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Abstract 

 

Irrigated agriculture is facing growing uncertainties under Climate Change (CC) due to the 

decreased predictability of weather events and increased variability of climate patterns. The 

farmers’ and Water Authorities’ (WAs) climate-related uncertainties can be lowered by Information 

and Communication Technologies (ICT) through the provision of weather and climate forecasts. 

Despite the growing interest for such platforms and their potential to favor CC adaptation, we see 

many ICT-development initiatives having less-than-expected diffusion and failing to solve 

informational issues in the short term. This PhD thesis deeply investigated the uncertainty settings 

around the decisions on ICT-information implementation to support irrigation management. Its 

ambition is to provide evidences on: (i) the circumstances in which ICT can be reliably used; (ii) the 

relative potential benefits; (iii) the barriers in the decision environment or in the Decision Maker’s 

(DM) behavior which do not allow the achievement of such potential benefits. To do so, we defined 

an innovative uncertainty framing, distinguishing between elements of risk and ambiguity, and 

developed two separate decision models under uncertainty. One model allowed to estimate 

potential economic benefits from the ICT-informed decision process of irrigation management, 

while accounting for the restrictions to information usability. The other model represented 

subjective behavior in the decision on ICT-information implementation and highlighted how it can 

impact on ICT-benefits in irrigation districts. The capability of decision models was then tested in 

two separate empirical examples. Results confirmed the hypothesis on ICT potentials, but 

underlined that benefits are extremely variable and subjected to constraints. These are relative to 

the decision environment, to the form and quality of ICT-information and to the behavior of DMs. 

Conclusions provide policy suggestions to help irrigated agriculture unlocking ICT potentials, 

overcoming barriers to ICT-information implementation. Specifically, we highlight how ICT-

development policies, uncertainty-management policies and water policies are respectively needed 

to: (i) favor ICT development with end users to answer their information needs; (ii) help DMs facing 

risks caused by the imperfect nature of ICT-information; and (iii) ensure that excess-use of water 

does not undermine ICT-benefits. 
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Chapter 1 

1. Introduction 

1.1 Background and motivations 
Agriculture has always been affected by uncertainty. This is mainly due to the open-air 

characteristic of production processes carried out in complex agroecosystems with highly variable 

driving elements such as pests, climate and soil. To face uncertainty, the development of agriculture 

has been characterized by farmers’ effort to control environmental variables (Hardaker et al. 2015). 

The result of this development process is in distributions of yields which have lower variability and 

higher averages. Water management and irrigation are a clear example of this. By collecting water 

in reservoirs before the cultivating season, water management allows to diminish the share of 

production processes subjected to the variability of unknown and upcoming rainfalls. By moving 

water from where it is abundant to the field, irrigation allows a more suitable environment for crops. 

Overall, the irrigation system lowers climate-vulnerability while it increases the average crop 

productivity (Galioto, Raggi and Viaggi 2017). Examples of this kind are available all along the 

development of agriculture from food gathering to hi-tech greenhouses. This is especially true 

during the Green Revolution, which is widely recognized as one of the periods where agriculture has 

been more effective in implementing innovations for the control of agroecosystem’s processes 

(Gingrich and Krausmann 2018). 

Nowadays, Climate Change (CC) is exacerbating uncertainty issues by making forecasts more 

difficult and by increasing the variability of weather events (Allen, Dube and Solecki 2018). At the 

same time, as in everyday life we have seen the proliferation of Information and Communication 

Technology (ICT) contributing to support many decisions, also agriculture is taking part to this 

digitalization process. Decision Support Systems, IoT, Climate Services and GIS are exponentially 

growing in the agricultural sector and offer Decision Makers (DMs) a wide variety of support 

(Cambra Baseca et al. 2019). Because of the great potential of such ICTs, many authors call this 

period Digital agriculture revolution and believe it is the answer to the challenges the sector is facing 

due to CC (Rotz et al. 2019). This title highlights how scholars consider important the stage of 
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agricultural development we are living in. 

While the Digital agriculture revolution can be expected to be comparable in magnitude with 

the Green Revolution (Rotz et al. 2019), the approach with which innovations contribute to the 

sector is radically different. During the Green Revolution technologies were aimed at altering the 

agroecosystem through fertilizers, pesticides and genetics, while the Digital agriculture revolution 

is altering the decision environment through information provision. Accordingly, all digital 

technologies in agriculture have one common element, which is in the use and generation of data. 

With it, the new platforms generate information aimed at supporting decisions by lowering 

uncertainty. Decision processes can now move from precautionary and inefficient choices forced by 

uncertainty, to decisions based on sound information. In this context, water management is one of 

the key sectors where ICT-information would have the most important applications with the highest 

benefits (Jeuland et al. 2018; Cambra Baseca et al. 2019).  

In the industrial and utility sectors, the adoption of ICT to support decisions on water use and 

allocation is already widespread in what is defined by the International Water Association as Digital 

water journey (Ceo, Foundry and Webb 2019). In agriculture, the Digital water journey is more 

difficult due to the intrinsic characteristics of the sector. Here, dynamics for ICT implementation are 

extremely complex and infrastructures, technical issues and low profitability pose significant 

constraints (Cavazza et al. 2018). As a result, in some occasions WAs and farmers might decide to 

not implement an ICT because it cannot be used, or it is not profitable, given the current settings 

(Galioto et al. 2020). For example, low accuracy of available devices make many platforms useless 

to aid farmers’ irrigation decisions (Galioto et al. 2017). At the level of Water Authorities (WAs) the 

prevalence of open-air canals does not always allow to precisely allocate water between farmers 

according to the ICT (Cavazza et al. 2018). Even when an ICT is profitable when used, behavioral 

barriers can hinder the digitalization process (Kirchhoff, Lemos and Engle 2013). Between these, 

aversion to the uncertainty involved in the implementation of a new ICT is the most relevant, with 

a key role played by the DM not knowing the ICT reliability. As a result, the digital transition for 

irrigation management cannot be self-accomplished by the sector. Constraints to digitalization will 

not only slow ICT implementation, but they also risk compromising ICT benefits in the long term, 

leaving the sector with few tools to face issues of CC-related scarcity and conflicting uses (Ceo et al. 

2019).  
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In the literature, there are several studies addressing the topic of ICT implementation in 

agriculture and water management (Jeuland et al. 2018; Meza, Hansen and Osgood 2008); many of 

these highlight the key role of ICT for CC-adaptation. Nevertheless, results are contradictory, and 

none provides a comprehensive assessment addressing, with a holistic approach, the whole decision 

environment. The most important works, estimate the benefits of ICT implementation by defining 

the circumstances in which information has a value for a DM (Keisler et al. 2014). Although scholars 

agree on the theoretical settings in which ICT-information is valuable, empirical applications show 

discordances and ICT-benefits are still unclear. This highlights how results are extremely context-

dependent and models must be adapted to the decision environment in which the ICT is introduced. 

Given the context-specificity of ICT-benefits, we carried out a review on ICT implementation for 

irrigation management both at the farm- and WA-level. Especially at the latter decision level, we 

found few or no work addressing the issue. In addition, there are gaps in the modelling of decisions 

to account for: (i) the specificities of the irrigation sector; (ii) the farmer’s and WA’s subjective 

behavior under the uncertainty affecting decisions for new ICT implementation. As briefly described 

in the previous paragraph, the irrigation sector is peculiar for its technical elements which constraint 

the range of applicability of ICT. Not accounting for these constraints brings to significant over-

estimations of benefits, which, in the long term, might further increase uncertainty on the 

convenience of ICT implementation. Other than technical constraints, one of the major issues 

highlighted in both qualitative and quantitative studies is that new ICT platforms generate 

uncertainty on information reliability. However, the DM’s behavior is often assumed as rational and 

aversion to uncertainty overlooked. Even in those applied studies which relax assumptions of 

rationality, different sources of uncertainty are treated indistinctly, and the issues generated by a 

lack of knowledge on ICT reliability are overlooked. This does not allow to model how perceptions 

on information reliability affect the farmer’s or WA’s behavior and, in turn, the decision on ICT 

implementation. Overall, uncertainty remains on the magnitude of benefits which can be achieved 

through ICT-aided decision processes in irrigated-agriculture and on what hinders the sector to such 

achievements.  

In this research, we acknowledge that ICT-information is not always profitable when 

implemented in the target decision processes (Galioto et al. 2020). As highlighted before, ICTs are 

promising tools, but in many occasions their development is shown to be unproductive due to a 
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wide variety of constraints. To help understanding the problem, we distinguish between two classes 

of constraints limiting ICT adoption and ICT-benefits in irrigated agriculture: 

• Restrictions to information usability: these occur when the ICT provides information that 

cannot be implemented, or it is not profitable when implemented in real-life irrigation 

management decisions. Such restrictions cannot be overcome because they are intrinsic 

characteristics of the decision environment. For example, some decisions can be so risky that 

precautionary strategies are always more profitable. More simply, it can happen that in the 

current management system there are not information needs or the current infrastructures 

or management systems do not allow ICT-information implementation. In presence of 

restrictions to information usability there are no potential economic benefits from ICT-

information implementation. 

• Barriers to the achievement of ICT-benefits: these can be due to characteristics of: (i) the 

ICT, like its form, content or time provision which are not compatible with the local decision 

process; (ii) the decision environment, like technical barriers, for example, the water delivery 

system can be too imprecise if compared with ICT-information; (iii) the DM himself, like 

aversion to uncertainty which might cause low expected utility from information 

implementation from ICTs whose reliability is unknown. Such barriers can be overcome by 

modifying ICT-information’s form or accuracy to meet DMs’ needs or by adapting decision 

processes or the decision environment to implement information. Behavioral barriers too 

can be solved by educating end users or by providing them information on ICT reliability. 

In this context, when approaching a new ICT, one must ask himself three questions: Are there 

any restriction undermining information usability? What are the potential benefits from the use of 

such information? Which are the barriers to the achievement of such benefits? At this end, the role 

of agricultural economists is key to fill the knowledge gaps and support policy makers to accompany 

irrigated agriculture in the Digital water journey. Specifically, there is a strong need to provide 

evidence on information usability, potential economic benefits from ICT and barriers to the 

achievement of such benefits. On the one hand, the assessment of information usability and ICT-

benefits will provide the needed data to justify and encourage investments and policies for ICT 

development in those settings where ICTs can be profitable when implemented. On the other hand, 

by assessing the barriers which hinder the achievement of such ICT benefits, it will be possible to 
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design policies tailored to overcome the problems. Overall, evidence would support policy makers 

in the design of new tools to guide irrigated agriculture in unlocking ICT potentials. To deliver this 

evidence, there must be advances in the modelling of decisions. The available literature should be 

improved by two kinds of model developments: (i) one is in designing a new decision model by 

adapting existing ones to the peculiarities of the sector; (ii) the other is in designing a new model 

capable of assessing the impacts that subjective behavior under uncertainty has in the process of 

new ICT implementation.  

1.2 Objectives 
This doctoral dissertation is positioned in the context above described, with the ambition of 

answering to the need of evidence on restrictions to ICT-information usability, ICT-benefits and 

barriers to ICT adoption in irrigation management. A holistic approach is used to analyze the 

decision processes and to account for the multiplicity of aspects which are peculiar in the sector’s 

decisions. To do so, decision models are required to simulate the DMs’ choices on ICT information 

implementation and their impacts on the irrigation activity. Therefore, behind the major objective 

of this dissertation, three sub-objectives can be identified, each contributing to design new methods 

which address specific issues of the bigger problem. In particular, the methodological sub-objectives 

can be described as follows, where to the fulfillment of each objective corresponds a specific 

chapter of this dissertation: 

1. To build the theoretical foundations for new behavioral decision models of ICT adoption 

under uncertainties in irrigation management: in applied studies we did not find the basis 

to support models capable of accounting for the peculiarities of decisions, so, in the 

economic literature, we sought for theories on which to build the framework needed to 

address the specific problems. 

2. To develop a new decision model to understand when ICT information is usable and to 

estimate potential economic benefits from the ICT-informed decision process of irrigation 

management while accounting for the barriers to information implementation. This model 

is applied to the water management decisions that occur at the WA-level and specifically 

accounts for technical barriers to the achievement of ICT benefits and restrictions for ICT-

information implementation.  
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3. To design a new behavioral decision model capable of representing the decision processes 

of ICT information implementation, while assessing the impacts that subjective behavior 

under uncertainty have in undermining ICT potentials in settings where ICT can be 

profitable when implemented. In literature no model was found to address the issues 

caused by lack of knowledge on ICT-information reliability, this model filled the knowledge 

gab by modelling aversion to such uncertainties and the relative barriers this behavior 

poses.  

The theoretical framework developed to fulfill objective 1, will define the specific aims and 

the background on which we will build the two models of objectives 2 and 3. Then, by developing 

such models we will provide a detailed representation of the major dynamics which condition the 

Digital water journey in agriculture. Finally, by testing and implementing the models to case studies 

we will provide the quantitative estimations of ICT impacts needed to support new policies to aid 

the sector.  

1.3 Novelties 
The research stands out of the current literature for its comprehensive approach with which 

decision processes are analyzed. In particular, the first novelty is in the theoretical framework 

developed to model the uncertainty settings around ICT adoption by distinguishing between the 

different sources of uncertainty involved in the implementation of a new ICT. Contrarily to most of 

applied studies where risk is considered to be the only element building uncertainty, we introduce 

the concept of ambiguity. This arises from a lack of knowledge on information reliability and 

expresses the degree of confidence the DM puts on the risk estimations provided by the ICT. The 

uncertainty framing proposed was made possible by the application of the theory of ambiguity 

developed by Ellsberg (1961) and it allows to model the process of familiarity which occurs as the 

DM gains experience on the ICT. Familiarity plays a key role in the ICT adoption decision as it favors 

uncertainty-averse DMs in ICT-information implementation. 

The novelty of the first decision model developed is in being capable of addressing technical 

constraints characterizing irrigation management at the WA level. Between these, the main 

methodological advancement is in accounting for the timing issues in sequential and inter-

correlated decision steps. Accordingly, one peculiarity of water allocation decisions is in the fact 
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that they are repeated before and along the irrigating season, with one decision having impacts on 

the outcome of the subsequent one. Further, decision variables, technical constraints and 

information requirements vary depending on the time of the season. The model developed accounts 

for such elements by considering two decision steps, the first occurring before the irrigating season, 

while the second is repeated weekly along the season. Because the decisions made in the second 

step are also influenced by the accuracy of ICT-information provided before the irrigating season, 

we model a strict dominance of the accuracy of ICT-information provided in previous time steps on 

subsequent ones. This issue was not tackled in literature and allowed to develop a new decision 

model by adapting the existing ones to the context of the study. The empirical application of the 

model is also original: to the best of author' knowledge no economic research deals with ICT 

adoption by WA for the management of irrigation. 

In the second model, novelties are twofold: (i) the first is in providing as output both the  

farmers’ and WAs’ water demand from ICT-aided irrigation plans; (ii) the second is in developing a 

new learning rule to describe how DMs get familiar with a new ICT as they gain new insights on its 

reliability. By considering water demand as function of DM’s behavior and by accounting for the 

governance system, the model highlights how poor coordination in water use can undermine ICT 

benefits. Previously, this issue was never raised by scholars; it is caused by subjective attitudes and 

perceptions on ICT reliability. Because perceptions evolve in time as DMs become familiar with the 

ICT, choices on water use will evolve too. To model such process, we did not find any suitable model 

to represent the update of beliefs on ICT reliability, therefore we developed a new one. The learning 

rule is innovative because it accounts for two main peculiarities of ICTs providing weather-related 

information: 

• differently from other technologies, the performance of ICT cannot be directly measured in 

terms of production; 

• accuracy of information is difficult to estimate at the end-user level because quantitative 

comparisons between forecasts and observations need specific tools and knowledge. 

Overall these modelling advancements allowed to assess the impact that subjective behavior 

on ICT implementation have in undermining the efficiency of ICT-aided irrigation plans in districts. 
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1.4 Overview  
The thesis is a combination of three individual papers, each building a single chapter and 

contributing to the understanding of specific aspects of the decision problems at hand. Overall, the 

papers will provide the picture needed to represent the key elements of decision process of ICT 

implementation and will analyze the problem in its complex and wide aspects.  

In the next chapter, we will analyze the economic literature to seek for theories of decision-

making under uncertainty capable of better explaining the problems of ICT-information 

implementation. Results of this chapter will build the theoretical foundation for the decision models 

of ICT-information implementation which will be developed in the subsequent chapters.  

In the third chapter, we will focus on ICT-information usability and benefits generated from 

ICT implementation. In particular, through a model based on Bayesian Decision Theory (BDT), we 

address ICT-information usability and estimate economic benefits from the ICT-informed decision 

process of water management in agriculture at the WA level. This is done by testing an applying the 

model to a case study represented by a WA which is implementing a new ICT platform developed 

to provide climate information to support irrigation. 

In the fourth chapter, we focus on the fact that it is not only information usability which 

affects its implementation and related benefits, but also the farmers’ and WA’s subjective behavior. 

To assess the impact of such issue, we develop a behavioral model to represent the decision 

between inefficient but riskless irrigation plans or ICT-aided efficient irrigation plans with uncertain 

outcomes. The model will allow to assess the impact that subjective behavior on ICT implementation 

have on the efficiency of ICT aided irrigation plans in irrigation districts. Then, the model is 

implemented in a numerical example to underline, in a scenario analysis, how poor governance can 

further hinder the achievement of ICT-benefits 

Finally, we provide the full descriptive analyses of the modelling results and the relative 

limitations and policy implications and draw the final conclusions in chapter five and six respectively. 
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Chapter 2 

2. Towards a framework for comprehensive analysis of 
decision processes for ICT adoption in irrigation 
management 

2.1 Introduction and objectives 
In the previous chapter, we highlighted how uncertainty has always affected agriculture and 

how irrigation management is one of the areas mostly needing information to solve it. Information 

needs are further exacerbated under CC scenarios. Climate-related uncertainties could be lowered 

by weather and climate forecasts and disseminated to farmers and water authorities through ICT. 

Despite the growing interest for such technologies and their potential to favor adaptation, we see 

many ICT-development initiatives having less-than-expected diffusion and failing to solve 

informational issues in the short term. This is mainly due to technical barriers, which undermine 

information usability, and a lack of knowledge on ICT reliability, which undermines information 

implementation. The latter barrier is true even in settings where otherwise ICT would have allowed 

significant benefits.  

Here we do not want to highlight the usefulness of ICT, contrarily, knowing their potential 

key role for CC adaptation (Allen et al. 2018), we see a strong need to understand decision processes 

in ICT-information implementation. To do so, we will analyze the economic literature to seek for 

theories of decision-making under uncertainty capable of better explaining the problem. Results will 

build the theoretical foundation for decision models of ICT-information implementation which will 

simulate decisions for irrigation management. This will help to understand how barriers to the 

achievement of potential economic benefits can be better overcame. Moreover, it will allow ICT 

developers in tailoring platforms to answer DMs’ information needs and policy makers in defining 

uncertainty-management policies.  

The remainder of this chapter is organized as follows: in the next section we will frame the 

problem and describe how uncertainty rise due to CC, the role of ICT in CC-adaptation and the gaps 
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between expectation and real ICT implementation. Then, we will review the most relevant theories 

and applications of decision making under uncertainty. In Section 2.4, we will focus on the theory 

developed by Ellsberg (Ellsberg 1961) and apply it to the context of our research; finally in Section 

2.5 and 2.6 we respectively discuss what we have learned from this review and draw conclusions 

and policy implications. 

2.2 Climate Change and uncertainty 
Due to the open-air characteristic of farming activities, agriculture has long been recognized 

to be one of the most weather sensitive sectors (Hardaker et al. 2015). Farmers have always faced 

their susceptibility to weather events, but recent CC trends are posing further obstacles in their 

activities prompting two main issues: (i) a raise in the frequency of extreme events and (ii) a raise in 

the variability of weather patterns. This results in an increased vulnerability of agriculture and rural 

areas (H. de Coninck et al. 2018). 

The former issue of increased frequency of extreme events corresponds to a fattening in the 

tails of the climate-events’ probability distributions. Tail-events generate losses despite the side of 

the climate distribution considered because large deviations from mean (or expected) values have 

often negative effects on yields (Hardaker et al. 2015). For example, both droughts and excessive 

rainfalls are negative for agricultural production and one does not compensate for the other. This 

results in an increased frequency of climate-related losses which can only be mitigated, if predicted, 

by implementing protective actions. Because these actions are costly and predictions are seldomly 

available at a sufficient level of accuracy to be reliably used (Cavazza et al. 2018), climate shocks are 

always welfare-reducing events.  

With regards to the raise in weather patterns’ variability, it is to be said that variability per 

se is not negative for agricultural production (Hallstrom 2004). For example, seasonal variability is 

taken as an advantage for agricultural systems in temperate areas and experience in seasonal 

fluctuations is used by farmers to predict upcoming trends and act consequently (Letson and Solı 

2013). The problem arises when variability is unpredictable (Hansen 2002). This is typically the case 

of CC where the change in climate trends means that past records are less relevant in making future 

predictions and climate models propose different projections (H. de Coninck et al. 2018). As a result, 

unpredicted climate variability due to CC is systematically causing production losses in agriculture. 
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In this scenario, irrigation is an important tool which farmers can use to protect themselves 

from: (i) climate shocks, such as droughts, and (ii) climate variability, in the form of high variances 

in rainfall patterns. Accordingly, irrigation is recognized to be one of the most effective means to 

decrease climate-vulnerability of agricultural production (Skarbø and Vandermolen 2014; McCarl 

and Hertel 2018) and irrigation efficiency is fundamental to allow adaptation (H. de Coninck et al. 

2018). Apparently, this is in contrast with the fact that, between agricultural systems, irrigated 

agriculture is one of the most vulnerable to climate-related uncertainties (Archibald and Marshall 

2018). However, in semi-arid and Mediterranean areas, irrigation is already rooted in production 

systems, hence, no access to the resource can compromise the whole farming activity (Calzadilla et 

al. 2014). Here, climate shocks affect the short-term irrigation water activities and uncertain climate 

trends pose constraints in the long-term water supply and resource availability. This might result in 

yields of irrigated crops being lower on average and more variable (Galioto et al. 2017).  

In this framework, the most relevant role is played by WAs, which see the need to solve 

climate uncertainty in their water allocation activities (Kirchhoff et al. 2013; Cavazza et al. 2018). 

Their objective is to maximize farm revenues in the basin they are managing, while minimizing water 

use and the related costs. The main issues WAs are facing are related with the availability and 

management of the resource (Li et al. 2016), inability to meet the target farmers’ demand (Archibald 

and Marshall 2018) and missed water savings due to unpredicted rains (Archibald and Marshall 

2018). As a result, WAs are extremely sensitive to uncertainty, needing to plan water allocation now 

to accomplish future and uncertain climate settings (Giupponi 2014). 

2.2.1 Information provision and ICT adoption in Climate Change adaptation 

The common element of both CC-related issues above described is linked with uncertainty 

on future climate events: if climate shocks could be better anticipated, farmers and WAs would 

protect themselves; if future climate trends could be known, farmers and WAs would tailor 

production systems to fit future settings. In this context, meteorological sciences can provide 

forecasts of climate fluctuations and decrease the level of climate-uncertainty (Hansen 2002). With 

such information DMs would be better equipped in CC adaptation (World Metereological 

Organization 2015). Accordingly, in presence of uncertainty regarding the occurrence of alternative 

climate states, forecasts have the potential of reducing variance in the upcoming events’ probability 

distributions (Meza et al. 2008).  
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In parallel with the development of forecasts capability, ICTs are continuously growing and, 

by providing climate information, are potentially helpful in favoring adaptation. For this reason, ICTs 

are considered as strategic to aid decisions under climate uncertainty in agriculture (Crean et al. 

