convolutional layers, 2 2D 
max pooling layer, 3 dropout layers, 1 flatten layer, and 2 dense layers. 

5.3.4 Bi-LSTM 

Finally, a deep learning approach, based on a Recurrent Neural Network (RNN) 
was run (Rumelhart et al., 1988).  RNNs are commonly used for modelling 
sequential data. A data is sequential if the building blocks in a dataset are not 
independent from each other. The most common applications for RNNs are 
handwriting or speech recognition and translation. The RNN used consists of 
five layers: sequence input layer, Bidirectional Long Short-Term Memory layer 
(Bi-LSTM) with 200 hidden units, fully connected layer, softmax layer, and 
classification layer. Each point of the clouds was described with a sequence 
generated with its surrounding points. These sequences are expected to 
represent the geometry around each point in a better way when compared to a 
single feature vector representation. 

5.4 VALIDATION 

 

Figure 5.4. Validation test workflow. Mausoleum of Cesare Battisti in Trento (Italy). 

For all case studies a small portion of the point clouds was taken into 
consideration as evaluation dataset, in order to assess the classification results. 
On this dataset, the label predicted by the classifier are compared with the same 
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previously manually annotated (Figure 5.4). The number of correct and incorrect 
predictions are summarized with count values and broken down by each class 
inside a confusion matrix, a specific table layout that allows the visualization of 
the performance of the algorithm (Table 5.3). Each row of the matrix represents 
the instances in an actual class (ground truth), while each column represents the 
instances in a predicted class. The Confusion matrix is not a performance 
measure as such, but all the accuracy metrics are based on the numbers inside 
it:  

• Precision: it is a ratio of the total detection by the classifier. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑝

𝑇𝑝 +  𝐹𝑝
(10) 

• Recall: it is a ratio of the correct detection over the total number of test 
samples. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑝

𝑇𝑝 +  𝐹𝑛
(11) 

• F1 score: it is used to compare the performance of the predictive model. 
It considers both the precision and recall values to compute the 
measures. 

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2 ∗  
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 +  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
(12) 

Where Tp = True positive, 𝐹𝑝 = False positive, 𝐹𝑛 = False negative.  

  PREDICTED CLASSES    

 CLASS  Floor Shaft Capital Architr. Frieze Cornice Prec. Recall F1 

A
N

N
O

TA
TE

D
 C

LA
SS

ES
 Floor 33949 261 32 12 0 15 99% 100% 100% 

Shaft 13 46075 0 0 0 0 100% 99% 99% 

Capital 0 221 1318 126 0 0 79% 94% 86% 

Architr. 0 0 48 9802 166 0 98% 97% 98% 

Frieze 0 0 0 117 8652 46 98% 92% 95% 

Cornice 0 0 0 0 596 4795 89% 99% 94% 

      AVERAGE 95% 95% 95% 

Table 5.3. Confusion matrix relative to the Mausoleum of Cesare Battisti in Trento 
(Italy). 

As an example, we can consider the above Confusion Matrix, for the class 
“capital”: 

• True positive: diagonal position, (capital, capital). 

• False positive: sum of column “capital” (without main diagonal). 

https://en.wikipedia.org/wiki/Matrix_(mathematics)
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• False negative: sum of row “capital” (without main diagonal). 

In order to find one value for the entire model, Precision, Recall and F1 score are 
first computed for each class using the above formula, then the average over all 
the classes is considered. 

In short, Recall gives information about a classifier’s performance with respect 
to false negatives (how many did we miss), while Precision gives information 
about its performance with respect to false positives (how many did we catch). 
If the aim is minimising False Negatives, we would want our Recall to be as close 
as possible to 100% without negatively impacting precision, while if we prefer 
minimising False Positives, then our focus should be to make Precision as close 
as possible to 100%. 

5.5 FEATURE SELECTION 
As said in Section 5.2, a critical part of the success of a Machine Learning project 
consists of a good selection of the features used for the training.  

It has been verified that the covariance features (Section 5.2.1) can behave in 
completely different ways when computed at different search radii (Figure 5.5). 
Consequently, the so-called multi-scale approach, which combines features 
extracted at different neighbourhood sizes, compared with the single-scale 
approach, was proved to be beneficial for the classification results (Brodu and 
Lague, 2012; Hu et al., 2013; Niemeyer et al., 2014; Schmidt et al., 2014).   

 

Figure 5.5. Different behaviors of the same covariance feature computed at different 
radius sizes: surface variation at 0.2m (a), 0.7m (b), 1.4m (c).  

The main problem of using multi-scale neighbourhoods is their computational 
time, that grows as the density of the point clouds, the number of features to be 
extracted, and the size of the search radii increase. After this consideration, the 
research aims to: 
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• reduce the computation time necessary for extracting the features (Grilli 
et al., 2019a).  

• identify a subset of features that performs well with different heritage 
datasets; 

• improve the classification performances compared to a standard multi-
scale approach. 

Our feature selection framework can be summarized in Figure 5.6.  

 

Figure 5.6. Feature selection workflow.  

At first, the covariance features are extracted at increasing radii sizes (multi-
scale approach). Secondly, a Random Forest classifier is trained and run to 
predict the classification. The reason why the RF classifier was chosen for this 
analysis is that RF offers a useful feature selection indicator. Specifically, it shows 
the relative importance or contribution of each feature in the prediction: it 
automatically computes the relevance score of each feature in the training phase, 
then it scales the relevance down so that the sum of all scores is 1. The feature 
importance ranking obtained tells us what variables are the most discerning 
between classes. Moreover, it is used for feature selection by iteratively removing 
low importance features. Finally, the results coming from different combinations 
of features are compared, relying on the confusion matrix scores previously 
mentioned. 

Practical experiments on feature selection are shown in Section 7.1.  

 

 

https://www.cgal.org/
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5.6 Computational Geometry Algorithms 
Library (CGAL) 

 The development of our geometry-based approach was inspired by the 
supervised classification method implemented in The Computational Geometry 
Algorithms Library (CGAL) by Giraudot and Lafarge (2019). 

CGAL works in combination with a RF classifier delivered by ETH Zurich (ETH 
Zurich Random Forest Template, 2015). Moreover, it provides some predefined 
features that can be extracted with a multi-scale approach. The number of scales 
that can be used is included within a range between one scale and 10 scales. 
When using one scale, the features are calculated at the smaller neighbourhood 
size possible, that is equal to the density of the points. With two scales, features 
are also extracted at double of the previous neighbourhood, and so on till 10 
scales. Here follows the list of the available features:  

• Distance to plane: it measures how far away a point is from a locally 
estimated plane; 

• Eigenvalues: it measures one of the three local eigenvalues; 

• Elevation: computes the local distance to an estimation of the ground; 

• Height above: it computes the distance between the local highest point 
and the point; 

• Height below: it computes the distance between the point and the local 
lowest point; 

• Vertical dispersion: it computes how noisy the point set is on a local Z-
cylinder; 

• Vertical range: it computes the distance between the local highest and 
lowest points; 

• Verticality: it compares the local normal vector to the vertical vector. 

In addition, if available in the point cloud in input, the colour channels and the 
echo scatter (number of returns provided by most LIDAR scanners) are used 
among the features.  

