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Abstract 

 

 

 

In the last century, technology had a great evolution with a speed that can equal or even exceed the 

progress made over millions of years in the "Homo" story. At the same time the way of life of the 

population has radically changed, resulting in a style typical of “Homo Sedentarius”. Excessive use 

of the car, the increase of technology (elevators, escalators, appliances, remote control, cordless 

phone), too many hours in front of the television or computer reduced time spent in outdoor activities. 

This lifestyle and the increase in human longevity has led to an increase in health problems and 

consequently to have an increasing need for knowledge of the human body to improve health care. 

The spine is one of the major organs subject to trauma or genetic problems. Today 30% of people 

suffer from back pain. Every day a large number of surgical interventions on the spine are performed 

to treat those patients with severe spinal deformities (about 50,000 a year in Italy), such as scoliosis 

or kyphosis. From a statistical analysis, the percentage of failures for this type of interventions is 

around 25-30%. 

In literature there are many studies which investigate the biomechanics of the spine from different 

points of view. In vivo tests allow the analysis of the movement considering the human motion in its 

complex when a patient or a healthy subject is performing different daily motor tasks (such as 

walking, walking up/down stairs, standing to sitting position, …).  In silico tests are useful to simulate 

different loading scenarios and pathologies analyzing how the spine acts under the influence of forces 

and moments. In vitro tests allow measuring the stiffness and range of motion of spine and allow the 

test of new spinal devices investigating what happen: at tissue-level to elucidate the rheological 

properties, at organ-level to study the structural properties and at spinal level to investigate the 

biomechanical function. 

The aim of my PhD thesis was the improvement of the knowledge of the strain distribution on 

biological tissues, in particular on ligaments and intervertebral discs of the human spine in the healthy 

conditions. The results obtained could help clinicians to develop new surgical procedures and the 

development of new prosthesis devices. 

The first part of this thesis was the improvement of the methodologies used to measure the strain 

distribution, simultaneously on hard tissues (vertebrae) and soft tissues (ligaments and intervertebral 

discs), by the use of Digital Image Correlation (DIC). In this way the interaction between different 

tissues of the spine can be analyzed in detail simulating real load conditions. 

The second part of the research was to study in deep the biomechanical behaviour of the intervertebral 

discs and of the different ligaments on untreated and treated spine. The disc acts as a shock absorber 

for the spine, reducing shocks and impacts. The disc tends to stiffen as the loading rate increases but 

the loading rate does not affect the way the disc is deformed. 

The supraspinous and interspinous ligament were studied analysing how they were deformed under 

different loading conditions. These ligaments limited the movement of the spine during flexion 
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reducing in this way the overload on the intervertebral disc; conversely these ligaments did not give 

significant mechanical resistance during extension and lateral bending. 

Another ligament which was investigated in depth was the anterior longitudinal ligament. This 

ligament limited mainly the extension of the spine reducing the range of motion of the column; during 

flexion the ligament limited also the bulging of the disc. The anterior longitudinal ligament did not 

offer great mechanical strength during lateral bending and axial torsion. Furthermore, the anterior 

longitudinal ligament, unlike other ligaments (such as the ligament of the knee or of the ankle) does 

not intervene limiting the movement only when large range of motion are reached by the joint, but 

intervenes immediately by offering mechanical resistance to the column mainly during flexion and 

extension. 

Summarizing, the study underlines the necessity of using a full-field strain analysis to enhance the 

knowledge of the biomechanics of the spine and the interaction between different types of tissue. 

Furthermore, the results reported in this thesis could be useful also to build better multibody spine 

models and to include more realistic properties in finite element models. These results could be a 

starting point for future works in which the effect of different surgical procedures and the use of new 

surgical devices could be investigated. 

 

  



7 

 

 

Summary 

 

1 Background ................................................................................................................................................... 11 

1.1 Biomechanical function of the spine ..................................................................................................... 11 

1.2 Anatomy of the spine ............................................................................................................................ 11 

1.3 Pathologies of the spine ........................................................................................................................ 13 

1.4 Aim ......................................................................................................................................................... 15 

2 Tools for biomechanical investigation of the spine ...................................................................................... 17 

2.1 Introduction ........................................................................................................................................... 18 

2.2 Methods ................................................................................................................................................ 18 

2.2.1 Search strategy ............................................................................................................................... 18 

2.2.2 Inclusion-exclusion criteria and data extraction ............................................................................ 19 

2.3 Results ................................................................................................................................................... 20 

2.3.1 Articles selection............................................................................................................................. 20 

2.3.2 Tools for biomechanical investigation ............................................................................................ 20 

3 A review of the investigations on the biomechanics of the untreated and treated spine .......................... 23 

3.1 Investigations on the biomechanics of the untreated spine ........................................................... 24 

3.2 Biomechanical implications of lesions of the spine ligaments .............................................................. 25 

3.2.1 Biomechanics of uncompromised spine ligaments ........................................................................ 25 

3.2.2 Lesions of spine ligaments .............................................................................................................. 25 

3.3 Biomechanical implications of interventions of the facets and lamina ................................................ 27 

3.3.1 Biomechanics of facets and lamina ................................................................................................ 27 

3.3.2 Lesions of the facets and lamina .................................................................................................... 28 

3.4 Conclusions ............................................................................................................................................ 30 

4 Digital Image Correlation .............................................................................................................................. 37 

5 Application of Digital Image Correlation on hard and soft tissues simultanously ....................................... 41 

5.1 Introduction ........................................................................................................................................... 42 

5.2 Materials and methods ......................................................................................................................... 43 

5.2.1 Specimens ....................................................................................................................................... 43 

5.2.2 Mechanical testing ......................................................................................................................... 43 

5.2.3 Digital Image Correlation ................................................................................................................ 44 

5.3 Results ................................................................................................................................................... 45 

5.3.1 Anterior bending............................................................................................................................. 45 

5.3.2 Lateral bending ............................................................................................................................... 46 

5.4 Discussion .............................................................................................................................................. 48 



8 

 

 

5.5 Conclusion ............................................................................................................................................. 49 

6 The effect of loading rate on porcine spines during flexion ......................................................................... 51 

6.1 Introdution ............................................................................................................................................ 52 

6.2 Materials and methods ......................................................................................................................... 53 

6.2.1 Specimen preparations ................................................................................................................... 53 

6.2.2 Mechanical test .............................................................................................................................. 53 

6.2.3 Full-field strain measurement ........................................................................................................ 54 

6.2.4 Statistical analysis ........................................................................................................................... 55 

6.3 Results ................................................................................................................................................... 55 

6.3.1 Moment - displacement ................................................................................................................. 55 

6.3.2 Overview of the strain maps .......................................................................................................... 57 

6.3.3 Detailed analysis of the effect of the loading rate on the spatial trend ........................................ 57 

6.4 Discussion .............................................................................................................................................. 60 

6.5 Conclusion ............................................................................................................................................. 61 

7 The strain distribution of a specific ligament: the Anterior Longitudinal Ligament..................................... 63 

7.1 Introduction ........................................................................................................................................... 64 

7.2. Materials and Methods ........................................................................................................................ 65 

7.2.1 Study design ................................................................................................................................... 65 

7.2.2 Specimens ....................................................................................................................................... 65 

7.2.3 Mechanical loading ......................................................................................................................... 65 

7.2.4 Measurement of structural properties ........................................................................................... 66 

7.2.5 Measurement of the local distribution of the strain ...................................................................... 67 

7.2.6 Measurement uncertainties, Metrics and statistical analysis ........................................................ 68 

7.3 Results ................................................................................................................................................... 68 

7.3.1 Measurement uncertainties ........................................................................................................... 69 

7.3.2 Structural properties ...................................................................................................................... 69 

7.3.3 Local distribution of strains ............................................................................................................ 69 

7.4 Discussion .............................................................................................................................................. 77 

7.5 Conclusions ............................................................................................................................................ 79 

8 Analysis on the non-linear response of the Anterior Longitudinal Ligament ............................................... 87 

8.1 Introduction ........................................................................................................................................... 88 

8.2. Material and methods .......................................................................................................................... 89 

8.2.1 Specimens ....................................................................................................................................... 89 

8.2.2 Mechanical test .............................................................................................................................. 90 

8.2.3 Measurement of intervertebral motions ....................................................................................... 91 

8.2.4 Digital Image Correlation ................................................................................................................ 91 



9 

 

 

8.2.5 Analysis of strain ............................................................................................................................. 93 

8.2.6 Analysis of the non-linearity ........................................................................................................... 93 

8.2.6 Assessment of measurement uncertainties ................................................................................... 97 

8.3 Results ................................................................................................................................................... 97 

8.3.1 Range of motion and strain maps .................................................................................................. 97 

8.3.2 Non-linear trend of the strain in the different parts of the ALL ..................................................... 98 

8.4. Discussion ............................................................................................................................................. 98 

8.5. Conclusions ......................................................................................................................................... 100 

9 Conclusions ................................................................................................................................................. 101 

References ..................................................................................................................................................... 103 

Acknowledgments ......................................................................................................................................... 111 

 

  



10 

 

 

  



11 

 

 

Chapter 1 

1 Background 

Background 

 

 

1.1 Biomechanical function of the spine 

The spine is one of the most complex parts of the skeleton.1, 2 The principal function of the spine is 

to support and maintain the upright position of the body during the daily life. Furthermore, the spine 

has also the role of protecting the spinal cord and nerves and, thanks to the presence of intervertebral 

discs, can reduce the stresses and the impacts to which the body is subjected (for example during 

walk, up and down stairs, running, …).3 

The spine must also allow the movements of the trunk which happen on different planes: on sagittal 

plane (flexion-extension movement), on frontal plane (right-left lateral bending) and on transverse 

plane (clockwise-anticlockwise axial torsion) (Fig.1.1).4, 5 

 
Fig. 1.1 - The axes of human body: sagittal, longitudinal and transverse axes and the principal movements of the spine. 

(Image from: https://www.my-personaltrainer.it/anatomia/assi-e-piani-corpo-umano.htm) 

 

1.2 Anatomy of the spine 

The spine consists of 33-34 vertebrae with various sizes and shapes. The spine is divided in four 

different segments: cervical spine (C1-C7), thoracic spine (T1-T12), lumbar spine (L1-L5) and 

sacrum (three-five fused coccyx vertebrae) (Fig.1.2).6 The spine is not a straight structure but has a 

physiological curvature: lordosis is the normal inward  curvature of the lumbar and cervical regions 

of the human spine while kyphosis  is the normal outward (convex) curvature in the thoracic 

https://www.my-personaltrainer.it/anatomia/assi-e-piani-corpo-umano.htm
https://en.wikipedia.org/wiki/Lumbar
https://en.wikipedia.org/wiki/Cervical_vertebrae
https://en.wikipedia.org/wiki/Vertebral_column
https://en.wikipedia.org/wiki/Kyphosis
https://en.wikipedia.org/wiki/Thoracic
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and sacral regions.6 Thanks to these curvatures, the spine is able to support a weight ten times greater 

than a completely straight column. 

The column consists of an alternation of vertebrae and intervertebral discs. The vertebra consists of 

a thick layer of cortical bone which surrounds the structure, while in its interior there is the trabecular 

bone. 

Fig 1.2 - The physiological curvature of the human spine with the different regions (cervical, thoracic, lumbar, sacrum 

and coccyx spine (Image from: http://www.osteopatasiracusa.net/2017/06/29/1572/) 

 

The anterior side of the vertebra is connected with the posterior side by two structures called pedicles. 

In the posterior side there are the transverse processes, the lamina and the spinous process (Fig.1.3).  

Between the anterior body of the vertebra and the posterior arch there is the vertebral foramen where 

the spinal cord is placed.6 

Between the anterior bodies of two contiguous vertebrae, there is the intervertebral disc (Fig.1.3). 

This is composed of the nucleus pulposus and the anulus fibrosus. The nucleus pulposus consists 

of proteoglycans and collagens. It acts as a shock absorber for axial forces and as a semifluid ball 

during flexion, extension, rotation, and lateral bending of the vertebral column. The anulus fibrosus 

consists of several layers of fibrocartilage that surround the internal gelatinous nucleus pulposus.  

This arrangement provides very strong bands between adjacent vertebrae while allowing some 

degrees of movement of the vertebrae. The vertebrae and intervertebral discs are connected by the 

endplates, made of hyaline cartilage. The endplates contain the discs and provide anchorage to the 

collagen fibers.7 

Finally, ligaments and tendons are fibrous bands of connective tissue which are attached to bone 

(Fig.1.3).  Ligaments connect two or more bones together and help to stabilize joints while tendons 

link muscle to bone.8 There are ligaments which connect two contiguous vertebrae (such as 

supraspinous, interspinous ligaments and ligamentum flavum) and other ligaments that connect more 

vertebrae covering the entire spine (anterior and posterior longitudinal ligaments). The system of 

ligaments, tendons and muscles contribute to protect the spine from injuries due to hyperextension 

and hyperflexion (excessive movements).8 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/Sacrum
http://www.osteopatasiracusa.net/2017/06/29/1572/
https://www.sciencedirect.com/topics/medicine-and-dentistry/nucleus-pulposus
https://www.sciencedirect.com/topics/medicine-and-dentistry/annulus-fibrosus
https://www.sciencedirect.com/topics/medicine-and-dentistry/proteoglycan
https://www.sciencedirect.com/topics/medicine-and-dentistry/vertebra
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Fig. 1.3 - A: The anatomy of a vertebra. B: The ligaments of the human spine. C and D: The anatomy of intervertebral 

disc (Image from: https: //www.kinesiopatia.it/glossario/apofisi-spinosa-vertebrale/, 

https://www.spineuniverse.com/anatomy/ligaments, https://www.semanticscholar.org/paper/The-biology-behind-the-

human-intervertebral-disc-Tomaszewski-Saganiak/ccdcee0a3c16c042c1b4265782db6dea68c663d9) 

 

1.3 Pathologies of the spine 

Today 30% of people suffer from back pain.9 The problems related to the spine can be originated by 

different causes: postural balance, impacts, trauma or can have genetic origin. 

Postural balance is very important especially in the recent years when people's lifestyle has changed 

becoming much more sedentary. This could cause changes in the physiological curvature of the spine 

generating pain.  In these cases a postural rehabilitation program could benefit the individual. Back 

injuries are very frequent, causing fractures of the vertebrae (especially in patients with osteoporosis).  

In these cases the patients could be operated injecting cement into the vertebra to restore the shape 

https://www.kinesiopatia.it/glossario/apofisi-spinosa-vertebrale/
https://www.spineuniverse.com/anatomy/ligaments
https://www.semanticscholar.org/paper/The-biology-behind-the-human-intervertebral-disc-Tomaszewski-Saganiak/ccdcee0a3c16c042c1b4265782db6dea68c663d9
https://www.semanticscholar.org/paper/The-biology-behind-the-human-intervertebral-disc-Tomaszewski-Saganiak/ccdcee0a3c16c042c1b4265782db6dea68c663d9
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and the initial size of the vertebra. The problems with genetic origin are also widespread and can 

cause deformity of the spine in the pre-pubertal period (9-10 years). These abnormal curvatures of 

the spine (especially scoliosis) can lead to paralysis if not treated soon.  

 

Fig. 1.4 - A: a radiography of a spine with scoliosis. B: A spine treated with rods and pedicle screws. C and D: Images 

of vertebrae with two pedicle screws and the rod. (Image from: https://mmcneuro.wordpress.com/2013/02/28/making-

sure-pedicle-screws-are-correctly-placed-during-spine-surgery/) 

 

 

Other types of problems can be associated with tumours and the spine is also the most common site 

for bone metastases (50% of osseous metastases).10 In cases of vertebral metastases, the clinician is 

faced with a multifactorial problem which involves neurologic, oncologic, mechanical, and systemic 

considerations. In this framework, the risk of spine failure related to mechanical instability plays a 

fundamental role. In addition there could be also problems related to postoperative complications 

such as infections, septic loosening or pseudoarthrosis.  

Every day a large number of surgical interventions are performed to treat those patients with severe 

spinal deformities (about 50,000 a year in Italy), such as scoliosis (a sideways curvature of the spine) 

or kyphosis. From a statistical analysis, the percentage of failures for this type of interventions is 

around 25-30%.11 This means that the patient is forced to return to the surgery to be re-operated again 

and this event occurs half the time within one year from the first operation. The treated pathologies 

and the relative interventions concern, in 50% of the cases, individuals with age under 60 with a 

significant percentage of individuals in childhood or adolescence.12, 13 To treat spinal deformities, the 

https://mmcneuro.wordpress.com/2013/02/28/making-sure-pedicle-screws-are-correctly-placed-during-spine-surgery/
https://mmcneuro.wordpress.com/2013/02/28/making-sure-pedicle-screws-are-correctly-placed-during-spine-surgery/
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surgeons use a fixation device which consists of screws and rods (Fig.1.4). For certain types of 

interventions, even hooks are used to fix bony parts of the vertebrae after an osteotomy has been 

performed. These devices fix the spine to give it the right physiological curvature but avoid any type 

of movement. 

The failures of the fixation system can be divided into three categories (Fig.1.5): 

1. Rupture of the rod: the rod, which connects the vertebrae, is broken.14, 15 Sometimes, after this 

rupture, during the re-intervention, the broken rod is replaced with a new element or the 

surgeon tries to further stiffen the affected column segment by adding a second rod. The result 

of this further stiffening in many cases causes the double bars to break again.  

2. Pull-out of the pedicle screws from the vertebra: in this case there is no rupture of the 

prosthetic system but there is a pull-out of the screw from the peduncle of the vertebra.11, 15 

As previous, the patient must undergo a new surgical procedure to restore the correct position 

of the screws. 

3. Proximal Junctional Kyphosis (PJK): also in this case, the system does not break, but instead 

there is a "collapse" of the vertebral column starting from the first non-instrumented vertebra 

adjacent to the last instrumented one.16-19 Following this failure, the surgeon tends to extend 

the fixation system even to the "collapsed" vertebra but in many cases the result is that the 

problem is not solved but is only transferred to the next vertebra. 

There are not only the mechanical failures related to the instrumentation used, but also other types 

postoperative complications such as infections, septic loosening or pseudoarthrosis. 
 

Fig. 1.5 - A: The rupture of a single or double rods. B: The pull-out of the screw from the vertebral body. C: The Proximal 

Junction Kyphosis. (Images from: https://med.virginia.edu/neurosurgery/services/spine-surgery/treatment/minimally-

invasive-spine-surgery/, https://neupsykey.com/proximal-and-distal-junctional-fixation-techniques/) 

1.4 Aim 

The aim of my project is the study of the spinal column in order to improve the knowledge about this 

organ to elucidate the role of the different elements (vertebrae, intervertebral disc, ligaments). In order 

to achieve this broad aim, this PhD project included both a methodological part, where the methods 

were fine-tuned and validated, and a more applicative one, where the methods were deployed to assess 

the specific biomechanical behaviour of the different parts of the spine. 

I have optimized the technique of the DIC to be able to study displacements and strains 

simultaneously on hard (vertebrae) and soft tissues (intervertebral discs and ligaments).  In this way, 

the entire spine can be investigated in its complex without separating some elements from the rest of 

the structure, preserving in this way the functionality of the organ. After a preliminary part of the 

research in which I tuned the tool, I have investigated the spine concentrating the attention mainly on 

https://med.virginia.edu/neurosurgery/services/spine-surgery/treatment/minimally-invasive-spine-surgery/
https://med.virginia.edu/neurosurgery/services/spine-surgery/treatment/minimally-invasive-spine-surgery/
https://neupsykey.com/proximal-and-distal-junctional-fixation-techniques/
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two different types of tissues: intervertebral discs and ligaments. I studied their biomechanical role 

measuring the superficial distribution of strain when different loading conditions were simulated. 

In particular the aims of the present study were: 

1. a review of literature about:                                      

a. the methods used for testing the spine and the differences between different types of 

specimens (Chapter 2): the functionality of the spine can be investigated using 

different approaches. In vivo assessment allows the analysis of the movement when a 

patient or a healthy subject is performing different daily motor tasks but does not allow 

to simulate the effects of specific injuries or pathologies. In vitro tests allow to study 

the biomechanics of specific segments of a body simulating realistic loading and 

boundary conditions, different injuries, and varying damage in a controlled manner, 

thus allowing to measure the effect of selected defects or investigating the effects of 

different implants and surgical techniques. Numerical models can be built with 

different strategies and allow the analysis of mechanical systems (such as the spine) 

when moving under the influence of forces and moments. 

b. the biomechanical study on intact and lesioned ligaments and on osteotomy surgical 

procedures (Chapter 3): the stability of the column is granted mainly by the posterior 

structures of the vertebrae. In case of ligament damage or osteotomies, the stability of 

the spine is compromised and the instability firstly leads to pain and subsequently to 

degeneration and deformity. A biomechanical analysis of the lesions of the spine 

ligament and vertebral bone and their effects on spine stability may help surgeons 

improve those invasive surgical techniques, which involve partial or complete damage 

of the spine ligaments. 

 

2. the use of Digital Image Correlation on biological tissues (Chapter 4, Chapter 5): the 

feasibility and the potential of using Digital Image Correlation tool to measure the strain 

distribution simultaneously on hard tissues (vertebrae) and soft tissues (intervertebral discs 

and ligaments) of the spine were explored. 

 

3. how the distribution of strain on the disc changed with different loading rates and with or 

without a conditioning (Chapter 6): the mechanical properties of the intervertebral discs 

significantly depend on loading rate and hydration. What is missing is how the deformation 

trend of the anulus fibrosus changes at different loading rates and the effect of conditioning. 

By the use of Digital Image Correlation, the strain distribution on the surface of intervertebral 

discs was measured in order to understand how the kinematics of the disc could change.  

  

4. the role of the anterior longitudinal ligament (Chapter 7): the anterior longitudinal ligament 

(ALL) is fundamental in constraining motions especially in the sagittal plane and confines the 

intervertebral discs, preventing herniation. Digital image Correlation was used to investigate 

in depth the biomechanical function of the ALL in front of the vertebrae and in front of the 

intervertebral discs, measuring the strain distribution in the ALL for different directions of 

motions (flexion-extension, lateral bending and torsion) and understanding how the strain 

distribution changes through the progression of the loading. 

 

5. the non-linear behaviour of the anterior longitudinal ligament (Chapter 8): while the non-

linear behaviour of spine segments has been extensively investigated in the past, the behavior 

of the ALL and its contribution during spinal flexion and extension has never been studied 

considering the spine as a whole. The strain distribution on the ALL in situ during flexion-

extension was measured comparing the strain on specific regions of interest of the ALL in 

front of the vertebra and the intervertebral disc and analyzing the non-linear relationship 

between the measured strain and the imposed rotation and the resultant moment. 
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Chapter 2 

2 Tools for biomechanical investigation of the 

spine 

Tools for the biomechanical investigation of the 

spine 
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2.1 Introduction 

The spine is subject to several pathologies due to traumas, deformities, tumors and other degenerative 

processes. These pathologies may be localized in a single vertebra or extended to a segment of spine 

and can impact both hard and soft tissues. Generally, the aim of spine surgery is to relieve pain, restore 

mechanical stability, prevent or reduce neurological damage and restore the physiological 

functionality of the spine. To achieve these purposes, the use of screws and rods is mandatory in most 

cases.21 However, post-operative failures like rod breakage, screw pull-out or Proximal or Distal 

Junctional Kyphosis (PJK or DJK) may occur.18,11 The reason of the high number of failures relates 

to the biomechanical function of the different substructures of the spine (ligaments, facets joints, 

muscles, etc.), which may be partially or completely removed or damaged during the surgery.  