2015) and in water management (Kirchhoff et al. 2013). The integration of ICT-information in 

decision processes can help irrigating farmers achieving water savings and higher yields with lower 

variances (Galioto et al. 2017). Further, if also used by WAs, ICT can provide the information needed 

to implement efficient irrigation management plans capable of delivering farmers the right amount 

of water at the right time (O’Mahony et al. 2016). A specific potential is then identified at the WA 

level where such tools would help mitigating agricultural losses from climate shocks and climate 

variability (Cavazza et al. 2018). This is why there is a strong need for policies to favor the 

development and uptake of ICT for water management in agriculture (Irrigants d’Europe 2018; 

Giupponi 2014). 

2.2.2 State of the art in ICT adoption 

The topic of ICT adoption in agriculture is of growing relevance and numerous ICT 

development initiatives have been carried out to aid the sector (Aker et al. 2016). Despite being a 

niche in this field, the use of such technologies for water/irrigation management is considered one 

of the most promising applications (Jeuland et al. 2018). This is confirmed by the growing body of 

articles published on the topic (Figure 1) and by the interest in the applied economic literature 

(Jeuland et al. 2018; Martin 2016; Giupponi 2014). 

 
Figure 1: N. of articles on ICT adoption in agriculture water management 
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Source: own elaboration from data obtained with the search in Scopus (dated 04/04/2019) having the following parameters: TITLE-

ABS-KEY ((ICT OR DSS OR "climate services”) AND agriculture AND ( "water management" OR  irrigation)) 

Regardless the great interest for ICT, in many cases their impact is not well-defined and 

results of applied economic studies are extremely variable (Aker et al. 2016). ICT can provide 

benefits only if information delivered is eventually implemented by DMs to improve decisions 

(Vogel, Letson and Herrick 2017). As evident, this occurs only when information content answers 

DMs’ needs (Furman et al. 2011) and its form is compatible with technical restrictions, such as 

timeliness of information provision or spatial scale (Vogel et al. 2017). It is not only information 

usability which conditions ICT-benefits; DM’s behavior can strongly affect ICT-information 

implementation. Tumbo et al. (Tumbo et al. 2018) in their analyses found that farmers in Tanzania 

are seeking ICT-information to adapt to CC, especially in their irrigation activities. Though, they 

highlight that uncertainty on ICT reliability can limit information uptake. Nesheim et al. (Nesheim, 

Barkved and Bharti 2017) found that the use of ICT in India has not reached its potential and many 

farmers do not implement the forecast received. This is mainly due to farmers not understanding 

information received or having doubts on ICT reliability (Nesheim et al. 2017). Kirchoff et al. 

(Kirchhoff et al. 2013) carried out qualitative and quantitative analyses on ICT adoption for water 

management in the U. S. and Brazil. They found that, when DMs perceived information reliable, this 

helped information uptake and efficient water management; while, in case of skepticism, 

information was not implemented (Kirchhoff et al. 2013). Hawoth et al. (Haworth et al. 2018) 

underline that, between all the 27 ICT reviewed, only a few were actually used to improve decisions. 

They identify restrictions for ICT-information implementation, between which the most relevant 

ones are associated with information quality and perceived reliability. Lack of knowledge on the 

technology’s reliability is an issue highlighted also by O’Mahony et al. (O’Mahony et al. 2016) who 

show that it can prevent achieving sustainable water management practices in Australian 

agriculture. Accordingly, if the ICT or the information itself are considered unreliable or are mis-

interpreted, DMs do not implement the message received and gain no benefit from the technology 

(Aker et al. 2016).  

Such findings are confirmed by several quantitative studies, out of which a selection of 

empirical application for ICT benefits estimations is reported in Table 1. As can be seen from the 

table, benefits can get null and every paper highlight elements of the decision environment or the 

information itself which prevent ICT-information implementation. Although the table is not 
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comprehensive of all the work done in the field, it allows to understand how the impact of ICT-

information implementation is still mixed. To gain better insights from this topic, please refer to the 

works of Jeuland et al. and Meza et al. (Jeuland et al. 2018; Meza et al. 2008) which provide 

respectively reviews of studies for ICT-information benefits estimation in water management 

(predominantly irrigation) and in the broader agricultural sector.  

This situation in which not all the DMs who receive information actually implement it, and 

both technical, but most of all, behavioral barriers undermine information implementation, brings 

to unclear settings. Further, even when ICT information is implemented and put into actions, 

quantitative studies highlight that in many occasions there is a lack of benefits from ICT-aided 

decision processes. This poses constraints for ICT development and growth because investments 

are not easily justifiable and returns doubtful (Jeuland et al. 2018).   
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Table 1: Examples of estimation of benefits from information implementation 

Authors Journal Field of 
application 

Case 
study 

Type of 
information Benefits Constraints 

Bouma, 
van der 
Woerd 
and Kuik 
2009 

Journal of 
Environme
ntal 
Manageme
nt 

Water 
quality 

Netherla
nds 

Earth 
observations  

0-
0.4mln€ 

Quality of information; 
uncertainty on reliability; DM's 
prior expectations; lack of 
confidence on informed 
actions; political barriers 

Letson 
and Solı 
2013 

Regional 
Environme
ntal 
Change 

Agriculture U.S.A. Climate 
information 

0-
3.4mln$ 

Agricultural sector; region; use 
of discrete-type forecasts 

Crean et 
al. 2015 

Australian 
Journal of 
Agricultural 
and 
Resource 
Economics 

Agriculture Australia Seasonal 
forecasts 

0- 
55$/ha 

Quality of information; crop-
planting time; poor timeliness 
of information provision 

Kusunose 
and 
Mahmood 
2016 

Agricultural 
Systems Crop plan U.S.A. Weather 

forecasts 
0- 
12$/ha 

Quality of information; 
management strategies; 
uncertainty on reliability; crops 
revenues 

Fernandez 
et al. 2016 

Climatic 
Change Agriculture U.S.A. 

Decadal 
climate 
variability 

0-
1.7$/ha 

Quality of information; 
cropmix; irrigation 

Galioto et 
al. 2017 Water Irrigation 

Denmark
, 
Portugal, 
Spain, 
Greece 
Italy 

Crop water 
requirement 

0-
250€/ha 

Quality of information; 
irrigation water cost; output 
price; risk aversion 

Cavazza et 
al. 2018 Water 

Water 
managemen
t in 
agriculture 

Italy 

Long- and 
short-term 
crop water 
requirement 

0-
26.2€/ha 

Quality of information; the 
stake in the decision process; 
time of information provision; 
land use; water delivery system 

An-Vo et 
al. 2019 

European 
Journal of 
Agronomy 

Sugarcane 
irrigation 

Australia Seasonal 
forecasts 

0-
200$/ha 

Quality of information; 
uncertainty on reliability; type 
of forecast 

2.3 Behavioral approaches to uncertainty 
In the words of Machina and Siniscalchi “Almost by its very nature, the phenomenon of 

uncertainty is ill-defined” (Machina and Siniscalchi 2014). This is clear after considering the number 

of theories developed to frame the problem; often one theory is in discordance with the other. In 

this chapter we aim at providing a short review of the major theories explaining decision making 

under uncertainty to build the context in which we will develop the modelling foundations to 

achieve our objectives. 
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2.3.1 Perceptions and attitudes 

Decisions are affected by the DM’s behavioral perspective with a relevant role played by 

attitudes toward uncertainty (Letson et al. 2009). In every decision under uncertainty, risk is 

involved and aversion to it might cause DMs to sacrifice part of their revenues to lower the 

variability of uncertain outcomes (Meza et al. 2008). This is confirmed by An-Vo et al (An-Vo et al. 

2019) for the irrigating sector, where uncertainty leads to the implementation of inefficient 

precautionary actions. Information provision could lower the unpredicted climate variability and 

allow uncertainty averse DMs to relax protective actions and increase their expected utility. But this 

is not always true and, depending on the source, a new piece of information could even raise 

outcomes variability under the DM’s perspective (Yokota and Thompson 2004). The topic of 

information implementation and aversion to uncertainty is widely debated in literature. Abbas et 

al. (Abbas et al. 2013) found that more uncertainty averse DMs will gain higher benefits in terms of 

utility from information, but this monotonous relation fails if the assumption of perfect information 

is released. A relevant contribution to the topic is given by Smith and Ulu (Smith and Ulu 2017) who 

showed a series of scenarios where uncertainty averse DMs did or did not seek for a new piece of 

information. He concludes that the relation between benefits from receiving a new piece of 

information and the degree of aversion to uncertainty is very situation dependent.  

Besides attitudes toward uncertainty, the perception of uncertainty in itself is extremely 

important in affecting decisions for ICT adoption (Nesheim et al. 2017) and perceived uncertainty 

over forecasts reliability is found to be limiting information uptake (An-Vo et al. 2019). One strategy 

proposed to solve this uncertainty is in the estimation of the forecast reliability and in the 

incorporation of this information in the message itself (Kusunose and Mahmood 2016). This is 

commonly done with probabilistic climate forecasts, but still DMs could doubt on the probability 

estimation in itself. This explains one of the reasons why DM’s beliefs are needed to be accounted 

for in decision analyses (Hardaker and Lien 2010). Nevertheless, in literature important challenges 

remain in understanding the role of perceptions and attitudes (Jeuland et al. 2018) and most of the 

studies in applied economics make relevant behavioral assumptions to overcome the issue 

(Bobojonov et al. 2016). This gap in applied economics motivated us to seek for theories in the 

broader economic literature to understand the problem.  
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2.3.2 Toward a framework for uncertainty modelling 

To solve the relation between uncertainty aversion, perceptions and information 

implementation, a better picture of what uncertainty is built of is needed. Useful insights can be 

gained from decision theories developed in the economic literature and describing decision making 

under uncertainty. 

The representation of preferences over uncertain actions meaning actions whose payoff is 

dependent on the emergence of uncertain states, is firstly addressed by von Neumann and 

Morgenstern (von Neumann and Morgenstern 1947). They developed the Bernoullian (Bernoulli 

1954) concept of expected utility and outlined the dominant theory to describe attitudes toward 

uncertainty (Hardaker and Lien 2010). The theory is defined on the basis of the following four 

axioms: 

• A1 – Completeness: every state of the world involved in a decision can be completely ranked. 

• A2 – Transitivity:  the property of transitivity holds for preferences for alternative states. 

• A3 – Independence: preferences for alternative states are context independent. 

• A4 – Continuity: preferences for alternative states are expressed on a nominal scale. 

By holding these four axioms, a wide variety of utility functions have been developed in 

literature to represent DM’s preferences under uncertainty (Hardaker et al. 2015). The common 

characteristic of all von Neuman-Morgenstern’s utility functions is that concave functions represent 

an uncertainty aversion behavior, while if linear or convex, neutrality or love for uncertainty are 

modelled respectively. 

With regards to the representation of perceptions over uncertainty, the first theory 

considered in this research is the one proposed by Knight (Knight 1921). He was the earliest who 

gave a complete picture of uncertainty. His main contribution was in distinguishing between: (i) 

measurable uncertainty, occurring when the statistical frequencies of events are known to the DM 

and (ii) un-measurable uncertainty when they are not. The former uncertainty was defined as pure 

risk, while the concept of un-measurable uncertainty remained unclear (Machina and Siniscalchi 

2014). Even Knight in his work considered the fact that under un-measurable uncertainty DMs 

formed subjective “probability estimates” and treated them as risk. Accordingly, he postulated that 

“there is no difference for conduct between a measurable risk and an unmeasurable uncertainty”. 
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The idea of subjective probabilities was further developed by Keynes (Keynes 1921) and Ramsey 

(Ramsey 1926) who both contributed to the formulation of the concept of “degrees of belief” 

representing the DMs’ rational probabilistic estimation in condition of un-measurable uncertainties. 

Because they, and the vast literature following, recognized that most of the decisions were 

characterized by the absence of measurable frequencies; the concept of subjective probabilities had 

a large success. This is especially true after Savage (Savage 1954) built on it the theory of Subjective 

Expected Utility (SEU). Savage defined a theory of decision making under uncertainty characterized 

by preferences over acts with uncertain outcomes being compliant of 7 axioms, out of which the 

most studied ones are described as follows: 

• A1 – Complete ordering: there is a preference relation over uncertain actions which is 

complete, reflexive and transitive. 

• A2 – Sure-Thing principle: the preference relation over two uncertain actions is not affected 

by their payoffs in states where both actions have the same payoff. 

• A3 – State-wise monotonicity: in a given state, one action is preferred to another if and only 

if their payoff is equally ordered. 

• A4 – Independence between payoffs and probabilities: given preferences between payoffs, 

the choice between two uncertain actions is not affected by the value of the payoffs. 

When representing choices under uncertainty, the SEU model developed by Savage allowed 

to distinguish between subjective probability and preferences. Often, these take the form of a von 

Neumann-Morgernstern’s (von Neumann and Morgenstern 1947) utility function. The SEU 

generated from an action whose state-dependent payoff is 𝑓(𝑠), takes the following expectational 

form (Machina and Siniscalchi 2014) (Eq. 1): 

𝑉(𝑓(𝑠)) = ' 𝑢)𝑓(𝑠)*𝑑𝜋(𝑠)
-

≡ 𝔼0(1)𝑢 ∘ 𝑓(𝑠) 

Eq. 1 

Where S describes the state space and elements of S (state of the world, 𝑠 ∈ 𝑆) represent all 

the possible realizations of uncertainty; 𝑢(•) is a von Neumann-Morgenstern utility function and 

𝜋(𝑠) is the subjective probability on S. The practical implication of the theory is that the DM builds 

probabilistic representations of states and uses these linearly by weighting uncertain payoffs. With 
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the application of the theory, observed decisions under uncertainty can be used to assess DM’s 

beliefs (Machina and Siniscalchi 2014). This is true even in presence of measured frequencies where 

the DM might doubt their reliability and assuming that they will represent future likelihoods is a 

subjective judgment per se (Hardaker and Lien 2010). 

Despite the great success of SEU, there have been applications that showed some of its 

limitations. Between these, Allais (Allais 1953) highlighted that, even with objective lotteries, 

preferences are context-dependent and, in some cases, the von Neuman-Morgernstern’s 

independence axiom did not hold. In turn, Ellsberg  (Ellsberg 1961) showed exceptions of Savage 

postulates in describing perceptions. Finally, Kanemann (Kahneman et al. 1979), by developing 

prospect theory, presented that often both preferences and perceptions did not follow von 

Neuman-Morgernstern’s and Savage’s axioms respectively. Other theories describing perceptions 

and preferences have been developed in literature, but here are cited just the most significant for 

clear space limits. 

2.4 Ambiguity and ICT-information implementation 
Because every exception to the SEU theory tend to be specific to the uncertain prospect 

considered, in this work we believe that the settings described by Ellsberg (Ellsberg 1961) are the 

ones most powerful in representing the uncertainty environment affecting decision processes for 

ICT-information implementation. In the following sections we will briefly describe the theory of 

ambiguity developed by Ellsberg and the ample literature following him as well as the motivations 

which prompted us to argue that this theory can provide the foundations for developing a model to 

fill the knowledge gap around the drivers for ICT-information implementation. 

2.4.1 The theory of ambiguity and ambiguity aversion 

In 1961, during his PhD studies, Daniel Ellsberg reconsidered Knight’s distinction of 

uncertainty. In his work he focused on un-measurable uncertainties to show important exceptions 

to the Savage axioms which impaired the capability of SEU to represent decisions. He considered a 

series of thought experiments, out of which, the most famous is the one involving two urns. There 

is a transparent urn with observable content of 50 red and 50 black balls and another opaque urn 

with the same amount of balls, but with unknown ratio between the two colors. While in the 
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transparent urn the DM faces a situation of pure risk, because probabilities are observable and 

measurable; the bet in the opaque urn is different because such measurement is not possible. To 

describe the opaque urn’s content (hence the probability of a specific ball’s color) hundred 

combinations between red and black balls are possible. This raises uncertainty over which 

combination is the one really describing the urn’s content. 

In such settings, Ellsberg considered that most of the DMs would have preferred to place a 

bet on the ball’s color from a draw in the transparent urn, instead of a draw from the urn with 

unknown balls’ ratio. For a given prize in the bet, he proved that this choice cannot only be driven 

by a mere difference in subjective probabilities. Rather, the preference to bet on the transparent 

urn and, in general, the preference for gambles with known probabilities, is driven by a behavioral 

phenomenon called AA. The concept of AA is similar to RA, where ambiguity is identified as: 

“the nature of one’s information concerning the relative likelihood of events... a quality 

depending on the amount, type, reliability and ‘unanimity’ of information, and giving rise to one’s 

degree of ‘confidence’ in an estimation of relative likelihoods.” (Ellsberg 1961). 

Or, in the words of Camerer and Weber (Camerer and Weber 1992), ambiguity is more clearly 

defined as “uncertainty about probability, created by missing information that is relevant and could 

be known”. Overall, similarly to what Knight did, uncertainty is then characterized by two elements: 

(i) risk, represented by the share of measurable uncertainty or estimated trough subjective 

probabilities, and (ii) ambiguity, expressing the degree of confidence over these probability 

estimations. 

Because ambiguity affects a large share of decisions under uncertainty, there have been 

several experimental studies showing its relevance in decision making. Results highlight that AA 

impacts are comparable with, if not higher than, RA (Cubitt, van de Kuilen and Mukerji 2018). 

Further, these studies showed that AA is the major preference behavior of DMs under ambiguity, 

because DMs dislike situations where more than one probability estimation is possible (Etner, Jeleva 

and Tallon 2012). The presence of ambiguity in probability estimations, even if subjective, is in itself 

an exception to the Savage’s postulates. Moreover, AA implies that decisions do not only reveal 

subjective probabilities, but also relative preferences for expected outcomes. There are situations, 

such as in the urns’ examples (and, as described later, in ICT-information implementation), in which 
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we need to distinguish between the two elements of uncertainty to understand DM’s behavior. In 

these situations, SEU models cannot be applied straightforwardly but ambiguity sensitive 

preferences have to be accounted for.  

2.4.2 Ambiguity and ICT-information 

The capability of the theory developed by Ellsberg to provide a complete picture of the 

elements building uncertainty explains its large adoption in different decision problems (Machina 

and Siniscalchi 2014). In the majority of decisions, DMs have to cope with a certain level of risk and 

ambiguity. The latter expresses the degree of confidence the DM puts on the former (Visschers 

2017). This situation is typical with decisions under CC (Koundouri et al. 2017). Here, probabilistic 

distributions built with past records are doubted to be representing future climate trends and 

different models propose different projections. Ambiguity can be found in climate forecasts too. 

Uncertainty in forecasts is characterized by two elements: (i) the intrinsic variability of climate 

events, represented by probability distributions and (ii) the uncertainty about the forecast itself 

(World Metereological Organization 2015). The first uncertainty can be expressed as risk, over 

which, the second uncertainty emerges because the DM does not know whether the forecast is 

reliable. This lack of knowledge raise ambiguity because several forecasts could be delivered and 

the DM is not sure whether the one received is really representing future states. One common way 

to deal with such complex uncertainty settings in forecasts is through uncertainty folding (Allen and 

Eckel 2012). It consists in folding ambiguity with risk to obtain a single probability estimate used as 

input in SEU models. Though the method is quite simple, it has been shown by Allen (Allen and Eckel 

2012) to fail in representing real decision making with important informational losses. 

As with forecasts information, ambiguity rises even with the adoption of new technologies 

(Engle-Warnick and Laszlo 2017). When a DM is faced with a new technology, he is uncertain on the 

probability of such technology to be good performing. In this context, even if the DM has 

expectations or information from the developer, neither of the two probability estimations can be 

reliably assessed. As a result, in the first stages of a new technology, AA has the potential to strongly 

limit its diffusion. Only after having gained enough experience with the new technology, prior 

expectations can be confirmed or rejected and ambiguity solved in a learning process (Barham et 

al. 2015). Most of the applied economic literature consider ambiguity generated by new 

technologies to be risk, thereby losing precious DM’s behavioral insights (Ross, Santos and Capon 
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2012). If risk and ambiguity are treated as one, risk-averse and ambiguity-averse DMs would behave 

equally. Both would be less prone in experimenting new technologies or implementing new forecast 

information, but this does not always happen. A new technology could be risk-reducing but 

ambiguous, or the opposite, it is possible to gain information reducing ambiguity but not risk 

(Nocetti 2018). In this complex framework, Snow (Snow 2010) defined the relation between 

information value and AA, where information reducing ambiguity is always sought by AA individuals, 

and the benefits from its implementation rise with the degree of aversion. The same applies with 

information reducing risk and RA. But while information solving ambiguity is valued only by AA DMs, 

if information solving risk completely disclose states of the world, its benefits rise with both AA and 

RA (Snow 2010). These phenomena are extremely important in the context of new technology 

adoption. If a new technology reduces the variability of outcomes, it is risk-decreasing but, as said 

before, it might raise ambiguity. Here, RA plays in favor of the technology, while AA might limit its 

implementation.  

2.5 Discussion: lessons learned from literature and implications for 
further research 

The complex nature of uncertainty has been widely analyzed in the economic literature’s 

history. In the previous sections we have considered just a small share of theories developed to 

better understand the various behavioral aspects of decision making under uncertainty. Between 

these, the one of AA is considered the most useful to understand the behavior of forecast 

implementation (Allen and Eckel 2012) or new technology adoption (Barham et al. 2014). Innovative 

technologies are frequently raising ambiguity either because the probability of a good performance 

is uncertain or, as in the case of ICT-climate-information, because they provide probabilistic 

information whose reliability is unknown. A new platform developed to deliver climate forecasts to 

DMs can be considered risk reducing because it lowers the variance in the upcoming climate states’ 

distribution. If so, it is always positively valued and implemented by RA DMs, given technical barriers 

are overcame. All the same, the DM does not know if the platform (hence the piece of information 

received) is reliable. This might raise ambiguity and is discouraging AA individuals to implement ICT-

information until they do not gain enough information, or even better experience, on the 

technology’s reliability. Accordingly, with experience the DM would learn if the technology is 

reliable and solve ambiguity (Gars and Ward 2019). The phenomenon is identified as familiarity with 
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a technology and might allow AA individuals to implement information received. While risk is often 

intrinsic to the technology and can hardly be modified, by providing ambiguity-reducing information 

or allowing DMs experience with the ICT, even AA individuals might find benefits from information.  

The approach proposed to deal with uncertainty in ICT adoption is expected to be capable of 

providing the required framing for applied models aiming at further deepening the issue of low ICT-

information implementation. The main limitation of the results of this review is in the absence of a 

practical example with which to test the framework developed. Further research is suggested on 

the topic, especially focusing on modelling application of ambiguity sensitive preferences. In this 

field, theoretical alternatives are proposed (Machina and Siniscalchi 2014). Between these, the 

smooth ambiguity model developed by Klibanoff, Marinacci and Mukerji (Klibanoff, Marinacci and 

Mukerji 2005) is considered the best performing in accounting for AA and RA behavior (Machina 

and Siniscalchi 2014). It allows the separation between perceptions and attitudes, both with 

reference to risk and ambiguity. This would permit comparing the condition of ICT-information 

implementation when the DM is uncertain on its reliability and after he has gained enough 

experience on the technology’s reliability. In such settings, uncertainty will be firstly made by risk 

and ambiguity, then, with experience, ambiguity vanishes, and risk remains unaltered.  

2.6 Conclusions and policy implications 
In this chapter we started underlining the need for climate information to favor irrigated 

agriculture in CC adaptation. At this end ICTs are recognized to be one of the most promising tool 

to aid the sector (H. de Coninck et al. 2018). Through a brief review of applied economic studies, we 

highlighted a lack of success of many ICT-development initiatives (Vogel et al. 2017). Technical 

barriers undermine information implementation and benefits from ICT-aided decision processes are 

unclear and extremely variable. This poses constraints for ICT development and growth because 

investments are not easily justifiable and returns doubtful (Jeuland et al. 2018).  

Other than technical barriers, one of the major issues highlighted in both qualitative and 

quantitative studies is that new ICT platforms generate uncertainty on information reliability. 

