
Alma Mater Studiorum – Università di Bologna

DOTTORATO DI RICERCA IN

Ingegneria elettronica, telecomunicazioni e tecnologie dell'informazione

Ciclo XXXII

Settore Concorsuale: 09/F2

Settore Scientifico Disciplinare: ING-INF/03

CYBERSECURITY ISSUES IN SOFTWARE
ARCHITECTURES FOR INNOVATIVE

SERVICES

Presentata da: Andrea Melis

Coordinatore Dottorato Supervisore

Prof. Eng. Alessandra Costanzo Prof. Franco Callegati

Co-Supervisore

Prof. Marco Prandini

Esame finale anno 2020

ii

Licence Notice

The thesis text has been written using a LATEX template downloaded from https://

www.latextemplates.com/template/masters-doctoral-thesis by Vel and Johannes

Böttcher. The template is licensed under CC BY-NC-SA 3.0. According to this license

it is allowed to:

• Share, copy and redistribute the material in any medium or format.

• Adapt, remix, transform, and build upon the material for any purpose.

However, it is not allowed to reuse the template for commercial purposes.

I, Andrea Melis, declare that the aforementioned template is not used for commercial

purposes and is only used for the sake of writing the doctoral thesis.

I, further, declare that there has been some modifications both on the main.tex and

MastersDoctoralThesis.cls files in order to add some further functionalities and

change the coloured text color in accordance with the rights granted under the CC

BY-NC-SA 3.0 license.

iii

. . . ad Anacleto, possa la tua risata essere

la mia colonna sonora.

v

“Today, a young man realized that all matter is merely energy condensed to a slow vi-

bration – that we are all one consciousness experiencing itself subjectively. There’s no such

thing as death, life is only a dream, and we’re the imagination of ourselves. Here’s Tom with

the weather.”

Bill Hicks

vii

Abstract

The recent advances in data center development have been at the basis of the widespread

success of the cloud computing paradigm, which is at the basis of models for soft-

ware based applications and services, which is the "Everything as a Service" (XaaS)

model. According to the XaaS model, service of any kind are deployed on demand

as cloud based applications, with a great degree of flexibility and a limited need

of investments in dedicated hardware and or software components. This approach

opens up a lot of opportunities, for instance providing access to complex and widely

distributed applications, whose cost and complexity represented in the past a signif-

icant entry barrier, also to small or emerging businesses. Unfortunately networking

is now embedded in every service and application, raising several cybersecurity is-

sues related to corruption and leakage of data, unauthorized access etc. However,

new service-oriented architectures are emerging in this context, the so-called ser-

vices enabler architecture. The aim of these architectures is not only to expose and

give the resources to these types of services, but it is also to validate them. The vali-

dation includes numerous aspects, from the legal to the infrastructural ones e.g., but

above all the cybersecurity threats. A solid threat analysis of the aforementioned

architecture is therefore necessary, and this is the main goal of this thesis. This work

investigate the security threats of the emerging service enabler architectures, pro-

viding proof of concepts for these issues and the solutions too, based on several

use-cases implemented in real world scenarios.

ix

Acknowledgements

My PhD has been a wonderful experience that made me grow (I hope) academically

but above all as a person.

It would have been impossible to face this journey alone, but I was lucky enough

to have so many wonderful people next to me who made this trip a wonderful ad-

venture, and in this small paragraph I would like to thank them. It is impossible

not to start with my mentors, my tutors, my supervisors. I hope to become one day

even half of the fantastic academics they are, or at least to have stolen some of their

curiosity and desire to improve themselves every day; thanks to prof. Prandini and

prof. Callegati.

It would have been impossible for me to get the results I obtained without my col-

leagues, which is why I warmly thank Saverio Giallorenzo and Davide Berardi, fan-

tastic colleagues.

I also thank my laboratory and departmental mates; you guys are not just room-

mates but much more; friends and confidants; therefore thanks to Federico, Francesco,

Gianluca, Bahare, Elisabetta, Edu, Nour, Davide, Chiara and prof. Walter.

A very big thank you also to all the members and students who have had the pa-

tience to follow me over these years, especially the fantastic guys of the Ulisse Lab,

whom I now consider almost a family. Finally, professionally, thanks to those who

made my 7-month experience in Australia, in Brisbane, possible, a unique and unfor-

gettable experience, thanks to prof. Portmann my colleague Siamak and the fantastic

Anees and Khan.

In addition to all the colleagues and academic experiences, I have to thank those

who have supported me for well over 3 years.

My family: my mom, my dad, uncles, cousins and my sister Camilla; that no matter

where, how or when, they will always be by my side, supporting me for any choice

of my life. To Carla, who more than any other has seen from the "seat passenger" my

x

guide on this journey, my favorite travel-mate. To the old friends, the "from south

friends", who always manage to make look 1000 km away like a street block. Finally,

but obviously no less important, the everyday friends, those known in Bologna, or

around the world, who have contributed every day to improve this journey

xi

Contents

Licence Notice ii

Abstract vii

Acknowledgements ix

I Background 1

1 Introduction 3

2 Security on Emerging Architectures: State of the art 5

2.1 From monoliths to microservice architectures to software defined ar-

chitectures . 5

2.2 Emerging Architectures a Top-Down Approach 10

2.2.1 Business Oriented Architectures 12

2.2.2 Microservices/Federated Oriented Architecture 13

2.2.3 Software Defined Network Architectures 14

2.3 Security . 15

2.3.1 Emerging threats . 17

Data Provenance . 18

Data Trustworthiness . 18

Service Maliciousness . 18

Service vulnerability to external attacks 19

SDN Threats . 19

2.3.2 Mitigations . 20

Data Provenance . 20

Data Trustworthiness . 23

xii

Service Maliciousness . 23

Service vulnerability to external attacks 24

3 Motivations and Research Question 25

3.1 Context: Smart Mobility and Industry 4.0 26

3.1.1 Smart Mobility and MaaS . 26

3.1.2 Industry 4.0 . 28

3.2 Security Analysis . 28

3.2.1 The Insider Threat Problem . 28

3.2.2 Policy Enforcement oriented Solutions 29

3.3 Use Cases and motivations . 29

II Contributions 31

4 Privacy-Preserving Design for a Clearing System Architecture 33

4.1 Context Scenario . 34

4.1.1 The local context . 34

4.1.2 The clearing Service System . 35

4.1.3 Research questions . 36

4.2 Sanitization: a critical overview . 37

4.2.1 General-purpose sanitization approaches in the literature . . . 38

4.2.2 Sanitization in the Clearing Scenario 41

4.3 Security Analysis . 43

4.3.1 Specific attack scenarios in our context and countermeasures . . 44

4.4 Case Studies . 46

4.4.1 Stalking Franco Callegati . 50

4.4.2 Unfair competition . 52

4.5 Mitigation Policy Guidelines . 54

4.6 Conclusions . 56

5 SMAll: A Global Federated Market for MaaS Operators 59

5.1 Context Scenario . 63

5.1.1 SMAll: Smart Mobility for All . 64

xiii

5.2 The MaaS Stack . 65

5.2.1 Towards Mobility as a Service . 66

5.2.2 MaaS Stack Tier I | eMobility Operators 67

5.2.3 MaaS Stack Tier II | Business Intelligence 69

5.2.4 MaaS Stack Tier III | MaaS Operators 69

5.3 The SMAll Architecture . 71

5.3.1 A Market of Microservices . 71

5.3.2 Tier I and II . 72

5.3.3 Tier III . 75

5.4 Problems: Insider Threats . 76

5.4.1 MaaS Stack | Tier I . 78

Information . 79

Travel . 83

User . 87

5.4.2 MaaS Stack | Tier II . 88

Business Intelligence . 88

5.4.3 MaaS Stack | Tier III . 89

Roaming and Clearing . 90

Access Control and Service Level Agreement 91

Business Intelligence . 92

5.5 Use Case . 93

5.5.1 Cloud of Things for MaaS . 93

Cloud of Things and MaaS: Insider Threats 94

5.5.2 Federated Platooning . 96

Enabling Platooning . 96

Insider Threats in Platooning . 99

5.6 Novel approaches to mitigation . 104

5.6.1 Overlay Network . 104

5.6.2 Automatic Business Policies and Contracts Enforcement 107

5.7 Conclusions . 109

xiv

6 TechNETium: a SDN tool to Verify Security Network Policies 111

6.0.1 Contributions . 111

6.1 Context Scenario . 113

6.1.1 SDN and formal verification . 113

6.1.2 Formal Data Plane Verification 115

6.1.3 SDN and formal verification . 115

6.1.4 The Atomic Predicates Verifier 116

6.2 Atomic Predicates for Transformations 118

6.2.1 Definition of Atomic Predicates 118

6.2.2 Calculation of atomic predicates 121

loop and black holes detection 122

Network slicing . 123

6.2.3 Graph updates . 123

Updating links . 123

Update of rules . 123

Update of port predicates . 124

Updating of atomic predicates 125

6.2.4 Improvements Introduced . 125

6.3 TechNETium, a verification data plane tool 127

6.3.1 Atomic Predicates BDD generator 129

6.3.2 Policy Checker Application . 129

6.4 Test and Evaluation . 133

6.5 Future Works . 136

6.6 Conclusions . 137

7 Conclusions 139

Bibliography 141

xv

List of Figures

2.1 Evolution of XaaS architectures (top-left, counterclockwise). 6

2.2 Top-Down Approach for Emerging Architecture Analysis 10

4.1 Travel data represented as a probabilistic flow-graph 49

4.2 Commuting flows from Imola to Bologna and Cesena 50

4.3 Results of a clustering analysis of the dataset with Weka 52

5.1 Representation of the SMALL architecture. 60

5.2 Representation of the BusCheck Pilot. 63

5.3 The MaaS Stack . 66

5.4 Example workflow of the SMAll Dispatcher. 74

5.5 Summary table relating the tiers of the MaaS Stack to their concerning

insider threats. 78

5.6 Example of platoon formation over federated SMAll instances. 97

5.7 Phases of the Gossip Network. 104

5.8 Depiction of the Overlay Gossip Network. 110

6.1 SDN Layer Architecture . 113

6.2 Atomic predicates Verifier - Differences between header space and

quotient space . 120

6.3 Atomic Predicates Verifier - Example reachability network 131

6.4 Atomic Predicates Verifier - Port reachability tree port1 for the net-

work shown in the figure (6.3) . 131

6.5 Policy Verifier ONOS Interface . 132

6.6 Average BDD creation time. 133

6.7 Policy time check after a link up / link down upgrade and node, links

and forwarding rules increase. 134

xvi

6.8 Policy time check after a link up / link down upgrade and node, links

and forwarding rules increase. 135

xvii

List of Tables

4.1 Dataset Item Summary . 47

4.2 Probabilistic flow path of our dataset . 49

xix

List of Abbreviations

SDN Software Defined Networking

SMAll Smart Mobility (for) All

CoT Cloud (of) Things

IoT Internet (of) Things

SOA Service Oriented Architectures

MS Micro Service

XaaS "X"Everything (as) (a)Service

PaaS Platform (as) (a)Service

IaaS Infrastructures (as) (a)Service

SaaS Software (as) (a)Service

MaaS Mobility (as) (a)Service

PbD Privacy (by)Design

NOS Network Operating System

NFV Network Function Virtualization

PDP Programmable Data Plane

AP Atomic Predicate

ACL Access Control List

BDD Binary Decision Diagram

FDD Firewall Decision Diagram

FEC Forwarding Equivalence Class

API Application Programming Interface

ONOS Open Network Operating System

MDD Model Driven Development

OSINT Open Source INTtelligence

LAN Local Area Network

PoC Proof (of)Concept

xx

P4 Programming Protocol-Independent Packet Processors

BGP Border Gateway Protocol

1

Part I

Background

3

Chapter 1

Introduction

In recent years we have seen a clear trend on the digitization of services, which has

literally exploded [21].

