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Abstract 
 

In this work, the numerical analysis of turbulent two-phase processes in stirred 

tanks and bioreactors is performed with a computational fluid dynamics (CFD) ap-

proach. The modelling of the turbulent two-phase phenomena is achieved in the 

context of the Reynolds Averaged Navier-Stokes (RANS) equations and the Two-

Fluid Model (TFM). Different modelling strategies are studied, tested and devel-

oped to improve the prediction of mixing phenomena, interphase interactions and 

bio-chemical reactions in chemical and process equipment. The systems studied in 

this work are a dilute immiscible liquid-liquid dispersion and dense solid-liquid 

suspensions, both in stirred tanks of standard geometry, a gas-liquid system con-

sisting of a dual impeller vortex ingesting fermenter for the production of biohy-

drogen, analyzed in two different configurations of the supports for the attached 

growth of biomass, and two different bioreactors, of different scale and configura-

tion, subject to substrate concentration segregation. Purposely collected experi-

mental data and data from the literature were extensively used to validate the nu-

merical results and either confirmed the goodness of the models and the modelling 

techniques, helped the definition of the limits and the uncertainties of the model 

formulations or guided the development of new models. 

The study of Liquid-Liquid dispersions in stirred tanks revealed that since grid 

effects on the turbulent dissipation rate are relevant, the choice of the breakup ker-

nel parameters depends on the grid refinements. A novel scalar correction for the 

breakup kernel derived from local quantities is proposed. 

Simulating the Solid-Liquid suspension in stirred tanks, it was found that the 

so-called granular model formulation was uninfluential in the prediction of the sol-

id distribution in the stirred tank for solid volume fractions up to 0.15 and in the 

operating conditions considered, provided that a packing limit was included. Unsat-

isfactorily agreement was obtained between experimental and numerical radial 

concentration profiles in the investigated incomplete suspension conditions, since 

the turbulent dispersion models would require more advanced multiphase turbu-

lence models. 



A modelling strategy for the fermentative production and stripping of biohy-

drogen in the self-ingesting stirred tank reactor was developed. A local specific in-

terfacial area model was implemented, and it was instrumental in proposing geo-

metrical changes to the bioreactor. The performances of two reactor configurations 

were tested with a local and an instantaneous analysis of the reaction rate, the inter-

phase hydrogen fluxes and the two-phase fluid dynamics confirming that the two-

impeller configuration allows the circulation of stripping gas to enhance recovery. 

The fermentation of Escherichia coli in bioreactors was studied with a proba-

bilistic mixing model for substrate segregation. The developed mixing model was 

compared against experimental and numerical literature results revealing that a 

simplified fluid dynamic description could suffice when just substrate segregation 

is important. A model tying the maintenance rate of a cell population to the sub-

strate concentration distribution was developed, implemented, validated against 

experimental data and discussed both from a Lagrangian and from a Eulerian per-

spective. 

In all cases, particular attention was devoted to the precision of the numerical 

solution, and to the validation with experimental data to quantify the appropriate-

ness of the models and the accuracy of the CFD predictions. 

 



Ré sumé  

Dans ce travail, l'analyse numérique des processus diphasiques turbulents dans 

les cuves agitées et les bioréacteurs est réalisée avec une approche de la mécanique 

des fluides numérique (CFD). La modélisation des phénomènes diphasiques turbu-

lents est réalisée dans le cadre des équations de Navier-Stokes moyennes de Reyn-

olds (RANS) et du modèle à deux fluides (TFM). Différentes stratégies de mo-

délisation sont étudiées, testées et développées pour améliorer la prédiction des 

phénomènes de mélange, des interactions interphasiques et des réactions bio-

chimiques dans les équipements chimiques et de process. Les systèmes étudiés 

dans ce travail sont une dispersion liquide-liquide diluée non miscible et des sus-

pensions solides-liquides denses, à la fois dans des cuves agitées de géométrie 

standard, un système gaz-liquide composé d'un fermenteur à double vortex à tur-

bine pour la production de bio-hydrogène, analysé dans deux configurations diffé-

rentes des supports pour la croissance attachée de la biomasse, et deux bioréacteurs 

différents, d'échelle et de configuration différentes, soumis à la ségrégation de la 

concentration du substrat. Les données expérimentales collectées à dessein et les 

données de la littérature ont été largement utilisées pour valider les résultats numé-

riques et ont soit confirmé la qualité des modèles et des techniques de modélisa-

tion, aidé à la définition des limites et des incertitudes des formulations des 

modèles, soit guidé le développement de nouveaux modèles. 

L'étude des dispersions liquide-liquide dans des cuves agitées a révélé que, pu-

isque les effets du réseau sur le taux de dissipation turbulent sont pertinents, le 

choix des paramètres du noyau de rupture dépend des raffinements du réseau. Une 

nouvelle correction scalaire du noyau de rupture dérivé des quantités locales est 

proposée. 

Simulant la suspension solide-liquide dans des cuves agitées, il a été constaté 

que la formulation dite granulaire n'était pas influente dans la prédiction de la dis-

tribution des solides dans la cuve agitée pour des fractions volumiques solides 

jusqu'à 0,15 et dans les conditions de fonctionnement considérées, à condition 

qu’une limite d'emballage ait été incluse. Un accord insatisfaisant a été obtenu en-

tre les profils de concentration radiale expérimentaux et numériques dans les condi-



tions de suspension incomplètes étudiées, car les modèles de dispersion turbulente 

nécessiteraient des modèles de turbulence polyphasiques plus avancés. 

Une stratégie de modélisation pour la production fermentative et le stripage de 

bio-hydrogène dans le réacteur agité auto-ingérant a été développée. Un modèle de 

zone interfaciale spécifique locale a été mis en œuvre, et il a contribué à proposer 

des changements géométriques au bioréacteur. Les performances de deux configu-

rations de réacteurs ont été testées avec une analyse locale et instantanée de la 

vitesse de réaction, des flux d'hydrogène entre phases et de la dynamique des flu-

ides à deux phases confirmant que la configuration à deux turbines permet la circu-

lation du gaz de stripping pour améliorer la récupération. 

La fermentation d'Escherichia coli dans des bioréacteurs a été étudiée avec un 

modèle de mélange probabiliste pour la ségrégation du substrat. Le modèle de 

mélange développé a été comparé aux résultats de la littérature expérimentale et 

numérique révélant qu'une description simplifiée de l’hydrodynamique pourrait 

suffire lorsque seule la ségrégation du substrat est importante. Un modèle liant le 

taux de maintien d'une population cellulaire à la distribution des concentrations de 

substrat a été développé, mis en œuvre, validé par rapport aux données 

expérimentales et discuté à la fois du point de vue lagrangien et du point de vue 

eulérien. 

Dans tous les cas, une attention particulière a été portée à la précision de la 

solution numérique et à la validation avec des données expérimentales pour 

quantifier la pertinence des modèles et la précision des prédictions CFD. 
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Chapter 1  

Introduction 

1.1 Computational Fluid Dynamics in Chemical  

 Engineering 

Computational Fluid Dynamics (CFD) deals with the simultaneous numerical 

solution of the momentum conservation, mass conservation and energy conserva-

tion differential equations that govern the motion of fluids. CFD simulations gener-

ally rely on the finite volume method to derive algebraic equations from the general 

conservation differential equations (Versteeg & Malalasekera, 2007). In the finite 

volume method, the differential equations are integrated in the whole discretized 

finite control volume and then the terms in the equations are substitute with their 

approximations (Bouchut, 2004). 

CFD is being used in a great variety of applications, some of those are the flow 

and heat transfer in industrial processes, the aerodynamics of ground and airborne 

vehicles, the ventilation, heating, and cooling flows in buildings, etc. (Bakker, 

2002). Specifically, CFD helps in the design and the optimization of the processes, 
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thanks, for instance, to the local and instantaneous results that can be collected in 

any point of the computational domain, to the possibility to model the full scale 

equipment, minimizing the uncertainties related to the scale-up and to safely simu-

late the flow behaviour of hazardous fluids (Brenner, 2009). 

CFD in chemical and process engineering has become an important tool to 

studying, designing, troubleshooting and prototyping unit operation equipment. A 

recent overview of  some of the latest development and application of CFD models 

in chemical engineering can be found in Nunhez, et al., (2019) and some examples 

include applications for oil transport Siqueira, et al., (2019), flashing spray jets de 

Oliveira, et al., (2019), T‐shaped micromixers Galletti, et al., (2019), jacketed 

stirred tanks Daza, et al., (2019), non‐Newtonian fluid flow around a Taylor bubble 

(Sontti & Atta, 2019), etc. From this short list, some of the common aspects of the 

CFD in chemical engineering are worthy of attention, namely the important role of 

turbulence, the different scales involved, the modelling of non-Newtonian fluids, 

the motion of geometrical parts, the heat exchange dynamics, but two of the most 

characterizing aspects are probably the variety of physical behaviors considered 

(such as chemical and biochemical reactions, interphase mass transfer, phase tran-

sitions, species transport) and the simultaneous presence of multiple phases. 

In the context of CFD, the governing conservation equations are often coupled 

with specific models to catch the different physical behaviors studied. In some spe-

cific cases, those models are well established, and the choice is limited to few op-

tions thoroughly documented in the literature (turbulence modelling, species diffu-

sion, chemical reactions). On the other hand, a large number of computational and 

numerical models exists to describe, for instance, the breakup frequency of the 

bubbles and droplets in turbulent dispersions (Liao & Lucas, 2009) or the fluid-

particle interaction forces (Lettieri & Mazzei, 2009). The choice of the modelling 

strategy is often not unique, intrinsically system dependent and the formulation of 

new models and computational techniques is essential to obtain realistic predic-

tions. 
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1.2 Multiphase flow modelling 

The simultaneous motion of multiple phases is handled in CFD codes with a 

different set of properties for each of the phases, that allow the calculation of dif-

ferent magnitudes of the forces acting on the continuous and dispersed phases. 

Several multiphase models are implemented in the CFD codes and they are well 

documented in the literature  (Prosperetti & Tryggvason, 2007). 

In this section some context regarding three of the most widespread families of 

multiphase models are shortly listed, namely: the Euler-Lagrange approach, the 

Euler-Euler approach and the Volume of Fluid (VOF) (Marshall & Bakker, 2004). 

In the Euler-Lagrange approach, the continuous fluid phase is described by 

means of the Navier-Stokes equations in an Eulerian frame, while the dispersed 

phase elements are described in a Lagrangian frame. The trajectory for each ele-

ment is calculated through the integration of the force balance acting on the ele-

ment (drops, particles, bubbles). Solving Newton’s second law of motion for each 

particle in the system, can quickly lead to prohibitively large computational times. 

An alternative approach contemplates to compute the trajectories of only a subset 

of particle, representative of all particles, resulting in a semi-deterministic (deter-

ministic-stochastic) approach (Subramaniam, 2000). 

The Euler-Euler approach adopts an Eulerian vision for all the phases consid-

ered. The phases are all mathematically described as interpenetrating continua. 

Each phase is governed by its conservation equations with similar formulations for 

all phases. Constitutive relations derived from empirical observations are used to 

mathematically close the set of conservation equations, making the modelling of 

the multiphase system dependent on the operating conditions, on the phases in-

volved in the process and on their volume fraction. 

As the Euler-Euler approach, the VOF as well treats the phases as fluids in an 

Eulerian frame. The main difference with the Euler-Euler approach is that the flu-

ids are well segregated, each with its own properties and a single momentum con-

servation equation is shared by the fluids. Each phase is followed in the domain 

and a single finite volume contains either one of the phases or the interface be-

tween them. This approach makes the VOF model especially advantageous when 

there is the need to track the phase interface evolution. 
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Many multiphase models exist in the literature, including hybrid description of 

the phases, depending on their volume fraction. One of the most promising model 

is the so-called GENeralized TwO Phase flow model (GENTOP) (Hänsch, et al., 

2012; Krepper, et al., 2011) that potentially allows the interface tracking due to 

large inhomogeneities and the description of the dispersed phase at the same time. 

The application of this model is now just limited to the gas-liquid systems with 

large and finely dispersed bubbles and it is based on a number of coefficients and 

parameters that need appropriate tuning. 

1.3 Research Objectives 

In this work, CFD is exploited to investigate different turbulent two-phase pro-

cesses in mechanically stirred tanks and bioreactors. The turbulent phenomena are 

described in the context of the Reynolds Averaged Navier-Stokes (RANS) equa-

tions, while the two-phase fluid mechanics is modelled with an Euler-Euler ap-

proach, with the so-called Two-Fluid Model (TFM).  

The objective of this research is to study the two-phase fluid dynamics in 

chemical and process equipment and to develop modelling strategies to describe 

the relevant physics in the system, testing the limitations of the Eulerian-Eulerian 

method. Different interphase closure models are studied and tested to improve the 

prediction of mixing phenomena, interphase interactions and bio-chemical reac-

tions. Particular attention is devoted to determining the ordered discretization error 

(Grid Convergence study) to assess the precision of the solution, and to the valida-

tion with experimental data to quantify the accuracy of the CFD predictions. 

In particular, in this work the following aspects are addressed: 

 

- a dilute immiscible liquid-liquid mixture in a stirred tank of standard ge-

ometry was studied and the droplet dispersion was described by means of a 

Population Balance Model solved with the Quadrature Method of Mo-

ments. The effect of the turbulence dissipation rate and its correct predic-

tion on the droplet breakup kernel is assessed (Chapter 3); 

- dense solid-liquid suspensions in a flat-bottomed fully-baffled tank stirred 

with a mixed-flow impeller were analyzed. The effects of the turbulence 
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modelling, the interphase momentum transfer terms and the coupling be-

tween the phases on dense solid-liquid suspensions were assessed and the 

impact of the different terms on the solid distribution and suspension was 

quantified (Chapter 4). The work described in this chapter has been pub-

lished in Maluta, et al., (2019a) during the PhD; 

- the production of hydrogen in an attached growth bioreactor in which two 

impellers entrained gas from the head space and distributed it to strip the 

product from the liquid phase was modelled. The turbulent gas-liquid fluid 

dynamics, the interphase mass transfer mechanism and the product removal 

from the gas current were implemented in a comprehensive modelling 

strategy, comparing two geometrical configurations (Chapter 5). This work 

has been published in Maluta, et al., (2019b); 

- a lab scale and an industrial scale fermentation processes were investigated 

and glucose concentration fluctuations on the metabolic maintenance cost 

of a population of Escherichia coli were modelled with an Eulerian model. 

The segregations were described simplifying the fluid dynamics by means 

of a probabilistic approach based on the Interaction by Exchange with the 

Mean (IEM) mixing model (Chapter 6). This study is presented as submit-

ted to the Biochemical Engineering Journal. 

 

Moreover, in Chapter 2 the mathematical modelling framework in which this 

research work is inscribed is presented, with particular emphasis in the derivation 

of the TFM and the role of its closure models. 

In Chapter 7 the results obtained in the present thesis are summarised and the 

limitations of the RANS Eulerian-Eulerian approach are presented. 
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Chapter 2  

Mathematical models 

2.1  Introduction 

The governing equations of fluid flow are the conservation of mass, momentum 

and energy. A local conservation law for a generic quantity is usually mathematically 

written as a partial differential equation (PDE) describing the evolution of the 

amount of the quantity in a control volume. According to the conservation law, the 

conserved quantity in a control volume can only change by the total net amount de-

riving from the balance of inlet and outlet flows and the source and sink terms (Bird, 

et al., 1960). 

The local conservation equations for the generic single-phase laminar isothermal 

fluid flow can be derived from the mass and momentum balance within a generic 

stationary control volume and, when the continuum hypothesis holds, they read as:  

 
𝜕𝜌

𝜕𝑡
+ 𝛻 · 𝜌𝒖 = 0  (2.1) 

𝜕𝜌𝒖

𝜕𝑡
+ 𝛻 · 𝜌𝒖𝒖 = −𝛻𝑝 − 𝛻 ⋅ 𝝉 + 𝜌𝒈  (2.2) 

 

Where 𝜌 and 𝒖 are the local instantaneous fluid density and velocity vector, re-

spectively, 𝑝 is the local instantaneous pressure, 𝝉 is the local instantaneous viscous 

stress tensor and 𝒈 is the gravitational acceleration.  
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In the simplifying but common conditions of incompressible flow of a fluid ex-

hibiting a Newtonian behaviour, Eq. (2.1) and Eq. (2.2) become:  

 

𝜌𝛻 · (𝒖)  =  0   (2.3) 

𝜌 [
𝜕𝒖

𝜕𝑡
+ 𝛻 · (𝒖𝒖)] = −𝛻𝑝 − 𝛻 · 𝝉 + 𝜌𝒈  (2.4) 

𝝉 =  −𝜇(𝒖+∇𝒖T)  (2.5) 

 

Where Eq. (2.5) is the so-called Stokes's stress constitutive equation, which is 

an expression used for incompressible viscous fluids. Eq. (2.3) – Eq. (2.5) are the 

Navier–Stokes (NS) equations for a Newtonian fluid of constant density and the rig-

orous derivation of those equations can be easily found in literature (Bird et al., 

1960). In this Chapter, just the derivation of the single-phase Reynolds Averaged 

Navier-Stokes (RANS) equations (Section 2.2) and the two fluid model (Section 2.3) 

with some general remarks on its closure problem (Section 2.4) are presented. More 

information on the fluid mechanics related equations can be found in Bird et al., 

(1960) and in Rutherford, (1989). 

The PDEs describing the conserved mass and momentum for the incompressible, 

isothermal, Newtonian fluid are very general and some analytical solutions exist for 

a limited number of simplified problems. Moreover, in general the exact solutions 

may not be indefinitely stable as turbulence develops. In practical terms, approxi-

mate solutions are typically obtained with numerical methods implemented in vari-

ous computer software. One of the oldest numerical method is based on the spatial 

discretization of the PDEs and their approximation with a local Taylor expansion 

(Finite Difference Method, FDM, detailed in Smith, (1985)), even though nowadays 

the Finite Element Method (FEM, detailed in Zienkiewicz & Taylor, (2000)) and the 

Finite Volume Method (FVM, detailed in Versteeg & Malalasekera, (2007)) are the 

most adopted methods. The FEM and FVM allow to readily discretize complex ge-

ometries in multiple dimensions, unlike the FDM, thanks to the use of an integral 

formulation of the PDEs. In this work, the formulation of the discretized conserva-

tion equations and their solution was achieved by means of two commercial CFD 

codes based on the FVM, ANSYS Fluent v.17.0 and OpenFOAM v.5.0. Details on 

the implementation of the numerical methods can be found in ANSYS Inc., (2016) 

and The OpenFOAM Foundation, (2016) respectively.  
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As already mentioned, CFD provides an approximate solution of the conserva-

tion equations that, in their Navier-Stokes formulation, are relatively generic in na-

ture, making their application to specific problems rather diverse. The CFD predic-

tions are therefore tightly tied to the mathematical modelling that allows their appli-

cation to specific problems and to the numerical methods that allow the discretized 

formulation and solution of the PDEs. In this Chapter the discussion is focused on 

the mathematical modelling since it has been more central in this thesis work, with 

respect to the numerical methods. 

2.2  Single-phase Reynolds Averaged Navier-Stokes 

equations 

Eq. (2.3) and Eq. (2.4) are stable just up to some threshold Reynolds numbers 

that depends on the system configuration. Beyond those threshold values, the solu-

tions present oscillations and fluctuations around an average value. In order to char-

acterize such kind of randomly fluctuating flows, different approaches exist. One of 

the most adopted, it is to consider the variables in the NS equations averaged on a 

time period, Q, that is large with respect to the time scale of the random fluctuations 

and small with respect to the time scale of the evolution of the mean variables. Such 

average strategy is called Reynolds average. For the general incompressible flow, 

the Reynolds averaged quantities become: 

 

𝑼 =
1

𝑄
∫ 𝒖(𝒙, 𝑡)𝑑𝑡 

𝑡+𝑄
2⁄

𝑡−𝑄
2⁄

  (2.6) 

𝑃 =
1

𝑄
∫ 𝑝(𝒙, 𝑡)𝑑𝑡

𝑡+𝑄
2⁄

𝑡−𝑄
2⁄

  (2.7) 

𝜯 =
1

𝑄
∫ 𝝉(𝒙, 𝑡)𝑑𝑡

𝑡+𝑄
2⁄

𝑡−𝑄
2⁄

  (2.8) 

 

The mean integral variables are also called expectation value of the variable, and 

the deviation from their values, or fluctuations, are defined as: 

 

𝒖′ = 𝒖 − 𝑼  (2.9) 

𝑝′ = 𝑝 − 𝑃  (2.10) 
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𝝉′ = 𝝉 − 𝜯  (2.11) 

 

This procedure is called Reynolds decomposition and it bears an important cor-

ollary of the fluctuations, specifically that the mean of the fluctuating quantity is 

equal to zero. 

Writing Eq. (2.3) and Eq. (2.4) in terms of mean integral and fluctuating varia-

bles we obtain: 

 

𝛻 · [𝜌(𝑼 − 𝒖′)] = 0  (2.12) 
𝜕𝜌(𝑼+𝒖′)

𝜕𝑡
+ 𝛻 · [𝜌(𝑼 + 𝒖′)(𝑼 + 𝒖′)] = −𝛻(𝑃 − 𝑝′) − 𝛻 · (𝜯 − 𝝉′) + 𝜌𝒈  (2.13) 

 

As already stated, when the solution of the NS equations becomes unstable, we 

are usually interested in the mean behavior of the flow, rather than following each 

random fluctuation. If we average the terms in Eq. (2.12) and Eq. (2.13) we obtain: 

 

𝛻 · [𝜌𝑼] = 0  (2.14) 
𝜕𝜌𝑼

𝜕𝑡
+ 𝛻 · [𝜌(𝑼𝑼)] = −𝛻𝑃 − 𝛻 · 𝜯 + 𝜌𝒈 − 𝛻 · (𝜌<𝒖′𝒖′>)  (2.15) 

 

Where on the right-hand side of Eq. (2.15) an extra term appears, since the av-

erage of the nonlinear fluctuations is not nil. The result is an additional stress pro-

duced by the fluctuating velocity field, usually referred to as the Reynolds stress. 

The Eq. (2.14) and Eq. (2.15) are known as the Reynolds Averaged Navier-Stokes 

(RANS) equations. Since the Reynolds stress accounts for the turbulent fluctuations, 

it is sometimes indicated with 𝝉𝒕 and Eq. (2.15) is written as: 

 
𝜕𝜌𝑼

𝜕𝑡
+ 𝛻 · [𝜌(𝑼𝑼)] = −𝛻𝑃 − 𝛻 · (𝜯 + 𝝉𝐭) + 𝜌𝒈  (2.16) 

 

In order to solve the RANS equations, the Reynolds stress term needs to be 

closed with a turbulence model. One of the most used turbulence models is the stand-

ard 𝑘 − 𝜀 turbulence model (Launder & Spalding, 1974) and its popularity is mostly 

due to its acceptable performances on a wide range of applications, the limited num-

ber of additional differential equations and variables introduced and its robustness. 

The standard 𝑘 − 𝜀 turbulence model is based on the linear eddy viscosity 
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approximation (also called Boussinesq hypothesis) and it is a two-equation model, 

meaning that two transport differential equations are introduced to transport the tur-

bulent related variables: the turbulent kinetic energy, 𝑘, and the turbulent energy 

dissipation rate, 𝜀, respectively. This turbulence model is extensively described in 

the literature (for instance in Versteeg & Malalasekera, (2007)) and the standard 𝑘 −

𝜀 turbulence model equations are just briefly reported here. 

In the linear-eddy-viscosity-based turbulence models, the Reynolds stress is hy-

pothesized to be proportional to the gradient of velocity, with the proportionality 

constant being the so-called turbulent viscosity, 𝜇𝑡, in analogy with the laminar stress 

tensor.  

 

 𝝉𝑡 = −𝜇𝑡(𝛻𝑼 + 𝛻𝑼𝑇) (2.17) 

 

The turbulent viscosity is defined as: 

 

𝜇𝑡 = 𝜌𝐶𝜇
𝑘2

𝜀
  (2.18) 

 

With 𝐶𝜇 being a model constant. The values for the turbulent kinetic energy and 

the turbulent dissipation rate are obtained from the solution of two transport equa-

tions: 

 
∂𝜌𝑘

∂𝑡
+ ∇ · (𝜌𝑘𝑼) = 𝛻 · (

𝜇𝑡

𝜎𝑘
𝛻𝑘) + 2𝜇𝑡𝑬2 − 𝜌𝜀  (2.19) 

𝜕𝜌𝜀

𝜕𝑡
+ 𝛻 · (𝜌𝜀𝑼) = 𝛻 · (

𝜇𝑡

𝜎𝜀
𝛻𝜀) + 𝐶1𝜀

𝜀

𝑘
2𝜇𝑡  𝑬2 − 𝐶2𝜀𝜌

𝜀2

𝑘
  (2.20) 

 

Where E is the expectation value of the rate of deformation tensor, that in case 

of small displacements is defined as (∇𝑼 + ∇𝑼𝑇)/2, and σ𝑘, σε, 𝐶1ε and 𝐶2ε are 

model constants. The terms in Eq. (2.19) and Eq. (2.20) transport equations are ex-

pressed in the form: 

 

𝑎𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 +  𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛 = 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛 + 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 −  

− 𝑑𝑒𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 
(2.21) 
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The five model constants in the standard 𝑘 − 𝜀 turbulence model are derived 

from data fitting for a wide range of turbulent flows and they are reported in Tab. 

2.1. 

Tab. 2.1 - standard 𝑘 − 𝜀 turbulence model constants values 

𝐶𝜇 = 0.09 𝜎𝑘 = 1.00 𝜎𝜀 = 1.30 𝐶1𝜀 = 1.44 𝐶2𝜀 = 1.92 

2.3  Derivation of the two-fluid model 

The modelling of multiphase flows can be achieved with different approaches of 

increasing complexity, ranging from empirical correlations to the coupled fully re-

solved solution of the conservation equations for each phase. Two of the most wide-

spread approaches are based on very different assumptions for the dispersed phase. 

With the Lagrangian description of the dispersed phase, the Newton's second law of 

motion is solved for each element (particles, bubbles, drops, bacteria, …) taking into 

account the forces acting on it. The Eulerian view of the disperse phase assumes a 

description of the multiphase flow as consisting of as many fluids as the number of 

phases. The Eulerian description of the dispersed phase coupled with the Eulerian 

description of the continuous phase is often referred to as Eulerian-Eulerian two-

fluid model approach.  

For the derivation of the two-fluid model (TFM) (RA)NS equations, we begin 

by considering a two-phase system such as an aerated reactor, Fig. 2.1, that, for the 

purpose, can be considered as a tank full of water where bubbles of air are injected 

from the bottom by means of a holed ring (sparger). 

An ideal conductivity probe is positioned in the bulk of the tank and it registers 

the time evolution of the instantaneous value of the non-dimensional conductivity in 

a point (or small volume) of the system. The signal, M, could be the one shown in 

Fig. 2.2. 

The passage of water in the proximity of the probe produces a high value of the 

signal, whereas the passage of the gas produces a low value. These values are nor-

malized between 0 and 1. The non-dimensional conductivity can therefore be seen 

as a phase indicator function for the liquid-phase. 
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Fig. 2.1 – Example of a two-phase system: aerated reactor 

 

Fig. 2.2 – Signal from the conductivity probe 
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The phase indicator function can be regarded as a filter, in fact multiplying the 

phase indicator function by a flow variable, it is possible to derive the phasic quan-

tity, i.e. multiplying the velocity obtained by the measurement of the system in the 

proximity of the probe by the phase indicator function, the velocity for the liquid 

phase is found.  

Performing many experiments and ensemble averaging the results lead to the 

statistical probability of finding the phase of interest, 𝑗, in the measuring point. 

 

𝑀𝑗 = lim
𝑁→∞

1

𝑁
∑

𝑖=1

𝑁

(𝑀𝑗)
𝑖

= 𝛼𝑗  
(2.22) 

 

Where the subscript 𝑗 indicates that the quantity is referred to the 𝑗-th phase, N 

is the total number of experiments, and 𝑀 is the phase indicator function. The quan-

tity 𝛼𝑗  is often referred to as the volume fraction of the phase 𝑗 and one important 

property is that the sum of the statistical probabilities of all the 𝑗 phases closes to 1. 

Analogously to what was already done in Eq. (2.22), it is possible to define the 

ensembled average of a generic quantity, 𝜙, Eq. (2.23), moreover we can define 

phase averaged, Eq. (2.24), and phase weighted quantities, Eq. (2.25). 

 

𝜙 = lim
𝑁→∞

1

𝑁
∑

𝑖=1

𝑁

𝜙𝑖  (2.23) 

𝑀𝑗𝜙 = lim
𝑁→∞

1

𝑁
∑

𝑖=1

𝑁

(𝑀𝑗𝜙)
𝑖

= 𝜙𝑗  (2.24) 

𝜙
~

𝑗 =
𝑀𝑗𝜙

𝑀𝑗
=

𝑀𝑗𝜙

𝛼𝑗
  (2.25) 

 

Having defined phase-averaged variables, it is possible to derive phase-averaged 

conservation equations. The first step is to multiply the mass conservation equation, 

Eq. (2.14), and the momentum conservation equation, Eq. (2.16), by the phase indi-

cator function, 𝑀𝑗. 

 

𝑀𝑗𝛻 · [𝜌𝑼] = 0  (2.26) 

𝑀𝑗
𝜕𝜌𝑼

𝜕𝑡
+ 𝑀𝑗𝛻 · [𝜌(𝑼𝑼)] = −𝑀𝑗𝛻𝑃 − 𝑀𝑗𝛻 · (𝜯 + 𝝉𝐭) + 𝑀𝑗𝜌𝒈  (2.27) 
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From the chain rule, Eq. (2.28) and Eq. (2.29) are found. 

 

𝑀𝑗
𝜕

𝜕𝑡
(𝜌) =

𝜕

𝜕𝑡
(𝑀𝑗𝜌) − 𝜌

𝜕

𝜕𝑡
(𝑀𝑗)  (2.28) 

𝑀𝑗∇ ⋅ (𝜌𝑼) = 𝑀𝑗
𝜕

𝜕𝑥𝑖
(𝜌𝑈) =

𝜕

𝜕𝑥𝑖 (𝑀𝑗𝜌𝑈) − 𝜌𝑈
𝜕

𝜕𝑥𝑖 (𝑀𝑗) =  

= ∇ ⋅ (𝑀𝑗𝜌𝑼) − 𝜌𝑼 ⋅ ∇(𝑀𝑗) 
(2.29) 

  

Before deriving the phase averaged conservation equations, it is useful defining 

the phase indicator function derivatives. Through a detailed analysis of the signal of 

Fig. 2.2, shown in Fig. 2.3, it is possible to derive an expression for the phase indi-

cator functions derivatives. The area highlighted in blue corresponds to the change 

of the non-dimensional conductivity in time due to the passage of a bubble on the 

probe tip. More specifically, the change happens when the probe tip passes through 

the liquid-gas interface that, for the purpose of this discussion, has thickness 𝛿.  

 

 

Fig. 2.3 – Signal from the conductivity probe in correspondence of the passage of a bubble 

 

The interface in the system considered is in motion with respect to the fixed 

probe, due to the rising velocity of the dispersed bubbles in the liquid, therefore it is 
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possible to define an interfacial velocity, 𝑣𝐼. Assuming these hypotheses, the order 

of magnitude of the phase indicator functions derivatives can be inferred, in fact: 

 
∂

∂𝑡
(𝑀𝑗) ∝

1

δ
𝑣𝐼⁄

  (2.30) 

𝜕

𝜕𝑥𝑖 (𝑀𝑗) ∝ −
1

𝛿
  (2.31) 

 

Recalling here the conservation equation for the generic variable 𝜙: 

 
𝜕

𝜕𝑡
(𝜌𝜙) + 𝛻 · (𝜌𝑼𝜙) = −𝛻 · 𝑪𝜙 + 𝑺𝜙  (2.32) 

 

In which with 𝑪𝜙 are indicated all the fluxes related to the surface of the control 

volume (except the advection) and with 𝑺𝜙 are indicated the terms related to the bulk 

of the control volume (including source/sink terms), we notice that the left hand side 

(LHS) of Eq. (2.32) relative to the phase indicator function then becomes: 

 

∂

∂𝑡
(𝜌𝑀𝑗) + 𝛻 ⋅ (𝜌𝑼𝑀𝑗) = 𝑀𝑗

∂

∂𝑡
(𝜌) + 𝑀𝑗𝛻 ⋅ (𝜌𝑼) + 

+𝜌
∂

∂𝑡
(𝑀𝑗) + 𝜌𝑼 ⋅ 𝛻(𝑀𝑗)  

(2.33) 

 

Where the first two terms on the RHS of Eq. (2.33) sum up to zero, as shown in 

Eq. (2.1), resulting in the so called topological equation: 

 

𝜕

𝜕𝑡
(𝜌𝑀𝑗) + 𝛻 ⋅ (𝜌𝑼𝑀𝑗) ∝ −𝜌𝑣𝐼 ⋅ 𝛻(𝑀𝑗) + 𝜌𝑼 ⋅ 𝛻(𝑀𝑗) = 

= 𝜌(𝑼 − 𝑣𝐼) ⋅ 𝛻(𝑀𝑗)  

(2.34) 

 

Ensemble averaging Eq. (2.34) results in: 

 

𝜕

𝜕𝑡
(𝜌𝑀𝑗) + 𝛻 ⋅ (𝜌𝑼𝑀𝑗) = 𝜌(𝑼 − 𝑣𝐼) ⋅ 𝛻(𝑀𝑗)  (2.35) 

 

That can be rearranged in Eq. (2.36) due to the properties of the Reynolds aver-

aging, and it can be further arranged in Eq. (2.37): 
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𝜕

𝜕𝑡
(𝜌𝑀𝑗) + 𝛻 ⋅ (𝜌𝑼𝑀𝑗) = 𝜌(𝑼 − 𝑣𝐼) ⋅ 𝛻(𝑀𝑗)  (2.36) 

𝜕

𝜕𝑡
(𝜌𝑗̃𝛼𝑗) + 𝛻 ⋅ (𝛼𝑗𝜌𝑗̃𝑼̃𝒋) = 𝛤𝑗

𝜕

𝜕𝑥𝑖 (𝑀𝑗) ∝ −
1

𝛿
  (2.37) 

 

Where the term 𝛤𝑗 is the phasic mass source term and it exists only at the inter-

faces. It represents the mean flow rate per volume in and out of phase (i.e. boiling, 

condensation, cavitation, ...) and it is related to known quantities via empirical mod-

els. Moreover: 

 

∑ 𝛤𝑗
𝑁𝑝
𝑗=1 = 0  (2.38) 

 

With the same procedure used to derive the phase averaged continuity equation, 

Eq. (2.37), The momentum conservation equation in Eq. (2.27), results in: 

 

𝜕

𝜕𝑡
(𝛼𝑗𝜌𝑗̃𝑼̃𝒋) + 𝛻 ⋅ (𝛼𝑗𝜌𝑗̃𝑼̃𝒋𝑼̃𝒋) = 

= −𝛻(𝛼𝑗𝑃𝑗̃) − 𝛻 ⋅ (𝛼𝑗[𝑻̃𝒋 + 𝝉𝒕̃
𝒋]) + 𝛼𝑗𝜌𝑗̃𝒈 + 𝛤𝑗𝑼̃𝒋 + 𝑫𝑗 + 𝑵𝑗  

(2.39) 

 

With 𝛤𝑗𝑼̃𝒋, 𝑫𝑗 and 𝑵𝑗 being the interfacial momentum transfer, the viscous (and 

turbulent) phase interaction and the pressure phase interaction term, respectively. 

These terms arise from the phase averaging procedure and need an expression to 

mathematically close the system. This is usually done via empirical closure models. 

2.4  Closure models for the two-phase model 

In the phase averaged conservation equations, Eq. (2.37) and Eq. (2.39), neglect-

ing at first the phase interaction terms, there are 5 × 𝑁𝑝 unknowns namely, the three 

components of the velocity vector, (𝑈̃𝑗, 𝑉̃𝑗 and 𝑊̃𝑗), the pressure (𝑃𝑗̃) and the volume 

fractions (𝛼𝑗). The momentum conservation equation consists of 3 × 𝑁𝑝 scalar equa-

tions, it is possible to write one continuity equation for each phase and one volume 

conservation equation as. 

 

∑ 𝛼𝑗
𝑁𝑝
𝑗=1 = 1  (2.40) 
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𝑁𝑝 − 1 additional equations are needed to close the system of differential equa-

tions. The assumption commonly accepted is that all the phases share the same local 

pressure i.e.: 

 

𝑃̃1 = 𝑃̃2 = ⋯ = 𝑃̃𝑗 = ⋯ = 𝑃̃𝑁𝑝 = 𝑃̃  (2.41) 

 

And this hypothesis conveniently leads to 𝑁𝑝 − 1equations. More modelling ef-

fort is needed to derive empirical closure for the phase interaction terms. Let us con-

sider the system in Fig. 2.4 where a simple closed stationary two-phase system at 

rest is considered.  