Because of this, DMs’ behavior appears to be strongly limiting ICT-information implementation, but 

the topic remains to be deepened. Accordingly, we found no study in the applied economic 

literature to be addressing this issue and providing the needed theoretical support to model 
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behavior in ICT-aided decisions. To face this problem, we sought for support in the wider economic 

literature. Here, many theories have been developed, but the one considered to best fit with our 

uncertainty settings is the one of AA developed by Ellsberg (Ellsberg, 1961). With it, we framed 

uncertainty and explained why ambiguity and AA are key elements in describing the issue of low 

rates in new ICT-information implementation. Our approach is different from most of applied 

studies where RA is considered to be the only behavioral driver for technology adoption and 

different sources of uncertainty are treated indistinctly. Because ICT are peculiar technologies 

providing information capable of reducing risk but raising ambiguity, AA need to be analyzed to 

better explain the process of ICT-information implementation. Accordingly, since the reliability of 

new platforms is uncertain, an AA behavior can impede DMs in implementing ICT-information. Key 

role is played by a DM experiencing with the new technology without necessarily need to buy 

information received or put information into actions at his own risk. This would help WAs or farmers 

to learn whether the ICT provided is reliable or not, therefore reducing or solving ambiguity. 

What we have learned on how ambiguity enters into ICT-information uptake in irrigated 

agriculture is of strong policy relevance too. Accordingly, to be able to implement optimal strategies 

for ICT development and adoption, it is important to understand how DMs perceive new pieces of 

information (Visschers 2017). ICT developers should favor the involvement of end users and offer 

long trials or demonstrative events rather than a plug and play approach. Having hands on the 

platform, without necessarily implementing its information at DM’s own expenses, allows users to 

gain experience on ICT reliability. This would lower ambiguity and potentially foster the diffusion of 

ICT-information implementation. If applied studies will find that ambiguity affects decisions, policy 

should aim at ensuring DMs have access to ambiguity-reducing information on the technology’s 

performance (Ross et al. 2012). Further, better knowledge on the impacts that behavior has on ICT 

adoption would support uncertainty-management policies. If ambiguity is prevailing over risk, 

demonstrative initiatives and extension services addressed to show ICT reliability will better help 

DMs than ex-post risk management tools.  

The above described policies call for two kinds of model applications: one is related with the 

estimation of potential ICT-benefits; the other with the assessment of impacts of AA in the process 

of ICT implementation. If research will be developed in these ways, it will provide the evidences 

needed by policy makers for effective support to the sector. On the one hand, assessments of 

potential ICT-benefits would allow DMs being less doubtful on the economic performances of ICT 
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tools for irrigated agriculture. These would help investments for ICT development and adoption, 

overall facilitating the transition from precautionary decisions based on experience to ICT-

supported irrigation plans. Further, empirical assessments would allow to highlight restrictions for 

information usability which undermine ICT-benefits. This would support ICT-developers in targeting 

technologies to fit end users’ informational needs. On the other hand, because in this transition AA 

has the potential to undermine information implementation, the impacts of DM’s behavior must be 

assessed. Here, better insights on the behavioral perspective affecting ICT adoption would highlight 

the critical issues in the decision system to be targeted with ambiguity-management policies. On 

these two modelling developments will focus the following Chapter 3 and 4, where, respectively, 

we will develop a model to assess ICT benefits at the WA-level and a model to estimate the impacts 

of AA in the process of ICT implementation in irrigation districts. 
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Chapter 3 

3. The role of ICT in improving sequential decisions for water 
management in agriculture1 

3.1 Introduction and objectives 
For the management of water resources, WAs have to take decisions before knowing the 

weather conditions they are going to face. The high variability of weather patterns increases the 

level of uncertainty regarding future weather conditions causing a moving-target problem. In it, 

every year, due to CC, WAs are less and less able to take decisions consistent with the weather 

pattern of the following season due to the decreased predictability of events and to the less and 

less relevant use of past records to take future decisions. As a consequence, current water 

management decisions are often a compromise between the outcome determined by all the 

weather states that could emerge. Such compromise is balanced to the selection of less risky 

decisions instead of the decision that is best suited for the state that will emerge (Meza et al. 2008). 

As a consequence, WAs’ take sub-optimal decisions, with negative impacts on profits and water 

uses (Hallstrom 2004). In this respect the availability of ICTs might contribute on mitigating the 

moving target problem by providing timely information on future climate and weather conditions, 

thereby reducing uncertainty before and during the irrigating season (Fernandez et al. 2016). 

Overall, the ICT-informed decision process of water management could help irrigated agriculture by 

reducing losses from climate shocks and taking advantage of favorable years (Deichmann, Goyal and 

Mishra 2016; Guerra et al. 2017).  

These potentialities of ICTs for irrigation management together with the uncertainties on ICT 

benefits highlighted in 0 motivated our study. The objective is to address the issues of restrictions 

to information usability and quantitatively estimate economic benefits from the ICT-informed 

decision process of water management in agriculture at the WA-level. In this respect, a theoretical 

 

1 Published paper 
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model is designed based on insights from the BDT. It assesses the economic benefits brought by 

new pieces of information, influencing WA’s perception of uncertain events with direct 

consequences on its strategic decisions. Specifically, the model investigates the role played by 

information in supporting WAs to rationalize the management of water resources and the 

prevention of extreme weather events impacts. Because decisions on land and water allocation are 

sequential across the season and influenced one by the other, the methodology accounts for the 

passing of time in the decision process to assess how the time of information provision affects its 

usability. An empirical application is also provided to test the model by comparing current 

information tools with a new information technology developed in the MOSES H2020 European 

project. 

Developing and applying a method to assess the economic value of ICT seems to be an 

interesting topic for agricultural and resources economists (Tyrychtr et al. 2016). Moreover, 

considering the growing societal demand for climate services together with the limited budget 

availability (Vogel et al. 2017), this topic is of high policy relevance. The novelty of the present paper 

is twofold, both in the theoretical model and in its empirical application. To the best of author’ 

knowledge, the former stands out from the existing literature for considering the timing variable in 

sequential and inter-correlated decision steps. The empirical application of the model is also 

original: to the best of author' knowledge no economic research deals with ICT adoption by WA for 

the management of irrigation. 

The remainder of the chapter is organized as follows: in Section 3.2 we review the recent 

literature on the assessment of ICT; in Section 3.3 we describe the case study; in Section 3.4 we 

define the methodology and the empirical implementation; in Section 3.5 we show our main results; 

in Section 3.6 we discuss the main findings and in Section 3.7 we draw final remarks. 

3.2 State of the art  
In agriculture, numerous ICTs have been developed and disseminated (Aker et al. 2016). 

Great potential is found for such technologies in contributing to food security and climate change 

adaptation in the agricultural sector (Vogel et al. 2017; Nakasone and Torero 2016). Qualitative 

studies showed their potential benefits for both developed and developing countries (Martin 2016). 

Among these, Deichmann, Goyal, and Mishra (Deichmann et al. 2016) identified the following: (i) 



 42 

promoting economic performance, (ii) raising efficiency, and (iii) fostering innovation. Nevertheless, 

Aker et al. (Aker et al. 2016) suggested that ICTs impacts on decisions outcomes are highly variable. 

One reason of this variability lies in the findings of Nakasone and Torero (Nakasone and Torero 

2016); according to them, ICTs are successful only when key information needs are addressed. In 

addition, many ICT projects do not reach the expected success because developers take for granted 

information to be useful (Vogel et al. 2017). As a consequence, ICT developers tend to poorly consult 

end users on their information requirements and the resulting ICT may turn out to be inapplicable 

in their decision process. Quantitative analyses bring to similar conclusions. Accordingly, Macauley 

(Macauley 2006) finds that information services are useless if the WA do not need the information 

provided. To measure ICT benefits, Macauley treats information like other production factors, with 

both a value and a cost (Macauley 2006). According to him, Keisler et al. (Keisler et al. 2014)  defined 

the Value of Information (VOI) as an increase in the Expected Value (EV) of the decision outcome 

arising from the introduction of a new piece of information in the decision process. Quantitative 

analysis determined the VOI not only by accounting for the characteristics of the information 

provided, but also for the environment in which decisions take place (Meza et al. 2008). The 

elements characterizing information and determining its value are:  

a) content of information: the WA must be able to implement the additional information in the 

decision process; if the WA is not able to act upon information, it has no value for it; 

b) accuracy of information: the more accurate information is, the smaller will be the risk of 

failures and the higher the VOI; imprecise information is not capable of inducing any change 

in WA beliefs; 

c) timing of information provision: information must be provided at the right time in the 

decision process; late messages have no value. 

The timing factor (point c) plays a key role in influencing the accuracy of information (point 

b). Usually, information provided well in advance to the occurrence of an event might condition 

strategic decisions, but it will not be so accurate. If information is provided with a short advance, 

the decisions influenced by information will not be so strategic, but the information will be likely 

more accurate. This is typically the case of emerging information, as weather forecasts. Waiting to 

get more precise information about the occurrence of events has a cost (Smith and Ulu 2017). The 

cost of waiting is often identified with losses due to sub-optimal decision performances 

(Bikhchandani, Hirshleifer and Riley 2013). Taking into account such timing element adds complexity 
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to models. Nevertheless, it leads to results more reliable than those coming out from analyses that 

ignore this important factor (Hardaker et al. 2015). 

Some parameters of the decision environment are capable of affecting the VOI too; among 

these, the following can be identified as the most important (Bikhchandani et al. 2013): 

a) uncertainty in the decision process: the higher climate variability is, the higher will be the 

benefits brought by information; 

b) the stake in the decision: the higher is the variance of decision outcome the more the WA 

will be willing to use information for reducing uncertainty. 

As a result, each element characterizing information or the decision environment have the 

potential to set the VOI to zero (Crean et al. 2015). For these reasons, the evaluation of investments 

in ICT must go beyond the traditional analysis of costs and revenues by accounting for the 

peculiarities of the VOI. To do so Bouma (Bouma et al. 2009) applied BDT to model the VOI from 

imperfect satellite-based technologies. According to them, Hardaker and Lien (Hardaker and Lien 

2010) in their literature analyses found BDT a suitable tool to model decision making under 

uncertainty. Finally, Galioto et al. (Galioto et al. 2017) measured the VOI deriving from sensors 

adopted in precise irrigation technologies through a model based on the framework of BDT.  

3.3 Case Study 

3.3.1 Description of the case study area 

The WA selected as case study is a reclamation and irrigation board named Consorzio di 

Bonifica della Romagna (CBR) and located in northern Italy. It covers 352,456 hectares out of which 

around 165,000 hectares are cultivated (1.2% of the Italian cultivated land). Although the basin 

includes plain, hilly and mountain areas the case study region is centered on irrigation districts 

situated in plain areas (Figure 2). Here the landscape is characterized by a dense irrigation network, 

where the majority of water delivery infrastructures is made by open-air canals. In the basin 4.8% 

and 1.4% of the Italian fruits and vegetables are respectively produced, generating an estimated 

revenue of around 700 million euros per year. The climate of the region is continental (summer 

maximum temperatures above 30 °C), mitigated by the sea influence in the North-Eastern part. 

Drought events are frequent in summer with a variable intensity. Although the total amount of 
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rainfall appears to be stable (750-850 mm), in the last few years it was recorded a change of the 

rainfall distribution. Specifically, it was noticed an increased frequency of heavy rainfall events 

alternated with longer periods of severe droughts characterizing a dry irrigating season.  

The case study region is selected because its decision process for water management is 

representative for other WAs located in Mediterranean countries where climate uncertainty 

strongly affects decisions for land and water allocation before and during the irrigating season. 

Further, the prevalence of open-air canals in the water delivery network enhances both the 

challenges and the potentialities of ICT adoption at the WA level. Accordingly, with canals technical 

barriers require the WA to anticipate decisions, making forecasts more needed compared to similar 

conditions with pressurized pipe networks. Finally, the CBR’s management board is considering 

adopting a new information service named MOSES and developed in the framework of the MOSES 

H2020 European project, recently introduced to fulfil WA’s requirements. 

 

  
Figure 2: Case study region 

 
The predominant water source for irrigation is the Canale Emiliano Romagnolo (CER). The 

CER is an open-air canal which diverts part of the water from the Po river to several irrigation boards. 

The irrigating season generally takes place from May to September. However due to yearly 
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variability it can be anticipated or delayed. Peaks in water delivery are in June and July, when crop 

water demand is higher. The operational unit at which decisions on water management are taken 

is the irrigation district. The basin of the CBR counts 81 irrigation districts located in a plain area. 

The average irrigated area is 68 hectares per district and the average length of the water delivery 

network is 6Km per district. To verify the usability MOSES services, the WA decided to narrow down 

the scope of investigation to a sub-group of its districts. Specifically, the WA selected only 32 of the 

81 districts covering an area of 18,845 hectares out of which 6,012 hectares are cultivated. Such 

districts have the common characteristics of a unique water source (represented by the CER) that is 

managed on demand, and of an irrigation network characterized by open-air canals. On average the 

irrigated land is around 2,878 hectares, 48% of the cultivated land (Figure 3). This area corresponds 

to the land that can be irrigated in conditions of average operational capacity of the water supply 

network. However, in regular seasons the network reaches its maximum operational capacity being 

able to satisfy the demand from irrigated crops for around 3,741hectares (130% of the average 

operational capacity). On the other hand, in dry seasons, the water supply network reaches its 

minimum operational capacity and the WA is able to satisfy the demand for irrigation for 2,014 

hectares (70% of the average operational capacity). Despite the fluctuations in rainfall patterns, the 

land use tends to be constant, where winter crops are prevailing (wheat, barley and meadow), 

followed by perennial crops (alfalfa, orchard, vineyard) and summer crops (maize and sorghum). 

The irrigation activity is centered around maize, orchard, vineyard and horticulture; winter crops 

are generally not irrigated, while other crops such as sugar beet and alfalfa are occasionally 

irrigated.    
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Figure 3: Land use in the case study region 

 

3.3.2 Management systems and information requirements 

Before the irrigating season, the WA decides about the amount and allocation of yearly 

concessions to cultivate annual irrigated crops. Concessions to irrigate permanent crops are granted 

for the whole lifespan of the plantation. The decision on the amount of yearly concessions to irrigate 

is taken at the time of seedling/transplanting annual irrigated crops, usually in April. Typically, the 

WA forbids concessions to latest applicants if the demand for concessions exceeds the average 

operational capacity of the supply network (6,012 hectares). Under conditions of uncertainty 

regarding the rainfall pattern of the upcoming season, this decision is the best compromise between 

releasing concessions to the maximum or to the minimum operational capacity of the supply 

network. During the irrigating season and in each sector of the agricultural region supplied, the WA 

has to plan with some advance (let’s say one week) whether to deliver water to a sector or not. This 

is typically the case of surface irrigation networks supplying water to an extended agricultural 

region. In such conditions, variations in the flow of water downstream the network occurs with 

some delay with respect to upstream variations in water flows. Thereby, under uncertain weather 

conditions, usually, WAs decide to supply water on the basis of fixed flow rates varying with the 
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season and consistently with the average climatic condition of the region and with the amount of 

concessions provided.  

Under this framework, the WA is considering the possibility of using MOSES service to 

improve its capacity to condition and to satisfy the demand for water to irrigate. Specifically, the 

WA is interested in knowing the average weather conditions for the upcoming season at the time 

of seedling/transplanting and short-term forecasts about irrigation requirements in each sector of 

the region served by the WA during the irrigating season. The first piece of information might 

influence the WA’s decision on providing concessions to cultivate irrigated crops, reducing the risk 

of making wrong choices. If a dry season is forecasted, the WA might decide to limit the number of 

concessions to the minimum operational capacity of the supply network. Otherwise, if a regular 

season is forecasted, the WA could set the limit of concessions to the maximum capacity of the 

network. The second piece of information would allow the WA to know whether to deliver water in 

each sector of the network enough in advance to take timely actions, adjusting water flows with the 

demand. Thus, this additional piece of information might influence the WA decisions on changing 

the management of the supply, improving the efficiency of the supply network. However, because 

of technical barriers the WA must guarantee a threshold of minimum flow in the main canal for each 

district to allow an even water distribution. This condition does not allow the WA to effectively 

manage water supply volumes and limits its capacity to save water when the demand for water is 

low. 

3.3.3 Usability of the MOSES information service 

MOSES provides spatial-detailed information to WAs both before and during the irrigating 

season. In the first case, information is a seasonal forecast of weather conditions and crop water 

requirements. In the second case, MOSES delivers every day a seven-day forecast of crop water 

requirements and weather forecast. To produce such information, MOSES combines, as input, crop 

maps determined with satellite images, crop transpiration models, climate data and weather 

forecast information. Specifically, with crop maps, crop water requirements are estimated and 

forecasted in each plot using crop models with input from climate data and weather forecasts.  
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As seen in the previous section, MOSES predictions before the irrigating season are likely to 

be used to manage yearly concessions to irrigate. In the current condition, the WA fixes concessions 

to irrigate to the average operational capacity of the supply network. With MOSES services, if a dry 

season is forecasted, the WA would limit the number of concessions to the minimum operational 

capacity. Otherwise, in view of a regular season it will release more concessions, up to the maximum 

operational capacity. Hence, the decision due is binary: to limit concessions to the maximum 

operational capacity or to the minimum operational capacity of the water supply network. The 

benefits generated are of avoided drought losses if the dry season occurs or of higher agricultural 

revenues in case of regular season. Nevertheless, information is not perfect, and two types of errors 

can emerge:  

1. the wrong prediction of a regular season: the WA receives a message specifying a regular 

season will emerge, but eventually the season will be dry; 

2. the wrong prediction of a dry season: the WA receives a message specifying a dry season will 

emerge, but eventually the season will be regular.  

The above errors lead to higher or lower concessions than the ones actually possible causing 

a sub-optimal use of land. If the number of concessions exceeds the contingent capacity of the WA, 

as a consequence of error 1, farmers would experience a loss given by the difference between the 

average income of rain-fed crops and irrigated crops with no irrigation water availability. It can be 

expected that rain-fed crops have a higher comparative performance in terms of income in case of 

low or no irrigation water availability. If the number of concessions is below the capacity of the WA 

as in the case of error 2, farmers would experience a loss that is given by the difference between 

the average income of irrigated crops with fully available water and rain-fed crops. 

MOSES forecasts during the irrigation season are likely to be used to support decisions on 

water allocation. Because of the fixed water flows and technical thresholds, water allocation 

decisions are binary: to deliver water to a district or not. Such decision is repeated daily during the 

irrigating season and for each irrigation district. Compared to the current condition where the WA 

delivers water to districts disregarding the demand, predictions of crop water requirements could 

support decisions on water allocation during the irrigating season. The potential benefits generated 

by this piece of information are: save water, lowering supply costs, allocate water efficiently and 
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softening damages in dry periods. Here again, the provided information is not perfect, and two type 

of errors can emerge: 

1. the wrong prediction that water requirements are above 0: the WA receives a message 

specifying that water is needed for irrigation in a specific sector of the network, but 

eventually water for irrigation is not needed; 

2. the wrong prediction that water requirements equal 0: the WA receives a message 

specifying no water demand for irrigation in a specific sector of the network, but eventually 

water for irrigation is needed.  

The above errors lead, respectively, to water flows or no water flows in sectors where 

respectively no water is needed, and water is needed. This causes a sub-optimal use of water, where 

the first error leads to water waste (measured by the amount of water actually distributed in the 

sector) with unnecessary supply costs. The second error leads to damage irrigated crops because of 

missing to deliver water when water for irrigation is actually needed (difference between the 

average income of irrigated crops with irrigation and irrigated crops with no irrigation).  

The whole decision process is represented in the decision tree of Figure 4. Decision 

alternatives branch form square nodes; the probabilities of uncertain events branch form round 

nodes and consequences of actions in states of the world are expressed in terminal nodes with 

prisms. In the two decision time steps (before and during the irrigating season) information is 

provided through a message. This might cause a revision of WA’s beliefs depending on the expected 

consequences associated to each message content and on the accuracy of the ICT. The decision 

process is made by two sequential binary decisions: to release concessions to the maximum 

operational capacity or to the minimum operational capacity of the water supply network and to 

deliver water to a district or not. The decision made in the second step is influenced by the expected 

consequences of that decision during the irrigating season and by the accuracy of the messages 

provided before the irrigating season. That implies a strict dominance of the accuracy of the 

messages provided in previous time steps on subsequent ones.  
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Figure 4: Decision process of MOSES adoption by the CBR (source: own elaboration) 

3.4 Methodology and empirical application 

3.4.1 Definition of the model 

The methodology adopts a simplified decision model to represent the decision-making 

process of the case study WA to select the best alternative among a set of actions upon receiving 

new information. The model assumes that a WA is managing water procurement and supply for a 

given agricultural region and that the WA must plan in advance some actions during two different 

inter-correlated decision time steps. The first decision step is supposed to be at the time of seedling 

transplanting, far in advance to the irrigating season, and involves the decision (action): release 

concessions to the minimum / maximum operational capacity of the supply network. Such decision 

is conditioned by the WA’s expectation about the occurrence of the states of the world (states, from 

now on): dry / regular season. The second decision step is supposed to be at the time of supplying 

water for irrigation and involves the decision: deliver / do not deliver water to irrigation districts. 

Such decision is conditioned by the WA’s expectation about the occurrence of the states: need / no 

need water for irrigation. In a chronological order the first decision influences the second. Thus, the 

usability of such information is then depending on the accuracy of the messages provided by the 

information service in both decision steps and on the stakes in the decisions, contributing in 

determining the expected consequences of using the information. In the following we provide an 
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analytical representation of the decision process both in case of un-informed decisions and ICT-

informed decisions. In the latter case, in each decision time step, a new piece of information is 

provided by a message. 

The decision model described above represents a decision process taking place in conditions 

of uncertainty. In the first place, we assume that the decision process involves a set of actions, X, 

and a set of states, S. The combination of the possible actions with the possible states determines 

the associated consequences, 𝑐7,1 measured in terms of economic payoff of the decision,	𝑣(𝑐7,1). 

The subscript 𝑥 denotes a specific action among the set of possible actions and the subscript s 

denotes a specific state among the set of possible states, where 𝑥 ∈ 𝑋 and 𝑠	 ∈ 𝑆. For example, the 

consequence of not limiting yearly concessions for irrigable areas in a regular season is of drought 

losses and the associated payoff is the economic estimation of such losses. Thus, the actions taken 

by the WA have uncertain consequences determined by probability of occurrence of upcoming 

states, 𝜋1. In our case, the probability coincides with the climate-relative frequency of the event. 

Assuming the WA is acting rationally, it will base the choice of an action on the concept of EV 

maximization. EV of an action depends on the probability of the different states and on the payoff 

of the set of possible actions under the different states of the world (Bouma et al. 2009). With no 

information service, the maximization of the EV is obtained by the following equation (Eq. 2): 

𝑚𝑎𝑥
(7)

𝐸𝑉(𝑥, 𝜋1) =@𝜋1𝑣)𝑐7,1*
1

	

Eq. 2 

In case of ICT adoption, the WA can receive a message, µ, among a set of messages, M (𝜇 ∈

𝑀) The probability of receiving message µ	is identified as 𝜋D, which is measured as the frequency of 

that message relative to all messages delivered by the ICT. Messages provide information regarding 

the emerging states of the world. For example, a message can specify that a dry season will occur. 

Messages might modify the WA’s information environment altering the expectations associated to 

the upcoming states of the world. The extent to which the WA reviews his prior expectations follows 

the Bayes Theorem and is measured by the probability of state occurrence conditional to the 

message received, 𝜋1|D, also known as posterior probability (Eq. 3):  
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⎩
⎪
⎨

⎪
⎧𝜋D|1 ≡

𝑗1D
𝜋1

𝜋1|D ≡
𝑗1D
𝜋D

																⇒ 											 𝜋1|D ≡ 𝜋1
𝜋D|1
𝜋D

	

Eq. 3 

Where 𝜋D|1 is the probability of receiving message µ, conditional to the emergence of state 

𝑠, and 𝑗1D is the joint probability of state s and message µ, also known as hit rate (Kusunose and 

Mahmood 2016). This is measured in a likelihood matrix by the frequency of correct messages on 

all messages delivered by the ICT. As can be noticed, the higher is the hit rate of the ICT, the higher 

will be the extent to which the WA will revise is prior expectations. This implies that, by means of 

the accuracy of the ICT, the WA revises its beliefs about states occurrence after receiving a message. 