Two different case studies treated with CGAL will be presented in Chapter 7. 
Although quite satisfying results have been achieved for the first experiment 
(Section 7.1), the second dataset (Section 7.5) revealed different problems, due 
to his complexity. Considering not fully exhaustive the results achieved using 
CGAL, which is a powerful tool but designed for a geospatial environment, 
during the PhD it was developed an approach more specific for the architectural 
field. 

https://www.cgal.org/
https://www.cgal.org/
https://doc.cgal.org/latest/Classification/classCGAL_1_1Classification_1_1Feature_1_1Distance__to__plane.html
https://doc.cgal.org/latest/Classification/classCGAL_1_1Classification_1_1Feature_1_1Eigenvalue.html
https://doc.cgal.org/latest/Classification/classCGAL_1_1Classification_1_1Feature_1_1Elevation.html
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CHAPTER  6 

Textured-based 
classification results 

The following archaeological/architectural scenarios have been considered for 
testing the reliability of the texture-based approach presented in Chapter 4: 

• The Pecile wall in Villa Adriana, Tivoli: an orthomosaic of a part of the 
Roman wall (60 m L x 9 m H) was classified and then re-projected onto 
the 3D digital model. The classification aimed to identify the different 
categories of opus (classical building techniques) it is made of, 
distinguishing original and restored parts (Section 6.1).  

• The Sarcophagus of the Spouses exposed in Villa Giulia Museum in 
Rome: a late 6th century BC Etruscan sarcophagus (1,9 m L x 1,4 m H x 
0,8 m D). It was chosen to test the reliability of the texture-based 
approach applied to an object with a complex topology. The classification 
aimed at identifying the surface anomalies, and quantifying the mimetic 
cement used to assemble the sarcophagus, once fragmented in many 
pieces (Section 6.2). 

• The Bartoccini’s tomb in Tarquinia:  a 4th-century tomb composed of four 
rooms - a central one (ca. 5 m L x 3 m H x 4 m D) and three later ones 
(ca. 3 m L x 3 m H x 3 m D). The texture-based classification, held onto 
the available panoramic pictures, aimed at quantifying the deteriorated 
parts of the walls (Section 6.3).  

• A small portion of porticoes in Bologna (ca. 8 m L x 13 m H x 5 m D): the 
classification, held at first on the UV map of the model, meant to identify 
its principal parts and architectural elements (Section 6.4).  
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6.1 PECILE WALL IN VILLA ADRIANA, 
TIVOLI 

 
Figure 6.1.  Aerial view of a part of Villa Adriana with the Pecile wall highlighted. 

Hadrian’s Villa (Villa Adriana) in Tivoli was built by Roman Emperor Hadrian at 
the foot of the Tiburtine Hills between 118 and 138 AD. The vast residential 
complex is extended over an area of about 120 hectares. The site includes 
buildings, baths, temples, barracks, theatres, gardens, fountains and 
nymphaeums, constructed in travertine, brick, lime, pozzolana and tufa. The 
Hadrian's Pecile was a monumental four-sided portico, delimiting a garden with 
a large swimming pool centrally located. A wall about 9 meters high and 100 
meters long, once designed for walking in the sun and shade depending on the 
season, is what remains of the original quadriportic (Figure 6.1). 

 A digital model of the wall is available, as result of a photogrammetric survey 
conducted in summer 2016 in conjunction with the International Seminar of 
Museography at Villa Adriana - Piranesi Prix de Rome (Figure 6.2). This 
photogrammetric model was used for some classification experiments, designed 
to identify the Roman building techniques of the wall (Grilli et a., 2018).  

 

Figure 6.2. A close view of the Pecile wall in Villa Adriana, Tivoli - Italy. 
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Different analyses have been conducted to assess the texture-based approach. At 
first, only a portion of the Pecile wall (4 m length × 9 m height) was considered 
(Figure 6.3a). From this portion of the model, three orthophotos exported at 
different scale were generated, manually annotated (Figure 6.3b) and 
automatically classified. With a 1:10 scale, the orthophoto was over-segmented 
(Figure 6.3c). On a 1:50 scale, some macro-areas were identified, but many details 
were lost (Figure 6.3e). The 1:20 scale (generally used for restoration purposes) 
turned out to be the optimal choice for the classification purposes. The 
classification was able to capture different details but at the same time to avoid 
the identification of the joints between the bricks (Figure 6.3d).  

  

 

Figure 6.3. Orthophoto of a portion of the Pecile wall (4 m Lu 9 m H) (a); corresponding 
training samples (b); classification results obtained at different scales: scale 1:10 (c); scale 

1:20 (d); scale 1:50 (e); manually segmented portion / ground truth (f). 

Different predictive models available in Weka (Witten et al., 2016) were explored 
and compared starting from the same manually annotated orthoimage exported 
at 1:20 scale. All the different classification results were compared with the 
correspondent ground truth (the same portion manually segmented), and for 
each algorithm the overall accuracy was calculated (Table 6.1) as follow: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 (13)  
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Out of all the tests performed with the different algorithms, the best overall 
accuracy obtained was around 70% using a Random Forest classifier. 

Classifier Overall accuracy Time for processing 

j48 44 % 22 s 

Random Tree 46 % 15 s 

RepTREE 47 % 33 s 

LogitBoost 52 % 20 s 

Random Forest 70 % 120 s 

Table 6.1 Accuracy results and elapsed time for various classifier applied to an 
orthoimage at 1:20 scale. 

To better identify the classification errors, a normalised confusion matrix was 
used (Table 6.2). From the table analysis, it was possible to understand that most 
failures in classification were in those classes where an overlap of plaster was 
present on the surface of the opus. However, it is believed that an expert should 
not consider as absolute the accuracy percentage without prior verification. In 
fact, comparing the classification handled by the operator and the one by the 
algorithm, it was found that the supervised method could identify more details 
and differences in the material’s composition.  

CLASS Underc
ut 

Restor
ed 

Opus 
Lat. 

Opus 
ret + 

plaster
s 

Old 
Opus 

Lateric
ium 

Opus 
ret. + 

plaster 

Restor
ed 

Opus 
Ret. 

Eroded 
Opus 
ret. 

Prec. Rec. F1 

Undercut 0.64 0.01 0 0.07 0.08 0.02 0.13 67% 55% 60% 

Restored 
Opus Lat. 0.2 0.73 0.02 0.02 0.18 0.01 0 63% 85% 72% 

Opus ret. + 
plasters 0.02 0.03 0.75 0.04 0.12 0.02 0.03 74% 91% 82% 

Old Opus 
Latericium 0.08 0.02 0.01 0.43 0.2 0.05 0.21 43% 56% 49% 

Opus ret. + 
plaster 0.06 0.05 0.01 0.08 0.66 0.05 0.08 67% 47% 55% 

Restored 
Opus Ret. 0.02 0.01 0.01 0.01 0.07 0.83 0.06 82% 78% 80% 

Eroded 
Opus ret. 0.15 0.01 0.02 0.12 0.08 0.09 0.52 53% 50% 51% 

 AVERAGE 64% 66% 64% 

Table 6.2. Normalised Confusion Matrix and accuracy metrics for the Pecile wall 
classification. 

Finally, using the same model training, the classification was extended to a more 
significant part of the wall (60 m L u 9 m H) (Figure 6.4a). To classify 540 m2 of 
surface (Figure 6.4b) the process took about one hour. Considering that the 
operator needed four hours to manually classify a smaller part (24 m2), with the 
supervised approach, it was possible to get more accurate results in a shorter 
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time. In addition, instead of using random colours, it is possible to represent the 
classification results with a dedicated legend, commonly requested for 
degradation analysis tables (Figure 6.4d). 