 

 

Fig. 2.4 – Closed stationary two-phase system at rest 

 

The two-phases are completely segregated and the momentum conservation 

equation in a generic point in the system reads: 

 

 

Considering now the momentum conservation equation in the bulk of the L-

phase, we have that no spatial gradient of the volume fraction of L exists: 

0 = −𝛻(𝛼𝑗𝑃̃) + 𝛼𝑗𝜌𝑗̃𝒈 + 𝑵𝑗  (2.42) 
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𝛻(𝛼𝑗) = 0   (2.43) 

 

Therefore, bearing in mind that the interfacial momentum transfer terms depend 

on the gradient of the phase indicator function, Eq. (2.42) becomes: 

 

0 = −𝛻(𝛼𝑗𝑃̃) + 𝛼𝑗𝜌𝑗̃𝒈 + 𝑵𝑗 = −𝛼𝑗𝛻(𝑃̃) + 𝛼𝑗𝜌𝑗̃𝒈   (2.44) 

 

Subtracting Eq. (2.44) to Eq. (2.42)  results in: 

 

𝑵𝑗 = 𝑃̃𝛻(α𝑗)  (2.45) 

 

Eq. (2.45) is a model for the pressure force which is not null only at the interface 

between different phases. Simplifying the notation for the phase weighted variables, 

modelling the pressure force with Eq. (2.45), assuming the hypothesis of shared pres-

sure and no interfacial mass transfer, Eq. (2.39) becomes: 

 

𝜕

𝜕𝑡
(𝛼𝑗𝜌𝑗𝑼𝒋) + 𝛻 ⋅ (𝛼𝑗𝜌𝑗𝑼𝒋𝑼𝒋)

= −𝛼𝑗𝛻(𝑃) − 𝛻 ⋅ (𝛼𝑗[𝑻𝒋 + 𝝉𝒕
𝒋]) + 𝛼𝑗𝜌𝑗𝒈 + 𝑫𝑗  

(2.46) 

 

The last term on the RHS of Eq. (2.46) is the interaction term due to viscous and 

turbulent interphase forces and it is usually modelled as a sum of different contribu-

tions (i.e. interphase drag force, turbulent dispersion force, lift force, particle colli-

sions, …). The overall phase interaction term must close to zero: 

 

∑ 𝑫𝑗
𝑁𝑝
𝑘=1  =  0  (2.47) 

 

Where 𝑫𝑗 is defined as: 

 

𝑫𝑗  =  ∑ 𝑫𝑗→𝑙𝑑𝑟𝑎𝑔

𝑁𝑝
𝑙≠𝑗 + ∑ 𝑫𝑗→𝑙 𝑇𝐷

+ ∑ 𝑫𝑗→𝑙𝑙𝑖𝑓𝑡

𝑁𝑝
𝑙≠𝑗 +

𝑁𝑝
𝑙≠𝑗   

+ ∑ 𝑫𝑗→𝑙𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
+. . .

𝑁𝑝
𝑙≠𝑗   

(2.48) 
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Different forces require different models that are usually empirically derived for 

specific systems. For this reason, the relevant interphase force models are discussed 

in the following chapters. 
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2.5 Nomenclature 

𝐶𝜇, 𝜎𝑘, 𝜎𝜀, 𝐶1𝜀, 𝐶2𝜀 𝑘 − 𝜀 turbulence model parameters 

𝑪𝜙 Fluxes related to the surface of the control volume 

𝑫𝑗 Interaction term due to viscous and turbulent interphase forces 

𝑬 Expectation value of the rate of deformation tensor 

𝒈 Gravitational acceleration 

𝑘 Turbulent kinetic energy 

𝑀𝑗 Indicator function of the j-th phase 

𝑀𝑗 Ensemble average of the indicator function of the j-th phase 

𝑁 Total number of experiments 

𝑁𝑝 Number of phases 

𝑵𝑗 Pressure phase interaction term 

𝑝 Pressure 

𝑝′ Pressure fluctuation 

𝑃 Averaged pressure 

𝑄 Time interval 

𝑺𝜙 Terms related to the bulk of the control volume 

𝑡 Time 

𝒖 Velocity 

𝒖′ Velocity fluctuation 

𝑼 Averaged velocity 

𝑣𝐼 Interfacial velocity 

𝒙 Spatial coordinate vector 

  

Greek letters 

𝛼𝑗 Volume fraction of the j-th phase 

𝛤𝑗 Phasic mass source term 

𝛿 Interface thickness 

𝜀 Turbulent dissipation rate 

𝜇 Dynamic viscosity 

𝜇𝑡 Turbulent viscosity 

𝜌 Density 

𝝉 Viscous stress tensor 

𝝉𝒕 Reynolds stress 

𝝉′ Viscous stress fluctuation 

𝑻 Averaged viscous stress 
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𝜙 Generic quantity 

𝜙 Ensemble average of 𝜙 

𝜙𝑗 Phase average of 𝜙 

𝜙
~

𝑗 Phase weighted average of 𝜙 
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Chapter 3  

Liquid-Liquid dispersions in 

stirred tanks 

In this work the droplet size distribution (DSD) of diesel fuel in water in a tank stirred 

with a Rushton turbine was numerically studied by means of computational fluid 

dynamics simulations coupled with a population balance model (PBM) considering 

very dilute (0.1 vol%) and completely dispersed conditions. The PBM was solved 

with the Quadrature Method of Moments (QMOM) in the context of the two-fluid 

model. The effect of the turbulent dissipation rate on the breakup frequency was 

studied with grids of different densities, up to 5.5 million elements, and the analysis 

highlighted that grid effects are relevant and need to be properly addressed. Results 

are validated with experimental droplet size data collected by a laser diffraction 

technique. Based on Particle Image Velocimetry data, the effect of the dispersed 

phase on the continuous phase mean and fluctuating velocity was found to be 

negligible, while the flow fields of the two phases were coincident, being the droplet 

relaxation time even smaller than that of the liquid seeding particles. Therefore, the 

turbulent dissipation rate from the simulations is compared with experimental and 

numerical data collected in similar stirred tanks and single-phase flow in previous 
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investigations. The study confirmed that the adopted breakup kernel is heavily 

dependent on the model parameters and that their values are system dependent. An 

alternative way to deal with the underprediction of the turbulent dissipation rate in 

the breakup kernel in the context of RANS simulations is proposed, based on the 

spatial distribution of turbulent dissipation rate and breakup frequency.  
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3.1 Introduction 

Several unit operations in the food, pharmaceutical and chemical industry rely 

on liquid-liquid turbulent dispersions. Emulsification, organic synthesis, and extrac-

tions, among the others, are heavily dependent on the properties of the dispersion 

which rheology, stability and exchange properties are determined by many factors, 

one of the most important being the drop size distribution (DSD) of the dispersed 

phase (Afshar Ghotli, et al., 2013; Leng & Calabrese, 2016). The DSD, in fact, has 

an important role in governing the dispersed phase fluid dynamics in the equipment, 

that in turn affects the performances of the whole process (Afshar Ghotli et al., 2013; 

Drumm, et al., 2009; Maaß, et al., 2012). 

Computational techniques have become an important aid in studying the evolu-

tion of the DSD and its relationships with the fluid dynamics. This study can be 

performed with different modelling approaches that can be divided into three main 

categories: fully-resolved (Derksen & Van Den Akker, 2007; Di Miceli Raimondi, 

et al., 2008), Lagrangian point-particle (Z. Jaworski & Pianko-Oprych, 2002; Rieger, 

et al., 1996) and Eulerian-Eulerian approaches (Gao, et al., 2016; Hu, et al., 2015). 

Eulerian-Eulerian methods have the advantage of being computationally cheaper 

than the other approaches but, at the same time, they do not allow a segregation of 

the dispersed phase properties (such as size, velocity, interfacial properties, etc.) that 

are described with a unique value for each and every dispersed element (Buffo, et 

al., 2013). To overcome this problem, the segregation of the internal properties of 

interest can be described by means of a population balance model (PBM) that can be 

solved in a computational fluid dynamics (CFD) framework. 

The solution of the PBM can be performed in several ways, one of the oldest 

being the discretization in classes of the investigated properties (Hounslow, et al., 

1988; Kumar & Ramkrishna, 1996), even though nowadays more computationally 

efficient methods exists, such as the method of moments (MOM) (Hulburt & Katz, 

1964), adopted in this work. 

The MOM introduces the so-called closure problem, which was solved, many 

years after the formulation of the MOM, with the adoption of a family of solutions 

based on a quadrature approximation (QMOM) (McGraw, 1997), described in the 

book by Marchisio & Fox, (2010). 
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In order to develop a CFD-PBM fully-predictive model for the DSD, reliable 

closure models to account for coalescence and breakage are needed. The develop-

ment of the coalescence and breakage models, also called kernels, should rely on 

theoretical considerations and universal constants only, and their use should not be 

subject to tuning to match the experimental trends (Azizi & Taweel, 2011). Never-

theless, said kernels often contain parameters that are tuned for specific configura-

tions or heavily depend on empirical correlations that limit the use of the models 

themselves (Bakker, et al., 2001). In fact, the kernels are functions of the physical 

properties of the mixture as well as process variables, therefore in tuning the kernels 

parameters and testing them in new conditions, the modelist must pay attention to 

the process conditions. As a result, the formulation of the kernels is achieved through 

extensive amount of pilot-scale testing that limits the use of the kernels to the pa-

rameter ranges derived from the original measurement data set (Azizi & Taweel, 

2011).  

One of the most important process variables for the breakage and coalescence 

mechanism is the turbulent intensity acting on the single droplets, that is considered 

in the kernels by means of the turbulent dissipation rate. In several studies in which 

the modelling capabilities of PBM model are extended to new conditions, the mod-

elists derived the turbulent dissipation rate from ad hoc experiments and an averaged 

value of the variable was used in the modified kernels (Basavarajappa, et al., 2017; 

Khadem & Sheibat-Othman, 2019; Lebaz & Sheibat-Othman, 2019). Some of the 

drawbacks of using an averaged value of the turbulent dissipation rate derived from 

the experiments are that indirect techniques are often used to evaluate the turbulent 

dissipation rate that may be subject to uncertainties (Karimi & Andersson, 2020; 

Lebaz & Sheibat-Othman, 2019) and that a unique value is used instead of a field. 

As a matter of fact, the turbulent dissipation rate may change consistently inside 

the equipment in which the dispersion is studied, therefore it is important to know 

its spatial distribution for proper calculation of the kernels (Buffo, et al., 2016). 

  Indeed, the turbulent dissipation rate has a major effect in determining the evo-

lution of the droplets size as well as the ratio between breakage and coalescence rates 

(Li, et al., 2017) and the prediction of these phenomena by the kernels may be tested 

varying the dissipation rate by means of numerical sensitivity studies on the PBM 

(De Bona, et al., 2016). 
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Experimental values of the turbulent dissipation rate and sensitivity studies are 

very important in the early stages of the formulation and development of a model but 

are not suitable for a fully-predictive model formulation. In this regard, a useful aid 

could come from the CFD.  

Deriving the turbulence field from the CFD is an appealing solution but the cor-

rect prediction of the turbulent variables is severely dependent on the simulations 

conditions, especially in the widespread  RANS, Eulerian-Eulerian frame (Coroneo, 

et al., 2011). Jaworski, et al., (2007) pointed out the importance of a correct calcula-

tion of the turbulent quantities in the prediction of the DSD and how their underes-

timation led to larger droplets diameters. Other authors acknowledged and identified 

the issue of underestimating the turbulent dissipation rate because of a coarse mesh 

and low order numerical schemes, either without proposing alternative solutions 

(Drumm et al., 2009; Tang, et al., 2018; Zhang, et al., 2012), by quantifying the error 

on the turbulent variables and how this affected their results (Alopaeus, et al., 2002; 

Kálal, et al., 2014), or deriving new experimental-numerical hybrid methods tuned 

to correctly predict the DSD (Khajeh Naeeni & Pakzad, 2019). 

Recently, some authors proposed to introduce in the kernels a scalar correction 

that takes into account the RANS underprediction of the turbulent dissipation field 

in the simulation of stirred tanks (Gao et al., 2016; Li, et al., 2017). As noted by the 

authors, this approach has the drawbacks of being dependent on the system and on 

the CFD simulations (being based on the experimental power number of the impeller 

and on the integral of the turbulent dissipation rate on the whole numerical domain) 

and introducing a uniform correction that may not be representative of the spatial 

distribution of the turbulent variables. In fact, underpredictions of the turbulent dis-

sipation rate are expected to be higher in those regions of the domain where the tur-

bulence is more intense. 

This work focuses on the comparison between the experimental DSD and flow 

variables of a immiscible liquid-liquid mixture of diesel fuel in water and its predic-

tion by a CFD-PBM simulation with the Alopaeus breakup kernel (Alopaeus et al., 

2002). Being the dispersion in very dilute conditions, coalescence mechanisms were 

neglected. Three dimensional CFD RANS simulations are performed with different 

grid densities to predict the turbulent field inside the domain and test the kernel with-

out correction coefficients. The CFD-PBM model is solved in OpenFOAM v.5.x 

with the QMOM implementation  described by Buffo et al., (2013) and by Buffo, et 
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al., (2016). Numerical results are compared against experimental DSD data pur-

posely collected from a tank stirred with a Rushton impeller which geometrical fea-

tures were closely reproduced in the CFD-PBM simulations. 

3.2 Investigated System 

The investigated system was a cylindrical, flat bottomed tank with diameter, T, 

and height, 𝐻𝑇, both equal to 0.232m. It was equipped with four equally spaced baf-

fles of width equal to T/10. A single Rushton turbine (RT) mounted on a central shaft 

was used to agitate the system. The diameter of the impeller, D, was equal to 0.077m, 

corresponding to a T/D ratio equal to 3, and the off-bottom clearance, C, was half of 

the vessel diameter (T/C = 2). The liquid height, HL, was always maintained at 𝐻𝑇, 

corresponding to a total volume of 9.8L. 

A mixture of commercial diesel fuel with density, 𝜌𝐷, equal to 810kg/m3 and 

viscosity, 𝜇𝐷, equal to 3.5×10-3Pa∙s (measured at room temperature) in demineral-

ized water with density, 𝜌𝐶, and viscosity, 𝜇𝐶, equal to 998kg/m3 and 10-3 Pa∙s re-

spectively, was simulated. The diesel fuel/water interfacial tension was assumed 

equal to 44.7mN/m, resulting from the difference between water, 72.3mN/m, and the 

measured diesel fuel surface tension, 27.6mN/m at room temperature. 

The diesel fuel drop size distribution obtained from the simulations of the dis-

persion of 9.7mL of oil, corresponding to a volume fraction of 𝛼𝐷 = 10−3, at an 

impeller rotational speed of N = 500rpm, to ensure complete dispersion, was studied 

and the numerical results were compared with the experimental data collected by 

means of a Spraytec laser diffraction system (Malvern Panalytical). A sample of the 

mixture was withdrawn from the system at a position of 𝑟/𝑇 =  0.35 ± 0.02, 

𝑧/𝑇 =  0.69 ± 0.04 (assuming the origin of the axes in the centre of the bottom of 

the tank) on a plane midway two consecutive baffles and promptly transferred to a 

wet sample dispersion unit (Malvern Panalytical) that recirculated continuously the 

sample through the Spraytec laser diffraction system. Collecting the intensity of light 

scattered as the laser beam passes through the sample, the system calculates the size 

of the droplets that created the scattering pattern and produces a discretized DSD in 

term of the weighted volume fractions with respect to the total dispersed phase vol-

ume in the sample. 
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The flow fields of the continuous phase with and without droplets and of the 

diesel fuel droplets were measured by Particle Image Velocimetry (PIV), similarly 

to previous investigations concerning gas-liquid (Montante, et al., 2008) and solid-

liquid (Montante, et al., 2012) in stirred tanks. The data were collected on a portion 

of the vertical plane located midway between two consecutive baffles. Water was 

seeded by polymeric particles coated with fluorescent Rhodamine B, that emit the 

received light of wavelength 532nm at the wavelength of 590nm, while the droplets 

have the same emission wavelength as the laser light. By using two cameras 

equipped with optical filters, each camera received the proper light signal. A band-

pass filter centred on the orange light wavelength was placed on the continuous phase 

camera to block the droplets scattered light, while a band-pass filter centred on the 

green light wavelength was placed on the dispersed phase camera to block the light 

emitted by the Rhodamine B.  

The pulsed Nd:YAG laser (=532nm, 15Hz, 65mJ) and the two Charge-Coupled 

Device cameras (resolution of 1344×1024 pixels) were handled by a Dantec Dynam-

ics system. The area viewed from the two cameras were identical.  

The instantaneous velocity vectors were obtained from the cross-correlation im-

ages collected in double-frame mode. The time interval between the two laser pulses 

was set to 270s, the total number of image pairs was 2000. A vector resolution of 

1.7mm was obtained by applying the cross-correlation on an interrogation area size 

of 32×32 pixels with on overlap of 50%. The instantaneous vectors were discarded 

if they did not fulfil two conditions, one based on the evaluation of the peak heights 

in the correlation plane and the other on the velocity magnitude.  

3.3 Governing equations 

The equations solved in this work to obtain the two-phase flow field inside the 

stirred tank and the formulation of the PBE are shown in this section. Since the flow 

regime is fully turbulent (𝑅𝑒 = 𝑁𝐷2 𝜌𝐶/𝜇𝐶 ≈ 50,000), the RANS two-fluid model 

equations are solved. 
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3.3.1 Two-fluid model 

The simulations were based on the two-fluid model equations written under in-

compressible and isothermal hypotheses. The disperse phase continuity and momen-

tum equations specifically solved in this work are: 

 
𝜕(𝛼𝐷𝜌𝐷)

𝜕𝑡
+ ∇ ∙ (𝛼𝐷𝜌𝐷𝒖𝑫) = 0  (3.1) 

∂(𝛼𝐷𝜌𝐷𝒖𝑫)

∂𝑡
+ ∇ ⋅ (𝛼𝐷𝜌𝐷𝒖𝑫𝒖𝑫) = −𝛼𝐷∇𝑃 + 𝛼𝐷𝜌𝐷𝒈 +  

+∇ ⋅ (𝝉𝑫 + 𝝉𝒕) + 𝑭𝑑𝑟𝑎𝑔,𝐶𝐷  
(3.2) 

 

where 𝛼𝐷  is the volume fraction of the disperse phase, 𝒖𝑫 is the disperse phase 

mean velocity vector, 𝑃 is the pressure, 𝒈 is the gravity vector and 𝝉𝑫 is the viscous 

stress tensor. The Reynolds stress tensor, 𝝉𝒕, and the interphase drag term, 𝑭𝑑𝑟𝑎𝑔,𝐶𝐷, 

need to be modelled to mathematically close the set of equations. 

The Reynolds stress was modelled with the single-phase standard k-ε turbulence 

model with the properties of the continuous phase: 

 
𝜕𝛼𝐶𝜌𝐶𝑘

𝜕𝑡
+ 𝛻 · (𝛼𝐶𝜌𝐶𝑘𝒖𝐂) = 𝛻 · (𝛼𝐶

𝜇𝑡

𝜎𝑘
𝛻𝑘) + 2𝛼𝐶𝜇𝑡𝑬𝟐 − 𝛼𝐶𝜌𝐶𝜀  (3.3) 

𝜕𝛼𝐶𝜌𝐶𝜀

𝜕𝑡
+ 𝛻 · (𝛼𝐶𝜌𝐶𝜀𝒖𝐂) = 𝛻 · (𝛼𝐶

𝜇𝑡

𝜎𝜀
𝛻𝜀) +  

+𝛼𝐶𝐶1𝜀
𝜀

𝑘
2𝜇𝑡𝑬2 − 𝛼𝐶𝐶2𝜀𝜌𝐶

𝜀2

𝑘
  

(3.4) 

 

Where 𝛼𝐶 and 𝜌𝐶 are the volume fraction and the density of the continuous 

phase, respectively, 𝑘 is the turbulent kinetic energy, 𝜀 is the turbulent dissipation 

rate, 𝑬 is the rate of deformation tensor and 𝜇𝑡 = 𝜌𝐶C𝜇 𝑘2 𝜀⁄  is the turbulent viscos-

ity. The five model constants 𝜎𝑘, 𝜎𝜀, 𝐶1𝜀, 𝐶2𝜀 and C𝜇 assume their standard values of 

1.00, 1.30, 1.44, 1.92 and 0.09, respectively. 

The only interphase momentum exchange term in Eq. (3.2) is the drag force that 

can be written in the form: 

 

𝑭𝑑𝑟𝑎𝑔,𝐶𝐷 =
3

4

𝛼𝐷

𝑑𝐷
𝐶𝐷𝜌𝐶‖𝒖𝑫 − 𝒖𝑪‖(𝒖𝑫 − 𝒖𝑪)  (3.5) 
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In Eq.(3.5), 𝑑𝐷 is the droplet diameter and 𝐶𝐷 is the drag coefficient calculated 

with the well-known Schiller & Naumann correlation: 

 

𝐶𝐷 = 24(1 + 0.15𝑅𝑒𝑝
0.687)/𝑅𝑒𝑝  (3.6) 

𝑅𝑒𝑝 =
||𝒖𝑫−𝒖𝑪||𝑑𝐷𝜌𝐶

𝜇𝐶
  (3.7) 

 

valid for droplets Reynolds numbers, 𝑅𝑒𝑝, smaller than 1000.  

As a matter of fact, the drag force magnitude acting on a droplet depends on the 

drop diameter. When the drop size distribution of the population of droplets (DSD) 

is relatively narrow, the liquid densities are similar and the size of the droplets is the 

order of magnitude of micrometers, a widely accepted hypothesis is to consider the 

drag force acting on each droplet as constant. The constant drag force is obtained 

with a single diameter value equal to the Sauter mean diameter of the population 

(Gao et al., 2016). Since the Sauter mean diameter can be defined as the ratio be-

tween the third and the second order moment of the DSD, to close the system of 

equations we need to calculate the DSD moments. 

The continuity and momentum conservation equations for the continuous phase 

are in the same form of Eq. (3.1) and Eq. (3.2) and just the drag force is considered, 

as previously done for similar systems (Gao et al., 2016; Li, et al., 2017). 

3.3.2 Population Balance Model 

Considering a generic liquid-liquid system with a continuous and a dispersed 

phase, the system can be defined in terms of velocities and internal coordinates of 

the two phases, 𝜉𝐶 and 𝜉𝐷. Internal coordinates of the phases are droplet size, chem-

ical composition, enthalpy, etc. The DSD is defined from the total count of the drop-

lets and their characteristic dimension. In an Eulerian frame, DSD is obtained from 

the population of droplets which Number Density Function (NDF), 𝑛, is defined such 

that 𝑛(𝑡, 𝒙, 𝒖𝑫, 𝜉𝐷 , 𝒖𝑪, 𝜉𝐶)𝑑𝒙𝑑𝒖𝑫𝑑𝜉𝐷𝑑𝒖𝑪𝑑𝜉𝐶 represents the number of particles in 

the population with velocity in the range 𝒖𝑫 and 𝒖𝑫 + 𝑑𝒖𝑫, with internal coordinate 

between 𝜉𝐷 and 𝜉𝐷 + 𝑑𝜉𝐷, that at the time 𝑡 are found within 𝒙 and 𝒙 + 𝑑𝒙 in the 

continuous phase with velocity in the range 𝒖𝑪 and 𝒖𝑪 + 𝑑𝒖𝑪 and with internal co-

ordinate between 𝜉𝐶 and 𝜉𝐶 + 𝑑𝜉𝐶. 
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The evolution of the DSD is governed by the Generalized Population Balance 

Equation (GPBE): 

 
𝜕𝑛

𝜕𝑡
+ ∇ ⋅ (𝑛𝒖𝑫) +

∂

∂𝒖𝑫
⋅ [(𝑨𝑫 + 𝑨𝑫𝑪)𝑛] +

∂

∂ξD
(𝐺𝐷𝑛) +  

+
∂

∂𝒖𝑪
⋅ [(𝑨𝑪 + 𝑨𝑪𝑫)𝑛] +

∂

∂ξ𝐶
(𝐺𝐶𝑛)  =  𝑺  

(3.8) 

 

With 𝑨𝑫 and 𝑨𝑫𝑪 being the disperse phase acceleration vectors due to body 

forces and due to particle-fluid interaction respectively, and 𝑨𝑪 and 𝑨𝑪𝑫 being the 

continuous phase acceleration vectors due to body forces and due to fluid-particle 

interaction respectively. 𝐺𝐷 and 𝐺𝐶 are the disperse phase and the continuous phase 

rate of changes of the internal coordinates due to continuous processes, while the 

source term, 𝑺, accounts for the discontinuous changes due to discrete events (i.e. 

breakage, coalescence). 

When the momentum transfer due to collisions between droplets can be ne-

glected, when no growth mechanisms exists, when 𝒖𝑫 can be locally considered as 

a function of 𝜉𝐷 only (𝒖𝑫(𝜉𝐷) = 𝑼𝑫) and when 𝒖𝑪 and 𝜉𝐶 can be considered as 

constant and equal to 𝑼𝑪 and Ξ𝐶 at the time 𝑡 and in the interval 𝒙 and 𝒙 + 𝑑𝒙, the 

discrete and continuous phase velocities and the continuous phase internal coordi-

nate can be integrated out of Eq. (3.8), leaving: 

 
𝜕𝑛∗

𝜕𝑡
+ ∇ ⋅ (𝑛∗𝑼𝑫)  =  𝑺∗  (3.9) 

 

With 𝑛∗ being the reduced number density function, defined as: 

 

𝑛(𝑡, 𝒙, 𝒖𝑫, 𝜉𝐷 , 𝒖𝑪, 𝜉𝐶) =  

= 𝑛∗(𝑡, 𝒙, 𝜉𝐷)𝛿(𝒖𝑫 − 𝑼𝑫)𝛿(𝒖𝑪 − 𝑼𝑪)𝛿(𝜉𝐶 − Ξ𝐶)    
(3.10) 

 

In order to close Eq. (3.10), an expression for the reduced source term, 𝑺∗ is 

needed. A common assumption when the dispersed phase volume fraction is small, 

is to neglect the coalescence events (Maaß et al., 2012; Marchisio & Fox, 2010; 

Wang & Calabrese, 1986) thus simplifying the reduced source term to account for 

breakup mechanisms only: 
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𝑺∗ = ∫ 𝛽(𝑑𝐷 , 𝑑′)𝑔(𝑑′)𝑛(𝑑′)𝑑𝑑′ −
∞

𝑑𝐷
𝑔(𝑑𝐷)𝑛(𝑑𝐷)   (3.11)  

 

Where 𝑔 is the breakup kernel expressing the breakup frequency and 𝛽(𝑑𝐷 , 𝑑′) 

is the daughter distribution function that gives the size distribution of drops originat-

ing from the breakage of a drop of diameter 𝑑′. In this work the daughter distribution 

function proposed by Laakkonen, et al., (2006) was used due to its low computational 

cost and the fair agreement with more detailed models, (Li, et al., 2017). The daugh-

ter distribution function has the following expression (Laakkonen et al., 2006): 

 

𝛽(𝑑𝐷 , 𝑑′) = 180 (
𝑑𝐷

2

𝑑′3) (
𝑑𝐷

3

𝑑′3)
2

(1 −
𝑑𝐷

3

𝑑′3)
2

    
(3.12) 

 

Eq. (3.12) assumes binary breakage based on a statistical distribution in which 

symmetric breakup is considered as the event with the highest probability. 

The Alopaeus breakup kernel (Alopaeus et al., 2002) was used in this work. The 

kernel assumes a Poisson point process distribution frequency of the eddy-drop col-

lisions in which the turbulent dissipation rate, ε, affects said frequency. Its expression 

is: 

 

𝑔 = 𝐶1𝜀1 3⁄ 𝑒𝑟𝑓𝑐 (√
𝐶2𝜎

𝜌𝐶𝜀2 3⁄ 𝑑𝐷
5 3⁄ +

𝐶3𝜇𝐶

√𝜌𝐶𝜌𝐷𝜀1 3⁄ 𝑑𝐷
4 3⁄ )  (3.13) 

 

With 𝐶1, 𝐶2, 𝐶3 being model constants and 𝜎 being the interfacial tension. The 

constant values were taken equal to 3.68, 0.0775 and 0.2, respectively, being the 

values for 𝐶1 and 𝐶3 the original values proposed by (Alopaeus et al., 2002) and the 

value for 𝐶2 being fitted with experimental data for a similar system by Li, et al., 

(2017). 

The closed Eq. (3.9) can now be solved with different strategies, such as, Monte 

Carlo methods, Method of Characteristics, Class method or with the Method of Mo-

ments (MOM). 
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3.3.3 Quadrature Based Method of Moment 

In this work, the MOM was used to determine the NDF. With this strategy, the 

Eq. (3.9) is not solved directly, instead transport equations for the moments of the 

reduced NDF are derived and then solved. The reduced NDF moment of order 𝑘, 

𝑀𝑘, is defined as: 

 

 𝑀𝑘 = ∫ 𝑛∗𝑑𝐷
𝑘 𝑑𝑑𝐷

∞

0
 (3.14) 

 

And applying the moment transform of order 𝑘 to Eq. (3.9) leads to: 

 
𝜕𝑀𝑘

𝜕𝑡
+ ∇ ⋅ (𝑀𝑘𝑼𝑫) =    

 = ∫ [∫ 𝛽(𝑑𝐷 , 𝑑′)𝑔(𝑑′)𝑛(𝑑′)𝑑𝑑′ −
∞

𝑑𝐷
𝑔(𝑑𝐷)𝑛(𝑑𝐷)]

∞

0
𝑑𝐷

𝑘 𝑑𝑑𝐵 
(3.15) 

 

where the term on the right-hand side of Eq. (3.15) is not closed, meaning that 

its formulation involves also moments external to the set. To overcome this closure 

problem, a particular class of MOM is used, called Quadrature Based Method of 

Moment (QMOM), in which the NDF is simplified with a quadrature approximation: 

 

𝑛∗ ≈ ∑ 𝑤𝑖𝛿[𝑑𝐷 − 𝑑𝑖]
𝑁𝑞

𝑖=1
  (3.16) 

 

Where 𝑁𝑞 is the order of the approximation, 𝑤𝑖 are the quadrature weights and 

𝑑𝑖 are the nodes or abscissas of the quadrature. Substituting Eq. (3.16) in Eq. (3.14) 

leads to: 

 

𝑀𝑘 ≈ ∑ 𝑤𝑖𝑑𝑖
𝑘𝑁𝑞

𝑖=1
  (3.17) 

 

And substituting the quadrature approximation of the moment of order 𝑘 in Eq. 

(3.15): 

 
𝜕𝑀𝑘

𝜕𝑡
+ ∇ ⋅ (𝑀𝑘𝑈𝐷) = ∑ 𝑤𝑖𝑔(𝑑𝑖)

𝑁𝑞

𝑖=1
[∫ 𝛽(𝑑𝐷 , 𝑑𝑖)𝑑𝐷

𝑘 𝑑𝑑𝐷 −
∞

0
𝑑𝑖

𝑘]    (3.18) 
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Where the integral between square brackets is analytically solved, once Eq. 

(3.12) is substituted into the term in square brackets of Eq. (3.18), resulting in: 

 

∫ 𝛽(𝑑𝐷 , 𝑑𝑖)𝑑𝐷
𝑘 𝑑𝑑𝐷

∞

0
=

3240𝑑𝑖
𝑘

(𝑘+9)(𝑘+12)(𝑘+15)
    

(3.19) 

 

Turning integrals of the NDF moments transport equations into summations, the 

QMOM approach eliminates the closure problem, once a method for obtaining the 

quadrature nodes and weights is adopted.  

In this work, the quadrature nodes and weights are obtained from the first 6 moments 

(𝑀0, 𝑀1, … , 𝑀5) of the NDF using the well-known Product-Difference algorithm, as 

described by Marchisio & Fox, (2010). 

3.4 Numerical solution procedure 

In this work, the QMOM approach implemented in OpenFOAM as described by 

Buffo et al., (2013) and by Buffo, et al., (2016) was adopted in conjunction with a 

modified version of the OpenFOAM 5.0 solver twoPhaseEulerFoam. Six NDF 

moments were transported, resulting in three quadrature nodes and three weights. 

The fluid dynamics governing equations presented in Section 3.3 were solved with 

the default OpenFOAM merged PISO-SIMPLE algorithm (PIMPLE), detailly de-

scribed by Passalacqua & Fox, (2011). 

The time-dependent solution of the CFD equations and the PBM was obtained 

through two different strategies, called weak coupling (WC) and offline coupling 

(OC).  

The WC strategy was already described by Gao et al., (2016). Two different time 

scales were calculated, a mixing scale defined as the ratio between the turbulent ki-

netic energy and the turbulent dissipation rate, and a characteristic breakage time, 

defined as the inverse of the breakup frequency, 𝑔. The time scale analysis revealed 

that mixing is at least one order of magnitude faster than breakage and the time scale 

ratio was used to define the WC. For each second of simulated time, the fluid dy-

namics equations fully coupled with the PBM were solved for just 0.1s of simulated 
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time. During this time, the following iterative strategy was adopted: the disperse 

phase volume fraction and the turbulence model equations were solved, the Product-

Difference algorithm was then applied with the initial NDF moments, thus allowing 

the solution of Eq. (3.18). The calculation of the actualized moments resulted in a 

new value for the Sauter mean diameter, used to update the interphase momentum 

exchange and then solve the momentum balance and the continuity equations.  

The WC results from the fact that during the remaining 0.9s of simulated time, 

just the PBM equations were solved in a stationary frozen flow-field. After that, the 

whole procedure was repeated for another second of simulated time.  

With the OC strategy, on the other hand, the PBM equations are solved to con-

vergence in a stationary frozen flow-field. In the following simulated time, just the 

moments are transported until the Sauter mean diameters, monitored in several sam-

pling points in the tank volume, reach a stationary value. 

The rotation of the impeller was accounted for with the so-called Multiple Ref-

erence Frame approach (MRF) and the boundary conditions and numerical schemes 

used for each variable are reported in Tab. 3.1 and Tab. 3.2, respectively. 

3.5 Grid convergence study 

The tank geometry was built with ANSYS Design-Modeler, three different struc-

tured meshes with hexahedral elements were generated with ANSYS ICEM to eval-

uate the grid convergence of the solution (Roache, 1998).  

 

 

Tab. 3.1 – Boundary conditions used in the simulations 

Variable Wall Boundary conditions 

𝛼𝐷 Zero Gradient 

𝜀 Zero Gradient 

𝑘 Zero Gradient 

𝑀𝑘 Zero Gradient 

𝑃 Zero Gradient 

𝒖𝐃, 𝒖𝑪 No Slip 
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Tab. 3.2 – Numerical schemes used in the simulations 

Term Configuration 

∂
∂t⁄  Euler explicit 

𝛻𝜓 cellMDLimited Gauss Linear 0.5 

𝛻 ⋅ (𝒖𝑫α𝐷) Gauss vanLeer01 

𝛻 ⋅ (𝒖𝑪α𝐶𝑘) Gauss linearUpwind 

𝛻 ⋅ (𝒖𝑪α𝐶𝜀) Gauss linearUpwind 

𝛻 ⋅ (α𝒖𝒖) Gauss limitedLinearV 1 

𝛻 ⋅ (𝒖𝑫𝑀𝑘) Gauss upwind 

𝛻2𝜓 Gauss linear limited 1 

𝜓𝑓 linear 

𝛻⊥𝜓 limited 1 

𝜓 is the generic variable, 𝑓 denotes the face interpolation operator, 𝛻⊥ is the surface normal gradi-

ent. 

The number of elements of the three meshes, named G1, G2 and G3, was 

5.5×106, 2.2×106 and 0.60×106, respectively, resulting in a refinement ratio of 1.45, 

calculated on the spacing between the grid nodes of the impeller blades (ℎ1 =

0.83 𝑚𝑚 for G1, ℎ2 = 1.10 𝑚𝑚 for G2 and ℎ3 = 1.60 𝑚𝑚 for G3).  