Although extensive pre-clinical and clinical research has focused on such failures, there is still a lack 

of understanding and limited consensus on the causes leading to such failures.   

Very briefly: the vertebrae consist of a vertebral body, connected to the adjacent vertebrae by the 

intervertebral discs (IVD), and of a posterior arch, wrapping the spinal cord (Fig. 2.1). The spinous 

and transverse processes are connected by ligaments constraining motions and contributing to spinal 

stability. Adjacent vertebrae are also connected at the facet joints, which constrain motion in 

extension. The aim of the present review is to provide an overview of the biomechanical studies on 

the different structures of the spine. The first section of this review provides an overview of the 

different tools and methods of investigation. The second section summarizes the main biomechanical 

findings of such studies.  

Fig. 2.1 - Anatomy of the spine (left, sagittal section showing the main ligaments) and of the vertebra (right, showing 

the anatomical parts of the vertebral body and of the posterior part) 

 

2.2 Methods 

2.2.1 Search strategy 

A systematic search (Fig. 2.2) using PubMed, OVID-MEDLINE and Google Scholar databases was 

performed to identify papers relevant to the biomechanical role of spinal ligaments, facets and lamina, 

and to the methods of in vitro and numerical investigation up to 20 December 2017.  The initial search 

terms were “spine” in combination with “ligaments”, “anterior longitudinal ligament”, “posterior 

longitudinal ligament”, “interspinous ligament”, “supraspinous ligament”, “flavum ligament”, 
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“capsular ligament”, “intertransverse ligament” (and the corresponding Latin versions), “lamina”, 

“facet”, “facetectomy”, “laminectomy”, “laminoplasty”, “laminotomy”, “range of motion”, 

“instantaneous axis of rotation”, “stiffness”, “stress, strain”, “muscles”.  Moreover, the list of citations 

from the different papers was scanned for additional papers missed from the database search. 

2.2.2 Inclusion-exclusion criteria and data extraction 

After this search, the titles and abstracts were examined, and all the truly relevant papers underwent 

thorough text review. Inclusion criteria were manuscript in English, subjected to peer-reviewing, 

focusing on the human or animal spine, reporting in vivo, in vitro or numerical biomechanical studies.  

Numerical models completely lacking of validation were excluded.  

We performed data extraction for the following aspects: type of investigation method (in vivo, in vitro 

or numerical), type of spine specimen (animal vs. human), type of measurement method (e.g. 

stereophotogrammetry or spine tester), type of loading (e.g. flexion, lateral bending etc.), spine 

segment under investigation (cervical, thoracic or lumbar tract) and measured quantities (e.g. range 

of motion or stiffness or failure load).  

Fig. 2.2 - Outline of the search strategy and search terms adopted for the different sections of this review 

 

 

 

http://www.dl.begellhouse.com/journals/4b27cbfc562e21b8,3a2b605d4aa0d999.html
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2.3 Results  

2.3.1 Articles selection 

A total of over 300 potentially relevant papers were considered in the initial extensive systematic 

literature search. After selection, 66 documents satisfied the inclusion criteria: 35 focused on the 

different methods of biomechanical investigation, 15 papers dealt with the effects of surgical 

interventions on the ligaments, and 16 papers with interventions on the facets and lamina. 

 2.3.2 Tools for biomechanical investigation 

The functionality of the spine can be investigated using different approaches (Fig. 2.3). 

In vivo assessment allows the analysis of the movement when a patient or a healthy subject is 

performing different daily motor tasks (such as walking, walking up/down stairs, standing to sitting 

position, …) considering the human motion in its complex.  Both the natural condition, and the effects 

of postural problems, surgical corrections, rehabilitation and tissue adaptations can be investigated.  

In vivo investigation does not allow to simulate the effects of specific injuries or pathologies and 

cannot compare the effects of different possible types of surgery on the same individual.22  

In order to analyse the range of motion (ROM) and to estimate kinematics trajectories, different non-

invasive tools are available (such as stereophotogrammetry, force platforms and inertial sensors). 

However, due to the unavoidable soft tissue artefacts23,24,25, such movement analysis tools are suitable 

only to measure relative motions of large segments (e.g. thoracic area respect to sacral area).  

Fig. 2.3 - Possible approaches to investigate the biomechanics of the spine, including different investigation tools, 

different type of specimen, and different kinds of simulation 

 

Conversely, such in vivo tools cannot address in detail inter-vertebral motions, which are small 

compared to the measurement uncertainties.   

Imaging techniques (plane radiography, x-ray computed tomography (CT), fluoroscopy and magnetic 

resonance) can provide information on the internal anatomical structures, the condition of an implant 

and possible implant migrations.  Such imaging techniques allow to measure the motions of individual 

structures of the spinal structure.26 However, the use of these imaging tools is constrained by their 

impact on the patients (in terms of radiation exposure) and by their cost. In this review the in vivo 
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investigations are not considered in detail because reviews on this topic have been published 

recently.27,28 

One of the most critical points for in vitro biomechanical testing is that the specimen ideally should 

have the same anatomy, mechanical properties etc. as the human spine. For this reason, fresh spines 

from human donors are definitely the most fidelic model. However, animal specimens are generally 

easier to obtain. Porcine and sheep specimens are most similar to human in terms of anatomical 

parameters for vertebrae, while mouse and rat lumbar discs and mouse tail discs are the closest 

representation of the human lumbar intervertebral disc geometry (Table 2.1).28,29 On the other hand, 

the use of animal models raises some concerns as their anatomy is different because of the specific 

posture (quadruped vs. bipedal) leading to a different biomechanical loading.29,30 For these reasons, 

animal specimens are suited only for preliminary tests, but clinically relevant conclusions and 

guidelines cannot be based on animal models. 

 
Table 2.1 - Outline of the search strategy and search terms adopted for the different sections of this review 

 

  
Vertebral body Pedicle 

upper 

width  

lower 

width  

upper 

depth 

lower 

depth 

anterior 

height 

posterior 

height 
width height 

Cervical 

baboon similar similar similar similar similar different similar similar 

sheep different different different different different different similar different 

Thoracic 

sheep similar similar different different similar similar 

similar in 

T1-T4, 

different 

in T4-

T12 

similar 

deer different different different different different similar similar 

different 

in T1-T9, 

similar in 

T10-T12 

porcine similar similar similar similar similar similar similar similar 

Lumbar 

sheep similar similar similar similar similar similar similar different 

deer similar similar similar similar 

the 

highest is 

at L2 

similar similar different 

porcine similar similar similar similar similar similar different similar 

 

When designing an in vitro test, the choice of the type of specimen depends on the problem under 

investigation.31,32,33 The specimen can consist of multi-segmental spinal unit (composed by a series 

of adjacent vertebrae and interconnecting soft tissues), a set of three adjacent vertebrae, a Functional 

Spinal Unit (FSU, consisting of two adjacent vertebrae with the respective intervertebral disc and all 

the interconnecting ligaments), or a single vertebra. 

In vitro tests allow to study the biomechanics of specific segments of a body simulating realistic 

loading and boundary conditions (including trauma), different types of injuries, different extent of 

damage in a controlled manner, thus allowing to measure the effect of selected types of defects or 

investigating the effects of different implants and surgical techniques. These tests are performed 

either reproducing non-destructive cyclic movements, or imposing destructive conditions until 
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failure.34,35 While complex multiaxial simulations can be used to replicate physiological loading 

conditions, sometimes simplified loading conditions are preferred as they allow better control and 

reproducibility of the test conditions. 

In order to measure the stiffness, laxity and ROM36,37 of a spine segment, different types of motor 

tasks are simulated. To quantify the local magnitude of strain, strain gauges allow provide great 

measurement precision at selected points on the surface of the specimen (but can be applied only to 

hard tissue).38  Digital Image Correlation (DIC) is a recent tool that allows contact-less and full-field 

measurement of the displacements and of the distribution of strain on the specimen surface when it 

is prepared with a suitable speckle pattern.39 The main limitation of DIC is that it yields relatively 

noisy results on the measured strains, if the method is not properly optimized.34,40 DIC can be applied 

to in vitro testing of hard tissue, such as vertebrae affected by metastases.10 The authors developed a 

method to apply the pattern also to soft tissue, so as to investigate the strain distribution in the 

intervertebral discs, in the ligaments and in the vertebra at the same time and soft tissue.41   

A limitation of in vitro tests is the impossibility of investigating the effects of tissue adaptation (bone 

remodeling, modifications of soft tissues etc.) in the period following surgeries or injuries. 

Numerical simulations became more powerful and better reliable in the past two decades.  Numerical 

models can be built with different strategies, depending on the research question.42,43 A Multi-Body 

Dynamics (MBD) system consists of solid bodies (or links) that are connected to each other by joints, 

which restrict their relative motion. MBD allows analyzing how a mechanical system (such as the 

spine) moves under the influence of forces and moments.44,45,46,47 Conversely, to investigate the 

distribution of stress within an organ, Finite Element (FE) models can be used (Fig. 2.3).48,49,50, 51  

Since numerical models incorporate a number of assumptions and simplifications, their closeness to 

reality cannot be taken for granted.52 For this reason, numerical models need a validation to confirm 

that the reliability of the outputs.53-55 While most experimental techniques allow measuring the state 

of stress/strain only on the exposed surface of the specimen, FE modelling enables to estimate the 

state of stress/strain inside the structure too. 

A synergistic use of experimental and numerical approaches allows building more complete 

information and increases the reliability of the conclusions. 
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3.1 Investigations on the biomechanics of the untreated spine 

Research on the biomechanics of the natural spine may develop important insights on the etiology of 

diseases affecting the spine. This understanding can provide crucial information on the interaction 

between adverse mechanical loading and unfavorable biochemical environment, which can trigger 

the degeneration of spine substructures including intervertebral disc, ligaments, join facets and bony 

structures (Fig. 3.1), (Tables 3.1 and 3.2).3 

 

Fig. 3.1 - Overview of the conditions under which the biomechanics of the spine must be investigated 

The review of White et al.1 describes the spinal kinematics and gives information about the ROM for 

different directions, at all levels from Occiput-C1 to L5-S1.  The thoracolumbar region of the human 

spine (from T1 to L4) was investigated by Busscher et al.33 whose study addressed the ROM, neutral 

zone and stiffness. Panjabi et al.56 investigated the elastic physical properties of each lumbar 

intervertebral level from L1 to S1. The motions were reported in the form of a set of six load-

displacement curves (intervertebral rotations and translations). The consequences of the contraction 

of spinal muscles due to the loads acting on the spine was studied in human cadaveric lumbar 

specimens by Quint et al.57 The action of the intersegmental agonist and antagonist muscles 

biomechanically increased the stiffness of the intervertebral joints in axial torsion and lateral bending; 

conversely, the muscles could destabilize the segment in flexion. 

Wilcox et al.58 provided an extensive review concerning the biomechanics of vertebroplasty and 

kyphoplasty (covering both with in vitro tests and FE models).  More recently, a review was published 

concerning the loading conditions imposed to the cements for vertebroplasty and kyphoplasty.59 An 

overview of the studies (in vitro tests and FE models) conducted and their contribution to understand 

the biomechanics and the functionality of the intervertebral disc (IVD) was described in Newell et 

al.7  

An extensive overview on the evaluation of the spine biomechanics in the untreated condition was 

recently published by Oxland.60 This review covers the studies using human materials, both in vivo 
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and in vitro, including numerical models and animal experimentations when other data were not 

available.  

3.2 Biomechanical implications of lesions of the spine ligaments 

3.2.1 Biomechanics of uncompromised spine ligaments 

The natural biomechanical role of ligaments is to provide stability and prevent hyper-extension or 

hyper-flexion or excessive rotation.61 One way to elucidate the function of the spine ligaments is to 

subject them to mechanical testing either individually, or as part of a spine segment (Fig. 3.1), (Tables 

3.1 and 3.2). Due to the complex nature and role of the ligaments, a multiscale approach (i.e. spanning 

different dimensional levels) is necessary, to elucidate the rheological properties at tissue-level, the 

structural properties at the organ-level, and their biomechanical function at spine level. Hukins et al.62 

used polarized light microscopy, scanning electron microscopy and x-ray diffraction to evaluate the 

organization of the collagen in ligaments, and to link the microstructure of the ligaments to their 

mechanical properties. According to Hukins et al., the longitudinal ligaments constrain bending of 

the spine in a sagittal plane: the posterior and anterior ligaments limit respectively flexion and 

extension. During these movements, they reinforce the action of the anulus fibrosus of the 

intervertebral disc. Furthermore, they found a stress relaxation of about 50% within one minute, due 

to the viscoelasticity of ligaments. The mechanical test performed by Dickey et al.63 addressed the 

importance of the micro-structure of the ligaments in terms of arrangement of the fibers. They showed 

that the collagen fibers in the interspinous ligament form a complex spatial network, which provides 

optimal resistance to spinal flexion when intact; partial lesions of the ligament compromised the 

interaction between fibers, significantly reducing the residual stiffness and strength. Among the 

studies addressing the geometry and mechanical properties of the ligaments, Yoganandan et al.64 

measured the lengths and the cross-sectional areas of the different ligaments using computed 

tomography and a cryomicrotome. Grimes et al.65 studied segments of human lumbar spines, cutting 

some of them into sagittal sections for a qualitative description of the intraforaminal ligamentous 

structures, while others were used for biomechanical tests to failure to evaluate the strength of nerve 

roots with ligamentous attachments. 

Yoganandan et al.66 provided an extensive review of the numerical studies addressing the responses 

and contributions of the soft tissue structures (ligaments, intervertebral disc and zygapophysial joints) 

of the human neck, including their functional mechanical role, geometry (such as the length and cross-

sectional areas), and material properties (such as force-displacement and stress-strain responses). 

These properties were described for all components; modelling approaches were discussed for each 

soft tissue structure. 

 

3.2.2 Lesions of spine ligaments 

In case of ligament damage, the stability of the spine is compromised either at a single level or 

involving a longer spine segment.  Instability firstly leads to pain and subsequently to degeneration 

and deformity.67 A biomechanical analysis of the lesions of the spine ligament and an in vitro and/or 

numerical evaluation of their effects on spine stability may help surgeons improve those invasive 

surgical techniques, which involve partial or complete damage of the spine ligaments. This can help 

preventing iatrogenic lesions, which may trigger failure of the treatment (Tables 3.1 and 3.2).  

Some studies analyze the behaviour of a specific FSU, while others take into account a segment of 

three or more vertebrae. Many ligaments (such as the anterior and posterior longitudinal ligaments 

and supraspinous ligament) extend across several vertebrae, forming a continuous structure.  

http://www.dl.begellhouse.com/journals/4b27cbfc562e21b8,3a2b605d4aa0d999.html
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Therefore an in vitro multisegmental vertebral unit represents the in vivo condition more closely than 

shorter segments (Fig. 3.1).68  

For instance, Hindle et al.69 tested human lumbar FSUs in order to understand the function of the 

interspinous and supraspinous ligaments during flexion and extension.  This test was performed 

applying a force, varying the distance between the instant axis of rotation (IAR) and the center of the 

ligaments. They showed the contribution of the supraspinous and interspinous ligaments to the 

stiffness of the FSU; the stiffness decreased with the number of resected ligaments.  Furthermore, this 

test showed that the stiffness increased for higher strain rates. 

One of the first studies addressing the effect of the different ligaments was performed on a porcine 

model by Gillespie et al.70  In order to understand the contribution of the individual posterior spinal 

ligaments, Gillespie et al. analyzed segments of porcine lumbar spine in flexion-extension, applying 

sequences of ligament resections.  For the extension test, not all the resections showed significant 

differences about the functionality of the spine. Conversely, during flexion test, each sequential 

resection reduced peak moment and stiffness increasing the laxity zone. The ligamentum flavum gave 

the largest contribution to resisting flexion movement. 

Panjabi et al.71 analysed the effect of the different ligaments on the stability of human spine. They 

tested thoracic FSUs in flexion-extension in vitro, while an anterior pull was applied to the proximal 

vertebra. The tests were performed until failure, with a progressive resection of all the ligaments in 

two different sequences: from the most anterior to the most posterior one, and vice-versa. The FSUs 

were less stable in flexion for the sequence of posterior to anterior resection, while it was less stable 

in extension when the anterior injury was simulated. The ligament affecting more significantly the 

stability in flexion was the posterior longitudinal ligament, while resection of the anterior longitudinal 

ligament affected more significantly stability in extension.  

Panjabi et al.72 investigated the effect of whiplash on the human cervical spine. The spine was 

stabilized by a system of cables attached to the different vertebrae to simulate the stabilization and 

compression deriving from the muscles force. In order to understand the contribution of each ligament 

to constraining spine motion, a marker was attached to each vertebra to measure the inter-vertebral 

motion. This test demonstrated that the supraspinous, interspinous ligaments and the ligamentum 

flavum had the greatest risk of injury during rapid antero-posterior loading due to whiplash. 

Brolin et al.73 studied the human cervical spine, using a subject-specific FE model obtained from CT 

scans. The ligaments were modelled with nonlinear springs and required some simplifications (such 

as the lack of interactions between ligaments) which can cause a softer response compared to in vitro 

experiments on a real spine segment. They showed how ligament sprains compromise the stiffness 

and stability of the cervical spine. A FE model of the cervical spine was used also by Ng et al.74 in 

order to evaluate the effect of different injuries (simulating complete removal of the ligaments, of the 

facets, and of the disc nucleus) on the stability for compression, anterior-posterior shear and sagittal 

movements. Another study50 demonstrated how the lesions of ligaments, facets and disc nucleus 

affected cervical spine stability in terms of sagittal rotational movement or redistribution of load 

under axial compression, flexion and extension. 

The main limitation of the FE models is that in many cases their adherence with the physical reality 

is not assessed, or is only assessed in qualitative terms. One of the FE models most extensively 

validated was describe by Guan et al.75 They developed a model of the lumbosacral region and 

validated its nonlinear response by comparison against in vitro tests of the same subject, for different 

loading conditions, for each motion segment (L4-L5 and L4-S1) and with increasing loads. This study 

allowed evaluating the non-linearity of the different parts of lumbosacral region and how the internal 

load transfer and stresses affected spine stability. 

While the biomechanical studies summarized above suggest that the lesions of the spine ligaments 

compromise stability and can result in disc overloading, their impact in a clinical context is more 

difficult to assess as iatrogenic damage to the ligaments is typically associated to very invasive 

surgeries such as fusion. In all cases, these findings indicate that surgeons should strive to improve 

such invasive surgical techniques, so as to minimize ligament damage. 
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3.3 Biomechanical implications of interventions of the facets and 

lamina 

Lumbar stenosis is one of the most common diseases of the spine in the geriatric population.76 The 

stenosis is defined as a narrowing of the spinal canal and is caused by the overgrowth and 

degeneration of the joints between vertebral segments. This can lead to a compression of nerve roots 

traveling through the lumbar spine to the lower back and legs.76 The pathophysiology of lumbar 

stenosis is complex and multifactorial, but generally the compression of neural elements is due to a 

combination of degenerative changes (such as ligamentum flavum hypertrophy, bulging of the 

intervertebral disc, and facet thickening with arthropathy). For patients over the age of 65, lumbar 

stenosis is usually treated through surgical interventions.76 The surgery typically consists of muscle 

dissections and an extensive resection of posterior spinal elements such as the interspinous ligaments, 

spinous processes, bilateral laminae, portions of the facet joints and capsule and the ligamentum 

flavum. These interventions involve different types of bony resections: 

• Laminectomy: the creation of space by removing the lamina (a portion of the vertebral bone 

that covers the spinal canal). This resection enlarges the spinal canal to relieve pressure on the 

spinal cord or nerves. This is a major spinal treatment used only when more-conservative 

treatments (such as medication, physical therapy or injections) have failed to relieve 

symptoms. Laminectomy may also be recommended if symptoms are severe or worsening 

dramatically. 

• Hemilaminectomy: the removal of only a part of the lamina and only a portion of the facet 

joint to allow more room for the lumbar nerve. 

• Laminotomy: the removal of part of the lamina of a vertebra arch in order to relieve pressure 

in the vertebral canal. A laminotomy is less invasive than laminectomy because it leaves more 

ligaments and muscles attached to vertebral column intact and it requires removing less bone 

from the vertebra. As a result, laminotomies typically have a faster recovery time and result 

in fewer postoperative complications.  

• Laminoplasty: the removal of the lamina on both sides of the affected vertebrae and then 

"swinging" the freed flap of bone open thus relieving the pressure on the spinal cord. The 

spinous processes may be removed to allow the lamina bone flap to be swung open. The bone 

flap is then propped open using small wedges or pieces of bone such that the enlarged spinal 

canal will remain in place. 

• Facetectomy: the removal of one (unilateral) or both (bilateral) of the facet joints on a set of 

vertebrae in the spine. Facet joints, which are found in between the vertebrae and discs of the 

spine, give us the ability to bend, twist, and stand up. With age and wear and tear, or sudden 

trauma, these joints can become worn and rub against or pinch spinal nerves. 

3.3.1 Biomechanics of facets and lamina 

The stability of the column is granted mainly by the posterior structures of the vertebrae (posterior 

and transverse processes, facet joints and laminae). The lamina is the part of the vertebra that connects 

the spinous process with the transverse process permitting the distribution of the forces within the 

upper and lower facets of the vertebrae. The spinous and transverse processes are the site of insertion 

of muscles, which connect contiguous vertebrae limiting movement mostly in flexion-extension. The 

pedicles are bridges connecting the posterior structures with the anterior part of the vertebra 
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transmitting tension and bending forces to the vertebral body. The facet joints assure the stability of 

the spine during all the movements. 

Facet joint degeneration is part of a degenerative cascade and is normally a consequence of problems 

of other structures such as intervertebral disc degeneration, vertebral bone lesions or ligament 

defects.77 Therefore, it is necessary to investigate the facet joint as a separate substructure of the spine, 

to elucidate its role in spine stability and biomechanics (Fig. 3.2), (Tables 3.1 and 3.2).  A schematic 

of the different surgical interventions on the posterior structures of the vertebra is reported in Fig. 3.2.  

Fig. 3.2 - Schematic representation of the different surgical interventions on the posterior structures. 

 

A number of studies have addressed the biomechanics of multi-segmental spinal units with 

uncompromised facets and laminae. Shah et al.78 tested cadaveric lumbar spine segments (L3-L5) 

applying a pure axial compression, an anteriorly offset force (simulating flexion) and a posteriorly 

offset force (simulating extension). The strain on the surface of the central vertebra of the segment 

(L4) was measured using 17 rosette strain gauges placed on the anterolateral and posterolateral parts 

of the upper and lower vertebral rims, at the bases of the pedicles, on the posterior side of the vertebral 

body (i.e. on the lamina) and in both pars interarticularis. With a pure compression the maximal 

compressive strain was found near the bases of the pedicles and on both surfaces of the pars 

interarticularis. During extension, both compressive and tensile strains increased on both surfaces of 

the pars interarticularis, suggesting that stress fractures and spondylolisthesis could be caused by 

hyperextension. A similar in vitro study was conducted by Hongo et al.79 on segments of three 

thoraco-lumbar vertebrae (focusing on T10, L1 and L4) subjected to pure axial compression. Eleven 

rosette strain gauges were applied at the upper, middle and lower vertebral surfaces of the anterior, 

anterolateral and posterolateral sites of the posterior surface of the lamina.  Similar to Shan et al., the 

highest tensile and compressive strains were found at the base of pedicle, both in the thoracic and 

lumbar vertebrae.  In addition, shear strains in the vertebral body were significantly higher than in the 

lamina. Teo et al.50 developed a validated FE model of the human lower cervical spine. This model 

predicted that ligaments, facets and disc nucleus have are equally important in granting stability and 

in redistributing the loads in flexion and extension. 