The last technological advances in data center development have been at the ba-

sis of the widespread success of the cloud computing paradigm, which represented

the foundation for software based applications and services, which is the "Every-

thing as a Service" (XaaS) model.

According to the XaaS model, services from every kind of scenarios (such as,

smart mobility, health, PA, ecc) are deployed on demand as cloud based applica-

tions, with a great degree of flexibility and a limited need of investments in dedi-

cated hardware and/or software components.

This approach opens up a lot of opportunities, for instance providing access

to complex and widely distributed applications, whose cost and complexity rep-

resented in the past a significant entry barrier, also to small or emerging businesses.

It also allowed public administrations and private company to move to the digi-

tal domain their services and business models.

However, new service-oriented architectures are emerging in this context, the

so-called services enabler architecture [14].

The aim of these architectures is not only to expose and give the resources to

these types of services, but it is also to validate them. The validation includes nu-

merous aspects, from the legal to the infrastructural one e.g., but above all the cy-

bersecurity threats.

Unfortunately networking is now embedded in every service and application,

raising a number of cybersecurity issues related to corruption and leakage of data,

4 Chapter 1. Introduction

unauthorized access etc.

A solid threat analysis of the aforementioned architecture is therefore necessary,

and this is the main goal of this thesis.

In particular the structure of this thesis is organized as follows:

Part 1 "Background" will be dedicated to investigate the current literature and to

argue the research questions which are motivating this thesis.

In chapter 2 I will review the state-of-the-art of the current new service oriented

software architecture, with a particular focus on the development paradigm used.

Based on this analysis i will define an analysis path for such architectures. This path

will be a top-down approach based on the orchestration level of the enabled services.

Part 2 "Contributions" otherwise will be dedicated to showcase the results obtained,

explaining in details the steps we conducted.

Firs of all I will describe the real-world use case that I developed to support our

security analysis, that is:

• a Clearing System in chapter 4.1.

• a Service Enabler Platform called SMAll in 5.

• a Software Defined Full-Stack Architecture in 6.2 called techNETium.

For each of this use case I will provided a detailed threat analysis, that it will

include all levels of the architectures: network, control and application.

For each threat analysis then, I will propose a set of solutions that can be included

as an architectural component.

Of course, this topic is vast and many future extensions are foreseen. For every chap-

ter I will propose a set of future works to enhance the State-of-the-Art and foster sce-

narios in which contribution and threats prevention are a central enabler; eventually

in Chapter 7 I wrap up the dissertation summarizing the main contributions.

5

Chapter 2

Security on Emerging

Architectures: State of the art

2.1 From monoliths to microservice architectures to software

defined architectures

Historically, architectures have always been a big block of codes and components,

dedicated to a specific task, exposing a specific service. Since the last decade, we

have seen a first evolution of such architectures, which became platforms for creating

and managing services and resources, rather than simply being a service.

As main alternatives to these architectures, we consider two architectural styles

for the development of distributed applications: monolithic and Service-Oriented

architectures. We consider these two architectural styles in the left side of Figure 2.1.

The monolithic architecture represents the simplest example of a distributed ap-

plication composed of a client and a server. Following the monolithic approach,

the server consists in a single program deployed into a host. The server program,

depicted in the top-left corner of Figure 2.1, contains the whole logic of the server.

As reference to compare with the other architectural styles, we highlight the main

logic components in the server program. In doing so, we follow the well-known

three-tier approach [43], where the functionality offered by the server program re-

sults from the interaction of three software layers: presentation, application, and

data handling/storage.

6 Chapter 2. Security on Emerging Architectures: State of the art

FIGURE 2.1: Evolution of XaaS architectures (top-left, counterclock-
wise).

From the point of view of the hosting platform, we consider the most recent sce-

nario of Cloud deployment [113] and choose the solution that requires the least man-

agement effort for the developer: a Platform-as-a-Service (PaaS) deployment where

the management of host hardware, operating system, data storage (represented by

the DB component in Figure 2.1), and runtime environment are taken care by the

PaaS provider.

Although for small-size applications the monolithic approach is the simplest and

most effective, this architectural model shows its limitations when considering two

important factors: scaling and code-base growth [54, 186]. Indeed, scaling a mono-

lith, both vertically and horizontally, implies the allocation of resources for the whole

server program. Such allocation is usually disproportionate. Inbound requests are

rarely distributed in a uniform way over the components of the server program.

Instead they tend to stress only a subset of said components modules, making the

allocation of the new resources for the less-used components inconvenient [191]. Re-

garding code-base growth, large-size monoliths are difficult to maintain and evolve

due to their complexity: tracking down bugs requires long perusals through their

code base; monoliths suffer from the, so called, "dependency hell" [127] for which

adding or updating libraries to the program results in an inconsistent code-base that

2.1. From monoliths to microservice architectures to software defined architectures7

do not compile/run or, worse, misbehave. In addition, any change in one module of

a monolith requires rebooting the whole application. For large-size projects, restart-

ing usually entails considerable downtimes, hindering development, testing, and

the maintenance of the project.

With the increasing maturity of distributed systems infrastructure, solutions shifted

towards an architectural style that fostered separation and reuse of components. The

intention was to reduce the dependency among the components of a distributed ap-

plication in such a way that they could be deployed in distinct hosts and linked

to each other through standardised protocols and interfaces. These design princi-

ples took the name of Service-oriented Architecture (SOA) [59]. In our depiction of

Service-Oriented Architectures, in the bottom-left corner of Figure 2.1, we divided

the three components of the “Server Program” of the monolithic architecture into

three services, deployed in different hosts, communicating via SOA interfaces. In

Figure 2.1 we marked the possibility to deploy SOA solution over a Platform-as-a-

Service system.

Through standardisation and loose-coupling among components, any resource

that behaves according to the specification of a component of the system can be em-

ployed as such. If said resource fails or becomes busy, it can be replaced with a new,

compliant one by simply redirecting its messages. Modularisation also appeals to

scalability, both in functions and size. Once deployed, a distributed program can

also become a component employed by another program, enhancing its function-

alities with minimal effort. In the same way, since components are modular, if the

workload on a component can be shared, it is possible to add a new instance of the

same component in the system and separate the workload between the two.

Although proposing a sound approach to the development of distributed sys-

tems, the first generation of service-oriented architectures (SOA) defined daunting

and nebulous requirements for services (e.g., discoverability and service contracts

[58]), which eventually hindered the adoption of the proposed model. Microser-

vices, represented on bottom-right corner [96] are a recent reinterpretation of SOAs,

8 Chapter 2. Security on Emerging Architectures: State of the art

which abandon their unnecessary levels of complexity, focussing on the program-

ming of cohesive [149] components, each implementing only strongly related func-

tionalities. From a technical point of view, microservices are independent compo-

nents conceptually deployed in isolation and equipped with dedicated memory per-

sistence tools (e.g., databases).[29].

The architectural style of the microservice neither favours nor prohibits any par-

ticular programming paradigm. It provides a guideline to partitioning the compo-

nents of a distributed application into independent entities where everyone faces

its own concerns. That is to say that, provided that a microservice offers its func-

tionalities through the passage of messages, it can be implemented internally with

any of the main languages mentioned at the beginning of this section. The principle

of microservices architectures helps project managers and developers, providing a

guide-line for the design and implementation of distributed applications. Follow-

ing this principle, the developers focus on the implementation and testing of some

consistent features. This also applies to those higher level microservices, which deal

with the coordination of the functionality of other microservices.

The management of these services, which have become real components on inde-

pendent (real or virtual) hardware has led to new methods of orchestration emerging

from these architectures.

The need to control flows and services has therefore become increasingly nec-

essary, both to create and manage the infrastructure needed to create new dynamic

and software-defined technologies, to manage complexity even at network level.

We think trivially about the previous example of a microservice architecture,

where a service is the result of the composition of two microservices, deployed with

the same infrastructure. The possibility that the two microservices (let us imagine

two containers) are totally disconnected, even at hardware level (real or virtual),

would allow an extremely greater reuse of the same microservices. For example, it

would be possible to perform a second deployment on another subnet, to duplicate

it without having to configure each service based on the underlying network. To do

so, however, it is necessary to be able to "define" or "design" the network infrastruc-

ture.

A non-trivial task if we consider that historically, the first two projects based on

2.1. From monoliths to microservice architectures to software defined architectures9

the SDN concept were GeoPlex and WebSprocket. GeoPlex was born from the AT &

T laboratories and was based on the network API and the Java language for creating

a network middleware that mapped the IPs where activities of interest were per-

formed in one or more services. GeoPlex was, therefore, in general, a platform that

managed the association between online networks and services. It was not inter-

ested therefore in the operating systems present on the switches or on routers, since

ATandT only required a "soft switch" that would allow them to reconfigure physi-

cal switches to adapt them to new services on an OSS (Operations Support System,

system for operations support). GeoPlex, however, could not radically change the

configurations of these network devices, automatically and independently of the

systems operational, which thus became a limit, if we consider the current function-

ing of a network based on SDN.

WebSprocket, on the other hand, was composed of two entities: a NOS (Network

Operating System) and a new structured runtime model object-oriented (based on

Java) that could be modified in real time by a compiler and a network class loader.

Further efforts, after 2001 with the advent of virtual LANs [95], were carried out

by several engineers from various companies, but only with CableLabs, via Cable-

Card (a PC card that allowed users to see and record cable television channels) in

2007, it came to the definition of what we today mean by SDN. Further progress

was then made by Berkeley e from Stanford University around 2008. The Open Net-

working Foundation (ONF) finally came founded in 2011 to promote SDN networks

and OpenFlow standardization, a software approach to network design.

Depicted in top-right corner of Figure 2.1 SDN architecture became an emerging

architecture able to merge the need of distributed and heterogeneous application

with a dynamic network infrastructure. The SDN is an architecture design that is

dynamic, manageable and adaptable. The fundamental concept that allows to re-

alize all of this is the decoupling between the actual control of the network by the

controller, and the forwarding functions used by the entities that implement traffic

routing. This enables direct programming of network control and abstraction of the

underlying levels through network applications and services.

10 Chapter 2. Security on Emerging Architectures: State of the art

A
P
P
R
O
A
C
H

Application
Layer

Control
Layer

Data Plane
Layer

Application
Layer

Control
Layer

Data Plane
Layer

Application
Layer

Control
Layer

Data Plane
Layer

Services

Instrastracture

Network

Instrastracture

Network

Services

Instrastracture

Network

Services

Business
Oriented

Architectures

Microservice
Oriented

Architectures

Software
Defined
Network

Architectures

FIGURE 2.2: Top-Down Approach for Emerging Architecture Analy-
sis

2.2 Emerging Architectures a Top-Down Approach

The most difficult task in this context is probably to decide a path analysis. Numer-

ous emerging architectures are increasingly influencing and invading the services

market, for this reason therefore it was necessary for our architectural analysis to

determine which approach to use.

It was also important to try to start from a very specific context, a specific architecture

and generalize as much as possible. For this reason, this work followed a top-down

approach. The meaning consists in the fact that we started from a business-oriented

architecture, strongly dedicated to the vertical service, descending more and more

into the application stack. From the vertical level we have in fact passed to archi-

tectures with orchestrated services and therefore more horizontal, up to those at the

network level.