A set of k-ε single-phase simulations with the three grids was performed and the 

grid convergence of the solution was evaluated considering the power number, 𝑁𝑃 =

𝑃𝜀 𝜌𝐶𝑁3𝐷5⁄ , of the RT at N equal to 500rpm, corresponding to a rotational Reynolds 

number of 4.9×104. The impeller power consumption, 𝑃𝜀, was calculated from the 

integral of the turbulent dissipation rate over the vessel volume. Underestimations in 

the prediction of ε result in the underestimation of the breakage rate, for this reason 

the convergence of the grid based on the turbulent dissipation rate was studied. The 

value of 𝑁𝑃 for a similar impeller is expected to be 5, while the values obtained with 

the three grids are 4.86 for G1, 4.60 for G2 and 3.71 for G3. The power numbers 

obtained with the three grids from the torque on the moving walls are 5.09 for G1, 

5.05 for G2 and 4.78 for G3. As already found by Coroneo et al. (2011), the power 

number obtained from the integral of the pressure difference over the front and back 

of the blades is almost grid independent even with a relatively coarse grid. 
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For the three grids, the grid convergence index, GCI, (Coleman & Stern, 1997) 

is 2.79% for G1, 9.48% for G2 and 34.06% for G3, as can be seen in Fig. 3.1, this 

results in a Richardson extrapolation of 𝑁𝑃 equal to 4.97, very close to the experi-

mental value.  

 

 

Fig. 3.1 – GCI and Richardson extrapolation for the three grids considered. 

3.6 Comparison between Weak and Offline Coupling  

The Weak Coupling (WC) and the Offline Coupling (OC) were tested with the 

coarsest grid G3. The simulation was initialized with the dispersed phase homoge-

neously distributed inside the volume as droplets of constant diameter equal to 

700μm. 

The simulation was run with the WC between the CFD and the PBM equations 

until the fluid dynamic reached the steady state, after approximately 460s of simu-

lated time. Subsequently, the PBM was solved in a frozen flow field by means of the 

OC. The simulation was stopped after around 25,000s of simulated time, after the 

Sauter mean diameters monitored in several positions inside the volume reached a 

constant value of 47.9μm. The simulation with the Weak Coupling between CFD 

and PBM equations was run for other 100s of simulated time, reaching about 560s 
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of total simulated time and the time evolution of the Sauter mean diameter as ob-

tained with the WC and the OC was compared to quantify the deviations between 

the two coupling strategies. In Fig. 3.2, the time evolution of the Sauter mean diam-

eter monitored just below the shaft, as obtained with the WC and the OC between 

the CFD and the PBM equations is reported, for the first 2,000s of simulated time.  

The maximum deviation of the Sauter mean diameter obtained with the OC strat-

egy is about 0.5% of the diameter as obtained with the WC. Given the enormous 

differences in term of computational time and the overall agreement between the two 

strategies, just the OC was considered in the remaining part of this study. 

 

 
Fig. 3.2 – Time evolution of the Sauter mean diameter monitored just below the shaft, as obtained with the WC 

and the OC between the CFD and the PBE. 

3.7 Results 

3.7.1 Analysis of the two-phase turbulent field 

Being the turbulent variables paramount in the determination of the breakup fre-

quency, the turbulent velocity field of the continuous phase obtained from the 
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numerical simulations was examined considering the results of the PIV measure-

ments and compared with experimental data from the literature.  

The two-phase PIV measurements showed that the seeding particles and the 

droplets velocity fields can be well discriminated adopting light filters and that the 

mean velocities of water and droplets perfectly overlap. Clearly, under the agitation 

conditions selected for achieving complete droplet dispersions, the droplets and the 

seeding particles have similar relaxation time and slip velocities, therefore they both 

follow the continuous phase very closely. For this reason, just the analysis of the 

continuous phase mean velocity and turbulent characteristics will be considered in 

this study. Since the diesel fuel volume fraction in the system was very low and the 

droplets diameters were in the order of tens of micrometers, the first step was to 

confirm that the dispersed phase had a negligible effect on the continuous phase. 

The continuous phase flow field was measured in single phase conditions (SP), 

with the stirred tank filled with water only, and in two-phase conditions (TP), with 

0.1vol% of diesel fuel in water.  

Selected axial profiles of the mean and fluctuating velocity components of water 

measured in TP conditions are shown in Fig. 3.3 and in Fig. 3.4 respectively at dif-

ferent radial coordinates. The velocity components are divided by 𝑣𝑡𝑖𝑝 = 𝜋𝑁𝐷 to 

make them dimensionless. As expected, Fig. 3.3 shows that the averaged velocity 

profiles of water with and without dispersed phase almost perfectly overlap. 

Negligible differences are also visible for the root mean square (RMS) velocity 

fluctuations of the continuous phase with and without droplets. As can be observed 

in Fig. 3.4, the profiles at 𝑟/𝑇 =  0.22 perfectly overlap, whereas at 𝑟/𝑇 =  0.43 

the water fluctuations in the presence of diesel fuel are around 7% higher than the 

fluctuations measured with just water. 

Having proved that in these operating conditions the presence of the dispersed 

phase affects both the mean and the turbulent velocity field of the continuous phase 

significantly less than 10%, the detailed determination of the turbulent dissipation 

rate was not performed in this work, being the validation of the turbulent flow field 

possible using single-phase data collected in previous works. 

Sharp & Adrian, (2001) studied small scales flow structures by means of PIV in 

a system similar to the one used in this work. Baldi, et al., (2004) performed a PIV 

study to determine the turbulent dissipation rate in a tank stirred with a Rushton im-

peller position at an off-bottom clearance of T/3. 
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(a) (b) 

  

(c) (d) 

Fig. 3.3 - Axial profile of single-phase (SP) and two-phase (TP) axial (U) and radial (V) non-dimensional av-

erage velocities of water. Data are obtained on a plane midway two consecutive baffles at a dimensionless ra-

dial coordinate of r/T = 0.22 (a) and (b) and r/T = 0.43 (c) and (d). 

 

Yeoh, et al., (2004) performed RANS and LES studies with a sliding/deforming 

mesh approach and reported instantaneous and averaged results, while Delafosse, et 

al., (2008) compared fluctuating and turbulent variables from unsteady RANS sim-

ulations and LES simulations with PIV experiments from Escudié & Liné, (2003) 

and Ducci & Yianneskis, (2005), obtained with an off-bottom clearance of T/3. 

In Fig. 3.5, data from these authors are shown, along with data collected in the 

present work with the G1 grid, in terms of non-dimensional turbulent dissipation rate 

radial profile, collected at an axial coordinate corresponding to the center of the im-

peller blade. Radial profiles of 𝜀 obtained from RANS simulations were not reported 

in the work by Yeoh et al., (2004). 

Fig. 3.5 clearly shows that RANS simulations fail in reproducing the non-mon-

otonic profile of the turbulent dissipation rate along the radial coordinate. The 
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turbulent dissipation rate predicted in this work compares acceptably with the results 

from the literature, especially in terms of trend, where the slope of the 𝜀 profile 

closely matches the slope obtained by Delafosse et al., (2008) with RANS simula-

tions and the slope obtained by Yeoh et al., (2004) with LES simulations, the latter 

just after r/T = 0.2.  

 

  

(a) (b) 

  

(c) (d) 

Fig. 3.4 – Axial profile of single-phase (SP) and two-phase (TP) axial (𝑢′) and radial (𝑣′) non-dimensional 

RMS of the water fluctuating velocities. Data are obtained on a plane midway two consecutive baffles at a di-

mensionless radial coordinate of r/T = 0.22 (a) and (b) and r/T = 0.43 (c) and (d). 

 

The simulation performed in this work agrees with the experimental results, 

within the limits of a factor of two. 

Axial profiles of non-dimensional turbulent dissipation rate were also compared 

with the experimental data obtained from turbulent kinetic energy balance by 

Escudié & Liné, (2003) and they are shown in Fig. 3.6.  
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Fig. 3.5 – Comparison between numerical and experimental turbulent dissipation rate radial profiles from the 

literature and the present work results. Data are collected at an axial coordinate equal to the center of the im-

peller blade. 

 

Data in Fig. 3.6 are shown in terms of a scaled axial coordinate centered in the 

midpoint of the impeller blade height and divided by the blade height, 𝑤, equal to 

0.2D. Numerical results at 𝑟/𝑇 =  0.20 compare very well with the experimental 

profile, whereas the numerical simulation at 𝑟/𝑇 =  0.22 underpredicts the turbu-

lent dissipation. RANS simulations are known to predict the maximum dissipation 

rate in the region behind the impeller blades and a monotonic decrease of the variable 

with the increasing radial coordinate. This monotonic behavior is not observed ex-

perimentally, where the maximum dissipation occurs at some distance from the im-

peller blade, in the discharge jet, that both Baldi et al., (2004) and Escudié & Liné, 

(2003) detected at 𝑟/𝑇 =  0.22.  

In Fig. 3.6b it is possible to see the upward inclination of the discharge jet pro-

duced by the asymmetric axial position of the impeller that is observed both experi-

mentally and numerically with LES simulations while it is not predicted with the 

RANS simulations. 
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                    (a)                        (b) 

Fig. 3.6 – Non dimensional turbulent dissipation rate axial profiles obtained at a non dimensional radial coor-

dinate of 𝑟/𝑇 = 0.20(a) and of 𝑟/𝑇 = 0.22(b).  

 

The maximum value of the turbulence dissipation rate obtained with the simula-

tions with the G1 grid was compared with the experimental data by Escudié & Liné, 

(2003), Baldi & Yianneskis, (2004), Ducci & Yianneskis, (2005) and with the RANS 

simulations of Delafosse et al., (2008), as already done by the latter author. Results 

are shown in Tab. 3.3, where the radial position of the maximum value is reported 

as well. 

 

Tab. 3.3 – Maximum energy dissipation rate and its position as obtained from experimental and numerical 

works from the literature and the present work. Numerical data collected behind the impeller blades are re-

ported within brackets. 

 
Escudié & 

Liné, (2003) 

Baldi & 

Yianneskis, 

(2004) 

Ducci & 

Yianneskis, 

(2005) 

Delafosse et 

al., (2008) 

Present 

work 

𝜀𝑚𝑎𝑥

𝑁3𝐷2
 14 10.5 9.4 11 

(84) 

10.2 

r/T 0.22 0.224 0.225 0.16 
(0.08) 

0.17 
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The maximum turbulent dissipation rate obtained in this work is found at a non-

dimensional coordinate of 𝑟/𝑇 =  0.08, that is located behind the impeller blades. 

The associated maximum non-dimensional turbulent dissipation rate is 
𝜀𝑚𝑎𝑥

𝑁3𝐷2  =  84 

that is around 8 times higher than the value found in the experiments. 

 Excluding the zone behind the impeller blades (that is difficult to probe with 

optical techniques) a maximum value of 10.2 is measured, that is in fair agreement 

with the results from the literature.  As already recalled, RANS simulations fail in 

predicting the non-monotonic profile of turbulent dissipation rate and its maximum 

value is therefore found at radial coordinates smaller than those experimentally 

measured. 

Overall, despite the known limitations of the RANS approach with the MRF 

description of the impeller rotation, the averaged two-phase flow field and turbulent 

field results obtained with G1 are in good agreement with the single phase experi-

mental and numerical results from the literature.  

3.7.2 Analysis of the Drop Size Distribution  

As explained in Section 3.2, an experimental campaign was performed to pro-

vide results with which validate the numerical data. Results on the DSD were col-

lected at different impeller speeds, ranging from 500rpm to 800rpm.  

Fig. 3.7 shows the experimental DSD obtained from triplicate measurements at 

N = 500 rpm, where the distribution probability is expressed in terms of volume 

fraction with respect to the total dispersed-phase volume in the sample. 

The experimental measurements of the DSD show good reproducibility, as 

shown by the low standard deviations for each diameter category, that range from 

1.4 × 10−4 to 3.8 × 10−3. The corresponding coefficients of variations for each di-

ameter category range from 0.8% to 23.4% for the droplets with average diameters 

equal to 8.00 × 10−5 m and to 1.47 × 10−4 m respectively. The experiments con-

firmed that the size of the droplets is of the order of tens of micrometers and that the 

DSD is relatively narrow. The experimental DSD is then used to validate the numer-

ical results obtained with the modelling procedure described in Section 3.3. 

Since the experiments provided the DSD of the droplets in the sample, a method 

to reconstruct the NDF in the postprocessing calculations was used. 
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Fig. 3.7 – Experimental DSD obtained from triplicate measurements at N = 500rpm and error bars in terms of 

standard deviations 

 

The EQMOM with a gamma distribution as a kernel density function was used, 

in the postprocessing stage, to obtain the continuous DSD from the moment set avail-

able from the calculation (Marchisio & Fox, 2010). The results obtained with the 

coarsest mesh G3 are shown in Fig. 3.8.  

The DSD is obtained through an average over the volume enveloped by the 

square toroid generated through a rotation around the tank axis of the rectangular 

sampling position described in Section 3.2. Having described the rotation of the im-

peller with the simplified MRF approach, this averaging procedure was adopted in 

order to obtain data at different blade-baffle relative positions. The DSD obtained 

from the simulation was discretized in the same diameter bins used in the experi-

mental DSD, for an easier comparison. The DSD is expressed in terms of volume 

fraction, to match the experimental data. Despite an underestimation of the power 

consumed by the impeller, 𝑃𝜀, the DSD from the simulation is in acceptable agree-

ment with the experimental one. 

A numerical Sauter mean diameter of 47.9μm was obtained whereas the experi-

mentally measured diameter was equal to equal to 47.6μm. Since an underestimation 

of the turbulent dissipation rate would lead to larger droplets, having found a 
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numerical Sauter mean diameter in very good agreement the experimental one sug-

gests that the set of parameters used in the breakage kernel, Eq. (3.13), is not opti-

mized for very fine grids. 

 

 
Fig. 3.8 – Comparison between experimental and numerical DSD as obtained with the G3 grid. 

 

The  DSD as obtained with the simulation with the finest grid G1 was calculated 

as well, with the same procedure described above for G3, and it is shown in Fig. 3.9. 

As expected, in this case a lower Sauter mean diameter of 31.7μm was obtained in 

the sampling volume since the volume integral of the turbulent dissipation rate was 

higher, as shown in Section 3.5. 

These results confirm the importance of the computational grids on the predic-

tion of the turbulent variables and their subsequent effects on the outcome variables. 

Although the underprediction of the turbulent dissipation rate can be compensated 

with an adjustment of the set of parameters of the breakage kernel, the selection of 

their values results in a loss of fully predictive capabilities of the simulations. 
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Fig. 3.9 - Comparison between experimental and numerical DSD as obtained with the G1 grid. 

3.8 Discussion 

As already mentioned, the numerical DSD is obtained through an average over 

the volume enveloped by the square toroid generated through a rotation around the 

tank axis of the rectangular sampling position described in Section 3.2, and shown 

in Fig. 3.10. The turbulent dissipation rate generated by the two grids is also shown 

in Fig. 3.10 on a plane midway two consecutive baffles. As expected, the spatial 

distribution of turbulent dissipation rate is remarkably inhomogeneous, and the high-

est values are limited in the proximity of the impeller.  

Large differences are found between the two predictions and the ratio of the av-

erage turbulent dissipation rate over the volume enveloped by the square toroid as 

predicted by the two grids is: 

 

𝜀(𝐺1)
𝜀(𝐺3)⁄ ≈ 0.077

0.065⁄ = 1.20     (3.20) 

 

which is very close to the ratio of the power numbers obtained from 𝑃𝜀: 
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𝑁𝑃(𝐺1)
𝑁𝑃(𝐺3)⁄ ≈ 4.86

3.71⁄ = 1.31     (3.21) 

 

This result confirms that correcting the turbulent dissipation rate inside the 

breakage kernels with the ratio of the power number obtained from the simulation 

and the experimental power number may be a workable approach to avoid long com-

putational time. On the other hand, this correction holds when the parameters in the 

kernels are optimized for the system in exam.  

 

 
Fig. 3.10 – Comparison between the turbulent dissipation rate field generated with the G1 grid (left) and the 

G3 grid (right) on a plane midway two consecutive baffles. In green, the section of the square toroid corre-

sponding to the sampling zone. 

 

In Fig. 3.11, the breakup frequency on a plane between two consecutive baffles, 

as obtained with G1 right after the fluid dynamics inside the system reached the 

steady state (after approximately 75s), is reported, and in these conditions, the aver-

age Sauter mean diameter was of the order of 100μm.  

The breakup frequency decreases as the diameter decreases. Since the simula-

tions predict a DSD shifted towards diameters that are smaller than those measured 
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experimentally, Fig. 3.11 shows the breakup frequency calculated at 75s, when the 

diameter is larger than the one experimentally measured. 

Having found that the breakup frequency is significant just where 𝜀 is high, an 

alternative procedure to derive the breakup kernel parameters would require to opti-

mize their value on a fine grid, where the turbulent variables are more accurately 

predicted, and then, when solving the PBE on a coarser grid, applying the correction 

proposed by Gao et al., (2016). 

Since for this system the breaking events are meaningful just in the proximity of 

the impeller, as shown in Fig. 3.11, the correcting factor should be derived from the 

ratio of the 𝜀 volume average obtained either in a region close the impeller or as the 

ratio of the maximum 𝜀 in the system. 

 

 
Fig. 3.11 – breakup frequency on a plane midway two consecutive baffles obtained with G1 after 75s of simu-

lated time, when the Sauter mean diameter was of the order of 100μm. 

 

In those scenarios the correcting factors for our system would be: 

 

𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟(𝐺1)
𝜀𝑖𝑚𝑝𝑒𝑙𝑙𝑒𝑟(𝐺3)⁄ ≈ 24.30

15.16⁄ = 1.60       (3.22) 
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𝜀𝑚𝑎𝑥(𝐺1)
𝜀𝑚𝑎𝑥(𝐺3)⁄ ≈ 291.6

85.2⁄ = 3.42  (3.23) 

 

As known, the grid has a non-linear effect on the turbulent dissipation rate and 

with G3 it is underestimated by 16% in the bulk, by 38% around the impeller and by 

71% of the peak maximum value, with respect to G1.  

The spatial distribution of the breakage frequency in a stirred tank was already 

numerically studied by Vonka & Soos, (2015) that stated that “even a small zone 

around the impeller can have a significant impact on the DSD”. In their analysis they 

used a 316,803 elements mesh and found a 𝜀𝑚𝑎𝑥/〈𝜀〉 value of 290 (with 〈𝜀〉 being 

the volume average of the turbulent dissipation rate) obtained with a 𝑘 − 𝜀 model 

with the physical properties of the mixture, that compared well with the value of 

𝜀𝑚𝑎𝑥/〈𝜀〉 = 550 obtained for a similar system in a previous work with a LES simu-

lation and a 1.6 million elements mesh (Soos, et al., 2013). 

The value of 𝜀𝑚𝑎𝑥/〈𝜀〉 = 550 agrees with our value of 𝜀𝑚𝑎𝑥/〈𝜀〉 = 387 ob-

tained with G1 (the grid with 5,500,000 elements). However, Soos et al., (2013) re-

ported that the power number calculated as the integral of the turbulent dissipation 

rate on the whole tank volume was underpredicted with respect to the values in the 

literature, pointing to the fact that the turbulent field may, in fact, have been under-

predicted, even with a 1.6 million elements mesh. 

The fact that the breakage occurs in the proximity of the impeller and that the 

droplets are then dispersed in the whole volume is confirmed also by the spatial dis-

tribution of the Sauter mean diameter, shown in Fig. 3.12. The Sauter mean diameter 

is rapidly obtained as the ratio of the third and the second transported moments of 

the NDF. 

Indeed, the diameters range is very narrow despite the large inhomogeneities in 

the turbulent dissipation rate field, and the color scale in Fig. 3.12 was expanded to 

highlight this. Moreover, the droplets in the proximity of the impeller, approximately 

in the same region where the breakup frequency is higher, are almost imperceptibly 

but consistently smaller than in the bulk of the tank. This result is a further indication 

that the correction on the turbulent dissipation rate, which is necessary when using 

coarse grids that underestimate the turbulent variables, should be based on local 

quantities rather than volume averaged ones.  
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Fig. 3.12 – Sauter mean diameter on a plane between two consecutive baffles, as obtained with G1 

 

3.9 Conclusions 

In this work, RANS Eulerian-Eulerian simulations coupled with a PBM for the 

determination of the DSD of diesel fuel in water in a mechanically stirred tank were 

run in OpenFOAM. The PBM was solved in the simplified case of negligible coa-

lescence phenomena with the QMOM strategy and the resulting DSDs were com-

pared to experimental data collected from ad hoc experiments.  

PIV data confirmed that the dispersed phase has a very limited effect on the 

average and fluctuating velocities of the continuous phase, in these operating condi-

tions.  

The turbulent flow field was compared with experimental and numerical single-

phase results from the literature and an acceptable agreement was found, despite the 

well-known limitations of the RANS and the MRF modelling techniques. 

The analysis of the Sauter mean diameters and the local DSDs revealed that the 

simulations underpredict the size of the droplets, suggesting that the parameters of 
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the breakage kernel found in the literature for similar systems are not optimized for 

the case under study. 

Different computational grids were tested, to explore the effects of the different 

prediction of the turbulent variables on the numerical results. The adoption of a fine 

grid that satisfactorily predicted the average turbulent dissipation rate field resulted 

in a larger underprediction of the DSD, with respect to a coarser grid, meaning that 

grid effects are relevant and need to be properly addressed before the analysis of the 

results.  

In the discussion section, the turbulent dissipation rate field and the related 

breakage phenomena were analyzed, confirming the well-known results that relevant 

inhomogeneities are found in the stirred tank and that the turbulent dissipation rate 

and the breakup frequency are order of magnitude higher in the proximity of the 

impeller than in the bulk. 

A way to deal with the grid effects is hypothesized, adopting the scalar correc-

tion for the turbulent dissipation rate in the breakup kernel proposed by Gao et al., 

(2016) and deriving it from local quantities rather than volume averaged ones. 
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3.11 Nomenclature 

𝑨𝑪 Continuous phase acceleration due to body forces 

𝑨𝑪𝑫 Continuous phase acceleration due to phase interaction 

𝑨𝑫 Dispersed phase acceleration due to body forces 

𝑨𝑫𝑪 Dispersed phase acceleration due to phase interaction 

𝐶 Off-bottom clearance 

𝐶1, 𝐶2, 𝐶3 Alopaeus breakage kernel parameters 

𝐶1𝜀, 𝐶2𝜀, 𝐶𝜇 𝑘 − 𝜀 turbulence model parameters 

𝐶𝐷 Drag coefficient 

𝑑𝐷 Drop diameter 

𝑑𝑖 Nodes of quadrature 

𝐷 Impeller diameter 

𝑬  Rate of deformation 

𝑭𝑑𝑟𝑎𝑔,𝐶𝐷 Interphase drag force 

𝒈 Gravity vector 

𝑔 Breakup frequency 

𝐺1, 𝐺2, 𝐺3 Finest, intermediate and coarsest grid used for the simulations 

𝐺𝐶 Continuous phase rate of change of 𝜉𝐶 due to continuous processes 

𝐺𝐷 Dispersed phase rate of change of 𝜉𝐷 due to continuous processes 

ℎ1, ℎ2, ℎ3 G1, G2 and G3 spacing of the nodes on the impeller blade 

𝐻𝐿 Liquid height 

𝐻𝑇 Tank height 

𝑘 Turbulent kinetic energy 

𝑀𝑘 Reduced NDF moment of order k 

𝑛 Number density function 

𝑛∗ Reduced number density function 

𝑁 Impeller rotational speed 

𝑁𝑝 Power number 

𝑃 Pressure 

𝑃𝜀 Impeller power consumption from the volume integral of 𝜀 

𝑟 Radial coordinate 

𝑅𝑒 Reynolds number 

𝑅𝑒𝑝 Particle Reynolds number 

𝑺 NDF discontinuous changes due to discrete events 

𝑺∗ Reduced NDF discontinuous changes due to discrete events 

𝑡 Time 

𝑇 Tank diameter 
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𝒖𝑪 Continuous phase velocity vector 

𝒖𝑫 Dispersed phase velocity vector 

𝑢′𝑅𝑀𝑆 Continuous phase RMS of the fluctuating axial velocity 

𝑈 Continuous phase average axial velocity 

𝑼𝑪 Local constant value of 𝒖𝑪 

𝑼𝑫 Local constant value of 𝒖𝑫 

𝑣𝑡𝑖𝑝 Impeller tip speed 

𝑣′𝑅𝑀𝑆 Continuous phase RMS of the fluctuating radial velocity 

𝑉 Continuous phase average radial velocity 

𝑤 Impeller blade height 

𝑤𝑖 Weights of quadrature 

𝒙 Spatial coordinate vector 

𝑧 Axial coordinate 

  

Greek letters 

𝛼𝐶 Continuous phase volume fraction 

𝛼𝐷 Dispersed phase volume fraction 

𝛽 Daughter distribution function 

𝜀 Turbulent dissipation rate 

〈𝜀〉 Volume averaged turbulent dissipation rate 

𝜇𝐶 Continuous phase dynamic viscosity 

𝜇𝐷 Dispersed phase dynamic viscosity 

𝜇𝑡 Turbulent viscosity 

𝜉𝐶 Internal coordinate of the continuous phase 

𝜉𝐷 Internal coordinate of the dispersed phase 

Ξ𝐶 Local constant value of 𝜉𝐶 

𝜌𝐶 Continuous phase density 

𝜌𝐷 Dispersed phase density 

𝜎 Interfacial tension 

𝜎𝑘, 𝜎𝜀 𝑘 − 𝜀 turbulence model parameters 

𝝉𝑫 Dispersed phase viscous stress tensor 

𝝉𝒕 Reynolds stress tensor 

𝜓 Generic variable 
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Chapter 4  

Solid-Liquid suspension in 

stirred tanks 

This work is aimed at investigating the impact of different meso-scale models and 

constitutive equations for the RANS-based two-fluid model simulations of a 

turbulent solid-liquid stirred vessel with high solids loading. The model assessment 

is preceded with a grid convergence study, which confirms the variability of the 

discretization requirements depending on the observed variable. The simulation 

results demonstrate that for the investigated system the high solids loading 

contribution modelled by the kinetic theory of granular flows is negligible, both in 

incomplete and complete suspension conditions. Instead, the particle concentration 

fluctuations contribution included in the momentum equations dramatically affect 

the predictions, particularly in incomplete suspension conditions. The evaluation of 

the models is completed with the comparison of the predicted solids concentration 

profiles with experimental data measured by Electrical Resistance Tomography. The 

computational strategy for achieving realistic predictions of the solid distribution 

both in complete and incomplete suspension conditions is outlined. 
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4.1 Introduction 

In the last 30 years, the role of Computational Fluid Dynamics (CFD) has be-

come increasingly important as an aid both in fundamental research and in industrial 

design. On the other hand, the numerical simulation of several process problems is 

still not reliable enough, mostly owing to the lack of suitable CFD models (Liu, 

2016). In this regard, solid-liquid suspensions in stirred tanks still pose several chal-

lenges. Solid-liquid systems are common in many process industries and the correct 

description of the related chemical reactions, mass and energy transfer phenomena 

is strongly linked to the proper prediction of the multiphase flow field and the parti-

cle distribution inside the equipment. Notably, the simulation of slurry stirred tanks 

is particularly complex due to the two-phase turbulence and the interphase interac-

tions (Li et al., 2015). Additional complexity is found at increasing particle concen-

tration, therefore the understanding gained so far on single phase and dilute solid-

liquid systems cannot be extended to dense suspensions (Carletti et al., 2014). 

This investigation concerns the simulation of solid distribution in a stirred tank 

in high solids loading and turbulent conditions, in the realm of the two-fluid model 

formulation of the Reynolds averaged Navier-Stokes (RANS) equations. As recently 

observed by Van den Akker (2015), this type of simulations is based on a huge num-

ber of modelling assumption and numerical issues. Nevertheless, RANS-based two 

fluid models are still the most affordable tool for investigating industrially relevant 

problems in complex geometries, large scale apparatus and high solids loading, 

therefore the improvement of their predictive capability attracts still significant re-

search interest. 

The Eulerian-Eulerian two fluid model including different closure relationships 

has been validated for dense solid-liquid stirred tanks in turbulent regime by various 

experimental data, including cloud height (e.g. Fletcher & Brown, 2009), just-sus-

pended impeller speed (e.g. Xie & Luo, 2018), particle concentration distribution 

(e.g. Delafosse, et al., 2018; Kasat, et al., 2008; Liu & Barigou, 2013; Tamburini, et 

al., 2013; Wadnerkar, et al., 2016), liquid and solid velocities (e.g. Liu & Barigou, 

2013; Wadnerkar et al., 2016). Of the different terms included in the momentum 

equation of the solid phases, the drag force and the turbulent dispersion force are 

generally the most significant. As for the drag force, the drag coefficient correlations 
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for single rigid spheres in still fluid have been usually adopted and the effects of 

hindered settling or of free stream turbulence were found to be either uninfluential 

or important depending on the investigated conditions. Also, the effect of the turbu-

lent fluctuations of the solid volume fraction was either ignored or included alterna-

tively in the continuity or in the momentum equation depending on the averaging 

procedure adopted for the equations derivation. Fletcher & Brown (2009) suggested 

the inclusion of both the drag and the turbulent dispersion forces and highlighted the 

need of valid formulations for dense solid-liquid stirred tanks. Kasat et al. (2008) 

included the turbulent dispersion force in the momentum equation and accounted for 

the turbulent effect on the drag coefficient via the Brucato et al. (1998) correlation. 

Liu & Barigou (2014) and Mishra & Ein-Mozaffari (2017) considered just the 

hindered settling effect on the drag law. Tamburini et al. (2014) found that the inclu-

sion of the turbulent dispersion force and of the hindered settling effect can either 

improve or worsen the results depending on the operating conditions, while the in-

clusion of the Brucato drag correction was considered generally useful. Recently, 

Wadnerkar et al. (2016) and Xie & Luo (2018) suggested the adoption of the Gran-

ular version of the Eulerian momentum equation for the solid phase for a better pre-

diction of dense solid-liquid stirred tanks. Unsatisfactory predictions of solid spatial 

distribution were reported by a similar set of model equations by Delafosse et al. 

(2018) for dense suspensions of light microcarriers particles. The granular model 

was found not applicable due to numerical issues in other investigations (Mishra & 

Ein-Mozaffari, 2017; Tamburini et al., 2013) 

Overall, significant progresses have been recently made in the development of 

CFD methods for slurry stirred tanks and in their validation by comparison with ex-

perimental data collected in dense suspensions. Unique conclusions on models and 

constitutive equations to account for the prevailing physical mechanisms and on the 

reliability of the relevant numerical solution methods in predicting the suspension 

and the distribution of high concentration particles in stirred equipment are not 

achieved yet.  

The Eulerian-Lagrangian approach has been employed in the study of solid-liq-

uid mixing, alongside the Eulerian-Eulerian approach. With this approach, the force 

balance on each element of the disperse phase is solved and the fluid flow is solved 

with different resolution depending on the simulation method, i.e. direct numerical 

simulations (DNS), large eddy simulations (LES), RANS. The fluid flow resolved 
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spatial scale can be either in the same order of magnitude or smaller (fully resolved 

approach) than the characteristic size of the elements of the disperse phase (Tsuji, 

2007). Fully resolved turbulent Eulerian-Lagrangian solid-liquid applications are 

usually limited to small scales and limited number of particles, due to the high 

computational cost (Ayranci et al., 2013; Derksen, 2003). With the unresolved 

CFD-DEM (Discrete Element Model) approach, the fluid flow is solved at scales 

coarser than the particle size, describing the particle-particle interactions with a 

DEM and coupling the two phases with explicit expressions of the interphase forces, 

such as drag, lift, wall lubrication (Blais et al., 2016; Zhu et al., 2007). Even though 

this approach allows to simulate denser suspensions with respect to the fully resolved 

approach, unresolved CFD-DEM models has seldom been used to assess partially 

suspended conditions (Blais, 2016). 

Recently, Blais et al. (2017) studied the suspension curve of non-dilute concen-

tration of glass particles in a stirred tank with a Large Eddy CFD-DEM approach, 

with the Rong drag law (Rong et al., 2013) and the Saffman-Mei lift force (Mei, 

1992) as interphase forces. They were successful in reproducing the suspension 

curve and just-suspended speed obtaining good agreement with the experimental 

measurements obtained with the Pressure Gauge Technique, that were used to vali-

date the code. 

Li et al. (2018) performed particle-resolved simulations with Lattice- Boltzmann 

method of a a dense solid suspension in a stirred tank in transitional regime. The 

flow fields were fully resolved down to the flow scale around the particles and the 

suspension dynamics was simulated from the initial state to complete suspension 

conditions. The authors validated the numerical results with particle image veloci-

metry (PIV) experimental data finding a good agreement in terms of instantaneous 

and averaged solids distributions in the stirred tank, averaged liquid velocities and 

the turbulent fluctuation levels of the liquid.  

In the following, the distribution of glass particles in water at agitation condi-

tions below and above the just-suspended impeller speed,𝑁𝑗𝑠, is considered. The sim-

ulation of the two-phase system starts from the solution of the RANS equations and 

the Eulerian description of both solid and liquid phases, including a Granular formu-

lation of the momentum equation of the solid phase. The interplay of different parti-

cle-particle interactions, fluid-particle interaction and turbulence models is com-

pared with the goal to reproduce the solid suspension and the solid concentration 
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distribution in the tank. The momentum exchange terms considered in this work are 

shown in Table 4.1 and they are detailed in Section 4.3.1. 

 

Table 4.1 – Solid-Liquid interaction forces 

 Model Eq. 

Turbulence 
‘Mixture’ k-ε 

‘Mixture’ Reynolds Stress model (RSM) 
Eq. (4.2) 

Fluid-particle 

Interphase Drag: 

Schiller & Naumann 

Wen & Yu 

Ergunn 

Turbulent dispersion: 

Burns 

Lift force: 

Moraga 

 

Eq. (4.12) 

Eq. (4.15) 

Eq. (4.17) 

 

Eq. (4.18) 

 

Eq. (4.20) 

Particle-particle Kinetic theory of granular flows Eq. (4.8) 

 

The model predictions are presented by means of comparison of global variables 

and solids concentration profiles. Finally, the results are discussed using experi-

mental observation and solid concentration data as a benchmark for the different 

models. 

4.2 Investigated systems  

The simulations concerned the same solid-liquid stirred tank experimentally in-

vestigated by Carletti et al. (2014). The vessel was cylindrical, flat bottomed with 

diameter, T, and height, 𝐻𝑇, equal to 0.232 m and 0.28 m, respectively. It was 

equipped with four equally spaced baffles of width equal to T/10. A single 6-blades 

45° down-pumping pitched blade turbine (PBT) mounted on a central shaft was used 

to agitate the system. The diameter of the impeller, D, was equal to 0.078 m, corre-

sponding to a T/D ratio equal to 3, and the off-bottom clearance, C, was a third of 
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the vessel diameter (T/C = 3). The water height, HL, was always maintained at 0.25 

m, corresponding to a total volume of 10.6 L. 

Glass particles of narrow size distribution and mean diameters d
p
 equal to either 

138 μm or 385 μm and density, 
S
, equal to 2500 kg/m3 were used. The liquid phase 

was demineralized water, which density, 
L
, and viscosity, 

L
, were taken equal to 

998 kg/m3 and 0.001 Pa s respectively in the calculations. The experiments were 

carried out at room conditions at temperature of 20°C ± 3°C. 
Two different cases were simulated among those investigated by Carletti et al. 

(2014), one well above and the other well below the Njs value determined by visual 

observation. The first case concerned the suspension of the glass particles of mean 

size equal to 138 μm and mass ratio, XS, of 24%, corresponding to a mean solid 

volume fraction, <α
S
>, of 0.09. The solid-liquid system was stirred at the impeller 

rotational speed, N, of 900 rpm, that is much higher than the Njs value of 540 rpm 

estimated by visual observation. The second case concerned the suspension of the 

385 μm particles at the impeller rotational speed of 500 rpm and mass ratio equal to 

43%, corresponding to <α
S
> of 0.15. The Njs value determined by visual observation 

in this case was equal to about 700 rpm. Both the complete and the incomplete sus-

pension cases deal with dense suspensions, since the average solid-phase volume 

fraction is much larger than 10−3 (Balachandar & Eaton, 2010). The impeller Reyn-

olds number based on the liquid phase properties is equal to 9×104 for the complete 

suspension and 5×104 for the incomplete suspension case. 

For the two cases, experimental non-dimensional conductivity maps of the liq-

uid-phase were collected by Electrical Resistance Tomography on four horizontal 

vessel sections located at the mean axial coordinates, z1 = 0.26T, z2 = 0.47T, z3 = 

0.69T and z4 = 0.90T from the tank bottom. With respect to the investigation by 

Carletti et al. (2014), a number of sensor planes connected to the data acquisition 

system equal to four instead of two was available, thus the measurements were per-

formed on the four planes simultaneously and the measurement uncertainties were 

reduced. 
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4.3 CFD simulations 

4.3.1 Governing equations 

The simulations were based on the two-fluid model equations written under in-

compressible, isothermal, steady state hypotheses. The solid phase continuity and 

momentum equations specifically solved in this work are: 

 

𝛻 ⋅ (𝛼𝑆𝜌𝑆𝒖𝑺) = 0  (4.1) 

𝛻 ⋅ (𝛼𝑆𝜌𝑆 𝒖𝑺𝒖𝑺) = −𝛼𝑆𝛻𝑃 + 𝛼𝑆𝜌𝑆𝒈 

+𝛻 ⋅  𝝉𝑺⏟  
𝐼

− 𝛻𝑃𝑆⏟
II

+ 𝑭𝑇𝐷,𝑆⏟  
III

+ 𝑭𝑑𝑟𝑎𝑔,𝑆𝐿⏟    
IV

+ 𝑭𝑙𝑖𝑓𝑡,𝑆⏟  
𝑉

 (4.2) 

 

where 𝛼𝑆  is the volume fraction of the solid phase, 
S 

is its density, 𝒖𝑺 is the 

solids mean velocity vector, 𝑃 is the pressure, 𝒈 is the gravity vector. On the right-

hand side of the momentum equation of the solid phase, the stress term (I), the solid 

pressure gradient (II), the turbulent dispersion force (III), the interphase drag force 

(IV) and the lift force (V) require specific models. 