 

3.3.2 Lesions of the facets and lamina 

Segment laminectomy has been recognized as a risk factor for the development of adjacent level 

disease80 and has extensively been investigated (Fig. 3.1 and 3.2), (Tables 3.1 and 3.2). Cardoso et 

al.81 assessed the acute biomechanical effects of proximal facet violation and subsequent 

https://www.verywellhealth.com/facet-joint-capsule-296486
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laminectomy in lumbar-sacral cadaveric specimens. Biomechanical tests were performed under axial 

rotation, flexion-extension and lateral bending. Their found a significant progressive torsional 

instability depending on the facet disruption; a complete laminectomy at the cephalad level 

destabilized the proximal adjacent segment in flexion-extension. Quint et al.82 investigated the effects 

of agonist and antagonist intersegmental lumbar muscles acting on FSUs in different conditions: 

intact, unstable due to laminectomy, and instrumentally stabilized. The in vitro tests with or without 

simulation of co-activation of the muscles showed significantly larger ROM for the FSU after 

laminectomy compared to the intact. The co-contraction of the muscles contributed to increase 

stability under bending and axial rotation, while a slight increase was noted in the ROM during 

flexion.  Baisden et al.83 compared the laminectomy and open-door laminoplasty in vitro on goat 

spines. Laminoplasty was superior to laminectomy in maintaining cervical alignment and preventing 

postoperative spinal deformities. A validated three-dimensional FE model (C2-T1) was modified to 

compare the multidirectional flexibility of the cervical spine in response to a plate-only open door 

laminoplasty, a double-door laminoplasty and a laminectomy at level C3-C6. They demonstrated that 

laminectomy increased flexion but with a risk of kyphosis and increased disc stresses in the adjacent 

segments. A limitation of this study was the absence of muscles, which contribute to spinal stability.  

The effects of bilateral laminotomy and full laminectomies on the ROM were investigated by Tai et 

al.84 on porcine lumbar segments (L4-L5) under flexion-extension. They found that the integrity of 

the posterior complex played an important role on the postoperative spinal stability in decompressive 

surgery. Intervertebral displacement following laminectomy was significantly greater than in the 

intact spine or after bilateral laminotomy. The consequences of bilateral laminotomy and full 

laminectomies on the range of motion and stiffness of lumbar segments (L1-L5) were analyzed by 

Lee et al.85 on cadaveric human spines. This study showed a greater increase of ROM in flexion-

extension after laminectomy than after bilateral laminotomy. Therefore, laminectomy could cause 

worse hypermobility and potential instability. These effects were observed for flexion-extension, but 

not for axial rotation or lateral bending. 

The impact of different surgical procedures on the cervical spine was addressed by Xie et al. using a 

nonlinear FE model. They compared the ROM of the different FSU (C1-C2, C2-C3, C3-C4, C4-C5, 

C5-C6 and C6-C7) in the intact condition and simulating unilateral multilevel interlaminar 

fenestration (UMIF), multilevel hemilaminectomy (MHL) and multilevel laminectomy (ML).  UMIF 

and MHL better preserved the flexion mobility, with low-risk of post-operative spinal instability, and 

caused less increase of stress in the anulus compared to ML, thus reducing the risk of postoperative 

disc degeneration. A limitation of this study was the absence of the muscle effect on stability: while 

during laminectomy the bilateral extensor muscle is dissected from the lamina and spinous process, 

UMIF and MHL preserve the contralateral muscle.  In order to measure the destabilizing effects of 

multiple consecutive lateral and bilateral hemilaminectomies, Corse et al.68 conducted an in vitro test 

on canine lumbar spines.  Postoperative stability in flexion and extension decreased while the ROM 

and the stiffness were not significantly different from the intact condition. 

In order to investigate the destabilizing effects of resections, thoracic human segments were subjected 

to anterior-to-posterior and posterior-to-anterior sequential resections on different FSUs with intact 

costovertebral joints by Oda et al.86 They showed that the rib head joints provided stability in the 

sagittal, coronal and transverse planes.  The lateral portion of the facet joints played an important role 

in providing stability and helped in minimizing postoperative kyphotic deformity and segmental 

instability. 

A nonlinear FE model of the cervical spine was developed by Hong-Wan et al.87 and adapted to 

replicate ten surgically altered models simulating laminectomy and facetectomy. Laminectomy did 

not cause any significant increase in intersegmental motions under lateral bending and axial rotation; 

extending the surgical procedures to unilateral and bilateral facetectomy increased only slightly the 

intersegmental motions. The effect of facetectomy on a L2-L3 segment was studied by Lee et al.88 

using an FE model.  They showed that facetectomy significantly affected extension because it altered 

the ROM and flexibility, while it did not affect flexion significantly. Similar results were described 
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by Teo et al.89 Their numerical model also highlighted the alteration of translational shear 

displacement of the motion segment. Zander et al.90 used a validated numerical model to investigate 

the effects of several types of interventions (laminectomies, hemilaminectomies, facetectomies and 

hemifacetectomies). They investigated different loading conditions, both simplified (pure moments) 

and replicating specific motor tasks (standing and forward bending). Facetectomy influenced the 

mechanical behaviour of the lumbar sacral spine segment during loading in axial rotation, while the 

resection of additional parts did not further increase intersegmental rotation. 

To summarize, these studies have shown that surgical interventions of decompression, with the 

removal of soft tissues and facets joints, could lead to iatrogenic instability altering the physiological 

load transfer. The removal of laminae does not produce immediate instability, but a progressive 

deformation of the spine: the weight and the muscular pull overstretch the remaining ligaments 

modifying the postural balance. Laminectomy can cause problems regarding the stability, but if alone, 

is not usually associated with a significant postoperative incidence of kyphosis. Furthermore, during 

these types of interventions, there is also the risk of damaging the spinal nerves which run in the 

vertebral foramen near the lamina91.  

After these interventions on facets and laminae, the surgeons usually stabilize the spine using different 

types of instrumentation and fixing different levels of the spine. The biomechanical effects of spinal 

instrumentations has been reviewed by others15, 92-94,93,15 and is not included in the present review. 

 

3.4 Conclusions 

Local or generalized degeneration and instability can occur when the integrity of its substructures is 

compromised. Spinal dysfunction is investigated considering each structure separately, single FSU 

or the spine as a whole. Analysis of normal structure under controlled laboratory environment or 

dedicated numerical models can provide useful information to understand the role of each structure 

in spine stability.  Unfavorable mechanical loading conditions, inappropriate surgical techniques and 

impaired hardware applications can be studied to evaluate their responsibility for the degradation 

process. This review has shown that systematic knowledge has been gathered about the untreated 

spine, while the understanding about the role of the different ligaments and about the effect of lesions 

of facets and lamina is limited. 

This review has shown that most invasive surgical interventions performed on the intervertebral 

ligaments, facet joints and lamina to reduce compression of the spinal cord and/or nerve roots 

compromise spinal stability (especially in the sagittal plane). This can determine mid-term and long-

term complications and degeneration requiring furthermore invasive corrective surgery. 

Several techniques have been developed for the evaluation of FSU biomechanics and functionality 

including different in vitro techniques. While the structural behaviour of entire spine segments and 

local deformations in bone (e.g. measured with strain gauges), are well documented, new techniques 

as DIC are promising to analyze not only the hard tissues, but also the soft tissues (intervertebral 

discs, ligaments). This will help to better understand the role of these structures, and what occurs 

when they are damaged or removed during surgery. To complement in vitro biomechanical tests and 

overcome their limitations, properly developed and validated numerical models of the human spine 

will be extremely important. 
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Table. 3.1 - Possible approaches to investigate the biomechanics of the spine, including different investigation tools, different type of specimen, and different kinds of simulation 

Reference Origin Segment Type of study Loading condition Focus Type of lesion Measured quantity 

Investigations on biomechanics of the untreated spine 

58 human review covering different types of segment ad different conditions 

60 human review covering different types of segment and different conditions 

59 human review covering different types of segment and different conditions 

7 human review covering different types of segment and different conditions 

1 human occiput - S1 in vitro FE, LB, AR intact none ROM, IAR,  

33  human T1-L4 in vitro FE, LB, AR intact none ROM, NZ, stiffness 

56 human L1-S in vitro FE, LB, AR intact none ROM 

57 human L2-S in vitro FE, LB, AR intact none ROM 

 Biomechanics of uncompromised spine ligaments 

66 human review covering different types of segment ad different conditions 

64 human C2-T1 in vitro tensile ALL, PLL, ISL, LF uncompromised 
stress, strain, stiffness, 

energy 

61 human T12-S in vitro tensile ALL, PLL, ISL, SSL, LF none 
ROM, stiffness, stress, 

strain, energy 

48 human lumbar  in vitro tensile ALL, PLL, ISL, SSL none 
organization of collagen, 

stiffness 

63 
porcine 

and 
human 

lumbar in vitro tensile ISL 
different cuts of the 

collagen fiber network 
ROM 

65 human L3-L5 in vitro axial traction 
intraforaminal 

ligamentous structures 
uncompromised load force 

http://www.dl.begellhouse.com/journals/4b27cbfc562e21b8,3a2b605d4aa0d999.html
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 Lesions of ligaments 

50 human C4-C6 FEM FE ALL, PLL, ISL, SSL, LF, CL lesions ROM 

74 human C4-C6 FEM 
compression, anterior-

posterior shear, LB 
ALL, PLL, ISL, SSL, LF, CL injury simulation ROM 

72 human C1-T1 in vitro 
frontal impact 

simulation 
PLL, ISL, SSL, LF, CL none strain 

73 human C1-C3 FEM FE, LB, AR 
ALL, PLL, LF, CL, AAOM, 

alar ligament, apical 
ligament 

none ROM 

71 human T11-T2 in vitro FE ALL, PLL, ISL, LF 

progressive resection of 
all the ligaments (from 

the most anterior to the 
most posterior one, and 

vice-versa) 

ROM 

67 human T11-L3 in vitro FE, LB, AR ISL, SSL, LF 
sequential transection 

of the posterior 
ligamentous complex 

ROM, NZ,  

69 human L2-L5 in vitro FE ISL, SSL resections of ligaments ROM, IAR 

70 porcine L4-L5 in vitro FE ISL, SSL, LF  
sequence of ligaments 

resections 
ROM, stiffness, laxity 

zone 

75 human L4-S1 FEM FE, LB 
ALL, PLL, ISL, SSL, LF, CL, 

IL 
none ROM 

 Biomechanics of facets and lamina 

50 human cervical FEM FE intact none ROM 

79 human T10-L1-L4 in vitro compression intact none strain 

78 human L4-L5 in vitro FE intact none strain 

 Lesions of the facets and lamina 

83 goat C3-C5 in vitro FE, LB, AR 
laminectomy, 
laminoplasty 

none ROM, stiffness 
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LEGEND OF TABLE 3.1:  

 

Loading condition: 

FE = flexion-extension 

LB = lateral bending 

AR = axial rotation 

72 human C2-C7 FEM FE, LB, AR 
laminectomy and 

unilateral/bilateral 
facetectomy 

none ROM 

95 human C2-C7 FEM FE, LB, AR 
laminectomy, 

hemilaminectomy 
none ROM 

68 canine T12-L7 in vitro 4-point bending 
multiple 

hemilaminectomies 
none ROM, NZ, stability 

86 human T3-T9 in vitro FE, LB, AR 

anterior to posterior 
and posterior to 

anterior sequence of 
resections 

none ROM 

82 human L2-S2 in vitro FE, LB, AR laminectomy none ROM, NZ 

74 human L2-S1 FEM FE, LB, AR 

left/bilateral 
hemifacetectomy, left 

hemilaminectomy, 
bilateral laminectomy, 
two-level laminectomy 

none ROM, stress 

79 human L2-L3 FEM 
FE, LB, AR, anterior and 

posterior shear load 
laminectomy, 
facetectomy 

none anulus stress, ROM 

75 human L2-L3 FEM 
compression, tension, 
anterior and posterior 

shear pression 
facetectomy none flexibility, ROM 

84 porcine L4-L5 in vitro FE 
bilateral laminotomy, 

laminectomy 
none ROM 

81 human L3-S1 in vitro FE, LB, AR laminectomy none ROM 

85 human L1-L5 in vitro FE 
laminectomy, 
laminotomy 

none ROM 

http://www.dl.begellhouse.com/journals/4b27cbfc562e21b8,3a2b605d4aa0d999.html
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Ligaments: 

PLL = posterior longitudinal ligament 

ALL = anterior longitudinal ligament 

ISL = interspinous ligament 

SSL = supraspinous ligament 

LF = ligamentum flavum 

CL = Capsular ligament 

IL = intertransverse ligament 

AAOM = anterior atlantoaxial ligament  

 

Measured quantity: 

ROM = range of motion 

IAR = instantaneous axis of rotation 

NZ = neutral zone 
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Table 3.2 - Overview of the conditions under which the biomechanics of the spine must be investigated 

Measured 
quantity 

Author Type of study Segment Flexion-extension Lateral bending Axial rotation 

ROM, IAR,  1 human, in vitro 
cervical, 
thoracic, 
lumbar 

cervical: 8°-17° 
thoracic:4°-12° 
lumbar: 12°-20° 

cervical: 0°-11° 
thoracic: 6°-9° 
lumbar: 3°-10° 

cervical: 0°-47° 
thoracic: 2°-9° 
lumbar: 2°-5° 

stiffness, 
strength 

58 
human,  

in vitro & FEM 

cervical, 
thoracic, 
lumbar 

for individual vertebra, vertebroplasty appears to increase or return strength to the pre-fracture level, 
whereas the stiffness is not always restored 

for multiple -vertebra segments, the strength of the unit as a whole appears to decrease, with failure 
occurring in the non-augmented vertebrae 

ROM, stiffness, 
NZ, stress 

60 

review 
covering: 
human, 

in vitro & FEM 

cervical, 
thoracic, 
lumbar 

Focus on the recent progress in spine biomechanics. Topics addressed include the whole spine, the FSU 
and the individual components of the spine (e.g. vertebra, IVD, spinal ligaments) 

fatigue, creep  47 

review 
covering 
human, 

in vitro & FEM 

cervical, 
thoracic, 
lumbar 

Focus on the tests parameters and acceptance criteria (number of cycles, duration in time, stress levels, 
acceptable amount of creep) for possible tests specifically relevant to cements for spinal applications 

ROM, NZ 7 

review 
covering: 
human, 

in vitro & FEM 

cervical, 
thoracic, 
lumbar 

Overview of the techniques and results obtained by studies that have attempted to characterize 
mechanically the IVD 

ROM 56 human, in vitro lumbar 

flexion: motion at caudal lumbar levels 
significantly greater than at cephalic levels the main motion is 

greater between the L2-
L3  

similar motions between L4-L5 
and L5-S1 

extension: the largest motions are at the 
level between the L5-S1  

ROM 57 human, in vitro lumbar 
coactivation of muscles causes a 13% 
increase of the sagittal ROM  

coactivation of muscles causes a 20% decrease in ROM 
(significant increase in stability) 

http://www.dl.begellhouse.com/journals/4b27cbfc562e21b8,3a2b605d4aa0d999.html
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ROM, NZ, NZ 
stiffness 

33 human, in vitro lumbar 
highest ROM and NZ and lowest NZ stiffness values at T1-T4 and L1-L4 
regions 

ROM and NZ decreased  
NZ stiffness increased from 
high to low vertebral levels 

 

LEGEND OF TABLE 3.2: 

IVD = intervertebral disc 

 

Measured quantity: 

ROM = range of motion 

IAR = instantaneous axis of rotation 

NZ = neutral zone 
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Chapter 4  

4 Digital Image Correlation 

Digital Image Correlation 

 

 

 

 In order to investigate the biomechanics of biological specimens (such as biological tissues, organs 

or their interactions with devices), the measurement of displacement and strain is a very import task 

during the experimental tests (Fig. 4.1). With testing machines, loads and displacements are recorded 

at the extremities of the specimen but there is a lack of information on what happens on the surface 

of the specimen. This is extremely important especially if the specimen, like all biological tissues, are 

inhomogeneous and anisotropic.  

 

Fig. 4.1 - Measurement of the strain on a vertebra using strain gauges38 

 

Strain gauges allow to measure with great precision the deformation in the point of application but 

nothing is known in the adjacent points. So, if a specimen is not homogeneous and therefore one part 

is deformed more than another, the results obtained depend too much on the positioning of the strain 

gauges.  Some authors have applied strain gauges on bone tissues (vertebrae or femur) to measure the 

deformation during the application of the load but, if the specimen is not rigid enough (such as 

intervertebral discs or ligaments), the strain gauge can alter the tissue reinforcing it. Therefore, in this 

case, what is measured is not the deformation of the tissue but the reinforcing effect of the strain 

gauge. Moreover, the application of strain gauges on a hydrated surface is not so simple. 
 

 

 



38 

 

 

 

 

 

 

Fig. 4.2 - The white-on-black speckle pattern on the surface on a vertebra with the identification of the facet size and grid 

spacing96 
  

DIC allows to obtain a measurement of displacement and strain in a full-field and contact-less way 

(not limited to a few points and furthermore the surface of the specimen is not altered by the use of 

the tool which could modify the biomechanical behavior). Different images are acquired using one 

(2D version) or more (3D version) cameras and compare in order to calculate the relative 

displacements and, by a derivation, the deformations. Usually the first images (called reference 

image) is taken when the specimen is in unload condition while the following images are taken when 

the specimen is subjected to the application of loads. To compare the different images, the software 

of the DIC divides the acquired images into sub-images, called facets of M×N pixels.  Each facet is 

summarized by the information about the pattern and its location in space.  The correlation algorithm 

identifies the best-matching region at different loading steps. At first, the displacements have been 

computed for each facet and subsequently, deriving the displacement, the strain field is computed.  

To allow this, the surface of the specimen must have a random pattern (Fig. 4.2). Sometimes the 

surface of some tissues presents a natural random pattern due to an intrinsic texture or inhomogeneity 

(such as the surface of heart). In other cases (such as for vertebra, intervertebral discs or ligaments) 

an optimized pattern must be prepared with some requirements:  

1. Random distribution, in order to make each area of the surface of the specimen univocally 

identifiable 

2. High contrast, to allow the image correlation algorithm works effectively 

3. Black/white or white/black ratio of 50:50, to avoid regions that cannot be properly recognized 

4. Roughness should be kept at minimum, in order to avoid alteration of the surface geometry 

5. Probably the most important issue in biomechanical applications is the size of the speckle dots 

(in relation to the specimen size), in order to optimally exploit the resolution of the camera 
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Fig. 4.3 - The setup of a test with the Digital Image Correlation. On the right there are the two DIC-cameras that have 

the same field of view of the specimen. On the left there is the anterior side of the specimen with the application of the 

speckle patter for the DIC analysis 

 

For all the tests that I performed on the spine, the pattern used was white-on-dark (Fig. 4.3). The 

white speckle pattern is painted using an airbrush airgun changing the air pressure and the airflow 

according to the desired size of the dots.41 Like all measurement techniques, also DIC is affected by 

measurement errors. These errors could be divided in systematic errors and random errors. The 

systematic error is generally negligible (in the order of 0.02 pixel size and few microstrain).41, 97 The 

random errors are more critical than systematic errors: after the optimization of all parameters the 

errors can decrease below 100 microstrain.41, 97 If all parameters of DIC are not optimized, errors of 

few thousands of strain (2000/3000 µɛ) could be recorded and therefore the measurements that are 

carried out may be inconsistent with the real deformations.96, 98 Errors are minor on displacement 

measures, while they increase on deformation measures due to the derivation process.96 
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Chapter 5 

5 Application of Digital Image Correlation on 

hard and soft tissues simultanously 

Application of Digital Image Correlation on 
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5.1 Introduction 

The spine is one of the most complex structures of the musculoskeletal apparatus with the task of 

sustaining the body, permitting the movements and protecting the spinal cord. The mechanical 

structure consists of a sequence of hard tissues (vertebrae) and soft tissue (intervertebral discs), 

stabilized by other soft tissue (ligaments); they all control the movement in flexion-extension, lateral 

bending and axial rotation.33 For instance, failure of posterior fixation and proximal junction kyphosis 

(PJK) are still unsolved problems.19 Investigating the biomechanics of the spine is a fundamental task 

because it could help engineers and clinicians to design implants with a higher success ratio.100 Spine 

segments were frequently analysed in experimental tests applying known motions or known 

loads.56,101 During these tests, stiffness can be evaluated simulating the kinematics of the spine 

segment as a whole, in physiological conditions, pathological conditions and after treatments 

conditions. 

Strain in the vertebral body can be measured using strain gauges, but these measures are limited to 

the point of application of the strain gauges.38,35 A detailed quantification of the local strain 

distribution could be help to elucidate the failure mechanism and under- stand the reasons of many 

post-operative complications. The measurements techniques used so far to measure strains are 

inadequate in many respects to understand the origin of such problems. Measuring the distribution of 

strain in the spinal soft tissues (such as the intervertebral discs and ligaments) would be a key point. 

However, this is extremely difficult because of the inhomogeneous and anisotropic properties of such 

tissues. Strain gauges cannot be used to measure the deformations of the soft tissue, because they 

would increase the stiffness of the structure and would significantly bias the measurement.102 Another 

technique which can be used to measure local strains is Digital Volume Correlation (DVC), which 

allows measuring strain inside the structure of the vertebral body.103 Nevertheless, the use of DVC is 

affected by the time-consuming procedure of images acquisition, which could be a problem with 

viscoelastic specimens, such as the bone or the intervertebral discs.104 Some of unsolved questions 

about the functionality of the spine concern what happens on the spine segment in terms of local 

deformation, presence of stress concentration, how the biomechanics of the spine is affected by spinal 

fixation devices, where the failure point is located (for instance slipped disc, proximal junctional 

kyphosis, pull-out of the screws, rupture of the bars), or how the spine ligaments work under the 

different loading conditions. All such clinical problems are not addressed with current in vitro 

methods.19,100,105,106 Up to date, an experimental description of the strain distribution on the surface 

of a spine segment that includes the vertebrae, the discs and the ligaments at the same time is missing. 

The spine is a combination of different organs (consisting of hard and soft tissues) acting in synergy 

with a complex biomechanical function. Therefore, it is very important to obtain quantitative and 

accurate information about the distribution of strain, simultaneously in the hard and soft tissues in 

order to better understand the behaviour and the failure mechanisms of such a complex structure. A 

preliminary study has demonstrated that the strain distribution on the surface of an entire spine 

segment can be measured with sufficient accuracy and precision.40 

The aim of this work was to explore the feasibility and the potential of using DIC to measure the 

strain distribution simultaneously on the vertebral bodies, the intervertebral discs, and the spine 

ligaments of thoracic and lumbar spine segments in different in vitro loading configurations. 
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5.2 Materials and methods 

5.2.1 Specimens 

Three segments of four vertebrae (T7-T10, T11-T14, L2-L5) were extracted from porcine spines. The 

animals were sacrificed for alimentary purposes. The animals were approximately 9 months old and 

100 kg at sacrifice. The specimens were cleaned using surgical tools: the muscles, the anterior 

longitudinal ligament, the periosteum and the ribs were carefully removed without damaging the 

vertebral bodies and the intervertebral discs. Conversely, the interspinous, supra- spinous and 

posterior longitudinal ligaments, and the capsules were left intact in order to preserve the natural 

kinematics during the tests15. The central disc of each segment (respectively, the disc between 

vertebrae T8 and T9 of segment T7-T10, between T12 and T13 of segment T11-T14, and between 

L3 and L4 of segment L2-L5) was aligned horizontally in the frontal and lateral views with the use 

of a six-degree-of-freedom clamp. The extremities of the specimens were potted in poly-methyl-

methacrylate (PMMA). The two pots were parallel to one another (Fig. 5.1). 