This architectural style stack, well depicted in figure 2.2, has been created follow-

ing the terms on which we usually classify the Architectural Styles:

2.2. Emerging Architectures a Top-Down Approach 11

• Components

• The way in which components are connected to each other

• The data flowing through the components

• The way in which all the above items are configured altogether to build the

architecture

• Most important one: the component used to create services

The last differentiation criterion is the most representative one. Descending the

stack we follow at which components level the architecture is able to model services.

The Business-Oriented ones scratch only the surface of the available infrastructure,

using only supports such wrappers, open-data, open-api etc in order to see where

there is a possibility of a service, and then create it.

The microservice-oriented are otherwise able to work both on the top level, where

the services are singularly exposed, but also on the middle level, which means where

the service interacts. The service exposure, the combination of them, and the com-

munications flow become a service opportunity in such level.

As a consequence the bottom layer, the network one, thanks to the SDN paradigm

which allow to design and connect dynamically network infrastructures, the service

creation opportunity reached the network layer, and in this case we are able to pro-

vide solution for all the stack.

According to [173] Software as a Service (SaaS) is a software distribution model

in which applications are hosted by a vendor or service provider and made available

to customers over a network, typically the Internet. Platform as a Service (PaaS) is a

paradigm for delivering operating systems and associated services over the Internet

without downloads or installation. Infrastructure as a Service (IaaS) involves out-

sourcing the equipment used to support operations, including storage, hardware,

servers and networking components. The proposed architectures, are therefore a

particular customized scenario of PaaS, because as for microservices architectures

PaaS provides an infrastructure composed by API, ALS etc. that enable the services

once developed, all customized for a specific context.

12 Chapter 2. Security on Emerging Architectures: State of the art

We believe that this is the true revolution of emerging scenarios, customized and

contextualized versions of PaaS that enable the creations of services. From the verti-

cal, business-oriented Architectures, to the more horizontal microservices-based, to

the software defined as for the network level.

Such architectures must be seen even as a SaaS architecture because, the platform

components could be interpreted as stand-alone services that could be invoked sin-

gularly. This is an important consideration if we want to present this as a special

case of SaaS and PaaS.

2.2.1 Business Oriented Architectures

The advent of cloud computing and to a lesser extent of the so-called internet of

things world has made new business development and business models possible.

Previously the architectures were ad-hoc monoliths built for a specific service, that,

in order to be created, had to satisfy important economic constraints (due to their

high cost). The possibility of sharing resources, data and standards, given by the

cloud, made new business model possible.

Modern companies had to respond quickly and effectively to opportunities in to-

day’s increasingly competitive and global markets. To promote business agility,

companies should simplify (existing) business processes while exposing various pack-

ages. Home-oriented applications have been spread everywhere by the companies

in a highly standardized way.

The emergence of Web services developments and standards to support automated

business integration has led important technological advances in the area of inte-

gration software, in particular for those architectures identified as business-oriented

architectures. The purpose of this architecture is to satisfy the requirements of free

coupling, based on standards, then distributed independently of the protocol com-

puter science and the mapping of company information systems in a manner ade-

quate to the overall flow of the business process.

The peculiarity of these software architectures is that they are created with a precise

and well-structured business model. The architecture, therefore, allows the creation

of a single type of service, which can be generalized horizontally only to certain con-

texts but still vertically in the business model.

2.2. Emerging Architectures a Top-Down Approach 13

In these domains, the components that take part on a business process are a subset

of the participants in the service-oriented domain. To model a business-oriented ar-

chitecture we consider roles for process participants, not specific cases, then we talk

about process roles, which will be typed by the participating classes.

A business process in a service-oriented domain is essentially a workflow of calls to

service messages (between pairs of process roles), and of the internal actions of the

roles of the participants (defined activities). The workflow is modelled by an activity

diagram and, as we will see in the next section, it is not part of the service definition.

In such architectures the service components are managed by simple message pass-

ing protocol, and system calls; but this workflow is not part of the service definition.

2.2.2 Microservices/Federated Oriented Architecture

The advent of cloud computing, however, has not only brought the possibility of

new business models, given by the possibility of sharing resources and data. To-

gether with the cloud, new software infrastructure paradigms have also been in-

troduced. Hardware and services can, in turn, be shared and modulated in such a

way as to create new ones. This composition of services is notoriously known as

microservice architecture.

A microservice architecture is a distributed application where all its modules are

microservices. A microservice is a cohesive, independent process interacting via

messages.

For instance, consider a service intended to compute calculations. To call it a

microservice, it should provide arithmetic operations requestable via messages, but

it should not provide other (possibly loosely related) functionalities like plotting and

displaying of functions.

From a technical point of view, microservices should be independent compo-

nents, conceptually deployed in isolation, and equipped with dedicated memory

persistence tools (e.g., databases). Since all the components of a microservice archi-

tecture are microservices, its distinguishing behaviour derives from the composition

and coordination of its components via messages.

14 Chapter 2. Security on Emerging Architectures: State of the art

The advent of the world of virtualization and containerization has accelerated

the development of this type of architecture. From the cloud seen as a simple compu-

tational space and resources, we have reached the virtualization of entire hardware

systems, devices or production environments such as virtual machine dockers. Cre-

ating and deploying services through this infrastructure has therefore become much

simpler and more automatic, making the management of microservices easier.

2.2.3 Software Defined Network Architectures

The evolution of the infrastructural cloud has also given a strong boost to the net-

work level. The need to be able to orchestrate not only services at the provisioning

level, or based on what they exhibit (a datum, an aggregate, an api, etc.), but also

at the network level. How they are orchestrated has also become very important.

The need arises to have a more dynamic network level on which it is possible to

manage and orchestrate complex, heterogeneous and volatile infrastructures. Fol-

lowing these needs and motivations, new architectures were created, this time at the

network layer, which fit into this context, the Software-defined networking.

Software-defined networking (SDN) is an agile network architecture designed to

allow organizations to deal with the dynamic nature of today’s applications. SDN

separates network management from the underlying infrastructure, allowing ad-

ministrators to dynamically manage network traffic to meet the requirements needed.

SDN is therefore a network paradigm in which the forwarding hardware is sep-

arated from the logic control, which, in software modules, are called instead con-

trollers (or even Network Operating System, given their similarity to actual oper-

ating systems). The goal is to simplify the management of networks, making them

more flexible and available to the introduction of new technologies. The controller

has a global view of the network, provides the basic services for network manage-

ment applications, and communicates with the devices by forwarding through well-

defined protocols. Forwarding devices do not have instead any logic inside them,

but they memorise the tables filled by controllers, which indicate the actions to be

performed on specific packages.

Briefly, when a packet reaches a switch, if any rules are indicated in the internal

2.3. Security 15

table for that particular package, the switch will perform the indicated actions, oth-

erwise default actions will be performed, such as communication to the controller of

the arrival of a package not yet managed. The controller, the mind of the network,

will decide what to do with the package and communicate the decision to the switch.

The main advantages of using SDN are [107]:

• Agility: the abstraction of control from routing allows administrators to dy-

namically manage traffic.

• Centralized control: the controller has a global view of the network, allowing

the configuration of the individual forwarding devices from a single point.

• Third-party services: SDN allows integration into third-party service networks

parts (Depending on the controller these services may also be added during ex-

ecution as external modules. In other cases where the controller is monolithic

the controller must be restarted).

• Flexibility, scalability, and efficiency.

• Capital savings: existing hardware can be reconfigured to follow the instruc-

tions of an SDN controller, and more efficient devices from the point of view

cost-performance can be used with great success, given the simplicity of the

forwarding devices used in SDN.

• Global network vision: applications can take advantage of having the same

global view of the network, to impose consistent policies.

2.3 Security

Literature started to address the main security issues related to IaaS, PaaS, and SaaS

since 2008, with the release of OpenNebula, the first true implementation of a Cloud

service. According to [183] an essential list of most important issues encompasses:

• network security (spoofing, sniffing, DoS);

• data security (locality, integrity, segregation, authenticity, confidentiality, pri-

vacy, access control);

16 Chapter 2. Security on Emerging Architectures: State of the art

• authentication, identity management, sign-on process, and authorization;

• web application security;

• virtualization vulnerability;

• availability (high availability, disaster recovery).

The change introduced by these emerging architectures has caused new security

vectors to be automatically mitigated, but at the same time new possible attack sce-

narios have arisen. The software architecture is no longer analysed and tested as a

single monolith, but the iterations between the various orchestrated modules, and

the management of the infrastructure become the protagonist of safety analysis.

Let’s discuss about the evolution of security threats among PaaS-like over such

emerging architectures. Considering a smart mobility scenario, to contextualise our

example, we argue that the main differences from most PaaS solutions came from its

intrinsic openness and flexibility. In this context customers can access available data

and services to build and deploy their own services, possibly making them available

to themselves or other customers for the same purpose.

A simple example to clarify this process: a one-stop ticketing application orches-

trates: a) a dynamic planner service that provides the routing options; b) a user pro-

file manager to sort them according to preferences; c) a real-time availability check-

ing/seat reservation service for each operator; d) a set of gateway services for pay-

ment.

Every one of these services is available (and useful) as a standalone application.

It can be the result of a vertical business model for a specific business service, or a

platform for service composition. Moreover, the dynamic planner is not a simple

service: it is the result of orchestrating a static planner with real-time information

about delays, planned extraordinary events, and disruptions. The branches of this

tree can be followed through many levels, until raw data is reached (yielded in a

standard form by a wrapper service).

With these considerations we argue that the security issues known for these ar-

chitectures starts from the well-known typical cloud ones [36]. So hereinafter, we

2.3. Security 17

outline the specific problems that are most relevant for our context of mobility, with

the mitigation strategy trends.

2.3.1 Emerging threats

As service enabler architectures, they should assume responsibility for the trustwor-

thiness and reliability of the services; this is unusual for "classic" [118]. While it is un-

realistic to expect that they can guarantee complete correctness of data sources and

deployed services, especially under the assumption of being substantially open to

any customer, they should guarantee at least that security is an essential (and value-

adding) service. In particular, it is necessary to define indicators for data quality and

service behaviour, and to devise a way to compute their values for complex data

sources and services resulting from the aggregation and orchestration of existing

ones [61, 55].

As it is made clear in the following discussion, these functions are an important

component of a defence strategy against insider threats, which are likely and dan-

gerous in this studied architecture.

As with the choice of architectural analysis, we needed an approach, a path to

follow, even with regards to the security threat categories, it was necessary to have

one.

As seen the safety challenges are innumerable and of different categories, it was

therefore difficult and counter-productive to think of being able to carry out an ex-

haustive analysis on the whole spectrum.

For this reason we have decided to focus mainly on the so-called insider threat

attacks. Statistically, insider threats are one of the most expensive security issues for

business companies [142]. Cert Research Center 1 states that almost 30% of known

attacks in last years have been made by insiders. One prominent reason of these

expensive outcomes is that companies did not foresee all possible malicious insider

activities [182]. Indeed, the problem is not the lack of proper countermeasures as

much as the difficulty of identifying a malicious insider in the first place. Literature

abounds with guidelines and principles aimed at providing general descriptions of

the context and the identity of the insiders [64, 40]. However, experts agree that

1http://www.cert.org/insider-threat/

18 Chapter 2. Security on Emerging Architectures: State of the art

the strong contextual variance of threats [171] makes providing a general yet precise

identification of all possible insiders difficult.

Data Provenance

One of the most studied issues about data sources security is data provenance [178,

24]. Ascertaining provenance means ensuring that the source of data is verifiable,

i.e., that it corresponds to the one declared in the process of creation. In our scenario,

provenance protection is a defence against malicious operators claiming to expose

data of a competitor, forcing them to gain unfair advantage.