The continuity and the momentum conservation equations for the liquid phase 

are in the same form, apart for the solid pressure gradient, that is nil for the liquid 

phase. 

The stress tensor was divided into two contributions, the laminar viscous stress 

tensor 𝝉𝑺
𝒍 and the Reynolds stress tensor 𝝉𝑺

𝒕. For the latter, either the ‘mixture’ k-ε 

or the ‘mixture’ Reynolds Stress turbulence model (RSM) was used. In the so-called 

‘mixture’ or ‘homogeneous’ multiphase turbulence models, the two phases are as-

sumed to share the same turbulent variables, the turbulent model equations do not 

include any interphase turbulent transport term and the averaged physical properties 

of the solid-liquid mixture are adopted (e.g. Tamburini, et al., 2011). Other formula-

tions of the multiphase turbulence models were not considered, mainly due to the 

lack of robust models to account for the interphase turbulent transfer particularly in 

the case of dense solid-liquid systems and based on the results of previous investi-

gations (Fletcher & Brown, 2009; Tamburini et al., 2014). In the near wall region, 
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the so-called Standard Wall Function or the Enhanced Wall Treatment, as imple-

mented in FLUENT v17.0, were selected depending on the computational grid size.  

The interactions within the solid phase are included by the solid pressure gradi-

ent and the solid laminar viscous stress tensor, which formulation is based on the 

kinetic theory of granular flows, firstly introduced by Jenkins & Savage (1983). Both 

the solid pressure and the solid laminar viscous stress tensor depend on the granular 

temperature 𝛩𝑆, that is the kinetic energy associated with the particle velocity fluc-

tuations and is calculated from the Boltzmann transport equation for the probability 

distribution of random particles motion.  

In this work, the following 𝛩𝑆 transport equation is adopted: 

 

3

2
𝛻 ⋅ (𝜌𝑆𝛼𝑆𝒖𝑺𝛩𝑆) = (−𝑃𝑆 𝑰 + 𝝉𝑺): 𝛻𝒖𝑺 + 𝛻 ⋅ ( 𝑘𝜃𝑆𝜵𝛩𝑆)+ 𝜙𝐿𝑆 − 𝛾𝛩𝑆 (4.3) 

 

where 𝑰 is the identity tensor, 𝑘𝜃𝑆 is the granular diffusion coefficient, 𝜙𝐿𝑆 is the 

kinetic energy exchanged between the liquid and the solid phase and 𝛾𝛩𝑆 is the col-

lisional dissipation of energy due to inelastic collisions. For these last three terms, 

several constitutive equations exist in the literature and as default implementations 

both in the most common closed and open-source CFD codes (e.g. ANSYS FLU-

ENT, OpenFOAM).  

For the granular diffusion coefficient, the equation proposed by Syamlal et al. 

(1993) was selected, that reads: 

 

where 𝑒𝑆  is the coefficient of restitution, 𝜂 =
1

2
(1 + 𝑒𝑆), 𝑔0𝑆 is the radial distri-

bution function. The coefficient of restitution, accounting for the inelastic collisions 

between particles, was set equal to 0.9, that is a suitable value for glass beads (Lun 

et al., 1984). 

𝑘𝜃𝑆 =
15𝑑𝑝𝜌𝑆𝛼𝑆√𝛩𝑆𝜋

4(41 − 33 𝜂)
× 

× [1 +
12

5
𝜂2(4𝜂 − 3)𝛼𝑆𝑔0𝑆 +

16

15𝜋
(41 − 33𝜂)𝜂𝛼𝑆𝑔0𝑆] 

(4.4) 
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The radial distribution function, 𝑔0𝑆, is an empirical function that goes to infinity 

when the solid volume fraction reaches its maximum value, thus preventing unphys-

ical particles packing by driving the particle velocity to zero. It is defined as: 

 

where the solids volume fraction at the packing limit, 𝛼𝑆,𝑚𝑎𝑥, was set equal to 

0.63, being the typical ‘filling fraction’ of randomly packed spheres of equal diame-

ter. 

The collisional dissipation, 𝛾𝛩𝑆 and the interphase exchanged kinetic energy, 

𝜙𝐿𝑆, were modelled with the expression derived by Lun et al. (1984) and Ding & 

Gidaspow (1990), respectively, as: 

 

𝛾𝛩𝑆 =
12(1−𝑒𝑆

2)𝑔0𝑆

𝑑𝑝√𝜋
𝜌𝑆𝛼𝑠

2𝛩𝑆
3/2

  
(4.6) 

𝜙𝐿𝑆 = −
9

4

𝛼𝑆𝜌𝐿
𝑑𝑝

𝐶𝐷‖𝒖𝑺 − 𝒖𝑳‖𝛩𝑆 
(4.7) 

 

where 𝐶𝐷 is the particle drag coefficient. 

The solid pressure,𝑃𝑆, was calculated as: 

 

For the laminar solid phase stress, the following formulation was adopted: 

 

where 𝜇𝑆 is the solid shear viscosity and 𝜆𝑆 is the solid bulk viscosity. 

The solid shear viscosity was calculated following Syamlal et al. (1993) as: 

 

𝑔0𝑆 = [1 − (
𝛼𝑆

𝛼𝑆,𝑚𝑎𝑥
)

1/3

]

−1

 

(4.5) 

𝑃𝑆 = 𝛼𝑆𝜌𝑆𝛩𝑆[1 + 2(1 + 𝑒𝑆)𝛼𝑆𝑔0𝑆] (4.8) 

𝝉𝑺
𝒍 = −𝑃𝑆𝑰 + 𝛼𝑆𝜇𝑆(𝜵𝒖𝑺 + 𝜵𝒖𝑺

𝑇) + 𝛼𝑆(𝜆𝑆 − 2/3𝜇𝑆)𝜵 ⋅ 𝒖𝑺 𝑰 (4.9) 
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The bulk viscosity was calculated following Lun et al. (1984) as: 

 

Neglecting the solid pressure gradient and the laminar solid stress tensor reduces 

the two-fluid model equations including the kinetic theory of granular flows, namely 

the Eulerian-Granular model (E-G), to the classical two-fluid model equations, 

namely the Eulerian-Eulerian model (E-E). It is worth keeping in mind that the E-G 

constitutive equations have been derived under a number of assumptions which hold 

true for the flow of granular materials, where collisions are the principal transport 

mechanisms, as is the case of fluidized beds. The solid suspensions in stirred tanks 

hardly adhere to the same assumptions, but the adoption of the above equations is 

considered, since it was suggested in previous investigations of similar systems 

(Delafosse et al., 2018; Wadnerkar et al., 2016; Xie & Luo, 2018). 

In the context of the two-fluid model, the coupling between the liquid and the 

solid flow fields is achieved by means of interaction forces between the solid and the 

liquid phase. In this work the drag, the turbulent dispersion and the lift forces were 

considered.  

The interphase drag force is calculated as: 

 

where the drag coefficient, 𝐶𝐷, calculation requires a suitable correlation, de-

pending on the particles Reynolds number, 𝑅𝑒𝑝. In this work, the Schiller & 

Naumann, (1933) correlation was selected, that is: 

 

𝜇𝑆 = 0.5√𝛩𝑆𝛼𝑆𝑑𝑝𝜌𝑆 {
√𝜋

3(3−𝑒𝑆)
[1 +

2

5
(1 + 𝑒𝑆)(3𝑒𝑆 − 1)𝛼𝑆𝑔0𝑆] +  

(4.10) 
+
8

5

𝛼𝑆𝑔0𝑆(1+𝑒𝑆)

√𝜋
}     

𝜆𝑆 = 4/3𝛼𝑆
2𝜌𝑆𝑑𝑝𝑔0𝑆(1 + 𝑒𝑆)√𝛩𝑆/𝜋 (4.11) 

𝑭𝑑𝑟𝑎𝑔,𝑆𝐿 =
3

4

𝛼𝑆
𝑑𝑝
𝐶𝐷𝜌𝐿‖𝒖𝑺 − 𝒖𝑳‖(𝒖𝑺 − 𝒖𝑳) 

(4.12) 

𝐶𝐷 = 24 ×
1 + 0.15𝑅𝑒𝑝

0.687

𝑅𝑒𝑝
 

(4.13) 
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where the particles Reynolds number is calculated as: 

 

Eq. (4.13) holds true for 1 < 𝑅𝑒𝑝 < 1000 and single rigid spheres falling in a still 

fluid. 

To account for the dense particle effects, a combination of the Wen & Yu (1966) 

correlation and of the Ergun (1952) correlation was proposed by Gidaspow (1994) 

to describe the drag force in dense fluidized beds. If the local liquid volume fraction 

is higher than 0.8, the drag force follows the correlation proposed by Wen & Yu 

(1966): 

 

𝑭𝑑𝑟𝑎𝑔,𝑆𝐿 =
3

4

𝛼𝑆
𝑑𝑝𝛼𝐿1.65

𝐶𝐷𝜌𝐿‖𝒖𝑺 − 𝒖𝑳‖(𝒖𝑺 − 𝒖𝑳) 
(4.15) 

 

where the drag coefficient 𝐶𝐷follows the Schiller & Naumann correlation, with 

the particle Reynolds number corrected with the liquid volume fraction, as: 

 

and where the local liquid volume fraction is lower than 0.8, the correlation proposed 

by Gidaspow suggests to describe the drag force with the Ergun (1952) equation: 

 

𝑭𝑑𝑟𝑎𝑔,𝑆𝐿 = (150
𝛼𝑆
2𝜇𝐿

𝛼𝐿𝑑𝑝
2 + 1.75

𝛼𝑆𝜌𝐿‖𝒖𝑺−𝒖𝑳‖

𝑑𝑝
) (𝒖𝑺 − 𝒖𝑳)  

(4.17) 

 

The values of the drag coefficient based on the particle terminal velocity in sta-

tionary fluids calculated from Eq. (4.13) are 2.53 and 16.67 for the incomplete and 

complete suspension conditions respectively, whereas the drag coefficient calculated 

from Eq. (4.16) are 1.48 and 4.12 for the incomplete and complete suspension re-

spectively, as obtained with the mean particle volume fractions of 0.09 and 0.15 

𝑅𝑒𝑝 =
||𝒖𝑺 − 𝒖𝑳||𝑑𝑝𝜌𝐿

𝜇𝐿
 

(4.14) 

𝐶𝐷 = 24 ×
1+0.15(𝛼𝐿𝑅𝑒𝑝)

0.687

𝛼𝐿𝑅𝑒𝑝
  

(4.16) 
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respectively. The values are reported to give an indication of the expected variations 

of the drag force magnitude due to the particle swarm effects.  

Drag coefficient corrections accounting for free stream turbulence effects were 

not studied, since the available correlations apply to very dilute conditions (Brucato 

et al., 1998). 

The turbulent dispersion force arises from the Favre averaging of the interphase 

drag term. It accounts for the turbulent fluctuations of the particle volume fractions, 

contributing to the solids transport from high to low volume fraction regions. The 

following model due to Burns et al. (2004) was used: 

 

𝑭𝑇𝐷,𝑆 = −
𝜇𝑡
𝜎𝑆𝐿𝜌𝐿

3

4

𝛼𝑆
𝑑𝑝
𝐶𝐷𝜌𝐿‖𝒖𝑺 − 𝒖𝑳‖ (

𝜵𝛼𝑆
𝛼𝑆

−
𝜵𝛼𝐿
𝛼𝐿
) 

(4.18) 

 

In Eq. (4.18) 𝜎𝑆𝐿 is the turbulent Schmidt number set equal to 0.9 and 𝜇𝑡 is the 

turbulent viscosity calculated as: 

 

𝜇𝑡 = 0.09𝜌𝑚𝑖𝑥
𝑘2

𝜀
 

(4.19) 

 

with 𝜌𝑚𝑖𝑥being the local density of the solid-liquid mixture, 𝑘 being the turbu-

lent kinetic energy and 𝜀 the turbulent dissipation rate. Eq. (4.18) was chosen because 

it has been specifically derived for modelling the contribution of the particle volume 

fraction turbulent fluctuations in Eulerian two-fluid model (Burns et al., 2004). The 

correlation is based on the eddy diffusivity hypothesis of the term (𝛼′𝒖′), that appears 

after the Favre average of the drag force. It is modelled with a linear dependence on 

the volume fraction gradient, where the linear coefficient is given by 𝜇𝑡/𝜎𝑆𝐿. This 

hypothesis makes the predictions strongly dependent on the turbulent viscosity 

value, which in turn depends on the two-phase turbulence model. 

Finally, the lift force was modelled as: 

 

𝑭𝑙𝑖𝑓𝑡,𝑆 = −0.0767𝜌𝐿𝛼𝑆(𝒖𝑺 − 𝒖𝑳) × (𝜵 × 𝒖𝑺) (4.20) 

 

The effect of the terms from I to V in Eq. (4.2) on the solid distribution is pre-

sented in detail in Section 4.4. 
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4.3.2 Numerical solution procedure 

The model equations were solved by ANSYS FLUENT v17.0 in the computa-

tional domain depicted in Fig. 4.1, that matched closely the stirred tank geometry 

adopted in the experiments.  

 

 
Fig. 4.1 - Stirred tank meshed geometry. The interface between rotating and stationary frame is defined by the 

red surface. 

 

For accounting for the impeller rotation, the computational domain consisted in 

two zones, the first containing the impeller and the second defined as the whole ves-

sel volume minus the first fluid zone. The geometry was built in ANSYS Design-

Modeler, while the meshes were created with ANSYS ICEM. A conformal interface 

(an interface where each node on one side can be matched with a node on the other 

side of the interface with a very low tolerance) was defined midway between the tip 

of the blades and the internal edge of the baffles. A similar criterion was adopted for 

the lower part of the interface. The upper surface of the interface was defined at an 

axial coordinate so that the axial distance between the center of the impeller and the 
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surface itself was equal to the axial distance between the center of the impeller and 

the lower interface. 

The model equations were solved selecting the steady state approximation, by 

the so-called multiple reference frame (MRF) approach. Based on previous results 

(Tamburini et al., 2011; Tamburini et al., 2013), the benefits of a reduced computa-

tional power required by the steady-state MRF technique, with respect to the transi-

ent sliding grid (SG), were deemed to outweigh the slightly increase in prediction 

accuracy.  

No-slip boundary conditions were imposed at the wall for both the liquid and the 

solids, as the mixture k-ε model requires the same velocity boundary conditions for 

the two phases.  

At the beginning of the calculations, the particles volume fraction was uniformly 

distributed in the still fluid or in the fully developed single-phase flow field. In par-

ticular, the latter initial condition was needed for the solution of the Eulerian-Gran-

ular model coupled with the granular temperature transport equation in the form re-

ported in Eq. (4.3), since the numerical solution was not stable adopting the former 

initial condition.  

Steady-state MRF simulations of the two-phase system do not ensure mass con-

servation in FLUENT v17.0, resulting in the variation of the total volume fraction of 

the dispersed phase in the tank. Mass conservation was ensured either correcting the 

overall particle volume fraction at each iteration by a purposely written user defined 

function (UDF) or by a pseudo-transient approach (Versteeg & Malalasekera, 2007), 

that allows under-relaxed iterative steady state calculations. The pseudo-transient 

method led to the convergence of the calculation in a longer computational time with 

respect to the volume fraction correction at each iteration. It was required for the 

solution of the Eulerian-Granular model coupled with Eq. (4.3) in order to avoid 

numerical oscillations of the solution leading to divergence, particularly in the case 

of incomplete suspension. The adoption of a simplified version of Eq. (4.3), where 

the diffusion and the convective terms are neglected, significantly reduced the nu-

merical issues and allowed the adoption of the volume fraction correction at each 

iteration to achieve a stable solution. The pressure-velocity coupling was imple-

mented with the SIMPLE algorithm. The second order upwind discretization scheme 

and the QUICK scheme were selected for the momentum equations and for the vol-

ume fraction respectively. 
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In all cases, the convergence was assumed to be achieved when all the scaled 

residuals reached a constant ‘low’ value (highest value of the residuals below 10-3) 

and the force measured on the baffles and the average solid volume fraction on se-

lected horizontal planes reached a constant value. 

4.3.3 Grid convergence study 

A set of three different structured meshes with hexahedral elements was used to 

evaluate the grid convergence of the solution following the method presented by 

Roache (1998). The number of cells of the three meshes, named G1, G2 and G3, was 

5.87×106, 1.87×106 and 0.60×106, respectively. The corresponding size of the axial 

discretization on the impeller blades was 0.8, 1.2 and 1.7 mm, respectively.  

A set of k-ε single-phase simulations with the three grids was carried out and the 

grid convergence of the solution was evaluated considering the power number, 𝑁𝑃, 

and the flow number, 𝐹𝑙, of the PBT at the rotational speed, N, of 900 rpm, corre-

sponding to a rotational Reynolds number of 9×104. The impeller power consump-

tion was calculated from the torque on the fixed walls of the tank and from the inte-

gral of the turbulent dissipation rate over the vessel volume. The volume flow rate 

discharged by the impeller was obtained by integrating the axial velocity, 𝑢𝑧, on a 

horizontal circular section of diameter equal to the impeller located just below it. 

The 𝑁𝑃 values obtained with the three grids as estimated from the torque on the 

steady walls are 1.58 for G1, 1.58 for G2 and 1.57 for G3, while the values based on 

the integration of ε range from 1.33 with the coarsest grid to 1.51 with the finest. The 

𝐹𝑙 values are constant in the three cases considered, with values of 0.88 for G1 and 

G2 and G3. The experimental values for a similar impeller and configuration are 1.63 

for the power number, as found by Chudacek (1985), and 0.73 for the flow number, 

as reported by Paglianti et al. (2006).  

The grid convergence index, GCI, (Coleman & Stern, 1997) for the three grids 

based on 𝑁𝑃 estimated from the torque is equal to 0.8% for G1, 1.1% for G2 and 1.2% 

for G3. Much higher values are obtained basing the CGI calculation on 𝑁𝑃 estimated 

from the total turbulent dissipation rate: 1.2% for G1, 4.5% for G2 and 16.7% for G3. 

The results of these preliminary single phase simulations confirm previous findings 

obtained with a Rushton turbine (Coroneo, et al., 2011), that is the higher effect of 

the grid resolution on the turbulent variables with respect to the mean flow variables, 
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as can be observed also on a local basis from the profiles of selected variables along 

the radial coordinate at the axial elevation of 0.216T shown in Fig. 4.2.  

 

  

  

Fig. 4.2 – Velocity magnitude (a), radial velocity (b), turbulent kinetic energy (c) and turbulent dissipation rate 

(d) on a horizontal line at z=0.05m set mid-way between two baffles. 

 

It is worth observing that at the radial coordinate corresponding to the interface 

between the two reference frames, depicted in Fig. 4.2 as a vertical dotted line, a 

perturbation of the k and ε values is clearly visible. The perturbation sharpens as the 

number of cells increases and it is negligible for the mean velocities. Similar results 

were found adopting the transient Sliding Mesh method and the OpenFOAM CFD 

code. This issue was never highlighted before, probably due to the relatively coarse 

grids typically adopted in RANS based calculations, and it will be worth of further 

investigation. 

The grid dependency of the solid-liquid results was investigated considering the 

incomplete suspension condition case, that was simulated adopting the Eulerian-

Granular formulation of the two-fluid model. In this case, following Guida et al. 

(2009), the flow number was calculated as the sum of the liquid, 𝐹𝑙(𝐿), and the solid, 

𝐹𝑙(𝑆), flow numbers from the volumetric flow rate discharged by the impeller, by 

integrating the axial velocity weighted by the local phase volume fraction, as: 
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𝐹𝑙(𝐿) =
1

𝑁𝐷3
∫𝛼𝐿𝑢𝑧,𝐿𝑑𝐴  (4.21) 

𝐹𝑙(𝑆) =
1

𝑁𝐷3
∫𝛼𝑆𝑢𝑧,𝑆𝑑𝐴  (4.22) 

 

where A is the area of the horizontal circular surface of diameter D located just 

below the impeller. 

As for the results of the single-phase convergence study, the power number cal-

culated from the integration of ε increased noticeably from 0.96 to 1.41 as the num-

ber of cells increased, as well as the values calculated from the torque on the fixed 

walls that ranged from 1.78 to 1.68. The flow numbers had the same value of 0.61 

for the liquid and 0.11 for the solid with all the three grids, confirming that the mean 

flow variables achieve the grid independency with much coarser grids with respect 

to the turbulent variables also with the two-fluid model. 

The comparison of the axial profiles of solid volume fraction, obtained from the 

average on 25 equally spaced horizontal tank sections, and the radial profiles, ob-

tained from the azimuthal average on the plane at z = 0.11 m, are reported in Fig. 

4.3. Overall, with the selected model equations the underestimation of the turbulent 

dissipation rate significantly affects the solid distribution. As can be observed, the 

solid distribution in the tank generally follows the same trend as the mean flow var-

iables, similarly to what already found by Tamburini et al., (2013). The axial profiles 

shown in Fig. 4.3a are almost overlapped at most elevations, while noticeable differ-

ences exist in the radial profiles only at selected elevations, as at z = 0.11 m, that are 

shown in Fig. 4.3b. Since the maximum differences in the distribution of solid vol-

ume fraction between the coarsest and the finest grid is about 8%, the mesh G3 was 

adopted in the following simulations, being the computational time shorter.  
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Fig. 4.3 – Axial (a) and radial (b) normalized solid volume fraction as predicted by the three grids in the in-

complete suspension case. 

4.4 Results and discussion 

In the following, the effects of the different models on the solid distribution are 

compared and quantified. The analysis is based on the comparison of local and global 

variables. Beside the classical dimensionless power and pumping numbers, two 

global parameters were considered for estimating the solid suspension features. 
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The amount of solid suspended by the impeller, 𝑆, was estimated by the criterion 

proposed by Tamburini et al. (2011), as: 

 

𝑆 = (1 −
𝑉𝑆,𝑢𝑛𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑

𝑉𝑡𝑜𝑡𝑎𝑙
) × 100 

(4.23) 

 

where the unsuspended amount of solid, 𝑉𝑆,𝑢𝑛𝑠𝑢𝑠𝑝𝑒𝑛𝑑𝑒𝑑, was defined as the vol-

ume of the solid phase at the bottom of the tank with a volume fraction equal to the 

packing limit. 

The degree of uniformity of the solid distribution on each horizontal plane in-

vestigated experimentally was estimated by coefficient of variation, CoV, as: 

 

𝐶𝑜𝑉(𝑧𝑖) =
√
∑ 𝑎𝑗 (

𝛼𝑆,𝑗
𝛼𝑆(𝑧𝑖)

− 1)
2

𝑁𝑐
𝑗=1

∑ 𝑎𝑗
𝑁𝑐
𝑗=1

 

(4.24) 

 

where 𝑎𝑗  is the area of the cell, 𝑁𝑐 is the total number of cells on the plane zi, 

𝛼𝑠,𝑗 is the solid volume fraction on the cell j, 𝛼𝑠̅̅ ̅(𝑧𝑖) is the mean solid volume fraction 

on the zi plane. For each simulation, four CoV values were obtained on four horizon-

tal planes corresponding to the ERT measuring planes z1, z2, z3 and z4. 

4.4.1 Complete suspension conditions 

Firstly, the complete suspension case was studied. In these conditions, the effect 

of the turbulence model (I), solid pressure term (II), turbulent dispersion force (III), 

drag force (IV), lift force (V) and their interactions on the solid distribution in the 

simplified situation of unpacked particles and solid-phase dispersed in the whole 

tank volume were quantified. The simulations were run with the ‘mixture’ k-ε tur-

bulence model, the E-G model, the turbulent dispersion force, the Gidaspow drag 

model and without the lift force, unless otherwise stated. This initial set of equations 

was updated as different aspects were studied. 
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4.4.1.a  Comparison of the ‘mixture’ k-ε and the ‘mixture’ Reynolds Stress 

turbulence models 

The results obtained with the ‘mixture’ versions of the RSM and the k-ε turbu-

lence models are presented in this section. The liquid flow fields normalized by the 

impeller tip speed, Vtip, obtained with the two turbulence models are compared in 

Fig. 4.4. Very similar flow fields were obtained for the solid phase, not shown for 

brevity, since the slip velocity was of the order of a few cm/s. 

 

       

Fig. 4.4 – Velocity magnitude divided by Vtip, on a vertical plane mid-way between baffles. (a) E-G/ k-ε simula-

tion, (b) E-G/RSM simulation. Complete suspension case.  

 

By means of example, the map of the norm of the dimensional slip velocity, in 

m/s, on a plane midway between two consecutive baffles is shown in Fig. 4.5 for the 

complete suspension case, as obtained with the k-ε turbulence model, E-G model, 

Wen & Yu drag model and with the turbulent dispersion force. 

Fig. 4.5 shows that the norm of the slip velocity is almost constant in most of the 

tank volume, with an average value around 1 cm/s.  
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Fig. 4.5 – Norm of the dimensional slip velocity (m/s) contour map as obtained obtained with the k-ε turbu-

lence model, E-G model, Wen & Yu drag model and with the turbulent dispersion force in complete suspension 

conditions. 

 

 The flow numbers obtained in the two cases are equal to 0.80 and 0.81 for the 

liquid with the k-ε and the RSM, respectively and 0.08 for the solid flow number in 

both cases. 

With the RSM simulation the 𝑁𝑃 value of 0.47 was obtained (estimated from the 

integral of the turbulent dissipation rate), a little above half the power number pre-

dicted by the k-ε simulation, that is equal to 0.96, confirming that at equal grid size 

the predicted turbulent quantities are much lower with the RSM than with the k-ε 

model (Montante, et al., 2001). 

Using either the RSM model or the k-ε model produces small changes in the 

solid axial distribution as can be observed in Fig. 4.6, where the axial profiles ob-

tained with the two models are shown.  
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Fig. 4.6 – Axial profile of the normalized volume fraction of the solid phase, as predicted by different models. 

Complete suspension case. 

 

The global parameters showed that both turbulence models produce complete 

suspension (S = 100%) and almost uniform particle distribution on the planes, with 

a small but noticeable higher solid concentration at the bottom of the tank. Nonethe-

less, the solid phase velocity around the bottom is not zero, pointing to the fact that 

the particles are not settled. In fact, the maximum CoV, evaluated on the four meas-

uring planes z1 to z4, was found on the plane at z/H
L
=0.84 and it was equal to 7.75% 

for the simulation with the k-ε turbulent model and 10.18% for the simulation with 

the RSM. Being the RSM more computational demanding, the k-ε model was used 

for the simulations of the complete suspension case. 

4.4.1.b  Comparison of Eulerian-Granular and Eulerian-Eulerian Models 

In the complete suspension conditions, the flow fields generated by the E-G 

model and the E-E model were very similar and they are not shown for sake of brev-

ity. The two models predicted almost the same values of 𝐹𝑙(𝑆), 𝐹𝑙(𝐿)and 𝑁𝑃. The 

differences on the axial concentration of particles as predicted by the E-E and the E-

G are negligible, as can be observed in Fig. 4.6, the suspension index S obtained 

from the two simulations had the same values of 100% in both cases and the largest 

difference of the CoV was found on the plane below the impeller, z1, where the CoV 



 Solid-Liquid suspension in stirred tanks  

  87 

value for the E-G simulation was equal to 1.71% and the CoV for the E-E simulation 

was 5.91%. 

From these results it may be inferred that the E-E and the E-G model do not 

provide significant differences on the distribution of the particles at N well above 

Njs, and up to the solid to liquid mass ratio of about 25%, corresponding to 9 vol. % 

of glass beads in water. In these cases, the E-E formulation of the two-fluid model is 

strongly suggested instead of the E-G, despite a dense solid-liquid system is consid-

ered, since the numerical issues arising in the solution of the complete E-G model 

may compromise the solution accuracy and in the best case, they give rise to unnec-

essary long computational time. 

4.4.1.c  Effect of turbulent dispersion, drag and lift forces 

The impact of the interphase momentum transfer via the drag force, the lift force 

and the turbulent dispersion force on the solid distribution is considered in the fol-

lowing. Of these terms, the contribution of the turbulent dispersion force is discussed 

first. The flow fields predicted without or with the turbulent dispersion force in the 

complete suspension case were very similar, as are the power and the flow numbers.  

As for the solid volume fraction distributions, that are reported in Fig. 4.7, no-

ticeable differences were obtained with or without turbulent dispersion force. Alt-

hough the differences between the two profiles are quantitatively relatively small, 

the inclusion of the turbulent dispersion force smoothened the axial gradients and 

made the minimum solid volume fraction below the impeller less pronounced. In 

both cases the suspension coefficient S indicated complete suspension (S = 100%), 

but the CoV values for the simulation without turbulent dispersion force were gen-

erally two to three times higher, on average, with respect to the simulations with the 

turbulent dispersion force.  

The drag laws considered in the complete suspension case, the Schiller & Nau-

mann and the Wen & Yu correlations, produced the same axial distribution of solid 

particles, as can be observed in Fig. 4.7, where the results obtained with the two CD 

laws matched very closely. It is important to notice that in the complete suspension 

conditions the solid volume fraction never exceeded the value of 0.2, therefore the 

Gidaspow drag correlation was essentially the Wen & Yu (1966) correlation, with 

the Schiller & Naumann drag coefficient corrected with the liquid phase volume 

fraction, as adopted by Derksen (2018). 
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Fig. 4.7 – Axial profile of the normalized solid volume fraction, as predicted with or without the turbulent dis-

persion force and, the two drag laws of Schiller & Naumann (S&N) and Wen & Yu (W&Y) and without or with 

the lift force. Complete suspension case. 

 

To the best of our knowledge, the two selected correlations more closely repre-

sent the investigated system among those developed so far. The adoption of different 

correlations was not investigated, since they hold true far outside the physical con-

ditions investigated in this work.  

Finally, as already found in previous investigations on dilute (Ljungqvist & 

Rasmuson, 2001) and dense (Fletcher & Brown, 2009) systems, including the lift 

force in Eq. (4.2) did not change the axial profile of solid volume fraction, as shown 

in Fig. 4.7, with the maximum variation of the CoV s well below 1%.  

In all cases, the selected models predict complete solid suspension, that was ex-

pected, since the impeller speed is much higher than Njs. Therefore, a more stringent 

benchmark is required in order to evaluate the simulations results, that is provided 

by the ERT data comparison discussed in the following. 

4.4.1.d  Comparison with the experimental data 

The data collected by the ERT technique were used to quantify the predictive 

capabilities of the simulations. The main limitations of the ERT technique are related 

to: the extension of the measured volume due to the so called fringe effect, that is 
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marked for large inhomogeneity in the electrodes region (Lioumbas et al., 2014; Sun 

& Yang, 2014), the variations due to the free liquid surface oscillations, the loss of 

accuracy in the centre of the plane with respect to the outer region. Finally, the ERT 

data resolution is much coarser than that of the CFD data on the planes.  

Bearing this in mind, the experimental and computed radial profiles of particle 

volume fractions on the measurement planes are compared in Fig. 4.8. 

For the case of complete suspension, the experimental profiles on the four meas-

urement planes shown that the solid is almost uniformly distributed along the vessel 

height and that the variations along the vessel radius were also quite small. The com-

parison of the calculated radial profiles confirms that the E-E and the E-G models 

provide very similar results. A realistic prediction of particle distribution on the four 

planes was obtained, particularly when the turbulent dispersion force was included. 

The major deviations between the experimental data and the predictions were visible 

on the lower z1 plane when the turbulent dispersion force was neglected. Smaller 

differences among the models and a satisfactorily agreement between experiments 

and simulations were obtained on the z2 and z3 planes. The agreement was worse on 

the upper plane, where the experimental data might be affected by the significant 

fluctuations of the liquid free surface. Notwithstanding the limitations of the ERT 

technique, the experimental data provided strong evidence of the reliability of the E-

E formulation of the two-fluid model and of the adequacy of the turbulent dispersion 

contribution for the quantitative prediction of the particle distribution. 
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Fig. 4.8 – Radial profiles of solid volume fraction measured on z1 = 0.06 m (a), z2= 0.11 m (b), z3= 0.16 m (c) 

and z4= 0.21 m (d) planes and predicted by different simulations.  
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4.4.2 Incomplete suspension conditions 

The simulations were run with the ‘mixture’ k-ε turbulence model, the E-G 

model, without the turbulent dispersion force, the Gidaspow drag model and without 

the lift force, unless otherwise stated. The assessment of the lift force on the results 

was neglected, having found it uninfluential on the results for the complete suspen-

sion case, as well as in the literature. 

This initial set of equations was updated as different aspects were studied. 

4.4.2.a  Comparison of the ‘mixture’ k- and the ‘mixture’ Reynolds Stress 

turbulence models 

Similarly to what was already found for the complete suspension case, very close 

mean flow fields were obtained in the incomplete suspension condition with the two 

turbulence models. The RSM simulation predicted a power number based on the 

turbulent dissipation rate that was less than half the power number predicted by the 

k-ε simulations, whereas the pumping numbers were almost coincident. The axial 

profile of volume fraction of solid slightly changed between 0.2 H
L
 and 0.5 H

L
 and 

in both simulations the predicted solid cloud reached the same height, located around 

z/H
L
 = 0.56 that was lower than the z3 plane. The CoV remained basically unchanged 

on the lowest plane, z1 (CoV ≈ 60%), as well as on the second plane, z2 (CoV ≈ 34%). 

As for the complete suspension case, since the RSM did not lead to any remark-

able variation on the predictions, the k-ε model was used for investigating the effect 

of the other terms in the predictions of the incomplete suspension case. 

Since the results obtained with the two different models were almost identical, 

the data are not shown for sake of brevity, whereas the map of the norm of the di-

mensional slip velocity, in m/s, on a plane midway between two consecutive baffles 

is shown in Fig. 4.9 for the incomplete suspension case, as obtained with the k-ε 

turbulence model, E-G model, Wen & Yu drag model and without the turbulent dis-

persion force. 

Fig. 4.9 shows that in the lower part and in the upper part of the tank the slip 

velocity is nil. In the lower part, both the liquid and the solid particles are still 

whereas in the upper part the slip velocity is nil due to the absence of solid particles. 
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In incomplete suspension conditions, noticeable slip velocity gradients are present, 

with the norm of the slip velocity reaching values up to 12 cm/s. 

 
Fig. 4.9 – Norm of the dimensional slip velocity (m/s) contour map as obtained obtained with the k-ε turbu-

lence model, E-G model, Wen & Yu drag model and without the turbulent dispersion force in incomplete sus-

pension conditions. 

 

4.4.2.b  Comparison of Eulerian-Granular and Eulerian-Eulerian Models 

Since the E-E simulations do not force a limit on the particle packing, for N 

lower than Njs, unphysical concentrations are obtained in the lower part of the tank, 

as shown in Fig. 4.10a. Despite the different particle distribution in the tank, a similar 

cloud height was obtained with the E-E and E-G models. The suspension coefficient 

S with the E-E model was lower (57%) with respect to the E-G model (63%). Clearly, 

the selection of the E-E model was not appropriate for incomplete suspension, but it 
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can be adopted as a first simpler tool for evaluating the suspension conditions, when 

Njs is not known a priori. 

 

     

 

Fig. 4.10 – Solid volume fraction as predicted by the E-E simulation (a) and comparison between the normal-

ized solid axial profiles as predicted by the E-E, E-E with packing limit and E-G model (b). Incomplete suspen-

sion case. 

 

The suitability of the E-G formulation was investigated by an additional simula-

tion where just the solid maximum packing limit was fixed, as suggested by 

Tamburini et al. (2009) and Fletcher & Brown, (2009), who adopted different meth-

ods for achieving the limitation. In this work, the default method available in ANSYS 
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FLUENT v17.0 was used, that retained just the radial distribution function effect at 

the packing limit, by the solid pressure term in the momentum equation of the solids. 

In the cells where the solid volume fraction was lower than the packing limit, since 

all the model constant were set to zero, the solid pressure gradient (Eq. (4.8)) and the 

laminar solid stress tensor (Eq. (4.9)) were nil. 

