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Abstract

The sustained demand for faster, more powerful chips has been met by the
availability of chip manufacturing processes allowing for the integration
of increasing numbers of computation units onto a single die. The result-
ing outcome, especially in the embedded domain, has often been called
SYSTEM-ON-CHIP (SOC) or MULTI-PROCESSOR SYSTEM-ON-CHIP (MP-
SOC).

MPSoC design brings to the foreground a large number of challenges,
one of the most prominent of which is the design of the chip interconnec-
tion. With a number of on-chip blocks presently ranging in the tens, and
quickly approaching the hundreds, the novel issue of how to best provide
on-chip communication resources is clearly felt.

NETWORKS-ON-CHIPS (NOCS) are the most comprehensive and scal-
able answer to this design concern. By bringing large-scale networking
concepts to the on-chip domain, they guarantee a structured answer to
present and future communication requirements. The point-to-point con-
nection and packet switching paradigms they involve are also of great help
in minimizing wiring overhead and physical routing issues.

However, as with any technology of recent inception, NoC design is
still an evolving discipline. Several main areas of interest require deep
investigation for NoCs to become viable solutions:

• The design of the NoC architecture needs to strike the best trade-
off among performance, features and the tight area and power con-
straints of the on-chip domain.

• Simulation and verification infrastructure must be put in place to
explore, validate and optimize the NoC performance.

• NoCs offer a huge design space, thanks to their extreme customiz-
ability in terms of topology and architectural parameters. Design
tools are needed to prune this space and pick the best solutions.
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• Even more so given their global, distributed nature, it is essential to
evaluate the physical implementation of NoCs to evaluate their suit-
ability for next-generation designs and their area and power costs.

This dissertation focuses on all of the above points, by describing a
NoC architectural implementation called ×pipes; a NoC simulation envi-
ronment within a cycle-accurate MPSoC emulator called MPARM; a NoC
design flow consisting of a front-end tool for optimal NoC instantiation,
called SunFloor, and a set of back-end facilities for the study of NoC phys-
ical implementations.

This dissertation proves the viability of NoCs for current and upcom-
ing designs, by outlining their advantages (along with a few tradeoffs) and
by providing a full NoC implementation framework. It also presents some
examples of additional extensions of NoCs, allowing e.g. for increased
fault tolerance, and outlines where NoCs may find further application sce-
narios, such as in stacked chips.
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CHAPTER 1

Introduction

Silicon vendors are constantly facing pressure to deliver feature-rich, high-
performance, low-power, low-cost chips, in as short a time as possible.
Luckily, silicon manufacturing techniques have been continuously per-
fected, following the well-known Moore’s Law; this has provided the po-
tential for answering customer demands.

However, along the years, an increasing gap has been observed among
the number of available on-chip transistors and the capability of designers
to make good use of them. As a consequence, some trends in chip design
have become crystal clear:

• An increasing emphasis on modularity, reuse and parallelism is
mandatory. Redesign from scratch is too time-consuming. Also,
deploying multiple instances of existing computation blocks can be
more efficient than developing more powerful blocks. Therefore, li-
braries of so-called INTELLECTUAL PROPERTY (IP) cores are increas-
ingly becoming the foundation of platform development.

• Also based on the previous item, complexity is nowadays shifting
from the development of functional units to the task of system inte-
gration. This is exacerbated by the fact that full designs are nowa-
days almost impossible to characterize in all possible operating con-
ditions, leading to closure, optimization and verification issues.

• Software tools devoted to design automation are key at all levels.
This applies to performance characterization, platform assembly and
validation, physical implementation, etc.. Without efficient tools, the
sheer complexity of billion-transistor designs and deep-submicron
lithographic processes is impossible to tackle by designer teams of
any size.
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A typical outcome of these trends are today’s MULTI-PROCESSOR

SYSTEMS-ON-CHIPS (MPSOCS). These are full-featured chips, composed
of a variety of functional blocks, to the point of integrating the founda-
tion of a whole system or device into a single die. MPSoCs are used in a
variety of environments, including multimedia gadgets, gaming stations,
smartphones, automotive equipment, healthcare devices, industrial ma-
chinery, aerospace control units, and many more. MPSoCs are built upon
assemblies of IP cores, and rely extensively on COMPUTER AIDED DESIGN

(CAD) tooling for initial design space exploration, system optimization,
system verification, and physical implementation.

An increasingly critical piece of the MPSoC puzzle is the on-chip inter-
connection infrastructure. Today, even MPSoCs used in mid-range mobile
phones can easily contain tens of IP cores (Figure 1.1 [1]), and new chips
with more than a hundred such internal units are appearing for various
applications. The trend expressing the number of IP cores that can be inte-
grated on a chip is exponential, roughly doubling every 18 months. How
to effectively provide communication resources among such a number of
building blocks is clearly a challenge. In fact, it is likely a key factor in de-
termining the success or failure of upcoming MPSoCs will be the ability to
efficiently provide the communication backbone into which to seamlessly
plug a variety of IP cores.

Figure 1.1: Block diagram of the Infineon S-GOLD3H chip for multimedia
HSDPA mobile phones.
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1.1

Background

Traditionally, MPSoC interconnects have been based on the shared bus con-
cept [2]. In other words, a bunch of wires would be laid among all the IP
cores in the design. Only one pair of devices would be allowed to com-
municate over this bus at any point in time; access to the shared medium
would be regulated by arbitration, either based on fixed priorities, on time
slots, randomly, or on other criteria.

Shared buses have as a main advantage their extreme simplicity, both
in conceptual terms and circuit design terms. However, they are com-
pletely unsuitable for next-generation MPSoCs, due to two fundamental
limitations (Figure 1.2 on the next page):

• Their maximum available bandwidth is capped by their shared na-
ture, and this limit can easily be trespassed when the number of at-
tached cores becomes more than a few.

• Their electrical performance degrades dramatically with new litho-
graphic nodes. Since a shared bus is necessarily a structure com-
posed of global wires, as per the INTERNATIONAL TECHNOLOGY

ROADMAP FOR SEMICONDUCTORS (ITRS) [3], its propagation de-
lay actually increases with miniaturization. Therefore, with each
new chip generation, a shared bus becomes slower in operating fre-
quency, and even slower when compared to the progress in speed
achieved by logic blocks. Long wires are also more vulnerable to
crosstalk, variability and electrical noise, all of which represent in-
creasingly serious problems in current technologies.

In response to these issues, buses have undergone evolutions [4, 5, 6]
in two respects: protocols and topologies (Figure 1.3 on page 5).

Protocol evolution allows for more sophisticated handshakes occur-
ring on the bus, such as multiple outstanding transactions, out-of-order
retirement of responses, burst requests, smarter arbitration, etc.. These
evolutions help in making the best possible use of the limited available
bandwidth. While useful in temporarily reducing the extent of bandwidth
issues, they still do not provide a long-term solution to the fundamental
limitations of buses.

Topology evolutions are a more radical departure from the original
shared bus paradigm. The main principle is to deploy multiple buses,
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(a) Transactions cannot occur in parallel, even among indepen-
dent pairs of devices.

(b) Global wiring spanning across the chip has poor electrical
performance.

Figure 1.2: Shared bus limitations.

attached to each other by bridges or elements called crossbars - i.e., devices
providing full simultaneous connectivity among all their inputs and all
their outputs. The outcome is often called hierarchical bus or multilayer bus.
Hierarchical buses are a much better response to MPSoC design concerns,
and in fact most MPSoCs today leverage hierarchical buses.

Even despite these improvements, buses are still a sub-optimal solu-
tion for next-generation MPSoCs, due to several factors:

• Hierarchical buses are mostly a manual workaround, by means of
which designers try to fix the issues they are presently facing. The
development and verification steps have to be performed mostly

March 13, 2008 Federico Angiolini 4
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Figure 1.3: Evolution of shared buses towards hierarchical buses and more
advanced protocols.

manually, and it is hard to guarantee that the design will scale upon
the addition of more IP cores in the next revision of the design. Is-
sues such as deadlock prevention, address mapping, and compliance
with performance objectives are among the challenges left to design-
ers.

• From the physical design point of view, hierarchical buses are not
much better than shared buses. While allowing for some wire seg-
mentation (wires only have to span regions of the whole system),
wires are still normally laid with wide parallelism (typically more
than 100 wires for a 32-bit bus and possibly close to 200 for a 64-
bit bus), and they still connect multiple entities (a large fanout). To-
gether, these issues mean that buses are still electrically inefficient,
and difficult to route during physical design.

• Buses normally involve interaction among three agents, usually
called master, slave and arbiter, instead of providing a point-to-point,
one-to-one handshake. This is unnecessarily making system integra-
tion harder.

1.2
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Networks-on-Chips: Opportunities and Chal-

lenges

A comprehensive solution to on-chip interconnection issues has been pro-
posed in the form of NETWORKS-ON-CHIPS (NOCS) (Figure 1.4).

Figure 1.4: Conceptual view of a Network-on-Chip.

NoCs are packet-switching networks, brought to the on-chip level.
The rationale is that, since the complexity of on-chip communication is
rapidly approaching that of large area systems in terms of actors, it makes
sense to reuse some of the solutions devised in the latter space. Therefore,
NoCs are based upon topologies of switches (also called routers) distribut-
ing packets around, over point-to-point links. Since existing IP cores do
not normally communicate by means of packets, NETWORK INTERFACES

(NIS) (also called network adapters) are in charge of protocol conversion;
they convert commands appearing on the pinout of IP cores into packets,
and vice versa at the receiving end of a transaction.

NoCs have the potential to bring a large number of advantages to on-
chip communication, such as:

• Virtually unlimited architectural scalability. As known from wide
area networks, it is easy to comply with higher bandwidth re-
quirements by larger numbers of cores simply by deploying more
switches and links.
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• Much better electrical performance. All connections are point-to-
point. The length of inter-switch links is a design parameter that can
be adjusted. The wire parallelism in links can be controlled at will,
since packet transmission can be serialized. All these factors imply
faster propagation times and total control over crosstalk issues.

• Also due to the possibility of having narrower links than in buses
(e.g. 20 bits instead of 100), routing concerns are greatly alleviated,
and wiring overhead is dramatically reduced. This leads to higher
wire utilization and efficiency.

• Faster and easier design closure achievement. Physical design im-
provements make NoCs, in general, more predictable than buses.
Therefore, it is more unlikely that costly respins will be required
upon physical design and performance qualification.

• Better performance under load. Since the operating frequency can be
higher than in buses, the data width is a parameter, and communi-
cation flows can be handled in parallel with suitable NoC topology
design, virtually any bandwidth load can be tackled.

• More modular, plug&play-oriented approach to system assembly. IP
cores are attached in point-to-point fashion to dedicated NIs; NIs can
be specialized for any interface that may be needed, either industry
standards such as AMBA AHB or any custom protocol. Potentially
any core may be seamlessly attached to a NoC given the proper NI.
Computation and communication concerns are clearly decoupled at
the NI level.

• Potential for the development of streamlined design flows. While hi-
erarchical buses are often assembled by hand and therefore must be
tuned and validated with manual intervention, a network can be de-
signed, optimized and verified by automated means, leading to large
savings in design times, and getting a solution closer to optimality.

• A much larger design space. NoCs can be tuned in a variety of
parameters (topology, buffering, data widths, arbitrations, routing
choices, etc.), leading to higher chances of optimally matching de-
sign requirements. Being distibuted, modular structures, NoCs can
also accommodate differently tuned regions. For example, some por-
tions of a NoC could be tuned statically for lower resource usage
and lower performance (e.g. by reducing the data width), or could
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dynamically adjust their mode of operation (e.g. frequency, voltage
scaling).

At the same time, NoCs are facing a completely different set of con-
straints compared to wide area networks. While in the latter environment
a switch is implemented with at least one dedicated chip, in a NoC the
switch must occupy a tiny fraction of the chip real estate. This means that
some of the principles acquired in wide area networking have to be revis-
ited. Some of the challenges lying ahead of NoCs include:

• The tradeoffs among network features, area and power budgets have
to be studied from scratch. Policies which are widely accepted in
general networking (e.g. dynamic packet routing) must be reassessed
to evaluate their impact on silicon area.

• Performance requirements are very different in the on-chip domain,
also due to the completely different properties of on-chip wiring.
Bandwidth milestones are much easier to achieve, since informa-
tion transfer across on-chip wires is much faster than across long
cables. Conversely, latency bounds are much stricter; while millisec-
onds or even hundreds of milliseconds are acceptable for wide area
networks, IP cores on a chip normally require response times of few
nanoseconds.

• Contrary to wide area networks, where nodes may often be dynam-
ically connected to and disconnected from the network, in NoCs the
set of attached IP cores is obviously fixed. In many applications,
it is also relatively easy to statically characterize the traffic profiles
of such IP cores. This opens up the possibility of thoroughly cus-
tomizing NoCs for specific workloads. How to achieve this goal is,
however, less clear.

• Design tools for NoCs can be developed, but, as above, how exactly
is an open question. The customizability of NoCs, while an asset,
is also an issue when it comes to devising tools capable of pruning
the design space in search of the optimal solutions. The problem
is compounded by the need to take into account both architectural
and physical properties; by the need to guarantee design closure;
and by the need to validate that the outcome is fully functional, e.g.
deadlock-free and compliant with performance objectives.

• NoCs are a recent technology, and as such, they are in need of the
development of thorough infrastructure. In addition to design tools,
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this includes simulators, emulation platforms (such as FIELD PRO-
GRAMMABLE GATE ARRAY (FPGA) boards), and back-end flows for
the implementation on both FPGAs and APPLICATION-SPECIFIC IN-
TEGRATED CIRCUITS (ASICS).

1.3

Related Work

1.3.1 MPSoC Interconnects

The continuous time-to-market pressure for consumer embedded devices
makes it infeasible to perform a complete redesign each time a new prod-
uct needs to be developed. Therefore, reuse-intensive platforms such as
MPSoCs have become a very attractive solution for the new consumer
multimedia embedded market [7]. Several platforms from the major
semiconductor vendors (e.g. Philips Nexperia [8], TI OMAP [9], ST No-
madik [10]) are available today, exemplifying these paradigms in hetero-
geneous platforms.

Although MPSoCs promise to significantly improve the processing
capabilities and versatility of embedded systems, one major problem in
their current and future design is the effectiveness of the interconnection
mechanisms between the internal components, as the amount of compo-
nents grows with each new technological node. Traditional SoC intercon-
nects, as exemplified by AMBA AHB [11], are based upon low-complexity
shared buses, in an attempt to minimize area overhead. Such architectures,
however, are not able to cope with the heterogeneous and demanding
communication requirements of MPSoCs, motivating the need for more
scalable designs. The most advanced SoC communication architectures
used in industry today represent evolutionary solutions with respect to
such shared buses. For instance, the Sonics MicroNetwork [6] is a TDMA-
based bus which can easily adapt to the data-word width, burst attributes,
interrupt schemes and other critical parameters of the integrated cores,
while providing very high bandwidth utilization. Another example is the
STBus interconnect [5], a high-performance communication infrastructure
that allows to instantiate shared busses as well as more advanced topolo-
gies such as partial or full crossbars. Recently, the AXI [4] evolution of
AMBA AHB has focused on decoupling communication and computa-
tion concerns as much as possible, by providing only specifications for
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the core/interconnect interface, and leaving ample freedom to intercon-
nect designers. In this sense, a similar role is played by the OPEN CORE

PROTOCOL (OCP) [12] interface specification, which is meant to serve as
a standard, composable interfacing specification for next-generation MP-
SoCs, and which is already in use today by several vendors [13].

In addition to increasing bandwidth and performance demands, a new
set of problems is coming from the physical side. As the semiconductor in-
dustry reaches deep submicron technologies [14], power density and pro-
cess variations become critical design concerns for embedded systems as
well; thus, predictability in the design of on-chip interconnects is becom-
ing as important as the provided bandwidth. Further, well-known trends
in wire propagation delay scaling [3] point out a very concrete problem in
the layout of global wires, making the further development of buses very
problematic. Hence, new paradigms and methodologies that can design
efficient, power-effective and reliable interconnects for MPSoCs are a must
nowadays.

Networks-on-Chips

NETWORKS-ON-CHIP (NOCS) have been suggested as a promising so-
lution to the aforementioned scalability problem of forthcoming MP-
SoCs [15, 16, 17, 18, 19]. NoCs build on top of the latest evolutions of bus
architectures in terms of advanced protocols and topology design, and, by
bringing packet-based communication paradigms to the on-chip domain,
they address many of the upcoming issues of interconnect fabric design
better than buses [20]. In terms of performance scalability, in NoCs the
available bandwidth can be boosted simply by increasing the number of
links and switches, therefore guaranteeing support for designs of extreme
complexity, as wide-area networks testify. Furthermore, compared to ir-
regular, bridge-based assemblies of clusters of processing elements, NoCs
also help in tackling design complexity and verification issues [17, 21].

One of the earliest contributions in this area is the Maia [22] hetero-
geneous signal processing architecture, based on a hierarchical mesh net-
work. In [23], the authors sketch the architecture of a VLSI multi-computer
using 2009 technology, where a chip with 64 processor-memory tiles is en-
visioned. Communication is based on packet switching.

Most early NoC proposals are packet switched and exhibit regular
structure. The NOSTRUM network [24] adopts a mesh based approach.
The SCALABLE PROGRAMMABLE INTEGRATED NETWORK (SPIN) [25]
is another regular, fat-tree-based network architecture. The Linköping
SoCBUS [26] is a two-dimensional mesh network which uses a packet
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connected circuit to set up routes through the network. In [27] the use
of the octagon communication topology for network processors is pre-
sented. Moreover, the implementation of a star-connected on-chip network
supporting plesiochronous communication among system components is de-
scribed in [28]. These NoCs provide scalable network fabrics for homoge-
neous system (e.g. symmetric chip-multiprocessors), but they do not allow
arbitrary heterogeneous topology instantiation. Unfortunately, many real-
world MPSoCs exhibit a large degree of heterogeneity, both in communi-
cation requirements (clock frequency, data width, injected bandwidth) and
in physical terms (size and positioning of the IP cores on the floorplan).

Significant steps in the direction of instantiation-time flexibility have
been taken in the Æthereal [29] NoC design framework, which aims at pro-
viding a complete infrastructure for developing heterogeneous NoCs with
end-to-end quality of service guarantees. The network supports GUAR-
ANTEED THROUGHPUT (GT) for real time applications and BEST EFFORT

(BE) traffic for timing unconstrained applications. Æthereal’s NI is highly
configurable (it supports several session-layer standards, a variable num-
ber of ports, etc.), but the switch architecture is quite rigid. Furthermore,
from the implementation viewpoint, both the NI and the switch make use
of custom hard-macro FIFO buffers. These structures are not synthesize-
able in standard cell flows and they must be manually re-tuned when mi-
grating to new technologies.

Support for heterogeneous architectures requires highly configurable
network building blocks, customizable at instantiation time for a specific
application domain. For instance, the Proteo [30] NoC consists of a small
library of predefined, parameterized components that allow the imple-
mentation of a large range of different topologies, protocols and config-
urations.

In this work, we propose the ×pipes NoC, which pushes the configura-
bility approach to the limit, by instantiating an application-specific NoC
from a library of synthesizeable soft macros (network interfaces, switches
and links). The components are highly parameterizable and provide reli-
able and latency-insensitive operation, while minimizing both latency and
implementation cost.

Physical Design and Cross-Benchmarking

A major advantage of NoCs is that the interconnect structure and wiring
complexity can be fully controlled by matching network topology with
physical constraints. When the interconnect is structured, the number of
timing violations that may occur during physical design (floorplanning
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and wire routing) is minimized. Such design predictability is critical for
today’s MPSoCs to achieve timing closure. It leads to faster design cycles,
to a reduction in the number of design re-spins and to a faster time-to-
market.

As the wire delay to gate delay ratio is increasing with each techno-
logical generation, having shorter wires is even more important for future
MPSoCs. This property of NoCs means that, for a proper assessment, it
is crucial to take into account the physical implementation phase. The
synthesis flow of NoCs has been explored by several groups. Layouts are
presented in [29, 31], a test chip is shown in [32], and an FPGA target is
provided for [33].

In this work, to take into account as many key effects as possible, we
establish a flow that takes our NoC topologies down to placed&routed
layouts. This flow allows us to derive final frequency, area and power
figures for the NoC blocks in order to perform complete studies of dif-
ferent overall NoC interconnects. In our analyses and studies of on-chip
interconnects we cover NoCs implemented with the proposed design flow
using three different technology libraries (130, 90 and 65nm), such that we
can provide conclusions for a very representative part of the design spec-
trum.

One key topic which has not yet been extensively covered is studying
how NoCs compare to more traditional interconnects. In [34], an analyt-
ical methodology is illustrated to compare NoCs of arbitrary topology (a
shared bus and a crossbar are provided as examples) also taking into ac-
count area, frequency and power metrics. However, some assumptions
of this work (such as the relative cost of wiring vs. logic) do not seem to
be fully confirmed when considering actual fabrics. In [35], a synthesis-
aware flow is presented to characterize the Hermes NoC; PI Bus is used
as a benchmark for performance metrics, but not for area and power anal-
ysis. Further, PI Bus is not representative of current, widely used high-
performance interconnects.

In this work, we tackle this shortcoming by providing a complete cross-
benchmarking experiment at the 130nm technology node, showing per-
formance, area, power, energy and predictability figures. Moreover, we
extend our analysis by providing NoC scaling results down to the 65nm
node, and verifying the impact of routability, leakage, clock tre distribu-
tion, etc. effects.

A very interesting study on the impact of technology scaling on the
energy efficiency of standard topologies (such as meshes, tori and their
variants) has been presented in [36]. The current work differs from this
research in two ways: first, we consider the design of platform-specific
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NoC topologies and architectures. Second, we use a complete design flow
that is integrated with standard industrial tool chains to perform accurate
physical implementations of the NoCs.

Flow Control Protocols

The simplest flow control mechanisms are bufferless. Memoryless
switches are employed in [37]: in case of congestion, packets are emitted
in a non-ideal direction, also called deflective routing. The introduction of
guaranteed bandwidth in [38] was made possible by loop containers and
temporally disjoint networks.

Providing QoS by establishing circuits between communicating nodes
requires some buffering resources. A novel hybrid circuit switching with
packet based setup is reported in [26], which needs minimum buffering
resources, capable of holding just a request packet. A circuit switched
NoC using time division multiplexing is reported in [39].

In buffered flow control, NoC performance is tightly related to the
amount of buffering resources implemented. A methodology to size the
FIFOs in an interconnect channel containing one or more FIFOs in series as
a function of system parameters (data production and consumption rate,
burstiness, etc.) is reported in [40], pointing out the impact on perfor-
mance.

Credit based flow control was described in [41], for use in ATM net-
works, and in [42] for use in interconnection networks. It is applied on
a hop-by-hop basis. The upstream node keeps a count of the number of
free flit buffers at the destination node. Credit based flow control is used
in [43, 44]. It is also employed in the asynchronous multi-service level
QNoC router in [45].

Flow control in the SoCIN NoC architecture is based on the handshake
concept [33]. When a sender puts data on the link, it activates the related
VALID signal. When the receiver is ready to consume the validated data,
it activates the corresponding ACK signal. Both handshake and credit
based flow control are supported in the revised SoCIN architecture called
ParIs [46].

The router in [47] handles both best effort (BE) and guaranteed
throughput (GT) traffic. The GT router relies on a time division multiplex-
ing mechanism. Slot tables in the routers divide up bandwidth per link
and switch data to the correct output at each time slot. Credit based flow
control is used in the BE router at the link level, but also for end-to-end
flow control in the network interfaces [44].
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The link control mechanism of NoCGEN uses a request, grant and
ready handshake to enable flow control on point-to-point links [48].

Finally, ON/OFF flow control can greatly reduce the amount of up-
stream signaling [42]. The upstream internal state is a single control bit
that represents whether the node is permitted to send (ON) or not (OFF).
A feedback signal is sent upstream only when it is necessary to change
this state, for instance when the number of free downstream buffers falls
below a certain threshold.

In this work, we present a comparative analysis on three representa-
tive flow control schemes that we implemented on ×pipes: ACK/NACK
(retransmission-based), STALL/GO (similar to ON/OFF) and T-Error [49]
(based on STALL/GO, but with additional logic to compensate for timing-
related errors - which can be used to either increase the tolerance to faults
or to voluntarily overclock or overstretch the links; a frequency boost of
around 50% can be achieved while introducing a much smaller overhead
for the compensation of the resulting violations). All three protocols are
extended and studied in presence of pipelined links, i.e. already account-
ing for propagation delay phenomena which are expected to be dominant
in deep submicron technologies [3].

NoC Area and Power Modeling

Based on our back-end physical implementation flow, we construct area
and power models for NoC components. This modeling activity is crucial
not only to better understand the potential for optimization in the ×pipes
NoC, but also to drive our topology generation flows.

Power models and simulators for processors and memories have been
proposed in an extremely large body of research [50, 51]. Interconnects
have also become the focus of research [52], due to their increasing role in
the hardware budget of recent and future systems; for example, the on-
chip network of the MIT RAW chip multiprocessor is taking 36% of the
chip power budget on average [53].

Some models of NoC hardware cost have already been proposed in
previous literature. Results in [54] are derived from a mix of experi-
ments on template circuits and from technology trends, and are specifi-
cally aimed at wide applicability. Therefore, even though they have been
used for design space exploration [55] and in association with high-level
traffic injection models [56], they do not guarantee maximum accuracy
within an architecture-specific CAD flow. The main advantage of these
techniques is flexibility and fast deployment. We see them as complemen-
tary to our approach, especially for initial exploration when the NoC com-
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ponent library is not available yet.
The approach in [57], on the other hand, attempts to build a cycle-

accurate power model of a target router instance. However, several ma-
jor points differentiate our approach. First, we build a model which is
parametric not only on traffic-related events, but also on the architectural
knobs of the design. Second, we include an area model in the exploration.
Third, our model can be more readily adopted within a CAD mapping
flow; this is both because we express the model as a function of archi-
tectural parameters, and because we provide a high-level dependence on
traffic variables, instead of a cycle-by-cycle one. Fourth, we strive to make
our approach as applicable as possible in real-world conditions, including
the hard-to-model peculiarities of the behaviour of synthesis tools when
aiming for maximum frequency operation, and placement and routing is-
sues. Fifth, we propose a fast characterization mechanism, by means of
which model coefficients can be quickly derived with a minimal amount
of synthesis runs.

In [58], a framework for NoC exploration is presented; the framework
includes a power modeling flow. The power model features very limited
dependence on architectural parameters and does not seem to account for
the configuration knobs of synthesis tools. No area model is provided.

In [59], a bit energy modeling flow is proposed to compare different
switch fabrics in IP network routers. The approach is focused on the cost
for transmitting bits from input to output ports, and while bit pattern-
accurate, it is only focused on comparing router topologies against each
other. The authors of [60] propose a model based on transistor count,
while in [61], which is focused on FPGAs, switch cardinality is the main
parameter. None of these models is meant for simultaneously accurate,
parametric and fast representation of power consumption, i.e. suitable for
design space exploration within a CAD environment.

1.3.2 Simulation and Traffic Generation

Several works have described performance evaluation environments for
interconnects. For example, a cycle-precise simulator speeding up perfor-
mance of the well-known SystemC simulation engine is described in [62],
and used in [18] to compare two communication architectures (SPIN mi-
cronetwork and PI-Bus). Transaction level models for the AMBA archi-
tecture are described in [63]. A modeling framework for communication
architectures with accompanying simulation tools is presented in [64], and
is based on a hierarchical class library, whereby new communication archi-
tectures can be developed based on reusable components. A C++ model-
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ing library developed on top of SystemC is at the core of IPSIM design
environment, which separates IP modules into behaviour and communi-
cation components [65].

However, the enabling technology for communication optimization is
system-level performance analysis. This is because, in order to optimize
interconnect performance, not only the accuracy of the interconnect model
should be high; in fact, the realism of the injected traffic is equally crucial.
Therefore, analysis frameworks are an emerging research area. Several
approaches have been proposed:

• The entire system can be simulated using models of the components
and their communication at different levels of abstraction [66, 67].

• Static system performance estimation techniques, including models
of the communication time between system components. Time es-
timates are usually either optimistic (ignoring dynamic effects such
as bus contention) [68] or pessimistic (assumption of worst case sce-
nario) [69].

• Mixed approaches, deriving set of traces from an initial cosimula-
tion of the system (assuming abstract data transfers), and forwarding
them to an analysis tool that, for a specified communication architec-
ture, comes up with system performance estimates [70].

The second and third approach target communication architecture
space exploration early in the design stage. The first one is necessary
whenever high-accuracy system level simulations have to be performed.
This is the case of comparisons between a restricted set of architectural
options, wherein dynamic effects, for instance bus-contention-related la-
tency, or the dependency of performance on application generated traffic,
can make the difference.

When simulation falls short, formal approaches can be applied to the
MPSoC domain, offering systematic verification based on well-defined
models [71]. A synchronous, finite state machine based method for mod-
eling communication aspects of SoCs is presented in [72]. A performance
model to abstract a general class of reconfigurable SoC architectures is de-
scribed in [73].

A limitation of the above mentioned approaches is that the perfor-
mance of the communication architectures is always derived under non-
realistic workloads. Traditionally, parameterized statistic traffic genera-
tors are used [74, 61, 75]; in spite of their generality, they prevent designers
from assessing performance in presence of real-life workloads and make it
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difficult to account for dynamic effects such as bus contention. The work
in [76] goes in this direction.

In this dissertation, we present MPARM, a complete virtual platform
environment [77, 78, 79] which enables cycle-accurate exploration of the
MPSoC design space. One of the salient features of MPARM is that, in
addition to supporting alternative interconnect models (including buses
and NoCs), it also allows fot a range of other design variables in the en-
vironment. For example, MPARM allows for picking a variety of IP cores,
memory hierarchies, and software stacks, allowing designers to optimize
the interconnect design based on realistic traffic injection.

Flexible Modeling of IP Cores

In order for virtual platforms to be useful, they need to have two prop-
erties: a wide portfolio of alternative models to plug in the system, and
as much openness as possible in terms of model configuration and modi-
fication. Unfortunately, academic platforms are typically lacking in com-
pleteness, as they are often built with limited resources to test some spe-
cific MPSoC aspect. The SimpleScalar [80] framework stands out for its
feature set, but is essentially a single-processor model with an unclear
scalability path towards multiprocessor systems. Many other projects ex-
ist [81, 82, 83, 84], but their scope seems currently to be too limited for
full MPSoC exploration. On the other hand, industrial platforms are typi-
cally lacking in openness. Synopsys CoCentric System Studio [85], CoW-
are ConvergenSC [86], the ARM RealView MaxSim [87] and others [88, 89]
spring to mind as some of the best known industrial environments. They
all share a plug-and-play approach of licensed IP blocks whose models are
provided in encrypted form. As a result, if the internal architecture is to be
investigated and optimized (e.g. with the addition of custom instructions
or data lanes), alternative open blocks must be written by hand, taking
much of the appeal of IP portfolios away.

A subset of the MPSoC design space is covered by existing ASIP de-
sign tools. Tools available today can be roughly categorized into three cat-
egories, ARCHITECTURE DESCRIPTION LANGUAGE (ADL) driven, tem-
plate architecture based, and predefined component library based. Within
the first category, there are tools like EXPRESSION [90], LISATek [91],
archC [92] or CHESS [93]. However, little information is publicly available
about their usage in a heterogeneous MPSoC simulation environment, es-
pecially in an open one. Unlike the ADL driven approach, a partially con-
figurable processor is used as template by the tools in the second category,
where Tensilica [94] is a popular representative. ASIPMeister [95] has a
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predefined library of processor micro-architecture components and falls
into the third category.

A contribution we bring in this work is to integrate the LISATek frame-
work within MPARM, by plugging its core models within the MPARM
platform. This brings together the best of both worlds. MPARM gains
the ability to instantiate a large variety of freely modifiable IP cores, inclu-
sive of state-of-the-art, industrial-strength tooling for configuration and
debugging. On the other hand, LISATek can now enjoy a platform frame-
work wehereby all the other degrees of freedom of the MPSoC can be ex-
plored.

Traffic Generation

Cycle-accurate system simulation suffers from two disadvantages. First, it
is time-consuming to code cycle-accurate models of IP cores; these models
may actually only become available very late in the development process
of MPSoCs, making them useless for exploration and optimization. Sec-
ond, cycle-accurate models are intrinsically slow, making design space ex-
ploration a lengthy task. As a workaround, IP emulation devices such as
TRAFFIC GENERATORS (TGS) have been traditionally employed. Several
approaches and models have been proposed.

In [96], a stochastic TG model is used for the interconnect exploration;
the IP behavior is statistically represented by means of uniform, Gaussian,
or Poisson distributions. A similar approach in [97] uses random and
semi-deterministic distributions. The IP model used for NoC optimiza-
tion in [98] takes into account the nature of MPSoC traffic such as real-
time, short-data access, bursty, etc., however the injection rate is governed
by statistical methods. In [99], an extra dimension of “self-similarity” is
added to the stochastic model which is argued to assist in precise char-
acterization of multimedia traffic by examining the correlations in traf-
fic traces at the macroblock-level. Despite the refinements, the inherent
probabilistic nature of the statistical approaches makes it less accurate, as
each TG injects traffic in complete isolation from every other. As surveyed
in [100], such stochastic models are widely popular for analysis of macro-
networks, e.g. the Internet, that exhibit such behaviour; unfortunately, this
paradigm is unlikely to hold in an MPSoC environment. To overcome
the speed limitation of simulation-based approaches, FPGA-based emula-
tion platforms have also been proposed [101]. However, these approaches
again leverage stochastic or trace-driven model to generate traffic, which,
as addressed before, are not sufficiently accurate for MPSoC performance
optimization.
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A modeling technique which adds functional accuracy and causality
is TRANSACTION-LEVEL MODELING (TLM), which has been widely used
for MPSoC design [102, 103, 104, 105, 106, 107]. In [105, 106], TLM has
been used for bus architecture exploration. The communication is mod-
eled as read and write transactions towards the bus. Depending on the
required accuracy of the simulation results, timing information such as
bus arbitration delay is annotated within the bus model. In [106] an addi-
tional layer called CYCLE COUNT ACCURATE AT TRANSACTION BOUND-
ARY (CCATB) is presented. Here, the transactions are issued at the same
cycle as that observed in BUS CYCLE ACCURATE (BCA) models. Intra-
transaction visibility is traded off for a simulation speed gain. An average
speedup of 1.55x is reported. While modeling the entire system at TLM,
both [105] and [106] present a methodology for preserving accuracy with
gain in simulation speed. Such models are efficient in capturing regular
communication behaviour, but the fundamental problem of capturing sys-
tem unpredictability in the presence of OS and interrupts is not addressed.

In this work, we propose RIPE, a reactive traffic generation framework,
capable of not just replacing IP cores, but in fact capable of emulating the
behaviour of real applications running on such IP cores. This is achieved
by means of a simple instruction set processor, which can be programmed
to inject traffic also based on environmental conditions, such as synchro-
nization conditions and interrupts. Only in this way it becomes possible to
abstract the behaviour of complex parallel applications for MPSoCs, and
to faithfully recreate it on any interconnect platform. RIPE can operate in
two ways, either by manually writing programs to emulate any desired
behaviour, or by extracting traces and behaviours from simulations in dif-
ferent contexts.

A transformation methodology of high-level simulation traces with
cycle-true information from the target architecture, e.g. memory distri-
bution and communication details, is presented in [108] and [96]. In [108],
based on accurate information, different rules are specified for inserting
and ordering synchronization events in the output execution trace, while
in [96] a trace-based communication graph is adjusted with interconnect-
specific details, such as connection setup time, burst size, etc.. The RIPE
approach, in contrast, is to identify synchronization events based on sys-
tem information and abstract them for communication refinement. We
believe that the RIPE model and the approach presented in [108] are com-
plementary in addressing trace-based MPSoC analysis from functional to
cycle-true abstraction.

In [109], a commercial TLM-based reactive workload generation frame-
work is presented that is somewhat similar to our RIPE approach, wherein

19 Federico Angiolini March 13, 2008



1.3: Related Work 20

users can configure traffic patterns for handling synchronization and inter-
IP events. Primitives for timing-dependent behaviour are provided, so
that the user can trigger actions which do not depend on application flows
but on simulation time. The RIPE approach however supports multi-
threading, which is required for interrupt-driven OS context switches, and
traffic generation at multiple levels of abstraction, including in a cycle- and
bit-true environment.

Other commercial efforts also exist, including the OpenVERA [110] lan-
guage and toolchain, that model concurrency and synchronization. How-
ever, our approach is focused on maximum accuracy of results, while
OpenVERA is mostly focused on the verification issue, providing a flow
from higher abstraction levels to RTL.

1.3.3 Topology Design

Early works on NoC topology design assumed that using regular topolo-
gies, such as meshes, like in macro-networks, would lead to regular and
predictable layouts [111, 21]. While this may be true for designs with ho-
mogeneous processing cores and memories, it is not true for most MP-
SoCs as they are typically composed of heterogeneous cores in terms of
area and communication requirements. A regular, tile-based floorplan,
as in standard topologies [21], would result in poor performance, with
large power and area overheads. Moreover, for most state-of-the-art MP-
SoCs (like Philips Nexperia [8] or TI OMAP [9]) the system is designed
with static (or semi-static) mapping of tasks to processors and hardware
cores, and hence the communication traffic characteristics of the MPSoC
can be obtained statically. Thus, an application-specific NoC with a cus-
tom topology, which satisfies the design objectives and constraints, can be
envisioned, and is critical to have efficient on-chip interconnects for MP-
SoCs.

A large body of research works exists in synthesizing and generating
bus-based systems [112, 113]. Floorplan-aware point-to-point link design
and bus design methodologies are presented in [114, 113]. While some of
the design issues in the NoCs are similar to bus based systems (such as
link width sizing), a large number of issues such as finding the number of
required switches, sizing the switches, finding routes for packets, etc. are
new in NoCs.

Methods to collect and analyze traffic information that can be fed as
input to the bus and NoC design processes have been presented in [115,
113]. Mappings of cores onto standard NoC topologies have been explored
in [111, 116, 117, 118]. In [117], a unified approach to mapping, routing
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and resource reservation has been presented. However, the work does not
explore topology design process. The NoC design process for supporting
multiple applications has been presented in [119].

Important research in macro-networks has considered the topology
generation problem [120]. As the traffic patterns on these networks are dif-
ficult to predict, most approaches are tree-based (like spanning or Steiner
trees) and only ensure connectivity with node degree constraints [120].
Hence, these techniques cannot be directly extended to address the NoC
synthesis problem. Application-specific custom topology design has been
explored earlier in [121, 122, 123, 24]. The works from [121, 122] do not
consider the floorplanning information during the topology design pro-
cess. In [124], a physical planner is used during topology design to reduce
power consumption on wires. However, the work does not consider the
area and power consumption of switches in the design. Also, the number
and size of network partitions are manually fed. In [123], a slicing tree
based floorplanner is used during the topology design process. This work
assumes that the switches are located at the corners of the cores and it
does not consider the network components (switches, network interfaces)
during the floorplanning process. Also, deadlock free routing, which is
critical for custom NoC designs is not supported in the work. Moreover,
a complete design space exploration, from architectural parameter setting
to simulation is not presented.

In this work, we introduce a complete topology design framework ca-
pable of solving the shortcomings of previous approaches. We design
and leverage a tool, called SunFloor, which is able to design customized
topologies and to map cores to them, while optimizing a choice of latency
and power metrics and respecting constraints on area, power and perfor-
mance. SunFloor leverages, or produces at the user’s choice, floorplan-
ning information when generating topologies; this guarantees that key as-
pects, such as wire lengths, will be accounted for, both by making sure
that directly communicating entites are placed close to each other on the
floorplan, and by providing link pipelining on long wires. For proper op-
eration, SunFloor leverages upon area and power models of the NoC com-
ponents, that we capture for each technological back-end.

Deadlock Freedom

The use of turn models to avoid deadlocks in mesh and torus networks has
been presented in [125]. There has been a large body of work focused on
developing routing-dependent deadlock-free operation for interconnec-
tion networks [126, 125, 127, 128, 129]. Several other works exist in the area
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of recovering from deadlocks in networks [130, 131]. Routing-dependent
deadlock avoidance strategies have been presented for meshes [111] and
custom NoC topologies [132, 117, 133].

Several works on application specific NoCs [111, 122, 123], however, do
not address the crucial issue of message-level deadlock avoidance, which
is critical for proper system operation. The deployment of logically sepa-
rated networks to avoid message-dependent deadlocks has been utilized
in several industrial multi-processors, such as [134, 135, 136, 137]. The
use of physically separated networks to remove message-dependent dead-
locks is also used in many designs, such as [138, 139]. In [19], message-
level deadlock freedom is achieved by a different mechanism than using
logically or physically separated networks. That work utilizes an end-
to-end flow control scheme, which ensures that messages are sent from
the sender only when the receiver has enough buffering resources to store
them. This is coupled together with a network design that uses time divi-
sion multiplexing to divide the network resources among the various com-
municating elements, providing guaranteed throughput to connections.
This leads to a buffering free network for such connections and removal of
message-level deadlocks. The deadlock avoidance mechanism using such
protocol is presented in [140]. However, it is important to notice that not
many NoC design provide facilities for end-to-end flow control, limiting
the applicability of this technique.

In this work, we present techniques to design NoCs which are free from
both routing-dependent and message-level deadlock issues, while incur-
ring a minimum overhead penalty to do so. Our methodology does not
rely on expensive hardware support; instead, deadlocks are avoided at
the topology generation level. Routing-dependent deadlocks are avoided
by forbidding certain turns [129] for packet routes, while message-level
deadlocks are avoided by simply not mapping conflicting message types
over the same links.

1.3.4 Fault Tolerance in NoCs

Regarding fault tolerance mechanisms at the micro-architectural level, re-
liability work on soft errors is presented in [141]. Redundant components
can be used to increase processor lifetime and system reliability [142]. At
the system level, dynamic fault-tolerance management [143] is shown to
improve system reliability in embedded systems. Different metrics are
proposed to estimate the effect of soft failures with particular attention to
energy efficiency, computation performance and battery lifetime tradeoffs.
An interesting approach to simultaneously achieving SoC reliability and
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high efficiency is explored by [144] and [145]. There, the SoC is aggres-
sively configured to comply with typical case constraints, thus delivering
high performance and low power; in worst case conditions, which rarely
occur, errors appear, but are transparently corrected either by a built-in
checker or by timing error-tolerant circuitry.

The test and repair of SoCs, and more specifically of their memo-
ries, which are a critical component in this respect, has been extensively
explored [146, 147]. To provide reliable operation, the use of SINGLE-
ERROR-CORRECTING-MULTIPLE-ERROR-DETECTING (SEC-MED) codes
is already integrated in many on-chip memories [148]. Recent studies
show that different program behavior patterns can be identified, and can
be used to generate various custom error correction mechanisms for differ-
ent memory portions [149]. A very important research area is represented
by the development of memory cores with built-in self-test logic and spare
storage resources [150, 151, 152]. While all these approaches have been
demonstrated to be robust, they necessarily come at an area cost.

In this work, we propose a novel approach to improving the fault tol-
erance of MPSoCs, by leveraging the communication backbone to enable
redundancy policies at minimal cost. Our approach is based on the main
idea of deploying backup devices (namely, memories) somewhere in the
chip; NoCs allow for doing this with a minimum of additional complex-
ity but with maximum flexibility. NoCs can also transparently handle the
backup functionality and the switchover mechanism upon actual failures,
while incurring minimal overhead to support these additional features.

In order to propose this scheme, we rely on previous works on fault
tolerance for NoCs themselves. For example, the authors of [153] describe
a way of designing reliable NoC links by comparing them to radio chan-
nels, while link architectures can be tuned [49] to tolerate timing errors of
up to 50% of the reference clock period. Data retransmission schemes are
well known in wide area networks and have been applied to NoCs, for ex-
ample in [154]; coupled with error detection circuitry, they allow for soft
error recovery upon NoC links.

Separate units (such as for example pre-existing microcontrollers [155])
have also been deployed in SoCs to supervise the status of on-chip memo-
ries. With respect to these techniques, we choose to leverage a built-in sup-
port in the underlying SoC communication infrastructure to minimize the
silicon overhead. Additional advantages of this choice are complete trans-
parency to the software designer and the avoidance of any performance
disruption upon fault occurrences. By leveraging NoCs as the communi-
cation backbone, our approach also guarantees maximum scalability.
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1.3.5 NoCs for 3D Chips

Chip stacking is emerging as a way to sustain the increasing demand for
on-chip functionality and performance, which is paired with a push to-
wards package miniaturization and modularity. A number of technolo-
gies for 3D chip manufacturing have been explored in recent years, in-
cluding transistor stacking [156], die-on-wafer stacking [157], wafer stack-
ing [158], chip stacking [159]. Wafer stacking approaches represent one of
the most promising avenues for the implementation of high-performance
yet inexpensive (multiple 3D chips can be processed in a single pass)
three-dimensional ICs. Wafer stacking relies on THROUGH-SILICON VIAS

(TSVS) [160] for vertical connectivity, guaranteeing low parasitics (i.e. low
latency and power) and, if needed, extremely high densities of vertical
wires (i.e. high bandwidth). Tezzaron Semiconductor Corporation [161]
and IBM Technologies [162] are active players in this field; the major dif-
ferences between their processes are in wafer bonding methodologies and
TSV formation. The former resorts to via formation followed by high-
temperature wafer bonding, so that electrical connectivity and bonding
strength are guaranteed by thermocompression. The latter uses oxide fu-
sion bonding at room temperature, allowing a very high precision align-
ment, while vias are formed after the wafers have been bonded together.
Post-silicon nano-scale 3D interconnections have also been recently inves-
tigated [163], but large scale availability of these technologies in the near
future is uncertain.

As a consequence of this fast development, and since NoCs are already
emerging as the interconnection paradigm for planar chips, research has
recently been undertaken on 3D NoCs. For example, in [164, 165] alterna-
tive ways of interconnecting 3D chips are contrasted; namely, the authors
focus on several variants of 3D meshes, stacked meshes, stacked tori, etc..
The main focus of the authors is on topologies and on performance met-
rics, while the physical implementation is not studied in depth. In [166],
the authors propose a dimension decomposition scheme to optimize the
cost of 3D NoC switches, and present some area and frequency figures
derived from a physical implementation. The fundamental assumption
of their work is that a regular, homogeneous NoC is the best solution for
a 3D design, and therefore the next logical step is to reduce the cost of
each required building block. However, we believe that, for such com-
plex designs as stacked 3D chips, which are likely to mix logic layers
with memory layers and even more uncommon functionality, heterogene-
ity will likely be significant, especially along the vertical axis.

In this work, we present results aimed at solving those shortcomings
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and enabling efficient, heterogeneous 3D NoCs. First, we build accurate
models of the parasitics involved in vertical links for 3D stacked chips. In
this respect, our work is orthogonal and complementary to the ones men-
tioned above; to the best of our knowledge, no previous work fully char-
acterizes the vertical interconnections for use in NoCs, especially with re-
spect to physical implementation and timing requirements. Next, we pro-
pose a more general approach, where the designer is allowed to choose
among planar and vertical communication on a switch-by-switch basis,
without any topological constraint. We also show a prototype, partially
automated design flow to enable the design of such heterogeneous topolo-
gies, showing example layouts.

We subsequently focus on system-level integration issues. In 3D
chips, the distribution of clock signals is likely to incur major skew is-
sues [167, 168]. This means that fully synchronous paradigms, such as
that natively used by ×pipes, are unworkable. A large body of research
exists on asynchronous NoC design styles. For example, the CHAIN net-
work [169] is completely based on clockless circuit design techniques.
Other asynchronous NoC libraries include MANGO [170], ASPIN [171]
and NEXUS [172]. ANOC [173] is based on a Quasi-Delay-Insensitive cir-
cuit design. Specific network building blocks are presented for example
in [45] and asynchronous link design is tackled in [174]. The main goals
of asynchronous NoCs have traditionally been lower power consump-
tion than synchronous alternatives, increased tolerance to delay variabil-
ity, and reduced electromagnetic emissions [175]. Despite all the research
efforts, however, the actual physical implementations of asynchronous
NoCs [176, 177] are few and limited in complexity (few millions of gates,
130nm technology). This is often attributed to the current lack of fully ma-
ture synthesis toolchains, simulation environments and testing infrastruc-
tures, hindering industrial implementations. Suitable component libraries
are also very difficult to build and characterize.