This in turn will have an effect on expectations about decision outcomes with direct consequences 

on the choice of actions, allowing the WA to identify a new optimal action. The EV of this action 

after receiving a message is determined by the sum of payoffs weighted by the unconditional 

probability of the message and the respective conditional probability of the states. Considering an 

ICT delivering multiple messages, the maximization of the EV will be as follows (Eq. 4): 

𝑚𝑎𝑥
(7)

𝐸𝑉)𝑥, 𝜋1|D* = @𝜋D
D

@𝜋1|D𝑣(𝑐7,1)
1

 

Eq. 4 

Now, consider a simplified version of the model described above, with only two alternative 

states (𝑠Land 𝑠M), two alternative actions (𝑥L and 𝑥M) and one decision time step. This model can be 

represented through the diagram of Figure 5. In it, payoffs in each state are measured vertically and 

probability horizontally, ranging from zero to one in a bi-directional segment. Since states are 

alternative, meaning that one excludes the other, probabilities of state occurrence are 

complementary (𝜋L + 𝜋M = 1). Hence, a point along the segment represents both probabilities. In 

the diagram, the blue line joining 𝑣(𝑐1L7L) and 𝑣(𝑐1M7L) is the probability weighed average of 

payoffs for action 𝑥L. This line expresses the EV for that action as a function of probabilities. 

Similarly, the pink line, which joins 𝑣(𝑐1M7M) and 𝑣(𝑐1L7M) represents the EV of action 𝑥L for any 

probability distribution. For a given probability, the EV of the optimal action is displayed by the 

vertical distance from a point in the horizontal segment of probabilities to the higher EV function 

between 𝑥L and 𝑥M. Taking into examination an information service that can generate two 
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alternative messages (µL and µM), either message will lead to a vector of posterior probability, 𝜋|D =

(𝜋1L|D, 𝜋1M|D). The line joining the EV of the optimal action if µL is received and if µM is received, 

defines the EV of the message service. This is mathematically represented by the probability 

weighted average of payoffs. So, following  Eq. 4, the VOI is graphically represented by the vertical 

distance from the line of the EV of the message service to the EV of the best un-informed action 

(green segment in Figure 5). 

  
Figure 5: Graphic representation of the decision model after receiving a new message  

Source: own elaboration from Bikhchandani et al. (Bikhchandani et al., 2013) 

Finally, we take in exam a decision problem involving T decision time steps. Decision steps 

are identified as sequential decisions occurring during time (before and during the irrigating season). 

For each decision step, t, there are independent actions, 𝑥P, messages, µP, and states, 𝑠P The set of 

possible consequences is obtained with the combination of actions and states in each time step, t, 

for the subsequent combination till the final decision step. In other words, the combination of 

actions, states and decision steps allows to identify the range of final outcomes of the decision 
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process. Since decision steps, states and messages are independent, the expected value 

maximization problem can be reformulated as it follows (Eq. 5): 

𝑚𝑎𝑥
(7QR)

𝐸𝑉)𝑥DP, 𝜋1P|DP* =S T@ 𝜋DP
DP

@ 𝜋1P|DP
1P

U 𝑣(𝑐7QR	,1P)
P

 

Eq. 5 

Hence, during time in the decision process, the final choice of actions made by the WA 

depends on the accuracy of the messages received until the final decision step. This way, a lack of 

accuracy in the first messages has a multiplier effect in determining the expected consequences of 

sub-sequential actions. Finally, in each decision step and for each message received the WA seeks 

the optimal choice of actions among the available. This is done through the identification of the 

optimal informed action (𝑥DP∗ ) achieving the highest EV given the states that can emerge and their 

relative posterior probabilities. The same happens in un-informed conditions, where, given the prior 

probabilities of states, the WA identifies the optimal un-informed action in each decision step (𝑥WP∗ ). 

After optimizing action choices, the VOI can be estimated as the difference between the EV from 

the sequence of optimal informed actions given the messages received and the EV of the optimal 

un-informed actions given the prior information environment (Eq. 6): 

𝑉𝑂𝐼 = 𝐸𝑉)𝑥DP∗ , 𝜋1P|DP* − 𝐸𝑉(𝑥WP∗ , 𝜋1P) 

Eq. 6 

As can be seen, the VOI of the ICT is positive only when the expected value of the best 

informed-decision is higher than the EV of the best un-informed decision. That is when posterior 

probabilities of the states given messages are higher than a threshold value that is at some point up 

to their prior. Otherwise messages would be uninformative, not conditioning any appreciable 

change in the behavior of the WA. 

3.4.2 Data collection and assessment procedure  

The usability of the information service is depending on the accuracy of the messages 

provided by the information service itself and on what is at stake in the decisions. These elements 

contribute in determining the expected consequences of using the information. The sources of 

information needed to carry out the economic analysis are mainly based on: (i) information 
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obtained by interviewing the WA; (ii) information provided by MOSES service; (iii) additional 

ancillary information. 

The first type of information is about the collection of primary data through an ad-hoc 

questionnaire. The questionnaire includes sections on: (i) WA information requirements; (ii) 

irrigation infrastructures (including details on water supply costs, efficiency of the supply system 

and on the amount of water delivered in each sector/district of the network); (iii) land use and 

cropping patterns (rain-fed and irrigated crop yields) and (iiii) damages caused by extreme weather 

conditions (probability of a drought, expected damages per crop categories). The questionnaire 

helped building the ICT informed decision model and to identify consequences of actions in states. 

Then with the joint use of secondary economic data on prices and yields from public databases (RICA 

– Rete di Informazione Contabile Agricola, 2017: http://rica.crea.gov.it/public/it/index.php) and 

information on land use, damages, crop prices and costs and on water price and use, it was 

estimated the economic payoff associated to consequences of actions in states. To simplify the 

assessment procedure, impacts of the decisions where estimated with the spatial limitation of the 

case study area. 

The second type of information is about the new pieces of information provided by MOSES 

before and during the 2017 irrigating season. These are mainly, crop water demand seasonal and 

in-season forecasts. Such data were provided with different spatial resolutions, then aggregated in 

functional management units (sectors of the irrigation network). The collection of such information 

allowed us to build a complete picture of the information environment which would have 

characterized the ICT-informed decision process of the WA in 2017. 

The third type of information collected was needed to assess the accuracy of MOSES services. 

These are observed data in the form of: (i) aerial photos (provided by the WA); (ii) weather 

observation (available from MOSES meteorologists) and (iii) observed crop water requirements. The 

collection of such information is justified by the fact that the accuracy of the service is mainly 

depending on three sources of uncertainty, contributing conditioning the accuracy of the messages 

provided by MOSES: (i) crop maps; (ii) water demand estimates; and, (iii) forecasts. The accuracy of 

information was estimated from the hit rate of the service, coming from the ratio between the 

number of correct messages on the overall messages received by the WA. This ratio is a rough 

estimate of the probability of correctly predicting current and upcoming states. Specifically: (i) by 



 56 

comparing MOSES crop maps with aerial photos (provided by the WA) we calculated the probability 

that an irrigated crop mapped with MOSES satellite images match with an irrigated crop mapped 

with aerial photos; (ii) by comparing MOSES rainfall forecasts with rainfall observation we calculated 

the probability that a forecasted rainfall above the estimated crop water requirements match with 

observed rainfall above the estimated crop water requirements. In addition, due to missing 

information, we assumed that, by comparing MOSES estimates of irrigation requirements with 

measured irrigation requirements, the probability that a positive irrigation requirement estimates 

(greater than zero) match with a positive irrigation requirement measured with soil moisture 

sensors is close to 1. Each of the above comparisons and assumptions contributed to the calculation 

of the probability to predict a dry or a regular season before the irrigating season and the probability 

to predict water requirements above or below a threshold value of 10mm. This value is assumed to 

be the critical level influencing the amount of water to be supplied for each sector of the irrigation 

network during the irrigating season. 

3.5  Results 
The estimation of the accuracy of MOSES information was carried out by comparing MOSES 

output with observed data, as described in the previous section. Results about the accuracy of the 

messages provided through MOSES are displayed in the probability matrix of Table 2 and Table 3. 

The overall accuracy of each message is expressed by the probability to correctly detect the land 

use multiplied by the probability to correctly predict if water requirements are above the 10mm 

threshold. As can be seen from the tables, the accuracy of the messages is not evenly distributed 

between states and the crop classification appears to be less reliable than the forecast of water 

requirements. 

  MOSES crop classification 
  Irrigated Not irrigated 
Observed data on 

land use 
Irrigated 0,66 0,41 

Not irrigated 0,34 0,59 
Table 2: Probabilities to detect the land use 
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  MOSES irrigation forecast 
  Water requirements 

above the threshold 
Water requirements 
below the threshold 

Observed data on 
water 

requirements 

Above the threshold 0,80 0,06 

Below the threshold 0,20 0,94 
Table 3: Probabilities to predict water requirements  

Water saving brought by the use of the forecast information are determined both in regular 

and dry season. Water saving variability is measured during time and it is calculated by comparing 

water requirement estimates with the water actually supplied to districts in 2017 (Figure 6). Water 

savings and water use tend to show a parallel trend. This highlights the fact that higher water savings 

are better achievable in periods with higher water use. In the first weeks of the irrigating season 

higher variability of water use can be found, with two peaks at week three and six. Such 

phenomenon is mainly due to the rain distribution in late spring which is particularly variable in the 

case study area. Further, at the beginning of the season peaks in water demand are caused by early 

concessions to irrigate. These are released to allow the seedling/transplanting of summer crops, 

extremely sensitive to droughts in the first phenological stages. Finally, in dry season, with water 

scarcity, lower water savings are achievable because water demand tends to be equal to the water 

available. 

Table 3 represents the payoff matrix expressing payoffs in each state action combination for 

both decision steps. In the assessment, the impact of optimal decisions is estimated to be zero, since 

they stand for the most suited management strategy given the emerged climate conditions. Then, 

with reference to the optimal decisions, losses are estimated for each sub-optimal state-action 

combination. Great variability in decision outcomes can be found because the same action has 

extreme consequences with the emerging of a dry season or a regular season. For example, with 

wrong water allocation decisions, great drought losses can emerge, or wrong land allocation causes 

sub-optimal use of resources with negative impacts on farmers’ income.  

By applying the model of Section 3.4.1, the accuracy of the ICT-information is used to 

compute the EV of each action whose payoffs are represented in Table 4. Then, the VOI is assessed 

as the difference in expected decision outcome between the best decision process with information 

and without information. Summing over the VOI assessed in each district, potential benefits of the 

ICT-informed decision model are estimated to be 156,426€ for the irrigating season of 2017 and for 
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all the 32 districts taken in examination (26.02 €/cultivated hectare/year). The spatial distribution 

of the VOI (Figure 7) is highly variable. Some districts have a null benefit from the implementation 

of such technologies, other very high.  

  
Figure 6: Estimated water savings during the irrigating season  

   States 
   s'1 s'2 
   s’’1 s’’2 s’’1 s’’2 

Actions 
x’1 

x’’1 - - 608,181 - 252,155 - 1,112,491 
x’’2 - 464,777 - - 366,491 - 252,155 

x’2 x’’1 - 252,155 - 1,112,491 - - 860,336 
x’’2 - 366,491 - 252,155 - 728,569 - 

Table 4: Payoffs of the decision model in the case study region (€)  

Because the accuracy of information is estimated using inputs from only one irrigating 

season, it was considered useful to run a sensitivity analysis. This method is frequently adopted in 

literature for the estimation of ICTs (Hardaker et al. 2015). By varying the accuracy of information 

in both decision steps, we determined the VOI in each condition of the information environment. In 

other words, we built an index named Quality of Information (QI), ranging from 0 to 1 and expressing 

the probability to correctly predict events. It is determined by the average accuracy of the messages 

provided to the WA before and during the irrigating season. QI will equal 0 when the posterior 

probability to correctly predict events equals its prior. The opposite, in case of perfect information 

QI will equal 1. In the graph of Figure 8 it is shown how the VOI is related to the QI by rising the 

accuracy of information of every message in the two subsequent decision time steps. As expected, 

by raising QI for both decision steps, we see a non-decreasing linear trend of the VOI. It reaches its 

minimum in un-informed conditions (QI=0) and its maximum with perfect information (QI=1), where 

the WA is sure to make optimal decisions. The trend is linear because of the linear equation used to 
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model the VOI, which is determined as the difference in EV between informed and un-informed 

decisions. Kinks can be noticed in the trend of the VOI, these take place when a new piece of 

information is introduced with the required accuracy to cause a belief revision. Accordingly, for each 

decision there will be a threshold in the accuracy of the message provided, under which the WA 

does not revise its expectations about states occurrence. Above such threshold the WA revises its 

beliefs and perceives benefits of the improved decision. In the second decision step (T2) we 

determined the VOI both in case of perfect information at T1 (before the season) and no information 

provision at T1. This choice is motivated by the fact that the overall decision outcome is affected by 

the accuracy of information at both decision steps. In other words, water allocation decisions are 

influenced by the expected consequences of that decision during the irrigating season and by the 

decisions on land allocation made before the irrigating season. This implies that the accuracy of 

information provided in the first decision step has an effect on the minimum accuracy for 

information to be usable in the second decision step. 

  
Figure 7: Distribution of the VOI between irrigation districts 
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Figure 8: Sensitivity analysis for the VOI 

3.6 Discussion  
Results from the model show positive impacts form ICT adoption but with a high variability 

in its spatial and temporal distribution. The former variability is caused by different cropping 

patterns between districts. Specifically, in districts with high added value crops, the accuracy of 

information might be too low to cause a change in WA’s belief. Accordingly, stakes are higher with 

added value crops in respect to other crops. Thereby, losses caused by wrong information are 

relatively higher, diminishing the net benefit from following MOSES advices. The latter variability is 

caused by the fluctuation of water savings during time all along the irrigating season. Peaks are 

mainly due to the combined effect of rainfall patterns and crop water requirements. Considerable 

water savings can be achieved if a consistent rain or no water demand are correctly predicted. When 

crop water demand is lower than some specific technical threshold in water delivery, no water 

saving is attainable. 

The analyses of the case study showed that in some districts permanent crops are prevailing, 

here the VOI is low. This is due to the decision power of the WA which is not enough to influence 

land allocation of permanent crops in the medium term. Thereby, the WA cannot act upon the 

information received. This factor limits the efficiency of land allocation schemes informed by 

seasonal forecasts and enhances the spatial variability of the VOI. Moreover, due to the 
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characteristics of the supply network, the WA is not able to precisely allocate water according to 

needs. At this end, decisions are simply on whether to deliver water to a district or not. This, 

together with the limited decision power of the WA, limits the potential of MOSES services and 

highlights how local barriers might have a strong impact on benefits from ICT adoption. 

The complex nature of the decision-making process studied posed limits in the model 

capabilities to represent the decision problem. The WA selected as case study has a complex 

decision environment, with multiple sources of information, stakeholders, and complex decisions. 

This caused the first modelling limitation which is rooted in the simplification of the decision process 

of the WA. Further, the model overlooks transaction costs in information processing and 

implementation. The estimation of which was unfeasible due to lacking data and over-complexity 

of the model. Transaction costs can be expected to be relevant due to the often-lacking skilled 

human-resources needed for information processing. Their impact will cause ICT-benefits to get 

lower in the short term. 

The analyses showed a decision process that involves high risky prospects with decisions 

having extreme consequences at stake. As seen in the matrix of payoffs, decision outcomes are 

extremely variable and wrong decisions bring great losses. Because of this, the model finds its main 

limitation in neglecting the choice of risky actions by the WA. Accordingly, other behavioral aspects 

not reflected in the maximization of EV might drive WA’s decisions. By addressing the risk behavior 

in perceiving the quality of information, a more reliable estimation of ICT economic benefits would 

be achieved. In addition, deepening the knowledge regarding the relation between uncertainty and 

risk aversion seems a promising topic in the decision analytic literature (Keisler et al. 2014). Other 

than risk aversion, more emotional factors may influence ICT adoption, such as fascination with new 

technologies or aversion to adapt the decision making process to the same technologies (Plant 

2001). Nonetheless, we considered the impact of such emotional factors negligible in the 

medium/long term. In light of the risky elements in the decisions, the model should be developed 

to account for more long-term strategies in the decision process. Here, the information 

implementation choice might not only be driven by the contingent accuracy of information, but also 

by the perspective of service improvements. Finally, this work, as well as the recent literature on 

the topic (Aker et al. 2016), do not consider the potential external benefits of improving WA’s 

knowledge. For example, the WA could disseminate the received forecasts between farmers to help 

them in planning their activities.  
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A limitation of the exercise carried out in this paper is the data used. Data used as input in 

the model are just from the 2017 irrigating season. Given the variability of weather data, it would 

be preferable having a higher number of years observed. In addition, 2017 was a season particularly 

dry in compared to the climate average, which implies a likely overestimation of benefits. Even 

though results are not representative of the climate average or trends, they can show the VOI in a 

future climate scenario where drought events are expected to increase in frequency and length. 

Because the VOI is found to be dependent on agricultural revenues too, agricultural prices play a 

key role in determining ICT adoption. Furthermore, in future scenarios where high price volatility 

can be expected, this will reflect in an increase in the level of uncertainty in the decision 

environment. This will have a strong effect on the VOI, whose extent is not tackled by the present 

paper. The sensitivity analysis not only overcame the problem of estimating the accuracy of 

information with data from only the 2017 irrigating season. It showed the accuracy threshold levels 

over which decisions are influenced by a new piece of information. More importantly, it proved that 

despite the above limitations, the model is able to capture the VOI as a function of the accuracy of 

the messages provided. Finally, as decision problems are very much local-specific, also in relation 

with existing infrastructures and decision-making flexibility, the results cannot be generalized and 

would rather benefit of a wider testing exercise in areas with radically different decision-making 

conditions. 

Despite the limitations described above, the estimation of the VOI is comparable with and 

confirmed by results of other studies found in literature. In their review, Meza, Hansen, and Osgood 

(Meza et al. 2008) found the value of seasonal forecast for agricultural decision making ranging from 

0 to 700 $/ha. Such values are strongly affected by crop types. Lower bounds can be found in areas 

predominantly cultivated with cereals and extensive crops, with estimations that are in line with the 

findings of the present paper. Galioto et al. (Galioto et al. 2017) found higher VOI ranging from 

40€/ha to 200€/ha depending on water cost, crop price, farmer’s risk attitudes, quality of 

information and land quality. Particularly, their characterization of the VOI with the quality of 

information brings to similar conclusions to the sensitivity analysis carried out in this study. Results 

are confirmed by the work of Fernandez et al. (Fernandez et al. 2016) too. They estimate and 

characterize a VOI comparable to our findings. Crean et al.  (Crean et al. 2015) identify a comparable 

VOI too, ranging from 0.20 to 23.18 $/ha. Further they carry out a sensitivity analysis on the VOI by 

varying the accuracy of information, which results are of a non-decreasing trend of the VOI. 
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3.7 Conclusions 
The paper quantitatively estimated the potential economic benefits from the ICT-informed 

decision process of water management in agriculture at the WA’s level. To do so, a theoretical model 

was designed, simulating the decision process of a case study WA. The proposed methodology 

accounted for the combined effect given by: (i) the accuracy of information in a multiple decision 

step process and (ii) what is at stake in the decision process. This paper has shown that a 

combination of BDT and EV maximization can offer a suitable approach to deal with complex VOI 

modelling such as the ones of WAs. This approach seems promising as it links information with the 

time it is provided in a sequential decision process made by several decision steps. The 

implementation of such methodology showed that ICTs can provide useful climate information for 

improved decision support. Economic benefits are then recognizable, especially if considering 

adaptation strategies to extreme drought events related with CC. The magnitude of such benefits is 

conditioned by barriers due to local characteristics of the decision process: (i) site specific condition 

(land use and water delivery system); (ii) the decision power of the WA in affecting land allocation 

and, most of all, (iii) the quality of information required to take decisions. Notwithstanding the great 

potential of ICTs for WAs, these barriers strongly affect actual applications. Moreover, since many 

ICTs offer discrete technology components without providing any support to adapt the technology 

itself to each specific reality, this undermines their usability. VOI is strongly affected by the 

information environment and ICT should aim at delivering information tailored to WA’s specific 

needs (Furman et al. 2011). In other words, requirements in terms of accuracy of information; timing 

of information provision and restrictions in the application of the information have to be considered. 

This highlights the necessity to develop ICT jointly with end users. The simple provision of forecast 

information, even though high-quality, follows the “loading dock approach” (Cash, Borck and Patt 

2006). This is described as the production of relevant climate information which has no use in reality 

because its form or time provision is incompatible with actual decision making (Vogel et al. 2017). 

Hence, future ICT development in irrigated agriculture should aim at better answering to WAs’ 

specific needs of information. An approach based this way will foster WA’s adaptation capacity. 

Because public institutions have the potential to guide decision making processes through a better 

use of existing knowledge (Cash et al. 2006), policy intervention is advised. The suggestion is to 

implement policy tools to help private initiative facing high transaction costs in ICT implementation 
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jointly with end users. This is especially necessary in the case of ICT for WA, given their growing 

demand for detailed climate information (Vogel et al. 2017).  
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Chapter 4 

4. Ambiguity, familiarity and information provision: 
implications for irrigation management 

4.1 Introduction and objectives 
Under the perspective of farmers and WAs, one of the major issues of CC is in the increased 

uncertainty brought about by unpredicted variability in weather patterns. In irrigated agriculture, 

this translates in two main sources of uncertainty: (i) uncertainty on the availability of water 

resources and (ii) uncertainty on water demand from crops. In general, the former uncertainty 

occurs before the irrigation season and affects land allocation, while the latter uncertainty occurs 

during the irrigation season and affects water allocation (Cavazza et al. 2018).   

Land allocation decisions are taken when seedling/transplanting irrigated crops and could be 

key to face dry seasons. In particular, if water scarcity was anticipated, arable land would be 

allocated to drought resistant crops, limiting climate losses. Nevertheless, in this time of the year it 

is too early to assess the availability of water resources. Accordingly, reservoirs are mostly filled up 

by rainfalls occurring between the land allocation decision and the start of the irrigating season. 

Then, during the irrigating season the available water in the reservoir is known. At the same time, 

CWD is uncertain due to the unpredicted variability in upcoming temperatures and lack of tools to 

determine transpiration. This limits the decisions on how to allocate water both in case of scarcity 

and with resource availability. In case of water scarcity, not knowing Crop Water Demand (CWD) 

does not allow to set priorities in the use of the available resources to minimize losses. In regular 

years, not knowing CWD can cause excess uses which can induce scarcity, other than unnecessary 

environmental and energy costs. Because of such uncertainty settings, farmers and WAs are forced 

to implement precautionary irrigation plans which are inefficient, but their outcome is not subjected 

to risks with average climate conditions. However, the increased frequency of extreme events 

located at the tails of the climate distributions is posing new challenges for irrigation management. 

Here, inefficiency can further increase susceptibility to CC even in those years when reservoirs are 

full, because un-expected and prolonged droughts might determine scarcity afterward.  



 66 

The present chapter focuses on these issues in water allocation. Here there is a strong need 

for new irrigation governance paradigms where resource-efficient irrigation plans must be 

implemented by all actors managing irrigation to save water and to favor adaptation in the sector. 

At this end, climate-information is key to lower uncertainty and to support efficient decisions. ICT 

can be powerful tools to this purpose and numerous platforms have been developed to aid decisions 

at the farm and at the WA- level (Cavazza et al. 2018). These ICT are capable of providing information 

on CWD, overall allowing reductions in the use of water, granting at the same time to achieve 

optimal production levels. 