Data Trustworthiness

Data trustworthiness, intended as the possibility to ascertain the correctness of the

information provided by a data source, is loosely related to provenance [47]. Ideally,

but infrequently, data samples can be independently measured by different users,

thus allowing cross-checking and error correction. For original data, i.e., provided

by its creator, the trustworthiness score is usually derived from the reputation of

the creator. In this case, it is very difficult to block attacks in which, for example,

the creator advertises a data source of given quality, but then exposes a degraded

version, to keep the advantage of more precise/timely information for itself.

Service Maliciousness

The trustworthiness of a service is an easy concept to intuitively grasp, but difficult

to formalize and to verify in an open environment. In the described service con-

text trustworthiness can be associated with its compliance to a declared function,

and shall be evaluated before the application is admitted to the platform and, ide-

ally, again at every usage. If a service creates aggregated data, processing various

sources, it is necessary to ensure that the computation is correct, that no useful re-

sults are hidden (completeness), and input data is not tampered with (soundness).

These are all likely opportunities for a malicious insider that succeeds in registering

a rogue service. For example, a tampered travel planner could slightly deflect routes

2.3. Security 19

to favor or damage certain businesses; a modified delay-checking application could

hide or amplify violations of agreed service levels.

Service vulnerability to external attacks

There are applications that exhibit wrong behaviors not because of their malicious-

ness, but because of unexpected vulnerabilities to maliciously crafted invocations.

In this case, there is an external threat in addition to the twofold insider threat: one

in the loose meaning of an insider being so careless as to deploy a vulnerable ap-

plication, the other in the case that another insider is in the best position to exploit

it. For example, a service with extensive access privileges to private data could be

tricked to leak it to a service with much more restrictive access rights. Another ex-

ample, mixing service vulnerability with data provenance issues, is that of a service

that provides crowd-sourced information about the status of the road transport net-

work. Failure to implement an effective fraud-prevention mechanism could allow

an attacker to inject fake reports to influence the behavior of users.

SDN Threats

Generally, the security of an SDN architecture is built around an automated detec-

tion of violations of network invariants on the data plane, possibly in real-time.

The recent work by Beckett et al. [15] shows several tools for finding network mis-

configurations. These tools have been classified in two different categories: control-

plane oriented, i.e., able to discover buggy configurations pro-actively, and data

plane oriented, i.e., able to discover mis-configurations reactively, i.e., observing

events while traffic is flowing. Proactive approaches are particularly useful to pre-

dict potential network misconfigurations that might lead to security issues (e.g., BGP

prefix hijacking). Security attacks, however, are hard to predict. In addition SDN in-

troduced new security threats but has also been able to mitigate many of them [172,

211, 46]. A few comprehensive surveys on the state-of-the-art of today’s SDN secu-

rity solutions is provided by [2, 50, 158, 200]. From the literature it is clear that many

solutions have been proposed but, so far, none of them has been standardized. In

particular Akhunzada et al. [3] provides a detailed taxonomy of SDN threats. In

20 Chapter 2. Security on Emerging Architectures: State of the art

this thesis we focus on those classes of threats that compromise the forwarding and

monitoring activity. Examples include:

• multiple compromised network boxes as a result of bugged injected flow-rules,

that may prevent nodes communicating or may divert traffic flows for eaves-

dropping;

• inner loops and black-holes (usually difficult to detect via normal network

scans);

• flow-rules replacement or removal with the aim of causing unexpected net-

work behavior, Denial of Service (DoS) and Man-in-the-Middle attacks;

• any kind of SDN controller exploitation that results in a compromised forward-

ing activity.

We argue that the SDN paradigm provides the perfect platform to pursue this

goal, given the interleaving between control and data planes: in a SDN network

state changes in the data plane are the outcome of what is produced in the control

plane and, at the same time, the control plane has a view of the data plane.

2.3.2 Mitigations

Many of the described problems are intrinsic to the concepts of cloud, SaaS, and data

sharing. For this reason, before being able to develop a solution for data quality and

data provenance, there is a need for a preliminary analysis of all the metrics of these

types of solutions.

Data Provenance

The first thing that we must consider when dealing with services that expose or

elaborate data is to differentiate between data and information.

According to [41], information systems provide data in a certain business con-

text. When data is used by human beings, it turns into information, and information

finally turns into knowledge by being interpreted and linked for a given purpose.

Regardless of such clear theoretical differentiation between data and information,

practitioners use the term "data" in a broader sense.

2.3. Security 21

As already mentioned, in the context of mobility, verified information is of paramount

importance. There is a need to supports the provision of different sources of data

along with their associated metadata (e.g., used to verify their provenance). How-

ever, it should also provide techniques, embodied by helper services, to transform

those data into verified information.

Data Provenance verification is a known problem in literature. Different ap-

proaches can be taken to support a solution for the problem of recognizing the source

of a data stream. Literature agrees with [79] that the requirements for a provenance

management system are:

• Verifiability: a provenance system should be able to verify a process in terms

of the actors (or services) involved, their actions, and their relationship with

one another.

• Accountability: an actor (or service) should be accountable for its actions in a

process. Thus, a provenance system should record in a non-repudiable manner

any provenance generated by a service.

• Reproducibility: a provenance system should be able to repeat a process and

possibly reproduce a process from the provenance stored.

• Preservation: a provenance system should have the ability to maintain prove-

nance information for an extended period of time. This is essential for appli-

cations run in an enterprise system.

• Scalability: given the large amounts of data that an enterprise system handles,

a provenance system needs to be scalable.

• Generality: a provenance system should be able to record provenance from a

variety of applications.

• Customizability: a provenance system should allow users to customize it by

setting metadata such as time, events of recording, and the granularity of

provenance.

In a microservice architecture, an application is essentially a collection of work-

flows. These workflows can compose many levels of services, each processing and

22 Chapter 2. Security on Emerging Architectures: State of the art

modifying the data before its final destination. What we need is a way to certify

the metadata related to a data stream and manage its validity during time and re-

elaboration [187]. Literature generally considers four different sets of techniques [179]:

• Subject of Provenance, in which provenance can either be available explicitly

or be deduced indirectly.

• Representation of Provenance, in which the way provenance is represented

follows from a tradeoff between the cost of recording it and its richness; it is

typically implemented either with annotations or with inversion [17].

• Provenance Storage in which the design of metadata is also important to enable

scalable storage.

• Provenance Dissemination where, in order to use provenance, a system should

allow rich and diverse means to access it.

According to works like [180], this problem could be solved only with a creation

of private and public key system for data stream certification. A good reference is

the system developed in [198], describing a cryptographic provenance verification

approach for ensuring data properties and integrity for single hosts. Specifically, the

authors designed and implemented an efficient cryptographic protocol that enforces

keystroke integrity. However, public-key schemes are known for their significant

computational load, thus existing techniques may not be suitable for high-rate, high-

volume data sources. Moreover, there could be the need for an algorithm for the

provenance of composed data.

In some cases, data originated from the composition of raw (or otherwise "lower

ranked") sources should be accompanied by suitable metadata that allows to verify

the provenance of the input values, in a cryptographically strong way. In our context

it could be important and useful to capture and understand the propagation of data.

In [209], the authors exploit the propagation of the metadata on the various levels

to create a general metadata storage and management layer for parallel file systems,

in which metadata includes both file operations and provenance metadata.

Also Merkle hash trees could be a good candidate to build proofs for composed

data pieces [128]. The combination of metadata propagation with key distribution

2.3. Security 23

propagation management can guarantee a good level of trust in provenance man-

agement systems. Works similar to [83] discuss how to support provenance aware-

ness in spatial data infrastructure and investigates key issues including provenance

modeling, capturing, and sharing that can be easily used to implement a key propa-

gation system.

Data Trustworthiness

Rating systems are one possible implementation for trustworthiness evaluation mech-

anisms. Auditing services, attribute scores to the data-source services based on dif-

ferent criteria. For example, feedback from users of the data source, or a combi-

nation of reputation scores when the same data can be fed by many sources and

cross-checked. Of course, reputation systems in turn introduce their fair share of

problems [100, 122, 159, 112]. Alternative or complementary solutions are anomaly

detection services based on machine learning and pattern recognition [51]. Then,

as cited for provenance, the emerging architectural context should automatically

compute the trustworthiness score of data originated from the composition of other

sources, based on their scores.

Service Maliciousness

In principle, the service deployment interface can verify the correctness of an appli-

cation before accepting it. In practice, this operation is very hard to perform. One

indicator of correctness is the compliance to a template of acceptable interfaces for

the kind of service the application provides. However, it is very difficult to define

templates strict enough to allow sensible compliance checks, but general enough

to avoid hindering the deployment of legitimate services. Another way to check

correctness is to look at the actual behavior of the application, as it is common in

anti-malware checks, through static analysis, verifying the code to discover possible

malicious behaviors. These techniques are far from infallible, and their scope falls

much shorter than what is required in our context. Indeed, in this context a mali-

cious behavior can be a subtle deviation from the correct calculation [140], which is

far more difficult than the detection of traditional malicious behaviors (e.g., damag-

ing or self-replicating ones).

24 Chapter 2. Security on Emerging Architectures: State of the art

A more promising technique is that of dynamic analysis of malware [60]. A way

to discover a malicious behaviour of a service is to implement a mechanism that

could guarantee, in every moment, a reproducibility of the results. Taking advantage

of the data provenance, certifications of raw data, and of its propagation to results,

it is possible to implement a reference monitor to verify the compliance of results to

the expected values. In case of conflict between the declared results and the actual

ones, it could be discovered what has been tampered with: the source data, or the

service logic. In the first case, this detection can also feed the data trustworthiness

rating system.

Service vulnerability to external attacks

Main prevention to implement is provide input sanitization, or in general, Intrusion

Prevention System / Intrusion Detection System as a service, to protect applications

from most of the malicious invocations. Tracing cross-callings between services can

thwart insider attacks aimed at privilege escalation. This can be done by taking into

account the whole set of access control rules before allowing unauthorized data to

leak in or out through a careless application.

25

Chapter 3

Motivations and Research

Question

In this chapter we will outline the major contributions of this thesis dissertation,

with respect to what we argued has been the state-of-the-art and its evolution on

Chapter 2 and as a consequence of the considerations that we introduced in Chapter

1.

With this short chapter we aim to bind the two parts of the dissertation together

– Part I is about how the current research evolved in the last 10 years wrt to SOA

and Part II is about what is being presented as a contribution to the State-of-the-Art.

In particular, we will localize where our research work fits into the big picture, to ex-

tract the challenges and develop specific use cases according to the related scenario

on which we focused and, most importantly, why we think it is important and worth

it.

First of all we will briefly describe the context in which our architecture study

was done. Despite our analysis can be considered as general as possible, to support

our arguments it was necessary to create several real use cases. These use cases have

therefore fallen into real, functioning and currently in use application contexts. They

are obviously derived from projects activated and concluded between our research

team, companies in our area of influence, government agencies and other research

institutes.

The architectures we have developed have therefore fallen into two main con-

texts: smart mobility and MaaS, and industry 4.0, which we will describe in the next

section.

26 Chapter 3. Motivations and Research Question

3.1 Context: Smart Mobility and Industry 4.0

3.1.1 Smart Mobility and MaaS

In recent decades, public transport services steadily profited from the introduction of

new technologies. The means of transport became faster, less polluting, more com-

fortable and accessible. The interaction of passengers with transport services became

easier, as ticketing and payment systems went from paper to electronic and on-line

planning and real-time information systems became available. Through more effi-

cient exchange of information, transport operators began to see the interoperabil-

ity between competitors as an added value (for example: coordination at transfer

points can lead to better service, attracting more customers than it would happen by

aggressively competing for the same route).