GLOBALLY ASYNCHRONOUS LOCALLY SYNCHRONOUS (GALS) ap-
proaches do not disrupt as much the existing design flows. GALS sys-
tems [178, 179, 180] attach together a number of synchronous building
blocks, and provide asynchronous facilities for the inter-block communi-
cation. While some of the tool maturity issues mentioned above still hold,
the encapsulation of mixed-clock concerns within well-defined bound-
aries, which can be validated separately, provides a more conservative,
and possibly more promising, solution to the interconnection issue. Sev-
eral ways to synchronize clock domains at the boundaries exist, such
as interleaving pipeline registers, using dual-clock FIFOs, adding pro-
grammable delays [181], deploying synchronous-to-asynchronous wrap-
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pers [178]. Although some of these solutions (for instance, dual-clock
FIFOs) are very flexible, allowing for arbitrary clock frequencies in the
sender and receiver domain, they all have one or more drawbacks, rang-
ing from robustness to implementation complexity, from high latency to
large area overhead. Some solutions have instead been specifically tuned
only for the relatively simpler problem of mesochronous signaling, and
have therefore been focused on low complexity and ease of implemen-
tation in existing tool flows. Two recent papers [182, 183] both suggest
to implement the boundary interface with a source-synchronous design
style, and propose some form of ping-pong buffering to counter timing
and metastability concerns.

In this work, we improve on these papers by studying such synchro-
nizers inside of a NoC layout for a 3D chip, optimizing them for the re-
quirements of 3D NoCs, and considering full duplex communication with
flow control.

1.4

Contributions of This Dissertation

This dissertation aims to shed light on the tradeoffs in the design of NoCs,
and to push forward the bar of state-of-the-art NoCs. Its main contribu-
tions are:

• The development of a REGISTER TRANSFER LEVEL (RTL) NoC com-
ponent library, called ×pipes. This library is highly configurable and
optimized for high performance and minimum resource usage.

• The integration of the NoC component library in a cycle-accurate
simulation and traffic generation environment, called MPARM [79],
for validation, characterization and optimization purposes.

• The integration of the NoC component library into a complete design
flow, spanning from application requirements to finalized FPGA and
ASIC physical implementations (Figure 1.5 on the facing page). This
unique design flow is instrumental to proving the viability of the
proposed NoC solution.

• The analysis of NoC performance and cost in a variety of environ-
ments and conditions. Analyses will be shown evaluating the perfor-
mance of alternative NoC implementations; comparing NoC perfor-
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mance with hierarchical bus performance; and comparing NoC per-
formance across manufacturing technologies. Results include archi-
tectural simulations and back-end analysis on operating frequency,
area and power consumption.

• The extension of NoCs with facilities able to guarantee better fault
tolerance. This is a key feature in today’s environment, featuring
increasing variability and uncertainties in chip manufacturing.

• Finally, as an outlook on possible future applications of NoCs, the
description of an initial NoC implementation for upcoming stacked
(“3D”) chips.

Figure 1.5: The complete proposed NoC design flow.

This dissertation presents work jointly carried on by the author and by
several co-authors. While efforts will be made to focus mainly on the ar-
eas in which the author was primarily involved, it is actually impossible
to completely decouple the contributions. Further, describing the com-
plete framework in which the author’s research was performed is help-
ful for a much better understanding of the goals and the achievements of
this effort. Appropriate credit to major co-authors will be provided across
this dissertation. A list of the papers on which this work is based, com-
plete with the names of all the co-authors, is supplied in Appendix A on
page 259.

The author would like to stress that NoCs are a relatively recent body
of research, with roots dating to 2001, meaning that research opportuni-
ties were (and still are) numerous. This is proven by the fact that, dur-
ing these years, NoCs have enjoyed phenomenal success at the academic

27 Federico Angiolini March 13, 2008



1.5: Dissertation Outline 28

level, with hundreds of publications recorded to date and a dedicated con-
ference since 2007. Therefore, it is materially impossible to provide a com-
prehensive overview of all the possible architectural degrees of freedom,
of all the possible research trends, and of all the relevant related work. This
dissertation merely reflects the research choices done by the author and
his co-authors based on the information and analyses available to them
(which will be substantiated wherever possible across the present disser-
tation), and based on time constraints.

1.5

Dissertation Outline

In Chapter 2 on page 31 we provide a brief discussion of existing bus pro-
tocols as available in two mainstream bus architectures, AMBA AHB [11]
and AMBA AXI [11] by ARM Ltd. and STBus by STMicroelectronics [5].
This analysis outlines some of the interconnect evolutions applied to bus
architectures to keep them viable as long as possible. However, it also
shows how limited and complex the exploitation of the bus performance
can be.

Chapter 3 on page 47 deals with the NoC simulation infrastructure
we put in place to study in detail, among other things, interconnect
performance. This SystemC cycle-accurate virtual platform is called
MPARM [79]. This environment is a flexible MPSoC simulator, allowing
for a variable number and type of cores to be attached to the intercon-
nection backbone. MPARM also allows for complex memory hierarchies,
with a dramatic impact on the interconnection load. MPARM was also ex-
tended to integrate extensive facilities for traffic generation; in fact, one of
the challenges of interconnect design is the availability of accurate testing
environments, based on loads as realistic as possible. The traffic generator
we developed fulfills this requirement, providing the infrastructure to ex-
tract application behaviour from a simulation in a different environment
and then replicate it onto a NoC. The traffic generation is accurate to the
transaction level, and models cache effects, latencies and even reactiveness
to interrupts.

Chapter 4 on page 95 provides an overview of our NoC architectural
implementation, called ×pipes, which was also integrated into MPARM.
×pipes is a versatile synthesizable library of NoC components, mainly
switches, NIs and links. ×pipes can be configured in many respects, in-
cluding topology, switch radix, amount of buffering, data width, and even
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flow control and arbitration policies. ×pipes is a fully synchronous library
(even though its NIs have a facility to support integer clock division to-
wards the attached core); this choice is motivated by the fact that, in our
experiments, validated at the layout level, we could achieve very high
operating frequencies without major drawbacks, rendering asynchronous
design styles mostly superfluous. ×pipes supports OPEN CORE PROTO-
COL (OCP) [12] at the IP core interface, making it possible for the NoC
to seamlessly accommodate a variety of IP cores. As an example of ar-
chitectural design space exploration, we study how different flow control
implementations impact the NoC performance and its resource require-
ments. Three flow control protocols are compared: a retransmission-based
one, a credit-based one, and a specialized one, named T-Error, designed to
tolerate timing errors. These protocols are studied also in presence of link
pipelining, i.e. in presence of links that need more than one clock cycle for
traversal. The alternatives turn out to be best in different environments:
maximum fault tolerance, tight resource constraints and maximum per-
formance.

The following two chapters focus on the design flow that we set up to
instantiate, optimize, verify, implement and characterize NoCs. Chapter 5
on page 115 discusses the front-end, namely the tool called SunFloor [133].
SunFloor is a topology generation software. Given as an input a communi-
cation graph that models the requirements of the target application (end-
points and bandwidth of each traffic flow), a set of area and power models
of the NoC implemented in the target technology, and a set of objectives
and constraints, SunFloor instantiates the optimal NoC for the given ap-
plication. The topology is deadlock-free by construction. During its anal-
yses, SunFloor takes into account the chip floorplan, and for example in-
stantiates pipeline stages along links which are too long for single-cycle
traversal.

Chapter 6 on page 145 deals with the other half of the design flow, the
back-end. It presents the work we did to physically implement NoCs, go-
ing through the major steps of synthesis, placement and routing. This part
of the flow is crucial to understanding factors such as maximum operat-
ing frequency, area occupation and power consumption. We then built
NoC area and power models for use by SunFloor. Two main sets of ex-
periments were performed once the flow back-end was in place. The first
was a cross-benchmarking effort against bus architectures; it proved that
NoCs have tangible advantages, including performance and predictabil-
ity. A second set of experiments involved NoC implementations in 90nm
and 65nm technologies, and returned valuable insight on technology scal-
ing, NoC scaling, and tooling constraints for deep submicron implemen-
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tations.
Chapter 7 on page 207 builds upon a basic NoC architecture and ex-

tends it. The NoC is enriched with a mechanism for dynamic traffic rerout-
ing. This mechanism allows for workload processing even upon system
failures (fault tolerance). It can also be useful in other ways, including load
balancing (better performance) and workload processing even in presence
of some system components which are turned off (power saving).

In Chapter 8 on page 227, we explore one of the potential future fields
of application for NoCs, namely, stacked chips (often called “3D” chips).
These devices exhibit many properties which are an ideal match for what
NoCs have to offer, including extreme complexity, modularity require-
ments, and, due to manufacturing limits, scarce availability of wires in
the vertical axis. We show some of the foundations required for 3D NoCs,
including studies on physical properties, tentative layouts, and solutions
for inter-layer clocking issues.

Finally, Chapter 9 on page 255 draws conclusions from the author’s
doctoral work and proposes directions for future research.
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CHAPTER 2

MPSoC Interconnect Evolution

This chapter1 presents, by means of cycle-accurate simulations, perfor-
mance studies on bus-based MPSoC interconnects. These analyses allow
for a better understanding of on-chip traffic, of the performance of exist-
ing buses, and of the evolution (in terms of protocol and topology) that
on-chip buses have witnessed.

2.1

Motivation and Key Challenges

As lithographic processes keep improving, the integration of large num-
bers of IP blocks onto the same silicon die is becoming technically feasible.
The communication subsystem of these complex Systems-on-Chip (SoCs)
is increasingly critical for system performance, and therefore represents a
key component to be investigated during architecture definition and tun-
ing.

Most current designs are based on shared communication resources
(buses) due to their low cost. Unfortunately, scalability is limited by serial-
ization for multiple bus access requests. To face evolving communication
requirements in MPSoC designs, the industrial response has been to im-
prove interconnect fabric capabilities by adopting new topologies or new
protocols.

It is therefore mandatory to analyze the performance of MPSoC based

1The author would like to acknowledge contributions by Dr. Mirko Loghi, Prof. Da-
vide Bertozzi, Dr. Francesco Poletti, Martino Ruggiero, Prof. Luca Benini and Dr. Roberto
Zafalon.
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on traditional and evolved bus interconnection schemes, so as to assess
their efficiency and limitations. Crucial questions include latencies, sat-
uration points, scalability and dependency on other system parameters,
such as cache size.

We provide analyses to answer these questions, by comparing three
alternative bus architectures (AMBA AHB, STBus and AMBA AXI) and
several topological variants (from shared bus to full crossbar), under vary-
ing traffic conditions. Our study is based on cycle-accurate simulation of
bus models, allowing us to pinpoint low-level protocol details responsible
for macroscopic performance differences. Furthermore, we inject realistic,
functional traffic derived from MPARM (Section 3.2 on page 49) applica-
tions instead of fixed execution traces, or statistic traffic generators, or an-
alytical models. In this way, dynamic effects such as interaction among
traffic sources can be taken into account. Experimental results demon-
strate that subtle protocol mismatches and middleware-induced behavior
are indeed responsible for macroscopic performance differences.

2.2

Bus Architectures

We focus our attention on some of the best-known, and most widely used,
on-chip bus architectures:

• AMBA 2.0 AHB by ARM Ltd.

• STBus by STMicroelectronics

• AMBA 3.0 AXI by ARM Ltd.

While not exhaustive, we believe that this set of architectures is com-
prehensive enough to evaluate the current status and trends of on-chip
interconnects.

2.2.1 AMBA 2.0 AHB

The ADVANCED MICROCONTROLLER BUS ARCHITECTURE (AMBA)
2.0 [11] interconnect is a well-established fabric architecture for SoC de-
signs, thanks to its moderate silicon footprint. The AMBA 2.0 specification
dictates three different architectures with varying levels of complexity and
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performance; here, we will refer to ADVANCED HIGH-PERFORMANCE BUS

(AHB), the fastest of them.
AMBA AHB leverages upon a straightforward shared bus topology. A

single address and control channel is provided; two data links (one for
reads, one for writes) are available, but only one of them can be active at
any time. This is because the communication protocol is kept simple to
minimize area overhead: a single transaction can be pending. An AHB
bus joins several IP blocks (acting as AHB masters and slaves), and in-
cludes one central arbiter to manage interconnection resource access. A
minimal amount of flip-flops is required in the architecture, which is typi-
cally bufferless.

The bus resources are owned by a single master at a time; if the targeted
slave is slow and inserts wait states before responding, no other transac-
tion can be initiated, neither by the current bus owner nor by any other
master. As a result, the utilization of bus bandwidth might be poor. To
work around the most serious instances of this issue, AHB provides two
mechanisms. The first is called split/retry transfer: a high-latency slave
can optionally decide to release the bus while preparing its response to
a master-initiated transaction. However, this mechanism requires more
complex slaves and arbiters. The second alternative is called early burst ter-
mination: if the arbiter detects that the bus has been busy for too long, it can
interrupt a burst transfer in progress and assign the bus to another mas-
ter with pending bus access request. Both methods are ineffective when
the slave latency is of just a few cycles, because the overhead they impose
would be worse than just waiting.

AMBA AHB exploits logical pipelining. Transfers are composed of an
address phase (involving the address and control wires) and of a data phase
(involving one of the two data buses); the address phase of a new trans-
fer overlaps with the data phase of the previous transfer. This allows to
increase throughput while imposing light timing requirements upon the
slaves, but also increases latency.

AMBA AHB, however, does not resort to pipelining at the physical
level. In other words, the paths for communication among all masters and
all slaves are combinational. Therefore, a key performance assumption is
that the propagation delay of the interconnect wires will be short. If that is
the case, communication will incur the minimum possible latency. How-
ever, new technology nodes are leading to faster and faster logic, poten-
tially resulting in faster clock periods, while wire propagation delays are
proportionally increasing. If the whole fabric is constrained to slow oper-
ation by wire delay, this factor represents a limit to maximum operating
frequency.
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Figure 2.1: Partial STBus crossbar configurations: 3/2, 5/4 request/re-
sponse channels.

AMBA AHB supports bursts, but it treats them as streams of single
transactions; bursts are simply a way of arbitrating just once for multiple
transfers, thereby reducing latency. Memories have no way of detecting
bursts early, and accordingly make use of prefetching or buffering.

2.2.2 STBus

STBus [5] is a flexible communication architecture developed by STMicro-
electronics. Its specifications define three different protocols; the simplest
is called type 1 and supports simple load/store operations, type 2 adds
more complex transfers, pipelining and split transactions, and finally type
3 adds out-of-order support. Our tests are based on type 3 protocol.

The topology of an STBus interconnect is also very flexible and can
range from a simple shared bus, like AMBA AHB, to a full crossbar. We
analyze performance obtained from a variety of STBus topologies, from
shared bus to full crossbar. Two possible examples of partial crossbars,
that we use for our experiments, are presented in Figure 2.1.

STBus features two data communication channels, a request one from
initiators (e.g., processors) to targets (e.g., memories and dedicated hard-
ware) and the response one in the opposite direction. This allows an initia-
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tor to send a request while a target is sending a response. This overlapping
of transfers is a key performance enhancer. As soon as the response chan-
nel frees up, the second request can immediately be serviced, thus hiding
target wait states behind those of the first transfer. The amount of saved
wait states depends on the depth of the prefetch FIFO buffers on the slave
side. Additionally, the split channel feature allows for multiple outstand-
ing requests by masters, with support for out-of-order retirement.

STBus features fast arbitration, and this makes it possible to complete
single read transfers in just two cycles, versus the three needed by AMBA
- one cycle for arbitration/sending addresses and one for receiving data.
When inserting a wait state, the minimum latency becomes of three cycles.

2.2.3 AMBA 3.0 AXI

AMBA ADVANCED EXTENSIBLE INTERFACE (AXI) [4] builds upon the
concept of point-to-point connection. AMBA AXI does not provide mas-
ters and slaves with visibility of the underlying interconnect, instead fea-
turing the concept of master interfaces and symmetric slave interfaces. This
approach, besides allowing for seamless topology scaling, has the advan-
tage of simplifying the handshake logic of attached devices, which only
need to manage a point-to-point link. Complex features, like multiple
outstanding transactions support (with out-of-order or in-order delivery
selectable by means of transaction IDs) and time interleaving of traffic to-
wards different masters on internal data lanes, can be transparently pro-
vided within the interconnect fabric.

To provide high scalability and parallelism, five different logical
monodirectional channels are provided in AXI interfaces: a read address
channel, a write address channel, a read channel, a write channel and a
write response channel. Activity on different channels is mostly asyn-
chronous (e.g. data for a write can be pushed to the write channel before
or after the relevant address is issued to the write address channel), and
can be parallelized, allowing for multiple outstanding read and write re-
quests. However, the mapping of channels, as visible by the interfaces,
to actual internal communication lanes is decided by the interconnect de-
signer; single resources might be shared by all channels of a certain type in
the system, or a variable amount of dedicated signals might be available,
up to a full crossbar scheme. The rationale of this split-channel implemen-
tation is based upon the observation that usually the required bandwidth
for addresses is much lower than that for data (e.g. a burst requires a single
address but maybe four or eight data transfers). Availability of indepen-
dently scalable resources might, for example, lead to medium complexity
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designs sharing a single internal address channel while providing multi-
ple data read and write channels. In our protocol exploration, to provide
a fair comparison, we assume the “shared bus” topology to comprise a
single internal lane per each one of the AXI channels.

2.3

Bus Performance Analysis

We test the performance of AMBA AHB, AMBA AXI and STBus within the
framework of the MPARM simulation platform (Section 3.2 on page 49).
This environment is composed of a configurable number of ARM cores
attached to the system interconnect. Traffic workload and pattern can eas-
ily be tuned by running different benchmark code on the cores, by scaling
the number of system processors, or by changing the amount of proces-
sor cache, which leads to different amounts of cache refills. The AMBA
AHB and AMBA AXI modeling is based upon SystemC libraries provided
within the Synopsys CoCentric/DesignWare [184] suites, while the STBus
model is provided by STMicroelectronics.

We test the interconnects with four functional benchmarks running
on MPARM (Section 3.2 on page 49). These benchmark perform matrix
multiplications, either independently from each other or in pipeline, and
with and without an underlying OS (OS-IND, OS-PIP, ASM-IND and
ASM-PIP respectively). The benchmarks interact differently on the in-
terconnect. OS-IND and ASM-IND do not contend for any memory de-
vice, since each processor operates on a private memory slave, but they
have to contend for access to the single bus to which the memories are
attached. OS-PIP and ASM-PIP are more sophisticated, as the processors
act in a producer/consumer pipelined fashion, exchanging data through
shared memory banks - which become an additional bottleneck. The fi-
nal interesting difference is in the synchronization mechanism adopted by
OS-PIP and ASM-PIP. The former leverages OS primitives for message
passing, and therefore exchanges interrupts to synchronize producers and
consumers. ASM-PIP, in need of a simpler implementation due to the lack
of OS libraries, resorts to polling on a semaphore device; this behaviour es-
tablishes a further bottleneck, which is application-dependent more than
hardware-dependent.

We measure several statistics:

• Bus usage. We define this as the ratio of data transfers over total
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execution time, which expresses the amount of injected traffic and is
a metric of congestion.

• Bus efficiency. We define this as the ratio of data transfers over the
time during which the interconnect is busy with any transaction (in-
cluding arbitration intervals, etc.).

• Read transaction latency.

We first (Section 2.3.1) explore the impact on performance scalability of
the adoption of more advanced protocols, by comparing the three bus ar-
chitectures all with a shared bus topology. We subsequently (Section 2.3.2
on page 42) introduce the topology variable into the picture, by presenting
a study on various STBus topologies (from shared bus to crossbar, includ-
ing two partial crossbars). In both studies, we present AMBA AHB as
a baseline, since it is designed for lower area occupation and thus lower
performance.

2.3.1 Impact of Protocols on Interconnect Scalability

In this section, to further show the scope of optimizations at the architec-
tural level even when sticking to plain shared buses, we test the STBus
model in two configurations, namely by varying the depth of the FIFOs
instantiated at the target side of the interconnect. We benchmark with 1-
stage (“STBus”) and 4-stage (“STBus (B)”) FIFOs.

Figure 2.2 on the following page shows an example of the efficiency
improvements made possible by advanced interconnects in the test case
of slave devices having two wait states, with three system processors and
4-beat burst transfers. AMBA AHB has to pay two cycles of penalty per
transferred piece of data. STBus is able to hide latencies for subsequent
transfers behind those of the first one, with an effectiveness which is a
function of the available buffering. AMBA AXI is capable of interleaving
transfers, by sharing data channel ownership in time. Under conditions
of peak load, when transactions always overlap, AMBA AHB is limited to
a 33% efficiency (transferred words over elapsed clock cycles), while both
STBus and AMBA AXI can theoretically reach a 100% throughput.

To assess interconnect scalability, we choose to run ASM-IND on every
system processor. This means that, while producing real functional traffic
patterns, the test setup is not constrained by bottlenecks due to shared
slave devices.
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Figure 2.3: Benchmark execution times, varying cache sizes.
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Scalability results are shown in Figure 2.3 on the previous page in terms
of execution time variation when attaching an increasing amount of sys-
tem cores to a single shared interconnect. Figure 2.3(a) on the preceding
page reports figures for a system with 1 kB caches, while in Figure 2.3(b)
on the previous page caches are reduced to 256 bytes, thus causing many
more cache misses and greater interconnect congestion. Execution times
are normalized against those for a two-processor system, trying to isolate
the scalability factor alone. Simulations show that, as long as traffic is rel-
atively light (1 kB caches), all of the interconnects perform very well, with
only AHB showing a moderate performance decrease of 6% moving from
two to eight running processors. With 256 B caches and many processors,
interconnect saturation takes place, as can be seen from Figure 2.4(a) on
the facing page, which reports the bus usage time. In such a congested
environment, as can be seen in Figure 2.4(b) on the next page, AMBA AXI
and STBus (with 4-stage FIFOs) are able to achieve transfer efficiencies of
up to 81% and 83% respectively, while AMBA AHB reaches 47% only -
near to its maximum theoretical efficiency of 50% (one wait state per data
word). The resulting execution times, as Figure 2.3(b) on the preceding
page shows, got 77% worse for AMBA AHB when moving from two to
eight cores, while AXI and STBus manage to stay within 12% and 15%.
The impact of FIFOs in STBus was noticeable, since the interconnect with
minimal buffering showed execution times 36% worse than in the two-
core setup. This stresses the impact that comparatively low-area-overhead
optimizations can sometimes have in complex systems.

According to simulation results, some of the advanced features in
AMBA AXI provide highly scalable bandwidth, but at the price of latency
in low-contention setups. Figure 2.5 on page 42 shows the minimum and
average amount of cycles required to complete a single write and a burst
read transaction in STBus and AMBA AXI. STBus has a minimal over-
head for transaction initiation, as low as a single cycle if communication
resources are free. This is confirmed by figures showing a best-case three-
cycle latency for single accesses (initiation, wait state, data transfer) and
a nine-cycle latency for 4-beat bursts. AMBA AXI, due to its complex
channel management and arbitration, requires more time to initiate and
close a transaction: the minimum recorded completion times were six and
eleven cycles for single writes and burst reads respectively. As bus traf-
fic increases, completion latencies of AMBA AXI and STBus get more and
more similar because the bulk of transaction latency is spent in contention.
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Figure 2.4: Bus performance metrics, 256B caches.
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Figure 2.5: Transaction completion latency with 256B caches.

2.3.2 Topology Effect on Interconnect Performance

We proceed to comparing the performance of STBus interconnects ar-
ranged in different topologies: shared bus (ST-BUS), full crossbar (ST-FC),
two partial crossbars (ST-32 and ST-54, see Figure 2.1 on page 34). We
include AMBA AHB as a baseline.

The results are presented in Figure 2.6 on the next page. First, bus con-
gestion results (Figure 2.6(a) on the facing page) show that three bench-
marks put relatively light pressure on the system interconnect (around
10%), while OS-PIP is much more demanding, due to its larger memory
footprint and worse memory locality, which increase the amount of bursts
for cache refills. There is no significant difference in congestion metrics
among the interconnects, since this value is mostly benchmark-dependent.

Bus efficiency (Figure 2.6(b) on the next page), in contrast, is clearly
higher for STBus. Since transfers are composed of one wait state followed
by a single piece of data, efficiency could in principle be estimated to be
50%; STBus however is always above that threshold, because, even in its
shared bus topology, it has the ability to hide some wait states via its dual
request/response channels (Figure 2.2 on page 38). AMBA efficiency in-
stead is always below 50%; this is because of the arbitration overhead. ST-
FC, ST-32 and ST-54 are able to boost dramatically bus efficiency, since they
allow more transfers in parallel. Since accesses to shared devices (shared

March 13, 2008 Federico Angiolini 42



43 2.3: Bus Performance Analysis

Bus Usage (%)

0

5

10

15

20

25

30

35

40

ASM-IND OS-IND ASM-PIP OS-PIP

AMBA

ST-BUS

ST-FC

ST-32

ST-54

(a)

Bus Efficiency (%)

0

50

100

150

200

250

ASM-IND OS-IND ASM-PIP OS-PIP

AMBA

ST-BUS

ST-FC

ST-32

ST-54

(b)

Average Time for Read (cycles)

0

2

4

6

8

10

12

14

16

18

20

ASM-IND OS-IND ASM-PIP OS-PIP

AMBA

ST-BUS

ST-FC

ST-32

ST-54

(c)

Figure 2.6: Analysis of bus performance metrics for five different bus in-
terconnects. 8 kB caches, slaves with 1 wait state.
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memory, sempahores, interrupt module) are serialized anyway, the ad-
vantage in ASM-PIP and OS-PIP is still relatively small; but in OS-IND
and ASM-IND, where all accesses are to private memories, crossbars sig-
nificantly outperform other schemes. ST-32 achieves 100% efficiency (two
memories can be accessed at a time), while ST-54 and ST-FC hit 200% (four
memories at a time). It is evident that crossbars behave best when data ac-
cess is local and no destination conflicts arise.

Finally, Figure 2.6(c) on the previous page shows average completion
latencies for read accesses. STBus is faster and exhibits lower latencies.
ST-BUS has an edge of one to about two cycles over AMBA, mostly due
to arbitration (which ST-BUS always performs one cycle faster), and in
part also to the better efficiency seen above. Once more, crossbars show
a substantial performance advantage, the only exception being ASM-PIP,
where ST-BUS performs similarly. This can be explained with the con-
tinuous semaphore polling performed by this (and only this) benchmark;
while crossbars may have an advantage in private memory accesses, the
resulting speedup only gives processors more opportunities to poll the
semaphore device, which becomes a bottleneck. Not plotted, we also
record worst-case completion latencies of up to 34 cycles for AMBA, while
the STBus topologies fare substantially better, especially the crossbars.

We now study the impact of varying cache sizes (and therefore, cache
miss traffic) and slave wait states on the interconnects. Figure 2.7 on the
facing page shows the total execution time of the OS-PIP benchmark, in
scenarios having different cache and memory latency settings. Three inter-
esting comparisons can be made by looking at this graph. The first is again
an analysis of interconnection performance, this time as a function of dif-
ferent environments. As expected, STBus always exhibits an advantage, in
that it cuts execution times from 9% to 35% with respect to AMBA (from
18% to 58% with ST-FC). ST-54 (not graphed) performs almost identically
to ST-FC, while ST-32 (not graphed) once again trails behind other cross-
bars, but is still faster than both buses. When comparing more efficient
interconnections to less efficient ones, gains are lowest when the traffic is
lightest, i.e. with big caches and fast memories, but progressively increase
with interconnection congestion.

The second analysis regards performance improvement due to cache
size. A 4 kB cache can bring 4% to 26% speed-ups in execution time with
respect to a 1 kB cache; with 8 kB, speed-ups range from 20% to 48%. The
widest gaps, as expected, can be noticed with relatively slow interconnec-
tions and high latency memories.

A third assessment that can be made is about memory latency impact
on execution times. Increasing memory wait states from 1 to 4 slows down
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Figure 2.7: Performance of the interconnects as a function of cache size
and slave wait states.

execution times from 35% to 104%, and 8 wait states even from 84% to
370%. This once more stresses the importance of fast memories, even
though big caches and fast interconnections help somehow.

2.4

Conclusions

We have shown comparative performance evaluations of different bus-
based interconnects for MPSoCs. The chosen case studies reflect an evolu-
tion which has occurred in industrial practice, namely the shift from plain
shared buses to either (i) buses with more advanced protocol features,
and/or (ii) topologically-enhanced bus interconnects, featuring compo-
nents such as crossbars.

Our results, pertaining purely to architectural-level performance esti-
mation, prove that both choices guarantee some performance headroom
to plain shared buses - of course, at a silicon cost, either due to more com-
plex protocol handling, to more buffering, or simply to the deployment of
additional communication links. Both AMBA AXI and STBus prove able
to more efficiently utilize the available bandwidth.

It must be pointed out, however, that protocol improvements alone
cannot overcome the intrinsic performance bound due to the shared na-
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ture of the interconnect resources. While protocol features can push the
saturation boundary further, and get near to a 100% efficiency, traffic loads
taking advantage of more parallel topologies will always exist, and our
experiments already show some traces of saturation, even for the most
advanced interconnects, just for 8 attached cores - a number which is ex-
pected to be reached and surpassed in current and future high-perfomance
MPSoCs.

On the other hand, while crossbars certainly provide a performance
boost, they do not seem to represent a durable solution either, because of
expected layout issues during the physical design of large such compo-
nents.

We read these results as a motivation for the development of more ad-
vanced interconnect solutions, such as NoCs.
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CHAPTER 3

Simulation and Traffic Generation

This chapter1 discusses MPARM, a SystemC simulation platform that was
developed to evaluate the performance of MPSoCs with cycle accuracy.
MPARM grew over the years to encompass a number of different plat-
form variables, such as memory hierarchies, interconnects, IP core archi-
tectures, OSes, middleware libraries, etc., making it possible to study the
macroscopic impact of small changes at the architectural or programming
level. MPARM also became an ideal platform for our interconnect perfor-
mance simulations.

3.1

Motivation and Key Challenges

The increasing complexity of current-generation MPSoCs is making it in-
creasingly hard to (i) evaluate, (ii) debug, (iii) optimize, (iv) verify their
functionality. This has led to a wide range of approaches, spanning from
analytical models to cycle-accurate simulators, in pursuit of the ideal plat-
form in which to characterize and optimize MPSoC behaviour.

A large number of system variables are involved in such a characteriza-
tion, making the task a very challenging one. For example, aspects need-
ing consideration include:

• A large variety of IP cores, ranging from microprocessors to DIGI-
TAL SIGNAL PROCESSORS (DSPS), from accelerators to VERY LONG

1The author would like to acknowledge contributions by Dr. Mirko Loghi, Prof. Da-
vide Bertozzi, Dr. Francesco Poletti, Jianjiang Ceng, Federico Ferrari, Cesare Ferri, Dr.
Shankar Mahadevan and Prof. Luca Benini.
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INSTRUCTION WORD (VLIW) blocks. All of these behave differently
and have different input/output requirements.

• Extremely varied memory hierarchies. Many possible alternatives
have been picked in the MPSoC space, including caches, scratchpad
memories, on-chip and off-chip STATIC RANDOM ACCESS MEM-
ORY (SRAM) and DYNAMIC RANDOM ACCESS MEMORY (DRAM)
banks. Any of these results in different performance, area and power
figures.

• A wide range of system interconnects, including shared buses of sev-
eral types, bridged and clustered buses, partial and full crossbars, up
to NoCs.

• An almost unlimited choice of software, from complete stacks in-
cluding OS and middleware to programs in Assembler to most effi-
ciently exploit the underlying architecture.

• A rich set of alternative communication and synchronization
schemes, including shared memories, message passing, DIRECT

MEMORY ACCESS (DMA) transfers, interrupts, semaphore polling,
etc..

It is our opinion, supported by experience, that while high-level mod-
els can provide a rough (and still valuable) approximation of the interac-
tions in such a huge design space, it is only when low-level details are
taken into account that a clear picture emerges. At times, tiny details such
as the size of one particular buffer, or the choice of a different compiler flag,
can have a dramatic impact on the performance of the resulting system.
It is for this reason that, among all the possible MPSoC characterization
approaches, we developed MPARM, a cycle-accurate SystemC simulator
that enables sweeping alternatives for all the items listed above. We be-
lieve that the availability of such a platform is crucial in the context of the
main goal of this dissertation, i.e. the assessment of the tradeoffs involved
in MPSoC interconnect design.

Of course, the challenges of cycle-accurate, detailed simulation are not
to be underestimated, either. Two of the main issues are:

• Achieving sufficient simulation speeds.

• Developing simulation models within a reasonable time.
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Figure 3.1: The MPARM SystemC virtual platform.

In this chapter, after a brief introduction to the facilities provided by
MPARM, we will focus on exactly these issues. We will first outline how
we integrated LISATek [91] cores into the platform, making it possible to
directly plug several pre-designed IP core models into MPARM, and also
making it possible to develop new such models in a fraction of the time
it would normally take. We will then outline how we integrated a novel
traffic generation scheme, which, while speeding up design and simula-
tion time, still strives to remain remarkably faithful to traffic patterns as
generated by real applications running on real architectures.

3.2

SystemC Platform Simulation

The MPARM [77, 78] environment is designed to investigate the system-
level architecture of MPSoC platforms. To be able to fully assess system
performance, a cycle-accurate, signal-accurate modeling infrastructure is
put into place.

MPARM is a plug-and-play platform based upon the SystemC [185]
simulation engine, where multiple IP cores and interconnects can be freely
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mixed and composed. At its core, MPARM is a collection of component
models, comprising processors, interconnects, memories and dedicated
devices like DMA engines. The user can deploy different system configu-
ration parameters by means of command line switches, which allows for
easy scripting of sets of simulation runs. A thorough set of statistics, traces
and waveforms can be collected to analyze performance bottlenecks and
to debug functional issues. To take into account other crucial design vari-
ables, power models for many of the MPARM components are supplied.
Frequency and voltage scaling can be realized at runtime thanks to dedi-
cated programmable registers.

MPARM features a choice of several IP cores to be used as system mas-
ters. Some of these are taken from the open source or academic domain,
and while spanning over a range of architectures, they typically model
pre-existing industrial general purpose processors with little to no pos-
sibility of modifying the supported instruction set and architecture. Sec-
tion 3.3 on the next page and Section 3.4 on page 63 discuss additional core
models for MPARM, extending its simulation capabilities.

MPARM provides extensive facilities to study the performance of alter-
native memory hierarchies. Three layers of memory devices are defined:
(1) on-tile, strongly coupled to the processor, e.g. caches and SCRATCH-
PAD MEMORIES (SPMS); (2) on-chip, attached to the system interconnect;
(3) off-chip, driven by a DRAM memory controller. In addition, to ana-
lyze inter-processor communication behaviour, memories can be defined
as private or shared, and a cache snooping mechanism is provided. The
latency of each memory can be freely defined.

In terms of interconnect, MPARM provides a wide choice, spanning
across multiple topologies (shared buses, bridged configurations, partial
or full crossbars, NoCs) and both industry-level fabrics (AMBA AHB and
AXI [186], STBus [5]) and academic research architectures such as the
×pipes NoC described in this dissertation.

On top of the hardware platform, MPARM provides a port of the
uClinux [187] and RTEMS [188] operating systems. The choice of RTEMS
is motivated by the fact that RTEMS is a lightweight OS for embedded
systems, but it offers at the same time good support for multiprocessing,
and provides native calls for communication and synchronization in such
multiprocessor environments.

Application code, either OS-based or not, can be easily compiled with
standard GNU cross-compilers. Scripts and makefiles fully automate the
process of building for a multiprocessor platform. Simple function calls,
provided by support libraries of the simulator, allow flexible performance
profiling: statistics can be collected during OS boot, application execution,
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or critical sections of algorithms.
MPARM also features support libraries to help fast development and

debugging of new applications and benchmarks. This is key for establish-
ing a solid and flexible simulation environment. MPARM includes several
benchmarks from domains such as telecommunications and multimedia,
and libraries for synchronization and message passing.

Debug functions include a built-in debugger, which allows to set break-
points, execute code step-by-step and inspect memory content; it is addi-
tionally capable of dumping the full internal status of the execution cores.
When testing applications written without underlying OS support (i.e., no
native I/O calls are available), messages and status information can still
be easily provided to the user by means of pseudo-instructions.

Multiple communication and synchronization paradigms are possi-
ble in MPARM, including plain data sharing on a shared memory bank,
message passing among SPM resources of each processor, interrupts and
semaphore polling.

Simulation accuracy and flexibility have to be traded off with simula-
tion speed. However, MPARM, despite being signal-accurate and cycle-
accurate, is fast and usable. Simulation performance is in the range of
200 kCPUcycles/s, which is enough to simulate applications of reasonable
complexity in few minutes.

In the context of this dissertation, the MPARM features are key to inter-
connect performance evaluation. MPARM stimulates the communication
subsystem with functional traffic generated by real applications running
on top of real processors. This opens up the possibility for communication
infrastructure exploration under real workloads and for the investigation
of its impact on system performance at the highest level of accuracy.

3.3

Integration of Advanced Platform Cores

To face increasing architectural design complexity in deep-submicron
technology nodes, the reuse-centric paradigm based on IP cores is a nat-
ural solution. However, this approach still poses significant challenges.
First of all, general-purpose IP blocks lend themselves very well to quick
parallel deployment in MPSoCs, but often do not provide enough per-
formance when running complex user applications, such as multimedia
streaming or floating point computation. In fact, depending on the appli-
cation, dedicated IP blocks could deliver much higher efficiency thanks
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to task-optimized circuitry. This observation leads to APPLICATION SPE-
CIFIC INSTRUCTION SET PROCESSORS (ASIPS), i.e. to IP cores stemming
from the architecture of general-purpose processors but with an instruc-
tion set comprising at least some custom instructions optimized to accel-
erate the task at hand. If designed with state-of-the-art CAD toolchains,
ASIPs can provide most of the advantages of dedicated IPs but reduce de-
velopment time by several times [189] and maintain flexibility. The com-
mercial LISATek suite [91] was born to focus on the seamless development
of ASIPs, by leveraging a dedicated modeling language (LISA) and by pro-
viding numerous development and debugging facilities.

It is immediately apparent that there is value in the integration of
LISATek technology within the MPARM framework, due to several rea-
sons:

• Instant enrichment of the MPARM portfolio of IP cores with several
additional LISATek models of existing IP cores.

• Ability to develop new IP cores for MPARM leveraging an easy-to-
use modeling language specifically conceived to describe processor
architectures - which allows for dramatic savings in coding time.

• Ability to modify and optimize IP core models at any time, adding
to the degrees of freedom already supported by MPARM.

Further, LISATek adopts a SystemC simulation backbone, which en-
ables a clean integration with MPARM.

The joint MPARM/LISATek framework that we developed enjoys sig-
nificant unique benefits compared to existing virtual platforms. Usually,
two major families of tools can be easily recognized in the virtual platform
space: academic and industrial. They differ in many respects, the main dif-
ference being conceptual and related to the different purpose they serve.
Research tools are usually open in nature, and experimentation is encour-
aged and welcome; but not easy. Documentation is minimal, user inter-
faces are hard to use, and the do-it-yourself approach to problem solving
is dominant. In stark contrast, industrial tools support a variety of use-
ful development and verification features, but the typical expected design
flow calls for deploying pre-designed and pre-verified blocks, configuring
some parameters, maybe adding one or two custom blocks, and testing.
This kind of flow is efficient, but does not encourage research and explo-
ration: IP blocks are shipped in encrypted form and their internal archi-
tecture cannot be explored or extended. For the first time, by integrating
LISATek within MPARM, the advantages of both approaches can be made
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simultaneously available. We aim at the sweet spot between the indus-
trial and academic approaches: the LISATek roots guarantee industrial-
grade development and debugging facilities, while all of the platform code
(LISA processing blocks and SystemC interconnects and memories) can be
modified at any time for research purposes. Open-source software sup-
port is also provided for the required hardware abstraction layers. The
result is an open platform where the architecture of each hardware mod-
ule can be changed, and which is easily extensible by adding new models.

3.3.1 The LISATek Design Platform

The LISATek processor design platform is built around the LISA 2.0
ADL [190]. Figure 3.2 on the next page shows the processor design flow
supported by LISATek. From a processor model written with the LISA 2.0
ADL, a set of processor development tools such as instruction-set simula-
tor, C-compiler, assembler, and linker are automatically generated to sup-
port architecture exploration. A graphical user front-end is also available
for software debugging and profiling purposes. Moreover, RTL hardware
models in the most popular hardware description languages, VHDL, Sys-
temC and Verilog, can also be generated from the LISA model for hard-
ware implementation. With the LISA platform, the ASIP development
time can be greatly reduced compared to the traditional manual approach.
Design efficiency is achieved through high degree of automation.

3.3.2 The LISATek Simulation Interface

Given a LISA model, the LISATek tool is able to generate instruction-set
simulators for the processor under design. Typically, the generated simu-
lator is directly used by the debugger in form of a dynamic library. How-
ever, a compiled static simulator library is also generated, and specifica-
tions exist to integrate it into a system environment. In our case, the sys-
tem environment would be MPARM. All the core models generated by the
LISATek suite, regardless of the nature of the ASIP at hand, have the same
interface. The interaction is based upon four key pillars:

• The simulated core can be cycled by calling specific functions. If
the processor is modelled in an instruction-accurate fashion, then the
generated model can be stepped on an instruction basis. On the other
hand, a model derived from a cycle-accurate LISA description can be
stepped on both instruction and cycle basis.
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Figure 3.2: LISATek-based ASIP design flow.
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• Core-initiated communication (e.g. reads, writes) is performed
through a specific APPLICATION PROGRAMMING INTERFACE (API),
which is discussed below. It is the task of the external program to
provide an implementation of said API.

• System-initiated communication (e.g. interrupts), if any, can be for-
warded to the core when cycling it, and therefore on a fine-grain
cycle-by-cycle basis, by proper flipping of extra pins. Of course the
LISA core model must be made aware of the meaning of these extra
pins to take proper action.

• An external LISATek Debugger tool can be interfaced to the core via
the INTER-PROCESS COMMUNICATION (IPC) mechanism. The ex-
ternal program must simply invoke the Debugger with proper refer-
ences; subsequently, the LISATek model and the Debugger interact
autonomously.

While all of these items were implemented during our work, the most
interesting for discussion here is the API for core-initiated communica-
tion [191]. In a system environment, this LISATek API is the communi-
cation interface between the core and the external resources. It must be
implemented by the external platform and passed to the processor simu-
lator during system initialization. In addition to some control functions,
the API is mainly composed of eight data-related calls (Listing 3.1).

Listing 3.1: LISATek communication API prototypes.

int read(AType addr, DType *data, int n, ...);

int write(AType addr, DType *data, int n, ...);

int request_read(AType addr, DType *data, int n, ...);

int request_write(AType addr, DType *data, int n, ...);

int try_read(AType addr, DType *data, int n, ...);

int could_write(AType addr, DType *data, int n, ...);

int dbg_read(AType addr, DType *data, int n, ...);

int dbg_write(AType addr, DType *data, int n, ...);

Three sets of calls, each of which constituting a sub-interface, can be
distinguished. The first two calls represent the blocking sub-interface: they
are based on the assumption that a non-cycle-accurate LISA core may be
attached to a cycle-accurate external module. In this case, communication
requests which can not be serviced immediately should yield control to
the simulator, freezing the caller for as many cycles as needed to complete
the transaction. As a result, no concurrent activity can be performed in the
LISATek core if a transaction is pending.
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The calls from the third to the sixth implement the non-blocking
sub-interface; it is vital when designing cycle-accurate cores. The
request read() or request write() functions are initially in-
voked; control is always returned. Subsequently, try read() or
could write() can be invoked at each clock edge to try to carry the
pending transaction on. The return status can be a negative acknowl-
edge (e.g. if wait states are needed), but since control is always returned,
the core is free to perform other tasks in background, such as shifting its
pipeline.

The last two calls of the API are the debug sub-interface. Their pur-
pose is to provide an instant reaction, bypassing any wait states. While of
course this is not a realistic assumption for a physical system, the calls are
extremely useful for debug purposes, such as monitoring or manipulating
the content of an external memory while executing a benchmark. They are
also useful to load the contents of a memory during the reset cycle.

The implementation of these function calls depends completely on the
communication method used in the system; e.g. if the simulator needs to
work with a system modelled at the RTL level, then the API must be imple-
mented to translate the resource requests into RTL signals. In our case, the
implemented API will translate the requests into SystemC signals which
can be understood by the MPARM platform. Since MPARM is a cycle- and
signal-accurate platform, implementing the first two sub-interfaces was
straightforward. The third was supported by directly interfacing with the
data arrays which hold the contents of simulated memories. In case caches
were present, the implementation was tuned so to take them into account
(e.g., writing data to both the cache and the external memory when using
write-through policies, and just to the cache when using write-back; or
maybe only to the external memory in case of a write miss).

3.3.3 L1 Memory Placement Strategies

The LISA language makes no assumptions about how to model memory
hierarchies. The language allows the specification of cache subsystems,
but also permits the implementation of a flat memory array to which all
accesses should be directly made. A typical LISA ASIP model is likely to
take the second route, for at least two reasons: (i) implementing a complex
cache controller is time-consuming, (ii) it is not very meaningful to accu-
rately model a cache if there is no accurate model of the delays associated
to an external memory.

The LISATek API mentioned in Section 3.3.2 on page 53 is transparent
to the presence of caches. In fact, the API can be the outer interface of a
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Figure 3.3: Possible placements of the L1 memory: (a) tightly coupled with
the IP core, (b) as a system component.

cache layer, to handle refills and writebacks, as well as the inner interface,
used by the processor to query a cache controller. Figure 3.3 illustrates the
alternatives.

When integrating the LISATek processor models within MPARM, a
choice had to be made regarding the most suitable L1 memory placement
strategy. The alternatives were to develop the L1 memories together with
each processor, therefore using the LISATek communication API among
caches and MPARM; or to develop the L1 memories as an MPARM block,
and using the API interface to drive them. Both paradigms allow for cycle-
accurate modeling. Tightly coupling the L1 memory to the IP core has the
advantage of allowing for arbitrarily complex interactions among the two
components. Instead, an external module has the obvious advantage of
reuse, where a single cache controller can be seamlessly used by any IP
core.

After careful consideration, we went for the second alternative. While
the LISATek communication API seems to be flexible enough to support
all of the relevant core/cache interactions, thus making it less useful to de-
velop caches inside of each core, we found that the reuse capability, given
an equal development time, allows the shared cache module to support
more features (different associativity levels, write-back vs. write-through
policies, snooping capabilities, power optimizations and models), thus be-
coming more suitable for performance assessment.

While this subsection mostly mentioned cache memories, it is worth
stressing that we also made it possible to instantiate an SPM next to (or
in place of) them. Since a large body of research exists on how to exploit
SPMs to improve embedded system efficiency [192], this adds a further
useful degree of freedom for architectural exploration.
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Figure 3.4: The scheme of a processor tile.

3.3.4 Core-Associated Devices

When developing a shared MPARM block to handle the L1 memory, we
also found it useful to cluster other functionality at the same layer. The end
result is a processor tile, comprising IP cores and the most tightly coupled
components (Figure 3.4). Namely, we developed (i) a timer device, (ii) an
emulated serial port, (iii) a simple interrupt controller. The first compo-
nent is vital if attempting to port an operating system. The second is very
useful for debugging purposes; placing it next to IP cores, instead of in a
shared location accessible to all system processors, has the advantage of
allowing for independent input/output, and prevents debug traffic from
spilling onto the system interconnect where it could pollute performance
statistics. Finally, the interrupt controller is both a requirement of the other
two devices and a crucial component to develop efficient synchronization
mechanisms in multiprocessor systems. The controller is externally at-
tached to a set of system-level wires which convey inter-core interrupts.
On the IP core side, we implemented a simple interrupt handshaking pro-
tocol where the value of interrupt registers is copied on some LISATek core
pins which are polled every cycle by the core to take proper action. The
interrupt controller is memory mapped, to let the core reset the pending
interrupt flags and configure the masking status.
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3.3.5 The Resulting System Architecture

The MPARM architecture is layered, to flexibly accommodate for different
master devices and interconnect models. As can be seen in Figure 3.1 on
page 49, the IP core tiles talk to a master device, which is in charge of
handling any arbitration and/or routing phases required by the specific
underlying fabric. The tile/master interface can either be MPARM-custom
or comply with the OCP 2.0 [12] specifications.

The MPARM facilities allow the designer to flexibly instantiate com-
plex platforms. Homogeneous as well as mixed processing tiles can be de-
ployed, and selection among them is as simple as flipping a command line
switch. Specific MPARM modules exist to handle addressing maps and to
track simulation statistics, including cache hit rates, interconnect conges-
tion and latencies, memory access patterns and (for the components for
which a model is available) power consumption. In addition, the graphi-
cal LISATek Debugger can be launched to interactively inspect the status
of each LISATek core, to set breakpoints and watchdogs, and to manually
control the flow of execution.