As for N > Njs, also for N < Njs, the application of the kinetic theory of granular 

flows did not provide a contribution to account for the high solid content, since al-

most identical results were obtained in the two cases, as shown from the axial profiles 

of solid volume fraction in Fig. 4.10b and the liquid and solid velocity on the z1 plane 

(Fig. 4.11). 

 

 

Fig. 4.11 – Velocity magnitude on z1 plane of the liquid (a) and solid (b) phase divided by Vtip as predicted by 

the E-G and the E-E model with the packing limit. Incomplete suspension case. 

 

As a result, all the contributions included in the E-G model (modified laminar 

viscosity of the solids and particle-particle interactions) were negligible.  

As already observed for the complete suspension case, the E-G formulation of 

the two-fluid model equation introduced additional numerical complexity without 

leading to any remarkable effect on the solution. For this reason, the adoption of the 
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E-E model is suggested also for the incomplete suspension cases at least up to the 

mass ratio of 43% and 15% by volume of solids, provided that a limitation to the 

maximum packing limit is included. 

4.4.2.c  Effect of the turbulent dispersion force 

The effect of the turbulent dispersion force on the incomplete suspension case 

was evaluated adopting the E-E model with the packing limit and the mixture k-ε 

model. A significantly different impact on the solid suspension was obtained includ-

ing the turbulent dispersion force, resulting in a much higher fraction of suspended 

solids, as can be appreciated from the S values that changed from 63% as predicted 

without the turbulent dispersion force, to 100% when the turbulent dispersion force 

was included. Concerning the coefficient of variation on the z1 plane, it changed from 

60% without the turbulent dispersion force to 9% when the turbulent dispersion force 

was considered, whereas the differences were less pronounced on the z2 plane. As a 

result of the different amount of suspended solid, the discharge jet produced by the 

impeller with the two models changed significantly.  

The different distribution of solids with the two models is apparent from Fig. 

4.12. The high solid fraction packed on the bottom of the tank (Fig. 4.12a) slows the 

liquid phase, on the contrary, the turbulent dispersion force suspends the great ma-

jority of the solid phase (Fig. 4.12b), therefore the liquid is free to flow in the prox-

imity of the bottom of the tank. Being the impeller speed well below Njs, the inclu-

sion of the turbulent dispersion force clearly overestimates the effect of the turbulent 

dispersion arising from the volume fraction fluctuations on the solid suspension. 

Interestingly enough, Fig. 4.13 shows that similar heights of the solid cloud were 

predicted whether the turbulent dispersion force was accounted for or not, meaning 

that the model validation solely based on the solid cloud height can lead to erroneous 

conclusions.  

The results presented in this section showed that for N<Njs the flow field and 

solid distribution were very sensitive to the turbulent dispersion force, that, with its 

high intensity and upwards direction close to the tank bottom, provided a significant 

contribution to the solid suspension. 

Eq. (4.18) included the contribution of the solid volume fraction fluctuations not 

only in the turbulent regions of the stirred tank, but it was artificially introduced also 
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in the motionless bottom region, where the turbulent viscosity should be equal to 

zero.  

It is apparent that a strategy is required to prevent the turbulent dispersion force 

to unphysically suspend the solid phase in the regions of settled solids. 

 

       

Fig. 4.12 – Solid phase distribution obtained without (a) and with (b) turbulent dispersion force. 

 

4.4.2.d  Effect of the drag force 

Lastly, the effects of the drag law on the solid distribution in incomplete suspen-

sion conditions were considered. The results obtained with the Schiller & Naumann 

drag law are compared with those obtained applying the Wen & Yu model and the 

Gidaspow model in Fig. 4.13.  

The axial profiles of the non-dimensional solid volume fraction as predicted with 

the simulations with the three different drag laws were very similar. A small differ-

ence in the solid distribution was highlighted by the value of the suspension coeffi-

cient that decreased by just 8% with respect to the other two cases, when the Schiller 

& Naumann drag law is used. As expected from the preliminary estimations of CD 

reported in Sec. 3.1, for the examined system, the drag coefficient modification due 

to the solid volume fraction had little effect on the solid distribution. 
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4.4.2.e Comparison with the experimental data 

The model assessment was repeated also for the incomplete suspension case by 

the comparison of the simulated radial profiles of solid volume fraction with the ex-

perimental data collected by the ERT technique, shown in Fig. 4.14 on the z1 and z2 

planes only, being the solid fraction nil on the two upper planes. In the incomplete 

suspension case, the fringe effect is expected to be particularly marked in the lower 

measurement plane, z1, due to the proximity of the stagnant solid layer. 

 

.  

Fig. 4.13 – Axial profile of the solid volume fraction as predicted without and with the turbulent dispersion 

force and the three drag laws of Schiller & Naumann (S&N), Wen & Yu (W&Y) and Gidaspow (Gid.). Incom-

plete suspension case. 

 

A preliminary evaluation of the simulations was performed considering the ex-

perimental solid cloud height estimated by visual observation between the z2 and the 

z3 plane at z/H
L
 = 0.57. The height of the solid cloud was correctly predicted by each 

simulation, as can be observed for example in Fig. 4.13. This confirms that the cloud 

height is an insufficient parameter for a fine estimation of the model prediction ca-

pabilities. 

The comparison of the simulations with the experimental data shown in Fig. 4.14 

confirmed that with the turbulent dispersion force the amount of suspended solid is 

significantly overpredicted. The other sets of model equations provided all the same 

results and none of the simulations could reproduce the measured solid distribution. 
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The comparison clearly suggests that further efforts for including the contribution of 

the turbulent dispersion by a more suitable formulation in case of packed regions 

must be devised. Indeed, the experimental solid volume fraction profile on the z2 

plane exhibited less pronounced gradients with respect to the simulated profile ob-

tained neglecting the turbulent dispersion force.  

 

 

 

Fig. 4.14 – Radial solid volume fraction profiles measured on z1 = 0.06 m (a) and z2 = 0.11 m (b) planes as 

predicted by different simulations. The experimental radial dimensionless liquid conductivity profiles (exp) are 

shown as well. 
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Instead, the shape of the simulated profile obtained including the turbulent dis-

persion force had a correct trend, but did not provide a quantitative agreement, due 

to the observed overprediction of the amount of suspended solid. The unsatisfactory 

agreement of the profiles obtained on the z1 plane might be a combination of the 

model deficiencies and the uncertainties of the measurements, due to the mentioned 

location of the z1 elevation, situated in the proximity of the interface between the 

suspended and unsuspended solid.  

The overprediction of the suspended solids due to the turbulent dispersion was 

already observed by Tamburini et al., (2014), who included the turbulent dispersion 

of the volume fraction in the continuity equation, while satisfactory agreement on 

the solid distribution was observed with the same modelling method for dilute sys-

tems and complete suspension conditions (e.g. Montante et al., 2002), similarly to 

the results obtained for the complete suspension conditions in this work. 

4.5 Conclusions 

In this work, the predictive capabilities of RANS-based simulations of incom-

plete and complete solid suspension in a tank stirred with a single PBT were as-

sessed, considering the Eulerian-Eulerian formulation of the momentum equations 

for both the phases. 

For the solid-liquid systems considered in this work, up to a solid volume frac-

tion equal to 0.15 the momentum equation terms derived from the kinetic theory of 

granular flows, namely the solid pressure and the solid viscosity, did not provide any 

contribution in the prediction of the solid distribution in the stirred tank. The Eu-

lerian-Eulerian formulation of the two-fluid model provided reliable radial profiles 

of solid concentration along the vessel height up to the solid volume fraction of 0.09 

and at agitation conditions well above Njs.  

For agitation condition well below Njs, the E-E and the E-G models produced 

the same results, provided that in both cases a method for fixing a realistic particle 

packing limit was included, but the numerical solution of the E-G equations exhibit 

a significantly higher complexity. In the investigated incomplete suspension case, 

with both the models, the accuracy of the predicted radial concentration profiles was 

much worse than for the case of complete suspension.  
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For the drag force, the adoption of the standard drag curve correlations, such as 

due to Schiller & Naumann, either corrected or not corrected for the hindered settling 

effects is the option that most strictly adhere to the real physical system. The turbu-

lent dispersion force is found to provide a significant contribution to the suspension 

and to the distribution of the particles, which is fully appropriate only when the flow 

regime is turbulent in the whole vessel volume. This result is of great importance not 

only for RANS simulations, but also for Large Eddy Simulations, since the sub grid 

scale velocity fluctuations may have an important role in the suspension of the solid 

particles. 

Given the complex physical behaviour of the dense solid-liquid system under 

investigation and the limitations of the currently available experimental methods for 

investigating dense and opaque systems, we consider further development of the 

computational strategy investigated in this work particularly useful, as a feasible pre-

dictive tool for industrial operations in solid-liquid stirred tanks and for the analysis 

of their performances. For more accurate predictions of the solid distribution, spe-

cific models to account for particle-particle interactions in stirred tanks are needed 

and further investigations are required to improve the modelling of the turbulent dis-

persion due to the particle fluctuations for incomplete suspension conditions. 
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4.6 Nomenclature  

aj  Area of the cell j, [m2] 

C  Off-bottom clearance, [m] 

CD  Drag coefficient, [-] 

CoV Coefficient of variation, [-] 

D  Impeller diameter, [m] 

dp  Particle diameter, [m] 

eS  Coefficient of restitution, [-] 

Fdrag, SL Interphase drag force, [N m-3] 

Flift,S Lift force, [N m-3] 

FTD, S Turbulent dispersion force, [N m-3] 

Fl  Flow number, [-] 

Fl(L) Liquid flow number, [-] 

Fl(S) Solid flow number, [-] 

g  Gravitational acceleration, [m s-2] 

g0S  Radial distribution function, [-] 

HL  Liquid height, [m] 

HT  Vessel height, [m] 

k  Turbulent kinetic energy, [m2 s-2] 

kθs
  Granular conductivity coefficient, [-] 

N  Impeller rotational speed, [s-1] 

Nc  Number of cells in a selected plane, [-] 

𝑁𝑃  Power number, [-] 

Njs  Just-suspended impeller speed, [s-1] 

P  Pressure, [Pa] 

PS  Solid pressure, [Pa] 

R  Vessel radius, [m] 

r  Radial coordinate, [m] 

Rep  Particle Reynolds number, [-] 

S  Suspension coefficient, [-] 

T  Vessel diameter, [m] 

VS  Volume of solid phase, [m3]  

uS  Time-averaged velocity of the solid-phase, [m s-1] 

uL  Time-averaged velocity of the liquid-phase, [m s-1] 

ur, i  Radial velocity of the ith phase, [m s-1] 

Vtip  Impeller tip speed, [m s-1] 

uz, i  Axial velocity of the ith phase, [m s-1] 

XS  Solids loading, [kgsolid kgliquid
-1 x 100]  
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z  Axial coordinate, [m] 

zi  Axial coordinate of the ith plane, [-] 

 

 Greek symbols 

αL  Liquid volume fraction, [-] 

αS  Solid volume fraction, [-] 

αS, max Solid volume fraction at the packing limit, [-] 

𝛼𝑠̅̅ ̅(𝑧𝑖) Mean solid volume fraction on the ith plane, [-] 

< αS> Mean solid volume fraction in the vessel, [-] 

ε  Turbulent kinetic energy dissipation rate, [m2 s-3] 

LS  Kinetic energy exchange between liquid and solid phases, [kg m-1 s-3] 

ΘS  Granular temperature, [m2 s-2] 

θs  Collisional dissipation energy, [kg m-1 s-3] 

λS  Solid bulk viscosity, [Pa s] 

μt  Turbulent viscosity, [Pa s] 

μL  Liquid viscosity, [Pa s] 

μS  Solid shear viscosity, [Pa s] 

ρL  Liquid density, [kg m-3] 

ρmix  Mixture density, [kg m-3]  

ρS  Solid density, [kg m-3] 

σSL  Turbulent Schmidt number, [-] 

τS
l  Laminar solid-phase stress, [Pa] 

τS  Viscous stress tensor of the solid phase, [Pa] 

τS
t  Reynolds stress tensor of the solid phase, [Pa] 
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Chapter 5  

Biohydrogen production in 

stirred fermenters 

A bioreactor for the production of hydrogen from the dark fermentation of organics 

is studied by a comprehensive modelling strategy. The bioreactor is a dual impeller 

vortex ingesting stirred tank working under batch and attached growth conditions. 

Two geometrical configurations of the reactor are investigated: one devised to ensure 

an effective fluid dynamics behavior and the other proposed to increase the hydrogen 

productivity. The turbulent gas-liquid fluid dynamics, the production and the 

recovery of H2 from the liquid phase are predicted by the numerical solution of the 

two-phase Reynolds averaged Navier-Stokes equations and the species mass 

transport equations, including a simplified kinetic model for the fermentative 

hydrogen production found in literature and a local interphase mass transfer model 

for the hydrogen stripping from the aqueous to the gas phase. A simplified model for 

the description of the interfacial area in the context of the two-fluid model is also 

proposed. This work suggests a method for the predictive simulations of a complex 

biological process via numerical modelling based on Computational Fluid 

Dynamics. The main outcome of the proposed investigation method is a detailed 
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estimation of the different relevant variables and their interaction on a local basis, 

providing a viable tool for the optimization and the scale-up of bioreactors. 
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5.1 Introduction 

In the last years, hydrogen has been recognized as one of the most energy dense 

and environmental friendly fuels, being a promising alternative to conventional fos-

sil fuels (Bharathiraja, et al., 2016) although, more than 85% of hydrogen produced 

worldwide is derived from the steam reforming of petroleum derivatives (Mohsin, et 

al., 2018). Biological production of H2 can be a cost-effective alternative to the cur-

rent industrial methods (Cammack, et al., 2001) and microbial processes for hydro-

gen production can be split into two different categories, based on the H2 synthesis: 

dark anaerobic production by bacteria and photoproduction by cyanobacteria and 

algae (Markov, 2012). The dark fermentation of waste organics is one of the most 

promising sources of biohydrogen and a key technology to obtaining hydrogen from 

crop residues, livestock waste and food waste and limiting the use of fossil fuels 

sources (Guo, et al., 2016). 

As fermentation is industrially conducted in bioreactors, fluid mixing and inter-

phase mass transfer inside bioreactors are increasingly studied aspects, together with 

the biochemical, microbiological factors and start-up behavior, as important features 

for enhancing biohydrogen production (Bakonyi, et al., 2014; Kumar et al., 2016). 

The suspended-cell continuous stirred tank reactor (CSTR) is the most popular solu-

tion for dark fermentation, however, the goal of improving hydrogen production led 

to the development of a number of different bioreactor geometries and processes 

such as expanded granular sludge bed (ESGB) reactors (Cisneros-Pérez et al., 2015; 

Guo et al., 2008), membrane bioreactors (Li & Fang, 2007; Oh, et al., 2004), fixed-

bed reactors (Chang, et al., 2002; Kumar & Buitrón, 2017), just to name a few (Show, 

et al., 2008). 

The difficulties in studying industrial scale reactors require that relationships be-

tween design, operating variables and performances of bioreactors should be predict-

able when performing a scale-up from the laboratory to the production scale, because 

hydrogen productivity and energy efficiency exhibit important variations depending 

on the process scale (Manish & Banerjee, 2008; Wang, et al., 2010). Computational 

Fluid Dynamics (CFD) has been recently establishing itself as a viable approach for 

the design and the optimization of biohydrogen fermenters (Ding, et al., 2010; Ri, et 

al., 2017; Wang et al., 2010). 



 Biohydrogen production in stirred fermenters  

112   

Despite CFD increasing use in the field of bioreactors modelling, the integration 

of physical and biological processes still poses great challenges (Wu, 2013). The 

variation of the parameters of the biological models with the reactor scale (Morchain, 

et al., 2014), the reliable prediction of the relevant hydrodynamics variables with 

affordable computational times (Delafosse et al., 2014) and the coupling of fluid 

dynamics, mass transfer and kinetic variables (Elqotbi, et al., 2013) are, among oth-

ers, complex aspects that have started being investigated by CFD in the recent past. 

The value of CFD for moving from trial and error procedures to more rational ap-

proaches for the design and the scale-up of biohydrogen fermenters has been specif-

ically highlighted, together with the requirement of further multiphase flow model 

developments (Ren, et al., 2011). 

This work deals with the modelling of a stirred bioreactor for the fermentative 

production of hydrogen from organics, in different configurations. In particular, the 

attached-growth dark fermentation in a dual impeller vortex-ingesting batch stirred 

bioreactor is considered. The final goal of the vortex-ingesting configuration is to 

drive the stripping gas towards a membrane separation unit for pure H2 recovery 

without adding any external device. The hydrodynamics features of this special bio-

reactor were already investigated experimentally (Montante, et al., 2013a), for one 

of the two configurations proposed. It was proven that with the selected configura-

tion, the process hydrodynamics requirements, such as effective fluid mixing and gas 

recirculation to strip the dissolved gaseous fermentation products, are fulfilled. The 

objective of this work is to present a comprehensive modelling strategy for the pre-

diction of fluid flow features, H2 production and mass transfer in the bioreactor to be 

confidently adopted for scale-up, providing a complete route for the prediction and 

the optimization of the bioreactor performances. The modelling challenges for the 

reliable simulations of the bioreactors are addressed. The issues which may arise 

from the adoption of standard CFD tools, without the assessment of the underlying 

hypothesis, are highlighted. 
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5.2 Geometry of the bioreactor 

In this work, we have studied two different configurations of a batch stirred bi-

oreactor for the production of hydrogen through dark fermentation. The stirred bio-

reactor consisted of a four-baffled, flat-bottomed cylindrical vessel of diameter T = 

0.232m and height H = 2T, provided with a co-axial draft tube of internal diameter 

equal to 0.40T and height of 1.36T. The vessel was closed with a flat lid, on which 

the draft tube and the external tube for gas recirculation were fixed. The liquid pas-

sage from the external volume of the vessel to the inside of the draft tube was ensured 

by four equally spaced 26mm (0.112T) holes placed at 45° with respect to the baffles 

at a distance of 0.135m (0.58T) from the vessel top. An additional 28mm (0.12T) 

hole was made at 60mm (0.26T) from the vessel top to ensure gas recirculation from 

the external zone. A draft tube with a diameter to tank diameter ratio of 0.4 was 

selected for ensuring a mixture velocity in the draft tube greater than the bubble ris-

ing velocity, thus promoting gas ingestion. Two down-pumping impellers were se-

lected for the agitation: the lower agitator was a four-bladed 45° pitched blade turbine 

(4PBT) of diameter equal to 9.4cm (0.41T), placed just outside the draft tube at the 

distance 0.6T from the vessel base, the upper one was a six-bladed 45° PBT (6-PBT) 

of diameter equal to T/3, placed inside the draft tube at a distance of 18cm (0.77T) 

above the lower 4-PBT. The gas-liquid regime was obtained by allowing vortex in-

gestion from the vessel headspace. 

This configuration of the reactor allows to remove the produced hydrogen from 

the liquid medium through the stripping with the gas in the headspace of the vessel. 

The gas is entrained in the liquid phase by the vortex and it is recirculated through 

the liquid phase without the need to introduce a compressor to sparge the gas in the 

medium. As pointed out by (Bakonyi, et al., 2017) in their experimental analysis of 

a gas separation membrane bioreactor, the hydrogen recovery through a membrane 

resulted in a significantly higher H2 production. 

For this purpose, the reactor is designed to be coupled with a membrane separa-

tion module, in the upper part of the external pipe in Fig. 5.1 and in Fig. 5.2, for 

hydrogen recovery. 



 Biohydrogen production in stirred fermenters  

114   

The reactor can work with an internal pressure higher than the atmospheric pres-

sure, to enhance the driving force for the membrane separation. In principle, the re-

actor could work under vacuum conditions in order to lower hydrogen concentration 

in the liquid phase. Anyhow, in these operating conditions, the use of a vacuum pump 

counters the benefits arising from the lack of a compressor to circulate the gas. 

The first configuration presented is the one previously experimentally investi-

gated by (Montante, et al., 2013a). The reactor is equipped with supports for the 

attached growth of bacteria (in green in Fig. 5.1), which are placed inside the draft 

tube only.  

 

 

Fig. 5.1 – Bioreactor geometry, the part inside the draft tube is shown in the top-left circle. 

 

In Fig. 5.1, the bioreactor is drawn without the cylindrical vertical wall enclosing 

the whole geometry, to show the internal baffles, recirculation pipe and draft tube. 

The focus on the top left circle is a cutaway drawing of the part enclosed by the draft 

tube, where the shaft, the two different impellers and the supports for the attached 
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growth of biomass are clearly visible. This configuration was adopted to keep the 

reactor volume outside the draft tube optically accessible and thus allowing the study 

of the flow field by means of the particle image velocimetry. More details on the 

experimental characterization of this reactor configuration can be found in 

(Montante, et al., 2013a). 

A second configuration, shown in Fig. 5.2, was proposed to increase the hydro-

gen productivity and it consists in the same bioreactor where the supports for the 

attached growth fermentation are positioned outside the draft tube. 

 

 
Fig. 5.2 - Bioreactor geometry, in this different configuration the biomass supports are positioned outside the 

draft tube 

It is important to point out that just the first configuration was experimentally 

studied, whereas the second configuration was just studied from a computational 

perspective. 
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The different overall volume of the supports and their position inside the reactor 

is the main difference between the two geometries considered. In the configuration 

with the supports inside the draft tube, the total volume of the structures is 0.23L 

while it is 5.88L in the configuration with the supports outside the draft tube. 

5.3 The CFD model equations 

To simulate the gas-liquid bioreactors we have selected the two-fluid model, 

considering therefore the two fluids (liquid phase and gas phase) as interpenetrating 

continua interacting through the interphase transfer terms. Pure water (ρL = 998kg 

m−3, µL = 0.001Pa s) and pure nitrogen (ρG ≈ 1kg m−3) were chosen as the two fluids 

at room conditions (T = 20°C and P = 101325Pa). Being the reactor in a turbulent 

regime, the continuity and momentum conservation equations (Navier-Stokes equa-

tions) for each fluid were Reynolds averaged, Eq. (5.1), and the system of differential 

equations was closed with the k – ε turbulence model, with phase-averaged quanti-

ties, to extend the model to multiphase flows. 

 
𝜕

𝜕𝑡
(𝜌𝑖𝛼𝑖) + ∇ ⋅ (𝛼𝑖𝜌𝑖𝑼𝒊)  (5.1a) 

𝜕

𝜕𝑡
(𝛼𝑖𝜌𝑖𝑼𝒊) + ∇ ⋅ (𝛼𝑖𝜌𝑖𝑼𝒊𝑼𝒊) =   

−𝛼𝑖∇(𝑃) − ∇ ⋅ (𝛼𝑖[𝑻𝒊 + 𝝉𝒕
𝒊]) + 𝛼𝑖𝜌𝑖𝒈 + 𝑭𝑑𝑟𝑎𝑔{−𝑆𝑖} 

(5.1b) 

 

In Eq. (5.1), the subscript i indicates that the variable refers to the phase i, so αi 

is the volume fraction of phase i, ρi is the density of phase i (kg m−3) and so forth. 

The other variables are: the time-averaged velocity vector 𝑼𝒊 (m s-1), 𝑃 the time-

averaged pressure (Pa), 𝑻𝒊 the time-averaged viscous stress tensor (Pa) and 𝒈 the 

gravitational acceleration (m s-2), the Reynolds stress tensor (Pa), is the term that 

accounts for turbulent fluctuations and it is modelled with the k – ε turbulence model 

and the term in curly brackets is a momentum sink term used to model the pressure 

drops inside the porous supports. The liquid and gas phase momentum equations are 

coupled by means of an interphase momentum exchange term, 𝑭𝑑𝑟𝑎𝑔 (Pa m-1), which 
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represents the time-averaged interphase drag term. This term depends on a coeffi-

cient (CD, the drag coefficient) which is modelled with the Schiller and Naumann 

correlation, Eq. (5.2). 

 

CD =  24 ( 1 +  0.15 Rep
0.687)/𝑅𝑒p  (5.2) 

 

In Eq. (5.2), 𝑅𝑒𝑝 is the particle Reynolds number calculated as: 

 

𝑅𝑒𝑝 =  
𝑼𝑺𝑑𝐵𝜌𝐿

𝜇𝐿
⁄   (5.3) 

 

where 𝑼𝑺, the slip velocity (m s−1), is defined as the difference between the velocities 

of the two different fluids and 𝜌𝐿 and 𝜇𝐿 are the density and viscosity of the liquid 

phase, respectively. To solve Eq. (5.3) we need to provide the diameter of the bubble 

(𝑑𝐵, [m]). A rigorous modelling approach would require that the local bubble diam-

eter was calculated from the solution of a local population balance equation. Based 

on previous preliminary results on the two-phase fluid dynamics inside the reactor 

(Montante, et al., 2013a), the bubbles were considered as rigid spheres and a constant 

diameter of 0.5 mm was assumed. The same approach was adopted in a previous 

work (Montante, et al., 2013b) and the CFD results were validated for some classes 

of bubble diameters in mono- and bi- dispersed conditions ranging from 0.25 mm to 

1.10 mm. It resulted that the bioreactor fluid dynamics was satisfactorily predicted, 

and that the accuracy of the simulations increased when multiple bubble classes were 

considered. In Fig. 5.3, the comparison between experimental data obtained with the 

particle image velocimetry (PIV) and the two-phase CFD simulation with mono-

dispersed bubbles with 𝑑𝐵  = 0.5mm is shown. 

The supports geometry considered for the simulations differs from the real sup-

port geometry used in the experiments, therefore a perfect agreement between the 

two flow-fields is not achievable, nonetheless, the jet velocity module is satisfacto-

rily predicted. 

A convection-diffusion equation for each of the kth species was solved in order 

to model the species transport in each phase i. 
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Fig. 5.3 – Non-dimensional liquid-velocity at the lower impeller, as measured from the experimental data (a), 

and obtained from the CFD simulation with mono-dispersed bubbles with 𝑑𝐵 = 0.5mm (b). 

 

The conservation equation for each component assumes the following form: 

 
∂

∂t
(α𝑖ρ𝑖𝑌𝑖

𝑘) + ∇ ⋅ (α𝑖ρ𝑖𝑼𝒊𝑌𝑖
𝑘) = −∇ ⋅ (α𝑖𝑱𝑖

𝑘) + α𝑖𝑅𝑖
𝑘 + (𝑚̇𝑖𝑗

𝑘 − 𝑚̇𝑗𝑖
𝑘 )  (5.4) 

 

Where 𝑌𝑖
𝑘 is the mass fraction of the kth component in phase i, 𝑱𝑖

𝑘 is the diffusion 

flux of the kth component (kg m−2 s−1), 𝑅𝑖
𝑘 is the net rate of production of species k 

by chemical reactions (kg m−3 s−1) and 𝑚̇𝑖𝑗
𝑘  quantifies the mass transfer of component 

k from phase i to phase j (kg s−1). In Eq. (5.4), the terms on the LHS represent the 

rate of change in time and the advection of the mass of the kth species in phase i, 

respectively. The first term on the RHS of Eq. (5.4) is modelled with a modified 

version of Fick’s first law of diffusion, to take the turbulent diffusion into account: 

 

𝑱𝑖
𝑘 = − (ρ𝑖𝐷𝑖

𝑘 +
μ𝑡

𝑆𝑐𝑡
) ∇𝑌𝑖

𝑘  (5.5) 

 

with 𝐷𝑖
𝑘  being the mass diffusion coefficient for species k in phase i (m2 s−1), 𝜇𝑡  

being the turbulent viscosity (Pa s) and 𝑆𝑐𝑡  the turbulent Schmidt number equals to 
𝜇𝑡

𝜌𝐷𝑡
, where 𝐷𝑡is the turbulent diffusivity. 

  

(a) (b) 
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The second term in the RHS of Eq. (5.4) describes the biochemical reaction rate 

and it is illustrated in Section 5.4, whereas the third term is treated in detail in Section 

5.5 and it expresses the mass transfer rate between the two different phases. 

The term 𝛼𝑖𝑅𝑖
𝑘  in Eq. (5.4) allows us to define a volumetric reaction rate that 

takes place just in the liquid phase on the surface of the porous supports of the sys-

tem. The porous structure was modelled by adding a sink in the momentum balance 

equations, Eq. (5.1b) described by Eq. (5.6). 

 

𝑆𝑖 =
μ𝑖

Γ
𝑼𝒊 +

𝐶2

2
ρ𝑖𝑼𝒊

2  (5.6) 

 

In Eq. (5.6) 1/ Γ is the viscous resistance (m−2) and C2 is the inertial resistance 

(m−1). The porous material was assumed isotropic, therefore a single value for each 

of the porous resistances was considered in each spatial direction. 1/ Γ was taken 

equal to 228400m−2 and the value of C2 was assumed to be 210m−1, based on the 

known pressure drops of the Biomax ceramic porous carrier used in previous works 

(Alberini, 2013; Frascari et al., 2013). 

5.4 Fermentation kinetic model 

Dark fermentation has proved to be the most realistic technique for industrial 

scale bioreactors due to the relatively low energy requirements, the substantial hy-

drogen production rates and the possibility to ferment organic matter in liquid and 

solid wastes (Sivagurunathan et al., 2016). Despite the many advantages of the dark 

fermentation, moderate H2 yields are obtained, mostly due to the conspicuous co-

formation of soluble metabolites: mainly volatile organic acids and alcohols. The net 

effect is that a considerable amount of chemical energy stored in the fermentation 

raw material is diverted to by-product formation and remains unexploited 

(Sivagurunathan et al., 2016). The energy-rich effluents can be subjected to anaero-

bic digestion processes to obtain biomethane, photofermentative treatments or un-

dergo microbial electrohydrogenesis (Bakonyi et al., 2018; Nathao, et al., 2013; Ren 

et al., 2011). The dark fermentation process not only produces soluble metabolites, 
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but also CO2 among the others. This can lead to difficulties during the gas separation, 

that would require the use of one or more membranes to purify the H2 current. 

As shown in Section 5.3, we need to model the biochemical reaction kinetic in 

order to close the species transport equation, Eq. (5.4). A characterized bioreaction 

for the production of hydrogen was found in literature (Frascari et al., 2013) and, 

among the different experimental schemes presented in the document, we selected 

the case of hydrogen production from the fermentation of glucose by attached cells 

of Thermotoga neapolitana.  

The use of a stripping gas to lower the H2 concentration in the reactor volume 

has proven to have beneficial effects in the biohydrogen production through dark 

fermentation (Munro et al., 2009). For this reason, N2 is used as a stripping gas, as 

already done by Frascari et al. (2013) and by Nguyen et al. (2010) for the T. neapoli-

tana dark fermentation. The use of CO2 as stripping gas is also documented (Łukajtis 

et al., 2018) but it may cause local pH variation resulting in suboptimal production 

of biohydrogen (Munro et al., 2009). Moreover, using nitrogen as stripping gas does 

not require an additional gas feed, being the N2 gas already employed to displace the 

oxygen in the broth, at the beginning of the fermentation.  

Being the exact bioreaction scheme extremely complex and beyond the scope of 

our modelling effort, we decided to simplify the reaction with the following expres-

sion: 

 

𝐺𝑙𝑢𝑐𝑜𝑠𝑒 → 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 +  𝐴𝑐𝑒𝑡𝑖𝑐 𝐴𝑐𝑖𝑑  (5.7) 

 

Being the goal of this work to present a comprehensive model strategy of the 

fluid-dynamics, reaction and mass-transfer rates, we decided to simplify the biore-

action mechanism. Implementing a more realistic scheme does not require a deep 

change in the modelling procedure (see Fig. 5.4), provided data are available for the 

implementation. 

In fact, the conservation equations, as shown in Section 5.3, require that just the 

mass is conserved (in both time and space) without regard for the number and type 

of atoms transported, therefore the simplification introduced in Eq. (5.7) does not 

affect the generality of the conservation equations. 
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Fig. 5.4 – Scheme of the model formulation and solution procedure. 
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A H2/substrate yield of 7.2mmolH2 gsugars−1 was experimentally reported by 

Frascari et al., (2013), from which the hydrogen stoichiometric coefficient for the 

simplified reaction was obtained. The acetic acid stoichiometric coefficient was de-

rived from the mass conservation equation, and the resulting reaction is: 

 

1 𝐺𝑙𝑢𝑐𝑜𝑠𝑒 → 1.30 𝐻𝑦𝑑𝑟𝑜𝑔𝑒𝑛 +  2.96 𝐴𝑐𝑒𝑡𝑖𝑐 𝐴𝑐𝑖𝑑  (5.8) 

 

Once again it should be pointed that the conservation equations (implemented in 

the software) require that only the mass is conserved. The initial concentration of 

glucose in the liquid phase was taken from Frascari et al., (2013) equal to 7.5g L−1, 

corresponding to 4.15E − 02kmol m−3. 

Frascari et al., (2013) modelled the biohydrogen production from glucose by 

attached cells of T. neapolitana with Andrews model of substrate inhibition: 

 

𝑞𝐿
𝐻2 = 𝑞𝐿,𝑚𝑎𝑥

𝐻2 ×
𝑆

𝐾𝑆+𝑆+𝑆2/𝐾𝐼
  (5.9) 

 

where 𝑞𝐿,𝑚𝑎𝑥
𝐻2 (𝑚𝑚𝑜𝑙𝐻2

𝑔𝑝𝑟𝑜𝑡𝑒𝑖𝑛
−1 ℎ−1) is the maximum H2 specific production rate, 

S is the substrate concentration (gsugarL−1), KS is the half-saturation constant (gsugar 

L−1) and KI is the inhibition constant (gsugar L−1). 

The rate of production of H2 must be converted in SI units, in order to close the 

conservation equations implemented in the CFD software. 

While the conversion in SI units is straightforward for the two constants of the 

model and the substrate concentration, some more data is needed for the conversion 

of the maximum H2 specific production rate. In fact, if we examine Tab. 5.1, we 

notice that qL,maxH2 is defined per unit mass of bacteria in term of grams of proteins in 

the cells, since the biomass concentration was quantified with the Lowry protein as-

say.  

Tab. 5.1 – Kinetic parameters obtained by Frascari et al., (2013) 

Parameter Original value Converted value 

𝑞𝐿,𝑚𝑎𝑥
𝐻2  6.1 mmol g−1 h−1 5.1E − 07 kmol kg-1 s-1 

KS 0.09 g L−1 5.0E − 04 kmol m−3 

KI 90 g L−1 5.0E − 01 kmol m−3 
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Alberini, (2013) found that the protein content is about 30% of the dry weight 

of T. neapolitana therefore, once we can estimate the cell concentration in the at-

tached-growth supports, we can obtain 𝑞̂𝐿,𝑚𝑎𝑥
𝐻2  , the maximum H2 production rate in 

SI units of kmol kg−1 s−1. The reaction rate in SI units becomes: 

 

𝑅𝐿
𝐻2 = 𝑅 = 𝑞̂𝐿,𝑚𝑎𝑥

𝐻2 ×
𝐶𝐿

𝑆

𝐾𝑆+𝐶𝐿
𝑆+(𝐶𝐿

𝑆)
2

/𝐾𝐼

× 𝐶𝐶 × 𝑃𝑀𝐻2
  (5.10) 

 

where 𝑅𝐿
𝐻2 is the H2 production rate, (kg m-3 s-1), 𝐶𝐿

𝑆 is the substrate molar con-

centration in the liquid phase (kmol m−3), CC is the concentration of T. neapolitana 

in the supports, assumed to be 10.5kg m−3 and PMH2 is the molecular weight of hy-

drogen (kg kmol−1). In the work of Alberini, (2013), it is possible to find the porous 

support data and the biomass concentration on the support. This information is re-

ported in Tab. 5.2. 

 

Tab. 5.2 – Porous support data by Alberini, (2013) 

Name  Biomax 

Porosity 67% 

Density 777 kg m-3 

Material Ceramic 

Biomass concentration on the support 10.5 kgcells mbulk
-3 

5.5 Mass transfer model 

Improving H2 desorption results in favorable thermodynamic conditions for H2 

production, in fact when the rate of hydrogen production exceeds the interphase mass 

transfer high H2 concentrations may be encountered in the reactor. This phenomenon 

is called supersaturation and it can cause unwanted changes in the microbial com-

munity that results in lower hydrogen production (Bakonyi et al., 2017). Hydrogen 

stripping from the liquid medium can mitigate the issues related to hydrogen super-

saturation. 

 The interphase molar flux of hydrogen, 𝑛̇𝐿→𝐺
𝐻2  (kmol m-3 s-1) was modelled 

according to Eq. (5.11): 
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𝑛̇𝐿→𝐺
𝐻2 = 𝑁 = 𝑘𝐿𝑎(𝐶𝐿 − 𝐶𝐿

𝐼)  (5.11) 

 

where kL is the liquid-side mass transfer coefficient (m s−1), a is the interfacial 

area (m2), CLI is the molar concentration of hydrogen in the liquid phase at the inter-

face between L and G (kmol m−3) and CL is the molar concentration of hydrogen in 

the liquid phase (kmol m−3). 

