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Non è la conoscenza, ma l’atto di imparare; non il possesso ma l’atto
di arrivarci, che dà la gioia maggiore. Quando ho chiarito e esaurito
un argomento, mi ci allontano, per tornare nell’oscurità; l’uomo non
soddisfatto è così strano, che se ha completato una struttura non ce
la fa a restarci in pace, ma deve iniziarne un’altra. Immagino che si

debba sentir così il conquistatore del mondo che, quando un regno è
stato a malapena conquistato, si lancia subito verso un altro.

Karl Friedrich Gauss (1777-1855)





A B S T R A C T

Magnetic Resonance Imaging (MRI) is the in vivo technique most
commonly employed to characterize changes in brain structures. The
conventional MRI-derived morphological indices are able to capture
only partial aspects of brain structural complexity. Fractal geometry
and its most popular index, the fractal dimension (FD), can
characterize self-similar structures including grey matter (GM) and
white matter (WM). Previous literature shows the need for a
definition of the so-called fractal scaling window, within which each
structure manifests self-similarity. This justifies the existence of
fractal properties and confirms Mandelbrot’s assertion that "fractals
are not a panacea; they are not everywhere".

In this work, we propose a new approach to automatically
determine the fractal scaling window, computing two new fractal
descriptors, i.e., the minimal and maximal fractal scales (mfs and
Mfs). Our method was implemented in a software package,
validated on phantoms and applied on large datasets of structural
MR images.

We demonstrated that the FD is a useful marker of morphological
complexity changes that occurred during brain development and
aging and, using ultra-high magnetic field (7T) examinations, we
showed that the cerebral GM has fractal properties also below the
spatial scale of 1 mm. We applied our methodology in two
neurological diseases. We observed the reduction of the brain
structural complexity in SCA2 patients and, using a machine
learning approach, proved that the cerebral WM FD is a consistent
feature in predicting cognitive decline in patients with small vessel
disease and mild cognitive impairment. Finally, we showed that the
FD of the WM skeletons derived from diffusion MRI provides
complementary information to those obtained from the FD of the
WM general structure in T1-weighted images.

In conclusion, the fractal descriptors of structural brain complexity
are candidate biomarkers to detect subtle morphological changes
during development, aging and in neurological diseases.
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I N T R O D U C T I O N

"The human brain is probably the most complex system in the Universe"
(Gandolfi, 2008). Indeed, the human brain possesses the emerging
properties of complex systems. A complex system, although it
cannot be defined univocally, can be described, using a more
practical approach, through some of its characteristics. It has a high
number of elements (millions or billions), whose interactions are often
non-linear, have delayed effects and positive and negative feedback; it has
a network structure, in which the different elements show partial
autonomy and differentiated sensitivity. There is often a systemic
hierarchy with phenomena of self-organization. A complex system is
open, dynamic and robust, creative and innovative, unpredictable and
universal (complexity is not confined to a scale of magnitude); it
shows discontinuous behaviour (alternating periods of stability and
chaotic instability) and for this reason it is not easily controllable.

The human brain has a high level of structural and functional
complexity, in continuous evolution, changing during the lifespan.

Morphological alterations of brain structures are present in many
neurological diseases and Magnetic Resonance Imaging (MRI) is the
in vivo technique employed as a reference for the characterization of
these changes. Currently, their evaluation in MR T1-weighted and
diffusion-weighted imaging (DWI) is mainly performed by
measuring brain atrophy (both globally and locally) and
diffusion-tensor-derived indices, respectively. However, these indices
capture only some partial aspects of brain morphology and are not
able to describe its real complexity, which emerges from multiscale
phenomena. Fractal geometry is a mathematical framework able to
characterize complex structures, such as the cortical grey matter
(GM) and subcortical white matter (WM); a structure is defined
fractal if presents mathematical or statistical self-similarity and its
fractal dimension (FD), typically computed using the 3D box
counting algorithm, is a measure of the structural complexity of the
object. The use of concepts of fractal analysis in neuroimaging shows
the need of the definition of a specific interval of spatial scales
(called “fractal scaling window”), in which the GM or WM, like any
other biological structure, manifests self-similarity. That definition is
a fundamental prerequisite for the assessment of fractal dimension,
justifies the existence of fractal properties and confirms
Mandelbrot’s assertion that "fractals are not a panacea; they are not
everywhere".

For these reasons, my Ph.D. thesis concerns the study of existing
fractal indexes and the design of new fractal descriptors able to
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2 introduction

concisely express the morphological complexity of brain structures
observed in MR. In addition, in this thesis, the design and
implementation of a software package for the automated
computation of these fractal indices has been proposed. All these
activities have been carried out through parallel computing
procedures, necessary for the analysis of extended datasets of MR
images.
The contents of this thesis are organized as follows.

Chapter 1 contains the theoretical concepts of fractal geometry,
with a particular attention to the various definitions of fractal
dimension. In particular, the box-counting algorithm, used to
calculate the fractal dimension, is described in detail.

Chapter 2 deals with the state-of-the-art about fractal analysis in
the neuroimaging. The first works that hypothesized that the human
brain possesses fractal properties are accurately described. Similarly,
the studies in which the fractal dimension has been proposed for the
investigation of the brain development and aging and of
neurological diseases are presented. In Chapter 2, the main
methodological issues about the application of fractal analysis in
neuroimaging are also described.

Chapter 3 is the core of the Ph.D. thesis. It includes the
improvement of the 3D box-counting algorithm through the
automated selection of the fractal scaling window, in which the
human brain manifests fractal properties. In the first part of the
chapter, a procedure to automatically select the fractal scaling
window is proposed. In the second part, the software
implementation is illustrated and validated on phantoms and
healthy human brains.

Chapter 4 describes the results of fractal analysis in three
neurological diseases: spinocerebellar ataxia of type 2 (SCA2), small
vessels disease (SVD) and cerebral amyloid angiopathy (CAA). The
study of patients with CAA was made possible thanks to the
collaboration with the Stroke Research Center, Massachusetts
General Hospital, Department of Neurology at Harvard Medical
School in Boston.

Chapter 5 concerns the study of brain complexity in
diffusion-MRI images. It includes the description of the most
popular models used in the processing of DWI images (DTI,
Diffusion Tensor Imaging; DKI, Diffusional Kurtosis Imaging;
NODDI, Neurite Orientation Dispersion and Density Indexes). Then,
the study of brain complexity using fractal analysis on DTI-derived
skeletons, is finally presented.
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T H E F R A C TA L G E O M E T RY

This chapter contains the theoretical concepts of fractal geometry,
with a particular attention to the different definitions of fractal
dimension. In particular, the box-counting algorithm, used to
calculate the fractal dimension, is described in detail.

1.1 the fractal dimension

1.1.1 What is a fractal object?

Looking at the Nature, the chaotic order in which most of the
elements manifest themselves is surprising. They are a
representation of highly eclectic and complex forms and their
description using simple models, belonging to the Euclidean
geometry, such as lines, planes, spheres, etc., could be difficult and
in some cases incomplete. If the Earth can be imagined as a sphere
and its orbit of revolution as an ellipse, also the "spongiform" aspect
of a cloud, the endless roses of a Roman broccoli, the ramifications
of a tree and the structure of the circulatory system, can be
described through the fractal geometry. In other words, the fractal
geometry allows to generalize and model irregular and very
complex phenomena, which can follow simple mathematical laws on
different viewing scales (Mandelbrot, 1982).

Some examples of pure fractal objects are the Koch snowflake (Fig. Examples of fractal
objects

1a), the Peano curve (Fig. 1b), the Sierpinski triangle (Fig. 1c), the
Menger’s sponge (Fig. 1d) and the Mandelbrot’s set (Fig. 1e).

The objects represented above are ideal fractals, synthetically
constructed through simple recursive algorithms. An easy way to
generate fractal forms is to repeat a transformation or a function for
a high number of times (ideally infinite) (Falconer, 2004). With this
procedure, named IFS (Iterated Function System), an object that is

(a) (b) (c) (d) (e)

Figure 1: Examples of pure fractal objects: (a) the Koch snowflake, (b) the
Peano curve, (c) the Sierpinski’s triangle, (d) the Menger’s sponge
and (e) the Mandelbrot set.

3



4 the fractal geometry

initially very simple, evolves into a structure (or in a system) with
complex characteristics, dynamically chaotic. The final object is
difficult to be interpreted with the rules of traditional geometry and
mathematics, which could be actually used to describe the initial
state of the system. Therefore, a fractal object can be thought as the
last stage (e.g., the attractor) of an IFS, that is the object to which the
initial state tends when the number of transformations is repeated a
sufficient number of times. An example of IFS algorithms for the
construction of the Dragon Curve and the Sierpinski triangle is
represented in Fig. 2.

(a)

(b)

Figure 2: Example of IFS algorithm to build (a) the Dragon Curve and (b)
the Sierpinski triangle.
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On the contrary, the fractal objects observed in Nature show only
roughly fractal properties, because their scaling features are not ideal
over infinite viewing scales. Romanesco broccoli, trees and ferns are
examples of natural fractal objects (Fig. 3).

Figure 3: Examples of natural fractal objects. From left to right, respectively,
a Romanesco broccoli, a tree and a fern.

One question arises: what is the exact definition of fractal object?
The fractal geometry was formalized in the seminal book "The
Fractal Geometry of Nature" in 1982 (Mandelbrot, 1982), by the
polish mathematician Benoit B. Mandelbrot (1924-2010), who
ordered concepts and ideas already circulating previously. However,
he did not succeed in coining a unique definition of a fractal object.
Initially, any element that had fractional fractal dimension (see
section 1.1) was considered a fractal object, as opposed to those with
integer topological dimension. Indeed, the name "fractal" derives
from the Latin "fractus", i.e., broken, in part, not intact. Then, the
Mandelbrot’s set (Fig. 1e) showed a fractal dimension of 2, thus in
contrast with the previous definition (Shishikura, 1998). A more
appropriate way to define a fractal object is to describe it as an object
with some of the following properties (Falconer, 2004):

1. too irregular to be described in traditional Euclidean geometric Properties of fractal
objectsterms;

2. detailed at any viewing scale;

3. self-similar in some sense (exact, approximate or statistical);

4. its Hausdorff-Besicovitch dimension is greater than its
topological dimension (see section 1.1.5);

5. its construction uses a simple recursive algorithm.

As we will see in section 2.1, according to some of these five
characteristics, also the human brain can be considered a fractal
structure and thus analyzed and rediscovered under a new light,
that of the fractal geometry.
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1.1.2 The Richardson’s dimension

A first definition and measure of fractal dimension has been proposed
by Lewis Fry Richardson (1881 - 1953). He had the intention of
evaluating the relationship between the war outbreak between two
neighbouring countries and the length of the common boundaries.
He realized how the value of the measured perimeter increases as
the unit of measure decreases: analyzing and computing the
perimeter of the boundaries with a compass from the opening
increasingly smaller allows, in fact, to capture details, indentations
and concavities that are not visible at larger viewing scales.

Let us suppose to measure the length of the coast of the island of
Majorca with different units of measurement s and to represent each
pairs of values in a logarithmic plot. If s = 28 km, a perimeter of 362.2
km is obtained; however, if s = 14 km, then the length of the coast
assumes the value of 416.7 km. Decreasing the viewing scale s to 7
km and then to 3.5 km, the perimeter corresponds to 467.7 km and
524.8 km, respectively. If the viewing scale s becomes even smaller,
the length increase indefinitely, giving rise to the Richardson’s effect.

Figure 4: Logarithm plot showing the relationship between the length of the
boundaries of a nation and the measurement unit.

The experimental samples represented in Fig. 4 show a linear
relationship:

log l = −d ∗ log s+ log c = d ∗ log(1/s)+ log c = d ∗ log(1/s)+k (1)

with:Richardson’s
dimension

l = measured perimeter;
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s = viewing scale, unit of measurement;

d = Richardson’s dimension;

k = log c = the intercept with the ordinate axis.

The linearity shown in the logarithmic scale is an important aspect,
because it allows to describe a very complex phenomenon by relying
on the simplest rules and functions of linear algebra. The equation 1

can be expressed as an exponential function between l and s in which
d is the exponent, on a natural scale, following a few straigthforward
steps:

log l = d ∗ log(1/s) + k = log(1/s)d + log c = log (1/s)d ∗ c
elog l = elogs−d∗c

l = c ∗ s−d (2)

1.1.3 The self-similarity dimension

In the case of strictly fractal objects (see e.g., Fig. 5), which meet the
constraint of exact self-similarity on multiple scales of observation
(conceptually infinite), it is feasible to compute the self-similarity
dimension. A fractal object, as mentioned in section 1.1.1, can be
broken down in smaller and smaller parts, each one containing the
same number of structural elements of the entire object, i.e., a
representation in miniature (Sagan, 1994). Let us consider an object
having Euclidean dimension E and divide it in n elements, each one
reduced by a factor s in each dimension. In this way we get a
number of elements n equal to 1

s

E
. We can repeat this procedure

over and over again to obtain an object in which one portion has
exactly the same shape of the whole structure. Notwithstanding, this
object "alives" on a different scale. The relationship between the
number of parts which constitutes each partition and the size of the
viewing scale (i.e., the reduction factor), in accordance with the
above equation, can be expressed in a logarithmic form as follows:

logn = Ds ∗ log(1/s) (3)

where: Self-similarity
dimension

n = number of elements contained in each partition;

s = reduction factor;

Ds = self-similarity dimension.
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Observing the Fig. 5, in which some steps needed to generate the
fractal objects described in section 1.1.1 are shown, it is clear that their
self-similarity dimension generally assumes fractional values, except in
some cases (see section 1.1.1).

As can be seen in Fig. 5a, each step of the Koch snowflake
construction procedure corresponds to the division of an initial
segment into four parts (n = 4), each one of length equal to a third
(s = 1/3) of that of the initial segment. Then, applying equation 3,
the self-similarity dimension of the Koch snowflake is:Self-similarity

dimension of the
Koch snowflake log 4 = Ds ∗ log 3

Ds = log 4/ log 3 = 1.2619 (4)

Similarly, for the Peano curve (Fig. 5b), n = 9 and s = 1/3. Thus,
the similarity dimension is:Self-similarity

dimension of the
Peano curve log 9 = Ds ∗ log 3

Ds = log 9/ log 3 = 2 (5)

In the case of the Sierpinski’s triangle (Fig. 5c), n = 3 and s = 1/2

and the self-similarity dimension becomes:Self-similarity
dimension of the

Sierpinski triangle log 3 = Ds ∗ log 2

Ds = log 3/ log 2 = 1.585 (6)

In the Menger’s sponge (Fig. 5d), example of a fractal object in
three dimensions, each one of the twenty "cubes" (n = 20) occupies
a volume which is nine times smaller (s = 1/3) than that at of the
previous step:Self-similarity

dimension of the
Menger’s sponge log 20 = Ds ∗ log 3

Ds = log 20/ log 3 = 2.7268 (7)

1.1.4 Relationship between Richardson’s and self-similarity dimension

When a structure presents the self-similarity property in a
mathematical sense, the Richardson’s dimension (see section 1.1.2) and
the self-similarity dimension (see section 1.1.3) are intrinsically related
according to the Equation 8. In fact, using the equations 1 and 3, if
l = n ∗ s, we obtain:

log l = logn+ log s

= log c− d ∗ log s

logn+ log s = log c− d ∗ log s

logn = log c− d ∗ log s− log s

= log c− (d+ 1) ∗ log s

= log c−Ds ∗ log s

Ds = d+ 1 (8)
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(a) (b)

(c) (d)

Figure 5: Construction of self-similar fractal objects: (a) 4 steps of the
construction of the Koch snowflake, (b) 6 steps of the construction
of the Peano curve, (c) 6 steps of the construction of the
Sierpinski’s triangle and (d) 4 steps of the construction of the
Menger’s sponge.
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1.1.5 The Hausdorff-Besicovitch dimension

The Hausdorff-Besicovitch dimension is an important definition of
fractal dimension, because it is based on the theory of measurement
and it can be applied to any set of points, not just to self-similar
ones. We define the Hausdorff-Besicovitch dimension based on the
formalism presented by Kenneth Falconer in "Fractal Geometry:
Mathematical Foundations and Applications" (Falconer, 2004). Let U
be a non-empty subset of the Euclidean space Rn: U ⊂ Rn; the
diameter of U is represented by the greatest distance between two
points contained in U: |U| = sup{|x− y| : x,y ∈ U}. If {Ui} is a finite
collection of points, whose diameter value is smaller than a certain
value δ, 0 6 |Ui| 6 δ∀i, covering F, i.e., F ⊂

⋃+∞
i=1Ui, then the

collection {Ui} is a δ-cover of F. Let us suppose that F is a subset of
Rn, F ⊂ Rn, and s is a non-negative number, s > 0; ∀δ > 0, we
define Hsδ(F) = inf{

∑+∞
i=1 |Ui|

s : {Ui} is δ-cover of F}. The equation
above looks at all covers of F by sets of diameter smaller or equal
than δ and minimize the sum of the s-th powers of the diameters. As
δ decreases, the number of possible covers of F is reduced, thus the
s−dimensional Hausdorff measure of F, Hs(F), is defined as the limit
as δ→ 0 of Hs(F):

Hs(F) = lim
δ→0

Hsδ(F) (9)

Figure 6: Hsδ(F) as function of s (Falconer, 2004).
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If δ < 1, Hsδ(F) is non-increasing with s, then Hs(F) is also non-
increasing; we can see the usual trend of Hs(F) against s in Fig. 6: for
some s < s∗ = dimHF, Hs(F) → +∞, while for s > s∗ = dimHF,
Hs(F) → 0. The critical value of s at which Hs(F) "jumps" from +∞
to 0 is the so-called Hausdorff dimension dimHF. Mathematically:

dimH(F) = sup{s > 0 : H
s(F) = +∞} = inf{s > 0 : Hs(F) = 0} (10)

Hausdorff-
Besicovitch
dimension

with

Hs(F) =

{
+∞ 0 6 s < dimH(F)

0 s > dimH(F)
(11)

The Hausdorff-Besicovitch dimension described above is a solid basis
for the description of the fractal dimension and is a starting point
for the implementation of numerical algorithms that can compute
the fractal dimension. To clarify the real meaning of this measure,
we introduce the following example. Let us calculate the Hausdorff-
Besicovitch dimension dimH(Q) of a square Q:

• if one tries to cover Q with segments, by placing s = 1, the
number of objects required to fill the entire square Q is infinite,
thus Hs(F) = +∞;

• if, on the other hand, one covers Q it with cubes, by setting
s = 3, the number of elements needed to fill the square Q is
null, thus Hs(F) = 0;

• finally, choosing s = 2, i.e., trying to determine the
Hausdorff-Besicovitch dimension with elements that "live" in a
two-dimensional space, such as the square Q, the number of
objects needed for covering Q assumes a certain value k. Thus,
Hs(F) = k, which represents the minimum cover of Q,
according to Lebesgue’s theory (Falconer, 2004).

The proposed example is a particular case of an object in two
dimensions, but the Hausdorff-Besicovitch dimension concept can be
easily generalized in several dimensions. It represents the exponent
who "matches" the right amount of space occupied by the object
under examination, whether it is a regular geometric shape, or a
fractal object. In the case of an object, for example, whose
Hausdorff-Besicovitch dimension is equal to 2,7268, it shows that the
space occupied is greater than that of a surface (topological
dimension equal to 2) but smaller than that of a volume (topological
dimension equal to 3).
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1.1.6 The Minkowski-Bouligand dimension

The definition of fractal dimension proposed by Minkowski and
Bouligand, is a fundamental step between the theoretical definitions
and the numerical implementations of the fractal dimension.
Minkowski and Bouligand have introduced their measure on the
basis of the various considerations set out in the previous sections.
In order to calculate the Minkowski-Bouligand dimension of a generic
object let us superimpose a grid, consisting of boxes (or cubes) with
known length side r, on that structure, and count the number of
boxes (or cubes) N(r), which overlap with the object. This operation
is then repeated for different values of r. The Minkowski-Bouligand
dimension is expressed as the limit for d tending to 0 of the ratio
between the logarithm of the number of boxes covering the structure
N(r) and the logarithm of the box size r:

DMB = lim
d→0

logN(d)

log(1/d)
(12)

where:Minkowski-
Bouligand
dimension N(r) = counts of the boxes of lenght side r that overlap with the

object;

r = side length of the box,

DMB = Minkowski-Bouligand dimension.

1.2 the box-counting algorithm

The box counting algorithm is the most common procedure for
calculating the fractal dimension of real objects. It descends from the
Hausdorff-Besicovitch dimension (Katsaloulis et al., 2009) as well as
it is an implementation of the Minkowski-Bouligand dimension. The
widespread use of this algorithm derives from the following factors:

1. is a fully automatic procedure (Foroutan-poor et al., 1999);

2. is an algorithm that can be easily implemented on a computer
(Foroutan-poor et al., 1999; Katsaloulis et al., 2009);

3. is a method applicable to a wide range of structures, because
there is no the requirement of self-similarity in a strict sense
(Foroutan-poor et al., 1999; Katsaloulis et al., 2009; Zhang et al.,
2007b).

The box counting dimension, henceforth referred to as fractal
dimension (FD) (Goni et al., 2013), is obtained by superimposing on
the object under examination a grid consisting of boxes with side
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length ε and counting the number of boxes N(ε) containing at least
part of the structure (Landini et al., 1995; Smith et al., 1996); the
procedure is then repeated for different side values ε, as shown in
Fig. 7.

Figure 7: Example of a 2D box-counting procedure. A grid with boxes
having side length ε is overlapped to a WM segmentation. N(ε)

is the number of boxes required to cover the structure (blu boxes)
(Zhang et al., 2007b).

The number of boxes N(ε) needed to cover the entire object is a
function of the box size ε (Smith et al., 1996) and represents the
number of counts N(ε) against the side length of the box ε in a
bilogarithmic plot. Thus, performing a linear regression model, we
obtain a line whose slope (in module) represents the FD (equation
13):

FD =
log ε0 − logN(ε)

log ε
(13)

where log ε0 is the intercept of the regression line and ε0 is usually The box-counting
fractal dimensionreferred as prefactor (Mandelbrot, 1982).
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T H E F R A C TA L D I M E N S I O N O F T H E B R A I N

Over the last decades, the fractal geometry has been used as a
universal tool for the analysis and quantification of the
morphological complexity of natural objects, including the human
brain (Di Ieva et al., 2015). It has been used and is currently
performed in different biological fields (see Di Ieva et al., 2015 for a
complete review), regarding, for example, the microcirculation of the
human brain (Minnich et al., 2001; Cassot et al., 2006; Heinzer et al.,
2006; Lauwers et al., 2008), the retinal microvascularization
(Cavallari et al., 2011; Cheung et al., 2013; Doubal et al., 2010; Jiang
et al., 2013; Kawasaki et al., 2011; Ong et al., 2013; Tălu, 2011), the
EEG analysis (Ahmadlou et al., 2010; Ahmadlou et al., 2011; Michail
et al., 2010), the nuclear medicine perfusion imaging (Michallek and
Dewey, 2013) and the cerebral hemodynamic signals in functional
MRI (fMRI) (Herman et al., 2001; Panerai, 2009; Olejarczyk, 2007;
Bullmore et al., 2004; Li and Huang, 2014; Rubin et al., 2013).

The fractal analysis of the brain in the structural neuroimaging
field (sMRI) is complementary to conventional morphometry
techniques, which aim to quantify morphological changes in
different brain structures (e.g., the GM) by measuring volume,
cortical thickness (Salat et al., 2004), area, sulcal depth (Panizzon
et al., 2009), curvature (Pienaar et al., 2008) and gyrification index
(Van Essen et al., 2006).

In the first part of this chapter, I will describe how the human
brain can be considered fractal, fractal-labelled (Avnir et al., 1998;
Mandelbrot, 1998) or pre-fractal (Feder, 1988), revisiting the first
authors who analyzed the brain morphological complexity in sMRI.
Then, I will present studies on the fractal dimension of the brain in
healthy subjects and in neurological diseases.

2.1 is the brain a fractal structure?

The brain can be imagined as a network composed of interconnected
components. The theory of fractal geometry has been demonstrated
to be a powerful tool for quantifying its complexity (Di Ieva et al.,
2015).

2.1.1 The cerebral cortex

As initially suggested by Mandelbrot (Mandelbrot, 1982) and later
measured by Majumdar and Prasad (Majumdar and Prasad, 1988),

15
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the highly folded cortical surface, i.e., the cerebral gray matter, is
similar to a 2D sheet, that, folding on itself, fills a 3D space, thus
showing a fractal dimension more than 2, but less than 3 (Fig. 8).

Figure 8: An example of the histogram of 65 fractal dimension
measurements obtained from transverse, sagittal, and coronal
sections of the human brain. The mean fractal dimension is 2.60

(Majumdar and Prasad, 1988).

Hofman (1991), drawn by those previous works, was the first who
really showed that the whole brain cortex manifests fractal features.
The human brain, indeed, performing a great number of complex
functions with a minimum expenditure of material for the
construction of the system, is highly folded and irregular and is not
completely described by the ideal constructs of Euclidean geometry
(Hofman, 1991). The cortical folding is due to the increase of the
surface area beyond that expected for geometrically similar objects
of different volumes (Jerison, 1982; Todd, 1984; Hofman, 1989).

In classical scaling theory, any series of similar objects show a
surface area proportional to the square of a length dimension,
whereas they showed a volume proportional to the cube (Gould,
1971). According to this geometric principle, also known as Galileo’s
principle of similitude (Thompson, 1915; Thompson, 1942; Armstrong
and Falk, 1982), the surface area is proportional to the two-thirds
power of volume:

area = k ∗ volume(2/3) (14)

with:

k = scaling constant;

2 = topological dimension of a surface;

3 = topological dimension of a volume.
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The equation 14 can be generalized in the form
area = k ∗ volume(D/3), where D is a general measure of the filled
space, and, for the cerebral cortex, assumes, experimentally,
fractional values (Fig. 9).

Figure 9: The total cortical surface area as a function of brain volume in
mammals. The dashed line represents the surface-volume relation
of a purely geometric objects: an Euclidean hemisphere where
area = 3.84(volume)

2
3 . The solid line in the standard major

axis (α = 0.90± 0.012), representing the surface-volume relation
for convoluted brains. Note that the cortical surface area of
species with convoluted brains (area > 10cm2), rather than being
proportional to 2/3 power of geometric similarity, is nearly a linear
function of brain volume (Hofman, 1991).

For a human brain, Hofman found experimentally D = 2.70
(Hofman, 1991). In general, D is a number that tells us something
about the overall structure and complexity of an object (Mandelbrot,
1982; Stanley and Ostrowsky, 1986; Morse et al., 1985). The empirical
area-volume relation, for example, found in (Hofman, 1991)
indicates that the cortical surface is partly space-filling and that its
surface area fractally evolves into a volume, or that its volume, by
fractal folding, attains the property of an area (Hofman, 1991).

Moreover, Hofman, in his work, generated a fractal object having A fractal model of
the brainthe form and the fractal dimension similar to those of a folded brain

(10). In a two-dimensional space, dividing the side of a regular
hexagon into three segments (N = 3) of length equal to four ninths
of the initial length (r = 4/9), the final attractor morphologically
resembles an axial view of the human brain. The self-similarity
dimension, applying the equation 3, is equal to
D = log 3/ log(9/4) = 1.3548. A similar procedure in 3D space, with
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a decahedron as initiator, yelds a fractal dimension equal to 2.7095, a
value very close to that computed experimentally (Hofman, 1991).

Figure 10: A fractal model of the mammalian brain (Hofman, 1991).

Free and others (Free et al., 1996) and Kiselev and others (Kiselev
et al., 2003), albeit using different algorithms to compute the 3D
fractal dimension of the cerebral cortex, confirmed that the human
brain shows fractal properties and that the fractal dimension is a
quantitative descriptor of cortical convolutions and could detect
morphological abnormalities and subtle global changes in the
folding structure associated with abnormal brain development and
neurodegeneration (Free et al., 1996; Kiselev et al., 2003).

2.1.2 The cerebral WM

Hofman has shown that also the WM, sharing the GM/WM
interface surface with the cerebral cortex, has itself fractal properties
(Hofman, 1991). Thereafter, other works confirmed the results,
analyzing either the GM/WM interface surface (Bullmore et al.,
1994; Cook et al., 1995; Sato et al., 1996; Free et al., 1996), the general
structure, or the skeleton of the WM (Zhang et al., 2006). To the best
of our knowledge, the latter (Zhang et al., 2006) is the first work that
analyzed, at the same time, the general structure, the contour and
the skeleton of the WM by the fractal analysis, asserting that
significant structural changes may occur also beneath the surface
(within the structure) (Zhang et al., 2006). They found a fractal
dimension value between 2 and 3 for each WM structure (general
strucure, contour and skeleton) in two groups of young and elder
healthy subjects, as we will detail in section 2.2.
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2.1.3 The cerebellar GM and WM

For the same reasons, also the cerebellum has fractal properties. A
few works in literature have analyzed the GM and WM of the
cerebellum by fractal analysis. Rybaczuk and Kedzia (Rybaczuk and
Kedzia, 1996; Rybaczuk et al., 1996) evaluated the cerebellum surface
complexity, by measuring the FD in adult and fetal brains, while Liu
et al. (Liu et al., 2003), since the shape of the cerebellar WM is well
represented by its skeleton, evaluated the fractal properties of the its
skeleton in 24 young and healthy subjects. They showed a mean
fractal dimension equal to 2.57, a fractional value between 2 and 3,
as for the cerebellar WM.

2.1.4 Theoretical and methodological issues

Fractals fulfil a certain number of theoretical and methodological
criteria including a high level of organization, shape irregularity,
functional and morphological self-similarity, scale invariance,
iterative pathways and a peculiar non-integer FD (Losa, 2014). The
application of these criteria inevitably leads to theoretical and
methodological issues, that the previous literature has tried to
overcome in very different ways. In this section, I will briefly present
some of these problems, so that the reader can better understand
previous studies concerning fractal analysis of the healthy and
diseased brain, as well as the need to deepen, understand and,
finally, harmonize fractal analysis in neuroimaging.

