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Abstract 

Background and Aims 

Hepatocellular carcinoma (HCC) is the most common primary hepatic malignancy 

and represents the second cause of cancer related death worldwide, characterized by high 

recurrence rates and poor survival, even when detected and treated at its early stages. 

Mitochondrial mutations have been known to play a role in carcinogenesis, but to 

date, few studies correctly prioritize and interpret the variants discovered. Thus, we aimed 

to identify and analyze the occurrence and clinical impact of mtDNA mutations in the HCC 

dataset from The Cancer Genome Atlas (TCGA) consortium - National Cancer Institute.  

 

Method 

Whole exome sequencing fastq files from 377 TCGA-HCC patients were downloaded 

from the TCGA database. Paired tumor, non- tumor tissues originating from each patient 

were processed to reconstruct the mtDNA genomes using the MToolBox automated 

pipeline. Pairwise comparison between blood/normal solid tissue and tumor was performed 

in order to identify the potentially germline and tumor-specific somatic mtDNA variants. 

Information regarding the variability and pathogenicity of the variants were obtained from 

HmtVar database. 

 

Results 

The assembly of the mitochondrial reads showed an adequate coverage and quality 

for 104 patients. Variants were classified as pathogenic based on the allele frequency and 

disease score using the HmtVar criteria. After discarding the germline variants used in 

haplogroup classification, fixing the heteroplasmic fraction (HF) at 0.4 and prioritizing the 

variants we found 13 pathogenic/likely-pathogenic missense mutations and three tRNA 

pathogenic mutations in tRNA genes. HCC tumors presented a total of 302 somatic variants. 

After applying the same criteria, we found 24 pathogenic mutations in 22 patients. The 

burden of pathogenic mtDNA mutations resulted independently associated with a poorer 

survival of these patients (p<0.05 for different heteroplasmy thresholds). 
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Conclusion 

We found 21% of HCC patients to harbor somatic pathogenic mtDNA mutations in 

their tumors. We found that these patients had a poorer survival than those harbouring 

non-pathogenic variants. mtDNA mutations could cause mitochondrial dysfunction and 

impact the prognosis and survival of HCC patients. 
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Introduction 

Hepatocellular carcinoma 

Hepatocellular carcinoma (HCC) is the most frequent form of primary liver cancer, 

ranking sixth in worldwide incidence. It is characterized by a poor prognosis and a high 

mortality rate even when detected and treated at its early stage. 1–3 

With limited loco-regional therapeutic options, having a 5-year recurrence rate as 

high as 70% for the few patients that achieve complete response,4 and only one systemic 

therapy approved, HCC remains one of the deadliest types of cancer worldwide.5,6 

An underlying chronic liver disease is present in most cases and constitutes the 

background condition leading to liver cancer7,8. The most common risk factors include 

chronic hepatitis B (HBV) and C (HCV) infections, obesity and metabolic syndrome and 

chronic alcohol intake. Out of these, hepatitis B and C are the major causes of the morbidity 

and mortality, with HBV representing the main cause for HCC worldwide. Another risk factor 

which is increasing in incidence is non-alcoholic fatty liver disease (NAFLD), mainly due to 

the increase of obesity and metabolic syndrome associated with the western diet. All of 

these factors cause a chronic injury which induces progressive liver damage leading to 

cirrhosis and ultimately liver cancer.6 

 

Fig 1. Schematic representation of HCC development 
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On a genetic level, HCC tumors presents different chromosomal alterations as well as 

somatic mutations, such as mutations in the TERT promoter (60%), TP53 (30%), CTNNB1 

(30%) and AXIN1 (10%), none of which can be used in daily medical practice as predictors of 

therapeutic outcome due to insufficient testing. Moreover, as far as molecular therapies are 

concerned, alterations involving VEGFA and CCND1/FGF19, which could be targeted by such 

therapies, have been reported but are quite rare. These aspects put HCC among the group 

of solid tumors with few somatic mutations that can be targeted by molecular therapies.9,10 

Recent progress has allowed the identification of different molecular subtypes of 

HCC which, although they corelate with clinical features, are not used in clinical practice due 

to the insufficient proof of their capacity to predict a therapeutic response.6,11 The 

molecular subtypes can be divided into two main groups: the proliferation class and the 

nonproliferation class. The first is seen more frequently in tumors originating on a chronic 

HBV infection and characterized by an aggressive clinical behavior. This molecular subtype 

includes poorly differentiated tumors with TP53 mutations, activation of various oncogenic 

pathways such as MAPK, MET and mTOR as well as chromosomal instability. Regarding the 

nonproliferation class, tumors falling in this category present a gene expression signature 

more similar to that of a normal liver tissue and present more mutations in the CTNNB1 

gene (Fig 2).12,13 

Depending on the stage, current treatments include surgical resection, liver 

transplantation, radiofrequency ablation and transarterial chemoembolization. For patients 

with an advanced disease, systemic therapies are recommended. With most drugs failing in 

phase 3 trials, Sorafenib remained the only available first line treatment for these patients 

until the FDA approval of levantinib in 2018. Unfortunately, both drugs show a moderate 

increase in survival, from 7.9 months for placebo to 10.7 months for sorafenib (SHARP trial), 

and 13.6 months for levantinib compared to 12.3 months for sorafenib (Levantinib vs 

Sorafenib non-inferiority phase 3 trial).14 For second line treatment, the first drug to be 

approved by the FDA was Regorafenib, which increased survival of patients showing tumor 

progression under sorafenib from 7.8 to 10.6 months (RESORCE trial).15 
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Fig 2. Molecular features of hepatocellular carcinoma12 

 

Considering the unsatisfactory results obtained with the current therapeutic 

procedures (including surgical, locoregional and pharmacological therapies), the unmet 

clinical need is the identification and correction of the mechanisms leading to HCC 

occurrence in patients at risk. Although chronic liver disease, especially in the cirrhotic stage 

is the most common background condition, the explanation why some patients will develop 

HCC while others will not, despite having common risk factors, remains to be clarified. 
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The role of mitochondrial metabolism in cancer 

The process of malignant transformation describes the transformation of a normal 

cell into a neoplastic one, which by gaining additional alterations, achieves the limitless 

potential to replicate, disseminate and metastasize. In probably what is the most influential 

review in the field of oncology, Hanahan and Weinberg defined six major hallmarks of 

cancer: increased proliferation, insensitivity to growth suppression signals, resisting 

apoptosis, unlimited replicative potential, sustained angiogenesis, and tissue invasion and 

metastasis. Later, in their second review, they add two new hallmarks: reprogramming of 

metabolism and the capacity to evade immune response (Fig 3).16–18  

 

Otto Heinrich Warburg was the first to reveal that cancers go through metabolic 

reprogramming by observing that they are characterized by an elevated level of glucose 

uptake and its conversion to lactate through glycolysis even in the presence of oxygen.19 The 

phenomenon called “aerobic glycolysis” would be later termed the Warburg effect. This 

discovery allowed the development of the 2-[18F]fluoro-2-deoxy-D-glucose (18F-FDG) 

positron emission tomography (PET), an extensively used imaging technique in the clinics for 

the detection and follow-up of tumors.20  

 

Fig 3. The hallmarks of cancer.17 
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For a long period of time cancer cells have been thought to rely only on glycolysis to 

supply their energetic demands. Thus, the metabolism of cancer cells has been thought to 

be independent of the mitochondrial status, as they were considered insufficient to satisfy 

the energetic demands of a cell with such an accelerated proliferation rate. Moreover, the 

Warburg effect suggested that the increased glycolysis in cancer cells was in fact due to 

damaged mitochondria. Later, different studies have shown that many tumors still retain a 

functional mitochondria which allows them to use both glycolysis and oxidative 

phosphorylation (OXPHOS) in order to adapt to the harsh microenvironment conditions.21 

Mitochondria have been shown to contribute to tumoral development in different 

ways. Apart from the metabolic support in terms of ensuring appropriate redox balance and 

Krebs cycle functioning for anaplerotic biosynthetic reactions, mitochondria through the 

electron transport chain represent the main cellular source of ROS, which may exert 

mitogenic activity.22 By transferring an electron from their redox core to molecular oxygen, 

respiratory complexes I and III are capable of generating superoxide anions. In normal 

conditions, these molecules are rapidly converted to H2O2 by two superoxide dismutases, 

namely SOD1 located in the intermembrane space and SOD2 in the mitochondrial matrix.23 

In a physiological state, ROS are known to play an important role as signaling 

molecules, influencing cell proliferation and differentiation, but excessive levels can lead to 

cellular damage resulting in cell death. Nearly all cancers present high rates of ROS and also 

in parallel, increased levels of antioxidant enzymes in order to maintain the intracellular 

balance required for its function and survival.24 It is known that low concentrations of ROS 

exert a mitogenic activity by promoting cell survival and proliferation, while intermediate 

levels lead to cell cycle arrest and differentiation. But at high levels, ROS can lead to 

oxidative damage to different cellular components including DNA with the consequent 

generation of mutations. This phenomenon is thought to occur at a higher rate in the 

mtDNA because of its proximity to the source of ROS production and its lack of the complex 

protective and repair mechanisms that the nuclear DNA exploits.25,26 
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Fig 4. The vicious cycle of ROS induced DNA damage. 
mitochondrial dysfunction with increased ROS production 
can induce mtDNA injury with the generation of mutations 

Growing tumors present a complex metabolic rewiring which does not resume only 

to the increased uptake of glucose and increased glycolysis. Cancers have also the capacity 

to oxidize glutamine in order to produce energy via the Krebs cycle and OXPHOS chain, as 

well as to process it reductively for the synthesis of fatty acids.27 

Metabolic reprogramming has also been seen in the case of HCC tumors. These 

tumors present the characteristic Warburg effect with the increased glucose uptake by 

upregulating glucose transporters GLUT1 and GLUT2 and an increased glycolytic rate.28 

Another alteration seen is the upregulation of hexokinase 2 isoform which is the first 

enzyme of the glycolytic pathway, its expression being associated with the pathological 

stage. Moreover, targeting of this enzyme has shown to increase the response to Sorafenib 

of HCC cells.29 

The metabolic plasticity of tumor cells allows them to adapt to conditions such as 

hypoxia and decreased availability of nutrients. In normal cells this would activate apoptosis 

resulting in cell death. However, in cancer cells the apoptotic threshold is increased by 

different mechanisms such as BCL2 overexpression. This increased resistance plays an 

important role when aiming to treat tumors, since the purpose of chemotherapeutics 

agents is to induce the death of malignant cells or a permanent growth arrest. Therefore, 

mitochondria play also a role in the cancer response to therapy, not only in its progression. 

Such an example can be seen in the case of melanoma cells which present a mutation in the 



Introduction 

13 

BRAF gene (BRAFV600E). Targeting of this mutation with vemurafenib is associated with a 

switch to a more oxidative metabolism in order to gain resistance to the treatment. This 

allows cells to be vulnerable to the inhibition of the electron transport chain using honokiol 

which can restore the response to vemurafenib.30 The switch from glycolysis to OXPHOS can 

be seen also in the case of pancreatic cancer driven by the KRASG12D mutation, as well as in 

the ablation of MYC/KRAS or MYC/ERBB2 in breast cancers.31,32 

Indeed, in the case of HCC, mitochondria have also been shown to play an important 

role in the resistance to sorafenib. For example, a study has shown that the activation of 

OXPHOS using dichloroacetate can overcome HCC’s resistance to sorafenib.33  

Considering the central role held by mitochondria in metabolic reprogramming of 

cancer cells as well as in the control of cell death, targeting this organelle in an attempt to 

cure tumors has gained popularity in the past years with positive results.22,34 Another 

example of the role of mitochondria in HCC metabolism can be seen in the case of studies 

with metformin. Metformin, an inexpensive drug frequently used in the treatment of 

diabetes, has been shown to inhibit respiratory complex I (CI), reducing tumorigenicity35–39. 

A great body of research shows an association between the use of metformin and reduced 

cancer incidence in HCC.40, 41 Metformin has been shown to inhibit HCC cells proliferation 

and migration42 as well as the recurrence of metastasis in mouse models 43 Despite these 

positive results, some findings have failed to show a benefit of the treatment,44,45 thus 

further clarifications are needed in order to understand the role of mitochondria in the 

development and evolution of HCC. 
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Mitochondrial genetics 

Mitochondria are highly specialized cytoplasmatic organelles best known for their 

energy generating function in the form of ATP. They are semiautonomous organelles as they 

contain their own circular genome with a different genetic code than the nuclear one as well 

as a replication pattern independent from the cell cycle. Mitochondrial DNA (mtDNA) is a 

double stranded circular molecule with a size of approximately 16.6 kb46. It comprises a 

heavy (H) strand and a light (L) strand, names based on the asymmetrical G/C distribution 

which renders the H strand of a “heavier” molecular weight. The L strand was defined in the 

original publication as the sense strand containing the coding sequence of most of the 

mitochondrial genes. Therefore, the RNAs corresponding to these genes are transcribed 

from the H strand.47,48 

The mitochondrial genome contains 37 genes of which thirteen are coding for 

proteins participating in the OXPHOS chain (Fig 5). The rest encode for tRNAs (22 genes) and 

two rRNA (the 16s for the large subunit of the mitochondrial ribosome and the 12s for the 

small subunit). As opposed to nuclear genes, mitochondrial genes do not have introns. Apart 

from the non-coding nucleotides which separate contiguous genes, mtDNA has only one 

non-coding regulatory region, the displacement loop (D-loop). This region represents the 

site where the mtDNA replication and translation begin.49,50 

The inheritance of mtDNA has long been considered to follow exclusively a maternal 

pattern, as sperm mtDNA is removed by ubiquitination during the formation of the 

mammalian zygote. Because of the mtDNA is inherited only from the mother, usually in a 

homoplasmic state, this small molecule offers a valuable opportunity to explore 

genealogical relationships and track populational migration. Having an known mutational 

rate which is 5-10 times higher than that of the nuclear genome, mitochondria represent an 

important tool to distinguish evolutionary patterns of the human population. The lack of 

recombination of the mtDNA allows all variants to be organized in the shape of a 

phylogenetic tree, with all branched being traced back to the first ever mtDNA known as the 

mitochondrial Eve. These branches containing a specific combination of mtDNA variants 

could be labelled by a distinctive migration pattern on agarose gels upon restriction enzyme 

digestion. Therefore, these branches were named using alphabetic labels which are known 

as mtDNA haplogroups.51,52 
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Unlike the nuclear DNA, mtDNA is found in multiple copies with cells having between 

100 to 10000 copies depending on cellular energetical requirements. Homoplasmy defines 

then state in which all the mtDNA copies are identical. However, due to different factors 

contributing to an increased risk of mutational events, mtDNA can acquire different 

mutations which often co-exist together with the wild-type copies. This mixture of different 

mtDNA molecules which can be in various proportions, is defined as heteroplasmy. Because 

of the high number of mitochondrial DNA copies in a single cell, some wild type, some 

mutated, the percentage of any mtDNA variant/mutation can vary over time. Thus, a normal 

mitochondrial function can be maintained even in the presence of a pathogenic mutation, 

as long as the ratio of wild type mtDNA is high enough. When this ratio favors the mtDNA 

copies containing pathogenic mutations, the mitochondrial dysfunction caused by the 

 

Fig 5. Structure of the human mtDNA. MT-RNR1 and MT-RNR2 code for the 12S 
and 16S rRNAs subunits. MT-ND1 to 6 genes code for NADH dehydrogenase 
subunits. MT-CO1, MT-CO2, MT-CO3 - cytochrome oxidase subunits 1,2 and 3. MT-
ATP6 and MT-ATP8 genes codes for mitochondrial ATPase subunits 6 and 8. MT-
CYB gene codes for cytochrome b. The 22 tRNAs encoding genes are in red. 
Promoters HSP1 and HSP2 transcribe genes on the H-strand and LSP on the L- 
strand.53 
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alteration can become apparent and cause a visible phenotype. This phenomenon is known 

as the phenotypic threshold effect and it is characterized by a high variability between 

different mtDNA mutations as well as between different affected tissues. This threshold 

effect has been shown to vary between 20 and 98% for different mitochondrial diseases.54 

 

Fig 6. mtDNA polyploidy. Green represents wild type mtDNA while red shows mutated mtDNA. 
Mutations are required to reach a certain threshold in order to have an impact on the 
mitochondrial function55 

 

Mitochondria generate ATP through the OXPHOS reaction which is carried out in the 

internal membrane by the electron transport chain (ETC). The ETC comprises five protein 

complexes: NADH-ubiquinone oxidoreductase - complex I, succinate-ubiquinone 

oxidoreductase - complex II, ubiquinone-cytochrome c oxidoreductase - complex III, 

cytochrome c oxidase - complex IV, and ATP synthase - complex V (Fig 6). During evolution, 

the majority of the genes coding for mitochondrial proteins, including those of the ETC have 

moved in the nuclear DNA (Fig 7). 
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Fig 7. The structure of the electron transport chain. 