 

Figure 6.4. The original (a) and classified (b) model of the Pecile wall long ca 60 m. A 
closer view is also reported to better show the classification results with random 

colours (c) or dedicated symbols (d). 
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6.2 SARCOPHAGUS OF THE SPOUSES 
The Sarcophagus of the Spouses is a late sixth-century BC Etruscan anthropoid 
(human-shaped). Made of painted terracotta, it depicts a married couple 
reclining at a banquet together. The sarcophagus, which would have originally 
contained cremated human remains, was discovered in 1881 during 
archaeological excavations in the Banditaccia necropolis of ancient Caere (now 
Cerveteri, Italy). The Etruscan masterpiece was found broken into more than 
400 pieces.  It was then reassembled and joined using a mimetic cement to fill 
the gaps among the different pieces. It is now exposed in the National Etruscan 
Museum of Villa Giulia, Rome (Figure 6.5). 

 

Figure 6.5. The Sarcophagus of the Spouses, Villa Giulia museum – Rome. 

In 2013, digital acquisitions and 3D modelling of the sarcophagus, based on 
different technologies (photogrammetry, TOF, and triangulation-based laser 
scanning) were conducted by project partners (FBK-3DOM, Cineca, CNR-ISTI, 
CNR-ITABC) to deliver a highly detailed photo-realistic 3D representation of the 
Etruscan masterpiece for successive multimedia purposes (Figure 6.6a) (Menna 
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et al., 2016). The segmentation task aimed to detect the decays of the pottery 
surface and to test the reliability of the method on a heritage objects with more 
complex topology and few chromatic differentiations on the texture. 

 
Figure 6.6. Manually annotated training areas on the unwrapped texture of the 

sarcophagus (a); related classification result (b). 

The manual identification and annotation of the training patches took around 
15 minutes and was accomplished with the support of restoration experts (Figure 
6.6b). For the classification scope, three main categories and two ancillary ones 
were identified. After the manual annotation, about one hour of processing was 
necessary to extract the features, train the RF, and predict the classification on 
the entire texture (Figure 6.6c). Once the UV map was classified was then 
mapped onto the available 3D geometry (Figures 6.7). The segmented 3D model 
highlighted every single detail of the masterpiece assembly; fractures were 
distinguished from engraving, and the different grades of conservation were also 
identified. The sustaining legs of the sarcophagus were excluded from the 
classification, as they are the only parts where pigment decorations are clearly 
visible; thus, their analysis was outside the segmentation scope. From the 
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classification output, we could also calculate the percentage that each label 
occupies; from the results, we have that 12% of the entire surface of the object 
(i.e., 3D model) is composed of mimetic cement. As the overall surface of the 3D 
model is 6.8 m2, it means that approximately 0.8 m2 are reconstructed parts 
(Figure 6.8). 

 
Figure 6.7. Classified 3D model of the Sarcophagus of the Spouses. 

The rendering of the classification results of the Sarcophagus is available at 
https://youtu.be/0LJE8m_jduo.  

https://youtu.be/0LJE8m_jduo
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6.3 BARTOCCINI’S TOMB, TARQUINIA (1) 
Tarquinia was one of the most ancient cities of the Etruscan civilization. The 
necropolis, situated in the areas of Monterozzi and Calvario, is composed of 
some 6000 tombs, 60 of which decorated with paintings. The Bartoccini tomb, 
dated to around the 4th century BC; was discovered in 1959. It has four rooms - 
a central one (ca 5 m by 4 m) and three later rooms (ca 3 m by 3 m) - all connected 
through small corridors. The height of the tomb rooms does not exceed 3 m, and 
it is all painted with a reddish colour and various figures. 

Combined TOF scanning and panoramic photographic surveys were carried out 
to get the complete 3D model of the tomb (3 million of triangles) (Fernández-
Palacios et al., 2013) (Figure 6.8). The TOF range data were used to derive the 
geometry of the tomb, while the panoramic images to get the photo-realistic 
high-resolution texture.  

 
Figure 6.8. 3D model and panoramic pictures of the Bartoccini’s tomb in Tarquinia.  
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As over the centuries, the tomb has suffered from erosion caused by various 
reasons such as infiltration, seasoning, ageing, etc. the classification aimed to 
identify and quantify the deteriorated surfaces on the painted walls. Manually 
performing this operation would be a costly and time-consuming process.  

The aim of the classification was to review the accuracy of an unsupervised 
clustering approach, specifically for the identification of the damaged surfaces 
instead of using a supervised approach. 

To facilitate the clustering segmentation, and thus achieve better results, the 
images were initially converted from RGB to Lab* colour space (Figure 6.9).  

 
Figure 6.9. Panoramic pictures converted to Lab*colour spaces to better highlight the 

deteriorated areas. 

Then a K-means clustering algorithm (Section 4.4) was performed to generate a 
pixel-based segmentation of the panoramic images (Figure 6.10). As stated in 
Section 2.2.3, when using the K-means clustering algorithm, the operators must 
specify the parameter K, that represents the total number of clusters that they 
want to use. For this case study, trying an incremental number of K, was possible 
to highlight some deteriorated areas with a k=5 (dark blue regions).  
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Figure 6.10. K-means clustering results with K=5; eroded areas in dark blue. 

After analysing the results (Figure 6.10), it was clear that relying only on texture, 
the chromatics similarity between the deteriorated surfaces and the wall 
paintings caused some misclassification problems. While for Room 1 and Room 
3 it was possible identifying the deteriorated parts, in Room 2 and Room 4 there 
were many classification errors.  

The texture-based results for Room 1 (Figure 6.11) were satisfying re-projected 
onto the 3D model (Figure 6.12). 

 
Figure 6.11. Automatically detected deteriorated surfaces. 
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Figure 6.12. Projection onto the 3D model (a) of the classification results (b). 

Bartoccini’s tomb, Room 1.  

A portion of the panoramic image was considered as an evaluation set (Figure 
6.13a), manually classified (Figure 6.13c) and compared with the automatic 
prediction (Figure 6.13d), to evaluate the accuracy of the results numerically. 

The overall accuracy achieved, calculated as the ratio between the number of 
correctly classified pixel and the total number of pixels, was of 91.15%. 

It is important to say that, while the automatic segmentation with clustering 
took about 2 minutes to classify all the four rooms, the manual annotation 
(Figure 6.13b) was time-consuming (more than 1 hour for such a small portion).  

 
Figure 6.13. A wall of the Bartoccini’s tomb (a) with manually annotated eroded surfaces 

(b), and automatically identified (c); overlap of the two results (d). 
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6.4 PORTICOES IN BOLOGNA (1) 
The old porticoes of Bologna (Figure 6.14) were built during the 11th–20th 
centuries and can be regarded as unique from an architectural viewpoint in 
terms of their authenticity and integrity. Thanks to their great extension, they 
span approximately 40 km, and historically, the porticoes are considered a high-
quality architectural work. Such structures combine various geometric shapes, 
different materials, and many architectural details such as mouldings and 
ornaments. 

 
Figure 6.14. Porticoes in Bologna, Italy. 

Become a distinctive building feature of the city, 25% of the porticoes were 
digitized using terrestrial photogrammetry under a project for the candidature 
of the porticoes as UNESCO “world heritage site”.  

Considering the availability of this vast dataset (Remondino et al., 2016), 
different classification experiments have been conducted on this case study. In 
this section, the texture-based approach is applied to a small portion of the 
dataset (ca. 8m L' 13m H' 5 m D) (Figure 6.15a), because guiding the unwrap of a 
bigger part would have been a really challenging operation. A more consistent 
portion of the Bologna dataset is treated with a geometry-based approach in 
Chapter 7. In both cases, the classification was aimed at identifying the principal 
parts and architectural elements of the porticoes building in all cases. 