Whereas mathematical objects are deterministic invariant or Fractal scaling
windowself-similar over an unlimited range of scales, biological components

are statistically self-similar only within a fractal domain defined by
lower and upper limits, called fractal scaling window, in which the
relationship between the viewing scale and the measured size or
length of the object can be established (Losa and Nonnenmacher,
1996; Losa, 2014). Biological elements do indeed express statistical
self-similar patterns and fractal properties within a defined interval
of scales and this is because the size of the elementary constituents
of biological systems (cells) is not very different (in orders of
magnitude) from the size of a complete structure or organism.
Therefore, when the morphology of a biological fractal is
investigated under increasing magnification, the ‘increasing detail’
vanishes at some point in this process, and the geometry of the
structural components (cells, membranes, etc) becomes apparent
(Landini and Rigaut, 1997). In this so called fractal scaling window, a
direct relationship between the viewing scale and the measured
size/length of an object can be ascertained and in turn quantified by
a peculiar FD (Losa and Nonnenmacher, 1996). In other words, the
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fractal dimension of a biological component remains constant within
the fractal scaling window (Dollinger et al., 1998; Losa, 2002) and
serves to quantify variations in length, area or volume with changes
in the dimensions of the measuring unit (Losa, 2014).

In a certain number of reports (Blanton et al., 2001; Esteban et al.,The fractal scaling
window in

Neuroimaging
2007; Esteban et al., 2009; Ha et al., 2005; Kalmanti and Maris, 2007;
King et al., 2010; Madan and Kensinger, 2016; Mustafa et al., 2012;
Narr et al., 2004; Rajagopalan et al., 2013; Rajagopalan et al., 2019;
Sandu et al., 2008; Sandu et al., 2014a; Sheelakumari et al., 2017;
Squarcina et al., 2015; Thompson et al., 1998; Thompson et al., 2005;
Wu et al., 2009; Zhang et al., 2008), for a better understanding see the
sections 2.2 and 2.3, the fractal dimension was evaluated fitting a
regression line to all data points and determining the slope of this
line, without the scaling domain being established or, sometimes,
with only the lower bound scale shown on the loglog plot
(corresponding to the maximal resolution scale) being checked (Losa,
2014; Jelinek et al., 2005). In some works the linear region has also
been calculated by determining the local slopes: one method for this,
described by Caserta in 1995, is to calculate the n-points local slopes,
as the difference in logN(r) divided by log r for every n successive
points. The region in which the local slopes are constant is then
taken as the linear region (Caserta et al., 1995; Jelinek et al., 2005).
Another method to choose the fractal scaling window is to select
only a portion of the data points, fitting more than one regression
line to the data points and taking the average of several slopes along
the data points (Jelinek and Fernández, 1998). These methods are all
valid alternatives for estimating the fractal dimension, but may
result in different values (Jelinek and Fernández, 1998).

Another important problem is how the line of best fit is obtainedPoints not
uniformly

distributed in the
bi-logarithm plot

from the data to determine the slope and hence the fractal
dimension. In some works, the points are not uniformly spaced in
the bi-logarithm plot, because the authors have chosen to increase r
values, from rmin to rmax using the natural scale; since in that case
the linear regression model is built on an interval of points not
equally spaced in the logarithmic plot (and therefore with different
"weight" in the linear fitting), this is not an entirely trivial operation
(Russ, 1994). In more recent works, computing the fractal analysis
via the box counting algorithm, the boxes (cubes in 3D) sizes have
been scaled as a power of 2 and are therefore evenly spaced in the
bi-logarithm plane (Jelinek and Fernández, 1998).

The last issue we encounter concerns the choice of theGeneral structure,
contour or skeleton? shape/structure under consideration. The brain, for example, can be

studied in its general structure, the contour only or its skeletonized
shape. Even in this context, the fractal analysis will lead to different
results and, in particular, the previous literature showed that
skeletonised images had consistently lower fractal dimension values.
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The lower estimated fractal dimension values for skeletonised
images are a result of removing one of the main contributions to
image complexity, that is the border ruggedness and the space filling
effect of the cell interior (Jelinek and Fernández, 1998).

2.2 the fractal dimension of the healthy brain

The discovery of the fractal properties of the brain has given a series
of studies on the morphological complexity in healthy subjects. They
include the employment of the fractal dimension as a new index in
neuroimaging (Im et al., 2006; Goni et al., 2013), for the analysis of
morphological changes in the brain during the normal development
(Blanton et al., 2001; Sandu et al., 2014a) and aging (Kalmanti and
Maris, 2007; Madan and Kensinger, 2016; Zhang et al., 2007b;
Farahibozorg et al., 2015) and for the possible association between
brain morphological complexity and cognitive abilities (Mustafa
et al., 2012; Sandu et al., 2014b).

Im and colleagues in 2006 (Im et al., 2006) analyzed the fractal
properties of the GM cortical surface in 44 healthy subjects (mean
age ± standard deviation 26.4 ± 5.5 years), by means of the 3D
box-counting algorithm and demonstrated that the FD expresses a
quantitative estimate of gyrification, condensing in a single value the
sulcal depth, the frequency of folding, and the convolution of gyral
shape (Im et al., 2006). For example, a high value of FD could unveil
a thinner and more convoluted cortical surface.

A few years later, Goni and colleagues (Goni et al., 2013) have
investigated the reproducibility of the FD at varying some
parameters of the box-counting algorithm. They used two different
datasets consisting respectively of 50 healthy subjects aged 24± 3.2
years (3 sessions of scanning for each subject) and 24 healthy
subjects aged 57± 8.6 years (4 sessions of scanning for each subject).
They have shown how the value of FD of not ideal fractal structures
(e.g., the cortical ribbon, the WM volume, the pial surface and the
GM/WM interface surface) varies according to the positioning of the
origin of the exploratory grid. For this reason, they proposed the use
of a random offset on the origin of the grid and the repetition of the
procedure for 20 different random offsets. The average value of the
20 counts was proved to be a more stable and reproducible estimate
for the computation of the box-counting FD (Goni et al., 2013).

To the best of our knowledge, the FD of the brain has not yet been
studied at varying the the static magnetic field intensity B0. Still
there are no studies that investigated associations between the FD of
the cerebral end cerebellar WM and more traditional morphological
measures (e.g., volume, area, etc..).
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Let us focus on the use of FD as a potential marker of
morphological subtle changes both in the GM and WM during the
entire lifespan. Several works have shown that the GM corticalGM FD during the

lifespan complexity, as measured by different implementations of the FD,
consistently decreased with of age (Kalmanti and Maris, 2007; Sandu
et al., 2014a; Madan and Kensinger, 2016). Kalmanti et al., (Kalmanti
and Maris, 2007) found a significant negative correlation between
the 2D box-counting FD values and age, in a range spanning from 3

months to 78 years. The same results have been confirmed using a
3D box-counting algorithm. Indeed, Sandu and colleagues (Sandu
et al., 2014a) have found higher FD values in a group of 17 healthy
adolescents (aged 14.1± 0.27) than in a group of 17 healthy adults
(aged 24.24 ± 2.76), while Madan and Kensinger (Madan and
Kensinger, 2016) have shown a significant negative correlation
between the FD values of the cortical ribbon and age in 427 healthy
subjects aged from 20 to 86 (see Fig. 11). Blanton et al., (Blanton
et al., 2001), in a population of healthy children aged 6-16 years,
revealed a significant positive association between FD and age in
frontal regions, likely reflecting ongoing maturation processes such
as myelination and synaptic remodeling that continue into the
second decade of life.

The association between FD values and age from adulthood has
been analyzed also in the WM structure : the WM can be studied asWM FD during the

lifespan its general structure (the WM volume), the skeleton and the
boundary (the GM/WM interface surface) (Zhang et al., 2007b;
Farahibozorg et al., 2015). Zhang et al., demonstrated that the FD of
the general structure and the skeleton present significantly higher
values in a group of 24 healthy young subjects, aged 17-35

(27.7± 4.4) compared with those calculated for a group of 12 healthy
old subjects, aged 72-80 (74.8 ± 2.6) (Zhang et al., 2007b).
Farahibozorg et al., studied 209 healthy subjects aged 20-80 years
(49.31 ± 15.5) extracted from the IXI (“Information eXtraction from
Images”) database (http://brain-development.org/ixi-dataset/).
They found an increase of FDs of the general structure and the
skeleton from young to mid-age, and a faster decrease from mid-age
to the old (see Fig. 12) (Farahibozorg et al., 2015).

The fractal dimension of the WM was also studied in relation to
cognitive functions in a sample of healthy subjects belonging to the
"Aberdeen 1936 Birth Cohort" dataset. Mustafa and colleagues
(Mustafa et al., 2012) studied the WM in 217 healthy subjects aged
68 years and they found that individual differences in fractal
measures of the brain are significantly associated with lifelong
cognitive changes and independent of the influence of sex and WM
volume. They have proposed the fractal measures (complexity) as a
descriptor of structural maturation. In fact, subjects with greater
brain complexity have greater fluid abilities than would be expected

http://brain-development.org/ixi-dataset/
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Figure 11: Fractal dimension for the individuals in the IXI dataset. Panel
A shows the scatter plot of age and FD for the cortical ribbon,
along with the correlation and slope. Scatter plots of age and FD
for each lobe, are shown in panel B, along with the respective
correlations and slopes (Madan and Kensinger, 2016).
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Figure 12: Patterns of changes of the general, skeleton, and boundary
fractal dimensions (FDs) of the whole brain and left and right
hemisphere with age (years). The black point sets represent the
actual data points; the solid fit curves are the polynomials as
detected by Akaike InformationCriterion model selection and
fitted by polyfit.m function in MATLAB (Farahibozorg et al.,
2015).
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from childhood intelligence measures and smaller estimated decline
at age 68 years (Mustafa et al., 2012). The same sample of subjects
has been used in another longitudinal study by Sandu et al., (Sandu
et al., 2014b). They studied 245 healthy subjects aged 68 years and
148 of these have been re-analyzed after five years. They showed that
FD values significantly decrease between 68 and 73 years old
subjects and that greater WM complexity was associated with
retention of cognitive ability across the life course and individual
differences in ability in late life. They finally suggested that "FD is a
measure of resilience to cognitive decline and those with less structural
complexity may be more vulnerable to cognitive decline, mild cognitive
impairment and dementia” (Sandu et al., 2014b).

2.3 the fractal dimension of the diseased brain

The application of fractal analysis of MRI in patients with
neurological diseases has provided results of potential diagnostic
significance. In particular, the FD has been shown to be more
accurate than other methods (e.g., volumetric voxel-based
morphometry) for the detection of morphological changes in several
diseases and for identifying different clinical phenotypes (Di Ieva
et al., 2015).

Wu and colleagues (Wu et al., 2009) showed the effectiveness of Fetal subjects

FD in assesing normal and abnormal maturation of cortical
development in 44 MR images of fetal subjects ranging from 22 to 36

weeks of gestational age (GA). They showed that the increase of
cortical complexity is highly correlated with fetal developing weeks
of GA, with a more rapid FD increase after 28 weeks of GA, because
of faster development of convolved folds, while both the twins and
subjects with cortical dysplasia presented a lower FD than that in
normal cases (Wu et al., 2009). Similar results have been figured out
by De Luca et al., who proved that fractal indices are able not only to
characterize the alterations induced by malformation of cortical
development, but also to distinguish the healthy tissue of pathologic
brains from the malformed areas (De Luca et al., 2016).

Thompson and colleagues compared 42 subjects with genetically William syndrome

confirmed William Syndrome (WS) and 40 age-matched healthy
controls, with traditional and fractal morphological analysis. The
WS is a genetic disorder caused by the deletion of about 27 genes
from the long arm of one of the two chromosome 7s. While in WS
cortical thickness was increased by 5-10 % only in a circumscribed
right hemisphere perisylvian and inferior temporal region, the
surface complexity was significantly increased in the overall
cerebrum (Thompson et al., 2005).

Other authors revealed changes of cortical folding in patients with Schizophrenia

schizophrenia (SCZ), which were not evident with conventional MRI
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morphometric methods (Di Ieva et al., 2015). Sandu and colleagues
used MRI data of 7 patients with SCZ and 6 healthy subjects. They
showed that patients had larger FD values for the whole brain and
right hemisphere than controls (Sandu et al., 2008). Since the value
was reduced in patients, they supposed that loss of brain tissue most
likely resulted in a shrinking of the pial surface with an increase in
cortical microfoldings. The same results have been figured out by
Narr et al., (Narr et al., 2004), who examined gyral complexity in 50

patients experiencing their first episode of schizophrenia compared
with 50 demographically matched healthy comparison subjects.
They found that male patients were shown to exhibit significant
increases in gyral complexity in right superior frontal cortices,
compared with healthy male subjects. Different results have been
obtained by Ha et al., (Ha et al., 2005) and Squarcina et al.,
(Squarcina et al., 2015). The formers computed the 3D FD of
skeletonized cerebral cortical surface of 50 patients with
schizophrenia, 45 patients with obsessive-compulsive disorder
(OCD) and 26 healthy normal controls. They found that the
schizophrenic group had a significantly smaller mean FD than OCD
group, and the OCD group smaller than the control group. It should
be noted that the brain FD reflecting cortical complexity or pattern
did not correlate with any of tissue volume measures in controls and
schizophrenics, suggesting that 3D FD of cortical surface may be a
sensitive index for the investigation of the structural brain
abnormalities in mental disorders, especially those developmentally
disturbed. In recent years fractal analysis has been used to
distinguish groups of schizophrenics with different symptoms
(Nenadic et al., 2014) and to assess morphological abnormalities of
subcortical GM (Zhao et al., 2016). Nenadic and colleagues (Nenadic
et al., 2014) analyzed a sample of 87 patients with DSM-IV
schizophrenia, divided into three subgroups based on sympton
profiles and each group was compared with 108 matched healthy
controls. Their findings suggest that regional heterogeneity of
cortical folding complexity might be related to biological subgroups
of schizophrenia with differing degrees of altered cortical
development pathology. With regard to morphological abnormalities
of subcortical structures, although we believe that fractal analysis is
not adequate to describe such regular and smooth forms, Zhao et al.,
(Zhao et al., 2016) found a significant reduction of FD in left
hippocampus, the right hippocampus as well as left thalamus, in 19

schizophrenia patients, as compared to 19 healthy individuals.
Traumatic brain injury (TBI) is a major cause of death andTraumatic brain

injury disability worldwide, especially in children and young adults.
Rajagopalan and colleagues analyzed 17 individuals with moderate
to severe TBI and 13 healthy controls with traditional morphological
analysis (i.e., whole brain WM volume, GM volume, cortical
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thickness, cortical area), diffusion tensor imaging (DTI) metrics and
fractal analysis (Rajagopalan et al., 2019). Only the FD was
significantly different (lower) between the TBI group and healthy
subjects. No other significant difference in either whole brain WM
volume, GM volume, cortical thickness, cortical area or DTI-derived
metrics was observed in any of the brain regions between TBI and
healthy controls. In addition, WM FD accounted for a significant
amount of variance in executive functioning and processing speed,
measured by a neuropsychological test battery sensitive to cognitive
impairment associated with TBI.

It has been demonstrated that changes in both WM (Esteban et al., Multiple sclerosis

2007) and GM (Esteban et al., 2009) are well characterized by the FD
in MRI scans of patients with multiple slerosis (MS). Esteban and
colleagues showed that FD allows to detect some fundamental
differences in brain architecture, providing a global measurement of
morphological changes induced by neurological diseases such as MS
(Esteban et al., 2007). Indeed, WM (including the normal appearing
WM) FD is decreased in patients with MS, both at the GM/WM
boundary (WM border) and at the internal structure of the WM
(WM skeleton) of the entire brain. Although lesions involving the
WM are well recognized in MS disorder, recent studies have
indicated extensive damage of the GM in MS, including microglia
activation, cortical demyelination, and axonal, synaptic, and
neuronal loss. Two years later, Esteban et al., found that patients
with MS had a significant increase in the FD of the cerebral GM
compared to controls and that this alteration appears early in the
course of the disease (Esteban et al., 2009).

Another kind of sklerosis, the amyotrophic lateral sclerosis (ALS), Amyotrophic lateral
sclerosisalso known as motor neuron disease due to the death of neurons

controlling voluntary muscles, has been deepened by Rajagopalan et
al., using both voxel based morphometry (VBM) and fractal analysis
applied on WM structures (skeleton, surface and general structure)
(Rajagopalan et al., 2013). No significant VBM WM changes were
observed between ALS patients and controls and among the ALS
subgroups. In contrast, significant FD reductions in skeleton and
general structure were observed between ALS with dementia and
other ALS subgroups. Their results suggest that WM shape
complexity is more sensitive to ALS disease process when compared
to VBM analysis and that FD changes are dependent on the ALS
phenotype. The correlation analysis between FD and clinical
measures suggests that FD could potentially serve as a biomarker of
ALS pathophysiology.

The fractal dimension has been also used to describe the changes in Stroke

WM complexity in patients with stroke. A lower FD value, indicating
a reduced WM complexity, has been detected in the stroke-affected
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hemisphere, while no significant correlations were observed when
motor function was related to lesion volume (Zhang et al., 2008).

Dementia is the loss of cognitive functioning—thinking,Dementia

remembering, and reasoning—and behavioral abilities to such an
extent that it interferes with a person’s daily life and activities.
Different types of dementia exist. The fractal analysis has been
applied to the most frequent type of dementia, i.e., the Alzheimer’s
disease (AD) (Thompson et al., 1998; King et al., 2009; King et al.,
2010) and to the frontotemporal dementia (FTD) (Sheelakumari et al.,
2017).

The Alzheimer’s disease has been broadly investigated viaAlzheimer’s disease

traditional morphometry analysis (King et al., 2010; Di Ieva et al.,
2015). Only a few studies have quantified the brain complexity in
patients with AD using fractal analysis (Thompson et al., 1998; King
et al., 2009; King et al., 2010). In the first work, King et al., used a
small sample of AD patients (n=15) and healthy subjects (n=15),
taken from the public "Alzheimer’s Disease Neuroimaging
Initiative" (ADNI) database (King et al., 2009). They showed that the
mean FD of the cortical ribbons from AD patients was lower than
age-matched controls, demostrating that FD is complementary to
volumetric measures and may assist in identifying disease state or
disease progression. Moreover, in a second study containing more
subjects from ADNI database, the FD has been computed for three
cortical models (the pial surface, GM/WM surface and entire cortical
ribbon) (King et al., 2010). The fractal dimension of the cortical
ribbon and GM/WM surface showed highly significant differences
between AD patients and healthy controls, while no significant
difference between the two groups was found in the pial surface. As
figured out in previous works (Im et al., 2006; King et al., 2009), the
FD is complementary to other morphological metrics and all three
models had a significant positive correlation with the cortical
gyrification index (r=0.55, p<0.001). Only the cortical ribbon had a
significant correlation with cortical thickness (r=0.832, p<0.001). In
addition, the cortical ribbon FD showed a larger effect size (d = 1.12)
in separating control and mild AD subjects than cortical thickness
(d=1.01) or gyrification index (d=0.84) (King et al., 2010).

Frontotemporal dementia is a young-onset dementia with focalFrontotemporal
dementia atrophy of frontal and anterior temporal lobes leading to

characteristic change in personality and social conduct. The three
clinical syndromes include the most common frontal variant of FTD
(bvFTD) and two language variants: semantic dementia (svPPA) and
progressive nonfluent aphasia (nfvPPA) which is collectively known
as primary progressive aphasia (PPA) (Sheelakumari et al., 2017).
Sheelakumari and colleagues investigated the GM (skeleton, surface
and general structure) morphometric abnormalities in the behavioral
variant FTD (bvFTD) and primary progressive aphasia (PPA)
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(Sheelakumari et al., 2017). They found that patients with bvFTD
had a significant reduction in FD values of the skeleton and general
structure when compared to controls. In PPA, a more significant
decrease in FD was noted in the whole brain and left hemisphere
skeleton along with the left hemisphere general structure.

Multiple system atrophy of the cerebellar type (MSA-C) is a Multiple system
atrophydegenerative neurological disease of the central nervous system. The

FD analysis of MRI scans using the box-counting method has been
demonstrated to be superior to conventional volumetric methods
(i.e., fractal analysis produces smaller variances and less gender
effect); patients with MSA-C exhibited significantly lower FD values
in both cerebellar WM and GM, suggesting a degeneration of the
cerebellar structure (Wu et al., 2010; Di Ieva et al., 2015).

Also in the case of literature dealing with neurological diseases,
fractal analyses often differ in the method used, algorithmic
implementation and parameters, leading to results, although
potentially useful, not directly comparable.

The message we can get from the previous literature on fractal
analysis in neurological diseases is that, regardless of the actual
calculation of the fractal dimension, fractal analysis is often stronger
and more accurate in the morphological description of brainnas
compared to traditional morphological indices.
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T H E A U T O M AT E D S E L E C T I O N O F T H E F R A C TA L
S C A L I N G W I N D O W

In this chapter, we will present an optimized approach for the
computation of the fractal dimension of brain structures. In
particular, we have focused on the selection of the fractal scaling
window, in which the object under examination can be defined as
fractal. In the first part of the chapter, a procedure to automatically
select the fractal scaling window will be shown; in the second part,
the software implementation will be presented.

As we have already figured out in section 2.1.4, mathematical
fractal objects are self-similar over an unlimited range of spatial
scales. On the contrary, natural objects, including the human brain,
exhibit this property over a limited spatial range only. This fractal
domain is defined by upper and lower limits, called fractal scaling
window and it is the range in which the relationship between the
viewing scale and the measured size can be established (Losa and
Nonnenmacher, 1996; Losa, 2014).

Previous works (Kiselev et al., 2003; Goni et al., 2013; Madan and
Kensinger, 2016) suggested to select a priori the range/interval of
spatial scales of the fractal scaling window. In particular, Kiselev et
al., analyzing the cerebral cortex of 6 healthy subjects, set the superior
limit of the spatial scales equal to the brain size and their results
suggested to set the inferior limit to 3 mm, corresponding reasonably
well to the cortical thickness (Kiselev et al., 2003). Still, Goñi et al.
calculated the FD of the pial surface, the segmented cortical ribbon
and the WM volume extracted from MR T1-weighted images. They
chose an a priori fractal scaling window range within 5 - 40% of the
smallest Euclidean dimension of the object under examination (Goni
et al., 2013). These choices might be all valid alternatives, but, to the
best of our knowledge, nobody really knows the exact fractal scaling
window of the brain for a given subject. The employment of a range
of spatial scales selected a priori seems quite arbitrarily and may also
impact on the FD values.

For these reasons, we propose an improved box-counting algorithm
with automated selection of the fractal scaling window (Marzi et al.,
in preparation).

3.1 methods

The 3D
box-counting
algorithm

Let I(x,y, z) be a binary image, e.g., the segmentation of the cortical
ribbon mask; the fractal dimension of I(x,y, z) is calculated through

31
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the 3D box counting algorithm (Russell et al., 1980): a grid
containing 3D cubes of side r is superimposed on I(x,y, z), and the
number of boxes (cubes) N(r) needed to fully cover the object is
counted. The procedure is repeated for various r values (Fig. 13); in
order to prevent the systematic influence of the grid placement on
the object contained in I(x,y, z) (Falconer, 2004; Feder, 1988;
Barnsley, 1988), for each r, 20 uniformly distributed random offsets
were applied on the grid origin and all the box counts (one for each
offset) have been averaged to obtain a single N(r) value (Goni et al.,
2013). If I(x,y, z) is a fractal object, the data points of N(r) versus r
in a log-log plane may be well modeled by a linear function, whose
slope (with a negative sign) represents the FD (Mandelbrot, 1982).
This linear relationship in the log-log plane corresponds, in the
natural scale, to a power law N(r) = k ∗ r−FD, where FD is the
exponent (with a negative sign) and k has been denoted as prefactor
by Mandelbrot (Mandelbrot, 1982). Since the linear regression is
computed in a log-log plane, the box counting algorithm was
executed using a uniform sampling of the spatial scales in the
log-log plane, which corresponds to an exponential sampling in the
natural scale, i.e., using r = 2k mm, with k = [0, 1, ...,kmax], where
kmax is the exponent value to obtain the maximum image size; e.g.,
k = 8 for a 256x256x256 image size.

(a) (b)

Figure 13: In the box counting algorithm, a grid containing 3D cubes of side
r is superimposed on the segmented brain portion (cerebral GM,
cerebral WM, cerebellar GM and cerebellar WM) and the number
of boxes (cubes) needed to fully cover the object is counted. This
procedure is repeated for various r values uniformly distributed
in a logarithmic scale (r = 2k voxels, where k = 0, 1, ..., 8). In
panels (a) and (b), an example of the superimposition of the 3D
grid using a small (r = 32 mm) and a large (r = 64 mm) r size is
shown, respectively (Marzi et al., 2018a).

The automated
selection of the
fractal scaling

window

As we have already mentioned above, in general, the range of
spatial scales in which a structure manifests fractal properties is
limited and unknown a priori. For this reason, we propose an
automated selection of spatial scales where I(x,y, z) manifests its
fractal properties, based on the identification of the range of r values
where the linear regression shows the highest coefficient of
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determination (adjusted for the number of data points) R2adj, as a
goodness-of-fit indicator.

R2adj = 1−

[
(1− R2) ∗ n− 1

n− j− 1

]
(15)

with:

R2 = coefficient of determination;

n = total number of points;

j = number of points used for the linear regression model.

The coefficient of determination R2 has been chosen as a
goodness-of-fit indicator because it describes the proportion of
variance in the dependent variable, i.e. the counts N(r), that is
predictable from the independent variable, i.e. the measurement size
r. Moreover, we computed the coefficient of determination adjusted
for the number of point, R2adj, because it takes into account the
phenomenon of the R2 increasing when the sample size of the
explanatory variable increases.

To this purpose, the algorithm carries out the linear regression for
each combination of minimum and maximum spatial scales allowed.
We considered a minimum number of 4 data points, because it is
reasonable to suppose that a window containing less than 4 points
in the log-log plane (one of the worst cases is 3 points between 1 (i.e.
20) and 4 (i.e. 22) and so less than half decade) seems too short to
define I(x,y, z) a fractal object, which is described by the
self-similarity property varying the spatial scale of observation (Losa
and Nonnenmacher, 1996; Mandelbrot, 1998). Once the inferior and
superior limits of the spatial scales range has been chosen
automatically by the algorithm, the FD is computed as the absolute
value of the slope of the regression line estimated within the selected
spatial scales.

3.2 grey and white matters segmentation

As we have already mentioned in section 3.1, the fractal analysis
proposed has been designed for binary images. For this reason, to
perform fractal analysis on GM and/or WM. A preliminarly
segmentation is required. We chose the software FreeSurfer, which is
documented and freely available for download online
(http://surfer.nmr.mgh.harvard.edu/). The technical details of these
procedures are described in prior publications (Dale et al., 1999;
Dale and Sereno, 1993; Fischl and Dale, 2000; Fischl et al., 2001;
Fischl et al., 2002; Fischl et al., 2004a; Fischl et al., 1999a; Fischl et al.,
1999b; Fischl et al., 2004b; Han et al., 2006; Jovicich et al., 2006;

http://surfer.nmr.mgh.harvard.edu/
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Segonne et al., 2004; Reuter et al., 2010; Reuter et al., 2012). Briefly,
this processing includes motion correction and averaging (Reuter
et al., 2010) of multiple volumetric T1-weighted images (when more
than one is available), removal of non-brain tissue using a hybrid
watershed/surface deformation procedure (Segonne et al., 2004),
automated Talairach transformation, segmentation of the subcortical
white matter and deep gray matter volumetric structures (including
hippocampus, amygdala, caudate, putamen, ventricles) (Fischl et al.,
2002; Fischl et al., 2004a); intensity normalization (Sled et al., 1998),
tessellation of the GM/WM boundary, automated topology
correction (Fischl et al., 2001; Segonne et al., 2007), and surface
deformation following intensity gradients to optimally place the
GM/WM and GM/cerebrospinal fluid (CSF) borders at the location
where the greatest shift in intensity defines the transition to the
other tissue class (Dale et al., 1999; Dale and Sereno, 1993; Fischl and
Dale, 2000). Once the cortical models are complete, a number of
deformable procedures can be performed for further data processing
and analysis including surface inflation (Fischl et al., 1999a),
registration to a spherical atlas which is based on individual cortical
folding patterns to match cortical geometry across subjects (Fischl
et al., 1999b), parcellation of the cerebral cortex into units with
respect to gyral and sulcal structure (Desikan et al., 2006; Fischl
et al., 2004b), and creation of a variety of surface based data
including maps of curvature and sulcal depth. This method uses
both intensity and continuity information from the entire 3D MR
volume in segmentation and deformation procedures to produce
representations of cortical thickness, calculated as the closest
distance from the GM/WM boundary to the GM/CSF boundary at
each vertex on the tessellated surface (Fischl and Dale, 2000). The
maps are created using spatial intensity gradients across tissue
classes and are therefore not simply reliant on absolute signal
intensity. The maps produced are not restricted to the voxel
resolution of the original data thus are capable of detecting
submillimeter differences between groups. Procedures for the
measurement of cortical thickness have been validated against
histological analysis (Rosas et al., 2002) and manual measurements
(Kuperberg et al., 2003; Salat et al., 2004). Also, FreeSurfer
morphometric procedures have been demonstrated to show good
test-retest reliability across scanner manufacturers and across field
strengths (Han et al., 2006; Reuter et al., 2012).