 

Apart from ATP production, mitochondria carry out other functions such as 

maintaining the Ca2+ homeostasis, fatty acid beta-oxidation and redox signaling through the 

generation of reactive oxygen species (ROS). They also participate in certain steps of the 

heme synthesis though the biogenesis of iron-sulphur clusters as well as in pyrimidine 

synthesis.56,57 
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Mitochondrial mutations in cancer 

Mitochondrial mutations have been described to occur in nearly 60% of all cancer 

types, but their functional role in tumorigenesis remains unclear. The lack of highly efficient 

repair mechanisms and the vicinity to the site of reactive oxygen generation renders 

mitochondrial DNA susceptible to a higher rate of accumulating mutations than the nuclear 

genome.58 

The majority of mtDNA mutations found are somatic, but in some cases germline 

variants which in the normal tissue have a low heteroplasmy can become positively selected 

in the tumoral tissue.59 

The most reported variants in cancer studies are located in the D-loop region of the 

mtDNA genome. This region is known to be highly polymorphic, and many authors fail to 

consider a proper stratification of the discovered variants, as the simple presence of a 

nucleotide change is not sufficient for its association with a cancer type. Thus, such studies 

need to be read with caution. The second most frequent mutations seen are those in genes 

coding for CI subunits, but this could be mainly due to the fact that most of the mtDNA 

genome codes for CI subunits. To date, no preferential mutational hotspot site in the 

mtDNA has been seen in cancer cells.60 

In cancers, the most frequently seen variants occurring in protein-coding genes are 

missense. This accumulation of variants with a functional impact has led to the idea that 

they might offer tumors a selective advantage. Contrarily, highly pathogenic mutations are 

contra-selected from tumors supporting the current accepted knowledge that functional 

mitochondria is needed in order to ensure the progression of the tumors. Unfortunately, 

there is a low availability of functional studies which characterizing completely the impact of 

mtDNA mutations which limits the current understanding of this topic.61 The association 

between mtDNA mutations and cancer development is a difficult task also due to the 

presence of heteroplasmy, which adds another layer of complexity. The current accepted 

view is that mtDNA mutations are not capable of inducing malignant transformation but can 

play an important role as modifiers of the tumorigenic potential. For example, mutations 

leading to a decreased efficiency of OXPHOS could be beneficial when tumors go through 

hypoxia but may impair the metastatic capacity of the tumoral cell bearing it.62,63 

Another issue contributing to the complex roles of mtDNA mutations is the fact that 

the same mutation can have opposite effects depending on the context in which it occurs. 
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For example, the mtDNA mutation present in the 143B osteosarcoma cell line has been 

shown to increase glycolytic metabolism and promote tumor progression when found in a 

heteroplasmy state, while increasing apoptotic rate and decreasing tumoral growth when 

found in homoplasmy.64,65 

Mitochondria play important roles in the metabolism of glutamine and lipids. 

Glutamine is used in the anaplerotic reactions of the TCA cycle and for the synthesis of 

nucleotides while the reprogramming of lipid metabolism is required for the synthesis of the 

lipids required to construct the cellular membranes. Because these processes are influenced 

by the functional status of the OXPHOS chain, mtDNA mutations can play an important role 

in the capacity of cancer cells to adapt to metabolic stress.66,67 

In the case of HCC, there is a limited number of studies tackling the role of mtDNA 

mutations in hepatocarcinogenesis. Firstly, many reports limit themselves to sequence only 

the D-loop regulatory region.68 This may lead to the finding of polymorphisms rather than to 

true pathogenic variants. Next, due to the lack of a proper classification and stratification of 

the variants, often studies consider all events found in the tumoral tissue and not in the 

healthy tissue to be potentially pathogenic. This issue is also present in other studies 

investigating the role of mtDNA mutations in different cancers as well.69 

An interesting finding is that of a common deletion affecting CI which is purified from 

the HCC tumors, suggesting its probable unfavorable impact on tumor progression.70 Other 

findings report a lower number of mtDNA copies which also seems to corelate with the 

clinical features.71 Overall, the scarce data available, combined with the lack of a careful 

selection of the variants contributes to an unclear picture of the role of mtDNA mutations in 

HCC. 
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The Cancer Genome Atlas (TCGA): a valuable resource for ‘omic studies  

The Cancer Genome Atlas (TCGA) is a joint effort between the National Cancer 

Institute and the National Human Genome Research Institute which began in 2006. By 

joining multiple research centers from diverse disciplines, the consortium managed to 

collect and analyze more than 20.000 primary cancers and their matched normal samples 

from 33 cancer types. Containing a wide array of large scale ‘omic techniques such as 

genomic, transcriptomic, epigenomic and proteomic data, TCGA is one of the most 

comprehensive and complete cancer datasets available to date.  

The data from the TCGA projects can be divided into two types: Open Access Tier 

and Controlled Access Tier: 

Open Access data tier comprises information which does not pose a risk for the 

research patient re-identificaton. Therefore, for this particular category the access does not 

require an approved user certification and are freely accessible through the TCGA Data 

Portal. 

Controlled Access data tier comprises data which are unique to an individual such as 

Individual germline variant data (SNP .cel files); Primary sequence data (.bam files); Clinical 

free text fields and Exon Array files. In order to gain access to such data, a researcher must 

receive approval by the dbGaP Authorized Access. 
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Aim 

 

The importance of mitochondria in carcinogenic processes is well known in general, 

but insufficient work is available in the literature which explores the role of mitochondrial 

metabolism in the instance of HCC development. 

 Mitochondrial mutations have been known to play a role in the process of 

carcinogenesis with many works reporting the occurrence of mtDNA mutations in tumors. 

To date, few studies correctly prioritize the mitochondrial DNA variants discovered. Thus, an 

extensive analysis of the mitochondrial status in a large dataset of patients may be an 

opportunity to discover novel mechanisms in the pathogenesis of HCC. 

 

The main objective of this study was to analyze the occurrence and role of mtDNA 

mutations in HCC tumors and to explore their value as predictive markers for HCC prognosis. 

To this purpose we first identified and defined the mitochondrial DNA mutational 

landscape in the hepatocellular carcinoma cohort from The Cancer Genome Atlas 

consortium.  

By prioritizing and stratifying the variants found based on their potential pathogenic 

impact, we aimed to analyze the potential impact of such mutations on the evolution of 

patients with HCC. 
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Methodology 

Bioinformatics analysis of mtDNA mutations 

To achieve our goal, we downloaded 

whole exome sequencing (WXS) data from 

the TCGA-LIHC project for both tumoral and 

paired non-tumoral tissues (blood or 

surrounding liver tissue) after submitting a 

project request to the NIH. 

 The .fastq files deriving from 377 

HCC patients (paired tumor and non-tumor 

tissues) were processed to reconstruct the 

mitochondrial genomes using the 

MToolBox automated pipeline.72 The 

process includes the extraction and 

assembly of mitochondrial DNA fragments 

from the off-target reads and also 

discarding the sequences originating from 

the nuclear sequences derived from 

mitochondrial DNA, namely the Nuclear mt 

Sequences (NumtS). 

In order to achieve a high level of 

accuracy of our analysis and avoid false 

positive results the quality criteria set for 

this study was as follows: 

• an average sequencing depth of the 

mtDNA sequence ≥ 30X 

• Mitochondrial DNA coverage ≥ 98% 

• Number of reconstructed mtDNA 

contigs less than 2 

After the variant calling of the 

discovered events, all variants are given a functional annotation and are prioritized in order 

 

Fig 8. MToolBox analysis workflow 
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to select those of potential clinical relevance according to the tiers reported in Table 1 and 

defined, by combining the Disease score and the allele frequency for any possible variants 

that could occur in any site of the human mitochondrial genome. The disease score for 

variants occurring in coding for protein genes is estimated acccording to the algorithm 

described in Santorsola M et al, and is based on different predictors: MutPred, HumDiv and 

HumVar-trained PolyPhen-2 models, SNPs&GO, PhD-SNP and PANTHER.73–75 The disease 

score for tRNA variants is estimated according to the algorithm reported in Di Roma MA et 

al and then improved in HmtVar. For tRNA variants the MutPred etc predictors is not 

considered. This classification criteria can be found in Table 1.  

 

  Non-synonymous variants 
 

tRNA variants 

Tier Disease Score Allele Frequency 
 

Disease Score Allele Frequency 

Polymorphic DS < 0.43 AF > 0.003264 
 

DS < 0.35 AF > 0.005020 

Likely Polymorphic DS < 0.43 AF ≤ 0.003264 
 

DS < 0.35 AF ≤ 0.005020 

Likely Pathogenic DS ≥ 0.43 AF > 0.003264 
 

DS ≥ 0.35 AF > 0.005020 

Pathogenic DS ≥ 0.43 AF ≤ 0.003264 
 

DS ≥ 0.35 AF ≤ 0.005020 

Table.1. HmtVar pathogenicity predictions 

Pairwise comparison between blood/normal solid tissue and tumor was performed 

in order to identify the potentially germline and tumor-specific somatic mtDNA variants. The 

schematic analysis workflow of this study is presented in Fig 8. 

To achieve a correct estimation of the tumoral mitochondrial mutational burden, 

heteroplasmic fractions of the variants discovered was adjusted using the estimated tumor 

purity value from TCGAbiolinks R/Bioconductor package. This value combines four 

parameters: expression profiles from 141 immune genes and 141 stromal genes, somatic 

copy-number variantion data (not available for the LIHC cohort) and 44 non-methylated 

immune-specific CpG sites.76 

Complementary analysis involving other somatic mutations was carried out using the 

Mutation Annotation Format (MAF) files available in the Genomic Data Commons Data 

Portal (CGD)77. Explorative data visualization and mining was done using the Orange3 
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software package from Anaconda78. Graphical representations and analyses were 

constructed in R/Bioconductor using the appropriate packages such as TCGAbiolinks79,80,81 

and the CRAN TCGA2STAT82 and in GraphPad Prism 8. 

Statistical analysis using appropriate tests was done by using IBM SPSS Statistics 

software version 20. For continuous variables Student’s T-test was used while for categorical 

variables we used Chi-Square test of Fisher’s exact test. For survival analysis, the Kaplan 

Meyer curve analysis was employed. For multivariate analysis the Cox Proportional Hazards 

Regression analysis was used. The results were considered significant if the p-value was less 

than 0.05. 

 

Immunohistochemistry staining 

Paraffin embedded tissues of patients diagnosed with HCC were obtained from the 

archives of the Pathology department of Sant'Orsola-Malpighi Hospital, Bologna, Italy. Serial 

cuts of 3um were performed from each paraffin block. Sections were deparaffinized, 

rehydrated, and retrieved using a Tris-EDTA pH 8 solution (20 min at 98*C). Primary 

antibodies were purchased from Abcam:  

For complex I - NDUFS4 mouse diluted 1/1000 (Catalog no. AB55540) 

For complex III – Core 2 (UQCRC2) mouse diluted 1/1500 (Catalog no. AB14745) 

For complex IV – COX I mouse diluted 1/1000 (Catalog no. AB14705) 

For complex V - ATPase5a mouse diluted 1/2000 (Catalog no. AB14748) 

Incubation for the primary antibody was 1h at room temperature. The reaction was 

developed with a DAB-Peroxidase Substrate Solution according to the manufacturer’s 

instructions. Sections were counterstained with hematoxylin, dehydrated, and mounted. 

 

  



 

25 

Results 

Evaluation of the TCGA LIHC cohort revealed 104 cases eligible for mtDNA 

mutation analysis 

The TCGA-LIHC 

cohort comprises a total of 

377 HCC cases, all of which 

were run through the 

MToolBox pipeline. A 

number of 104 patients 

fulfilled our criteria and 

were further analyzed. 

These included patients for 

which data were available 

for both tumor samples and 

for their paired non-tumoral 

control. 

The majority of the 

cases were males 

representing 71% of total. 

Mean age for diagnosis for 

males was 58.5±11.8 years 

while for females it was 

58.68±15.3 years.  

Disease stages as defined by the American Joint Committee on Cancer (AJCC) cancer 

stage manual was predominantly represented by the early stages with almost 70% of the 

patients having either a stage I or II diagnosis (Fig 9). 

Almost 80% of the patients had a documented risk for developing HCC, the most 

frequent one being alcohol consumption which was reported by 31 patients. All risk factors 

are presented in Table 2. 
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The mean minimum reading 

depth for tumoral samples was 30.5x 

while the maximum was 429.5x. The 

non-tumoral samples were 

represented by either a blood derived 

normal, solid normal tissue or both. 

Mean reading depths of these 

samples spun between a minimum of 

30x and a maximum of 642.2x. 

Detailed quality information regarding 

the samples can be found in Annex 1. 