3.3.6 Experiments and Case Studies

In this section, we demonstrate that we implemented a fully working and
usable solution, and we show a sample of the kind of analysis that can be
performed on our combined platform.

In order to achieve the former objective, we implemented a LISA
ARMv7 core, which is instruction-equivalent to another ARMv7 core that
was already available in MPARM. Since the cycle accuracy of the core it-
self was not important for our purposes, we kept its model very simple (no
pipelining) without any timing accuracy effort. The expected result was
complete functionality of the system platform. This achievement is testi-
fied by the screenshot in Figure 3.5 on the next page: the LISATek Debug-
ger, in the foreground, is attached to a LISA core (currently paused on a
breakpoint) that runs within MPARM. The console of the latter can be seen
in the background. As a secondary result, by exercising the two ARMv7
implementations with the very same benchmark binary, we expected to
find a perfect equivalence in the amount of memory accesses. Across sev-
eral microbenchmarks and functional benchmarks from the multimedia
and data encryption domains, including applications which leverage the
RTEMS operating system, this result was indeed confirmed. On the other
hand, we noticed a discrepancy of about 30% in the amount of execution
cycles - which is perfectly normal due to the fact that the LISA ARMv7
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Figure 3.5: A system simulation screenshot.

model did not include a pipeline, while the MPARM one did. With LISA
cores, we recorded up to 200 kCPUcycles/s on an Athlon XP 2200+ ma-
chine with 512 MB of RAM.

Next, we prove the importance of being able to model the effect of
memory hierarchies and interconnect congestion on system performance.
The choice of an instruction-accurate ARM model does not prevent cycle-
accurate exploration of the impact of the communication fabric. Figure 3.6
on the facing page shows the execution time when a variable amount of
IP cores, each of them independently performing the same benchmark, is
attached to the interconnect. Each core executes an additional chunk of
processing, therefore an increasing requirement of communication band-
width is depicted (i.e. no parallelization). In absence of bus contention,
execution times are expected to remain constant, as all cores operate si-
multaneously. A cache is interposed and configured with two alterna-
tive policies, namely WRITE-BACK (WB) (writes go to cache only, and are
copied back in memory only when the cache line is evicted) and WRITE-
THROUGH (WT) (writes always go to both cache and memory). The WB
policy is clearly minimizing the amount of traffic which spills on the in-
terconnect, but at the cost of additional complexity in the cache controller
(dirty bits have to be tracked). The advantage of WB, which may not be
fully clear when designing the IP core alone, is evident here. With WT
caches, six or more processors are enough to congest an AMBA AHB inter-
connect, causing a progressive performance degradation. With WB caches,
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Figure 3.6: Performance vs. interconnect congestion.

Figure 3.7: Performance vs. cache size.

the amount of writes on the bus is drastically lower, and up to sixteen cores
can be attached to the same fabric without significant bottleneck effects.

Subsequently, just by changing a command line parameter, we re-
peated the same experiment with varying cache sizes (Figure 3.7). As the
chart shows, bigger caches help performance, but under low interconnect
congestion (few IP cores on the bus and/or WB caches), their impact is
much less than under high congestion.

To further showcase possible design space scenarios, we created a
mixed platform with one LISA ARMv7 core and one or more LISA FFT
coprocessors. The latter devices were designed to optimally accomplish
a specific task, namely a Fast Fourier Transform. Since they internally
perform parallel computation (Figure 3.8 on the following page), they
feature high bandwidth requirements and contribute heavily to bus con-
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Figure 3.8: A 3-Slot VLIW FFT Processor.

gestion. Figure 3.9 on the next page plots the latency, as seen by the
ARM core, to complete bus transactions when increasing numbers of FFT
cores are working in the background. A steep latency increase can be no-
ticed, prompting the designer to quantify the amount of communication
resources needed for the deployment of FFT coprocessors.

To highlight how the availability of a full platform, including memory
hierarchies and interconnect models, enables the study of non-trivial ef-
fects in MPSoC systems, we show in Figure 3.10 on page 64 the polling be-
haviour of a DES encryption benchmark, where two control tasks (initiator
and terminator) supply and collect chunks of raw data to a variable amount
of parallel worker tasks that perform the actual encryption/decryption. We
tested the system with one to six worker tasks, each running on a differ-
ent LISA core. The worker tasks have to synchronize with the initiator
and terminator tasks by semaphore polling before being able to exchange
data chunks. The plot depicts the overall amount of system polling as a
function of varying frequencies of polling executed by the initiator and
terminator tasks. With few workers, the workload is very unbalanced (the
initiator and terminator tasks have comparatively little to do) and config-
uring them for frequent polling is only a waste of interconnect bandwidth.
As more workers are added, frequent polling becomes increasingly useful
because more data chunks have to be distributed and collected per time
unit. If the polling interval of the initiator and terminator becomes too
wide, roles reverse, and it is the worker tasks which have to perform heavy
polling before exchanging data. Therefore, the global polling amount in-
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Figure 3.9: Bus latency of a mixed ARM + FFT platform.

creases again. The case with a single worker has the rightmost knee point
(the control tasks are very lightly loaded, and can afford sparse semaphore
checks) but the highest absolute polling amounts (the chance of hitting
optimal synchronization points without much polling is very low). When
the polling interval becomes large, all lines exhibit a shaky trend, because
randomly missed synchronization points imply a long wait before the next
semaphore release event and long strings of polling activity.

3.4

Reactive Traffic Generation

A primary design paradigm for MPSoCs is the separation of the commu-
nication and computation concerns, as this enables IP reuse and shorter
design times. When tackling the communication part, whose optimization
is key to the overall performance of an MPSoC platform, it is key to rely on
traffic models that are realistic and accurate. A critical problem however
is that traffic models should capture not only the behaviour of the appli-
cations, but that of the applications running on top of a stack of hardware and
software; this includes properties which are not easy to reproduce, such as
synchronization.
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Figure 3.10: Polling behavior in the DES benchmark.

In presence of concurrent tasks running on multiple processors, the
characterization of traffic patterns is not simply a matter of stochastic
modelling [98, 193] or trace-based regeneration [108]. For example, an
inter-processor synchronization mechanism based on semaphore polling
generates different amounts of traffic depending on the relative timing of
accesses. This may create traffic spikes and localized congestion of the in-
terconnect, but is very hard to predict in advance, impacting the accuracy
of the traffic model. A less simplistic way of modeling the MPSoC system
is to describe it entirely as a cycle-true model [194]. This yields the most
accurate information for performance analysis and subsequent intercon-
nect optimization. However, the implementation time and the simulation
speed of such models is clearly a limit to widespread adoption. In an in-
dustrial design, such complete and cycle-accurate platform models may
actually only become available after the product tapeout - long after the
deadline for the optimization of the system interconnect.

For the purposes of the interconnect designer, a valuable tool for explo-
ration and optimization would be a black-box model that, when plugged
at the ports of the interconnect, would act like an IP core, injecting real-
istic traffic with clock cycle accuracy. A key desired property would be
reactiveness to the surrounding environment, that is, the ability to adjust
traffic patterns depending on synchronization events which are associ-
ated to the system as a whole, and could not be properly rendered by any
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(a) RIPE as a simulation aid, replacing
existing IP cores.

(b) RIPE as a design tool, acting as an IP
core still under development.

Figure 3.11: Possible usage scenarios of RIPE.

traffic generation device in isolation. An example has been given above
with synchronization by semaphore polling; more complex scenarios in-
clude system-triggered interrupts. Only a tool featuring such reactiveness
really allows for meaningful analysis of the interconnect choice and per-
formance. The fundamental problem, however, is how to generate such
realistic traffic patterns.

We investigate this problem and propose a solution in the form of a
REACTIVE IP EMULATOR (RIPE) model. RIPE is a tool that can repro-
duce IP traffic with cycle accuracy. This is done by influencing the type
and the timing of the communication transactions based on the current
internal state and the synchronization properties of the MPSoC system as
a whole. A part of the novelty of our approach is that we use additional
and readily available system-level information (such as, for example, the
knowledge of the location of semaphore variables in the memory space) to
automatically detect synchronization events and respond to them during
runtime. These elements allow us to reach the goal of reactiveness. RIPE
is implemented as a SystemC module with OCP pinout, readily allowing
for integration within MPARM Section 3.2 on page 49.

The proposed RIPE device can be used in several ways. One pos-
sibility (Figure 3.11(a)) is to leverage its features to replace existing IP
cores [195, 196]. The idea is to accurately reproduce communication trans-
actions based on prerecorded system traces. By swapping away IP cores
for RIPE blocks in the reference cycle-true system, subsequent design
space exploration of the interconnect can be performed independently
while keeping a very high level of accuracy and speeding simulation up.
A validation scheme for this type of flow will be presented in Section 3.4.3
on page 76.
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On the other hand, a RIPE device can also be used (Figure 3.11(b) on the
preceding page) in the early stages of the design space exploration, when
not all IP cores may be finalized yet, to explore co-simulation effects and
see the impact of hardware changes on the software stack. In this scenario,
the interconnect designer may want to leverage RIPE as a design tool, by
hand-writing programs to test specific realistic synchronization-intensive
scenarios which would be very difficult to study with traditional traffic
generation flows. For example, in Section 3.4.6 on page 88 we will present
a case study where the impact on execution time of variable densities of
interrupt events can be investigated.

3.4.1 Application Reactiveness in MPSoC Environments

A first mandatory condition for this work is to investigate the require-
ments for accurate modeling of communication events on MPSoCs. In
MPSoC environments, several different types of system-level commu-
nication may occur. We identify three broad categories: (i) processor-
initiated communication towards a private resource but across a shared
medium, (ii) processor-initiated communication towards a shared re-
source, (iii) system-initiated communication towards a processor, which
typically happens by means of interrupts. Especially the second and third
types are examples that illustrate the reactiveness of IP cores, a property
which must be carefully emulated to accurately model their traffic pat-
terns. In the following, we present examples of representative applica-
tions which are impacted by system-level constraints, such as the sharing
of interconnect and memory resources.

Communication with a Private Resource

Let us first consider a simple case of processor-initiated communication to-
wards an exclusively owned slave peripheral, but across a shared medium
(Figure 3.12(a) on the facing page). We code a simple application, matrix,
which involves one task per processor, each performing some private com-
putation. No inter-task or inter-core synchronization is required. How-
ever, all tasks compete for access to the same interconnection resource.

In this example, the communication needs of the application are quite
easy to model; the result is a simple list of transactions interleaved with
computation. The model is made only slightly more complex by the issue
of bus congestion, which makes the data access time unpredictable.

To better understand this issue, please consider the first two master
transactions, a write (WR) and a read (RD). The WR transaction can be as-
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sumed to be non-blocking for the IP core, which therefore simply issues
a request and continues its computation. The RD, on the other hand, uses
blocking semantics. Therefore, the response has to make its way back to
the master, and only then can computation resume. The overall latency is
also a function of the congestion on the interconnect. Therefore, it is not
enough to capture a time-annotated list of transactions, as the timing infor-
mation depends on the specific interconnect. From the emulation point of
view, however, a model can be easily achieved as follows. The latency due
to congestion and actual slave response time can be discarded; the only
essential points to capture are just the two transactions, the delay between
the WR assertion and the RD assertion (which is computation time), and
the delay between the RD response and the following command. This in-
formation makes it possible to emulate the IP core behaviour on any given
interconnect, even one having very different latency properties.

Similarly, the stalling behavior observed in the next set of instructions
(WR-RD) does not need to be explicitly captured in a RIPE model, since,
from a processor perspective, it simply appears to be part of the slave re-
sponse time.

Requirement #1: This observation leads to the concept of time-shifting be-
haviour: consecutive transactions are tied to each other, and are issued at
times which are a function of the delay elapsed before receiving responses
to previous transactions. For emulation purposes, only the length of the
computation periods (which can be modeled by idle waits) and the trans-
action types are needed.

Modeling requirements of this simple category of traffic can be pre-
dicted or inferred given an algorithmic specification. In [197, 98] such an
inference is drawn to test the interconnect. However, these models do
not hold for more complex traffic types, as those that will be shown be-
low, unless extremely detailed models of the underlying hardware and
software are provided. This includes cache replacement policies, simulta-
neous tracking of each processor state, etc..

Communication with a Shared Resource

In the simplest synchronization case, one or more processors competing
for a shared resource may poll a semaphore to gain resource access. As
an example, let us consider a multimedia application called poll (Fig-
ure 3.12(b) on the previous page). For this case, we map a single task onto
each IP core. Tasks are programmed to communicate with each other in a
point-to-point producer-consumer fashion; every task acts both as a con-
sumer (for an upstream task) and as a producer (for a downstream task),
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therefore logical pipelines can be achieved by instantiating multiple cores.
Synchronization is needed in every task to check the availability of input
data and of output space before attempting data transfers. To guarantee
data integrity, semaphores are provided. A semaphore is a special binary-
valued memory mapped device for which test&set functionality is pro-
vided in hardware. Therefore, an RD returns the semaphore state and, if
the semaphore is currently “unlocked”, also changes its state to “locked”.
By checking the return value of the RD, the master issuing the command
can decide if the locking was successful or if the semaphore had already
been locked by another task. The unlocking can be performed with an ex-
plicit WR command of the “unlocked” value. In the poll application, the
consumer checks a semaphore before accessing producer output. If the
semaphore is found locked upon the first read, the application reacts with
a continuous polling strategy, whereby it regularly issues read events until
eventually the semaphore is found unlocked. Since the transactions occur
over a shared interconnect, the unlock event (in this case the WR issued by
IP#1) and the success of the next request (RD event by IP#2) are interde-
pendent.

In the figure, only if the IP#2 RD event is issued at least tnwk,IP#1 +
tunlock,S − tnwk,IP#2 after the unlocking by IP#1, then IP#2 will be granted
the semaphore and additional polling events will not be required. There-
fore, depending on network properties, a variable amount of transactions
might be observed at the ports of the IP cores. This demonstrates that
the time-shifting behaviour introduced before is not sufficient when multi-
master systems are taken into account. The arbitration for resources in
such designs is timing-, and thus architecture-, dependent.

Requirement #2: The state of the shared resources needs to be tracked.
For emulation purposes, the semaphore locations must be known and
monitored, and the devices must make use of this information to adjust
their execution flows.

System-Initiated Communication

System-initiated communication towards a processor is generally per-
formed by means of interrupts, and an OS is in charge of the handling.
In reacting to the interrupt, however, the degree of interaction between
the OS and the application can vary noticeably. We present here three ex-
amples, which are representative of a vast class of execution flows. The
RIPE model we will propose can capture all the dynamics of these test
cases, given proper insight on the mechanics of the applications and the
OS.
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As a first example (Figure 3.12(c) on page 67), we create a test appli-
cation (multi) where timer-generated interrupts are used to drive the OS
scheduler. In this case, only the OS is aware of the interrupts, while the
user tasks are transparently paused and resumed while executing a sin-
gle stream of operations. In our application, we introduce two tasks per
processor, having unbalanced bandwidth needs; therefore, every interrupt
causes an abrupt shift in traffic workload for the interconnect.

In a second example (Figure 3.12(d) on page 67), the IO application is
composed of a main execution task and of a driver for an Input/Output
(I/O) device; the latter is in charge of responding to interrupts sent by the
hardware device. The driver operation is bandwidth-intensive, causing
traffic spikes on the interconnect.

A third test case (pipe) features the same logical behaviour of the poll
example shown above, that is a pipeline of multimedia processing tasks,
but leverages interrupts instead of polling to reduce the congestion on the
interconnect and the energy waste upon synchronization points (see Fig-
ure 3.13 on the facing page). This scenario features a very tight coupling
between the application and the interrupt handling; for example, upon an
unsuccessful lock acquisition by a consumer, the application interacts with
the OS to be descheduled and to be resumed only upon the next interrupt
event, which will flag the availability of new data. On the other hand, if
the lock is immediately available, the application proceeds directly. In-
terrupts may be ignored if they are issued ahead of time, that is, if the
notification of new data availability arrives before the consumer is ready
to process a new message.

As can be seen, modeling these applications and their impact on in-
terconnect performance is not trivial, presenting a major hazard for any
traffic emulation device. A complete emulation of the hardware and soft-
ware stacks is needed to properly determine the traffic behaviour at the IP
core pinout boundary.

Requirement #3: In presence of interrupt facilities and of an OS, the exe-
cution of every application task, of the OS kernel and of interrupt handlers
must be independently identified and modeled. This can be achieved by
tracking the occurrence time of interrupt events and application resump-
tions. The traffic emulator should then be able to model the IP core be-
haviour independently of the interrupt occurrence time.

Timing Dependency of Applications

So far, we have evaluated the implications of different MPSoC traffic cat-
egories. These requirements are not derived in a ad-hoc fashion, but are
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Figure 3.13: Application flow of pipe.

representative of typical timing-sensitive real-life applications [198], such
as multimedia stream processing, time slicing mechanisms in OS sched-
ulers, and I/O device handling. In such applications, the overall per-
formed computation does not change depending on the order of arrival
of external events. So, while an execution trace of these examples show
widely varying traffic patterns depending on external timings, the major
computation blocks are still recognizable. Even though applications with
even more timing-dependent behaviour do exist, modeling them would
require an intra-task notion of context switching. At this stage, we believe
that the complexity of such an effort for a whole MPSoC in a generic way
would be excessive and anyway unsuited for a black-box component such
as the RIPE intends to be.

3.4.2 RIPE Model and Implementation

The key principles of RIPE can be rendered in several types of devices,
including behavioural modules, programmable simulation devices and
even programmable hardware blocks. We choose to explore the second
alternative, which provides the maximum flexibility while leaving fu-
ture embodiments open. Therefore, we specify an abstract RIPE multi-
threaded Instruction Set Architecture (ISA) and we build a RIPE SystemC
simulation device with OCP (Open Core Protocol) 2.0 [12] sockets at its
ports. The RIPE model allows for easy programming of sequences of
communication transactions interleaved with idle waits, and is capable
of sensing and responding to system events and properties. The details
of our implementation, and an example RIPE program modeling one of
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the applications introduced in Section 3.4.1 on page 66, can be found in
Section 3.4.2 on the preceding page.

In this section, we describe a particular implementation of the RIPE
concept based on an instruction set architecture, which is capable of ful-
filling the above presented requirements of reactive behaviour.

RIPE Instruction Set Architecture

Applications such as those outlined in Section 3.4.1 on page 66 can be em-
ulated either within a behavioural/transaction-level module or with an
Instruction Set Architecture (ISA)-based device. While our RIPE model
and the supporting toolchain (Section 3.4.3 on page 76) could also be tar-
geted at the deployment of behavioural models, we choose to develop
an ISA-based RIPE implementation, and we describe it in SystemC [185].
While the behavioural model may have a slight advantage in simulation
speed over a programmable device, it also requires a recompilation of the
simulation platform every time the application to be modeled changes.
During design exploration, such a step would be required to study mul-
tiple applications on the same platform. A programmable model, with a
fixed emulation device and user-written programs, avoids this time con-
suming operation, introducing instead a simple programming language
paradigm. The designer may not even need to use the language at all
when using automatic translation of the traffic specification into a RIPE
program, as outlined in Section 3.4.3 on page 76. Further, a future goal of
our project is to build test chips containing interconnect prototypes. The
ISA-based approach is very attractive for this purpose, because it can nat-
urally map onto a hardware device to inject traffic on test chips. In [199],
the potential of this type of architecture has already been shown within an
FPGA-based emulation platform.

The RIPE is implemented as a non-pipelined processor with a very
simple instruction set, as listed in Table 3.1 on the facing page. Its exter-
nal pinout matches the OCP 2.0 [12] specifications for a master interface.
Hardware interrupts are available on the sideband portion (SInterrupt)
of the OCP interface, and an internal software interrupt facility is also
present. A future planned extension is the support for the multithreading
extension of the OCP protocol, thus supporting outstanding and out-of-
order transactions. Any other interface standard, such as AMBA AXI [4],
could also be supported depending on the interface required by the inter-
connect under study.

The RIPE program that controls the device behaviour contains code to
model one or multiple tasks. These tasks might be actual tasks running
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Instruction Description

Communication Instructions:
Read(AddrReg) Read from an address
Write(AddrReg, DataReg) Write to an address
BurstRead(AddrReg, Burst read from address set

CountReg)

BurstWrite(AddrReg, Burst write to address set
DataReg, CountReg)

Flow Control Instructions:
If(arg1, arg2, operand) Branch on condition
Jump(label) Branch direct
Idle(counter) Wait for given no of cycles
SetRegister(reg, value) Set register (load immediate)

Table 3.1: RIPE instruction set.

on the IP core which is being emulated, or chunks of the OS layer, such as
its native interrupt handlers and scheduler. We instantiate in the device a
Program Counter (PC) register, an instruction memory and a register file
for each task specified by the program; no data memory is needed. A
context switch among tasks in the task pool is realized simply by referring
to the corresponding set of PC and register file.

The instruction set comprises four instructions for data transfers,
whose operation can be controlled by putting proper values in the
operand registers. These instructions are blocking, i.e. the RIPE execu-
tion is suspended until completion of the OCP handshake, which for a
read will include the latency of the response over the network.

Four flow control instructions are also available to realize the reac-
tive behaviour. The SetRegister instruction loads an immediate 32-bit
value, which is written into the specified register. The If and Jump in-
structions are used to change the execution flow, while the Idle instruc-
tion models the IP computation periods with idle waits. Within the reg-
ister file, most registers are general purpose (typically used to set address
and data values for OCP transactions), and their number can be config-
ured. Some registers are designated as special purpose. For example, since
in specific flow control scenarios the data returned by a Read command
must be available for evaluation (e.g. in case of semaphore checks), the
RIPE device provides in Register 4 the response to the preceding read. Ta-
ble 3.2 on the next page shows all designated special purpose registers.

Of the interrupt-related registers, Register 2 is used to (un)mask critical
sections of the RIPE program from external, system-issued interrupts. For
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Special Name Usage

Register

Interrupt Registers:
2 IntrpMaskReg Masks or unmasks interrupts
3 TaskIDReg Stores a task ID
5 SWIntrpReg Sends a software interrupt from

within the program

Other Registers:
4 RDReg Stores the data value returned

by a Read(AddrReg) instruction

Table 3.2: RIPE special registers.

example, as seen in pipe (Figure 3.13 on page 71) the interrupts are only
enabled after the task has suspended, while they are masked during nor-
mal operation. Register 3 can be programmed to hold the task ID of the
next task to be loaded and run on the RIPE device out of the available task
pool. Register 5 allows the RIPE program to assert “software interrupts”.
The RIPE model instantly reacts to unmasked hardware or software inter-
rupts by loading the program and register set corresponding to the next
task to be emulated, which is identified by Register 3. The usage of the
special registers will be shown in Section 3.4.2.

Programming Language and Assembler

To better understand the programming model of the RIPE device, List-
ing 3.2 on the facing page presents the main structure of a program to
model the IO application introduced in Section 3.4.1 on page 66. State-
ments starting with a semicolon (;) are inlined comments.

The RIPE program starts with a header describing the core and the task
identifier: MASTER[<coreID>, <taskID>]. All of the tasks running
on any given IP core are described within a single program, so that there is
one program per RIPE device. Recall that IO models an application with
a linear program flow, which can be suspended by the OS to process I/O
interrupts. Therefore, two tasks are described: task #0 (the main applica-
tion) and task #1 (the interrupt handler) within the same master IP (core
ID 1).

The next few statements express initialization of the register file for
this task. Unique labels should be used for register names/tags. This al-
lows correct initialization and easy identification of the registers within
the program. For task #0, the main body of the RIPE program, the execu-
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tion flow is linear, composed of sequences of reads and writes interleaved
with register accesses (mostly, to set up transaction addresses and data).
Flow control instructions might be inserted where appropriate, but are not
needed for this application. Note the initialization of interrupt-related reg-
isters at the top of task #0; upon a hardware interrupt, the RIPE swaps the
context to the task having the ID provided in TaskIDReg, i.e. to task #1
(the I/O interrupt handler). Since task #0 can be suspended by the OS to
process I/O interrupts, IntrpMaskReg is set as unmasked, allowing for
such suspension.

The OS-driven context switch traffic and the I/O handler routine are
programmed in task #1. Within the interrupt routine (starting with la-
bel IntrptHandler), which is the critical section of the flow, interrupts
are disabled (first instruction of the task body). At the end of the flow, a
software interrupt is artificially triggered to restore the normal program
flow to task #0. Upon another hardware interrupt in the main task, the
interrupt handler routine will be executed again from the top. The flow
therefore mimics Figure 3.12(d) on page 67.

Listing 3.2: RIPE program for the IO application.
MASTER[1, 0] ; Main application (Task 0)

; Special Registers

REGISTER IntrpMaskReg 0 ; Unmask interrupts

REGISTER TaskIDReg 1 ; Next task ID

; General Purpose Registers (GPRs)

REGISTER AddrReg 0xd0abcdef ; Initialize address GPR

REGISTER DataReg 0 ; Initialize data GPR

...

BEGIN ; Comments

; Normal application flow

Idle(10) ; Idle for 10 cycles

Read(AddrReg)

...

SetRegister(AddrReg, 0x10fedcab0) ; Setup an address

SetRegister(DataReg, 0x10abcdef0) ; Setup a data value

Write(AddrReg, DataReg)

...

END

MASTER[1, 1] ; I/O driver task (Task 1)

; Special Registers

REGISTER IntrpMaskReg 0 ; Unmask interrupts

REGISTER SWIntrpReg 0 ; Disable SW interrupts

REGISTER TaskIDReg 0 ; Next task ID

; General Purpose Registers (GPRs)

REGISTER AddrReg 0 ; Initialize address GPR
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REGISTER DataReg 0 ; Initialize data GPR

...

BEGIN ; Comments

; Interrupt Handling Routine

IntrptHandler

; OS Suspension Routine

SetRegister(IntrpMaskReg, 1) ; Mask interrupts

SetRegister(AddrReg, 0x30bebeef) ; Setup an address

Read(AddrReg)

...

; I/O Routine

SetRegister(AddrReg, 0x30beefcd)

SetRegister(DataReg, 0x10101010)

Write(AddrReg, DataReg)

Idle(121)

...

; OS Release Routine

...

SetRegister(SWIntrpReg, 1) ; Trigger SW interrupt

SetRegister(SWIntrpReg, 0) ; Deassert SW interrupt

Jump(IntrptHandler) ; Get ready for next event

; End Interrupt Handling

END

The RIPE program containing the aforementioned instructions must be
transformed into a binary file for use within the RIPE device. An assem-
bler tool takes care of this step, with a one-to-one correspondence between
program instructions and binary opcodes. Within the binary, the individ-
ual task sections are appended in order of their task ID. A header with a
small task lookup table is prepended.

During the setup phase, the RIPE device loads the binary, and based
on the information encoded at the start of the binary file, determines the
number of tasks and the amount of program memory and the register file
size to be allocated to each one.

3.4.3 Using RIPE Programs

Depending on the IP model availability to the designer, different ways ex-
ist to write RIPE programs which best represent the desired type of traffic.

Trace Parsing and Replay

In this scenario, as is seen in Figure 3.11(a) on page 65, the availability of
a pre-existing model for the IP under study is assumed. Here, the RIPE
program generation goes through two steps. First, a reference simulation

March 13, 2008 Federico Angiolini 76



77 3.4: Reactive Traffic Generation

is performed by using the available IP models, and an execution trace for
each IP master in the system is collected. The trace is a very straightfor-
ward log of events on the OCP pinout; entries include requests, responses
and interrupts, all of which annotated with timestamps. A sample trace
snippet is presented in Figure 3.15(a) on page 80. Second, the trace is
parsed with an off-line tool. The output of the tool is the desired RIPE
program. The resulting program is coded to behave exactly as the original
IP model in the native system, and to behave as the core would do when
plugged to a different interconnect. This program is now ready to be used
for cycle-accurate interconnect design space exploration with extremely
realistic test traffic.

This type of flow is useful whenever the pre-existing IP model is not
available, due to licensing or technical issues, for the next co-exploration
phase. In this case, the RIPE can provide a quick functional yet cycle-
accurate port of the IP model to an MPSoC interconnect. Even if the IP
model is available, a simulation speedup can be achieved without signif-
icant losses of accuracy (Section 3.4.5 on page 83). The off-line parsing
tool must of course have some knowledge about the traced application in
order to correctly analyze and rearrange execution traces into RIPE pro-
grams. While this effort is not trivial, it is feasible and provides a path for
validation of the presented RIPE device in a complete cycle-accurate flow,
as described in Section 3.4.3 on the facing page.

Trace Editing

In a related scenario, an IP model might be available, but it may differ
under some respect from the IP that will eventually be deployed in the
SoC device. In this scenario, the RIPE may be used to approximate the IP,
as seen in Figure 3.11(b) on page 65. The designer may then follow a route
similar to the one outlined above, but with an additional step of editing
the reference trace so that it more closely resembles that of the target IP.
Some examples of the editing steps which are possible include:

• Removing or adding bus transactions to model a more or less effi-
cient cache subsystem

• Removing or adding bus transactions to model a more or less com-
prehensive emulated ISA

• Altering the delay among bus transactions to reflect different
pipeline designs or timing properties
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• Grouping or ungrouping bus accesses to reflect write-back vs. write-
through cache policies

It is certainly reasonable to expect that the alteration time of the RIPE
program will be substantially shorter than that required to develop or re-
fine the target IP model, thus allowing for earlier exploration of the inter-
connect design space.

In this scenario, overall cycle accuracy with respect to the eventual sys-
tem is of course not guaranteed. However, the RIPE will still be able to
react with cycle accuracy to any optimization in the SoC interconnect. Pro-
vided that the transaction patterns are kept close to the ones of the target
IP core, the approach will result in valuable guidelines.

Direct Development

Finally, RIPE programs can be written from scratch without reference IP
traces. In this case, the flexible RIPE instruction set allows for a full-
featured traffic generation system. The availability of built-in flow con-
trol management lets the designer implement the same synchronization
patterns which are present in real world applications (see Section 3.4.2
on page 71). Additionally, the application chunks enclosed within syn-
chronization points can quickly be rendered by exploiting the flexible loop
structures provided by the RIPE ISA, thus providing capabilities at least on
par with those of traditional stochastic traffic generator implementations
as seen in [193, 98, 199]. In the very first stages of development, the RIPE
can also be deployed as a validation tool, to check the correct functional-
ity of the interconnect under the load of the supported transaction types.
An alternate possibility, as demonstrated in [200], is using the RIPE as an
interface between formal and simulation models in a hybrid environment.
Here, the RIPE programs are written based on guidelines provided by the
arrival curves obtained by formal analysis methods. These programs are
then used to generate communication events for the simulation environ-
ment. Thus, the versatility of our RIPE flow allows for deployment in a
number of situations.

3.4.4 RIPE as a Simulation Aid

As an example of RIPE functionality, we now adopt the flow presented in
Section 3.4.3 on page 76 to show its feasibility and to create a validation
environment for the RIPE device accuracy.
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Figure 3.14: Trace to RIPE Program Flow.

MPARM Trace to RIPE Program

We integrate the RIPE model into MPARM Section 3.2 on page 49. The
use of the OCP v2.0 protocol at the interfaces between the IP cores and
the interconnect allows for easy exchange of native cores with RIPE blocks
(Figure 3.11(a) on page 65). To record execution traces, the OCP interface
modules within the MPARM system (the network interfaces in the case of
×pipes and the AMBA AHB bus master) were adapted to collect traces of
OCP requests, responses and interrupt events in a predefined file format
(.trc).

It is worth stressing that modeling the communication patterns de-
scribed in Section 3.4.1 on page 66 is not trivial. The amount of annota-
tions that can be extracted from the application and its traces reflects the
programmer’s degree of knowledge and access to the application synchro-
nization schemes, to the interrupt routines and to the OS internals.

The RIPE validation flow is illustrated in Figure 3.14. During the refer-
ence simulation, traces are collected from all OCP interfaces in the system.
The address and (if any) data fields of the transactions are also observed.
Trace entries may contain one of many transaction types: single or burst
read/write requests, assertion of hardware interrupt, arrival of response,
etc.. Figure 3.15(a) on the following page shows an example trace.

The next step is to convert the traces into corresponding RIPE pro-
grams (.tgp). The off-line translator tool outputs symbolic code; Fig-
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; "Si"mp"le" "RD/"WR"/W"RNP"
RD "0x"0"0000104" @5"5ns"
Re"sp"Da"ta" "0x"088000"f0" @"75ns"
WR" "0x"000000"20 "0x"00000111" @"90ns"
RD "0x"0"0000031" @1"40ns"
Re"sp"Da"ta" "0x"000022"36 @"165ns"
.."
.."
; "po"ll"in"g "a "sem"aphor"e!"!"
RD "0x"0"00000"ff "@2"1"0ns"
Re"sp"Da"ta" "0x"000000"00 @"270ns"
RD "0x"0"00000"ff "@2"8"5ns"
Re"sp"Da"ta" "0x"000000"00 @"310ns"
RD "0x"0"00000"ff "@3"0"5ns"
Re"sp"Da"ta" "0x"000000"01 @"320ns"
.."

Ne"tw"or"k"
la"te"nc"y"

Next" "IP" co"mm"
tr"ans"ac"ti"on" "in"te"rv"al"

(a")"

(a) MPARM trace.

; Master Core
MASTER[<coreID>,<thrdID>]
; Initializations
..
REGISTER rdreg 0 ; holds value of RD
REGISTER tempreg 0 
REGISTER addr 0x00000104 
REGISTER data 0
..
BEGIN
Start
Idle(11) ; wait for first inst
Read(addr, rd) 
SetRegister(addr, 0x00000020)
SetRegister(data, 0x00000111)
Idle(1)  
Write(addr, data, wr) 
SetRegister(addr, 0x00000031)
Idle(9)  
Read(addr, rd) 
..
..

; polling a semaphore location!!
SetRegister(addr, 0x000000ff)
SetRegister(tempreg, 0x00000001)

Semchk
read(addr, rd) 
If rdreg != tempreg then Semchk

..
Jump(start) ; rewind

END

(b)

(b) RIPE program.

Figure 3.15: Example of conversion from MPARM trace to RIPE program.

ure 3.15(b) shows the RIPE program derived from traces in Figure 3.15(a).
The automated algorithm in the conversion flow is capable of detecting
and capturing many synchronization behaviours, without the need for the
designer to handle them manually. We will explain the translator opera-
tion in detail in Section 3.4.4. Finally, the assembler tool is used to con-
vert the symbolic RIPE program into a binary image (.bin) which can be
loaded into the RIPE instruction memory and executed. The entire flow
is fully automated and the time taken for this process is discussed in Sec-
tion 3.4.5 on page 83.

Automated Translation of IP Traces into RIPE Programs

As discussed in Section 3.4.1 on page 66, some prior knowledge about the
MPSoC system used in the reference simulation is required to accurately
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program the RIPE device. Apart from the sequence of transaction requests
and responses, following is a list of information needed for correct opera-
tion of the translator:

• The global identifier of the IP core in the system

• The clock period of the IP core

• The addressing ranges representing semaphore (pollable) resources

• The timestamp of interrupt events

• The timestamp of the return from an interrupt handling routine

• The timestamp of a spontaneous request for descheduling by an ap-
plication

The first three pieces of information are encoded in the trace filename,
the rest are explicitly or implicitly (provided some knowledge of the ap-
plication functions) annotated within the trace file. For example, incoming
interrupts are detected on the OCP pinout and explicitly recorded in the
trace. On the other hand, returns from interrupt handling routines must be
located implicitly by detecting known behaviour, such as a specific mem-
ory access at the end of the handler or at the return point in the main code.

We use the system traces given in Figure 3.15(a) on the facing page as
an example source for transformation into a RIPE program, and the result
is in Figure 3.15(b) on the preceding page. Let the clock period be 5 ns and
the semaphore location be 0x000000ff. As seen in Figure 3.15(b) on the
facing page, and described in Section 3.4.2 on page 74, the RIPE program
starts with the typical core identifiers. Register RDReg is defined as the
name of the special register where the value of read transactions is stored
(Table 3.2 on page 74).

At the beginning of the trace file, the first communication request, a
read (RD), occurs at 55ns, meaning that the RIPE has to wait 11 (55/5) cy-
cles before issuing this transaction. Therefore, an Idle wait is observed
in the RIPE program. When parsing this trace statement, the translator
collects the RD address and initializes one of the registers marked as avail-
able in the register table (tagged as addr on top of the program). Based on
the principle of time-shifting (Requirement #1) discussed in Section 3.4.1 on
page 68, we ignore the response to this RD event at 75ns, but note the time
interval of three ((90-75)/5) cycles to the next trace event, the WR at 90ns.
New values have to be set up in the address and data registers, which
takes a cycle each (either for updating the already used addr and data or
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for setting up a new pair of registers). An ensuing Idle wait is added to
fill the gap, then the WR instruction is appended.

This translation process continues until the trace entry at time 210ns,
when the semaphore address is encountered. By identifying the address
as belonging to a semaphore location and knowing the polling behaviour
of the original IP core, the translator inserts the Semchk label and an If

conditional statement. This statement checks whether the read value is
equal to “1”, which reflects an unblocked semaphore. This loop effec-
tively models the semaphore polling behavior. The semaphore address
and expected unblock value are set up prior to the loop label to avoid
repeated initialization, thus allowing for continuous polling at the max-
imum frequency rate for unlimited periods. Idle waits can obviously be
added in the loop should the original IP core have a low-frequency polling
behaviour. All master devices attempting to access this semaphore incor-
porate the same routine in their RIPE program, thus capturing the system
dynamics to meet the Requirement #2.

Within the translator, a register allocation algorithm correctly sets up
all the required data in registers before the OCP or the flow control in-
structions that need them are scheduled for execution. It is possible that
streams of closely packed communication requests may leave few or no
interleaved idle cycles available for preparing their address (and data, if
any). In this case, the translation algorithm exploits the slack (idle wait
time) available further above in the transaction sequence for setting up
register values ahead of time. However, in case of very long streams of
back-to-back writes, a lack of free registers may occur. In this case, the size
of the register file must be increased to avoid an accuracy loss due to hic-
cups in the sequence of writes. We expect the problem to occur with min-
imal frequency, as two idle cycles among transaction entries are enough
to allow for streams of arbitrary length. The problem is of no importance
in the context of a simulation RIPE device (as described here), but would
have an area penalty in a hardware implementation.

Handling Interrupt Reactiveness

For modeling interrupt routines and OS internals (Requirement #3), spe-
cific locations within the trace file, such as interrupt handling routine entry
and exit points, have to be recognized by the translator tool to optimally
insert the corresponding code as a task into the RIPE task pool. The trace
files are always annotated with the time of occurrence of interrupt events.
However the exit points need to carefully screened since they depend on
the degree of cooperation between the application and OS.
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Using the pipe example (Figure 3.13 on page 71), let us consider this
aspect in more detail. Here, the task is explicitly interacting with the OS
internals, as described in Section 3.4.1 on page 66. Usually this interac-
tion can be achieved by OS API calls, without direct access to the interrupt
handler code, whose exit point is therefore assumed to be not accessible to
the programmer. As a result, the only annotations of significance within
the trace file are the synchronization points (semaphore checks) and the
interrupt arrival time. The RIPE program thus mimics the flow shown
in Figure 3.13 on page 71, first by reading the semaphore location, then
choosing to continue or suspend depending on the lock. Upon resump-
tion by a hardware interrupt, a final (re-)check of the semaphore unlock
is done to ensure safe task operation. In the RIPE program, this is real-
ized via three tasks; the dotted lines in Figure 3.13 on page 71 mark their
boundaries. The primary task represents the main application flow. The
interrupts are masked here, as the application is insensitive to hardware
interrupts unless in suspension state. If the semaphore is found locked,
the flow is routed to load the OS routine which leads the processor to an
idle wait. The translator captures the chunk of trace after the semaphore
check in an independent OS task, which always yields control to a third
task consisting of an infinite loop of idle wait instructions. The easily iden-
tifiable sequence of transactions between the eventual arrival of the hard-
ware interrupt and the semaphore re-check is the OS wake-up routine to
reschedule the suspended main program, and the translator appends it
as a part of the OS task. In the RIPE program, hardware interrupts are
used to wake up from the suspension state within OS routines, while soft-
ware interrupts redirect the execution flow towards the main task. Note
that IntrpMaskReg is set to “masked” for the regular program and OS
execution, and is only unmasked within the suspension task.

After performing the translation described in this Section and after
RIPE program assembling, a second set of simulations can be run on a
platform with RIPE and a variety of interconnects, thereby evaluating per-
formance of interconnect design alternatives.

3.4.5 Validation Results

The outcome of the validation process should show that the requirements
outlined in Section 3.4.1 on page 66 are sufficient to extract IP traffic pat-
terns in a manner which is accurate yet independent of interconnect char-
acteristics. For this purpose, we simulate different applications within the
MPARM framework, first using the native ARM cores and then using the
RIPE model, and compare the resulting benchmark statistics. We under-
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Figure 3.16: RIPE Accuracy Validation Test.

take this experiment for six benchmarks. Each is tested with one to twelve
(1P-12P) system processors with cache (see Figure 3.11(a) on page 65) si-
multaneously plugged to the system interconnect. The aim is to ascertain
the accuracy of the RIPE model, device and translation framework when
stressed by complex transaction patterns.

Five of the benchmarks are based on the examples introduced in Sec-
tion 3.4.1 on page 66: matrix, poll, multi, IO and pipe. One more ap-
plication (cacheloop) is added as a reference to make the validation more
comprehensive. cacheloop is a dummy program, which continuously per-
forms cache fetches. As such, it is generating no bus transactions, except
for a few at boot and shutdown. It is intended as a metric of the maximum
simulation time speedup achievable by the replacement of IP cores with
another simulation device.

In the first experiment, we only aim at validating the trace collection
and translation. Figure 3.16 outlines the process. We run the same bench-
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Figure 3.17: RIPE vs. native ARM speedup.

marks over two of the interconnects of MPARM, namely AMBA AHB (Sec-
tion 2.2 on page 32) and the ×pipes NoC (Chapter 4 on page 95). As ex-
pected, we measure very different execution times due to the different
interconnect features, and the execution traces reflect these differences.
However, after translation, a check across .tgp programs shows no dif-
ference at all, because the network latency factor is completely abstracted
from in the RIPE programs. As a consequence, a trace collected on one
interconnect is indeed usable to generate a program to be run on another.
This result validates our approach and strengthens the postulate of the
requirements outlined in Section 3.4.1 on page 66, which decouples simu-
lation of the IP cores and of the underlying interconnect.

We now proceed to measuring the accuracy of the our design flow, i.e.
how well the RIPE programs extracted from ARM execution traces match
the original execution. Table 3.3 on the next page summarizes the results
of simulations2 done on the AMBA AHB interconnect with ARM proces-
sors from MPARM and then with RIPE devices. The columns report the

2Benchmarks taken on a Pentium 4 2.26GHz with 1 GB of RAM. The absence of disk
swapping effects is checked during simulation. Especially for benchmarks with a short
duration, time measurements are taken by averaging over multiple runs and care is put
in minimizing disk loading effects.
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overall execution time of the benchmarks (in clock cycles) and the num-
ber of single read (SR), single write (SW) and burst read (BR) transactions
observed on the bus.

The column labeled Inaccuracy is a measure of the relative difference in
simulated cycles and bus accesses when replacing ARM cores with RIPE
devices.

The table shows that replacing ARM processors with RIPE devices
yields excellent precision, with inaccuracies close to 0% in most cases, re-
sulting in a faithful reproduction of the original execution flow and traffic
pattern. The inaccuracies in the SR count and the execution time in poll
are due to the compounding of minimal timing mismatches caused by the
semaphore polling mechanism in RIPE programs. In the real system, the
first few semaphore polls are found to occur at a slightly different rate
than subsequent ones, due to assembler-level and caching effects. Even-
tually, polling occurs at periodic intervals. This initial timing mismatch is
not captured in the RIPE model, which performs all polling loops at the
asymptotic rate. This causes RIPE to be affected by a small timing skew,
which impacts subsequent simulation.

The inaccuracies in interrupt-related benchmarks are due to minor is-
sues in properly pinpointing different sections of OS code in the execution
trace, as discussed before in Section 3.4.3 on page 76. The near-matching
statistics however fully prove the role of the RIPE as a powerful design
tool to mimic complex application behaviour in replacement of a real IP
core.

Scalability tests, based on simulation time in seconds, performed by
increasing the number of processors attached to the bus, exhibit two main
different trends, as seen in Figure 3.17 on page 85. cacheloop exhibits
a fundamentally monotonic trend, showing the advantage of replacing
a progressively increasing amount of system cores with a faster device
model. Other benchmarks show a fundamentally constant figure, or an
asymptotic increase (for example, matrix). This seemingly strange be-
haviour can be explained as follows. An increase in the number of pro-
cessors implies more traffic on the interconnect, thereby shifting the sim-
ulation load towards the interconnect model. At a certain point, the in-
terconnect becomes completely saturated. In this condition, no further
speedup is achievable because the simulation time of ARM processors is
anyway mostly spent in idle waits for bus responses - leaving no room for
improvement to RIPE devices, regardless of their efficiency. To support
this analysis, we observe that the lowest speedup is achieved for pipe,
which is also found to be the benchmark with the highest bandwidth re-
quirements, and therefore the highest load on the interconnect model. We
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Interval among Notes
interrupts to

same core (ms)

Reference 2
Case I 1
Case II 2 Processors receive interrupts

staggered by a 0.5 ms offset
Case III 2 Two processors receive an extra

interrupt just after the boot

Table 3.4: Interrupt issue frequency for four different multitasking pat-
terns.

would like to stress that, as cacheloop demonstrates, this decrease in simu-
lation speedup is not a shortcoming of our RIPE approach, and is instead a
direct consequence of benchmark and system behavior. In absolute terms,
a gain of 1.75x to 3.53x is observed when running the benchmark code
on RIPE devices as opposed to ARM processors, thanks to the removal
of the computation logic within cores. It is noteworthy that even though
speedup is not the primary objective of RIPE, it compares favorably to pre-
vious work in the area (a speedup of 1.55x is reported in [201]), especially
given the fact that it is achieved at the cycle-true level of abstraction.

The time penalty for trace collection is small, and is incurred only once.
For example, when running the relatively complex pipe benchmark on
the AMBA interconnect with four ARM processors, a benchmark run aug-
mented to collect reference traces takes 20 s, and subsequent translation
and elaboration requires an additional 12 s for a 5.6 MB trace file. Only
one such iteration is needed to validate the RIPE model and for subse-
quent design space exploration. Additionally, since processed RIPE pro-
grams are identical regardless of the reference interconnect in which raw
traces are collected, such a collection could be performed on top of a fast
transactional interconnect model, further reducing the impact of the refer-
ence simulation.

3.4.6 RIPE as a Design Tool

To demonstrate the potential of RIPE as a co-exploration tool, we look at a
variant of the multi application, first discussed in Section 3.4.1 on page 69,
in more detail.

Specifically, we consider a five processor bus-based system with one
RIPE configured to act like a timer device. This core triggers the delivery
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(a) Reference traffic pattern.
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(b) Case I.
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(c) Case II.

0

20

40

60

80

100

120

140

0 5000 10000 15000 20000 25000 30000

Time (us)

B
u

s
 U

s
a

g
e

 (
tr

a
n

s
fe

rr
e

d
 w

o
rd

s
)

(d) Case III.

Figure 3.18: Traffic profiles under different traffic injection conditions.
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of interrupts at regular intervals to the other four RIPE devices, which as a
result switch among two tasks. The two tasks are tuned to have very dif-
ferent bandwidth requirements; one task performs matrix manipulations
(MM), and heavily relies on data caches to minimize memory transactions,
while the second task performs streams of writes (WS) to a memory at-
tached to the bus. The WS task is very demanding on the interconnect
and can easily saturate it, therefore impacting overall system performance.
In MPARM, interrupts are triggered by writing to a specific address of a
memory-mapped device; therefore, to trigger the interrupts that should
come from a timer device, we write a small RIPE program issuing OCP
writes at the right times. In turn, this is achieved by parameterized idle
waits. Such a program is written in a dozen of lines of RIPE code.

In this case study, using the RIPE, we test the behaviour of this sys-
tem for different interrupt delivery policies and study the resulting traffic
profiles (Figure 3.18 on the previous page). This type of exploration may
be useful to schedule bus accesses for real-time tasks in critical systems.
The traffic plots show the profile of the bus traffic over time, expressed as
transferred data words over a time window of 2 µs.