In all the analyses shown in this thesis, cortical reconstruction and
GM/WM surfaces were manually inspected for defects. The
correction techniques suggested by FreeSurfer developers, including
editing of brain mask and WM and adding control points and
rerunning of the FreeSurfer pipeline (https://surfer.nmr.mgh.
harvard.edu/fswiki/FsTutorial/TroubleshootingData) were applied

https://surfer.nmr.mgh.harvard.edu/ fswiki/FsTutorial/TroubleshootingData
https://surfer.nmr.mgh.harvard.edu/ fswiki/FsTutorial/TroubleshootingData
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more than one time to assure that all defects were corrected. All
views (coronal, sagittal, and axial) were used to confirm
segmentation and surfaces reconstruction errors. Cerebellum
segmentations were manually edited using a free-hand pencil using
the Freeview utility, part of FreeSurfer suite.

3.3 the software implementation

One of the purposes of this thesis dissertation is the numerical
implementation of the methods for computing the FD with the
automated selection of the fractal scaling window. The block
diagram represented in Fig. 14 shows the processing required to
calculate the FD of a binary structure using a T1-weighted MR
image of the human brain.

The box counting algorithm has been implemented on a Mac
notebook (equipped with a dual-core Intel Core i7 processor, 16 GB
of RAM memory). The code has been written in C++ language,
using the ITK (Insight Segmentation and Registration Toolkit) image
processing libraries (Ibanez et al., 2003). The linear regression with
the automated selection of the fractal scaling window has been
implemented in MATLAB R2014b, The Mathworks, Inc., Natick,
Massachusetts. The C++ and Matlab programs have been interfaced
with Bash scripts.

All experimental activities on phantoms and in-vivo and ex-vivo
datasets as described in details in section 3.4) were performed on a
Dell PowerEdge T620 platform equipped with two 8-core Intel Xeon
E5-2640 v2, for a total of 32 CPU threads and 128 GB of RAM, using
the Oracle Grid Engine parallel computing system.

3.3.1 The box-counting algorithm

The proposed box counting method is divided into three main
sections:

1. setting the parameters for the execution of the box-counting
algorithm;

2. execution of the box counting procedure;

3. generation of the output results.

In the first section, we determine the conditions under which the
procedure will be executed, such as the choice of the number of the
random positions (offsets) that the origin of the grid must assume
(see section 3.1). The algorithm is implemented for isotropic binary
3D images.

The second section of the algorithm foresees the actual execution of
the box-counting method for calculating the FD as defined in section
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Figure 14: Architecture of the improved box-counting algorithm with
automated selection of the fractal scaling window. In the dashed
ellipsoid an example of 3D binary image starting from cerebral
MR image.

3.1. The vector of the r values (i.e., the length of the grid cube side) is
generated starting from the smallest observation window (i.e., r = 1

voxel) up to the maximum number of voxels contained in each axis,
using an uniform sampling of the spatial scales in the log-log diagram
(i.e., r = 2k, with k = [0, 1, ...,kmax], where kmax is the exponent
value to obtain the maximum image size; e.g. k = 8 for a 256x256x256

image size). Since the user can choose the number of random offsets
for positioning the origin of the exploration grid, the algorithm is
able to calculate the mean values of all counts carried out for each r,
indicated with N_FD_ave.

The last section of the algorithm collects the results in a text file
containing the r values and the corresponding counts performed
(N_FD_ave). The text file containing the results of the box counting
method implemented in C++ language, it is then processed by an
algorithm written in Matlab environment, as we will see in the
following section.

3.3.2 The automated selection of the fractal scaling window

The counts calculated using the box-counting method are processed
in Matlab environment to obtain the FD value as the slope (in
absolute value) of the best linear regression line in the log-log plot.
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The use of Matlab environment has allowed to easily represent the
results both in a numerical and in a graphical form, for quality
control. The linear regression model has been built by minimizing
the error between the experimental points and the model using the
least squares method. The choice of the spatial range in which the
linear regression is performed can be manual or automated. In the
former case, the user chooses the lower and upper value of the
spatial range of interest. In the latter case, the linear regression
algorithm is able to automatically determine the range of points
where the object manifests optimal fractal properties, by maximising
the value of the coefficient of determination R2adj(corrected for the
number of points on which it is performed) (see equation 15),
estimated for all possible combinations of intervals, containing at
least a specified number of data points (see section 3.1).
Data and parameters used as inputs of the linear regression
algorithm are the following:

• datafile: a text file containing the results of the C++
box-counting algorithm described above (see section 3.3.1);

• minWindowSize: the minimum number of data points of the
fractal scaling window; minWindowSize should be > 4;

• stepWindowSize: the number of points of the increment of the
fractal scaling window in the forthcoming iteration;

• mfs (minimal fractal scale): the lower bound of the fractal
scaling window;

• Mfs (maximal fractal scale): the upper bound of the fractal
scaling window;

In the case mfs and Mfs parameters are set to "[]", the choice of
the range on which the linear regression is computed, is automatic;
otherwise, the linear regression is performed only within that range
defined a priori.

Once the linear regression of the selected data has been performed,
the algorithm produces the following results:

• sel_mfs: the lower limit of the fractal scaling window
automatically chosen for the calculation of the linear
regression;

• sel_Mfs: the upper limit of the fractal scaling window
automatically chosen for the calculation of the linear
regression;

• FD: the fractal dimension, obtained as the absolute value of the
slope of the linear regression line;
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(a) (b) (c) (d) (e) (f)

Figure 15: Synthetic volumetric images used to assess the accuracy in the
measurement of FD of our improved 3D box counting algorithm
with the automated selection of fractal scaling window; a) a filled
cube and its surface, b) a sphere, c) the fractal pyramid, d), e) and
f) are the 1-level, 2-level and 4-level, respectively, of the Menger
sponge.

• Pref : the value of intersection of the regression line with the
axis of the ordinates;

• R2adj: the coefficient of determination, adjusted for the number
of points on which the regression has been performed. R2adj has
been adopted to express the goodness of the fit in the selected
fractal scaling window;

• EvaluateCounter: number of iterations performed, i.e. equal to
the number of intervals in which the regression model was
calculated.

3.4 validation

3.4.1 Phantoms

To assess the accuracy in the measurement of FD of our improved
3D box counting algorithm with the automated selection of fractal
scaling window, the proposed implementation has been applied to
five binary synthetic volumetric images including three 3D Euclidean
and two 3D fractal objects: a cube, the surface of the same cube, a
sphere, the fractal pyramid and the Menger sponge (Fig. 15).

In details:

1. a filled cube of size 128x128x128 voxels (image size 256x256x256

voxels);

2. the surface of the same cube;

3. a sphere with a diameter of 200 voxels (Madan and Kensinger,
2016);

4. the fractal pyramid: a 3D fractal object, based on a square
pyramid, where each square pyramid is replaced by 5 half-size
square pyramids. This procedure can be iteratively repeated
for each of the sub-square pyramid, theoretically producing a
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structure with infinite surface area, but zero volume. Here we
constructed:

a) a 6-level fractal pyramid (image size 256x256x256 voxels);

5. the Menger sponge: a 3D fractal object, based on a cube, where
the cube is divided into a 9×9×9 grid and the middle sub-cubes
from every face are removed, as well as the center-most
sub-cube. Thus, of the 27 sub-cubes (i.e., 93), only 20 remain.
This procedure can be iteratively repeated for each of the
sub-cubes, theoretically producing a structure with infinite
surface area, but zero volume. A cube can be considered a
zero-level Menger sponge (Madan and Kensinger, 2016). Here,
we used three Menger sponges:

a) a 1-level Menger sponge with a width of 200 voxels
(Madan and Kensinger, 2016);

b) a 2-level Menger sponge with a width of 200 voxels
(Madan and Kensinger, 2016);

c) a 4-level Menger sponge with a width of 200 voxels
(Madan and Kensinger, 2016);

The filled cube, the cube surface and the sphere are non-fractal
objects; their theoretical Hausdorff-Besicovitch dimension is equal to
their integer topological dimension, i.e., 3 for the cube and the
sphere and 2 for the cube surface. On the other hand, the analytical
Hausdorff-Besicovitch dimension of the fractal pyramid is
log2 5 = 2.3219 and for the Menger sponge is equal to log3 20 = 2.72.

Table 1 shows that FD values computed using the automated
selection of spatial scales were very similar to the theoretical
Hausdorff-Besicovitch dimension, proving that the proposed
algorithm allows an accurate measurement of FD within an absolute
value of the percentage relative error < 7% . The coefficients of
determination R2adj were very close to 1, demonstrating the excellent
fit of the regression lines using the automated selection of spatial
scales in the log-log plot.

3.4.2 Healthy subjects

In this section, we aimed at evaluating in-vivo the effect of different
criteria in the selection of the interval of fractal spatial scales in the
FD estimation of the cerebral cortex in T1-weighted MR images. For
the validation of our algorithm (see section 3.1) and for the
investigation of the healthy brain development and aging, we
employed two public and international MRI datasets for a total of
163 healthy subjects, aged between 6 and 85 years.
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Table 1: Theoretical Hausdorff-Besicovitch FD and FD measured through
the algorithm using automated selection of spatial scales. Adjusted
coefficients of determination R2adj are also reported, showing the
excellent fit of the regression lines in the log-log plane.

Synthetic Hausdorff-Besicovitch Measured Absolute percentage
R2adj

structure FD FD relative error (%)

Cube 3 2.9226 2.58 0.9999

Cube surface 2 1.9994 0.03 1.0000

Sphere 3 2.93 2.33 0.9999

6-level
2.32 2.2827 1.69 0.9999

fractal pyramid

1-level
2.73 2.92 6.96 0.9999

Menger sponge

2-level
2.73 2.84 4.03 0.9997

Menger sponge

4-level
2.73 2.56 6.22 0.9999

Menger sponge

We compared four different strategies for the selection of the
fractal scaling window, in which the human brain exibits fractal
properties. The first two strategies have been taken from previous
works (Kiselev et al., 2003; Goni et al., 2013; Madan and Kensinger,
2016), that suggested to select a priori the interval of spatial scales of
the boxes. In particular, Kiselev et al., set the superior limit of the
spatial scales equal to the brain size and the inferior limit equal to 3

mm, corresponding reasonably well to the cortical thickness (Kiselev
et al., 2003). Also, Goñi et al., choose a range of the box sizes within
5-40% of the smallest Euclidean dimension of the object under
examination (Goni et al., 2013). The third strategy is the completely
automated selection of both maximum and minimum fractal spatial
scales within which the cerebral cortex manifests the highest
self-similarity. The last strategy is a mixed approach using an
automated selection of the maximum fractal scale only. The existence
of a minimum fractal scale reflects the fact that, at increasing the
magnification, the effect of increasing detail (as occurs for pure
fractals) may vanish because the morphology of the constituent
elements, such as, neuronal cells, becomes evident (Landini and
Rigaut, 1997). Therefore when the morphology of a biological fractal
is investigated under increasing magnification, the ‘increasing detail’
vanishes at some point in this process, and the geometry of the
structural components (cells, membranes, etc) becomes apparent
(Landini and Rigaut, 1997). However, it is not conceivable that this
effect may be relevant at the typical resolution of high-resolution
T1-weighted MRI, i.e., 1 mm, and above. In addition, the goodness
of the regression fit is generally very high and thus, the selection of
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the fractal scaling window on the basis of a goodness of the
regression fit index may be sensitive to noise (little changes in the
data may produce very small changes (e.g., in the 4 or 5 decimal
place of R2adj), but may drive the selection of the interval of scales.
For both reasons, we submit the hypothesis that the minimal fractal
scale could be reasonable fixed to the maximum possible resolution,
i.e. 1 mm, enabling the automated selection of fractal scaling
window to automatically choose the maximum fractal scale only.

To determine which method for the selection of the fractal spatial
scales gives better predictions, we used both a Pearson correlation
analysis and an age prediction assessment through a machine
learning approach based on ElasticNet regression in a nested
cross-validation (CV) loop. In particular, we fitted a separate
regression model for each FD estimate strategy in order to choose
the best predictive model (i.e., the strategy for selection of the
interval of fractal spatial scales which gives the most predictive FD
estimates).

3.4.2.1 Methods

datasets

We adopted the scans collected by two public and international
datasets.

The first dataset is the "Nathan Kline Institute - Rockland Sample
Pediatric Multimodal Imaging Test-Retest Sample" (NKI2) dataset
(available at
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_2.html).

The second dataset has been collected by the International
Consortium for Brain Mapping (ICBM). It belongs to the 1000

Functional Connectomes Project (freely accessible at
http://fcon_1000.projects.nitrc.org/), which has been proposed for
the purpose of providing the broader imaging community complete
access to a large-scale functional imaging dataset.

Demographic information and MRI examinations protocols for
both datasets are shown in Table 2.

cerebral cortex segmentation

Each T1-weighted image was pre-processed and segmented using
FreeSurfer image analysis suite v. 5.3 (see section 3.2 for a detailed
description), in order to extract a binary representation of the
cerebral cortex for each subject. After the cortical segmentation, the
mean cortical thickness of each hemisphere was automatically
estimated. The mean value between left and right mean cortical
thickness is an estimate of the global mean cortical thickness.

http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_2.html
http://fcon_1000.projects.nitrc.org/
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Table 2: Demographic information and MRI examinations protocols

NKI2 ICBM
Allen Brain

Human Atlas

Available at

http:
//fcon_1000.projects.
nitrc.org/indi/CoRR/

html/nki_2.html

http://fcon_1000.
projects.nitrc.org/

http:
//human.brain-map.

org/mri_viewers/data

Demographic information

N (M/F) 73 (43/30) 86 (41/45) 7 (5/2)

Age (years)

mean ± standard
deviation (range)

11.8 ± 3.1 (6 - 17) 44.2 ± 17.1 (19 - 85) 41.4 ± 10.9 (24 - 55)

MRI examination

Field strength 3 3 3

In-plane resolution
(mm)

1 1 1

Slice thickness (mm) 1 1 1

Futher details Nooner et al., 2012

Mazziotta et al., 2001a;
Mazziotta et al., 2001b

http:
//help.brain-map.org/
display/humanbrain/

Documentation

fractal analysis

Thus, we have calculated the FD of the cerebral cortex of each
subject belonging to the NKI2 and ICBM datasets by using our
improved 3D box counting algorithm (see section 3.3) with four
different parameters configurations:

1. Strategy A priori # 1: a priori spatial scales range, as suggested by
Kiselev et al., (Kiselev et al., 2003):

mfs = 3 mm (a typical value of cortical thickness)

Mfs = 25 cm (head size)

2. Strategy A priori # 2: a priori spatial scales range, as suggested by
Goñi et al., (Goni et al., 2013):

mfs = 5% of the smallest Euclidean dimension of the object

Mfs = 40% of the smallest Euclidean dimension of the
object

3. Strategy Automated Min and Max: a completely automated
selection of both the mfs and Mfs;

4. Strategy Automated Max: a mixed approach:

mfs = 1 mm (the side length of a voxel, i.e. the voxel
spacing)

Mfs = automatically selected

http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_2.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_2.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_2.html
http://fcon_1000.projects.nitrc.org/indi/CoRR/html/nki_2.html
http://fcon_1000.projects.nitrc.org/
http://fcon_1000.projects.nitrc.org/
http://human.brain-map.org/mri_viewers/data
http://human.brain-map.org/mri_viewers/data
http://human.brain-map.org/mri_viewers/data
http://help.brain-map.org/display/humanbrain/Documentation
http://help.brain-map.org/display/humanbrain/Documentation
http://help.brain-map.org/display/humanbrain/Documentation
http://help.brain-map.org/display/humanbrain/Documentation
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statistical analysis

We computed the descriptive statistics of the mean cortical thickness
and FD values of cerebral cortex for each combination of dataset and
method for the selection of the fractal scaling window. In order to
assess the potential use of the FD as a neuroimaging marker of brain
development and aging, we performed a linear regression analysis
and computed the Pearson’s correlation coefficient between FD
measurements (assessed using both a priori fixed and automated
spatial scales range) and age in the NKI2 and in the ICBM datasets.
For all tests, a p-value<0.05 was considered statistically significant.
The same steps have been followed for the mean cortical thickness.

elastic net regression

We fitted a separate regression model for each FD estimate strategy.
In particular, we studied the potential of the mean cortical thickness
and all fractal descriptors (see Fig. 16) in predicting age using the
least-square linear regression with regularization by the combination
of L1- and L2-norm (ElasticNet regression method) (Zou and Hastie,
2005). In detail, we determined the fitted regression coefficients β∗

by minimizing the residual sum of squares plus two penalty terms
proportional to the L1- and L2-norm of the coefficients:

β∗(α, ρ) = argminβ(
1

2N
||y−Xβ||22 +αρ||β||1 +

α(1− ρ)

2
||β||22)(16)

= argminβ(
1

2N
||y−Xβ||22 +αPα(β)) (17)

Pα(β) = ρ||β||1 +
1− ρ

2
||β||22 (18)

where α and ρ are positive weighting parameters on the L1 and
L2 penalties, X the vector of explanatory variables, || ||1 the L1-norm,
|| ||2 the L2-norm and N the number of samples (subjects) used for
fitting. Pα(β) is the elastic-net penalty (Zou and Hastie, 2005) with
0 6 ρ 6 1. For ρ = 0, the penalty is a L2-norm penalty (ridge
regression model) and for ρ = 1, the penalty is a L1-norm penalty
(least absolute shrinkage and selection operator (LASSO) regression
model). Elastic-Net regression model combines the power of ridge
and LASSO regression into one algorithm. This combination allows
for learning a sparse model where few of the weights are non-zero
like LASSO, while still maintaining the regularization properties of
ridge, such as the shrinking of the coefficients weights according to
their importance, without setting the value exactly to zero (Dangeti,
2017). In particular, Elastic-Net is useful when there are multiple
features which are correlated with one another.

For each model, in order to reduce the possibility of overfitting and
for hyperparameters (α and ρ weights) optimization, the regression
task was performed in a nested 10-fold cross-validation (CV) loop
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(Mueller and Guido, 2017). In this procedure, for each fold of the
outer 10-fold CV, the training set is used for an inner 10-fold CV in
order to evaluate the performance of the inner classifier while varying
the α and ρ penalty terms in the set {0, 0.25, 0.5, 0.75, 1}. Once α and
ρ values that minimized the out-of-sample prediction error (Hastie et
al., 2013) have been found in the inner CV, the model with that α and
ρ values is re-trained on the outer training set and tested on the test
set kept out from the outer CV. This procedure is repeated for each
fold of the outer CV. Before each training of the ElasticNet regression
(both in the inner and in the outer CV), each feature was standardized
with reference to the training set only. Test set data were not used
in any way during the learning process, thus preventing any form
of peeking effect (Diciotti et al., 2013). Performance was quantified
in terms of the mean absolute error (MAE) between predicted and
actual age values computed on the test set of the outer CV

In this study, as a reference model, we modeled age using mean
cortical thickness throughout the whole cortex, estimated total
intracranial volume (eTIV) and gender values as input features
(Tustison et al., 2014). Then, we fitted a separate regression model
for each FD estimate strategy in order to choose the best predictive
model. Further, we added also the spatial scales automatically
determined as input features to assess which strategy for selection of
spatial scales produced better predictive FD estimates.

We used own code developed in Python programming language
(release 3.7.1, available at https://www.python.org/) for data
analysis. In particular, the linear regression model was implemented
by using the ElasticNetCV function of the scikit-learn module
(version 0.20.1).

3.4.2.2 Results

nki2 dataset

The different strategies for FD estimation have been applied on the
Nathan Kline Institute - Rockland Sample Pediatric Multimodal
Imaging Test-Retest Sample dataset (NKI2), composed of MRI scans
of 77 young and healthy subjects with age ranging from 6 to 17 years
(45 males and 32 females, age 11.7±3.22 years, mean ± standard
deviation) (Nooner et al., 2012; Cao et al., 2014). The descriptive
statistics of the FD values obtained for each strategy and the
association between age and FD estimations are reported in Table 3.

In particular, the Pearson coefficient of correlation between age
and FD values was significant (p<0.001) only for the two strategies
with automated selection of at least one spatial scale. Those
significant correlation coefficients were negative (-0.75 and -0.80)
meaning that FD (i.e., complexity) reduces when age increases.
Among those values, the Automated Max strategy obtained the

https://www.python.org/
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Figure 16: Overview of the feature extraction procedure for individual age
prediction through ElasticNet regression, separately, for both
NKI2 and ICBM datasets. We fitted a separate regression model
for each FD estimate strategy in order to select the best predictive
model. In each model, mean cortical thickness, estimated total
intracranial volume (eTIV) and gender have been inserted as
additional predictors (see the text for other abbreviations).
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Table 3: Descriptive statistics (mean ± standard deviation) of the estimated
FD values in the NKI2 and ICBM datasets using four different
strategies for selection of the interval of spatial scales (see text
for details). The Pearson coefficients of correlation (with relative
p-value) between FD estimates and age are also reported.

Strategy for selection FD estimates Pearson coefficient

of fractal scaling window mean ±σ of correlation (p-value)

NKI2 dataset

A priori #1 2.26 ± 0.02 -0.15 (0.20)

A priori #2 2.47 ± 0.07 -0.19 (0.10)

Automated Min&Max 2.57 ± 0.02 -0.75 (<10
-13)

Automated Max 2.55 ± 0.02 -0.80 (<10
-16)

ICBM dataset

A priori #1 2.26 ± 0.02 -0.11 (0.30)

A priori #2 2.46 ± 0.06 -0.09 (0.43)

Automated Min&Max 2.54 ± 0.02 -0.62 (<10
-9)

Automated Max 2.49 ± 0.02 -0.71 (<10
-13)

ICBM = International Consortium for Brain Mapping, NKI2 = Nathan Kline
Institute - Rockland Sample Pediatric Multimodal Imaging Test-Retest Sample.

correlation coefficient of -0.80, the greatest in absolute value. For this
strategy, the scatter plots of age vs. FD values along with regression
lines are shown in Fig. 17a. As a reference, the scatter plot of age vs.
mean thickness is depicted in Fig. 17b.

The quality of the FD estimations has also been assessed by
individual age prediction through a machine learning approach
based on an ElasticNet regression. The performance has been
measured through the mean absolute error (MAE) between
predicted and actual age values. FD substantially reduces MAE
(Table 4). Among all models, one for each strategy, the MAE value
was lowest for the AutomatedMin and Max strategy (MAE=1.39

years). When automatically determined spatial scales were also
added as input features, the lowest MAE value was found for the
AutomatedMax strategy (MAE=1.27 years). All MAE values are
provided in Table 4.

In order to investigate a comprehensive meaning of the
MfsAutoMax, we sought a potential association with age. Since
MfsAutoMax can assume discrete values only (power of 2), we divided
the datasets in age groups of width equal to 4 years (see section
3.4.2.1) and the mean MfsAutoMax has been calculated in each age
group. The mean MfsAutoMax was significantly directly associated
with age (Pearson coefficient of correlation = 0.96, p=0.0001, Fig. 18).

icbm dataset

The different strategies for FD estimation have also been applied on
the International Consortium for Brain Mapping (ICBM) dataset. It
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Figure 17: The scatter plots of age vs. FD estimates computed using the
Automated Max strategy and age vs. mean thickness in the NKI2
(panes (a) and (b)), ICBM (panes (c) and (d)) and Allen Brain
Atlas datasets (panes (e) and (f)) are shown, respectively. In each
pane, the regression lines, the Pearson coefficient of correlation r
along with the relative p-value are also reported.
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Table 4: Individual age prediction assessment in NKI2 and ICBM datasets
using different sets of input features: the MAE and the Pearson
coefficient of correlation r (with relative p-value) between ElasticNet
predicted values of test set of the outer CV and actual values of the
nested 10-fold CV are provided. Pearson coefficient of correlation r
between ElasticNet predicted values of the test set of the outer CV
and actual values.

Features* MAE (years) r

NKI2 dataset

CT 1.76 0.78

CT, FDAp1 1.56 0.83

CT, FDAp2 1.77 0.78

CT, FDAutoMinMax 1.39 0.88

CT, FDAutoMinMax, MfsAutoMinMax, mfsAutoMinMax 1.38 0.88

CT, FDAutoMax 1.53 0.86

CT, FDAutoMax, MfsAutoMax 1.27 0.90

ICBM dataset

CT 12.1 0.62

CT, FDAp1 12.1 0.62

CT, FDAp2 12.2 0.62

CT, FDAutoMinMax 11.7 0.64

CT, FDAutoMinMax, MfsAutoMinMax, mfsAutoMinMax 11.9 0.63

CT, FDAutoMax 11.1 0.71

CT, FDAutoMax, MfsAutoMax 11.1 0.70

CT = mean cortical thickness, ICBM = International Consortium for Brain Mapping,
FDAp1

= fractal dimension computed using the a priori method #1 for selection of
spatial scales, FDAp2

= fractal dimension computed using the a priori method #2

for selection of spatial scales, FDAutoMax = fractal dimension computed using
automated selection of the maximal spatial scale, FDAutoMinMax = fractal dimension
computed using automated selection of both minimal and maximal spatial scales,
MAE = mean absolute error, MfsAutoMax = maximal fractal scale computed using
automated selection of the maximal spatial scale, MfsAutoMinMax = maximal fractal
scale computed using automated selection of both minimal and maximal spatial
scales, mfsAutoMinMax = minimal fractal scale computed using automated selection
of both minimal and maximal spatial scales, NKI2 = Nathan Kline Institute -
Rockland Sample Pediatric Multimodal Imaging Test-Retest Sample.
*In all models, estimated intracranial volumes (eTIV) and gender were also included as input
features.
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Figure 18: The datasets were divided in age groups of width equal to 5 and
10 years for NKI2 and ICBM datasets, respectively. The scatter
plots of mean age vs. mean MfsAutoMax (computed in each age
group) in the NKI2 and ICBM datasets are shown in panes (a)
and (b), respectively. In each pane, the regression line, the Pearson
coefficients of correlation r along with the relative p-value are also
reported (see the text for abbreviations).
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is composed of MRI examinations of 86 healthy subjects with age
ranging from 19 to 85 years (41 males and 45 females, age 44.2±17.1
years, mean±standard deviation). The descriptive statistics of the FD
values for each strategy and the association between age and FD
estimations are reported in Table 3. In particular, the Pearson
coefficient of correlation between age and FD values was significant
(p<0.001) only for the two strategies with automated selection of at
least one spatial scale. Those significant correlation coefficients were
negative (-0.62 and -0.71) meaning that FD (i.e., complexity) reduces
when age increases. Among those values, the Automated Max
strategy obtained the correlation coefficient of -0.71, the greatest in
absolute value. For this strategy, the scatter plot of the age vs. FD
values along with regression line are shown in Fig. 17c. The same
data for age vs. mean thickness data are depicted in Fig. 17d.

The quality of the FD estimations has also been assessed by age
prediction through a machine learning. Among all FD estimates,
adding FD as predictor, the MAE value was lowest for the
AutomatedMax strategy (MAE=11.1 years) and when automatically
scales were added as predictors, the same strategy remained the best
(MAE=11.1 years). All MAE values are provided in Table 4.

In order to investigate a comprehensive meaning of the
MfsAutoMax, we sought a potential association with age. Since
MfsAutoMax can assume discrete values only (power of 2), we divided
the datasets in age groups in decades (see section 3.4.2.1) and the
mean MfsAutoMax has been calculated in each age group. The mean
MfsAutoMax was significantly directly associated with age (Pearson
coefficient of correlation = 0.95, p = 0.0009, Fig. 18).

ex-vivo mri of post-mortem data

Potential age-related artifacts in MRI acquisition may influence FD
estimations (Reuter et al., 2015; Savalia et al., 2017) especially in
older adults for whom head motion is generally greater than in
young adults (Andrews-Hanna et al., 2007; Reuter et al., 2015;
Pardoe et al., 2016). To this end, we have computed the mean cortical
thickness and FD estimations using the AutomatedMax strategy of
the cerebral cortex on the Allen Human Brain Atlas
(http://human.brain-map.org/mri_viewers/data) (Sunkin et al.,
2012). It is composed of post-mortem T1-weighted MRI
examinations of 8 healthy subjects with age ranging from 24 to 57

years (6 males and 2 females, age 43.4±11.5 years, mean±standard
deviation). One FreeSurfer segmentation failed and it was excluded
from further analysis. The FD values showed an apparent decreasing
trend with age (not statistically significant) (Fig. 17e), while no
evident association between mean cortical thickness and age
appeared in this small sample (Fig. 17f).

http://human.brain-map.org/mri_viewers/data
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3.4.2.3 Discussion

the automated selection of the fractal scaling

window

In this study we compared four different strategies for selection of
the fractal scaling window, including two a priori selections
(inspired by the works of Kiselev et al., 2003; Goni et al., 2013), an
automated selection of both maximum and minimum fractal spatial
scales within which the cerebral cortex manifests the highest
self-similarity and a mixed approach, using an automated selection
of the maximum fractal scale only. We employed two public and
international datasets of MRI scans for a total of 163 healthy subjects
for the study of brain development and aging. Among all strategies,
we showed that, using the mixed approach, we consistently
observed the best associations with age and the best machine
learning models for individual age prediction in both datasets.
Furthermore, the association between age and FD estimates with the
mixed approach were consistently greater than that between age and
mean thickness. In addition, in both children and adults, the FD
shows a significant decrease with age, while the mean MfsAutoMax

automatically selected using the mixed approach increases with age.
These results may indicate that the GM becomes less
morphologically complex with increasing age, but, at the same time,
more homogeneous (as the observation scale changes, the observed
structure remains unchanged for several consecutive scales).