 

 

 No of patients Percent 

Alcohol consumption 23 22 

Alcohol consumption|Hepatitis B 6 5.8 

Alcohol consumption|Hepatitis C 2 1.9 

Hemochromatosis 3 2.9 

Hepatitis B 22 21.2 

Hepatitis B|Hepatitis C 1 1.0 

Hepatitis C 8 7.7 

Hepatitis C|Hemochromatosis 1 1.0 

Non-Alcoholic Fatty Liver Disease 6 5.8 

No History of Primary Risk Factors 24 23.1 

Table 2. Risk factors in the TCGA HCC cohort 

 

 

  

 

Fig 9. Number of patients for each HCC stage. 
Stages are according to the AJCC classification of 
cancer stages 
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Non-tumor specific mutations in HCC 

A total of 1216 mtDNA germline variants recognized by the Revised Cambridge 

Reference Sequence (rCRS), the Reconstructed Sapiens Reference Sequence (RSRS) and 

macro-haplogroup consensus sequence (MHCS)83 were identified. Among these, a total of 

821 variants defined the patients haplogroups and were not considered in the subsequent 

analysis steps. A general view of the distribution of the germline variants based on their 

heteroplasmy can be found in Fig 10. 

After fixing a 

heteroplasmic fraction (HF) 

threshold of 0.4 to the 

remaining 395 variants, 381 

variants were filtered, among 

which 132 (35%) were 

synonymous, 59 (16%) non-

synonymous and 189 (50%) 

were variants belonging to the 

non-protein coding class. Five 

variants were not previously 

reported in the HmtVar 

database. Summary of the 

characteristics of the variants 

found can be seen in Table 3. 

 

After applying the 

HmtVar pathogenicity criteria 

previously described, variants were divided into four classes: pathogenic, likely pathogenic, 

likely polymorphic and polymorphic. A total of 13 non-synonymous and three tRNA 

pathogenic/likely-pathogenic mutations were found in 15 (14%) patients (Fig 11). 

 
Fig 10. Distribution of the 395 germline variants found in 
the TCGA-HCC cohort. Blue dots: polymorphic/likely 
polymorphic variants, Purple dots: pathogenic/likely 
pathogenic variants. Red line: fixed heteroplasmy 
threshold. 
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Fig 11. Distribution of germline variants in the LIHC TCGA cohort. The majority of 

discovered events are classified as benign variants (likely polymorphic and polymorphic). 
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Patient 
ID 

Variant AF HF non-Tu 
HF 

Tumor 
Locus 

Codon 
Position 

AA Change AA Var DS Pathogenicity 

LIHC_16 8505G 0.000000 1 1 MT-ATP8 2 Y47C 0.0167 0.55 pathogenic 

LIHC_19 12535T 0.001017 1 1 MT-ND5 1 H67Y 0.0141 0.72 pathogenic 

LIHC_24 8516C 0.000218 1 1 MT-ATP8 1 W51R 0.0073 0.89 pathogenic 

LIHC_37 14180C 0.003246 1 1 MT-ND6 2 Y165C 0.135 0.78 pathogenic 

LIHC_51 15617A 0.001163 1 1 MT-CYB 1 V291I 0.0059 0.76 pathogenic 

LIHC_52 15383C 0.000460 1 1 MT-CYB 1 S213P 0.0054 0.77 pathogenic 

LIHC_65 8393T 0.003342 0.94 1 MT-ATP8 1 P10S 0.124 0.67 likely_pathogenic 

LIHC_76 5979A 0.000654 1 1 MT-CO1 1 A26T 0.0132 0.73 pathogenic 

LIHC_87 9163A 0.001308 1 0.98 MT-ATP6 1 V213I 0.0022 0.81 pathogenic 

LIHC_88 5095C 0.000460 1 1 MT-ND2 2 I209T 0.0122 0.65 pathogenic 

LIHC_89 12965C 0.000048 1 0.98 MT-ND5 2 L210P 0.0022 0.72 pathogenic 

LIHC_99 9163A 0.001308 1 0.95 MT-ATP6 1 V213I 0.0022 0.81 pathogenic 

LIHC_100 8944G 0.000097 1 1 MT-ATP6 1 M140V 0.0023 0.57 pathogenic 

LIHC_58 15924G 0.033061 1 1 MT-TT 
   

0.4 likely_pathogenic 

LIHC_65 15927A 0.007581 0.97 1 MT-TT 
   

0.35 likely_pathogenic 

LIHC_67 5814C 0.003028 1 1 MT-TC 
   

0.75 pathogenic 

Table 3. Germline mutations found in HCC patients. HF: MToolBox output heteroplasmic fraction; AF: allele frequency; AA 

Var: aminoacid variability; DS: disease score. Nt Var, AA Var and AF are estimated on the basis of the human mitochondrial genomes 

annotated in GenBank and then available through the HmtDB database and hence in HmtVar. 
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Tumor specific mutations in HCC 

Tumor specific mitochondrial variants were defined as new events reported only in 

the tumoral MToolBox output and not present in the non-tumoral output. 

We detected a total of 302 mtDNA variants exclusively in 89 (86%) tumor samples. 

Fifteen patients did not present any mitochondrial variants in their tumoral tissue. 

A general overview of all the somatic mtDNA variants present in the TCGA-HCC 

cohort is illustrated in Fig 12. 

Variants were grouped into protein coding and non-protein coding variants. Protein 

coding variants were either synonymous when the aminoacid remained the same, non- 

synonymous (missense) when the nucleotidic change determined also an aminoacid change 

and nonsense if the nucleotide 

alteration induced a premature 

stop codon. 

The TCGA-LIHC cohort 

presented a total of 33 (11.7%) 

synonymous variants found in 

19 patients, and 70 (24.7%) 

missense variants in 45 patients, 

while the vast majority of the 

somatic events were present in 

the non-coding part - 180 

(63.6%) and reported in 72 

cases. From this category, the 

variants occurring in the D-loop 

or rRNAs were excluded from 

the analysis where pathogenicity 

predictions were required, as for 

these variants the the algorithm 

to estimate the disease score 

has not been designed.  

 
Fig 12. Distribution of all somatic variants found in the 
TCGA-HCC cohort. Blue dots: polymorphic/likely 
polymorphic variants, purple dots: pathogenic/likely 
pathogenic variants.  Red line: fixed heteroplasmy 
threshold. 
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 After applying the pathogenicity 

scores and filtering, a total of 70 

pathogenic mutations are left with the 

main majority being located in genes 

coding for CI proteins. Although classified 

as pathogenic or likely pathogenic, the 

simple presence of a mitochondrial 

mutation is not sufficient to induce a 

phenotype. Thus, a further filtering was 

applied namely an adjusted heteroplasmic 

fraction of 0.4 (Fig.13). The remaining 24 

mutations were distributed in 22 (21%) 

patients. Their characteristics are resumed 

in Table 4. 

One patient presented a mutation 

at position 6579A in MT-CO1 which leads 

to the gain of a premature stop codon at 

position 226 out of 513. This leads to the 

formation of a truncated protein. For 

stop-gain mutations, MToolBox does not 

calculate a disease score thus it does not 

estimate the pathogenicity of this 

particular variant. In order to gain insight 

in the possible impact of this mutation, we 

explored the phyloP and PhastCons scores 

which measure the evolutionary 

conservation of a site and the probability 

of negative selection, respectively. The 

resulted phyloP positive value of 9.4 

means that this region is well conserved 

and the PhastCons value of 1 predicts this 

mutation as deleterious. 

Fig 13. Filtering and selection of somatic mtDNA 

variants found in the TCGA-LIHC tumors 
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Mitochondrial genomes are prone to accumulate 

high levels of variants in tumoral cells. These mutations 

may serve to promote tumor cell proliferation and allow 

tumors to adapt to the microenvironment.84 We analyzed 

the distribution patterns of the somatic variants found. 

We observed that the major proportion observed in HCC 

tumors were missense variants. This suggests that tumoral 

cells have an increased tolerance for the accumulation of 

these variants. (Fig 14). 

Upon further analysis we noticed that tumors show 

an increased number of variants classified as pathogenic 

(Fig 15). 

A. 

 

B. 

 

Fig 15. Distribution of somatic variants in the LIHC TCGA cohort. Mitochondrial complexes I-
V are abbreviated as CI-V 

 

The majority of the somatic pathogenic mutations falls into genes coding for CI (57%) 

and CIII (20%) subunits. 

 

 

 
Fig 14. Proportion of variants in 

HCC tumors 
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Patient ID  
HmtVar 
ID 

Variant 
Allele 

HF aHF Location Gene Nt Var AF 
AA 
Change 
Type 

AA 
Change 

Aa Var DS Pathogenicity 

LIHC_67 2723 3946A 0.40 0.47 CI MT-ND1 0.0004 0.0000 missense E214K 0.0030 0.91 pathogenic 

LIHC_40 24286 12769A 0.58 0.65 CI MT-ND5 0.0001 0.0000 missense E145K 0.0053 0.91 pathogenic 

LIHC_92 2666 3922A 0.48 0.58 CI MT-ND1 0.0000 0.0000 missense E206K 0.0013 0.89 pathogenic 

LIHC_44 5220 4950C 0.36 0.53 CI MT-ND2 0.0001 0.0000 missense S161P 0.0018 0.83 pathogenic 

LIHC_29 3176 4139T 0.87 0.92 CI MT-ND1 0.0000 0.0000 missense P278L 0.0014 0.82 pathogenic 

LIHC_104 23905 12613A 0.93 1.00 CI MT-ND5 0.0012 0.0003 missense A93T 0.0067 0.82 pathogenic 

LIHC_21 20213 11087C 0.59 1.00 CI MT-ND4 0.0098 0.0021 missense F110L 0.1348 0.81 pathogenic 

LIHC_90 24915 13042A 0.57 0.85 CI MT-ND5 0.0001 0.0000 missense A236T 0.0022 0.78 pathogenic 

LIHC_63 21667 11711A 0.99 1.00 CI MT-ND4 0.0009 0.0000 missense A318T 0.0000 0.78 pathogenic 

LIHC_62 20990 11420A 0.92 1.00 CI MT-ND4 0.0000 0.0000 missense V221I 0.0000 0.75 pathogenic 

LIHC_48 23897 12610A 0.36 0.45 CI MT-ND5 0.0002 0.0000 missense V92M 0.0022 0.69 pathogenic 

LIHC_77 23442 12419T 0.92 0.99 CI MT-ND5 0.0000 0.0000 missense K28M 0.0157 0.69 pathogenic 

LIHC_21 27085 13976C 0.25 0.48 CI MT-ND5 0.0001 0.0000 missense N547T 0.0059 0.63 pathogenic 

LIHC_97 25485 13289A 0.32 0.41 CI MT-ND5 0.0007 0.0000 missense G318D 0.0082 0.88 pathogenic 

LIHC_70 29546 15005A 0.70 0.82 CIII MT-CYB 0.0002 0.0000 missense A87T 0.0000 0.87 pathogenic 

LIHC_18 29175 14846A 0.87 0.91 CIII MT-CYB 0.0000 0.0000 missense G34S 0.0009 0.87 pathogenic 

LIHC_60 30387 15357A 0.58 0.67 CIII MT-CYB 0.0000 0.0000 missense G204E 0.0009 0.85 pathogenic 

LIHC_28 31262 15699A 0.44 0.65 CIII MT-CYB 0.0000 0.0000 missense R318H 0.0009 0.82 pathogenic 
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Patient ID  
HmtVar 
ID 

Variant 
Allele 

HF aHF Location Gene Nt Var AF 
AA 
Change 
Type 

AA 
Change 

Aa Var DS Pathogenicity 

LIHC_104 30692 15489C 0.92 1.00 CIII MT-CYB 0.0000 0.0000 missense D248A 0.0006 0.7 pathogenic 

LIHC_5 10748 7210C 0.85 1.00 CIV MT-CO1 0.0000 0.0000 missense M436T 0.0026 0.83 pathogenic 

LIHC_34 16596 9591A 0.94 1.00 CIV MT-CO3 0.0033 0.0007 missense V129I 0.0297 0.55 pathogenic 

LIHC_8 9251 6579A 0.82 1.00 CIV MT-CO1 0.0000 0.0000 
Stop-
gain 

G226X 0.0021 
  

LIHC_44 1065 3243G 0.36 0.52 tRNA MT-TL1 0.0004 0.0001    0.8 pathogenic 

LIHC_42 6640 5549A 0.62 0.66 tRNA MT-TW 0.0001 0.0000    0.35 pathogenic 

Table 4. Pathogenic somatic mutations with an aHF≥0.4 found in the TCGA HCC patients. 

HF: MToolBox output heteroplasmic fraction; aHF: tumor purity adjusted heteroplasmic fraction; Nt Var: Nucleotide variability; AF: allele 

frequency; AA Var: aminoacid variability; DS: disease score. Nt Var, AA Var and AF are estimated on the basis of the human mitochondrial 

genomes annotated in GenBank and then available through the HmtDB database and hence in HmtVar. 
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Adjusting for the microenvironment component of the HCC tumor increases 

mtDNA variant detection 

The structure of solid tumors comprises a mass of heterogenous cell types which can 

be divided into two distinct compartments: the parenchyma and the microenvironment. The 

parenchyma is represented by the tumoral cells while the microenvironment includes a 

variety of different types of neoplastic induced cells such fibroblasts, blood vessels and 

immune cells.85 The proportion between these two parts can vary between different types 

of cancers with some tumors displaying a more evident desmoplastic reaction, with a well-

represented stromal compartment, while in others this component will grow to a smaller 

extent. This variation, also seen in the case of tumors belonging to the same cancer type, 

represents a constant challenge in research especially when using high throughput 

techniques such as next generation sequencing as it can highly underestimate the true 

mutational load.  

 In our analyzed cohort the minimal tumor purity was 36% while the maximum was 

95% with an average of 77%. In Fig XX an overall increase in the value of heteroplasmy can 

be observed after taking into account the tumor purity correction. In order to see whether 

this adjustment influences the HF in a significant way, we conducted a two tailed Paired 

Samples Wilcoxon Test which yielded a highly significant increase between the HF values 

prior to the tumor purity adjustment and those after (p<0.0001; rs=0.99).   

 

Fig 16. Differences between MToolBox Heteroplasmic fraction (HF) output and adjusted 
heteroplasmic fraction (aHF) calculated in respect to the tumor purity parameter from 
TCGAbiolinks. 

P<0.0001 
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A. heteroplasmy threshold =0.4 

 

% of variants potentially lost 25.5% 

D. heteroplasmy threshold =0.7 

 

% of variants potentially lost 18.5% 

B. heteroplasmy threshold =0.5 

 

% of variants potentially lost 22.5% 

E. heteroplasmy threshold =0.8 

 

% of variants potentially lost 26.9% 

C. heteroplasmy threshold =0.6 

 

% of variants potentially lost 33.3% 

F. heteroplasmy threshold =0.9

 

% of variants potentially lost 45.8% 

Fig 17. Venn diagrams representing mitochondrial variants with a major HF underestimation. 
Different thresholds of 0.4 (A), 0.5 (B), 0.6 (C), 0.7 (D), 0.8 (E), 0.9 (F) were set. 
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Germline mtDNA variants show heteroplasmic change under positive or 

negative selective pressure in HCC tumors 

Mitochondrial variants are known to be subjected to pressure selection. Mutations 

favoring tumoral adaptation to the harsh tumoral microenvironment will preferentially 

expand while those showing a disadvantage would diminish.84 We asked whether any of the 

germline variants discovered showed a heteroplasmic shift, be it negative or positive.  