 

5.2.2 Mechanical testing 

Different loading conditions were used to investigate the biomechanics of the multisegmental spine 

specimens in terms of deformation of the vertebral bodies, intervertebral discs and ligaments17. The 

load was applied using a servo-hydraulic universal testing ma- chine (8032, Instron, High Wycombe, 

UK) in displacement control. One extremity of the specimen was rigidly fixed to the testing machine 

while the other extremity was loaded through a spherical joint, which could move on a rail. This 

system avoided transmission of any other load component. 

Two different loading configurations were simulated (Fig. 5.1) using an eccentric compression load 

(simulating flexion-extension and lateral-bending), similar to many past studies: 

• anterior bending: the vertical force had an anterior offset equal to the 20% of the antero-

posterior depth of the central intervertebral disc. In this case the rail was set in the anterior-

posterior direction 

• lateral bending: the vertical force had a lateral offset equal to the 20% of the lateral-lateral 

width of the central intervertebral disc. In this case the rail was set in the lateral-lateral 

direction. 

The load condition did not aim to replicate any specific motor task, but to reproduce simplified 

scenario and highly reproducible loading conditions, in order to assess the feasibility of using DIC in 

this kind of application. Once verified the feasibility of DIC measurement, scenarios closer to real 

motor tasks can be reproduced to obtain useful quantitative information. Ten preconditioning cycles 

were applied between 0 and 1.0 mm of compression at 0.5 Hz. A compression of 3.0 mm was applied 

for each loading configuration in 0.1 mm steps, while DIC images were acquired at each step. The 

final compression of 3.0 mm corresponded to a force of the order of 600 N (approximately 60% of 

the animal’s body weight) for anterior bending, and of 1100 N (approximately 110% of the animal’s 

body weight) for lateral bending. The test was designed to avoid specimen damage, based on some 

preliminary tests: the strain in the vertebral body did not exceed 2000 microstrain107, while strain in 

the intervertebral discs was below 100000 microstrain (these values were comparable to the values 

reported in literature associated to physiological load). 

 

http://www.dl.begellhouse.com/journals/4b27cbfc562e21b8,3a2b605d4aa0d999.html
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5.2.3 Digital Image Correlation 

Figure 5.1 - The porcine spines were cleaned removing the sur- rounding tissues (A, B). A white-on- black speckle pattern 

was pre- pared, which covered the hard and soft tissues (C, D). Each specimen was subjected to lateral bending (E, in a 

frontal view) and to anterior bending (F, in a lateral view). The different loading configurations were reproduced using 

a universal testing machine and a dedicated system of low-friction linear and ball bearings to avoid transmission of 

undesired force components 

 

In order to track the different areas of the specimen surface and compute the displacements and 

strains, digital image correlation systems require a high-contrast speckle pattern on the region of 

interest. A white-on-black pattern was prepared on the entire multisegmental spine specimens (both 

the vertebrae and the intervertebral discs)103 (Fig. 5.1). The multisegmental spine specimens were 

first dyed with a dark background, with a solution of methylene-blue and water (4 g of methylene-
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blue per 100 ml of water) for three times for the vertebral body and two times for intervertebral discs 

(to limit as much as possible the increase of stiffness in soft tissues). Methylene-blue preparation has 

been shown to only marginally alter the mechanical properties of soft tissue.41 The white speckle 

pattern was then applied with the appropriate dot size, following an optimized procedure.41, 96 To 

measure displacements and deformations, we used a commercial 3D-DIC system (Q400, Dantec 

Dynamics, Skovlunde, Denmark) with its proprietary software (Instra 4D, v.4.3.1, Dantec Dynamics).  

To obtain a stereoscopic vision, images were acquired by two cameras (5 Megapixels, 2440 x 2050 

pixels, 8-bit) with high-quality 35 mm lenses (Apo-Xenoplan 1.8/35, Schneider-Kreuznach, Bad-

Kreuznach, Germany). The field of view was set to 70 mm by 60 mm, which gave a pixel size of 

about 30 micrometers. Calibration was performed before the tests using a dedicated calibration target 

(Al4-BMB-9x9, Dantec Dynamics). To provide sufficient illumination, arrays of cold-light LEDs 

(10000 lumen in total) were specifically prepared for this test. The parameters for the acquisition of 

the images and for the correlation analysis were preliminarily studied and optimized to minimize 

errors40: facet size: 33 pixels, grid spacing: 19 pixels, contour smoothing: local regression with a 

kernel size of 5x5 pixels. These parameters provided a spatial resolution of the order of 3 mm. The 

DIC system permitted to investigate the displacement and the strain in a contact-less way providing 

a full-field view of the examined surface, including the intervertebral discs and the vertebrae (Fig. 

5.1). In order to examine the biomechanical behaviour of the spine, two different acquisitions were 

performed for each loading configuration and each specimen (Fig. 5.1): 

• frontal view: the cameras pointed to the anterior face of the spine segment; 

• lateral view: the cameras pointed to the lateral side (either right or left) of the spine segment. 

The tests started from the unloaded condition (reference step, no load applied). A total compression 

of 3.0 mm was applied in steps of 0.1 mm. Images were taken at each step with the DIC system. 

 

5.3 Results 

In all the tests, the DIC system permitted to success- fully evaluate the deformations of the entire 

multisegmental spine specimens from a frontal and sagittal view, with different loading 

configurations. More than 95% of the region of interest was successfully tracked by the DIC software, 

providing a truly full-field analysis of the displacements and deformations. Preliminary checks in an 

unloaded configuration confirmed that the errors with the selected settings did not exceed 140 

microstrain. 

The three specimens showed similar strain distributions. For all loading configurations, the 

intervertebral discs and the ligaments reached larger deformations than the vertebral bone of the 

vertebrae (Figs. 5.2-5.4). Since the specimens belonged to young animals, the DIC analysis showed 

larger deformations of the cartilage part of the vertebrae (growth plate), which are significantly softer 

than the vertebral bone. 

5.3.1 Anterior bending 

During the anterior bending, the intervertebral discs reached larger deformations than the vertebral 

bone. On the frontal part of the intervertebral discs, the maximum principal strain was in the order of 

+20000 microstrain (tension) and it was aligned circumferentially, while the minimum principal 

strain was in the order of -40000 microstrain (compression) and was aligned axially (Fig. 5.2). On 

the frontal part of the vertebrae, the strains were one order of magnitude lower: the maximum 

principal strain was in the order of +500 microstrain (tension), while the minimum principal strain 

was in the order of -5000 microstrain (compression) (Fig. 5.2). 

http://www.dl.begellhouse.com/journals/4b27cbfc562e21b8,3a2b605d4aa0d999.html
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In the lateral sides of the spine segment, the DIC analysis confirmed that there was a strain gradient 

on the intervertebral discs, with the largest tensile strains in the posterior region, and the largest 

compressive strain in the anterior region (Fig. 5.3). The maximum principal strain ranged between 

+15000 microstrain (tension) in the median disc of the specimen and +45000 microstrain (tension) in 

the upper and lower disc of the specimen, while the minimum principal strain was in the order of -

50000 microstrain (compression) in the median and lower discs of the specimen. The lateral parts of 

the vertebrae showed lower strains than the disc due to the grater stiffness   of the bone: the maximum 

principal strain was below +1000 microstrain while the minimum principal strain was in the order of 

-2500 microstrain (Fig. 5.3).  

In anterior bending, the interspinous and supraspinous ligaments showed large tensile longitudinal 

deformations: the maximum principal strain was in the order of +45000 microstrain (tension). 

Additionally, the transversal shrinkage associated with the longitudinal stretching (due to Poisson 

effect) was visible in the ligaments: the minimum principal strain (compression) was between -20000 

microstrain (in the interspinous ligament) and -40000 microstrain (in the supraspinous ligament) (Fig. 

5.3). 

 

Figure 5.2 - Different deformation of vertebral body, growth cartilages and intervertebral discs during an anterior 

bending test from a frontal view. The image on the left shows the minimum principal strain (compression), the central 

image shows the specimen as viewed by the cameras, the image on the right shows the maximum principal strain 

(tension) 

5.3.2 Lateral bending 

Lateral bending was applied both towards the right and the left sides, to all specimens: the strain 

distribution measured on intervertebral discs and vertebrae in all the configurations was symmetrical. 

In the frontal region, the tensile and compressive strains measured by DIC were consistent with the 

direction of applied bending (Fig. 5.4). The maximum principal strain in the discs ranged between 

+20000 microstrain (tension) in the compressed side to +50000 microstrain (tension) in the stretched 

side. The minimum principal strains in the discs ranged from -50000 microstrain (compression) in 

the compressed side to +5000 microstrain (tension) in the stretched side. The orientation of the tensile 
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strain changed from circumferential on the compressed side of the disc (due to swelling) to axial on 

the stretched side (due to traction). The frontal portion of the vertebrae had lower strains than the 

discs: the maximum principal strains were lower than +500 microstrain (tension) while the minimum 

principal strains did not exceed -5000 microstrain (compression) (Fig. 5.2). 

In the lateral view, the strain distribution measured on the intervertebral discs was approximately 

uniform (Fig. 5.3).  The maximum principal strain in the discs reached +45000 microstrain (tension) 

in the compressed side while the minimum principal strain in the discs was -50000 microstrain 

(compression) in the compressed side. The lateral parts of the vertebrae had lower strains than the 

intervertebral discs: the maximum principal strains were lower than +1000 microstrain (tension) 

while the minimum principal strains did not exceed -2000 microstrain (compression).  
As expected, in lateral bending, the interspinous and supraspinous ligaments showed smaller 

deformations than in anterior bending: the largest deformation was measured in the interspinous 

ligament: while the maximum tensile strain (tension) was negligible, the minimum principal strain 

(compression) was in the order of -25000 microstrain (Fig. 5.3). 

 

Figure 5.3 - Different deformation of vertebral body, intervertebral discs and ligaments (interspinous and 

supraspinous ligaments) during an anterior bending test from a lateral view. The image on the left shows the minimum 

principal strain (compression), the central image shows the specimen as viewed by the cameras, the image on the right 

shows the maximum principal strain (tension) 

http://www.dl.begellhouse.com/journals/4b27cbfc562e21b8,3a2b605d4aa0d999.html
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Figure 5.4 - Different magnitudes of strain were visible in the vertebral body, growth cartilages and intervertebral discs 

during a lateral bending test from a frontal view. The image on the left shows the minimum principal strain (compression), 

the central image shows the specimen as viewed by the cameras, the image on the right shows the maximum principal 

strain (tension) 

5.4 Discussion 

The main aim of this work was to analyse the biomechanics of the spine measuring the strain 

distribution  on thoracic and lumbar multisegmental spine specimens, simultaneously on hard tissues 

(the vertebral bone) and soft tissues (the intervertebral discs and ligaments) using digital image 

correlation. 

The spines were tested in two different loading configurations (anterior and lateral bending), 

frequently simulated in the biomechanics literature.33,86 To examine both the hard and soft tissues, 

the specimens were observed from two different points of view. In all the tests, the DIC system 

evaluated successfully the deformations of the entire multisegmental spine specimens from a frontal 

and lateral view. The measurements showed the different magnitude and direction of the strain in the 

vertebral bones, in the intervertebral discs and in the interspinous and supraspinous ligaments. This 

confirms the importance of investigating the biomechanics of the spine with a full-field tool. It is 

worth remarking that the measurement technique adopted is contact-less and causes minimal 

perturbation to the biological specimen under observation. The strains measured in the vertebral body 

were lower than the strains in the intervertebral disc and in the supraspinous and interspinous 

ligaments. DIC identified that different portions of the intervertebral disc were subjected to 

compression or tension with different orientations of the principal strain: as expected, in the 

compressed side of the disc the compressive strains were axial, while circumferential tensile strains 

were observed. For instance, during the anterior bending, the frontal part of the intervertebral disc 

was compressed but at mid-height a small region with ten- sile hoop strain was visible. In fact, when 

the disc is compressed axially, it swells and the surface expands at mid-height. Since the specimen 

belonged to young animals, DIC showed also larger deformation in the growth plate than in the 

neighbouring vertebral bone. Also the deformations of interspinous and supraspinous ligaments were 
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successfully measured. As expected, in anterior bending the deformations of these two ligaments 

were greater than the deformations during lateral bending. At the same time, the transverse shrinkage 

associated with the longitudinal stretching could be observed. 

Very few papers can be found in the literature that can be directly compared with our in vitro 

measurements. In the literature, usually multisegmental spine specimens were investigated in terms 

of range of motion33, 100 and stiffness.33,108 In the vertebrae, strains were evaluated in a point-wise 

way using strain gauges, which offer an accurate and precise value of the strain, but limited to those 

points where strain gauges are applied. The ranges of strain measured in the vertebral bone in the 

present study compare well with the range of strain experience by bone during physiological motor 

tasks.109 The values measured in the porcine vertebral bone in the present study are similar to those 

measured with strain gauges in Cristofolini et al.38 even if this study used human lumbar specimens.  

A problem associated with the use of strain gauges is due to the reinforcement effect caused by their 

application on the surface. Furthermore, strain gauges cannot be used on the intervertebral discs 

because the discs have a low elastic modulus and so direct comparison with strains in the 

intervertebral discs is difficult. Some studies analysed the vertebral body using DIC system but 

without taking into account the contiguous intervertebral discs.40 For example, Gustafson et al.110 

tested the strains on segments of thoracic and lumbar porcine spine with strain gauges and DIC. While 

they reported serious problems with their application of strain gauges, direct comparisons are possible 

with their DIC measurements. The DIC-measured average peak minimum principal strain was -2731 

microstrain while the average peak maximum principal strain was 514 microstrain.  These values are 

similar to the values reported   in the present study. 

The vertebral bone was studied also with the DVC (Digital Volume Correlation). In Danesi et al.111 

the strain measured in the undamaged region of the vertebral bone of porcine spine did not exceed 

the value of -2000 microstrain and this result conformed to the values measured in the present study. 

Another study112 performed tests on human spine, obtained data of strain similar to the ones reported 

in the present study. 

Our measurements concerning the local strain distribution in the intervertebral discs can be compared 

with few previously published studies: in Spera et al.113, they measured the strain distribution in the 

disc only, whereas their method does not seem applicable to segments comprising both hard and soft 

tissue. Recently, the feasibility of measuring the full-field strain distribution in the vertebrae and discs 

by means of DIC was successfully demonstrated.112 

A limitation of this study is the use of porcine spines instead of human spines. This choice was 

adopted because this is a preliminary test made to investigate the applicability of the DIC to the 

vertebral body, the intervertebral disc and the spine ligaments. For ethical motivations, the feasibility 

study was done on animal specimens, while future studies on the spine biomechanics will be 

performed on human specimens. Porcine spines are different from human spines in some details 

(anatomy, different load conditions), but are a valid biomechanical model to demonstrate the 

feasibility of this new approach.114 Another limitation relates to the fact that only simplified loading 

conditions were simulated in this study. However, the proposed approach based on DIC can be used 

to measure the distribution of strain with any physiological motor tasks (flexion, lateral bending and 

axial rotation, and any more complex combinations), thus allowing to address the biomechanics of 

the human spine. 

 

5.5 Conclusion 

This study aimed to test the feasibility of using digital image correlation to examine multisegmental 

spine specimens, with particular attention to soft tissues (intervertebral discs and ligaments). In fact, 

the strain distribution in the soft tissues cannot be analysed with the traditional techniques. Surface 

deformations were successfully measured in the vertebral bones, in the intervertebral discs and in the 

http://www.dl.begellhouse.com/journals/4b27cbfc562e21b8,3a2b605d4aa0d999.html
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spine ligaments, highlighting the different magnitude and direction of the strains for the different 

loading conditions and in the different portions of the spine. The use of DIC can increase the 

understanding of the biomechanics of the spine, opening the way to new researches in this area 

(understanding the role of ligaments, studying fixator devices, analysing failures that occur after 

surgery), and eventually improving spine treatments. 
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6.1 Introdution 

The anulus fibrosus (AF) is the external part of the intervertebral disc (IVD) and consists of elastic 

collagen fibers, which wrap the nucleus pulposus (NP) and is attached to the endplates of the cranial 

and caudal vertebrae.6 The NP consists of a gelatinous structure rich of poly-anionic proteoglycans 

situated in the central part of the IVD. The great water content of the NP contributes to dampen the 

spinal loads and working as a shock absorber when transferring the loads to the surrounding tissues.  

The load is transferred from the NP to the AF because the nucleus can be likened to a sealed hydraulic 

system, in which a small loss of fluid leads to a large drop in pressure.  In order to map the pressures 

in the NP and within the AF of the human spinal discs, pressure transducers were used by Ranu et 

al.116 Pressures in the NP and in the AF were linearly related to each other and to the applied 

compressive loads. Mechanical strains of the vertebral body had a corresponding trend with the 

applied compressive loads, when the partial vertebral column was loaded up to the point of bony 

fracture. The kinematics of the IVD is complex: when the spine is flexed, the NP moves posteriorly, 

while when the spine is extended, the NP moves anteriorly.117, 118 

Soft tissues are known to be viscoelastic, exhibiting generally higher stiffness and lower dissipation 

at high strain rates.119 The NP exhibits also different characteristics in response to shear deformations 

depending on the rate of the load, and the NP can be described either as a fluid or as a solid.120 With 

the application of the same load, a higher loading rate causes the stiffening of the NP and therefore a 

smaller displacement of the IVD. Conversely, a lower loading rate causes a lower stiffening of the 

NP and a greater displacements of the IVD.121, 122 In vivo studies, measuring the intradiscal pressure 

with a pressure transducer, showed that an increase of the loading rate causes a higher hydrostatic 

pressure and lower solid matrix strains.7, 123 This pressure generates tensile stress in the surrounding 

AF.116 

Also the tissue of the AF exhibits strong viscoelasticity: there is a significant increase in the modulus 

at linear region as strain rate increased.7, 124, 125 However, in the destructive tests, no significant 

differences in ultimate stress, ultimate strain and strain energy density were observed at different 

strain rates.124 The rate dependency in mechanical properties of the AF could be primarily due to 

collagen fibers and not to the annulus matrix component.124 

When a multi-vertebra spine segment or a functional spinal unit (FSU) is tested, the structural 

behaviour (stiffness, range of motion) can be expected to depend on the loading rate.121, 126-129  High 

rates involve an increase of stiffness of the structures of the spine due to the viscoelastic response of 

the different tissues.7  The ability of the IVD to dissipate energy, and therefore to absorb shock loads, 

increased with the decrease of the rate.121 Regarding the range of motion and the neutral zone, no 

differences were found by Wilke et al. using different angular deformation rates (0.6°-5.1°/second).37 

Race et al.121 examined the hysteresis of the load-displacement graphs indicating the energy 

dissipation of the IVD. 

Since parameters related to stiffness are likely to be affected by loading rate, a study130 examined the 

effect of those factors on motion parameters derived from continuous motion data. When the loading 

rate increased there were significant increases in hysteresis area, in hysteresis loop width, and in the 

upper and lower transition zone slopes.130 At the same time transition zone width decreases 

significantly. These findings are quite counterintuitive as seem to contradict the consolidated findings 

at the tissue level, and past observation about the structural stiffness of the IVD as a whole. 

While the structural behaviour of spine segments and the tissue-level viscoelastic properties have 

been extensively investigated, little is known at an intermediate scale. To investigate the strains on 

the AF surface and the disc bulging during simple and complex loads, Heuer et al. used a three-

dimensional laser scanner device.131 They observed regions with high compressive strain near the 

endplates. Furthermore, disc bulging stretched the disc at mid height, causing positive strains in that 

area both in the axial and in the circumferential direction.131 However, the above study did not 

consider the possible effects of different loading rates on the superficial strain distribution. 
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So, what is missing is how the load is distributed between the different structures of the spine at 

different loading rates. In particular, there is a lack of knowledge of how the strain distribution on the 

surface of vertebra and of IVD changes as a result of a stiffening of NP with the increase of the 

loading rate. 

The aim of this work was to investigate the local effects of the loading rate on the strain distribution 

in the IVD. The hypotheses of this work were:  

• As the IVD stiffens when the loading rate increases, the strain distribution becomes more 

uniform between the IVD (more compliant and viscoelastic) and the vertebrae (stiffer and 

elastic). 

• Pre-conditioning attenuates the strain-rate dependent behaviour of the IVD, thus making 

differences in strain distribution smaller at the different rates. 

6.2 Materials and methods 

6.2.1 Specimen preparations 

Six segments of three vertebrae (L4-L6) were extracted from porcine spines (porcine spines are longer 

than human ones, up to 6-7 lumbar vertebrae). The animals were sacrificed for alimentary purpose.  

The specimens were cleaned of all muscles, while keeping intact all the ligaments, and paying 

attention not to damage the intervertebral discs. The two intervertebral discs were aligned horizontally 

in the frontal and lateral plane using a six-degrees-of-freedom clamp. The extremities of the segments 

were potted in poly-methyl-methacrylate (PMMA) cement. 

6.2.2 Mechanical test 

The load was applied using a servo-hydraulic universal testing machine (8032, Instron, high 

Wycombe, UK). The cranial side of the specimen was fixed to the upper part of the testing machine 

while the caudal side was placed on a spherical joint which could move on a rail in antero-posterior 

direction. To simulate a presso-flexion, a pure compression with an anterior offset of 25 mm was 

applied (Fig. 6.1). 

Each test consisted of the application of a load at fast, medium and slow rate (with a ratio of 1:10:100 

between the respective time to reach the full load): 

• Fast rate: one load cycle with full load reached in 0.67 s (this was the maximum speed allowed 

by the frame rate of the DIC system) 

• Medium rate: one load cycle with full load reached in 6.7 s 

• Slow rate: one load cycle with full load reached in 67 s 

The test at the medium rate was tuned so that the full load (generating a moment of 5 Nm) was reached 

in 6.7 seconds. In order to allow comparison between the test conditions, the same displacement 

required to reach the full load at the medium rate was imposed also at the fast and slow rates (Fig. 

6.2).   

Two sets of tests were performed on each specimen:  

• One test (one fast, one medium and one slow cycle, with 60 seconds recovery between load 

cycles) without conditioning the specimen 

• One test (same sequence) after conditioning the specimen with 60 cycles at 1 Hz. In order to 

verify if the conditioning was sufficient, a preliminary test of ten cycles were performed with 

a recovery time of 60 seconds (the same recovery time used in actual tests). A conditioning 

of 60 cycles was considered sufficient as after such conditioning differences among 10 

consecutive cycles were smaller within 1% of the full load 
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The load and displacement were acquired using a multichannel data logger (Chassis PXIe-1078, 

Controller PXIe-8135, DAQ PXIe-6341, National Instruments) at 150 Hz. To keep the specimen 

hydrated between the first and the second test, the specimens were wrapped in a transparent film in 

which some water had been sprayed. 
 