However, the simple information provision is not sufficient to achieve the expected benefits 

from ICT-development initiatives (Vogel et al. 2017). If DMs receive an ICT but do not implement it, 

putting ICT-information into action, there are no economic benefits from ICT development. This is 

true even with high quality information (Cash et al. 2006) and is testified by numerous examples in 

literature that show behavioral barriers in ICT implementation (O’Mahony et al. 2016). This is often 

caused by a lack of knowledge on information reliability: if on the one hand technologies providing 

relevant information are extremely useful in lowering climate uncertainty, on the other hand they 

raise uncertainty on their reliability. The latter uncertainty can be identified as ambiguity over 

information reliability. Ambiguity is common with the adoption of a new technology and rises from 

a lack of knowledge on its performance (Barham et al. 2014; Ward and Singh 2015). In the case of 

ICT, DMs frequently perceive a certain degree of ambiguity because they have never experienced 

information reliability. Thus, to foster ICT uptake, it is not sufficient to understand if the new 

technology can be reliably used to support strategic decisions. Because ambiguity can limit 

information implementation, we also need to understand if DMs have enough knowledge on  ICT 

reliability. This rarely occurs with new ICTs, on which DMs are likely to have no direct or indirect 

experience. Anyhow, they might be able to try the ICT and test information, without necessarely 

implementing it. If so, with the passing of time, DMs would gain experience with the technology and 

might solve their ambiguous perceptions in the, so called, process of familiarity. This  favors 

technology adoption (Gars and Ward 2019), but it can take a fairly amount of time (Barham et al. 

2015) which might cause inefficiencies and further discourage information implementation.  
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The problem is exacerbated in the management of common pool resources, where efficiency 

is conditioned by the choices of all actors involved in the exploitation of the resource itself. Here, 

when actors are not coordinated, virtuous choices of some can be undermined by others who might 

not implement information received (Alpizar, Carlsson and Naranjo 2011). This is the case of 

irrigation districts, where decisions on water use are taken at the farm- and at the WA-level: farmers 

have to decide the amount of water to deliver to crops, the WA, in turn, has to decide the amount 

of water to deliver to farmers. Here, a new ICT could help at both levels, but its benefits will be 

appreciable only if information is reliable and all actors implement it. Namely, when the WA puts 

information into actions to save water, but farmers in the irrigation network do not, there will be 

losses or inefficient allocation even if the ICT proves to be reliable. Between farmers, when 

information is not implemented by some who excess-use the resource, the others might experience 

water un-availability. Because each actor (farmers and WA) have different attitudes toward 

ambiguity on ICT reliability, this problem will frequently affect ICT implementation.  

These settings prompted us to assess the impacts that subjective behavior under ambiguity 

has in undermining ICT potentials for efficient water management in irrigation districts. To do so, 

we developed a behavioral model representing the decision between inefficient but riskless 

irrigation plans or ICT-aided efficient irrigation plans with uncertain outcomes. At this end, 

ambiguity perception plays a key role, but it evolves with familiarity. Therefore, we addressed the 

issue of learning on ICT reliability and developed a new learning rule representing the update of 

ambiguous beliefs. Finally, we consider an empirical example of a simplified irrigation district 

located in Northern Italy. Here, we implemented the model to quantitatively estimate how Water 

Use (WU) and Water Productivity (WP) vary after the introduction of a new ICT. These indicators 

are used to estimate ICT-impacts on the district’s efficiency and its evolving in time. The empirical 

implementation helped to highlight issues in the governance system which lower the district’s 

efficiency in the time lag between the first time DMs receive the ICT until when they are familiar 

with it. Findings will support irrigation districts in the implementation of efficient ICT-aided 

management plans as well as uncertainty-management policies in fostering ICT diffusion. 

The remainder of this chapter is organized as follows: in the next section (Section 4.2) we will 

briefly consider the literature of uncertainty on technology’s reliability and its dynamics as DMs gain 

experience on it. Then, we will describe the theoretical model developed (Section 4.3); in Section 

4.4, we implement the model to highlight the impacts that ambiguity has on WU and WP. In Section 
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4.5, we provide an empirical example of a simplified irrigation district to highlight the relative 

governance issues.  In Section 4.6 we present results. Finally, in Section 4.7 and 4.8 we discuss the 

main findings and draw conclusions and policy implications. 

4.2 State of the art  
In this section we will analyze the most relevant literature which is considered helpful in 

understanding the uncertainty settings around decisions for ICT-information implementation. In the 

following subsection we will frame uncertainty affecting the adoption of a new technology, 

underlining the role of lack of knowledge on its reliability. Then, we will analyze how perceptions on 

ICT reliability might evolve in time as the DM gains new insights and how this learning behavior is 

modelled. 

4.2.1 Ambiguity and new technologies adoption 

The literature on technology adoption in agriculture is widely tackled and sees the major 

contribution from one of the most cited paper of Caswell and Zilberman (Caswell and Zilberman 

1985). These authors carried out a literature review on determinants of technology adoption and 

found that risk and uncertainty had frequently a significant role. Specifically, they highlighted the 

importance of a subjective risk caused by farmers being unfamiliar with the new technology. 

However, they do not deepen the issue and, given the time, do not consider those technologies 

providing information such as ICT.  

To assess the potential impact that a lack of knowledge on technology reliability has on the 

adoption of the same new technology, the framework of ambiguity can be a powerful tool (Engle-

Warnick and Laszlo 2017). The role of ambiguity in agricultural decision problems was firstly 

addressed by Engle Warnick, Escobal and Laszlo (Engle Warnick, Escobal and Laszlo 2008), who 

highlighted that both RA and AA affect farmers’ choice between the technological status quo and a 

new technology. Specifically, they consider that AA might limit the adoption of new crop varieties 

because their performance is unknown. Later, Ross et al. (Ross et al. 2012) confirmed these findings 

and underlined that more than RA, it is AA to reduce the probability of technology adoption. Further, 

they expressed the need to have policies ensuring farmers having access to information on the 

technology’s performance to lower their perceptions of ambiguity. Contrarily to these findings, 
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Barham et al. (Barham et al. 2014) showed a case where AA increases the likelihood of farmers to 

implement new technologies. However, in their analyses they considered a technology which helps 

reducing crops exposure to pests whose occurrence is ambiguous. Similarly, Alpizar et al. (Alpizar et 

al. 2011) found AA favoring the adoption of technologies against extreme CC-related events. Here 

again, the technology protects DMs against events whose occurrence is ambiguous because of the 

un-measurability of CC (Alpizar et al. 2011). Finally, Ward and Singh (Ward and Singh 2015) 

considered a new technology which does not alter ambiguity distributions. As expected, they found 

that AA did not favor the technological status quo nor the adoption of the new technology. 

Even if the above studies take into consideration different technologies and none address 

the issue of ICT-information implementation, their findings are extremely useful to our context. 

Specifically, by comparing results, it is evident that the impact of AA in determining technology 

adoption is specific to the effect the technology has on un-measurable uncertainty. If a new 

technology is expected to lower variance in the distribution of ambiguous events, its adoption will 

be favored by AA as found by Alpizar et al. (Alpizar et al. 2011) and Barham et al. (Barham et al. 

2014). Otherwise, if it will raise ambiguity due to lack of knowledge on its reliability, ambiguity-

averse individuals will be reluctant in implementation. The latter case is found by Engle-Warnick et 

al. (Engle Warnick et al. 2008) and Ross et al. (Ross et al. 2012) and is expected to be more frequent 

because the technological status quo is known to the DM, as opposed to a new technology whose 

performance is uncertain (Alpizar et al. 2011). 

If we take into consideration those type of technologies providing information, such as ICT, 

no paper is found by the authors to be addressing the role of AA. However, Nocetti (Nocetti 2018) 

and Snow et al. (Snow 2010) analyze the relation between AA and the value of new pieces of 

information. Again, the relation depends on the type of information considered. Risk-reducing 

information is positively valued by risk-averse DMs, while ambiguity-reducing information is 

positively valued by ambiguity-averse DMs (Snow 2010). If we apply this concept to the case of an 

ICT delivering climate information, we ascertain that it will lower the share of climate uncertainty 

which is risk. Here the new piece of information will narrow variability in the risk distribution of 

climate events. Therefore, the ICT will deliver risk-reducing information and will be positively valued 

by risk-averse DMs. These will find higher expected utility from ICT-informed decisions than in the 

un-informed settings. However, if we consider that the same ICT is a new technology, another share 

of uncertainty will rise in the form of ambiguity which is due to a lack of knowledge on ICT reliability. 
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This issue will cost an ambiguity-averse individual to lower his expected utility from the same ICT-

informed decision. Nocetti (Nocetti 2018) further deepened this phenomenon and highlighted that 

it is the share of ambiguity remaining after information is received that mostly affects its value. This 

does not depend on the message itself, but it is due to a lack of knowledge on the reliability of the 

message-service (Nocetti 2018). Overall, risk-reducing information provided by an ambiguous ICT 

will have a positive value for a risk- and ambiguity-averse DM only in case of a positive tradeoff 

between risk reduction and ambiguity rise. 

As a result, ICT implementation will only occur when risk reduction is prevailing over 

ambiguity rise and the DM puts into actions the ICT-information received. This occurs only in some 

situations, but the tradeoff evolves in time as ambiguity lowers thanks to the process of familiarity 

described in the following section. 

4.2.2 Familiarity and learning patterns in technology adoption 

In the previous subsection we highlighted how, when approaching a new ICT, DMs have 

personal beliefs on the technology’s reliability expressing ambiguity over information received. 

Ambiguity is then updated as the DM gains experience helping him to assess whether information 

can be trusted or not (Epstein and Schneider 2007). This phenomenon is described as familiarity 

which takes place as a learning process where the DM updates ambiguous beliefs on the basis of 

new insights.  

In literature, the topic of DM’s learning behavior in technology adoption is deeply analyzed. 

Here, learning is defined as “the evolution of assessed subjective probabilities, as new information 

becomes available over time” (Barham et al. 2015) and allows DMs becoming familiar with the new 

technology. One of the first to analyze learning under ambiguity was Marinacci (Marinacci 2002) 

which modelled how ambiguity disappears as the number of draws from an Ellsberg’s urn coincides 

with the number of balls in the urn. Later, Epstein and Schneider (Epstein and Schneider 2007) 

considered more complex settings and proposed a learning rule which is one of the most relevant 

to model decisions under ambiguity (Machina and Siniscalchi 2014). He modelled ambiguity as 

variability in a set of risk distributions over future states of the world. This set is then updated during 

the learning process and variability shrinks as the DM becomes familiar with the new environment 

(Epstein and Schneider 2007). Because he found Bayesian update to be too extreme under 
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ambiguous settings, he developed a model to account for more intuitive choices. Despite being 

reliable, the model proposed by Epstein and Schneider (Epstein and Schneider 2007) is referred to 

data-generating problems where the only repetition of draws allows to solve ambiguity (Etner et al. 

2012). However, such kinds of problems are not directly applicable to the learning behavior 

occurring with new technologies. Accordingly, while betting in an urn, the number of alternatives 

building risk can be objectively measured and objectively updated with the repetition of draws, with 

new technologies this is not always possible. This is mainly due to the fact that new insights on the 

technology’s performance are often available in the form of noisy parameters (Engle-Warnick and 

Laszlo 2017) which are subjected to the DM’s own perceptions. 

Barham et al. (Barham et al. 2015) tested three learning rules applied to new technology 

adoption in agriculture: (i) Bayesian learning; (ii) First-1 and (iii) Last-1. In all alternatives, prior 

ambiguity perceptions are assumed to be un-informative. Bayesian learning is identified when a 

rational DM observes the performance of the technology over time and weights each observation 

equally. While in the First-1 and Last-1 learning rules the DM considers respectively only the first or 

the last observation. Between these three, the only Bayesian rule is the least representative and 

farmers tend to follow a mixt of this rule with First-1 or Last-1 rules (Barham et al. 2015). These 

results highlight the need to develop and test new learning rules for technology adoption. These 

should include elements of rationality from the Bayesian update, but allow at the same time some 

degree of intuitive choice as suggested by Epstein and Schneider (Epstein and Schneider 2007). 

Moreover, when considering the specific case of a new technology providing weather-related 

information, as the one analyzed in the paper, there are further obstacles in the application of 

existing models. While the performance of other technologies can be generally measured in terms 

of production, with weather-related ICT, the DM is not able to quantitatively assess the extent to 

which information received was reliable. Many climate parameters are hard to measure and 

quantitative comparisons between forecasts and observations are frequently impossible at the end-

user level. This underlines the need to model an updating behavior having the qualitative approach 

with which the DM might judge ex-post the performance of the ICT and update his beliefs. 
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4.3 Methodology 

4.3.1 Overview of the theoretical model 

In the previous section, we have showed that the introduction of ICT in decision problems 

raises ambiguity due to a lack of knowledge on information reliability. This is generated by a DM 

being unfamiliar with the ICT and will limit him to implement information if he behaves as 

ambiguity-averse. The behavioral model developed in this section aims at representing the decision 

between implementing a riskless and inefficient Precautionary Plan (PP) and an efficient ICT-

informed Risky Plan (RP) for irrigation. Further, we consider how such decision evolves with time, in 

the period between the first time the DM approaches the new ICT until when he is familiar with it. 

To do so, the model accounts separately for the effects that risk and ambiguity have on the adoption 

of a new ICT for water management. While the share of risk involved in the implementation decision 

is considered constant, ambiguity is updated in the process of familiarity. Because no learning rule 

for the update of ambiguous perceptions is found to be fitting to the context, we developed a new 

one. This allows to model how the decision evolves as the DM gains experience on information 

reliability. 

In the following Section 4.3.2, we will define the decision environment. Here, two farmers 

and a WA are the actors managing water allocation in an irrigation district. In the business as usual 

settings, uncertainty forces all actors to manage irrigation by implementing an inefficient but 

riskless PP. Then, in Section 4.3.3, we consider how irrigation management can gain efficiency 

thanks to information provision by the ICT. Here, both ambiguity and risk occur, because, 

respectively, the ICT is a new technology and provides probabilistic information. The impacts of AA 

and RA on the information implementation decision is analyzed in Section 4.3.4. Finally, in Section 

4.3.5, we assess how things change with time as the DM gains familiarity. Although the model 

assumes simplified settings, it is capable of describing how uncertainty affects the ICT-information 

implementation decision and, in turn, water demand (in Section 4.4). Finally, the model will be 

applied to the case study to assess how ICT-informed water demand translates into WU and WP to 

estimate the districts’ efficiency (in Section 4.5).  
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4.3.2 Context: three actor districts 

Suppose there is a WA managing water allocation for an irrigation district with two farms: 

farm 1 and farm 2. The two farms are comparable in size and cultivated crops; both have to make 

decisions on the right amount of water to irrigate. The main difference is in their location: farm 1 is 

upstream the irrigation network and farm 2 is downstream. This way, farm 1 is the first to access 

the resource and farm 2 gets the remaining water. No external regulation exists to avoid excess-use 

of water by farm 1. As a consequence, farm 2 is less favored and farm 1 owns a position rent at the 

expenses of farm 2. This condition is a frequent issue with common resources where differences in 

accessibility can cause uneven distribution of benefits (Cremer and Laffont 2003). 

The model considers ordinary settings when reservoirs are full but excess-use cause 

environmental issues, unnecessary costs and might increase susceptibility to droughts occurring 

later in the season. Here, the WA has to decide how much water to pump in the irrigation network 

but does not know farmers’ water demand. To avoid water un-availability at the farm level 

(especially at farm 2), the WA implements a PP for water management. In this plan, the irrigation 

network is filled up to its operational capacity, with flows being higher than the sum of what each 

farm can irrigate at the maximum. So, possible excess-use of the resource by farm 1 would not affect 

water availability in farm 2. Nonetheless, the plan comes at a cost being the water used overly high, 

up to a level defined by 𝑋[\. 

A similar decision is made by farmers, because: (i) they are unsure about CWD and, (ii) if they 

do not satisfy CWD, there will be production losses. To avoid letting part of their income being 

exposed to uncertainty, they implement a PP and irrigate at the field capacity, at a level that 

guarantees no water stresses (𝑋]^_`a). Both PPs are riskless (at the cost of excessive water used) 

and their payoff function (𝑔(∙)) is state independent, coinciding with the following value (Eq. 7; Eq. 

8Error! Reference source not found.): 

𝑔(𝑋[\) = 𝑉(𝑋[\) − 𝑐[\𝑋[\ 

Eq. 7 

𝑔(𝑋]^_`a) = 𝑉)𝑋]^_`a* − 𝑐]^_`a	𝑋]^_`a  

Eq. 8 
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Where 𝑉)𝑋]^_`a*  represents the optimal revenues achieved when water demand is fully 

satisfied. Because the WA is not producing crops but its aim is to maximize farms’ profits at the cost 

of water used, we represent its revenues as follows (Eq. 9):  

𝑉(𝑋[\) = 𝑉)𝑋]^_`d* + 𝑉)𝑋]^_`e* 

Eq. 9 

In Eq. 7 and Eq. 8 we have two positive coefficients, 𝑐]^_`a  and 𝑐[\; these represent the 

volumetric cost of water under the actor’s perspective. Here, 𝑐]^_`a  is the volumetric cost needed 

to irrigate the field such as energy costs, resource costs and labor; it includes only those costs which 

are proportional to the quantity of water used. This simplification is driven by the fact that costs for 

machineries and in-farm delivery systems are fixed in the short term and cannot be reduced by 

efficient ICT-aided irrigation plans. Therefore, we assume that they will not be taken into account 

by the farmer during the implementation decision. On the other hand, 𝑐[\ represents the 

volumetric cost of water under the WA perspective. It includes costs for energy, water and external 

costs attributed by the WA to the resource (opportunity costs and environmental costs). Although 

costs which are disproportionate to the quantity of water used prevail in WAs’ budget, they cannot 

be affected by efficient ICT-aided decisions. For this reason, we will focus just on the volumetric 

costs of water, overlooking infrastructure maintenance and other costs which are assumed to be 

fixed in the short term. 

4.3.3 Information provision 

Now, suppose a new ICT provides information: (i) to farmers, on the average water demand 

from crops cultivated in their field (𝑥]^_`a
fgh ) and (ii) to the WA, on the average water demand from 

crops cultivated in whole district (𝑥fgh[\ = 𝑥]^_`d
fgh + 𝑥fgh]^_`e). Thanks to the new piece of 

information, farmers can now irrigate so as to distribute the exact amount of water needed by crops 

and the WA can pump into the network the water volumes really needed by farmers.  

Although being resource-efficient (𝑥]^_`a
fgh < 𝑋]^_`a), this plan is risky if compared to 

irrigating at the maximum level. This is due to the fact that the ICT is not capable of providing perfect 

information; therefore, errors in water requirement estimations are possible. Several states of 

water demand can occur, where water requirements from crops could potentially differ from the 
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one estimated by the ICT. Each state (𝑥]^_`a
1 ) identifies a specific event within the state-space 

defined by 𝑆 and identifying the set of feasible states of water demand from crops (𝑥]^_`a
1 =

𝑥]^_`a
1L , 𝑥]^_`a

1M , … 𝑥]^_`a
1k ; 𝑥]^_`a

1 𝜖	𝑆). 

To help DMs facing this issue, attached to the estimation of water demand (𝑥]^_`a
fgh ), the ICT 

delivers the Probability Density Function (PDF) of revenues in states (𝜋(𝑥]^_`a
1 )). With the message, 

the DM knows the water volume needed by crops and the PDF of revenues achievable if he irrigates 

as specified in the message. The probabilistic nature of such kind of ICT-message helps DMs to 

account for uncertainty in states variability and to plan their actions consistently with it (Arnal et al. 

2016). In this paper we assume that the PDF of states is normally distributed, where the average or 

expected payoff coincides with the optimal revenue achieved in the PP (𝑉)𝑋]^_`a*), minus the costs 

of water used (Eq. 10).  

𝔼𝝅(𝒙𝒔)(𝑓)𝑥]^_`a
1 q𝑥]^_`a

fgh *) = 𝑉)𝑋]^_`a* − 𝑐𝑥]^_`a
fgh  

Eq. 10 

This equation highlights how information allows to implement an irrigation plan in which the 

farmer can produce the same quantity of output as with the PP, with less water. However, the payoff 

of this output is subjected to the uncertainty estimated in 𝜋(𝑥]^_`a
1 ). Therefore, we label this 

irrigation plan as RP and its uncertainty elements will be treated in depth in the next section. 

An example of the PDF received by the DM is provided in Figure 9: PDF of states of water 

requirements. Since the two farms are different, each will receive a different distribution with a 

different average. The two distributions will have the same standard deviation because errors are 

unrelated with the value estimated and depend only on the technology generating information. 
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Figure 9: PDF of states of water requirements 

4.3.4 Risk and ambiguity 

In the previous subsection we highlighted how information provision by the ICT allows to 

save water. This comes with a cost of putting at risk the decision payoff. If the DM is risk-averse, he 

will find lower Expected Utility (EU) from the RP than a risk neutral DM. To understand the DM’s 

choice, it will be necessary to estimate his EU for the uncertain payoff 𝑓)𝑥]^_`a
1 q𝑥]^_`a

fgh *. If we 

consider only the probability estimation (𝜋(𝑥1)) provided by the ICT, EU for the RP (𝐸𝑈_) is defined 

with the following formulation (Eq. 11Error! Reference source not found.) developed on the basis 

of Savage’s postulates (Savage 1954): 

𝐸𝑈_)𝑓(𝑥1|𝑥fgh)* = 𝑢 s𝔼𝝅(𝒙𝒔)𝑓(𝑥1|𝑥fgh)t = ' 𝑢)𝑓(𝑥1|𝑥fgh)*𝜋(𝑥1)𝑑𝑥1
𝑺

 

Eq. 11 

where 𝑢(∙) is a von Neumann-Morgenstern utility function and 𝔼0(7v) is the expectation 

operator for the risky environment. Because the expected payoff coincides with the optimal 

revenue at the costs of water used (Eq. 10), Eq. 11 simplifies as follows (Eq. 12): 

𝐸𝑈_)𝑓(𝑥1|𝑥fgh)* = ' 𝑢(𝑉(𝑋) − 𝑐xxyz)𝜋(𝑥1)𝑑𝑥1
𝑺

 

Eq. 12 

Despite the ICT providing a full probabilistic picture of risk, another share of uncertainty is 

un-measurable and generates ambiguity. This is due to the fact that the ICT is new to DMs and they 
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do not know if the probabilistic estimations received are reliable. Apart from the PDF specified by 

the ICT, other probability functions are feasible. We now identify with 𝜋fgh(𝑥1) the PDF provided 

by the ICT to distinguish it from all other feasible I Order PDFs. As a result we have a set, ∆, describing 

the set of feasible first order probability estimations (𝜋|(𝑠) = 𝜋L(𝑠); 𝜋M(𝑠); 𝜋fgh(𝑥1); … ; 𝜋(𝑠)). To 

describe variability in ∆, DMs have personal beliefs identifying a distribution of first order 

probabilities (µ(𝜋(𝑥1))). This is a II Order PDF assigning a weight to each I Order distribution in ∆. 

The II Order PDF is assumed to be normally distributed and its average coincides with the probability 

estimation provided by the ICT (𝜋(𝑥1)} = 𝜋fgh(𝑥1)) (Figure 10). In practice, by assuming such a II 

Order PDF, we consider that the DM builds his ambiguous perceptions in the form of a normal 

probabilistic distribution and believes that 𝜋fgh(𝑥1) is the most likely to be correct. 

 
Figure 10: PDF of first order probabilities 

If DMs are ambiguity-averse they perceive disutility from this variability in first order 

probabilities. Therefore, to reliably assess their EU it is necessary to account for ambiguity and 

ambiguity aversion too. The formulation adopted in this paper follows the smooth model of 

ambiguity sensitive preferences developed by Klibanoff et al. (Klibanoff et al. 2005) (Eq. 13):  

𝐸𝑈_,^)𝑓(𝑥1|𝑥fgh)* = 𝔼∆𝜙 s𝑢)𝔼𝑺𝑓(𝑥1|𝑥fgh)*t

= ' 𝜙 �' 𝑢(𝑉(𝑋) − 𝑐𝑥fgh)𝜋(𝑥1)𝑑𝑥1
𝑺

�
�

µ)𝜋(𝑥1)*𝑑𝜋(𝑥1) 

Eq. 13 

Similar to Eq. 12, 𝜙(∙) is a von Neumann-Morgenstern second order utility function 

expressing preferences over first order probabilities. The model has a double expectational form 

which allows the separation between ambiguity, which is a belief of the DM, and ambiguity aversion 
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which expresses his attitudes. Thanks to this feature, beliefs and attitudes are then treated 

separately, where to the first class belongs risk perception and ambiguity perception, while 

attitudes are RA and AA.  