For this analysis we plotted 

the tumoral HF of all germline 

variants remaining after the exclusion 

of haplogroup defining events against 

the original ones found in the non-

tumoral tissue (Fig 18). We 

considered variants showing a shift of 

40% increase or decrease in their 

heteroplasmic fraction. The majority 

of variants (95.7%) showed a low 

variation while 13 variants were seen 

to present a positive selection and 

two a negative one. Most of these 

were located in the D-loop region. 

Four variants were located in 

protein coding genes and in a tRNA 

gene, respectively. 

Two synonymous variants located in genes coding for complex I proteins show an 

increase in the tumoral sample. The A3606G variant was previously reported in a study in 

type 2 diabetes86. It does not appear in the ClinVar database. 

 

 

 

 

 

Fig 18. Germline variants which present a positive 
(green) or negative (red) selection. For the non-
tumoral sample the HF from the MToolBox output 
was used while for the tumoral sample we used the 
adjusted HF. 
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Variant 
Allele 

%increase/ 
decrease 

Location Gene Nt Var AF 
AA 

change 
DS Pathogenicity 

A3606G ↑ 54 CI 
MT-
ND1 

0.062 0.013 
syn 

L100L 
 likely 

polymorphic 

A10598G ↑ 58 CI 
MT-

ND4L 
0.004 <0.001 

syn 
M43M 

 
likely 

polymorphic 

T10454C ↑ 117 tRNA MT-TR 0.014 0.003  0.2 
likely 

polymorphic 

G9025A ↓ 46 CV 
MT-
ATP6 

0.003 <0.001 
mis 

G167S 
0.89 pathogenic 

Table 5. Germline variants showing a tumoral heteroplasmic shift. 
 AA: aminoacid; syn: synonymous; mis: missense; Nt Var: Nucleotide variability; AF: allele 
frequency; DS: disease score. Nt Var and AF are estimated on the basis of the human 
mitochondrial genomes annotated in GenBank and then available through the HmtDB database 
and hence in HmtVar. 

 

The 10454C variant although scored as polymorphic 

(https://www.hmtvar.uniba.it/varCard/18707), was described as a mitochondrial tRNA mutation 

associated with non-syndromic deafness. Patients presenting this mutation showed a higher 

penetrance of the disease and an earlier age of onset of hearing loss87. It has been also 

described in Leigh syndrome88 and lung cancer89. In this the last study the authors also 

classify it as a “neutral polymorphism”. 

The 9025A variant located in the mitochondrially encoded ATP synthase 6 is the only 

protein coding variant to show a decrease in the tumoral sample and is predicted to be 

pathogenic in HmtVar although no data regarding pathogenicity are available through 

ClinVar, OMIM and MitoMap. 
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mtDNA mutations correlate with immune infiltration in HCC tumors 

The role of the tumoral microenvironment in cancer progression cannot be 

overstated. Growing evidence suggests that stromal cells and innate as well as adaptive 

immune cells can influence the proliferation and drug response of tumoral cells, with major 

impact on the outcomes of the patients.90,91 

Escaping immune control of tumoral growth is one of the hallmarks of cancer.17  The 

intratumoral level of immune infiltration has been described recently as a factor with 

prognostic value in different cancers.92,93 Exhaustion of T cells is the process in which T cells 

become dysfunctional and therefore allow tumoral immune escape.94 Elevated ROS levels in 

the tumoral microenvironment have been associated with lymphocyte inactivation and 

tumor induced immunosuppression95. Because mtDNA mutations could lead to the 

generation of higher levels of ROS96,97, we sought to evaluate whether the presence of 

pathogenic mtDNA mutations could corelate with the immune component of the tumoral 

samples. For this we made use of the paraclinical immunohistochemical data available on 

the GDC portal which contains for each tumor specimen, the percentage of immune cell 

infiltration (monocyte, lymphocyte and neutrophils) as well as the percentage of stromal 

component.80 

In the analysed TCGA HCC cohort, we first focused our attention on mitochondrial 

variants located in genes coding for subunits of CI and CIII, the main generators of ROS from 

the ETC. We observed that the HCC tumors harboring pathogenic variants had a significantly 

lower proportion of the stromal component (p-value for Student’s t-test = 0.01) as well as a 

lower level of lymphocytic infiltration (p=0.05). When analyzing each complex separately, 

only mutations located in CI genes reached statistical significance for both the stromal 

component as well as for lymphocyte infiltration (p-value=0.05 for both).  

Regarding the impact of variants situated in genes coding for other components of 

complexes or for tRNA genes, the p-value remained not significant although a positive trend 

could be observed in favor of the pathogenic variants (Fig 19). 
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A. 

 
B. 

 
C. 
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D. 

 
Fig 19. Somatic complex I mutations correlate with 
the level of intratumoral stromal component (A), 
lymphocyte infiltration (B), neutrophils (C) and 
monocytes (D). 
Mitochondrial complexes I-V are abbreviated as CI-V 

 

Of note, for mutations located in CV genes we could not conduct any analysis as the 

non-pathogenic group comprised only one tumor sample. 

 

Pathogenic mtDNA mutations predict overall survival of TCGA LIHC patients 

Because of the known pro-tumorigenic effects of some mtDNA mutations, we sought 

to analyze the possible relationship of pathogenic mtDNA mutations on different clinical 

features of HCC samples.  

First we analyzed whether the somatic mutations presented a different distribution 

between the different stages of the disease (Fig 20). 
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Fig 20. Distribution of non-pathogenic (A) and pathogenic 
(B) somatic mtDNA mutations between patients having 
different stages of HCC. 
Mitochondrial complexes I-V are abbreviated as CI-V 

 

Chi-square test showed no significant difference in the distribution of pathogenic 

mtDNA mutations between the stages of HCC. The analysis was conducted only for stages I, 

II and IIIA, as the only two patients having stage IIIB of the disease showed only non-

pathogenic mtDNA variants. Because tumoral resection, hence access to tumoral tissue for 

the analysis, is recommended for early stages of the disease, samples from advanced stages 

are often limited, as seen also in this cohort. Thus, a comprehensive analysis of the 

mutational burden between diferent stages cannot be fully carried out. 

We next sought to see if the presence of pathogenic mutations was influenced by 

any of the backgound risk factors present in the HCC patients. Again, the Chi-Square test 

remained insignificant, with the mutations showing a uniform distribution between patients 

(Fig 21). 
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Fig 21. Distribution of non-pathogenic (A) and pathogenic (B) mtDNA mutations 
between patients with HCC developed on different backgound conditions. 
Alc: Alcohol consumption; H: Hemochromatosis; HepB: Hepatitis B; HepC: 
Hepatitis C; NAFLD: Non-Alcoholic Fatty Liver Disease; None: Absence of a 
background condition. Mitochondrial complexes I-V are abbreviated as CI-V 

 

We then proceeded to see whether the presence of a pathogenic mtDNA mutation 

in tumors would change the survival outcome of the TCGA-HCC patients. The required 

information was available for 102 out of 104 patients. Survival analysis was performed 

between the group of patients carrying a pathogenic mtDNA mutations and those carrying 

non-pathogenic variants. 

Given the known threshold effect presented by mtDNAmutations, in order to avoid 

selecting a random threshold to analyze our data, we used different adjusted heretoplasmy 

thresholds in the range of the values reported in literature. Thus, the following Kaplan-

Meyer survival analyses were conducted using thresholds values between 0.4 and 0.9 aHF 

(presented in Fig 22). For all survival curves, patients harboring non-pathogenic 

mitochondrial mutations presented statistically significant higher survival rates when 

compared to their counterparts with pathogenic mutations (p values < 0.05 for all curves). 

Because of the small number of patients available for the analysis, the median 

survival times could not be calculated for the non-pathogenic patients groups, therefore in 

order to evaluate the average survival of the two groups we calculated the estimated mean 
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survival times for each group. Since time is a type of variable with a non-normal distribution, 

this limitation of the analysis could represent a source of bias. The results are resumed in 

Table 6. It can be noted that no matter the heteroplasmy threshold set for analysis, the 

patients harboring non-pathogenic variants presented a significantly longer survival time.  

 

 

 Mean  
Estimate Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

aHF≥0.4     

non-pathogenic 2084.241 220.169 1652.710 2515.772 

pathogenic 1362.300 257.771 857.069 1867.532 

aHF≥0.5     

non-pathogenic 2047.198 241.950 1572.976 2521.419 

pathogenic 1358.512 286.210 797.540 1919.484 

aHF≥0.6     

non-pathogenic 2199.714 208.574 1790.909 2608.519 

pathogenic 1110.908 251.429 618.107 1603.709 

aHF≥0.7     

non-pathogenic 2162.167 239.933 1691.898 2632.435 

pathogenic 1231.833 320.467 603.717 1859.950 

aHF≥0.8     

non-pathogenic 2162.167 239.933 1691.898 2632.435 

pathogenic 1195.875 323.836 561.156 1830.594 

aHF≥0.9     

non-pathogenic 2109.600 282.102 1556.679 2662.521 

pathogenic 1519.500 341.250 850.650 2188.350 

Table 6. Estimated mean survival of the TCGA-HCC cohort based on different aHF 

thresholds 
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Fig 22. Survival analysis of TCGA-HCC patients with different aHF thresholds of 0.4 (A), 0.5 (B), 0.6 
(C), 0.7 (D), 0.8 (E), 0.9 (F). Patients carrying somatic pathogenic mtDNA mutations had a poorer 
survival. 
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In order to evaluate whether survival was influenced by other factors and their effect 

size, we performed a multivariate analysis using Cox regression model. To identify 

covariates which could potentially affect patient prognosis we considered for the analysis 

the following variables: age at diagnosis, gender, AFP levels, stage and microvascular 

invasion. In order to select the significant variables to introduce in our model we first 

performed separate univariate analysis. Gender attained statistical significance for aHF 

thresholds of ≥0.5 (p<0.01) , ≥0.6 (p<0.02), ≥0.7 (p<0.03) and ≥0.8 (p<0.03) while all other 

variables remained unsignificant for every heteroplasmy fraction threshold. 

Results of the multivariate analysis can be found in Table 7. 

 

 

Hazard p 

Hazard Ratio 

(HR) HR 95.0% CI  

aHF≥0.4 

overall p=0.023 

mtDNA 

mutations 
1.008 0.066 2.739 0.936-8.016 

Gender -1.108 0.040 0.330 0.115-0.951 

aHF≥0.5 

overall p=0.002 

mtDNA 

mutations 
1.136 0.043 3.113 1.035-9.366 

Gender -1.424 0.011 0.241 0.081-0.719 

aHF≥0.6 

overall p=0.003 

mtDNA 

mutations 
1.348 0.023 3.850 1.204-12.308 

Gender -1.329 0.024 0.265 0.083-0.841 

aHF≥0.7 

overall p=0.005 

mtDNA 

mutations 
1.922 0.021 6.831 1.341-34.800 

Gender -2.159 0.008 0.115 0.024-0.566 

aHF≥0.8 

overall p=0.006 

mtDNA 

mutations 
1.910 0.019 6.754 1.361-33.510 

Gender -2.097 0.010 0.123 0.025-0.603 

aHF≥0.9 

overall p=0.285 

mtDNA 

mutations 
1.068 0.288 2.911 0.406-20.883 

Gender -1.339 0.145 0.262 0.043-1.588 

Table 7. Multivariate Cox regression analysis of overall survival of HCC patients included in 

the study 

We can see that carrying pathogenic mtDNA mutations significantly increases the 

death hazard ratio for all the aHF thresholds between 0.5 and 0.8. Harbouring somatic 

mtDNA mutations was associated with a risk of death up to 6.8 times higher for a aHF≥0.7. 

On the other hard, male sex was associated with a lower death hazard ratio in this group of 

patients. 
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It is known that prognosis of HCC patients is influenced by the stage of the disease. 

We can observe this trend also in the HCC cases studies here albeit not statistically 

significant (Fig 23). 

 

Fig 23. Survival of the TCGA HCC patients based on 

the stage of the disease 

We therefore sought to analyse whether the presence of pathogenic mtDNA 

mutations was also capable of influencing the prognosis of the different stages of the 

disease. 

The analysis was possible only for mtDNA variants with a aHF>0.4, as filtering further would 

have left insufficient patients to construct a curve (Fig 24) 
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Fig 24. Survival of patients with different HCC stages based on 

the burden of pathogenic mtDNA mutations 

The significance was not calculated due to the small number of patients in each 

subgroup, a trend can be observed further confirming the prognostic value of pathogenic 

mtDNA mutations in HCC patients. 
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TP53 status predict overall survival independent of mitochondrial DNA 

mutations burden 

The TP53 gene is the most frequently mutated gene in tumors. Out of all 104 HCC 

patients, 24 (23%) presented mutations in the TP53 gene (Fig 25). The missense c.747G>T 

which changes the Arginine in position 249 to a Serine was seen in 4 patients. This mutation 

is frequently seen as a consequence of exposure to aflatoxin B1. Exposure information is 

unfortunately lacking from the TCGA clinical files. 

A. 

 

B. 

 

Fig 25. A. Number of patients carrying TP53 mutations. B. TP53 mutations present in our 
analyzed patients 

 

To gather information about these mutations, including pathogenicity predictions, 

we queried the IARC TP53 database (http://p53.iarc.fr/) which contains information 

regarding TP53 mutations associated with human cancers that have been either curated 

from genomic databases or published in peer reviewed papers (Table 8) 

The majority were in the DNA binding domain of the protein and had an impact on 

the transactivational capacity of reported genes under the control of a p53-response 

element. These mutations have also shown dominant-negative effects as well as loss of 

growth-suppression activities. 

http://p53.iarc.fr/
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HGVSc HGVSp Effect Hotspot 
Domain 
function 

SIFT 
Class 

Polyphen2 Transactivation Class 
Loss of growth 
Suppression 

c.823T>C p.C275R missense yes DNA binding D D non-functional DNE_LOF 

c.610G>T p.E204* nonsense no DNA binding 
   

notDNE_LOF 

c.772G>A p.E258K missense yes DNA binding D D non-functional DNE_LOF 

c.812A>T p.E271V missense yes DNA binding D D non-functional DNE_LOF 

c.1021T>G p.F341V missense no Tetramerisation D B partially functional notDNE_LOF 

c.578A>G p.H193R missense yes DNA binding D D non-functional DNE_LOF 

c.406C>T p.Q136* nonsense yes DNA binding 
   

notDNE_notLOF 

c.467G>C p.R156P missense no DNA binding T D non-functional DNE_LOF 

c.638G>A p.R213Q missense yes DNA binding D D non-functional DNE_LOF 

c.743G>A p.R248Q missense yes DNA binding D D non-functional DNE_LOF 

c.747G>T p.R249S missense yes DNA binding D D non-functional DNE_LOF 

c.839G>A p.R280K missense yes DNA binding D D non-functional notDNE_LOF 

c.757A>G p.T253A missense no DNA binding D D non-functional DNE_LOF 

c.469G>T p.V157F missense yes DNA binding D D non-functional unclass. 

c.589G>T p.V197L missense yes DNA binding D D partially functional unclass. 

c.376-1G>A p.X126_splice splice no 
     

c.560-1G>A p.X187_splice splice no 
     

c.97-1G>A p.X33_splice splice no 
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HGVSc HGVSp Effect Hotspot 
Domain 
function 

SIFT 
Class 

Polyphen2 Transactivation Class 
Loss of growth 
Suppression 

c.614A>C p.Y205S missense yes DNA binding D P non-functional DNE_LOF 

c.659A>G p.Y220C missense yes DNA binding D D non-functional DNE_LOF 

Table 8. Characteristics of the TP53 mutations present in the HCC cohort. 
HGVS: Human Genome Variation Society; SIFT Class D: Deleterious, T: Tolerated; Polyphen2 D: probably damaging, P: Possibly damaging, B: 
Benign; DNE: dominant negative effect; LOF: loss of function 
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Apart from the classical roles played “as the guardian of the genome”, p53 has been 

shown to be involved also in the regulation of metabolism and mtDNA proofreading. Thus, 

we investigated whether the mutational status of TP53 correlated with the presence and 

number of mtDNA mutations.  