In all the plots, until about the 6000 µs mark, the bus activity during
the OS boot is observed. The boot activity is irregular, but on average
quite intensive in terms of required bandwidth, since all the processors
are loading the OS and application instructions from the memory across
the interconnect. After this mark, application code begins to be executed.
In Figure 3.18(a) on the preceding page, a straightforward scheduling pol-
icy is used: a timer interrupt is sent to each core simultaneously, therefore
causing all of the cores to switch among MM and WS at the same time.
Since interrupts arrive simultaneously to all processors, all of them are in
the same task group during any given time slice of execution. As expected,
the bus load shifts depending on the task characteristics; the traffic pro-
file exhibits a clear alternating pattern among two disproportionate usage
values, with peaks above 130 and a floor of around 20 transactions per
time window. The number of transitions between these two limits and the
width of each peak correspond to the number of issued interrupt events
and the interval between them (see Table 3.4 on page 88). The tail of the
plot is representing shutdown code, and is not relevant.

Since excessive contention inflates the response latency of the bus,
therefore decreasing performance, the traffic profile must be reshaped to
decrease congestion. As is observed in Figure 3.18(b) on the preceding
page, as compared to Figure 3.18(a) on the previous page, doubling the
interrupt issue frequency does little to mitigate the bus congestion issue; it
only shifts the contention to a different time slot. Execution time remains
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constant at about 28200 µs.
Let us now consider the impact on the bus activity of staggering the

interrupt events. In Figure 3.18(c) on page 89, an interrupt is sent every
500 µs, but two interrupts to the same processor are spaced 2000 µs apart.
The traffic profile is smoother; thanks to staggering, MM tasks on some
cores run in parallel to WS tasks on other cores. Over time, the system
shifts from running four MM tasks to running four WS tasks and back,
which results in a sinusoidal-like trend with visible steps. Peak congestion
is only reached during a shorter fraction of the time, therefore reducing the
execution time to about 26000 µs.

To balance the traffic even better, the clear choice is to always over-
lap two MM and two WS tasks. This is achieved in Figure 3.18(d) on
page 89, where two processors are forced to perform a context switch just
after the OS boot, and the subsequent interrupt pattern is the same as in
Figure 3.18(a) on page 89. Thanks to much better traffic balancing, the bus
never saturates, providing good performance and decreasing the execu-
tion time to 25200 µs.

In Figure 3.19 on the next page, the benchmark execution time and
the average communication latency for a write transaction on the bus are
plotted for the four configurations. As can be seen, Case I exhibits basi-
cally identical performance to the reference, while Case II improves 18%
on communication latency (and thus 8% on execution time) and Case III
improves 24% on latency (and thus 11% on execution time). Therefore,
Case III is the best among the alternatives under evaluation.

These experiments highlight that RIPE can be an extremely useful tool
to explore communication bottlenecks even without having the real IP
cores and benchmarks attached to the interconnect. The flexibility guaran-
teed by the interrupt handling support provides the designer with addi-
tional degrees of freedom and accuracy, allowing a realistic system explo-
ration even in presence of complex communication and synchronization
patterns.

3.5

Conclusions

We have shown a complete virtual platform environment, capable of
cycle-accurate simulation. This environment, called MPARM, features to-
tal customizability in all respects, including the ability to model different
IP cores, interconnects, memory hierarchies and software. MPARM in-
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Figure 3.19: Performance of the four synchronization patterns under test.

cludes powerful facilities for debugging, tracing and statistics collection.
MPARM paves the way for the exploration of the degrees of freedom

available to the system interconnect designer. Its cycle accuracy is key in
modeling often-neglected effects, such as synchronization details, which
may have a tangible impact on system performance.

However, the usefulness of MPARM for interconnect design could be
limited by two factors: (i) the development time to implement equally
accurate models of the IP cores, (ii) the potentially too long simulation
times which are intrinsic in simulating at this level of abstraction. To fix
these remaining issues, we take two routes.

First, we integrate a state-of-the-art ASIP toolchain within MPARM.
This effort merges the platform-level strengths of MPARM, including its
openness, with the best features of the LISATek environment, including
an environment for the quick development and modification of IP core
models, a thorough runtime debugger with graphical interface, and the
ability to generate complete toolchains for application compilation and
profiling.

Second, we develop RIPE, a reactive traffic generator. Based on re-
quirements extracted from the analysis of significant MPSoC application
scenarios, we devise a traffic generation architecture which is capable of
interacting with the surrounding environment exactly like a real applica-
tion stack running on a real core would. The key enabler in this respect
is the ability to react to external events, such as interrupts. The result-
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ing device can be useful both to estimate the performance of new, not-
yet-developed components, or to speed up the simulation of systems for
which models already exist, while still keeping cycle accuracy and realistic
behaviour.

Many features could be added to MPARM as future research work; an
almost unlimited list of components could be integrated to assess its per-
formance and other tradeoffs, from multimedia accelerators (which could
be developed in LISA) to dedicated power management blocks. Focusing
more specifically on the usage of MPARM as a tool for the study and op-
timization of interconnect, future work includes certainly the transparent
instantiation of bridges among different types of interconnects, to study
heterogeneous interconnection architectures.
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CHAPTER 4

The ×pipes NoC Architecture

This chapter1 describes a NoC architectural implementation, called
×pipes. This architecture is the foundation on top of which this doctoral
work has mostly been based. ×pipes is a flexible NoC component library,
allowing for interconnection in arbitrary topologies. ×pipes development
was focused on low area and low power consumption.

4.1

Motivation and Key Challenges

The shortcomings of existing bus- and hierarchical bus-based designs (Sec-
tion 1.1 on page 3) mandate the development of more advanced architec-
tures, such as NoCs. However, NoCs feature a huge design space and
endless possibilities for customization. Further, NoCs have been intro-
duced relatively recently, which leaves many unknowns in terms of design
tradeoffs. Therefore, we base our development effort on an analysis of the
criteria that we believe are crucial for a successful NoC deployment:

• The potential applications of NoCs are numerous, and each applica-
tion will require different solutions. Therefore, it is key to design a
NoC architecture which is arbitrarily composable and customizable, so
as to optimally match the target requirements.

• NoCs must solve the physical design issues that bus designers are
facing. In order to do so, it is imperative to conceive NoCs so as to

1The author would like to acknowledge contributions by Paolo Meloni, Prof. Salvatore
Carta, Antonio Pullini, Stergios Stergiou and Prof. Luca Benini.
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be predictable and tolerant to increasing wiring parasitics.

• High performance must be delivered, in terms of bandwidth and la-
tency. Latency is especially critical given the number of components
(NIs and switch hops) to be traversed in a NoC-based system.

• The implementation cost must be minimal, including low power con-
sumption and low area occupation.

• Due to the effect of variability in upcoming technologies, the NoC
must be designed for fault tolerance.

• The integration effort must be minimal, with plug&play platform
composability.

4.2

General Concepts

The ×pipes NoC library strives to comply with the requirements listed
above, by providing:

• A library of fully synthesizeable components which can be param-
eterized in many respects, such as buffer depth, data width, arbi-
tration policies, etc.. Further, the radix of the ×pipes switches can
be arbitrarily chosen (including an asymmetric number of input and
output ports), and the switches can be connected in arbitrary topolo-
gies.

• A set of link design methodologies and flow control mechanisms to
tolerate any wiring parasitics.

• The ability to operate at very high frequencies and/or high data
widths, therefore complying with any bandwidth requirement. Si-
multaneously, ×pipes is optimized for minimum latency, by provid-
ing a 1-clock traversal latency of each block in some configurations.

• A minimal architecture, tuned for the lowest possible implementa-
tion cost in area and power.

• Facilities for fault tolerance and recovery, in terms of flow control
mechanisms (Section 4.4.1 on page 105) and architectural extensions
(Chapter 7 on page 207).
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• Network Interfaces which can be directly plugged to existing IP
cores, thanks to the usage of the standard OCP [12] interface.

×pipes is based on a set of architectural choices:

• ×pipes is fully synchronous. This choice makes it much easier to
perform the physical design of the architecture. Facilities to sup-
port multiple frequencies are provided in the NIs (Section 4.3.1 on
the next page) but only by supporting integer frequency dividers.
This choice reduces the implementation cost of the NoC dramati-
cally. Mesochronous and GALS approaches are still possible, by in-
serting synchronizers at appropriate places in the NoC (Section 8.5
on page 240).

• Routing is static and determined in the NIs (source routing). This
choice minimizes the implementation cost. While wide area net-
works often feature dynamic routing schemes, in our internal testing,
we found dynamic routing to be too expensive (and deadlock-prone)
for the benefits it brings.

• ×pipes adopts wormhole switching [42] as the only method
to deliver packets to their destinations. While there is
consensus on wormhole switching for best-effort data trans-
fers p:siguenzatortosa2002, p:stergiou2005, p:andriahantenaina2003,
some other NoC architectures have proposed a variety of mech-
anisms, including priorities, timeslots and circuit switching
j:bolotin2004, j:goossens2005, p:bjerregaard2005, in order to also sup-
port QUALITY OF SERVICE (QOS) for selected data flows. While
agreeing on the usefulness of QoS provisions, we observe that imple-
menting QoS as a hardware facility incurs an area and power cost.
We thus prefer to support soft QoS provisions by means of a design
flow (Chapter 5 on page 115).

• ×pipes supports both input and/or output buffering [42], depend-
ing on circumstances and designer choices. In fact, since ×pipes sup-
ports multiple flow controls, the choice of the flow control protocol
is intertwined with the selection of a buffering strategy. More details
can be found in Section 4.4 on page 101.

• ×pipes does not leverage virtual channels [42], as this allows for a
much leaner implementation. Instead, parallel links can be deployed
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among any two switches to fully resolve bandwidth issues. Dead-
lock resolution is demanded to the topology design phase (Chapter 5
on page 115).

4.3

The ×pipes Building Blocks

Several architectures have been proposed in the NoC literature. How-
ever, all NoCs have three fundamental building blocks, namely, switches
(also called routers), NETWORK INTERFACES (NIS) (also called NETWORK

ADAPTERS (NAS)) and links [17, 21, 16] (Figure 1.4 on page 6). A NoC is
instantiated by deploying a set of these components to form a topology
and by configuring them in terms of buffer depth, etc.. Some NoCs rely
on specific topological connectivity, such as octagon [202] or ring [203], to
simplify the control logic, while others, such as ×pipes, allow for arbitrary
connectivity, providing more flexible matching to the target application.

4.3.1 Network Interfaces

An NI (Figure 4.2 on the next page) is needed to connect each core to the
NoC. NIs convert transaction requests/responses into packets and vice
versa. Packets are then split into a sequence of FLOW CONTROL UNITS
(FLITS) before transmission, to decrease the physical wire parallelism re-
quirements. The width of the flits in ×pipes is a fully configurable param-
eter; depending on the needs, ×pipes designs can have as few as 4 wires
carrying data, or as many as in a highly parallel bus (64-bit buses typically
have close to 200 wires, considering a read bus, a write bus, an address
bus, and several control lines). NIs also optionally provide buffering re-
sources to improve performance; since the buffering modules are the same
as for switches, we refer the reader to Section 4.3.2 on page 100 for more
details.

In ×pipes, two separate NIs are defined, an initiator and a target one
(Figure 4.1 on the next page), respectively associated to system masters
and system slaves. A master/slave device will require an NI of each type
to be attached to it. The interface among IP cores and NIs is point-to-
point as defined by the OCP 2 [12] specification, guaranteeing maximum
reusability. OCP 2 supports features such as non-posted and posted writes
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Figure 4.1: ×pipes initiator and target NIs.

Figure 4.2: ×pipes NI block diagram. The depiction of buffering is for the
ACK/NACK case.

(i.e. writes with or without response) and various types of burst transac-
tions, including single request/multiple response bursts. To provide com-
plete deployment flexibility, in addition to being parameterizable in terms
of flit width, the ×pipes NI is also parameterizable in the width of OCP
fields. Depending on the resulting ratios, a variable amount of flits will be
needed to encode an OCP transaction.

×pipes NIs optimize the transmission efficiency and latency with an
optimized packet format. ×pipes packets minimize the transmissions of
information that could instead be regenerated at the receiver (e.g., ad-
dresses during bursts). At the same time, the packet format is based on
fixed offsets, so that the packeting and unpacketing logic can operate at
high frequencies.

×pipes leverages static source routing, which means that a dedicated
LOOK-UP TABLE (LUT) is present in each NI to specify the path that pack-
ets will follow in the network to reach their final destination. This type of
routing minimizes the complexity of the routing logic in the switches. The
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alternative, i.e. having routing performed by the switches, normally in an
adaptive manner, has unclear performance advantages, and in-order de-
livery and deadlock/livelock freedom concerns are still to be fully solved.

Two different clock signals can be attached to ×pipes NIs: one to
drive the NI front-end (OCP interface), the other to drive the NI back-end
(×pipes interface). The back-end clock must, however, have a frequency
which is an integer multiple of that of the front-end clock. This arrange-
ment allows the NoC to run at a fast clock even though some or all of
the attached IP cores are slower, which is crucial to keep transaction la-
tency low. Since each IP core can run at a different divider of the ×pipes
frequency, mixed-clock platforms are possible. The constraint on integer
divider ratios is instrumental in reducing the implementation cost of this
facility down to almost zero.

4.3.2 Switches

The backbone of the NoC is composed of switches (Figure 4.3 on the fac-
ing page), whose main function is to route packets from sources to desti-
nations. Switches can be fully parameterized in the number of input and,
independently, of output ports. Arbitrary switch connectivity is possible,
allowing for the implementation of any topology. The flit width can also
be arbitrarily set.

Full connectivity among the input and output ports is provided in a
central crossbar. An arbiter is attached to each output port to resolve
conflicts among packets when they overlap in requesting access to the
same output links. The arbiter can be configured for round-robin or fixed-
priority policies. Multiple links can be deployed among the same pair
of switches, offering an inexpensive solution to localized bandwidth and
congestion issues. Since ×pipes performs source routing, the switch does
not include routing LUTs.

Switches provide buffering resources to lower congestion and improve
performance. As mentioned above, buffering resources are instantiated
also depending on the desired flow control protocol (see Section 4.4 on the
next page). If a retransmission-based flow control protocol is chosen, then
relatively deep output buffers must be provided, so as to hold previously
sent packets for some cycles. In this scenario, input buffering is not really
required (although it can optionally be deployed) - the switch inputs only
need being registered with a single flip-flop per data wire. The traversal
latency is 2 clock cycles. On the contrary, when credit-based flow con-
trol is chosen, only input buffering is mandatory. In this scenario, ×pipes
optionally allows the designer to do completely without output buffers,
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(a) ACK/NACK case (inputs and outputs
are registered).

(b) STALL/GO case (inputs are registered,
outputs are optionally registered).

Figure 4.3: ×pipes switch block diagram. The STALL/GO variant can op-
tionally feature output buffering.

reducing the traversal latency of a switch to a single clock cycle. Output
buffers can still be deployed to decouple the propagation delays within
the switch and along the downstream link; the downside is a second cycle
of latency and additional area and power overhead.

4.3.3 Links

Inter-block links are a critical component of NoCs, given the technology
trends for global wires [3]. The problem of signal propagation delay is, or
will soon become, critical. For this reason, ×pipes supports link pipelin-
ing [204] (Figure 4.4 on the following page), i.e. the interleaving of logical
buffers along links. The link data introduction rate is then decoupled from
link delay by trading it with latency. Proper flow control protocols are im-
plemented in link transmitters and receivers (NIs and switches) to make
the link latency transparent to the surrounding logic (latency insensitive
operation) [205]. Therefore, the overall platform can run at a fast clock
frequency, without the longest wires being a global speed limiter.

4.4

NoC Flow Control Protocols

Flow control determines how network resources are allocated to packets
traversing the network, and can be seen either as a problem of resource
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(a) ACK/NACK case.

(b) STALL/GO case.

Figure 4.4: ×pipes pipelined link block diagram. The STALL/GO variant
can optionally do without the output buffer in the sender (switch or NI).

allocation or one of contention resolution [42]. Flow control in NoCs is
crucial, as it is playing a decisive role in the determination of:

• The amount of resources, especially buffers, that have to be deployed
in the system. Efficient flow control protocols will minimize the
number of required buffers and their idling time.

• The latency that packets incur while traversing the network. While
bandwidth is exceedingly available in NoCs, a lot of effort needs to
be devoted to cutting down on network latency, else the applications’
performance specifications may be violated. Especially under heavy
traffic conditions, fast packet propagation with maximum resource
utilization are key.

• The degree of support for link pipelining. Buffer insertion is a well-
known technique to address the problem of high-frequency trans-
mission over data wires [206]. However, even with repeaters, wire
delay can exceed one clock period and multiple clock cycles will
be needed to transfer data from one synchronous block to another.
By inserting flip-flops to improve throughput, wire pipelining tech-
niques deal with this concern [207]. However, not all flow control
protocols can support this technique transparently or efficiently.

March 13, 2008 Federico Angiolini 102



103 4.4: NoC Flow Control Protocols

In circuit-switched NoCs providing QoS guarantees, minimum buffer-
ing flow control can be used: a circuit is formed from source to destina-
tion nodes by means of resource reservation, over which data propagation
occurs in a contention-free regime. However, circuit-switched approaches
are normally only used for some specific traffic flows in the network, or for
limited periods of time, as otherwise they typically would impose worst-
case design principles. Best-effort networks are normally purely packet-
switched, and typically buffering increases the efficiency of flow control
mechanisms. The amount of buffering resources in the network depends
on the target performance and on the implemented switching technique.
Switches need to hold entire packets when store-and-forward or virtual-
cut-through switching are chosen, but only flits when wormhole switching
is used.

In some proposed NoC architectures, flow control is combined with
error control in a unified mechanism. Error control is becoming a grow-
ing concern as technology scales toward deep submicron, because of the
increased impact on signal reliability of noise sources such as crosstalk,
power-supply noise, ELECTROMAGNETIC INTERFERENCE (EMI) and soft
errors. Corrupted flits can be detected either in hardware by means of
error correction or error detection/retransmission mechanisms, or can
be handled at higher network layers (e.g., connection oriented transport
layer). However, fast error recovery requires a hardware implementation
of error control, thus increasing switch and/or NI complexity. The re-use
of flow control mechanisms for error handling allows to save some area
and power and to avoid duplication of control lines.

We consider, and implement in ×pipes, three alternative schemes for
buffer and channel bandwidth allocation in presence of pipelined switch-
to-switch links. These protocols provide varying degrees of fault tolerance
support, resulting in different area and power tradeoffs. Our analysis is
aimed at determining the overhead of such support. However, as error
events are not expected to be frequent, we expect that the normal oper-
ating mode would be error-free. Therefore, we are mostly interested in
pointing out whether the overhead for implementing combined flow and
error control in hardware is such to degrade application perceived per-
formance in this normal operating mode. The concern is that enhanced
flow control schemes may risk to provide for efficient recovery from infre-
quent errors at the cost of a significant performance penalty in the typical
fault-free regime.

Two of the most usual flow control protocols involve switch-to-switch
communication and are retransmission-based (whereby packets are opti-
mistically sent but a copy of them is also stored by the sender, and, if the
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ACK/NACK STALL/GO T-Error

Buffer area 3N + k 2N or 2N + 2 > 3M + 2
Logic area medium low high

Performance depends good good
Power (est.) high low medium/high

Fault tolerance supported unavailable partial

Table 4.1: Flow control protocols at a glance.

receiver is busy, a feedback wire to request retransmission is raised) or
credit-based (whereby the receiver constantly informs the sender about its
ability to accept data, and data is only sent when resources are certainly
available). End-to-end flow control schemes [21], where peripheral NIs di-
rectly exchange flow control information with each other, are more rarely
used because of their buffering requirements; the most common usage sce-
nario involves NoCs that implement circuit-switching [19].

In ×pipes, three radically different flow control protocols have been
implemented.

• ACK/NACK, a retransmission-based protocol supporting increased
error resilience if paired with error detection logic.

• STALL/GO, a simple variant of credit-based flow control allowing
for pipelined links to be transparently deployed.

• T-Error, a timing-error-tolerant flow control scheme, whose capabil-
ities can either be used to negate timing-related errors, to overclock
the links, or to extend their maximum length.

Each of these offers different fault tolerance features at different perfor-
mance/power/area points, as sketched in Table 4.1. STALL/GO is a low-
overhead scheme which assumes reliable flit delivery. T-Error is much
more complex, and provides logic to detect timing errors in data trans-
mission; this support is however only partial, and usually exploited to
improve performance rather than to add reliability. Finally, ACK/NACK
is designed to support thorough fault detection and handling by means of
retransmissions.

We implemented each of these flow control protocols to support links
having a variable physical length. Clock frequency was kept invaried
by pipelining the links with repeater stages, trading off latency for clock
speed.
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4.4.1 Retransmission-Based Flow Control Protocol

The main idea behind the ACK/NACK flow control protocol (Figure 4.4(a)
on page 102) is that transmission errors may happen during a transac-
tion. For this reason, while flits are sent on a link, a copy is kept locally
in a buffer at the sender. When flits are received, either an ACKNOWL-
EDGE (ACK) or NOT ACKNOWLEDGE (NACK) is sent back. Upon re-
ceipt of an ACK, the sender deletes the local copy of the flit; upon receipt
of a NACK, the sender rewinds its output queue and starts resending flits
starting from the corrupted one, with a Go-Back-N policy. This means that
any other flit possibly in flight in the time window among the sending of
the corrupted flit and its resending will be discarded and resent. Other
retransmission policies are feasible, but they exhibit higher logic complex-
ity. ACK/NACK can either be implemented as end-to-end over a whole
fabric, or as switch-to-switch; due to complex issues with possible flit mis-
routing upon faults in packet headers, we implemented the latter. Fault
tolerance is built in by design, provided encoders and decoders for error
control codes are implemented at the source and destination respectively.
We do not focus on such decoders here and refer the reader to the vast
amount of literature is available in the field of coding.

In an ACK/NACK flow control, a sustained throughput of one flit
per cycle can be achieved, provided enough buffering. Repeaters on the
link can be simple registers, while, with N repeaters, 2N + k buffers are
required at the source to guarantee maximum throughput, since ACK/-
NACK feedback at the sender is only sampled after a round-trip delay
since the original flit injection. The value of k depends on the latency of
the logic at the sending and receiving ends. Overall, the minimum buffer
requirement to avoid incurring bandwidth penalties in a NACK-free envi-
ronment is therefore 3N + k.

ACK/NACK provides ideal throughput and latency until no NACKs
are issued. If NACKs were only due to sporadic errors, the impact on per-
formance would be negligible. However, if NACKs have to be issued also
upon congestion events, the round-trip delay in the notification causes a
performance hit which is very noticeable especially with long pipelined
links. This will be investigated in Section 4.4.4 on page 108. Moreover, flit
bouncing between senders and receivers causes a waste of power.

In ACK/NACK, since output buffers need to be deployed to account
for potential retransmissions, NoC links are always enclosed between two
clocked buffers at the sending and receiving ends. Hence, a whole clock
period is available for signal propagation along the wires of the inter-
switch links. Therefore, the link length and the switch logic are decoupled
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by the output buffer.

4.4.2 Credit-Based Flow Control Protocol

STALL/GO is a very simple realization of an ON/OFF flow control pro-
tocol (Figure 4.4(b) on page 102). It requires just two control wires: one
going forward and flagging data availability, and one going backward
and signaling either a condition of buffers full (“STALL”) or of buffers free
(“GO”). STALL/GO can be implemented with distributed buffering along
the link; namely, every repeater can be designed as a very simple two-
stage FIFO. The sender can do completely without output buffering or can
deploy two buffers to cope with stalls in the very first link repeater, thus
resulting in an overall buffer requirement of 2N or 2N + 2 registers, with
minimal control logic. Power is minimized since any congestion issue sim-
ply results in no unneeded transitions over the data wires. Performance
is also good, since the maximum sustained throughput in absence of con-
gestion is of one flit per cycle by design, and recovery from congestion is
instantaneous (stalled flits get queued along the link towards the receiver,
ready for flow resumption).

In the NoC domain with pipelined links, STALL/GO indirectly reflects
the performance of credit-based policies, since they exhibit equivalent be-
haviour. The main drawback of STALL/GO is that no provision whatso-
ever is available for fault handling. Should any flit get corrupted, some
complex higher-level protocol must be triggered.

In STALL/GO, output buffers can be optionally skipped. This means
that, contrary to ACK/NACK, the switch logic and the link propagation
time (up to the following switch or to the first link pipeline stage) can be
contributing to the same timing path, which becomes the bottleneck for
the system. While ACK/NACK transparently allows for links of arbitrary
propagation time, possibly just requiring the insertion of pipeline stages,
with STALL/GO (at least in its leanest embodiment) the link delay di-
rectly impacts the maximum operating frequency of the switches and of
the whole NoC.

4.4.3 Timing-Error-Tolerant Flow Control Protocol

The T-Error [49] protocol (Figure 4.5 on the next page) aggressively deals
with communication over physical links, either stretching the distance
among repeaters or increasing the operating frequency with respect to a
conventional design. As a result, timing errors become likely on the link.
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Figure 4.5: T-Error protocol implementation.

Figure 4.6: T-Error concept waveforms.

Faults are handled by a repeater architecture leveraging upon a second de-
layed clock to resample input data, to detect any inconsistency and to emit
a VALID control signal (Figure 4.6). If the surrounding logic is to be kept
unchanged, as we assume here, a resynchronization stage must be added
between the end of the link and the receiving switch. This logic handles
the offset among the original and the delayed clocks, thus realigning the
timing of DATA and VALID wires; this incurs a 1-cycle latency penalty.
Given this resynchronization stage, T-Error becomes pin-compatible with
STALL/GO, and can be deployed in a NoC with STALL/GO switches and
NIs.

The timing budget provided by the T-Error architecture can, alterna-
tively, be exploited to achieve greater system reliability, by configuring the
links with spacing and frequency as conservative as in traditional proto-
cols. However, T-Error lacks a really thorough fault handling: for example,
errors with large time constants would not be detected. Mission-critical
systems, or systems in noisy environments, may need to rely on higher-
level fault correction protocols.

The area requirements of T-Error include three buffers in each repeater
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and two at the sender, plus the receiver device and quite a bit of overhead
in control logic. A conservative estimate of the resulting area is 3M + 2,
with M being up to 50% lower than N if T-Error features are used to stretch
the link spacing. Unnecessary flit retransmissions upon congestion are
avoided, but a power overhead is still present due to the control logic.
Performance is of course dependent on the amount of self-induced errors
and will be analyzed in detail in Section 4.4.4.

4.4.4 Experiments on Alternative Flow Controls

Fault tolerance is an ever more important feature as deep submicron litho-
graphic processes get deployed, to counter increasingly prevalent noise
sources. In the following, the assumption is made that with a conserva-
tively clocked design, errors can be made rare enough to have a negligible
performance impact. For this reason, during benchmarking, we assume
an environment free from external faults and we instead explore perfor-
mance during normal operation.

This holds also for T-Error. When used to increase system reliability,
by deploying it with conservative link parameters, we simulate fault-free
communication. When used to aggressively space link repeaters, thus ar-
tificially causing and handling a non-trivial amount of data corruption in
exchange for better performance, we instead inject varying amounts of
random transmission errors. These however attempt to reproduce self-
induced corruption only, and not external faults.

We choose as a testbench a star-like topology, where up to eight clusters
of three processors and their private memories can be instantiated. At the
heart of each cluster is a 7x7 ×pipes switch. Therefore, up to 24 processors
can be deployed in the platform. Shared slaves exist and are attached to a
central 11x11 switch (see Figure 4.7 on the facing page). The central switch
is connected to the computation clusters by means of ×pipes pipelined
links, whose length can be customized. Depending on the amount of in-
stantiated processors, the simultaneous traffic on the links towards this
central switch increases, resulting in congestion. All of the processors
are executing the same benchmark, which encompasses local computation
(which happens within the peripheral clusters) and performs communica-
tion and synchronization functions by accessing the shared slaves on the
central switch.

An analysis of the link congestion trend under increasing pressure by
IP cores can be found in Figure 4.8 on page 110, which plots the density
of ACKs and NACKs (ACKs and NACKs over clock cycles) when using
ACK/NACK flow control in the system. The chart is only plotting figures
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Figure 4.7: The star-like topology under test.

for the links connecting the central switch to the clusters; the links are
here assumed to be very long, with six repeaters. As can be seen, with
more processors, initially the ACK density increases thanks to the increase
in offered bandwidth. Just before hitting the value 0.5 (one ACK every
two cycles), growing congestion and the intrinsic inefficiency of this flow
control protocol impose a bandwidth ceiling, while a growing amount of
NACKs can be observed.

To evaluate the efficiency of the three flow control protocols, we mea-
sure the average latency for communication transactions across the con-
gested links and the overall benchmark execution time. Please note that
clock frequency and physical layout were assumed to be the same for all
schemes. Results are plotted as a function of the length of the pipelined
links in Figure 4.9 on page 111. For T-Error, the same simulations are car-
ried out in two scenarios:

• The first, aggressive, accounts for 50% less repeater stages (four in-
stead of six, two instead of three) and assumes a 5% error rate.

• The second scenario is more conservative, with as many repeaters as
in other protocols and no errors.

In both cases, a resynchronization stage is needed before the receiving
switch. If a link is short enough to allow for operation in a single clock
cycle, T-Error logic is unneeded and this case reduces to the direct STAL-
L/GO connection.
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Figure 4.8: Link congestion under increasing traffic.

Under all circumstances, both variants of T-Error and STALL/GO ex-
hibit similar performance. The latency advantage gained over STALL/GO
by the aggressive deployment of T-Error is mostly offset by the need for
a resynchronization stage and by some penalty upon transmission errors;
for short links and in low congestion environments, T-Error can even per-
form worse. The conservative T-Error links perform almost on par with
the aggressive ones because they trade repeater stages for error-free oper-
ation. The conservative T-Error links always perform slightly worse than
the corresponding STALL/GO schemes due to resynchronizer latency, but
the transaction overhead is negligible. As expected, if links are very long
(six repeaters: Figure 4.9(a) on the next page), the round trip delay im-
posed by the ACK/NACK protocol proves to be a major drawback, and
latencies increase steeply with congestion. With shorter links (three re-
peaters: Figure 4.9(b) on the facing page), the ACK/NACK overhead de-
creases, and substantial performance parity is achieved if the switches are
directly attached (Figure 4.9(c) on the next page).

In Figure 4.10 on page 112, the overall benchmark execution time is
reported just for the longest link case. The trend is of course similar to that
of the communication latency over the congested links, but differences are
smaller because they are masked by the time spent in local computation.

The aggressive T-Error variant achieves lower communication laten-
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(a) Six repeaters.

(b) Three repeaters.

(c) Direct connection.

Figure 4.9: Communication latency over congested links of different
lengths.
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Figure 4.10: Benchmark runtime under increasing congestion, long links.

cies by accepting a certain amount of transmission errors as a tradeoff.
Determining this amount is not a focus of this work. So, in Figure 4.11
on the next page we explored the design space by assuming different self-
induced error probabilities. The plot is reporting figures for a long link,
which is assumed to have a 0% to 27% error rate percentage. This number
expresses the percentage of errors per clock cycle (not per transmitted flit),
and is for the whole link. Latencies are normalized against the ideal error-
free case. As the plot shows, under heavy congestion, T-Error is by design
able to almost completely mask errors, because error penalties can be hid-
den behind congestion-triggered stalls. Under light traffic, transmission
faults have a more noticeable impact, with 6% worse transmission latency
when comparing a 27% link error probability against the ideal case. Still,
T-Error is very good at minimizing the impact of faults on performance.

As expected (Table 4.1 on page 104), STALL/GO proves to be a low-
overhead efficient design choice showing remarkable performance, but
unfortunately is fault-sensitive. T-Error can be either deployed to improve
link performance, or to improve system reliability by catching timing er-
rors. In the former design, we observed average latencies on par with
STALL/GO, but no error detection capability was present; in the latter
case, speed degraded slightly, in exchange for a partial but significant reli-
ability boost. In both alternative schemes, some area and power overhead
is incurred. Overall, we believe that using T-Error to decrease the number
of pipeline stages does not bring significant performance benefits, while
the partial detection capability can be effectively exploited in a conser-
vative design. Another possible option is the conversion of the timing
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Figure 4.11: T-Error performance under varying error probabilities.

margin budget into a frequency overclock; while this choice holds good
potential, we did not explore it yet since it is only feasible if the surround-
ing NoC components (switches, network interfaces) are designed to work
at the same extremely high frequencies. ACK/NACK pays its most exten-
sive fault handling support with significant power and area overheads -
especially considering that, on top of the reported results, error detection
circuitry would also need to be instantied. Performance penalties were
also noticed in presence of heavy congestion and long pipelined links.
However, we expect that, in current and imminent design technologies,
links will need no more than three repeaters, the very long link scenario
being representative of a more distant future. In low-congestion or short-
link scenarios, the application-perceived latency overhead of ACK/NACK
turned out to be negligible.

4.5

Conclusions

We have presented ×pipes, a synthesizeable library of NoC components.
×pipes design is driven by several criteria, including high customizeabil-
ity, low latency, low area occupation, low power dissipation. ×pipes com-
ponents can be freely composed into arbitrary topologies, and they sup-
port IP cores with the standard OCP pinout. ×pipes allows for the instanti-
ation of highly customized and highly efficient NoCs. Further, the ×pipes
library includes extensive support for wiring management, including link
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pipelining if needed.
Subsequently, we have presented studies on three variations of a key

design variable of the NoC - the choice of the flow control. We picked
three representative flow control schemes, targeted at different fault tol-
erance/performance ratios, and compared them in terms of latency and
buffer requirements. The results confirm that very efficient flow controls
exist (STALL/GO) for the normal operation case, but that an overhead
must be paid to support more extensive fault tolerance, such as in ACK/-
NACK. T-Error, which features built-in correction of timing errors, proves
to be an interesting solution too, especially to increase the fault tolerance
of the system.

Future work will revolve around the development of frequency and
data width conversion components for ×pipes, and around the addition
of the support for more protocols in the NIs.
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CHAPTER 5

NoC Design Flow Front-End:

Topology Design

This chapter1 describes the front-end of the proposed flow (Figure 5.1 on
the next page). The goal is the design of the optimal NoC topology and
hardware configuration (e.g., switch radix, data width, etc.) for a given
application. The required inputs are as high-level as possible, so as to
streamline the designer’s task: (i) a communication graph specifying the
communication requirements of the application at hand, (ii) a set of area
and power models for NoC components implemented in the target tech-
nology (see Section 6.4 on page 172 for more details), and finally (iii) a
set of optimization objectives (a linear combination of minimum power
and minimum latency goals) and constraints (such as area, power, latency
bounds).

5.1

Motivation and Key Challenges

5.1.1 Custom Topology Design and Floorplan Awareness

In order to effectively deploy NoCs in MPSoCs, as discussed in Chapter 1
on page 1, it is crucial to be able to leverage design automation tools. The
development of such tools is unfortunately not an easy task, given the
huge design space to be explored and the large set of constraints.

1Most of the credit for the work described in this chapter goes to Dr. Srinivasan Mu-
rali, Prof. Luca Benini and Prof. Giovanni De Micheli.



5.1: Motivation and Key Challenges 116

Figure 5.1: The proposed NoC design flow: front-end.

We believe that there are some specific issues that NoC design tools
should at all costs tackle in order to instantiate efficient NoCs:

• Several works in the NoC domain (for instance [208]) have been
electing to use standard, regular topologies (mostly, meshes) derived
from research on macro-networks, under the assumption that the
wires can be well structured in such topologies. While some MP-
SoCs are indeed homogeneous, especially in the CMP domain, a vast
majority are in fact heterogeneous, with each core having different
physical size, interface and communication requirements [9, 1, 10].
Regular topologies would handle very poorly these cases, leading to
floorplans with large slacks and to power overheads. Therefore, it is
imperative to generate cutomized, application-tailored NoCs.

• For many of the same reasons discussed just above, NoC topology
design should not be performed separately from floorplanning. It is
counterproductive to design a NoC where some cores are clustered
around a particular switch if, in the final implementation, those same
cores will be positioned at opposite corners of the chip. This would
unnecessarily lead to complex wiring and to operating frequency
penalties. The design of the NoC should instead be synchronized
with the chip floorplanning, either by devising an optimal floorplan
together with the generation of the NoC, or by accepting as an input
a reference floorplan defined by the designer, and by placing a NoC
in the optimal positions.

As a motivating example, the network (switch and link) power con-
sumption, hop count, wire length and design area of two different NoC
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Parameter Mesh Application-specific

Power (mW) 301.78 79.64
Average hop count 2.58 1.67

Total wire length (mm) 185.72 145.37
Design Area (mm2) 51.0 47.68

Table 5.1: Topology Comparisons.

topologies for a video processor SoC with 42 cores are presented in Ta-
ble 5.1. The first topology is a regular mesh, while the second is a cus-
tom topology generated using the methodology presented in this disser-
tation. The wire lengths and design area are obtained from floorplanning
of the NoC designs. A more detailed explanation of the topologies and
the floorplanning process can be found in Chapter 6 on page 145. The cus-
tom topology leads to a 3.8× reduction in network power consumption, a
1.55× reduction in average hop count and a 1.28×reduction in total length
of wires when compared to the mesh.

5.1.2 Deadlock Freedom

Another key point that needs to be tackled by a proper NoC topology
generation flow is that of deadlocks. Two classes of deadlocks can occur
in NoCs: routing-dependent deadlocks and message-dependent deadlocks [42,
130, 129]. Deadlock freedom must be guaranteed, else the resulting system
would be subject to malfunctions.

In NoCs, wormhole switching [42] is usually employed to reduce
switch buffering requirements and to provide low-latency communica-
tion [209]. With wormhole flow control, deadlocks can happen during
the routing of packets due to cyclic dependencies of resources, such as
buffers [42]. For regular topologies, such as meshes or tori, the use of
restricted routing functions based on turn models is an effective way to
avoid routing-dependent deadlocks [126, 125]. For custom application-
specific NoCs, obtaining deadlock-free paths is a bigger challenge; only
some works have addressed deadlock-free path selection mechanisms for
custom NoC designs [129, 132].

Message-dependent deadlocks occur when interactions and depen-
dencies are created between different message types at network end-
points, when they share resources in the network. Even when the under-
lying network is designed to be free from routing-dependent deadlocks,
message-level deadlocks can block the network indefinitely, thereby af-
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fecting proper system operation.

Example 1 An example situation where a message-dependent deadlock occurs is
presented in Figure 5.2(a) on the facing page. In this example, two of the cores
are masters and two other cores are slaves. In this system, we assume two kinds
of messages, requests and responses. Consider the following situation: Master
1 sends a request to Slave 1 (Req 1), Slave 1 is replying to a previously issued
request by Master 1 (Resp 1), while Slave 2 is simultaneously sending a response
to Master 2 (Resp 2). Since requests and responses share the same links, Resp 2
is waiting for link 1 which is used by Req 1, and Resp 1 waits for link 4 used by
Resp 2. Meanwhile, Req1 is waiting for Slave 1, the operation of which has been
stalled as Resp 1 could not complete. Thus, none of the messages can move ahead,
leading to a deadlock situation. An interesting point to note here is that message-
level deadlocks can be avoided if the receivers have infinitely large buffering or if
they have perfectly ideal operation (consuming all received data instantly), which
would avoid queuing of the packets in the network. Obviously, this is not feasible
in practice.

In traditional multi-processor interconnection networks, the most com-
mon ways to avoid message-dependent deadlocks are the use of sepa-
rate logical or physical networks for the different message types [128, 134,
135, 136, 210, 211, 5, 139]. This would ensure that the different message
types do not share the network components, thereby guaranteeing free-
dom from message-dependent deadlocks. The most common method to
achieve separate logical networks is the of use of separate virtual channels
for the different message types [128]. For the example design presented
in Figure 5.2(a) on the next page, each router input will need two virtual
channels: one for the request messages and the other for the response mes-
sages (Figure 5.2(b) on the facing page). This separation of message types
is maintained at all the switches in the network. In the case of separate
physical networks, the request network is built separately from the re-
sponse network, an example of which is shown in Figure 5.2(c) on the next
page. This is the most commonly used solution in complex bus designs,
such as STBus [5] and several multi-processor designs [138, 139].

Methods that can lead to deadlock-free operation with minimum
power and area overhead are important for designing application-specific
NoCs. We believe that, by considering this issue during topology gen-
eration, we can obtain a significantly better NoC design than traditional
methods, where the deadlock avoidance issue is dealt with separately.

March 13, 2008 Federico Angiolini 118



119 5.1: Motivation and Key Challenges
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Figure 5.2: Deadlocks and deadlock-free architectures.
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5.1.3 Target Operating Frequency

A further item to be accounted for is the fact that, to comply with perfor-
mance constraints, certain operating frequency goals must be met. Topol-
ogy design tools must make sure that all portions of the NoC can fulfill
these goals. This task includes picking appropriate components from the
NoC library (for example, high-radix switches will support a lower fre-
quency than smaller switches). This task also requires making sure that
NoC links can be traversed within a clock cycle, which may be particu-
larly hard in large designs. As discussed in Chapter 4 on page 95 and Sec-
tion 6.5.2 on page 192, the easiest workaround is simply to deploy pipeline
stages along the affected links, increasing their latency but not impacting
the NoC frequency.

5.1.4 Proposed Solution

We present a design tool, called SunFloor, that automates the generation
of such customized NoC architectures, satisfying the communication con-
straints of the target application. We present a floorplan-aware design
method that considers the wiring complexity of the NoC already during
the topology design process. This leads to detecting timing violations on
the NoC links early in the design cycle and to have accurate power es-
timations of the interconnect. We generate NoC instances where topol-
ogy, architectural parameters (e.g. data width) and operating parameters
(e.g. operating frequency) are all automatically tuned for optimal results;
the designer can manually override some of these if desired. We incor-
porate mechanisms to prevent deadlocks during routing, which is critical
for proper operation of NoCs. This methodology is then integrated into
a NoC synthesis flow (Chapter 6 on page 145), automating NoC synthe-
sis, generation, simulation and physical design processes. We also present
ways to ensure design convergence across the abstraction levels. Our flow
guarantees deadlock freedom and is aware of link pipelining needs; based
on floorplanning analyses, it is able to automatically instantiate pipeline
repeaters where needed, while accounting for their latency cost.

5.2
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Required Input Models

To operate correctly, SunFloor requires a set of inputs. The first is a
communication graph [208, 116, 118], describing the traffic requirements
among any pair of cores in the system. This information is typically well
known by the designer, based on application properties, previous design
experience, IP core datasheets, or initial simulations or estimations. The
sustained rate of communication between the cores is obtained based on
the average, peak rates and the latency constraints of the flows, as pre-
sented in [118]. It is shown there that the network has to satisfy the sus-
tained rate of the traffic flows to satisfy the application design constraints.
Whether a traffic stream is critical or not is also obtained from the appli-
cation characteristics. From these values, we construct the core graph for
the application:

Definition 1 The communication graph is a directed graph, G(V,E) with each
vertex vi ∈ V representing a core and the directed edge (vi, vj), denoted as ei,j ∈
E, representing the communication between the cores vi and vj . The weight of the
edge ei,j , denoted by commi,j , represents the sustained rate of traffic flow from vi

to vj weighted by the criticality of the communication. The set F represents the
set of all traffic flows, with value of each flow, fk, ∀k ∈ 1 · · · |F |, representing the
sustained rate of flow between the source (sk) and destination (dk) vertices of the
flow.

The communication graph for a small filter example (Figure 5.3(a) on
the next page) is shown in Figure 5.3(b) on the following page. The edges
of the communication graph are annotated with the sustained rate of traf-
fic flow, multiplied by the criticality level of the flow.

SunFloor also requires accurate analytical models for the power con-
sumption and area of the network components, in order to be able to assess
the best design points. We derived such models for the ×pipes architecture
(Chapter 4 on page 95 and Section 6.4 on page 172). Power consumption
values were obtained from layouts with back-annotated resistance, capac-
itance information, and based upon injection of functional traffic, which
translates into realistic switching activities in the components.

An example of the required input models is shown in Table 5.2 on the
next page, where we report results for the layout-level characterization of
some components implemented in 130nm technology. Due to the intrinsic
modularity and symmetry of NoC switches, the analytical models built
based on a training set of instances can be very close to the actual area and
power results, with typical errors below 10% Section 6.4.6 on page 184. For
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Figure 5.3: Filter application.

Component Parameter Analytical Experimental

area(mm2) 0.036 0.035
4x4 switch power(mW) 22.16 22.54

max frequency (MHz) 900 897
area(mm2) 0.048 0.047

5x5 switch power(mW) 28.38 28.70
max frequency (MHz) 880 885

link (2mm) power(mW) 0.57 0.57

Table 5.2: Area and power models for some NoC components in 130nm
technology, running at 900 MHz, featuring a data width of 32 bits, and a
switch buffer depth of three registers.
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the purposes of topology design, modeling the power consumption of the
NIs is not crucial. In fact, the power cost of the NIs is basically unaffected
by the chosen topology, and can even be assumed to be part of the power
budget of the IP cores.

SunFloor can operate in two modes. In the first, it generates a system
floorplan as an output, together with the optimal NoC topology. Alter-
natively, a floorplan can be taken as an input; this is useful for best inte-
gration in existing design flows, and it allows designers to override any
placement decision whenever needed (e.g., because an IP core needs to be
close to the chip edge because it drives some output pins). In this second
mode of operation, SunFloor takes as an input a very simple high-level
description of the floorplan, where IP cores are characterized with a size
and a position.

The final input required by SunFloor is a set of objectives and con-
straints. Our topology design process supports two objective functions:
minimizing network power consumption and minimizing the hop count
(zero-load latency) for data transfer. The designer can optimize for one of
the two objectives or a linear combination of both. The topology design
process further supports constraints on several parameters, such as the
hop count (when the objective is power minimization), the network power
consumption (when the objective is hop count minimization), the design
area and the total wire length. All these choices can be simply passed to
SunFloor as command line parameters.

5.3

Topology Design Algorithm

The topology generation process sweeps multiple design points, varying
architectural parameters (data width, operating frequency) within a range.
Several topologies with different numbers of switches are explored, start-
ing from a topology where all the cores are connected to one switch, to
one where each core is connected to a separate switch. The generation of a
topology includes finding the radix of the switches, establishing the con-
nectivity between the switches and connectivity with the cores, and find-
ing deadlock-free routes for the different traffic flows. To have an accurate
assessment of the design, the floorplanning of each topology is automati-
cally performed, fixing the position of the IP cores and NoC components
on the chip surface. Based on the frequency point and the obtained wire
lengths, the timing violations on the wires are detected and the power con-
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sumption on the links is obtained. From the set of all generated topologies,
the design point that best optimizes the user’s objectives, satisfying all the
design constraints, is chosen.

In the first step of Algorithm 1 on the next page, a design point θ is
chosen from the set of available or interesting design points φ for the NoC
architectural parameters. In our current implementation, the engine auto-
matically tunes two critical NoC parameters: operating frequency (freqθ)
and link width (lwθ). As both frequency and link width parameters can
take a large set of values, considering all possible combinations of values
would be infeasible to explore. The system designer has to trim down the
exploration space and give the interesting design points for the parame-
ters. The designer usually has knowledge of the range of these parame-
ters. As an example, the designer can choose the set of possible frequen-
cies from a minimum to a maximum value, with allowed frequency step
sizes. Similarly, the link data widths can be set to multiples of 2, within a
range (say from 16 bits to 128 bits). Thus, we get a discrete set of design
points for φ, as done in [113]. In the experiments shown in Section 5.5.1
on page 133, we support 8 frequency steps and 4 link width steps, provid-
ing 32 discrete design points in the set φ. The rest of the topology design
process (steps 2-14 in Algorithm 1 on the next page) is repeated for each
design point in φ.

As the topology synthesis and mapping problem is NP-hard [121], we
present efficient heuristics to synthesize the best topology for the design.
For each design point θ, the algorithm synthesizes topologies with differ-
ent numbers of switches, starting from a design where all the cores are
connected through one big switch (basically, a crossbar configuration) un-
til the design point where there is a switch per IP core. The reason for
synthesizing these many topologies is that it cannot be predicted before-
hand whether a design with fewer, bigger switches would be more power
efficient than a design with more, smaller switches, or vice versa. A larger
switch features a higher power consumption than a smaller switch to sup-
port the same traffic, due to its bigger crossbar and arbiter. On the other
hand, in a design with many smaller switches, the packets may need to
travel more hops to reach the destination. Thus, the total switching activ-
ity would be higher than in a design with fewer hops, which can lead to
higher power consumption.