To aid the understanding of the problem, it is often useful to consider the Certain Equivalent 

(CE) of an uncertain payoff rather than its EU. This is defined for a DM as the “…sum of money ’for 

sure’ that would make that person indifferent between facing the risk or accepting the sure sum.” 

(Hardaker et al. 2015). It is obtained by the inverse utility function of the EU of an uncertain payoff. 

Its practicality will be helpful to compare the sure payoff of the PP with the uncertain payoff of the 

RP. To assess the CE of the RP, we considered negative exponential utility functions for payoffs and 

probabilities (Eq. 14, Eq. 15): 

𝑢	(∙) = −𝑒�_(∙) 

Eq. 14 

𝜙	(∙) = −𝑒�^(∙) 

Eq. 15 

where 𝑟 and 𝑎 are respectively the risk aversion coefficient and the ambiguity aversion 

coefficient, both are positive and range from 0 to 1 with higher aversion. The KMM model of Error! R

eference source not found. is used to assess the CE of the risky plan, which simplifies as follows, 

given the assumptions of normality in both first and II Order PDFs (Eq. 16): 

𝐶𝐸(𝑓(𝑥1|𝑥fgh)) = 𝔼∆ �𝔼-(𝑓(𝑥1|𝑥fgh)) −
1
2 𝑟𝜎0���(7v)

M � −
1
2𝑎𝜎D(0(7v))

M  

Eq. 16 

The proof is given in Appendix 1: Simplification for the CE computationError! Reference s

ource not found.. 

4.3.5 Update of ambiguous beliefs 

While ambiguity-attitudes can be assumed as constant in time (Hanany et al. 2009), the 

perception of ambiguity decreases as the DM gains experience on ICT reliability. This phenomenon 

frequently results in a slow and progressive implementation of new technologies to support 
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decision making. In Section 4.2 we found no learning pattern to be capable of fully representing the 

update of ambiguous beliefs on ICT’s reliability. Therefore, we propose a new learning rule 

developed to account for the peculiarities of the context 

Until now we considered a single decision event, but decisions for water allocation are 

repeated periodically along the irrigating season and in every season. We identify with Time Frame 

(TF: 𝑡 ∈ 𝑇) every period beginning with the choice of the irrigation plan and ending when the 

decision pays off. In the first TF (𝑡 = 1), when receiving for the first time ICT-information, DMs have 

no experience on its reliability. However, they build their own beliefs expressed in the form of a 

normal distribution of averages of I Order PDFs. The resulting distribution (II Order PDF: µ s𝜋)𝑥1̂*t), 

is updated with time as the DM gains new insights on the ICT reliability, helping him to refine his 

beliefs.  

To describe the updating process, we assume that, at the end of each TF, states are 

manifested and DMs can assess if ICT-information has proven to be correct. This phenomenon 

allows DMs to learn on the ICT reliability as they become more familiar with it.  The learning process 

is modelled with the DM getting a binary signal from the environment (ℎP = ℎ��; ℎ��), describing 

whether information has been correct (ℎ��) or not (ℎ��). Both the sum of the positive signals (∑ ℎP�� ) 

and the sum negative signals (∑ ℎP�� ) are weighted by a positive coefficient, named updating rate 

(𝑤). This is included between 0 and 1 and reflects DM’s subjective inclination to revise his prior 

beliefs in light of new evidences; the higher the coefficient the faster the learning will be. The 

updating model is described by the following step function (Eq. 17): 

µ(𝜋(x1)|t) =

⎩
⎪
⎨

⎪
⎧µ)𝜋(x1)*

L��∑ ��
�

�
L��∑ ��

�
�

µ)𝜋(x1)*
	𝑖𝑓	@ℎ��

�

> @ℎ��
�

1	𝑖𝑓	@ℎ��
�

≤ @ℎ��
�

 

Eq. 17 

The first time the DM is approaching the new ICT (tW), the only element helping him to build 

his ambiguity distribution will be his prior belief (µ)𝜋(𝑥1)*). Then, from the second TF on, ambiguity 

will be described by a posterior PDF, where the prior is updated on the basis of the signals received, 

as described in the equation above. Even after the third TF, the prior distribution to be updated 



 80 

remains the one built by the DM the first time he approached the ICT (tW). For example, at t5 if the 

DM has received 5 positive signals, the updated ambiguity distribution will be: D)0
(�v)*

d�� 

D)0(�v)*
. This 

behavior is similar to the First-1 learning rule described by Barham et al. (Barham et al. 2015). 

However, while with the First-1 rule the prior remains constant in time and is never updated, here 

it is constant in time, but it is updated every TF. This is also different from the Bayesian update, in 

which the posterior in a TF becomes the prior in the TF following. The developed rule highlights that, 

in every TF, the DM’s choice takes always into account also the prior beliefs he had at t0. 

Because the updating process consists of scaling the prior PDF, all posteriors remain normally 

distributed. The only exception occurs if  ∑ ℎ��� ≤ ∑ ℎ��� , where the prior transforms into a uniform 

distribution. If so, we reach the highest level of ambiguity, where variance is equal to infinite and all 

the I Order distributions are feasible and equally probable. In such settings, ambiguity is at its 

maximum and will likely cause the DM to not implement information received. Instead, if  ∑ ℎ��� >

∑ ℎ��� , as new positive signals are received and they outnumber negative signals, variability in 

µ(𝜋(𝑥1)|𝑡) lowers, while means remain unchanged. This mean-preserving contraction is 

represented in Figure 11 and is made possible by the shift in the updating process. To explain this 

phenomenon, as the DM receives new positive signals, we can consider that the probability of I 

Order distributions which are in the tails exponentially lowers. Therefore, the set of feasible 

distributions in first order probabilities shrinks (∆L> ∆M> ∆h) as the DM observes that some 

distributions are unfeasible. This process of familiarity favors information implementation because 

it raises EU for an ambiguity-averse DM. The process continues as the ratio between positive and 

negative signals rises, up until the point when the only distribution remaining in the set is the one 

provided by the ICT. At this point, ambiguity is solved, and the DM recognizes that 𝜋fgh(𝑥1) always 

estimates uncertainty correctly. 
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Figure 11: Mean-preserving contraction in second-order probabilities 

As a result of the familiarity process, EU from the RP evolves, because perceptions are 

altered; the updated CE is computed as follows (Eq. 18): 

𝐶𝐸(𝑓(𝑥1|𝑥fgh)|𝑡) = 𝔼∆𝒕 �𝔼-(𝑓(𝑥
1|𝑥fgh)) −

1
2 𝑟𝜎0���(7v)

M � −
1
2𝑎𝜎D(0(�v)|P)

M  

Eq. 18 

If we consider an ICT capable of estimating all errors in the I Order PDF, meaning that 

𝜋fgh(𝑥1) is always the correct distribution, a DM familiar with the ICT (𝑡 → ∞) will have the 

following CE (Eq. 19): 

lim
P→§

𝐶𝐸(𝑓(𝑥1|𝑥fgh)) = 𝔼-(𝑓(𝑥1|xxyz)) −
1
2 𝑟𝜎0���(7v)

M  

Eq. 19 

This simplification is made possible because variance in II Order PDF is null and it results in a 

CE which is equal to the one of an ambiguity neutral DM (𝑎 = 0). Otherwise, if ambiguity remains 

because of errors in probability estimations, it will still affect expectations as shown in Eq. 18.   

4.4 Identification of water demand 
In the previous section we modelled how ambiguity affects expected utility from ICT-

informed decisions and how this phenomenon evolves at the end of a TF, when the DM gains new 

insights on ICT reliability. Still, in each of these TF, it is to be defined the impact that ambiguity has 

on WU. Specifically, we saw each actor having to choose between a PP which is riskless but 

inefficient and an ICT-informed efficient RP, subjected to risk and ambiguity. Here, the DM will 
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switch from the PP to the RP only when expected utility of the first plan is lower than expected 

utility of the second. Only in such condition the DM will implement the ICT and put information into 

action to save water, otherwise information provision will be useless. However, it is to be underlined 

that the decision variable is the volume of water used, which is a continuous quantity. Therefore, 

we will further develop the model to help identifying not only the switching point between the PP 

and the RP, but also the optimal water volume to be used under the DM’s behavioral perspective. 

This will build the actor’s water demand and will be key to understand issues in governance which 

undermine ICT potential benefits. 

4.4.1 The cost-loss model in presence of ambiguity 

To help understanding when the DM will switch from the PP to the RP, we will develop the 

widely adopted cost-loss model proposed by Thompson and Brier (Thompson and Brier 1955). The 

model helps to define when to take a PP and face a sure cost (𝐶) instead of implementing a RP and 

risk a loss (𝐿) with a probability (𝑝) defined by a forecast. The model ignores ambiguity and assumes 

risk-neutral behavior. It suggests to DMs to take protective actions when the expected value of the 

RP is lower than the PP (g
«
> 𝑝). As shown in the representation of Figure 12, the issue complicates 

in presence of ambiguity: even if  g
«
> 𝑝 it is not clear which action to take if the ratio falls within the 

II Order PDF (Allen and Eckel 2012) 

 
Figure 12: Cost-Loss model in presence of ambiguity  

Source: own elaboration from Allen and Eckel (Allen and Eckel, 2012) 

To answer to this issue, we follow the same principle of the cost-loss model and extend it to 

the DM’s behavior. We consider that the DM will move from the PP to the RP when the CE of the 
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RP will be greater than the CE of the PP. In our example, this translates into the CE of the RP being 

greater than the sure payoff of the PP, given that the latter plan is riskless (Eq. 20): 

𝑔(𝑋]^_`a) ≤ 𝐶𝐸(𝑓)𝑥1|𝑥]^_`a
fgh *) 

Eq. 20 

When the two elements in Eq. 20 are equivalent, we reach an equilibrium where the DM is 

indifferent between being exposed to uncertainty and take the RP or avoid risk and ambiguity and 

implement the PP. Other things equal, information will only be implemented when ambiguity is as 

low as to let the DM being indifferent between being exposed to uncertainty in the RP or receive a 

sure payoff from the PP. This is likely to occur only when the DM has gained enough familiarity with 

the ICT to lower his doubts on its reliability. 

4.4.2 Management of the input variable: from a discrete choice to a continuous 
decision 

The model described until now represents a situation in which the DM is faced with a discrete 

choice among two different management plans. However, the DM has to decide the continuous 

quantity of water to use (𝑋]^_`a; 	𝑋[\) in order to maximize his EU. Even if not applying the volume 

specified by the ICT, DMs could implement information and decide to rise 𝑥]^_`a
fgh  or 𝑥[\

fgh  to get rid 

of part of uncertainty, if not all. Therefore, we consider the DM will rise the water volume specified 

by the ICT until it will grant to reach the equilibrium in Eq. 20. The result of this problem will define 

the optimal water quantity, building water demand for farmers (𝑥]^_`a
¬ ; Eq. 21) or the WA (𝑥]^_`a

¬ ; 

Eq. 22): 

𝑥]^_`a
¬ = 𝑥]^_`a

fgh +
1
2 𝑟𝜎0���(�v)

M + 12𝑎𝜎D(0(�v)|P)
M

𝑐]^_`a

 

Eq. 21 

𝑥[\
¬ = 𝑥[\

fgh +
1
2 𝑟𝜎0���(�v)

M + 12𝑎𝜎D(0(�v)|P)
M

𝑐[\
 

Eq. 22 
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where the proof can be found in Appendix 2: Simplification for the computation of the 

optimal water volume.  

If considering neutrality to uncertainty, the equation is simplified and the optimal water 

quantity is the one specified by the ICT (𝑥]^_`a
¬ = 𝑥]^_`a

fgh ). Accordingly, the element 
d
e_®���(¯v)

e �de^Q)®(¯v)|R*
e

°±²³´a
 can be interpreted as the cost of water, additional to the requirements, that 

is employed by the DM to get rid of part of uncertainty. Or 𝑥]^_`a
fgh  is the optimal water volume for 

an uncertainty neutral DM. As evident, an uncertainty-averse DM will rise the water volume 

specified by the ICT to account for his dis-utility coming from being exposed to risk and ambiguity. 

This will heavily impact on water allocation efficiency, as described in the following chapter. 

4.5 Empirical Example 
In the previous section we identified the water volume each actor wishes to use under his 

behavioral perspective. In this section we provide a numerical application of the model described 

until now. This example is aimed at highlighting issues in irrigation governance which contribute to 

undermine ICT benefits due to differential behavior among actors in the district. Accordingly, 

because perceptions and attitudes are subjective, there will be differences in the extent to which 

actors will implement information to save water. As a result, virtuous choices of some who decide 

to implement ICT-information to use less water can be undermined by others who do not (yet) rely 

on the same piece of information. For example, if farmers rely on information received and try to 

save water, but the WA does not, there will be water waste because of excessive volumes pumped 

in the network. Even worse, it can happen that the WA pumps in the network lower water volumes 

than with the PP, but farmers might not rely on the ICT and wish to implement the PP. This results 

in no water availability and drought losses in those farms located at the bottom of the irrigation 

network. These two are the main issues which can cause strong inefficiencies after the introduction 

of a new ICT for irrigation management. To analyze and estimate their impact singularly, we will 

carry out two scenario analyses, each corresponding to one of the issues highlighted above.  

In this empirical application and in both scenarios, we consider a situation in which all actors 

in the irrigation district are given a new ICT. Then, they can decide whether to implement 

information received and put into action efficient and risky irrigation plans or not. Anyhow, they 
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observe ICT-performance and, after each TF, they gain experience on information reliability. To 

simplify the model implementation, we analyze the specific situation in which all uncertainty around 

the ICT-message is included in the PDF received by each DM. This means that 𝜋fgh(𝑥1) is always 

capable of correctly estimating the likelihood of states. Therefore, when all DMs will be familiar with 

the technology, they will solve their ambiguity and act consistently. However, the process of 

familiarity can be long, this will cause very heterogeneous timing in information implementation. In 

this time lag, there will be inefficient water management.  

In the following subsections we provide a general overview of the case study, describing the 

context in which we fit the model and how we collected data. Then, we will take into consideration 

each scenario singularly and highlight its implications and issues for water governance. Finally, we 

will analyze the role familiarity plays in this context and highlight how, apart from governance 

regulations, it is the only element capable of granting efficient ICT-informed water management. 

4.5.1 Data collection 

The data used for the empirical application described in this section is collected with the help 

of the Consorzio di Bonifica di Secondo Grado per il Canale Emiliano Romagnolo and of the 

Operational Group “Reti di Consegna Intelligenti - Automazione della rete di consegna delle acque 

irrigue mediante calcolo dei fabbisogni delle aziende agricole aderenti a IrriNet” financed by the 

Rural Development Programme 2014-2020 of the Emilia-Romagna Region (Italy). This Operational 

Group is aimed at assessing the viability of new ICT-based irrigation allocation models which require 

the automatization of hydraulic nodes in the irrigation network.  The area considered for the case 

study is represented by the reclamation and irrigation board of Consorzio di Bonifica di Piacenza 

which is located in the Po valley, province of Piacenza, northern Italy. Here, several irrigation 

districts can be identified, each having independent water sources managed by a single WA. The 

district selected to implement the model is the one named Basso Piacentino. It covers a flat area of 

around 3,000 hectares and was selected for its representativeness of the irrigation context. The 

main crops cultivated in the district are corn, tomato for industrial processing, alfalfa and forage. All 

crops are irrigated, but corn and tomato are the most water demanding crops. The irrigating season 

starts from March-April and ends in September-October. The only water source in the district is the 

Po river, which is the major water source for irrigation in the whole Po Valley. To favor irrigation 
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management, the district is divided in two separate sub-districts: Basso Piacentino Monte and Basso 

Piacentino Valle (Figure 13: Overview of the two sub-districts.  

 
Figure 13: Overview of the two sub-districts 

The two sub-districts are comparable in size and cultivated crops as shown in Figure 14: Land 

use. They include different farms, however, for the purpose of this paper, we consider each sub-

district to be managed by a single DM, as if it was a single farm. Because Basso Piacentino Valle is 

located at the top of the irrigating network, it corresponds to Farm 1 in our model; Basso Piacentino 

Monte instead corresponds to Farm 2. Accordingly, the only water source in the district is an inlet 

from the Po River which is located at the border of Basso Piacentino Valle and is managed by the 

WA. Through the inlet, water is pumped from the river to the irrigation network which distributes 

water first in Basso Piacentino Valle, then in Basso Piacentino Monte. The WA can manage water 

volumes to be pumped from the river to the district but has no tool to manage water use within 

Basso Piacentino Valle, therefore Basso Piacentino Monte gets the remaining water. 
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Figure 14: Land use 

4.5.2 Assessment procedure 

To gather inputs for the assessment of WU and WP, we implemented a web-based platform, 

named IRRINET. This is an Italian ICT which provides farmers and WAs daily information on irrigation 

requirements (Munaretto and Battilani 2014). To run its agrometeorological models, IRRINET needs 

inputs on soil; precipitation; crop productivity and irrigation systems. This information was made 

available by the WA and helped to assess the daily evapotranspiration and CWD for each of the 

major crops cultivated in the district. Then, with the use of a modified version of the equation 

presented in the FAO Irrigation and Drainage Paper N°33 (Doorenbos and Kassam 1979) (detailed 

description is reported in Appendix 3: Relation between irrigation and crop production), we 

estimated crop productivity as function of the share of CWD satisfied by irrigation.  

The WA provided also the volumetric cost of irrigation at the farm level (𝑐]^_`a) and outputs 

prices. With regards to the volumetric cost of water at the WA-level (𝑐[\), this should include 

resource and external costs, as assumed in the model. Such costs are difficult to be estimated and 

the only available information was relative to the bill the WA has to pay to the provider per each 

volume of water pumped from the reservoir. Therefore, we made hypothesis considering 𝑐[\ as a 

function of the costs at the farm level. Specifically, we hypothesized 𝑐[\ being 50% higher than the 

weighted average volumetric cost of irrigation in the two sub-districts. To assume external costs of 

water being proportional to the in-farm water cost is a significant simplification. Opportunity costs 

might be somehow related to the in-farm water costs, but environmental costs are likely to be not. 

Following the purpose of this paper, we want to highlight how, if the WA considered higher water 
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costs other than the private ones, this would affect water management. At this end, precise 

estimations of the total cost of water would be helpful, but at the same time, these would not 

change the decision dynamics which are the focus of this research. In addition, we will run a 

separate simulation to highlight the differences in decision dynamics between a situation where the 

cost of water is made only by the water bill and a situation with the assumed total cost of water.  

Thanks to the use of economic data, together with crop productivity, we were able to assess 

net revenues as function of water used (𝑉(𝑋]^_`a)). Finally, to estimate the dynamics of the 

district’s performance in the time lag when actors’ actions are not coordinated in information 

implementation, we analyze the evolving of WP (Eq. 23Error! Reference source not found.): 

𝑊𝑃 =
𝑉(𝑋·¸) + 𝑉(𝑋·¹) − 𝑐[\𝑋[\

𝑋[\
 

Eq. 23 

This is an indicator expressing the farm revenues per volume of water pumped in the network 

by the WA. Its use allowed to analyze the evolving of the district’s performance from the time when 

the ICT is firstly introduced until when all actors are familiar with it. 

In the district, choices for the irrigation plan are not made on a daily basis due to technical 

restrictions in water delivery and in-farm irrigation systems. To account for this issue and to simplify 

the analyses, results are considered on a two-months basis. The two-months periods in which the 

irrigating season is divided are: March-April; May-June; July-August; September-October. All the 

results derive from data of the 2018 irrigation season. 

Because IRRINET provides deterministic information, to account for the probabilistic nature 

of the ICT-messages hypothesized in this paper, we applied Monte Carlo Simulation. This technique 

is used to generate normal distributions having as input the average and standard deviation of the 

samples. For each period and for each sub-district, we run one simulation with 500 iterations, using 

the software Palisade @Risk. Averages and standard deviations for the simulations are determined 

from the range of variability in revenues derived from the input data provided by the WA. The 

resulting distribution represents the variability in payoffs from the ICT-aided irrigation decisions in 

the period considered.   
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As an example of the simulated I Order distributions, Figure 15: I Order PDF of revenues in  

denotes the share of risk affecting seasonal revenues in the period March-April. This uncertainty is 

estimated by the ICT in the form of a normal PDF and describes how seasonal revenues in the whole 

district are distributed if irrigation follows the advice of the ICT in the period considered. Results are 

determined in absolute terms and on a per-hectare basis. In the district, the seasonal average 

revenue (7,769,648€ - 2,563€/ha) is constant between periods, while standard deviations vary, 

depending on the impacts that irrigation in one period has on the revenues of the whole season. In 

other words, the expected seasonal revenue is one, but its variability is conditioned by the time of 

the season the decision is taken. This is evident from Table 5 reporting standard deviations in the 

simulated PDFs of revenues at the district level. Here, in the periods May-June and July-August, 

variability is higher because of the key role irrigation has in these periods when crops are most 

sensitive to droughts. Accordingly, missing irrigation requirements in May-June and July-August has 

higher impacts than in other periods where the share of crop production subjected to uncertainty 

is lower.  

 
Figure 15: I Order PDF of revenues in the district for the period March-April 

 
Table 5: Parameters of the I Order PDF representing risk in the district for one period  

Since we did not have information on actors’ perceptions either, Monte Carlo Simulation was 

used to simulate the II Order PDFs too (Figure 16). Here, averages correspond to the expected value 

in the relative I Order PDF, as assumed by Klibanoff et al. (Klibanoff et al. 2005). Standard deviations 

Average Standard deviation
€ €/ha € €/ha
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March-April 7,769,648 2,563 652,969 215

May-June 7,769,648 2,563 1,058,601 349

July-August 7,769,648 2,563 1,053,017 347

September-October 7,769,648 2,563 561,071 185
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were determined assuming that the range of feasible distributions (∆) varies within 30% of the I 

Order PDF. This assumption implies that errors in probability estimations are up to the 30%; such 

error is considered equal between actors. From Table 6 we can see that standard deviations are 

significantly higher than the correspondent I Order distribution due to the assumptions made on 

the range of feasible distributions. With regards to differences in ambiguity between periods, these 

reflect the differences in the I Order distributions: with higher variability in the I Order PDF we will 

have higher variability in the II Order PDF too. The simulated II Order PDFs, obtained for each actor 

and for each period, are then updated following the learning rule expressed in Eq. 17. This allowed 

mean-preserving contractions in the distributions, resulting with a lowering in standard deviation 

with time (Figure 17). Given the specific case considered, where the ICT is capable to correctly 

estimate all uncertainty in 𝜋fgh(𝑥1), standard deviation lowers after each TF, until ambiguity is 

solved.  