 
 

Figure 6.1 - Overview of the test configuration and the DIC system. Left: The testing machine with the loading setup and 

the two cameras of the DIC analysis (viewing the lateral part of the specimen). Center: specimen mounted (lateral view) 

in the two pots, with the loading system. Right: detail of the specimen with the white-on-black speckle pattern for the DIC 

analysis. The field of view recorded by the DIC cameras is indicated. 

6.2.3 Full-field strain measurement 

In order to measure a full-field strain map, Digital Image Correlation (DIC) was used. The surface of 

the specimens was dyed with a dark background using a 4% solution of methylene blue (Fig. 6.1). A 

white-on-black speckle pattern was prepared on the anterior surface of the specimen with the 

appropriate dot size, following an optimized procedure.96, 112  A commercial 3D-DIC system was used 

(Q400, Dantec Dynamics, Denmark) with its software (Instra 4D, v. 4.3.1, Dantec Dynamics). Two 

cameras were used (5 MegaPixels, 2440x2050, 8-bit, black-and-white) in order to obtain a 

stereoscopic vision.  Calibration was performed before the tests using a dedicated calibration target 

(Al4-BMB-9x9, Dantec Dynamics).  

The region of interest of the specimens consisted of three vertebrae (L4-L6) and the two included 

intervertebral discs taken from a lateral view (Fig. 6.1).   

The parameters for the acquisition of the images and for the correlation analysis were preliminarily 

studied and optimized to minimize errors based on a validated procedure41: facet size between 35 and 

39 pixels, grid spacing of 21 pixels, contour smoothing of kernel size 5x5 (Table 6.1). 

Full-field strain maps of true maximum and minimum principal strains (ɛ1 and ɛ2) were computed for 

all the specimens in correspondence of the two IVDs at the different loading rates and in the not-

conditioned and conditioned scenarios. 
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Table 6.1.- Details of the parameters used for the correlation analysis with the DIC system (according to132) 

Parameters for the correlation analysis 

DIC Software Package Name and Manufacturer Instra 4D, v. 4.3.1, Dantec Dynamics 

Distance of the cameras 500 mm 

Field of view about 120 mm by 50 mm 

Depth of field 70 mm 

Lens aperture f/22 

Frame rate 15 frames per second 

Grid spacing 21 pixels 

Facet size between 35 and 39 pixels 

Contour smoothing kernel size 5 x 5 

 

6.2.4 Statistical analysis 

In order to investigate what happens on the strain distribution in correspondence with the two IVDs 

(L4-L5 and L5-L6 IVDs), two rectangular regions of interest (ROIs) were delimited between the most 

posterior to the most anterior part of the IVDs (Fig. 6.3). On these ROIs, the medians over cranio-

caudal (longitudinal) lines were computed separately for the two IVDs. The plot of the median values 

showed the posterior-to-anterior trend of the strain. Then, the median posterior-to-anterior trend was 

computed between the specimens. As the dimensions of the ROIs depended on the anatomy of each 

specimen, the data were re-sampled over the same number of points, so as to allow computing the 

median spatial trend among the specimens. 

In order to assess if the differences of the spatial trends of the strains at the three loading rates and in 

the not-conditioned and conditioned scenarios were statistically significant, a two-sample 

Kolmogorov-Smirnov test was applied to the strain distributions around the IVDs. All statistical 

analyses were performed with Matlab (R2019b, MathWorks®, Natick, USA). 

6.3 Results 

6.3.1 Moment - displacement 

For all the specimens, decreasing the loading rate was associated in a decrease of the peak load (while 

the same displacement was imposed, Fig. 6.2), and a decrease of the stiffness. The same trend was 

found both in the not-conditioned and conditioned scenarios. The variations of peak load can be 

described assigning a value of 100% to the medium rate (Fig. 6.4): 

• In the not-conditioned scenario, the load increased by 11% for the fast loading rate, while the 

load decreased by 29% for the slow rate 

• Similarly, in the conditioned scenario, the load increased by 14% for the fast loading rate, and 

it decreased by 30% for the slow rate 

The difference between the not-conditioned and conditioned scenarios was less than 3% in all the 

tests. 
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Figure 6.2 - The test consisted of a slow, medium and fast cycles (with 60 seconds recovery between cycles). The plot on 

the top shows the imposed displacement (the same at all rates, the same in the not-conditioned and conditioned scenarios). 

The plot at the bottom shows the load associated with such displacement for the three loading rates and for the not-

conditioned and conditioned configurations. As the same displacement was imposed to allow comparison between the 

loading rates, this resulted in different peak load (the target of 5 Nm was reached at the medium loading rate, whereas 

the peak load at fast and slow rates were respectively higher and lower than 5 Nm). One typical specimen is plotted: the 

trend and the magnitudes were similar for all specimens. 

Figure 6.3 - Strain distribution (minimum principal strain) in one representative specimen from the lateral view: the 

rectangles show the ROIs placed on the two IVDs. The spatial trend from the posterior to the anterior side of each ROI 

was computed as the median values over cranio-caudal (longitudinal) lines. 
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6.3.2 Overview of the strain maps 

For all specimens in all the tests, the strain maps showed a different order of magnitude of the strain 

for the vertebrae (ɛ1 in the order of +300/+400 microstrain and ɛ2 in the order of -2000/-3000 

microstrain) and for the intervertebral discs (ɛ1 in the order of +4000/+6000 microstrain and ɛ2 in the 

order of -25000/-30000 microstrain) (Fig. 6.5). In all the cases investigated, flexion of the spine 

segment induced a bulging of the IVD associated with maximum principal strains (ɛ1) in the 

circumferential direction on the lateral and anterior sides of the two IVDs, while the minimum 

principal strains (ɛ2) were longitudinal. Conversely, the maximum principal strains (ɛ1) were in the 

axial direction (and the associated minimum principal strains ɛ2 were circumferential) on the posterior 

side of the two IVDs, showing an axial stretch in this region. 

 

Figure 6.4 - Percentage differences of the peak loads between at the fast and slow loading rate with respect to the medium 

loading rate (which corresponds to 100%) in the not-conditioned and conditioned configurations. 

6.3.3 Detailed analysis of the effect of the loading rate on the spatial trend 

The medians of the trend distribution of strain among the specimens for the two IVDs were computed 

for the two principal strains (ɛ1 and ɛ2) for the three loading rates and for the not-conditioned and 

conditioned scenarios (Fig. 6.6 and 6.7). 

The spatial trend of the principal strains showed an increase in absolute value moving from the 

posterior to the anterior side of the two IVDs. For the not-conditioned configuration and for all the 

loading rates, the strain on the posterior side was about 4 times smaller than the strain on the anterior 

side of L4-L5 and L5-L6 IVD (Fig. 6.6). For the conditioned configuration, the difference from the 

posterior to the anterior regions of the two IVDs was slightly higher (the ratio was about 5, Fig. 6.7). 

The difference between the spatial trends in the not-conditioned and conditioned scenarios was not 

statistically significant for both IVDs and for both principal strain components (Two sample 

Kolmogorov-Smirnov test, p>0.1 for all loading rates). This difference between the not-conditioned 

and conditioned tests was not evident in terms of strain value. Only slight differences appeared in the 

strain distribution: in the anterior region, near the endplates, with the slow rate, a smoother strain 

gradient was visible between the most deformed area (IVD) and the least deformed area (vertebra).  

With the fast rate there was a more abrupt variation between these two areas (Fig. 6.5). 

For the L4-L5 IVD and for L5-L6 IVD, both for not-conditioned and conditioned tests, a slight 

variation was observed between the fast and slow loading rates for both principal strains (the 

difference between fast and slow for ɛ1 and for ɛ2 was less than respectively 1/10 and 1/20 of the 
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maximum measured value, Fig. 6.6 and 6.7). The difference between the spatial trends due to the 

loading rate was not statistically significant for both IVDs and for both principal strain components 

(Two sample Kolmogorov-Smirnov test, p=0.12-0.78 in the not-conditioned, and p=0.22-0.86 in the 

conditioned scenario). 

 
Figure 6.5 - The full-field strain distribution measured on the lateral side of one typical specimen by the DIC is shown.  

The image on the left side shows the true minimum principal strain (ɛ2) with the directions of the strain. The images on 

the right side show the strain maps for the different loading rates (fast, medium and slow) and for the not-conditioned 

and conditioned scenarios. The minimum principal strain (ɛ2) is represented as it was higher in absolute value than the 

maximum one (ɛ1). 
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Figure 6.6 - Not-conditioned scenario: the full-field strain map on the lateral side of one typical specimen is shown on 

the left. The plots on the left show the spatial trend of the maximum and minimum strains (median of the six specimens), 

respectively the L4-L5 and L5-L6 IVDs, for the different loading rates (fast, medium and slow). On the right, the trend of 

the difference between the slow and fast loading rates is plotted for the maximum and minimum principal strains. 

 

Figure 6.7 - Conditioned scenario: the full-field strain map on the lateral side of one typical specimen is shown on the 

left. The plots on the left show the spatial trend of the maximum and minimum strains (median of the six specimens), 

respectively the L4-L5 and L5-L6 IVDs, for the different loading rates (fast, medium and slow). On the right, the trend of 

the difference between the slow and fast loading rates is plotted for the maximum and minimum principal strains. 
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6.4 Discussion 

Puzzling findings are reported in the literature concerning the viscoelasticity of the IVD: while the 

tissues composing the IVD show clear viscoelasticity124, and FSU show the expected stiffening at 

high loading rates37, an increased hysteresis was reported at high loading rates.130 The aim of this 

study was to investigate how the strain distribution on the AF changes at different loading rates and 

if it is affected by conditioning. 

A flexion test was performed on 6 porcine segments (L4-L6) applying the load at three different rates 

(fast, medium and slow) while the full-field strain distribution on was measured using Digital Image 

Correlation. To allow direct comparisons, the same displacement was imposed at the different rates, 

resulting in different values of the peak load in relation to the specimen’s viscoelasticity.  

Furthermore, also the effect of conditioning on the strain distribution was investigated. 

During flexion lower strains were reached in the posterior side of the IVDs than in the anterior one, 

at all loading rates. The increase from posterior to anterior was quite smooth (Fig. 6.6 and 6.7).  This 

can be explained by NP migrating posteriorly during flexion118 thus allowing the anterior side of AF 

to strain more, also in association with the anterior bulging of the disc. 

The NP exhibits significant viscoelasticity, depending on the loading rate.133 At high loading rate, the 

NP appears stiffer, causing an increase of the internal pressure and of the stiffness, leading to a 

hardening of the entire structure rate.120, 121 With a low loading rate, the NP is more fluid, decreasing 

the stiffness of the structure and absorbing more easily the load.133 A similar trend is found in the 

tissues composing the AF.7, 116 In the present study, the way in which the surface of AF and the 

endplates were deformed did not change significantly with different loading rates (Fig. 6.5). In the 

transition zones between the disc and the vertebra, only slight differences due to the loading rate 

appeared, but with no statistical significance: with high loading rates this zone was less uniform 

showing a more abrupt transition between disc and vertebra respect to what was observed during slow 

loading rates. This could mean that the viscoelastic behavior of the tissues composing the NP and the 

AF did not directly affect the overall kinematics of the disc, and only slightly affected the transition 

zone between disc and vertebra where a large discontinuity of stiffness is localized. 

During flexion, the directions of the principal tensile strain (ɛ1) in the anterior side of the disc were 

circumferential (and ɛ2 was longitudinal, Fig. 6.5) with the specimen showing a swelling of the disc.  

Conversely, towards the posterior region of the disc the two principal strain components were small 

and similar in magnitude, and therefore the principal directions were more unpredictable.The 

direction of the strain on the different structures of the spine (vertebrae, endplates, IVDs) remained 

unchanged at the different loading rates, showing that the way the loads were transferred through the 

different structures of the column was not affected by the loading rates. 

For what concerns the role of conditioning, this did not significantly affect the strain distribution on 

the surface of AF. Both for the not-conditioned and conditioned scenarios, distribution of strains 

around the IVD was similar. The maximum difference between the not-conditioned and conditioned 

scenarios was negligible around the disc and slightly higher (up to 10%) in the anterior side, where 

more measurement artefacts are also present.   

One of the most frequent spine pathologies is disc herniation, consisting in the rupture of the AF and 

leakage of part of the NP. It is still not completely clear if and to what extent this phenomenon is 

related to the loading rate.7 The fact that no significant differences in strain distribution were observed 

with the different loading rates would suggest that the risk of disc herniation is not related to the 

loading rate, within the range explored in the present study. The present findings therefore agree with 

the results obtained by Gregory et al.134 The study asserted that, at strain rates achievable through 

voluntary motion that could result in herniations of the AF, the tensile response of the AF tissue is 

not affected by strain rate. 

A limitation of the present work was the use of porcine specimens instead of human specimens. 

Animal specimens are easier to obtain than human ones. Porcine are similar to human in size and 

biomechanical response.29, 135  
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Conversely, the range of motion (ROM) of porcine spines are different from the ROM of human 

spines.136  Therefore, the findings of the present study can be extended to the human spine as a trend, 

even if possibly not as absolute magnitudes. 

A further limitation was related to the range of loading rate. The rates explored from relatively fast 

movement (0.67 second) to very slow ones (67 seconds), which covers the range of daily activities. 

What was not considered in this analysis is the high loading rate simulating trauma (which can be up 

to 1/100 of a second). 

 

6.5 Conclusion 

In conclusion this study has shown that the loading rate has negligible effects on the strain on the 

surface of the annulus fibrosus. Similarly, also conditioning did not alter the strain distribution, nor 

the effect that the loading rate has on the strain distribution. For these reasons, disc herniation would 

seem not to be due to a specific rate of the applied loads. Furthermore, these findings could be useful 

also for the design of other in vitro biomechanical tests and of more realistic numerical models of the 

spine, knowing what effect different loading rates and conditioning entail on the biomechanics of the 

intervertebral discs. 
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7.1 Introduction 

The anterior longitudinal ligament (ALL) is a fundamental component of the spine.  It covers the 

anterior aspect of the spine running along the entire length of the spine.6  To elucidate the contribution 

of the different anatomical elements to the biomechanics of the spine, it is important to identify the 

specific behaviour of the ALL. Microdissection and anatomical studies showed that the ALL 

comprises distinct layers. More superficial fibers attach to central regions of the vertebrae, running 

longitudinally and spanning up to 4-5 functional spinal units (FSUs - consisting of two vertebrae and 

one intervertebral disc). Much shorter intermediate fibers cover more intervertebral discs (IVDs) and 

insert onto the anterior aspect of the adjacent vertebrae, spanning 2-3 FSUs. The deepest layer covers 

longitudinally and obliquely (i.e.: alar fibers) a single IVD.138 The ALL deeper fibers are solidly 

attached on the periosteum of the vertebrae and they continue in the external lamellae of the anterior 

part of the IVD. The ALL has an important role in stabilizing and limiting movements in the sagittal 

plane, and in confining the anterior wall of the intervertebral discs (IVD).139 Its mechanical role has 

direct implications on low-back pain, since it limits primary and coupled motions in extension. As 

the ALL can prevent the bulging of the IVD, it contributes to maintain the height between two 

adjacent vertebrae in flexion. Consequently, the ALL prevents closure of the foraminal spaces and 

compression of the nerve roots.  Such effects are even more important in case of disc degeneration.  

Furthermore, the ALL, like most spine ligaments, is rich with mechanoreceptors and plays a 

fundamental role in the neuromotor control. 

The biomechanical function and strain distribution in the vertebrae and IVD have been investigated 

in vitro in detail.35, 60, 140 Often, only FSUs were tested60 whereas multi-vertebra spine specimens 

should be preferred in in vitro tests32 for the investigation of those ligaments spanning more than one 

FSU, indeed this represents a more realistic and complete loading condition.  From these tests, the 

range of motion56, 141 and/or the neutral zone and stiffness56 under the different physiological loading 

conditions were evaluated for the different spinal levels. This type of measurements provides useful 

information about the global description of the spine biomechanics, but it is unable to elucidate in 

detail what happens locally on the spine segment.   

The investigations on the spinal ligaments are somehow limited. Specifically, the ALL, which is one 

of the strongest ligamentous structure in the spine, has only partially been investigated so far. 

Generally, the ALL was tested separately at the tissue level: evaluating the mechanical properties of 

dissected tissue specimens61, 142, and at the system level: evaluating its structural behaviour when it 

was included in spine tests.32, 143 However, a biomechanical characterization of the ALL tissue when 

it was incorporated in the spine, with the typical and complex loading conditions, is missing. No 

studies were found in which the strain distribution was measured on the ALL, in its complete 

mechanical and anatomical complex, as part of a multi-vertebra spinal segments, and under different 

loading conditions representative of physiological loading. 

In this work, the evaluation of multi-vertebra spine segments (i.e.: 7/8 vertebrae and 6/7 intervertebral 

discs) through flexibility tests was integrated with a full-field measurement of the strain distribution 

of the anterior surface.96, 144 The overall aim of this study was to investigate in depth the 

biomechanical function of the ALL in front of the lumbar vertebrae (L3-L5) and of the intervertebral 

discs.   

Specifically, we aimed measuring the strain distribution in the ALL for different directions of motions 

under pure moments, and so understanding how the strain distribution changes through the 

progression of the loading cycle analysing discrete steps. 

We hypothesized the ALL undergoes non-uniform strain distribution when the spine segment is 

subjected to pure moments, potentially related to the unique specimens’ anatomy/morphology (e.g.: 

presence of osteophytes); moreover, opposite loading directions (e.g.: flexion/extension, or right/left 

lateral bending, or clockwise/counterclockwise axial torsion) translate to non-mirrored strain 

distributions. 
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7.2. Materials and Methods 

7.2.1 Study design 

This study was approved by the Institutional Review Board (Ethikkommission) of Ulm University, 

(Document of approval Nr. 307/17). In order to investigate the strain distribution on the anterior 

longitudinal ligament in the lumbar region, cadaveric multi-vertebra spinal segments were subjected 

to non-destructive pure moments in different directions, with a state-of-the-art spine tester. The tests 

were performed twice on each specimen under identical conditions. Preliminarily, the range of motion 

was measured, with an optical motion tracking system, to allow comparisons of the tests results. 

Subsequently, the strain distributions on the anterior surface of the L3-L5 region, were measured by 

means of digital image correlation (DIC) with a recently validated protocol, for identifying 

stretched/compressed regions. The strain distributions were analysed firstly qualitatively, and then 

quantitatively. 

7.2.2 Specimens 

Five fresh-frozen human thoracolumbar spine segments were obtained through an ethically-approved 

international donation program (Science Care Inc., Phoenix, AZ). The donors were all Caucasian, 

three males and two females (Table 1). Inclusion criteria were: no history of spine fracture or major 

spine deformity; no tumour; physically active, i.e.: ambulatory activities and daily living activities, 

up to date of death. The median age of the subjects at the time of death was 62 years and their median 

weight was 133 kg. To check the state of degeneration and determine the bone mineral density 

(BMD), each specimen was scanned using a calibrated clinical computed tomography (CT) scanner 

(Philips Brilliance 64, Philips Healthcare, Cleveland, USA). The BMD was expressed averaging the 

measurements collected on the trabecular bone of L1, L2 and L3 vertebrae.  

The volumetric CT reconstructions of the specimens are available in the Supplementary Material, 

otherwise a conventional x-rays image (Faxitron 43805N, Hewlett Packard, Palo Alto, USA) is 

provided. No critical damages were observed; however, most specimens showed some osteophytes 

as can be expected with elderly donors. The osteophytes and reduction of IVD height was quantified 

with objective metrics, according to145. 

The soft tissues (muscles, fat) on the anterior side of the spines were carefully removed to expose the 

anterior longitudinal ligament and the lateral side of the vertebral bone and of the intervertebral discs; 

the posterior elements were left in place.146 

The upper half of the most cranial vertebra and the lower half of the most caudal vertebra were 

embedded in poly-methyl-methacrylate (PMMA, Technovit 3040, Heraeus Kulzer, Werheim, 

Germany) blocks. After the preparation, the specimens were frozen in plastic bags at -20°C until the 

day of the tests. Thawing at 6°C for 10 h prior to preparation and testing of the specimens were 

performed within 20 h to avoid alteration of their mechanical properties. 

7.2.3 Mechanical loading 

All specimens were tested at room temperature (ca. 23°C) and the hydration was preserved spraying 

saline solution during the tests.  In order to mount the specimens in a universal spine tester, flanges 

were fixed to the PMMA blocks146, 147 so that the L3-L5 segment was vertical. Initially the cranial side 

was connected to the top of the spine simulator with the gimbal with three integrated stepper motors 

(FT 1500/40, Schunk GmbH & Co. KG, Lauffen/Neckar, Germany), then the caudal side with the 

natural slope for each specimen was fixed on the bottom side of the testing machine (Fig. 7.1). 



66 
The strain distribution in the lumbar anterior longitudinal ligament is affected by the loading condition and bony 

features: an in vitro full-field analysis 

 

The coordinate system of 146 was used in this work. Each specimen was tested without any preload in 

flexion/extension (My), right/left lateral bending (Mx) and clockwise/counterclockwise axial torsion 

(Mz) applying pure moments (M) up to +/-7.5 Nm. Flexion/extension and lateral bending were 

applied at a rate of 1°/s, while the axial torsion was applied at a rate of 0.5°/s. As the thoraco-lumbar 

spine is about twice as stiff in torsion, the rate in torsion was half of that in bending, so as to reach 

the fully loaded condition in approximately the same time. Each test consisted of three consecutive 

cycles for each direction of loading: the first two cycles for pre-conditioning, the last one for the 

actual analysis.37 All motions started and finished in the unloaded neutral position.  In order to avoid 

application of any additional undesired loading component, the specimens were unconstrained in the 

other uncontrolled five degrees of freedom. A six-components load cell (FT 1500/40, Schunk GmbH 

& Co. KG, Lauffen/Neckar, Germany) measured the moments and the forces applied. 