For the chosen switch count i, the input core graph is partitioned into i
min-cut partitions (step 3). The partitioning is done in such a way that the
edges of the graph that are left across the partitions have lower weights
than the edges within partitions (refer to Figure 5.4(a) on page 126) and
the number of vertices assigned to each partition is almost the same. Thus,
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Algorithm 1 Topology Design Algorithm.

1: Choose design point θ from φ: freqθ, lwθ

2: for i = 1 to |V | do
3: Find i min-cut partitions of the core graph
4: Establish a switch with Nj inputs and outputs for each partition,

∀j ∈ 1 · · · i. Nj is the number of vertices (cores) in partition i. Check
for bandwidth constraint violations

5: Build SWITCH COST GRAPH (SCG) with edge weights set to 0
6: Build PROHIBITED TURN SET (PTS) for SCG to avoid deadlocks
7: Set ρ to 0
8: Find paths for flows across the switches using function

PATH COMPUTE(i, SCG, ρ, PTS, θ)
9: Evaluate the switch power consumption and average hop count

based on the selected paths
10: Repeat steps 8 and 9 by increasing ρ value in steps, until the hop

count constraints are satisfied or until ρ reaches ρthresh

11: If ρthresh reached and hop count not satisfied, go to step 2
12: Perform floorplan and obtain area, wire lengths. Check for timing

violations and evaluate power consumption on wires
13: If target frequency matches or exceeds freqθ, and satisfies all con-

straints, note the design point
14: end for
15: Repeat steps 2-14 for each design point available in θ

those traffic flows with large bandwidth requirements or higher criticality
level are assigned to the same partition and hence traverse only one switch
for communication. Therefore, the power consumption and the hop count
for such flows will be lower than for the other flows that cross the par-
titions. For partitioning, we use Chaco, an efficient external hierarchical
graph partitioning tool [212].

At this point, the communication traffic flows within a partition have
been resolved. In steps 5-9, the connections between the switches are es-
tablished to support the traffic flows across the partitions. In step 5, the
SWITCH COST GRAPH (SCG) is generated.

Definition 2 The SCG is a fully connected graph with i vertices, where i is the
number of partitions (or switches) in the current topology.

Please note that the SCG does not imply the actual physical connec-
tivity between the different switches. The actual physical connectivity be-
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Figure 5.4: Algorithm examples.

tween the switches is established using the SCG in the PATH COMPUTE

procedure, which is explained in the following paragraphs.
To prevent routing deadlocks (message-dependent deadlocks will be

tackled in a few paragraphs), we pre-process the SCG and prohibit certain
turns, to break any cyclic dependencies. This guarantees that deadlocks
will not occur when routing packets. In order to find the set of turns that
need to be prohibited to break cycles, we use the turn prohibition algo-
rithm presented in [129, 117]. The algorithm has polynomial time com-
plexity (very fast in practice, see Section 5.5.1 on page 133) and guarantees
that at most one third of the total number of turns would be prohibited
to remove cycles. The algorithm also guarantees connectivity between all
nodes in the SCG after prohibiting the turns. From the algorithm, we build
the PROHIBITED TURN SET (PTS) for the SCG, which represents the set of
turns that are prohibited in the graph. To guarantee deadlock freedom, no
path for routing packets should take any prohibited turn. These concepts
are illustrated in the following example:

Example 2 The min-cut partitions of the core graph of the filter example (from
Figure 5.3(a) on page 122) for three partitions are shown in Figure 5.4(a). The
SCG for the partitions is shown in Figure 5.4(b). After applying the turn pro-
hibition algorithm from [129], the set of prohibited turns is identified. In Fig-
ure 5.4(b), the prohibited turns are indicated by circular arcs in the SCG. For
this example, both turns around the vertex P3 are prohibited to break cycles. So
no path that uses the switch P3 as an intermediate hop can be used for routing
packets.

The actual physical connections between the switches are established
in step 8 of Algorithm 1 on the preceding page using the PATH COMPUTE
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Algorithm 2 PATH COMPUTE(i, SCG, ρ, PTS, θ).

1: Initialize the set PHY (i1, j1) to false and BW avail(i1, j1) to freqθ ×
lwθ, ∀ i1, j1 ∈ 1 · · · i

2: Initialize switch size in(j) and switch size out(j) to Nj , ∀ j ∈ 1 · · · i.
Find switching activity(j) for each switch, based on the traffic flow
within the partition.

3: for each flow fk, k ∈ 1 · · · |F | in decreasing order of fc do
4: for i1 from 1 to i and j1 from 1 to i do
5: {Find the marginal cost of using link i1, j1}
6: {If physical link exists, has enough bandwidth for the current

flow, and supports the same message type of the current traffic
flow}

7: if PHY (i1, j1) and BW avail(i1, j1) ≥ fc and same message type
then

8: Find cost(i1, j1), the marginal power consumption to re-use the
existing link

9: else
10: {We have to open a new physical link between i1, j1}
11: Find cost(i1, j1), the marginal power consumption for opening

and using the link. Evaluate whether switch frequency con-
straints are satisfied.

12: end if
13: end for
14: Assign cost(i1, j1) to the edge W (i1, j1) in SCG
15: Find the least cost path between the partitions in which source (sk)

and destination (dk) of the flow are present in the SCG. Choose only
those paths that have turns not prohibited by PTS

16: Update PHY, BW avail, switch size in,
switch size out, switching activity and message type for cho-
sen path

17: end for
18: Return the chosen paths, switch sizes, connectivity, message types
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procedure. The objective of the procedure is to establish physical links
between the switches and to find paths for the traffic flows across the
switches. Here, we only present the procedure where the user’s design
objective is to minimize power consumption. If the design objective is hop
count instead, or a combination of both, the same algorithm structure is
followed, just with different cost metrics.

An example illustrating the working of the PATH COMPUTE procedure
is presented in Example 3 on the next page. In the procedure, the flows are
ordered in decreasing rate requirements, so that more demanding flows
are assigned first. The greedy heuristics of assigning these flows first
have been shown to provide better results (such as lower power consump-
tion and more easily satisfying bandwidth constraints) in several earlier
works [116, 117]. The bandwidth available on each NoC link is the prod-
uct of the NoC frequency and of the link width. The algorithm ensures
that the traffic on each link is less than or equal to its available bandwidth
value. For each flow in order, we evaluate the amount of power that would
be dissipated across each of the switches, if the traffic for the flow were to
use that switch. This power dissipation value on each switch depends on
the size of the switch, the amount of traffic already routed on the switch
and the architectural parameter point (θ) used. It also depends on how the
switch is reached (from what other switch) and whether an already exist-
ing physical channel will be used to reach the switch or a new physical
channel will have to be opened.

In ×pipes, we permit the instantiation of multiple physical links be-
tween any two switches. When finding whether a switch is reachable from
another switch for the current traffic flow, we evaluate whether any phys-
ical links between the switches have already been established. If so, we
check the message types of the traffic flows that have already been routed
onto the links. The message types can either be fed explicitly by the user,
or can be implicitly considered by the tool - for example, traffic flows that
originate from processors and are sent to memory devices are typically
“requests”, while those in the opposite direction “responses”. In many
systems, all of the inter-processor communication occurs through mem-
ory devices, so this auto-detection suffices. If more complex message types
may occur, then each message type will need to be annotated and treated
as a separate traffic flow. Based on the gathered message type information,
among the set of established links, we search for one that already carries
the same message type and still has enough bandwidth available to sup-
port the current flow. If no such link is available between the switches, we
evaluate the cost of opening up a physical link. Opening a new physical
channel increases the switch size and hence the power consumption of this
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flow and of the others that are routed through the switch. These marginal
power consumption values are assigned as weights on each of the edges
reaching the vertex representing that switch in the SCG. This is performed
in steps 8 and 11 of the procedure. When opening a new physical link,
we also check whether the switch radix is small enough to satisfy the par-
ticular frequency of operation. As the switch size increases, the maximum
frequency of operation it can support reduces, since the critical path inside
the switch gets longer. This information is obtained from the input switch
models.

Example 3 For the SCG from Figure 5.3(b) on page 122, let us consider routing
the flow of value 100 between the vertices v1 and v2, across the partitions p1 and
p2. Initially no physical paths have been established across any of the switches.
If we have to route the flow across a link between any two switches, we have to
first establish the link. The cost of routing the flow across any pair of switches
is obtained from step 8 of Algorithm 2 on page 127. The SCG with the edges
annotated with the costs is presented in Figure 5.4(c) on page 126. The costs
on the edges from p2 are different from the others due to the difference in initial
switching activity in p2 compared to the other switches. This is because the switch
p2 has to support flows between the vertices v2 and v3 within the partition. The
least cost path for the flow, which is across switches p1 and p2 is chosen. Now
we have actually established a physical path between these switches and this is
considered when routing the other flows. Also, the size and switching activity of
these switches have changed, which is noted.

Example 4 Let us consider the example from Figure 5.4(a) on page 126. The
input core graph has been partitioned into 4 partitions. We assume 2 different
message types: request and response for the various traffic flows. Each partition pi

corresponds to a set of cores attached to the same switch. Let us consider routing
the flow with a bandwidth value of 100MB/s between the vertices v1 and v2,
across the partitions p1 and p2. The traffic flow is of the message type request.
Initially no physical paths have been established across any of the switches. If
we have to route the flow across a link between any two switches, we have to
first establish the link. The cost of routing the flow across any pair of switches
is obtained. We annotate the edges between the switches by the cost (marginal
increase in power consumption) of sending the traffic flow through the switches
(Figure 5.4(c) on page 126). Switch p2 has to support internal flows between
the vertices v2 and v3 within the partition. For this reason, the costs on the edges
from p2 are different from the others, due to the the difference in initial traffic rates
within p2 when compared to the other switches. The least cost path for the flow,
which is across switches p1 and p2, is chosen. Now we have actually established
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a physical path and a link between these switches. We associate the message type
request to this particular link. This is considered when routing other flows, and
only those traffic flows that are of request type can use this particular physical
link. We also note the radix and switching activity of those switches that have
been involved in the routing of the current flow.

Once the weights have been assigned, choosing a path for the traffic
flow is equivalent to finding the least cost path in the SCG. This is done by
applying Dijkstra’s shortest path algorithm [213] in step 15 of Algorithm 2
on page 127. Only those paths that do not use the turns prohibited by
the PTS are considered; for the others, the objective function for establish-
ing the best paths is initially set to minimizing power consumption in the
switches. The PATH COMPUTE procedure returns the sizes of the switches,
the connectivity between the switches and the paths for the traffic flows.

Once the paths have been established, if hop count constraints are not
satisfied, the algorithm gradually modifies the objective function to mini-
mize the hop count as well, using the parameter ρ (in steps 7, 10 and 11 of
Algorithm 1 on page 125). The upper bound for ρ, denoted by ρthresh, is set
to the value of power consumption of the flow with maximum rate, when
it crosses the maximum size switch in the SCG. At this value of ρ, for all
traffic flows, it is beneficial to take the path with least number of switches,
rather than the most power efficient path. The ρ value is varied in several
steps until the hop count constraints are satisfied or until it reaches ρthresh.

In the next step (step 12 of Algorithm 1 on page 125), the algorithm
invokes an external floorplanner, called Parquet [214], to compute the de-
sign area and wire lengths. The floorplanner minimizes a dual-objective
function of area and wire length, with equal weights assigned to both.
Parquet also supports soft cores, fixed pin/pad locations and aspect ratio
constraints for the generated design. From the obtained wire lengths, the
power consumption across the wires is calculated. Also, the length of the
wires is evaluated to check for any timing violations that may occur at the
particular frequency (freqθ). If needed, pipeline repeaters (Section 4.3.3 on
page 101) are automatically deployed (see Section 6.5.8 on page 201 for an
example).

The presented NoC synthesis process scales polynomially with the
number of cores in the design. The number of topologies evaluated by
the methodology also depends linearly on the number of cores. Thus, the
algorithms are highly scalable to a large number of cores and communi-
cation flows. The synthesis time for several different SoC benchmarks is
presented in Section 5.5 on page 133.
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Figure 5.5: A simple NoC topology.

5.4

Topology Instantiation

Once it has chosen the best topology (based on the user’s objectives) that
satisfies all the design constraints, SunFloor produces two outputs: a NoC
topology description and a chip floorplan (Figure 1.5 on page 27). The
floorplan is ready for being fed to standard placement tools commonly
used in the industry (Chapter 6 on page 145). The topology description, on
the other hand, is fed to a topology instantiation tool that we developed,
called ×pipesCompiler [215]. A slightly simplified example of a topology
description for the topology of Figure 5.5 is in Listing 5.1. ×pipesCompiler
takes care of generating the REGISTER TRANSFER LEVEL (RTL) SystemC
code of the complete platform, by configuring and interconnecting the
×pipes soft macros based on the specifications of SunFloor.

Listing 5.1: Example topology description file.

// In this topology: 1 processor, 2 switches

topology(2switch_1link);

// Cores:

// 1 traffic generator, clock divider 1:1, 4 NI

// buffers

// 1 memory, clock divider 1:1, 6 NI

// buffers, at address 0x00000000

core(core_0, 1, 4, tester, initiator);

core(mem_0, 1, 6, ocpmemory, target:0x00);

// Switches:

// Two 2x2 switches, 2 input buffers, 4 output

// buffers

switch(switch_0, 2, 2, 2, 4);

switch(switch_1, 2, 2, 2, 4);
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// Links:

// All of them non-pipelined

link(link_0, core_0, switch_0);

link(link_1, switch_0, core_0);

link(link_2, pm_0, switch_1);

link(link_3, switch_1, pm_0);

link(link_4, switch_0, switch_1);

link(link_5, switch_1, switch_0);

// Routes:

route(core_0, mem_0, switches:0,1);

route(mem_0, core_0, switches:1,0);

The tasks performed by ×pipesCompiler involve:

• Performing checks on the input file, verifying the full connectivity of
all the system components. (This step is key since the input topology
description does not necessarily come from SunFloor; it can also be
manually written).

• Configuring the blocks of the ×pipes component library according to
the specifications in its input description.

• Creating top-level modules to connect all the blocks together, accord-
ing to the desired topology.

• Producing suitable routing tables for the NIs, based on the specified
communication flows and routes.

• Creating testbenches for the whole topology, capable of stressing all
the paths among communicating IP cores in the topology.

• Generating component lists to be used by physical implementation
scripts.

×pipesCompiler generates code at the RTL level, both in SystemC and
Verilog. This code is suitable for simulation, for FPGA emulation and for
ASIC implementation flows.

5.5
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Experiments and Case Studies

5.5.1 Experiments on MPSoC Benchmarks

We have applied our topology design procedure to six different SoC
benchmarks: IMAGE PROCESSING APPLICATION (IMP), 23 cores, VIDEO

PROCESSOR (VPROC), 42 cores, MOTION PICTURE EXPERT GROUP

(MPEG)4 decoder, 12 cores, VIDEO OBJECT PLANE DECODER (VOPD),
12 cores, MULTI-WINDOW DISPLAY APPLICATION (MWD), 12 cores and
PICTURE-IN-PICTURE (PIP), 8 cores. The communication characteristics
of some of these benchmarks are presented in [216].

For comparison, we also generated mesh topologies for the bench-
marks by modifying the design procedure to synthesize NoCs based on
the mesh structure. To obtain mesh topologies, we generated a design with
each core connected to a single switch and restricted the switch radix to 5
input/output ports. We also generated a variant of the basic mesh topol-
ogy, an optimized mesh (opt-mesh), where those ports and links that are
unused by the traffic flows are removed. The communication graph and
the floorplan for the custom topology synthesized by our tool for one of
the benchmarks (VOPD) are shown in Figure 5.6 on page 135. The network
power consumption (power consumption across the switches and links),
average hop count and design area results for the different benchmarks
are presented in Table 5.3 on the following page. Note that the average
hop count is the same for the mesh and the opt-mesh, as in the opt-mesh
only the unused ports and links of the mesh have been removed and the
rest of the connections are maintained. The custom topology results in an
average of 2.78× improvement in power consumption and 1.59× improve-
ment in hop count with respect to the standard mesh topologies. The large
power savings are due to two reasons: (i) the switch power consumption is
reduced in the custom topology, and (ii) the total wire length in the mesh
topologies is 1.38× longer than that of the custom topology, which also
results in increased link power consumption.

The area of the designs with the different topologies is similar, thanks
to efficient floorplanning. It can be seen from Figure 5.6 on page 135 that
only very little slack area is left in the floorplan. This is because we con-
sider the area of the network elements during the floorplanning process,
and not after the floorplanning of blocks. The total run time of the topol-
ogy synthesis and architectural parameter setting process for the different
benchmarks is also presented in Table 5.3 on the following page. Given
the large problem sizes and very large solution space that is explored (8
different frequency steps, 4 different link widths, 42 cores for VPROC and
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Application Topology Power Avg. Area Generation
(mW) Hops mm2 time (mins)

custom 79.64 1.67 47.68
VPROC mesh 301.8 2.58 51.00 68.45

opt-mesh 136.1 2.58 50.51
custom 27.24 1.5 13.49

MPEG4 mesh 96.82 2.17 15.00 4.04
opt-mesh 60.97 2.17 15.01
custom 30.0 1.33 23.56

VOPD mesh 95.94 2.0 23.85 4.47
opt-mesh 46.48 2.0 23.79
custom 20.53 1.15 15.00

MWD mesh 90.17 2.0 13.60 3.21
opt-mesh 38.60 2.0 13.80
custom 11.71 1.0 8.95

PIP mesh 59.87 2.0 9.60 2.07
opt-mesh 24.53 2.0 9.30
custom 52.13 1.44 29.66

IMP mesh 198.9 2.11 29.40 31.52
opt-mesh 80.15 2.11 29.40

Table 5.3: Comparison among SunFloor-generated topologies and stan-
dard topologies.

several calls to the floorplanner) and the fact that the NoC parameter set-
ting and topology synthesis are important phases, the run-time of the en-
gine is not large. This is mainly due to the use of hierarchical tools for
partitioning and floorplanning and our development of fast heuristics to
synthesize the topology.

We also performed comparisons among custom-generated topologies
and several other standard topologies. For mapping the cores onto the
standard topologies, we use the tool from [116]. We optimized the topolo-
gies for performance, subject to the design constraints. The comparisons
against 5 standard topologies (mesh, torus, hypercube, Clos and butterfly)
for an image processing benchmark with 25 cores is presented in Figure 5.7
on the next page. The custom topology created by SunFloor shows large
performance improvements (1.73× on average) over the standard topolo-
gies.
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Figure 5.6: VOPD Application: custom topology floorplan and communi-
cation graph.
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Figure 5.7: Image processing application: hop delay comparison across
regular and custom topologies.
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5.5.2 Case Study: A Layout-Level Comparisons

We present here a comparison based on a NoC design for a multimedia
SoC that will be discussed in more detail in Section 6.3 on page 152. The
design consists of 30 cores. The NoC was implemented twice, in 130nm
technology. The first time, it was manually instantiated as 15 switches
forming a 5x3 quasi-mesh (two cores connected to each switch), as per
Figure 5.8(a) on the next page. The design is highly optimized, with
most memories very close to the processors accessing them (only one hop
away). The layout of the design was performed using SoC Encounter pre-
serving the mesh physical structure. Each of the cores has an area of 1 mm2

(Section 6.3.3 on page 158) in the design. The entire process, from topology
specification to layout generation, took several weeks. The post-layout
NoC could support a maximum frequency of operation of 885 MHz, deter-
mined by the critical path in the switch pipeline. The power consumption
of the topology for functional traffic was evaluated to be 368 mW.

We then applied our topology synthesis process to automatically syn-
thesize the NoC for this application, with the objective of minimizing
power consumption. We set the design constraints and the required fre-
quency of operation to be the same as those of the hand-designed topol-
ogy. The synthesized NoC topology and the layout obtained using SoC
Encounter are presented in Figure 5.8(c) on the next page and Figure 5.8(d)
on the facing page. The synthesized topology has only 8 switches, half of
the hand-designed topology. It can support the same maximum frequency
of operation (885 MHz) without any timing violations on the wires. As we
considered the wire lengths during the synthesis process to estimate the
frequency that could be supported, we could synthesize the most power
efficient topology that would still meet the target frequency. The result is a
power consumption of just 277mW, 1.33× lower than in the hand-designed
case. Given the fact that the hand-designed topology is highly optimized,
with much of the communicating traffic traversing only one switch, these
savings are achieved entirely from efficiently spreading the shared mem-
ories around the different switches. The layout of the hand-designed NoC
was manually optimized to a large extent (by moving switches, network
interfaces) to reduce the area of the design. The layout of the synthesized
topology is obtained completely automatically, and still the area of the de-
sign is only marginally (4.3%) worse.

The synthesized topology also exhibits a lower design area (about
1.2× lower) compared to the hand-designed NoC. This is also because,
in the hand-designed NoC, the mesh network was introduced after fixing
the positions of the cores, while in our method the network components
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Figure 5.8: Hand-designed and automatically-generated topologies and
their layouts. M: ARM7 masters; T: traffic generators; P: privately ac-
cessed slaves; S: shared slaves.
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are considered during the floorplanning process itself.
Finally, we also performed cycle-accurate simulations of the hand-

designed and the synthesized NoCs for two multimedia benchmarks. In
terms of performance, the custom topology not only matches the perfor-
mance of the hand-designed topology, but provides an average of 10%
reduction in total execution time and of 11.3% in packet latency, thanks to
a lower average hop count.

Reaching such an optimized design point manually would have re-
quired a large number of iterations of topology design, synthesis, place-
ment and routing, which is a very time consuming process. On the con-
trary, with our proposed flow, the time to get a complete, final design was
around just four hours.

5.5.3 Message-Dependent Deadlock Removal

In this section, we present detailed experimental studies of our approach
(subsequently referred to as message-dependent deadlock avoidance IN-
TEGRATED WITH THE TOPOLOGY (INT-TOP) synthesis process), and
compare it in terms of power and area against traditional approaches:

1. Using LOGICALLY SEPARATE NETWORKS (L-SEP): separate buffers
are instantiated at each input, with as many buffers as the different
message types, modeling the virtual channel based approach to re-
move message-dependent deadlocks.

2. Using PHYSICALLY SEPARATE NETWORKS (P-SEP): physically dif-
ferent networks are deployed for each message type. For both P-SEP
and L-SEP, we apply our topology synthesis procedure to obtain the
network topologies.

3. A design that has no support to avoid message-dependent dead-
locks, called ORIGINAL (ORIG). Note that this base system cannot
typically be employed in SoCs, as it cannot guarantee proper sys-
tem operation (unless some deadlock recovery support is provided
higher up in the protocol stack). We present the experimental results
for this scheme only to evaluate the overhead incurred by the other
schemes to support deadlock-free operation.

We apply the message-dependent deadlock prevention methods to
five different SoC designs: MULTI-MEDIA SYSTEM (MULT), 30 cores,
IMAGE PROCESSING APPLICATION (IMP), 27 cores, VIDEO PROCESSOR

(VPROC), 42 cores, MOTION PICTURE EXPERT GROUP (MPEG)4 decoder,
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Figure 5.9: IMP Application.

12 cores and VIDEO OBJECT PLANE DECODER (VOPD), 12 cores. The
communication characteristics of some of these benchmarks are presented
in [216]. Two types of messages are used in each design: requests and
responses. Each design consists of an almost equal number of request
and response traffic flows, since every processor core communicates with
memory cores, and this two-way communication is a request/response
pair. To make a fair comparison of the different schemes, we use the same
synthesis approach and design constraints for synthesizing all the topolo-
gies.

The communication graph for the IMP application and the best corre-
sponding topology achieved by our proposed scheme INT-TOP are pre-
sented in Figure 5.9(a) and Figure 5.9(b). The design consists of 12 pro-
cessors, a PRIVATE MEMORY (PM) for each processor, a SHARED MEM-
ORY (SHM), a SEMAPHORE MEMORY (SMM) device and an INTERRUPT

(INT) device. In the application, all communication from the processors
belongs to the request message type, while communication to the proces-
sors is of the response type. In Figure 5.9(b), request links are plotted with
continuous lines, while response links are dotted.

The network power consumption, based on functional traffic, for the
various designs using the different schemes is presented in Figure 5.10(a)
on the following page. As seen from this figure, the proposed INT-TOP
scheme outperforms the two conventional message-dependent deadlock
avoidance schemes L-SEP and P-SEP, leading by an average of 38.5% re-
duction in NoC power consumption when compared to the state-of-the-
art deadlock avoidance schemes. When compared to INT-TOP, the L-
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Figure 5.10: Power and area cost of alternative message-dependent dead-
lock avoidance schemes.

SEP scheme requires larger buffering resources, as each virtual channel
needs separate buffers. The P-SEP scheme requires more switches than
INT-TOP, as the request and response messages utilize different networks.
Interestingly, our proposed scheme incurs only a 2.5% increase in power
consumption when compared to the ORIG scheme, where no message-
dependent deadlock avoidance support is provided. This is mostly due to
the efficient allocation of links to the different message types by our topol-
ogy synthesis procedure. The switch area for the different schemes for the
SoC designs, normalized with respect to the area of the ORIG base system,
is presented in Figure 5.10(b). The proposed method results in an average
of 30.7% reduction in area when compared to the state-of-the-art schemes.

We now examine the power consumption of the proposed scheme
when the amount of different types of messages is varied. The number
of message types in a system depends on the underlying computation
architecture. Cache coherent systems typically support several different
message types. As an example, the S-1 multi-processor supports 4 dif-
ferent message types [211] and each type must be mapped onto different
resources in the network. In [137], a more sophisticated protocol is used,
which leads to seven different message types. To see the impact on the
number of different message types, we create a synthetic benchmark hav-
ing the traffic characteristics of the VPROC design. In this benchmark,
around 80 different traffic flows exist, each one representing a message.
We keep the number of messages fixed and vary the number of message
types in the design from 1 to 7. The network power consumption of INT-
TOP for the different number of message types is presented in Figure 5.11
on the facing page. This figure shows that our proposed scheme results in
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Figure 5.11: Effect of number of message types on the power consumption
of a deadlock-free NoC.

efficient designs, even for a large number of message types. Moreover, the
rise in power consumption with an increasing number of message types
saturates (designs with 6 and 7 message types have nearly the same power
consumption), as most messages are already mapped onto unique links in
the network.

5.5.4 Compensation for Congestion Effects

When the designed NoC is simulated at the cycle-accurate level, there can
be some mismatch between the observed traffic patterns and the initial
traffic estimates. This may be either because of inaccurate traffic models
or because of dynamic effects, such as congestion. It would be too time
consuming to perform a detailed simulation of each topology during the
synthesis process to quantify second-order effects. To bridge the gap be-
tween topology synthesis and simulation, we use a mismatch parameter;
the input traffic rates are multiplied by the value of this parameter. The
parameter is fed as an input to SunFloor. It is initially set to 1 and the user
can manually tune the parameter and re-design the NoC, until the simu-
lations satisfy the required performance level. The effect of increasing the
parameter on performance for the MPEG4 NoC is presented in Figure 5.12
on the next page. Extensions of the concept to handle localized congestion
effects in the NoC are currently underway.
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Figure 5.12: Effect of the compensation of dynamic effects, such as conges-
tion, for MPEG4.

5.6

Conclusions

Power-, area- and latency-efficient NoC designs are crucial for industrial
adoption. To achieve these results, the communication architecture should
closely match the application traffic characteristics, satisfying the differ-
ent design constraints. Furthermore, it should match chip floorplan con-
straints and avoid deadlocks. Synthesizing such NoCs is non-trivial, given
the large design space that needs to be explored. We have presented a
methodology that automates the process, generating efficient NoCs that
satisfy the constraints of the application. To minimize respins and provide
a faster time-to-market, we consider floorplan information early in the de-
sign cycle, while keeping the process fast. This leads to detecting tim-
ing violations on the NoC links during the NoC synthesis phase, thereby
leading to timing closure with quicker convergence between the high level
design and the physical design phases. We use accurate switch and link
power models that are based on layouts of the components. We also inte-
grate deadlock-free routing methods in the NoC synthesis process.

Experiments on several SoC benchmarks show that the synthe-
sized topologies are much better (an average of 2.78× power reduction,
1.59× hop count reduction) than the best mesh topology and mesh-based
custom topologies for our case studies.

An actual 130nm case study layout obtained from an industrial tool
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(Cadence SoC Encounter [217]) of a 30-core multi-media SoC with the NoC
designed using our methodology is also presented. At the layout level, the
designed NoC supports the required frequency of operation (close to 900
MHz) without timing violations. We could design the NoC architecture
from input specifications to layout in 4 hours, a process that used to take
several weeks. A layout level comparison with a hand-designed archi-
tecture shows that our automatic design methodology produces excellent
results (in terms of power consumption and performance), matching those
of hand-crafted designs.

By removing message-dependent deadlocks already during the topol-
ogy generation phase, we can achieve large reductions in network power
consumption (38.5%) and network area (30.7%) when compared to alter-
native state-of-the-art approaches. The presented tool automates the en-
tire NoC topology design process, including topology synthesis, routing
and path computation, RTL code generation and floorplan generation,
and seamlessly integrates in a complete flow including standard indus-
trial back-end physical design tools, thereby bridging an important gap in
the design of application-specific NoCs.

Future research can be focused on the generation of heterogeneous
topologies, for example with regions operating at different frequencies or
featuring different data widths.
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CHAPTER 6

NoC Design Flow Back-End:

Physical Implementation

This chapter1 describes the back-end of the proposed flow (Figure 6.1 on
the following page). Its goal is the streamlined physical implementation
of a given NoC design, with main emphasis on ASIC targets. A number
of variables come into play; among the most relevant, the technological
library (i.e. the manufacturing process) and the choice of tooling among
several available industrial alternatives have a deep impact on the quality
of the final results. We apply our resulting flow to compare NoCs against
bus architectures, to assess the scalability of NoCs to next-generation tech-
nology nodes, and to obtain area and power models.

6.1

Motivation and Key Challenges

Due to the quick pace of lithographic miniaturization, it is nowadays well
known that a number of physical-level process issues related to deep sub-
micron fabrication (such as wire delays and leakage power) are affecting
designs. Understanding these issues is clearly key to tackling them, for
example by compensating for them at the architectural level.

In the case of NoCs, the relationship among back-end flows and
archiectural design is even stricter, because of several factors:

1This chapter is the outcome of the collaboration with many co-authors, among which
the author would like to give special credit to Antonio Pullini, Paolo Meloni, Prof. Salva-
tore Carta, Prof. Luca Benini.
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Figure 6.1: The proposed NoC design flow: back-end.

• One of the main purposes of NoCs is exactly to help in tackling wire-
related physical-level issues.

• NoCs are intended to be large structures, spread across a whole chip.
As such, several design issues, such as clock tree distribution, wire
delays and variability, play a key role in NoCs.

• NoCs are also designed to interconnect a large number of heteroge-
neous components and devices, each of which could come as a pre-
built, pre-characterized IP macro. Thus, it is key to be able to lever-
age standard back-end industrial toolchains for NoC design, else the
effort of developing customized infrastructure would be impossible
to afford.

As a main assumption of the reasearch activity described in this disser-
tation, we focus on standard cell-based physical implementations. While
full custom design does certainly improve results, it does also greatly de-
crease flexibility and increase design time. The development of custom
blocks to improve the efficiency of some specific pieces of a NoC can, how-
ever, certainly be seen as a direction for future research.

In the following, we will first of all discuss a traditional back-end flow
to bring a circuit description to a chip implementation. We will then dis-
cuss why this is insufficient to cope with today’s technology, how we
tackle the resulting challenges in our NoC flow, and what insight we gain
from this activity. We will move on to presenting a cross-benchmarking
study we performed in 130nm technology by comparing a NoC- and a hi-
erarchical bus-based implementation of the interconnect of a multimedia
system. As will be seen, being able to rely on proper back-end assessments
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is crucial in order to get a complete picture. We will then show how to ex-
tract area and power models for NoCs for use by SunFloor (Section 5.2
on page 121). We will eventually show some of the insight we gained by
implementing NoCs in state-of-the-art 65nm technology. It is also worth
stating that, while we will not present those results here, ×pipes has also
been ported to FPGA for fast emulation purposes [101].

6.2

A Synthesis Flow

6.2.1 A Traditional View of the Back-End Design Flow

A traditional back-end design flow based on standard cells is depicted in
Figure 6.2 on the following page. This kind of flow features a streamlined
sequence of steps, which are ideally as decoupled as possible.

• Starting from a description of the circuit in some RTL language, such
as VHDL or Verilog, logic synthesis is initially performed; this trans-
lates RTL descriptions into a so-called netlist, i.e. a connected net-
work of basic gates belonging to a technology library. The technol-
ogy library is an abstracted view of the underlying foundry process,
and describes the basic gates in terms of function (such as boolean
gate, flip-flop, etc.), propagation delay, capacitive load, etc.. Based
on this information an on user constraints, a main task of logic syn-
thesis is to make sure that the netlist fulfills speed, area and power
consumption goals.

• The gates of the netlist are subsequently placed, i.e. mapped onto a
canvas representing the geometrical shape of the final device - this is
typically a rectangle. Placement involves both a high-level arrange-
ment of the main functional blocks of the chip (a step often called
floorplanning) and a low-level arrangement of each single gate (de-
tailed placement).

• Finally, the routing step takes care of laying metal lines to attach the
placed gates to each other, so that the circuit can function. During
this stage, some signals (typically, the power supply and the clock)
play a special role, since they must be distributed to a large num-
ber of gates spread all over the chip. Special attention is paid, for
example, to the minimization of the skew in the clock distribution
network.
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Figure 6.2: A schematic view of a traditional design flow.

Of course, in this reference flow, any constraint violation - such as the
impossibility to route the wires to connect the gates of the placed netlist,
or an unexpected violation of the required circuit speed - can only be tack-
led by feedback loops where one or more steps are repeated again, under
different assumptions.

However, this basic flow is not sufficient any more to deal with to-
day’s technology, for reasons that will become more clear in the following.
A crucial point of failure is that it becomes increasingly time-consuming,
complex, and potentially even unfeasible, to maintain the strict separa-
tion among the steps of the traditional flow sequence; routing issues are
nowadays setting an increasing amount of constraints on feasible place-
ments, and this applies, in turn, to all the upstream steps of the flow.
Therefore, the number of detected violations and of required feedback
loops in physical implementation would become too large for the tradi-
tional flow paradigm to hold without changes. In response to this, new
solutions must be found, either by proactively tackling issues (and NoCs
at large are in some sense doing this, e.g. by simplifying routing through
an architectural breakthrough), or by simultaneously performing multiple
steps at once, with wider constraint visibility.

In the following, we will present an outline of our backend flow, subse-
quently focusing our attention on specific portions of the flow which have
particular relevance.

6.2.2 The ×pipes Back-End Infrastructure

In the proposed NoC design and synthesis framework for ×pipes, we pro-
vide a complete back-end flow based on standard cell synthesis (see Fig-
ure 6.3 on the next page). Without any loss of generality in our conclu-
sions, we focus on standard cell-based physical implementations. In fact,
although full custom design does certainly improve results, it does also
greatly decrease flexibility and largely increases design time; thus, it is not
a desirable practice for the design of current, and especially forthcoming,
MPSoCs interconnects.
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Figure 6.3: The synthesis flow for ×pipes.

First, we perform logic synthesis by utilizing standard Synopsys tools;
depending on the underlying technology library, this step may need
be augmented with placement awareness, as will be discussed in Sec-
tion 6.2.3 on page 151. We support this procedure on 130nm, 90nm and
65nm technology libraries by partner foundries, tuned for different per-
formance/power tradeoffs, with different threshold and supply voltages.

During synthesis, we can optionally instruct the tools to save power
when buffers are inactive by applying clock gating to NoC blocks. The
gating logic can be instantiated only for sequential cells that feature an
input enable pin, which are a large majority of the datapath flip-flops of
×pipes.

We subsequently perform the detailed placement&routing step within
either Synopsys Astro [218] or Cadence SoC Encounter [217] (in the fol-
lowing, we will sometimes refer to either of them for the sake of brevity).
First, we feed Astro with a coarse floorplan, generated either manually
or by SunFloor. This floorplan contains hard macros and soft macros, sepa-
rated by fences (Figure 6.4 on the next page). The hard macros represent
cores and memories, and are modeled as black boxes. Hard macros are
defined with a LIBRARY EXCHANGE FORMAT (LEF) file and a Verilog In-
terface Logical Model, and obstruct an area of choice. These boxes also
obstruct some of the metal layers laying directly above; the exact number
of obstructed levels is configurable, depending on how many metal lay-
ers the cores are supposed to require and on whether over-the-cell routing
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Figure 6.4: Example of the usage of fences in placement. Yellow area: floor-
plan; red areas: hard macros for IP cores; blue areas: soft macros for NoC
components.

should be allowed for the NoC wires vs. between-the-cell. Soft macros are
also boxes; they enclose the modules of ×pipes, and the placement tool is
allowed to operate within them as long as the fences are not trespassed.
By constraining the placement tool to operate on a “tile” at a time, the so-
lution space is dramatically pruned, and relatively fast runtimes can be
achieved. For proper results, however, it becomes necessary to specify
rough timing constraints at the soft macro boundaries; we achieve this by
pre-characterization of the links (Section 6.5.2 on page 192).

The next step in the flow is clock tree insertion. We instantiate a clock
tree within each soft macro, to minimize the memory requirements and
runtime of this operation; the clock trees are then attached to a common
source and balanced at the global level. The clock tree can leverage clock
borrowing algorithms in the tools. In other words, instead of trying to fully
erase clock skews (an impossible task anyway), the skews are exploited
to accommodate the delay properties of the circuits, by supplying wider
clock periods where the logic paths are most critical. Once the clock tree
has been generated, its wires are kept untouched within the tool, to pre-
vent further skews from appearing.

At this point, the power supply nets are added. Two main schemes are
available. Traditionally, power rings (metal lines carrying the power supply
voltages) are laid around the die; as an alternative, a power grid can be laid
across the chip in the topmost metal layers. The latter choice requires more
metal resources, but minimizes IR drops (voltage drops and fluctuations
due to resistive effects in the supply networks and to the current draw).
Therefore, we choose power grids, so as to maximize voltage stability.
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Next, the routing tool begins to route the logic wires. An initial heuris-
tic mapping lays the wires; this initial solution is semi-random and almost
certainly violates essential constraints, such as that of not shorting differ-
ent wires. Therefore, SEARCH&REPAIR (SR) loops are executed to fix any
violations, including those regarding excessive propagation delays.

Post-routing optimizations are then performed. This stage includes
crosstalk minimization, antenna effect minimization, and insertion of filler
cells. Finally, a sign-off procedure can be run by using Synopsys Prime-
Time [219] to accurately validate the timing properties of the resulting de-
sign.

Post-layout verification and power estimation is achieved as follows.
First, the netlist representing the final placed&routed topology, including
accurate delay models, is simulated by injecting functional traffic through
the OCP ports of the NIs. This simulation is aimed both at verifying the
functionality of the placed fabric and at collecting a switching activity re-
port. At this point, accurate wire capacitance and resistance information,
as back-annotated from the placed&routed layout, is combined with the
switching activity report using Synopsys PrimeTime [219]. The output is
a layout-aware power/energy estimation of the simulation.

6.2.3 Placement-Aware Logic Synthesis

As mentioned above, the traditional flow for standard cell design features
logic synthesis and placement as two clearly decoupled stages. Our ex-
perience [220] shows that this flow achieves reasonable results for 130nm
and 90nm NoC designs, but we have found the situation to be substan-
tially different at the 65nm node.

The origin of the problem lies in the decoupling of the two steps. Syn-
thesis and placement could be considered as independent when wire de-
lays were negligible; this is unfortunately not the case anymore [3]. Since
wire delays can be comparable to logic delays, if not larger, it is crucial to
be able to estimate wire delays already during synthesis. Since wire de-
lays depend directly on wire length, it is clear that placement algorithms
are also unfortunately affecting the solution space of synthesis algorithms.

To alleviate the problem, wireload models have been introduced.
Wireload models are pre-characterized equations, supplied within tech-
nology libraries, that attempt to predict the capacitive load that a gate will
have to drive based on its fan-out and on the overall design area. Unfortu-
nately, wireload models remain a statistical representation of the physical
reality, and are therefore an inaccurate tool to predict delays on a single
net basis, given that each net could exhibit a different behavior. In our
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65nm tests, we experience unacceptable performance degradation due to
either under- or over-estimations of wire loads. Even when synthesizing
single NoC modules (i.e., even without considering long links), the logic
synthesis tools generate a netlist with the expectation of some operating
frequency; however, after placement, the actually reachable frequency is
often up to 30% worse (and even lower after the routing phase). Further-
more, sometimes placement and routing tools simply do not converge to-
wards any solution at all, trying in vain to match the expectations set by
the logic synthesis step.

To address this issue NoC synthesis in 65nm requires placement-aware
logic synthesis tools, such as Synopsys Physical Compiler [221]. There-
fore, in the proposed NoC back-end flow, after a very quick initial logic
synthesis based on wireload models, the tool internally attempts a coarse
placement of the current netlist. Next, it iteratively optimizes the netlist
and the placement, based on the actual wire loads implied by the current
candidate placement. The outcome is a placed netlist that is optimized
also accounting for wire delays.

We also observe in our study of NoC synthesis that other issues may
arise when placing gates into soft macros. For example, in our test de-
signs, placement tools perform poorly when modules have to be placed
within fences which are either too small or too wide. While the former
case is clearly understandable, we attribute the unexpected latter effect to
the placement heuristics, which are probably performing worse when the
solution space becomes very large. The problem must be solved by proper
tuning of the spacing among the soft macro fences and, consequently, ac-
curate area models of the NoC modules are required to avoid very time-
consuming iterations.

6.3

Cross-Benchmarking: NoCs Against Buses

In this section, we focus on a detailed comparison among NoCs and (hier-
archical) buses, considering performance, power, area, and ease of design.
The comparison is made at the 130nm technology node and leverages an
older, less efficient version of the ×pipes NoC than the one described in
Chapter 4 on page 95. We expect NoCs to fare even better in a future
study on state-of-the-art technologies.
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6.3.1 The Fabrics Under Test

Choosing a test environment to compare such different architectures as a
NoC and a bus/crossbar is a difficult task, since communication fabrics
can be heavily tuned to optimally fit a target benchmark - but the result-
ing figures would not be representative of real-world performance under
a different test load. For this reason, we do not attempt to fully optimize
our evaluation platforms and we choose to present relatively regular map-
pings which should be suitable for multiple applications. For the ×pipes
NoC, we also include in our analysis an irregular topology, optimized by
SunFloor to better match the target application. The topology is optimized
according to criteria of low area occupation and low power consumption,
and is built for deadlock freedom.

We conceive four test platforms, namely an AMBA AHB shared bus
(Section 2.2 on page 32), an AMBA AHB ML system containing a crossbar
element, a ×pipes mesh, and a ×pipes custom topology generated by Sun-
Floor (Figure 6.5 on the next page). All fabrics allow for attaching up to
30 IP cores, of which 15 masters and 15 slaves (typically memory banks).
This amount is justified considering that, already at the 130nm lithogra-
phy node, simple processor elements and 32 kB memory banks can be
expected to require just about 1 mm2 of die area. In fact, this number of IP
cores can well be surpassed in some current and next-generation MPSoCs.

The ML AMBA topology is not a full crossbar. A full 15x15 crossbar
would be prohibitively expensive in terms of area and wiring. In fact, the
IP library we use to synthesize this fabric (see Section 6.3.3 on page 158)
only allows instantiation of up to 8x8 components. Our ML AMBA test
fabric contains a mid-sized 5x5 crossbar. For both the ML and shared bus
AMBA designs, the canonical data width of 32 bits is chosen, since it rep-
resents the best match for ARM7 cores.

For the ×pipes NoCs, we instantiate non-pipelined links in the assump-
tion that the nature of the topologies should provide enough wire segmen-
tation to guarantee single-cycle propagation on all links, at least in 130nm
technology. Experimental results (Section 6.3.4 on page 160) will confirm
this assumption. The NoC mesh is configured with two different flit sizes,
namely 21 and 38 bits, to explore the dependency of area, power consump-
tion and performance on this parameter. These numbers are chosen taking
into account the length of each possible packet type and trying to optimize
the resulting flit decomposition. The OCP pinout is configured with 32 bit
data ports. The custom NoC topology is configured with 21-bit flits to
compare it against the mesh. For all our experiments, the NoC compo-
nents (switches and NIs) are always configured with FIFO buffers having
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Figure 6.5: The platform fabrics under test. (a) shared bus AMBA AHB; (b)
ML AMBA AHB; (c) ×pipes mesh; (d) ×pipes custom topology. M: ARM7
masters; T: traffic generators; P: privately accessed slaves; S: shared slaves.
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a depth of three flits. In our testing, this value proved to be a good tradeoff
between performance and area/power cost.

6.3.2 The Test Applications

We study the performance of the interconnects under two main scenar-
ios, a multimedia processing application and a DATA ENCRYPTION STAN-
DARD (DES) encryption algorithm. Both applications are parallelized to
be suitable for multiprocessor computation. The communication graphs
for both can be seen in Figure 6.6 on the following page. As can be no-
ticed, the multimedia application is fundamentally a pipeline of computa-
tion tasks; the encryption application features a producer task (to split an
incoming data stream into chunks of data), a consumer task (to reassemble
the outputs) and a set of “worker” tasks which operate in parallel to per-
form the actual encryption. In our testing, every task is mapped onto a sin-
gle processor. We let both applications run for several iterations by feeding
them with a stream of input data, and capture performance statistics only
during the execution of the application kernel, i.e. skipping the boot stage
and properly handling initialization or shutdown periods where some of
the tasks may be running while some others may be idle. This guarantees
proper handling of cache-related effects.

We implement the multimedia application as a standalone program,
which can directly run on ARM CPUs (M0 to M9 in Figure 6.5 on the pre-
ceding page), while the encryption algorithm is an example of a software
running on top of the RTEMS [188] operating system.

In both benchmarks, communication between nodes is handled by
means of a shared memory buffer, while synchronization is achieved via
polling of hardware semaphores. The shared memory and the hardware
semaphore device are labeled S12 and S13 in Figure 6.5 on the facing page.
To avoid the shared memory to become a huge system bottleneck, proces-
sors are assigned private cacheable memory buffers (P0 to P9 in Figure 6.5
on the preceding page), while the shared components are non-cacheable
to avoid coherency issues. Therefore, the inter-processor communication
paradigm is as follows:

• Producers prepare a data set in their private memory space. In the
meanwhile, consumers operate on the previous chunk of data in
their private memory space.

• When ready, producers copy the new data set to shared memory.
This may need semaphore polling if the shared memory buffer is
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Figure 6.6: Communication graphs for the two applications under test: (a)
multimedia processing application, (b) DES application.

still busy with the previous transaction. As soon as data is copied to
shared memory, the producer begins preparing the new message.

• When ready, consumers acquire the new data set from shared mem-
ory. This may need semaphore polling if the shared memory buffer
does not contain new data yet. As soon as data is copied from shared
memory, the consumer begins computation on it.

This communication paradigm is just one of almost endless alterna-
tive possibilities. We feel that, since it features both distributed (private
memories) and centralized (single shared memory and semaphore device)
elements, it represents a fair comparison ground for such diverse com-
munication fabric topologies such as a shared bus and a NoC. It may be
assumed that an approach based on a fully shared memory subsystem
would improve the relative performance of a bus-based fabric, while a
message passing paradigm would be more suitable for distributed archi-
tectures such as NoCs. However, this analysis is beyond the scope of this
research.

To verify whether the computation/communication ratio of the appli-
cations is a critical factor, we implement two variants of the multimedia
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application benchmark, with different degrees of computational require-
ments: the low-computation variant is performing roughly eight times
less mathematical operations. Please note, however, that while the ra-
tio of computation to explicit inter-processor communication can be easily
tuned in this way, the ratio of computation to overall communication re-
quirements depends on several additional factors. For example, unless an
ideal cache is available, changing the computation patterns also implicitly
results in different bandwidth demands (for cache refills and write-backs).
This will be further discussed in Section 6.3.4 on page 160.

In the following, for the sake of brevity, we will call the benchmarks
multi-high, multi-low (high-computation and low-computation variants
of the multimedia benchmark, respectively) and des.