For this analysis, we included all somatic variants discovered with an aHF higher than 0.1 to 

exclude false positive variants possibly due to sequencing errors. We observed a slight 

increase in the overall number of mtDNA variants as well as of the mtDNA pathogenic 

variants (Fig 26) but without attaining statistical significance (p-value of Fisher’s exact test = 

ns). 

 

 

Fig 26. Proportion of mitochondrial variants in HCC patients with 
different TP53 status. A. All discovered somatic variants with an 
aHF>0.1 (WT[green] are patients without any mtDNA somatic events). 
B. Only variants found in coding regions and tRNA genes with an 
aHF>0.1. 
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Given the known influence of TP53 mutations survival of cancer patients, we sought 

to analyze whether in our cohort of HCC patients TP53 would have an impact on the overall 

survival regardless of the burden of mtDNA mutations. The Kaplan-Meyer curve shows that 

patients with a mutated TP53 had a significant poorer prognosis p=0.007 (Fig 27). 

 

Fig 27. Survival of HCC patients with wild-

type or mutated TP53 
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Sources of mtDNA damage in the LIHC-TCGA cohort 

Mutations in the mitochondrial genome are known to occur at a much higher rate 

than in the nuclear genome. One of the currently accepted explanations for this observation 

is that the close proximity of the mtDNA to the OXPHOS chain renders it more vulnerable to 

oxidative damage induced by ROS which in tumors are known to reach higher levels. On the 

other hand, these mutations can be attributed also to polymerase gamma (POLG) 

replication errors, as the mitochondrial do not benefit from the complex DNA repair 

mechanisms of the nuclear DNA. 

Mitochondria through their activity of oxidative phosphorylation represent the main 

cellular generators of ROS, which can ultimately induce mtDNA injury. The currently 

accepted oxidative damage signature is characterized by the high rate of G:C to T:A 

transversions via the generation of 8-hydroxy-2'-deoxyguanosine (8-oxo-dG). Moreover, 

ROS may induce damage to the dGTP pool with the generation of 8-OH-dGTP. This leads to a 

transversion from A:T to C:G in the mtDNA genome.  

The second source for the occurrence of mtDNA mutation is the erroneous DNA 

replication due to polymerase errors, especially in the homopolymeric regions. Indeed, 

mutations in the POLG gene have been associated with increased levels of mtDNA 

mutations.98,97 Moreover, mutations in this gene have been shown to occur in 63% of breast 

tumors leading to mtDNA depletion as well as increased tumorigenicity.99 This mutational 

pattern is characterized by C>T and A>G substitutions.98  

 We sought to analyze whether the somatic mutations found in our patients follow 

such DNA damage models and found that 53% of all events were represented by the G>A 

transition. A major part of these changes was seen in genes encoding for CI subunits. The 

second most frequent base change seen was T>C representing 20%, followed by C>T in 15%. 

The A>C and C>A changes represented only 5.5% of all the mtDNA alterations. 

The distribution of the type of alterations found is presented in Fig 28. 
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Fig 28. Number of somatic transitions and transversions 
present in our HCC cohort. 

To further investigate the possible causes which might explain the accumulation of 

such mutations in these patients, we controlled for the presence of mutations in genes 

responsible for ROS detoxification and for mtDNA replication machinery. We proceeded to 

extract the somatic mutations of our genes of interest from the .maf files.  

We searched for enzymes involved in ROS-detoxification and homeostasis on Gene 

Ontology (GO) knowledgebase (http://www.geneontology.org/) and on Kyoto Encyclopedia 

of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/)100 we selected the following 

list of 36 genes: 

 

Gene Ensembl ID Gene Ensembl ID 

GLRX1 ENSG00000173221 TXNDC2 ENSG00000168454 

GLRX2 ENSG00000023572 TXNDC3/NME8 ENSG00000086288 

GLRX3 ENSG00000108010  TXNDC5 ENSG00000239264 

GLRX5 ENSG00000182512  TXNDC6/NME9 ENSG00000181322 

GRXCR1 ENSG00000215203 TXNDC8 ENSG00000204193 

NOS1 ENSG00000089250  TXNDC9 ENSG00000115514 

http://www.geneontology.org/
http://www.genome.jp/kegg/
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000168454
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000086288
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000108010
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000239264
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000182512
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000181322
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000215203
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000204193
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000089250
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000115514


Results 

56 

NOS2 ENSG00000007171  TXNDC11 ENSG00000153066 

NOS3 ENSG00000164867  TXNDC12 ENSG00000117862 

PRDX1 ENSG00000117450  TXNDC15 ENSG00000113621 

PRDX2 ENSG00000167815  TXNDC16 ENSG00000087301 

PRDX3 ENSG00000165672  TXNDC17 ENSG00000129235 

PRDX5 ENSG00000126432  TXNL1 ENSG00000091164 

PRDX6 ENSG00000117592  TXNL4A ENSG00000141759 

SOD-1 ENSG00000142168 TXNL4B ENSG00000140830 

SOD-2 ENSG00000112096  TXNRD1 ENSG00000198431 

SOD-3 ENSG00000109610  TXNRD2 ENSG00000184470  

TXN ENSG00000136810  TXNRD3 ENSG00000197763  

TXN2 ENSG00000100348  TXNIP ENSG00000265972  

 

We found 13 single nucleotide variations distributed in 11 patients. Eight variants 

were missense mutations with 6 having a pathogenic SIFT/Polyphen prediction (Table 9 A). 

Given the small number of these patients no differences in the distribution of mtDNA 

variants was seen (Fig 29). Moreover, upon closer analysis we saw that only two of these 

patients had an alteration typical of ROS induced DNA damage. This leads us to conclude 

that, at least in this cohort of HCC patients, mutations in genes coding for enzymes 

responsible for ROS detoxification are not responsible for the mtDNA mutations found. 

 

Fig 29. Distribution of mtDNA mutations between patients 
with and without mutations in antioxidant genes.  
N: no; Y: yes 

http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000007171
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000153066
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000164867
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000117862
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000117450
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000167815
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000087301
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000165672
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000129235
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000126432
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000091164
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000117592
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000141759
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000140830
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000112096
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000109610
http://www.ensembl.org/homo_sapiens/Location/View?r=22:19875517-19941820:-1
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000136810
http://www.ensembl.org/homo_sapiens/Location/View?r=3:126607059-126655124:-1
http://www.ensembl.org/Homo_sapiens/geneview?gene=ENSG00000100348
http://www.ensembl.org/homo_sapiens/Location/View?r=1:145992435-145996579:-1
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Next, we searched for mutations in the POLG gene as well as in other genes encoding 

for the mitochondrial DNA replication machinery.  

Gene Ensembl ID 

POLG2 ENSG00000256525 

Twinkle ENSG00000107815 

RNASEH1 ENSG00000171865 

DNA2 ENSG00000138346 

MGME1 ENSG00000125871 

TFAM ENSG00000108064 

FEN1 ENSG00000168496 

LIG3  ENSG00000005156 

mtSSB ENSG00000106028 

 

We found that out of all the 377 LIHC patients on TCGA, only 14 patients presented 

variations in the selected genes and out of these, only three patients were present in our 

cohort. These patients did present also mtDNA variants characterized by a C>T change. 

While mutations in genes encoding components of the mtDNA replication machinery might 

explain the occurrence of mtDNA mutations in these patients, it does not offer an 

explanation for the variants seen in the other patients. Thus, we cannot attribute the 

number of mtDNA mutations in the TCGA-LIHC cohort to mutations. 

Discovered mutations are summarized in Table 9 B. 
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A. 

Gene dbSNP HGVSc HGVSp Consequence SIFT PolyPhen IMPACT COSMIC 

GRXCR1 novel c.619T>A p.Y207N missense 
Deleterious 

(0.02) 
D (0.999) MODERATE  

NME8 novel c.444T>C p.C148C synonymous   LOW  

NME8  c.157A>T p.K53* stop_gained   HIGH COSM4923173 

NOS1  c.1254G>A p.S418S synonymous   LOW COSM1359118 

NOS1  c.2444G>T p.G815V missense 
Deleterious 

(0) 
D (0.999) MODERATE COSM4925301 

NOS2 rs759255233 c.1824G>A p.S608S synonymous   LOW  

NOS2 novel c.2013C>A p.S671R missense 
Tolerated 

(0.18) 
P (0.58) MODERATE  

NOS2  c.2824G>A p.G942S missense 
Deleterious 

(0) 
D (0.974) MODERATE COSM4937890 

NOS3 novel c.720C>A p.D240E missense 
Deleterious 

(0.03) 
D (0.98) MODERATE  

NOS3 rs145811781 c.1296G>T p.E432D missense 
Tolerated 

(0.08) 
D (0.99) MODERATE  

PRDX6 novel c.521G>A p.R174K missense 
Tolerated 

(1) 
B (0) MODERATE  

TXN2 novel c.388G>C p.V130L missense 
Deleterious 

(0) 
P (0.859) MODERATE  

TXNDC2 novel c.279A>C p.S93S synonymous   LOW  

B. 

FEN1 rs573495657 c.1016G>A p.R339H Missense 
Deleterious 

s(0) 
D (0.993) MODERATE COSM1355266 

LIG3 novel c.2011C>T p.R671W Missense 
Deleterious 

(0) 
D (1) MODERATE  

LIG3 novel c.2743G>T p.V915L Missense 
Tolerated 

(0.54) 
B (0.002) MODERATE  
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A. 

Gene dbSNP HGVSc HGVSp Consequence SIFT PolyPhen IMPACT COSMIC 

LIG3 rs761685440 c.1427C>T p.S476L Missense 
Deleterious 

(0.01) 
B (0.068) MODERATE 

COSM3819302 
COSM3819303 

POLG2 novel c.438G>T p.R146S Missense 
Deleterious 

(0.01) 
D (0.92) MODERATE  

POLG2 novel c.438G>T p.R146S Missense 
Deleterious 

(0.01) 
D (0.92) MODERATE  

Table 9. Summary of variants located in ROS detoxifying genes (A) and in genes encoding for components of the 

mitochondrial replisome found in HCC patients.  

Polyphen D: probably damaging, P: Possibly damaging, B: Benign 

 

 



Results 

60 

HCC patients present also mutations in OXPHOS genes encoded by the 

nuclear genome 

Studies tackling the subject of mutations involving the respiratory chain often focus 

only on those found in the mitochondrial genome and leave behind the many OXPHOS 

genes coded by the nuclear genome. This might be justified by the fact that given the 

particular vulnerability of the mtDNA to the acquisition of mutations, a tumor is more likely 

develop OXPHOS impairment due to mutations in the mtDNA rather than in the nuclear 

one. Nevertheless, such an approach might miss out some valuable information. Therefore, 

to have a complete view over the mitochondrial mutational status, we sought to see 

whether any of the patients presented mutations in mitochondrial proteins encoded by the 

nuclear DNA. For this purpose, we selected genes included in the KEGG OXPHOS pathway 

dataset. All genes were listed also in the MitoCarta 2.0, an online resource comprising genes 

with strong evidence of mitochondrial localization.101 

We found a total of 34 single nucleotide variations in the tumoral samples of 30 

patients. Out of the 21 located in coding regions, five were mutations predicted to be 

pathogenic by both SIFT/Polyphen. Four patients presented mutations in both 

mitochondrial as well as nuclear encoded OXPHOS genes Table 10. 

 

 

 

 

 

 

 

 

 



Results 

61 

 

Location Gene Consequence dbSNP HGVSc HGVSp SIFT PolyPhen IMPACT 

CI NDUFS1 missense novel c.1697T>G p.I566S deleterious(0) D (0.925) MODERATE 

CI NDUFB5 missense novel c.413C>T p.A138V deleterious(0.01) P (0.493) MODERATE 

CV ATP6AP1 missense 
 

c.229T>A p.Y77N deleterious(0) D (0.993) MODERATE 

CV ATP6V1B2 missense 
 

c.563A>C p.K188T deleterious(0) D (0.996) MODERATE 

CV ATP6V1B1 missense novel c.883A>C p.S295R deleterious(0) D (0.978) MODERATE 

Table 10. Variants found in nuclear encoded mitochondrial genes. Polyphen D: probably damaging, P: Possibly 

damaging, B: Benign 
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Livers with HCC present a heterogenous staining for mitochondrial complexes 

Mutations affecting genes coding for OXPHOS chain complexes can cause the 

disassembly of the respective complex resulting in the disruption of the respiratory 

chain.102,103 Given the considerable number of mtDNA mutations found previously, we 

sought to see whether by staining HCC tumors and surrounding non-tumoral tissues for 

mitochondrial complexes, we could find a possible hint of such defects. We noticed that 

both non-tumoral as well as tumoral tissues presented a heterogenous pattern of the 

staining. However, there was a difference between the two: in the non-tumoral tissue there 

was a well delimited border between the intensely stained zones and the weakly/negatively 

stained areas, whereas the tumors were exibiting a more disorganized pattern, with a 

mixture of cells showing an intense staining with those with a lower staining intensity. 

Another observation that can be made is that the non-tumoral tissue seems to 

display a gradient in staining intensity, with a lower intensity towards the central part of the 

tumoral mass. This phenomenon was seen more intensely in the case of sample no 4 and 5, 

where at the line of interface with the stromal component, the tumor presented a much 

highly intense signal than in the rest of the mass. This could be explained by the fact that as 

tumors grow, the center becomes hypoxic forcing cells to rely more on glycolysis as the 

oxygen demand by the OXPHOS chain is not fulfilled. 