 
Figure 16: II Order PDF of revenues in the district for the period March-April  

 
Table 6: Parameters of the II Order PDF representing ambiguity in the district 

Average Standard deviation
€ €/ha € €/ha
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March-April 7,769,648 2,563 1,108,993 366

May-June 7,769,648 2,563 1,224,099 404 
July-August 7,769,648 2,563 1,119,908 369
September-October 7,769,648 2,563 965,435 318 
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Figure 17: Standard Deviation of the II Order PDF 

Finally, we applied Eq. 21 and Eq. 22 which gave as output the numerical estimations of the 

actor’s demand for water in absolute terms and on a per-hectare basis. Because the developed 

model determines WD as function of variability in the II Order PDF, as standard deviation lowers 

also WD lowers in the learning process. To better understand model’s output, we assessed the 

extent to which the simulated behavior differs from a situation in which the actor always 

implements the PP or the RP. As a result, in  Figure 18 and Figure 19 we have WD of one actor which 

always implements the PP (WD_Precautionary); the simulated WD (WD_Simulated) and WD of an 

actor which is neutral to uncertainty and always implements the RP (WD_Neutrality). From both 

figures, it is evident how, with the learning process, the lowering in variance allows to lower the 

simulated water demand thanks to the progressive information implementation. The simulated 

behavior sees the actor implementing the PP in the first TFs, then as ambiguity lowers, he starts to 

implement information and reduce the water volumes he would use. Eventually, when ambiguity is 

solved the simulated WD gets comparable to the uncertainty-neutral actor’s one. However, as can 

be seen in the graphs, WD_Simulated never coincides with WD_Neutrality. Although WD_Simulated 

gets constant when the actor is familiar with the ICT, it is always higher than WD_Neutrality. This is 

due to the elements of risk aversion in the simulated behavior which are absent in the uncertainty-
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neutral behavior. Therefore, when an actor is familiar with the ICT, the difference between 

WD_Simulated and WD_Neutrality represents a form of risk premium. This is expressed in m3 of 

water the actor is willing to use in excess to get rid of part of the risk involved in the RP.  Figure 18 

is reported as an example to highlight how WD from one actor varies across periods; this is due to 

the different water requirements from crops across periods. Instead, in one period there are 

differences in WD between Basso Piacentino Monte and Basso Piacentino Valle (Figure 19) because 

of differential land use.  

 
 Figure 18: Comparison between periods of the evolving of WD in Basso Piacentino Monte 

 
Figure 19:Comparison between actors of the evolving of WD in March-April 
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4.6 Governance issues and scenario analyses 
By applying the above described assessment procedure, we were able to identify the water 

volume each actor wishes to use under his behavioral perspective. Now, to understand how this 

affects WU and WP at the district level, we have to take into account the relations between actors 

along the irrigation network. Accordingly, even in conditions of regular water availability, the 

volume an actor would use to irrigate might differ from the one at his disposal. This migh be due to 

the fact that, in the management of common resources, the decision of an actor is capable of 

affecting resource availability of another. This is the case of the irrigation management process 

described in the following paragraph. 

The irrigation management process along the irrigating network can be represented as 

follows. The WA decides the water volume to be pumped in the network according to its demand 

(𝑥[\
¬ ). In sub-district Basso Piacentino Valle, WU will correspond to 𝑥¬·¹  if 𝑥¬·¹ ≥ 𝑥[\

¬ , otherwise, 

the DM irrigates up to 𝑥[\
¬ . In the first case, after water has been used to irrigate in Basso Piacentino 

Valle, to Basso Piacentino Monte remains the available water. In the second case, it remains no 

water to Basso Piacentino Monte. In any case, if the remaining water in Basso Piacentino Monte is 

higher than CWD, there will be no impact from poor governance, otherwise water un-availability 

will cause revenues to be lower than expectations. Finally, if WU in Basso Piacentino Monte will be 

lower than water availability (𝑥¬·¸ + 𝑥¬·¹ ≤ 𝑥[\
¬ ), part of the water pumped in the network 

reaches the end section of the district where it is discharged. 

As made evident by the process above described, water demand is the key variable to 

highlight governance issues. However, it depends on the actor’s subjective behavior, on which we 

did not have any information. To overcome this lack of data, we made hypothesis on behavioral 

coefficients and varied them in the following two scenarios, which are the most representative in 

determining the dynamics of WP:  

1. Scenario 1: the WA starts to implement information earlier than farmers; 

2. Scenario 2: farmers start to implement information earlier than the WA. 

In both, we consider an actor to start implementing information when the water volume he 

decides to apply (𝑥]^_`a
¬  or 𝑥[\

¬ ) is lower than the precautionary one. These two scenarios are 

selected because they highlight the main two problems which can rise from poor coordination. 
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Accordingly, despite the infinite number of combinations between actors’ behavior, their impacts 

on the district’s efficiency can be divided in the two alternatives described later in this subsection. 

The actors’ behavioral coefficients in the two scenarios differ only for the coefficients of ambiguity 

aversion (𝑎), where in Scenario 1 𝑎[\ < 𝑎·¸ and 𝑎·¹ = 𝑎·¸; the opposite,  in Scenario 2 𝑎[\ >

𝑎·¸ and 𝑎·¹ = 𝑎·¸ (Table 7 and Table 8). 

In the first scenario, we suppose that the WA is the first actor to implement information 

received because of its lower ambiguity aversion (Table 7). As a result, the WA pumps in the network 

a water volume which is not sufficient for both farms if they implement the PP and irrigate at the 

field capacity. Because farmers’ actions are not coordinated, it is likely that in Basso Piacentino Valle 

there will be excess use of water. This will cause the available water in Basso Piacentino Monte to 

be lower than CWD, so revenues will get lower than expectation with economic losses. If we analyze 

the occurrence of such losses with the passing of TFs (Figure 20), we see that in the first place no 

loss occur; because, notwithstanding excess-use in Basso Piacentino Valle, the remaining water in 

Basso Piacentino Monte is sufficient. Then, as the WA reduces the pumped volumes, losses occur; 

these are higher in the core of the irrigating season when crops are more susceptible to droughts. 

After actors have gained familiarity, no losses in Basso Piacentino Monte are manifested. 

  Behavioral coefficients 
  Risk aversion (𝑟) Ambiguity aversion (𝑎) Update rate (𝑤) 

Ac
to

r  

WA 2.0E-07 6.0E-05 2.0E-01 
Basso 

Piacentino 
Monte 

2.0E-07 6.0E-04 2.0E-01 

Basso 
Piacentino 

Valle 
2.0E-07 6.0E-04 2.0E-01 

Table 7: Actors' behavioral coefficients in Scenario 1 
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Figure 20: Losses in Basso Piacentino Monte due to over-use in Basso Piacentino Valle in scenario 1 

The above explained inefficiency in water governance do not allow to maximize farms’ 

revenues with the available water; this has strong impacts on WP. Accordingly, if we analyze the 

evolving of the district’s WP during time (Figure 21), we see that, in the first TFs after the 

introduction of the ICT, WP is extremely low due to excess-use of water and production losses in 

Basso Piacentino Monte. However, in WP there is a positive trend and, as ambiguity is solved in the 

process of familiarity, WP reaches relatively high values. Has done with WD, to better understand 

model’s output we also determined WP in a situation where all actors implement the PP 

(WP_Precautionary) and where all actors are neutral to uncertainty and always implement the RP 

(WP_Neutrality). Here again, the trend of WP reflects a progressive information implementation 

and, with it, a progressive achievement of ICT-benefits. In the first TFs, WP is low and coincides with 

the business as usual situation when all actors implement the PP and the district’s efficiency is low. 

Then, WP rises as WU lowers and losses in Basso Piacentino Monte are less important; finally, WP 

reaches values comparable with the settings when all actors implement the RP. Again, 

WP_Simulated never coincides with WP_Neutrality, due to the remaining risk and the risk-aversion 

in the simulated behavior. 
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In Scenario 2 we hypothesize that DMs in the two sub-districts are the first to implement 

information because of their lower aversion to ambiguity (Table 8). Here, farms’ efforts to save 

water are wasted at the district level because the WA pumps water in excess. Then, water will be 

wasted downstream the irrigating network, not being fully used by farmers. This translates into low 

WP up until the time when also the WA starts to implement information and progressively lowers 

water volumes pumped in the network. Accordingly, in the graph of Figure 21, we see WP in the 

first TFs being extremely low, then, as the WA progressively reduces water volumes, WP rises with 

a non-decreasing trend 

  Behavioral coefficients 
  Risk aversion (𝑟) Ambiguity aversion (𝑎) Update rate (𝑤) 

Ac
to

r  

WA 2.0E-07 6.0E-04 2.0E-01 
Basso 

Piacentino 
Monte 

2.0E-07 6.0E-05 2.0E-01 

Basso 
Piacentino 

Valle 
2.0E-07 6.0E-05 2.0E-01 

Table 8:  Actors' behavioral coefficients in Scenario 2 

 
Figure 21: WP during time 
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In parallel with the assessment of the dynamics in WP, we estimated how, with the passing 

of TFs, water savings at the district level evolve (Figure 22). These are determined considering the 

simulated use of water in the district, having as benchmark WU with the PP. Reflecting the trend in 

WP, in the beginning no savings are achievable at the district level because actors decide to 

implement the PP. Then, the process of familiarity allows to lower water demand ( Figure 18) and, 

with it, WU in the district.  

Both in the assessment of WP and water savings, between the two scenarios values are 

comparable. However, we can see that in Scenario 1 higher levels in the district performance are 

reached few TFs earlier than with Scenario 2. This interesting pattern reflects the dominant role of 

the WA driving water use efficiency in in the whole district. Decision at the WA level are key because 

they not only condition water availability at the farm level, but also determine water use for the 

district. Accordingly, if farmers implement information but the WA does not (Scenario 2), there will 

still be water waste at the end section of the irrigation network. 

 
Figure 22: Water savings with the passing of TFs  
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A specific consideration must be made in the estimated values of WP. Here, the main 

highlights are: (i) in the periods March-April and September-October WP is much higher than in the 

rest of the season and (ii) in the first TFs of the periods May-June and July-August WP has negative 

values. The first highlight reflects the fact that CWD in the core of the irrigating season is much 

higher than in the shoulder season, given the same production levels. Negative WP values uncover 

the assumed nature of volumetric costs of water at the WA-level which include resource and 

environmental costs. Under the private perspective, having negative WP means irrigation has 

negative impacts on production levels and actors would spontaneously avoid water use in such 

circumstances. However, we raised the cost the WA has to face to pump water into the network to 

represent external costs. Therefore, a negative WP should be interpreted as a signal of the fact that 

in the business as usual conditions irrigation is not sustainable under the societal perspective, even 

if it is profitable for actors in the district. Nevertheless, because we made strong assumptions on 

the total cost of water, such conclusions cannot be made and WP values per-se are not reliable; in 

the scope of this research, the key focus is on the dynamics of WP. To further understand the effects 

of not including external costs in the decision environment, we have run a separate simulation. This 

helps to understand the differences in decision dynamics between a situation where cost of water 

is the only bill the WA has to pay and a situation with the assumed total cost of water. The results 

of the simulation are compared to the WP when all actors implement the PP or the RP. As can be 

seen from Figure 23, WP evolves with TFs as in the previous two scenarios. However, the maximum 

WP values are far from being comparable to the RP. Accordingly, given the small cost of water, the 

WA finds it more profitable to use water in excess than risking revenues and implement the RP. This 

is especially evident in September-October when information is never implemented because never 

profitable under the actors’ private perspective. 
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Figure 23: WP if no opportunity costs are considered  

4.7 Discussion 
In this paper we developed a behavioral model capable of representing the decision between 

inefficient but riskless irrigation plans or ICT-aided efficient irrigation plans with uncertain 

outcomes. The complex uncertainty settings involved in new ICT-information implementation are 

framed distinguishing between risk and ambiguity. This allowed to treat separately the probabilistic 

estimations provided by the ICT, which are exogenous and common between DMs, and the 

subjective perceptions on the ICT reliability. This separation opens the possibility to model the 

evolving of ambiguity over time as DMs get familiar with the new technology.  

In literature, several learning models have been proposed to describe how familiarity takes 

place as new evidences become available in time. However, these models cannot be applied in our 

context for one of the following reasons: (i) they refer to data-generating problems, where the mere 

repetition of a test allows to objectively solve ambiguity; or (ii) they are developed to account for 

production technologies, where performance can be quantitatively measured. For these reasons we 

developed a new learning model where, at the end of each TF, the DM gets a binary signal from the 

environment. This signal describes whether information has been correct or not. It is used to update 
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the prior II Order PDF on ICT reliability to obtain a posterior PDF, according to the updating model 

developed. With the passing of TFs, if the ICT proves to be reliable, ambiguity lowers and, with it, 

the variance in the II Order PDF. This will help ambiguity-averse DMs in ICT-information 

implementation.  

Because behavioral attitudes under uncertainty are subjective, there will be differences 

among DMs in the time when they get familiar with the ICT and implement its information. Up until 

the time when every actor is not familiar with the ICT, differential ambiguous perceptions will cause 

un-coordinated WU in the district. By applying the model to a numerical example, we highlighted 

how this can undermine ICT benefits. Specifically, we considered two main scenarios assuming an 

accurate ICT and attitudes toward uncertainties being constant in time. Scenarios revealed that poor 

coordination among actors can not only cause allocative inefficiencies, but also drought losses at 

the farm level, with negative WP values. The issue is further exacerbated if we relax the assumption 

of constant attitudes between actors. 

In both scenarios we see ambiguity and poor coordination between actors to undermine 

benefits form ICT. However, this is true only in the first TFs when actors have few or no insights on 

ICT reliability. If they were allowed to gain experience, considering the learning behavior 

hypothesized, eventually, they would observe the same performance. As a result, actors’ actions 

will get coordinated by information provision on its own. This way, high WP values can be reached 

thanks to efficient ICT-aided irrigation plans. However, the learning process takes some time, an 

issue which will cause inefficiencies in the use of water at the district level. Further, with the 

modelled behavior WU and WP never reach the optimal values achievable when all actors 

implement the RP because, even after they get familiar with the ICT, RA remains. This makes actors 

willing to use water in excess to get rid of part of the risk specified by the ICT. 

The limitations of these results are in the model’s assumptions and simplifications. These are 

required by the complexity of the uncertainty settings. The first limitation is in the payoff function 

which includes only volumetric costs. This simplification is driven by the fact that costs for 

machineries and in-farm delivery systems are fixed in the short term and cannot be reduced by 

efficient ICT-aided irrigation plans. Therefore, we assume that they will not be taken into account 

in the implementation decision. This is true even at the WA-level, where fixed costs for irrigation 
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network maintenance are mostly related to the characteristic of the infrastructure itself not to the 

operational volumes.  

The research makes strong assumptions on behavioral coefficients. Here risk and ambiguity 

aversion coefficients are hypothesized in absolute terms and assumed to be equal between actors. 

This simplifies reality because differences in behavior are not only due to the mere differential 

perceptions, but also to differences in attitudes, with some DMs being more averse to uncertainty 

than others. However, these assumptions allowed us to focus on ambiguity, isolating the effects 

that AA has on decisions, rather than uncertainty attitudes as a whole. Further, we assumed the 

learning behavior being dependent only on subjective attitudes and, again, it is considered to be 

constant between actors. 

Volumetric costs incorporate another limitation caused by the lacking available data. At the 

farm level we assumed the cost of water being known and proportional to the quantity of water 

used. This is not always true, especially in settings where water use is un-metered. However, other 

costs, such as fuel consumption, could be taken into account by the farmer when deciding whether 

to use less water (in light of new pieces of information) or not. At the WA-level, as assumed in the 

model, costs for water should include resource and external costs. However, such costs are difficult 

to be estimated and the available information was not sufficient; so, we hypothesized them being 

50% higher than the costs at the farm level. To assume external costs of water being proportional 

to the in-farm water cost is a significant simplification. Opportunity costs might be somehow related 

to the in-farm water costs, but environmental costs are likely to be not. Therefore, the assumption 

is simplistic and might lead to strong biases in the estimation of water costs under the WA 

perspective. Nevertheless, it was not the purpose of this paper to focus on common good 

assessment and the main governance issues highlighted by the model are still in place even with 

sensible variations in the full cost of water. In addition, we run a separate simulation to highlight 

the differences in decision dynamics between a situation where the cost of water is made only by 

the water bill and a situation with the assumed total cost of water. 

The main limitation of the model is in assuming that DMs can judge if information received 

was correct and in simplifying this judgment with a binary signal. With weather-related ICT, the DM 

might find difficulties in the ex-post assessment of information reliability. Climate parameters are 

hard to measure by DMs: multiple sources of information might be misleading and quantitative 
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comparisons between forecasts and observations are frequently impossible at the end-user level. 

This can cause relevant elements of subjectivity in DMs’ judgements on the signals received after 

each TF. However, this phenomenon will only be relevant in the first TFs and, as the number of TFs 

increases, its impact will be negligible. Therefore, we can still consider that, when DMs are 

completely familiar with the ICT, their judgements on ICT reliability will be comparable. Moreover, 

in case of differences in judgements, the issues of poor governance highlighted in this paper will be 

further emphasized.  

Finally, the model considers ordinary settings for water management, with no constraints in 

terms of water availability. It would be interesting to develop the model by including DMs’ behavior 

with extreme events such as droughts. In these conditions, decision payoffs are characterized by 

heavy tailed distributions where knowing only the expected state would lead to strong 

underestimation of downside risks. At this end, information on distribution’s skewness would allow 

DM to be better able to plan their action consistently with the climate risks (Li, Xu and Zhu 2018). 

In such settings, it is evident how ICT would play a significant role; however, the impact of ambiguity 

can be expected to be significant too. Accordingly, the DM would not only doubt the probability of 

the average state, but also the shape of the whole distribution, given its relevance for the decision. 

This would require to further develop the model to relax the assumptions of normality in first and 

II Order PDFs and account for negatively skewed distributions of payoffs with climate shocks 

4.8 Conclusions and policy advice 
Despite being simplified, the model developed is capable of providing a complete picture of 

the impacts that subjective behavior under ambiguity has in undermining ICT potentials for efficient 

water management in irrigation districts. Ambiguity is found to be limiting ICT implementation 

because ambiguity-averse DMs find disutility from being exposed to the un-measurable uncertainty 

generated by not knowing ICT reliability. Further, through an empirical example, we showed that, if 

actors’ decisions on ICT implementation are not coordinated, allocative inefficiencies and 

production losses can occur. Both of the above issues can only be solved thanks to the process of 

familiarity. By allowing the DM to gain experience on ICT reliability, he would solve his ambiguous 

perceptions and put information into action. Then, when all actors get familiar with the ICT, their 

action will get coordinated according to their observations. However, the process of familiarity can 

take time; this period might further discourage ICT uptake. Accordingly, if in a TF the DM implements 
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information to save water, but his efforts get vanished due to those who decide to implement the 

PP, in the next TF he will be more unwilling take the RP. This would hinder a vicious circle and 

underlines the need for policy interventions.  

Uncertainty-management policies would be needed to lower ambiguity on ICT reliability, 

speeding up the process of familiarity. This can be done by providing ambiguity-reducing 

information on the technology’s performance (Ross et al. 2012) and allowing DMs to directly 

experience the reliability of the ICT trough demos and demonstration events. Having hands on the 

new technology, without necessarily implementing it at DM’s own expenses, would allow users to 

gain information on ICT reliability.  

Policies for efficient water governance would be needed too. Here, the main aim would be 

to avoid excess-use of water by some farmers, which might cause production losses to others. At 

this end, the only available tool would be to meter water consumption at the farm level and provide 

sanctions in case of excess-use. Nevertheless, this is possible just in few cases because the majority 

of irrigation networks are made of open-air canals where water consumption cannot be metered to 

implement volumetric pricing systems (Lika et al. 2016). In such conditions if the WA imposed to 

farmers the use of the ICT, it would not have any tool to assess whether information had actually 

been implemented or not. As a result, farmers downstream the network would remain subjected to 

the risk of water un-availability due to excess-use of water upstream. Given the risk of the sector to 

not exploit ICT because of these barriers, we believe to be a priority to further invest in ICT 

development to maximize the capabilities of these tools and to further disseminate their potentials. 

This would help fostering ICT uptake with a bottom-up approach, given the absence of policy tools 

to impose regulations for information implementation. 
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Chapter 5 

5. Discussion 

5.1 Summary of results 
The thesis started considering the potentialities of ICT but also acknowledging the fact that 

ICTs cannot always be beneficial to irrigation management and even if ICT-information can provide 

benefits, there are constraints. To help understanding the problem, we distinguished between two 

classes of constraints limiting ICT adoption and ICT-benefits in irrigated agriculture. On the one 

hand, we identified with restrictions to information usability those constraints which occur when 

the ICT provides information that cannot be implemented or it is not profitable if implemented. 

Such restrictions cannot be overcome because they are intrinsic characteristics of the decision 

environment. On the other hand, we defined barriers to the achievement of ICT-benefits those 

constraints which can be overcome by: (i) modifying ICT-information to meet DMs’ needs; (ii) 

adapting decision processes to implement information and achieve higher performances or (iii) 

providing ambiguity reducing information to solve behavioral barriers.  

In the literature, there are several studies addressing the topic of ICT implementation in 

agriculture and water management (Jeuland et al. 2018; Meza et al. 2008). Nevertheless, results are 

contradictory, and none provides a comprehensive assessment addressing, with a holistic approach, 

the whole decision environment. In particular, to the best of authors’ knowledge, no study was 

found addressing decisions at the WA-level and the issues of ambiguity and AA. 

In this context, we deeply analyzed the decision environment around the choice for ICT 

implementation to aid irrigation management in the process of digitalization. The ambition of the 

thesis was to develop new decision models to fill the knowledge gaps on ICT implementation and 

answer the need for evidence-based policy advice. Specifically, we aimed at answering the need of 

evidences on information usability, on potential economic benefits from ICT and on barriers to the 

achievement of such benefits. To do so, the research has been carried out in three interconnected 

but separate parts. (1) The first is a literature review aimed at understanding the key issues for ICT 

adoption and at drawing the objectives and foundations on which to develop decision models to aid 
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the sector. (2) In the second part of the research, we addressed the issues of restrictions to 

information usability and quantitatively estimated potential economic benefits from the ICT-

informed decision process of irrigation management at the WAs level. Finally, (3) in the third part, 

we developed a behavioral model to assess the extent to which behavioral barriers under ambiguity 

have in undermining ICT potentials for efficient water management in irrigation districts.  

(1) Results from the literature review highlighted how ICT benefits are strongly context 

dependent. ICT-information will only be usable when its content answers DMs’ needs 

(Furman et al. 2011) and its form is compatible with technical restrictions (Vogel et al. 2017). 

Further, many works underline how subjective behavioral barriers are capable of 

compromising ICT implementation and ICT-benefits. The review also allowed to build the 

theoretical foundations for new behavioral decision models of ICT adoption under 

uncertainties in irrigation management. Here we introduce the concept of ambiguity. This 

arises from a lack of knowledge on information reliability and expresses the degree of 

confidence the DM puts on the risk estimations provided by the ICT. The uncertainty framing 

proposed allows to model the process of familiarity which occurs as the DM gains experience 

on the ICT. Familiarity is expected to play a key role in the ICT adoption decision as it favors 

uncertainty-averse DMs in ICT-information implementation. 

(2) To answer to the issues of restrictions to information usability and unclear ICT-benefits, in 

the second paper we developed a theoretical model, based on BDT. Results from the 

implementation of the model to the case study allowed to estimate potential benefits from 

ICT-aided decision process of irrigation management at the WA-level. This is subjected to 

high variability in spatial and temporal distributions. The former variability is caused by 

differences in land use, where, with permanent or high added value crops, technical barriers 

or the high stakes in the decisions do not allow ICT implementation. Temporal variability is 

caused by the fluctuation of water savings during time along the irrigating season; when no 

rain is forecasted, savings are low. Over variability, benefits are also characterized by barriers 

of the decision environment which are capable of compromising information usability. In the 

specific context analyzed, the most relevant constraint is in the decision power of the WA. 

Here, the WA cannot act upon information received before the irrigating season because it 

cannot influence land allocation of permanent crops in the medium term. Moreover, due to 

the characteristics of the supply network, the WA is not able to precisely allocate water 
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according to needs. This limits ICT-benefits because of missed water savings opportunities. 

Finally, results proved how information form and quality affect its usability. Especially in 

irrigated agriculture, decisions follow the seasonal pace, therefore, it is important that 

messages are delivered at the right time during the decision process. With regards to the 

quality of ICT-information, a specific sensitivity analysis was carried out to show its relevance 

and the benefits from improvements in accuracy.  Given the high stakes involved in irrigation 

management, it is fundamental that new ICTs provide information with the accuracy needed 

by the specific target decisions. 