The possibility to automatically determine the range of spatial
scales has allowed to observe that this optimal range may differ
among subjects and, in particular, that the mean MfsAutoMax values
show an association with age in both datasets. The machine learning
approach candidates the FD and automatically determined scales as
indices able to describe the structural complexity of the cerebral
cortex, and, potentially, to monitor its changes during the brain
development and aging.

nki2 dataset

The significant negative correlation (-0.80, p-value <10
-16) we found

between age and FD values of the cerebral cortex, in the NKI2
dataset, suggests that the reduction of the structural complexity
begins during the first years (from the age of 6-years) of the brain
development. So far, a few studies evaluated the possible
modifications with age of the FD of the normal brain focusing on
children and adolescents (Blanton et al., 2001) or adult or elderly
subjects (Madan and Kensinger, 2016). In particular, Blanton et al.,
evaluated the FD of the pial surface of four regions (inferior and
superior frontal lobe, temporal lobe and parieto-occipital lobe) in
children of 6-16 years of age and reported an increase in cortical
complexity only in frontal lobe regions. They hypothesized that
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these changes might reflect ongoing processes such as myelination
and synaptic remodelling that extends into the second decade of life.
In addition, they supposed that the increasing structural complexity
of the frontal lobe during the development and adolescence may be
referred to the emergence of the executive functions, as planning
and abstract reasoning, typical phenomena at this stage of growth
(Cole and Cole, 1993; Blanton et al., 2001). Although our results
show a significant negative trend of FD values from 6 years of age,
they are not at odds with those found by Blanton et al., (Blanton
et al., 2001). Firstly, from a methodological point of view, they
calculated the FD of the pial surface rather than that of the cerebral
cortex, thus analyzing only the structural changes that occur at the
surface level, without considering the volume present inside the
surface, which could contribute directly to the modifications of the
surface shape (King et al., 2009). Moreover, in our work, we
computed the FD of the cerebral cortex of the whole-brain rather
than separately for each lobe; our value of FD takes into account the
phenomena that occur in all lobes, which can manifest a different
behavior with age, both from a structural and functional point of
view. In the work by Jernigan et al., (Jernigan et al., 1991), e.g., a
decrease of the GM volume of the superior cerebral cortex was
reported as a feature of normal brain maturation in 39 healthy
subjects aged 8-35 years; only the frontal lobe was characterized by
several structural changes, which include, at the same time, an
increase in the volume of the skull and a decrease in the volume of
the GM. A possible explanation is that, in this region concurs a
combination of late myelination of WM axons and a local
accumulation of CSF (Jernigan et al., 1991). In this situation, the pial
surface of the frontal lobe may increase its structural complexity
with age (Blanton et al., 2001), while the entire cerebral cortex may
show a global FD decreasing with age. Our results are consistent
with some predominantly cross-sectional MRI studies that
addressed modifications over time of the volume of the cerebral
cortex in normal individuals covering a wide range of ages
(Caviness et al., 1996; Pfefferbaum et al., 1994; Reiss et al., 1996).
Accordingly, in a study of 85 children aged 5-17 years (Reiss et al.,
1996), the ratio of cortical GM volume to total cerebral volume
showed a significant negative correlation with age. This was
explained because of the regressive processes needed to refine the
connection between neurons through cellular and synaptic pruning
during the childhood (Cowan et al., 1984). In another work, the
cortical GM volume was modelled with a cubic function and
suggested a peak around age 4 years and a decrease thereafter in 88

subjects aged 3 months-30 years with normal MRI (Pfefferbaum
et al., 1994). In a study of 30 children aged 7-11 years (Caviness et al.,
1996), it has been found that the GM volume does not show
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significant changes in the strict range of 7-11 years and that it has
already reached the 95% of the GM volume of an adult brain,
whereas the WM volume is only 85% of the adult WM volume. For
this reason, the authors supposed that the relative rate of volume
increase of GM structures prior to age 7 years has been significantly
greater than that of WM and beyond this stage of transition it is a
stabilisation in the total volume of GM. In this “second” phase,
when the late myelination process takes the place of the gyrification,
the structural complexity of the cerebral cortex may start to decrease.
Possible explanations of the decreased volume of the cerebral cortex
since 5 years of age include regressive phenomena, such as cell
death, synaptic and axonal pruning, and atrophic processes
(Pfefferbaum et al., 1994). In particular pruning implies the normal
elimination of about 40% of cortical synapses during childhood
(Huttenlocher, 1979).

icbm dataset

In this work, the reduction of the structural complexity has been
shown also during healthy aging with a significant negative
correlation (r=-0.71; p-value < 10

-13) between age and FD of the
cerebral cortex. Only a few previous studies have evaluated
structural complexity changes in normal aging brain, using different
implementations of the fractal analysis. Also, Madan et al., (Madan
and Kensinger, 2016), utilizing a sample of 427 individuals (20-80

years old) from a freely available dataset, observed a negative
correlation between cerebral cortex FD and age (r = -0.732, p <0.001).
In this latter study, FD was more sensitive to age-related differences
than other metrics of cortical complexity such as cortical thickness or
gyrification. On the contrary, the FD of the cerebral cortex, which is
related to both cortical thickness and to the folding properties of the
cortex, summarizes in a unique number a quantitative description of
the structural complexity in the cerebral cortex, and might be better
able to detect age-related changes with respect to standard
morphometric methods. Post mortem (Raz and Rodrigue, 2006;
Kemper, 1994; Skullerud, 1985) and in-vivo MRI studies (Courchesne
et al., 2000; Good et al., 2001; Lemaître et al., 2005; Smith et al., 2007)
have consistently shown an age-related decrease in GM and WM
volume associated with an enlargement of the CSF spaces. Cortical
reductions involve the entire cerebral cortex (Driscoll et al., 2009;
Fjell et al., 2014), not being confined to specific regions, with annual
change rates of around 0.2–0.5% in most regions (Fjell et al., 2014;
Scahill et al., 2003; Fotenos et al., 2005; Hedman et al., 2012). Also,
several studies have identified prefrontal cortices as especially prone
to the effects of aging (Madan and Kensinger, 2016; Fjell et al., 2009;
Hogstrom et al., 2013; Hutton et al., 2009; Salat et al., 2004; Peng
et al., 2016), but have provided conflicting results concerning other
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regional differences in age-vulnerability, for example with respect to
the involvement of primary cortices (Raz and Rodrigue, 2006; Good
et al., 2001; Lemaître et al., 2005; Smith et al., 2007; Salat et al., 2004;
Bakkour et al., 2013; Jernigan et al., 2001; Raz et al., 1997). Previous
morphometric MR studies on normal aging have utilized both
volumetric techniques, such as ROI (Jernigan et al., 2001; Raz et al.,
1997) and voxel-based morphometry (VBM) analysis (Good et al.,
2001; Smith et al., 2007), or surface-based measures, such as cortical
thickness (Fjell et al., 2009; Salat et al., 2004), surface area (Dickerson
et al., 2009), and gyrification measures (Rettmann et al., 2006).

Interestingly, postmortem studies have found that aging is mainly
associated to loss of neuropil and nerve fibers, with a reduction of
dendrites, spines density and synapses, and all these changes are
expected to alter brain fractal properties. On the contrary, the direct
loss of neurons is relatively limited in healthy aging (Pakkenberg
et al., 2003; Peters et al., 1998; Jacobs et al., 1997). As reported by
previous literature, anatomical structures which present fractal
properties, may show a loss of structural complexity (Goldberger
et al., 2002a), and this makes the structures poor in information
content (Goldberger, 1997) and reduces the individual ability to
adapt to the environment (Goldberger et al., 2002b).

Our results using post-mortem data are in agreement with ones
found by Madan et al., (Madan and Kensinger, 2016): the FD values
showed a decreasing trend with age (not statistically significant),
while no association between mean cortical thickness and age
appeared in this small sample.

3.4.3 The structural complexity of the cortical GM at ultra-high field MRI

In this section, we aim at analyzing the fractal properties of cerebral
GM in datasets acquired at various magneto-static field strengths
(1.5T, 3T and 7T), using the proposed algorithm with the automated
selection of the fractal scaling window (section 3.1). It is worth
noting that, the fractal analysis has not been applied on images
acquired at ultra-high field, i.e. 7T, yet. In particular, we aimed at
computing the FD of the cortical GM using T1-weighted images
through the automated selection of spatial scales in which the GM
manifests the highest self-similarity in order to 1) assess if the
minimal fractal scale (mfs) in which GM manifests self-similarity
depends on the image resolution using 1.5T, 3T and 7T data and 2)
evaluate if the higher spatial resolution at ultra-high magnetic field
allows to capture a higher level of structural complexity, in terms of
FD, of the cortical GM.

3.4.3.1 Methods

participants
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For the dataset A, we adopted the scans collected in the public and
international dataset "Multi-Modal MRI Reproducibility Resource"
(MMRR), accessible via the Neuroimaging Informatics Tools and
Resources Clearinghouse (NITRC,
http://www.nitrc.org/projects/multimodal). This dataset, named
"Kirby-21", contains MRI scans-rescans of 21 healthy volunteers with
age ranging from 22 to 61 years (11 men and 10 women, aged
31.8±9.5 years, mean ± standard deviation) (Landman et al., 2011).
Imaging modalities include T1-weighted, fluid attenuation inversion
recovery (FLAIR), diffusion tensor imaging (DTI), resting state
functional magnetic resonance imaging (fMRI), B0 and B1 field
maps, arterial spin labeling (ASL), vascular space occupancy
(VASO), quantitative T1 mapping, quantitative T2 mapping, and
magnetization transfer imaging on the same 3T scanner (Philips
Achieva).

The dataset A contains two subjects of the "Kirby-21" dataset (men,
aged 22 and 24 years), which were acquired also on a 7T scanner.
Thus, we selected these two subjects, who were examined both at 3T
and 7T; T1-weighted MR images were employed only. The images
were acquired with a high resolution 3D sequence [Magnetization
Prepared Rapid Gradient Echo, MPRAGE (3T) and Turbo Field Echo
TFE (7T)], with isotropic resolution of 1 mm for the 3T scanner and
of 0.7 mm for the 7T scanner.

In the dataset B, we adopted 20 out of the 24 healthy control
subjects [14 men and 6 women, mean age± standard deviation
(range), 26.4 ± 2.1 (22.0 - 29.2) years] (Pantoni et al., 2019), with the
purpose of age- (p=0.19 at ANOVA test) and gender- (p=0.36 at χ2

test) matching with datasets C and D (see below).
All subjects were examined on a clinical 1.5 T system (Intera, Philips
Medical System, Best, The Netherlands) equipped with 33 mT/m
maximum gradient strength and a 6-channel head coil. After the
scout image, sagittal 3D T1-weighted turbo gradient echo [repetition
time (TR)=8.1 ms, echo time (TE)=3.7 ms, flip angle=8°, inversion
time=764 ms, field of view (FOV)=256 mm × 256 mm, matrix
size=256×256, 160 contiguous slices, slice thickness=1 mm] images
were acquired.

The dataset C is a subset of the "kirby-21" dataset, acquired at 3T
(see detailed description in dataset A and Landman et al., 2011). In
order to match age and gender of the datasets B (see above) and D
(see below), we used data from 14 subjects [8 men and 6 women,
mean age± standard deviation (range), 26.6 ± 2.6 (22.0 - 30.0) years].

In the last dataset, the dataset D, we adopted some of the
T1-weighted scans of healthy subjects belonging to the Consortium
for Reliability and Reproducibility (CoRR) and acquired on a 7T MR
scanner (Gorgolewski et al., 2014). This dataset contains 22

participants (10 women), selected from a database of people having

http://www.nitrc.org/projects/multimodal


56 the automated selection of the fractal scaling window

previously taken part in 7 T experiments (from 5 to 51 times, mean
23) at the Max Planck Institute for Human Brain and Cognitive
Sciences (Leipzig, Germany) and were therefore accustomed with
the procedure. All subjects had given written informed consent and
the study was approved by the Ethics Committee of the University
of Leipzig. All experiments were performed on a 7 T whole-body
MR scanner (MAGNETOM 7 T, Siemens Healthcare, Erlangen,
Germany). A combined birdcage transmit and 24 channel phased
array receive coil (NOVA Medical Inc, Wilmington MA, USA) was
used for imaging. For structural imaging, a 3D MP2RAGE (Marques
et al., 2010) sequence was used: 3D-acquisition with field of view 224

mm × 224 mm × 168 mm (H-F; A-P; R-L), imaging matrix 320 × 320

× 240, 0.7 mm3 isotropic voxel size, Time of Repetition (TR)=5.0 s,
Time of Echo (TE)=2.45 ms, Time of Inversion (TI) 1/2 =0.9 s/2.75 s,
Flip Angle (FLA) 1/2 =5°/3°, Bandwidth (BW)=250 Hz/Px, Partial
Fourier 6/8, and GRAPPA acceleration with iPAT factor of 2 (24

reference lines). To match age and gender with the datasets B and C,
as shown above, we used data from 17 subjects [8 men and 9 women,
mean age± standard deviation (range), 25.2 ± 2.4 (22.0 - 30.0) years].

A summary of the main characteristics of each dataset is shown in
table 5.

Table 5: Demographic data of the four datasets explored. No significant
differences between datasets A, B and C for age (pvalue = 0.19 at
ANOVA test) and gender (pvalue = 0.36 at χ2 test).

Magnetostatic Isotropic in-plane Number of Age (years)

field strength resolution subjects (M/F) mean (range)

Dataset A 3T and 7T 1 mm and 0.7 mm 2 (2/0) 23 (22 - 24)

Dataset B 1.5T 1 mm 20 (14/6) 26.4 (22 – 29.2)

Dataset C 3T 1mm 14 (8/6) 26.6 (22 - 30)

Dataset D 7T 0.7 mm 17 (8/9) 25.2 (22 - 30)

gm/wm segmentation

Completely automated cortical reconstruction and volumetric
segmentation of each subject’s structural T1-weighted MRI scan was
performed by employing the FreeSurfer image analysis suite v. 6.0,
which is documented and freely available
(http://surfer.nmr.mgh.harvard.edu/). The technical details of these
procedures are described in prior publications (Dale et al., 1999;
Dale and Sereno, 1993; Fischl and Dale, 2000; Fischl et al., 2001;
Fischl et al., 2002; Fischl et al., 2004a; Fischl et al., 1999a; Fischl et al.,
1999b; Fischl et al., 2004b; Han et al., 2006; Jovicich et al., 2006;
Segonne et al., 2004; Reuter et al., 2010; Reuter et al., 2012). The

http://surfer.nmr.mgh.harvard.edu/


3.4 validation 57

stable version 6.0 introduced some improvements useful for a
correct segmentation and surface reconstruction of MR images
acquired on a 7T scanner. Firstly, the possibility to run the pipeline
(recon-all) for data with voxel size less than 1 mm. Secondly, since
the procedure would be very time-consuming, many routines were
OpenMP-parallelized, in order to compute at the same time as many
steps as possible, according to the features of the available hardware
(http://surfer.nmr.mgh.harvard.edu/fswiki/ReleaseNotes).

For each dataset, all the scans acquired at 1.5 T and 3T were
processed in their native resolution of 1 mm (called "1.5T_1mm" and
"3T_1mm" data), while the images collected at 7T were segmented
both at the resampled resolution of 1 mm ("7T_1mm" data) and at
their original resolution equal to 0.7 mm ("7T_0.7mm" data).

After the end of the automated procedures, all the segmentations
and surfaces reconstructions were visually inspected for defects and
the correction methods proposed by FreeSurfer developers were
applied (http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/
TroubleshootingData). The correction procedures consist of editing
of brain mask and WM (especially for the scans acquired at 7T) and
adding control points and re-running of the FreeSurfer pipeline.

In this study, we analyzed the cerebral cortical GM segmentation
only.

fractal analysis

The mfs and FD of cerebral cortical GM have been measured by the
improved 3D box counting algorithm with the automated selection of
the fractal scaling window, as described in sections 3.1 and 3.3.

statistical analysis

The dataset A was used within the pilot study "The fractal dimension
of the brain at ultra-high field MRI", presented at the sixth national
congress of Bioengineering (GNB) (Marzi and Diciotti, 2018). Since
the sample is composed of only 2 subjects, no statistical analysis was
carried out. The datasets B, C and D were chosen to confirm the results
of the previous preliminary study (Marzi and Diciotti, 2018).

Differences between datasets for the automatically selected mfs and
FD values were evaluated through a non-parametric Kruskal-Wallis
Analysis of Variance (ANOVA), with a significance threshold of 0.05.

In addition, differences between datasets C and D for the
automatically selected mfs and FD values were evaluated through a
Mann-Whitney test for unpaired data (3T_1mm vs. 7T_0.7mm data
and 3T_1mm vs. 7T_1mm data) and a Wilcoxon matched pairs test
for paired data (7T_0.7mm vs. 7T_1mm data). In order to control the
family wise error rate of the Mann Whitney test, the Bonferroni
correction for multiple comparisons was applied with a significance
threshold of 0.05. These results were presented at the 25th

http://surfer.nmr.mgh.harvard.edu/fswiki/Release Notes
http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutori al/TroubleshootingData
http://surfer.nmr.mgh.harvard.edu/fswiki/FsTutori al/TroubleshootingData
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international conference of the Human Brain Mapping Organization
(Marzi and Diciotti, 2019).

experimental tests

In the "Kirby-21" dataset, the FreeSurfer outputs for the images
acquired on a 3T scanner are available online
(http://www.mindboggle.info/data). Notwithstanding, because the
segmentation outputs may vary according to the workstation and
the software release (Gronenschild et al., 2012), we performed all the
computations on the same platform and with the same version of
FreeSurfer software. The workstation was a Dell PowerEdge T620

equipped with two 8-core Intel Xeon E5-2640 v2, for a total of 32

CPU threads, and 128 GB RAM, using the Oracle Grid Engine
batch-queuing system. The FreeSurfer segmentation and
reconstruction procedure required ∼ 10 hours (with additional ∼ 5

hours after manual correction) for 1.5 T and 3T images and 7T scans
resampled at 1 mm of resolution, while 7T scans at native resolution
needed ∼ 35 hours (with additional ∼ 17 hours after manual errors
correction). The computation time of the FD was ∼ 1 minute.

3.4.3.2 Results and discussion

dataset a

In Table 6, the automatically selected mfs is shown, for each subject,
magnetic field intensity and in-plane resolution.

These preliminary results figure out that the cerebral GM manifests
fractal properties also at spatial scales less than 1 mm.

In Table 7, we reported the values of FD for each subject, magnetic
field intensity and in-plane resolution.

The FD values of the cerebral GM acquired at 7T are higher than
those computed at 3T. Interestingly, the FD values of the cerebral GM
acquired at 7T resampled at 1 mm are within the FD observed at
3T and at 7T at their native resolution. The resampling procedure at
lower resolution causes the loss of some details, which may lead to
an intermediate level of observed structural complexity.

Table 6: Minimal fractal scale automatically selected of the cerebral GM in
3T and 7T acquisitions.

3T (1 mm) 7T (1 mm) 7T (0.7 mm)

Cerebral GM
1 1 0.7

of sub. #1

Cerebral GM
1 1 0.7

of sub. #2

http://www.mindboggle.info/data
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Table 7: FD of the cerebral GM in 3T and 7T acquisitions.

3T (1 mm) 7T (1 mm) 7T (0.7 mm)

Cerebral GM
2.50 2.51 2.58

of sub. #1

Cerebral GM
2.49 2.52 2.59

of sub. #2

datasets b , c and d

The results of the Kruskal-Wallis ANOVA confirmed the preliminary
study results (Marzi and Diciotti, 2018) (Table 8).

Table 8: Minimal fractal scale automatically selected and FD of the cerebral
GM in 1.5T, 3T and 7T acquisitions.

1.5T_1mm data 3T_1mm data 7T_1mm data

median (range) median (range) median (range)

mfs (mm) 2.0 (2.0 – 2.0) 2.0 (2.0 – 2.0) 1.4 (0.7 – 1.4)

FD (-) 2.59 (2.49 – 2.55) 2.54 (2.50 – 2.57) 2.59 (2.54 – 2.61)

The mfs values, automatically chosen by the algorithm, and the
respective FD values are significantly different in the three datasets
(p-value < 0.05).

In addition, in the preliminary study (Marzi and Diciotti, 2019),
the mfs automatically selected in 7T_0.7mm data [1.4 (0.7-1.4) mm,
median (range) mm] was significantly lower than that in 1-mm voxel
size data [2.0 (2.0-2.0) mm, for both 3T_1mm and 7T_1mm data], and,
in particular, assumed the value of 0.7 mm for 3 subjects.

The FD measured in 7T 0.7mm data [2.59 (2.54 - 2.61)] was
significantly higher than that measured at 1-mm voxel size [2.54

(2.50 - 2.56) and 2.55 (2.49 - 2.55), for 3T_1mm and 7T_1mm data,
respectively]. The corrected p-values were < 10

-3 . No significant
differences in mfs and FD was found between 3T_1mm and
7T_1mm data.

For the first time, the morphological complexity of the cerebral
cortical GM, acquired at ultra-high field MR, has been analyzed by
fractal analysis.

The higher spatial resolution at 7T enhances the sensitivity of the
images to subtle changes in shape with an increase of the observed
complexity of the cerebral GM, measured by FD, and a decrease in



60 the automated selection of the fractal scaling window

the mfs automatically selected. We suppose that cerebral cortical GM
has fractal properties even at scales lower than those currently visible
in MR images, acquired on clinical scanners.



4
T H E F R A C TA L A N A LY S I S I N N E U R O L O G I C A L
D I S E A S E S

This chapter describes the results of fractal analysis in three
neurological diseases: spinocerebellar ataxia of type 2 (SCA2), small
vessels disease (SVD) and cerebral amyloid angiopathy (CAA). The
study of patients with CAA was made possible thanks to the
collaboration with the Stroke Research Center, Massachusetts
General Hospital, Department of Neurology at Harvard Medical
School in Boston, where I spent three months since October 2017

until January 2018.

4.1 the morphological complexity of the brain in

patients with sca2

Spinocerebellar ataxia type 2 (SCA2) is the second more frequent SCA2 dataset

SCA after SCA3 worldwide. At neuropathological examination, it is
associated with a pattern of pontocerebellar degeneration with
variable damage of the cerebral hemispheres (Auburger, 2012; Durr
et al., 1995; Estrada et al., 1999). Accordingly, MRI shows volume
loss in the brainstem, cerebellar peduncles, and both cerebellar GM
and WM (Mascalchi and Vella, 2012). Volume loss in the cerebral
cortex and cerebral WM of SCA2 patients is inconsistently reported
and less prominent (Brenneis et al., 2003; D’Agata et al., 2011;
Della Nave et al., 2008a; Della Nave et al., 2008b; Giuffrida et al.,
1999; Goel et al., 2011; Mercadillo et al., 2014).

The fractal geometry has been found to be able to characterize GM
and WM alterations in neurodegenarative diseases (for more details
see section 2.3).

In multisystem atrophy cerebellar type and in SCA3, two
conditions sharing with SCA2 a pattern of pontocerebellar
degeneration at neuropathological examination (Estrada et al., 1999),
it was shown that the cerebellar FD, especially in the WM, was lower
in patients than in controls (Wu et al., 2010; Huang et al., 2017).
Therefore, FD could have the potential to represent a useful tool in
detecting subtle brain changes as well as in tracking the progression
of neurodegeneration.

So far, fractal analysis has not been applied neither to SCA2 nor to
investigate possible cerebral and longitudinal changes in
pontocerebellar degenerations. Finally, data are not available on the
capability of fractal analysis to track progression of changes in
structural complexity associated to sporadic or inherited

61
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pontocerebellar degenerations. This is particularly important due to
the need of imaging biomarkers for progressive ataxias (Baldarcara
et al., 2015).

The aims of this SCA2 study were: (1) to investigate whether FD
is able to demonstrate differences in the structural complexity of GM
and WM of cerebellum or cerebrum between patients and healthy
controls; and (2) to evaluate whether FD can monitor the progression
of the damage over time.

4.1.1 Materials and methods

Participants

Nine patients (3 women, 6 men; mean age 48.7 ± 12.9 years) with
genetically determined SCA2 gave their informed consent to
participate in this study that was approved by the Local Ethics
Committee. The cut-off number of triplet repeats expansions
qualifying for diagnosis of SCA2 was 34 CAG on one allele, and the
mean number of abnormal triplets was 40.6 ± 1.4 (Pareyson et al.,
1999). All patients underwent MRI twice on the same scanner and
with the same acquisition protocol, on average 3.6 ± .7 years apart
(range, 2.2-4.0 years). At the time of both MRI examinations, the
patients underwent evaluation by the same neurologist, who
computed the duration of symptoms and signs and scored the
neurological deficit using the Inherited Ataxia Clinical Rating Scale
(IACRS) (Filla et al., 1990) and the International Cooperative Ataxia
Rating Scale (ICARS) (Trouillas et al., 1997). IACRS
semiquantitatively assesses using a 0–38 score scale (with 38

corresponding to maximum deficit) signs and symptoms related to
ataxia as well as pyramidal tract dysfunction and impaired vibration
or position sense, which are frequently observed in SCA2. ICARS
semiquantitatively assesses only cerebellar functions using a 0–100

score scale (with 100 corresponding to maximum deficit).
Demographic information and clinical evaluation of SCA2 patients
at baseline and follow-up are reported in Table 9.

For the present investigation, we recruited as controls 16 age- and
gender-matched healthy subjects (7 women, 9 men; mean age 50.3
± 18.8 years) with no familiar or personal history of neurologic or
psychiatric dysfunction and a normal neurological examination and
who gave written consent to participate. They underwent MRI twice
using the same scanner and acquisition protocol, on average 3.3 ± 1.0
years apart (range, 1.9-4.7 years) (Table 9).
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Table 9: Demographic information and clinical evaluation of the SCA2

dataset. Mean ± standard deviation (range) values are reported.
SCA2 patients Healthy controls

Baseline Follow-up Baseline Follow-up

Demographic information

N (M/F) 9 (6/3) 9 (6/3) 16 (9/7) 16 (9/7)

Age (years)
48.7 ± 13.1 52.1 ± 13.2 49.8 ± 19.0 53.1 ± 18.1

(28.4 - 67.4) (31.6 - 71.3) (25.1 - 72.4) (29.3 - 74.5)

Clinical evaluation

Disease duration (years)
12.8 ± 7.3 - - -

(2 - 23)

IACRS
17.2 ± 4.3 21.3 ± 6.1 - -

(9 - 25) (14 - 31)

ICARS
39.7 ± 14.3 44.3 ± 14.5 - -

(15 - 54) (19 - 62)

MRI Examination

The details about MRI examinations of all patients and controls are
showed in Table 10.

T1-weighted images were visually evaluated by a neuroradiologist
for the identification of artifacts before entering further image
processing. After this visual quality check, all images were retained
for further processing.

Table 10: MRI examination of SCA2 dataset. The same scanner and protocol
acquisition has been used for patients and healthy controls, both
at baseline and follow-up.

MRI scanner
Philips Intera Best, The

Netherlands

Magneto-static field strength 1.5 T

Maximum gradient strength 33 mT/m

Head coil channels 6

TR / TE / TI (ms) 8.1 / 3.7 / 764

FLA (°) 8

FOV 256 mm x 256 mm

Matrix size 256 x 256

Slice thickness 1 mm

Cerebral and Cerebellar Segmentation and Quality Control

The processing pipeline for the T1-weighted image of a single subject
is schematized in Fig. 19.

Completely automated cortical reconstruction and segmentation
of the WM of each subject’s structural T1-weighted MRI scan were
performed using the FreeSurfer image analysis suite v. 5.3
(http://surfer.nmr.mgh.harvard.edu/) (Fischl, 2012). Since the gross
neuropathological appearance of SCA2 is a pontocerebellar atrophy

http://surfer.nmr.mgh.harvard.edu/
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T1-weighted image

Freesurfer

Cerebrum Cerebellum

cerebral GM cerebral WM cerebellum GM cerebellum WM

Fractal 
Analysis
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Fractal 
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Fractal 
Analysis

cerebral 
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cerebellum 
GM FD

cerebellum 
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Figure 19: Processing pipeline for the T1-weighted image of a single subject
(Marzi et al., 2018a).
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with prominent loss of bulk in the cerebellum, (Mascalchi and Vella,
2012; Della Nave et al., 2008b), automated segmentation of each
subject’s cerebellum was also performed using the FreeSurfer suite.

Cortical reconstruction and GM/WM surfaces were manually
inspected for defects; the correction techniques suggested by
FreeSurfer developers, including editing of brain mask and WM and
adding control points and rerunning of the FreeSurfer pipeline
(https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/
TroubleshootingData) were applied up to two times to assure that all
defects were corrected. All views (coronal, sagittal, and axial) were
used to confirm segmentation and surfaces reconstruction errors.
Cerebellum segmentations were manually edited using a free-hand
pencil using the Freeview utility, part of FreeSurfer suite.

In this work, we investigated the FD of the cerebral cortical GM
(cerebral GM), of the cerebral WM and of the cerebellar GM and
cerebellar WM. An example of these segmentations for a
representative SCA2 patient is shown in Fig. 20.

Figure 20: A coronal slice of the cortical gray matter segmentation of
cerebrum (red) and cerebellum (cyan) and white matter of
cerebrum (white) and cerebellum (yellow) in one patient with
spinocerebellar ataxia type 2 (Marzi et al., 2018a).

Fractal Analysis

In order to compute the FD, we used the improved 3D box counting
algorithm with the automated selection of the fractal scaling window
(see chapter 3).

All computations have been performed on a Dell PowerEdge T620

workstation equipped with two 8-core Intel Xeon E5-2640 v2, for a
total of 32 CPU threads, and 128 GB RAM, using the Oracle Grid
Engine batch-queuing system. For each subject, the processing time
required approximately 9 hours of CPU time for FreeSurfer
segmentation process and about 1 minute for each FD computation.

https://surfer.nmr.mgh.harvard.edu/ fswiki/FsTutorial/TroubleshootingData
https://surfer.nmr.mgh.harvard.edu/ fswiki/FsTutorial/TroubleshootingData
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Statistical Analysis

Differences between groups (SCA2 patients vs. healthy subjects) for
FD values were evaluated at baseline through a Mann-Whitney test.
For each FD value, the rate of change (defined as the ratio between
the modification over time and time to- follow-up) was computed
and differences between groups evaluated through a Mann-Whitney
test. For each test, the Holm-Bonferroni correction (to control the
family-wise error rate) for multiple comparisons was applied with a
significance threshold of .05.