Since real-life MPSoCs are not likely to only feature general purpose
processing cores, we also deploy traffic generators (T0 to T4 in Figure 6.5
on page 154) to model additional hardware IP blocks which may be
present in the platform. While this choice is not in any way supposed
to model on-chip coprocessors in a general fashion, we feel that it adds
extra realism. Therefore, we include two different types of traffic gen-
eration patterns: DSP-like (streams of accesses to a memory bank) and
I/O controller-like (a rotating pattern of accesses towards neighbouring
devices). DSP-like traffic generators are each programmed to fetch 128 or
256 bits of data from one of the shared memory banks or devices (indicated
with S in Figure 6.5 on page 154), compute for 10 clock cycles, and repeat.
I/O controller-like traffic generators are instead programmed to query
three shared devices in a rotating pattern, by reading 256 bits from each.
We program the generators to issue functional traffic such as data transac-
tions for consistency reasons; adopting a lower-level approach, such as the
injection of packets in the NoC, would make the comparison with AMBA
very unintuitive.

On both ML AMBA and the NoCs, the location of the various devices
within the topology is key to good performance. For example, private
memories exhibit optimal latency only if located next to their master (i.e.,
on the same AHB layer or attached to the same ×pipes switch). The place-
ment of shared slaves must comply with functional constraints: for ex-
ample, in a ML AMBA topology, shared slaves must be put beyond the
crossbar component, otherwise only local masters will be able to access
them.
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6.3.3 Fabric Synthesis

The tool flow used for this study, summarized in Figure 6.7 on the next
page, closely resembles the flow described in the rest of this dissertation
(Figure 1.5 on page 27, Section 6.2 on page 147). The main noteworthy
difference is that the study is performed on a 130nm technology back-
end, and therefore leverages non-placement-aware synthesis tools. Also,
Figure 6.7 on the facing page depicts the different steps required for the
AMBA physical implementation, and provides some details on the simu-
lation and power estimation infrastructure. In the following we will just
discuss the main differences and additions with respect to what we have
already presented.

AMBA synthesis (Figure 6.7(a) on the next page) is performed by us-
ing the Synopsys CoreAssembler [222] tool to instantiate the IP cores in-
cluded in the Synopsys AMBA DesignWare libraries, therefore composing
the needed topologies. During this phase, design parameters (such as data
lane width) and constraints can be defined. The final result is a low-level
HDL netlist composed of technology library standard cells representing
the interconnect fabric, with AMBA AHB masters and slaves instantiated
as black boxes.

×pipes is, in this study, synthesized with Synopsys Design Com-
piler [223]. We instruct Design Compiler to save power when buffers are
inactive by applying clock gating to the NoC blocks. If the target tech-
nology library features dedicated clock gating cells, they may be used;
in our case such devices are not available, therefore we let Design Com-
piler implement the gating circuit by means of generic cells. This incurs a
small penalty in operating frequency and power consumption, that could
be avoided with a more complete technology library.

For placement&routing, which we perform with Cadence SoC En-
counter [217] for all fabrics, we specify hard macros of 1 mm2 representing
cores and memories. We let the tool use over-the-cell routing, i.e. to route
wires on top of the IP cores, which only obstruct the five bottom metal lay-
ers. Out of the eight metal layers that our technology library allows, only
the top three are used for AMBA or ×pipes routing.

Post-layout verification and power estimation is achieved as follows.
First, the final placed&routed topology is simulated by injecting func-
tional traffic through the AHB (respectively, OCP) ports. This simulation
is aimed both at verifying functionality and at collecting a switching ac-
tivity report. At this point, accurate wire capacitance and resistance in-
formation, as backannotated from the placed&routed layout, is combined
with the switching activity report using Synopsys PrimePower [224]. The
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(a) AMBA.

(b) ×pipes.

Figure 6.7: The physical implementation flow for the fabrics under test.
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output is a layout-aware power/energy estimation of the simulation.

6.3.4 Cross-Benchmarking Results

Interconnect Performance

First, we perform a cycle-accurate architectural simulation of the alterna-
tive topologies under the load of three benchmarks, as described in Sec-
tion 6.3.2 on page 155, to assess their performance. The plots in Figure 6.8
on the next page summarize the global results. The vertical axis represents
the relative benchmark execution time, taking as the baseline the execution
on the multilayer AMBA AHB topology. Execution times are computed by
first running an architectural simulation, which provides results in terms
of clock cycles, and then by backannotating the clock period as resulting
from the synthesis flow, as discussed in Section 6.3.3 on page 158. Fre-
quency results will be discussed in more detail in Section 6.3.4 on page 165,
but let us anticipate that we achieve 370 MHz for the AMBA topologies
and 793 MHz for the NoC topologies. We realistically assume that ARM7
cores should be able to run up to a frequency of 400-500 MHz in 130nm
lithography. Since the ML AMBA topology is capable of achieving 370
MHz at most, and the overhead for the usage of dual clock synchroniza-
tion FIFOs would not be justified in this case, we assume the system to
be fully synchronous at 370 MHz. For the NoC, we exploit the dual clock
support of ×pipes to run the cores at 396.5 MHz and the NoC at its maxi-
mum frequency of 793 MHz. The 7% frequency boost we give to the cores
is small and does not represent an unfair advantage; in fact, it is a byprod-
uct of the high clock frequency achievable by NoCs, a feature that must
be exploited as much as possible by NoC designers. We repeat the tests
with three different cache sizes for the ARM7 processors; smaller caches
translate into more cache misses and more congestion on the fabric. The
ARM7 caches have 128-bit lines and feature a write-through policy.

In all benchmarks, the shared bus is completely saturated and execu-
tion times are unreasonable - about four times larger than with the other
interconnects. In multi-high and multi-low, the 21-bit NoC mesh exhibits
a small but noticeable advantage with respect to the ML AMBA fabric of
about 5% to 15%, with the largest gain being achieved in high-congestion
(small cache) setups. The 38-bit NoC extends the gap to the 10% to 20%
range. Even the custom NoC topology, which features much less band-
width than the meshes, typically performs 10% better than ML AMBA.
The figures represent overall benchmark execution time, therefore such
improvements are remarkable. Finally, the des benchmark is strongly
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(a) multi-high.

(b) multi-low

(c) des.

Figure 6.8: Relative execution times for three benchmarks for varying
cache sizes. The ML AMBA AHB execution time is the baseline at 100.
AMBA AHB shared bus results lay beyond the upper limit of the Y axis
scale.
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more bandwidth-intensive than multi-high and multi-low, and therefore
the gap among AMBA and the NoC interconnects widens to the 20 to 35%
range.

The results do not show a large difference between the multi-high and
multi-low applications; in both cases, the gap between AMBA and NoC
topologies is similar. At first sight, the benchmark with more communi-
cation and less computation demands (multi-low) should give a larger
advantage to bandwidth-rich interconnects, such as the NoCs. The results
can be better understood by noticing two things.

The first is that, despite a difference of a factor of eight in the performed
computation, and all else being equal, this 8X difference is only translating
into a gap of about 20% in the ratio of computation to actual communi-
cation. This happens because communication bandwidth is required not
only for explicit data transfers, but also implicitly to fetch computation in-
puts (cache misses) and to store computation outputs (cache write-backs
or write-throughs). For example, on the 21-bit NoC mesh with 1 kB caches,
we observe that in the multi-low case, computation is typically 50 to 60%
of the application kernel’s simulation time, while in multi-high the frac-
tion of computation time ranges between 70% to 85% - obviously larger,
but less so than what could be expected.

The second key to understanding the behaviour of multi-high vs.
multi-low, and more in general the reasons for the performance advan-
tage of NoCs, is the difference between bandwidth and latency.

One important factor that contributes to the NoC speed results is cer-
tainly their peak bandwidth. Given the clock frequencies above, the over-
all bandwidth of the fabrics can be calculated. The NoC meshes have 44
links, for an aggregate bandwidth of about 87 GB/s (21-bit mesh) or even
158 GB/s (38-bit flits). The custom topology, which is specifically opti-
mized, only features 14 links and therefore has around 28 GB/s of band-
width. The ML AMBA topology can have at most five pending transac-
tions at a time; considering two sets of 32-bit data wires (AMBA features
dual data channels for reads and writes), 32-bit address wires and a dozen
used control wires, the available bandwidth can be computed to be around
24 GB/s.

Therefore, the NoC meshes feature about 3.5 to 6.5 times more peak
bandwidth than the ML AMBA topology. This seems to explain the per-
formance gap. However, the NoC custom topology still outperforms ML
AMBA with just 28 GB/s of peak bandwidth - a 15% margin.

This is due to the fact that bandwidth is only an indirect clue of perfor-
mance; the real metric to assess the speed of an interconnect is the latency
from request to completion of a transaction, defined as the time needed to
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(a) Single reads.

(b) Burst reads.

(c) Single writes.

Figure 6.9: Latency of different transfers on the interconnects. Latency
measured between the issue of the transfer request and the availability of
a response (for reads), or between the issue of the transfer request and
the request acceptance (for writes). AMBA AHB shared bus results lay
beyond the upper limit of the Y axis scale
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let the requesting core resume its execution. In Figure 6.9 on the preceding
page, we depict the average latencies for various types of transactions in
multi-high (other benchmarks show similar trends) as seen by the ARM7
cores. For single reads, the packeting overhead of the NoC is clear; the ML
AMBA topology is about twice as fast in returning responses. Indeed, we
infer from the protocol and empirically observe that the ML AMBA design
can internally complete a single read in 5 CPU clock cycles in the best case
(with one-wait-state memories), while 10 CPU clock cycles are needed for
the NoC in the 38-bit configuration with a 2X clock multiplier. The same
does not hold for burst transfers, where the packeting overhead is only
paid once, and congestion becomes the key limiter: even though the burst
traffic in our case is mostly composed of short 4-beat cache refills (the traf-
fic generators inject a smaller amount of 8-beat reads), the NoCs come out
faster, with a margin of 10 to 20% (the 38-bit topology performing even
better at 20 to 25%, due to lower congestion). This result strongly suggests
that NoCs should try to take advantage of stream transfers. The single
write latency figure is also interesting; in this case, the NoC shows, on av-
erage, less than half the latency of the ML AMBA scheme. This figure is
the result of the support for posted writes in the OCP protocol, which is ex-
ploited by ×pipes. ×pipes allows streams of writes to be issued in a posted
fashion, without any delays except those possibly introduced by eventual
buffer saturation somewhere in the network. In contrast, the AMBA pro-
tocol forces a master to wait for the response to the previous write request
and for rearbitration before issuing a new write; therefore, write streams
experience continuous hiccups. This phenomenon could be bypassed by
interposing data FIFOs, but this kind of optimizations is beyond the scope
of this discussion.

The overwhelming bandwidth advantage of the NoC meshes is a hint
to overdesign, and explains our choice of presenting a custom NoC topol-
ogy that is specifically tailored for the benchmarks under scrutiny. The
purpose is not to contrast this topology against the AMBA fabric, which
would be unfair, but to show how significant the savings that derive from
custom mapping can be. The custom topology is much less bandwidth-
rich than the meshes, noticeably trimming power consumption while not
affecting fabric speed nearly as much.

Coming back to the analysis of benchmark execution times, as shown
above, our results show similar performance gains of NoCs vs. AMBA in
multi-low and multi-high, despite the fact that multi-low spends about
20% more time in communication than multi-high, and should therefore
exhibit larger speedups. On the other hand, des requires heavy communi-
cation resources and indeed strongly benefits from NoCs. Given the dis-
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cussion above, the mix of transaction types can clearly explain the results.
So, for example, let us consider the multi-high benchmark when run on
the 21-bit mesh with 4 kB caches. We observe 26% of single reads, 1% of
burst reads (very few cache misses) and 73% of single writes. In the same
setup, multi-low exhibits 46%, 2% and 52%. So, while multi-low spends
more time in communication, its communication mix is less favourable to
the NoCs than that of multi-high, producing similar overall results. des
not only demands a lot from the interconnect, but it is also a good match
to NoC architectures; due to a much larger data set and code segment, in
the same setup, we notice that the ratios are respectively 16% (few single
reads), 32% (many refills) and 52%.

Many factors can contribute to performance results, including caching
schemes (as the plots show), functional bottlenecks (one slave is heavily
accessed and slows down the whole system), localized congestion (the
topology suffers from overload at some location), traffic spikes over time
(resources are normally underutilized, but communication spikes occur
and when they occur they are poorly handled). A discussion of all these
issues is beyond the scope of this dissertation. Overall, we think that our
results show a noticeable performance lead of NoCs over a wide range of
transaction patterns.

Interconnect Area, Frequency of Operation and Bandwidth

Screenshots of the layouts for ML AMBA AHB and for the NoC topologies
are shown in Figure 6.10 on the next page. Here and elsewhere in the
following paragraphs, the shared bus configuration is omitted because, as
we have shown (Section 6.3.4 on page 160), the performance of the fabric
is so bad as to make any comparison pointless.

We begin our analysis with area occupation of the topologies under
test. As a premise, we must state that our study mostly focuses on per-
formance and power. Thus, we do not perform any specific optimization
in the synthesis flow to minimize area requirements; on the contrary, we
configure the tools for maximum frequency, without area constraints. Fur-
ther, we perform a placement step to derive fabric floorplans, but this is
only done to get a realistic estimation of capacitive overheads due to long
wires; we omit the step of tightly compacting the design, which would be
needed in an industrial product but is unneeded for our characterization.
For these reasons, the overall floorplan areas which can be inferred from
Figure 6.10 on the next page are not meaningful, except as a way to get
information about wire lengths.

Still, the cell area metric, which only takes into account the area occu-
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(a) ML AMBA. (b) ×pipes meshes. (c) ×pipes custom.

Figure 6.10: Layouts of the test fabrics.

×pipes ×pipes ×pipes

Max Frequency ML AMBA mesh mesh custom

(21-bit) (38-bit) (21-bit)

After synthesis 480 MHz 847 MHz 847 MHz 847 MHz

After place&route 370 MHz 793 MHz 793 MHz 793 MHz

Frequency drop 22.9% 6.4% 6.4% 6.4%

Table 6.1: Pre- and post-placement achievable frequencies.

pation of logic cells in the design, is a useful indication about the expected
silicon overhead of alternative fabrics. After placement&routing, and in-
cluding the clock tree buffers, the cell area for the AMBA ML topology is
0.52 mm2. For the ×pipes meshes, which feature 15 switches and 30 NIs,
area is 1.7 mm2 (21-bit design) to 2.1 mm2 (38-bit design), while the custom
topology comprises fewer switches and is therefore a bit less demanding
at about 1.5 mm2. While these results show a large relative overhead for
the NoCs vs. AMBA, the overhead is in fact small when compared to the
area requirements of the IP cores.

The maximum frequency results for the fabrics are as reported in Ta-
ble 6.1. The ML AMBA fabric reaches at most 480 MHz before the place-
ment stage. After placement and clock tree insertion, the actual achievable
frequency decreases sharply to 370 MHz (-22.9%). This drop means that,
compared to the design netlist, some unexpected capacitive loads arise in
the final floorplan due to routing constraints. An explanation can be found
in the purely combinational nature of the fabric, which implies long wire
propagation times and compounds the delay of the crossbar block.

As can be seen, the ×pipes topologies all achieve much higher clock
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frequencies. Even after placement&routing, the critical path is not on the
NoC links, which confirms that the wire segmentation is highly effective.
A byproduct is wire load predictability; in fact, as the table shows, the NoC
fabrics suffer a minimal timing penalty of 6.4% after taking into account
actual capacitive loads. These results suggest better scalability of the NoC
architecture to future technology nodes.

We would like to underline the effect that clock gating and clock tree
deployment have on the design of a complex architecture. Compared to
results [220] where these elements were not accounted for, it is for example
possible to notice that the maximum frequency achievable by NoCs drops
by almost 100 MHz (885 MHz vs. 793 MHz). This is easily explained;
signals need to travel from flip-flop to flip-flop within a time budget of
one clock period, but the clock management logic adds delay and skew,
both of which cut into the available timing window. We feel that this re-
sult, while certainly not novel, is further highlighting the importance of a
complete modeling and synthesis flow spanning up to the lowest levels of
abstraction.

Interconnect Power and Energy

To attempt a power evaluation, we first monitor activity during functional
system simulations and log all source-target transaction pairs. We then
inject traffic from master ports towards each of the targets which are ac-
cessed in the functional simulation.

At the 130nm node, without clock gating, sequential logic represents by
far the largest fraction of power consumption in the ×pipes NoC, with flip-
flops burning as much as 80% of the global power requirements (still ex-
cluding the clock tree contribution, which, as we will show, is also major).
While the power cost of switching activity on global wires is expected to
become more prevalent in future technologies, at the 130nm node sequen-
tial elements seem to be the prime candidates for tuning. This observation
leads us to attempting to optimize the NoC by means of several strategies
related to buffering elements. First, the implementation of clock gating
lets us achieve about 30% power savings. Second, we keep buffering re-
sources to a minimum across the NoC, by sizing NI and switch buffers
to hold only three flits at a time. Third, we explore the flit width degree
of freedom, which proves very useful: moving from 38-bit to 21-bit flits
reduces buffer size almost in half, cutting power by a significant amount
(see below).

The power results that we achieve for the topologies at their maximum
operating frequency are reported in Table 6.2 on the next page, while en-
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×pipes ×pipes ×pipes

Power Consumption ML AMBA mesh mesh custom

(21-bit) (38-bit) (21-bit)

Global power 75 mW 376 mW 473 mW 347 mW

Sequential cell power 15 mW 145 mW 187 mW 116 mW

Sequential power ratio 20.5% 38.6% 39.5% 33.4%

Table 6.2: Power consumption of the fabrics.

Energy ×pipes ×pipes ×pipes

Consumption ML AMBA mesh mesh custom

(21-bit) (38-bit) (21-bit)

Energy per

injectable 3.13 mJ/GB 4.32 mJ/GB 2.99 mJ/GB 12.39 mJ/GB
data

Energy per

benchmark run 0.075 mJ 0.338 mJ 0.402 mJ 0.312 mJ
(fabric only)

Energy per

benchmark run 1.08 mJ 1.30 mJ 1.31 mJ 1.28 mJ
(1W system)

Energy per

benchmark run 5.08 mJ 5.17 mJ 4.96 mJ 5.14 mJ
(5W system)

Table 6.3: Energy consumption of the fabrics.

ergy results are reported in Table 6.3. ×pipes figures are for designs with
clock tree and clock gating, while in the case of AMBA, we only insert a
clock tree; given the low amount of sequential logic that AMBA contains
(see Table 6.2), clock gating would offer negligible benefits and unneces-
sarily add design flow complexity and frequency penalties.

The ML AMBA crossbar is clearly the winner in terms of pure power
consumption. The power consumption of the NoC meshes is 5.6 to 7.5
times higher. Keeping the flit width of the NoC mesh low is however
helpful, as power savings of 25% can be noticed, with a much lower im-
pact on overall performance (Section 6.3.4 on page 160). Thanks to clock
gating, the fraction of power consumption due to sequential logic drops
significantly, from an initial value of around 80% [220] to around 35%. This
drop is due to the compound effect of clock gating (which cuts the sequen-
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tial power requirements by 30%) and of the clock tree insertion, which is
implemented by means of combinational cells, thus lowering the relative
fraction of sequential power. The custom NoC topology, thanks both to its
lower switch count, is able to shave about 8% off the power of the 21-bit
mesh. When considering the power density of the interconnects, AMBA
has an advantage of roughly a factor of two; we mostly attribute this to
the difference in clock speeds.

In terms of energy, the advantage of ML AMBA is less clear. When con-
sidering the ratio among power consumption and available bandwidth
(mW over GB/s, or mJ over GB of injectable data), ML AMBA and the
NoC meshes look much closer. However, this figure is a bit misleading;
using all of the available bandwidth, the meshes would indeed consume
much more energy. Further, the custom NoC, which is designed around
providing bandwidth only where necessary, but utilizing it efficiently, is
unreasonably penalized by this analysis. Therefore, we attempt to use a
more meaningful metric: power over benchmark execution time, i.e. the
energy required to complete a benchmark. Given the performance figures
shown by our experiments, we conservatively assume an execution time
advantage as shown by multi-high or multi-low; in a des-like scenario, of
course, the results of NoCs would look better. Thus, we set an execution
time gain of 10% for the 21-bit NoCs (mesh and custom) against the ML
AMBA fabric, and of 15% in the case of the 38-bit NoC mesh. Calculating
the energy consumption over an execution time which is 1 ms for the base-
line ML AMBA case, we observe the results reported in the second row of
Table 6.3 on the preceding page. To derive an even more useful metric,
however, the energy consumption of the whole system should be taken
into account. To this effect, the power consumption of other parts of the
system must be modeled. This is a very difficult task, as it greatly depends
on the specific components at hand. We could very conservatively assume
a power consumption of just 1 W at 370 MHz for all of the 15 cores, caches
and memory blocks. Further, we could assume a 370 MHz working fre-
quency for the cores in the ML AMBA case and a 396.5 MHz frequency
for the NoCs (Section 6.3.4 on page 160). The overall power consumption
of the systems would therefore be 1.075 W for ML AMBA, 1.449 W for the
21-bit NoC, and so on. The corresponding energy is reported in the third
row of Table 6.3 on the preceding page; the three NoCs are giving almost
identical results, about 20% worse than ML AMBA. With system compo-
nents requiring 5 W, however, the NoCs become strongly competitive, as
the table shows; the 21-bit NoCs get almost on par with ML AMBA, while
the 38-bit topology actually offsets its higher power requirements with its
performance results, coming out as the most energy-efficient by a slight
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(a) Area of the 21-bit mesh. (b) Power of the 21-bit mesh.

(c) Area of the 38-bit mesh. (d) Power of the 38-bit mesh.

(e) Area of the 21-bit custom topology. (f) Power of the 21-bit custom topology.

Figure 6.11: Split report for area and power of three ×pipes topologies.

margin.

Split Analysis of Area and Power Contributions

In Figure 6.11, we present a split report of area occupation and power
consumption for the three NoCs. In terms of area (Figure 6.11(a) and fol-
lowing), at first glance, three main contributions can be noticed: switches,
initiator NIs and target NIs. However, the ratios between them can shift
in a relevant fashion. To understand the figures, please remember that the
mesh topologies feature 15 instances of each type of component, while the
custom NoC has 15 of each type of NIs but only 8 switches. The absolute
contribution of the NIs to the NoC area remains roughly constant across
the topologies; NI area is found to be dominated by the OCP front-end,
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which remains unchanged regardless of the topologies. The main differ-
ences are therefore due to switch area. Taking the 21-bit mesh as a base-
line, we measure switches to require 38.5% of the NoC area; we can notice
that in the 38-bit mesh (where switches are larger due to the increased flit
width) the percentage rises to 47.7%, while in the 21-bit custom topology
(where there are fewer switches) it falls to 27.0%.

In terms of power (Figure 6.11(b) on the facing page and following), the
major contribution, as expected, is due to the clock distribution network.
Two clocks are actually being distributed, a fast one for the network and a
slower one for the OCP front end of the NIs. The two clock trees together
burn 40% or more of the overall power. We observe several interesting
trends in this split analysis. For example, since the absolute power con-
sumption of the NIs remains more or less constant across the topologies,
their relative consumption is determined by the other components. The
×pipes clock tree, i.e. the fast one, has a consumption which is very di-
rectly correlated to the amount of flip-flops it must drive; therefore, it takes
the smallest fraction of the power budget in the 21-bit custom topology
(where there are fewer switches to clock), a larger one in the 21-bit mesh,
and the largest one in the 38-bit mesh. Switches themselves exhibit a more
complex trend. They already burn a significant amount of power in the
21-bit mesh, and this budget increases even more in the 38-bit mesh and
in the custom topology. The reasons are different; in the former case, there
are simply more gates (38-bit switches have datapaths which are almost
twice as wide), while in the latter, the amount of gates is actually lower (8
switches instead of 15) but traffic is still efficiently processed, which points
to a much higher switching activity.

Finally, it is interesting to note that, in all cases, when comparing the
switches to the NIs, switches take a larger fraction of the power budget
than they do of the area budget. For example, in the most extreme case,
the custom topology, the switches require less area than either the initiator
or target NIs, but burn as much power as both types of NIs together. We
mostly attribute this fact to NI front ends working at the OCP clock fre-
quency, i.e. at half the frequency of the rest of the network (Section 6.3.4
on page 160), while switches uniformly run at the higher frequency. Fur-
ther, switches experience a higher average activity level, since for example
a single incoming packet forces all output ports of a switch to evaluate a
new request - even if a single output port will eventually let flits through.

6.4
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NoC Area and Power Modeling

In this section, we focus on devising area and power models for the NoC
switches. These models, as seen in Section 5.2 on page 121, are essential for
(i) getting a better understanding of the NoC optimization opportunities,
(ii) the effectiveness of SunFloor. As discussed, accurate switch models
are more useful than NI models, since the latter do not have any relevant
impact in devising the optimal NoC topology for a given application.

We propose a NoC switch modeling methodology which takes advan-
tage of the designer’s knowledge of the target architecture and synthesis
library. It is of course impossible to devise an accurate yet fully generic
model for the hardware cost, in power and area, of any given NoC. Our fo-
cus is instead on how such a model can be built for a specific NoC instance.
Key properties of our approach include accuracy and explicit modeling on
several parameters of the design, like switch cardinality, flit width, buffer-
ing, traffic and synthesis parameters. These properties make the approach
suitable for fast exploration of large parts of the fabric design space, flexi-
ble and applicable in real life, for example by accounting for the behaviour
of the synthesis tools when the target operating frequency approaches the
limits of the design. Model coefficients can be made even more accurate
by using a placed and routed training set for characterization, albeit at a
modeling effort cost.

6.4.1 Proposed Modeling Methodology

Our modeling activity starts from an existing RTL description of the NoC
components, and is composed of five main phases.

1. We devise a set of parameters that are relevant to the accuracy of any
model which aims at practical applicability.

2. We define a general model formula for area and for power, relying
on the knowledge of the target switch architecture.

3. We synthesize several configurations (training set) of the target
switch architecture, and measure the corresponding area and power
consumption. The configurations are chosen so as to uniformly but
sparsely cover the design space of interest, therefore allowing for an
accurate yet quick construction of the model. The synthesis process
can optionally include the placement&routing step for maximum
thoroughness of the assessment.
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Figure 6.12: Outline of our characterization activity. The placement and
routing step is optional both for the training and the test set.

4. We use experimental results to numerically quantify the coefficients
of the model. As outlined later, we propose two different ways of
performing this step, with varying accuracy/effort tradeoffs.

5. We assess the quality of our models against configurations (test set)
outside of the training set.

The first four steps will be covered in Section 6.4.2 through Section 6.4.6
on page 184. An outline of how we handle steps 3 to 5 is provided in
Figure 6.12.

6.4.2 Parameters of Interest

A key phase of the approach is devising a model that matches the archi-
tecture under consideration and its properties. However, considering the
architecture alone does not guarantee that the model will be applicable
and accurate enough in practice. For example, synthesis tools play a pri-
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mary role in defining the area and power efficiency of a component. There-
fore, we first summarize the parameters of interest when assembling our
model. Without loss of generality, we analyze the ACK/NACK imple-
mentation of ×pipes; equivalent models can be devised for STALL/GO,
just by accounting for the differences in buffering and possible traffic con-
ditions. In fact, these models would be simpler due to the lower number
of possible transmission states in STALL/GO.

Architectural Parameters

The main parameters are:

• Switch cardinality (radix, number of ports). To account for rectangu-
lar switches, we separately consider the amount of input ports (npi)
and output ports (npo).

• Amount of buffering devoted to flow control handling and perfor-
mance optimization, also called buffer depth (bd) (expressed in terms
of single-flit buffering elements).

• Number of bits of the incoming and outgoing elementary data
blocks, also called flit width (fw).

Implementation Flow Parameters

It is possible to tune synthesis tools, among other things, for:

• Target frequency of operation.

• Target area.

• Target power consumption.

Tuning these parameters differently in the synthesis tools yields, as ex-
pected, a widely different quality of results. For example, when perfor-
mance demands are extreme, synthesis tools are forced to create netlists
containing large amounts of buffers and fast gates, which are not area-
and power-efficient. To mimic a typical industrial flow, where an applica-
tion performance constraint must be satisfied, we impose as the primary
objective a certain target operating frequency (which is a parameter of our
model), while area and power minimization are given to the tool as sec-
ondary optimization objectives. As a result, area and power requirements,
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Figure 6.13: Area requirements vs. target operating frequency.

expressed as a function of the target operating frequency, exhibit a charac-
teristic flat behaviour followed by a steeply rising trend after an inflection
point. This trend is well known [225], and can be explained by the fact
that, above some target operating frequency which can be achieved with
minimal circuitry, synthesis backends are forced to insert extra gates to
comply with increasing performance demands.

Figure 6.13 shows a linearized and a parabolic approximation of this
trend, and at the same time summarizes the ways we modeled this ef-
fect. For each device configuration (e.g. 4x4 32-bit switches with 6-deep
FIFO buffers), a “native” frequency fn can be identified. This frequency
is that achieved by the synthesizer with relaxed timing constraints. Un-
der this condition, the tool is free to fully pursue its secondary objectives,
hence creating minimum area (A(fn)) and power (P (fn)) netlists. Con-
figuring the tools for target frequencies lower than fn does not result in
further decreases of area or power dissipation. For each switch instance,
it is also possible to find a frequency fmax, that corresponds to the fastest
achievable synthesis result. Under this timing constraint, the module has
A(fmax) area and P (fmax) power consumption. We approximate the de-
pendency of area and power overheads as linear or parabolic in the range
(fn; fmax). This assumption allows us to characterize devices only twice,
at fn and fmax (under various combinations of the other architectural pa-
rameters), while being able to estimate results over the whole range of
frequencies achievable by the module. Since this analysis is not correlated
to other model parameters, in the following, for simplicity of notation, we
will not explicitly mention the dependency of coefficients on the synthesis
target frequency; the characterization of this parameter will be implicitly
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assumed.
The linearized or parabolic approximation is a way of abstracting away

from low-level details of the logic synthesis process, which are impossible
to capture in a high-level model. The experimental results that will be
shown in Section 6.4.6 on page 184 will be based on a test set which is also
spread in terms of target operating frequency, therefore providing a metric
of the accuracy of such a model. Section 6.4.6 on page 191 will compare
the accuracy of the linear vs. the parabolic models.

Please note that developing area and power models which are a func-
tion of the target frequency of operation up to fmax also implies making
available a model of the timing properties of the switches.

Traffic Condition Parameters

These parameters are only relevant to power models, since area models
are clearly static. They include downstream congestion and internal con-
gestion (i.e. arbitration conflicts). They will be explained in more detail in
Section 6.4.3 on the next page.

6.4.3 Area and Power Models

Area Model

In general, the area equation must be of the form of Equation (6.1):

A = f(bd, fw, npo, npi) (6.1)

We identify as suitable the area model expressed in Equation (6.2):

A(fw, bd, np) = A1 · npo · fw · bd+
+A2 · npi · fw + A3 · npo · npi + A4 · fw · npo · npi

(6.2)

The rationale of this formula is that the area of the target switch can be
rendered as the sum of four contributions (Section 4.3.2 on page 100): (i)
output buffers, (ii) input buffers, (iii) arbitration and flow control logic, (iv)
crossbar. Each contribution strongly depends on a known combination of
architectural parameters:

• Output buffers, which are dominated by flip-flop area, can be sup-
posed to depend linearly on flit width fw and buffer depth bd
(×pipes switches are output-buffered), which respectively represent
the width and depth of the buffer (Figure 6.14 on the next page).
There are npo such buffers.
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Figure 6.14: Dependency of the output buffer area on fw, bd.

• Input buffers are similar to the case above, but since they have a
constant depth, they do not depend on bd. Obviously npi is used in
place of npo.

• Since a distributed arbitration technique is used in the target switch,
one arbiter is instantiated at each output port. Each arbiter has a
complexity proportional to the number of candidate input ports npi,
therefore the overall contribution is the product of the input and out-
put cardinalities. The arbiter logic is clearly independent of datapath
parameters such as flit width and buffer depth.

• The area overhead due to the crossbar must have a linear depen-
dency on flit width, must be independent of the buffering resources
and must have a linear dependency on the product of input and out-
put cardinalities.

Power Model

The power consumption of a module depends on the switching activity of
the cells, so, to express the power consumption of a NoC switch, a term
that accounts for traffic conditions must be present. The most general way
to model the power consumption thus becomes:

P = f(bd, fw, npo, npi, T ) (6.3)

with T being a generic variable that summarizes the traffic conditions.
Since sequential components exhibit a power consumption even if they are
not performing computation, due to the clock switching, a static (traffic-
independent) term must appear. After analyzing the possible traffic flows
in the ×pipes router, we propose Equation (6.4) on the following page as a
general power model:
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P (bd, fw, npo, npi, T ) = PA(...)+
+

∑npo

j=1[PB(...) · TOj]+
+

∑npo

j=1[PC(...) · TOCj]+
+

∑npi

j=1[PD(...) · TICj]

(6.4)

where the dots express dependencies on bd, fw, npo, npi which will be
analyzed in more depth in the following. The first term models the power
dissipated by inactive, but still clocked, registers. The remaining terms
depend on traffic conditions. An accurate representation of the traffic con-
ditions requires a separate analysis of the state of each input and output
port. Therefore, we define npo traffic variables TOj and TOCj , to model the
lack or presence of external congestion, and npi traffic variables TICj , to
model internal contention for resources. More specifically, we define:

• TOj : Percentage of time during which the output port j is success-
fully transmitting flits. This coefficient models traffic in absence of
congestion.

• TOCj : Percentage of time during which the output port j is trying
to transmit, but flits are rejected. This coefficient models external
congestion due to traffic spikes.

• TICj : Percentage of time during which the input port j of the switch
is trying to transmit flits through one of the output ports, but ar-
bitration is denied by the switch logic. This coefficient models the
contention for the same output port inside of the switch.

This set of traffic percentages is linearly independent, since the com-
plex arbitration and flow control patterns within a NoC switch make it
very easy for some of these time windows to overlap. Please consider the
following:

Example 5 A 4x2 switch (see Figure 6.15 on the next page) may feature one
established input-to-output connection where traffic is freely flowing (which is
expressed by the condition TO1), another established input-to-output connection
which is stuck due to congestion in the downstream switch (modeled within
TOC2), while the third input port is unsuccessfully trying to transmit to one of the
two output ports, which in this example are already busy (TIC3), and the fourth is
simply idle (this contribution is therefore included in the coefficient PA).
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Figure 6.15: Example traffic in a 4x2 switch.

The coefficients PA, PB , PC , PD depend on architectural parameters, as
for the area model. They account for the power consumption in the traffic
states described above, as follows:

• PA accounts for the static power dissipated by the switch and it is due
to the non-combinational logic in the design. Therefore, it simply
depends linearly on the number of flip-flops in the design, which
are:

– input buffers

– output buffers

– state registers in the control logic

whose dependencies on architectural parameters are summarized in
Table 6.4.

Contribution Dep. on Dep. on Dep. on Dep. on
fw bd npi npo

output buffering linear linear none linear
input buffering linear none linear none
spare registers none none linear linear

Table 6.4: Dependency on architectural parameters of the static power co-
efficient PA.

• PB accounts for the dynamic power dissipated by flowing packet
streams, due to the enabled registers and to the switching activity
of combinational logic. We identify four contributions to the power
dissipation:
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– output buffers. In these buffers, during every cycle, one of the
flit registers (fw bits wide) samples a new piece of data; a bd× 1
multiplexer then brings a flit to the output port. Therefore, this
contribution is itself the sum of two terms.

– input buffers

– control logic

– selected crossbar branch

The dependencies of these contributions on the architectural param-
eters are summarized in Table 6.5.

Contribution Dep. on Dep. on Dep. on Dep. on
fw bd npi npo

output buffer (reg.) linear none none none
output buffer (mux) linear linear none none

input buffer linear none none none
control logic none none linear none

crossbar branch linear none linear none

Table 6.5: Dependency on architectural parameters of the dynamic power
coefficients PB , PC .

• PC accounts for the dynamic power dissipated by the switch under a
scenario where downstream congestion is preventing a free flow of
packets. Although numerically different, the PC coefficient is similar
to PB , in that it still involves an established input-to-output channel,
and therefore its dependency on architectural parameters is the same
(see Table 6.5).

• PD accounts for the power dissipated by the switch when an incom-
ing stream requires the access to an output port, but the arbitration is
denied. The contributions to this portion of the power consumption
are related to the following logic blocks:

– input buffers

– control logic

We can summarize the dependencies on this contributions as shown
in Table 6.6 on the next page.
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Contribution Dep. on Dep. on Dep. on Dep. on
fw bd npi npo

input buffer linear none none none
control logic none none linear linear

Table 6.6: Dependency on architectural parameters of the dynamic power
coefficient PD

Model Dep. on Dep. on Dep. on Dep. on
Coefficient fw bd npi npo

PA linear linear linear linear
PB linear linear linear none
PC linear linear linear none
PD linear none linear linear

Table 6.7: Dependency of power coefficients on architectural parameters.

The dependencies of the power coefficients are thus summarized in
Table 6.7.

We would like to stress that some coefficients, which could be intu-
itively expected to quadratically depend on parameters, are instead lin-
early dependent, because they characterize a single input or output port.
The quadratic behaviour is indirectly restored by the summation symbols
in Equation (6.4) on page 178.

6.4.4 Choice of a Relevant Training Set

To characterize the coefficients of our area and power models, we define
a training set, composed of switch configurations chosen in such a way as
to uniformly cover the relevant design space for the particular NoC under
study. In the case of the ×pipes NoC, which is focused on the highest
customizability of topologies, we choose to study a design space spanning
over a large variety of cardinalities (npi and npo of 4, 10, 16 and 20). Since
×pipes is also focused on the best performance/overhead tradeoff point,
and therefore on low hardware cost, we consider moderate buffer depths
bd of 5 and 7 FIFO locations and flit widths fw of 21, 28 and 38 bits.

In the modeling approach called Full Factorial Design, all the possible
permutations of the values of the independent design parameters should
be studied to create the training set. This is often impractical due to the
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quick rise in the number of instances as soon as new design knobs are
added, leading to approaches to select only a subspace of the character-
ization set (Fractional Factorial Design [226]). In our case, based on the
knowledge of the target architecture, we choose a very simple way of
pruning the training set. The rationale is based on the observation that
rectangular switches add a smaller amount of information to the training
set; for example, when studying the power consumption, a rectangular
switch is by design unable to simultaneously feature traffic flows on all of
its input and output ports (see Figure 6.15 on page 179), and is therefore
behaving similarly to a square switch of smaller cardinality. Our prelim-
inary internal testing confirms this property, at least for the ×pipes NoC.
Therefore, we simply choose to coalesce the npi and npo axes for the gen-
eration of the training set, and only include 4x4, 10x10, 16x16 and 20x20
instances.

We finally permutate all the possible parameter values, resulting in 24
(4 cardinalities times 2 buffer depths times 3 flit widths) configurations
being synthesized.

6.4.5 Fitting Model Coefficients

Fitting Area Model Coefficients

To estimate A1, A2, A3, A4, we propose two different methods:

• Methodology 1: Coefficients can be derived directly from synthe-
sis reports, which hierarchically list every switch sub-block. For
example, once the area cost of an output buffer which is bd0 flits
deep and fw0 bits wide is gathered from one report, it can be called
Aobuf |bd0,fw0

. Since A1 is expected to increase linearly with both bd
and fw, it can be approximately derived as in Equation (6.5):

A1 =
Aobuf |bd0,fw0

bd0 · fw0

(6.5)

Other coefficients can be similarly computed.

Advantages: With this methodology, each contribution in the for-
mula keeps a strict physical meaning. Only one synthesis run is
needed to extrapolate coefficients for any switch instance; we arbi-
trarily choose a 10x10, 28-bit switch as a reference. This instance is
close to the center of the design space of interest (see the previous
paragraphs); its choice will be further discussed in Section 6.4.6 on
page 184.
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Disadvantages: This simplified approximation discards any constant
offset that may be present in the coefficients. Further, the nature of
synthesis tools introduces unpredictable fluctuations in the netlist
area and power trends under different architectural configurations.
This noise does not have any easily characterizable property. Thus,
the model incurs a non-negligible error when compared against ac-
tual switch instances. Moreover, the choice of the specific switch
instance for characterization might skew the computed coefficient
values.

• Methodology 2: Coefficients can be derived by leveraging the mul-
tivariate non-linear regression algorithms natively provided by sev-
eral mathematical and statistical packages. In this case, the input
is a set of characterization syntheses (the training set described in
the previous Subsection). The target polynomial for the regression is
chosen based on insight of the dependency of area on the architec-
tural design parameters (see Equation (6.2) on page 176).

Advantages: The model fits actual synthesis results better.

Disadvantages: Longer characterization time; with a thorough char-
acterization set like that chosen in Section 6.4.4 on page 181, exper-
iments must be performed in 24 device instances, against just one.
The actual improvement in accuracy depends on the smoothness of
the native behaviour of the synthesis tools. Some coefficients may
lose their physical meaning (e.g., they may become negative).

Both methodologies can be readily adapted to any parameterizable
NoC architecture.

Fitting Power Model Coefficients

To characterize the PA, PB , PC , PD coefficients, we first inject traffic into
the switch netlists under test, one at a time. This is achieved by Model-
Sim [227] simulation of the Verilog netlists (please refer to Figure 6.12 on
page 173), to which traffic generators are attached. The traffic generators
are configured to inject into the switch one of the four patterns described
above (idle, free flow, downstream congestion, internal contention) at a
time. The switching activity is logged and fed as an input to Synopsys
PrimePower [224], which provides a hierarchical report of the power con-
sumption of the switch sub-blocks. For each netlist of the training set, four
hierarchical reports are therefore generated.
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At this point, the power model coefficients are determined by using
either of the techniques just outlined for the area models. The PA, PB ,
PC , PD scenarios are separately accounted for; the fitting polynomials are
directly derived from Table 6.7 on page 181. For each of them, either by
direct derivation or by non-linear regression, we extract the coefficients
modeling the dependency on architectural parameters.

6.4.6 Experimental Results

We run the proposed characterization and modeling flow on a 130nm tech-
nology library. Therefore, we leverage Synopsys Design Compiler [223] as
a logic synthesis tool.

To evaluate the accuracy of the proposed techniques, we first randomly
choose a test set of 70 switch configurations spread across the design space
of interest (both in terms of architectural parameters and target synthesis
frequencies), and not overlapping with the training set previously used
for characterization. Each switch is synthesized with Design Compiler to
extract its area requirements, then stimulated with traffic streams within
ModelSim and studied in PrimePower to evaluate its power consump-
tion (Figure 6.12 on page 173). A reference set of experimental results is
therefore collected. The area and power consumption of the same set of
switches is then estimated according to our methodology, and the statisti-
cal distribution of the resulting error is plotted to study the behaviour of
both coefficient fitting strategies.

Netlists can be generated in a relatively short time by logic synthesis,
but they do not include any information about the placement of the cells,
and thus do not give any information about the length of the wires needed
for the interconnections. This key missing piece of information is approx-
imated by inaccurate wireload models (Section 6.2.1 on page 147). On the
other hand, creating the layout of a complex circuit provides more accu-
rate estimations of its area and power cost, but this extra step is at least as
time-consuming as the initial logic synthesis. Therefore, designers would
clearly like to avoid performing this extra phase repeatedly during a mod-
eling activity, if at all possible.

To assess the usefulness of our models, we investigate their inference
and their application to both netlists and layouts. This can be seen in Fig-
ure 6.12 on page 173, where the placement and routing step is optional.
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Experiments with Netlist-Based Models and a Netlist-Level Test Set

In this section, we generate our models starting from synthesized (but not
placed and routed) switch instances, and check their accuracy against a
test set which is also at the netlist level. The results are depicted in Fig-
ure 6.16 on page 187, where the vertical axis reports the number of oc-
currences of inaccuracies comprised in the ranges listed on the horizontal
axis. As can be seen, in around 80% of the cases, our models result in an
error margin smaller then 10% of the actual value. Sporadically, relatively
high error rates of up to 20% are detected; however, as can be seen for
example in Figure 6.17 on page 188, the distribution of the errors is quite
randomly spread over the design space, and comprises both under- and
overestimations. The figure reports modeling inaccuracy for a subspace
having as axes the flit width and the switch cardinality; these numbers are
thus only a subset of the whole test set. Similar plots can be derived for
varying buffer depths and target synthesis frequencies, and we omit them
due to space constraints. Therefore, we can attribute inaccuracies to the
unpredictability which is intrinsic in the behaviour of synthesis tools, and
not to a problem of our modeling approach.

Comparing the results of the two techniques for coefficient fitting pre-
sented in Section 6.4.5 on page 182, we see that the tails of the inaccuracy
distributions drop more sharply for Methodology 2, indicating a lower
chance of large modeling errors. However, Methodology 1 exhibits just
marginally worse average inaccuracy rates: 6.26% against 5.30% for power
models and 5.97% against 5.45% for area models. In terms of characteriza-
tion effort, in our experience, we can roughly assume that one hour may be
needed in average for the analysis of an instance of the training set; there-
fore, Methodology 1 requires one hour of runtime, while Methodology 2
needs 24 hours to provide numerical values of coefficients (the actual time
depends on how thoroughly the design space is covered). Due to the dras-
tically lower effort, Methodology 1 becomes a natural candidate for fast
yet accurate modeling. However, this approach leverages upon a single
switch instance to characterize all the coefficients. The choice of the refer-
ence switch configuration is therefore key, and may impact the robustness
of the flow. Internal testing, that we omit due to space constraints, shows
that coefficients are quite accurately rendered under a wide range of pos-
sible choices of the reference switch. However, when manually picking
an “outlier” instance as the reference, errors over the whole design space
turn out to be large. As a possible workaround, Methodology 1 could be
applied to multiple switch instances to minimize the chance of choosing
bad references; outliers could be effectively discarded. This hybrid ap-
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proach provides better reliability, but requires a modeling effort which is
progressively closer to that of Methodology 2 as its robustness is increased.
Methodology 2 remains the most accurate and reliable, and its character-
ization time can still be assumed to be fully acceptable for both academic
and industrial environments.

Test Case: a Complete NoC Topology

To further validate the most complex part of our methodology, i.e. the
power modeling, we study a whole NoC topology, such as a 5x3 mesh.
The mesh includes switches with three different cardinalities of 4x4, 5x5
and 6x6. We then inject functional traffic, namely that required to drive a
multimedia application, in the topology, and compare the resulting power
consumption against that predicted by our model (characterized with
Methodology 2). Traffic patterns in the mesh are irregular, due to applica-
tion needs, causing the switches to spend variable amounts of time in each
possible state. The results are plotted in Figure 6.18 on page 188. The av-
erage inaccuracy is 5%, with only two switches out of fifteen (about 13%)
exhibiting inaccuracies greater than 10%. Since the power consumption of
some switches is overestimated while that of others is underestimated, the
margin of error on the consumption of the whole mesh is as low as 1.3%.
This result confirms the usefulness of our modeling strategy for integra-
tion within a CAD mapping and design space exploration flow.

Experiments with Netlist-Based Models and a Layout-Level Test Set

We try to apply the previously mentioned models, which are based on
netlist-level analyses, to a layout-level test set, by placing and routing the
test set described above. This activity generates a very realistic test set,
and is a demanding metric for the accuracy of the models, since extra un-
predictable noise is added. The results we get are presented in Figure 6.19
on page 189, which should be compared to Figure 6.16(b) on the next page.
The two plots exhibit a comparable trend and errors of roughly the same
magnitude, even though the average modeling error for the layout-level
test set is about 3% higher. This means that models developed by only
taking netlists into account still show good accuracy even with respect to
layout-level power evaluation. The added noise also blurs the accuracy
difference between Methodology 1 and Methodology 2, both in maximum
error (26% vs. 23%) and average error (8.8% vs. 8.35%). While Methodol-
ogy 2 remains marginally more accurate, these results seem to suggest that
the unpredictability introduced by the logic synthesis process is somewhat
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(a) Area.

(b) Power.

Figure 6.16: Modeling inaccuracy (percentage deviation among predicted
and actual area/power values for the test set) under two different charac-
terization policies for the coefficients. Vertical axis represents the occur-
rence frequency of a given inaccuracy range. Models and test set are at the
netlist level.
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Figure 6.17: Distribution of the area modeling inaccuracy over a subset of
the design space for Methodology 2. Dark colour: underestimations; light
colour: overestimations.

Figure 6.18: Distribution of the power modeling inaccuracy for the
switches of a 5x3 NoC mesh.
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Figure 6.19: Modeling inaccuracy (percentage deviation among predicted
and actual values of power for the test set) under two different character-
ization policies for the coefficients. Vertical axis represents the occurrence
frequency of a given inaccuracy range. Models are at the netlist level, test
set is at the layout level.

unrelated to that introduced by the placement and routing phase. In other
words, even though Methodology 2, thanks to its interpolation of results,
can compensate for some of the non-idealities of the logic synthesis pro-
cess better than Methodology 1, this compensation is less effective when
trying to predict the power consumption after placement and routing.