(3) Quality of information and ICT perceived reliability have been the core of the third part of 

the thesis. Here, we developed a behavioral model capable of representing the decision 

between inefficient but riskless irrigation plans or ICT-aided efficient irrigation plans with 

uncertain outcomes. The model allowed to account for perceptions on ICT reliability and 

attitudes toward uncertainty and showed how differential ambiguous perceptions can 

undermine ICT benefits. To assess the extent to which subjective behavior can compromise 

the efficiency of ICT aided irrigation plans, we applied the model to a case study. Here, we 

considered two main scenarios assuming an accurate ICT and attitudes toward uncertainties 

being constant in time. Scenarios revealed that poor coordination among actors can not only 

cause allocative inefficiencies, but also drought losses at the farm level. However, this is true 

only in the first TFs when actors have few or no insights on ICT reliability. If they were allowed 

to gain experience on it, their actions would eventually get coordinated and the potentials 

of ICT achieved.  

5.2 Limitations and future research 
Modelling decision processes for irrigation management under uncertainty is extremely 

complex. This posed limits in the results and in the models’ capability to represent real-life decisions. 

Three main limitations are caused by three distinct sources of complexity: (1) uncertainty framing; 

(2) peculiarities of the irrigation sector; (3) subjective behavior of farmers and WA.  

(1) Uncertainty framing: uncertainty on its own is unclear and its structure and impacts are 

often debated (Machina and Siniscalchi 2014). This is highlighted by the numerous theories 

developed in the economic literature, often one theory in contrast with the other. In this 

research we provided a representation of uncertainty where there is a clear separation 
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between risk, which is exogenous and captured with the accuracy of the ICT, and ambiguity 

which is a characteristic of the DM’s subjective belief. This is a simplification of real decision 

processes, where uncertainty is not dichotomic and its multiple forms might be indistinctly 

perceived by DMs. Here, the theory of ambiguity and AA developed by Ellsberg (1961) was 

chosen by the authors without any empirical evidence. This might cause over-estimation of 

the impacts that uncertainty-aversion has on the decisions. On the one hand, other theories 

might be better explaining reality and further research carrying out comparative 

experimental tests would be useful to assess the theoretical background most suitable to 

represent behavior toward ICTs. On the other hand, the theory of AA is the only which allows 

to support the modelling of decision dynamics on ICT implementation occurring along the 

process of familiarity. Because we believe familiarity to be a key target for policies, we 

consider the theory of AA the most useful in representing the uncertainty settings of the 

study. Accordingly, the of uncertainty which is risk is hard to be modified because intrinsic 

to the decision environment. For example, risk can be due to: (i) the accuracy of the ICT, 

which in the short term cannot be raised more than what the state of the art model offers; 

(ii) or the variability of climate events, which are exogenous to the decisions. As opposite, 

ambiguity can be lowered in the short term by allowing DMs experiencing with the ICT and 

building knowledge on the ICT reliability. At this end, policies have the capability to ease the 

process of familiarity, speeding up information uptake. 

(2) Peculiarities of the irrigation sector: the complexity of the sector adds further issues, which 

required simplifications. Irrigation management is peculiar and involves numerous 

disciplines, some knowledge of which is needed to understand decisions. This is confirmed 

by the multidisciplinary background of many WAs’ boards and by the multiple stakeholders 

involved in the decisions. For example, we accounted for elements of hydraulics, where the 

WA must guarantee a threshold of minimum flow in canals and precise allocation is not 

feasible. However, because of the complexity of the systems we had to overlook other 

aspects of the decision environment and this might have caused biases on the estimation of 

ICT-benefits. Between these, in all models we overlooked or simplified environmental 

externalities, despite their relevance in the area where case studies are located (Cavazza et 

al. 2017). If research would be developed to estimate ICT-impacts on environmental 

variables, further support to ICT development could be motivated thanks to the resource-

efficiency of ICT-aided irrigation plans. In addition, this would support policy-makers in 
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adapting the full cost recovery principle of the Water Framework Directive (60/2000/EC) to 

the context of virtuous WAs who choose to implement ICT. The peculiarities in the decision 

environment of the irrigation sector are also extremely variable between WAs due to 

differences in climate, land use, existing infrastructures and decision-making flexibility. 

Therefore, decision problems for irrigation management are local-specific. This poses limits 

to the models’ applicability in different contexts and to the generalization of results; which 

would rather benefit of a wider testing exercise in areas with radically different decision-

making conditions. 

(3) Subjective behavior of farmers and WA: issues in modelling decisions on ICT information 

implementation are exacerbated when assumptions on the rationality of DMs’ behavior are 

relaxed. Although being extremely relevant in affecting decisions, subjective behavior is 

complex and, to be represented in decision processes, it requires specific modelling 

techniques. In the literature there is ample variety of modelling approaches to represent 

DM’s behavior when he is making decisions under uncertainty. Many model’s applications 

are available highlighting the better performance of a model over another in a specific 

context (Machina and Siniscalchi 2014). Despite representing real life decisions with a 

sufficient degree of reliability, every solution proposed is significantly simplifying reality. 

Accordingly, combinations in behavioral traits are infinite and defining one behavioral 

pattern which fits for more than one DM implies to take the stereotype of the average DM 

and assume it fits for all actors in the same decision process. Moreover, behavior is driven 

by perceptions and attitudes which are difficult to be elicited because very context 

dependent (Machina and Siniscalchi 2014). For these reasons, in the first model, where we 

estimated ICT benefits, we assumed that the WA is rational when making choices on ICT-

information implementation. This is done by the majority of work carried out on this topic 

(Aker et al. 2016) and allowed us to focus on the technicalities of the decision process, so 

that a better picture of information usability and potential benefits could be drawn. Despite 

the limits in all behavioral models, if not capable of faithfully representing reality, they can 

still provide better understanding of decision processes. Therefore, we modelled subjective 

behavior in the third part of the thesis to gain a better picture of its impacts on ICT-benefits. 

Here, the focus was not on attitudes per-se, but on the relative degree of uncertainty 

aversion between actors in an irrigation district. Accordingly, in the numerical 

implementation of the model, we made assumptions on all behavioral parameters. 
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Therefore, results provide a representation of the dynamics of the decisions and do not 

assess the real actors’ behavior. To gain a better picture of behavior in the decision process, 

the model would benefit from experiments aimed at eliciting the coefficients of uncertainty 

aversion and perceptions toward ICT reliability. Several experimental games are available in 

literature, between these, the one developed by Attanasi et al. (Attanasi et al. 2014) is the 

most powerful to elicit AA in a way suitable to the modelling framework of this research. By 

calibrating the model with elicited parameters, its output would deliver results which could 

be better simulating the decisions. These results could be employed to design incentives 

aimed at compensating actors for their effort in bearing new uncertainties to save water. 

Despite the above described limitations, together with the ones mentioned in each chapter 

of the present research, the results provided answers to many uncertainties on ICT adoption for 

irrigation management. The models allowed to highlight the main issues which hinder ICT 

implementation and ICT-benefits and provided an estimation of the potentialities of such tools. Both 

the models and the consideration derived from their implementation can be extended to the 

broader implementation of technologies in precision agriculture. Here, the use of new tools is 

widespread, but uncertainties on the real performances or reliability still affect implementation 

decisions. Further, the methodology proposed can be considered replicable in many other 

agricultural sectors where the digitalization process is taking place. Between these, we consider 

particularly relevant the topics of: (i) result-based payments to compensate farmers for the 

provision of ecosystem services and (ii) weather-indexed insurances developed on the basis of 

agrometeorological models to provide new opportunities for risk management. Environmental 

uncertainties cause information asymmetries between farmers and the regulator, in case of result-

based payments (Derissen and Quaas 2013), or between farmers and the insurance company in case 

of weather indexed insurances (Vroege, Dalhaus and Finger 2019). ICT-information provision would 

have a potential key role in lowering uncertainties, while allowing the parts to be to be in the same 

informational settings. This is true for both result-based payment, where platforms can disseminate 

to the supplier and the regulator information on the current ecosystem status (Birge and Herzon 

2019), and index-insurance, where ICTs allow to increase transparency and real time monitoring of 

losses  (Ceballos, Kramer and Robles 2019). Nevertheless, the parts involved in the development of 

these tools might be unwilling to implement ICTs as they benefit from such asymmetries. Further, 

if lack of knowledge on the platform’s reliability occurs, there will be differences in ambiguity 
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perceptions. The impact of asymmetries in perceptions can be expected to lower the economic 

efficiency of these new insurance or policy tools.  

5.3 Policy implications 
The present dissertation was motivated by the need of evidences to support policy-makers 

in the design of new schemes to guide irrigated agriculture in unlocking ICT potentials. The results 

answered to this need and highlighted how to act in favor of the Digital irrigated agriculture. At this 

end, policy implications can be divided in three main categories: (1) ICT-development policies; (2) 

uncertainty-management policies and (3) agricultural and water policies. These are motivated by 

the potential economic benefits from ICT-aided irrigation plans and should favor an efficient 

digitalization process. 

(1) ICT-development policies are needed to overcome issues of information usability and boost 

ICT-potentials. Many ICTs offer discrete technology components without providing any 

support to adapt the technology itself to real decision processes. The simple information 

provision is not sufficient to allow its implementation because of local specificities in the 

end-user’s information environment. This is especially true for irrigation management, 

where climate and technical elements can vary significantly between decision contexts and 

can hinder ICT-information implementation. At this end, ICT are suggested to aim at 

delivering information tailored to farmers’ or WAs’ specific needs (Furman et al. 2011). 

However, most of ICT projects are characterized by a top down technological development 

where platforms are designed without involving end-users (Rotz et al. 2019). This causes 

phenomena such as the  “loading dock” (Cash et al. 2006) where end-users are provided 

with relevant climate information which has no use in reality because its form is 

incompatible with actual decision making (Vogel et al. 2017). Further, this approach feeds 

skepticism toward ICT reliability, when DMs have never experienced the new platform (Rotz 

et al. 2019). Rather than a top down approach to ICT development, a bottom up involvement 

of farmers and WAs is suggested. If ICT developers gathered more information and 

feedbacks from end-users, they would be better assured that barriers to information 

usability are overcame. However, a participatory ICT development process is likely to be 

more complex, to be longer and to incur in higher costs. At this end, policy intervention is 

advised to facilitate the process, because public institutions have the role and the capability 
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to favor a better use of existing knowledge (Cash et al. 2006). The suggestion is to implement 

policy tools to help private initiative facing the high transaction costs of ICT implementation 

jointly with end users. At this end, Operational Groups funded by the Rural Development 

Programme (RDP) are a good example, bringing together different stakeholders with 

farmers.  Similarly, the RDP’s subsidies to investments on innovation implementation can be 

a powerful tool to directly finance investments on new platforms or indirectly by means of 

cross-compliance.   

(2) Uncertainty-management policies would be needed to lower ambiguity on ICT reliability, 

speeding up the process of familiarity. Once new platforms are brought to the market, it 

would be ideal to offer long trials or demonstrative events. Rather than a plug and play 

approach, these initiatives would allow end-users to better understand how information can 

be implemented and to gain experience on ICT reliability. Having hands on the platform, 

without necessarily implementing its information at DM’s own expenses, would lower 

ambiguous perceptions and potentially foster the diffusion of ICTs. In addition, even after 

ICT adoption, DMs can be encouraged in starting to use the new platforms for informative 

purposes before attaching real decision making on it; this way they would experience ICT 

reliability without risking losses. As we modelled in this research, ICT-information 

implementation often implies moving from inefficient PPs with sure outcome, to efficient 

ICT-informed RP with uncertain outcomes. Here, if a DM is willing to bear such uncertainties 

to save water, he would be needing support in his virtuous choice. Accordingly, even after 

ambiguity is solved, uncertainty remains in the form of risk. Therefore, ex-post risk coping 

policies would be helpful to compensate losses at the WA’s or farms’ level when the ICT 

failed in its predictions.  

(3) Agricultural and water policies instruments are suggested to be evaluated also with respect 

to their effects on risk perception to promote ex-ante risk management solutions to increase 

the sector’s resilience. Between these, at the farm level, policies could favor investments in 

resource-efficient crops and irrigation systems; at the WA level, there could be favored: 

reservoirs, to face longer periods of scarcity; and investment in the irrigation network to 

allow efficient water allocation between districts. Policies for efficient water governance 

would be needed too. Here, the main aim would be to avoid excess-use of water by some 

farmers, which might cause production losses to others. Further, we have to consider that 

the share of risk estimated by the ICT is subjected to climate variability. This complicates ICT-
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informed decisions with CC, because every time the share of risk varies, the DM’s expected 

utility from information implementation varies too. This issue will require DMs to take time 

to analyze case by case the uncertainty settings, before deciding. Therefore, policies for 

digitalization are suggested to account for such extra time and compensate adopters for 

their decision. 

Finally, to clarify the settings in which specific policies are suggested to be implemented and 

which actor to target, in Table 9 we propose a schematic representation of the policy suggestions 

arising from the thesis. Here, we consider the combinations between high or low levels of risk and 

ambiguity affecting ICT-aided irrigation management decisions. If uncertainty is low because of low 

levels of risk and ambiguity, policy intervention can be limited at promoting ICTs and favoring 

familiarity or in providing incentives to adoption or incentives to water use reduction. The target for 

such policies can be limited to WAs, because they can implement ICT-information in their districts 

with low risks for farmers. On the other hand, if risk is high while ambiguity low, the target for 

policies is represented by farmers. Here, if the ICT is implemented at one of the two decision levels, 

farmers risk production losses due to the high variability of climate events, therefore ex-post 

compensation of such losses would be helpful. To better predict climate variability, investments on 

the accuracy of information would be useful too. As opposite, if it is ambiguity high while risk low, 

the target is both the WA and farmers. Both would benefit from ambiguity reduction initiatives, 

making them be more inclined in information implementation thanks to the process of familiarity. 

However, because of the high ambiguity, farmers are also exposed to losses caused by poor 

governance. Therefore, they would need ex-post compensation in case of in-farm losses due to 

excess-use in other farms. Finally, when uncertainty is high due to high risk and ambiguity, the policy 

maker is suggested to further investigate on the convenience of information implementation. As 

highlighted in this research, in not all decision processes ICT-information implementation is 

profitable. Here, rather than the mere promotion of ICT illustrated in Table 9, other insurance 

schemes or policies aimed at supporting irrigation management are expected to be more suitable. 

Otherwise, if uncertainty can be lowered trough information provision all the policy tools described 

in Table 9 would be needed to reach the ICT potentials.  
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  Risk 
  Low High 

Am
bi

gu
ity

 

Low 

Target actors: 
• WA 

Policy tools: 
• ex-ante ambiguity reduction 

initiatives and information 

Target actors: 
• farmers 

Policy tools: 
• ex-ante: investment on accuracy 

of ICT; 
• ex-post: compensation of 

climate losses 

High 

Target actors: 
• WA + farmers 

Policy tools: 
• ex-ante: ambiguity reduction 

initiatives and information 
• ex-post: compensation of losses 

due to poor governance 

Target actors: 
• WA + farmers 

Policy tools: 
• ex-ante: ambiguity reduction 

initiatives and information + 
investment on accuracy of ICT 

• ex-post: compensation of losses 
due to poor governance + 
compensation of climate losses 

Table 9: Scheme of policy tools to be used in different uncertainty settings 
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Chapter 6 

6. Conclusions 

The present doctoral dissertation rose in a context where CC is posing new challenges to 

irrigated agriculture. Here, weather patterns are increasingly unpredictable and highly variable, 

while climate shocks such as prolonged droughts are more frequent. Decreased predictability 

together with increased variability are posing significant uncertainties in decision processes and are 

exacerbating the sector’s vulnerability to CC. 

Many scholars agree on the capability of ICTs to help facing such problems by lowering 

uncertainty and improving decision processes through the provision of relevant information. 

Accordingly, in the Digital agriculture revolution we are living in, numerous innovations contribute 

to modify the decision environment by lowering uncertainty. Many examples are found in literature 

showing the ICT potentials to favor adaptation to CC. However, together with such potentialities 

new challenges emerge due to barriers to ICT-information implementation. This is especially true 

for irrigated agriculture which is one of the sectors most vulnerable to climate-related uncertainties. 

Irrigation management is characterized by peculiar decision processes where several barriers can 

undermine information usability and ICT benefits. 

Given the risk of the sector to not exploit ICT potentials we considered a priority to support 

irrigated agriculture in the Digital water journey. At this end, we analyzed the most critical issues to 

ICT development and defined a theoretical framework which provides a complete picture of the 

uncertainties around ICT-information implementation. On this framework we based two decision 

models which helped to understand the decision dynamics of ICT-information implementation for 

irrigation management. The first model allowed to highlight restrictions to information usability and 

to estimate ICT-benefits. The second model was developed to assess the impacts that subjective 

behavior under uncertainty has in undermining ICT potentials. 

The capability of decision models was then proved by two separate empirical examples. 

Results confirmed the hypothesis of ICT potentials, but underlined that benefits are extremely 
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variable and subject to constraints. These are relative to the decision environment, to the form and 

quality of ICT-information and to the behavior of DMs. Within the decision environment, technical 

elements condition information usability; between these the most relevant are in the water delivery 

systems, land use and the WA’s decision power. Because irrigation management decisions follow 

the seasonal pace and have high payoffs at stake, information must be provided at the right time 

and with the needed accuracy to be relied on. Finally, subjective behavior can limit ICT-benefits both 

because ambiguity-aversion lowers EU from ICT-informed actions and because irrigation efficiency 

is conditioned by all actors’ actions for the management of the resource. 

The main limitations of the results are caused by complexities in the decision processes of 

irrigation management and in the nature of the uncertainty settings. Complexities required many 

assumptions and simplifications, both in the decision environment and in the DMs’ behavior. 

Despite the simplifications, models are still capable of representing the dynamics of decision 

processes and results allowed to provide policy-makers important advices to aid the sector. At this 

end, we highlighted the need of ICT-development policies to overcome barriers and maximize ICT 

potentials. Uncertainty-management policies are also suggested to lower the ambiguity raising from 

a lack of knowledge on information reliability and to support DMs when they choose to implement 

ICT-information and bare new sources of risk. 

To conclude, thanks to the holistic approach adopted in this research to study ICT-informed 

decision processes for irrigation management, we can confirm that ICTs can be a viable tool to face 

new challenges posed by CC. However, the exploitation of such new tools by irrigated agriculture is 

not self-fulfilling. First of all, to ease the digitalization process, it is important to disseminate not 

only the capabilities of ICTs, but also their real limits and accuracy. This is expected to help avoiding 

false expectations which feed ambiguity and skepticism. In addition, the process is characterized by 

barriers which can be targeted and solved by policy makers; at this end, further research is 

suggested to efficiently design new policies and develop new ICT platforms. Finally, the authors wish 

to underline the natural evolution of ICTs which is through the provision of new pieces of 

information which will be more reliable and easier to be implemented. This is expected to allow 

irrigated agriculture to have always more opportunities to lower uncertainties affecting 

management decisions.  
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Appendix 

Appendix 1: Simplification for the CE computation 
In this section we provide the extensive proof behind the simplification used to determine 

the CE of the RP starting from the expected utility equation of Klibanoff et al. (Klibanoff et al. 2005):  

𝐸𝑈_,^ s𝑓(𝑥1|xxyz)t = 𝔼∆𝜙 »𝑢 s𝔼𝑺𝑓(𝑥1|xxyz)t¼ = ' 𝜙 »𝐸𝑈_ s𝑓(𝑥1|xxyz)t¼
�

µ s𝜋)𝑥1̂*t 𝑑𝜋)𝑥1̂* 

For simplicity in notations we have the following elements: 𝑥1 = 𝑠; xxyz = 𝑥. In the first step 

we assume negative exponential utility functions and normal distributions for both risk and 

ambiguity. By making explicit the distribution function of 𝜋(𝑠), with 𝜎1 being the standard deviation 

and µ the average, is we obtain the following set of equation: 
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Now, because the inverse of the risk preference function is the certain equivalent associated 

to the risky outcome, the CE is determined as follows: 

𝐶𝐸_(𝑓(𝑠|𝑥)) = 𝔼𝑺𝑓(𝑠|x) −
1
2 𝑟𝜎1

M 

Now we consider also ambiguity and repeat the same procedure to determine expected 

utility under risk and ambiguity: 
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This is followed by the associated certain equivalent: 

𝐶𝐸_,^(𝑓(𝑠|𝑥)) = 𝔼∆(𝔼𝑺𝑓(𝑠|x) −
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Appendix 2: Simplification for the computation of the optimal water 
volume 
In this section we provide the extensive proof behind the simplification which is used to 

assess the optimal water volume to be used under the DM’s behavioral perspective. The 

simplification starts considering the formulation of the CE determined in the previous section. To 

aid the comprehension, we follow the same notation of the previous section and the following: 𝑅 =
L
M
𝑟𝜎0(1)M ; 𝐴 = L

M
𝑎𝜎D)0(�vÁ)|Pa*

M ; 𝑚 = µ)𝜋(�̂�)}* = µ(𝜋(�̂�)); 	𝑝 = ∏(�̂�); 𝑅]^_`∗
f
= 𝑣; 𝑐]^_`a = 𝑐. This 

helps obtaining the equation: 

𝐶𝐸)𝑓(𝑠|𝑥)* = 𝔼∆ s𝔼𝑺𝑓(𝑠|x) −
L
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L
M
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Now, because the model of Klibanoff et al. (Klibanoff et al. 2005) is based on the assumption 

that second order acts in the space ∆ yield the same CE as first order acts in the space 𝑆, we have 

that: 
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𝔼∆Ã𝔼-)𝑓(𝑠|𝑥)*Ä = 𝑓(𝑠|𝑥)} = 𝑉(𝑋) − 𝑐𝑥 

Therefore, we obtain the following CE: 

𝐶𝐸)𝑓(𝑠|𝑥)* = 𝑉(𝑋) − 𝑐𝑥 − 𝑅 − 𝐴 

Now, if we consider the equilibrium where the DM is indifferent between the RP and the PP, 

we have: 

𝑔(𝑋) = 𝐶𝐸(𝑓(𝑠|𝑥))	

𝑉(𝑋) − 𝑐𝑋 = 𝑉(𝑥) − 𝑐𝑥 − 𝑅 − 𝐴 

𝑋 = 𝑥 +
𝐴 + 𝑅
𝑐  

Where X can be interpreted as the water demand from the DM, accounting for uncertainty 

and his behavior toward it. By employing the above equation, we can obtain the following 

simplifications considering different alternatives of perceptions and attitudes: 

• Uncertainty-neutral DM: 

𝑋 = 𝑥 

• Ambiguity-neutral DM: 

𝑋 = 𝑥 +
𝑅
𝑐  

Appendix 3: Relation between irrigation and crop production  
To estimate the relation between irrigation and crop production, we firstly consider 

evapotraspiration (𝐸𝑇) being function of irrigation (𝑥). Although, studies in agronomics proved the 

polinomial nature in the relation between the two quantities (Linker et al. 2016), we assume a linear 

and constant relation. This is a strong approximation forced by the lacking available data. To 

determine the crop production as function of irrigation we employ a simple modification of the 

classic production function introduced in FAO Irrigation and Drainage Paper No. 33 (Doorenbos and 

Kassam 1979): 
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𝑌P(𝑥P) = 𝑌P∗[1 − 𝑘ÈR(1 −
𝐸𝑇P(𝑥P)
𝐸𝑇P∗

)]
𝑌P�L(𝑥P�L)

𝑌P�L∗
 

where:	𝑥P e 𝑥P�L are the decisional variables,  that is, respectively the quantity of irrigation 

water at time t and the quantity of irrigation water at time: 𝑡 − 1;	𝑌P(𝑥P) and 𝑌P�L(𝑥P�L) are 

respectively crop productions at time 𝑡 and time 𝑡 − 1; 𝑌P∗ e 𝑌P�L∗  are respectively optimal crop 

productions at time 𝑡 and time 𝑡 − 1; 𝑘ÈR  is the crop coefficient which helps to convert 

evapotranspiration in crop production; as said, 𝐸𝑇�(𝑥P) represents the crop’s evapotranspiration at 

time 𝑡; 𝐸𝑇P∗ represents the crop’s evapotranspiration at time 𝑡 but withoud stresses from lacking 

irrigation. The proposed equation differs from its original form because it accounts for the impacts 

that prior drought stresses have on the optimal crop production in the current stage.  
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