Next we sought to confirm the presence of mtDNA mutations in the nodules and 

areas showing a different staining pattern but unfortunately, the small size of the nodules 

and limited available tissue combined with the long storage of the samples did not allow for 

a DNA extraction of a sufficient quality and quantity for the amplification of the 

mitochondrial genome. Thus, we can only suppose that these patterns could be due to the 

presence of mtDNA mutations. 

Fig 30 presents the pattern of immunohistochemical staining of mitochondrial 

complexes at 10x (A) and 40x (B) magnification. The non-tumoral surrounding tissue is on 

the left of each panel while on the right there is the HCC tumoral tissue 
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Sample 1 A. 10x B. 40x 
 Non-tumoral Tumor Non-tumoral Tumor 

 
CI 

NDUFS4 

 

CIII 
core2 

 
 
 

CIV 
COX1 

 
 
 

CV 
APTase5 

Light green arrows show well delimited areas of weak/negative 
staining in the non-tumoral tissue. 
Purple arrows indicate cells with a weak staining dispersed in the 
tumoral mass 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 30. Staining pattern of mitochondrial proteins in HCC tumors 
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Sample 2 A. 10x B. 40x 
 Non-tumoral Tumor Non-tumoral Tumor 

 
CI 

NDUFS4 

 

CIII 
core2 

 
 
 

CIV 
COX1 

 
 
 

CV 
APTase5 

Sample 3 A. 10x B. 40x 
 Non-tumoral Tumor Non-tumoral Tumor 

 
CI 

NDUFS4 

 

CIII 
core2 
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COX1 

 
 
 

CV 
APTase5 
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Sample 4 A. 10x B. 40x 
 Non-tumoral Tumor Non-tumoral Tumor 

 
CI 

NDUFS4 

 
 
 

CIII 
core2 

 
 
 

CIV 
COX1 

 
 
 

CV 
APTase5 

 A. 10x B. 40x 
 

Sample 5 Non-tumoral Tumor Non-tumoral Tumor 
 

CI 
NDUFS4 

 

CIII 
core2 

 
 
 

CIV 
COX1 

 
 
 

CV 
APTase5 

 Blue arrows indicate the increased staining intensity presented by the tumoral 
tissue in the zones of contact with the stroma 



Results 

66 

 
A. 10x B. 40x 

 

Sample 6 Non-tumoral            Tumor Non-tumoral            Tumor 
 

CI 
NDUFS4 

 

CIII 
core2 

 
 
 

CIV 
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CV 
APTase5 

 
Sample 7 A. 10x B. 40x 
 Non-tumoral Tumor Non-tumoral Tumor 

 
CI 

NDUFS4 

 

CIII 
core2 
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COX1 

 
 
 

CV 
APTase5 
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Sample 8 A. 10x B. 40x 
 Non-tumoral            Tumor Non-tumoral            Tumor 

 
CI 

NDUFS4 

 

CIII 
core2 

 
 
 

CIV 
COX1 

 
 
 

CV 
APTase5 

Black arrows indicate a significant level of immune infiltrate in the 
tumoral tissue 
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Discussion 

The study of mtDNA mutations and their functional impact in different diseases 

including cancer continues to remain a challenge despite technological advancements in the 

field of genetics and molecular biology.  

In this work, we extracted mtDNA variants from WXS data of the TCGA LIHC cohort 

using MToolBox pipeline. We report a high number of mtDNA variants found in the analyzed 

HCC patients, among which 21% of the harbored tumor variants were deemed as 

pathogenic. 

Discussing the impact of mtDNA mutations in cancer is difficult to summarize and 

estimating their impact on the clinical outcome of cancer patients is even more challenging 

due to several issues present in literature. First, many papers define a mtDNA mutation as 

any variant found in the tumor sample and not in the paired non-tumoral tissue. But this 

simple occurrence of a mtDNA variant in a tumor does not necessarily imply its 

pathogenicity. This aspect seems to not be fully understood by some authors. Also, some 

papers analyze only tumoral tissues, thus making it impossible to conclude whether the 

variants found are somatic or germline. Other approaches include deeming variants as 

“novel” if they were not found in the MITOMAP database, which although extensive, does 

not index all variants reported in healthy individuals. In the absence of a further evaluation 

and a proper pathogenicity scoring, these variants may be wrongly regarded as pathogenic 

by the authors. 104 Moreover, some reports have shown that in some papers the variational 

patterns which include different haplogroups sites being present in the same sample would 

be more likely explained by technical errors rather than real events.105 A further problem is 

the focus of many works on variants present in the variable regions of the mtDNA, namely 

the D-loop. This site is the major regulatory region of the mtDNA and it contains many sites 

of functional relevance. The polymorphic sites are located inside the HVSI and HVSII regions 

which represent the markers used to assign the haplogroups before the era of the 

seuqencing of the entire mitochondrial genome. Thus, many variants reported here are also 

present in the normal healthy population. Another layer of complexity when dealing with 

mtDNA mutations is added by the presence of heteroplasmy. Thus, the simple relationship 

between the mere presence of a mutation causing a defective respiratory chain and the 

occurrence of a specific phenotypical sign has remained problematic as many authors fail to 

consider this aspect. 
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In this work we considered all the aforementioned limitations and provided a 

thorough analysis of the variants discovered. First, we included in the analysis only the 

patients for which good quality sequences were extracted from both tumoral and non-

tumoral sample. This allows for a correct differentiation between germline variants and 

somatic ones. Next, we discarded samples which have shown different haplogroups as such 

a situation would be impossible to find in a normal setting. Moreover, the ambiguous 

assignment of more haplogroups does not guarantee good assembling and mitochondrial 

DNA coverage. Moreover, the non-synonumous mutations found were considered 

pathogenic based on the HmtVar disease score which uses the pathogenicity prediction 

given by six tools associated to the allele frequency observed in healthy subjects.106,107,83 All 

of this, together with discarding of the variants with a low heteroplasmy ensure a minimal 

level of false positive variants. 

The mitochondrial genome of HCC tumors shows an increased tendency of 

accumulating mutations, but the functional impact of such mutations is yet to be fully 

understood. Moreover, given the polyploid nature of the mtDNA, such mutations are often 

found in a heteroplasmic state. This allows cells having mtDNA mutations which offer a 

metabolic advantage to prevail, while those bearing unfavorable variants will subside. The 

result is seen as a shift in heteroplasmy and in our cohort was analyzed in the case of 

germline mutations. Although many variants presented a different value of HF between the 

non-tumoral and the tumoral tissue, only in the case of few mutations was this variation 

present to a greater extent. The three variants which shown a positive selection were 

considered likely polymorphic. A closer analysis in literature has found that these variants 

have been reported in different diseases such as diabetes, deafness or cancer, but given the 

lack of a proof for a functional role, a simple co-occurrence of a mtDNA variant with a 

disease is not enough. Even though the selection of a mtDNA variant in a tumor might lead 

to the instinctive thought that it could somehow favor tumoral development, mathematical 

models have shown that a variant can arrive to higher heteroplasmy levels, even 

homoplasmy, by chance.108 Regarding negative selection one mutation in CV presented a 

decrease in HF in the tumoral sample when compared to the non-tumoral tissue. The reason 

behind the counterselection of such a variant might rely in the function of the complex 

itself. While mutations occurring in other mitochondrial complexes might cause a mild 

OXPHOS impairment, a mutation in CV, the place of ATP synthesis, could lead to a severe 

energy imbalance which would be detrimental for the cancer cell. But what about the other 

germline pathogenic mtDNA mutations which do not seem to present any variation in HF? In 

the HCC patients analyzed we observed six such mutations. There is interesting in vivo data 
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showing that some mutations occurring in CV might actually increase the tumor fitness 

favoring its growth as well as causing resistance to apoptosis. 109–111 This might also be the 

case of the mutations in CV reported in this study. 

Some of the somatic mtDNA mutations found in the studied patients have been 

reported previously in literature in mitochondrial diseases. For example, the 3946A  in the 

MT-ND1 gene and the 3243G  mutation from the MT-TL1 gene were found present in 

patients diagnosed with MELAS, the latter accounting for up to 80% of diagnosed cases.112 

The 3243G mutation in the MT-TL1 gene could impact the synthesis of mitochondrial 

complexes subunits causing mitochondrial dysfunction and probably a deficient tumoral 

growth. 

Another mutation found, the 13042A in the MT-ND5 gene, has been previously 

reported in patients with LHON‐like optic neuropathy.113 

The 14846A mutation in the MT-CYB gene previously reported in patients with 

exercise intolerance has also been found in one HCC tumor.114 

Apart from the OXPHOS mutations found in the mtDNA genome, we also report few 

patients carrying mutations in the OXPHOS coding genes from the nuclear genome. We 

found five pathogenic mutation in CI and CV genes. Mutations in the OXPHOS genes 

encoded by the nucleus are often overlooked in cancer studies. Depending on their site of 

occurrence, mutations in the OXPHOS chain can have a different impact. While CI and CIII 

mutations might increase ROS levels and offer a tumoral advantage, mutations in CV can 

result in a decreased ATP supply which would represent a disadvantage for the cancer cells. 

Regarding the impact of mutations in nuclear OXPHOS genes, a study on families with a 

genetically established OXPHOS deficiency has shown that patients owning their disease to 

a mutation occurring in a nuclear gene coding for OXPHOS proteins have an earlier age of 

onset and present a more severe clinical course.115 In the case of cancer patients, larger 

studies are required to be able to analyze the influence of such mutations on cancer 

progression. 

One of the most studied proteins in cancer, p53 encoded by the TP53 gene, carries 

out numerous cellular roles including cell cycle regulation, DNA damage repair and cell 

death. TP53 is the most mutated gene in cancer showing a frequency of over 30% on the 

COSMIC database. These mutations are mainly missense mutations located in highly 

conserved functional parts of the protein, unlike the deletions of frameshifts usually 

reported in other tumor suppressor genes. This, together with the fact that until now there 
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are no reports of inactivation of p53 by hypermethylation hints toward the idea that mutant 

variants of p53 could play a role in tumorigenesis.116,117. Even though in HCC TP53 is the 

third most frequently mutated gene after TTN and CTNNB, this value remains rather low 

(20-30% vs 60-80% as in colon, lung or skin cancer for example). A recent study in cell 

reports comes forward to provide insight into this paradoxically retained wild-type p53 by 

showing its role in increasing glycolysis and suppressing pyruvate-driven oxidative 

phosphorylation by upregulating PUMA.118 This finding comes in contradiction with the 

commonly accepted idea that wild-type p53 supports oxidative metabolism. Control of 

glucose metabolism is one of the many non-canonical roles of p53. It has been shown in 

many papers that p53 inhibits glycolysis by targeting multiple steps, even leading to an 

attenuation of the Warburg effect. First, it has a suppressive effect on the main cellular 

glucose transporters (GLUT1 GLUT3 and GLUT4) and represses the promoter of the insulin 

receptor (INSR) to limit the entry of glucose inside the cells. Moreover, by repressing the 

transporter of lactate, monocarboxylic acid transporter 1 (MCT1), it causes an build-up of 

lactate inside the cell which will consequently limit the glycolytic rate.119 Another 

mechanism deployed to inhibit glycolysis is by inducing the TP53-induced glycolysis and 

apoptosis regulator (TIGAR). TIGAR dephosphorylates fructose-2,6-bisphosphate (F2,6P2) 

into fructose-6-phosphate (F6P) which is later converted to fructose-1,6-bisphosphate 

(F1,6P2) by phosphofructokinase-1 (PFK1). This conversion is a rate limiting reaction in 

glycolysis. Furthermore, p53 plays a role in the assembly of the CIV subunit, by activating 

the transcription of the cytochrome c oxidase assembly protein (SCO2).120,121 

Another recently discovered role of p53 was that of proofreading and maintaining 

the integrity of the mtDNA genome, a role long thought to be held only by POLG1. This 

POLG1 independent repair mechanism has been shown in pol-g proofreading deficient mice 

prone to the accumulation of mtDNA mutations 122 Because of this role we expected to find 

an increase in the number of mutations found in tumors harboring TP53 mutations. While 

the mutated samples did show a small tendency towards an accumulation of mtDNA 

variants, it did not reach a statistically significant difference. This could be due to the small 

number of patients having a mutated TP53 being compared with a much higher number of 

patients with the wild type. Another reason could be the fact that TP53 mutations, with the 

exception of aflatoxinB1 induced HCCs, can occur as a late event in the tumorigenesis of 

HCC123, thus the time required for a consequent build-up of mtDNA mutations is not 

reached. 
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The hotspot mutation R249S seen in 4 patients is associated with Aflatoxin B1 

exposure which is a risk factor for HCC. The exposure data available on the CGD portal is 

scarce thus a direct association with this issue was not possible, but a study identified the 

Aflatoxin B1 Mutational signature (COSMIC signature 24 - 

https://cancer.sanger.ac.uk/cosmic/signatures_v2) is these patients124. Aflatoxin B1 

exposure has been described to cause a significant level of mitochondrial dysfunction with 

induction of ROS generation and activation of apoptosis125,126 but associations with mtDNA 

mutations have yet to be investigated. 

Increased production of ROS could also be a possible contributor to the 

accumulation of mtDNA in tumors. Experiments on cell culture models show that a high 

concentration of ROS is needed in order to exert an oxidative damage to the mtDNA most 

probably due to the protective role of the TFAM histone.127 The ROS induced mutational 

theory in cancer has been widely debated with some reports showing in vivo that high 

oxidative stress even in the presence of KOs of detoxifying genes does not induce a higher 

mutational rate.58,128. Since oxidative damage does not seem to offer a satisfactory 

explanation for the majority of the mutations seen, the next culprit would be POLG 

replication errors. This pattern is characterized by C>T and A>G substitutions. 129 

Mitochondrial genome replication process is hypothesized to have a bidirectional initiation. 

When reading mitochondrial variants, we use the Revised Cambridge Reference Sequence 

which uses the light (L) strand of the mtDNA. This strand contains the sense sequence for 

most of the mitochondrial genes. If a mutation, as for example a C>T change, is to occur on 

the L stand of the mtDNA it will be read as it is. But if the same change occurred on the H 

stand, this would appear as a G>A change in our gene and therefore in our report. This is 

precisely the situation we observe in this study, with more than half of all variants showing 

this mutational pattern. Since POLG is the enzyme replicating the mtDNA, we examined 

whether the patients from this study presented any somatic mutations in this gene and in 

others forming the mitochondrial DNA replication machinery and found only three patients. 

This led us to conclude that in the case of HCC, the mtDNA mutations are not caused by a 

dysfunctional replication due to mutations in the genes for replication machinery. 

Nevertheless, mutations in the replicative genes are not needed for the occurrence 

and accumulation of replication-related mtDNA mutations. These could be due to the 

increase mitochondrial biogenesis, thus the increase of POLG activity as it needs to keep the 

pace of the high tumoral proliferation rates. In such a situation even a wild-type replicaton 

machinery would allow the occurrence and accumulation of mtDNA mutations.130 Some 
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authors suggest that C>T POLG replication errors occur more frequently on the H strand131 

thus increasing the number of G>A events on the L strand.  