Eq. (5.11) is solved locally for each cell in the computational domain, for this 

reason a local description of the terms in the RHS of Eq. (5.11) is needed. The molar 

concentration of each species is derived from the species transport equations, already 

described in Section 5.3, hence no further modelling is required to have the local 

concentration of hydrogen. 

For the evaluation of H2 concentration at the gas-liquid interface, the gas phase 

mass transfer resistance has been neglected due to the H2 low solubility in the liquid 

phase. Therefore: 

 

𝐶𝐿
𝐼 = (𝑃/ℋ) 𝐶𝐺  (5.12) 

 

with 𝑃 being the pressure, 𝐶𝐺  the molar concentration of H2 in the gas phase and 

ℋ being the Henry’s constant. 

5.5.1 Local mass transfer coefficient: kLa 

As also described by Gimbun, et al., (2009) and more recently by Bach et al., 

(2017), we used the expression for the liquid-side mass transfer coefficient derived 

by Lamont & Scott, (1970) under the assumption that small-scale turbulent structures 

affect the mass transfer rate. The eddy cell model (Lamont & Scott, 1970) uses the 

isotropic turbulence theory of Kolmogorov to refine the surface renewal model 

(Danckwerts, 1951), obtaining this expression for kL: 

 

𝑘𝐿 = 𝐾𝐷𝐿
0.5 (

𝜖𝐿

𝜈𝐿
)

0.25

  (5.13) 
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with DL being the diffusion coefficient (m2 s-1), 𝜖𝐿 being the turbulent dissipation 

rate in the liquid phase (m2 s−3), νL the liquid dynamic viscosity (m2 s−1) and K the 

dimensionless constant of the model, equals to 0.4. The turbulent dissipation rate 

was obtained from the solution of the RANS equations together with the two-phase 

turbulence model equations. 

The interfacial area is the total area of contact between the gas and the liquid 

phase. From this definition is clear that the two-fluid model cannot predict the inter-

facial area since it describes the phases of the multiphase flow as interpenetrating 

continua. The phasic volume fractions, denoted here by αL and αG, represent the space 

occupied by each phase and the laws of conservation of mass and momentum are 

satisfied by each phase individually. To calculate the interfacial area a closure model 

is needed. 

Hänsch, et al. (2012) reported that after a critical volume fraction αGcr = 0.3, co-

alescence rate increases sharply and the bubbly flow transitions to a flow with re-

solved structures, in both vertical and horizontal flows. For this reason, different 

modelling approaches were used to define the interfacial area, depending on the local 

volume fraction. When αG is below αGcr, it was hypothesized that only bubbles with 

the assigned diameter of dB = 0.5mm were present, resulting in an interfacial area 

(per unit volume of the grid cell) of: 

 

𝑎 = 6α𝐺/𝑑𝐵  (5.14) 

 

When αGcr < αG < 0.5, it was assumed that the sharp increase in coalescence rate 

formed a single bubble in the grid cell, resulting in an interfacial area per unit volume 

of: 

 

𝑎 = 4𝜋
(

3

4𝜋
𝛼𝐺)

2/3

(6√2𝑉𝑐𝑒𝑙𝑙)
1/3  (5.15) 

 

where 𝑉𝑐𝑒𝑙𝑙 is the volume of the grid cell (m3). 

On the other hand, when αG exceeds 0.5, we assumed that some type of phase 

inversion takes place and the water phase forms a drop-like structure with interfacial 

area per unit volume of: 
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𝑎 = 4π
(

3

4π
α𝐿)

2/3

(6√2𝑉𝑐𝑒𝑙𝑙)
1/3  (5.16) 

 

This simplified approach allows to close the set of equations needed to model 

the interphase mass transfer in the context of the two-fluid model. 

5.6 Computational domain and solution procedure 

The CFD software ANSYS Fluent 17.0 was adopted for the simulations. The 

model equations were solved in two computational domains, one for each geomet-

rical configuration. The two geometries were discretized with 1.68 million tetrahe-

dral cells (the configuration with the supports inside the draft tube) and with 2.30 

million tetrahedral cells (the configuration with the supports outside the draft tube), 

using the software ANSYS ICEM CFD 17.0. The discretized geometries (meshes) 

were divided into four different blocks: one for the supports, two for the fluids close 

to the impellers and one for the remaining fluid, in order to describe the porous sup-

port and for dealing with the relative motion of the rotating impeller and the steady 

baffles and supports (by using the “multiple reference frame” algorithm, MRF). Still 

and ungassed liquid was considered as the initial condition for the simulations, with 

the liquid level fixed at H = 1.55T, corresponding to an overall gas volume fraction 

of approximately 22%. Firstly, just the two-phase turbulent fluid flow was solved 

with a steady state solver and, when solution converged, the chemical reaction, spe-

cies transport and interphase mass transport were solved with an unsteady solver in 

a “fixed” flow field, in order to reduce the computational time. Having decoupled 

the fluid dynamics from the species transport allowed us to use a fairly large time 

step equal to 0.1s: the underlying assumption is that the product formation does not 

affect the flow field in the system. A sink term for the hydrogen in the gas phase was 

introduced in the outer part of the pipe, to simulate product removal from a mem-

brane module. With the workstations available in our facility, approximately an hour 

and a half were required to simulate 1 second of process. 
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A simplified flowchart of the solution procedure is reported in Fig. 5.4. The 

block called “mathematical model” is detailed to highlight the different models pre-

sented in the sections above and to explain the interplay of the different models. 

5.7 Results and discussion 

5.7.1 Fluid dynamics 

The first step in the simulation of hydrogen production through fermentation in 

the two configurations was to solve the two-phase flow field. In Fig. 5.5 the liquid-

phase flow fields are shown by means of contour maps and vector fields where the 

color of the map indicates the velocity magnitude and the arrows indicate the direc-

tion of the liquid velocity.  

 

  
(a) (b) 

Fig. 5.5 - Liquid flow field for the configuration with the supports inside (a) and outside (b) the draft tube. The 

contour maps indicate the liquid velocity magnitude, whereas the fixed-length vectors indicate just the local 

direction of the flow. 
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The vectors are shown in a plane passing through the vertical axis of the pipe for 

the recirculation of the gas-phase and, to improve the readability of the picture, the 

vectors have a fixed length. The arrows show that the fluid is pumped out of the draft 

tube at a high velocity (red color) and that the discharge jet of the lower impeller 

forms a 45° angle with the vertical and radial axis, approximately. 

This is in agreement with what one would have expected, since the PBT is a 

mixed flow impeller (radial and axial flow) and its blades are tilted by 45°. The liquid 

pumped from the lower impeller forms two recirculation loops, one above and one 

below the impingement point. 

The liquid then moves towards the top of the reactor with a small mean velocity 

and it enters the draft tube from the holes located just above the upper PBT. The 

upper impeller, then, forces the liquid towards the lower PBT. 

In Fig. 5.5a, the liquid velocity field in the configuration with the supports inside 

the draft tube is shown, while Fig. 5.5b shows the configuration with the supports 

outside the draft tube. The mean velocity field is very similar, but few differences 

are noticeable. In Fig. 5.5b, the supports located in front of the lower PBT interact 

with the discharge jet of the lower impeller and the recirculation loops are smaller 

with respect to Fig. 5.5a. The interaction between lower discharge jet and supports 

produces a backward flow towards the impeller that results in some of the liquid 

being pumped upwards, close to the shaft. The porous structures channel the flow, 

limiting the misalignment of the velocity vectors. As a result, the velocity vectors 

are more aligned in the upward motion outside the draft tube (Fig. 5.5b), as well as 

in the downward motion inside the draft tube (Fig. 5.5a), with respect to the opposite 

configurations. 

The peculiar configuration of the reactor generates a gas flow from the outer part 

of the tank to the internal one, where the impellers motion produces a vortex that 

ingests the gas phase and it disperses the bubbles in the liquid. The fluid dynamics 

of the reactor with the supports located inside the draft tube was previously charac-

terized by Montante, et al. (2013a) and the reader is referred to the publication for 

further information. The predicted gas flow rate circulating from outside the draft 

tube to the inside, through the external pipe, is 7.82Lh−1 for the configuration with 

the supports inside the draft tube and 7.36Lh−1 for the other configuration, meaning 

that small but noticeable differences are distinguishable in the two configurations 
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when the impellers rotate at N = 360rpm. One possible explanation is that the inter-

action between lower discharge jet and supports affects the drawdown efficiency of 

the impellers. The importance of the lower impeller in the gas recirculation was 

pointed out in a previous study. In fact, Montante, et al. (2013a) tested a number of 

impeller types, sized and clearances and concluded that the bottom impeller had to 

be chosen carefully, since a nonoptimal impeller geometry can result in failure of 

gas circulation. The reactor two-phase fluid dynamics analysis together with the val-

idation of the CFD models with experimental data for the configuration with the 

supports inside the draft tube were already completed by Montante, et al. (2013b), 

therefore no further results concerning the two-phase fluid dynamics are reported in 

this work. 

Being the power consumption an important process variable, we calculated the 

power draw as obtained by the simulations with the supports inside and outside the 

draft tube. For the first configuration the power drawn by the impellers is 3.20 W, 

whereas for the latter is 3.24 W. In a previous experimental work (Montante, et al., 

2013a), the power drawn by the impellers for the bioreactor configuration with the 

supports inside the draft tube was measured at 350 rpm and resulted equal to 2.99 W. 

The real and simulated values of the power consumption for the configuration with 

the supports inside the draft tube are in good agreement and the configuration with 

the supports outside the draft tube does not appreciably change the power consump-

tion. 

5.7.2 Mass transfer coefficients 

The local liquid-side mass transfer coefficient and the local interfacial area dis-

tribution are easily calculated once the two-phase flow field is established, in fact 

these two quantities are fixed in time since we decoupled the solution of the flow 

field from the solution of the species transport. In Fig. 5.6, kL and a are shown, as 

calculated for the bioreactor configuration with the supports inside the draft tube. 

Solving Eq. (5.13) in the context of the turbulent two-fluid model entails calcu-

lating kL in the whole volume of the reactor even though the liquid phase does not 

reach the top part of the geometry. This result is a consequence of the two-phase 

turbulence model used in this work, which considers a single turbulent field obtained 
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with local average quantities. As expected, the local liquid-side mass transfer coef-

ficient is higher where the turbulent dissipation rate is higher, i.e. in the proximity of 

the two impellers. Inside the supports, kL is subject to a sharp reduction due to the 

lower fluid velocities inside the porous structures. 

 

  

(a) (b) 

Fig. 5.6 - kL (a) and a (b) calculated from a fixed flow field, in the configuration with the supports inside the 

draft tube. 

The interfacial area between the liquid phase and the gas bubbles basically fol-

lows the distribution of gas dissolved in the liquid phase, where the gas volume frac-

tion is lower than αGcr, Eq. (5.14). 

High gas hold-ups are located around the upper PBT, close to the ingesting-vor-

tex, therefore high interfacial area values are calculated in this zone. The liquid flow 

drags the gas from the upper PBT to the lower PBT inside the draft tube, decelerating 

inside the porous structures (therefore decreasing the drag force on the bubbles) and 

allowing fraction of the gas phase to ascend the draft tube, towards the upper impel-

ler. The liquid deceleration is just in part due to the porous support: as a matter of 
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fact, the liquid deceleration is also observed in the configuration with the supports 

outside the draft tube, Fig. 5.5b. As is well-known, just a fraction of the fluid pumped 

by the PBT impeller move towards the bottom of the tank, whereas the other fraction 

is recirculated towards the impeller, as the discharge jet hits the wall of the draft 

tube. Accounting for the mechanisms explained above, it is straightforward to ex-

plain that the lower velocities in the draft tube are generated by a lower fluid flow 

rate with respect to the flow rate overall pumped by the impeller. In the unobstructed 

outer part of the reactor, the interfacial area is almost uniform. 

The considerations made for the geometry with the supports inside the draft tube 

also hold for the other configuration (Fig. 5.7).  

  

(a) (b) 

Fig. 5.7 – kL (a) and a (b) calculated from a fixed flow field, in the configuration with the supports outside the 

draft tube. 

The liquid-side mass transfer coefficient inside the draft tube, Fig. 5.7a, assumes 

higher values, with respect to the same zone in Fig. 5.6, since here the flow field it 

is not disturbed by the porous supports. The interaction between lower discharge jet 

and the porous structures, however, impairs the impellers drawdown performance 
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and, as a result, less gas is dragged towards the lower PBT. It is important to keep in 

mind that the planes shown in this Section slice the porous support, therefore a lower 

interfacial area is expected in the zone outside the draft tube, with respect to the same 

zone in Fig. 5.6, as already seen for the supports placed inside the draft tube. 

Fig. 5.8 compares the volumetric mass transfer coefficient (kLa, s−1), that is the 

product between the liquid-side mass transfer coefficient and the interfacial area be-

tween the liquid phase and the gas bubbles) in the two different configurations. 

  

(a) (b) 

Fig. 5.8 – kLa calculated from a fixed flow field, in the configuration with the supports inside the draft tube (a) 

and in the configuration with the supports outside the draft tube (b). 

The figures illustrate that the spatial limiting factor is the interfacial area, in fact 

the contour map of kLas closely resemble the contour maps of the interfacial areas 

(shown in Fig. 5.6b and Fig. 5.7b), meaning that just the reactor zones where the 

interfacial area is high produce high values of the volumetric mass transfer coeffi-

cient. Limited to the kLa analysis, it would seem that the reactor configuration with 

the supports inside the draft tube is the most efficient, however we have to assess the 

overall production of H2 as well as the interphase molar flux of hydrogen from the 
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liquid to the gas phase, in order to evaluate the performances of the two configura-

tions. 

5.7.3 Hydrogen production and stripping: supports inside the draft 

tube 

After obtaining the local volumetric mass transfer coefficients in both the con-

figurations studied, we turned our attention to the hydrogen production and its re-

moval from the liquid phase. As explained in Section 5.6, the above discussed data 

were obtained with a steady state solver, whereas data concerning the species 

transport had to be calculated through a time-dependent simulation. 

In Fig. 5.9 a snapshot of the reactor with the porous supports inside the draft tube 

during the initial stage of the reaction (t ≈ 1s) is presented.  

  

(a) (b) 

Fig. 5.9 – Local interphase hydrogen molar flux (a) and chemical reaction rate (b) after 1s of simulated time, 

in the configuration with the supports inside the draft tube. 



 Biohydrogen production in stirred fermenters  

134   

The contour map of the local mass transfer rate after 1s (Fig. 5.9a) and the con-

tour map of the reaction rate (Fig. 5.9b) are compared with the same range of rates 

in the color map, to simplify the discussion.  

At the very beginning of the process, the interphase mass transfer is considerably 

slower than the reaction rate due to the low H2 concentration. The overall hydrogen 

mass transported from the liquid phase to the gas phase per unit time, in the whole 

volume, is 1.50E − 13kmol s−1, while the production of hydrogen at the beginning of 

the process is 1.12E − 09kmol s−1. From this analysis we can observe how, after few 

seconds since the beginning of the reaction with this reactor configuration, the N2 

cannot strip enough hydrogen from the aqueous phase and it starts to accumulate in 

the liquid. 

As the concentration of hydrogen rises in the liquid, the interphase mass transfer 

driving force grows and, consequently, it boosts the overall mass transfer rate. After 

a little more than 3 minutes (≈ 200s), the accumulation of hydrogen in the system 

slows (Fig. 5.10), meaning that the production of hydrogen is partially compensated 

by the hydrogen removal. 

 
Fig. 5.10 – Mean molar concentration of H2 inside the reactor 

 

Examining Fig. 5.11a, we notice that most of the interphase mass transfer occurs 

in the proximity of the higher impeller, where the volumetric mass transfer coeffi-
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cient is larger. Almost all the stripping of the hydrogen produced in the porous sup-

ports happens in this relatively small portion of the reactor, therefore most of the 

reactor volume is unexploited, if we limit our attention to the H2 production and strip-

ping. As expected, the reaction rate does not change appreciably in the first minutes 

of the process, Fig. 5.11b. 

 

  

(a) (b) 

Fig. 5.11 – Local interphase hydrogen molar flux (a) and chemical reaction rate (b) after 450s of simulated 

time, in the configuration with the supports inside the draft tube. 

 

 

In Fig. 5.12 the hydrogen concentration in the liquid phase is reported and it is 

clear that the hydrogen has to recirculate from outside the draft tube to the inside, 

through the holes positioned in correspondence of the higher impeller, before being 

stripped by the recirculating nitrogen current.  

This transport route is detrimental to the gas removal efficiency, since the hy-

drogen must travel through the bulk of the reactor (where kLa is low), before coming 
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into contact with the high volumetric transport coefficient zone. A possible solution 

would be to move the porous supports closer to the high kLa zone, close to the upper 

impeller, provided that this would not dramatically change the fluid dynamics. 

  

(a) t = 1s (b) t = 450s 

Fig. 5.12 – Local concentration of H2 in the liquid phase at different simulated times, in the configuration with 

the supports inside the draft tube. 

In Fig. 5.13, the dynamics of the integral interphase mass transfer rate and chem-

ical reaction rate are shown.  

It is possible to see the mass transfer rate slowing down after approximately 200 

s, and to reach the steady state more than 38 h of simulated time are estimated, with 

a steady state molar rate of production/removal equal to 1.12E – 09 kmol s−1. The 

steady state volumetric flow rate of hydrogen is 1.4% of the nitrogen volumetric flow 

rate, therefore the hypothesis that we proposed in Section 5.6 (the product formation 

does not affect the two-phase flow field) may be acceptable. 
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Fig. 5.13 – Integral interphase mass transfer rate and chemical reaction rate, in the configuration with the 

supports inside the draft tube. 

5.7.4 Hydrogen production and stripping: supports outside the draft 

tube 

Concerning the reactor configuration with the porous structures fixed outside the 

draft tube, after about 350s of simulated time the simulations did not reach a steady 

state (Fig. 5.14) and an optimistic evaluation identifies the steady state after more 

than 90 minutes of simulated time. After little more than 6s, the reactor with the 

supports outside the draft tube reached a mass transfer rate that matched the hypoth-

esized steady state mass transfer rate in the other configuration. If the steady state 

projection were true, an interphase mass flow rate of 2.4E−08kmol s−1 would be 

needed to ensure that all the hydrogen produced from the reaction is stripped. This 

predicted value is 32.9% of the nitrogen flow rate recirculated as the stripping gas, 

therefore decoupling the two-phase fluid dynamics from the species transport (the 

hypothesis proposed in Section 5.6), may produce inaccurate results.  

Again, it should be borne in mind that the hydrogen production rate is more than 

an order of magnitude higher in the reactor configuration with the supports outside 

the draft tube, with respect to the other configuration. 

Fig. 5.15 demonstrates how an efficient use of the reactor volume follows from 

placing the porous supports outside the draft tube.  
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Fig. 5.14 – Integral interphase mass transfer rate and chemical reaction rate, in the configuration with 

the supports outside the draft tube. 

  

(a) (b) 

Fig. 5.15 – Local interphase hydrogen molar flux (a) and chemical reaction rate (b) after 350s of simulated 

time, in the configuration with the supports outside the draft tube. 
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In Fig. 5.15b we see that the production of hydrogen is confined in the zone 

outside the draft tube, whereas the majority of the interphase mass transfer occurs 

inside the draft tube. The hydrogen-rich liquid enters the inner volume from the holes 

in the draft tube and immediately encounters the high kLa zone where the largest part 

of the interphase mass transfer happens. Being the hydrogen concentration higher in 

this configuration (Fig. 5.16), with respect to the configuration with the supports 

inside the tube (Fig. 5.12), high interphase molar fluxes are also found in proximity 

of the lower PBT and at the interface, Fig. 5.15.  

 

  

(a) t = 1.7 s (b) t = 350 s 

Fig. 5.16 – Local concentration of H2 in the liquid phase at different simulated times, in the configuration with 

the supports outside the draft tube. 

 

Despite the high interphase fluxes, the chemical reaction rate is faster and hy-

drogen accumulates in the liquid phase. In Fig. 5.16b we can observe that the con-

centration of hydrogen in the liquid phase is lower where the mass transfer rate is 

higher.  
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Analyzing the hydrogen concentration in the gas phase of the reactor with the 

supports positioned outside the draft tube, Fig. 5.17, we notice how in the headspace 

inside the draft tube the product concentration is considerably high. A possible ex-

planation is that just a portion of the gas that participates in the interphase mass 

transfer in the region close to the upper PBT is then entrained into the liquid towards 

the lower PBT, while the remaining part recirculates toward the top of the reactor. 

As a result, hydrogen accumulates in the gas head above the upper PBT. The gas 

current increases its concentration as the bubbles are transported in the liquid, mean-

ing that hydrogen is being stripped from the aqueous environment. 

 

 
Fig. 5.17 – Local concentration of H2 in the gas phase, after 350s of simulated time. 

 

The concentration of hydrogen in the gas drops remarkably at the liquid-gas in-

terface, since the hydrogen-rich gas flow rate bubbling from the liquid is diluted in 

the gas space that was initially devoid of hydrogen. To reduce the transitory phase 

required to increase the hydrogen concentration in the headspace outside the draft 
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tube, a possible improvement would be to reduce the volume of the reactor by de-

creasing the height of the tank, without overly reducing the headspace necessary 

for the gas-liquid disengagement. At the bottom of the reactor, there is a relatively 

large part of the equipment that does participate neither in the hydrogen production 

nor in the interphase mass transfer, Fig. 5.15. The dead zone is detrimental to the 

performance of the process and a potential solution would be to reduce the volume 

of the reactor by decreasing the length of the tank. 

5.8 Conclusions 

In this work, a CFD study of the biohydrogen production in a vortex-ingesting 

stirred tank reactor is proposed. The two-phase turbulent flow field of the reactor in 

two configurations (an existing one, which fluid dynamics was already experimen-

tally characterized in literature, and a configuration proposed to maximize the bio-

hydrogen production) was modelled with a two-fluid model approach. 

A method to model the fermentative production and the stripping of biohydrogen 

in the self-ingesting stirred tank reactor was proposed and it can be easily extended 

to any more comprehensive kinetics and mass transfer models. A local model of the 

liquid-side mass transfer coefficient found in literature and a newly proposed inter-

facial area formulation for the two-fluid model were adopted, together with the 

Henry’s gas law, to model the interphase flux of hydrogen. A substrate inhibition 

model for biohydrogen production by attached cells of the hyperthermophilic organ-

ism Thermotoga neapolitana in porous supports was selected to model the kinetic 

of a simplified biochemical reaction. 

The CFD has proven helpful for the assessment of the performances of the reac-

tors, allowing a local and an instantaneous analysis of the reaction rate, the interphase 

hydrogen fluxes and the other processes that take place inside the tank. We used the 

numerical simulations to study the hydrogen production and removal at different 

times, to evaluate the local behavior of the equipment and to propose geometrical 

changes, without the need to build the new porous supports and experimentally study 

the new configuration. 

The analysis of the two different bioreactor configurations showed that the hy-

drogen stripping is successful in reducing the hydrogen concentration in the liquid 
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phase, the two-impeller configuration ensures the gas recirculation through the outer 

pipe, making this design suitable to be used with a gas separation system, to enhance 

recovery. Increasing the amount of biomass in the system results in an increased 

hydrogen production, but it can cause large H2 supersaturation if the interphase mass 

transfer rate is not fast enough. 

Future works will address the coupling between the fluid dynamics, the produc-

tion and the removal of hydrogen and its effect on the overall performances of the 

reactor. A validation of the proposed model for the interfacial area with experimental 

data and the implementation of a more realistic kinetic for the biohydrogen produc-

tion are aspects that may deserve further investigation. 
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5.9 Nomenclature 

𝑎 Interfacial area 

𝐶2 Inertial resistance 

𝐶𝐶 Cell concentration 

CD Bubble drag coefficient 

𝐶𝐺 Molar concentration of H2 in the gas phase 

𝐶𝐿 Molar concentration of H2 in the liquid phase 

𝐶𝐿
𝐼 Molar concentration of H2 in the liquid at the L-G interface 

𝐶𝐿
𝑆 Molar concentration of substrate in the liquid phase 

𝑑𝐵 Bubble diameter 

𝐷𝑖
𝑘 Mass diffusion coefficient of the kth species in the ith phase 

𝐷𝐿  Diffusion coefficient of H2 in the liquid phase 

𝑭𝑑𝑟𝑎𝑔 Interphase drag term 

𝒈 Gravitational acceleration 

H Tank height 

ℋ Henry’s constant 

𝑱𝑖
𝑘 Diffusion flux of the kth species in the ith phase 

k Turbulent kinetic energy 

𝐾 Eddy cell model constant 

𝐾𝐼 Inhibition constant 

𝑘𝐿 Liquid side mass transfer coefficient 

𝑘𝐿𝑎 Volumetric mass transfer coefficient 

𝐾𝑆 Half saturation constant 

𝑚̇𝑖𝑗
𝑘  Mass transfer of kth species from the ith to the jth phase 

𝑛̇𝐿→𝐺
𝐻2 , 𝑁 Interphase H2 molar flux from the liquid to the gas phase 

𝑃 Pressure 

𝑃𝑀𝐻2
 H2 molecular weight 

𝑞𝐿
𝐻2 H2 specific production rate 

𝑞𝐿,𝑚𝑎𝑥
𝐻2  Maximum H2 specific production rate 

𝑅 Reaction rate 

𝑅𝑖
𝑘 Net production rate of the kth species in the ith phase 

𝑅𝐿
𝐻2 H2 production rate in the liquid phase 

𝑅𝑒p Particle Reynolds number 

𝑆 Substrate concentration 

𝑆𝑖 Momentum sink for pressure drops inside the porous supports 

𝑆𝑐𝑡 Turbulent Schmidt number 
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𝑡 Time 

T Tank diameter 

𝑻𝒊 Viscous stress tensor of the ith phase 

𝑼𝒊 Velocity of the ith phase 

𝑼𝑺 Slip velocity 

𝑉𝑐𝑒𝑙𝑙 Volume of the grid cell 

𝑌𝑖
𝑘 Mass fraction of the kth species in the ith phase 

  

Greek letters 

𝛼𝐺 Gas volume fraction 

αG
cr Critical gas volume fraction 

𝛼𝑖 Volume fraction of the ith phase 

𝛼𝐿 Liquid volume fraction 

1/ 𝛤 Viscous resistance 

𝜖 Turbulent dissipation rate 

𝜖𝐿 Turbulent dissipation rate in the liquid phase 

𝜇𝑖 Dynamic viscosity of the ith phase 

µL Liquid dynamic viscosity 

𝜇𝑡 Turbulent viscosity 

𝜈𝐿 Liquid kinematic viscosity 

𝜌𝑖 Density of the ith phase 

ρL Liquid density 

ρG Gas density 

𝝉𝒕
𝒊 Reynolds stress tensor of the ith phase 
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Chapter 6  

Escherichia coli fermentation in 

bioreactors 

A simple Interaction by Exchange with the Mean (IEM) mixing model is 

implemented to describe the glucose concentration segregations in industrial and 

laboratory scale bioreactors. This approach is coupled with a Population Balance 

Model (PBM) for the growth rate adaptation and a metabolic model dependent on 

the individuals state, both from the literature (Pigou & Morchain, 2015). The 

model formulation is validated against different published experiments and it is 

shown that the IEM model reduces the computational costs when just the 

segregation of few species is of interest. A model for the maintenance costs of 

Escherichia coli subject to glucose concentration fluctuation is also presented and 

implemented in the context of the IEM mixing model. A Eulerian formulation of 

the effects of the substrate fluctuations on the maintenance rate is proposed and tied 

to a more intuitive Lagrangian vision. The study of these metabolic changes due to 

substrate heterogeneities helps the understanding of the relationships between 

hydrodynamics and cells metabolism and it improves the agreement between 

numerical and experimental data.  
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6.1 Introduction 

The effect of mixing on bioreactions has been identified many years ago by 

Hansford & Humphrey, (1966). Cultivating yeast in a continuous fermenter, these 

pioneers observed that the number and location of the injection points influence the 

glucose into biomass conversion yield. The highest yields were observed when 

multiple injection points located in the vicinity of the impeller were used. Dunlop 

& Ye, (1990) observed that the biomass dry weight in a continuous fermenter in-

creases when glucose is fed through an inlet port characterized by a smaller Kol-

mogorov length scale. In other words, well-micromixed bioreactors allow higher 

yields whereas poorly micromixed devices lead to lower yields and favour by-

product formation. It is remarkable that these conclusions perfectly match the mod-

ern vision of the interaction between reaction and mixing developed by Bourne, 

Bałdyga and Villermaux, among others, in the 80's (Baldyga & Bourne, 1992; 

Bourne, et al., 1981; Plasari, et al., 1978). The basic explanation is that mixing pre-

cedes the reaction. Since these two processes occur in series, the apparent rate of a 

chemical reaction as well as the formation of by-products are controlled by the rate 

of (turbulent) mixing. Following the microbiological explanation proposed by 

Hansford & Humphrey, (1966), Ye, (1985) explained that cells which encountered 

region of high sugar concentration diverted [..] a greater proportion of substrate 

carbon into extracellular product via endogenous metabolism. Thus, it appears that 

the substrate concentration distribution in a bioreactor impacts the yields as well as 

the rates of biochemical reactions. The interaction between mixing and bioreactions 

is although more complex than in chemical reactor in the sense that some addition-

al metabolic pathways are triggered because of the repeated exposure to high and 

low concentrations (e.g. overflow metabolism for Escherichia coli or short-term 

Crabtree effect for yeasts). Nowadays, the commonly accepted idea regarding the 

effect of concentration heterogeneities is that they induce the activation of a large 

number of genes which causes an increase in the energy demand for maintenance 

as well as various metabolic responses, one of them being the formation of unde-

sired by-products (Enfors et al., 2001; Lemoine, et al., 2015; Löffler et al., 2017; 

Takors, 2012). In order to investigate these effects, several lab scale experimental 

devices, reviewed by Neubauer & Junne, (2010), were used to mimic the fluctuat-
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ing environment encountered by the cells along their trajectory in an imperfectly 

mixed bioreactor (Fowler & Dunlop, 1989; George, et al., 1993; Namdev, et al., 

1992; Neubauer, et al., 1995). Among these, the most popular device is a two-stage 

bioreactor, generally a CSTR connected to a PFR. Displacing the feed point in one 

or the other reactor allows creating a variety of configurations leading to distinct 

biological responses. 

The interaction between mixing and bioreactions has also been investigated by 

modelling methods. In the early 70's, a series of work from Tsai and co-workers 

investigated this question using the concepts of complete segregation and maxi-

mum mixedness (Fan, et al., 1971; Tsai, et al., 1969; Tsai, et al., 1971). In the work 

of Bajpai & Reuss, (1982) some refinements were introduced to account for the 

circulation time distribution. However, these authors considered an unstructured 

kinetic model for bioreaction that basically assumes that bioreaction rates are de-

termined from local concentrations using constant biological parameters. Clearly, 

kinetic or metabolic structured models are mandatory for they introduce internal 

variables, linked to the biotic phase, which dynamically adapt to the external envi-

ronment. Thus, bioreactions rate may now depend on the cell state also. Quite natu-

rally, it appears necessary to consider some diversity among a population of living 

cells. This can be achieved using either probability density functions, PDF, (lead-

ing to continuous Population Balance Equations, PBE) (Henson, 2003; Mantzaris, 

et al., 1999; Morchain, et al., 2017) or discrete formulations (cell based models 

along with Monte Carlo techniques to deal with large cell ensembles)  (Nieß, et al., 

2017; Quedeville et al., 2018; Stamatakis, 2010).  

Beside the description of the biological phase, one has to know about the het-

erogeneity of the concentration field. The trend, in the last decades was to rely up-

on Computational Fluid Dynamics (Hjertager & Morud, 1995; Morchain, et al., 

2013; Schmalzriedt, et al., 2003) or Compartment Model Approach to do so 

(Alopaeus, et al., 2009; Delafosse et al., 2014; Nauha, et al., 2018; Pigou, 2018; 

Pigou & Morchain, 2015; Vrábel et al., 2001). In both cases, the spatial distribution 

of concentration is accessed. This knowledge, complemented with a Lagrangian 

particle tracking, can produce a temporal signal that is used as the boundary condi-

tion for a biological model (generally a set of ordinary differential equations)  

(Gernigon, et al., 2019; Haringa, et al., 2017; Siebler, et al., 2019). Thus, the effect 

of concentration fluctuations on the rate of biological reactions is obtained but the 
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reverse coupling (modification of the concentration field due to bioreactions) is 

computationally very demanding. However, in order to address the subject of inter-

est here, i.e. the interaction between mixing and bioreaction, a full two-way cou-

pling is necessary. This requires the transport of the biological phase in the three-

dimensional space of the bioreactor. This is possible using a Eulerian description 

for the biological phase (transport of PDF) but the number of biological variables 

in the model is then limited (Pigou, 2018; Pigou & Morchain, 2015). So, the gen-

eral trend is an ever-growing complexity, associated to a high level of expertise and 

prohibitively large numerical costs, which makes these modelling tools out of reach 

for most biochemical engineers. 

In this work, we investigate the possibility to rely upon the statistical descrip-

tion of the concentration distribution only, disregarding the spatial dimensions. A 

popular model of this type is the Interaction by Exchange with the Mean model 

(IEM) originally introduced by Villermaux & Devillon, (1972) to address micro-

mixing issues. In such models, the reacting volume is divided into two or more en-

vironments (or zones) and a characteristic time relative to mass exchange between 

the zones is introduced. Considering only two environments suggests that the con-

centration distribution will be approximated by two Delta functions. It was shown 

that this can constitute a fair approximation of the actual concentration PDF in the 

limit of fast reactions. In fed-batch bioreactors the characteristic time of substrate 

uptake generally decreases with time and becomes much smaller than the macro-

mixing time (Morchain, 2017; Pigou & Morchain, 2015). Hence, a fed-batch fer-

menter subject to mixing issue is usually strongly segregated and exhibits a highly 

concentrated zone near the feed point and a very low concentration zone elsewhere.  

Considering the various time scales of the biological response to concentration 

fluctuations, we developed and validated the idea that the disequilibrium between 

the uptake and utilization rates provides a good estimate of the flux of substrate 

that must be diverted into by-products (Morchain et al., 2013; Pigou & Morchain, 

2015). However, up to now, the metabolic rate calculations assumed a growth rate 

dependent yield, namely a Pirt’s law (Pirt, 1965), along with a constant mainte-

nance rate. The idea of tying the maintenance rate to the process variables was al-

ready suggested by Holms, (1996) and by Meadows, et al., (2010), although they 

linked the maintenance rate to the growth rate. Since substrate fluctuations are 

known to produce a metabolic stress on bacteria and thus contribute to an increased 
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energy demand, it is proposed to relate the maintenance rate to the variance of the 

glucose concentration distribution. This rate being used to dynamically update the 

substrate into biomass yield, a coupling between the degree of mixing in the biore-

actor and the glucose conversion efficiency is now introduced in the model.  

This article presents the formulation of a segregation dependent maintenance 

rate. The Interaction by Exchange with the Mean (IEM) model is implemented in 

ADENON, an in-house developed bioreactor simulation software combining CMA, 

kinetic or mode based metabolic model and PBE approaches. Simulations results 

using the IEM model will be compared to the experimental observations published 

by Xu, et al., (1999) in a 20m3 reactor and by Neubauer et al., (1995) in a 

STR+PFR scale-down reactor. Spatially refined simulation using CMA (Pigou & 

Morchain, 2015) for the Xu experiment and a two-stage STR+PFR for the Neubau-

er experiment are also performed to serve as references. The challenges posed by 

the two sets of experiments considered in this work are related to the presence of 

spatial inhomogeneities or segregation that trigger a suboptimal operation of the 

fermentation process. In the Xu et al., (1999) experiment, the segregation is entire-

ly due to the large scale of the reactor and the injection conditions that result in a 

poorly meso-mixed process. On the contrary, in the Neubauer et al., (1995) exper-

iment, a segregated environment was purposely designed by means of a multi-stage 

reactor, with localized injections.  

In the final part of this work, some details are given regarding the formulation 

of a Eulerian expression of the maintenance rate starting from a Lagrangian per-

spective. It is shown that one can reconcile the Lagrangian and Eulerian visions of 

the biological response to external fluctuations. 