Due to the paucity of the patient sample, correlation of FD with
genetic and clinical features was not performed.

4.1.2 Results

The descriptive statistics of FD of cerebellar and cerebral GM and
WM are reported in Table 11. At baseline, FD values of cerebellar
GM and WM were significantly (P < .001) lower in SCA2 patients
than in controls. Also, FD values of cerebral GM were significantly
(P < 0.05) lower in SCA2 patients than in controls, whereas the FD
values of cerebral WM were not significantly different. No significant
differences in rate of change of FD values between controls and SCA2

patients were found.

Table 11: Descriptive statistics of FD values at baseline and rate of change for
healthy controls and SCA2 patients expressed as mean (standard
deviation).

Baseline (unitless) Rate of change (unitless/year)

Controls SCA2 patients Uncorrected p-value Controls SCA2 patients Uncorrected p-value

Cerebral GM 2.43 (0.02) 2.39 (0.03) 0.002 * 0.00 (0.00) 0.00 (0.01) 0.80

Cerebral WM 2.51 (0.03) 2.52 (0.02) 0.59 0.00 (0.01) -0.01 (0.01) 0.03

Cerebellum GM 2.56 (0.02) 2.48 (0.04) 0.00007 ** 0.00 (0.01) 0.00 (0.01) 0.76

Cerebellum WM 2.22 (0.19) 1.74 (0.09) 0.0002 ** -0.01 (0.08) 0.04 (0.09) 0.98

* p < 0.05 at Mann-Whitney test after Holm-Bonferroni correction (to control the
family wise error rate) for multiple comparisons.
** p < 0.001 at Mann-Whitney test after Holm-Bonferroni correction (to control the
family wise error rate) for multiple comparisons.

4.1.3 Discussion

SCA2 shares with other SCAs and multisystem atrophy cerebellar
type a pattern of pontocerebellar atrophy at neuropathology and
MRI examination (Mascalchi and Vella, 2012). In particular, the
microscopic examination consistently shows in SCA2 widespread
neuronal loss in the cerebellar cortex and pontine nuclei, the
midbrain, and medulla (Auburger, 2012; Seidel et al., 2012), and
extensive WM damage with loss of myelinated fibers and gliosis
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affecting the transverse pontine fibers, central cerebellum, and the
cerebellar folia, the middle and inferior cerebellar peduncles, medial
lemniscus, and trigeminal tracts, the fasciculus gracilis and cuneatus
and the spinocerebellar tracts (Auburger, 2012; Seidel et al., 2012).

On the contrary, neuropathological studies have provided
heterogeneous evidence of cerebral cortical or subcortical damage in
SCA2 (Durr et al., 1995; Estrada et al., 1999).

In the present investigation, we used FD to explore the structural
complexity of the cortical GM and WM of both the cerebellum and
cerebrum in symptomatic SCA2 patients. Our baseline data
demonstrated reduced complexity of the cerebellar cortex and WM
in SCA2 that is in line with data obtained in other types of
pontocerebellar degeneration (Wu et al., 2010; Huang et al., 2017).
Two are the novel findings revealed by our study. First, at baseline,
also cerebral cortical GM but not the cerebral WM shows reduced
complexity in symptomatic SCA2 patients. Second, the longitudinal
assessment failed to reveal significant differences of the rate of FD
changes in the cerebellar and cerebral cortical GM and WM between
SCA2 patients and healthy age-matched controls.

The loss of neurons and subsequent axonal degeneration observed
in neurodegenerative conditions leads to cerebral atrophy that
implies thinning of the cortical ribbon and widening of sulci
(decreased folding area) (Wu et al., 2010; Thompson et al., 2007).
When FD of the cortical ribbon, rather than that of the pial surface,
is considered, as we did, these two effects are complementary in
lowering the FD (King et al., 2010). Fractal geometry techniques may
represent a useful tool with the potential to provide further
information as respect to conventional morphometry techniques,
such as voxel-based morphometry, which are based on volume
measurement. As a matter of fact, one MRI study using visual
assessment reported some degrees of cerebral atrophy in 12 of 20

symptomatic SCA2 patients (Giuffrida et al., 1999) and some
voxel-based morphometry studies in SCA2 patients have reported
decreased volume of the cerebral cortex in the frontal, temporal,
insular, or parietal lobes (Brenneis et al., 2003; D’Agata et al., 2011;
Della Nave et al., 2008b; Goel et al., 2011; Mercadillo et al., 2014), but
the localization of the clusters of atrophy varied considerably from
one to another study and one voxel-based morphometry study
failed to reveal changes of the cerebral cortex volume (Della Nave
et al., 2008a).

The use of a sophisticated quantitative neuroimaging technique of
fractal analysis can outperform the nude eye (at neuropathological
or MRI examination) in detecting subtle cerebral cortical changes in
SCA2. Moreover, it could be valuable for studying the increasingly
observed cognitive changes, even before onset of ataxia, in SCA2
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(Olivito et al., 2017; Schmitz-Hubsch et al., 2008; Velazquez-Perez
et al., 2014).

In our study, at baseline, we observed markedly decreased
complexity of the cerebellar WM in SCA2 patients, whereas the
complexity of the cerebral WM was not significantly different
between patients and controls. These results are in line with the
neuropathological data indicating a severe cerebellar WM damage,
but inconsistent cerebral WM atrophy and gliosis in SCA2 (Estrada
et al., 1999), and with MRI data showing decreased cerebellar WM
volume in all visual and voxel-based morphometry studies (Brenneis
et al., 2003; D’Agata et al., 2011; Della Nave et al., 2008b; Giuffrida
et al., 1999; Goel et al., 2011; Mercadillo et al., 2014), but loss of
cerebral WM volume in a few voxel-based morphometry studies
(Brenneis et al., 2003; Della Nave et al., 2008b). The volume loss and
simplified tissue architecture associated with axonal loss and
demyelination observed at the neuropathological examination in the
cerebellar WM can likely explain the decreased FD in the cerebellum
of SCA2 patients.

Furthermore, to the best of our knowledge, so far, only two
studies evaluated the progression of brain damage in SCA2 patients.
Notably, both studies were performed in the same population of
patients and controls of the present study. In the first study
(Mascalchi et al., 2014), utilizing tensor-based morphometry,
significant higher atrophy rates were found in the midbrain and
cerebellum in patients with SCA2 with respect to controls, while no
differences in WM or GM volume loss were observed in the
supratentorial compartment. In the second study (Mascalchi et al.,
2015), tract-based spatial statistics revealed that longitudinal axial
diffusivity changes were greater in SCA2 patients than in controls in
the right cerebral hemisphere and corpus callosum, while
longitudinal mode of anisotropy changes were lower in SCA2

patients than in controls in many WM tracts (in brainstem,
cerebellum, and cerebral hemisphere). In our study, fractal analysis
failed to demonstrate a higher or lower rate of FD changes in SCA2

as compared to controls. This preliminary finding is likely to reflect
the small sample size. However, the findings of the above-mentioned
previous studies could suggest a relative low sensitivity of fractal
analysis of GM and WM in T1-weighted images in tracking the
progression of structural complexity in SCA2, albeit further studies
are necessary to confirm this hypothesis.

We recognize the following limitations of our study.
First, due to the small sample size, which limits the statistical

power, we did not perform correlation analysis between genetic and
clinical features and FD values. Also, the small number of included
patients hindered the possibility of performing analyses with a large
number of variables, e.g., including brain volumes of the cerebral
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and cerebellar GM and WM, due to an inevitable and relevant loss
of statistical power (i.e., the probability of obtaining a statistically
significance outcome if the true effect is not zero), whatever
adjustment for multiple comparison we use (Lazzeroni and Ray,
2012). In our opinion, since fractal analysis is based on processing of
standard volumetric T1-weighted images that are usually obtained
in clinical studies of patients with ataxia, both correlation analyses
and joint analysis of FD values and brain volumes could be
performed in the context of multicenter projects such as the
ENIGMA-ataxia (enigma@ini.usc.edu), that is based on data pooling
from qualified centers worldwide.

Second, we did not obtain cognitive assessment in our patients.
Since SCA2 patients can show subtle but characteristic cognitive
deficits (Olivito et al., 2017; Schmitz-Hubsch et al., 2008;
Velazquez-Perez et al., 2014) which have been attributed to diffuse
damage of the WM of the cerebellum and superior and middle
cerebellar peduncles resulting in a cerebello-cerebral dysregulation
(Olivito et al., 2017), inclusion of cognitive evaluation in future
neuroimaging studies of SCA2 is recommended.

Third, in order to localize the alterations of the structural
complexity of the cerebral GM, a regional analysis (e.g., studying
brain lobes) of FD could be of great interest.

In conclusion, our longitudinal study indicates that the FD of
cerebellar cortical GM and WM as well as of the cerebral cortex is
reduced in SCA2 patients as compared to healthy controls. In our
small sample, analysis of FD failed to demonstrate progression of
changes in structural complexity in SCA2 over time.

4.2 the morphological complexity of the brain in

patients with svd

Mild cognitive impairment (MCI) defines a clinical status in which VMCI-Tuscany
datasetcognitive deficits are present but their severity, although clinically

recognizable, does not impact on the personal autonomy in activities
of daily living, and thus does not reach the level of dementia.
Various dementia subtypes are preceded by an MCI stage (Gauthier
et al., 2006). Small vessel disease (SVD) is recognized as a major
cause of stroke and dementia (Rensma et al., 2018), and has been
shown to be frequently associated with a cognitive impairment
mainly characterized by deficits of attention and executive function
(O’Brien et al., 2003; Pantoni, 2010). Neuroimaging plays today a
crucial role in defining the presence of SVD in patients with
cognitive decline in whom it may be the sole pathological process or
coexist with degenerative processes (Pantoni, 2010). Efforts have
been made to harmonize the neuroimaging definition of
macroscopic lesions underlying SVD on conventional MRI,
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including recent small subcortical infarcts, white matter
hyperintensities (WMH), lacunes, enlarged perivascular spaces
(EPVS), cerebral microbleeds, and atrophy (De Guio et al., 2016;
Wardlaw et al., 2013). A consensus paper reporting neuroimaging
standards for research in SVD also recognized the importance of
new MRI techniques to evaluate the different expressions of SVD
(Wardlaw et al., 2013). However, it remains unclear, at present, which
are the neuroimaging features that better predict clinical features,
particularly cognitive status. Additionally, both subcortical and
cortical changes are today accepted as features of SVD, but their
respective role in terms of clinical correlates is not yet established.
Also, the evaluation of different SVD features in a single patient is
not easy and rather demanding in terms of time and use of MRI
techniques.

During the last 20 years, quantitative assessment of brain volume
using isotropic high-resolution T1-weighted MR images has been
largely applied to evaluate macroscopic structural alterations
occurring in both aging and neurological diseases (Toga and
Thompson, 2002). However, volume assessment does not capture the
inherent structural complexity of the cerebral WM and the cortical
GM. This complexity may be investigated using fractal geometry,
which describes the complexity of self-similar objects (see chapter 2

for more details). The FD of cerebral WM and cortical GM can be
computed using high-resolution T1-weighted images commonly
employed in SVD and therefore does not require additional MRI
acquisitions. The WM and GM FD values have been found positively
associated with cognitive performance in aged subjects (Mustafa
et al., 2012) and the GM FD also with the Alzheimer’s Disease
Assessment Scale-Cognitive (ADAS-cog) scale in Alzheimer’s
disease patients (King et al., 2010) (see section 2.2 for further details).
Along this line, it is reasonable to assume that the WM FD and GM
FD, as measurements of the structural complexity of the brain,
might represent a potentially useful feature also in SVD.

The aims of this study were to assess whether the FD of cerebral
WM and/or of cortical GM computed using high-resolution
isotropic T1-weighted MR images are valuable predictors of
cognitive performance in patients with SVD and MCI, and if they
are complementary to other standard neuroimaging features and to
WM and GM volumes. We employed a machine learning strategy
based on LASSO (least absolute shrinkage and selection operator)
regression applied on several neuroimaging features in a nested
cross-validation loop. This approach was aimed at 1) choosing the
best predictive models, able to reliably predict the individual
neuropsychological scores sensitive to attention and executive
dysfunctions (prominent features of subcortical vascular cognitive
impairment) and 2) identifying a features ranking according to their
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importance in the model through the assessment of the
out-of-sample error, that is a measure of how accurately a model is
able to predict values for unseen data.

4.2.1 Materials and methods

Participants

In this study, we included 76 patients with evidence of MCI and WM
T2-weighted imaging hyperintensities of presumed vascular origin
of moderate or severe extension who were enrolled in one (Florence)
of the VMCI-Tuscany study centers and who were object of a
previous report (Pasi et al., 2015). Twelve patients were excluded
because FreeSurfer segmentations were not satisfactory after manual
editing and re-running up to three times (see section 4.2.1 below).
Final analyses were thus performed on 64 patients. The mean ±
standard deviation (SD) age and years of education were 74.6± 6.9
and 7.9± 4.2 years, respectively; 34 patients (53%) were males.

A control group composed of 24 healthy control subjects (12 men
and 12 women, mean age ± standard deviation, 72.5 ± 4.7 years)
was included in the study. No significant difference in age (t-test,
p=0.07) and in sex proportion (chi-square test, p=0.97) was present
between the patient and control groups. Healthy controls had no
familial or personal history of neurologic or psychiatric disorders,
and underwent a neurologic examination that showed no
abnormalities. Patients and controls underwent the same imaging
protocol on the same scanner, but evaluation of some standard
neuroimaging features of SVD (i.e., cerebral microbleeds, enlarged
perivascular spaces, and quantitative WM lesion load) was available
only for the patient sample as part of the Vascular MCI-Tuscany
Study protocol.

Vascular MCI-Tuscany Study neuropsychological evaluation

The Vascular MCI-Tuscany Study is a 3-center, prospective,
observational study aimed at evaluating the determinants of the
transition from vascular MCI to dementia in patients with SVD. The
study methodology has been reported in details elsewhere (Poggesi
et al., 2012). The study was conducted in accordance with the
Helsinki Declaration and was approved by the local Ethics
Committee. Each patient gave a written informed consent.

According to the study protocol, at baseline, each patient
underwent a comprehensive neuropsychological evaluation by
means of the VMCI-Tuscany neuropsychological battery, that is an
extensive tool specifically developed for patients with SVD and MCI
(Salvadori et al., 2015). The VMCI-Tuscany neuropsychological
battery includes both global cognitive functioning tests and



72 the morphological complexity of the brain in svd patients

second-level tests covering different cognitive domains. For the
purpose of this study, among the cognitive tests of the
VMCI-Tuscany neuropsychological battery, we selected those which
are sensitive to attention and executive dysfunctions, because these
are prominent features of subcortical vascular cognitive impairment
(O’Brien et al., 2003). The cognitive tests selected were:

• Montreal Cognitive Assessment (MoCA), a 10-minute cognitive
screening tool (Conti et al., 2015; Nasreddine et al., 2005). Total
score range is 0-30; higher scores represent better performance;

• Visual Search, for focused attention. The score range is 0-50;
higher scores represent better performance;

• Symbol Digit Modalities Test (SDMT), for sustained attention. The
score range is 0-110; higher scores represent better performance;

• Trail Making Test (TMT), Part A, for psychomotor speed. The
score is the time in seconds required to complete the test; higher
scores represent worse performance;

• Color Word Stroop Test, for selective attention and response
inhibition. The score is evaluated by means of execution time
in seconds; higher scores represent worse performance;

• Immediate copy of the Rey-Osterrieth Complex Figure (ROCF);
involves planning and organizational strategies that are related
to executive functions (Caffarra et al., 2002a;
Elderkin-Thompson et al., 2004; Freeman et al., 2000; Salvadori
et al., 2018; Shin et al., 2006). The score range is 0-36 ; higher
scores represent better performance.

For the neuropsychological tests, we used the available normative
data that are based on healthy Italian adult samples national norms
to calculate demographically-adjusted scores by means of the
regression equations extracted by normative studies (Caffarra et al.,
2002a; Caffarra et al., 2002b; Conti et al., 2015; Della Sala et al., 1992;
Giovagnoli et al., 1996; Nocentini et al., 2006). Since age and level of
education resulted significantly associated with the performance in
all the selected cognitive tests, a factor of correction was applied. For
the visual search test, also sex was found to be a statistically
significant factor, and the corresponding correction was then
calculated and applied (Nocentini et al., 2006).

MRI examination

All subjects were examined on a clinical 1.5 T system (Intera, Philips
Medical System, Best, The Netherlands) equipped with 33 mT/m
maximum gradient strength and a 6-channel head coil. The details
about the MRI examinations protocol are reported in Table 12.
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All images were visually assessed by an experienced
neuroradiologist in order to identify possible artifacts. After this
visual quality control, all images were used for further processing.

Table 12: MRI examination protocol for VMCI-Tuscany dataset.

Sagittal 3D
T1-weighted turbo

gradient echo

Axial T2-weighted
FLAIR

Axial T2*-weighted
gradient-echo

TR / TE / TI (ms) 8.1 / 3.7 / 764 11000 / 140 / 2800 696 / 23

FLA 8 90 18

FOV 256 mm x 256 mm 250 mm x 250 mm 250 mm x 200 mm

Matrix size 256 x 256 280 x 202 252 x 160

Number of slices 160 40 22

Slice thickness 1 mm 3 mm 5 mm

Interslice gap 0 mm 0.6 mm 1 mm

NEX 1 1 2

Neuroimaging features extraction

A general overview of the neuroimaging feature extraction procedure
is shown in Fig. 21.

standard neuroimaging features of small vessel

disease

For the purposes of the present study, we decided to focus on the
main MRI SVD-related markers, i.e., white matter hyperintensities,
lacunes, enlarged perivascular spaces, and cerebral microbleeds, that
were evaluated according to the conventional and quantitative MRI
methods applied within the Vascular MCI-Tuscany Study. While
lacunes, EPVS and cerebral microbleeds have been conventionally
evaluated according to standard visual rating approaches centrally
performed by an experienced neurologist, the WMH have been
quantitatively expressed as the lesion load.

Lacunar infarcts were defined as cavities 3 to 10 mm in diameter
mostly ovoid/spheroid, and were categorized as 0 = (absent), 1 =
(1-3), 3 = (>3).

Microbleeds were defined as small, rounded or circular,
well-defined hypointense lesions within brain tissue ranging from 2

to 10 mm in diameter; the Microbleed Anatomical Rating Scale
(MARS) was used to assess the total number of microbleeds
(Gregoire et al., 2009).

Enlarged perivascular spaces were defined as small, sharply
delineated structures of cerebrospinal fluid intensity on imaging that
followed the orientation of the perforating vessels, ran perpendicular
to the brain surface, and were < 3 mm wide. EPVS have been
assessed in the basal ganglia and centrum semiovale, and were
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Figure 21: Overview of the neuroimaging feature extraction procedure
for LASSO (least absolute shrinkage and selection operator)
regression. We fitted a separate regression model for each
neuropsychological test. WM and GM volumes are normalized to
the estimated intracranial volume (EPVS = enlarged perivascular
spaces, FD = fractal dimension, FLAIR = Fluid-attenuated
inversion recovery, GM = gray matter, Mfs = maximum fractal
scale, mfs = minimum fractal scale, WM = white matter).
Demographic variables (age, sex and level of education) have
been inserted as additional predictors to model possible residual
effects in the patient population (Pantoni et al., 2019).
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coded as 0=(absent), 1 = ( 6 10), 2 = (11-20), 3 = (21-40), and 4 = (>
40). A single observer outlined the T2-hyperintense WM lesions on
FLAIR images of all patients with SVD and MCI using a
semiautomated segmentation technique based on user-supervised
local thresholding (Jim 5.0, Xinapse System, Leicester, UK;
www.xinapse.com/Manual/). We thus defined the WM lesion load
as the total lesions volume normalized by the individual cerebral
WM volume.

white and grey matters volumes

Cortical reconstruction and volumetric segmentation was performed
with the FreeSurfer image analysis suite v. 5.3, which is documented
and freely available (http://surfer.nmr.mgh.harvard.edu/). The
technical details of these procedures are described in prior
publications (Fischl, 2012). All the FreeSurfer outputs were visually
inspected for defects: all planes (coronal, sagittal and axial) were
examined to evaluate segmentation and surfaces reconstruction
errors. The manual editing of a single operator and re-running was
carried out up to three times to assure that all defects were corrected
(McCarthy et al., 2015).

Volumes of cerebral WM, cortical GM and estimated intracranial
volume (eTIV) were also computed. To reduce the effect of brain size,
both WM and GM volumes were normalized to eTIV.

white and grey matters fractal analysis

We computed the FD of both the cerebral WM and cortical GM, with
the improved 3D box-counting algorithm with the automated
selection of the fractal scaling window, presented in the chapter 3. In
this study, both the minimum fractal scale (mfs) and the maximum
fractal scale (Mfs) of WM and cortical GM have been also considered
as potential predictors of cognitive scores. An example of a WM and
a cortical GM segmentation mask in one patient with SVD and MCI
is shown in Fig. 22.

Descriptive statistics and between-group analysis

Descriptive analyses were carried out to characterize the sample in
terms of socio-demographic, cognitive scores and neuroimaging
features. We also compared WM and GM volumes, fractal
dimensions and minimum and maximum scales between healthy
controls and patients using a Mann Whitney test corrected for
multiple comparisons with the Holm-Bonferroni procedure (to
control the family-wise error rate) using a corrected significance
p-value < 0.05.

www.xinapse.com/Manual/
http://surfer.nmr.mgh.harvard.edu/
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Figure 22: Example of a WM and a cortical GM segmentation mask in
one patient with SVD and MCI. A) A 3D view of the GM/WM
interface surface; B) A coronal slice of the WM volume mask; C)
The log-log plot of N(r) counts vs. cube side r (mm) is shown
for the cerebral WM volume mask. The regression line, which
showed the highest R2adj (0.9999) and a sign changed slope (i.e.,
FD) equal to 2.4530, is also superimposed. The WM mfs was
21 = 2 mm and the WM Mfs was 25 = 32 mm; D) A 3D view of
the pial surface; E) A coronal slice of the GM volume mask; F) The
log-log plot of N(r) counts vs. cube side r (mm) is shown for the
cortical GM volume mask. The regression line, which showed the
highest R2adj (0.9996) and a sign changed slope (i.e., FD) equal
to 2.4429, is also superimposed. The GM mfs was 20 = 1 mm and
the GM Mfs was 25 = 32 mm (Pantoni et al., 2019).
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LASSO regression

We fitted a separate regression model for each neuropsychological
test. In particular, we studied the potential of all neuroimaging
features (see Fig. 21) in predicting cognitive adjusted scores using
the least-square linear regression with regularization by the L1-norm
(LASSO regression method) (Hastie et al., 2013). In detail, we
determined the fitted regression coefficients β by minimizing the
residual sum of squares plus a penalty term proportional to the
L1-norm of the coefficients:

β(α) = argminβ(
1

2N
||y−Xβ||22 +α||β||1) (19)

where α is a positive weighting parameter on the L1 penalty, X the
vector of explanatory variables (neuroimaging and demographic
features),|| ||1 the L1-norm, || ||2 the L2-norm and N the number of
samples (patients) used for fitting. The α penalty weights the degree
of sparsity, so that higher values of α enforce sparsity in the
regression coefficients, i.e., drive more coefficients in the model to be
exactly zero. In this way, the regression fit and feature selection are
carried out at the same time.

For each model, in order to reduce the possibility of overfitting
and for hyperparameter (α weight) optimization, the regression task
was performed in a nested 10-fold cross-validation (CV) loop
(Mueller and Guido, 2017). In this procedure, for each fold of the
outer 10-fold CV, the training set is used for an inner 10-fold CV in
order to evaluate the performance of the inner classifier while
varying the α penalty term in the set {h × 10p, 1}, where h={1, 2, . . . ,
9} and p={-4, -3, -2, -1}. Once α value that minimized the
out-of-sample prediction error (Hastie et al., 2013) has been found in
the inner CV, the model with that α value is re-trained on the outer
training set and tested on the test set kept out from the outer CV.
This procedure is repeated for each fold of the outer CV. Before each
training of the LASSO regression (both in the inner and in the outer
CV), each feature was standardized with reference to the training set
only. Test set data were not used in any way during the learning
process, thus preventing any form of peeking effect (Diciotti et al.,
2013). Performance was quantified in terms of the Pearson
correlation coefficient between predicted and actual values of the
neuropsychological test computed on the test set of the outer CV.

Since the selected features may vary depending on how the data
are split in each fold of the CV, for each neuropsychological test, we
repeated the nested CV procedure 1,000 times recording the
frequency that each feature was selected and the sign of the
regression coefficient estimates from each fold of the round of the
outer CV. In fact, the frequency of selection of a feature indicates to
what extent that feature is more likely to be included in the model
and the 1,000 repetitions allow investigating a robust statistical
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association between neuropsychological scores and features. Average
and standard deviation of the results from all repetitions (correlation
coefficients r between real and predicted labels in the test set of the
outer CV) were computed to get a final model assessment score.

For each neuropsychological test, statistical significance of
prediction performance was determined via permutation analysis –
recommended especially when the sample size is small (Noirhomme
et al., 2014). Thus, for each neuropsychological test, 5,000 new
models were created using a random permutation of the labels (i.e.,
neuropsychological scores), such that the explanatory variables were
dissociated from its corresponding neuropsychological score, to
simulate the null distribution of the performance measure against
which the observed value was tested (Nichols and Holmes, 2002).
Correlations were considered significant if the p-value computed
using permutation tests was < 0.05.

We used own code developed in Python programming language
(release 3.7.1, available at https://www.python.org/) for data
analysis. In particular, the linear regression model was implemented
by using the LassoCV function of the scikit-learn module (version
0.20.1).

Experimental tests

The computational analyses performed for the extraction of
advanced neuroimaging features were carried out on a Dell
PowerEdge T620 workstation equipped with two 8-core Intel Xeon
E5-2640 v2, for a total of 32 CPU threads, and 128 GB RAM, using
the Oracle Grid Engine batch-queuing system. For each subject, the
processing time required approximately 30 minutes for the
quantification of WM lesions volume, 9 hours of a single core CPU
time (with additional about 5 hours after each manual editing) for
FreeSurfer segmentation, and about 2 minutes for the calculation of
both WM FD and GM FD. The total computation time for the 1,000

nested CV loop and 5,000 random permutations for all
neuropsychological tests was about 3 hours on a single core of a
Linux workstation equipped with a 4-core (8 threads) INTEL
i7-7700K CPU and 64 GB RAM.

4.2.2 Results

Descriptive statistics and between-group analysis

Distributions of the neuropsychological tests mean and SD adjusted
scores, and percentages of patients with an abnormal performance in
each test are shown in Table 13. Four patients did not complete the
TMT-A and one the immediate copy of the ROCF.

https://www.python.org/
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Descriptive statistics of neuroimaging features and available
comparisons between healthy subjects and patients with SVD and
MCI have been reported in Table 14. As compared to healthy
controls, the group of patients with SVD and MCI showed
significantly reduced WM FD and GM normalized cortical volume
and increased mfs of GM.

Table 13: Distributions of the neuropsychological tests adjusted scores and
of percentages of patients with an abnormal performance.

Neuropsychological test Number of patients
Patients with an

Mean (standard,deviation) Min, max
abnormal performance (%)

Montreal cognitive assessment 64 28 (44%) 20.6 (4.5) 11.95, 29.29

Visual search 64 27 (42%) 31.8 (8.5) 14.35, 0.17

Symbol digit modalities test 64 27 (42%) 36.9 (9.6) 22.02, 59.04

Color word stroop test 64 30 (47%) 38.5 (28.7) -3.45, 155.09

Trail making test - part A 60 25 (39%) 62.3 (46.4) 3.77, 202.2

Rey–osterrieth complex figure
63 49 (78%) 22.9 (8.3) 4, 36

(immediate copy)

Table 14: Descriptive statistics of neuroimaging features [mean (SD),
minimum and maximum values], and comparisons between
healthy subjects and patients with SVD and MCI.

Feature Healthy subjects (N = 24) Patients with SVD and MCI (N = 64)b P-value (corrected)

Standard features

Visual rating

Lacunar infarcts (categorical)c
0

2.09 (0.81)
NA

[1–3]

Microbleeds (number) -
1.27 (3.71)

NA
[0–18]

EPVS basal ganglia (categorical)° -
1.72 (0.77)

NA
[0–4]

EPVS centrum semiovale (categorical)° -
1.77 (0.77)

NA
[1–3]

Quantitative WM lesion load (unitless) -
0.07 (0.05)

NA
[0.01–0.20]

Volumes

GM volume (unitless)
0.24 (0.02) 0.23 (0.02)

0.002 (0.015)a

[0.21–0.28] [0.20–0.27]

WM volume (unitless)
0.30 (0.02) 0.29 (0.02)

0.040 (0.161)
[0.25–0.32] [0.24–0.34]

Fractal analysis

GM FD (unitless)
2.4407 (0.0203) 2.4359 (0.0167)

0.097 (0.120)
[2.4010–2.4819] [2.3969–2.4746]

GM mfs (mm)
1.83 (0.64) 2.13 (0.50)

7 × 10
-4 (0.006)a

[1–4] [2–4]

GM Mfs (mm)
31.3 (3.27) 31.5 (2.81)

0.412 (0.412)
[16–32] [16–32]

WM FD (unitless)
2.4874 (0.0311) 2.4650 (0.0341)

0.002 (0.015)a

[2.4135–2.5297] [2.3960–2.5316]

WM mfs (mm)
1.67 (0.48) 1.48 (0.50)

0.070 (0.120)
[1–2] [1–2]

WM Mfs (mm)
16.67 (3.27) 20.25 (7.12)

0.011 (0.054)
[16–32] [16–32]

EPVS=enlarged perivascular spaces, FD=fractal dimension, GM=gray matter,
Mfs=maximum fractal scale, mfs=minimum fractal scale, N=number of participants,
NA=not applicable, SD=standard deviation, WM=white matter. WM and GM
volumes are normalized to the estimated intracranial volume.
a Significant at a Mann Whitney test corrected for multiple comparison with the
Holm-Bonferroni procedure (to control the family-wise error rate) using a corrected
significance p-value<.05.
b Except for microbleeds, where N=63.
c

0=(absent), 1=(1–3), 3=(> 3).° 0=(absent), 1=(610), 2=(11–20), 3=(21–40), 4=(>40). -
= not measured.
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LASSO regression

In Table 15, the results obtained for all LASSO regression models are
displayed. We found that the statistically significant models were
those for MoCA (r=0.321, p-value=0.039), SDMT (r=0.324,
p-value=0.039) and TMT-A (r=0.354, p-value=0.025). Significant
prediction above-chance of these scores was obtained using different
sets of neuroimaging features. A ranking of all neuroimaging
features according to the LASSO feature selection frequency is
shown in Fig. 23. The average frequency, among significant models
(MoCA, SDMT and TMT-A scores), with which each feature was
selected (regression coefficient different from zero) across all outer
CV folds in 1,000 repetitions of LASSO regression is shown in Fig.
24. The WM FD was the most frequent feature consistently selected
in the significant models.