Back to the texture-based approach: once generated, the UV map was first 
manually annotated into 10 different classes of interest (Figure 6.15b), then 
enriched with the radiometric features embedded in Image J Fiji (Schindelin et 
al., 2012). At that point, the RF model was trained to predict the classification on 
the entire texture (Figure 6.15c). Finally, the classified UV was re-projected onto 
the 3D model (Figure 6.16).  

While some classes were well classified, several errors were found in those parts 
of the model where the texture is not homogeneous because of plaster decays. 
One solution might be creating additional categories for the different decays or 
uniform the areas that have small holes, as post-processing. 
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Figure 6.15. Considered portion of porticoes (a); related UV map with manual 

annotation (a); classified UV map (b). 

 
Figure 6.16. Classified 3D of a small portion of porticoes in Bologna. 
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CHAPTER  7 

Geometry-based 
classification results 

 

Different heritage monuments were considered to evaluate the aforementioned 
geometry-based method (Chapter 5): 

• The Bartoccini’s tomb in Tarquinia: the same dataset used for the 
texture-based experiments (Section 6.3) was classified using CGAL 
(Giraudot and Lafarge, 2019) (Section 7.1).  

• The Basilica in Paestum: it spans ca 24,5 x 54 m, and it does not exceed 
10 metres in height. On the available laser scanning dataset (Fiorillo et 
al., 2013) was carried out a detailed analysis of the geometric features 
(Section 7.2).  The results obtained from the analysis of the features have 
provided us with a key to reading the subsequent classification 
experiments (Section 7.3).  

• The Temple of Neptune in Paestum: it measures ca 24,5 m L x 60 m D x 
18 m H (in the highest part). The point cloud is the result of a combined 
UAV and terrestrial photogrammetric survey (Fiorillo et al., 2013). On 
this dataset more than one classifier was tested, to explore and compare 
the full potential of the machine and deep learning algorithms (Section 
7.4). 

• A portion of porticoes in Bologna (Italy): after the texture-based 
approach, a different and more significant portion of the Bologna dataset 
(ca 85 m L x 20 m H x 5m D) was used for some geometry-based 
experiments. The same dataset was treated with the features embedded 
in CGAL (Section 5.6) and the covariance ones (Section 5.2.1). As well as 
for the Temple dataset, more than one classifier was tested (Section 7.5). 
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7.1 BARTOCCINI’S TOMB, TARQUINIA (2) 
As with the texture-based approach it was not possible to fully classify the 
Bartoccini’s tomb (Section 6.3), a second approach based on CGAL (Giraudot 
and Lafarge, 2019) (Section 5.6) was used on the same dataset. 

In order to get optimal results radiometric and geometric features were 
combined, as:   

• relying only on texture, some classification errors came out due to the 
chromatics similarity between the deteriorated surfaces and the wall 
paintings (Section 6.3); 

• the use of only geometry-based features allows to identify just the 
damaged areas below a certain depth variation threshold. 

As a common practice, at first, the geometric features (embedded in CGAL) and 
the texture-based features (HSV values) were extracted. Second, few well-
distributed portions of the point cloud were annotated on the point cloud. Then, 
a Random Forest classifier was trained to predict the classification on the entire 
dataset (Figure 7.1). The whole process took circa one hour. 

 
Figure 7.1. Point cloud of the Bartoccini’s tomb (ca 5 million points), with manually 

annotated areas (a); classification result achieved using geometry- and texture-based 
features (b); a closer view(c)(d). 
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To evaluate the results, as done for the texture-based approach (Section 6.3), a 
small portion of the dataset was considered, manually classified and compared 
with the same automatic predicted (Figure 7.2). The Overall Accuracy (13) 
reached in output was over 90%. 

 
Figure 7.2. The test set for the Bartoccini’s tomb (a), manually (b) and automatically 

(c) classified. 

Given the outcome, all the eroded surfaces of the tomb were quantified. At first, 
the percentage occupied by each class was calculated as the ratio between the 
number of points belonging to the class and the total number of points of the 
cloud. Then, this percentage was multiplied for the total surface of the tomb, 
known as the sum of the triangle areas of the 3D model. In this way, it was 
possible to convert an automatic classification result into a real measure of 
deteriorated surfaces (Table 7.1). This kind of output can be beneficial for both 
monitoring and restoration purposes. 

CLASS  No points Percentage Area (m2) 

Eroded 
surfaces 3539781 22.62% 42 

Plaster 11014402 70.38% 131 

Water 
infiltration 1095229 7.00% 13 

TOT 15649412 100.00% 186 

Table 7.1. Extracted classes and their quantification. 

To better visualise the classification results, a rendering of the Bartoccini’s tomb 
is available at https://youtu.be/jy9PvtTcRxE.

https://youtu.be/jy9PvtTcRxE
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7.2 BASILICA, PAESTUM 
Approximately ninety kilometres south of Naples, Italy, stands the ancient city 
of Paestum (Figure 7.3). Paestum was a major ancient Greek city on the coast of 
the Tyrrhenian Sea in Magna Graecia. After its foundation by Greek colonists, its 
name was Poseidonia, as the site was once a ceremonial centre of Poseidon (the 
Roman Neptune), the god of the sea. It was then conquered by the Romans who 
gave the city its current name Paestum. The ruins of Paestum are notable for 
their three Doric temples which are in an excellent state of preservation: (i) the 
550 BC Temple of Hera (more known as Basilica, (ii) the 450 BC Temple of 
Neptune, and (iii) the smaller Temple of Ceres dated 500 BC. 

 
Figure 7.3. The archaeological site of Paestum, Italy. 

The name "Basilica" was attributed to the Temple of Hera when it was 
rediscovered in the eighteenth century. As the tympanums and most of the 
trabeation had not survived (Figure 7.4), the functional identification as a temple 
of the building was uncertain. However, unlike the other temples, his function 
and dedication are guaranteed, thanks to inscriptions to Hera on the temple. 

 
Figure 7.4. The Basilica (also called Temple of Hera) in Paestum, Italy. 

In this section, and the next one, are going to be treated the laser scanning 
dataset of the Basilica and the photogrammetric ones of the Temple (Fiorillo et 
al., 2013) respectively. 
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7.2.1 Assessment of the feature selection workflow   

In section 5.5 has been briefly introduced a workflow to optimize the feature 
selection (Figure 7.5). In this section is presented a more detailed explanation of 
the steps that have been followed, applied to the Basilica dataset. Being the 
architectural composition of the monument quite regular, it was enough 
considering a tiny portion of the point clouds as a training set on which 
conducing the feature experiments. 

The principal aim of the workflow was to identify a small subset of features that 
could perform right prediction in a shorter time than using many features 
extracted in a conventional multi-scale approach. In particular, given the 
influence of the radius r in the feature response, we aimed to identify the optimal 
r able to discriminate our classes better. 

 
Figure 7.5. Feature selection workflow. 

The first step of the flowchart consists in enriching the dataset with (i) manual 
annotations (8 different semantic classes) (Figure 7.6) and (ii) features 
(Covariance + Verticality) (Section 5.2) calculated at different search radii r 
(multi-scale approach).  As shown in Table 7.2 the search radii have been 
denoted as a subscript to the name of the feature set. For example, Planarity (0.2) 
means that the feature Planarity Pλ was calculated for a search radius of 0.2 m. 
In order verify the different behaviours of the features connected with the 
architectural elements, in a first moment the features have been computed for 
increasing radii values between rmin = 0.2 m and rmax = 3 m.  
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Figure 7.6. Training set for the Basilica dataset. 