 

Specimen 

number 
Segment Gender 

Age at 

death 

(years) 

Height 

(cm) 

Weight 

(kg) 

BMD 

(mg/cm3) 

Disc height 

loss 

Osteophytes 

formations 

Overall degree of 

degeneration - Other 

remarks 

#1 T11-S1 M 60 N.A. N.A. 153 
No remarks 

(grade 0) 

No 

osteophytes 

(grade 0) 

Healthy 

#2 T11-S1 M 66 183 141 82 
Mild (25%, 

grade 1) 

Moderate 

(grade 2) 

Mild 

degenerative 

signs (grade 1) 

#3 T11-S1 M 62 178 164 94 

Moderate 

(42%, grade 

2) 

Moderate 

(grade 2) 

Moderate degenerative 

signs (grade 2) - 

thickening of L4 

anterior cortical wall  

#4 T11-S1 F 60 163 114 123 

Moderate 

(40%, grade 

2); 

T12-L1 and 

L4-L5 discs 

herniated 

towards L1 

and L5 

Moderate 

(grade 2) 

Moderate degenerative 

signs (grade 2) - mild 

scoliosis (Cobb angle 

T12-L5 of 10°); 

concave L5 superior 

endplate 

#5 T12-S1 F 63 157 125 157 

Moderate 

(33%, grade 

2) 

Severe 

(grade 3) 

Moderate degenerate 

signs  

(grade 2)  

Median - - 62 170 133 123 - - - 

Table 7.1 - Details of the specimens: the first columns report the donor’s information. The last three columns report the 

radiographic assessment for L4 and L5, evaluated through CT scans (the CT scans for each individual specimen is 

reported in the Supplementary Material. The IVD height loss and osteophytes formations were assessed according to145 

7.2.4 Measurement of structural properties 

In order to confirm that the overall kinematics of the specimens was consistent with the literature, the 

mechanical tests were first performed with a motion tracking system. Each single vertebra was 

equipped with three spherical reflective markers, which were attached frontally and laterally to the 

vertebral body. The motion of the single vertebrae was simultaneously captured with six cameras of 

the optical system (Mod. MX13, Vicon Motion Systems Ltd., Oxford, UK), synchronized with the 

mechanical loading apparatus.  After evaluating the relative intervertebral motions using the software 

Nexus 1.8.5 (Vicon Motion Systems Ltd.), the kinematic data were matched with the moment data to 

analyse the resulting load-deformation curves. The global range of motion (ROM) as well as the 

global neutral zone (NZ) of each motion segment between T12 and the sacrum were quantified using 

dedicated scripts (in MatLab R2014b, MathWorks, Natick, USA). 
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7.2.5 Measurement of the local distribution of the strain 

 In order to measure the full-field strain distribution on the anterior spinal ligaments, the same 

mechanical tests were performed while a 3D DIC system was used. A white-on-black speckle pattern 

was prepared before the test on the anterior surface of the specimens following an optimized 

procedure.112 The dark background was prepared staining the ALL, the intervertebral discs and the 

vertebrae with a solution of methylene-blue (4 g of methylene-blue per 100 ml of water) until a 

uniform dark background was obtained.  The white dots were created with a white water-based paint 

(Q250201 Bianco Opaco, Chrèon, Italy) diluted at 40% with water and sprayed with an airbrush-

airgun (AZ3-THE-2, nozzle 1.8 mm, Antes-Iwata, Italy) with 100kPa air pressure, from a distance of 

300 mm.  Such settings were refined in order to obtain the optimal size of the speckle dots following 

a validated protocol.40, 41 

Fig. 7.1 - Left: overview of the testing setup showing (a) the DIC cameras, (b) the DIC light system, (c) the optoelectronic 

cameras and (d) the m. Right: detail of the spine segment. The white-on-black pattern is visible.  Also shown is the three-

dimensional coordinate system used by the different measurement tools: the transverse plane of the spine segment 

corresponds to the xy-plane of the coordinate system, the sagittal plane to the xz-plane and the frontal plane to the yz-

plane. The X-axis is forward, the Y-axis left and the Z-axis cranial 

The DIC system (Q400, Dantec Dynamics, Denmark) was configured with two 5 Mpixels cameras 

(2440x2050, 8-bit, black-and-white) equipped with high-quality metrology-standard 17 mm lens 

(Xenoplan, Schneider-Kreuznach, Germany; 65 mm equivalent) to acquire images of the specimens 

providing a stereoscopic vision. A directional custom system of LEDs (10’000 lumen in total) was 

placed to light up the specimen with oblique light minimizing the glares on the specimen typical of 

direct illumination. The cameras were placed at a distance of 540 mm from the specimen. The cameras 

were aligned vertically in order to take advantage of the sensor shape in framing the region of interest 

(ROI) of the spine segment (three vertebrae and two intervertebral discs - from L3 to L5) without 

scarifying the measurement spatial resolution, Fig. 7.1). In this configuration, the field of view was 

of about 120 mm by 160 mm, it was depending on the individual specimen, resulting in a pixel size 

of about 0.08 mm, and a depth of field of 70 mm with the aperture adopted (f/22). Images of the ROI 

were acquired at 5 frames per second.  

To enable the stereoscopic reconstruction within the measurement volume and correct the distortion 

of the lenses, a calibration was performed before each acquisition using a proprietary calibration 

target (Al4-BMB-9x9, Dantec Dynamics). The analysis of displacements and strains through 

correlation of the images was achieved using the proprietary software Istra 4D (v4.3.1, Dantec 

Dynamics, Denmark).  The maximum (ɛ1) and minimum (ɛ2) engineering principal strains, as well as 
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their direction, were computed using a facet size between 39 and 59 pixels, a grid spacing between 

the facets of 4 pixels and contour smoothing with a kernel size of 5x5 facets. 

7.2.6 Measurement uncertainties, Metrics and statistical analysis 

7.2.6.1 Uncertainties 

The accuracy of the motion tracking system was evaluated using special custom-made calibration 

object. An extensive validation and optimization of the DIC measurement system and protocols were 

previously performed.112 Here, an estimation of the unavoidable measurement uncertainties was 

performed just before each mechanical test. A couple of images of each specimen in the unloaded 

condition (zero-strain) was acquired. The images were analysed using the chosen settings. The 

systematic and random errors were evaluated as the mean and standard deviation of ɛ1 and ɛ2 over the 

entire ROI, which theoretically should be zero.  

7.2.6.2 Metrics and statistics 

Global (T12-S1) range of motion (ROM) was defined as the maximum deflection of the respective 

motion segment at full load (7.5 Nm). The global neutral zone (NZ) was evaluated as the difference 

of the angle at 0 Nm of the hysteresis cycle. The NZ specifies the motion of the specimen in the 

unloaded region, representing the laxity.146 

The full-field ɛ1 and ɛ2 maps were computed by the DIC system during the entire load cycle. For a 

qualitative analysis, the strain maps, in the region of interest from L3 to L5 were reported for each 

loading scenario during the progression of the load. 

For a quantitative analysis, two sub-regions of interest (sub-ROIs): in front of the L4 vertebra and in 

front of the L4-L5 IVD, were defined. For each sub-ROIs, the strain field at the maximum load was 

analysed through a MatLab script computing the principal strains medians. To assess the significance 

of the difference between the strains in front of the vertebra and in front of the IVD, the medians over 

such areas were compared with the two-sample Mann-Whitney test for each loading scenario. To 

describe how the principal strains were distributed in the circumferential direction of the ALL in front 

of the L4 vertebra and in front of the L4-L5 IVD, the median over cranio-caudal (vertical) lines were 

computed, separately, over the vertebra and over the IVD, both for ɛ1 and ɛ2, for each specimen.  

Similarly, to describe how the principal strains were distributed in the cranio-caudal direction of the 

ALL in front of the vertebra and in front of the IVD, the median over circumferential (horizontal) 

lines were computed, separately, over the vertebra and over the IVDs. Then, the data from the five 

specimens were pooled and the median trend plotted together with the standard deviation. As the sub-

ROIs were dimensionally different in the different specimens and the number of measurement points 

is connected with the physical dimension of the spine segments, the data were re-sampled over the 

same number of points.  In order to assess the significance of alterations of such distribution of strain 

in relation to the different loading scenarios, a two-sample Kolmogorov-Smirnov test was applied 

both to the circumferential and cranio-caudal strain distributions of the L4 vertebra and the caudal 

IVD, discriminating the opposite directions of loading. 

7.3 Results 

All the tests were successfully performed with no visible damage of the specimens. A preliminary 

check of the bending moment-rotation plots from the spine tester confirmed that the difference 

between the two series of loading cycles (i.e.: those to measure the structural properties with the 
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motion tracking system, and those to measure the strain distribution with the DIC) were smaller than 

5° with a rotation of 33° at full load. The only problems encountered was the poor correlation for 

flexion-extension for specimen #1 and the loss of the dataset of specimen #4 for extension. 

7.3.1 Measurement uncertainties 

An in-house validation showed that the motion tracking system has an accuracy of better than 0.1 

mm and better than 0.1°. The zero-strain tests, before each test, indicated that DIC-measured strains 

had a systematic error of better than 20 microstrain and a random error of better than 60 microstrain. 

7.3.2 Structural properties 

The median ROM at 7.5 Nm was 12.0° in flexion-extension (range: 9.7°-14.6°), 13.6° (range: 12.4°-

24.9°) in lateral bending and 7.8° in axial torsion (range: 4.6°-9.3°). The NZ was 3.7° in flexion-

extension (range: 1.9°-5.9°), 6.2° in lateral bending (range: 4.4°-20.1°) and 0.8° in axial torsion 

(range: 0.2°-1.8°). 

7.3.3 Local distribution of strains 

The full-field strain maps showed a non-homogeneous distribution in the ALL (Fig. 7.2-7.7). The 

peak values of the maximum and minimum principal strains had the same order of magnitude, in all 

loading scenarios. Strains did not increase linearly during the progression of load (0.0, 2.5, 5.0, 7.5 

Nm, Fig. 7.2, 7.4, 7.6): in some regions the strain magnitude reached a high value already with small 

moments, and then remained rather constant for higher moments. The different loading scenarios 

generated different strain patterns. These strain maps allowed to identify which portions of the ALL 

were actually working (in tension or compression), and which portions were unstrained (Fig. 7.3, 7.5, 

7.7).  Some stripes characterized by larger strains were visible in all specimens with a preferential 

cranio-caudal orientation (Fig. 7.2, 7.4, 7.6). In most specimens, also some spots with larger strains 

were visible, especially close to the endplates. While common trends were visible in all specimens, 

inter-specimen differences were found in association with specific bony-defects and individual 

defects highlighted by the CT images (Fig. 7.8). 

7.3.3.1 General trends for flexion/extension 

During the application of flexion/extension, strains increased more pronouncedly, in absolute value, 

in the ALL in the areas in front of the IVDs, and especially close to the endplates (Fig. 7.2). The same 

regions reached the maximum strain values when the full load was applied.  At the maximum flexion, 

the median ɛ1 and ɛ2 over the portion of the ALL in front of the L4 vertebra were respectively 3910 

microstrain and -15170 microstrain (median between 5 specimens); in front of the IVDs ɛ1and ɛ2 were 

respectively 19160 and -23020 microstrain. At the maximum extension, the median ɛ1 and ɛ2 in the 

ALL in front of L4 were respectively 13890 microstrain and -1890 microstrain (median between 5 

specimens); in front of the IVDs ɛ1 and ɛ2 were respectively 18730 and -10710 microstrain. The only 

significant difference was found for flexion between ɛ1 in front of the IVDs and in front of the L4 

vertebra (two-sample Mann-Whitney, Table 7.2). The median values for the individual specimens are 

reported in the Supplementary Material. During flexion, ɛ1 were circumferential, indicating an axial 

compression.  During extension ɛ1 were directed longitudinally, indicating traction of the ALL. The 

direction of principal strains in the ALL did not change during the progression of the load. 



70 
The strain distribution in the lumbar anterior longitudinal ligament is affected by the loading condition and bony 

features: an in vitro full-field analysis 

 

The plot showing the distribution of ɛ1 and ɛ2 in the cranio-caudal and circumferential directions of 

the ALL highlighted larger strain in front of the discs with respect to the vertebrae, both in flexion 

and extension (Fig. 7.3). While in extension, the strains were quite uniformly distributed both in the 

circumferential and in cranio-caudal direction of the vertebra and disc, in flexion some regions were 

more strained: the intervertebral disc, at mid-height, and at its right and left extremities. The 

distributions of strains were significantly different between flexion and extension both in the 

circumferential and in cranio-caudal direction of the ALL, for ɛ1 only in front of the vertebra, and for 

ɛ2 both in front of the vertebra and the IVD (two-sample Kolmogorov-Smirnov, Table 7.3). 

Fig. 7.2 - Flexion and extension: Maximum (ɛ1) and minimum (ɛ2) principal strain fields during the progression of the 

loading cycle (0.0, 2.5, 5.0, 7.5 Nm) in both opposite directions. The images on the left show the actual specimen under 

load and the correlated (the vertebrae and IVDs are labelled). The false-colours maps show the non-uniform distribution 

of strain. The black dashes indicate the principal strain directions. A typical specimen (#2) is shown here. Similar patterns 

were observed in all 5 specimens (the strain maps for all the individual specimens are reported in the Supplementary 

Material 
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Fig. 7.3 - Flexion and extension at the maximum loading (7.5 Nm): To describe the strain distribution around the ALL, 

the median over cranio-caudal lines were computed in the sub-ROI in front of the L4 vertebra and in the sub-ROI in front 

of the L4-L5 IVD. Similarly, to describe the strain distribution along the ALL, the median over circumferential lines were 

computed in the sub-ROI in front of the L4 vertebra and in the sub-ROI in front of the L4-L5 IVD. The plots show the 

distribution of ɛ1 (red) and ɛ2 (blue) around L4 and the IVD (purple lines) and along L4 and the IVD (green lines). The 

median and standard deviation within the sample are reported 

7.3.3.2 General trends for lateral bending 

During the application of lateral bending (Fig. 7.4), strains markedly increased in regions both in 

front of the IVDs and in front of the vertebra. Those regions initially more strained, also reached the 

maximum strain values at full load.  The median ɛ1 and ɛ2 in front of the vertebra, at the maximum 

left bending, were respectively 4250 microstrain and -6600 microstrain; in front of the IVDs were 

8510 microstrain and -10090 microstrain. The median ɛ1 and ɛ2 in front of the vertebra, at the 

maximum right bending, were respectively 6363 microstrain and -9570 microstrain; in front of the 

IVDs were respectively 15590 microstrain and -11030 microstrain. None of these differences between 

the vertebra and the IVD was statistically significant (two-sample Mann-Whitney, Table 7.2). The 

median values for the individual specimens are reported in the Supplementary Material. The ɛ1 had 

circumferential direction in the compressed side (left side for the left lateral bending, and vice versa) 

and longitudinal direction in the tensile side (right side for the left lateral bending, and vice versa). 

The trends of strain circumferentially the spine segment for the right and left lateral bending were 

mirrored with respect to the vertical axis (Fig. 7.5). However, there were differences in magnitude, 

with larger strains for the right lateral bending, compared to left. No large differences between the 

two lateral bending scenarios were found in the cranio-caudal strain distribution of the spine segment. 

The distribution of strains over the vertebra L4 were significantly different between right and left 

bending, with the exception of ɛ1 circumferentially the vertebra; the distribution over the IVD were 
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significantly different, with the exception of ɛ2 circumferentially the IVD (two-sample Kolmogorov-

Smirnov, Table 7.3). 

Fig. 7.4 - Lateral bending: Maximum (ɛ1) and minimum (ɛ2) principal strain fields during the progression of the loading 

cycle (0.0, 2.5, 5.0, 7.5 Nm) in both opposite directions. The images on the left show the actual specimen under load and 

the correlated (the vertebrae and IVDs are labelled). The false-colours maps show the non-uniform distribution of strain. 

The black dashes indicate the principal strain directions. A typical specimen (#2) is shown here. Similar patterns were 

observed in all 5 specimens (the strain maps for all the individual specimens are reported in the Supplementary Material 
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Fig. 7.5 - Lateral bending at the maximum loading (7.5 Nm): To describe the strain distribution around the ALL, the 

median over cranio-caudal lines were computed in the sub-ROI in front of the L4 vertebra and in the sub-ROI in front of 

the L4-L5 IVD. Similarly, to describe the strain distribution along the ALL, the median over circumferential lines were 

computed in the sub-ROI in front of the L4 vertebra and in the sub-ROI in front of the L4-L5 IVD. The plots show the 

distribution of ɛ1 (red) and ɛ2 (blue) around L4 and the IVD (purple lines) and along L4 and the IVD (green lines). The 

median and standard deviation within the sample are reported 
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7.3.3.3 General trends for axial torsion  

 During the application of torsion (Fig. 7.6), the strains had a visible twisting trend and increased 

more pronouncedly in front of the IVD.  The median ɛ1 and ɛ2, at the maximum clockwise torsion, in 

front of the vertebra were respectively 7720 microstrain and -5180 microstrain; in front of the IVDs 

were respectively 23170 microstrain and -23420 microstrain.  The median ɛ1 and ɛ2, at the maximum 

counterclockwise torsion, in front of the vertebrae were respectively 7350 microstrain and -3860 

microstrain; in front of the IVDs were 38880 microstrain and -31340 microstrain. All these 

differences between the vertebra and the IVD were statistically significant (two-sample Mann-

Whitney, Table 7.2). The median values for the individual specimens are reported in the 

Supplementary Material.  Although the magnitude of the moment in both direction of torsion was the 

same, the magnitude of the ɛ1 for clockwise and counterclockwise were different; conversely the ɛ2 

were similar between clockwise and counterclockwise torsions.  The ɛ1 were roughly oriented at +45° 

for clockwise torsion and -45° for counterclockwise torsion both on the vertebrae and intervertebral 

discs. The plot of the strain in the circumferential direction of the ALL showed a pattern mirrored 

with respect to the vertical axis for clockwise and counterclockwise torsions (Fig. 7.7). No differences 

were present in terms on magnitude between the two axial torsion scenarios. The distribution of 

strains in the cranio-caudal direction of the ALL in front of the vertebra was significantly different 

between clockwise and counterclockwise torsion only for ɛ2; conversely, the distributions in the discs 

were significantly different in all cases (two-sample Kolmogorov-Smirnov, Table 7.3).  

Fig. 7.6 - Axial Torsion: Maximum (ɛ1) and minimum (ɛ2) principal strain fields during the progression of the loading 

cycle (0.0, 2.5, 5.0, 7.5 Nm) in both opposite directions.  The images on the left show the actual specimen under load and 

the correlated (the vertebrae and IVDs are labelled).  The false-colours maps show the non-uniform distribution of strain. 

The black dashes indicate the principal strain directions. A typical specimen (#2) is shown here. Similar patterns were 

observed in all 5 specimens (the strain maps for all the individual specimens are reported in the Supplementary Material) 
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Fig. 7.7 - Axial Torsion at the maximum loading (7.5 Nm): To describe the strain distribution around the ALL, the median 

over cranio-caudal lines were computed in the sub-ROI in front of the L4 vertebra and in the sub-ROI in front of the L4-

L5 IVD. Similarly, to describe the strain distribution along the ALL, the median over circumferential lines were computed 

in the sub-ROI in front of the L4 vertebra and in the sub-ROI in front of the L4-L5 IVD. The plots show the distribution 

of ɛ1 (red) and ɛ2 (blue) around L4 and the IVD (purple lines) and along L4 and the IVD (green lines).  The median and 

standard deviation within the sample are reported 

 

7.3.3.4 Specimen-specific analysis 

In this section, the specific findings for the individual specimens are reported in terms of strain 

distribution (Fig. 7.8), also in relation to the peculiar bony-defects (e.g. osteophytes, scoliosis, etc.) 

of each specimen (Table 7.1):  

• Specimen #1: this specimen was considered healthy based on x-ray imaging (the CT scan was 

not available). The strain patterns showed a right/left symmetry for both flexion and extension, 

and a specular distribution of strains for right vs. left lateral bending, and for clockwise vs. 

counterclockwise torsion 

• Specimen #2: moderate osteophytes were visible at the both endplates of L4 and on the cranial 

endplate of L5. The L4-L5 segment had a score for the osteophyte formation of 11 points, 

equivalent to Grade 2 according to143. The DIC analysis highlighted some local intensification 

of the strain distribution in the ALL in front of the L4-L5 IVD, in correspondence of these 

osteophytes for all loading scenarios with exception of the left bending.  Furthermore, a local 

thickening of the anterior wall of the vertebral body of L4 was visible in the CT scan. This 

corresponded to a region with lower strains in front of L4 

• Specimen #3: the CT images exhibited moderate degenerative signs, with prominent 

osteophytes on the cranial endplates of L4 and of L5 (one on the right, one on the left of each 
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vertebra), which could act as strain concentrators cranially, while shielding the strains in the 

ALL surrounding them. The L4-L5 segment had a score for the osteophyte formation of 11 

points, equivalent to a Grade 2. The DIC analysis showed an intensification of the strains in 

front of L3-L4 and L4-L5 IVDs, in the most cranial portion of the disc, and areas with much 

lower strains caudal to these spots 

• Specimen #4: this specimen was mildly scoliotic with a Cobb angle T12-L5 of 10° and 

concavity on the right side. The DIC analysis showed a non-specular strain pattern between 

right and left lateral bending, and between clockwise and counterclockwise torsion. 

Furthermore, it had several osteophytes at all endplates. The L4-L5 segment had a score for 

the osteophyte formation of 15 points, equivalent to a Grade 2. The DIC analysis revealed 

strain concentrations near such osteophytes. The largest osteophyte projected upwards from 

the central-left margin of the superior endplate of L5 partially covering the caudal portion of 

the L4-L5 IVD. In this area a strain attenuation was visible in the area where the osteophyte 

covered the IVD, especially for flexion 

• Specimen #5: the CT images showed that this specimen had prominent osteophytes on the 

right and left sides of the cranial endplates of L5. The L4-L5 segment had a score for the 

osteophyte formation of 17 points, equivalent to a Grade 3. The strain distributions showed 

an intensification in the right and left areas around L4-L5 IVD in flexion. More details about 

the individual specimens, the distribution of strains along and around the vertebrae and IVD 

can be found in the Supplementary Material.  

 

Fig. 7.8 - Specimen-specific analysis of the strain distribution: the CT images of each specimen are reported on the left 

(for Specimen #1 the CT was not available). On the right, the distribution of the maximum principal strain (ɛ1) are plotted 

for each loading condition, at full load (7.5 Nm). The minimum principal strain (ɛ2) and the analysis of the distribution 

of strain along and around the vertebra and the IVD are reported in the Supplementary Material 
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7.4 Discussion 

The aim of this work was to explore the biomechanical behaviour of the most superficial layer of the 

anterior longitudinal ligament focusing on the anterior aspect of the lumbar vertebrae and 

intervertebral disc, applying a new paradigm.  Structural flexibility tests and local strain analysis were 

performed on the anterior surface of spine segments loaded in flexion/extension, lateral bending and 

torsion. The hypotheses of the work were that: (i) the strain field on the surface of the ALL is not 

homogeneous between different regions (i.e.: in front of the vertebrae and of the intervertebral discs); 

(ii) the strain distribution is not homogenous within each such region, possibly due to specific bony-

defects; (iii) inside the same region the strain field depends on the different loading scenarios; and 

(iv) opposite directions of loading translate to non-mirrored strain distributions.  

In order to test these hypotheses, segments of multi-vertebra human spine segments, to reproduce a 

better loading transmission on the ALL, were used. Each specimen was tested in flexion/extension, 

lateral bending and axial torsion up to 7.5 Nm with a state-of-the-art spine tester.147  The global ranges 

of motion and neutral zones were identified for each specimen and each loading scenario through 

flexibility tests using optical motion tracking system. These data were integrated with a full-field 

measurement of the strain distribution in front of 3 lumbar vertebrae and intervertebral discs using a 

validated digital image correlation approach.96  

The global range of motion under load and the evaluation of the neutral zone, for the different loading 

scenarios, confirmed the typical trend and values for human lumbar spine, as reported in the Busscher 

et al. work.33 They showed that segments from L1 to L4 at 4 Nm had a range of motion of 5° in 

flexion/extension, 6° in lateral bending and 2° in axial torsion. These results were in accordance with 

our study, indeed for L1-L4 segments at 4 Nm the following range of motion were obtained: 5.6° 

flexion/extension, 7.8° lateral bending and 2.9° axial torsion. The full-field strain maps (Fig. 7.2, 7.4, 

7.6 and Supplementary Materials) highlighted the non-homogeneity of strain in the different areas of 

the ALL: different trends were observed both in the cranio-caudal and circumferential direction of 

the ALL for the different loading conditions (Fig. 7.3, 7.5, 7.7 and Supplementary Materials). The 

strain fields suggested that some fibers were pronouncedly more strained than the rest of the ALL 

during loading, both in front of the vertebra and of the IVDs. Furthermore, there was a clear effect of 

the stress concentrators: in most specimens, also some spots with larger strains were visible, 

especially close to the endplates. No strain concentration was detected close to the markers screws 

insertions, confirming that the ALL was not damaged during the flexibility test. A detailed inspection 

of the CT scans of the specimens highlighted that such strain concentrations corresponded to the 

position of local osteophytes and bony-defects (See Fig. 7.8 and the Supplementary Material for 

details). For instance, protruding osteophytes were associated with strain concentrations towards the 

tip of the osteophyte, but shielded the ALL in the areas where the osteophyte covered the IVD.  