Experiments with Layout-Based Models and a Layout-Level Test Set

In an attempt to check whether more accurate models can be built, we re-
compute the numerical coefficients starting from a layout-level version of
the training set and applying Methodology 2. This model is very close to
an ideal reference point, since it is derived from a regression on experimen-
tal results which already encompass most of the unpredictable elements of
the synthesis flow. However, the time required to build the model coeffi-
cients is noticeably longer. In our experience, both logic synthesis and
placement steps require a computation time which is not easy to predict,
as it largely depends on many factors, such as the switch cardinality and
the target operating frequency. However, as a rule of thumb, the two steps
are about equally time consuming; therefore, the modeling time is approx-
imately doubled.

The error distribution resulting from the usage of the layout-level test
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Figure 6.20: Modeling inaccuracy (percentage deviation among predicted
and actual values of power for the test set) with Methodology 2 character-
ization policy for the coefficients. Vertical axis represents the occurrence
frequency of a given inaccuracy range. Models and test set are at the lay-
out level.

set when validating the model coefficients achieved from a layout-level
training set is shown in Figure 6.20.

As can be noticed, and as expected, the average error and the maxi-
mum error values both noticeably decrease when compared to Figure 6.19
on the previous page. However, the decrease is not huge. We attribute
the remaining inaccuracies in Figure 6.20 to the intrinsic unpredictability
of the synthesis tools. Even after taking into account all the systematic be-
haviours in the synthesis flow, the trend is the result of residual instance-
to-instance variations due to heuristics in the CAD tools and to degrees of
freedom which can only vary in a discrete fashion.

The accuracy improvement guaranteed by a layout-level characteriza-
tion is associated to a doubling of the runtime overhead, and still does not
completely eliminate the presence of some “outlier” instances. The de-
signer may certainly choose to adopt our methodology to characterize de-
vices at the layout level for maximum accuracy. However, we feel that a re-
sult that can be derived from our experiments is that, at least at the 130nm
technology node, it is still feasible to use accurate netlist-based models in
order to save characterization time.
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Experiments with a Parabolic Model for the Dependency on the Target
Synthesis Frequency

We conclude our experiments by checking whether a linear model is ac-
curate enough to characterize the dependency of synthesis results on the
target synthesis frequency (see Figure 6.13 on page 175). We leverage a
parabolic model as a potentially more accurate approximation of the ac-
tual dependency of model coefficients on the target frequency, then re-
check the model accuracy on the test set. The results are reported in Ta-
ble 6.8.

Experiment Linear Parabolic
approx. approx.

Netlist training set, Average error 5.19% 6.32%
Netlist test set Maximum error 14.61% 15.27%

Netlist training set Average error 8.23% 6.57%
Layout test set Maximum error 22.88% 19.94%

Layout training set, Average error 5.04% 9.23%
Layout test set Maximum error 16.10% 22.23%

Table 6.8: Accuracy of the linear vs. parabolic models for the dependency
of synthesis results on the target synthesis frequency. Coefficients derived
with Methodology 2.

These results do not seem to indicate a strong bias towards any of the
alternatives. The linear approximation seems to cope much better with a
netlist-level or layout-level test set when the model is derived from experi-
ments on a training set at the same level, but the parabolic model is quite a
bit better at predicting layout-level results starting from netlist-level mod-
els. We attribute this behaviour to the impact of noise. In other words,
although synthesis results do clearly change depending on the target fre-
quency, the choice of a linear or parabolic model to describe this trend
does not matter much, since the non-idealities introduced by the synthesis
flow induce enough noise to blur the distinction. Overall, the usage of the
linear model, which is simpler, seems to be justified.

6.5
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Bringing NoCs to 65nm

In this section, we focus on results for the implementation of NoCs in state-
of-the-art technologies, such as 65nm libraries, and on some scaling exper-
iments when porting the same NoC from one technology to the other.

6.5.1 65nm Technology Libraries: Degrees of Freedom

Figure 6.21 on the next page shows how the power, speed and area of a
reference ×pipes NoC switch vary, when synthesized based on different
technology libraries. The experiment utilizes two 65nm and two 90nm
libraries, labeled LP-HVT and LP-LVT; while all of these libraries belong
to the LOW POWER (LP) family, the HIGH VT (HVT) variant strives for
absolute minimum consumption, while the LOW VT (LVT) variant offers a
more performance-oriented setup. The switches are fully placed&routed,
including the addition of a clock tree.

A first observation is that, as hoped, synthesis in 65nm technologies
indeed offers huge benefits compared to 90nm; both area and power ex-
perience savings around 50% among comparable libraries, while the fre-
quency of the 65nm design is higher (at least if the LP-LVT library variant
is chosen).

In addition, it is also relevant to observe that, considering for example
the power results, already in 90nm technology, there is a factor of six dif-
ference among the power consumption of the LP-LVT and LP-HVT imple-
mentations; in 65nm, this gap increases to 11×. Similarly for frequency, a
gap of 3× in 90nm becomes a gap of 6× in 65nm. Therefore, when design-
ing for next-generation technologies, it is in fact impossible to identify a
single technological target. In fact, a very large set of tradeoffs is available,
where, by several metrics, results can be up to one order of magnitude dif-
ferent from one another. It is then the designer’s responsibility to identify
the best set of technological choices in NoC synthesis for the given project.

6.5.2 Link Delay and Power

To assess the impact of global wires, we studied 65nm NoC links in iso-
lation from the NoC modules. An overview of the results is shown in
Figure 6.22 on page 195. Several factors have to be considered in link de-
sign, including obviously length and desired clock frequency. Short or
slow-clocked links do not pose problems. However, as either length or
target frequency are increased, an undesired rise of power consumption
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(a) Power comparison.

(b) Operating frequency comparison.

(c) Area comparison.

Figure 6.21: Analysis of two representative ×pipes switches in different
technology libraries. Figures normalized to the 4x4 switch in the LP-HVT
library.
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is also observed. The reason is that when links are pushed for high per-
formance, back-end tools automatically insert large amounts of buffering
gates, dramatically increasing the energy cost of the links. If link frequency
or length are pushed even further, the link becomes infeasible, either be-
cause of timing violations, or because of crosstalk concerns, i.e., the added
buffers would be too large to be deployed without affecting nearby wires.
This kind of tradeoff among link performance, feasibility and power con-
sumption is crucial to the NoC designer.

Another extremely important dependency we observe is on the specific
technology library used. As seen in Section 6.5.1 on page 192, especially
at the 65nm node, a single “technology library” is no longer realistic for
NoC designs based on standard cells. In fact, manufacturing technolo-
gies are spreading across a variety of processes optimized for specific uses
(e.g. low power or high performance), with several intermediate levels
featuring, for example, different threshold voltage values. In this case, if
very low power libraries are used, the size and speed of the buffers inter-
leaved along wires become dramatically inferior, which results in much
tighter constraints on frequency of operation or length. Figure 6.22(a) on
the facing page reports power consumption for the 65nm LP-LVT library,
while Figure 6.22(b) on the next page describes the LP-HVT variant. These
results show that NoC links implemented using the LP-HVT library are
substantially more power-effective, but puts much tighter constraints on
link feasibility. Hence, the availability of floorplan-aware and technology-
aware high-level design automation tools becomes key to pruning the
NoC-based design space and to identifying the best libraries for each de-
sign according to its particular constraints.

A way to tackle the timing violations on long NoC links, other than just
inserting electrical buffers, is link pipelining. Pipeline stages are clocked
registers interleaved along the links. By providing one or more extra clock
periods to traverse long distances, they solve the link infeasibility prob-
lem at a much lower cost than, e.g., by deploying whole NoC switches
in the middle of the links. In some cases, pipelining may even produce
more power-effective solutions than regular wire buffering along partic-
ularly critical links. However, it incurs a performance cost of one extra
cycle of latency. Another major drawback is that NoC flow control must
be extended to account for the fact that feedback signals are now coming
back after multiple clock cycles instead of in the same clock period. This
can be tackled by either deploying deeper buffers at the link endpoints,
and using plain registers as pipeline elements, or by pipelining the link
with flow control-aware elements, without touching the buffers and logic
at the endpoints. The latter approach proves better in our experience (Sec-
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(a) Performance/power oriented 65nm library (LP-LVT).
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(b) Very low-power 65nm library (LP-HVT).

Figure 6.22: Power consumption of 38-bit links of varying lengths at dif-
ferent operating frequencies. Values normalized to shortest link at slowest
frequency for confidentiality reasons. Missing columns represent infeasi-
ble length/frequency combinations.
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tion 4.4 on page 101). In all cases, since link pipelining affects both the
RTL description of the architecture and its latency, the need for higher-
level (but technology-aware) CAD tools able to pro-actively accounting
for them arises clearly, as discussed in Section 5.1.3 on page 120.

6.5.3 Wire Routability Issues in NoCs

All the issues (e.g., crosstalk) applying to global wires in NoCs also ap-
ply, to a smaller extent, to local wires. This means that local wires are
increasingly critical too in latest and forthcoming technology nodes. As
a result, in wire-intensive components, such as, NoC switches, which are
essentially crossbars, it becomes difficult to simultaneously achieve signal
integrity, timing closure, and routability (i.e., finding a wire layout in such
a way that design rules are respected). As tools automatically try to make
wires as straight and short as possible to improve timing, and insert spac-
ing among them to avoid crosstalk, a number of DESIGN RULE CHECK

(DRC) violations may occur, including overlapping/shorted wires. Rout-
ing tools automatically try to remove DRC violations, for example, by
means of SR iterations; the design is virtually split into sub-blocks, and
the tools begin trying to resolve routing violations one block at a time. If
many violations occur, it is unlikely that all will be automatically fixed
in the NoC synthesis flow, so designers have to resort to alternate ways,
including:

• Manual intervention on the layout, as in full custom design. Of
course this is extremely time-consuming and non-reusable, and is
normally only undertaken when the violations in the NoC design
are very few.

• Decreasing the row utilization, i.e., spreading the module out into
a larger area. Ideally this leaves more space for wire routing, but
since it may also affect the output of placement (possibly causing the
placement algorithm to diverge from timing closure, as discussed
above), this alternative must be experimentally explored in future
research. In any case, this approach implies at least an area cost.

• Decreasing the target frequency. Wires are allowed to take less
straight paths to their destinations without violating timing con-
straints, and crosstalk is less of an issue, allowing for tighter wire
packing. This strategy is very effective in removing DRC violations
in NoC synthesis, but its obvious cost is lower performance.
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HVT MVT MVT LVT

Frequency goal Max 300 MHz Max Max
Clock gating Enabled Enabled Enabled Disabled

Frequency (MHz) 142 300 714 952
Bandwidth (GB/s) 27 57 137 183
Power (mW) 11 25 88 145
Power/bandwidth (mJ/GB) 0.41 0.44 0.64 0.79

Table 6.9: Post-routing performance/power comparison of meshes in dif-
ferent variants of a 65nm technology library.

• Hierarchical floorplanning. This approach tries to better direct the al-
gorithms of the routing tool, by allowing for pre-optimizations and
by splitting the problem complexity. Our experience shows that its
effectiveness in NoC synthesis depends on the specific module at
hand, and must be weighted against the extra design effort at the
tool scripting level (usually considerable). Furthermore, hierarchical
floorplanning prevents several optimizations that tools can perform
on flattened designs. Thus, in the case of NoC switches, this strategy
seems to be of limited use in our experience. In fact, if the designer
has to manually position even the sub-blocks of switches, just de-
ploying more, smaller switches would require much less effort.

6.5.4 Design Space in 65nm Technology

As already mentioned, at the 65nm node, multiple libraries are avail-
able, optimized for performance or power, featuring different supply and
threshold voltage levels, etc.. To investigate this aspect, we implement the
same 4x4 mesh design (see Figure 6.23 on the following page) with differ-
ent library choices: LVT (fast), HVT (low-power), and MULTI VT (MVT).
The latter option is based on picking gates from multiple libraries at differ-
ent threshold voltages, and allows for an ideal mix: while gates in the crit-
ical path are chosen from the fastest library, the other gates are optimized
for power. For the MVT case, we study two configurations: in one of them
we aim for a high frequency in order to show the advantages compared to
the plain LVT library; in the other, we study a power/performance trade-
off. To make the experiment more accurate, we normally enable clock gat-
ing. Since clock gating implies a slight performance penalty, we make an
exception for the LVT scenario, where performance is of paramount im-
portance. We choose nominal operating conditions for all the instances.
Table 6.9 summarizes our findings.

As can be seen, there is almost an order of magnitude difference in the
power/performance ratios achievable by selecting LVT or HVT libraries.
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Figure 6.23: A 65nm 4x4 ×pipes mesh.

System architects should take this into account when choosing the ideal
NoC configuration. The MVT scenario proves to be a particularly attrac-
tive option, with performance approaching the LVT library (the difference
in the table is due to the addition of clock gating) at a better power con-
sumption. HVT proves to be the most effective in terms of power per
available bandwidth; the MVT design at 300 MHz does almost as well,
since it is very far from the maximum frequency point and therefore fea-
tures a large majority of HVT gates.

6.5.5 Tradeoffs in the Design of Large Switches

In Figure 6.24 on the facing page we show how area, frequency and power
scale when implementing ×pipes switches of increasing cardinality in a
65nm MVT 1.2V technology, with clock gating. The area metric is the size
of the whole box in which the switch logic is enclosed; cell area itself is
smaller, as discussed further down. We characterize power with two sim-
ulations on the post-routing netlist annotated with parasitics; the first sim-
ulation is in complete idleness, the second features worst-case traffic, with
all input ports injecting flits and the maximum number of bits switching
(each flit payload flipping all the bits of the previous one). We then sim-
ply average the two resulting power figures. While we believe this to be
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(a) Frequency. (b) Power.

(c) Macro Area. (d) Intra-block clock tree skew.

Figure 6.24: Physical-level metrics for switches of increasing cardinality.

a quite pessimistic metric, it is much more accurate than tool-generated
power estimates, since we inject real functional traffic, while tools just as-
sume a certain switching activity value. We typically observe a mismatch
of about a factor of two between our results and the tools’ automatically
generated outputs, with the latter being overly pessimistic.

As expected, area and power increase with the switch radix, while fre-
quency goes down dramatically. The first observation we can draw is that
placement-aware synthesis is working as expected; there are no significant
gaps among the timing predictions of Physical Compiler and the timing
actually reached by Astro after placement and routing (Figure 6.24(a)).

The most interesting result that we observe, however, concerns large
switches. The logic synthesis tools are now aware of placement, but not
yet of routing. Starting from 14x14, the wire density in the switch cross-
bars becomes just too high to simultaneously comply with timing objec-
tives, guarantee crosstalk freedom, and resolve DRC violations. Due to
the goal priorities we set in our scripts, we achieve the former two, but
get an increasing amount of the third, ranging from hundreds (14x14) to
tens of thousands (30x30). This number of DRC violations is clearly un-
acceptable for manual fixing, and must be tackled automatically. As dis-
cussed in Section 6.5.3 on page 196, two possible options for fixing are
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increasing the switch area or decreasing the switch frequency. The former
option proves only partially effective. Typical industrial rates are some-
where close to 85% utilization. The 85% goal can be reproduced without
issues in our tests until 10x10 cardinality; at this point, some widening
of the target fences proves necessary. For example, the 14x14 switch can
only be properly routed once its row utilization is tweaked to be close to
70%; the remaining “unused” space is in fact required to route resources.
However, in the 30x30 case, the violations are not fixed even with a final
row utilization of 50% (i.e. by leaving half of the switch floorplan unfilled).
This result is clearly unacceptable due to its cost overhead.

The alternate option of trying to fix DRC issues by decreasing the
switch frequency returns somewhat better results, making 14x14 and
18x18 switches routable at a 25-30% frequency cost, but still fails on larger
switches. Similarly to the above results, even after more than halving the
frequency targets, 30x30 switches remain unroutable.

Even in cases where DRC violations can be fixed by some means, our
results suggest that avoiding too large switches may be the best option.
This is also due to system-level effects that would result from using large
centralized blocks, which are not immediately apparent from the plots
reported here. For example, the many cores connected to such a switch
would ideally need to be physically placed just around it, causing obvious
congestion in the floorplan. Alternatively, they could be spread around,
but then several long links would be needed to connect remote cores to the
switch. These links would require pipelining, as discussed above, bring-
ing further latency, area and power costs.

6.5.6 Clock Tree Insertion

The last plot in Figure 6.24 on the previous page reports the clock tree skew
inside of each of the switches under test. Our clock tree insertion policy,
for a whole topology, is as follows. First, we hierarchically synthesize and
place each sub-block. Second, we connect all the blocks together in a topol-
ogy. Third, the clock tree is inserted either globally, after system assembly,
or within each of the blocks, before assembly. Fourth, all remaining nets
are routed.

The two alternate clock tree insertion approaches have different trade-
offs. In the former, which theoretically guarantees the minimum possible
skew since all the design is visible at once, runtime is heavily affected. In
fact, we find this strategy to be almost unusable for large 65nm topologies,
due to the need for minimum skews over long distances; runtimes would
be of many hours and memory usage would be of several gigabytes. The
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Active switch Idle switch

Dynamic power 52.12 mW 9.46 mW
Leakage power 0.24 mW 0.23 mW
Relative leakage power 0.46% 2.42%

Table 6.10: Dynamic and leakage power in a 22x22 switch in active and
idle state.

latter approach, on the other hand, proves to be more efficient. By syn-
thesizing clock trees locally within each sub-block, the local skew can be
better controlled (Figure 6.24(d) on page 199); the absolute skew does not
increase significantly, while the clock period does, so that the relative clock
skew remains constant. When creating a complete topology, the clock trees
can then be joined to a single common root, compensating (if necessary)
for the different delay of each clock tree. The routing tools are easily able
to minimize the frequency loss brought by a skew of less than 10% to a
negligible drop.

6.5.7 Leakage Power

Leakage power is often mentioned as one of the major issues in deep sub-
micron design. Our experiences with a 65nm NoC switch tend to mitigate
this assumption, as shown by Table 6.10 for a representative MVT case at
1.2V supply voltage. According to our results, leakage represents as little
as 0.46% of the total power consumption when the circuit is active; in idle,
leakage remains roughly constant, and even though dynamic power de-
creases by a factor of five (only the clock tree is switching, and it is gated)
the leakage power is still below 3%.

However, our results may change under some different scenarios: (i)
non-nominal conditions (either high operating temperatures or lower-
than-expected transistor threshold voltage), (ii) ability to completely stall
the system clock, (iii) need for the use of LVT libraries due to demanding
performance requirements. A more thorough assessment of these trade-
offs is scheduled as future work.

6.5.8 Test Design: a Multimedia Benchmark

In this test study, we consider a 30-core multimedia benchmark [220], con-
sisting of 10 ARM7 processors with caches, 10 private memories (a sep-
arate memory for each processor), 5 custom traffic generators, 5 shared
memories and devices to support inter-processor communication. Using
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Figure 6.25: The 30-core multimedia benchmark with link pipeline stages
automatically placed by SunFloor.

SunFloor, we synthesize the most power-efficient topology for the applica-
tion, satisfying the application bandwidth and latency requirements. The
flit width of the NoC is set to 32 bits, and the target network operating
frequency is tuned by the tool to 230 MHz.

In this experiment, we use the 65nm MVT technology libraries, and
leverage area, timing and power consumption models of the switches,
NIs and links. The floorplan is automatically generated by SunFloor ac-
counting for the repeaters. The sizes of the processor/memory cores are
obtained as inputs to the tool flow, and are assumed to be 1mm × 1mm.
During the floorplanning process, the NIs are placed together with the
cores by using a combined bounding box for the two, as each core com-

March 13, 2008 Federico Angiolini 202



203 6.6: Conclusions

municates with its NI through point-to-point wires.
As the physical length of the NoC links can be obtained only after floor-

planning, the number and location of the pipeline stages needed along the
links cannot be determined beforehand, and must be assessed once the
floorplan is known. Pipeline registers are first mapped in the geometri-
cally ideal position, but if another component is already occupying that
area, the overlap is resolved by moving the register to the boundary of
the nearest core. The bounding boxes of the cores are surrounded by thin
gaps 30 µm wide; this space is utilized to place the pipeline flip-flops and
to have room to route the wires in the design. The resulting floorplan of
the design with pipeline flip-flops is presented in Figure 6.25 on the facing
page. Thanks to the accurate pre-characterization of the network compo-
nents and the fact that the physical design issues are taken into account
during the topology design phase itself, the final layout can be achieved
with little manual intervention. From our experiments, we find that build-
ing accurate models of the components and bridging the gap across the
different design phases are critical to achieving a working NoC design in
a reasonable time.

6.6

Conclusions

For NoCs to be successful, it is imperative to assess their performance at
the physical implementation level. Achievability of design closure, wire
predictability and routability, area cost and power budget are all key met-
rics that can only be assessed once a clear path to physical implementation
is laid.

As a contribution of this dissertation, we presented a complete back-
end flow and a thorough exploration of NoC physical properties. The
proposed flow is very rich, and in addition to spanning several levels of
abstraction (from RTL level to fully placed&routed layout ready for the
foundry), it includes several optimizations (such as clock gating) and facil-
ities for simulation, power characterization and validation of the resulting
NoC.

We performed a cross-benchmarking study, whereby we pitted ×pipes
NoC instances against hierarchical bus fabrics. The outcome, despite the
analysis being performed at the 130nm node and with a NoC library that
has been improved in the meanwhile, is very positive for NoCs. Shared
buses prove totally unable to cope with current- and next-generation
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workloads. Even compared to hierarchical buses, NoCs provide better
performance and are far easier to place&route. While they are worse in
power, they are actually on par in energy. Further, the scalability of NoCs
to future technologies and applications can only be better than that of
buses. This work shed light on some questions which were previously
unanswered or only partially answered. For example, the NoC handles
wiring so well that, at least in 130nm, most of its area and power over-
head is concentrated in buffers - which is contrary to expectations in some
previous literature. We leveraged this insight to suggest and implement
several power optimizations. We also showed that custom NoC topology
design, where a NoC is tailored to fit the target application, has noticeable
potential benefits. The improvements in power and area are in the 10%
range, and are visible even despite being masked by large system-level
overheads, such as the resources required by the clock tree and the cores
themselves.

We then leveraged the back-end flow to extract flexible, parametric
area and power models for NoC switches. The models are detailed enough
to guarantee excellent applicability within a NoC CAD flow for topology
mapping and/or design space exploration. The area and power models
for the ×pipes case study turn out to be very accurate within the limits
allowed by the non-idealities of synthesis tools; different tradeoffs among
characterization speed and accuracy are possible.

We proceeded to show how NoC performance and power scale to
forthcoming technology nodes, thoroughly studying the trends imposed
by deep submicron manufacturing processes in NoC designs. Some of our
salient results are:

• Designers should leverage the degrees of freedom supplied by the
large variety of available technology libraries;

• Synchronous design is still feasible at the 65nm node, even for dis-
tributed components such as NoCs, if the clock distribution infras-
tructure is properly designed;

• High-radix switches are feasible until maybe 10x10 or 14x14, after
which their overhead in area and frequency becomes too severe at
the 65nm node;

• Link pipelining allows for maximum flexibility in topology design
at a relatively low cost, and is becoming a necessity to comply with
timing and signal integrity constraints;
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• Leakage is not yet critical at the 65nm node as long as the device is
operating in normal conditions.

Many opportunities for future research are available. Among some of
the most interesting, we would like to mention the possibility of devel-
oping some NoC components in full custom design style, to optimize the
NoC efficiency; the possibility of studying asynchronous, mesochronous,
or GLOBALLY ASYNCHRONOUS LOCALLY SYNCHRONOUS (GALS) syn-
chronization for improved variability tolerance and power consump-
tion; the development of DYNAMIC VOLTAGE AND FREQUENCY SCALING

(DVFS) support and policies.
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CHAPTER 7

NoC Traffic Handling: Fault

Tolerance, Performance, Power

This chapter describes a strategy for packet routing across a NoC. This
technique provides the foundation for a number of positive outcomes,
such as the ability to better tolerate faults in the memory subsystem, to
perform load balancing (resulting in better performance), and to better
manage the power drain of the system.

7.1

Motivation and Key Challenges

As the geometries of transistors reach the physical limits of operation, one
of the main design challenges for MPSoCs will be to provide dynamic
(run-time) support against faults that can occur in the system. The vari-
ability in process technology, the issue of thermal hotspots and the effect of
various noise sources, such as power supply fluctuations, pose major chal-
lenges for the reliable operation of current and future MPSoCs [228, 141].
Failures may be temporary (for example if due to thermal effects) or
permanent. One of the most critical elements that affect the correct be-
havior of MPSoCs is the unreliable operation of on-chip memories [228],
where errors can flip the stored bits, possibly resulting in a complete sys-
tem failure. Current memories already include extensive mechanisms to
tolerate single-bit errors, e.g. error-correcting codes such as Hamming
codes [229, 148]. Memory cores with built-in self-test logic and spare stor-
age resources have also been developed [150, 151, 152]. However these
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mechanisms are expensive and the overhead in area, power and delay to
recover from multi-bit errors would be very high [228].

Hence, with the increasing uncertainty of device operation, an effec-
tive system-level support to memory fault tolerance will be mandatory to
ensure proper functionality at a reasonable cost. We propose a novel so-
lution to enable fault tolerant on-chip memory design at the system level
for multimedia applications, based on the NoC infrastructure. The main
idea is to transparently keep backup copies of critical data on a reliable
memory; upon a fault event, data can then be fetched from the backup
copy in hardware, without any software intervention. The use of a NoC
backbone enables an efficient design which is modular, scalable and ef-
ficient; in particular, for example, the flexibility and scalability of NoCs
allows for the addition of redundant cores in the same chip (e.g. backup
memories) without largely increasing the design complexity and without
performance penalties. Furthermore, a NoC makes it very easy to place
main and backup memories far away in the chip floorplan; this is a key
point to counter failures due to phenomena such as thermal hot-spots.
The fault tolerance of NoCs themselves has been tackled by several previ-
ous papers. For example, noise and coupling phenomena on the links are
faced in [153] and [49], where mechanisms for tolerating such interference
issues are thoroughly presented. Soft errors can happen, but can be fixed
by retransmission of corrupted packets; to this effect, error detection cir-
cuits can be coupled to schemes such as [154]. We assume these works as
complementary, and leverage upon them.

To understand how to cope with increasing physical-level unreliabil-
ity, the characteristics of the target MPSoC software applications need of
course to be studied in detail. Key drivers in this respect will be various
multimedia services, such as scalable video rendering, videogames, etc.
For large classes of these applications, many types of data corruptions can
be tolerated without perceivable service degradation (Section 7.1.1 on the
next page), while only some small parts of the memory storage (which in-
clude the code segments) are really critical enough to require additional
safeguards. At the software level, we thus characterize the application
memory footprint into two different types (critical and non-critical) and
focus on the first category.

As a major contribution, we address the design of a reliable integrated
memory subsystem for a NoC-based chip. The key idea is to automat-
ically keep backup copies of critical data on a reliable memory; upon a
fault event, data can be transparently fetched from the backup copy in
hardware, without any software intervention, but purely through the NoC
backbone. We handle intermittent and permanent memory faults in the
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main memory; upon any occurrence of them, the NoC is dynamically re-
configured to switch all critical transactions to the backup memory. For
transient failures, when the main memory recovers, the NoC switches
back to the default mode of operation. ×pipes natively enables the de-
coupling of the frequency of the NoC from those of the attached cores
(Section 4.3.1 on page 98), allowing for clocking backup memories at a
lower frequency, which improves their reliability and power consumption
without the need for any additional clock conversion logic. Since we pro-
pose to first split the application data traffic into logically distinct flows,
and subsequently to back up only the critical portion of data, which is ex-
pected to be comparatively small, our solution does not demand a large
overhead, and can even be used in association with existing techniques
for memory fault tolerance.

We will proceed to demonstrating the effectiveness with two real-life
application case studies, and explore the performance under varying ar-
chitectural configurations. The overhead to support the proposed ap-
proach is very small compared to non-fault tolerant systems, i.e. no neg-
ative performance impact and an area increase dominated by that of just
the backup storage itself.

While the motivating reason of this research is to increase the system
fault tolerance, the proposed technique, as will be shown (Section 7.4 on
page 224), can also be deployed to improve other properties of the system.
Namely, the data flow redirection we propose can be exploited to balance
traffic loads among a set of slaves, thus improving performance; it can also
be used to transparently divert traffic from one core to another, letting the
former be shut down to save power.

7.1.1 Case Study: MPEG4 Video Texture Coder

New multimedia applications cover a wide range of functionality (video
processing, video conferencing, games, etc.); one of their main com-
mon features is that they process large amounts of incoming data in a
streaming-based way (e.g. a continuous flow of frames). We can observe
that certain parts of these streams are essential to produce a correct output,
while others are not so critical and only partially affect the user-perceived
quality. In many multimedia applications, it is possible to distinguish crit-
ical from non-critical data because each type is stored in different data
structures within the applications. Let us briefly illustrate these charac-
teristics in the implementation of a real-life multimedia application that is
used as one of our case studies in Section 7.3 on page 217, i.e. an MPEG4
VIDEO TEXTURE CODER (VTC). VTC is the part of the MPEG4 standard
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Figure 7.1: Complete 2D wavelet decomposition in VTC for one image
encoded with DC and 3 AC levels.

that deals with still texture object decoding. It is a wavelet transform
coder, which can be seen as a set of filter-banks [230] sent in a stream of
packets. Each packet represents a portion of an image in different sub-
bands, i.e. at different resolutions. The first packet of the stream includes
the basic elements of the image, but at low resolution. This part is called
the DC sub-band of the wavelet. If the data that represents the DC sub-
band is lost, the image cannot be reconstructed. As typical of critical data
in streaming applications, it is very small in size (few kBytes for 800x640
images) and is stored in a dedicated variable and class within the VTC
code. The following packets of the stream are called AC or Spatial Levels
and contain additional details about the image. They have a much larger
size than the DC sub-band, but they only refine the image represented by
the DC sub-band. If data representing these levels is lost, the user still sees
an image, just at a lower resolution. Moreover, whenever a new frame
arrives, the previous (faulty) picture is to be updated with the newly re-
ceived information. Hence, any low resolution output only lasts a very
limited amount of time.

From this example, we can derive fault tolerance requirements for typ-
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ical multimedia applications. Only a small part of the data set is critical
to the quality of output as perceived by the user, while most of the data
to be processed is actually of little importance in this respect. Therefore, it
is essential to preserve correct copies only of the former structures, while
faults in the latter may be safely accepted.

7.1.2 Assumptions on Underlying System

For our reference system, we assume the availability of two classes of
memories: “error-detecting” and “reliable”. Error-detecting memories,
which can be commonly found today, are not capable of error correction
but are at least capable of detecting faults, for example by Cyclic Redun-
dancy Check (CRC) codes. We also postulate the availability of memories
with much higher reliability for backing up critical data. This assump-
tion is motivated by ad-hoc circuit level solutions and strengthened by
three design choices we enable for these memories: (i) small capacity, (ii)
lower-than-usual clock frequency (in the experiments in the following we
assume one half that of regular memories), (iii) during typical system op-
eration, smaller workload than regular memories. We assume the exis-
tence of main memories having error detection capability; normal SoC op-
eration leverages upon them, including storage of critical and non-critical
data. We add smaller spare backup memories, featuring higher reliability,
to hold shadow copies of critical data only. Each main memory requires
the existence of one such backup, although a single storage device can
hold backups for multiple main memories.

To identify the critical data set, we assume that the programmer de-
fines the set of variables to be backed up, and maps them to a specific
memory address range. This address range is then used to configure our
NoC, either at design time or at runtime during the boot of the system.
The accesses to this particular memory region are thereafter handled with
our proposed schemes, improving the fault tolerance of the MPSoC de-
sign. Application code is assumed to be a vital resource too. Therefore,
instructions are always treated in the same way as the critical data; in the
following, we will not mention this distinction for the sake of simplicity.
Note that the classification of data into critical and non-critical can also
be done using efficient compiler support. In this case, the user can mark
critical data using special macros and the compiler can map the data to
a specific address range. The size of the critical set will depend on the
application at hand, and is impossible to predict in general. We aim this
work at streaming applications, mostly in the multimedia field, for which
the amount of critical information can be safely assumed to be small in
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(a) Plain target NI architecture.

(b) Extended target NI architecture.

Figure 7.2: Target NI extensions to support traffic rerouting.

percentage. These applications do represent a significant slice of the em-
bedded device market.

7.1.3 Proposed Hardware Extensions

To implement our approach, we perform changes to the NoC building
blocks. The flexible packet-switching design of NoCs ensures that these
changes are transparent to the transport layer (switches and links), but NIs
need to be made aware of fault events. Two NIs exist natively in ×pipes
(Section 4.3.1 on page 98): initiator NI (attached to a system master, such
as a processor) and target NI (attached to a system slave, such as a mem-
ory). Both perform source routing by checking the target of the transaction
against a routing LookUp Table (LUT).

The changes to the target NI can be seen in Figure 7.2. The original
target NI is still plugged to backup memories, while the extended version
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is used for main memories. A plain target NI features a request channel,
where requests from system masters are conveyed, and a response chan-
nel, through which memory responses are packeted and pushed towards
the NoC. A third channel (redundancy channel) is now added to the ex-
tended target NI; this channel is an output, and re-injects some of the re-
quest packets back again into the NoC. By this arrangement, critical-data
accesses to the memory (i.e. within a predefined address range) can be for-
warded to the backup storage element. Not all packets are forwarded; dur-
ing normal operation, that is before a fault detection, only writes to critical
address regions follow this path. This ensures that the backup memory is
kept up to date with changes in critical data, but minimizes the network
traffic overhead and increases the reliability of the backup memory, which
faces a smaller workload. Since the backup memory only receives write
commands, it remains silent, i.e. it does not send packets onto the NoC.
This prevents conflicts such as two memories responding to the same pro-
cessor request. The resulting flow of packets is depicted in Figure 7.3(a) on
page 215. The forwarding behavior is controlled by a Dispatcher NI block,
which supervises input and output packet flows. An extra routing LUT
directs forwarded packets; the LUT normally consists of just a single en-
try, since there is only one backup memory per each main memory (furter
extensions could be possible, though).

The extended target NI also features an extra interrupt interface by the
memory side. Whenever a fault is detected, the memory can issue an inter-
rupt. This triggers a reaction by the dispatcher, which responds by begin-
ning to also forward critical read packets to the backup memory according
to the extra routing table entry. In this way, reads that would fail due to
data corruption are instead transparently forwarded to the backup mem-
ory and safely handled (see Section 7.2 on the following page for more
details). Critical writes continue to be forwarded as before.

The initiator NI is also extended. First, it checks all outgoing requests
for their target address. If the address falls in the specific range provided
by the application designer as storage of critical data, then a flag bit is set in
the packet header. This allows the dispatcher in the extended target NI to
very easily decide whether to forward packets or not. A second change in
this NI involves an extra entry in its routing LUT, and a very small amount
of extra logic that checks the SourceID field in the header of response
packets. The initiator NI can thus detect whether a read request it sent
got a response from the intended slave or from a different one. As we
will show, in our approach, upon a fault, critical reads receive responses
from the backup memory instead of the main one. Therefore, noticing a
mismatch is an indirect indicator of whether there was a fault in the main
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memory. This can trigger different actions depending on the type of error
that needs to be handled, as described in Section 7.2.

7.2

Run-Time Fault Tolerant NoC-Based Schemes

Two types of errors can occur in on-chip memories of MPSoC designs,
namely, transient or permanent. We assume that the system is able to rec-
ognize transient errors by detecting some known combination of param-
eters, either upon the error event itself or even before any error appears.
For example, a thermal sensor detecting that a threshold overheating tem-
perature has been surpassed may signal a “transient error” condition be-
fore any real fault is observed. The “transient error” condition would be
deasserted once the temperature returns to acceptable levels. The same
prevention or detection principle could be applied to other electrical or
functional parameters that may indicate that a critical point of operation
is being approached. In highly fault tolerant systems, the main memory is
itself equipped with error correction (not only detection) logic; any inter-
nal correction event could then be pessimistically assumed as a hint of an
imminent failure. This hypothesis could be reversed after a configurable
period of time, once the isolated correction event can be safely assumed to
be an occasional glitch, or maybe after a (self-)testing routine. Any known-
critical or unexpected events should however be treated by the system as
permanent faults, and accordingly handled.

In the following subsections we describe how the proposed extensions
can be used to design schemes capable of handling both transient and per-
manent failures. In both cases, the backup memories do not contain any
data upon boot, but are kept synchronized with the main memory at run-
time.

7.2.1 Permanent Error Recovery Support

As soon as a permanent error is identified, the recovery process begins.
First, critical-region operations continue to be issued by the processors
to the main memory as normal (see Section 7.1.3 on page 212), but the
extended target NI starts diverting both read and write requests to the
backup memory. Therefore, the backup memory, which had been silent,
begins to generate responses as a reaction to the read requests, while the
main memory becomes silent for accesses into the critical address range.
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(a) Normal operation with backup. (b) First phase of recovery for permanent
and transient failures: read transaction
handling upon fault occurrence.

(c) Final operation mode after recovery
from permanent failure.

(d) Operation mode while a transient
failure is pending.

Figure 7.3: Handling of packet flows in the system.
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The SourceID field of request packets is kept unchanged, so that the
backup memory automatically sends its reply to the system master that
had originally asked for it without any lookup conversion. Figure 7.3(b)
on the previous page shows the handling mechanism of critical reads upon
a fault.

Since going through the main memory and then the backup memory to
fetch data is time consuming, the second phase of our recovery process for
permanent faults tries to minimize the performance impact of this three-
way handling of critical reads. The extended initiator NI (Section 7.1.3 on
page 212) is able to identify whether the source of read responses is the
main or the backup memory. The first critical read after the fault occur-
rence triggers a mismatch detection, which in turn forces the initiator NI
to access a different entry within its routing lookup table. Hence, all fol-
lowing memory reads within the critical address range are directly sent
to the backup memory after the fault. This clearly improves latencies for
the remaining operations. The resulting flow of packets is shown in Fig-
ure 7.3(c) on the previous page.

The approach does not introduce any data coherency issue. During
normal operation, the forwarding of write transactions guarantees that
critical data is always consistent among the main and backup memories.
Writes are forwarded just before hitting the main memory bank, not after
having been performed; in this way, a faulty main memory has no chance
of polluting the backup copy of the data. The contents of the backup
memory are updated after a slight delay, but this causes no issue as the
sequence of packets is strictly maintained. Upon a fault occurrence, trans-
actions are initially directed to the main memory, and only afterwards,
when needed, are routed to the backup device; this arrangement avoids
skipping transactions and guarantees that all pending transactions (reads
and/or writes) are completed on the correct copy of the data. Therefore,
proper functionality is strictly maintained when introducing the extra stor-
age bank.

Similarly, when adding the backup memory to the NoC, deadlock is-
sues do not arise given a proper design of the NoC routing scheme. In this
respect, the NoC designer must accommodate for one extra IP core and
some extra routing paths during the deadlock-free NoC mapping stage.
We provide a streamlined way of handling the issue by integrating the
discussed reliability enhancements within the SunFloor flow Chapter 5 on
page 115.
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7.2.2 Intermittent Error Recovery Support

In the case of transient errors (e.g. due to overheating detection), the first
phase of the recovery process is as seen above; critical-region read trans-
actions are automatically forwarded to the backup memory, which auto-
matically responds to the initiator. However, the second phase differs due
to the nature of transient failures, where the main memory is supposed
to recover complete functionality at a certain moment in time. All traffic,
including the critical one, continues to be sent from the processor to the
main memory. The extended target NI, being aware that a fault condition
is pending, diverts all critical reads towards the backup memory, but lets
critical writes be performed towards both the main and backup locations.
When the main memory detects that it is able to return to normal oper-
ation (e.g. after a temperature decrease), it is allowed to issue a different
interrupt to indicate so. The extended target NI then resumes normal op-
eration.

The main assumption is that updates to the critical data set in main
memory can be successfully performed even during the “transient fault”
state. This might be allowed, e.g. by choosing conservative temperature
thresholds to assert the fault warning. If this solution is not acceptable and
the designer does not want to consider the fault permanent, we assume
that a higher-level protocol will transfer the safe backup copies of critical
data back to the main memory after its return to full functionality.

7.3

Experimental Results

To assess the validity of our approach, we employ two different bench-
marks from the multimedia domain. The first one is the MPEG4 VTC
application already described in Section 7.1.1 on page 209. As a second
test, we use one of the sub-algorithms of a 3-DIMENSIONAL IMAGE RE-
CONSTRUCTION (3DR) algorithm [231] (see [232] for the full code of the
algorithm, 1.75 million lines of C++ code), where the relative displacement
between every two frames is used to reconstruct the third dimension. Sim-
ilarly to the VTC benchmark, the amount of critical data that stores control
information about the matching process (e.g. 160 kB for images of 640x480
pixels) is much smaller than the overall input data per each 2-frame match-
ing process (2 MB at the same resolution), and is stored in two data struc-
tures which are easily identifiable by the application designer.
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(a) Crossbar. (b) Star.

(c) Mesh.

Figure 7.4: The three topologies under test.

In our experiments, we run the 3DR and the VTC benchmarks on top of
three reliability-enhanced topologies, as shown in Figure 7.4. Both bench-
marks are implemented using 10 processing cores and a single main mem-
ory. The first topology is a NoC crossbar, the second is a star, and the third
is a mesh. The topologies and benchmarks are chosen to illustrate different
situations of performance penalty for adding reliability support, since the
applications demand different features. In fact, 3DR tends to saturate the
main memory bandwidth, while VTC is less demanding. The NoC is sim-
ulated with a cycle-true simulation environment (Section 3.2 on page 49).
We clock the NoCs at 900 MHz (a realistic value, as seen in Chapter 6 on
page 145), twice the frequency of the cores and memories.
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7.3.1 Performance Studies

We run the benchmarks in five different setups. The first two are reference
baselines, the remaining ones represent our proposed scheme.

• Reference-Unreliable: our reference run is a system without reliability
support at all, where accesses are to a fast (450 MHz) main memory.
No faults are injected.

• Reference-Robust: we model the same system with a reliable main
memory running at a lower frequency, therefore minimizing error
occurrences [145] and accounting for the overhead of extra circuitry.
System performance is obviously impacted, but robust operation can
be assumed.

• Proposed-Replication: we create a system with a fast main memory
and deploy a slow backup memory, but we do not yet inject any fault
in the system. As a result, the overhead for the backup of critical
data can be observed. We assume the backup memory to be clocked
at half the clock speed of regular memories, for the same reasons
outlined in the previous setup.

• Proposed-Permanent: we create a system with a fast main memory and
deploy a slow backup memory, then inject a permanent fault right at
the beginning of the simulation. This enables the evaluation of the
impact of accessing the backup copy of critical data.

• Proposed-Transient: we create a system with a fast main memory and
deploy a slow backup memory, then inject a transient fault right at
the beginning of the simulation, and never recover from it. This anal-
ysis helps to understand what happens to system performance dur-
ing the period where the main memory is accessed first, but critical
traffic needs to be rerouted to the backup memory.

Figure 7.5 on page 221 reports performance, measured in completed
transactions per second, for our test setups. The system throughput of
most of the scenarios is close, with Reference-Robust being much worse
than average and Proposed-Permanent performing much better, at least in
the 3DR case, than even Reference-Unreliable. We explain these major ef-
fects by observing that both benchmarks, like most multimedia applica-
tions, place heavy demands in terms of memory bandwidth; this is a log-
ical consequence of parallel computing on a 10-core system. In Reference-
Robust the available memory bandwidth is decreased to provide more re-
liability, which causes performance to worsen dramatically: throughput
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drops by about 24% in VTC and by as much as 43% in 3DR, which is even
more demanding. For the same reasons, the Proposed-Permanent scenario,
where critical data is stored in a separate device, actually guarantees a per-
formance boost related to load balancing among the two memories; the
boost is up to 40% for 3DR. Under less demanding applications, we expect
both scenarios to perform more similarly to the baseline. The Proposed-
Replication scenario exhibits a minimal penalty compared to the unreliable
case, since the traffic overhead is well handled by the NoC. VTC rarely
accesses critical regions, so no penalty is noticeable; in 3DR the through-
put decreases 1% to 9%. Finally, the Proposed-Transient case exhibits a per-
formance level close to Reference-Unreliable, because non-critical traffic be-
haves exactly as in the base scenario, but several effects related to critical
traffic have to be accounted for. On the one side, critical traffic creates
NoC congestion and incurs a latency overhead. On the other hand, the
main memory does not have to process critical reads, therefore the non-
critical transactions can be executed with less delay. In VTC, the overall
balance is roughly even. In 3DR, where a larger amount of critical reads
(e.g. instruction cache refills) takes place, the main memory benefits from
large latency gains.

Experimental results show that, in order to improve system reliability,
deploying a single highly fault tolerant main memory (Reference-Robust)
may not be a wise choice in terms of performance within complex multi-
media systems. In our proposed architecture, the main memory is left run-
ning at a high frequency, and a slower secondary memory bank is added.
This choice incurs minor throughput overheads both during normal op-
eration and after fault occurrences. These results justify the feasibility of
deploying our architecture even in throughput-constrained environments.

The gains we outline for the Proposed-Permanent scenario suggest that
always mapping critical information to a separate reliable memory, with-
out inter-memory transactions, may be a simpler yet efficient approach,
due to load balancing. However, such a choice does not improve reliabil-
ity as much as our backup mechanism. First, having two copies of critical
data is certainly more reliable than having a single one. Second, using the
main memory as the default resource permits a lower workload for the
backup memory during normal operation (only write transactions need to
be processed), which further increases its reliability. Since the focus of this
work is high fault tolerance, we feel that a redundant data mapping is jus-
tified, and our aim is simply to verify that performance is not seriously im-
pacted as a result. Performance optimizations through reduction of local
congestion can always be achieved by the system designer by tuning the
memory hierarchy, which includes deploying multiple storage elements;
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(a) VTC benchmark on crossbar. (b) VTC benchmark on star.

(c) VTC benchmark on mesh. (d) 3DR benchmark on crossbar.

(e) 3DR benchmark on crossbar. (f) 3DR benchmark on crossbar.

Figure 7.5: Comparative performance cost of adding reliability support for
VTC and 3DR on crossbar, star and mesh topologies.
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these steps can be taken in combination with our proposed approach.

7.3.2 Architectural Exploration of NoC Features

We extend our analysis to different NoC-based hardware architectures us-
ing the same NoC backbone. We vary some parameters of our baseline
topologies. First, we modify the star topology of Figure 7.4(b) on page 218
by attaching the backup memory beyond a further dedicated switch. The
total distance from the central hub is therefore of two hops instead of one.
In this way we model backup memories further apart from main mem-
ories in the chip floorplan, which improves the tolerance to local over-
heating. Performance is unchanged under the Reference scenarios, where
the backup memory is never accessed. In Proposed scenarios, where the
backup storage is in fact accessed, throughput worsens by less than 0.3%.
This is because the latency to go through an extra hop in the NoC is very
small, provided there is limited congestion. If the latency to reach the
backup memory becomes too large, the topology designer may want to
add dedicated NoC links.

To test the dependency of performance on the buffer depth of the re-
dundancy channel, we try a sweep by setting this parameter within the
extended target NI from 3 to 6 stages. Our results indicate that, both in
VTC and 3DR, deep FIFOs only improve system performance by less than
2%, which indicates that large buffering is not mandatory in the extended
target NI.

To validate the effectiveness of the routing shortcut that is enabled in
the initiator NI after permanent faults, we measure the latency of two
different transactions on the star topology: (1) a critical read going from
the core to a faulty main memory, bouncing towards the backup mem-
ory, and from there to the processor again and (2) a read directly towards
the backup memory after the processor has updated its internal lookup ta-
bles. The minimum latency is cut from 78 to 68 (-13%) clock cycles, and the
average one goes down from 103 to 95 (-8%). This metric, while topology-
dependent, shows the advantage of updating the routing decisions of the
initiator upon permanent faults.

7.3.3 Effects of Varying Percentages of Critical Data

It is important to explore different reliability/performance tradeoffs ac-
cording to the amount of variables that are considered critical: the more
data needs to be backed up, the larger the safe backup memories need to
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(a) VTC. (b) 3DR.