Once the training set was enriched with the annotated classes and the features, 
a Random Forest model was trained. As said in Section 5.5, the RF algorithm 
plays a vital role in the feature selection. Not only it provides a classification 
prediction on the entire dataset, but also tell us about the role the features had 
during the decision-making process, through feature relevance indexes (Table 
7.2).  

 
Table 7.2. Feature importance ranking for a multi-scale classification of the Basilica 

dataset. 
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From the feature ranking (Table 7.2) we can observe that:  

• the features Eigenentropy Eλ and Sum of eigenvalues Σλ, are always 
among the least relevant features; 

• among the covariance features, the most relevant are Surface Variation 
Cλ, Planarity Pλ, and Sphericity Sλ; 

• there is an apparent relationship between the most relevant radii of 
extraction of the features and the sizes of the columns; i.e. the 
diameter Ø of the Basilica’s columns measures 1.4 m, and we can notice 
peaks in the graph around 0.7 m, 1.4 m, and 2.8m radius; 

• the feature Verticality V is highly relevant, even when considering 
different neighbourhood radii; contrary with the covariance features 
(Section 5.5.1), its behaviour carries on similar with different radii 
(Figure 7.7).   

 

Figure 7.7. Similar behaviours of the feature Verticality when computed at different 
radius sizes: 0.4 m (a), 1 m (b), 1.4 m (c).  

Next, to verify the above observations, we extracted directly 8 features, selected 
ad hoc and related to the dimension of the columns (radius and diameter):  

• Verticality (0.4 m) (1 m);  

• Linearity (o.7 m); 

• Omnivariance (o.7 m); 

• Surface Variation (0.7 m);  

• Anisotropy (1.4 m);  

• Planarity (1.4 m); 

• Sphericity (1.4 m).   

Observing the results (Figure 7.8) seems that a relationship between the 
covariance features (Section 5.2.1), the neighbourhood size of extractions of 
them, and the architectural elements was found. We can see for example, that 
the feature Planarity extracted with r = column diameter Ø is able to highlight 
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the shafts of the columns, while the Anisotropy is useful to identify the capitals. 
The Surface Variation and the Sphericity have similar behaviours if extracted 
respectively at r = column ray, and r = column diameter Ø; in both cases, they 
can emphasise not only the column shafts but also separate frieze and architrave.  

 
Figure 7.8. Geometric features selected ad hoc after the analysis of the feature ranking 

(Table 7.1). 

An hypothesis about this type of results could be that the strict proportional 
rules and dimensions used in the construction of the Greek temples (widely 
studied in the architecture treatises by Vitruvio, Leon Battista Alberti, Jacopo 
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Barozzi da Vignola, Palladio, etc.) (e.g., Figure 7.9) helped us to highlight the 
different architectural elements using just a few well-chosen scale of features.  

 
Figure 7.9. Schemes of the Greek Doric order. 

Once selected ad hoc a few features, the Random Forest classifier was trained 
again, in order to investigate their effectiveness as a support for the classification.  
In parallel, the dataset was classified using other different combination of 
features, starting from the 135 ones extracted above with a multi-scale approach, 
and iteratively discarding the least important ones for the algorithm, down to 
seven features.   

Finally, all the different classification results have been compared with respect 
to F1-score and time for training (Table 3).   

 

Table 7.3. Comparison of different feature combination for the Basilica classification, 
whit respect to F1-score and time of training. 

As we can see, by iteratively discarding the least relevant features the F1-score 
increases at the first step then slowly decreases. In contrast, the performance of 
the classifier is considerably improved by selecting only a small subset of useful 
features. Besides, it saves processing time concerning feature extraction, training 



Part 3. Case studies  

94 
 

time and classification. After the manual annotation (5 min), the extraction of 
ad hoc features (15 min), the Random Forest took ca half a minute to classify the 
entire datasets (500 mil points) (Figure 7.10). Results in terms of Precision, 
Recall, and F1-score are summarised in Table 7.4. 

 
Figure 7.10. Classification result of the Basilica point cloud. 

CLASS Ster. Stylob Floor Shaft Ech. Abac. Archit Frieze Prec. Recall F1 

Stereob 3325 427 13 0 0 0 0 0 88.31% 98.52% 93.14% 

Stylob 50 7974 312 7 0 0 0 0 95.58% 83.99% 89.41% 

Floor 0 1093 11992 0 0 0 0 0 91.65% 97.36% 94.42% 

Shaft 0 0 0 48490 0 0 0 0 100 % 99.88% 99.94% 

Echinu
s 0 0 0 1 8390 1 7 0 99.89% 99.88% 99.89% 

Abacus 0 0 0 50 10 6249 979 0 85.74% 99.98% 92.32% 

Archit. 0 0 0 0 0 0 19380 0 100 % 95.13% 97.50% 

Frieze 0 0 0 0 0 0 7 11406 99.94% 100% 99.97% 

 AVERAGE 95.14% 96.84% 95.82% 

Table 7.4. Confusion matrix and accuracy metrics for the Basilica dataset, using ad hoc 
geometric features. 
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7.3. AD HOC FEATURES RELIABILITY 
After the experiments on the Basilica, it was important to verify if the covariance 
feature extraction at neighbourhood size proportional to the column radii, was 
working similarly on other datasets. From Table 7.5 we can see that the 
hypothesis was verified and different architectural elements (e.g., shafts, 
capitals, friezes) were highlighted choosing ad hoc features. Given the above, the 
experiments in the next sessions are all based on ad hoc selected features. 

 BASILICA TEMPLE PORTICOES MAUSOLEUM 

A
N

IS
O

TR
O

PY
 

ex
tr

ac
te

d 
w

it
h 

r 
= 

Ø
 c

ol
um

ns
 

    

SU
R

FA
C

E 
V

A
R

IA
TI

O
N

 
ex

tr
ac

te
d 

w
it

h 
r 

= 
r 

co
lu

m
ns

 

    

PL
A

N
A

R
IT

Y 
ex

tr
ac

te
d 

w
it

h 
r 

= 
Ø

 c
ol

um
ns

 

    
Table 7.5. Similar behaviours of the covariance features ad hoc extracted. 
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7.4 TEMPLE OF NEPTUNE, PAESTUM 
The best preserved of the temples in Paestum is the so-called Temple of 
Neptune. In the eighteenth century, recognised as the biggest one, it was 
assumed that it must have been dedicated to the patron god of the city 
(Neptune). The dedication is almost certainly wrong, as the terracotta votive 
figurines found in the sanctuary show female types commonly identified as Hera. 

 
Figure 7.11. Temple of Neptune in Paestum, Italy.  

The Temple measures ca 24,5 x 60 m and consists of 6 frontal and 14 lateral 
columns while in the interior area it has two rows of double ordered columns. 
The available dataset is the result of a combined UAV and terrestrial 
photogrammetric survey (Fiorillo et al., 2013). 

At first, to speed up the computational process, the point cloud was subsampled; 
the data on which the experiments were conducted consists of some 2.8 million 
points (Figure 7.12).  

 
Figure 7.12. Photogrammetric point cloud of the Temple of Neptune in Paestum (ca 2,8 

million points). 