Table 15: Mean and standard deviation of the Pearson coefficient of
correlation r between the LASSO predicted values of the test set
of the outer CV and the actual values using 1000 repetitions
of the nested 10-fold CV. P-values indicate the probability that
the empirical r score could arise by chance. They have been
computed using 5000 permuted-data CV scores simulating the null
distribution.

Neuropsychological test Mean r (SD) p-value

MoCA 0.321 (0.079) 0.039

Visual search 0.106 (0.091) 0.318

SDMT 0.324 (0.073) 0.039

TMT-A 0.354 (0.094) 0.025

Stroop 0.222 (0.082) 0.106

ROC-F immediate copy 0.295 (0.090) 0.090

MoCA, montreal cognitive assessment; ROC-F, Rey–Osterrieth complex figure; SD,
standard deviation; SDMT, symbol digit modalities test; TMT-A, trail making test -
part A. Significant at the permutation-test using a significant p-value<.05.

Finally, Table 16 shows the neuroimaging features selected with
frequency >80% based on 1,000 repetitions of the nested CV along
with the direction (positive/negative) of the most frequent sign of
the corresponding regression coefficient. The WM FD was the only
feature consistently selected in all three models.
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Figure 23: Ranking of LASSO-based neuroimaging feature selection. For
each significant model, the frequency with which each feature
was selected (coefficient different from zero) across all outer CV
folds in 1,000 repetitions of LASSO regression is shown. The
features have been reordered based on the occurring average
frequencies. Red bars indicate the frequency with which the
corresponding coefficient was positive (direct association with the
neuropsychological scores) – whereas blue bars, the frequency
with which the corresponding coefficient was negative (inverse
association with the neuropsychological scores) (Pantoni et al.,
2019).
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Figure 24: The average frequency among MoCA, SDMT and TMT-A tests
with which each neuroimaging feature was selected (coefficient
different from zero) across all outer CV folds in 1,000 repetitions
of LASSO regression among MoCA, SDMT and TMT-A tests is
shown (Pantoni et al., 2019).

Table 16: Neuroimaging features selected with frequency > 80% based
on 1000 repetitions of the nested cross-validation along with
the direction (positive/negative) of the most frequent sign
of the regression coefficient have been reported. For each
neuropsychological test, the score interpretation has been also
indicated.

Neuropsychological test
Cognitive scores interpretation

Relevant features
(worst to best performance)

MoCA Low to high values WM FD (+), WM lesions load (-)

SDMT Low to high values WM FD (+), GM volume (+), GM mfs (-)

TMT-A High to low values
Cerebral microbleeds (+), Lacunar infarcts (-), WM FD (-)

GM FD (-), GM mfs (+), GM Mfs (-), WM lesions load (+), WM Mfs (-)

MoCA, montreal cognitive assessment; SDMT, symbol digit modalities test; TMT-A,
trail making test - part A. (+): a positive direction of the regression coefficient sign
indicating a direct association. (-): a negative direction of the regression coefficient
sign indicating an inverse association.
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4.2.3 Discussion

Potentials of WM FD in predicting cognitive performance in patients with
SVD and MCI

In this study of patients with SVD and MCI, we used the capability
of machine learning in predicting neuropsychological scores on tests
sensitive to attention and executive dysfunctions. We found that
WM FD was, on average, the feature most consistently selected for
predicting neuropsychological scores among the statistically
significant models. The WM FD was significantly reduced in
patients with SVD and MCI as compared to healthy controls. Also,
among the significantly predicted scores, we observed that the trend
of the relationship between the WM FD and cognitive performance
is univocal. Accordingly, a decrease in WM FD, i.e., a reduction of
structural complexity of WM, was associated with a worsening in
cognitive performance. It is conceivable that cognitive impairment
observed in patients with subcortical WM damage associated with
SVD derives from the effect of a diffuse cortical-subcortical
disconnection syndrome rather than from a localized mere tissue
loss. Of note, in our study, the WM volume was a negligibly selected
feature - the latest in feature ranking. We submit the hypothesis that
FD represents a marker of global disarrangement of the WM in SVD
patients. These pieces of evidence are in line with a previous study
in healthy subjects in which individuals with reduced WM FD had
lower intelligence scores and more age-related cognitive decline
(Mustafa et al., 2012).

As compared to healthy controls, the group of patients with SVD
and MCI also showed a significantly higher mfs of the cortical GM,
automatically determined by the fractal analysis. Consistently, in the
patient group, the GM mfs increased when cognitive performance
was worsened. A recent study analyzed the minimum and
maximum spatial scales in healthy subjects (Krohn et al., 2019).
Although ours and Krohn et al., studies differ for some
methodological and pre-processing differences, we observed a
similar preference of the automatic selection of the fractal scaling
window for smaller minimal scales and shorter interval lengths
(number of data points employed in the selected scale range).
Indeed, in the patient sample, the most frequent combinations were,
for WM, mfs=1 mm and interval length=5 data points and mfs=2

mm and interval lenght=4 data points, while, for GM, mfs=2 mm
and interval length=5 data points. However, further studies are
needed to investigate the impact of each disease condition on the
spatial scales. In our patient sample, we hypothesize that the
behavior of the GM mfs might reflect an initial disruption of the
cortical GM – which is known to be present in this patient
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population (Wardlaw et al., 2013), and is also in line with the
reduced GM normalized cortical volume – at a finer spatial scale.

WM FD as a feature of structural complexity

The WM FD assumes a fractional value between 2 and 3, capturing
the structural complexity of a highly complex object which fills the
space more than a smooth surface (2D), but less than a filled
volumetric structure (3D). In our study, we observed a mean FD of
cerebral WM of 2.4650 in patients with cerebral SVD and MCI that
was significantly lower than that observed in healthy controls. These
results are in line with previous works regarding other neurological
diseases (Esteban et al., 2007; Cook et al., 1995; Takahashi et al., 2009;
Takahashi et al., 2006)

Similarly to the FD of the cortical ribbon (King et al., 2010), the
value of the WM FD may depend not only on volumetric changes of
subcortical WM, but also on volumetric changes of basal ganglia and
lateral ventricles. This is due to the fact that both FDs (of cortical
ribbon and WM) are affected by alterations of the GM/WM
interface. Ventricular enlargement of lateral ventricles has been
described in patients with SVD (Jokinen et al., 2012). We are not
aware of studies reporting basal ganglia volume loss in SVD even
though this possibility might exist.

FD as a complementary feature in the SVD research field

Our results suggest that the WM FD might be a marker of cognitive
performance in patients with SVD and MCI. This result has
potentially relevant implications. In fact, FD is a measurement that
can be computed in the field of SVD research using standard
high-resolution T1-weighted imaging and does not require further
dedicated acquisitions. We observed that also other features
obtained from quantitative neuroimaging procedures (e.g., WM
lesion load) provided predictive value beyond what is available from
visual rating of standard features in SVD, which are likely to be
easier and less expensive to assess.

Besides WM FD, neuroimaging features frequently selected (>
80%) in our sample of SVD MCI patients included WM lesions load,
GM volume, GM mfs, cerebral microbleeds, GM FD, lacunar infarcts,
WM Mfs and GM Mfs. Of note, the degree of importance of these
features varied across different neuropsychological scores. Overall,
the results suggest that the models for prediction of MoCA and
SDMT scores are sparser as compared to that obtained for TMT-A.
As expected, due to the inherent complexity of the behavioral
measurement of cognitive performance, the obtained results also
support the view that more than one neuroimaging feature is
needed to reliably predict cognitive scores in this patient population
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and that, in general, different sets of features may be required to
predict different scores. This is in accordance with the fact that these
features quantify complementary aspects of SVD-related
modifications occurring in the brain. In particular, the joint analysis
through the FD and brain volumes might provide greater prediction
abilities than the use of each measurement separately (King et al.,
2009). In fact, it is well known that the FD and volume examine and
quantify different structural aspects, thus generally being
complementary to each other (Farahibozorg et al., 2015; Free et al.,
1996; King et al., 2009).

Taken together, our data suggest that different neuroimaging tools
should be used when evaluating the cerebral cortex and the
subcortical WM to obtain significant outcomes.

Methodological considerations

We explored predictive abilities of a wide set of standard and
advanced neuroimaging features with a machine learning approach
(using the out-of-sample error), in line with the goals of achieving
the clinical diagnosis on an individual basis. This approach is
different from the conventional linear regression analysis applied to
the entire dataset in which the possibility of overfitting may not be
negligible. In particular, we used LASSO regression in order to
perform, at the same time, a multivariate linear regression and
feature selection.

Considering the exploratory nature of our study, mainly aimed at
evaluating the possible role of WM FD as an additional MRI marker
potentially associated with cognitive performance in SVD, we
repeated the same model of analysis on several cognitive tests to
explore the consistency of the associations across 1) different
measurements within the same cognitive domain and 2) several
rounds of a nested CV loop (1,000 repetitions). In particular, we
chose a 10-fold CV because it offers a favorable bias-variance
trade-off (Hastie et al., 2013; Lemm et al., 2011) and is also adequate
for model selection (Breiman and Spector, 1992). Fitting all
neuropsychological scores simultaneously into a single
comprehensive model could also be carried out, but it would
probably require a larger dataset in order to learn the different and
complex pattern of associations among neuropsychological scores
and neuroimaging features.

We considered the main standard features in SVD research in
order to take into account important explanatory variables in the
models, such as the WM lesion load (accounting for lesions extent),
cerebral microbleeds, EPVS, and lacunes. WM and GM volumes
have been introduced in the analysis to further consider the impact
of macroscopic structural alterations, such as brain atrophy, on
cognitive performance. The effect of age, sex, and education has
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been accounted for using neuropsychological scores corrected
according to normative data and using demographic variables as
predictors in the models to account for potential residual effects in
the patient population. We used both standard and advanced
neuroimaging features; in particular, we adopted our algorithm for
the estimation of the FD using an automated selection of the fractal
scaling window. We feel that the fact that both mfs and Mfs vary
across patients with SVD and MCI does not limit the between-scan
comparability. In fact, each patient has been studied in his/her
optimal fractal scaling window, automatically determined according
to the maximization of a best-fit regression. Moreover, spatial scales
are 1-D measurements like cortical thickness and we feel that spatial
scales should not be normalized, following recommendations
suggested for cortical thickness (Ad-Dab’bagh et al., 2005; Schwarz
et al., 2016). However, future studies should examine this aspect in
more detail.

Limitation and future developments

We enrolled a rather small number of patients. Therefore, our results
need to be confirmed in other studies using independent and larger
samples. The number of included patients also restricted the
possibility of performing analyses with a larger number of
neuropsychological tests assessing also different cognitive domains,
and with a larger set of neuroimaging features. We thus decided to
limit our analyses to tests known to assess cognitive functions that
are mainly affected in patients with subcortical vascular disease and
using a limited number of features. Admittedly, a more extensive
neuropsychological evaluation could offer a more complete
appreciation of the respective role of the WM FD and other
neuroimaging features in outlining cognitive deficits in patients with
SVD.

Our results suggest that, in a sample of patients with SVD and
MCI, a set of neuroimaging features (in which the WM FD was the
most relevant) predicts cognitive performance and we feel that this
is important per se for the SVD research field. At present, we are not
able to assess if such significant predictions are due to the SVD
and/or MCI condition. This could be investigated in future studies
in which a sample of patients with SVD only, a sample of patients
with MCI only, and a group of healthy controls will be examined
using the same MRI scanner and protocols and the same
neuropsychological battery. A larger sample group of healthy
subjects would be also valuable for a deeper investigation of
possible associations of mfs and Mfs with aging or cognition.

Future studies using longitudinal patient evaluations will
investigate whether WM FD might represent an earlier marker of
WM damage.
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Finally, in our study, we computed the FD of the general structure
of the WM. Future studies may explore the structural complexity of
the WM surface and WM skeleton. In particular, the skeleton retains
peculiar characteristics of the WM morphology (Liu et al., 2003) with
a reduced influence of atrophic changes of WM or surrounding brain
regions which may increase the variance of the FD estimates in the
sample population (Krohn et al., 2019). A joint FD analysis of WM
general structure, surface and skeleton may thus more completely
characterize the structural complexity of WM in both normal aging
and neurological diseases (Zhang et al., 2007b).

We showed that a machine learning approach could be useful in
SVD using standard and advanced neuroimaging features. Our study
results raise the possibility that FD may represent a consistent feature
in predicting cognitive decline in SVD that can complement standard
imaging and clinical features in SVD.

4.3 the morphological complexity of the brain in

patients with caa

During the second year of my Ph.D., I spent three months abroad, in
Boston, where I have worked with the group of the Massachusetts
General Hospital, Stroke Research Center, Department of Neurology
at Harvard Medical School. The project, granted both by the UNIBO
Marco Polo program and the Massachusetts General Hospital, was
entitled “Fractal dimension as a measure of cortical complexity of
patients with Cerebral Amyloid Angiopathy (CAA)”. In this project
we propose to study the cortical morphology of patients with CAA,
using traditional and fractal morphological descriptors from MR
T1-weighted images, acquired at the Massachussets General
Hospital (MGH), Boston, MA, USA.

4.3.1 Materials and methods

Dataset

CAA is a common microangiopathy in the elderly and is
characterized by macroscropic and microscopic lesions both in the
cortex and in subcortical structures. Cortical lesions include cerebral
microbleeds (Ni et al., 2015), and cortical microinfarcts. The
detection of a single microinfarct in a CAA patient potentially
indicates the presence of thousands more in the brain (Westover
et al., 2013). The cumulative effect of these lesions presumably
disrupts cortical architecture which consequently results in cognitive
deficits.

A total of 82 patients with probable CAA according to the
Modified Boston Criteria were identified from an established large
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prospective cohort of consecutive patients admitted to the
Massachusetts General Hospital with spontaneous symptomatic ICH
between January 2006 and July 2017 (for further details see Linn
et al., 2010; Xiong et al., 2019). Patients with deep locations of
ICH/microbleeds (except cerebellar microbleeds) and patients with
inadequate quality of MRI scans were excluded. In particular we
excluded 58 patients, since the ICHs visible in the MR T1-weighted
images, had altered the brain structure of interest (20 patients
presented ICH in the right hemisphere, 15 in the left hemisphere
and 23 in both of them). Another patient has been excluded because
FreeSurfer segmentations were not satisfactory. A total of 23 patients
with CAA were included into the final analysis.

In the same way, a sample of 19 healthy controls has been
acquired. One subject has been excluded because the FreeSurfer
procedures failed. A total of 18 healthy controls were included into
the final analysis.

All subjects have been acquired on a clinical 1.5 T scanner (Siemens
Healthcare, Magnetom Avanto, Erlange, Germany) (further details in
Linn et al., 2010).

GM/WM segmentation

In this project we processed all the MR T1-weighted images using
the FreeSurfer software (Fischl, 2012). The processing time, for each
subject, took about 10-13 hours.

The editingprocedure has required a strong collaboration between
neurologists/neuroradiologists (for detection and editing of
segmentation errors) and biomedical engineers (for translation of the
clinicians’ information into the software pipeline).

Standard morphological descriptors

We estimated standard morphological measures (i.e., volume,
cortical thickness and curvature), by using the FreeSurfer suite. We
computed both vertex-wise and global measures. In particular, we
were interested in the computation of the curvature of the GM/WM
interface and pial surfaces, which are the inner and outer boundary
of the cortical ribbon, i.e. the cortical GM volume, respectively.

In differential geometry the curvature of a curve in a point is equal
to the rate of change of the direction of the tangent with respect to
arc length (Lipschutz, 1969). Thus, along a curve which has a rapidly
changing tangent direction with respect to arc length, such a circle
with a small radius, the curvature is relatively large, or, equivalently,
the radius of curvature is small (Lipschutz, 1969). In three dimensions,
each point of the surface has different values of curvature, depending
on the different directions of the plane normal to the surface at that
point. Two main directions can be defined, in which the curvature
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values assume the maximum (K1) and minimum (K2) values. The
Gaussian (G) and Mean (H) curvature are a combination of K1 and
K2 values:

G = K1 ∗K2 (20)

H =
K1 +K2
2

(21)

FreeSurfer is able to estimate the Mean and Gaussian curvature for
each vertex of the surface under examination. Conventionally,
negative curvature values are attributed to the cortical gyri, while
positive ones to the curvature of the sulci. In order to keep separated
the contributions of gyri and sulci to Gaussian and Mean curvature,
we have improved the FreeSurfer procedures, to compute and export
more detailed information about curvatures of gyry and sulci,
separately.

Figure 25: A conceptual illustration of curvature. The measure of
“curvature” of a curve can be understood by taking a series of
circles that just smoothly “touch” each of the undulations of the
curve. The curvature of the curve is proportional to the sum of the
inverse radii of each circle. Red circles are in the sulci; green cirles
are in the gyri. [A] and [B], effect on curvature by “compressing”
sulcal extent; [C] and [D], effect of higher order “bumps” on
overall curvature (Pienaar et al., 2008).

Fractal Analysis

We used the improved 3D box counting algorithm with the
automated selection of the fractal scaling window to compute the
global FD of the cerebral cortical GM (see chapter 3).
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All fractal analysis computations have been performed on a Dell
PowerEdge T620 workstation equipped with two 8-core Intel Xeon
E5-2640 v2, for a total of 32 CPU threads, and 128 GB RAM, using
the Oracle Grid Engine batch-queuing system.

Statistical Analysis

Differences between groups (CAA patients vs. healthy subjects) for
morphological indexes were evaluated through both surface-based
(vertex-wise) and volumetric (global) group analyses. The
surface-based group analyses were carried out using the Freesurfer
suite, to compare morphological measurements of volume (V),
cortical thickness (CT) and mean curvature of the GM/WM interface
surface (H_white) and of the pial surface (H_pial). We have a chosen
a vertex-wise/cluster-forming threshold th equal to 1.3 (equivalent
to a vertex p-value of 0.05) and a cluster-wise p-value equal to 0.05

for the multiple comparison correction.
The volumetric group analysis to assess differences in global

volume (gV), average cortical thickness (aCT), average mean
curvature of the GM/WM interface surface sulci (aH_white_sulci)
and gyri (aH_white_gyri), average mean curvature of the pial
surface sulci (aH_pial_sulci) and gyri (aH_pial_gyri) and fractal
dimension (FD) were evaluated through the non-parametric Mann
Whitney test. For each test, a significance threshold of 0.05 was
applied.

4.3.2 Results and discussion

The descriptive statistics of volumetric (global) morphological indices
are reported in Table 17.

The average mean curvature of the sulci of the GM/WM interface
surface was significantly higher in CAA patients than in healthy
controls. The same result has been found also for the pial surface.
No significant differences between CAA patients and healthy
controls have been found for cerebral cortical GM volume, mean
cortical thickness, mean curvature of the gyri and FD values.

The surface-based group analyses results are summarized in Table
18.
CAA patients show higher volume in the left lateral occipital lobe
and higher cortical thickness in the left fusiform and in rigth middle
temporal lobe than healthy controls. No significant differences have
been found between CAA patients and healthy controls in mean
curvature values.

From the results of the two different group analyses it can be
deduced that the different morphological measures behave
differently in the disease: for example, the volume and the cortical
thickness are different between CAA and HS only in some delimited
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areas (left lateral occipital lobe and left fusiform, right middle
temporal lobe, respectively), while no difference was found by the
Mann-Whitney test on global values.

The mean curvature seems to have an opposite behavior
compared to volume and cortical thickness: for the sulci, no
differences between CAA patients and healthy subjects have been
assessed through the surface-based analyses, while the overall
average curvature of the sulci (both of the GM/WM interface surface
and of the pial surface) assumes higher values in the CAA than in
healthy subjects. Morphologically, this translates into narrower sulci,
i.e., a smaller radius of curvature, in CAA patients than in healthy
subjects.

Both group analyses revealed no differences in cerebral GM FD
values between CAA patients and healthy subjects.

Table 17: Descriptive statistics of volumetric (global) morphological indices.
Morphological feature CAA patients Healthy subjects

Median Interquartile range Median Interquartile range

Cerebral GM gV 402657.741 72799.8352 394194.603 30493.6732

aCT 2.228 0.140 2.168 0.090

aH_white_sulci 0.137* 0.010 0.130* 0.005

aH_white_gyri 0.159 0.010 0.156 0.010

aH_pial_sulci 0.188* 0.020 0.179* 0.011

aH_pial_gyri 0.180 0.018 0.175 0.010

FD 2.50 0.04 2.50 0.03

* pvalue < 0.05 at Mann Whitney test.

Table 18: Surface-based group analyses results.
Morphological feature Vertex-wise results

Cerebral GM V CAA patients show higher volume in left lateral occipital lobe

CT
CAA patients show higher cortical thickness in left fusiform and

in right middle temporal lobe

aH_white No differences between CAA patients and healthy subjects

aH_pial No differences between CAA patients and healthy subjects
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D I F F U S I O N M R I : T H E C O M P L E X I T Y O F T H E B R A I N
M I C R O S T R U C T U R E

Magnetic resonance provides a unique opportunity to quantify the
diffusional characteristics of a wide range of human tissues. Because
diffusional processes are influenced by the geometrical structure of
the environment, MR can be used to probe the microstructural
environment non-invasively. This is particularly important in studies
that involve biological samples in which the characteristic length of
the boundaries influencing diffusion are typically so small that they
cannot be resolved by conventional MRI techniques (Johansen-Berg
and Behrens, 2009; Jones, 2011). Diffusion is a mass transport
process arising in nature, which results in molecular or particle Water diffusion

mixing without requiring bulk motion (Johansen-Berg and Behrens,
2009). In particular, 60-80% of our body is made up of water and the
heat associated with our body temperature energizes the water
molecules, causing them to “jerk” around randomly. This
phenomenon is called “Brownian motion”, after the scientist who
first described it (Brown, 1928; Moritani et al., 2009; Doob, 1942).
Three straightforward models can be used to describe water
diffusion in tissues: free diffusion in free water and hindered or
restricted diffusion in the presence of boundaries such as cell
membranes (Van-Hecke et al., 2016). The diffusive properties of
water molecules can be analyzed by estimating the diffusion
coefficient (formalized in Fick’s first law (Fick, 1855a; Fick, 1855b)
and then by Einstein (Einstein, 1905; Einstein, 1926)), that is an
intrinsic property of the medium, and its value depends on a
number of factors which include the size of the diffusing molecules,
the temperature and microstructural features of the environment.
The sensitivity of the diffusion coefficient on the local microstructure
enables its use as a probe of molecular dynamics and structural and
physical properties of biological tissue (Johansen-Berg and Behrens,
2009; Jones, 2011). Taking typical values for water diffusion D and
diffusion times Td achievable on conventional MRI equipment (e.g.,
D ∼ 10–3 mm2/s at body temperature and Td ∼ 50 ms), the root
mean squared displacement of water molecules is on the order of 10

µm, which is about the size of many tissue structures, such as cells.
Hence, the noninvasive observation of the water diffusion–driven
displacement distributions in vivo creates a new source of contrast
for MRI, which provides unique clues to the fine structural features
and geometric organization of neural tissues according to their
physiological or pathological states (Jones, 2011).
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5.1 diffusion tensor imaging (dti)

In various tissues, such as white matter, we expect diffusion transport
properties to vary with orientation since water molecules are likely to
encounter different barriers and obstacles according to the direction
in which they move (Jones, 2011; Mori, 2007) (Fig. 26).

Figure 26: Water diffusion carries information on whether the environment
organization is random (isotropic diffusion) or ordered
(anisotropic diffusion) (Mori, 2007).

In this situation, we can no longer characterize the behavior of the
water molecules adequately with a scalar diffusion coefficient. The
apparent diffusion coefficient (ADC) we measure will depend on theApparent Diffusion

Coefficient direction along which we measure it (Johansen-Berg and Behrens,
2009) or, in other words, that it is only sensitive to diffusion with a
component along this direction (Van-Hecke et al., 2016). A more
general description of anisotropic diffusion uses a 3D Gaussian
model of molecular displacements, which contains a symmetric
apparent diffusion tensor (ADT) of water (e.g., see Crank, 1975), inApparent Diffusion

Tensor place of a scalar ADC to describe the orientation dependence of
diffusion (Jones, 2011). The diffusion tensor is often thought of in
terms of an ellipsoid – a surface representing the distance that a
molecule will diffuse to with equal probability from the origin
(Johansen-Berg and Behrens, 2009). We definitely need six
parameters to define the tensor (as for an ellipsoid) (Fig. 27): three
lengths for the longest, middle and shortest axes that are
perpendicular to each other (they are usually called λ1, λ2, and λ3
respectively, or eigenvalues) and three unit vectors to define the
orientation of the principal axes (they are called v1, v2, and v3
respectively, or eigenvectors) (Mori, 2007).

In order to measure six diffusion constants along six independent
axes, at least seven diffusion-weighted images are needed (one
image without the diffusion-weighting, the so called "b0 image", and
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Figure 27: Parametrs needed to define a 3D ellipsoid (Mori, 2007).

six images acquired applying diffusion gradients along six
non-collinear and non-coplanar directions) (Fig. 28). In practical
situations, we often perform more than seven measurements using
different gradient strengths, gradient orientations, or signal
averaging to reduce the rotational variance in tensor estimation due
to noise, as well as to obtain more reliable diffusion indices (Jones,
2011; Mori, 2007).

Figure 28: A diffusion ellipsoid can be fully characterized from diffusion
measurements along six indipendent axes (Mori, 2007).

Various rotationally invariant DTI indices can be derived from the DTI-derived indices

eigenvalues of the diffusion tensor such as mean diffusivity (MD),
axial diffusivity (AxD), radial diffusivity (RD), fractional anisotropy
(FA) and mode of anisotropy (MO) (Fig. 29). In particular, MD
quantifies water molecules diffusivity independently of direction
and is proportional to the trace of the diffusion tensor (Equation 22):

MD =
λ1 + λ2 + λ3

3
=
Trace(ADT)

3
=M1(λ) (22)

where M1(λ) is the moment of the first order, the mean value, of the
λi eigenvalues.

Also, AxD (i.e., the largest eigenvalue, AxD = λ1) quantifies the
amount of water mean diffusivity along the direction of the
principal eigenvector. RD is the average of the medium and smallest
eigenvalues (RD = λ2+λ3

2 ) and quantifies water diffusivity in the
plane perpendicular to the principal eigenvector.
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Figure 29: A geometric representation of the diffusion tensor and maps
of DTI-derived indices. The longest axis is the first eigenvector
and represents the direction of maximal diffusion, along which
the axial diffusivity (AxD) is calculated (sometimes referred to
as λ‖ , longitudinal, or parallel diffusivity). The second and
third eigenvalues are used to calculate the radial diffusivity
(RD) (sometimes referred to as λ⊥ , transverse or perpendicular
diffusivity). The mean diffusivity (MD) is a measure of the
overall diffusivity in a particular voxel regardless of direction
and is calculated as the average of the eigenvalues. The degree
of diffusion anisotropy can be represented by the fractional
anisotropy (FA), a scalar measure (unitless) ranging between 0

(isotropic diffusion—darkest grey on a standard FA map) and
1 (completely anisotropic—lightest grey on a standard FA map)
(Van-Hecke et al., 2016).
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FA (dimensionless) is the normalized standard deviation of the
eigenvalues (Equation 23) and measures the degree of water
diffusion anisotropy, ranging from 0 (isotropic diffusion) to 1

(completely anisotropic diffusion).

FA =

√
3

2

√
(λ1 −M1)2 + (λ2 −M1)2 + (λ3 −M1)2√

λ21 + λ
2
2 + λ

2
3

=

=

√
3

2

√
M2(λ)√

λ21 + λ
2
2 + λ

2
3

(23)

where M2(λ) is the moment of the second order, i.e. the variance, of
the λi eigenvalues.

MO is a dimensionless measure of anisotropy type, proportional to
the skewness, ranging from -1 to +1 (Equation 24).

MO =
√
2M3M

−3/2
2 (24)

where M3(λ) is the moment of the third order of the λi eigenvalues.
As we can see in Fig. 30, negative MO values describe planar
anisotropy (i.e., two large and one small eigenvalue, as observed for
instance in regions of crossing fiber bundles), whereas positive MO
values indicate linear anisotropy (i.e., one large and two small
eigenvalues, as observed for instance in major fiber bundles) (Ennis
and Kindlmann, 2006; Kindlmann et al., 2007).

DTI-derived indices are proven to be sensitive to brain tissue
microstructure, which is characterized by various factors including
cell and axonal density/size, membrane permeability and integrity,
fiber orientation dispersion and myelin sheath. Accordingly, the
pattern of variation of DTI-derived indices can provide information
about the microstructural changes underlying various brain diseases
(Focke et al., 2014; Goveas et al., 2015; Jiang et al., 2014).