Another possible situation is that during mtDNA replication the displaced H strand is 

single stranded rendering it vulnerable to cytosine deamination.49,132 This creates a C>T 

substitution on the H strand which will appear as a G>A change on our reference L strand. 

Moreover, in this situation the H strand is also prone to adenine deamination leading to a 

T>C change.130 Indeed approximately 35% of our discovered variants are C>T and T>C 

alterations. In addition, there is also evidence for a different efficacy of the repair 

mechanisms between the H and the L strand.133–135 

Another known source of DNA variation is represented by technical error introduced 

during the prepararion steps of NGS. It has been shown that the C>T/G>A change has been 

shown to have the highest error rate during the steps of the technique, event most likely 

due to the spontaneous deamination of a methylated cytosine to uracil136. Nevertheless, in 

the absence of a confirmation with a secondary technique such as Sanger sequencing, the 

contribution of NGS technical errors cannot be excluded. 

 

Different pharmaceutical drugs as well as environmental toxins begin to be 

discovered as mitochondrial intoxicants.137 The most well-known mutation induced by 

environmental toxins is the aflatoxinB induced mutation in the TP53 gene. The liver is the 

main organ responsible for detoxification of the whole body. Frequent aggressions caused 

by chronic alcohol consumption, drug abuse as well as environmental factors can lead to 

liver damage and increased levels of ROS which could lead to a favorable environment for 

the acquisition of different mutations. Moreover, Chronic HBV and HCV infections have 

been found to disrupt the normal mitochondrial function. In our study we fail to find a 

difference in the distribution of the mtDNA mutations between the patients showing 

different backgrounds of HCC risks. Nevertheless, given the high frequency of comorbidities 

found in these patients that require the administration of different drugs which are mostly 

metabolized by the liver, one could also suppose that mtDNA mutations might arise as a 

consequence of the subsequent drug induced liver injury.  

It has been widely accepted that the tumoral microenvironment plays an important 

role in tumoral development. One of its components, the tumoral infiltrating immune cells 

have been shown to be of high relevance for prognosis in cancer as it can predict clinical 

outcome of patients and their response to therapy. In HCC, there a growing body of 
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research in the past years as the usage of immunotherapy with immune checkpoint 

inhibitors expands also for these tumors. Here we find that the burden of somatic 

pathogenic mitochondrial DNA mutations located in genes coding for CI and CIII subunits 

influences the percentage of intratumoral lymphocytic infiltration.  

We also see that patients with pathogenic mutations have a lower survival rate that 

those with non-pathogenic variants. Since immunohistochemical analysis is limited to the 

total lymphocyte infiltration, we could not asses the different subsets of these immune cells. 

Tumoral infiltrating lymphocytes have been shown to have bidirectional role in the 

development of HCC with a opposite impact of prognosis. For example, tumors showing a 

high density of the CD3+ antigen have a better outcome as evaluated by a longer disease 

free survival and overall survival138. The opposite situation in which tumors having a low 

density of CD3+ show a poor prognosis is also true.139,140 Since CD3 is a common antigen 

expressed on all T-lymphocytes, these results are in accordance with our findings. Further 

detailed research is required to investigate this aspect and characterize the subsets of 

lymphocytes. Missense pathogenic mutations in CI and CIII are thought to cause an increase 

in ROS production which could raise the intratumoral level of oxidative stress 95. Such a 

milieu has been shown to inactivate and reduce the survival of T cells ultimately leading to a 

diminished antitumoral activity. With T cell-based immunotherapy on the rise, 

understanding and counteracting the mechanisms which lead to induced T cell suppression 

and hyporesponsiveness is critical to ensure therapeutic success. 

An interesting observation is that of the infiltration pattern presented by tumors 

harboring mutation in CV subunits. Even though we could not perform any statistical 

analysis because only one tumor presented a benign CV variant, we can see that this tumor 

had an insignificant level of stromal component while the others bearing pathogenic 

mutations presented up to 20% of stromal component. This could be due to the fact that 

mutations in ATP synthase subunits would cause an energetic deficit141 which the tumor 

might compensate by attracting stromal cells such as cancer associated fibroblasts (CAFs) or 

tumor associated macrophages (TAMs) to aid their growth. This idea is supported also by 

the fact that we observed a negative selection of a CV germline pathogenic mutation. 

Another interesting observation following the same idea is that of mutations located in 

genes coding for transporter RNAs. Although failing to achieve statistical significance, 

tumors presenting pathogenic mutations in tRNA genes seem to have a higher stromal 

component as well as a higher level of immune infiltrate. This could be explained by the fact 

that tRNA mutations may cause an impairment in mitochondrial protein synthesis 
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consequently leading to a decrease in proteins constructing the OXPHOS chain and thus a 

decline in ATP production required for cellular function.142,89 This, again, would render 

cancer cells dependent on the microenvironment for their proliferation. For example, CAFs 

have been shown to transfer to tumoral cells various molecules such as non-coding RNAs, 

different metabolites amino acids and whole proteins through exosomes in various types of 

cancers,143–145 as well as in HCC.146,147 Moreover, metabolites originating from such vesicles 

have been shown to regulate mitochondrial OXPHOS and glycolysis in recipient tumoral 

cells.148 Furthermore, in breast cancer exosomes deriving from stromal cells have been 

shown to transfer mtDNA to tumoral cells, supporting OXPHOS and mediating the exit from 

chemotherapy induces dormancy.149 Exosomes deriving from tumor-associated 

macrophages have also been shown to transfer proteins to cancer cells and contribute to 

tumor aggressiveness and metastasis.145 

As far as the immune infiltration represented by monocytes and neutrophils, 

statistical analysis revealed no difference in infiltration rates between the tumors harboring 

pathogenic mutations and those without, although we can observe an overall general 

tendency for tumors with pathogenic variants to show a higher amount of these two 

components. 

Neutrophils have been known to play an important role in chronic inflammatory 

diseases as well as in cancer. Recent studies have shown that they play vital functions in the 

tumoral milieu although the precise nature in different cancers is still under discussion150. In 

general, tumor associated neutrophils are considered to have a pro-tumorigenic effect 

facilitating tumoral progression and to even aid in establishing the premetastatic niche.151 In 

liver cancer, neutrophils have been associated with a significant decrease in survival 

rates.152 

Similarly to neutrophils, high infiltration rates of monocytes into the tumor milieu 

are associated with poor clinical outcome in different cancers such as breast, lung and 

ovarian cancers,153–155 as well as in HCC.156,157 TAMs which can derive from monocytes, have 

been shown to modulate the tumor microenvironment and decrease therapeutic 

success.158,159 For example, tumors with CI deficiency have been shown to be capable of 

inducing angiogenesis by recruiting TAMs.160 

The impact of mtDNA mutations on clinical outcome and survival of cancer patients 

has been under debate by many authors.161–164 In this study survival analysis showed that in 

the TCGA-HCC cohort, mtDNA mutations can predict overall survival, as patients harboring 
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pathogenic mutations presented a lower survival rate than those without such variants. It is 

known that some mtDNA mutations induce mitochondrial dysfunction with consequent 

increase of ROS levels,165 and HCC tumors are characterized by high levels of endogenous 

ROS.166 This persistent oxidative stress could lead to DNA damage, activation of oncogenes 

ultimately causing cancer development. Moreover, ROS contribute to angiogenesis, 

activation of epithelial to mesenchymal transition and metastasis, all features found in 

HCC.167 Even though the mutational signature found in the cohort of HCC samples analyzed 

in this study, was not of ROS origin, the increased generation of ROS as a consequence of 

mtDNA mutations is likely to contribute to the aggressiveness by facilitating tumoral 

proliferation and invasion, thus explaining the poor prognosis of these patients. In spite of 

such a positive correlation found in this study, because of the relatively small sample size, 

larger studies are required to strengthen the value mtDNA mutations as a prognostic factor 

in HCC. 

The remarkable ability of the liver to regenerate after large hepatectomies in which 

more than half of the liver is removed has had researchers believe in the existence of a stem 

cell compartment in the liver.168 A stem cell has two main features: the capacity to self-

renewal and expand clonally. This has been shown by the fact that transplanted hepatocytes 

in a diseased liver have the capacity of expanding clonally. 169 Similar to the tracing of the 

origins and migration of human populations, cells can be traced back using mtDNA variants. 

Tracking differentiated cells to their stem cell progenitor has been shown has been shown in 

the case of colonic crypt cells which show the accumulation of mtDNA mutations 

particularly in CIV that originate from the stem cells laying in the base of the crypt.170 On the 

same note, one study reports the presence of cytochrome c oxidase deficient patches in 

normal livers171 similar to those we found in our study. The authors go further to report the 

presence of clonal mtDNA mutations in these nodules, further confirming the idea of that 

these cells originate from a common progenitor cell. Thus, one could think that a similar 

situation could be found also in our samples. Considering all the aforementioned 

arguments, the fact that we see a mixture of cells with low and high intensity signals for 

different mitochondrial complexes sustains the idea of a polyclonal origin of HCC tumors 

and is also in line with the well-known heterogeneity of this type of cancer.172,173 
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Conclusion 

Hepatocellular carcinoma remains an aggressive tumor with a poor prognosis 

despite the medical advancements. Until present the treatment options available showing 

modest results combined with the advanced stage at diagnosis allows these tumors to 

remain a difficult and often incurable clinical challenge. 

This study has analyzed the occurrence of mtDNA mutations in the LIHC-TCGA cohort 

and found pathogenic mutations in 21% of patients. In such cases, it may be hypothesized 

that mtDNA mutations could cause mitochondrial dysfunction and contribute to 

hepatocarcinogenesis, by increasing the production of ROS and oxidative stress, thus fueling 

the tumor machinery.  

The search for a better therapy for liver cancer has proven to be a difficult challenge. 

The high heterogeneity of the tumor combined with the lack of established makers for 

therapeutic response have led to a great failure of many clinical trials. Thus, gaining further 

insight into the mechanisms which contribute to HCC development and exploring them in 

the context of therapy response represents a must in order to develop efficient therapeutic 

strategies. Here we found a correlation between mutations present in genes coding for CI 

subunits and the amount of stromal component and intratumoral infiltration of immune 

cells, factors which are known to support tumoral growth, invasion and metastasis. 

Moreover, we found a significant impact of mtDNA mutations on the overall survival, as the 

patients bearing tumors with pathogenic mutations showed a poorer survival. 

Currently there is a limited understanding of the potential impact of mitochondrial 

dysfunction in tumoral aggressiveness and clinical outcome of HCC. In this setting, ongoing 

research is needed in order to completely understand the impact of mitochondrial 

metabolism and their targeting in the development and evolution of HCC. 
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Annex 1 

Patient 
ID 

Sample Type 
mtDNA 
Coverage 

Mean 
read 
depth 

Best predicted 
haplogroup 

LIHC_1 
LIHC_1_T Primary Tumor 100.00% 84.82 F1a1a 

LIHC_1_B Blood Derived Normal 100.00% 63.35 F1a1a 

LIHC_2 
LIHC_2_T Primary Tumor 100.00% 429.51 H6c 

LIHC_2_NST Solid Tissue Normal 100.00% 139.8 H6c 

LIHC_3 
LIHC_3_T Primary Tumor 100.00% 51.84 A7 

LIHC_3_B Blood Derived Normal 100.00% 34.79 A7 

LIHC_4 
LIHC_4_T Primary Tumor 100.00% 55.55 G1a1a 

LIHC_4_B Blood Derived Normal 99.00% 31.32 G1a1a 

LIHC_5 
LIHC_5_T Primary Tumor 100.00% 104.55 B4b'd'e'j 

LIHC_5_B Blood Derived Normal 100.00% 38.71 B4b'd'e'j 

LIHC_6 
LIHC_6_T Primary Tumor 100.00% 59.29 F1a1b 

LIHC_6_B Blood Derived Normal 100.00% 37.85 F1a1b 

LIHC_7 
LIHC_7_T Primary Tumor 100.00% 61.82 F1b1a1a2 

LIHC_7_B Blood Derived Normal 100.00% 40.54 F1b1a1a2 

LIHC_8 
LIHC_8_T Primary Tumor 100.00% 44.58 D4j3 

LIHC_8_B Blood Derived Normal 100.00% 43.28 D4j3 

LIHC_9 
LIHC_9_T Primary Tumor 100.00% 51.58 B4a1b1a 

LIHC_9_B Blood Derived Normal 100.00% 35.03 B4a1b1a 

LIHC_10 
LIHC_10_T Primary Tumor 100.00% 85.47 B4b1b 

LIHC_10_B Blood Derived Normal 100.00% 44.39 B4b1b 

LIHC_11 
LIHC_11_T Primary Tumor 100.00% 63.21 A5b 

LIHC_11_B Blood Derived Normal 100.00% 37.96 A5b 

LIHC_12 LIHC_12_T Primary Tumor 100.00% 56.94 M9a 
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LIHC_12_B Blood Derived Normal 99.00% 31.09 M9a 

LIHC_13 
LIHC_13_T Primary Tumor 100.00% 40.05 C4b 

LIHC_13_B Blood Derived Normal 100.00% 32.42 C4b 

LIHC_14 
LIHC_14_T Primary Tumor 100.00% 52.72 D4a1h 

LIHC_14_B Blood Derived Normal 99.00% 32.68 D4a1h 

LIHC_15 
LIHC_15_T Primary Tumor 100.00% 47.09 F1c 

LIHC_15_B Blood Derived Normal 100.00% 36.4 F1c 

LIHC_16 
LIHC_16_T Primary Tumor 100.00% 78.59 B4b1b 

LIHC_16_B Blood Derived Normal 99.00% 37.57 B4b1b 

LIHC_17 
LIHC_17_T Primary Tumor 100.00% 51.74 B4c1b2c2 

LIHC_17_B Blood Derived Normal 99.00% 42.16 B4c1b2c2 

LIHC_18 
LIHC_18_T Primary Tumor 100.00% 53.15 B4b1a2a 

LIHC_18_B Blood Derived Normal 99.00% 34.82 B4b1a2a 

LIHC_19 
LIHC_19_T Primary Tumor 100.00% 135.97 M7c1a 

LIHC_19_B Blood Derived Normal 100.00% 45.24 M7c1a 

LIHC_20 
LIHC_20_T Primary Tumor 100.00% 42 B4g2 

LIHC_20_B Blood Derived Normal 100.00% 66.1 B4g2 

LIHC_21 
LIHC_21_T Primary Tumor 100.00% 43.11 M12a1b 

LIHC_21_B Blood Derived Normal 100.00% 40.94 M12a1b 

LIHC_22 
LIHC_22_T Primary Tumor 100.00% 82.63 C4a1a_195 

LIHC_22_B Blood Derived Normal 100.00% 38.43 C4a1a_195 

LIHC_23 
LIHC_23_T Primary Tumor 100.00% 167.17 D4j 

LIHC_23_B Blood Derived Normal 100.00% 48.14 D4j 

LIHC_24 
LIHC_24_T Primary Tumor 100.00% 42.64 N9a9 

LIHC_24_B Blood Derived Normal 100.00% 41.13 N9a9 

LIHC_25 
LIHC_25_T Primary Tumor 100.00% 30.57 Z4a1a1 

LIHC_25_B Blood Derived Normal 100.00% 31.4 Z4a1a1 
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LIHC_26 
LIHC_26_T Primary Tumor 100.00% 43.99 D6a1 