Then, to semantically classify the monument, ten different classes 
corresponding to the architectural elements were identified, and manually 
annotated (Figure 7.13).  As the training set must give a key to read the entire 
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structure, the annotations were distributed in different parts of the dataset, so 
to include all the classes and the diverse types of columns. 

 
Figure 7.13. Photogrammetric point cloud of the Temple of Neptune with some 

manually annotated portions used for the training.  

After the annotation, it was essential to extract geometric features able to 
highlight the architectural elements. Given the successful result of the previous 
experiment (Section 7.2), further verified in Section 7.3, a few covariance features 
were computed at neighbourhood proportional to the three different sets of 
columns of the Temple (diameters 0.8 m, 1.4 m, 2 m) (Figure 7.14).  

 
Figure 7.14. Three different sets of columns highlighted on the Temple dataset.  
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As demonstrated in Table 7.6, extracting the feature Surface Variation at 
neighbourhood sizes equal to the three sets of column radii allows detecting the 
respective column shafts. Similarly, with the Anisotropy calculated at the 
diameter sizes, all the different capitals are emphasised.   

SURFACE VARIATION  ANISOTROPY 

 
  r = 0.4 m 

 
  r = 0.8 m 

 
  r = 0.7 m 

 
  r = 1.4 m 

 
  r = 1 m 

 
  r = 2 m 

Table 7.6. Similar behaviour of the covariance features ad hoc extracted. 

Once the training set was enriched with annotated classes and features, different 
Machine and Deep Learning models (described in Section 5.3) were trained to 
predict the labels on the entire dataset. 

When using neural networks, the classification was carried out with and without 
considering the decentralised coordinates of the points (Section 5.2). The 
practice of using decentralised coordinate with CNN has been verified to be 
useful for the classification in the geospatial environment (Özdemir and 
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Remondino, 2019); however, their applicability in an architectural contest had 
not been explored yet.   

Table 7.7 summarises all the accuracy metrics reached with the different 
approaches. As we can observe from the diagram, the highest levels of accuracy 
were achieved using the machine learning approaches (RF and OvO).   

 

Table 7.7. Summary of the classification results for the Temple dataset achieved with 
different ML/DL methods. 

Table 7.8 displays in parallel the per-class F1-score results for each predictive 
model used.  The F1-score averages are between 86.69 % with Bi-LSTM and 
91.92% with Random Forest. 

CLASS / 
ALGORI_ 

THM 

F1-Score 

RF OvO CNN 1D CNN 2D 
(d.c.) CNN 2D Bi-LSTM 

(d.c.) Bi-LSTM 

Grass 98.52% 99.05% 99.05% 99.08% 98.89% 98.20% 97.95% 

Crepid. 95.34% 95.42% 95.30% 96.22% 95.84% 92.48% 91.57% 

Floor 97.98% 97.84% 97.31% 97.89% 98.02% 96.68% 96.48% 

Shaft 99.04% 98.73% 98.25% 98.30% 98.77% 97.60% 97.90% 

Echinus 88.45% 84.40% 81.03% 79.54% 84.91% 78.15% 76.53% 

Abacus 81.66% 80.64% 74.85% 75.93% 79.23% 77.86% 72.94% 

Archit. 91.16% 91.90% 78.56% 80.22% 90.69% 89.10% 89.53% 

Frieze 87.31% 87.74% 77.50% 66.97% 87.31% 78.13% 86.02% 

Cornice 94.55% 93.90% 93.24% 92.73% 93.54% 87.76% 89.52% 

Tymp. 85.19% 84.66% 85.99% 80.55% 85.31% 70.94% 74.14% 

AVERAGE 91.92% 91.43% 88.11% 86.74% 91.25% 86.69% 87.26% 

Table 7.8. A summary of all the tested ML/DL models reporting per-class F1-score. 

With a heritage dataset, the regular use of decentralised coordinates for DL 
approaches reduced the F1-Score average. However, from closer analysis, we can 
observe that the F1-Score decreases in particular when the classes share the same 
geometry (e.g., Architrave, Frieze, and Tympanum).  What said above represents 
one of the most challenging points for heritage classification, as there’s not 
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always a correspondence between shape/colours and semantics for the 
architectural classes. 

Table 7.9 reports the results obtained with the RF classifier, including confusion 
matrix and accuracy metrics. Each row of the matrix represents the instances in 
an actual class (ground truth), while each column represents the instances in a 
predicted class. In general, we can observe again that most of the classification 
errors are between classes with similar geometric properties, such as "Abacus" 
and "Architrave", or also "Frieze", "Cornice" and "Tympanum (Figure 7.15).   

CLASS  Grass Crep. Floor. Shaft Echinu
s 

Abacu
s 

Archit
r. Frieze Cornic

e Tymp. Prec. Recall F1 

Grass 56998 1647 0 0 0 0 0 0 0 0 
97.19

% 
99.88

% 
98.52

% 
Crepid

. 67 38389 484 497 0 0 0 0 0 0 
97.34

% 
93.43

% 
95.34

% 

Floor 0 958 62211 993 0 0 0 0 0 0 
96.96

% 
99.03

% 
97.98

% 

Shaft 0 54 125 169950 172 56 4 0 268 0 
99.60

% 
98.49

% 
99.04

% 

Echin. 0 0 0 966 18717 988 4 0 40 0 
90.35

% 
86.62

% 
88.45

% 
Abacu

s 0 0 0 63 2651 23941 3998 0 636 0 
76.52

% 
87.54

% 
81.66

% 
Archit

r 0 0 0 0 0 2140 50903 2600 1 0 
91.48

% 
90.84

% 
91.16

% 

Frieze 0 0 0 0 0 0 1036 34609 334 33 
96.10

% 
79.98

% 
87.31

% 
Cornic

e 0 42 0 90 67 223 90 4569 106415 2071 
93.70

% 
95.41

% 
94.55

% 

Tymp 0 0 0 0 0 0 4 1492 3841 21393 
80.03

% 
91.05

% 
85.19

% 

 AVERAGE 
91.93

% 
92.23

% 
91.92

% 

Table 7.9. RF classification results: Confusion Matrix and per-class accuracy for the 
Temple dataset. 

 
Figure 7.15. Some classification problems.  

https://en.wikipedia.org/wiki/Matrix_(mathematics)
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To summarise the work done on the Temple, as seen for the Basilica dataset, the 
use of ad hoc covariance feature has been demonstrated to be effective for the 
classification results. Different classifiers were explored, and ML approaches 
outperformed DL methods. In terms of time expense, the manual annotation 
took 20 minutes, while the feature extraction around 30 minutes (20 covariance 
features were calculated). The DL approaches required about 30 minutes on GPU 
to be trained, while the ML ones completed the training in 10 minutes on a CPU. 
Once the models were trained, a prediction for the classification of the entire 
model was given in a few minutes.  

Once classified, the dataset could be separated into the different semantic parts 
(Figure 7.16). Such a result represents a good starting point to generate a HBIM 
model.  

 
Figure 7.16. Exploded view of the Temple of Neptune dataset after the automated 

classification.  

The rendering of the classification results of the Temple is available at 
https://youtu.be/8-muH633ud8.  

https://youtu.be/8-muH633ud8
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7.5 PORTICOES IN BOLOGNA (2) 
Given the problems we had with the texture-based approach on the Bologna 
dataset (Section 6.4), two different supervised approaches based on geometric 
features were explored on a different and bigger portion of the same dataset 
(Figure 7.17).  

 

Figure 7.17. Point cloud of some porticoes in Bologna (ca 85 m L x 20 m H x 5m D), 1 
million points (Remondino et al., 2016). 