Mobility as a Service [164] is an innovative approach to the integration of pub-

lic and private transport, made viable by the integration in a coordinated infras-

tructure of the technologies illustrated in the previous section. Born in the city of

Helsinki, this paradigm is starting to spread throughout Europe and beyond, aim-

ing to establish standards for the interoperability between different (even in terms

of country) operators, and to encourage the creation of alternative solutions to the

standard ”mass transit / private car” duality, as both new technologies and social

trends emerge [124].

Very briefly, the principle of MaaS is that as long as every detail of the demand

and supply for transportation services is known in real-time, there is no need for

passengers to commit on specific means. Instead, they will enjoy a broad spectrum

of alternatives from which to choose, taking into account the needs of the moment.

For example, one could specify a very strict set of constraints in terms of comfort and

timing, likely to result in a choice of premium means, while another could simply

express the need for reaching a destination at the best price, getting a virtual ticket,

and receiving real-time instructions about which means to use to complete the trip.

Many business models are possible. In the simplest form, a MaaS operator could

simply be a smart broker for planning and paying trips on existing networks.

A more innovative way would be selling mobility packages allowing travelers to use

pre-configured amounts of usage of different means. From the transport operators

3.1. Context: Smart Mobility and Industry 4.0 27

viewpoint, a MaaS platform could be a great opportunity to leverage integration

and to exploit unused capacity. For example, a taxi company exposing vehicle avail-

ability and position in real-time could offer lower prices during off-peak times, thus

appearing as a good alternative to mass transit; data-mining could allow operators

to foresee correlations between various conditions (events, weather, accidents) and

transportation needs, to allocate materials in the best possible way.

Ideally, the ICT infrastructure enables these models by tracking timing, position, and

availability of trains, buses, subways, shared bikes, shared cars, taxis, Uber cars, Lyft

cars, etc. in an overall effort of opening data and standardizing the interfaces to ac-

cess them [193].

In short, in a mobility context, both the users and the operators can benefit from the

smart definition of trips, provided enough availability of data and efficiency of pro-

cessing is available. This is exactly the kind of challenge IoT architectures are up to

[165].

Thus, the role of public administration can undergo a significant change. Some

administrations could choose to play the role of a central MaaS operator, exerting a

stronger control on the local mobility agenda. Others could leave the field to private

companies, hoping to benefit from market-driven optimization of citizens’ patterns

of mobility. They could also accurately monitor citizens, using collected data to plan

investments and direct incentives towards specific goals. The first scenario allows

for a more respectful and regulated approach to citizens’ privacy while the second

leaves room for malevolent or misleading collection and use of data.

One example of the latter is Google legal advisor David Drummond’s defensive re-

ply to the question about future uses of data collected by their driverless car [154].

According to authors, it is too early to regulate over the driverless-car about data

collection and uses, because it is not yet foreseeable what is worth (implicitly ’for

the company’). In any case, governments will need to face the challenges MaaS pro-

vide, and to think about needed regulatory changes to make it viable for innovative

cities. The adoption of MaaS will sustain a transition from a public transport system

traditionally coordinated by the government to a multi-faceted system where exert

coordination through the help of other actors. For example, determining who is in

charge of setting the standards will affect business and consumers in parallel with

28 Chapter 3. Motivations and Research Question

data protection policies.

It is worth noticing that, in many places, this change could introduce significant

trust issues. The organization of transport infrastructures by public bodies guar-

antees (at least in principle) that travelers’ interests are safeguarded. In a fuzzier

scenario, it could be very difficult to verify how sensitive data are processed and by

whom, as detailed in Sec. 4.4.

3.1.2 Industry 4.0

The Industry 4.0 (I4.0) paradigm is an initiative started in Germany that is gaining

worldwide momentum in smart factories[110].

The level of complexity of communications between sensors, actuators, and con-

trol centers required in I4.0 scenarios calls for a new generation of Industrial Net-

works, with demanding levels of performance, reliability and security.

Such revolution comes in hand with Software Defined Networking (SDN), that also

brought a significant paradigm shift: network programmability has introduced sev-

eral advantages, and not only for programmability of the forwarding plane. At the

same time, SDN have significantly expanded the attack surface and the space of

reachable and exploitable vulnerabilities, within the (physical or virtual) network as

well as within each connected system.

SDN can be used to design industrial networks that meet all requirements de-

rived by current standards, yet its growing complexity calls for new generations of

management architectures. Such architecture should be abstract enough to subsume

any possible application scenarios within the realms of I4.0 and IoT.

3.2 Security Analysis

3.2.1 The Insider Threat Problem

Having defined the context in which we developed our architectures we performed

the security analysis of the enabled and exposed services. Following the state of the

art of chapter 2 we can see that the problems are found on different levels of the

architectural stack; include numerous agents and for different purposes.

3.3. Use Cases and motivations 29

In fact, we immediately noticed how an in-depth security analysis would have been

very extensive, and not possible in the timing of our use cases.

Furthermore, through interviews and discussions with our business partners,

we have defined that despite the wide spectrum of possible attacks within this type

of architecture there was a particularly widespread and sensitive one, namely the

insider threat.

As well explained in chapter 5.4, statistically, insider threats are one of the most

expensive security issues for business companies [142]. One prominent reason of

these expensive outcomes is that companies did not foresee all possible malicious

insider activities [182].

For these reasons, our security analysis, although centered on all levels of archi-

tecture, will mainly focus on identifying and solving insider threat problems, going

superficially, or not considering, the other common agent attackers.

3.2.2 Policy Enforcement oriented Solutions

The proposed solutions as a consequence will be based on preventing the previ-

ously described attackers. The study of the solutions in particular will be structured

as follows. Through the study of possible threats a categorization of services and

vulnerabilities will be developed. A definition of the security policies to be applied

to prevent certain attacks will therefore be created on this categorization.

For each policy and architecture a solution will therefore be proposed that is

developed, tested and deployed showing as how our study can be applied in a real

and practical use-case.

3.3 Use Cases and motivations

Finally, let us try to summarize in this last paragraph of the following chapter how

the motivations and the research questions have structured the work of this thesis.

The main purpose of this thesis is to study the security issues of some of the emerg-

ing software architectures resulting from the evolution of cloud computing, the XaaS

paradigm, and more generally the new business models on software architectures.

For these studies, however, despite an intense phase of literature and state-of-the-art

30 Chapter 3. Motivations and Research Question

study it was necessary to create a real use case on which to carry out tests and eval-

uations.

Obviously the use case could not be NOT contextualized, for this reason, also thanks

to our collaborations, we have created different use cases in the context of smart mo-

bility and industry 4.0. These use cases have been applied in several other parallel

and/or complementary projects, resulting in further scientific publications that have

just validate more the usefulness of our use case.

We therefore go backwards in the path.

Starting from a specific use case we studied the security issues related to the insider

threat. From this specific use case we proposed and used a process of categorizing

the elements of the architecture so that it was as general as possible and therefore

also applicable to other contexts. From this categorization we therefore produced an

analysis of the insider threat security problems, which wanted to be as general as

possible.

On this analysis we therefore produced security policies aimed at mitigate these

threats. Finally, to validate our research, we proposed a practical implementation of

these policies, in a way of a development component of the software architectures

created as use cases.

31

Part II

Contributions

33

Chapter 4

Privacy-Preserving Design for a

Clearing System Architecture

The current trend in management of public transport systems is to outsource ser-

vices to multiple private operators, requiring them to integrate their ticketing and

fare system with one another. When this concept is introduced in regions that used

to have single local entities managing every aspect of ticketing, or that conversely

left operators free to adopt incompatible, separate ticketing systems, a new layer of

coordination must be put in place.

There are many examples of this kind of approach around the world, such as

the Oyster card system in London, the Octopus card system in Hong Kong, or the

Istanbulkart in Istanbul just to name a few. As a case study, this thesis considers the

Emilia-Romagna region of Italy, where the Regional Government has been running

for several years a project to integrate the control processes of the various transport

companies operating in the region. These companies typically operate over disjoint

territories, and they used to manage independent and localized ticketing systems.

The trend with the new regional system is to go more and more towards inte-

gration of tariffs, routes and ticketing, so that the citizen may buy a ticket in city by

a given operator and use it in another city with another operator. While providing

an improved service to citizen this approach also brings some additional burden,

since a clearing system is needed to share the revenue of tickets sales according to

the actual service each operator has provided (and thus, supposedly, to the real costs

it has incurred). Data detailing every trip, collected by public transport operators,

previously confined to internal use only, now must be shared and can potentially

34 Chapter 4. Privacy-Preserving Design for a Clearing System Architecture

harm passengers.

The system that manages it does not merely need to control data disclosure, but

has to be designed to manage potential risks during the collection and processing

of data. This is a challenging task, which must manage privacy risks appropriately

on the one hand, and preserve data utility to a level that guarantee usefulness for

clearing purposes on the other hand.

This first contributions chapter of this thesis illustrates the work done and need

to design and test the clearing system in a way that safeguards the protection of

personal information, not as a result of some policy superimposed to the existing

functions, but rather taking into account this requirement from the start, by applying

the principles of Privacy by Design.

Contributions Contributions on this Chapter are organized as follows. In Section

4.1 the local context and the general ideas behind the clearing system are briefly

presented and reviewed, and research questions are stated. Section 4.2 gives an

overview of the general principles of data sanitization for the purpose of safe release

of sensitive information. Section 4.3 illustrates the risks connected with the release

of sensitive information, focusing on the desanitization attacks that exploit public

data sources, and Section 4.4 gives two examples of how these attacks can affect the

clearing datasets. Section 4.5 describes the general principles of Privacy by Design,

and outlines the direction of current and future work to apply them to the scenario

of the clearing system, before conclusions in Section 4.6.

4.1 Context Scenario

4.1.1 The local context

The Emilia-Romagna Region has approximately a population of 4.5 Million with an

area of 22500 square Kilometres. About half of the population leaves in the 13 main

cities that are lined along the ancient Roman road called "Via Emilia" which gives

its name to the Region. Emilia-Romagna is highly industrialized with a number of

companies typically spread along the Via Emilia around the main urban centres. For

4.1. Context Scenario 35

this reason the mobility infrastructures are a key part of the logistics supporting the

economy of the region.

The estimate of daily trips made by Emilia-Romagna citizens for work or leisure

is about 9 Millions of which 25% walk or bike and 8% by public transport means.

The public transportation system is built around a rail backbone basically parallel to

the Via Emilia which links the main urban centres. Local transportation systems in

the cities mostly use buses. The local systems are run by four large operators and a

few small operators on specific routes.

The policy maker is the regional Mobility and Transport Councillorship which is

competent, among many subjects, for the planning of the infrastructural network, re-

gional and local mobility systems. Over the last decade the Councillorship pursued

service integration and multi-modality of public mobility systems, promoting, in

particular, the deployment of regional integrated fares with an investment of about

20M euro in supporting hardware (central control systems, ticketing machines, ve-

hicle monitoring systems etc.).

The issue of the MiMuovo (I move) chip card was the flagship project of the fare

integration process, supporting multi-modal tickets valid over a given path span-

ning several operators and transport means. For instance a user holding a MiMuovo

card with an integrated travel contract is allowed to use the bus (run by operator

A) in his home town to reach the railway station, the train (run by operator B) to

his/her working town and the bus (run by operator C) to his/her working place. To

date about 300,000 MiMuovo cards have been deployed and are used daily.

Trend is also fostering fare integration for single trip tickets that can be bought

in any town and used in any other within the Region. This requires the operator

selling the ticket to share the revenue with other operators, if they are involved in

its use. This is called clearing process, and has to be implemented in a way accepted

fairly by the whole set of operators involved, to guarantee the integrated system

sustainability.