Interestingly, despite osteophytes were found to reduce the flexibility of a severely degenerated 

spine148, our results may contribute in elucidating the underlying biomechanical principles. A possible 

interpretation, suggested by the peculiar morphology of the osteophytes protruding from the 

endplates, may be that the relative distance of the outer ALL layers from to the instantaneous center 

of rotation of the FSU (i.e. lever arm)149 is increased, thus, resulting in a higher local strain. A further 

characterization of the local tissue composition and properties would be needed in order to clarify 

this aspect.  

The most strained portion of the ALL superficial layers was in front of the IVDs with a strain 

magnitude that was between 1.15 and 8.12 times larger than in front of the vertebrae (Fig. 7.2, 7.4, 

7.6); these differences were statistically significant only for some loading scenarios (Table 7.2). This 

condition could be due to a series of reasons: the ALL in IVDs regions is thinner compared to the 

regions in front of the vertebrae142, the ALL deep layers are less constrained in front of the IVD than 

in front of the vertebra6, in front of the IVD the ALL is subjected to the large deformation of the IVD 

itself.131  It is worth noting that, while the vertebral bone is at least two orders of magnitude stiffer 
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than the adjacent IVD2, 53, the differences in strain of the superficial layer of the ALL in front of the 

vertebra and disc were relatively smaller: this is probably explained by the fact that the ALL act as a 

long ribbon, spanning across multiple FSU, with some motion relative to the underlying bone.  

Among the different direction of bending (flexion, extension, and lateral bending), flexion resulted 

in the highest strains and therefore seemed the most demanding loading scenario for the ligament 

(Fig. 7.2). In fact, due to the action of the underlying pressurized and bulging discs, the ALL is largely 

strained circumferentially. During flexion, the ALL can provide only a limited direct contribution to 

the spinal stability. However, the presence of large strains in the ALL seems to be due to anterior disc 

bulging during flexion, and indicates a role of the ALL in protecting the discs against herniation on 

the anterior face.  Such a finding is consistent with150, who observed that strain increased in the 

anterior portion of the IVD after ALL removal. Nevertheless, the ALL may have a significant bi-axial 

pre-strain in vivo depending on the region where it is attached (IVD or vertebra).139  As the only way 

to measure a pre-strain is through destructive testing, this phenomenon cannot be captured by our 

current non-destructive analysis. 

Also in extension the ALL in front of the IVD and of L4 underwent an appreciable longitudinal strain, 

confirming the important mechanical role of ALL in constraining extension, in conjunction with the 

action of the facet joints.2 

Lateral bending seemed to be the loading scenario that strained less the ALL in terms of absolute 

values of strains. This is due because the ALL covers the regions in proximity of the neutral axis for 

lateral bending. Nevertheless, the strain distribution during right and left lateral bending was rather 

mirrored with respect to the vertical axis in front of the disc but not in front of the vertebra (Fig. 7.4-

7.5, and Table 3). While the strains in the circumferential direction of the ALL for the left lateral 

bending showed the trend that one would expect based on the distribution of tension/compression in 

bending, this trend was not confirmed for right lateral bending. It is possible to hypothesize that this 

systematic difference was due to the scoliosis of the donors. Unfortunately, no information was 

available about their dominant side (left-handed or right-handed) that could influence this systematic 

difference.   

The torsional scenario was associated with large strains in the ALL, with smaller differences between 

the regions in front of the vertebrae and of the IVD (Fig. 7.6). The lack of symmetry between right 

and left torsion (Fig. 7.7 and Table 7.3) could again be explained by some asymmetry due to laterality 

of the donors. Furthermore, scoliotic specimens showed different strain maps between bending in the 

two directions, and between the two opposite directions of torsion. Therefore, not only we were able 

to identify general trends, but also to detect localized effect of large and small anatomical anomalies. 

To the best authors’ knowledge, this is the first work where the full-field strain distributions were 

computed on the ALL in lumbar spine segments.  Previous works explored the mechanical behaviour 

of ALL through strain analysis.  151measured the mechanical properties of the ALL in situ under pure 

tension, after removal of the IVD. The evaluation of the tensile strain was performed on macro-

regions of the ALL: insertions and free-length, in the cranio-caudal direction of the ALL; outer and 

central regions, circumferentially the ALL. They showed larger strain in the substance and outer 

regions of the ligaments, similar to the present study.  131, 150evaluated the strain on the entire surface 

of the intervertebral discs through a laser scanner device while the FSU segments was loaded in the 

same spine tester and the same conditions as the present work. The strain magnitude and distribution 

reported in those papers are comparable with the median strains obtained in the present work, 

confirming the suitability of the measurement technique and corroborating the present results. 

Other works studied the mechanical properties of the ALL removing it from the spine and testing it 

in pure tensile tests. These conditions were far from the scenarios implemented in the present study; 

nevertheless some qualitative comparisons are possible.  61, 142revealed the weakness of the ALL at 

the level of the IVDs. Unfortunately, the non-destructive testing procedure did not allow to analyse 

the different layers of the ALL and how each layer influenced the strain distribution. According to 

our observations, we can surely appreciate that under consistent loading conditions, specific regions 

of different specimens lead to comparable strain patterns. 
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A limitation of the present work is the sample size: five specimens have a limited statistical power.  

It worth noticing that the results here reported are in agreement with the kinematics data reported for 

a larger specimens’ cohort.152 As this study is extremely demanding in terms of costs, testing and 

strain analysis, it was not possible to extend to a larger sample. However, the differences between the 

different anatomical regions, and between loading scenarios were sufficiently large to show statistical 

significance in most cases.  

Some specimens showed some typical defects of elderly donors, such as osteophytes and consequent 

disc degeneration.  Our detailed DIC strain investigation on the region of interest allowed identifying 

the associated perturbations on the strain distributions. However, some of the results may be biased 

by a relatively high BMI of the donors, and a relatively low BMD.  While the present findings are 

directly applicable to spines of subjects with similar BMI, an extension to cases with normal BMI is 

possible because the donors were physically active until death, and therefore their ALL can be 

expected to have normal mechanical properties. Conversely, slightly different behaviour would 

possibly be observed in healthier spines with different BMD: the bone/ligaments insertions would 

play a fundamental role, in particular their stiffness could modify the local behaviour of the ALL. 

The experimental setup had intrinsic limitations such as the reduced loading rate, which is far from 

physiological.121 This was necessary to ensure that the soft tissues were not subjected to trauma, and 

a series of cycles can be repeated.37 Furthermore, the focus of this study was not on the absolute 

magnitude of the strains which would be affected by the loading rate, but on a comparison between 

different regions and different loading scenarios under quasi-static loading conditions. Although, 

muscles forces and weight contribution were not considered in the current study, pure unconstrained 

moments remains the preferred option for in vitro reproducing relevant loading conditions.146  

Furthermore, this loading condition allows better control and reproducibility compared to follower 

loads (an experimental technique for applying compressive loads along the whole spine segment) or 

a compressive load.36, 153  

The accuracy and precision of the DIC was optimized for each acquisition; however, testing fresh 

specimens entailed leakages of biological fluid that can lead to some local loss of correlation.112  In 

the worst case, correlation was lost on 20% of the region of interest. Nevertheless, the entire 

acquisition and post-processing protocol allowed to clearly show what happened in the different 

specimens and different loading conditions. Finally, only what happened on the visible surface of the 

ligaments was evaluated. Currently, it is the only possible compromise to study the ALL in 

physiological range of motion. 

7.5 Conclusions 

This is the first time that the distribution of strain in the anterior longitudinal ligament was measured 

in multi-vertebra intact spine segments. The obtained results showed the non-uniform strain 

distribution, under the different loading scenarios. The vertebrae and intervertebral discs, with their 

peculiar defects (e.g.: osteophytes, etc.) played a fundamental role in defining the behaviour of the 

ALL. The current analysis including a spine tester and an unpreceded measurement of the strain 

distribution is so detailed that not only we could investigate the average effects of the different loading 

scenarios, but also the local effect that subject-specific defects may have on strain distribution. These 

results suggested again the importance of a full-field strain analysis to understand the biomechanics 

of the human spine and the interaction between different tissue types. This work could be the starting 

point for future studies where the effect of surgical procedures will be compared with intact spines. 
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Table 7.2 - The reported p-values show the statistical significance of the difference between the median on the vertebrae 

and intervertebral discs for the same loading condition (two-sample Mann-Whitney test). The median of strains on the 

ALL in front of the L4 vertebra and the L4-L5 intervertebral disc were examined 

 
Maximum principal strain (ɛ1) Minimum principal strain (ɛ2) 

Vertebra Vs IVD Vertebra Vs IVD 

Flexion p = 0.03  (*) p = 0.34 

Extension p = 0.10 p = 0.70 

Left Bending p = 0.10 p = 0.42 

Right Bending p = 0.06 p = 0.31 

Clockwise torsion p = 0.03  (*) p = 0.01  (*) 

Counterclockwise torsion p = 0.03  (*) p = 0.02  (*) 

 

Note: (*) highlights significant differences (p<0.05). 

 

 

Table 7.3 - The reported p-values show the statistical significance of the difference between the trends for opposite 

directions of loading (two-sample Kolmogorov-Smirnov). The distribution of strains (Figs. 7.5, 7.6 and 7.7) along the L4 

vertebra and along the L4-L5 intervertebral disc (computed as median strains over circumferential lines), and the 

distribution of strains around the L4 vertebra and around the L4-L5 intervertebral disc (computed as median strains over 

cranio-caudal lines) were examined for the different loading scenarios 

 
Maximum principal strain (ɛ1) Minimum principal strain (ɛ2) 

Flexion Vs Extension 

Along L4 p = 8.9 x 10-6  (*) p = 2.8 x 10-3  (*) 

Along IVD p = 7.4 x 10-1 p = 1.8 x 10-2  (*) 

Around L4 p = 1.3 x 10-13 (*) p = 8.2 x 10-7  (*) 

Around IVD p = 5.2 x 10-1 p = 3.5 x 10-5  (*) 

 Right Vs Left  

Along L4 p = 1.5 x 10-4  (*) p = 2.4 x 10-8  (*) 

Along IVD p = 5.3 x 10-6  (*) p = 1.6 x 10-9  (*) 

Around L4 p = 1.5 x 10-1 p = 2.8 x 10-2  (*) 

Around IVD p = 1.4 x 10-3  (*) p = 8.2 x 10-2 

 Clockwise Vs Counterclockwise  

Along L4 p = 8.2 x 10-1 p = 6.8 x 10-3  (*) 

Along IVD p = 4.2 x 10-9  (*) p = 2.4 x 10-5  (*) 

Around L4 p = 1.5 x 10-1 p = 3.7 x 10-1 

Around IVD p = 1.9 x 10-8  (*) p = 3.9 x 10-2  (*) 

 

Note: (*) highlights significant differences (p<0.05). 
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Supplementary Materials  

For each specimen (#1 to #5, in separate sheets) the following are reported: 

• Left: An image of the specimen with an indication of the vertebrae and disc under 

consideration, and of the sub-ROIs where strains were computed along and around the ALL 

in front of the L4 vertebra and in front of the L4-L5 IVD 

• For each loading scenario, the maps of the maximum (ɛ1) and minimum (ɛ2) engineering 

principal strains are shown in the top images. Below each loading scenario, the distributions 

of the maximum (ɛ1) and minimum (ɛ2) strains are plotted around and along the ALL, both in 

front of the L4 vertebra and of the L4-L5 IVD 

• On the right, a volumetric reconstruction of the vertebrae from the CT scan is reported: the 

arrows highlight the osteophytes, graded as 1 (<3 mm), 2 (between 3 and 6 mm) or 3 (>6 mm) 

according to Wilke et al. 2006 

• The table at the bottom right reports the median strains (maximum (ɛ1) and minimum (ɛ2) 

engineering principal strains) both in front of the L4 vertebra and in front of the L4-L5 IVD, 

for each loading scenario.
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8.1 Introduction 

The Anterior Longitudinal Ligament (ALL) represents a band covering the anterior aspect of the 

spine from cervical to lumbo-sacral levels. It contains a high proportion of stiff closely packed 

collagen fibers, in contrast with other spinal ligaments with more elastin.62 The most superficial 

longitudinal fibers span over multiple functional spinal units (FSUs), while the deepest integrate on 

the periosteum of adjacent vertebrae and cannot be histologically distinguished from the annulus 

fibrosus of the intervertebral disc (IVD).8, 138 The collagen fibers, initially broadly organized with a 

wavy pattern in the unloaded state, are progressively recruited, aligned and stretched along the 

loading direction, thus yielding a characteristic highly non-linear mechanical response.62 

Experimental studies at the tissue level on isolated ALL and on vertebra-ALL-vertebra specimens 

reported a highly non-uniform and non-linear biomechanical response.  In addition the failure stress 

decreases with age and disc degeneration.151, 155 The stiffness and the failure tensile force increased 

with bone mineral content.156, 157 Viscoelasticity of isolated ALL has also been reported.62, 64, 142, 156  

Several authors also demonstrated the presence of longitudinal and transversal pre-strains on the ALL 

in vivo.62, 139, 142 

In vitro studies on single FSUs demonstrated that the ALL is almost linearly loaded in flexion-

extension and contributes to stabilize the FSU, while protecting the spinal cord from excessive 

strain.143, 158 Step-wise reduction studies on single thoracic and lumbar FSUs, highlighted the 

fundamental stabilizing effect of the ALL in extension both following a posterior-to-anterior150 and 

an anterior-to-posterior resection protocol.71 Moreover, the ALL contributes to stabilizing the IVD 

and constraining the anulus fibrosus from excessive bulging, primarily during flexion.150 

Although previous studies provide some insights on the biomechanical role of the ALL, they present 

some intrinsic limitations. Analyses at tissue level require the disruption and/or the dissection of the 

ligamentous structures, therefore neglecting the potential interplay with the surrounding structures 

(vertebrae and IVDs) on the local mechanical response. When a single FSU is tested, only a short 

portion of the ALL is included: this preserves the deep fibers (connecting two adjacent vertebrae) but 

not the superficial ones (spanning over several vertebrae). Therefore, only the contribution of the 

short fibers is properly assessed, while the effect of the long ones is partly compromised.  In fact, in 

vitro tests on long multi-segmental spinal segments pointed out the importance of preserving the 

integrity of the ligamentous structures extending over multiple FSUs to correctly catch the complex 

behaviour of the spine.32 

Although a topographical description of the strain values along the length and the width of the ALL 

has already been reported on multiple lumbar FSUs, the evaluation was based on only few discrete 

points.139 Another analysis based on a laser scanner allowed indirectly evaluating the local strains of 

the IVD under complex loading 149, but it completely neglected the ALL. More recently, Digital 

Image Correlation (DIC) overcame these limitations allowing the evaluation of the full-field strain 

distribution on the entire surface of the ALL under different loading conditions.96  

The present in vitro study addressed the behavior of the superficial layers of the ALL using full-field 

DIC analysis on intact multi-segmental spinal specimens. The focus was on the lumbar spine, in detail 

in the L4-L5 region, where the greatest number of soft tissue lesions are reported (such as disc 

herniation).159 This is a basic science study aiming to provide data about the non-linear contribution 

of the ALL during the different phases of spinal flexion and extension. This information could provide 

identification criteria to build better multibody spine models able to capture the changing stiffness of 

the ALL during motion, or to include more realistic material properties in finite element models. The 

specific aims were to: 

1. Characterize the strain distribution of the ALL in situ during flexion-extension 

2. Compare the strain in specific regions of interest (ROIs), in front of L4 vertebral body (VB) 

and L4-L5 IVD 
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3. Analyse the non-linear relationship between the measured strain and the imposed rotation and 

the resultant moment. 

8.2. Material and methods 

8.2.1 Specimens 

In order to analyse the behaviour of the ALL, three fresh-frozen human thoracolumbar spine segments 

(consisting of 6 FSUs from T12 to sacrum) were obtained through an ethically approved international 

donation program (Science Care Inc., Phoenix, AZ). The donors were all Caucasian, two males and 

one female (Table 8.1).  Clinical computed tomography (CT) scans (Philips Brilliance 64, Philips 

Healthcare, Cleveland, USA) were used to verify the state of degeneration and determine the bone 

mineral density (BMD).145 No fractures, tumours were observed; however, all specimens showed 

some osteophytes as can be expected with aged donors.148 

The spines were carefully cleaned on the anterior side removing fat tissue and muscles in order to 

expose the ALL, while all the posterior osteo-ligamentous structures were left intact. The two 

extremities of the specimens were potted in poly-methyl-methacrylate cement (PMMA, Technovit 

3040, Heraeus Kulzer, Werheim, Germany).  During tests, the hydration of the specimens was assured 

spraying saline solution. 

 

 
Tab. 8.1 - Details of the specimens with the donor’s information. The last column reports the grading of the osteophytes 

(scored according to145) 

Specimen Segment Sex 

Age at 

death 

(years) 

Height 

(cm) 

Weight 

(kg) 

BMI 

(kg/m2) 

BMD 

(mg/cm3) 

Assessment of the osteophytes in 

the L4-L5 area 

A T11-S1 M 66 183 141 42.1 82 

2 osteophytes (both grade 2) 

centrally-located on the endplate of 

both L4 and L5 

B T11-S1 M 62 178 164 51.7 94 
1 osteophyte (grade 2) centrally-

located on the endplate of L5 

C T12-S1 F 63 157 125 50.7 157 

2 osteophytes (grade 1 and grade 2) 

centrally-located on the endplate of 

respectively L4 and L5  
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8.2.2 Mechanical test  

The load was applied using a state-of-the-art spine tester37, 147: the caudal side was fixed, while the 

cranial side was connected to the gimbal with three integrated stepper motors (FT 1500/40, Schunk 

GmbH & Co. KG, Lauffen/Neckar, Germany) (Fig. 8.1). A six-components load cell measured the 

moments and forces applied.  All specimens were tested in flexion-extension (up to ±7.5 Nm at a rate 

of 1°/s) at room temperature (ca. 23°C). All motions started and finished in the unloaded neutral 

position.37 Each test consisted of three consecutive cycles of loading: the first two cycles for pre-

conditioning and the last one for the actual analysis.37 

Fig. 8.1 - Overview of the test configuration and data acquisition systems. The top part (a) shows the test session where 

motion was measured: the spine segment with the markers (three on each vertebra) is visible on the left. The spine tester 

and four of the six cameras of Vicon system are visible on the right.  The bottom part (b) shows the session where strains 

were measured: the specimen with the white-on-black speckle pattern for the DIC analysis is visible on the left.  The field 

of view recorded by the DIC cameras is indicated. On the right, the specimen mounted in the spine tester in front of the 

DIC system is shown 
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8.2.3 Measurement of intervertebral motions 

The different levels of the spine exhibit different values of flexibility, range of motion (RoM) and 

stiffness. The analysis focused on lumbar spine (in detail on L4-L5 vertebrae) because this region of 

the spine is more subject to pain especially due to soft tissue lesions (such as disc herniation).159 So, 

in order to measure the RoM in terms of angle between L4 and L5, an optical motion tracking system 

was used. Six cameras (MX13, Vicon Motion Systems Ltd., Oxford, UK) quantified the 3D 

coordinates of three reflective markers positioned on L4 and L5 vertebrae. Starting from these data, 

the L4-L5 intervertebral angle was calculated in the sagittal plane during the three loading cycles 

(Fig. 8.2).  

 

Fig. 8.2 - The moment-angle curves for the three loading cycles are reported for each specimen. Positive values of moment 

correspond to flexion, while negative values of moment correspond to extension.  The circles indicate the end of the NZ 

and the beginning of the EZ (identified where the slope of the curve reached 2 Nm/deg). The values of minimum and 

maximum slope for the NZ and EZ are reported both for the curve flexion-to-extension and extension-to-flexion 

8.2.4 Digital Image Correlation 

The test (three additional loading cycles) was repeated after removing the markers, using DIC to 

obtain a full-field strain distribution on the ALL. A white-on-black speckle pattern was prepared on 

the anterior surface of the specimens. The multi-segmental spine segments were first stained with a 

4% solution of methylene blue and water.20, 96 The white speckle pattern was applied using an airbrush 

gun following an optimized procedure.41 This method has been demonstrated to not significantly 

affect the biomechanical behaviour.41 

A commercial 3D-DIC system was used (Q400, Dantec Dynamics, Denmark) with its software (Instra 

4D, v. 4.3.1, Dantec Dynamics), equipped with two cameras (5 MegaPixels, 2440x2050, 8-bit, black-

and-white) with 17 mm lenses. The specimens were illuminated with a system of LEDs (10000 

lumens in total). The field of view was set to 120 mm by 160 mm which gave a pixel size of about 

0.08 mm and a depth of field of 70 mm with the adopted aperture (f/22). Images were acquired at 5 
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frames per second. Calibration was performed before the tests using a proprietary calibration target 

(Al4-BMB-9x9, Dantec Dynamics).   

The main source of error in DIC-measured strain derives from the image noise, which translates to 

random strain errors. Therefore, the parameters for the correlation analysis were preliminarily 

optimized during a zero-strain test for each specimen to minimize the errors (Table 8.2).  
 

Table 8.2 - Details of the parameters used for the correlation analysis with the DIC system (according to132) 

Parameters for the correlation analysis 

DIC Software Package Name and Manufacturer Instra 4D, v. 4.3.1, Dantec Dynamics 

Distance of the cameras 540 mm 

Field of view about 120 mm by 160 mm 

Depth of field 70 mm 

Lens aperture f/22 

Frame rate 5 frames per second 

Grid spacing 4 pixels 

Facet size between 39 and 59 pixels 

Pixel size about 0.08 mm 

Contour smoothing kernel size 5 x 5 

 

Fig. 8.3 - Full-field strain maps obtained from the DIC analysis for all the specimens at the peak load (±7.5 Nm). The 

longitudinal (ɛlong) and circumferential (ɛcirc) percent strain are reported for extension (top) and flexion (bottom). The 

colour maps show the non-uniform distribution of strain 
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8.2.5 Analysis of strain 

The distribution of strain was evaluated on the ALL in front of the L4 vertebra and in front of the L4-

L5 IVD.  In order to focus on the ALL and investigate its mechanical contribution, regions of interest 

(ROIs) were identified in correspondence with the most strained areas of the ALL. The spots with the 

peak longitudinal strain (ɛlong) were first identified, both in front of the vertebra and in front of the 

IVD. The two ROIs were then selected on each specimen so as to include the area around such spots 

where strains were higher than 50% of the corresponding peak previously identified. This way, 

roughly rectangular areas of about 200-250 mm2 were identified. For each ROI, the values of 

longitudinal strain were analysed throughout the entire load cycles as the mean over the ROIs. 