For both cases, the classification aimed to semantically annotate the different 
architectural and decorative elements of the building.  

7.5.1 Classification using CGAL   

At first, the CGAL method (Giraudot and Lafarge, 2019) presented in Section 5.6 
and used for the classification of the Bartoccini’s tomb (Section 7.1), was 
experimented. 

The CGAL interface allows annotating the point cloud quickly by manually 
distributing the annotation of the classes directly on the point cloud. 14 different 
classes were identified for this case study (Figure 7.18). Even if it is fast, for a 
complex dataset like this one, such operation is not user-friendly, and the risk to 
include a portion of point cloud into a wrong class is high.  

 
Figure 7.18. Manual annotation of the classes of interest for the classification of the 

Bologna dataset, using CGAL interface.  
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After the annotation of the dataset, the predefined features provided by CGAL 
were extracted at 10 different scales. In addition to the geometric features, also 
the HSV values (Section 4.2) were considered for the classification task. 

Finally, a Random Forest algorithm (ETH Zurich Random Forest Template, 2015) 
was defined and trained. Once generated, the classifier performed a prediction 
on the entire point cloud (Figure 7.19). 

 
Figure 7.19. Classification results of the Bologna dataset using CGAL. 

The classes Road, Pavement, Vault, and Cornice were correctly identified by 
CGAL, as the classifier relies on several features correlated with the z coordinates 
of the points (Elevation, Height above, Height below). Unfortunately, precisely as 
with the texture-based approach results, many misclassification problems came 
out under the porticoes where the plaster surface is not homogeneous. Probably, 
in this case, the colour component was preponderant over the geometric 
features. The same hypothesis could have caused the misclassification problems 
we had within the points belonging to the class Arch, mostly classified as 
Moulding for their colour.  

7.5.2 Classification using ad hoc features   

Given the classification problems with CGAL (Section 7.5.1), on the same dataset 
was tested the approach based on ad hoc features.  

In this case, the manual annotation was controlled by the segment tool within 
the open-source software Cloud Compare, and it took about 20 minutes (Figure 
7.20).  
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Figure 7.20. Manual annotation of the class of interest for the classification of the 
Bologna dataset, using CloudCompare segment tool. 

After the annotation, some significant covariance features were extracted 
(Figure 7.21). The choice of the feature neighbourhood sizes depended on three 
factors:  

• column size (radius = o.4m) → the features Planarity, Anisotropy, and 
Sphericity extracted at the diameter measure could highlight the 
different components of the columns (bases, shafts, capitals); 

• facade decorations → to detect mouldings and drainpipes the feature 
Omnivariance was calculated at a small neighbourhood size; 

• intercolumniation → the spacing between columns (4 m) was measured 
to bring to light the category Arch, using the Surface Variation computed 
at 2 m. 

 
Figure 7.21. Significant geometric features highlighting the architectural elements of 

the Bologna dataset.  
 



Chapter 7. Geometry-based classification results 

105 
 

Together with the geometric features, also the RGB values of the point cloud 
were given in input to train the predictive models. In fact, without using the 
colour components, it would have been hard distinguishing categories such as 
Curtains, Wall and Window, that present similar geometric properties.  

As well as in the previous section, also for the Bologna dataset, many predictive 
models have been trained. Table 7.10 summarises the different accuracy metrics 
achieved, while in Table 7.11 the per-class F1-score results are displayed.   

 

Table 7.10. Summary of the classification results for the Bologna dataset achieved 
with different ML/DL methods. 

 F1-Score 
CLASS / 

ALGORIT. RF OvO CNN 1D CNN 2D 
(with d.c.) CNN 2D  Bi-LSTM  

(with d.c.) Bi-LSTM  

Road 35.28% 46.54% 87.29% 0.00% 2.93% 3.40% 9.98% 

Facade 92.05% 90.79% 88.61% 81.41% 91.35% 78.70% 83.68% 

Pavement 81.59% 86.48% 89.20% 71.14% 80.47% 75.12% 78.50% 

Base 82.85% 86.58% 65.96% 0.00% 83.48% 0.00% 0.00% 

Shaft 97.17% 96.90% 93.23% 82.10% 97.90% 69.95% 82.28% 

Capital 80.60% 82.90% 58.52% 0.00% 64.58% 0.00% 0.00% 

Arch 88.86% 86.90% 67.05% 40.01% 88.48% 21.58% 53.06% 

Wind/door 80.89% 79.90% 61.48% 65.67% 77.52% 53.15% 68.97% 

Vault 93.94% 92.90% 88.82% 84.33% 94.57% 80.30% 85.99% 

Molding 70.88% 58.77% 48.14% 23.02% 66.26% 0.02% 0.43% 

Curtain 92.60% 89.11% 81.15% 82.98% 95.71% 6.21% 90.02% 

Drainp. V. 68.27% 62.63% 21.82% 0.00% 57.32% 0.00% 0.00% 

Cornice 96.26% 95.78% 85.84% 87.32% 94.23% 86.57% 90.42% 

Drainp. H. 85.34% 88.02% 69.26% 0.00% 60.29% 0.00% 0.00% 

AVERAGE 81.90% 81.73% 71.88% 44.14% 75.37% 33.93% 45.95% 

Table 7.11. A summary of all tested ML/DL classification methods reporting the per-class 
F1-score for the Bologna dataset. 



Part 3. Case studies  

106 
 

Again, the best-succeeded results were related to the machine learning 
approaches. However, while in the previous case study the lower value of F1-
score was the 86.69% achieved with Bi-LSTM, in this case, there was a suspicious 
change between the lower 33,93% with Bi-LSTM and the higher 81,90% with RF. 
Even if the features were handcrafted for the case study, the class structure 
complexity of the dataset caused lower accuracy metrics. Moreover, it seems that 
the DL approach was not suitable for this kind of dataset. 

To better understand the classification errors, we can have a look at the following 
confusion matrix related to the Random Forest prediction (Table 7.12). In red are 
highlighted the lower values of accuracy, found for the classes Road, Moulding 
and Horizontal drainpipes.  

Most of the points belonging to the class Road were misclassified as Pavement; 
this problem can be easily solved, adding to the training data some extra-features 
related to the height of the points. We have seen that the CGAL approach was 
entirely distinguishing the two categories. If we did not consider the accuracy 
values relative to the class Road, the average of the results would increase up to 
87%.  

Having particular attention to the False Negative values concerning the classes 
Moulding and Horizontal drainpipes, we can see that points belonging to these 
two classes were often attributed to other classes with similar geometries (e.g. 
Facade, Window/door). 