4.1.2 The clearing Service System

The clearing system is based on a vertical smart mobility service architecture in

which each operator is responsible for the management and maintenance of its own

36 Chapter 4. Privacy-Preserving Design for a Clearing System Architecture

data. The data needed for the computation of the clearing function is collected in

a clearing database located in a central processing centre, operated by a regional

in-house company, in order to guarantee neutrality and to avoid disturbing the pro-

duction systems of the operators.

The creation of the clearing database requires the sharing of the operators dataset

in a standard, machine readable format, thus creating a possible threat as a conse-

quence of secondary uses. Moreover the regional Councillorship aims at using the

data for in-depth analysis of the transport system performance. Eventually, part of

the datasets could be released to the public as open data.

Operators and public bodies do not have any effective control over future uses

of their dataset once it is publicly available. Unfortunately the data about sales and

usage may reveal issues the operators consider part of their industrial secrets and/or

sensitive information in terms of personal privacy.

This problem can be (partly) mitigated by applying full anonymization safe-

guards, which is very difficult when the utility of the database has to be maintained.

Moreover, it is possible to adequately inform the involved subjects of the intention to

disseminate the dataset in an open data format, alerting them to potential risks, but

this action can limit the degree of user acceptance, especially if the policy intention-

ally leaves open what kind of secondary uses of their data will be done. Therefore a

trivial solution to the issue does not exist.

4.1.3 Research questions

From the point of view of the users, in the widest sense that encompasses passen-

gers, operators, and regulators, the most pressing questions to be answered are:

with the current data storage and utilization processes, is it possible to breach data

privacy and re-identify the data subjects? Which kind of processing and links to

people and business-related issues are possible, for example by matching the clear-

ing database data with other external databases? From the point of view of the

researchers, these questions can be answered by analysing the underlying scientific

and technical tools: what features do the current data sanitization algorithms ex-

hibit? Is it possible to measure their effectiveness in any given scenario? Symmetri-

cally, can the experience gathered from similar projects in other cities/regions point

4.2. Sanitization: a critical overview 37

our research in the right direction, or are our requisites too specific?

Once the background analysis is complete, if it highlights deficiencies either in

the basic technologies or in their application to specific scenarios, the research activ-

ity will be directed towards the definition of a more effective framework for public

transport data sanitization.

4.2 Sanitization: a critical overview

The architecture outlined in Section 4.1.2 introduces two possible security attack vec-

tors. The first one is the intrusion of an unauthorized party, in which data are sub-

tracted from the primary database; this is a classical issue of information security

and access control, and this work does not deal with its direct form; yet, it takes into

account the similar situation of purposely releasing data for public use, considering

that it could be enriched though correlation with external data sources, to the extent

of disclosing details that should not be made public.

The second one is called an insider attack, also referred to as an insider threat;

this type of attack arises due to a malicious threat from somehow authorized actors,

from inside the organizations that are legitimately involved in data collection and

processing; the next chapter illustrates ways to perform this kind of attacks and

corresponding effects.

A data sanitization phase is commonly proposed in the literature as the necessary

step to prevent these issues; this phase as defined by [44], is "the process of altering

[a dataset] so that it remains usable for beneficial purposes, while minimizing its

use for harmful purposes". To properly define this process, the key issue to deal

with is to understand what "keeping the beneficial purposes" and "minimizing the

harmful purposes" mean. Ideally, the process should be able to manipulate the data

in a way that prevents privacy attacks but at the same time preserves the possibility

of performing many kinds of economic computations.

To progress towards this goal, the existing literature is analysed to find (a) whether

convincing measures of utility and vulnerability of the dataset exist and (b) whether

existing algorithms result in positive trade-offs when applied to our context. The

literature was analysed as follows. Starting from the basic requisite of having to

38 Chapter 4. Privacy-Preserving Design for a Clearing System Architecture

anonymize the data, the generally-applicable techniques of data anonymization were

reviewed, highlighting their limitations.

Next, the application of these techniques to the clearing scenario was attempted,

taking into account the literature on the evaluation of these techniques, namely ver-

ifying the impact of their known limitations, and introducing metrics that allow to

determine whether a satisfying level of privacy is attained.

Subsequently, the symmetrical path was followed, starting from similar cases

for which documentation of the process of transport data privacy protection exists,

such as those of Montreal and Amsterdam. However, the analysis of the various

aspects highlighted that, even though there are important points of contact, these

experiences did not need to take into account some requirements that turn out to

be of critical importance for the clearing scenario. As a consequence, the techniques

devised for those systems would leave ours subject to numerous types of attack,

both of kinds already known in the literature, and of other kinds described in this

dissertation as proofs of concept.

4.2.1 General-purpose sanitization approaches in the literature

As a preliminary consideration, to understand the way algorithms manipulate datasets

to achieve the aforementioned results, it is useful to note that every approach is

based on the classification of data elements according to the potentially sensitive

information in three categories [206]:

Identifier attributes (or identifiers) can individually distinguish the data sub-

ject more or less directly. Typical identifiers include: name, address, social security

numbers, mobile phone number, IMEI number.

Quasi identifier (or key) attributes can be used to identify a data subject using

auxiliary sources of information, by linking to databases that contain identifying

information. They are indirect identifiers of a data subject, which make an individual

more distinctive in a population. Typical key attributes include: age, race, gender,

date of birth, and place of residence.

Sensitive (or secondary) attributes cannot individually identify a data subject

directly and may require significant amounts of auxiliary data to be useful for re-

identification purposes. A data subject may then be identified individually through

4.2. Sanitization: a critical overview 39

more sophisticated methods such as fingerprinting, rather than mere linking of databases.

Examples include settings in an application, battery level measured over time, or lo-

cation patterns.

In summary, the literature describes four main techniques of data anonymiza-

tion.

k-anonymity [163, 129] is the most well-known technique for generalization. The

basic principle here is to replace exact values with ranges, wide enough to guarantee

that every attribute in a database appears with identical values in a given number

of other rows, forming a group of k rows indistinguishable from each other. This

approach may take the form, for example, of grouping subjects’ locations into suffi-

ciently large areas such that no set of locations is unique to any individual.

The enforcement of k-anonymity requires the preliminary identification of the

quasi-identifier. The quasi-identifier, as previously defined, depends on the external

information available to the recipient, as this determines her ability to make corre-

lations (not all possible external data sources are available to every possible data re-

cipient); different quasi-identifiers can potentially exist for a given table. Many vari-

ations and improvements exist, yet k-anonymity techniques cannot hide whether an

individual is in the dataset, and it performs poorly in protecting sensitive attributes

against attacks based on background knowledge or on the knowledge of the details

of its application [188].

l-diversity [116] is an improvement of k-anonymity that require the sensitive at-

tribute associated with each quasi-identifier to appear at least with l different values.

Other refinements have been proposed, but as described also in [195] processing a

large dataset to achieve l-diversity is time-consuming and vulnerable to inference

attacks in presence of a series of updated publications of the same dataset, if it is sim-

ply re-anonymized with the same approach every time. Finally the added require-

ments proved to be neither necessary nor sufficient to prevent sensitive attribute

disclosure (Li et al., 2007) [111].

t-closeness [111] To improve robustness of k-anonymity, the same authors of l-

diversity also proposed a privacy notion called t-closeness, which requires that the

40 Chapter 4. Privacy-Preserving Design for a Clearing System Architecture

distribution of a sensitive attribute in any equivalence class is close to the distribu-

tion of the attribute in the overall table (i.e., the distance between the two distribu-

tions should not be greater than a threshold t). In other words, an equivalence class

is said to have t-closeness if the distance between the distribution of a sensitive at-

tribute in this class and the distribution of the attribute in the whole table is no more

than a threshold t. A table is said to have t-closeness if all equivalence classes have

t-closeness.

Differential Privacy is a process derived from cryptography. As defined in

[56], it "aims to provide means to maximize the accuracy of queries from statisti-

cal databases while minimizing the chances of identifying its records." Unlike other

methods, differential privacy operates off a solid mathematical foundation, mak-

ing it possible to provide strong theoretical guarantees on the privacy and utility

of released data. The most used technique is called ε differential privacy and it is

modelled via a randomized algorithm; a theoretical definition is given in [196] and

summarized as follows.

"A randomized function K gives ε-differential privacy if for all data sets D and

D‘differing on at most one row, and all S ⊂ Range(K),"

Pr[K(D) ⊂ S] >= exp(ε) x Pr[K(D‘) ⊂ S]"

This formula can be interpreted as stating that the risk to one’s privacy should

not substantially (as bounded by ε) increase as a result of participating in a statisti-

cal database. Namely, that an attacker should not be able to learn any information

about any participant that they could not learn if the participant had opted out of

the database. This goal is pursued by adding some noise to the result of a query

on the dataset. There exist many different mathematic mechanisms to do that; the

most commonly seen in this context is the Laplace mechanism, which adds noise

derived from the Laplace distribution. It has only one parameter, defining the stan-

dard deviation, or noisiness. This parameter should have some dependence on the

privacy parameter, ε; it should also depend on the nature of the query itself, and

more specifically, the risk to the most different individual of having their private

4.2. Sanitization: a critical overview 41

information teased out of the data.

Differential privacy comes in many different forms and variations which we will

not cover in detail, but they all have several limitations, due in particular to the high

computational complexity that the cryptographic techniques could introduce in a

big dataset. The main advantage of this approach is that its mathematical foundation

makes it possible to actually measure the strength or the weakness of the results. The

concept of differential privacy holds much potential, and is still the topic of active

research.

4.2.2 Sanitization in the Clearing Scenario

To ascertain the suitability of the illustrated techniques to the clearing scenario, the

first step is to define the correct evaluation criteria, which could depend from:

• The context of collection and usage of the data;

• The structure of the data;

• The objective of data processing.

As an example, the work of [23] measures the trade-off between privacy (i.e.,

how much the adversary can still learn from the sanitized records) and utility (i.e.,

the residual accuracy of data-mining algorithms executed on the sanitized records

with respect to what could be found for legitimate purposes from the original data

set). Their paper showed that k-anonymity provides no privacy improvement on

the tested dataset; furthermore, l-diversity is no better than trivial anonymization.

Another interesting work [42] tries to quantify the effectiveness of sanitization

in terms of privacy impact of a data release. To this end, the study introduces the

idea of incorporating a metric over ’privacy breaches’ based on a notion of empirical

privacy, and evaluating the corresponding empirical utility of the released data.

The measure of a privacy breach is defined as the increase in correct a-posteriori

inferences obtained by an adversary about sensitive values in the data, using a

Bayesian classifier with previous knowledge. The cited paper applies this metric

to the main four techniques, and concludes that differential privacy often provides

the best empirical privacy for a baseline utility level, but that for increasing utility

42 Chapter 4. Privacy-Preserving Design for a Clearing System Architecture

levels it can be preferable to adopt methods like t-closeness or l-diversity. There

are other works that pursue the same kind of investigation, that mainly derive as a

conclusion the weakness of k-anonymity and l-diversity algorithms.

The main limitation of the reviewed literature is that only few papers interact

with large amounts of data derived from public transport system. An exception is

the work in [70], which aims at preventing privacy attacks in a general sense, espe-

cially those damaging from a user’s perspective. The proposed solution is an algo-

rithm based on the LK-privacy model, using the approach of "identifying the LK-

privacy requirement, and then eliminating the violating sequences by a sequences

of suppressions with the goal of minimizing the impact on the structure of the user

tracking." What the authors claim is that their anonymization algorithm thwarts

identity record linkages, while effectively preserving the information quality in terms

of its suitability for the generation of a probabilistic flow-graph. It is a very inter-

esting result, yet insufficient in the scenario of a clearing system, where the user’s

privacy perspective is not the only one that must be protected; in fact, the insider

threat is not taken into account.