Figure 7.6: Impact of adding reliability support on the star, with different
sizes of the critical data set.

be. Since backup memories are supposed to be reliable also thanks to be-
ing smaller, slower and relatively little accessed, the effect of having large
backups upon reliability is unclear. To shed some light onto the perfor-
mance side of the issue, we analyze the behavior under different rates of
possible critical vs. non-critical data in Figure 7.6. The star topology is
taken as an example. In the plots, the Reference-Unreliable bar can be as-
sumed to represent an ideal case where no data is critical. For the Proposed
cases we protect against faults two different memory area: the actual criti-
cal set of the benchmark (the same of the studies in Figure 7.5 on page 221,
labeled “critical set”), and as an extreme bound, the whole address space
(“all set”). The first interesting remark is that the Proposed-Replication per-
formance, i.e. the system throughput before any fault, but in presence
of the backup overhead, is only moderately impacted by the size of the
critical data set. In the worst case of 3DR, which is severely bandwidth-
limited, even backing up the whole address space incurs a penalty of just
18%. On the other hand, in case of a fault, the size of the protected mem-
ory space is a key performance parameter. While choosing a small criti-
cal set allows for very good throughput, extending the fault tolerance to
the whole main memory content incurs a large penalty. This is in agree-
ment with expectations; in both the Proposed-Permanent and the Proposed-
Transient cases, all traffic is ultimately redirected to the backup memory,
which is running at a lower frequency: therefore, throughput becomes
similar to the Reference-Robust baseline.

This bracket of results frames the applicability of our approach. If the
critical set of the application can be kept small, throughput penalties are
minimal and advantages are clear. Otherwise, performance degrades up
to a worst case equivalent to a system with a single reliable memory.
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7.3.4 Synthesis Results

Regarding the modifications in the NoC to support a backup memory, four
changes are needed: (i) the NI associated to the main memory must be
augmented, (ii) the backup memory needs an extra (plain) target NI de-
vice, (iii) the initiator NI becomes a bit more complex, (iv) extra links and
switch ports may be needed for routing data to the backup memory.

To assess the silicon cost of the proposed extensions, we synthesize the
original and extended NIs with a 130nm UMC technology library. Initiator
NIs experience no operating frequency penalty to support the extra func-
tionality, while area increases by about 7% (0.031 mm2 against 0.029 mm2).
We also study extended target NIs, having 4-slot buffers in the response
channel and 3- to 9-slot buffers in the extra redundancy channel. The im-
pact on maximum achievable frequency is just of 2% to 6%, negligible in
a NoC where the clock frequency is limited by the switches (Chapter 6
on page 145). By adopting a 4-slot buffer identical to that of the response
channel, area increases from 0.032 mm2 to 0.039 mm2.

As a result, the area cost due to NI changes is 0.041 mm2. Overall, even
including other possible overheads in the NoC (i.e. extra ports in switches
and extra links), the final overhead is still small in comparison to the area
of the extra backup memory bank itself, which can take on average 1 mm2

of area for a 32 kB on-die SRAM in 130nm technology.

7.4

Additional Applications of the Proposed

Methodology

The same NoC extensions that allow for the fault tolerance mechanism de-
scribed up to now can also be used for other purposes. The main idea is to
exploit the presence of multiple (identical or similar) instances of the same
type of core attached directly to the NoC (a pool of cores). For instance, a
pool can consist of a set of accelerators, a set of memories, etc.. This par-
allel arrangement is a very common property of multicore computation
systems, either to comply with performance requirements or to improve
reliability via redundancy. By extending the NIs attached to such a pool of
cores as discussed above, they acquire the capability of redirecting packets
towards alternate cores in the pool. In addition to enabling fault tolerance,
this capability could also be exploited to balance the communication load
in the pool, improving performance. Alternatively, it allows for some of
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the devices in the pool to be switched off to save power, while still be-
ing able to transparently divert incoming requests to other, active devices.
Many policies can be conceived to coordinate these facilities. For exam-
ple, the load balancing or power management decisions could be taken
either centrally, or in a distributed manner directly by the devices in the
pool. The rerouting of packets in the pool could follow priority chains or
be based on broadcasts.

7.5

Conclusions

With the growing complexity in consumer products, a generation of MP-
SoC architectures with extreme interconnection fabric demands is being
envisioned. One of the main challenges for designers will be the deploy-
ment of fault tolerant architectures. We have presented an approach to
countering transient and permanent failures in on-chip memories, by tak-
ing advantage of the communication infrastructure provided by reliable
Network-on-Chip (NoC) backbones. Our design is based on modular ex-
tensions of the network interfaces of the cores, and is completely trans-
parent to the software designer. The only activity required by the pro-
grammer is minimal code annotation to tell the compiler which parts of
the data set are critical. The extensions are also integrated within our NoC
design flow, therefore transparently handling instantiation issues. Our ex-
perimental results on two applications and three NoC topologies show
that the proposed approach has a very limited area overhead compared to
non-reliable designs, while being scalable for any number of cores.

The proposed hardware extensions enable capabilities which are be-
yond the domain of fault tolerance, and exploiting them is an area of fu-
ture research.
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CHAPTER 8

Looking Forward: NoCs for 3D

Chips

This chapter1 provides some groundwork for what could possibly become
one of the most fascinating future applications of NoCs: 3D stacked chips.
These devices represent, in several respects, an ideal application field for
NoCs. Even though the 3D manufacturing technology is not fully devel-
oped yet, thus making it difficult to thoroughly assess the viability of spe-
cific techniques, we will present initial exploration and implementation
results, aimed at getting NoCs ready for 3D integration.

8.1

Motivation and Key Challenges

Over the years, the MPSoC fabrication trend has been towards the integra-
tion of larger and larger amounts of processing elements and memories.
More specifically, there has also been a strong push towards the mixing
of functional blocks which may require a variety of processing steps, such
as plain CMOS, DRAM, MEMS, passive and active analog circuitry, opto-
electronic elements, chemical sensors, actuators, etc.. Unfortunately, each
extra manufacturing step increases costs and decreases yield, imposing a
limit on the heterogeneity of each silicon die. Vertically stacking multiple
layers of silicon is an attractive way of sustaining the pace of improvement
in functionality, thanks to advantages such as:

1The author would like to thank Igor Loi for his contribution to this chapter.
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• Ability to provide more complexity than planar technologies in the
same package footprint.

• Modularity. A plug&play approach can now be envisioned not just
at the IP core level, but at the die level.

• A potentially increased amount of bandwidth, thanks to the possi-
bilities brought by vertical wiring.

• Potentially lower manufacturing costs at the die level, since each
heterogeneous die in a stack can be manufactured with the optimal
mask set for its field of application.

3D stacking provides novel physical means of interconnection along
the vertical axis, opening many research opportunities. First of all, the
yield (and thus the cost) of the vertical links is still not well known. De-
pending on this crucial parameter, an extremely broad range of architec-
tural solutions may be adopted in order to provide 3D communication.
Second, the performance of vertical connections has not been clearly as-
sessed for MPSoC applications, leading to uncertainties with respect to
the optimal system design strategies. Third, crucial system-level issues
are pending; for example, how to design a skew-free 3D clock tree is cur-
rently a question without good answers.

We believe that NoCs represent a synergistic match for 3D chip stack-
ing, because they respond perfectly to three major needs:

• Scalability. If 2D systems are already becoming complex to intercon-
nect, 3D designs can only be more challenging. NoCs provide the
headroom to tackle systems with multiple layers and many tens or
hundreds of IP cores.

• Modularity. Regardless of the heterogeneity in a 3D stack, both at
the manufacturing level and at the circuit architecture level, NoCs
provide more flexibility to cope with a varied set of IP cores than
anything else available today.

• Serialization. At present, and to some degree for the foreseeable fu-
ture, each single vertical connection in a stacked chip will reduce
the chip yield. Thanks to packet serialization, NoCs can achieve
the same performance as buses, or better, with a dramatically re-
duced number of wires, making them the ideal candidate for wire-
constrained stacks.
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The development of 3D circuits in general, and 3D NoCs in particular,
is still at an early stage [164, 165, 233, 163, 234], also due to the rapid evolu-
tion that assembly techniques are undergoing. We try to face some of the
many unknowns and challenges of 3D NoC development by presenting:

• A circuit-level model for a particular kind of vertical interconnects:
THROUGH-SILICON VIAS (TSVS) [160, 161, 162]. The model is based
on accurate three-dimensional parasitic extraction. Comparative
analyses demonstrate that not only vertical interconnects are usable,
but that they are highly competitive with horizontal wires in terms
of delay and power, with a reasonable area overhead.

• An extension of a two-dimensional NoC switch architecture to deal
with vertical links.

• An extension to our NoC design flow (Chapter 6 on page 145) for
semi-automatic instantiation of three-dimensional NoCs.

• A case study where a planar NoC topology is folded and imple-
mented across two chip layers.

• The design of a mesochronous synchronizer, aimed at coping with
the issues in distributing skew-free clock trees across stacked chips.

8.2

Physical Modeling of Vertical TSVs

To be useful for a NoC infrastructure, a vertical wire should not be used
in isolation; instead, to simplify routing, it is better to create buses of such
wires. The geometry of a TSV bus connecting adjacent stacked wafers is
shown schematically in Figure 8.1 on the next page for two manufacturing
scenarios: Silicon on Insulator (SOI) and bulk-silicon technologies. Given
the physical proximity of the TSVs, concerns related to capacitive coupling
within such buses may arise. In this section, we quantify the delay in a bus
formed by vertical TSVs for both the SOI and bulk-silicon cases.

TSV models are obtained with the Ansoft Q3D extractor [235], a quasi-
static electromagnetic-field simulation for parasitic extraction of electronic
components, which utilizes finite element algorithms and the Method of
Moments to compute the RLC parameters of a 3D structure. This makes
the study of signal integrity (crosstalk, ground bounce) and delay possible.
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Figure 8.1: Through-Silicon Vias in (a) SOI and (b) bulk-silicon technolo-
gies.

The starting point of our analysis is a simple configuration composed
of nine TSVs placed in a 3x3 grid structure. The baseline configuration
we study (see Figure 8.2 on the facing page) derives from published liter-
ature [161, 162] and can be summarized as:

• Copper vias

• 4µm× 4µm via cross-section (W × L)

• 5µm× 5µm pads at via extremities

• 8µm via pitch

• 1µm oxide thickness (tOX) (only for bulk silicon)

• 50µm layer thickness (25µm bulk silicon and 25µm SiO2)

Delay is a function of resistance and capacitance. Resistance can be de-
scribed with a single parameter as a function of via length ℓ, cross-section
σ and resistivity ρ:

R =
ρ× ℓ

σ
(8.1)

For example, copper TSVs with 4 × 4µm diameter show a resistance
around 1.18mΩ per µm. The skin effect, at these sizes, is negligible at fre-
quencies of few GHz, and a comparison between vias and top metal wires
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Figure 8.2: Schematic representation of a bundle of 3D vias.

(Metal 8, 130nm technology node) having 0.4µ×0.8µm cross section shows
that the TSV resistance per unit of length is fifty times smaller.

Capacitance, on the other hand, due to coupling effects, poses sev-

eral more issues. Therefore, we resort to a capacitance matrix C (Equa-
tion (8.2)):

C =











C1,1 −C1,2 ... −C1,n

−C2,1 C2,2 ... −C1,n

... ... ... ...
−Cn,1 −Cn,2 ... Cn,n











(8.2)

In this matrix, the elements outside of the diagonal represent inter-via
coupling, with inverted sign, while the ones along the diagonal are the
sum of the capacitances towards the ground plane (Ci,0 - not explicitly
reported in the matrix) plus the coupling capacitances:

Cii = Ci,0 + Ci,1 + ... + Ci,i−1 + Ci,i+1 + ... + Ci,n (8.3)

In Table 8.1 on the following page and Table 8.2 on the next page we
report extraction results for the capacitance of vias in SOI and bulk-silicon
TSVs, respectively, for the reference case. The capacitance towards the
ground plane is negligible in the SOI case, since the whole structure is
“floating”, but it is the dominant element in bulk-silicon technology. On
the other hand, due to the presence of a passivation coating around the
TSVs in the bulk-silicon case, the SOI scenario exhibits much larger cou-
pling capacitances among the vias.

We can analyze the behavior of TSVs in different geometries using our
geometric model. In Figure 8.3 on page 233 we sweep the TSV diameter,
from 0.5µm to 6µm, while keeping the TSV pitch constant at 8µm. Capac-
itance in the bulk-silicon case increases linearly with the diameter, while
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C [fF] Ground M N S W E SW NW NE SE

M 0.00 11.41 -2.43 -2.43 -2.43 -2.43 -0.41 -0.42 -0.41 -0.42
N 0.00 -2.43 10.13 -0.03 -0.47 -0.47 -0.07 -3.19 -3.18 -0.07
S 0.00 -2.43 -0.03 10.13 -0.47 -0.47 -3.19 -0.07 -0.08 -3.18
W 0.00 -2.43 -0.47 -0.47 10.13 -0.03 -3.18 -3.19 -0.07 -0.07
E 0.00 -2.43 -0.47 -0.47 -0.03 10.13 -0.08 -0.07 -3.19 -3.18

SW 0.00 -0.41 -0.07 -3.19 -3.18 -0.08 8.32 -0.40 -0.11 -0.41
NW 0.00 -0.42 -3.19 -0.07 -3.19 -0.07 -0.40 8.31 -0.40 -0.12
NE 0.00 -0.41 -3.18 -0.08 -0.07 -3.19 -0.11 -0.40 8.32 -0.41
SE 0.00 -0.42 -0.07 -3.18 -0.07 -3.18 -0.41 -0.12 -0.41 8.31

Table 8.1: Capacitance matrix of TSVs in SOI technology. M = middle via;
the other vias are labeled according to their positioning with respect to it
(N = north, etc.). “Ground” refers to the ground plane (Ci,0). The capacitive
load of an inverter in this technology is about 2 fF.

C [fF] Ground M N S W E SW NW NE SE

M -17.7 23.89 -1.20 -1.21 -1.20 -1.20 -0.33 -0.33 -0.36 -0.36
N -18.1 -1.20 23.26 -0.09 -0.39 -0.34 -0.05 -1.58 -1.52 -0.05
S -18.3 -1.21 -0.09 23.39 -0.35 -0.33 -1.47 -0.06 -0.05 -1.56
W -18.1 -1.20 -0.39 -0.35 23.25 -0.09 -1.57 -1.48 -0.05 -0.05
E -18.3 -1.20 -0.34 -0.33 -0.09 23.42 -0.05 -0.06 -1.55 -1.52

SW -18.6 -0.33 -0.05 -1.47 -1.57 -0.05 22.23 -0.11 0.00 -0.13
NW -18.5 -0.33 -1.58 -0.06 -1.48 -0.06 -0.11 22.16 -0.11 -0.01
NE -18.5 -0.36 -1.52 -0.05 -0.05 -1.55 0.00 -0.11 22.24 -0.13
SE -18.3 -0.36 -0.05 -1.56 -0.05 -1.52 -0.13 -0.01 -0.13 22.07

Table 8.2: Capacitance matrix of TSVs in bulk-silicon technology. M =
middle via; the other vias are labeled according to their positioning with
respect to it (N = north, etc.). “Ground” refers to the ground plane (Ci,0).
The capacitive load of an inverter in this technology is about 2 fF.
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233 8.2: Physical Modeling of Vertical TSVs

Figure 8.3: Capacitance trend when sweeping the diameter of vias having
a constant pitch. Figures are reported for SOI and bulk-silicon. Cm: C1,1;
Clat: average of C2,2 to C5,5 (N, S, W, E vias); Cdiag: average of C6,6 to C9,9

(SW, NW, NE, SE vias).

the increase is steeper for SOI. This is due to the fact that, in both technolo-
gies, the lateral via surface, which determines the coupling, is becoming
larger. Further, the distance among the lateral surfaces decreases, since the
pitch is constant. However this effect is most relevant in the SOI scenario,
whereas, in bulk-silicon, the passivation layer surrounding each TSV (tOX

thickness) dampens the increase in coupling.
It is also interesting to sweep via pitch while keeping the TSV diameter

constant (e.g., at 4µm). The curves are dual with respect to the previous
plot, since increasing via diameters has a similar effect as decreasing via
pitches. The most interesting property to be observed is the discontinuity
in the bulk-silicon curves at the 6 µm pitch threshold, which represents the
point where two adjacent TSVs are actually in contact. This is because vias
have a 4µm diameter, plus, only for the bulk-silicon case, an insulating
coating 1µm thick. Below the 6µm threshold, we assume that TSVs are
dug into a solid SiO2 structure, and are therefore only separated by a thin
oxide layer; above the threshold, a silicon “screen” appears in the middle
as each TSV is the result of a separate etching in the silicon substrate. The
presence or absence of the silicon layer changes substantially the parasitic
capacitance behaviour.

The complete extracted circuit model gives maximum accuracy in elec-
trical simulation, but good insight can be gained by modeling the delay

233 Federico Angiolini March 13, 2008



8.2: Physical Modeling of Vertical TSVs 234

Figure 8.4: Capacitance trend when sweeping the pitch of vias having a
constant diameter. Figures are reported for SOI and bulk silicon. Cm: C1,1;
Clat: average of C2,2 to C5,5 (N, S, W, E vias); Cdiag: average of C6,6 to C9,9

(SW, NW, NE, SE vias).

with the well-known RC approximation:

tD = 0.35×R× C (8.4)

In the formula, contact resistance and load capacitance (e.g. buffers or
flip flop at the end of the line) should be taken into account. Since TSVs
are interconnected by means of metal bonding, we estimate the contact re-
sistance [236] to be 100mΩ per layer. Delay estimates using Equation (8.4)
are in good agreement with SPICE simulations. For example, once the con-
tact resistance and load capacitance are taken into account, 16ps to 18.5ps
of delay (for SOI and bulk silicon, respectively) are found when the TSV
diameter is set to 4µm and the pitch to 8µm.

To put these results in perspective, the maximum un-repeated planar
line length in Metal 2 and Metal 3, in the same technology, is 1.5mm. Using
a planar inter-switch link of this length as a reference, we observe that ver-
tical links exhibit roughly one order of magnitude lower capacitive load.
Roughly the same ratio can be found for resistance. As a consequence,
even after taking coupling effects of tightly packed TSV bundles into ac-
count, vertical links turn out to be substantially faster and more energy
efficient than moderate size planar links.
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8.3

Integration of TSVs within NoC Switches

NoC components and NoC design tools require modifications to support
vertical links implemented with TSVs. As discussed above, 3D designs
are likely to expose a large degree of heterogeneity, especially along the
vertical axis. We leverage our NoC flow (Chapter 5 on page 115, Chapter 6
on page 145) and build on top of it a semi-automatic 3D flow, from RTL
description to layout-level verification.

We leverage the information gathered in Section 8.2 on page 229 to
build LEF (Library Exchange Format) descriptions of vertical vias. LEF
macros are standard hardware descriptions at the layout level, including
information about process technology, cell placement, routing and pin-
s/pads. Based on these macros, TSVs can be accurately inserted within
the design during the placement and routing stage; they are simply at-
tached to the input or output pins of a switch port, just as a horizontal bus
would. At the RTL level, on the other hand, the design can still be un-
changed with respect to a 2D implementation. This brings several advan-
tages: (i) the presence of vertical wires is totally transparent to the architec-
tural and functional views of the architecture; (ii) a chip may feature any
degree of connectivity heterogeneity since vertical links can be added or
exchanged for horizontal ones; (iii) vertical bandwidth can be added only
where needed in the chip, saving switch ports everywhere else; (iv) build-
ing upon the savings brought by the previous item, the set of switches
with vertical ports, i.e. the ones located where vertical bandwidth is really
needed, can have ideal performance because they can be implemented as
full crossbars.

Thanks to this approach, a complete flow is achieved; this includes
the ability to extract and simulate a 3D layout, where all switch ports are
exposed to proper timing constraints and load information is available for
both horizontal and vertical connections. A depiction of a sample layout
featuring a 3x3 switch with vertical ports is presented in Figure 8.5 on the
next page. The arrangement of the TSV macros is the one we identified to
offer the best timing requirements: close to the pinout of the switch, so as
to guarantee minimum length of the wire from the switch to the base of
the via, thus reducing parasitics.

The choice of a NoC topology must be performed by taking into ac-
count available performance information. Therefore, it is important to
build a timing model of the switches. Please recall that ×pipes switches
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Figure 8.5: Layout detail: a switch is attached to the LEF macros of two
vertical links.

come in two radically different variants (Section 4.4 on page 101). One key
point to stress here is that, in ACK/NACK, due to the presence of out-
put buffers for retransmission, the NoC links are enclosed between two
clocked buffers at the sending and receiving ends. Hence, a whole clock
period is available for signal propagation along the wires of the inter-
switch links; the link length and the switch logic are decoupled by the
output buffer. In contrast, in STALL/GO, to minimize the hardware over-
head, only the switch inputs are registered; the switch logic and the link
propagation time (up to the following switch or to the first link pipeline
stage) contribute to a the same timing path, which becomes the bottleneck
for the system. In STALL/GO, the link delay directly impacts the maxi-
mum operating frequency of the switches and of the whole NoC.

In Figure 8.6 on the next page, we explore the frequency that STAL-
L/GO and ACK/NACK switches of different cardinalities can achieve
when driving horizontal (1.5mm) or vertical (50µm) links. As expected,
ACK/NACK switches don’t change operating frequency when moving
to 3D structures, since their frequency bottleneck is given by the switch
logic and is not affected by link performance. STALL/GO is, in general,
slightly slower than ACK/NACK due to the contribution of link delay on
critical paths; however, when used in combination with TSVs, it regains
30-50 MHz, i.e. at 50 to 75% of the frequency gap, while maintaining its
low-overhead properties (and single-cycle latency). In other words, the
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Figure 8.6: Maximum frequency achievable by STALL/GO vs. ACK/-
NACK switches in 2D and 3D flows, for varying switch cardinalities.

NoC can be clocked faster when slow horizontal links are replaced by fast
vertical links.

8.4

Implementation of TSV-Based NoCs

As a validation of our flow, we present a NoC implementation based on
a 2D 3x2 quasi-mesh (called simply mesh in the following) and migrate
it to a 3D arrangement (Figure 8.7 on the following page and Figure 8.8
on page 239). The 3D mapping is achieved by splitting in two halves the
mesh and overlapping them in separate chip layers, with communication
achieved through TSVs. The stacked topology has exactly the same func-
tionality of the two-dimensional implementation.

As a first step, we leverage SunFloor and ×pipesCompiler (Chapter 5
on page 115) to instantiate the 2D mesh. There is no need to modify the
RTL output of SunFloor in any way. Next, we identify the best partitioning
for mapping onto the layer stack. This task is, at present, done manually,
due to the large set of constraints involved. These include manufacturing
limitations, chip pinout, area considerations, bandwidth demands, ther-
mal requirements, etc.. For example, our test 3x2 mesh connects three pro-
cessors and three memories; since we assume that processors cannot be
stacked on top of each other, to avoid the formation of hot spots, we inter-
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Figure 8.7: 2D 3x2 mesh NoC and possible 3D re-implementation.

leave processors and memories. ×pipes links connect either two different
switches or a switch and a network interface; our choice is to cut two-
dimensional topologies across switch-to-switch links, replacing the latter
with an upstream and a downstream port.

Then we perform synthesis, placement and routing of the RTL in two
separate runs, one per design partition. For this study, we instantiate in-
dependent clock trees in each layer. In order to come up with a system
that is simulatable, we set constraints on both skew and delay, and we ap-
ply them to each tree. In this way, the clocks of the two layers are kept
synchronous among each other. The final result is a system which is fully
simulatable at the layout level, with proper TSV characterization.

During placement, we insert TSV macros at the proper switch bound-
aries. We choose the minimum TSV diameter (4µm) and pitch achiev-
able in current technologies. The area overhead of each TSV is 64µm2

(8x8). For each bidirectional vertical switch port (e.g. the Up one) we have
2× (5+DataWidth) TSVs, where the factor 2 is due to the presence of one
input and one output port for bidirectionality, 5 is the number of control
signals, and DataWidth is the width (in bits) of the inter-switch data link.
In the example of a 6x6 switch and assuming a DataWidth of 28 bits, the
area overhead is about 6% for ACK/NACK and 9% for STALL/GO. In
exchange for this small area cost, switches can operate around 10% faster
and less buffering can be deployed (saving up to 13% of the sequential
area).

8.5
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(a) 2D 3x2 mesh. (b) Upper half of the 3D mesh.

Figure 8.8: Layouts of the original 2D mesh and of its 3D re-
implementation.
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Architecture of a Mesochronous Synchronizer

for 3D NoCs

Minimizing the clock skew of a clock tree in a complex 3D structure be-
comes at least a challenging task. Two of the possible ways to implement
a 3D clock tree are (i) the design of a separate clock tree per each 2D layer,
and the insertion of a single vertical structure to which to attach all the
tree roots, (ii) the design of a single clock tree in one of the layers, and
the deployment of many vertical vias at the terminal nodes of this tree,
thus distributing the clock to all the layers. According to [167, 168], solu-
tion (ii) would be better in terms of power and skew, but unfortunately
at the price of an impractical number of vertical vias, severely impacting
the cost and the modularity of the design (for instance, this solution does
not readily apply to the very desirable scenario where 3D chips are assem-
bled by stacking layers provided by different vendors and possibly built
with completely different processes). On the other hand, solution (i) in-
curs major skew issues, which demand additional synchronization every
time data is exchanged among layers. Since unfortunately there is no clear
solution to the problem of skew-free and modular clock distribution in 3D
chips, the need for clock synchronization at the inter-layer boundaries is
well motivated.

Several solutions are potentially available. Totally asynchronous NoCs
are, unfortunately, very complex to design, validate and implement.
Generic dual-clock FIFOs could be deployed; however, unless they are de-
veloped in full custom fashion (which implies design effort and portabil-
ity drawbacks), their high implementation cost suggests using them only
where absolutely needed. For example, instead of using them inside of
the NoC topology for mere synchronization among clusters of routers, it
may be wiser to instantiate them only at the edges of the NoC, e.g. at
the interface of a core which is able to perform frequency scaling. To
achieve functionality and flexibility at the minimum cost, mesochronous
schemes are probably the most effective. We focus on the implementation
of mesochronous adapters for 3D NoCs, with emphasis on circuit design,
timing properties, flow control support, and implementation cost. It is
worth remarking that nothing prevents the proposed scheme from also
being deployed in traditional planar designs.

We leverage the baseline architecture proposed in [182]. This choice
features substantial pros, including minimal complexity, ease of imple-
mentation in traditional design flows, and ability to function even during
chip testing (which is typically performed at a lower frequency than the
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target operating one). It is important to notice, however, that the reference
work is aimed especially at handling mesochronous communication over
very long and slow links (where it provides variation tolerance and high
performance as additional benefits), but does not focus on short-range
mesochronous synchronization, such as the one likely to be happening
across 3D NoC vertical links. Therefore, it does not provide a sufficiently
in-depth discussion about two issues that are crucial for any such imple-
mentation:

• Timing margins, which are key to assessing circuit robustness and
to the tuning of the low-level details of the design, are not studied
in enough depth in a real NoC test case, therefore preventing the
related optimizations.

• Support for bidirectional communication, i.e. for flow control, is
lacking. Mesochronous signaling is useless if proper backwards flow
control cannot be issued.

Exploring and quantifying the tradeoffs required by these features is
clearly key to assessing the viability of the overall approach.

8.5.1 Circuit Description

The proposed scheme is based on a synchronization circuit at the receiving
end of a mesochronous link (see Figure 8.9 on the next page for a slightly
simplified depiction) [182]. The circuit receives as its inputs a bundle of
NoC wires representing a regular NoC link, carrying data and/or flow
control commands, and a copy of the clock signal of the sender. Since the
latter wire experiences the same propagation delay as the data and flow
control wires, it can be used as a strobe signal for them.

The circuit is composed of a front-end and a back-end. The front-end is
driven by the incoming clock signal, and strobes the incoming data and
flow control wires onto a set of parallel latches in a rotating fashion, based
on a counter. The back-end of the circuit leverages the local clock, and
samples data from one of the latches in the front-end thanks to multiplex-
ing logic which is also based on a counter. The rationale is to temporarily
store incoming information in one of the front-end latches, using the in-
coming clock wire to avoid any timing problem related to the clock phase
offset. Once the information stored in the latch is stable, it can be read by
the target clock domain and sampled by a regular flip-flop. The counters
in the front-end and back-end are initialized upon reset, after observing
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Figure 8.9: Proposed mesochronous synchronizer circuit.

the actual clock skew among the sender and receiver with a phase de-
tector [182], so as to establish a proper offset. This is to guarantee that
information can safely settle in the front-end latches before being sampled
on the target domain clock. The phase detector only operates upon the
system reset, but given the mesochronous nature of the link, its findings
hold equally well during normal operation; the advantage is that power
consumption in normal mode is negligible.

With respect to the baseline scheme [182], we apply several changes,
tuning the architecture to the problem at hand. One clear feature of the
3D NoC scenario, for example, is that vertical inter-switch links are typi-
cally short and feature extremely small propagation delays, as seen above.
Therefore, there is typically no need for the synchronizer to support multi-
cycle propagation delays. As a result, one of the most notable architectural
changes is the presence of only two latches, thus also dramatically simpli-
fying the structure of the front-end and back-end counters to 1-bit ele-
ments. This change, which allows for large area savings, is allowed by the
timing properties discussed in the following. Shall the need arise, more
latches could still be deployed in case of a mesochronous link spanning
over a very long distance, and requiring multiple clock cycles for signal
propagation.

Figure 8.10 on the facing page summarizes the intended configuration
for a system with two layers and two vertical links, one going upwards,
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Figure 8.10: Proposed scheme for two-way synchronization across two
layers.

one going downwards. For each such link, one main synchronizer (“RX
Synchronizer”) must be deployed to adjust the incoming information to
the new clock signal. Since a few flow control wires are travelling back-
wards, a smaller “TX Synchronizer” is also needed to handle them. A
single block, grouping the TX and RX synchronizers by the same side of
the vertical link, could be designed; this would optimize the resource us-
age, for instance allowing to share the phase detector. Separate synchro-
nizers on the other hand allow for the instantiation of unidirectional (e.g.
upwards only) links without unneeded control logic.

8.5.2 Timing Margins of the Proposed Circuit

In order not to incur metastability and not to lose data within the
mesochronous synchronizer, timing constraints must be met at two points
in the circuit: (i) the front-end must latch incoming data safely, (ii) the
back-end must sample incoming data when it is stable.

To fulfill condition (i), the latches must become transparent at the right
point in time. The ideal control signal latch enable to do so would be
perfectly aligned with the strobe clock clk sender, upon which data is
designed to be sampled. Unfortunately, such an ideal condition is impos-
sible to reproduce. First, clk sender must be conditioned by local sig-
nals in the mesochronous synchronizer (namely, the output count of the
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front-end counter), which introduces a delay tcond. Second, clk sender

and data may not be perfectly in sync any more if the vertical link among
the sending switch and the mesochronous synchronizer is not ideal, e.g. if
the wires/vertical vias carrying clk sender are slower than those carry-
ing data by troutingskew. This means that latch enable has a worst-case
offset, with respect to the ideal edge on which data should be sampled,
of tcond + troutingskew; this is an advance if troutingskew is negative and larger
than tcond (clk sender wires much faster than data wires), and a delay
otherwise.

On the other hand, the good news is that data is not supposed to be
switching extremely close in time to the clock edges of clk sender. Even
if data were to be the direct output of registers in the sending switch, it
would still take the propagation time of a flip flop before any transition
could be noticed. In practice, it is likely that output buffers in the sending
switch may also have some additional logic downstream of such registers,
such as multiplexers to select the output of one of multiple buffer loca-
tions. Similarly, the data propagation delay must be designed to allow for
at least a flip-flop setup time before the following clock edge, and proba-
bly a bit more to account for a bit of extra logic at the receiving buffer, such
as multiplexers again. In general, the minimum transition delay of data
after the previous clock edge of clk sender can be called tdatamin

, and the
maximum can be called tdatamax

.
In order to generate as robust a circuit as possible, we propose the cir-

cuit of Figure 8.11 on the next page to generate latch enable; example
waveforms are in Figure 8.12 on page 246. This circuit is an improvement
with respect to [182]. Since two latches are enough to implement the front-
end (see below), the counter is 1-bit, and therefore a single flip-flop, while
the logic to check the counter output against a fixed value becomes a single
XOR. The circuit evaluates the counter output count on the positive edges
of clk sender, but only asserts latch enable when clk sender goes
low, i.e. half a clock cycle later. This shortens the critical path among
clk sender edges and latch enable edges, i.e. tcond, to the delay of
a single NOR gate, irrespective of the delay of the counter and compari-
son logic - as long as these fit within a clock semiperiod, which is trivial.
With this arrangement, the latches in the front-end are only transparent for
one clock semiperiod every two clock periods. The conditions for correct
functionality can then be summarized as:

tcond + troutingskew + tlatchhold < tdatamin
(8.5)

tclk + tcond + troutingskew > tdatamax
+ tlatchsetup (8.6)

March 13, 2008 Federico Angiolini 244



245 8.5: Architecture of a Mesochronous Synchronizer for 3D NoCs

Figure 8.11: Circuit to generate the latch enable control wire.

tcounter + tcomp <
tclk
2

(8.7)

Equation (8.5) on the preceding page expresses the fact that
latch enable should come early enough not to let the following piece
of data slip in the front-end latch by mistake. Equation (8.6) on the facing
page ensures that latch enable comes late enough to actually let data
settle down before latching it in the front-end. Finally, Equation (8.7) en-
sures that the critical path for the generation of latch enable is indeed
determined by the edges of clk sender plus a NOR delay. Experimental
results validating that these equations are actually holding will be pre-
sented in Section 8.6.2 on page 251.

Condition (ii) is easy to fulfill given a proper initialization of the coun-
ters at reset. It is a degree of freedom whether to have the back-end sam-
ple data from the upper latch at “even” clock edges and the lower latch
at “odd” clock edges, or vice versa, based on the initial value imposed to
the back-end counter during reset. Since the latches in the front-end are
transparent one semiperiod every two periods, and opaque (frozen) for
the remaining three semiperiods, it is always possible to choose a counter
setup where the sampling clock edge in the back-end captures the out-
put of the latches in a stable condition, even accounting for a large timing
margin to neutralize jitter. Please note that this discussion also proves that
no more than two latches in parallel are needed in the front-end, at least
as long as the link propagation time remains shorter than a single clock
period.

8.5.3 Adding Support for Backwards Flow Control

A key open issue to understanding whether the circuit can be used to im-
plement a useful link for a 3D NoC is to check the overhead it mandates
for a design with flow control. In fact, a unidirectional mesochronous link
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Figure 8.12: Example of the waveforms in the proposed synchronizer.
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is relatively straightforward to design; once bidirectional communication
must be taken into account, the implementation details and the related
resource overhead become crucial. We see two properties that the sys-
tem must feature to define a proper implementation of flow control over
mesochronous links: (i) the system must never incur data loss or corrup-
tion, (ii) if the receiver is not busy for independent reasons (such as con-
tention for the same switch output port), the system must be able to sus-
tain a transfer bandwidth of one flit per clock cycle.

The solution to be applied depends on the flow control deployed in the
platform, but is anyway based on the main observation that the maximum
added time to convey flow control signals across a vertical link, and to
resynchronize them, is in any case less than two clock cycles. Based on
this information, the following solutions can be envisioned.

Backwards Flow Control in ACK/NACK

In the ACK/NACK flow control, in absence of flow control information
heading back (either ACKs or NACKs), the sender “optimistically” pushes
flits out. Since a copy of each flit must be stored locally, the maximum
number of outstanding flits is as many as the output buffer can hold.
When flow control information is eventually received, in case of NACKs,
old flits are resent; if, on the other hand, it is an ACK which makes its way
back to the sender, an old flit can be discarded from the output buffer, and
a new one can be stored and sent.

Strictly speaking, the ACK/NACK flow control protocol does not re-
quire any corrective action to handle the timing changes introduced by
a mesochronous synchronizer. The synchronizer merely delays the recep-
tion of flow control signals; this introduces no critical change in behaviour,
and data safety is still guaranteed. However, changes need to be per-
formed to support maximum bandwidth over the mesochronous link. The
added latency of two clock cycles on each way (forwards and backwards)
means that flits will reach their destination two cycles later, and ACKs
will bounce back four cycles later than normal. To cope with this condi-
tion, output buffers in the sender need to be extended by four entries, e.g.
from four (the minimum buffer depth to support maximum throughput
in normal circumstances) to eight. This does not require any architectural
change; a parameter adjustment in the output buffer is sufficient. A block
diagram of the modified ACK/NACK switch is presented in Figure 8.13
on the next page. The area cost related to this change will be presented in
Section 8.6.3 on page 252. No changes are required to the receiving switch,
at the other side of the vertical link, unless a link in the opposite direction
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Figure 8.13: ACK/NACK modified switch block diagram. The port up-
stream of the vertical link has a deeper output buffer.

is also desired.

Backwards Flow Control in STALL/GO

In STALL/GO, flits are sent only as long as the STALL feedback wire is de-
asserted. This has two implications, which are the opposite of the ones for
the ACK/NACK case. On the one hand, if STALLs are never injected by
the receiver, the sender never receives them, and full transmission band-
width can always be sustained; no circuit change is needed to meet this
criterion. On the other hand, data safety is critical. STALLs are the only
way the receiver can withhold the flow of flits from the sender in case they
cannot be processed (such as in case of lost arbitration for a switch output
port). If STALLs cannot reach the sender in time, namely within one clock
cycle, flits leaving the sender while the receiver is busy simply get lost.

To cope with this situation, we extend regular input buffers by two en-
tries (from two, which is the minimum to provide full bandwidth, to four)
and change their control logic. Instead of raising the STALL wire when
the buffer is actually full, we raise it when two locations are still avail-
able. This approach is conservative; for example, a 4-deep STALL/GO
buffer could in principle operate forever and at full bandwidth with three
or four of its locations full, provided that, at each clock cycle, a flit can
be extracted to make room for a new incoming one. However, if the same
buffer were to be this full and were to experience further downstream con-
gestion, there would simply be no way to notify the sender in time and to
store the flits in flight anywhere. Thus, we choose instead to raise STALLs
in advance, so that, by the time the sender is notified of the congestion, at

March 13, 2008 Federico Angiolini 248



249 8.6: Experimental Results on Synchronizer Implementation

Figure 8.14: STALL/GO modified switch block diagram. The port down-
stream of the vertical link has a deeper input buffer and modified control
logic.

most two flits are in flight, and they can still be stored. A block diagram of
the modified STALL/GO switch is presented in Figure 8.14. The area cost
related to this change will be presented in Section 8.6.3 on page 252. No
changes are required to the sending switch, at the other side of the vertical
link, unless a link in the opposite direction is also desired.

8.6

Experimental Results on Synchronizer Imple-

mentation

8.6.1 Example Mesochronous Link Implementation

We synthesize the proposed circuit with the UMC 130nm technology li-
brary and insert it into a 3D chip stack floorplan, then perform routing.
Figure 8.15 on the next page summarizes the result. It is possible to see the
layout of the upper and lower layers, each featuring a switch and two NIs.
Two obstructions model the vertical vias (one “Up” link and one “Down”)
interconnecting the layers. The RX and TX synchronizers are wrapped
around the via bases, and are swapped among the layers. This layout is
found to be very area-efficient.
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(a) Top layer.

(b) Bottom layer.

Figure 8.15: Layout of a 3D chip stack with a mesochronous NoC link.
Bundles of 7x7 vias are laid among the layers, supporting 32-bit links plus
flow control connections, and leaving some spare vias.
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8.6.2 Timing Properties of the Synchronizer

In Section 8.5.2 on page 243, a set of conditions to be fulfilled for proper
operation have been presented. Our experiments on a post-routing netlist
show the following:

• Equation (8.5) on page 244 is easily fulfilled. Thanks to our opti-
mized design (Section 8.5.2 on page 243), we measure tcond values
of about 60ps. The propagation time skew among different wires of
a NoC link is very low, typically yielding a troutingskew below 20ps.
The typical latch hold time tlatchhold is roughly 60ps. On the other
hand, for our NoC, we measure a tdatamin

of about 370ps, irrespec-
tive of whether the flow control is ACK/NACK or STALL/GO. The
constraint is therefore fulfilled. (Please note that tdatamax

, however, is
dependent on the chosen flow control due to the reasons explained
in Section 8.3 on page 235, and can be of up to 900ps, imposing an
operating frequency of 1GHz at most).

• Equation (8.6) on page 244 poses no issue. This is because the condi-
tion tclk > tdatamax

+ tlatchsetup is automatically met by any fully syn-
chronous circuit. On the other hand, the term tcond+troutingskew, which
appears because of the mesochronous synchronizer logic, never be-
comes negative in any of our test layouts. In other words, the prop-
agation time difference among data and clk sender is normally
negligible, and in no case clk sender is so much faster than data

so as to more than offset tcond (also see the bullet above). Therefore
Equation (8.6) on page 244 is always verified in our tests. Please note
that, even in case of a violation of this condition, the circuit could
still be made to work safely by slightly increasing tclk, i.e. slightly
decreasing the operating frequency.

• Equation (8.7) on page 245 is fulfilled by a very large margin. The
typical clock period of our reference NoC is larger than 1ns in 130nm
technology, yielding a semiperiod of at least 500ps. Given the sim-
plicity of the counter and comparator logic for a front-end with just
two latches, we observe tcounter + tcomp times of less than 200ps, well
within the desired range.

Given these results, the proposed architecture proves robust under all
circumstances.
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8.6.3 Silicon Cost of Proposed Synchronizer

Figure 8.16 on the next page summarizes the area overhead for the im-
plementation of the proposed mesochronous synchronizer. The numbers
refer to a post-routing circuit model. The “Synchronous” baseline com-
prises the area of two 32-bit 5x5 switches, with the minimum buffering
required for sustaining maximum throughput under no congestion, and
that of the vertical obstruction required for a unidirectional vertical link
(counted twice: once per chip layer). The “Mesochronous” figures add
the area overhead for supporting mesochronous clocking over such a link,
namely, the buffer depth increase in one of the switches and the two TX
and RX Synchronizers. It is possible to notice that the synchronizers them-
selves feature minimal overhead, thanks to the drastic simplification in
logic allowed by the implementation of 2-latch front-ends. The RX Syn-
chronizer is about five times larger than the TX Synchronizer, since it must
handle many more wires. The largest area overhead for mesochronous
clocking support is within the switches themselves, and, as expected, is
mostly accounted for in the sequential area budget. ACK/NACK incurs
a much larger penalty than STALL/GO, since four extra buffers have to
be deployed instead of just two. Overall, the global area overhead is
about 13% of the baseline configuration for STALL/GO and about 40% of
the baseline configuration for ACK/NACK. Especially in the STALL/GO
scenario, the area cost is minimum and the implementation seems to be
clearly affordable.

8.7

Conclusions

Stacked chips represent a promising avenue to keep pushing chip density
barriers. However, being a relatively novel technology, many unknowns
still exist on how to best exploit the opportunities they offer, and on how to
work around their limitations. NoCs are a breaktrough technology which
can help in tackling stacked chip complexity and heterogeneity, while re-
ducing to a minimum the yield cost to be paid because of TSVs.

We have studied the performance and system-level impact of through-
silicon vias as one of the possible ways to implement vertical NoC links
in a highly dense manner. We have shown that, even when accounting
for the coupling effects in dense vertical link bundles, the parasitics asso-
ciated with TSVs are one order of magnitude smaller than those of tradi-
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(a) ACK/NACK.

(b) STALL/GO.

Figure 8.16: Area cost to implement mesochronous synchronization.
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tional horizontal wires, making 3D NoCs a very promising approach. We
have shown how to design NoC switches with vertical ports. We have
also shown that our semi-automated flow is capable of generating layouts
of 3D NoCs which are fully compatible with accurate post-layout timing,
area and power analysis.

We have then proposed a detailed implementation of a mesochronous
synchronizer for usage in a three-dimensional chip with a NoC backbone.
Since completely synchronous designs seem to be hard or impossible to
achieve in stacked chips, such a device is key to correct functionality. Start-
ing from a baseline circuit scheme, we have customized it, verified its tim-
ing properties, added flow control facilities on top of the basic circuit, and
assessed the area overhead of the whole. Key advantages of the baseline
circuit have been kept, such as simplicity and ability to operate correctly
even during chip test at a low frequency. The experimental results show
that the proposed scheme is robust and that its area cost is minimal, prov-
ing the viability of this architecture for 3D chip implementations based on
NoCs.

Research on 3D NoCs is just now being undertaken, and much work
remains to be done. Among the areas requiring more attention, the issue
of developing software tools to perform 3D system partitioning and 3D
topology design looks prominent.
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CHAPTER 9

Conclusions and Future Work

9.1

Summary of Contributions

This dissertation provides a broad range of contributions to the scientific
community:

• A NoC architectural library, called ×pipes. This NoC is fully fea-
tured, yet optimized for minimum area and power consumption.

• A complete, top-to-bottom design flow for the implementation of
NoCs. This set of tools empowers designers to generate an opti-
mized application-specific network, given just a set specifications
which is easy to collect. The design flows includes architectural sim-
ulation and physical implementation.

• A set of techniques enabling the use of NoCs in new environments,
such as in fault-tolerant applications and in 3D chips.

• Insight on the potential and on the shortcomings of NoCs, both when
compared existing interconnection architectures, and when just as-
sessing the benefits and costs of alternative NoC implementations.

9.2
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Conclusions

Emerging consumer applications demand high performance, low power,
low cost and high reliability from the current and the upcoming gener-
ations of embedded devices. MPSoCs, i.e. highly integrated, often het-
erogeneous chips, have a leading role in fulfilling these demands. How-
ever, their complexity is becoming so challenging that new techniques and
mechanisms to design their on-chip interconnection are greatly needed.
NoCs have enjoyed increasing acceptance as the most scalable answer to
these shortcomings. However, as a technology of recent inception, the
consensus on their full maturity has not been reached yet.

This dissertation proves fully that NoCs are a viable, efficient, scalable,
predictable, flexible answer to the on-chip interconnection woes. We have
shown a complete design flow (Figure 9.2 on the facing page) that, lever-
aging upon a library of NoC components (Figure 9.1 on the next page), is
capable of generating placed&routed instances of a NoC. Our proposed
design flow is conceived to optimize design time. Thanks to a detailed
modeling activity, by taking into account aspects such as the resulting
chip floorplan, and with careful analysis of on-chip wiring, we dramat-
ically increase the design closure chances and thus the need for project
re-spins. Our NoC instances have been verified as fully functional. We
have also shown some implementations in 65nm technology, and outlined
some scaling properties of these networks.

We also concretely extend the domain of applicability of NoCs, by pre-
senting techniques for increased system fault tolerance and by outlining
the path towards having NoCs as the backbone for stacked 3D chips.

9.3

Future Work

Despite the large body of research devoted to NoCs in the last years, many
open challenges remain. We identify several major areas for upcoming
research:

• There is a consensus on the system-level need of integrating blocks
at different operating frequencies, which is also often called a
GLOBALLY ASYNCHRONOUS, LOCALLY SYNCHRONOUS (GALS)
paradigm [17]. However, as of today, the dilemma of which NoC
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Figure 9.1: Conceptual view of a Network-on-Chip.

Figure 9.2: The complete proposed NoC design flow.
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alternative to choose in this context has not been fully cleared: syn-
chronous choices (interspersed with a minimum amount of clock
converters) have been claiming rapid development times and min-
imum overhead, while the alternatives claim, for example, superior
robustness to process variance [19, 237, 171]. Furthermore, to the
best of our knowledge, none of the contending approaches has yet
comprehensively tackled the issue of dynamic frequency (and possi-
bly also voltage) scaling [7, 21]; some open questions in this research
area include how to best devise mechanisms for NoC partitioning,
how to best control the operating parameters of each NoC partition
statically (e.g. with CAD tooling for heterogeneous NoCs) or at run-
time, etc..

• NoCs for 3D chips are an emerging trend [233, 238, 239]. Work re-
mains to be done. Moreover, since the manufacturing technology
is not fully mature, many crucial design parameters (such as the at-
tainable density, yield and speed of vertical interconnects) remain
unclear. Depending on these parameters, many different NoC archi-
tectures and topologies can be envisioned. Some of the key upcom-
ing challenges in this field include the potential need for pervasive
fault tolerance, the design of a new generation of CAD tools for NoC
topology exploration, and the issue of clock domain synchronization
(if not even of bridging among different signaling methods) across
stack layers.

• NoC reconfiguration is also a broad topic [21]. While several ap-
proaches have been published to reconfiguring NoCs (either com-
pletely, on FPGAs, or just with new routing tables, in ASICs) [240,
241], our impression is that many links are missing before fully
reconfigurable, hazard- and deadlock-free, low-resource-overhead
NoCs can be available. Furthermore, even then, the larger problem
of efficiently deciding how to reconfigure NoCs at runtime, based on
mutating application demands, will be very challenging.
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