CLASS Road Facad
e Pav. Base Shaft Cap. Arch. Win/

door Vault Moul
ding Curt. Drain 

V. Corn. Draip 
H. Prec. Rec. F1 

Road 1411 43 5105 0 0 0 0 0 0 0 0 30 0 0 21.41
% 

100 
% 

35.28
% 

Facade 0 46838 1968 73 0 0 145 95 254 660 62 151 14 0 93.19
% 

90.93
% 

92.05
% 

Pav. 0 59 16695 282 0 0 0 21 1 1 0 25 0 0 97.72
% 

70.03
% 

81.59
% 

Base 0 8 17 1604 226 0 1 11 0 1 0 3 0 0 85.73
% 

80.16
% 

82.85
% 

Shaft 0 0 0 0 9143 0 0 0 0 0 0 9 0 0 99.9
% 

94.58
% 

97.17
% 

Capital 0 0 0 0 246 1101 178 0 73 0 0 22 0 0 67.9
6% 

99.01
% 

80.6
0% 

Arch 0 169 0 0 0 0 6179 0 757 5 0 0 0 0 86.91
% 

90.91
% 

88.8
6% 

Win/do
or 0 27 0 0 0 0 0 2321 0 242 0 0 0 0 89.61

% 
73.71

% 
80.8
9% 

Vault 0 1060 0 0 0 1 218 0 18331 0 0 0 0 0 93.4
8% 

94.41
% 

93.9
4% 

Mouldi
ng 0 2919 55 19 0 0 7 693 0 6526 205 3 0 0 62.59

% 
81.71

% 
70.8
8% 

Curtain 0 49 0 0 0 0 0 0 0 198 3464 4 0 0 93.24
% 

91.96
% 

92.6
0% 

Drainp.
V. 0 221 0 23 52 10 69 8 0 354 36 1150 47 0 58.38

% 
82.20

% 
68.27

% 

Cornice 0 118 0 0 0 0 0 0 0 0 0 2 4746 175 94.15
% 

98.4
6% 

96.2
6% 

Drainp. 
H. 0 0 0 0 0 0 0 0 0 0 0 0 13 547 97.6

8% 
75.76

% 
85.34

% 

 AVERAGE 81,57
% 

87,42
% 

81,90
% 

Table 7.12. RF classification results: Confusion Matrix and per-class accuracy for the 
Bologna dataset. In orange and red are highlighted some anomalies.  
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To classify the entire dataset (Figure 7.22) it was enough less than one hour using 
a RF model.  The manual annotation was undoubtedly the most time-consuming 
part of the classification process (20 minutes). After that, the covariance features 
were calculated in 15 minutes, the model trained in 5 minutes and the prediction 
done in less than a minute. 

 

Figure 7.22. Classification results achieved training a Random Forest classifier. 

An illustrative comparison between a portion of dataset manually annotated 
(Figure 7.23a), automatically classified with CGAL (Figure 7.23b) and with ad hoc 
features (Figure 7.23c) is shown below.  

 
Figure 7.23. A portion of the Bologna dataset: manually annotated (a), classified with 

CGAL (b), classified with ad hoc features (c). 

The development of a new methodology designed for architectural case studies 
was proved to be helpful for the classification purposes. All the different 
semantic categories could have been identified and separated (Figure 7.24), even 
if with certain ones there are still some problems to solve. Indeed, such a result 
is an excellent point to start, instead of manually segmenting the million-point 
data. 
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Figure 7.24. Exploded view of the Bologna dataset after the automated classification. 
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CONCLUSION AND FUTURE WORKS  

In the first part of the thesis, a review about 2D and 3D segmentation and 
classification algorithms was presented. Although not fully exhaustive, this 
study reported the most popular approaches suitable for both the geospatial 
and the heritage community. The methods were divided into two main 
categories, traditional and machine learning approaches, according to their 
core line. The key difference among these approaches is the method or 
criterion used to measure the similarity between the points and hence make 
the grouping decisions.  

This deep literature review revealed an evident lack of classification 
approaches designed for the architectural environment, contrarily to the 
high level reached in the geospatial field. Therefore, the development of a 
process able to automatically classify archaeological/architectural 3D data 
was considered to be highly demanded.  

To bridge this gap, two different classification methods based on a 
supervised machine learning pipeline have been developed and tested. Both 
methods allow to semantically enrich 3D heritage data, either working on 
the textures of the models (texture-based approach) or the geometry of the 
point clouds (geometry-based approach).  

With the texture-based approach (described in Chapter 4 and explored in 
Chapter 6) experts such as archaeologists, restorers, etc., can automatically 
classify the textures of the heritage objects, starting from small annotations 
of the classes. The results of the 2D classification can then be projected and 
visualised onto the 3D geometries for a better understanding.  

The geometry-based approach (described in Chapter 5 and explored in 
Chapter 7) provided a general and straightforward method to classify 
heritage point clouds, through the use of ad hoc features, i.e. the covariance 
ones, able to highlight the architectural elements. The choice of the optimal 
neighbourhood radius for the covariance features extraction is based on the 
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knowledge of a few essential measures of the object analysed. Indeed, 
neighbourhood sizes are derived from simple proportional and dimensional 
rules, typically used for the construction of classical architectures and re-
proposed in the different heritage buildings of the following centuries. The 
experiments demonstrated that it’s not necessary using many features 
extracted at different scales, to get the most accurate classification results (as 
standard practice in the geospatial field). As future works, further tests will 
be carried out to (i) verify the applicability of the developed methodology to 
more complex and not repetitive structures, as well as (ii) identify and test 
further geometric rules for the classification of buildings with different 
architectural styles.  

For both the aforementioned approaches, the existence of a wide variety of 
building techniques and the usage of diverse ornamental elements were 
found to act as obstacles in generalising the classification techniques to 
heritage case studies. Besides, monuments can present different types of 
decays, depending on their exposure under various conditions, hence 
increasing the difficulty of the classification tasks.  

To mitigate these issues, the presented machine learning-based approaches 
were proved to be beneficial for classifying large, varied and complex 
scenarios, provided that the training datasets are sufficiently large and well-
assorted among the classes.  

With regards to the choice of the most appropriate approach, the author 
believes that in the heritage field each case study must be treated 
individually. This means that for every object under investigation, it is 
essential understanding which are the classification purposes, its needs, and 
the required classes. Once those are clarified, the most fit-for-purpose 
approach can be applied (texture- vs geometry-based), depending on the 
object’s shape, complexity, dimension, presence of good texture, etc.  

The main strengths of the proposed methods can be summarized as follows:  

• reduced manual input; 

• short time to classify big data;  

• high levels of accuracy; 

• automatic detection of small cracks or details that can hardly be caught 
by the human eye;   

• possibility to map the decays on UV maps and then re-project them onto 
the 3D models;  

• possibility to compute the areas that each class occupies, thus deriving 
useful data for monitoring and restoration purposes;  

• automatic recognition of similar architectural elements in vast datasets, 
that can be potentially linked to parametric families within HBIM 
environments; 
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• applicability of the approaches to different kind of buildings, 
monuments or any other type of 3D data. 

From the analysed case studies, the following remarks and open issues can be 
finally drawn: 

• feature extraction procedures require high computational costs. To 
accelerate the computation, in most cases it was necessary to subsample 
the datasets. Therefore, to keep the original point cloud density, an 
approach based on different levels of details will be developed in the 
future. The idea is to first discriminate the macro categories on a 
subsampled point cloud (i.e., floor, facade, roof). Then each category will 
be iteratively divided into subclasses (i.e., façade → windows → window 
frames + glasses), processing step by step more dense clouds;  

• the higher the radius of extraction and the number of the features are, 
the higher is the time necessary for the computation. This problem was 
partially solved, introducing the selection of a few ad hoc features, that 
speed up the processing time;  

• within the heritage field, the training sets can hardly be transferred to 
other datasets, due to the high variability of the input data. To provide 
an element of solution, for future works the author aims to work across 
different heritage buildings and generalize the geometry-based 
classification approach w.r.t some basic classes (e.g. windows, doors, and 
columns). In order to accomplish this task, it will be necessary to increase 
the number of labelled data. In this regard, the creation of a new 
benchmark project, that collects annotated architectural data and 
measure the performance of state-of-the-art algorithms through shared 
datasets and platforms, will be pursued in the future.  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