Eventually, with the exception of differential privacy (which cannot be easily ap-

plied to huge amounts of data), it would seem that not a single sanitization solution

is really effective. Actually, these studies demonstrate only how these techniques

are not effective enough for the particular context taken into consideration. To prop-

erly evaluate their potential in our scenario, a more precise definition is needed for

various characteristics, namely:

• the privacy requirements;

• the expected level of utility of datasets;

• how to measure the effectiveness of algorithms at preserving these properties.

As regards privacy requirements and utility levels, it is possible to reason in our

case study, on the structure of sensitive values and quasi-identifier. The sensitive

values are the user’s identity and location data; these values are the one to hide and

protect. The means of transportation and the user’s contract data, otherwise, can

be classified as quasi-identifier values, since they could become sensitive if crossed

4.3. Security Analysis 43

with other information; at the same time, these are the data needed to calculate the

clearing functions, so they cannot be depleted because of the precise information

they carry. The goal of the anonymization process is to break the link between user

identity and location, and to mask the QI values in a way that preserves the values

needed for the clearing system.

As regards the metric used to quantify privacy, the best work done in this path is

[144] were authors created a metric called δ-presence to evaluate the risk of identi-

fying an individual in a table based on generalization of publicly known data. This

work shows that existing anonymization techniques are inappropriate for situations

where δ-presence is a good metric (specifically, where knowing that an individual is

in the database, as it very often happens to travellers of public transportation net-

works).

So, despite its quality in general terms, this metric cannot be used in our context.

Otherwise, the metric discussed in [67] is defined as the amount of "useful" data

mining queries still existing after the sanitization phase. As shown in the following

section, an insider threat attack in our context is likely to take the form of a search

pattern analysis; for this reason this measure of privacy seems to be more interesting.

4.3 Security Analysis

In our scenario, the clearing datasets could be exploited by any of attacker cate-

gories wishing to infer information regarding the operators’ business and/or the

passengers of the public transportation system. Moreover, there is a specific insider

threat: the participating companies may try to use data analysis to gain competitive

advantages, both of the kind usually associated with market analysis (e.g. uncom-

monly profitable routes) and of the kind usually regarded as a trade secret (e.g. the

optimization of the allocation of resources such as buses, trains, and personnel on

board).

The main issue is that when pursuing their goals, adversaries are not limited

to the analysis of the clearing data alone. Conversely, they can reap great benefits

through correlation with many existing public databases. The first widely known

case of identification through correlation of different public datasets dates back to

44 Chapter 4. Privacy-Preserving Design for a Clearing System Architecture

2006, when AOL released anonymous data about search queries and New York

Times reporters were able to find the real user linked to a specific hash [13].

As noted by [19] this case also shows a peculiar effect of the failure of the pri-

vacy protection: since the user acted as a proxy for friends with no Internet access,

her name was associated to many queries unrelated to her condition and habits.

The same could happen with public transportation data. As an example, if zones

of boarding and alighting are kept wide enough to conceal the exact location of a

passenger, they could end up enclosing points of interest (hospitals, schools, recre-

ational facilities, shopping districts, etc.) which could lead an attacker to draw

wrong conclusions, possibly even more damaging to the victim than the correct ones.

A final example of the risks associated with location data is carried by the study

of possible privacy breaches as a consequence of the traces left when renting bikes

in London. This is a very relevant case for this work, since the kind of data used

in the studies described hereinafter is strikingly similar to what could be found in

our datasets. Here [176] authors analysed a publicly available Transport for London

dataset that contained records of bike journeys for London’s bicycle hire scheme over

a period of six months between 2012 and 2013, reaching the conclusion that "with a

little effort, it’s possible to find the actual people who have made the journeys".

4.3.1 Specific attack scenarios in our context and countermeasures

The kind of correlation with external databases exemplified in the previous section is

feasible in our context too. Not only it is possible to leverage online social networks

in the same way, but also to browse many free-access databases of sensitive data,

strongly related to the regional context. Just to give two examples, it is very easy to

extract from the corresponding web sites all the professional data information (such

as office address, office telephone number etc.) of the regional health organization

staff, as well as of the university staff in all the cities that have an academic insti-

tution. These data are not sensitive if taken alone; in fact, the transparency laws of

the public administrations mandate their availability; as shown in the next section,

it is their combination with the public transport dataset that could allow privacy

breaches.

4.3. Security Analysis 45

If this were not enough, as explained previously the same sanitization algorithm

are not free from attacks. In particular when there is the need to keep a good level

of utility, algorithms as k-anonymity have been proven to be weak against attack

where the adversary have a previous ("a-priori") knowledge. The work of [116] and

the l-diversity algorithm have been created to overcome these de-anonymization

issues of k-anonymity. As well explained in [70], anonymizing public transport data

structured over a space with a high number of dimensions has been studied widely,

but in general none of the proposed solutions takes into account the clearing scenario

with its peculiar requisites about utility. In [70] the differences between the different

methods are clearly detailed.

[71] propose a permutation method that groups transactions with close proxim-

ity and then associates each group to a set of mixed sensitive values. [184] propose

an algorithm to k-anonymize transactions by generalization based on some given

taxonomy trees. [84] extend this method by introducing local generalization, which

awards better quality. [199] extend the k-anonymity model by assuming that an ad-

versary knows at most a certain number of transaction items of a target victim, which

is similar to our assumption of limited background knowledge of an adversary.

This is a very interesting model because it is definitely related to our scenario.

It deals with attempts to gain a basic knowledge of some transaction rows, which

is equivalent to get a certain number of possible travel records of a user: a valuable

outcome for an attacker in our context.

Yet, although their method addresses the high-dimensionality concern, it con-

siders a transaction as a set of items rather than a sequence; this makes it useful

to prevent attacks against the privacy of single users, but not to prevent attempts

at general pattern discovery, which is typical of insider threat attacks. Therefore, it

is not fully applicable to our problem, which needs to take into consideration the

sequential ordering of travel data. Furthermore, [199] achieve their privacy model

by merely global suppression, which significantly decrease information quality on

transport data.

The last reviewed model was developed by [38]. It studies the releasing of trans-

port dataset while satisfying differential privacy techniques. Although they claim

that their approach maintains high quality and scalability in the context of set-valued

46 Chapter 4. Privacy-Preserving Design for a Clearing System Architecture

data and is applicable to the relational data, their method is limited to preserving in-

formation for supporting count queries and frequent item-sets, as opposed to [199],

and not passenger tracking. The combination of these two pieces of research is a

very promising research direction towards a complete solution for our scenario.

4.4 Case Studies

This section presents some simple case studies built along the lines of the illustrated

threats, showing how such concepts may easily be applied to the case under consid-

eration. Two different threats are considered:

• an attacker who tracks the movement of a specific person (one of the authors)

on the public transport network, exemplifying a threat to the privacy of indi-

viduals;

• an attacker who is interested in understanding what are the more profitable

areas in terms of regional tickets sold, to challenge the business of an operator,

exemplifying a threat to trade secrets of operators.

A summary of the data items collected by operators for each ticket validation

is described in Table 4.1. The definition of the minimal subset needed for clearing,

and the anonymization of the selected fields, are the goal of the work in progress

described in this section. However, it is immediately possible to notice that the most

sensitive attribute and the only direct identifier (in case of personal passes), i.e. the

serial number of the ticket, cannot be omitted.

Following its usage through the dataset (possibly over a period of time that can-

not be known a priori) is the main function of the clearing system, which has to

compute the share of revenue (generated when the ticket was bought) to distribute

to each carrier which provided service to the ticket holder. In a broader sense, it is

possible to define the required utility level of the dataset as being very similar to

the goal of a potential attacker: that is, allowing to reconstruct a traveller’s itinerary.

It is worth detailing how this reconstruction happens, to understand also how an

attacker could try the same process and follow a traveller.

4.4. Case Studies 47

TABLE 4.1: Dataset Item Summary

Field name Content

CONTRACT SUP-
PORT

Type of physical token

CONTRACT TYPE Type of contract (single trip, pass, etc.)

VALIDATION TSP Timestamp of ticket usage

VALIDATOR LOCA-
TION

Placement of the validating equipment

CONTRACT RE-
SELLER

Company which sold the ticket

VALIDATION LINE Bus/tram/train line number

VALIDATION NR Number of parallel validations of the same ticket (e.g.
many passengers on a single pay-as-you-go ticket)

VALIDATOR SERIAL Serial number of validating equipment

CONTRACT SN Serial number of the ticket

VALIDATOR
MODEL

Model of the validating equipment

VALIDATION ZONE Fare zone where the ticket was validated

CONTRACT VALID-
ITY

Geographical extension of the contract (regional, urban,
etc.)

CONTRACT ZONES Number of fare zones the contract allows to traverse

48 Chapter 4. Privacy-Preserving Design for a Clearing System Architecture

The itinerary is "blurred" within the dataset, because in the studied system pas-

sengers validate tickets only when boarding a bus/train, but not when leaving it.

Consequently, raw data does not show a sequential structure; each row represents

a leg of a trip for a contract, but there is no direct connection with the next legs of

the same contract. Each leg can be represented by a structure like (A)T1→ (B..Z),T2

meaning that on time-stamp T1 a user (Contract_SN) goes from A in a known direc-

tion (inferred from Validation_Line) leading to a set of possible stops, one of which

is reached at T2. This introduces uncertainty in the computation of the number of

traversed zones, which is needed by the clearing system when a vehicle of a differ-

ent operator is used to continue the trip: in this case, the end of the first leg must be

inferred from the validation that happens at the start of the second one.

To this end a probabilistic flow-graph can be exploited. According to [70] a prob-

abilistic flow-graph is a tree where each node represents a point in space-time, the

edges corresponds to transitions between two places, leaving the origin at a given

time to reach the destination at a different time, and each transition has an associated

probability of being actually followed. For every node, there may also be a non-zero

termination probability, which is the percentage of passengers who exit the trans-

portation system at the node. By looking for validations of the same contract that

are consecutive within a given time-frame, a possible itinerary can be identified.

For example, if a validation (A)T1 could take a passenger to (B..Z), and there

is a validation (D)T2, with the value of (T2-T1) falling within a given threshold, a

non-zero probability can be associated to the edge (A)T1→ (D)T2. The analysis can

proceed seeking for destinations that can be reached from (D).

Table 4.2 and Figure 4.1 depict an example of the probabilistic flow-graph de-

rived from one of our datasets for a few contracts. With enough samples, proba-

bilities can be estimated with acceptable precision, and the graph becomes a faith-

ful enough representation of the distribution of passenger over the network. At

the same time, each set of itineraries for a given contract represents the habits of a

passenger, enabling correlations with other data sources (places around the nodes,

events close to the timestamps), and potentially leading to the association between

the contract and a personal identity.