8.2.6 Analysis of the non-linearity 

In order to analyse the non-linear behaviour of the spine segment, first of all the neutral zone (NZ) 

and elastic zone (EZ) were identified on the third cycle of the moment-angle curve (Fig. 8.4, 8.5, 8.6). 

The slope of the curve was calculated throughout the load cycle with a moving linear regression on 

10 points (which corresponded to 2% - 4% of the total points of the curve, and to an interval of 2-3 

seconds). 

The limit of the NZ was defined where the slope became greater than 2 Nm/deg. The EZ limit was 

defined from the end of NZ and to the peak of the moment-angle curve. The NZ and the EZ zone 

were identified for both directions of motion (from flexion-to-extension and from extension-to-

flexion).  
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Fig. 8.4 - The strain-moment curves of the third loading cycle are reported for each specimen, showing how the strain in 

the ALL varied in front of the vertebra (left charts) and in front of the disc (right charts). The end of the NZ and the 

beginning of the EZ (identified on moment-angle curves, Fig. 8.2), are reported here with circles. The values of minimum 

and maximum slope (% strain / Nm) for the NZ and EZ are reported both for the curve flexion-to-extension and extension-

to-flexion 
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Fig. 8.5 - The strain-angle curves of the third loading cycle are reported for each specimen, showing how the strain in 

the ALL varied in front of the vertebra (left charts) and in front of the disc (right charts). The end of the NZ and the 

beginning of the EZ (identified on moment-angle curves, Fig. 8.2), are reported here with circles. The values of minimum 

and maximum slope (% strain / ° degree) for the NZ and EZ are reported both for the curve flexion-to-extension and 

extension-to-flexion 
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Fig. 8.6 - The strain in the ALL in front of the vertebra is plotted against the strain in front of the disc for the third loading 

cycle, showing a highly linear trend. The regression line is reported with its equation and the r square, separately for the 

curve flexion-to-extension and extension-to-flexion 

 

 

Tab. 8.3 - The values of moment, angle between L4 and L5 and strain (in front of the vertebra and in front of the disc) in 

correspondence to the end of LZ and the beginning of EZ are reported in the range of angles corresponding to spine 

flexion and extension, both for the direction flexion-to-extension (f-e) and for the direction extension-to-flexion (e-f) 

Specimen 

Moment (Nm) Angle (°) Strain in front of vertebra (%) Strain in front of disc (%) 

flexion extension flexion extension flexion extension flexion extension 

f-e e-f f-e e-f f-e e-f f-e e-f f-e e-f f-e e-f f-e e-f f-e e-f 

A 3.70 4.09 -0.10 -0.20 3.86 3.48 0.21 -0.53 -1.55% -1.50% -0.14% 0.73% 0.04% 0.08% -0.08% 0.54% 

B 3.42 2.65 -0.31 -0.82 3.52 2.65 0.27 -0.53 -0.92% -0.86% -0.12% 0.66% -0.77% -0.67% 0.08% 0.48% 

C 3.52 2.77 -1.42 -0.92 5.68 4.92 -1.18 -2.03 -0.95% -0.96% 0.97% 0,79% -1.42% -1.19% 1.09% 0.71% 
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8.2.6 Assessment of measurement uncertainties 

The measurement uncertainties were evaluated with preliminary analysis: 

• Range of motion (from the Vicon system): the error on the measurement of the angle between 

L4-L5 was less than 0.1°160 

• Strain uncertainty (DIC system): two images of each unloaded specimen were captured with 

the DIC system and analysed with the optimal software parameters to evaluate the strain 

measurement uncertainties in a known configuration (zero-strain).40 Being in a zero-strain 

configuration, any strain different from zero was accounted as measurement error. DIC-

measured strains had a systematic error less than 0.002% and a random error less than 0.006% 

• Intra-operator variability: in order to analyse the reliability of ROIs identification, the same 

operator was asked to identify the ROIs three times on different days in correspondence.  The 

difference among the three repetitions was less than 0.2% of the mean value inside the ROI.   

These values were considered satisfactory if compared to the typical rotations (of the order of 10° 

from full flexion to full extension), and to the typical strain peaks measured in the ALL (4-6%). 

 

 

8.3 Results 

8.3.1 Range of motion and strain maps 

For all the specimens, there was an asymmetry in the RoM between flexion and extension when the 

same moment of ±7.5 Nm was applied (Fig. 8.2): 

• During flexion, the L4-L5 angle reached 4.0° for specimens A and B, and 6.3° for specimen 

C 

• During extension the angle reached 1.5° for specimen A, 1.7° for specimen B and 2.7° for 

specimen C. 

The full-field strain maps were successfully computed using DIC for all the specimens throughout 

the tests.  During extension, the longitudinal strain was positive (traction) while during flexion it was 

negative (compression) (Fig. 8.3). An opposite behavior was found for the circumferential strain: in 

extension the values were negative, showing a circumferential narrowing of the ligament, while in 

flexion the values were positive showing a transversal stretching due to IVD bulging.  

The strain distributions on the ALL in correspondence with L4 vertebra and L4-L5 IVD were 

significantly different: in general on the vertebra the largest deformation was in the order of ±1.5%; 

on the IVD the largest deformation was in the order of ±4%. However, for all the specimens, 

comparable strain was measured on average in the ROIs in front of L4 and in front of the IVD (the 

longitudinal strain averaged 1.5% for extension and -1.5%: -1% for flexion, while the circumferential 

strain averaged 3% for flexion and 2% for extension). 

While a similar trend was observed in most cases, a different behaviour was seen for specimen A 

with respect to the strain in front of the IVD during flexion (in this ROI the strains were one order of 

magnitude lower than for the other specimens). Also in in the full-field maps, specimen A showed 

positive strains in correspondence with the central part of the IVD. 
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8.3.2 Non-linear trend of the strain in the different parts of the ALL 

The slope of the final part of EZ was similar in flexion and in extension (Fig. 8.2). The slope of the 

EZ was one order of magnitude larger than the slope in NZ for all three specimens.   

The limits of the EZ and NZ were reported on strain-moment and angle-strain curves so as to match 

the points previously identified in the moment-angle curves (Fig. 8.4-8.5).  The strain-moment curves 

(Fig. 8.4) showed a non-linearity similar to the moment-angle curves (Fig. 8.2). In fact, the strains in 

the EZ grew (in terms of slope of the strain-moment plots) 1-2 orders of magnitude slower than in the 

NZ. Furthermore, the non-linear trend of the strain-moment curves was not symmetrical: in flexion 

the change of slope of the curve was much more abrupt than in extension.  In addition, the difference 

between the slope of the NZ and EZ was much more pronounced in front of the vertebra (roughly a 

factor 4) than in front of the disc (factor 2). Conversely the strain-angle curves showed a more linear 

trend, with much smaller changes of slope (Fig. 8.5). In fact, the ratio between the slope of the NZ 

and the slope of the EZ was between 0.3 and 3. 

In table 8.2, the values of moment, angle and strain on vertebra and IVD are reported separately for 

the flexion-to-extension and extension-to-flexion curves in correspondence of the points which 

identified the transition from NZ to EZ. These two regions were not symmetric respect to the moment: 

during flexion the EZ started at a moment between 2.6-4.0 Nm while during extension the EZ started 

at a moment value around 0 Nm. For what concerns the angles, in flexion the EZ started at 2.6°-5.6° 

while in extension it started at 0.2°-2.0°. 

To verify whether there was a correlation between a variation in the longitudinal strain on the ALL 

in front of the vertebra and in front of the L4-L5 IVD, these variables were plotted in the same graph 

(Fig. 8.6).  This trend was close to a straight line, with a slope close to 1.0 (in the range of 0.8-1.2).  

All specimens had the same behavior, again with the exception of specimen A during flexion which 

showed no change in the strain values on the IVD while the strain on the IVD reached -2%.  

Conversely during extension, specimen A showed the same behaviour of the other specimens. 

8.4. Discussion 

The aim of this study was to investigate the behavior of the ALL using full-field DIC analysis on 

intact multi-segmental spinal specimens, so as to gather data about the non-linear contribution of the 

ALL during the different phases of spinal flexion and extension. This information is currently missing 

in the literature, and could contribute to build better multibody models, and better finite element 

models of the spine, able to capture the changing stiffness of the ALL during motion.   

A flexion-extension test was performed measuring the range of motion, the neutral zone, and the 

elastic zone of the spine, and the strain distribution over the superficial fibers of the ALL. The use of 

long segments of spine (6 FSUs) allowed to preserve the continuity of the ALL whose superficial 

fibers span over several vertebrae and IVDs.62, 64, 142 A full-field strain distribution on the ALL in 

front of L4 vertebra and in front of L4-L5 IVD was measured using an established DIC tool. In the 

present study, in order to analyze the non-linear behaviour of the ALL, specific regions of interest 

(ROIs) were identified on its surface in front of the vertebra and in front of the IVD, and for each 

region the longitudinal strains were analyzed. 

In general, ligaments fibers transmit only tensile forces. The ALL stretches longitudinally in 

extension, but works in traction too (in circumferential direction) when the spine is in flexion.  During 

this movement the IVD is compressed and bulges transmitting tension to the ALL.8 In fact, the role 

of the ALL is to limit the movement of the spine during extension.131, 158 Similarly, the Posterior 

Longitudinal Ligament (PLL) limits the movement of the spine in flexion.8, 71 In addition, longitudinal 

ligaments (ALL and PLL) are much stiffer than the other ligaments (such as ligamentum flavum): 

longitudinal ligaments are closer to the neutral bending axes and so in order to provide the same 

moment, the stiffness must be greater.61, 62, 161  
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In this work, during extension, the analysis of strain maps (both in correspondence with vertebra and 

IVD) highlighted a stretch of the superficial layers of the ALL in the longitudinal direction. This is 

in accordance with literature, reporting that the fibers of the ALL are aligned longitudinally with the 

axes of the spine.62 Conversely, during flexion, the strain maps showed negative longitudinal strains, 

which highlighted a shortening of the ALL in the same direction. At the same time, during flexion 

there was a stretching in the circumferential direction. 

In order to deeply investigate the local spinal RoM, the moment-angle curves were calculated using 

the testing machine and Vicon system. These curves were asymmetrical and the spine reached higher 

intervertebral rotations during flexion than during extension (6° degrees respect to 2.7° degrees for 

the specimen with the highest RoM). These findings are compatible with previous studies on the 

spinal range of motion.1, 37, 56 Furthermore, the moment-angle curves showed a very accentuated non-

linear behaviour as already described in the literature.56 The slope of these curves changed more 

abruptly in flexion, while on the contrary the slope changed more damped in extension. The EZ zone 

was larger for extension than for flexion, in fact the beginning of EZ during flexion corresponded to 

values of moment and angle greater than during extension. As soon as the column moves towards 

extension, the ALL is stretched and limits this movement immediately but with a gradual slope (in 

fact the slope of the curve is smaller in extension respect to flexion). This may be due to the 

mechanical role of the facet joints and the capsular ligaments, which contribute with the ALL to 

stabilize extension.162 Conversely, during flexion the lumbar spine allowed more degrees of 

movement in flexion before stiffening. This may be discussed considering that higher rotations may 

be needed to win the high tensile longitudinal pre-stretch typical of the ALL (62, 139, 142 before reaching 

negative values during bulging of the annulus.150 

Like for moment-angle curves, also the strain on ROIs in front of the vertebra and in front of the IVD 

showed a non-linear and asymmetric trend for flexion and extension.  This behaviour is in agreement 

with the non-linear behaviour measured in isolated spinal ligaments in the past.61, 151 The ALL 

consists of fibers which are pre-stretched both in longitudinal and transverse direction over the 

column and resist immediately in extension.62, 158 Conversely, there are other ligaments which are 

slack and limit the movement only when certain angles are reached.62, 158 At the beginning of the 

movement, in the NZ, the first fibers that are recruited are the elastin fibers which however do not 

contribute in giving great resistance. For this reason, large variations of strain were measured in the 

NZ with small variation of moment. Subsequently, collagen fibers (which are stiffer) were also 

recruited contributing in this way in limiting the movement. 

Specimen A showed a different behaviour compared to the other specimens for what concerns the 

trend of strain only during flexion. The strain maps showed that the IVD did not bulge during flexion 

and so in this way the ALL was not stretched in circumferential direction avoiding the decrease of its 

length longitudinally; this differs from the behaviour usually observed in healthy spines.131 This was 

associated to the presence of osteophytes145 on the endplates of adjacent vertebrae137, which may alter 

the load transfer on the ALL. Although also specimens B and C demonstrated some degenerative 

signs, the presence of lower grade osteophytes was noticed only on one endplate. The correlation 

between the longitudinal strain values on the ROIs in front of the vertebra and the IVD demonstrated 

a linear relationship with a slope of about 1.0. This meant that, in the most deformed areas of the 

superficial layers, the ligament was deformed in the same way both on vertebra and on IVD. This 

could be a further proof of the effect of the longitudinal arrangement of the ALL, which influenced 

its deformation both in front of the vertebra and in front of the IVD. It is true that the deeper layers 

are attached to the vertebra and to the external layers of the IVD; conversely the most superficial 

layers of the ALL are not constrained in such a way, and are affected by the effect of the adjacent 

joints and the longitudinal extension of the fibers of this ligament, as documented in the past.62, 64, 138 

A limitation of the present work was the small number of specimens tested (N=3), which was 

constrained by the extensive measurement campaign required by this DIC analysis. For this reason, 

the present findings must be taken with caution.  For instance, specimens from other groups of donors 

(e.g. younger, or with severe deformity) could yield different results. However, the behavior of the 
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ALL was similar for all specimen. Furthermore, only direction of loading (flexion and extension) was 

considered in this study. A pure moment was applied so as to deliver a highly-controlled loading. The 

rationale is that the ALL constraints mainly the movements on the sagittal plane limiting the 

extension, while it gives a marginal contribution during lateral bending or axial torsion. A further 

limitation relates to the relatively slow motion imposed (1°/ second). This condition was chosen for 

consistency with previous similar studies.131 

This could be a starting point for other studies in which the behavior of other ligaments could be 

investigated under different loading conditions or after surgical interventions on the spine.152 

 

 

8.5. Conclusions 

DIC was shown to be a valid tool to measure the strain in a full-field way while preserving the 

complex structure of the spine, including its ligaments. To investigate the behavior of the ALL, it is 

important not to separate it from the other structures but to consider the spine as a whole. A high non-

linearity and asymmetry between flexion and extension was observed in the strains measured in the 

ALL, which to a large extent explains the non-linear behaviour of a spine segment. In addition, the 

non-linear response of the ALL between the neutral zone and the elastic region, and its different 

behaviour in flexion and extension should be considered for instance for multibody modeling of the 

spine kinematics of finite element models investigations.  
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Chapter 9 

9 Conclusions 

Conclusions 
 

 

 

In this PhD project, a full-field strain analysis of some structures of the spine (ligaments and 

intervertebral discs) was performed. Strain measurements were obtained on the surface of spine 

specimens in a full-field and contactless way using the Digital Image Correlation. 

The first part of my research started with a deep review of the methods used to study the 

biomechanical behavior of the spine (in vivo, in vitro and FE model), focusing in detail on in vitro 

studies and considering the various types of tests. I also analysed in depth what was reported in the 

literature mainly regarding the biomechanics of ligaments and the possible consequences of different 

types of osteotomies. This was useful to understand what types of information were missing in the 

knowledge of the biomechanics of the spine. Moreover this could be also a starting point to choose 

which type of test is better to use in order to answer the scope of the research. 

During the first tests, DIC was used to measure a full-field strain distribution simultaneously on hard 

and soft tissues (in particular on vertebrae, intervertebral discs and ligaments). In this way the 

biomechanics of different types of tissues could be investigated (in terms of deformation) considering 

the spine as a whole, without separating one tissue from the others, remaining closer in this way to 

the real conditions in which the spine works. Moreover this approach permitted to study the 

interaction between different types of tissues and how the deformation of one structure could 

influence the others. 

After these preliminary tests, the biomechanics of the intervertebral disc was studied applying a 

flexion on porcine spines. A full-field strain map of the surface of the discs was obtained and analysed 

in detail to understand which part of the disc was more deformed and how its kinematics could change 

in relation to the different loading rates and to the application or not of conditioning. The disc tended 

to stiffen as the loading rate increased but the loading rate did not affect the way the disc was 

deformed. This could mean that the viscoelastic behavior of the tissues composing the nucleus 

pulposus and the annulus fibrosus did not directly affect the overall kinematics of the disc, and only 

slightly affected the transition zone between disc and vertebra where a large discontinuity of stiffness 

is localized. From this study, disc herniation would seem not to be due to a specific rate of the applied 

loads. Furthermore, this information could be useful also for the design of other in vitro 

biomechanical tests and of more realistic numerical models of the spine, knowing what effect 

different loading rates and conditioning entail has on the biomechanics of the intervertebral discs. 

The findings of the present study can be extended to the human spine as a trend, even if possibly not 

as absolute magnitudes. 

The other structures of the spine which were studied in depth are the spinal ligaments. The 

supraspinous and interspinous ligament were studied analysing how they were deformed under 

different loading conditions. These ligaments limited the movement of the spine during flexion 

reducing in this way the overload on the intervertebral disc; conversely these ligaments did not give 

significant mechanical resistance during extension and lateral bending. 

Another ligament which was investigated in depth on human spine was the anterior longitudinal 

ligament which extends along the front part of the spine improving its stability mainly on sagittal 
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plane. This ligament limited mainly the extension of the spine reducing the range of motion of the 

column; during flexion the ligament limited also the bulging of the disc. The anterior longitudinal 

ligament did not offer great mechanical strength during lateral bending and axial torsion even if larger 

deformation values have been recorded during torsion and the deformation was oriented following 

the direction of the fibers. Furthermore, the anterior longitudinal ligament, unlike other ligaments 

(such as the ligament of the knee or of the ankle) does not intervene limiting the movement only when 

large range of motion are reached by the joint, but intervenes immediately by offering mechanical 

resistance to the column mainly during flexion and extension. Analysing the trend distribution of 

strain, a non-linear behavior was observed: at the beginning of the movement the fibers of the 

ligament aligned longitudinally and so there was no great mechanical resistance, while once the 

collagen fibers were aligned, the ligament was very resistant and offered great resistance limiting the 

movement of the spine. In addition to a biomechanical analysis of spinal ligaments, the non‐linear 

response of the ALL between the neutral zone and the elastic region, and its different behavior in 

flexion and extension should be considered for instance for multibody modelling of the spine 

kinematics of finite element models investigations. 

 

Overall, these results suggested the importance of a full-field strain analysis to understand the 

biomechanics of the human spine and the interaction between different types of tissue. In these 

studies, the biomechanics, the non-linear behaviour and the viscoelastic effects of intervertebral discs 

and ligaments were investigated without altering their functionality. The results reported in this thesis 

could be useful also to build better multibody spine models and to include more realistic properties 

in finite element models. This work could also be a starting point for future studies where the effect 

of surgical procedures could be compared to intact spines. The results that can be obtained using DIC 

could improve the knowledge of the role of ligaments and of intervertebral discs in order to elucidate 

pathology and lesions, and also help improving surgical techniques. 
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“If you can dream it, you can do it” (Walt Disney) 

 

Questa è la frase che mi sono sempre ripetuta più volte: in occasioni diverse, in situazioni più o meno 

complicate della mia vita.  

All’inizio di questo percorso di tre anni avevo un po' paura di non farcela, non sapevo se sarei stata 

in grado di proseguire o se a metà avrei lasciato perdere tutto. Quando alla parallela dovevo staccare 

le mani per fare il Tkatchev avevo un po' di timore, timore di staccare troppo presto e di finire sullo 

staggio, timore di staccare troppo tardi e di non prendere lo staggio cadendo a terra o sullo staggio 

inferiore, timore di cadere male o di sbattere i talloni sullo staggio. Però lo facevo lo stesso e portavo 

sempre in gara quell’elemento. Perché? Perché la voglia di riprendere lo staggio con le mani per poi 

finire l’esercizio era troppo forte, era troppo emozionante “volare” sopra lo staggio, era troppo 

emozionante dire “ce l’ho fatta di nuovo”. Nulla avrebbe potuto fermarmi dallo smettere di fare quel 

salto alla parallela. E lo stesso vale per la vita, la felicità di raggiugere qualcosa deve essere sempre 

maggiore della paura di non farcela, la voglia di raggiungere i propri sogni deve sempre vincere sulle 

parole negative di certe persone che cercano di fermarti solamente perché loro non hanno nemmeno 

il coraggio di provarci. 

E così dopo la laurea magistrale non avrei mai immaginato di trovarmi qui oggi a scrivere queste 

ultime righe della tesi di dottorato. Chi lo avrebbe mai detto? Io di certo no. 

La vita è imprevedibile e chi pensa di sapere già tutto si sbaglia di grosso. La vita va vissuta giorno 

dopo giorno, ora dopo ora, minuto dopo minuto. Non sono le “grandi” scelte quelle che ti cambiano 

la vita, non sono i giorni con “appuntamenti importanti” a definire il tuo futuro. Sono le piccole cose 

a rendere unica una giornata, in pochi secondi si definisce quale strada si intraprenderà, in un attimo 

tutta la tua vita può cambiare in meglio o in peggio. Può accadere che un giorno tu ti svegli la mattina 

e dici “questa non è la mia vita”. Arriva un giorno in cui apri gli occhi e tutto quello che non riuscivi 

a vedere prima te lo trovi lì davanti a te, chiaro e limpido come se fosse stato lì da sempre, ma fino al 

giorno prima neanche te lo immaginavi. Ed è così che all’improvviso la mia vita è cambiata, un 

piccolissimo dettaglio ha scaturito un universo di cambiamenti. 

Sono successe tante cose in questi tre anni… Vorrei ringraziare tutte le persone che mi sono state 

vicine, che hanno affrontato con me certe situazioni difficili prendendomi per mano e 
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mi hanno voltato le spalle, che mi hanno trafitto più volte alle spalle pensando di essere furbe. Grazie 

perché mi avete reso più forte, grazie perché mi avete insegnato ad andare avanti e a non fermarmi 

alla prima delusione grossa. 

Un grandissimo grazie va ai miei genitori. Un grazie che non finirò mai di dirlo perché so che potrò 

sempre contare su di loro, mi hanno sempre sostenuto e spronato a non arrendermi mai sia nei 

momenti felici ma ancora di più nei momenti difficili. Sono sempre stati accanto a me anche quando 

prendevo decisioni sbagliate. Perché si le persone devono sbagliare per imparare, devono sbatterci la 
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testa contro prima di accorgersi degli errori. Ma è proprio questo che fa crescere e fa evitare di fare 

altri sbagli. 

Un grandissimo grazie va come sempre alla mia passione più grande: la ginnastica. La ginnastica che 

mi ha dato ma anche tolto tanto, che mi ha insegnato a non arrendermi mai, a credere in un obiettivo 

e a lottare fintanto che non si raggiunge. Non serve essere geni o talenti per raggiungere qualcosa, 

serve solo la caparbietà di non mollare e di dare tutto sé stessi per il sogno in cui si crede. 

Queste ultime righe che sto scrivendo sono sicuramente le parole conclusive di un ulteriore traguardo 

della mia vita che ho raggiunto, ma a dire il vero preferisco vederle come le prime righe 

dell’introduzione di un nuovo capitolo di vita. 

E infine voglio ringraziare una persona speciale che ha trasformato un giorno qualunque, di un mese 

qualunque, di un anno senza senso in un giorno da ricordare. 
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