5.1.1 Histogram analysis of DTI-derived indices reveals pontocerebellar
degeneration and its progression in SCA2

Spinocerebellar ataxia type 2 (SCA2) is the second more frequent SCA
after SCA3 worldwide (further details about the disease are described
in section 4.1).

Brain DWI- or DTI-derived indices have proven to be correlated
with severity of clinical deficit in several cross-sectional studies of
patients with SCA2 (Mascalchi and Vella, 2012; Hernandez-Castillo
et al., 2015; Mandelli et al., 2007; Hernandez-Castillo et al., 2016),
and may represent potential biomarkers of disease progression in
longitudinal studies of neurodegenerative diseases including
inherited or sporadic degenerative ataxias (Baldarcara et al., 2015).
So far, this possibility has been explored through regions of interest
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Figure 30: Demonstration of the space of anisotropy decomposed into
two orthogonal channels: fractional anisotropy (FA) and mode
(MO). Each glyph represents the shape of diffusion tensors
with constant tensor norm rendered with superquadric glyphs.
Increasing distance from the top left spherical glyph indicates
increasing FA, whereas the angular deviation from the left
edge indicates increasing mode as it transitions from planar
anisotropic (MO = −1), to orthotropic (MO = 0), to linear
anisotropic (MO = 1). Glyphs along constant radii (constrained
to an arc) are of constant fractional anisotropy, but of varying
mode. This figure shows that increases in FA do not necessarily
indicate increasing linear anisotropy. The space of FA and mode
is correctly diagrammed as an isosceles triangle; note that
isocontours of FA are orthogonal to isocontours of mode (Ennis
and Kindlmann, 2006).



5.1 diffusion tensor imaging (dti) 99

(ROIs) (Pellecchia et al., 2011; Reginold et al., 2014) or voxel-wise
tract based spatial statistics (TBSS) (Smith et al., 2006) analysis of
DTI data (Mascalchi et al., 2015; Mascalchi et al., 2016). While TBSS
can provide whole brain and unbiased local information on the
changes caused by disease, it is inherently restricted to WM skeleton
(Smith et al., 2006) assessment. Moreover, TBSS requires accurate
normalization of maps of DTI-derived indices to a template
(Keihaninejad et al., 2012) and is based on a number of assumptions
which may not be satisfied, affecting the reliability of results (Bach
et al., 2014). In particular, small choices in the preprocessing pipeline
may have a relevant effect on test-retest reliability, therefore
influencing the power to detect change within a longitudinal study
(Madhyastha et al., 2014).

A histogram analysis of DWI- or DTI-derived indices of the whole
or segmented brain structures to assess microstructural damage in
degenerative ataxias (including SCA2) has been previously proposed
(Della Nave et al., 2008b). This approach has a number of
advantages as compared to ROI and TBSS methods, albeit it implies
loss of spatial information on local changes. Notably, given that
correction for multiple comparisons across several voxels or ROIs is
not needed, a higher statistical power may be obtained. Also,
histogram analysis can be extended to GM regions. Finally, in
principle, analysis of normalized histograms can be performed
without coregistration of maps of diffusion indices to a template. To
date, there is only one longitudinal study that used histogram
analysis of DTI-derived indices of the whole brain and whole WM in
a neurodegenerative disorder, namely, Huntington disease (Odish
et al., 2015).

In this longitudinal study, we carried out, in SCA2, histogram
analysis of several DTI-derived indices of the segmented cerebrum
and brainstem-cerebellum, including both WM and GM, in order to:
1) investigate whether such a relatively straightforward approach
has the potential to reveal and track progression of microstructural
damage; 2) preliminarily assess if the rate of change of histogram
metrics of DTI-derived indices correlates with clinical deterioration.

5.1.1.1 Materials and methods

subjects

We examined 9 patients (3 women and 6 men; age 48.7±12.9 years,
mean ± standard deviation) with a genetically determined SCA2

and 16 age- and gender-matched healthy subjects (7 women and 9

men; age 50.3±18.8 years, mean ± standard deviation). All subjects
underwent MRI twice. More details are described in section 4.1.

mri examination
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A 1.5 T MRI scanner (Philips Intera, Best, The Netherlands)
equipped with 33 mT/m maximum gradient strength and 6-channel
phased-array head coil was utilized for baseline and follow- up MRI
examinations in all patients and controls. The acquisition parameters
of the T1-weighted images are described in section 4.1. In addition,
axial diffusion-weighted images were obtained with a single-shot
echo-planar imaging sequence (TR = 9394 ms, TE = 89 ms, FOV =
256 mm × 256 mm, matrix size = 128×128, 50 slices, slice thickness =
3 mm, no gap, number of excitations = 3). Diffusion sensitizing
gradients were applied along 15 non-collinear and non-coplanar
directions with b-value of 0 (b0 image) and 1000 s/mm2.
T1-weighted and diffusion-weighted images were visually evaluated
by a neuroradiologist for the identification of artifacts before
entering further image processing. After this visual quality control,
all images were retained for further processing.

gray and white matter segmentation

Completely automated cortical reconstruction and segmentation of
the subcortical WM of each subject were performed by means of
T1-weighted images and FreeSurfer image analysis suite v. 5.3, as
described in section 4.1. For each subject, the segmentation masks of
GM/WM of cerebrum were merged in order to obtain a unique
region mask for cerebrum, while the segmentation masks of
GM/WM of brainstem and cerebellum were merged in order to
obtain a unique region mask for brainstem-cerebellum (Fig. 31).
Cerebral segmentation and brainstem-cerebellum segmentation for a
representative SCA2 patient are shown in Fig. 32.

dti processing

Diffusion-weighted images were corrected for head motion and
eddy current distortions using FDT (FMRIB’s Diffusion Toolbox 2.0;
FMRIB, Oxford Center for Functional MRI of the Brain), part of FSL
(FMRIB Software Library) version 5.0.8 (Smith et al., 2004). Skull was
removed using the FSL brain extraction tool (BET) (Smith, 2002). The
b-matrix was reoriented by applying the rotational part of the affine
transformation employed in the head motion and eddy current
correction procedure (Leemans and Jones, 2009). Then, using the
RESTORE diffusion tensor estimation (Chang et al., 2005)
implemented in the CAMINO software package (Cook et al., 2006), a
tensor model was fitted to processed DWI data. In this study, the
DTI-derived indices of MD, FA, AxD, RD and MO were estimated
using DTI-TK version 2.3.1 (Zhang et al., 2007a), FSL tools and
in-house Bash shell scripts.

histogram analysis
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Figure 31: Processing pipeline for T1-weighted and diffusion-weighted
images of a single subject (Mascalchi et al., 2018).

Figure 32: Example of GM/WM matter segmentation of cerebrum (green)
and brainstem-cerebellum (red) in a representative SCA2 patient
(Mascalchi et al., 2018).
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For each subject, the cerebrum and brainstem-cerebellum
segmentations were converted from the FreeSurfer space back to the
native anatomical space, and the T1-weighted image in the native
space was co-registered to the b0 image using the 12 degrees of
freedom affine transformation implemented in FSL FLIRT (FMRIB’s
Linear Image Registration Tool) (Jenkinson et al., 2002). This affine
transformation was then applied to cerebrum and
brainstem-cerebellum segmentation (Fig. 31).

For each cerebrum and brainstem-cerebellum segmentation in the
b0 space, the histogram (normalized over the total number of voxels)
of MD/FA/AxD/RD/MO was computed. The normalization allows
to correct for individual differences in brain size. In this study, we
used three histogram metrics of DTI-derived indices: the median
value, the peak location and peak height (Fig 33). The median is the
value of the DTI-derived index (i.e., MD, FA, AxD, RD or MO) that
divides the higher half of the data sample from the lower half. The
peak location is the mode of the histogram, i.e. the most frequent
value assumed by the DTI-derived index; the value of the histogram
assumed at the peak location is the histogram peak height which is
the maximum value of the histogram.

Figure 33: Example of histogram showing the 3 three histogram metrics
we used: The median value, the peak location and peak height
(Mascalchi et al., 2018).

data analysis

At baseline, differences in histogram metrics of DTI-derived indices
between SCA2 patients and control subjects were assessed through
the non-parametric Mann Whitney test. For each histogram metric,
the rate of change (i.e., the ratio between the change over time and
the time to- follow-up) was computed. Then, the non-parametric
Mann Whitney test was employed in order to assess any difference
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in rate of change between SCA2 patients and control subjects. In
SCA2 patients, the Pearson coefficient was employed in order to
assess any linear correlation between the rate of change of histogram
metrics of DTI-derived indices and clinical data (i.e., number of
triplets in the longer allele, disease duration at baseline, clinical
progression as assessed by the rate of change in IACRS and ICARS).
For each test, the Holm-Bonferroni correction for multiple
comparisons was applied (significance threshold of 0.05), in order to
control the family wise error rate. Finally, in order to evaluate the
sensitivity to change of ICARS, IACRS and histogram metrics of
those DTI-derived indices showing rate of change significantly
different between SCA2 patients and controls, we used the
standardised response mean (SRM).

5.1.1.2 Results

The descriptive statistics of histogram metrics of DTI-derived indices
are reported in Table 19.

Histograms of DTI-derived indices of control subjects and SCA2

patients groups are shown in Fig. 34.
At baseline, significant differences between SCA2 patients and

controls were confined to brainstem-cerebellum. In particular,
median values of MD/AxD/RD and FA/MO were significantly
(p<0.001) higher and lower, respectively, in SCA2 patients than
controls (Table 19). Also, peak location values of MD/AxD/RD and
FA were significantly (p<0.001) higher and lower, respectively, in
SCA2 patients than controls (Table 19). Peak height values of FA and
MD/AxD/RD/MO were significantly (p<0.001) higher and lower,
respectively, in SCA2 patients than controls (Table 19).

The rate of change of MD median values was significantly
(p<0.001) higher (i.e., increased) in SCA2 patients than controls in
the brainstem-cerebellum (Table 19). No other significant difference
in rates of change of histogram metrics of MD and other
DTI-derived indices between SCA2 patients and controls was found.

No significant correlation between the rate of change of histogram
metrics of DTI-derived indices and disease duration, number of
triplets or rate of change of the IACRS or ICARS scores was
observed.

The SRM of the median MD in cerebellum-brainstem was
intermediate (SRM = 1.2) between that of ICARS (SRM = 1.0) and
IACRS (SRM = 1.3).

5.1.1.3 Discussion

SCA2 belongs to the polyglutamine diseases group that comprises
nine neurodegenerative conditions which share abnormal expansion
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Table 19: Histogram metrics of DTI-derived indices in control subjects and
SCA2 patients. Median (interquartile range) data are reported.
MD/AxD/RD median and peak location are expressed in x10−3

mm2/s, while FA/MO median and peak location are unitless.

Baseline Rate of change

Controls SCA2 patients Controls SCA2 patients

Cerebrum

MD median 0.81 (0.02) 0.82 (0.03) 0.002 (0.005) 0.004 (0.007)

MD peak location 0.76 (0.00) 0.76 (0.05) 0.000 (0.000) 0.000 (0.000)

MD peak height 0.14 (0.02) 0.13 (0.03) -0.001 (0.003) -0.002 (0.003)

FA median 0.21 (0.02) 0.21 (0.01) -0.001 (0.004) -0.001 (0.003)

FA peak location 0.09 (0.00) 0.09 (0.00) 0.000 (0.000) 0.000 (0.004)

FA peak height 0.11 (0.01) 0.10 (0.01) 0.001 (0.002) 0.000 (0.001)

AxD median 1.05 (0.05) 1.06 (0.03) 0.002 (0.007) 0.003 (0.005)

AxD peak location 0.96 (0.05) 1.01 (0.01) 0.000 (0.013) 0.000 (0.000)

AxD peak height 0.1 (0.02) 0.09 (0.01) -0.001 (0.003) -0.001 (0.003)

RD median 0.69 (0.02) 0.71 (0.02) 0.001 (0.005) 0.004 (0.008)

RD peak location 0.63 (0.05) 0.66 (0.01) 0.000 (0.000) 0.000 (0.000)

RD peak height 0.11 (0.01) 0.11 (0.02) 0.000 (0.002) -0.001 (0.002)

MO median 0.37 (0.03) 0.35 (0.03) 0.001 (0.004) -0.003 (0.005)

MO peak location 0.92 (0.00) 0.92 (0.00) 0.000 (0.000) 0.000 (0.000)

MO peak height 0.09 (0.00) 0.09 (0.00) 0.000 (0.001) 0.000 (0.001)

Brainstem-cerebellum

MD median 0.8 (0.03) 1.11 (0.12)* -0.003 (0.006)* 0.010 (0.014)*

MD peak location 0.71 (0.00)* 0.91 (0.1)* 0.000 (0.000) 0.000 (0.026)

MD peak height 0.14 (0.02)* 0.07 (0.02)* 0.001 (0.006) -0.001 (0.002)

FA median 0.20 (0.02)* 0.14 (0.02)* 0.001 (0.006) -0.001 (0.006)

FA peak location 0.18 (0.03)* 0.12 (0.00)* 0.000 (0.000) 0.000 (0.010)

FA peak height 0.15 (0.02)* 0.2 (0.03)* -0.001 (0.005) -0.002 (0.007)

AxD median 1.00 (0.05)* 1.3 (0.12)* -0.002 (0.011) 0.010 (0.018)

AxD peak location 0.91 (0.05)* 1.11 (0.18)* 0.000 (0.006) 0.000 (0.051)

AxD peak height 0.11 (0.02)* 0.06 (0.01)* 0.001 (0.004) -0.001 (0.002)

RD median 0.7 (0.03)* 1.03 (0.11)* -0.004 (0.008) 0.011 (0.018)

RD peak location 0.63 (0.05)* 0.81 (0.13)* 0.000 (0.006) 0.000 (0.016)

RD peak height 0.12 (0.02)* 0.07 (0.01)* 0.000 (0.005) -0.001 (0.002)

MO median 0.41 (0.11)* 0.19 (0.13)* -0.003 (0.029) -0.006 (0.023)

MO peak location 0.92 (0.00) 0.92 (0.00) 0.000 (0.000) 0.000 (0.025)

MO peak height 0.09 (0.02)* 0.07 (0.01)* -0.001 (0.006) -0.002 (0.004)
∗ significant differences (p<0.001) between controls and SCA2 patients after
Holm-Bonferroni correction for multiple comparisons (Mascalchi et al., 2018).
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Figure 34: The histograms (median with the interquartile range) of control
subjects (blue line) and SCA2 patients (red line) groups of DTI-
derived indices of cerebrum (a) and cerebellum-brainstem (b) are
shown. The bin width is 0.05x10−3 mm2/s for MD/AxD/RD,
0.03 for FA and 0.08 for MO. MD/AxD/RD (median, peak
location) and FA/MO (median, peak location) are reported as
x10−3 mm2/s and unitless, respectively (Mascalchi et al., 2018).
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of a CAG triplet in the coding region of the mutated gene as
fundamental pathogenetic mechanism (Auburger, 2012).

SCA2 is a neurodegenerative disease that is progressive and
ultimately fatal. So far, the therapeutic window to slow, halt and
hopefully reverse the degenerative process in SCA2 has not been
established yet. Identification and comparison of reliable and
sensitive markers of disease progression potentially serving as
primary or surrogate markers in future trials, including quantitative
MRI (Baldarcara et al., 2015), represent hence active areas of
research. Several clinical measurements of disease progression in
SCA2 and in ataxias in general have been proposed (Filla et al., 1990;
Trouillas et al., 1997). However, all clinical scales are subjective and
are deemed not to be fairly sensitive to disease progression (Sakai
and Miyoshi, 2002).

The results of this study suggest that histogram metrics of
DTI-derived indices may be a useful tool to reveal microstructural
changes associated with the brainstem-cerebellum degeneration in
SCA2 patients. In particular, MD is able to track modification over
time of the microstructural changes and can represent a potential
biomarker of disease progression.

The modifications of the histogram metrics and distribution of
DTI-derived indexes in SCA2 patients, as compared to control
subjects, at baseline (and follow-up) are in line with the general
features of DTI changes in neurodegenerative diseases (Goveas et al.,
2015). In fact, both the increase (implying a more pronounced peak)
of voxels exhibiting lower values (implying a shift to the left), in case
of FA, and the decrease (implying a less pronounced peak) of voxels
exhibiting variably higher values (implying a shift to the right), in
case of MD/AxD/RD, is likely to reflect tissue loosening. In case of
MO, the peak height is reduced, and the histogram values are higher
for negative values of MO, meaning that the mode of anisotropy
tends to change from linear anisotropy (MO = 1) to planar
anisotropy (MO = -1).

Notably, while increased MD and RD and decreased FA of the
affected nervous tissue are generally observed in patients with
various neurodegenerative disorders as compared to healthy
controls (Goveas et al., 2015), AxD and MO can have a dual
(increase/decrease) pattern of change in the same patient group
(Mascalchi et al., 2015; Della Nave et al., 2008b). In the present study,
at baseline we observed higher median and peak location values of
AxD in SCA2 patients as compared to control subjects. This is
consistent with previous data in Friedreich’s ataxia and Huntington
disease (Odish et al., 2015; Della Nave et al., 2011; Rosas et al., 2010),
suggesting that, neurodegeneration may be associated with
increased AxD. The pathophysiological interpretation of this
phenomenon is not well established, albeit some studies have
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hypothesized an increased extracellular water content secondary to
atrophy of the WM fibers, which would allow faster water molecule
movement parallel to axons, alterations of axonal water content and
flux secondary to breakdown or accumulation of certain constituents
of the cytoskeleton and a possible contribution of glial alterations
(Rosas et al., 2010).

The capability of histogram analysis of the MD to track
progression of pontocerebellar degeneration integrates previous
findings (Mascalchi et al., 2015) and further supports the potential of
DTI in assessing longitudinal changes in SCA2. In a previous TBSS
study (Mascalchi et al., 2015), AxD and MO indices showed
longitudinal changes in SCA2 patients as compared to control
subjects. In particular, AxD changes were significantly greater (i.e.,
increased) in patients with SCA2 than in controls in WM tracts of
the right cerebral hemisphere and corpus callosum, but not in the
brainstem or cerebellum, whereas longitudinal MO changes were
significantly lower (i.e., decreased) in patients with SCA2 than
controls in hemispheric cerebral WM, corpus callosum, internal
capsules, pons and left cerebellar peduncles, cerebral peduncles and
WM of the left paramedian vermis. In this histogram study,
longitudinal changes of the median values of MD were significantly
greater (i.e., increased) in patients with SCA2 than controls in the
whole brainstem-cerebellum. Importantly, this capability of MD to
reveal progression of neurodegeneration in SCA2 is consistent with
an increase of tissue loosening and replicates findings obtained with
ROIs or TBSS analyses in other neurodegenerative disorders,
including MSA, Huntington disease and Alzheimer disease
(Reginold et al., 2014; Goveas et al., 2015).

In this study, we preliminary explored whether the rate of changes
of histogram metrics of DTI-derived indices correlated with disease
duration and the rate of change of the clinical deficit. In agreement
with a previous TBSS study (Mascalchi et al., 2015), no significant
correlation was observed. Nonetheless, our results support the
hypothesis that DTI-derived indices, in particular MD, may
constitute potential non-invasive and sensitive biomarkers of disease
progression in degenerative ataxias (Baldarcara et al., 2015).

The SRM of the two clinical scales in our SCA2 patients were
comparable to those of other clinical scales in a morphometric study
of SCA1, SCA3 and SCA6 (Reetz et al., 2013). The slightly higher
value of IACRS presumably reflect inclusion of additional
non-cerebellar deficits in this scale and the degeneration of
additional neural structures beside the cerebellum in SCA2

(Auburger, 2012). In our study, the SRM of the median MD in
cerebellum-brainstem was intermediate between the two clinical
scales, but lower than those reported for several morphometric
features in the above study of SCA1, SCA3 and SCA6 (Reetz et al.,
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2013). This might imply a relatively lower sensitivity of the
microstructure changes revealed by DTI as compared to those of
morphometry or reflect disease specific differences. However, this
issue deserves to be addressed in future studies.

We recognize some limitations of this study. First, due to
hardware and software constraints, we used a DTI acquisition
protocol with only 15 diffusion weighting directions, resulting in a
potential reduction of statistical power of the study. However, given
that our histogram analysis includes mostly gray matter with
relatively isotropic diffusion and white matter regions with
low/moderate diffusion anisotropy (i.e., FA < 0.6) (see Fig. 34), the
use of 15 diffusion weighting directions, albeit not optimal, can be
assumed to be sufficient to minimize the rotational variance due to
noise in the estimation of DTI-derived indices of MD and FA (Jones,
2004). Second, admittedly, we arbitrarily decided to re-scan the
patients (and controls) only once after a relatively long period of
time since basal MRI. However, this interval is clinically reasonable
(and tentatively adequate for therapeutic trials) and was justified, on
the one hand, by the lack of any clue about the minimum time
required to observe changes of DTI-derived indices in SCA2 and
inherited pontocerebellar degenerations and, on the other hand, by
the small number of patients in our cohort that might have entailed
a possible beta error if they were rescanned in a shorter period.
Additional time points and greater sample sizes might enable a
more accurate assessment of the dynamic of the neurodegenerative
process. Finally, we performed a single center study, while using of
DTI-derived indices as biomarker in rare diseases such as SCA2

would greatly benefit of multi-center studies. In this regard,
histogram analysis of DTI-derived indices of segmented brain, given
its simplicity and high reproducibility (Steens et al., 2004), might be
adopted in future multi-centric studies such as the ENIGMA-Ataxia
project (enigma@ini.usc.edu).

In conclusion, histogram analysis of DTI-derived indices including
MD, FA, AxD, RD and MO is a relatively straightforward approach
that is capable to reveal WM and GM microstructural changes
associated with pontocerebellar degeneration in SCA2. Moreover,
the median value of MD in the brainstem-cerebellum is capable to
track progression of pontocerebellar degeneration. Histogram
metrics of DTI-derived indices could hence serve as biomarkers of
disease status and progression in SCA2.

5.2 advanced dti-derived fractal descriptors

Fractal analysis using the box-counting algorithm and the
automated selection of the fractal scaling window can also be
performed on representations of the human brain other than the

enigma@ ini.usc.edu
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general structure, i.e. the volume obtained from MR T1-weighted
images. For the WM, in particular, it is interesting to study the
fractal properties of the skeleton, which preserves the topology of
the general structure and the connections between different areas. In
the previous literature, several works have analyzed the WM
skeleton (Liu et al., 2003; Ha et al., 2005; Zhang et al., 2006; Zhang
et al., 2007b; Esteban et al., 2007; Rajagopalan et al., 2013;
Farahibozorg et al., 2015; Sheelakumari et al., 2017), showing results
complementary to those obtained from the study of the
T1-weigthing-derived volumes only. There are several techniques for
obtaining the skeleton of an image and the majority of works in
literature (Liu et al., 2003; Ha et al., 2005; Zhang et al., 2006; Zhang
et al., 2007b; Esteban et al., 2007; Farahibozorg et al., 2015) have
computed firstly 2D slice-by-slice skeleton in one direction, e.g.,
sagittal, and then, the skeletonized slices were integrated into a 3D
skeleton volume, which represented cortical folding pattern (Ha
et al., 2005). We think that a useful representation of the WM
skeleton can be obtained from the diffusion-weighted images, using
the FA map, derived from the diffusion tensor.

In this section, the preliminary results of the fractal analysis of
DTI-derived skeleton in two different neurological diseases will be
presented.

5.2.1 Materials and methods

participants

The first dataset is the aforementioned (see section 4.1) SCA2

dataset, including 9 patients with spinocerebellar ataxia of type 2

and 16 age- and gender-matched healthy controls. Each subject has
been scanned twice (for further details see Mascalchi et al., 2018;
Marzi et al., 2018a).

The second dataset contains 22 patients with cerebral autosomal
dominant arteriopathy with subcortical infarcts and
leukoencephalopathy (CADASIL) and 16 age- and gender-matched
healthy controls. CADASIL is the most frequent inherited brain SVD.
Common clinical manifestations of CADASIL are migraine, transient
ischemic attacks or strokes, psychiatric disorders, and progressive
cognitive impairment in midage adults (Chabriat et al., 2009).
Conventional MRI shows a leukoencephalopathy very similar to that
observed in elderly hypertensive patients, especially in the WM
tracts (Chabriat et al., 2009).

All the MR examinations of this dataset were performed on a 3 T
system (Achieva, Philips Healthcare, Best, The Netherlands, Release
2.6.3.7) equipped with an eight-channel phased-array headcoil and
the details of MRI protocol are showed in Table 20.
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After the segmentation process using the FreeSurfer suite, the
dataset was composed by 21 CADASIL patients (9 men and 12

women, age 41.7 ± 10.9 years [mean ± standard deviation], range 25

- 63 years) and 16 controls (8 men and 8 women, mean age 42.4 ±
12.6 years, range 27 - 63 years). No significant differences between
age (p-value = 0.87 at t-test) and gender (p-value = 0.67 at χ2-test) in
the two groups was found.

Table 20: MRI examination protocol of CADASIL dataset.

Sagittal 3D
T1-weighted turbo

gradient echo

Axial single-shot echo
planar imaging

TR / TE / TI (ms) 8.1 / 3.7 / 926 9364 / 60

FLA 8 -

FOV 220 mm x 220 mm 256 mm x 256 mm

matrix size 220 x 220 128 x 128

number of slices 155 75

slice thickness 1 mm 2 mm

interslice gap 0 mm 0 mm

NEX 1 2

b-values (s/mm2) - [0, 1000]

diffusion weighting
directions

- 32

methods

The same T1-weighted and DW-image processing was performed
for both datasets (Fig. 35).

Firstly, the DWI data were processed as described in Mascalchi
et al., 2018. Briefly, the tensor model was fitted to processed DWI
data using the RESTORE diffusion tensor estimation (Chang et al.,
2005), implemented in the CAMINO software package (Cook et al.,
2006). Then the DTI-derived index of FA was estimated using
DTI-TK version 2.3.1 (Zhang et al., 2007a), FSL tools and in-house
Bash shell scripts. The skeleton of the FA map was created using
FSL’s tbss_skeleton script (Smith et al., 2006) and thresholded at
FA>0.2 to obtain a binary image (Fig. 36).

The T1-weighted images were processed by using FreeSurfer suite
(Fischl, 2012) (v. 5.3 for SCA2 dataset and v. 6 for CADASIL dataset),
in order to obtain the WM segmentation of each subject. In this
preliminary study, we chose to analyze the WM only because it is
well represented by the skeleton.

Then, the cerebral (and cerebellar for SCA2 dataset, since the
patients present predominant structural alterations at the cerebellar
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level) WM segmentations were converted from the FreeSurfer space
back to the native anatomical space, and the T1-weighted images in
the native space were co-registered to the b0 image using the affine
(with 12 degrees of freedom) transformation implemented in FSL
FLIRT (FMRIB’s Linear Image Registration Tool) (Jenkinson et al.,
2002). This affine transformation was then applied to cerebral (and
cerebellar for SCA2 dataset) WM segmentation in order to mask the
FA skeleton image (Fig. 35).

The fractal analysis with the automated selection of the fractal
scaling window (for further details see chapter 3) was then
computed on cerebral (and cerebellar for SCA2 dataset) WM
skeleton images, i.e. the FA-derived skeletons masked by the WM
segmentations obtained from the T1-weighted images.

In addition, with the aim of harmonizing the analyses with the
works already published on SCA2 patients (Mascalchi et al., 2018;
Marzi et al., 2018a), in the CADASIL dataset, the maps of FA and
MD of the cerebral WM were investigated by histogram analysis
(Mascalchi et al., 2018). The fractal analysis was also applied to the
general structure of the cerebral WM extracted from the
T1-weighted images using FreeSurfer (Marzi et al., 2018a).

In the SCA2 dataset, differences in FD values of cerebral and
cerebellar WM skeletons were evaluated at baseline through a
Mann-Whitney test. For each FD value, the rate of change (defined
as the ratio between the modification over time and
time-to-follow-up) was computed and differences between groups
evaluated through a Mann-Whitney test.

In the CADASIL dataset, differences between groups were assessed
through the non-parametric Mann Whitney test on histogram metrics
of DTI-derived indices (FA and MD maps) and FD values of cerebral
WM general structure and skeleton.

For both datasets, the significance threshold was set at 0.05.

5.2.2 Results and discussion

Table 21 shows the results for the SCA2 dataset. To simplify the
discussion of the preliminary results of the fractal analysis applied
to the skeletons of the cerebral WM, Table 21 also shows the main
results of the same dataset concerning the histogram analysis of the
FA and MD maps (Mascalchi et al., 2018) and the FD values of
cerebral and cerebellar WM (Marzi et al., 2018a). As already
mentioned in section 2.1.4, the FD values of the skeletons are lower
than those of the general structure in both patients and controls. In
the SCA2 dataset, the fractal analysis applied to skeletons did not
add information compared to the study of the general structure
alone. In the cerebrum, the FD values of either the WM general
structure and the WM skeleton, were not able to significantly
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DW-image

DWI pre-processing

FA map

FSL's tbss_skeleton
script (Smith et al., 2006)

MD map

Masking

Histogram 
analysis

cerebral WM
median MD

cerebral WM
median FA

Fractal analysis
(Marzi et al., 2018)

cerebral WM
skeleton FD

cerebellar
WM skeleton

FD

cerebral
general

structure FD

T1W-image

Cerebellar 
WM

Cerebral
WM

Co-registration in
b0 space

FreeSurfer
 (Fischl, 2001)

binary FA
skeleton

Figure 35: Processing pipeline for T1-weighted and diffusion-weighted
images of a single subject in this preliminary study. Red text and
lines indicate analyses performed only on the CADSIL dataset.
Blue text and lines indicate analyses performed only on the SCA2

dataset. Black text and lines indicate analyses performed on both
the CADASIL and SCA2 datasets.
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Figure 36: A sagittal, coronal and axial slice of the cerebral WM skeleton in
one CADASIL patient.

discriminate SCA2 patients and controls, both at baseline and using
the rate of change. Differently, at the cerebellar level, SCA2 patients
showed significant lower FD values than those of controls, both for
the T1-derived WM general structure for the DTI-derived WM
skeleton. The reduction of the morphological complexity of the
cerebellar WM in SCA2 patients has been already figured out in
Marzi et al., 2018a, where only the WM general structure was
analyzed by means of fractal analysis with the automated selection
of the fractal scaling window.