6.2 The experiments 

In this work two different sets of experiments found in the literature were 

simulated, one studying a fed-batch culture in an industrial scale bioreactor, de-

scribed by Xu et al., (1999) and lately simulated by Vrábel et al., (2001) and Pigou 

& Morchain, (2015), and one by Neubauer et al., (1995) dealing with a fed-batch 

culture in a pilot scale bioreactor. 
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Xu et al., (1999) investigated the acetate production in an industrial scale fed-

batch bioreactor with E. coli. The fermentation was performed in a 20m3 stirred 

tank reactor stirred equipped with Rushton impellers. The initial concentration of 

glucose was equal to 0.29gG/L, the initial concentration of acetate was equal to zero 

and the initial biomass concentration was X(t=0) = 0.1gX/L. After an initial batch 

phase of 0.92h, a feed solution of 454gG/L of glucose was injected well above the 

upper impeller at variable flow rate with an exponential curve for 8.5h, changed to 

a constant value of 180L/h for 2.5h and then to 170L/h for 28.02h. The sampling of 

glucose, acetate and biomass concentration was performed at three different sam-

pling points located at the top, in the middle and at the bottom of the reactor. Glu-

cose gradients were identified as the result of insufficient mixing. Acetate was pro-

duced in the upper part of the reactor and a reduction of the glucose to biomass 

yield of 25% was observed with respect to the homogeneous 20L fermenter. This 

experimental observation could not be reproduced by Vrábel et al., (2001) but was 

correctly predicted by Pigou & Morchain, (2015) owing to the use of a Pirt’s law 

with a maintenance rate equal to 0.250𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ (45𝑚𝑔𝐺/𝑔𝑋 · ℎ). 

Neubauer et al., (1995) investigated the E. coli responses to substrate fluctua-

tions in a two-stages bioreactor of 10L consisting in a closed loop of a Stirred Tank 

Reactor (STR) connected to a Plug Flow Reactor (PFR) of 0.695L, Fig. 6.1. The 

glucose initial concentration was 10gG/L and the system was operated in batch to 

the complete depletion of glucose (⁓8h). Once completed the batch phase, the sys-

tem was operated in fed-batch for 8h, with the injection of glucose-rich solution 

(600gG/L) at a constant flow rate of 50mL/h either in the STR or just before the 

PFR. The fed-batch results were collected for three different configurations: with-

out the external PFR loop and injection in the STR (referred to as Case A or Con-

trol, in the publication, Fig. 6.1a ) and with the external loop and injection in the 

PFR (referred to as Case B in the publication, Fig. 6.1b). The authors also investi-

gated the use of oxygen enriched air as aeration gas in the PFR (Fig. 6.1c) to test 

the hypothesis that microaerobiosis would develop due to high substrate uptake. In 

the following we will refer to Case B configuration aerated with air as Case B1, 

Fig. 6.1b, and to the same configuration aerated with oxygen enriched air as Case 

B2, Fig. 6.1c. In each Case, the medium volume was kept constant to 10L. The bi-

omass concentration and growth rate, as well as the glucose and acetate profiles in 

the PFR, were monitored in the Neubauer et al., (1995) experiment. 
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(a) (b) (c) 

Fig. 6.1 - Schemes of the reactor configurations used in the Neubauer et al., (1995) experiment: (a) injection of 

substrate (red arrow) in the STR operated without the PFR loop Case A, (b) STR+PFR with injection in the 

PFR, Case B1, (c) STR+PFR with substrate injection in the PFR and aeration with oxygen enriched air (blue 

arrow), Case B2. 

 

The residence time was 113s for the PFR, 𝜏𝑃𝐹𝑅, and 27min for the STR, 𝜏𝑆𝑇𝑅. 

It was observed that the repeated exposure to high glucose concentration in the 

PFR, interrupted by prolonged periods of glucose limitations in the STR, led to an 

over-assimilation of glucose at the PFR inlet coupled with acetate production due 

to overflow metabolism and a reduced glucose to biomass yield in comparison to 

the homogeneous Case A. Some acetate was also produced in the upper part of the 

PFR because of oxygen limitation (fermentative catabolism). The addition of en-

riched air, Case B2, did not change the initial response at the PFR inlet but led to a 

lower formation of acetate in the upper part and a yield similar to that observed in 

Case A. As far as the authors know, these experimental results have not been simu-

lated to date. 

6.3 Mathematical model 

6.3.1 General aspects 

A detailed explanation of the population balance model and the metabolic 

model formulations, the solution strategies and their implementation in ADENON 

were already published in previous works (Morchain, 2017; Morchain, et al., 2014; 
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Morchain et al., 2013; Pigou & Morchain, 2015). However, they are briefly out-

lined here to allow a clear identification of the novelties provided in this work. The 

mass balance equation for a generic 𝑘 component in a generic homogeneous con-

trol volume, 𝑉, reads: 

 
𝑑𝐶𝑘

𝑑𝑡
=

1

𝑉
(∫ 𝐶𝑘

𝑖𝑛 ∣ 𝑣 ∣𝑖𝑛·  𝑑𝜔
𝛺

− ∫ 𝐶𝑘 ∣ 𝑣 ∣𝑜𝑢𝑡·  𝑑𝜔
𝛺

) + 𝑅𝑘  (6.1) 

 

where 𝐶𝑘 is the concentration, 𝛺 is the surface enveloping the control volume,  

∣ 𝑣 ∣𝑖𝑛 and ∣ 𝑣 ∣𝑜𝑢𝑡are the norms of the velocity vector entering and exiting the con-

trol volume, respectively, and 𝑅𝑘 is the volumetric reaction rate. Velocities in Eq. 

(6.1) come out from the solution of a hydrodynamic model. The Compartment 

Model Approach (CMA) falls into this category and the fluxes are calculated either 

from general considerations on the fluid dynamics of the system (Pigou & 

Morchain, 2015; Vrábel et al., 2001) or retrieved from the CFD simulations 

(Alopaeus et al., 2009; Delafosse et al., 2014; Nauha et al., 2018; Pigou, 2018). 

The microbial population is considered as segregated with respect to the specif-

ic growth rate 𝜇. Hence, the volumetric reaction rate in Eq. (6.1) is expressed as an 

integral over the 𝜇 space: 

 

𝑅𝑘 = ∫ 𝑟𝑘(𝜇, 𝑪)𝑋(𝜇)𝑑𝜇
∞

0
  (6.2) 

 

where 𝑋(𝜇)𝑑𝜇 is the mass of cells able to grow at 𝜇 per unit volume, 𝑟𝑘repre-

sents the net specific reaction rate and 𝑪 is the concentration vector of the species. 

The equation for the cell density function 𝑋(𝜇) is obtained under the assump-

tions that daughter cells inherit the growth rate of their mother (Morchain & 

Fonade, 2009). 

 
𝜕𝑋(𝜇,𝑡)

𝜕𝑡
= −

𝜕

𝜕𝜇
[𝑋(𝜇, 𝑡)𝜁(𝜇)] + 𝜇𝑋(𝜇, 𝑡)  (6.3) 

 

where the rate of change of 𝑋 in the 𝜇-space, 𝜁(𝜇), in its general form is: 

 

𝜁(𝜇) ∝
1

𝑇𝑢 𝑑⁄ (𝜇∗ − 𝜇)  (6.4) 
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with 𝑇𝑢 𝑑⁄  being a time constant which value depends on the direction of the 

rate of change of the specific growth rate and 𝜇∗ being the growth rate at equilibri-

um that generally takes the form of a Monod equation. The adoption of a segregat-

ed model with the growth rate capability as the internal coordinate, Eq. (6.3), was 

introduced to decouple the actual growth rate of the population from the local reac-

tant concentrations, Eq. (6.4). This decoupling introduces an out-of-equilibrium 

metabolic behavior resulting in the production/depletion of by-products. The net 

reaction rate 𝑟𝑘 results from a call to a metabolic model that can be regarded as a 

function 𝑓. 

 

𝑟𝑘 = 𝑓(𝜇, 𝑪, 𝑌𝑘,𝑙≠𝑘)  (6.5) 

 

where 𝑌𝑘,𝑙≠𝑘 is the generic yield coefficient expressing the 𝑘𝑡ℎ species to 𝑙𝑡ℎ 

species yield. The metabolic model adopted in this work corresponds to that al-

ready presented in Pigou & Morchain, (2015) and combines mass and energy bal-

ances. It considers four categories of biological reactions namely the production of 

biomass through substrate and energy consumption (Anabolism), energy produc-

tion either by means of an oxidative pathway (Oxidative catabolism) or by fermen-

tation (Fermentative catabolism) and the production of acetate due to the overcon-

sumption of glucose (Overflow metabolism) or fermentative metabolism. It is 

worth recalling here that acetate production takes place either if the energetic need 

for growth is not fulfilled through the oxidative pathway (acetate production 

through fermentation) or if a cell uptakes more glucose than the amount used in the 

anabolic reactions (acetate production though overflow metabolism). The essential 

feature of our metabolic approach is that the maximum value for the anabolic reac-

tion rate is the cell property 𝜇. In a given environment some cells may be limited 

and some others not. Indeed, any limitation is actually relative to the cell state ra-

ther than defined in an absolute manner through concentration thresholds. In case 

of insufficient resources, the actual growth rate of some cells, 𝜇𝑎, may be limited to 

a lower value than their growth rate capability ( 𝜇𝑎 < 𝜇). The term 𝑟𝑘 consists of a 

summation of the specific reaction rates for each of the aforementioned biological 

reaction, weighted by the corresponding stoichiometric coefficients. Among these 

coefficients, the substrate to biomass yield was up to now determined using the 
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well-known Pirt’s law (Pirt, 1965), Eq. (6.6), leading to a growth-dependent glu-

cose to biomass yield, 𝑌𝑋𝐺(𝜇𝑎 , 𝑚). 

 
1

𝑌𝑋𝐺(𝜇𝑎 ,𝑚)
=

𝑚

𝜇𝑎 +
1

𝑌𝑋𝐺
𝑚𝑎𝑥  (6.6) 

 

In Eq. (6.6), 𝑌𝑋𝐺
𝑚𝑎𝑥  is the maximum conversion yield of glucose in biomass and 

𝑚 is the maintenance rate, treated as a constant. 

6.3.2 New considerations 

6.3.2.a  Effect of substrate fluctuations on the maintenance rate 

Having in mind the effects of imperfect mixing on cell physiology mentioned 

earlier, it is proposed to introduce a variable maintenance rate and express it as a 

function of the variance of the substrate concentration distribution in the system. 

 

𝑚 = 𝑚0 + 𝛼∫ 𝑝(𝐶𝐺)(𝐶𝐺 − <𝐶𝐺>)2𝑑𝐶𝐺  (6.7) 

 

where 𝑚0 is the minimum maintenance rate of the cells, 𝛼 is the model param-

eter, 𝐶𝐺 is the substrate concentration, <𝐶𝐺> is the volume average of the substrate 

concentration in the fermenter and 𝑝(𝐶𝐺)𝑑𝐶𝐺 is the volume fraction of the reactor 

with a concentration equal to 𝐶𝐺. Hypothesizing that the cells are uniformly dis-

tributed inside the reactor volume and dividing the reactor into 𝑁𝐶 sub-volumes of 

equal size, a discrete expression for Eq. (6.7) can be formulated: 

 

𝑚 = 𝑚0 + 𝛼
1

𝑁𝐶
∑ (𝐶𝐺,𝑖 − <𝐶𝐺>)

2𝑁𝐶

𝑖=1
  (6.8) 

 

Eq. (6.8) provides an Eulerian integral correlation between the sub-volumes 

concentration deviation from the volumetric average in the whole reactor and the 

average maintenance rate of any cell travelling in an heterogeneous concentration 

field. The derivation of Eq. (6.8) from the effects of substrate fluctuations on a sin-

gle cell and on a swarm of Lagrangian cells is described in Section 6.6. 
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6.3.2.b  The Interaction by Exchange with the Mean mixing model 

In the IEM approach, the composition space of the species is discretized rather 

than the physical space of the reactor. The space of composition can be divided into 

two or more environments, Fig. 6.2b, that interact due to mixing.  

 

 

 

(a) 

 

(b) 

 

(c) 

Fig. 6.2 – Hypothesized concentration distribution in a fed-batch reactor (a), its description by means of two 

environments (b) and discretization through elementary probability units (c). 

 

In the experiments presented, the bioreactors are strongly segregated, and a de-

scription of the concentration distribution based on two environments (with high 

and low substrate concentration) constitutes a reasonable approximation. Let us 

consider a generic concentration distribution inside a reactor during a fed-batch 

fermentation, Fig. 6.2a. In this distribution it is possible to encounter two different 
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peaks, one at a lower concentration, 𝐶𝑘,𝑙𝑜𝑤, with a higher probability, 𝑝(𝐶𝑘,𝑙𝑜𝑤), 

and one at a higher concentration, 𝐶𝑘,ℎ𝑖𝑔ℎ, with a lower probability, 𝑝(𝐶𝑘,ℎ𝑖𝑔ℎ), 

corresponding to the bulk of the reactor and the poorly meso-mixed region in the 

vicinity of the species injection, respectively. The interaction of the species compo-

sitions in the different environments occurs by means of a mixing model (Fox, 

2003). 

The environments can be discretized in a number of elementary probability 

units, Fig. 6.2c, that can be thought as presumed sub-volumes in case the environ-

ments probabilities remain constant in time. A fundamental assumption in the IEM 

model is that each elementary sub-volume has the same probability to exchange 

mass with each and every elementary sub-volume, including those of the same en-

vironment. Therefore, the results of these exchanges can be represented by a single 

exchange with a fictitious sub-volume at the volume average concentration <𝐶𝑘>. 

The resulting equations for the segregated species are: 

 
𝑑𝐶𝑘,𝑙𝑜𝑤

𝑑𝑡
=

1

𝜏𝑚
(<𝐶𝑘> − 𝐶𝑘,𝑙𝑜𝑤) + 𝑅𝑘,𝑙𝑜𝑤  (6.9) 

𝑑𝐶𝑘,ℎ𝑖𝑔ℎ

𝑑𝑡
=

1

𝜏𝑚
(<𝐶𝑘> − 𝐶𝑘,ℎ𝑖𝑔ℎ) + 𝑅𝑘,ℎ𝑖𝑔ℎ + 𝑆𝑘  (6.10) 

 

with 𝑆𝑘 being a source term representing the feed. The volume average concentra-

tion of any distributed species is computed as: 

 

<𝐶𝑘> = 𝑝(𝐶𝑘,𝑙𝑜𝑤)𝐶𝑘,𝑙𝑜𝑤 + 𝑝(𝐶𝑘,ℎ𝑖𝑔ℎ)𝐶𝑘,ℎ𝑖𝑔ℎ  (6.11) 

 

Having described the inhomogeneities in the system in terms of concentration 

space segregation instead of physical space segregation, the term 𝜏𝑚 is the only 

parameter of the model and it is related to some mixing time constant defining the 

characteristic time at which the exchange between sub-volumes happens. 

The IEM model distributes just the species that cannot be considered as homoge-

neously dispersed in the volume. The reaction rates are calculated in each sub-

volume and the concentrations of the homogeneously dispersed species are then 

volume-averaged to retain just one value per species. The concentration of the ho-

mogeneously dispersed species is then a composition of all the concentrations in 

the sub-volumes (which change differently due to the different reaction rates), 
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whereas the concentration of the distributed species is a vector with as many ele-

ments as the total number of sub-volumes. 

6.3.3 Implementation in ADENON 

All simulations were performed with ADENON, a simulation software devel-

oped in the MATLAB R2016a environment by this research group. The software 

focus is mostly directed at the simulation of bioreactors, by solving biological 

models within a fluid dynamics framework (compartment models, plug-flow reac-

tors, stirred tank reactors, interconnected multi-stage reactors, batch or fed-batch 

cultures as well as accelerostat cultures). ADENON formulates a system of ODEs 

in terms of mass and volume balances, based on the user defined case configura-

tion. This set of ODEs is then solved using the Runge-Kutta 2,3 explicit scheme for 

time integration. 

In the previous section, two environments were considered. Dividing each of 

these environments into elementary sub-volumes of the same size allows a direct 

calculation of the probabilities 𝑝(𝐶𝑘,𝑙𝑜𝑤) and 𝑝(𝐶𝑘,ℎ𝑖𝑔ℎ) as the ratio of the number 

of sub-volumes in each environment to the total number of sub-volumes, 𝑁𝐶. 

 

𝑝(𝐶𝑙𝑜𝑤) =
𝑁𝐶

𝑙𝑜𝑤

𝑁𝐶
  (6.12a) 

𝑝(𝐶ℎ𝑖𝑔ℎ) =
𝑁𝐶

ℎ𝑖𝑔ℎ

𝑁𝐶
  (6.12b)  

 

In this work we hypothesized that the environment probabilities remain con-

stant during the fermentation. 

Each environment being made of a collection of identical elementary sub-

volumes, the average concentration now reads: 

<𝐶𝑘> =
1

𝑁𝐶
∑

𝑖=1

𝑁𝐶

𝐶𝑘,𝑖  (6.13) 

 

The implementation of the IEM model in the framework a compartment-based 

code is presented in Fig. 6.3. 

As an illustration, the system consists of 𝑁𝐶 = 20 sub-volumes (the 20 square 

squares composing the larger square) and two environments, corresponding to the 
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fraction of the total volume at a given composition (represented by the total num-

ber of red, 𝑁𝐶
ℎ𝑖𝑔ℎ

, and the total number of white squares, 𝑁𝐶
𝑙𝑜𝑤). 

 

 
Fig. 6.3 – Scheme of an Interaction by Exchange with the Mean model. The scheme represents the two envi-

ronments made of a collection of sub-volumes that exchange with their mean at the top. For any sub-volume, 

the total mass exchanged with the other sub-volumes is equivalent to the mass exchanged with a single ficti-

tious volume at the mean concentration. In the top left corner, the concentration distribution described by 

means of two environments discretized through elementary probability units. 

 

The arrows represent the exchange between each sub-volume and the mean. 

The corresponding environment distribution is represented as well. By changing 

the number of sub-volumes in which there is an injection, 𝑁𝐶
ℎ𝑖𝑔ℎ

, and the number 

of total sub-volumes, 𝑁𝐶, the probabilities of the environments with low and high 

concentration can be adjusted to any experimental configuration.  

Implementing the IEM model as a collection of sub-volumes is of practical in-

terest, being in the framework of a multicompartment based simulator. At first 

sight, solving 𝑁𝐶 equations instead of two looks like a waste of resources, a step 

back due to the code structure. However, the benefit is that all simulations present-

ed in this work, irrespective of the hydrodynamic model (CMA or IEM), are per-

formed under the same modeling framework, using the same models for population 

and metabolic aspects of the problem. 
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6.4 Simulation set-up 

6.4.1 Large scale fed-batch 

The 20m3 fed-batch experiment was simulated using the CMA with 70 com-

partments (as in Pigou & Morchain, (2015) and Vrábel et al., (2001)) in order to 

compare the IEM model against it. The initial conditions of the simulation were set 

to replicate the experiment and the initial biomass concentration was initialized at 

𝜇(𝑡 = 0) = 0.63h−1. Xu et al., (1999) reported that “the dissolved oxygen signal 

did not show any oxygen limitation” but hypothesized that the acid production was 

due to high substrate concentration inducing local oxygen limitations. Simulation 

due to Pigou & Morchain, (2015) showed that the acetic acid was indeed produced 

through the overflow metabolism rather than through fermentative pathways. Con-

sequently, the oxygen inter-phase mass transfer rate was neglected and the concen-

tration of the dissolved oxygen in the liquid was always considered at saturation 

(∼10mgO/L). 

In our IEM simulation, the injection occurred in 1 of 70 sub-volumes, in the 

same way as Vrábel et al., (2001) and Pigou & Morchain, (2015) did in the context 

of a compartment model. Simulating the Xu et al., (1999) mixing time experiment 

with the IEM model allows the identification of 𝜏𝑚 leading to the same macromix-

ing time of 250s, Fig. 6.4. The IEM model, of course, loses the spatial information 

regarding the tracer concentration, but, using an IEM model parameter equal to 𝜏𝑚 

= 36s, it is able to reproduce the macromixing time.  

In Fig. 6.4 the evolution of the tracer concentration at the three monitored loca-

tions as predicted by Pigou & Morchain, (2015) is shown.  

The macromixing time is calculated as the time needed by the tracer to reach a 

concentration of ±5% of the final concentration and Fig. 6.4 shows that the non-

dimensional concentration at the bottom probe reaches the ±5% interval after 

⁓250s. 
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Fig. 6.4 – The open symbols represent the passive tracer evolution in time at the top (top), middle (mid) and 

bottom (bot) of the fermenter as predicted by Pigou & Morchain, (2015) with the CMA. The tracer evolution in 

time as predicted by the IEM is plotted with the solid line and the mixing time of 250s is highlighted by the 

dashed line. 

 

6.4.2 Two stage bioreactor STR+PFR 

Considering the Neubauer et al., (1995) experiment, the reference case is a spa-

tially refined simulation performed considering a STR connected to a PFR. The 

initial conditions were set to replicate the experiments and the initial biomass con-

centration was initialized at 𝜇(𝑡 = 0) = 0.65h-1. When the IEM model is used, the 

biomass, the acetate and the oxygen were treated as perfectly mixed species. The 

oxygen inter-phase mass transfer rate was neglected (as in the simulation of the Xu 

et al., (1999) experiment) considering the concentration of the dissolved oxygen in 

the liquid always at saturation (⁓10mgO/L). This condition, according to the au-

thors, would be valid for most of their experimentally characterized reactor config-

urations. The injection being located in the PFR, Fig. 6.5a, this configuration re-

sembles a poorly mesomixed fed-batch in a stirred tank reactor in which the injec-
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tion plume is segregated from the bulk of the volume and the fresh substrate has to 

travel the whole length of the jet before being released in the bulk (zone model), 

Fig. 6.5b. 

 

   

(a) (b) (c) 

Fig. 6.5 – Reactor configuration of Case B in Neubauer et al., (1995) experiment (a). Poorly mesomixed 

fed-batch in a stirred tank reactor (b) and its description by means of the IEM model (c). 

 

The IEM model, Fig. 6.5c, further simplifies the system dropping the spatial 

information. The model only deals with the two environments, the plume and the 

bulk with high and low substrate concentration respectively and assumes that the 

characteristic interaction time between these two environments is equal to the PFR 

residence time, equal to 113s, therefore this time was chosen for 𝜏𝑚. A total num-

ber of 187 sub-volumes was defined in the simulations and the injection in the PFR 

was reproduced through a source term in 13 sub-volumes, obtaining a ratio of 

13/187 = 0.0695 that closely matches the ratio between the experimental volumes 

0.695L/10L = 0.0695. 

6.4.3 Biological constants 

All simulations are performed using the same metabolic model. A detailed 

presentation of the model can be found in the Appendix A of Pigou & Morchain, 

(2015). The same notation is used in this work. In that previous study, the constants 

for the Xu et al., (1999) experiment were determined and their values are used in 

this work. The constants of the Neubauer et al., (1995) experiment were tuned to 

match the Case A results. A sensitivity analysis was performed on the most influen-

tial constants shown in Tab. 6.1 and it is reported in Appendix A. The constants 



 Escherichia coli fermentation in bioreactors  

166   

that have the highest influence on the results of the simulations considered in this 

work are: 

 

- 𝜙𝑂
𝑚𝑎𝑥, the maximum oxygen uptake rate; 

- 𝐾𝑖,𝐴, the acetate inhibition constant (in the expression of growth on glu-

cose); 

- 𝐾𝑖,𝐴
𝑜 , the oxygen inhibition constant (in the oxygen uptake rate); 

- 𝑚, the maintenance rate (see Eq. (6.6)); 

- 𝑌𝐴𝐺, the glucose to acetate conversion yield (see Eq. (6.5)); 

- 𝑌𝑋𝐺
𝑚𝑎𝑥, the maximum glucose to biomass conversion yield (see Eq. (6.6)); 

 

And the constant values for the two sets of simulations are reported in Tab. 6.1. 

 

Tab. 6.1 – Model constants and their values used to simulate the Xu et al., (1999) experiment and the Case A 

of the Neubauer et al., (1995) experiment. 

Constant Xu et al., (1999) Neubauer et al., (1995) Units 

𝜙𝑂
𝑚𝑎𝑥 15.60 14.00 𝑚𝑚𝑜𝑙𝑂/𝑔𝑋 · ℎ  

𝐾𝑖,𝐴 3.00 3.50 𝑔𝐴/𝐿  

𝐾𝑖,𝐴
𝑜  4.00 4.00 𝑔𝐴/𝐿  

𝑚 0.250 0.150 𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ 

∗𝑌𝐴𝐺
𝑓𝑒𝑟𝑚

 
3.00 

3.00 𝑚𝑜𝑙𝐴/𝑚𝑜𝑙𝐺  

∗𝑌𝐴𝐺
𝑜𝑣𝑒𝑟 2.00 𝑚𝑜𝑙𝐴/𝑚𝑜𝑙𝐺  

𝑌𝑋𝐺
𝑚𝑎𝑥 1.32 1.50 𝑚𝑜𝑙𝑋/𝑚𝑜𝑙𝐺 

*The conversion yield of glucose in acetate in the Neubauer et al., (1995) experiment was divided 

depending on the acetate production mechanism, i.e. fermentation (ferm) and overflow (over) 

 

6.5 Results 

In this Section the results obtained with the IEM model in the two experimental 

set-ups described in Section 6.2 are shown and compared with the experimental 

data and the results from the compartment model (Pigou & Morchain, 2015). Re-

sults obtained considering the reactor as perfectly homogeneous are shown as well. 
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The dimensions of the spaces used in the simulations of the experiments are pre-

sented in Tab. 6.2. The first set of results corresponds to a constant maintenance 

rate while the second set is obtained with a variable maintenance rate. 

 

Tab. 6.2 – Dimensions of the spaces used in the simulations 

 Physical space 𝝁-space 𝑪-space 

Homogeneous model 0 1 0 

Compartment model 3 1 0 

IEM model 0 1 1 

 

6.5.1 Constant maintenance rate 

6.5.1.a  Simulating the Xu experiment 

Fig. 6.6 shows the average biomass, the glucose and the acetate concentration 

time evolution obtained with a maintenance rate equal to 0.250𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ. 

Concerning the average biomass concentration, Fig. 6.6a, all the three model-

ling strategies achieve a satisfactorily agreement with the experimental data. Tak-

ing into account spatial heterogeneities and biological diversity is not critical in 

predicting the total biomass. Indeed, the total amount of biomass is essentially 

driven by the substrate feed rate and the substrate into biomass conversion yield. 

Minor differences in the biomass concentrations are however observed because dif-

ferent amounts of acetate are produced and re-consumed depending on the sub-

strate heterogeneity. In Fig. 6.6b, the evolution of the substrate concentration is re-

ported. The glucose concentration profiles of the IEM, compartment and even the 

homogeneous case up to ⁓7h perfectly overlap.  

As the spatial inhomogeneities become more important, three trends appear in 

the compartment model, depending on the sampling position. This aspect is over-

looked by the IEM model, nonetheless, it produces results that are the same order 

of magnitude as the compartment model results and the use of this simplified mod-

el does not worsen the agreement with the experimental data, with respect to the 

more accurate compartment model. 
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(a) (b) 

 

 

(c)  

Fig. 6.6 – Average Biomass (a), Glucose (b) and Acetate (c) concentration evolution in the Xu et al., (1999) 

experiment. Experimental data (filled symbols) and Compartment model results (open symbols) are collected 

at the top (top), middle (mid) and bottom (bot) of the fermenter, IEM model results (solid line) and homogene-

ous case (dashed line). All the numerical data are obtained with 𝑚 = 0.250 𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ. 

 

Fig. 6.6c shows the time evolution of the concentration of acetate. IEM and 

compartment model results are in good agreement up to ⁓8h and, as for the data in  

Fig. 6.6b, the agreement between experimental and numerical concentration profile 

as predicted by the compartment and IEM model does not change appreciably. 

Considering the system as perfectly mixed, on the other hand, lead to an underes-

timation of the acetate concentration that is identically zero between 9h and 32h 

from the beginning of the process. This latter result is in line with the fact that ace-

tate is produced by overflow metabolism which results from the cell exposure to 

concentration heterogeneities only. 
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The results obtained from the numerical simulation of the Xu et al., (1999) ex-

periment show that the IEM model produces results that are in substantial agree-

ment with the averaged global experimental data, while the homogeneous model 

results deviate appreciably but not significantly from the IEM and compartment 

models, with the largest differences found in the production of acetate. This latter 

result confirms that acetate is produced through overflow metabolism. In the mod-

el, the metabolic response is due to the local disequilibrium between uptake and 

growth rates. Therefore, the local disequilibrium between uptake and growth rates 

must be considered, either from a spatial point of view (CMA) or a statistical point 

of view (IEM), to account for by-product formation. 

6.5.1.b  Simulating the Neubauer experiment 

The experimental results of Neubauer et al., (1995) and the simulation results 

are shown in Fig. 6.7. Fig. 6.7a, shows the evolution of the biomass concentration 

in the bioreactor for the Case A and Case B. The single STR Case A is simulated 

using a homogeneous model, while the Case B is simulated using either a two-

stage bioreactor (STR+PFR) or the IEM model. The constants of the metabolic 

model reported in Tab. 6.1 were tuned in order to reach a better agreement between 

the perfectly mixed Case A and the homogeneous case. As explained in Appendix 

A, the most influential parameters are, with little surprise, the maintenance rate and 

the maximum glucose into biomass yield. Thanks to this tuning, the numerical re-

sults of the homogeneous model closely match the perfectly mixed experimental 

data. It is interesting to note that the constant maintenance rate is now equal to 

0.150𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ, much lower than the value necessary to simulate the highly 

segregated fed-batch of Xu et al., (1999). Regarding the simulation of Case B, the 

biomass concentration profiles as predicted by the IEM and the STR+PFR models 

almost perfectly overlap, indicating that considering the biomass as perfectly 

mixed could be an acceptable hypothesis when examining integral results, even in 

this reactor configuration. 
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(a) (b) 

  

(c) (d) 

Fig. 6.7 – Biomass (a), Growth rate (b), Glucose (c) and Acetate (d) concentration evolution in the Neubauer 

et al., (1995) experiments. Experimental data of Case A (squares) and B (circles) are shown together with the 

results of the homogeneous simulations (dashed line), the CSTR+PFR model (dotted line) and the IEM model 

(solid line). All the numerical data are obtained with 𝑚 = 0.150 𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ. 

 

The IEM and the CSTR+PFR model, on the other hand, over-predict the 

amount of biomass produced in Case B1 (open circles) during the fed-batch phase, 

although exhibiting a trend that qualitatively agrees with this experimental set-up, 

i.e. a non-linear reduced production of biomass in time. 

The mean growth rate evolution in time is shown in Fig. 6.7b, where a very 

good agreement between the experimental and numerical results is achieved 

throughout most of the process. Between t=-5h and t=0 a noticeable deviation be-

tween the numerical and experimental data occurs, but, considering the strongly 

non-linear biomass growth in the same time interval Fig. 6.7a, this deviation can be 

explained by the fact that a constant growth was hypothesized during the batch 

phase by the authors of the experiment. 
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Considering the glucose consumption dynamics, shown in Fig. 6.7c, the overall 

trend and the quantitative agreement in the fermentation is very convincing. In the 

overall growth rate evolution and in the glucose consumption almost no differences 

exist between the homogeneous, the IEM and the CSTR+PFR models. Nonethe-

less, a deviation between experiments and simulations appears between the begin-

ning of the process and ⁓ -3h. In Neubauer et al., (1995), it is said that the culture 

medium used for the batch phase of the fermentation contained 10.0g of glucose 

per liter, whereas the experimental data are slightly lower. Therefore, the misa-

lignment between simulated and experimental data may be due to inaccuracies in 

the acquisition of the latter set of data. 

Concerning the evolution of the acetate concentration, Fig. 6.7d shows two dis-

tinct trends. The acetate produced during the batch phase is rapidly re-consumed 

when the residual concentration of glucose becomes low. During the fed-batch 

phase, no acetate is produced in the Case A, whereas it accumulates when the injec-

tion is performed in the PFR. As stated earlier in the description of experiments, 

acetate is produced through overflow metabolism when cells enter the PFR and 

face a high glucose concentration. It is also produced through fermentation at the 

end of the PFR because of oxygen limitation, Case B1. This second source of ace-

tate production vanishes if enriched air is used in the PFR Case B2. In any case, 

acetate is also re-consumed in the STR where the glucose concentration is low. 

These multiple sources of acetate production and re-consumption are taken into 

account in our metabolic model. In our simulations, the acetate in the homogeneous 

model is completely depleted after few hours from the beginning of the fresh sub-

strate injection. This is a consequence of our metabolic model which considers that 

acetate is uptaken if the amount of glucose is insufficient to satisfy the cell needs 

for growth. The initial re-consumption also takes place in Case B and is correctly 

represented by the IEM and the STR+PFR models. Moreover, both models predict 

a remaining low but not negligible amount of acetate that is confirmed by the ex-

perimental data collected in the Case B1 configuration. 

One of the major unresolved aspects in the discussion presented above is the 

over-prediction of biomass in the Case B1 of the Neubauer et al., (1995) experi-

ment. Neubauer et al., (1995) report a slightly reduction of the conversion yield of 

glucose in biomass, 𝑌𝑋𝐺, from 0.5 to 0.38𝑔𝑋/𝑔𝐺 (-25% roughly). Similarly, Xu et 

al., (1999) had to reduce the value of 𝑌𝑋𝐺 identified in a homogeneous lab scale 
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reactor in order to fit their results in the heterogeneous large scale fed-batch biore-

actor. As a matter of fact, despite the description of the spatial inhomogeneities in 

the reactor, a constant 𝑚 value, fitted from the perfectly mixed case data, proved to 

be inadequate in capturing the loss in biomass production observed in segregated 

bioreactors. 

To sum up, it is possible to reproduce the experimental results using the IEM 

model with the same accuracy as spatially refined models. However, whatever the 

approach (spatial or statistical) it is necessary to increase the maintenance rate (or 

reduce 𝑌𝑋𝐺) in order to account for the effect of concentration heterogeneities on 

the substrate to biomass yield. These considerations led us to consider that the 

maintenance rate might increase with the heterogeneity of the glucose concentra-

tion field. 

6.5.2 Changes in the maintenance rate 

As stated in Section 6.3.2.a, substrate gradients may be responsible for the in-

creased maintenance costs and, as seen in Tab. 6.1 and in Tab. A. 6.2, 𝑚 is the con-

stant that is subject to the largest changes due to mixing effects. As proposed in 

Section 6.3.2.a, Eq. (6.8) was implemented in the code obtaining an on-line calcu-

lation of the maintenance rate. The two constants in this law are identified as fol-

lows. The 𝑚0value is set to 0.150 𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ, having hypothesized that in the 

most homogeneous conditions (such as the Case A of the Neubauer et al., (1995) 

experiment) this value represents a base level for 𝑚. Exploiting the data collected 

from the fed-batch simulations of the large scale fed-batch reactor, the variance of 

the substrate distribution was computed and its time averaged value used to set to 

𝛼 = 4.86 × 104𝐿2/𝑔𝑋 · 𝑚𝑚𝑜𝑙𝐺 · ℎ such that the resulting maintenance rate is 𝑚 =

0.250𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ. All the simulations were performed again, with the 𝑚 value 

linked to the degree of mixing in the bioreactor and compared to those using a con-

stant value, fitted for each case study. Results of the Xu et al., (1999) experiment 

coupled with Eq. (6.8) are shown in Fig. 6.8. 
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(a) (b) 

Fig. 6.8 – Average Biomass (a) and Acetate (b) concentration evolution in the Xu et al., (1999) experiment. 

Experimental data (symbols) are collected at the top (top), middle (mid) and bottom (bot) of the fermenter. 

IEM model results are reported for simulations with constant (solid line) and variable (dashed line) mainte-

nance rate. 

 

Fig. 6.8 shows that tying the local mean substrate concentration fluctuations to 

the maintenance rate does not produce substantial changes in the biomass concen-

tration, shown in Fig. 6.8a, where noticeable but small differences exist between 

the data obtained with a constant value of 𝑚 or with a variable 𝑚. Fig. 6.8b shows 

that different acetate profiles are obtained between about 3h and 9h from the be-

ginning of the simulation. Before and after this time interval, the two acetate pro-

files obtained with constant and variable 𝑚 perfectly overlap. In particular, the 

simulation where the maintenance rate could change due to the substrate fluctua-

tion produced a lower peak concentration of acetate, due to a reduced fermentation 

rate. Indeed, Pigou & Morchain, (2015) showed that substrate gradients develop 

from 7h onward as the substrate consumption characteristic time gets smaller than 

the mixing time. The bioreactor is quite homogeneous up to 9h and the mainte-

nance rate as predicted by Eq. (6.8) is about 0.150𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ, much lower than 

the value used for the constant maintenance rate simulations (0.250𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ). 

Therefore, less glucose is needed by the cells that find more oxygen to catabolize 

the substrate, resulting in less acetate production. The glucose concentration pro- 

files as obtained with a constant and a variable value of maintenance rate are not 

shown since they almost perfectly overlap. 

The benefit of using a variable maintenance rate is more obvious when simu-

lating the Neubauer et al., (1995) experiment, mainly because the cultivation con-



 Escherichia coli fermentation in bioreactors  

174   

sists in a batch (homogeneous) and a fed-batch (segregated) period of equal dura-

tion. The results are shown in Fig. 6.9. 