LIHC_26_B Blood Derived Normal 99.00% 34.48 D6a1 

LIHC_27 
LIHC_27_T Primary Tumor 100.00% 125.09 B4a1c3a 

LIHC_27_B Blood Derived Normal 100.00% 47.98 B4a1c3a 

LIHC_28 
LIHC_28_T Primary Tumor 100.00% 39.36 D4b2b1 

LIHC_28_B Blood Derived Normal 100.00% 30.02 D4b2b1 

LIHC_29 
LIHC_29_T Primary Tumor 100.00% 75.52 Z4a1a1 

LIHC_29_B Blood Derived Normal 100.00% 33.46 Z4a1a1 

LIHC_30 
LIHC_30_T Primary Tumor 100.00% 36.13 D4f1 

LIHC_30_B Blood Derived Normal 100.00% 46.54 D4f1 

LIHC_31 
LIHC_31_T Primary Tumor 100.00% 67.66 D4a2 

LIHC_31_B Blood Derived Normal 99.00% 30.57 D4a2 

LIHC_32 
LIHC_32_T Primary Tumor 100.00% 157.63 B5a2a1_16129 

LIHC_32_B Blood Derived Normal 100.00% 32.31 B5a2a1_16129 

LIHC_33 
LIHC_33_T Primary Tumor 100.00% 138.94 B5b3a 

LIHC_33_B Blood Derived Normal 100.00% 39.36 B5b3a 

LIHC_34 
LIHC_34_T Primary Tumor 100.00% 59.44 A5a 

LIHC_34_B Blood Derived Normal 100.00% 30.42 A5a 

LIHC_35 
LIHC_35_T Primary Tumor 100.00% 332.04 M74a 

LIHC_35_B Blood Derived Normal 99.00% 40.07 M74a 

LIHC_36 
LIHC_36_T Primary Tumor 100.00% 45.57 B4m 

LIHC_36_B Blood Derived Normal 100.00% 40.53 B4m 

LIHC_37 
LIHC_37_T Primary Tumor 100.00% 46.26 N10b 

LIHC_37_B Blood Derived Normal 100.00% 40.58 N10b 

LIHC_38 
LIHC_38_T Primary Tumor 100.00% 180.33 L3e1e 

LIHC_38_NST Solid Tissue Normal 100.00% 291.85 L3e1e 

LIHC-39 LIHC_39_T Primary Tumor 100.00% 269.01 H13a1a1a 
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LIHC_39_B Blood Derived Normal 100.00% 92.3 H13a1a1a 

LIHC_39_NST Solid Tissue Normal 100.00% 342.23 H13a1a1a 

LIHC_40 
LIHC_40_T Primary Tumor 100.00% 193.68 J1c3 

LIHC_40_NST Solid Tissue Normal 100.00% 438.9 J1c3 

LIHC_41 
LIHC_41_T Primary Tumor 99.00% 35.7 U5b1d1b 

LIHC_41_NST Solid Tissue Normal 100.00% 54.67 U5b1d1b 

LIHC_42 
LIHC_42_T Primary Tumor 100.00% 50.87 B5a1b1 

LIHC_42_B Blood Derived Normal 100.00% 43.62 B5a1b1 

LIHC_43 

LIHC_43_T Primary Tumor 100.00% 319.4 K1a_150 

LIHC_43_B Blood Derived Normal 100.00% 72.47 K1a_150 

LIHC_43_NST Solid Tissue Normal 100.00% 642.2 K1a_150 

LIHC_44 
LIHC_44_T Primary Tumor 100.00% 169.38 L3d1a1 

LIHC_44_B Blood Derived Normal 100.00% 99.97 L3d1a1 

LIHC_45 

LIHC_45_T Primary Tumor 100.00% 201.82 J1c1b1a1 

LIHC_45_B Blood Derived Normal 100.00% 59.09 J1c1b1a1 

LIHC_45_NST Solid Tissue Normal 100.00% 336.56 J1c1b1a1 

LIHC_46 
LIHC_46_T Primary Tumor 100.00% 183.41 B4a1c 

LIHC_46_NST Solid Tissue Normal 100.00% 526 B4a1c 

LIHC_47 
LIHC_47_T Primary Tumor 100.00% 85.38 J2b1a4 

LIHC_47_NST Solid Tissue Normal 100.00% 381.78 J2b1a4 

LIHC_48 
LIHC_48_T Primary Tumor 100.00% 254.18 H1af2 

LIHC_48_B Blood Derived Normal 100.00% 168.05 H1af2 

LIHC_49 
LIHC_49_T Primary Tumor 100.00% 61.47 N9a8 

LIHC_49_NST Solid Tissue Normal 100.00% 47.66 N9a8 

LIHC_50 
LIHC_50_T Primary Tumor 99.61% 43.08 L2a1e1 

LIHC_50_B Blood Derived Normal 99.54% 35.69 L2a1e1 

LIHC_51 LIHC_51_T Primary Tumor 100.00% 69.49 H1at1 
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LIHC_51_B Blood Derived Normal 100.00% 41.38 H1at1 

LIHC_52 
LIHC_52_T Primary Tumor 99.83% 52.78 H2a2a1 

LIHC_52_B Blood Derived Normal 99.35% 33.97 H2a2a1 

LIHC_53 
LIHC_53_T Primary Tumor 100.00% 108.47 H5a1g1a 

LIHC_53_B Blood Derived Normal 100.00% 39.88 H5a1g1a 

LIHC_54 
LIHC_54_T Primary Tumor 100.00% 33.28 HV16 

LIHC_54_B Blood Derived Normal 100.00% 38.24 HV16 

LIHC_55 
LIHC_55_T Primary Tumor 100.00% 97.71 U5a1d2b 

LIHC_55_B Blood Derived Normal 100.00% 89.89 U5a1d2b 

LIHC_56 
LIHC_56_T Primary Tumor 99.90% 82.43 H13a1a1b 

LIHC_56_B Blood Derived Normal 100.00% 71.37 H13a1a1b 

LIHC_57 
LIHC_57_T Primary Tumor 100.00% 83.79 J1c2h 

LIHC_57_B Blood Derived Normal 99.80% 52.45 J1c2h 

LIHC_58 
LIHC_58_T Primary Tumor 99.90% 84.82 T1a1_152 

LIHC_58_B Blood Derived Normal 100.00% 97.22 T1a1_152 

LIHC_59 
LIHC_59_T Primary Tumor 100.00% 126.47 J1b1a1 

LIHC_59_NST Solid Tissue Normal 100.00% 425.63 J1b1a1 

LIHC_60 
LIHC_60_T Primary Tumor 99.90% 62.45 H7d3a 

LIHC_60_NST Solid Tissue Normal 100.00% 600.57 H7d3a 

LIHC_61 
LIHC_61_T Primary Tumor 100.00% 353.12 H1e1a 

LIHC_61_NST Solid Tissue Normal 100.00% 406.85 H1e1a 

LIHC_62 
LIHC_62_T Primary Tumor 100.00% 394.99 K1a4a1f 

LIHC_62_NST Solid Tissue Normal 100.00% 396.78 K1a4a1f 

LIHC_63 
LIHC_63_T Primary Tumor 100.00% 105.54 H6a1b3a 

LIHC_63_NST Solid Tissue Normal 100.00% 473.06 H6a1b3a 

LIHC_64 
LIHC_64_T Primary Tumor 100.00% 111.57 H2a5b2 

LIHC_64_NST Solid Tissue Normal 99.30% 67.82 H2a5b2 



 

99 

LIHC_65 
LIHC_65_T Primary Tumor 100.00% 204.46 T16223C 

LIHC_65_NST Solid Tissue Normal 100.00% 111.36 T16223C 

LIHC_66 
LIHC_66_T Primary Tumor 100.00% 35.56 K1c2 

LIHC_66_B Blood Derived Normal 99.80% 51.81 K1c2 

LIHC_67 
LIHC_67_T Primary Tumor 99.90% 55.32 N21_195 

LIHC_67_B Blood Derived Normal 100.00% 70.13 N21_195 

LIHC_68 
LIHC_68_T Primary Tumor 100.00% 67.73 J1b1a1a 

LIHC_68_B Blood Derived Normal 99.80% 42.07 J1b1a1a 

LIHC_69 
LIHC_69_T Primary Tumor 99.70% 125.89 I1b 

LIHC_69_NST Solid Tissue Normal 99.10% 79.26 I1b 

LIHC_70 
LIHC_70_T Primary Tumor 99.80% 47.63 U5b3b1 

LIHC_70_B Blood Derived Normal 99.40% 35.99 U5b3b1 

LIHC_71 
LIHC_71_T Primary Tumor 100.00% 120.27 D1c 

LIHC_71_B Blood Derived Normal 99.70% 60.67 D1c 

LIHC_72 
LIHC_72_T Primary Tumor 99.60% 61.61 H2a2b4 

LIHC_72_B Blood Derived Normal 99.70% 35.93 H2a2b4 

LIHC_73 
LIHC_73_T Primary Tumor 99.90% 97.83 A2k1a 

LIHC_73_B Blood Derived Normal 99.70% 51.96 A2k1a 

LIHC_74 
LIHC_74_T Primary Tumor 100.00% 122.89 T2e 

LIHC_74_B Blood Derived Normal 99.90% 41.63 T2e 

LIHC_75 
LIHC_75_T Primary Tumor 100.00% 49.28 V2a1 

LIHC_75_B Blood Derived Normal 99.10% 30.62 V2a1 

LIHC_76 
LIHC_76_T Primary Tumor 99.20% 41.78 R11b 

LIHC_76_B Blood Derived Normal 99.40% 42.36 R11b 

LIHC_77 
LIHC_77_T Primary Tumor 100.00% 81.07 M7c1a3a 

LIHC_77_B Blood Derived Normal 100.00% 142.09 M7c1a3a 

LIHC_78 LIHC_78_T Primary Tumor 100.00% 404.32 M10a1b 
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LIHC_78_B Blood Derived Normal 100.00% 112.73 M10a1b 

LIHC_79 
LIHC_79_T Primary Tumor 99.30% 39.98 D4a 

LIHC_79_B Blood Derived Normal 99.90% 44.53 D4a 

LIHC_80 
LIHC_80_T Primary Tumor 99.70% 46.93 K1c1a 

LIHC_80_B Blood Derived Normal 99.90% 36.51 K1c1a 

LIHC_81 
LIHC_81_T Primary Tumor 100.00% 199.89 L2b1a3 

LIHC_81_B Blood Derived Normal 99.90% 33.62 L2b1a3 

LIHC_82 
LIHC_82_T Primary Tumor 100.00% 82.15 H1b1g 

LIHC_82_B Blood Derived Normal 99.90% 45.94 H1b1g 

LIHC_83 
LIHC_83_T Primary Tumor 100.00% 83.5 H1c1_16093 

LIHC_83_B Blood Derived Normal 99.90% 40.6 H1c1_16093 

LIHC_84 
LIHC_84_T Primary Tumor 99.90% 50.64 H13a1a1 

LIHC_84_B Blood Derived Normal 100.00% 42.9 H13a1a1 

LIHC_85 
LIHC_85_T Primary Tumor 99.90% 86.54 U5b2b3a1a 

LIHC_85_B Blood Derived Normal 99.80% 45.42 U5b2b3a1a 

LIHC_86 
LIHC_86_T Primary Tumor 100.00% 91.01 H3g3 

LIHC_86_B Blood Derived Normal 99.90% 58.55 H3g3 

LIHC_87 
LIHC_87_T Primary Tumor 99.86% 67.15 C1b 

LIHC_87_B Blood Derived Normal 98.10% 32.34 C1b 

LIHC_88 
LIHC_88_T Primary Tumor 99.10% 34.91 C1b 

LIHC_88_B Blood Derived Normal 99.50% 39.7 C1b 

LIHC_89 
LIHC_89_T Primary Tumor 100.00% 77.34 B2 

LIHC_89_B Blood Derived Normal 100.00% 93.43 B2 

LIHC_90 
LIHC_90_T Primary Tumor 99.50% 42.74 D1 

LIHC_90_B Blood Derived Normal 99.80% 36.37 D1 

LIHC_91 
LIHC_91_T Primary Tumor 99.80% 44.55 A2 

LIHC_91_B Blood Derived Normal 99.50% 46.76 A2 



 

101 

LIHC_92 
LIHC_92_T Primary Tumor 100.00% 87.16 H1b2 

LIHC_92_B Blood Derived Normal 99.80% 41.19 H1b2 

LIHC_93 
LIHC_93_T Primary Tumor 99.20% 34.96 B4c1b2a 

LIHC_93_B Blood Derived Normal 99.90% 40.52 B4c1b2a 

LIHC_94 
LIHC_94_T Primary Tumor 100.00% 82.15 L3e3b1 

LIHC_94_B Blood Derived Normal 100.00% 100.01 L3e3b1 

LIHC_95 
LIHC_95_T Primary Tumor 100.00% 69.29 U5a1a2b 

LIHC_95_B Blood Derived Normal 99.90% 49.86 U5a1a2b 

LIHC_96 
LIHC_96_T Primary Tumor 99.80% 49.47 K1a4 

LIHC_96_B Blood Derived Normal 100.00% 63.55 K1a4 

LIHC_97 
LIHC_97_T Primary Tumor 100.00% 123.83 K1a4a1h 

LIHC_97_B Blood Derived Normal 99.90% 72.09 K1a4a1h 

LIHC_98 
LIHC_98_T Primary Tumor 100.00% 110.72 W1c 

LIHC_98_B Blood Derived Normal 99.30% 40.72 W1c 

LIHC_99 
LIHC_99_T Primary Tumor 99.80% 45.42 J1c3b 

LIHC_99_B Blood Derived Normal 99.50% 36.05 J1c3b 

LIHC_100 
LIHC_100_T Primary Tumor 99.70% 35.45 T2b3_151 

LIHC_100_B Blood Derived Normal 99.80% 40.41 T2b3_151 

LIHC_101 
LIHC_101_T Primary Tumor 100.00% 140.37 T2a1a 

LIHC_101_B Blood Derived Normal 99.90% 41.22 T2a1a 

LIHC_102 
LIHC_102_T Primary Tumor 99.60% 32.12 L2b1a3 

LIHC_102_B Blood Derived Normal 99.80% 42.23 L2b1a3 

LIHC_103 
LIHC_103_T Primary Tumor 99.90% 67.72 K1d 

LIHC_103_B Blood Derived Normal 99.90% 35.89 K1d 

LIHC_104 
LIHC_104_T Primary Tumor 100.00% 124.58 H5a1 

LIHC_104_B Blood Derived Normal 99.50% 34.65 H5a1 

T: tumor; B: blood; NST: normal solid tissue 