Table 22 shows the results for the CADASIL dataset. Even in this
dataset, the FD values of the skeleton are lower than those of the
general structure in both groups. In this case, the FD values of WM
skeleton added complementary information. Indeed, there are no
significant differences between CADASIL patients and healthy
controls in the FD values of the general structure, while FD of
skeletons were lower in CADASIL patients than in healthy subjects.
Similarly, significant differences were found in the histograms
medians values of MD and FA maps between CADASIL patients
and healthy controls. These preliminary results suggest that changes
in MD and FA indices, which quantify the water molecules
diffusivity and its degree of anisotropy, respectively, could be due by
real subtle modifications of the WM microstructure and
morphological complexity, as measured by the FD values of the WM
skeleton.

5.3 diffusion kurtosis imaging (dki)

We have already covered the case of Gaussian diffusion and shown
how to characterize its properties in biological tissues using DTI (see
section 5.1). However, biological tissues such as the cerebral WM are
highly heterogeneous media that consist of various individual
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Table 21: Histogram medians of MD and FA indices [from Mascalchi et al.,
2018], FD values of cerebral and cerebellar WM general structure
[from Marzi et al., 2018a] and skeletons in control subjects and
SCA2 patients. Median (interquartile range) data are reported. MD
median is expressed in x10−3 mm2/s, while FA median and FD
are unitless.

Baseline Rate of change

Controls SCA2 patients Controls SCA2 patients

Cerebrum

MD median 0.81 (0.02) 0.82 (0.03) 0.002 (0.005) 0.004 (0.007)

FA median 0.21 (0.02) 0.21 (0.01) -0.001 (0.004) -0.001 (0.003)

WM FD 2.52 (0.02) 2.53 (0.02) 0.000 (0.003) -0.002 (0.007)

WM skeleton FD 2.22 (0.04) 2.23 (0.03) 0.000 (0.010) -0.010 (0.010)

Brainstem-cerebellum

MD median 0.8 (0.03)* 1.11 (0.12)* -0.003 (0.006)* 0.010 (0.014)*

FA median 0.20 (0.02)* 0.14 (0.02)* 0.001 (0.006) -0.001 (0.006)

WM FD 2.56 (0.19)* 1.74 (0.10)* 0.001 (0.033) 0.009 (0.092)

WM skeleton FD 1.80 (0.04)* 1.63 (0.06)* 0.000 (0.010) 0.000 (0.030)
∗ significant differences (p<0.01) between controls and SCA2 patients at
Mann-Whitney test.

Table 22: Histogram medians of MD and FA indices, FD values of WM
general structures and skeletons in control subjects and CADASIL
patients. Median (interquartile range) data are reported. MD
median is expressed in x10−3 mm2/s, while FA median and FD
are unitless.

Controls CADASIL patients

MD median 0.71 (0.03)* 0.78 (0.08)*

FA median 0.42 (0.03)* 0.39 (0.08)*

WM FD 2.53 (0.02) 2.51 (0.03)

WM skeleton FD 2.25 (0.03)* 2.23 (0.03)*
∗ significant differences (p<0.05) between controls and CADASIL patients at
Mann-Whitney test.
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compartments (e.g., intracellular, extracellular, neurons, glial cells,
and axons) and barriers (e.g., cell membranes and myelin sheaths).
Therefore, the random movement of water molecules is hindered
and/or restricted by compartmental boundaries and other molecular
obstacles (Van-Hecke et al., 2016).

Restricted diffusion occurs when water molecules are constrained Restricted diffusion

by impermeable boundaries, which impedes the progress of water
molecules beyond a certain maximum displacement in a particular
direction. In the context of biological tissues, this kind of diffusion
occurs for water molecules trapped inside a cell boundary, otherwise
known as the “intracellular” region. For instance, the diffusion of
water molecules confined within the intra-axonal spaces is expected
to be restricted. In this regime, the diffusion properties of water are
largely governed by the geometric properties of the constraining
membrane (Van-Hecke et al., 2016).

Differently, Hindered diffusion occurs when the progress of water Hindered diffusion

molecules, as they diffuse, is impeded by obstacles, but not
completely confined by a continuous boundary as in the case of
restricted diffusion. In biological tissue, this type of diffusion is
exhibited by water present in the interstitial space between cells,
otherwise known as the “extracellular” region (Van-Hecke et al.,
2016). A graphical representation of restricted and hindered
diffusion is shown in Fig. 37.

As we can see in Fig. 38, in case of free and hindered diffusion, the
mean squared displacement linearly increases with the diffusion time.
Thus, like free diffusion, hindered diffusion can still be described by
a Gaussian distribution. However, the width of the distribution will
be smaller than one might expect based on properties of the tissue
water itself (Van-Hecke et al., 2016).

For restricted diffusion, on the other hand, the mean squared
displacement converges to an upper bound, which relates to the size
of the bounding microstructure (Van-Hecke et al., 2016).

Given the size of a typical diffusion-weighted MRI voxel (about
2x2x2 - 3x3x3 mm3), the biological tissue within a voxel is expected
to contain a mixture of free, hindered and restricted compartments
with different diffusion properties (Assaf et al., 2004; Assaf and
Basser, 2005; Van-Hecke et al., 2016). Therefore, the assumption of
Gaussian diffusion made in DTI (Basser, 1995), is no longer satisfied
(Van-Hecke et al., 2016). A more advanced diffusion model is
required, that allows to properly describe the deviation from a
Gaussian distribution (Van-Hecke et al., 2016). This deviation from
Gaussian behavior can be quantified using a convenient
dimensionless metric called the excess kurtosis, shortened to
kurtosis (Jensen et al., 2005). The kurtosis is a dimensionless
statistical metric for quantifying the non-Gaussianity of an arbitrary
probability distribution (Decarlo, 1997). If Mn is the nth moment of
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Figure 37: Illustration of hindered and restricted water diffusion inside
and around boundaries, such as cell membranes. The red dots
represent molecules which are restricted by the presence of the
boundaries while the blue dots represent molecules which are
hindered by the presence of the boundaries (Van-Hecke et al.,
2016).

Figure 38: Mean squared displacements are shown as a function of the
diffusion time for free (blue), hindered (green), and restricted
(red) diffusion (Van-Hecke et al., 2016).
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a distribution about its mean value, then the kurtosis may be defined
as K = M4

M2
− 3 (Jensen and Helpern, 2010). As it is shown in Fig. 39,

the kurtosis is a measure of peakedness or sharpness of an arbitrary
distribution. For a Gaussian distribution K = 0, while a positive
kurtosis indicates that distribution is more peaked than a Gaussian
distribution (Jensen and Helpern, 2010; Van-Hecke et al., 2016).

Figure 39: Distributions with varying kurtosis, but with the same mean and
variance are shown (Van-Hecke et al., 2016).

In general, as that happens for the ADC (see section 5.1), the
measured diffusional kurtosis is dependent on the direction (Jensen
et al., 2005). This directional dependence can be represented by a
diffusion kurtosis tensor (Jensen et al., 2005; Lu et al., 2006; Diffusion Kurtosis

TensorVan-Hecke et al., 2016). Thus, Diffusional Kurtosis Imaging (DKI) is
a clinically feasible extension of DTI that enables the characterization
of non-Gaussian diffusion by estimating the kurtosis of the
displacement distribution (Tabesh et al., 2011). The DKI model is
parameterized by the symmetric rank 2 diffusion tensor (DT) (6
independent elements) and symmetric rank 3 kurtosis tensor (KT)
(15 independent elements) from which several rotationally invariant
scalar measures are extracted. As we have already seen in section 5.1,
the most common DT-derived measures are mean, axial, and radial
diffusivity (MD, AD, RD, respectively), as well as fractional
anisotropy (FA). The KT-derived measures include axial, radial, and
mean kurtoses (Jensen et al., 2005; Lu et al., 2006; Hui et al., 2008;
Tabesh et al., 2011). The axial kurtosis is the apparent kurtosis along
the principle diffusion direction (Hui et al., 2008). The radial kurtosis
is the average apparent kurtosis coefficient, measured in the
equatorial plane (Poot et al., 2010), whereas the mean kurtosis is the
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average of apparent diffusion kurtosis coefficients along all
directions (Lu et al., 2006; Van-Hecke et al., 2016).

In terms of data acquisition, DKI is also a straightforward
extension of DTI, because the same type of pulse sequences
employed for conventional DWI can be used to record the images
(Jensen et al., 2005; Van-Hecke et al., 2016). Diffusion-weighted
images along at least 15 non-collinear and non-coplanar diffusion
directions and with a minimum of 3 distinct b-values (including
b-value = 0 s/mm2) are needed to estimate the diffusion and
kurtosis tensors in DKI. Typically, the highest b-value is somewhat
higher than in DTI acquisitions and it has been shown that b-values
of about 2000 s/mm2 are sufficient to measure the degree of
non-Gaussianity with an acceptable precision (Fig. 40) (Jensen and
Helpern, 2010; Van-Hecke et al., 2016).

Figure 40: Diffusion-weighted signals (left), as well as their log-
transformation (right) are shown as a function of the b-value:
measured values (red dots), DTI model (blue), and DKI model
(green). Owing to the non-Gaussian diffusion the DKI model
improves the accuracy of the fit. This is mainly noticeable up
to intermediate/high b-values. At very high b-values, severe
approximation errors can affect also DKI (Van-Hecke et al., 2016).

5.3.1 Body Diffusion Kurtosis Imaging

DKI-derived indices are sensitive to tissue microstructure also in
extra-cranial regions such as prostate, liver, kidney, bladder and
breast (Giannelli and Toschi, 2016). The interpretability of the
kurtosis metrics is influenced by reliable estimation of the kurtosis
tensor (Tabesh et al., 2011). In body DKI, there is currently no
standardized approach to characterize and quantify the
non-Gaussian component of water diffusion from DWIs. In this
regard, a few studies (Quentin et al., 2014; Pentang et al., 2014;
Huang et al., 2015; Wu et al., 2014) have computed a DKI-derived
index of mean diffusional kurtosis (Jensen and Helpern, 2010) by
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estimating the kurtosis tensor or averaging diffusional kurtosis
estimated along multiple (> 15) acquired diffusion weighting
directions (as is common practice in neuroimaging applications of
DKI (Fieremans et al., 2013; Falangola et al., 2013; Lee et al., 2013;
Cauter et al., 2012; Raab et al., 2010; Coutu et al., 2014; Falangola
et al., 2008). On the other hand, given the practical and stringent
need to contain acquisition time in most routine body MRI exams,
acquisition of only three DWIs along the main x, y, z orthogonal
directions is becoming the de facto standard in body DKI. In this
scenario, given that the full kurtosis tensor cannot be estimated, the
best-possible approximation for mean diffusional kurtosis can be
obtained by separately fitting the DKI model along each diffusion
weighting direction x, y, z prior to averaging. However, there is a
widespread and growing tendency to perform a single fit of the
non-Gaussian DKI model using the geometric means of
diffusion-weighted images (i.e., diffusion tensor trace-weighted
images (Basser and Jones, 2002), commonly known as
trace-weighted (TW) images) (Jambor et al., 2014; Suo et al., 2014;
Bourne et al., 2014; Mazzoni et al., 2014; Quentin et al., 2012;
Rosenkrantz et al., 2012b; Rosenkrantz et al., 2012a; Nogueira et al.,
2014; Iima et al., 2015; Rosenkrantz et al., 2015). Given that
geometrical averaging of DWIs implicitly assumes Gaussian signal
attenuation as a function of b-value (which incidentally would imply
zero diffusional kurtosis and hence eliminate the advantages of the
DKI approach), it has been hypothesized that this practice can
represent a source of inaccuracy in quantitative DKI (Giannelli and
Toschi, 2016), as demonstrated in head and neck application of DKI
(Marzi et al., 2018b).

For these reasons, we wrote two letters, published on "Radiology"
(Giannelli et al., 2017) and "American Journal of Neuroradiology
(AJNR)" (Giannelli et al., 2019), respectively. The aim of these letters
is to underline the importance of performing DKI only under the
conditions previously described [acquisition of at least 15

diffusion-weighted directions and a minimum of 3 distinct b-values
(including b-value = 0 s/mm2)], so that the results are accurate,
reproducible and comparable.

5.4 neurite orientation dispersion and density

imaging (noddi)

Whilst DTI and DKI are matemathical models of the
diffusion/weighted signal and do not assume a specific biophysical
tissue model, other MRI based frameworks aim to incorporate
additional features into their models that reflect some properties of
tissue microstructure such as the different behavior of water in
intracellular and extracellular compartments (Panagiotaki et al.,
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2012; Van-Hecke et al., 2016). The complexity of the brain
microstructure may depend on the morphology of the neurites,
which corresponds to the protrusions of the neuronal soma, i.e.,
axons and dendrites (Fig. 41).

Figure 41: This is a colored scanning electron micrograph (SEM) of a neuron
(nerve cell). The cell body is the central structure with neurites
(long and thin structures) radiating outwards from it. A neurite is
a general term used for processes connecting nerve cells together
to form a network of nervous tissue (Abbott, 2010).

The neurite morphology can be quantitatively described by its
density and orientation distribution; it contributes to the knowledge
of the morphological basis of brain function both in healthy and
diseased subjects (Zhang et al., 2012). To describe the neurites
morphology, Zhang and colleagues, (Zhang et al., 2012), proposed a
non-Gaussian diffusion technique called “neurite orientation
dispersion and density imaging (NODDI)”, based on a biophysical
model of the brain tissue. The NODDI tissue model is sufficiently
simple, but complex enough to capture the key features of neurite
morphology (Zhang et al., 2012). NODDI adopts a tissue model that
distinguishes three types of microstructural environment:
intra-cellular, extra-cellular and CSF compartments. The water
diffusion is different in each compartment (Le Bihan and Warach,
1995) and produces differentiated normalized MR signal. The full
normalized signal A can be written as:

A = (1− viso)[vicAic + (1− vic)Aec] + visoAiso (25)

where:

Aic = normalized signal of the intra-cellular compartment;
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vic = volume fraction of the intra-cellular compartment;

Aec = normalized signal of the extracellular compartment;

Aiso = normalized signal of the CSF compartment;

viso = volume fraction of the CSF compartment.

The intra-cellular compartment refers to the space bounded by the
membrane of neurites. They modeled this space as a set of sticks, i.e.,
cylinders of zero radius, with restricted diffusion (Behrens et al.,
2003; Panagiotaki et al., 2012; Sotiropoulos et al., 2012; Zhang et al.,
2012). The extra-cellular compartment refers to the space around the
neurites, which is occupied by various types of glial cells and,
additionally in GM, cell bodies (somas). The neurites hinder, but not
restrict, the water molecules diffusion in the extracellular
compartment and thus it is modeled with Gaussian anisotropic
diffusion (Zhang et al., 2012). The CSF compartment models the
space occupied by cerebrospinal fluid and is modeled as isotropic
Gaussian diffusion (Zhang et al., 2012).

The procedure to fit the model to data is an adapted version of the
routine described in Alexander et al., 2010. Briefly, the procedure
determines the maximum likelihood estimates of the parameters,
using a Rician noise model, with the Gauss-Newton nonlinear
optimization technique (Zhang et al., 2012). The fitting procedure
allows the estimation of the three main parameters of the NODDI
model, which can be displayed in maps:

1. vic is the neurite density and represents the intra-cellular
volume fraction

2. OD is the "Orientation Dispersion" index; OD = 2
π arctan(1k),

where k is the concentration parameter that measures the
extent of orientation dispersion about the mean orientation, µ,
of neurites (Zhang et al., 2012)

3. viso is the isotropic volume fraction

As we can see in Figs. 42 and 43, the vic map shows the expected
pattern of neurite density (Jespersen et al., 2010). The vic value is
lower in GM than in WM and it takes its highest values in the major
WM tracts, such as the corpus callosum and the internal capsules
(Zhang et al., 2012). Furthermore the neurite density seems to be a
good measure of structural alterations in demyelination disorders
(e.g. multiple sclerosis) (Jespersen et al., 2010; Zhang et al., 2012).

Also the OD map demonstrates an expected trend that is similarly
expected (Figs. 42 and 43). The OD value is higher in GM than in
WM and it takes its lowest values in the corpus callosum. The
orientation dispersion index of neurites has two broad applications.
The bending and fanning of axons in WM can be measured by the
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orientation dispersion index, which is helpful for mapping brain
connectivity (Kaden et al., 2007). In particular, it will be useful to
decide whether many voxels currently classified as having crossing
fibers (Jeurissen et al., 2010) may consist of orientation-dispersed
fibers with only a single dominant orientation. Mapping orientation
dispersion overtime may shed new light into the process of brain
development (Jespersen et al., 2012). In GM, the index quantifies the
pattern of sprawling dendritic processes (Zhang et al., 2012).

Similarly, expected results were also found in the map of viso, which
takes its highest values for the CSF regions, such as the ventricles
(Figs. 42 and 43) (Zhang et al., 2012).

In principle, NODDI offers an opportunity to extend the
application of neurite morphology quantification from being
confined within the realm of postmortem histology to becoming a
part of routine clinical practice (Zhang et al., 2012). Indeed, NODDI
has been developed for clinically feasible and in vivo analyses. With
this aim, Zhang and colleagues proposed an acquisition protocol for
NODDI model, under scanner hardware and acquisition time
constraints typical in clinical setting (Zhang et al., 2012): one shell of
b-value=711 s/mm2 and 30 diffusion directions, one shell of
b-value=2855 s/mm2 and 60 diffusion directions and
diffusion-weighted images with null b-value. This acquisition
protocol allows a total scanning time of about 25 minutes (Zhang
et al., 2012). However, the estimation of the model parameters
performed on the whole brain is computationally very expensive: on
a standard workstation with two quad-core 3.0 GHz Intel processors,
by splitting the computation over 8 cores, the whole brain fitting
requires about 3 h (Zhang et al., 2012).

For this reason, Daducci and colleagues, in 2015 (Daducci et al.,
2015), have proposed a general framework for Accelerated
Microstructure Imaging via Convex Optimization (AMICO) and
have shown how to re-formulate the NODDI model as convenient
linear systems which can be efficiently solved using fast algorithms
(Daducci et al., 2015). Their results demonstrate that AMICO
represents an effective means to drastically accelerate the fit of
existing techniques (up to four orders of magnitude faster) while
preserving accuracy and precision in the estimated model
parameters (coefficient of correlation above 0.9). Although Daducci
and colleagues have asserted that AMICO is able to preserve a good
accuracy and precision in the estimation of the parameters of the
NODDI model derived from simulated data, only a qualitative
comparison has been made in the case of real data. They showed
difference maps between the original and the convex approach: viso

maps estimated by the two approaches appear almost identical; in
fact, the average absolute difference between the original NODDI
and their AMICO approach over the whole brain is 0.004 ± 0.009
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(mean and standard deviation). Also, no significant discrepancies
can be observed in the maps of the intra-cellular volume fraction vic,
with the exception of few voxels, especially at the boundary with
CSF. The average absolute difference is a bit higher in this case, i.e.,
0.032± 0.119; however, if they exclude these boundary voxels from
the analysis, they obtain a more indicative measure of the actual
discrepancy between the two methods in the brain, i.e., 0.015± 0.028.
The OD maps estimated with the two algorithms are almost
indistinguishable, with an average absolute difference of
0.018± 0.022.

In the following section, the preliminary results of a quantitative
comparison of two estimations of the main NODDI model-derived
indices, i.e., vic, ODI and viso, will be presented. In particular, the
NODDI model-derived indices have been calculated on a sample of
real data (diffusion-weighted images acquired from healthy subjects),
using both the original toolbox [NODDI toolbox on Matlab, (Zhang et
al., 2012)] and the one proposed by Daducci and colleagues [AMICO
on Python, (Daducci et al., 2015)].

5.4.1 NODDI vs. AMICO

The sample used in this analysis consists of 17 healthy subjects (12

men and 5 women, age 64 ± 7 years, mean ± standard deviation,
range 54− 77 years), which underwent diffusion MRI scanning with
a single-shot echo-planar imaging sequence (TR = 8500 ms, TE = 101

ms, FOV = 269 mm x 269 mm, matrix size = 96 x 96, 60 slices, slice
thickness 2.8 mm, no gap). Diffusion sensitizing gradients were
applied along 64 non-collinear and non-coplanar directions with
b-value of 1000 and 2500 s/mm2 (NEX = 1, time 9 minutes and 38

seconds). The b0 images (b-value = 0 s/mm2) were also acquired
(NEX = 9, time 1 minute and 42 seconds).

5.4.1.1 Methods

dwi pre-processing

The preliminary visual evaluations of all b0 and
diffusion-weighted images revealed no motion artifacts in any
subject. Diffusion weighted-images were corrected for head motion
and eddy current distortions by using the FMRIB Diffusion Toolbox,
part of the FMRIB Software Library (FSL 5.0.8) (Smith et al., 2006).
Afterwards, brain tissue was segmented by using the FSL Brain
Extraction Tool. The b-matrix was subsequently reoriented by
applying the rotational part of the affine transformation used in the
motion- and eddy current-correction step (Leemans and Jones, 2009).

noddi model-derived indices computation
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Figure 42: Maps of FA, orientation disperison index OD, intra-cellular
volume fraction (vic), and isotropic (CSF) volume fraction viso,
showing every 4

th slice of the inferior half of the brain (modified
from Zhang et al., 2012).
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Figure 43: As in Fig. 42, but for the superior half of the brain (modified from
Zhang et al., 2012).
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Each NODDI model-derived index, i.e., vic, ODI and viso, was
calculated using both the original toolbox [NODDI toolbox version
1.0.1 available at https://www.nitrc.org/projects/noddi_toolbox
(Zhang et al., 2012)], and the procedure proposed by Daducci and
colleagues [AMICO toolbox available at
https://github.com/daducci/AMICO (Daducci et al., 2015)]. The
original NODDI toolbox was performed by using MATLAB R2018a
on a Dell PowerEdge T620 platform equipped with two 8-core Intel
Xeon E5-2640 v2, for a total of 32 CPU threads and 128 GB of RAM.
The computation of the NODDI tissue model for each subject took
16 cores. AMICO toolbox, instead, was written and executed in
Python version 3.7.0 and executed on a Mac notebook, equipped
with a dual-core Intel Core i7 processor, 16 GB of RAM memory. The
NODDI model computation using the AMICO toolbox has been
performed using only one core.

For each subject, we obtained six 3D maps: vic_NODDI, ODINODDI,
viso_NODDI and vic_AMICO, ODIAMICO, viso_AMICO (Fig. 44).

statistical analysis

The two different approaches for computing the NODDI model
have been compared quantitatively both in terms of computational
performances, i.e., the execution time of NODDI model computation,
and results, considering as the gold-standard the maps produced by
the original toolbox. The three NODDI model-derived maps have
been compared using Tract-Based Spatial Statistics (TBSS) (Smith
et al., 2006) as well as whole brain woxel-wise statistical analysis.
The former has been carried out using FSL’s suite scripts, while for
the latter we have previously created an anatomical specific template
for our 17 healthy subjects and performed a tensor-based
co-registration of each subject’s map on the template, by using
DTI-TK version 2.3.1 (Zhang et al., 2007a). We performed a
within-subjects comparison of NODDI model-derived indices
between NODDI original and AMICO toolbox outputs through a
GLM analysis. The p-values were calculated employing
permutation-based statistics (5,000 permutations) and corrected for
multiple comparisons using the parameter settings with
threshold-free cluster enhancement (TFCE), thereby avoiding the use
of an arbitrary threshold for the initial cluster formation (Smith and
Nichols, 2009). A p-value < 0.05 corrected for multiple comparisons
across space (family-wise error rate correction) was considered
statistically significant (Winkler et al., 2014).

5.4.1.2 Results and discussion

As already demonstrated by Daducci and colleagues (Daducci et al.,
2015) using simulated images, even in our sample of MR images
belonging to a group of healthy subjects, the computation of NODDI

https://www.nitrc.org/projects/noddi_toolbox
https://github.com/daducci/AMICO
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(a) (b)

(c) (d)

(e) (f)

Figure 44: Examples of the 32
nd axial slice of NODDI model-derived indices

of one healthy subject, computed by using both the original
and the AMICO toolboxes: (a), (c) and (e) are, respectively, vic,
ODI, and viso maps computed using the original NODDI toolbox
(Zhang et al., 2012), while (b), (d) and (f) are, respectively, vic,
ODI, and viso maps calculated using AMICO toolbox (Daducci et
al., 2015).
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model-derived indices by means of convex optimization, i.e.,
AMICO toolbox, is much faster (7.9 ± 0.6, mean ± standard
deviation, minutes for each subject) than using the original toolbox
(176.9 ± 17.3 minutes for each subject), proposed by Zhang and
colleagues (Zhang et al., 2012). It is important to underline that these
preliminary results were obtained by working on two different
platforms; the NODDI model computation using the original
toolbox has been performed on a high performance platform, using
16 of 32 cores available, but it showed worse performances in terms
of computation time.

tbss

Fig. 45 graphically shows the results of TBSS analysis on vic, OD
and viso indices. In the majority of voxels belonging to the skeleton,
the AMICO toolbox seems to underestimate the values of vic, OD
and viso, compared to the values obtained with the original toolbox
(corrected p-value < 0.05).

whole brain voxel-wise statistical analysis

The results of the whole brain voxel-wise within-subjects analysis
confirms the TBSS results. The values assumed by the majority of
the voxels of the vic map calculated using the original toolbox are
significantly higher than those obtained with the AMICO toolbox (Fig.
46a). The OD and viso maps show a different behaviour of the two
toolboxes, according to the different brain tissues. Both the OD and
viso maps obtained with the original toolbox have higher values than
those calculated with the AMICO toolbox in the voxels belonging
mainly to GM and WM (Fig. 46c and 46e), while the result is opposite
in the voxels contained in the CSF of the ventricles (Fig. 46d and 46f).
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(a)

(b)

(c)

Figure 45: Within-subjects TBSS analysis at anatomic level Z = 90 (Z
coordinate in Montreal Neurological Institute standard space),
between NODDI and AMICO toolbox results [(a) for vic map,
(b) for OD map and (c) for viso map]. Red-yellow identifies
the WM tracts showing a significant (p value < 0.05 corrected,
threshold-free cluster enhancement) difference between results
obtained with NODDI and AMICO toolbox. This difference is
positive for each voxel belonging to the skeleton (i.e. AMICO
maps underestimate the corresponding maps calculated using
the original NODDI toolbox)
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(a) (b)

(c) (d)

(e) (f)

Figure 46: Example of within-subjects whole-brain analysis at 20
th axial slice.

The colored voxels identify a significant (corrected p-value < 0.05,
threshold-free cluster enhancement) difference between results
obtained by the original and the AMICO toolboxrs. Yellow voxels
represent significant higher values of (a) vic, (c) OD and (e) viso
indices, computed with the original toolbox as compared to those
obtained with AMICO toolbox, while light-blue voxels represent
lower values of (b) vic, (d) OD and (f) viso maps, computed with
the original toolbox as compared to those obtained with AMICO
toolbox.



C O N C L U S I O N S

In this thesis, we showed that the selection of the interval of the
fractal scaling window of the brain in MRI may be critical in the FD
estimation. Our approach allows to determine the automated fractal
scaling window in which each brain structure actually manifests
fractal properties. In particular, we have proposed two new fractal
descriptors: the mfs and Mfs, in additon to the FD computed with
the automatically selected fractal scaling window. Using our method,
we have demonstrated that the FD is a useful marker of
morphological complexity changes occurred during brain
development and normal aging. To this purpose, we employed a
large population of healthy subjects belonging to several datasets,
using different scanners at several magnetic field intensities. In
addition, we proved that the FD appears a candidate marker able to
assess brain changes due to various neurological diseases. For
example, in a study regarding patients with SCA2, the brain
complexity measured by FD of the cerebellar cortical GM and WM,
as well as of the cerebral cortex, is reduced in SCA2 patients as
compared to a healthy controls group. Furthermore, using a
machine learning approach with standard and advanced
neuroimaging features, the FD was found to be a consistent feature
in predicting cognitive decline in patients with SVD and MCI, that
can complement standard imaging and clinical features.

For the first time, we have also investigated the fractal properties
of the brain imaged at ultra-high magnetic field (7T). The structural
complexity of the cerebral GM seems to manifest fractal properties
also below the spatial scale of 1 mm, suggesting that the human brain
may be more complex than what we are able to observe with clinical
MRI scanners. Future studies investigating this phenomenon in larger
datasets at ultra-high field will be extremely warranted.

During my Ph.D. program, we were also interested in the analysis
of brain complexity in diffusion-MRI images. Firstly, we have
studied the conventional DWI morphological measures (DTI-, DKI-,
NODDI-derived indices) and, in this thesis, we have proposed for
the first time the investigation of the fractal properties of skeletons
derived from DTI analysis, performed in two different samples of
patients with neurological diseases. The fractal properties of the
skeleton, which preserves the topology of the general structure,
complement those of the general structure derived from
T1-weighted images, altough different FD results have been obtained
investigating DTI-derived skeletons or T1-weighted images. In
structural MRI (T1-weighting- and diffusion-MRI), the combination
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of conventional morphological indices with these new fractal
desriptors may be fundamental for an accurate description of the
morphological changes and alterations that characterize brain
development, normal aging, and also neurological diseases.

In conclusion the FD, mfs and Mfs computed with the automated
selection of the fractal scaling window, are candidate biomarkers to
detect subtle morphological changes of the brain during
development, normal aging and also in neurological diseases.
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