 

  

(a) (b) 

Fig. 6.9 – Total biomass (a) and Acetate (b) concentration evolution in the Neubauer et al., (1995)experiment. 

Experimental data (symbols) and IEM model results obtained with variable 𝑚  for the Case A (dashed line) 

and B (solid line) experimental set-ups. 

 

The biomass concentration profiles as obtained from the IEM model coupled 

with Eq. (6.8) for the three different configurations described in Neubauer et al., 

(1995) and the corresponding experimental data are shown in Fig. 6.9a. The cou-

pling of Eq. (6.8) does not substantially affect the biomass concentration profiles of 

Case A. In fact, the high concentration feed plume is rapidly dispersed in the bulk 

of the STR, leading to 𝑚 ⁓ 𝑚0 = constant. Considering the biomass concentration 

profile in Case B, the IEM model coupled with Eq. (6.8) significantly improves the 

agreement between numerical and experimental results. In this case, the injection in 

the small plug flow reactor volume produces high local concentration peaks that 

are not promptly relieved. The acetate concentration profiles for the Cases A and B 

are shown in Fig. 6.9b and no relevant differences are found with respect to the 

numerical simulations with constant maintenance rate. Also, with a variable 

maintenance rate, the residual acetate concentration is consistently predicted for the 

Case B, which is found in the Case B1 experiments as well. 
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6.6 Discussion 

6.6.1 Time evolution of the maintenance rate 

In Fig. 6.10, the evolution of 𝑚 in time is shown for the Xu et al., (1999) and 

Case B of the Neubauer et al., (1995) experiment. 

 

 

(a) (b) 

Fig. 6.10 –  𝑚, solid line, as obtained from Eq. (6.8) for the Xu et al., (1999) experiment (a) and Case B of the 

Neubauer et al., (1995) experiment(b). The dotted line is at a constant value of  𝑚 = 0.25𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ. 

 

In the Xu et al., (1999) experiment, Fig. 6.10a, assuming a constant value of 

𝑚 = 0.250𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ leads to an over-prediction of 𝑚 in the first ⁓9h of fer-

mentation and a under-prediction of the mean maintenance rate in the last part of 

the process. Ultimately, the overall over- and under-predictions cancel out and con-

sidering 𝑚 constant and equal to 𝑚 = 0.250𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ does not lead to sub-

stantial global differences. 
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On the other hand, 𝑚 in Case B of the Neubauer et al., (1995) experiment, Fig. 

6.10b, exhibit two different behaviors. During the batch phase (negative times), the 

maintenance rate is constant and equal to its value at rest: 𝑚 = 0.150𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 ·

ℎ. Right after the injection, high glucose inhomogeneities develop in the multistage 

reactor resulting in a sharp peak in the mean maintenance rate profile that is slowly 

relieved in the following part of the fermentation. Hypothesizing a constant value 

of 𝑚 = 0.250𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ leads to an important over-prediction of the mainte-

nance cost in the batch phase that results in a lower biomass production during this 

phase. Conversely, during the fed batch phase, a constant 𝑚 = 0.250𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 ·

ℎ seems to be an acceptable fit, with an overall under- and over-prediction that, as 

in the Xu et al., (1999) experiment, cancels out. On the other hand, hypothesizing a 

constant value of 𝑚 = 0.150𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ works fine when the bioreactor is ac-

tually homogeneous (Case A of the Neubauer et al., (1995) experiment), it also per-

fectly describes the batch phase but highly underestimates the mean maintenance 

cost, resulting in a higher final biomass production (as shown in Fig. 6.7a). The 

very short batch phase in the Xu et al., (1999) experiment results in an overall neg-

ligible effect of the over-prediction of the maintenance cost when considering a 

constant 𝑚 = 0.250𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ, whereas, due to a longer batch phase, a single 

constant value for the batch and fed-batch phase proved to be inadequate in de-

scribing Case B of the Neubauer et al., (1995) experiment. 

The comparisons between the Xu et al., (1999) and Neubauer et al., (1995) ex-

periments and the numerical simulations proves that disregarding the state of mix-

ing and the inhomogeneities leads to inaccurate results, especially in terms of total 

biomass and acetate concentration. The results obtained with the IEM model close-

ly match those obtained with the more accurate and more computational expensive 

compartment model, proving that the description of the segregations with a simpli-

fied approach may be enough when the growth rate distribution is spatially homo-

geneous. An accurate biomass prediction heavily depends on the correct estimation 

of the glucose into biomass yield, which must take into account the increased 

maintenance due to concentration gradients. Further considerations on the metabol-

ic response, such as overflow, are needed to account for the acetate production. 

However, the metabolic responses leading to the formation of by-products cannot, 

by themselves, explain the loss of biomass productivity evidenced in the experi-

ments. Thus, gradients affect the cell on two different levels: the first being the de-
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creased yield and the second being the production/consumption of acetate. A sim-

ple kinetic model using a variable yield given by Eq. (6.8) suffice in describing the 

first effects whereas the addition of a metabolic model is needed to account for the 

by-product formation. 

6.6.2 Lagrangian formulation of the 𝑚 model 

Following a single cell in its path inside the bioreactor, it was hypothesized 

that the cell, subject to instantaneous and localized glucose fluctuations, changes its 

maintenance rate according to Eq. (6.14), following the formulation proposed by 

Pigou, (2018) for the cell stresses. 

 

𝑑𝑚

𝑑𝑡
=

𝐾

𝑇𝜎
× (𝐶𝐺(𝑡) −

1

𝑇𝑏𝑖𝑜
∫ 𝐶𝐺(𝜏)𝑑𝜏

𝑡

𝑡−𝑇𝑏𝑖𝑜
)

2
−

𝑚−𝑚0

𝑇𝑟𝑒𝑐
  (6.14) 

 

In Eq. (6.14), 𝐶𝐺 refers to the instantaneous local concentration of glucose 

found by the cell along its path, 𝐾 is a model constant representing the unit change 

in maintenance rate due to a unit change in the driving force (i.e. the squared con-

centration fluctuations), 𝑇𝜎 is a response time of the cell to external concentration 

fluctuations, the squared term in parentheses represents the driving force of the 

change in the maintenance rate, 𝑚0 is the minimum maintenance rate of the cells 

and 𝑇𝑟𝑒𝑐 is a relaxation time towards the minimum maintenance rate 𝑚0. The ex-

pression 
1

𝑇𝑏𝑖𝑜
∫ 𝐶𝐺(𝜏)𝑑𝜏

𝑡

𝑡−𝑇𝑏𝑖𝑜
 is a time average of the concentrations previously en-

countered by the cell. This integral quantity is introduced to account for a “memory 

effect”, the fact that previously encountered concentrations contributed to set the 

present cell state (including its maintenance rate). It represents in some way an es-

timate of the concentration value to which the cell is accustomed. From that angle, 

𝑇𝑏𝑖𝑜 can be interpreted as the time scale of long-term metabolic adaptation. The 

term in parentheses therefore measures how much the local environment is differ-

ent from the past conditions and thus be perceived as stressing from the cell point 

of view. In a homogeneous bioreactor, the time average is actually constant, equal 

to 𝐶𝐺, the environment is stressless and the maintenance rate would relax toward 

the base level 𝑚0 with a dynamic defined by the characteristic time 𝑇𝑟𝑒𝑐. In a het-

erogeneous bioreactor, the value of the time average concentration depends on the 
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ratio between the mixing time and 𝑇𝑏𝑖𝑜. If the mixing time is smaller than 𝑇𝑏𝑖𝑜, the 

time average concentration can be regarded as the volume average <𝐶𝐺>. 

In addition, changes in the maintenance rate are certainly much slower than the 

rate of change of substrate concentration along the cell trajectory, because the for-

mer is a consequence of the latter. Thus, in the limit of the derivative 𝑑𝑚/𝑑𝑡 being 

negligibly small and Eq. (6.14) simplifies to: 

 

𝑚 = 𝑚0 + 𝛼(𝐶𝐺(𝑡) − <𝐶𝐺(𝑡)>)2  (6.15) 

 

Where the only parameter 𝛼, already introduced in Eq. (6.7), is equal to 
𝐾×𝑇𝑟𝑒𝑐

𝑇𝜎
. 

Quite logically, 𝛼 results from the cell responsiveness, its response time and its re-

covery time to external fluctuations. As such, the cell based Lagrangian vision 

helps understanding the integral Eulerian model for 𝑚. 

A fruitful parallel can be made between equation Eq. (6.14) and Eq. (6.4): in 

both cases a difference between the local conditions (𝜇∗ or 𝐶𝐺 ) and a cell state var-

iable (𝜇 or 
1

𝑇𝑏𝑖𝑜
∫ 𝐶𝐺(𝜏)𝑑𝜏

𝑡

𝑡−𝑇𝑏𝑖𝑜
) is used to identify and quantify a cascade of bio-

logical responses. The short-term metabolic response leading to overflow, the in-

duced effects resulting in an increased maintenance rate and finally the long-term 

response driving the population growth rate adaptation are accounted for at a min-

imal expense in terms of the number of internal cell variables 

In order to gain knowledge on the rate of change of maintenance rate for a 

population of cells, Eq. (6.15) should be extended to a large number of particles. 

Ensemble averaging Eq. (6.15) over the total number of cells in the reactor, 𝑁𝑐𝑒𝑙𝑙𝑠, 

yields to: 

 

𝑚 = 𝑚0 + 𝛼
1

𝑁𝑐𝑒𝑙𝑙𝑠
∑ (𝐶𝐺

𝑗
− <𝐶𝐺>)

2𝑁𝑐𝑒𝑙𝑙𝑠

𝑗=1
  (6.16) 

 

where 𝑚 is the ensemble average maintenance rate and 𝐶𝐺
𝑗
 is the substrate con-

centration along the trajectory of the 𝑗𝑡ℎ cell. Eq. (6.8) is readily derived from Eq. 

(6.16) since 𝑁𝑐𝑒𝑙𝑙𝑠 is large enough to sample the whole volume. The summation in 

Eq. (6.16) is indeed a Monte Carlo calculation of the integral term presented in Eq. 

(6.7). 
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The parameters introduced in Eq. (6.14) are a modelling choice aimed at de-

scribing in the most accurate way the different phenomena occurring in a cell sub-

ject to substrate concentration fluctuation, without adding constitutive equations for 

each of them. A comprehensive description of the effect of the substrate concentra-

tion fluctuations on the cell metabolism would require ad hoc experiments and in-

sight on the single cell metabolic responses (such as in Löffler et al., (2017), Nieß 

et al., (2017) and Simen et al., (2017)), that is beyond the scope of this work. The 

modelling of the metabolic changes due to substrate concentration fluctuations put 

forward in this work has the goal to implement a simple Eulerian integral descrip-

tion for the numerical simulations of heterogeneous bioreactors. 

The single cell equation, Eq. (6.14) was solved for the Xu et al., (1999) and for 

Case B of the Neubauer et al., (1995) experiments and, in both cases, it was hy-

pothesized that the cell spent a time exactly equal to 𝜏𝐶𝑆,𝑚𝑎𝑥
 at higher substrate 

concentration and 𝜏𝐶𝑆,𝑚𝑖𝑛
 at lower substrate concentration. Ideally, a distribution of 

residence times  in the low concentration zone should be considered. The time trace 

of the glucose concentration experienced by these ideal cells is shown in Fig. 6.11. 

Having divided the substrate concentration space in 70 sub-volumes and occurring 

the injection of fresh substrate in just one of the sub-volumes, 𝜏𝐶𝑆,𝑚𝑎𝑥
 was assumed 

equal to ⁓3.6s for the Xu et al., (1999) experiment, being this time equal to one 

seventieth of the macro-mixing time, and 𝜏𝐶𝑆,𝑚𝑖𝑛
  equal to ⁓246.4 s. In the numeri-

cal study concerning Case B of the Neubauer et al., (1995) experiment, 𝜏𝐶𝑆,𝑚𝑎𝑥
 was 

assumed equal to , 𝜏𝑃𝐹𝑅 = 113s and 𝜏𝐶𝑆,𝑚𝑖𝑛
 equal to 𝜏𝑆𝑇𝑅 = 27min. The maximum 

𝐶𝑆,𝑚𝑎𝑥, , and minimum, 𝐶𝑆,𝑚𝑖𝑛 concentration in each simulation were assumed con-

stant and equal to the whole-process-time average of the substrate concentration in 

the injection sub-volume(s) and in the remaining sub-volumes respectively. The 

time trace of the glucose concentration just introduced was used as 𝐶𝐺(𝑡) in Eq. 

(6.14) and the other constants are reported in Tab. 6.3. The characteristic time 

needed by the cell to adapt its metabolism to the substrate concentration in the sur-

rounding environment, 𝑇𝑏𝑖𝑜, was hypothesized to be long with respect to the other 

biological time scales as well as the fluid dynamics time scales. The values of the 

other constants should be determined from dedicated experiments, that is why, in 

this discussion, a systematic analysis of the constants of Eq. (6.14) is overlooked. 
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(a) 

 

(b) 

Fig. 6.11 – Instantaneous and averaged evolution of the glucose concentration experienced by the cells (left y-

axis) and instantaneous and averaged maintenance rate (right y-axis). The simulations were devised to test the 

change in the maintenance rate due to substrate fluctuations for the Xu et al., (1999) experiment (a) and for the 

Neubauer et al., (1995) experiment (b). 

 

The constants 𝐾, 𝑇𝜎 and 𝑇𝑟𝑒𝑐 and their ratio mostly influence the magnitude of 

the resulting 𝑚. The constants were set in order to get 𝛼 =
𝐾×𝑇𝑟𝑒𝑐

𝑇𝜎
 equal to 𝛼 =
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5.00 × 104𝐿2/𝑔𝑋 · 𝑚𝑚𝑜𝑙𝐺 · ℎ, close to the value of 𝛼 = 4.86 × 104𝐿2/𝑔𝑋 ·

𝑚𝑚𝑜𝑙𝐺 · ℎ identified through experiments in Section 6.5.2. 

 

Tab. 6.3 – Constants used in the solution of Eq. (6.14) 

Constant Value Units 

𝐾 5 × 103 𝐿2/𝑔𝑋 · 𝑚𝑚𝑜𝑙𝐺 · ℎ 

𝑇𝜎 5 × 10−4 ℎ 

𝑇𝑏𝑖𝑜 0.1 ℎ 

𝑚0 0.150 𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ 

𝑇𝑟𝑒𝑐 5 × 10−3 ℎ 

 

The constant 𝑇𝑏𝑖𝑜 and especially the ratio between 𝑇𝑏𝑖𝑜 and the interval be-

tween two consecutive fluctuations is what changes the overall integral behavior of 

𝑚. The solution of Eq. (6.14) for the two experiments is shown in Fig. 6.11. 

From Fig. 6.11a, in the zoomed drawing encircled with the dashed line, it is 

possible to see that the instantaneous maintenance rate obtained with the parame-

ters in Tab. 6.3 for the Xu et al., (1999) experiment, 𝑚(𝑡), is subject to periodic 

peaks (due to the concentration fluctuations) after which it recovers its value at 

rest, 𝑚0. Interestingly, the average 𝑚 obtained over a 𝑇𝑏𝑖𝑜 time interval is almost 

constant during the fermentation, except for a short initial adjustment time immedi-

ately after the beginning of the fed-batch phase. As already mentioned, averaging 

in time over 𝑇𝑏𝑖𝑜 is equivalent to averaging over the volume or ensemble averaging 

over the entire microbial population. Remarkably, the averaged value of 𝑚 is cor-

rectly predicted in this Lagrangian formulation, with the same value of 𝛼 =
𝐾×𝑇𝑟𝑒𝑐

𝑇𝜎
 

derived from a Eulerian view.  

On the other hand, the zoomed drawing encircled with the dashed line in Fig. 

6.11b shows that in Case B of the Neubauer et al., (1995) experiment the fluctua-

tion characteristic time is longer with respect to Xu et al., (1999). In fact, the pres-

ence of the large STR with low substrate concentration adds a long residence time 

between two consecutive glucose fluctuations. During this time, the cells have time 

to adapt to the new low-concentration environment, producing metabolic changes 

that affect the instantaneous maintenance rate as well as its averaged value. When 

the cells are transported to the high glucose concentration environment the concen-
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tration difference triggers a higher metabolic stress with respect to the previous 

case. This behavior is caught by the model in terms of average glucose concentra-

tion (thick blue line) that is almost constant in Fig. 6.11a whereas it pulses due to 

the fluctuations in Fig. 6.11b. Another important aspect is the duration of the con-

centration fluctuation that in Case B of the Neubauer et al., (1995) experiment is 

two orders of magnitude larger than in the Xu et al., (1999) experiment. This long-

er exposure to high concentration allows the cell to adjust to the new high concen-

tration environment, allowing for a small 𝑚 recovery in the high concentration en-

vironment. The single cell behavior convoluted with the residence time distribution 

in the STR explains the increased maintenance at the population scale leading to a 

reduced production of biomass with respect to Case A of the same experiment.  

6.6.3 Further considerations on the coupling with oxygen availability 

In our simulations, the dissolved oxygen concentration is constant and equal to 

⁓10mgO/L, and fermentative metabolism could only take place because of a re-

duced oxygen uptake rate due to inhibition by acetate. Having set 𝐾𝑖,𝐴
𝑜 = 4gA/L and 

obtaining a residual acetate concentration below 10mgA/L, acetate does not inhibit 

the oxygen uptake and therefore fermentation does not happen. Thus, the mixed-

acid metabolism is not responsible for the reduced yield. The reduction was entire-

ly attributed to an increased maintenance rate as a result of gradient induced stress-

es. This possible explanation was already proposed in most studies mentioned in 

the introduction. However, several authors also argued that an exposure to insuffi-

cient oxygen levels would trigger the mixed-acid fermentation pathways resulting 

in the production of lactate, formate and succinate from pyruvate. These pathways 

compete with the central metabolism pathway. 

Neubauer et al., (1995) interpreted the reduced production of biomass in Case 

B1 as a result of a suboptimal oxygen concentration that induced an acetate produc-

tion through fermentation at the end of the PFR. To support this, they performed 

Case B2 experiment (with oxygen enriched air injection in the PFR). The initial 

acetate production due to overflow metabolism was maintained but acetate for-

mation due to fermentation was eliminated. Also, the production of biomass 

matched the biomass production in Case A. This suggests that overflow is not the 

main cause of yield reduction. Repeating the Neubauer et al., (1995) experiments, 
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Xu et al., (1999) measured that the various acids are re-assimilated almost com-

pletely in the aerated STR. They explained  that the repeated production and re-

assimilation may be a contributing factor causing biomass loss upon scale-up. Even 

though the oxygen sensor did not reveal limiting levels in the 20m3 experiments, 

they concluded that oxygen limitation was certainly present or perceived by the 

microorganisms. In the end, mixed-acid fermentation lead to small amounts of by-

products (a few mg/L) which cannot quantitatively explain a decrease in biomass 

production of several g/L. 

A possible explanation of this experimental observation is that the bacteria sub-

ject to intense substrate fluctuation almost instantaneously convert up to 30% of the 

substrate into CO2 with a specific uptake rate of O2 that was very similar to the 

specific rate of CO2 excretion (Sunya, et al., 2012). This indicates that the oxygen 

demand increases as a result of over-assimilation. If enough oxygen is available, 

the massive excretion of CO2 limits the substrate flood in the central metabolism 

and this mechanism therefore contributes to a reduction of the metabolic stresses, 

i.e. lower 𝑚 values. If the oxygen availability is insufficient (or the oxidative ca-

pacity of the cells is saturated) mixed-acid fermentation is triggered as well as a 

cascade of genetic and enzymatic bioprocesses which contribute to an increased 

energetic cost of living from the cell point of view. It is therefore promising to con-

sider that both substrate and oxygen distribution can contribute to a modification of 

the maintenance rate and extend the proposed approach to multiple nutrients. 

6.7 Conclusions 

In this work a two-environments IEM mixing model was implemented in the 

context of the software ADENON to describe the substrate inhomogeneities in two 

experimental fed-batch processes found in literature.  

Numerical simulations were performed to compare results obtained with the 

IEM model to numerical results obtained with a compartment model from literature 

and to the experimental results. A very good agreement was reached between the 

results obtained with the IEM and the compartment model, proving that a simpli-

fied description of the state of mixing could suffice when just substrate concentra-

tion spatial gradients are important. The agreement between the experimental and 
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the numerical results is not worsened by the adoption of the simplified IEM model, 

in both the experimental set-ups found in literature.  

In comparison to other approaches (CFD and CMA), the use of an IEM model 

allows a fast and inexpensive simulation of highly segregated heterogeneous biore-

actors.  

Considerations on the increase of the maintenance rate due to concentration 

fluctuations were necessary to improve the agreement with the experimental data. 

A modification to the Pirt’s law introducing a dependence of the cell maintenance 

on the variance of the concentration distribution was hypothesized, validated 

against experimental data and discussed both from a Lagrangian and from a Euleri-

an perspective. This proposition constitutes a very simple and presumably general 

framework to connect concentration gradients to the maintenance rate.  

To sum up, the cost of living in an imperfectly mixed bioreactor increases with 

the variance of the concentration distribution. 
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6.8 Appendix A 

A sensitivity study on the constants range highlighted that 6 constants of the 

metabolic model had the highest effects on the Neubauer et al., (1995) results. The 

constants and their values can be found in Tab. A. 6.1. 

 

Tab. A. 6.1 – Model constants and their values used in the sensitivity study. 

Constant -30% (-1) Xu et al., (1999) value +30% (+1) Units 

𝜙𝑂
𝑚𝑎𝑥 10.92 15.60 20.28 𝑚𝑚𝑜𝑙𝑂/𝑔𝑋 · ℎ 

𝐾𝑖,𝐴 2.10 3.00 3.90 𝑔𝐴/𝐿 

𝐾𝑖,𝐴
𝑜  2.80 4.00 5.20 𝑔𝐴/𝐿 

𝑚 0.175 0.250 0.325 𝑚𝑚𝑜𝑙𝐺/𝑔𝑋 · ℎ 

𝑌𝐴𝐺 2.10 3.00 3.90 𝑚𝑜𝑙𝐴/𝑚𝑜𝑙𝐺 

𝑌𝑋𝐺
𝑚𝑎𝑥 0.92 1.32 1.72 𝑚𝑜𝑙𝑋/𝑚𝑜𝑙𝐺 

 

A ±30% deviation from the values proposed by Pigou & Morchain, (2015) to 

simulate the Xu et al., (1999) experiment was studied, to map the sensitivity of the 

Neubauer et al., (1995) results on the variations. Three response variables were ob-

served, namely, the biomass concentration at the end of the fed-batch process, the 

maximum concentration of acetate found in the system during the whole process 

and the time needed to deplete the initial amount of glucose and therefore end the 

batch phase. The effects of the constants change on the response variables are 

shown if Fig. A. 6.1, where the constant normalized values of ±1 indicate a varia-

tion of ±30% from the default values and the y-axis values are the percent change 

of the response variables with respect to the simulations with the default constants 

values (0). 

Fig. A. 6.1 shows that just a decrease in the maintenance rate, 𝑚, or an increase 

in the maximum conversion yield of glucose in biomass, 𝑌𝑋𝐺
𝑚𝑎𝑥, may lead to an in-

crease of the final concentration of biomass. Both constants appear in the Pirt's 

formulation of the glucose to biomass conversion yield, Eq. (6.6), but 𝑚 is related 

both to the bacteria and to the operating conditions, whereas 𝑌𝑋𝐺
𝑚𝑎𝑥 is presented as a 

maximum limit only dependent on the selected strain. Increasing the biomass con-
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centration at the end of the fed-batch phase by changing the two constants present-

ed above lead to a relatively large variation in the production of acetate, that can be 

adjusted with a variation of the other constants. 

 

 
Fig. A. 6.1 – Effect of the constants ±30% variation on the response variables. 

 

The sensitivity study was instrumental in tuning the constants in Tab. 6.1 for 

the Case A of the Neubauer et al., (1995) experiment. In Tab. A. 6.2 the percent 

change of the constant values tuned for the Neubauer et al., (1995) experiment with 

respect to the values proposed by (Pigou & Morchain, 2015) to simulate the Xu et 

al., (1999) experiment is reported. The constant values for the two experiments are 

reported in Tab. 6.1.  
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Tab. A. 6.2 shows that the maintenance rate is subject to the largest absolute 

value variation, pointing to the fact that a model to account for the change of  

𝑚 in the two sets of experiments may be needed. 

 

Tab. A. 6.2 – Model constants and their values used to improve the agreement with the Case A of the Neubauer 

et al., (1995) experiment. 

Constant Percent change 

𝜙𝑂
𝑚𝑎𝑥 -10.3% 

𝐾𝑖,𝐴 +16.7% 

𝐾𝑖,𝐴
𝑜  0.0% 

𝑚 -40.0% 

𝑌𝐴𝐺
𝑓𝑒𝑟𝑚

 
**-7.0% 

𝑌𝐴𝐺
𝑜𝑣𝑒𝑟 

𝑌𝑋𝐺
𝑚𝑎𝑥 +13.6% 

** The average 𝑌𝐴𝐺  weighted on the acetate production mechanism is 2.79 𝑚𝑜𝑙𝐴/𝑚𝑜𝑙𝐺  
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6.9 Nomenclature 

𝑪 Species vector concentration 

𝐶𝐺 Glucose concentration 

<𝐶𝐺> Volume average glucose concentration 

𝐶𝐺
𝑗
 Substrate concentration along the trajectory of the 𝑗𝑡ℎ cell 

𝐶𝑘 Concentration of the 𝑘𝑡ℎ species 

<𝐶𝑘> Volume average concentration of the 𝑘𝑡ℎ species 

𝐶𝑆,𝑚𝑎𝑥 Substrate concentration in the injection sub-volumes 

𝐶𝑆,𝑚𝑖𝑛 Substrate concentration in the bulk sub-volumes 

𝐾 Unit change in 𝑚 due to a unit change in the driving force 

𝐾𝑖,𝐴 Acetate inhibition constant 

𝐾𝑖,𝐴
𝑜  Acetate inhibition constant in the oxygen uptake rate 

𝑚 Maintenance rate 

𝑚 Variable maintenance rate of the cell population 

𝑚0 Maintenance rate of the cells at rest 

𝑁𝐶  Number of sub-volumes 

𝑁𝑐𝑒𝑙𝑙𝑠 Number of cells in the reactor 

𝑝(𝐶𝑘) Probability to find 𝐶𝑘 in the control volume 

𝑟𝑘 Specific reaction rate of the 𝑘𝑡ℎ species 

𝑅𝑘 Volumetric reaction rate of the 𝑘𝑡ℎ species 

𝑆𝑘 Feed source term for the 𝑘𝑡ℎ species 

𝑡 Time 

𝑇𝑏𝑖𝑜 Time scale of long-term metabolic adaptation 

𝑇𝑟𝑒𝑐 Maintenance rate relaxation characteristic time 

𝑇𝑢 𝑑⁄  Adaptation time of the rate of change of 𝜇 

𝑇𝜎 Response time of the cell to external concentration fluctuations 

𝑉 Control volume 

∣ 𝑣 ∣𝑖𝑛 Norm of the velocity vector entering the control volume 

∣ 𝑣 ∣𝑜𝑢𝑡 Norm of the velocity vector exiting the control volume 

𝑋 Biomass concentration 

𝑌𝐴𝐺  Conversion yield of glucose in acetate 

𝑌𝐴𝐺
𝑓𝑒𝑟𝑚

 Conversion yield of glucose in acetate through fermentation 

𝑌𝐴𝐺
𝑜𝑣𝑒𝑟 Conversion yield of glucose in acetate through overflow 

𝑌𝑘,𝑙≠𝑘 Conversion yield of the 𝑙𝑡ℎ into the 𝑘𝑡ℎ species 

𝑌𝑋𝐺  Conversion yield of glucose in biomass 

𝑌𝑋𝐺
𝑚𝑎𝑥 Maximum conversion yield of glucose in biomass 
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Greek letters 

𝛼 Parameter for the integral formulation of 𝑚 

𝜁 Rate of change of the specific growth rate  

𝜇 Specific growth rate of the cell 

𝜇∗ Equilibrium specific growth rate 

𝜇𝑎 Actual specific growth rate 

𝜏𝑚 IEM model parameter 

𝜏𝑃𝐹𝑅 Residence time in the PFR 

𝜏𝐶𝑆,𝑚𝑎𝑥
 Time spent in the injection sub-volume(s) by an ideal cell 

𝜏𝐶𝑆,𝑚𝑖𝑛
 Time spent in the bulk sub-volume(s) by an ideal cell 

𝜏𝑆𝑇𝑅 Residence time in the STR 

𝜙𝑂
𝑚𝑎𝑥 Maximum oxygen uptake rate 

𝛺 Surface enveloping the control volume 

𝜔, 𝜏 Free variables of integration 
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Chapter 7  

Conclusions 

The goal of the research presented in this PhD thesis was to investigate differ-

ent turbulent two-phase processes in mechanically stirred tanks and bioreactors by 

means of numerical simulations.  

Different phenomena were studied in the context of the RANS-TFM approach, 

in which the segregation of the phases required specific modelling of the different 

closure terms to describe the fluid dynamics behavior, the interphase interactions 

and the effects within each single phase, such as the biomass metabolism or the 

evolution of the drop diameters. 

The investigation concerned different laboratory scale equipment involving 

dispersed particle/droplets/bubbles in a continuous liquid phase, with the purpose 

in mind to identify a modelling method for industrial-scale equipment for each spe-

cific system. As a result, the direct resolution at all turbulent length and time 

scales, the entire particle-fluid interface, the particle-fluid interaction forces, the 

particle-particle collision and particle-wall collision events is not possible. In this 

realm, the major strength of the TFM model is the viability of application at indus-
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trial scale with a realistic representation of the equipment geometry, that is the tar-

get of any design and geometrical optimization method.  

Strengths and limitations of the TFM model for the investigate two-phase 

flows are different depending on the main physical characteristics of the specific 

turbulent multiphase equipment under investigation, namely: the dispersed phase 

mean volume fraction, the dispersed phase volume fraction distribution in the 

equipment volume, the dispersed phase size distribution, the operating mode for 

the dispersed phase (batch as in the case of droplets and particles, continuous for 

bubbles). In addition, possible inter-phase mass transfer, chemical or biochemical 

reactions, if present, must be considered.  

For those processes that are critically affected by the turbulent flow field of the 

continuous phase (e.g. bubble/droplet breakage and coalescence) the same limita-

tions of single-phase RANS-based simulations and the same attention to numerical 

verification that are already well known from previous investigations have to be 

kept in mind.   

The dispersed phase mean and local volume fraction determines the level of in-

teractions. 

- In case of one-way coupling, as in the investigated liquid-liquid stirred 

tank, fluid-particle interaction models for TFM models are generally well 

established, provided that a realistic size of the dispersed phase is either 

know a-priori (as is the case of inert solid particles or narrow size distribu-

tion of bubbles or droplets) or determined by population balance models in 

case of wide size distribution. In this latter case, limitations are mainly con-

cerned with the breakage and coalescence models and with the RANS-

based prediction of the liquid phase turbulent flow field, due to the depend-

ency of breakage and coalescence mechanisms on the turbulent field. A 

method for partially overcoming this limitation is identified in the liquid-

liquid study. 

- In case of two-way coupling the effect of the dispersed phase on the turbu-

lent field may have a significant impact, either enhancing or dumping tur-

bulent fluctuations. In the incomplete suspension of dense solid-liquid mix-

tures, for instance, the lack of an established turbulence dumping model due 

to the settled layer of particles leads to an overprediction of an interphase 
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term, resulting in incorrect suspension of the solids from the bottom of the 

tank. 

- In case of four-way coupling the interactions between particles, such as col-

lisions, are modelled as ensemble averaged phenomena. Collisions of parti-

cles in dense solid-liquid suspensions in fully turbulent stirred tanks proved 

to have a negligible contribution in predicting the volume fraction distribu-

tion of the dispersed phase above NJS. On the other hand, a related phenom-

enon as the particle packing is essential in correctly predict the suspension, 

but its modelling relies on a numerical approach. 

- For very large dispersed phase concentration, the dominant flow regime 

may change due to phase inversion, inter-particle collisions, enhanced ag-

gregation phenomena, etc. In these conditions, the Euler-Euler model limits 

are pushed, and a reliable prediction of the flow fields needs additional 

models to take the changed physics into account. This is the case of unsus-

pended solids on the tanks bottom, where inter-particle collision is the main 

momentum exchange mechanism and the effect of interstitial fluid becomes 

less important, thus becoming a granular flow regime. 

 

The validation of the numerical results with experimental data has been sys-

tematically performed and either confirmed the goodness of the models and the 

modelling techniques (such as in the case of Liquid-Liquid turbulent field, in the 

solid volume fraction profiles in complete suspension conditions, in the bioreactor 

fluid dynamics and in the chemical species evolution in time as predicted by the 

metabolic model) or it was instrumental in understanding the limits and the uncer-

tainties of the model formulations (as, for instance, in the prediction of the DSD of 

diesel fuel in water and in the solid volume fraction profiles in incomplete suspen-

sion conditions) helping in some cases the development of new models (for exam-

ple in the implementation of a TFM interfacial model for the mass transfer of gas 

in water and in the formulation of the maintenance rate dependence on the substrate 

fluctuations). 

The main specific results achieved in the thesis are summarized in the follow-

ing. 
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- Liquid-Liquid dispersions in stirred tanks: 

o experimental data confirmed that, in the investigated system and 

operating conditions, the diluted dispersed phase has a negligible 

impact on the mean and fluctuating variables of the continuous 

phase;  

o RANS-TFM predictions of the turbulent field satisfactorily agree 

with single-phase results from the literature; 

o the simulations underpredict the DSD, suggesting that specific tun-

ing of the breakup kernel parameters is needed; 

o grid effects are relevant and need to be properly addressed before-

hand;  

o a novel scalar correction for the breakup kernel derived from local 

quantities is proposed. 

 

- Solid-Liquid suspension in stirred tanks: 

o in the operating conditions considered, the so-called granular model 

formulation did not provide any contribution to the TFM in the pre-

diction of the solid distribution in the stirred tank for solid volume 

fractions up to 0.15, provided that a packing limit was included; 

o in complete suspension conditions the coupling between TFM and 

the proper interphase forces provided reliable radial profiles of solid 

volume fraction; 

o in the investigated incomplete suspension conditions the accuracy 

of the numerical radial concentration profiles was unsatisfactory; 

o the turbulent dispersion force significantly contributes to the solid 

suspension and distribution in the stirred tank; 

o specific models to account for particle-particle interactions and ad-

vances in the modelling of the effects of the solid phase on the liq-

uid turbulent field and of the turbulent dispersion in the incomplete 

suspension of solids are needed. 
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- Biohydrogen production in stirred fermenters: 

o a modelling strategy for the fermentative production and stripping 

of biohydrogen in the self-ingesting stirred tank reactor was imple-

mented; 

o the interphase flux of hydrogen was modelled with a local mass 

transfer coefficient from the literature, a novel interfacial area for-

mulation for the TFM and the Henry’s gas law;  

o the kinetics of a simplified biochemical reaction for hydrogen pro-

duction was described with a substrate inhibition model and imple-

mented in porous supports for attached growth biomass; 

o the performances of two reactor configurations were tested with a 

local and an instantaneous analysis of the reaction rate, the inter-

phase hydrogen fluxes and the two-phase fluid dynamics; 

o geometrical changes were proposed based on the local behaviour of 

the bioreactor; 

o the two-impeller configuration allows the circulation of stripping 

gas to enhance recovery. 

 

- Escherichia coli fermentation in bioreactors: 

o a probabilistic mixing model was derived and implemented in the 

context of the software ADENON to describe the substrate inhomo-

geneities in fed-batch systems;  

o results from the IEM and the compartment model agree, proving 

that a simplified mixing model could suffice when just substrate 

segregation is important.  

o the adoption of the simplified IEM model does not worsen the 

agreement with the experiments from the literature; 

o the simulation with an IEM model of highly segregated heterogene-

ous bioreactors is faster and computationally cheaper than CFD and 

CMA; 

o a simplified model tying the maintenance rate of a population to the 

variance of the substrate concentration distribution was developed, 

implemented, validated against experimental data and discussed 

both from a Lagrangian and from a Eulerian perspective; 
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o introducing in the Pirt’s law a dependence of the cell maintenance 

costs on the substrate concentration fluctuations improved the 

agreement with the experimental data. 

 

 

Future development work will aim at extending the prediction capabilities of 

the RANS-TFM simulations of liquid-liquid mixture in more concentrated condi-

tions, studying the drawdown mechanism and, possibly, implementing hybrid tech-

niques to account for the simultaneous presence of large agglomerates and finely 

dispersed droplets. The coupling between fluid-dynamics and bioreactions will be 

further investigated, working on the development of robust and computationally 

viable methods to describe both the two-phase flow and the cells metabolism, to 

simulate bioreactors of industrial interest. 