4.4. Case Studies 49

TABLE 4.2: Probabilistic flow path of our dataset

Serial Content

70001112 (1, 245)T1->(2,249)T2->(3,248)T3->(1,245)T4

0004058 (1, 245)T3->(1, 245)T4-(1, 245)T6

50004077 (4,260)T1->(2,249)T2->(1, 245)T5

50004070 (1, 245)T1->(2,249)T2

70001386 (1, 245)T3->(2,249)T4

70001389 (1, 245)T1->(2,249)T2->(1, 245)T4

FIGURE 4.1: Travel data represented as a probabilistic flow-graph

50 Chapter 4. Privacy-Preserving Design for a Clearing System Architecture

4.4.1 Stalking Franco Callegati

FIGURE 4.2: Commuting flows from Imola to Bologna and Cesena

As a proof of concept, let us present the case of an attacker who wants to target

one of the authors, to track his movement on the public transport network. Franco

Callegati is a professor at the University of Bologna. He has a public web page

detailing the address of his office which is located in the off-site campus of Cesena,

about 60 Km East of Bologna, and showing that he works at the Department of

Electrical, Electronic and Information Engineering, which has its central offices in

Bologna. The phone directory lists his home address in Imola, a smaller town about

30 Km east of Bologna.

Clearly from this basic data it can be inferred that Callegati will mostly travel to

work from Imola to Cesena where he teaches and tutor students, but he will likely

travel to Bologna too, for those sort of activities requiring physical presence related

to the Department or to the University’s central offices. Sometimes he will also travel

from Cesena to Bologna (or the other way) when he has some commitment in both

sites in the same day.

With this background, an attacker who has got a copy of the clearing dataset can

associate the victim’s identity with the serial number of his MiMuovo pass. Calle-

gati is admittedly a very easy target, yet he serves us well for the purpose of giving

4.4. Case Studies 51

a concrete and real example of usage of clearing datasets. Given the almost non-

existent effort that allows a potential attacker to reach his goal, there is little doubt

that "harder" targets can be exploited with some more, but still reasonable effort; as

already illustrated at the end of previous section, even a coarse localization of com-

muting start and end points, when correlated with some background information

about the victim, can yield significant results.

The dataset shows about 2,000 passengers boarding trains that leave Imola in

the morning (all figures are computed as averages on working days). Since the val-

idation occurs only at the start of the trip, their destination is not explicit, but of

course it can be inferred with a good approximation by coupling the onward trip of

a given ticket with the return trip. This further analysis yields slightly more than

1,000 passengers getting back from Bologna in the afternoon (Fig. 4.2, pink arrow)

and slightly less than 200 passengers getting back from Cesena (Fig. 4.2, grey arrow).

The number of candidates drops dramatically when only passengers who travel al-

ternatively to both Bologna and Cesena in different days of the week are considered.

Only 14 MiMuovo users show a commuting pattern of this kind (Fig. 4.2, red arrow).

The possible inferences do not stop here. It is easy to check that the Callegati’s

office in Cesena is near enough to the train station (15 minutes on foot), and that it

is not conveniently served by public transport (direct bus only once an hour). An

attacker could make an educated guess that Callegati will not take a bus when he

leaves Cesena’s train station, and thus eliminate candidates who do it. Conversely,

the site of Callegati’s department in Bologna is twice as far from Bologna’s train

station, compared to the Cesena situation, and much better connected to it by bus (6

to 8 connections per hour).

In this case an educated guess would lead an attacker to consider the exclusion

of candidates who do not board a bus in Bologna after reaching the train station.

Note also that the clearing function can be computed without taking into account

the line number, but in case the full database is leaked, or in case the line number

is kept on record for secondary uses, it would be possible to further restrict the set

of candidates to those boarding one of the two bus lines connecting the train station

with the department, out of the 19 serving the train station.

52 Chapter 4. Privacy-Preserving Design for a Clearing System Architecture

In our tests, this is enough to pinpoint the victim. This result was reached with-

out even taking into account another very valuable source of information, the timetable

of the lectures in Cesena, which would allow establishing a precise spatio-temporal

constraint to the victim’s movements towards one of his usual destinations. In con-

clusion, by following these patterns, an attacker can identify Callegati’s MiMuovo

card ID and then follow his movements also outside his most common habits by

accessing the clearing database.

4.4.2 Unfair competition

FIGURE 4.3: Results of a clustering analysis of the dataset with Weka

Ticket validation datasets contain potentially useful information for an operator

wishing to uncover the business practices of its competitors or challenge their busi-

ness practice. This kind of attack comes from the inside, and it is very difficult to

deal with. Access control rules cannot be very strict against insiders, who enjoy not

only the possibility of easier read-only access to datasets, but also the opportunity

to inject carefully crafted data to stimulate the production of particularly useful out-

puts, like a cryptanalyst that is able to perform a chosen plaintext attack. One of the

most valuable pieces of information would be the planning strategy in the usage of

vehicles, which is a crucial issue for a transport provider and that can be inferred at

4.4. Case Studies 53

some extent by exploiting the information in VALIDATION ZONE, VALIDATION

LOCATION, and VALIDATION LINE.

Here a simple and realistic inference is shown, built by looking at the correlation

between the type of ticket and the zone of its usage. It is a piece of information

that can give a very small margin of profit by pushing sales of multi-trip tickets

where they are most appreciated, making profits on the rate of unclaimed trips for

lost tickets (what is not claimed for clearing remains in the pockets of the seller).

This should clearly be a small percentage of the whole ticket volume. Nonetheless

in today’s competitive markets every source of income may be vital; moreover the

examples show that this sort of analysis may pave the road to similar analyses in

“business areas” which are not considered today, because they are impossible to

accurately explore in absence of large datasets.

We performed Over 30 data mining tests over the ticket validation datasets using

the Weka software [82]. The correlation of interest was best highlighted by means of

cluster analysis, i.e. a set of exploratory techniques that aim to group the unity of a

population in statistics on the basis of their similarity in terms of values taken by the

observed variables. As an example, Figure 4.3 shows the result of cluster analysis

according to the Simple K-means_1 classifier. It is clear that the attributes of the sold

tickets form well-separated clusters, whose significance can be useful from a busi-

ness perspective. Once this hypothesis is verified, a Bayesian_2 classifier allows to

infer more details over some attributes. The structure of the clearing system allows

an attacker to feed the Bayesian classifier a large amount of past knowledge from the

snapshots. The result is that the algorithm is able to correctly predict the belonging

to a given cluster of over 90% of new instances.

This result needs to be interpreted in a specific context in order to show the

power of this kind of attacks. The Bayesian test shows that theoretically, by knowing

only the contract type and the validation zone, it is possible to infer the correct serial

number of the contract support, which would reveal the pseudo-identity of the con-

tract holder. Beneath the privacy risks for the contract holder, this discovery would

allow a company to determine the history of a pseudo-identity. This history would

be revealing the type of contract, along with its movements, leading to a kind of

profiling and possible definition of targeted offers that is usually regarded as unfair

54 Chapter 4. Privacy-Preserving Design for a Clearing System Architecture

competition in our context.

A more general attack is also possible, again by using the results from cluster

tests. Cluster analysis usually aims to group the elements of a population on the

basis of their similarity, in terms of values found in the observed variables. However,

if the focus is put on a particular attribute, for example the contract type, it becomes

possible to trace the trend in terms of other variables, for example (see again Figure

4.3) how the contract is used in a group of specific zones. This could easily lead an

operator to discover the contract distribution of a competitor. So by intercepting this

market trend, once again, the opportunity may arise to engage strategies deemed as

unfair competition.

4.5 Mitigation Policy Guidelines

In order to take the described factors into account when designing the clearing sys-

tem, we propose to undertake an iterative approach described by the following

steps:

• Data minimization - take into account the needs of the legitimate analysers to

define the smallest set of attributes that allow performing the intended com-

putations;

• Sanitization techniques - choose the perturbation and generalization algo-

rithms that provide the most effective concealment of sensitive data without

jeopardizing its utility for legitimate uses;

• Verification - evaluate the results to formally verify that the privacy policies

are respected and that the resulting dataset actually preserves its intended

utility. If some basic constraint is found violated, or margins for further im-

provement are visible, the cycle is reiterated to achieve the foreseen refinement,

otherwise the process stops. Note that this step could highlight an intrinsic

contradiction between some of the privacy policies and some of the analysis

requirements, leading either to the decision to relax some requirement or to

the conclusion that the desired scenario is unachievable.

4.5. Mitigation Policy Guidelines 55

The last step of the iterative process calls for a formal metric to evaluate cor-

rectness and effectiveness. The literature already provides useful methodologies

for this purpose. Here authors [67] studied the general problem of fusion resilient

anonymization. They stated the problem as a search for the optimal value of an

objective which is the weighted sum of protection and utility. Protection is mea-

sured in terms of how hard is for an adversary to gain information by correlating the

anonymized dataset with external sources. More formally, if P is the original sensi-

tive dataset, and P I is the sanitized release of P, an adversary can exploit information

fusion techniques to derive a de-sanitized version P‘from P I. The effectiveness of the

applied sanitization process is measured as the dissimilarity between P‘and P .

Brickell and Shmatikov [23] performed a similar analysis, again studying the

trade-off between utility and protection, but on a more formal level. Their claim

was quite thought-provoking: sophisticated anonymization techniques offer no real

advantages over trivial ones, i.e. datasets sanitized with complex application of gen-

eralization and perturbation algorithms, depending on the algorithm parameters, ei-

ther provide no additional utility vs. trivially-sanitized datasets, or leak much more

information to adversaries than what is gained in terms of legitimate analysis. Be-

sides posing interesting questions that researchers in this field could find useful to

orientate their efforts, their paper also provides formal definitions for various met-

rics related to privacy of data tables and utility of sanitized databases. In particular,

they study privacy both under a syntactic perspective (pure statistical correlation)

and under a semantic perspective, measuring the gain in adversarial knowledge af-

forded by the sanitized table.

Bishop et al. [19] explore the topic by focusing on relationships that can be used

to desanitize sensitive data. They model the problem of data sanitization as a double

set of assertions, made of the constraints defining the privacy properties that must

hold against adversarial attacks, and of the targets defining the information that the

legitimate analysts want to extract from the sanitized dataset. They highlight the

importance of defining a precise threat model as a requisite for drawing complete

and concrete privacy policies, and a precise analysis policy that, in opposition to

the privacy policy, puts limits to the sanitization process to avoid excessive loss of

utility. They exploit ontologies to automate reasoning over these opposing requisites

56 Chapter 4. Privacy-Preserving Design for a Clearing System Architecture

and solve the constraint satisfaction problem they represent. A question they leave

open is: what is the most appropriate language to express these requirements?

To define our specific privacy by design process, we plan to investigate and pos-

sibly apply the common concepts and techniques presented in all of these works,

in addition to a specific and noteworthy suggestion that comes from the last one.

In the words of the authors: “Perhaps the most constructive approach is to provide

two sets of relationships. The first lists those relationships that are known to hold in

the raw data, and must not hold if desanitization is to be prevented. The second is a

set of relationships that, if they held, would enable desanitization. The sanitizer can

deal with the first set as appropriate. The second enables the sanitizer to perform a

simple risk analysis, centred on two questions: (1) What is the probability that the

relationships in this set hold; (2) What is the probability that the adversary will be

able to determine that the relationships hold, and use that to desanitize the data?”.

This approach seems to be especially useful because it allows both designing sani-

tization by evaluating the effectiveness of the planned techniques, and to measure

and understand the risks deriving from future evolution of the intended use of the

datasets.

4.6 Conclusions

This chapter of the dissertation highlights the privacy threats that can emerge from

sharing or publishing the data related to usage of public mobility tickets. In the

context of an integrated mobility system run by a set of operators, sharing data about

tickets usage become mandatory for revenue clearing purposes. Unfortunately this

may also pave the road to privacy attacks to individuals or institutions, such as, but

not limited to those exemplified in this thesis.

A discussion is presented of how the sanitization approaches could work in this

scenario, and what their limitations are; it lays the ground for future research aimed

both at improving the effectiveness of sanitization techniques in the specific scenario,

and to derive generally-applicable principles.

As an alternative solution, the applicability of a set of principles derived from

the "privacy by design" approach is examined. In the context of the design of the

4.6. Conclusions 57

data sharing system for clearing purposes, its aim is to minimize the likelihood of

the emergence of privacy threats. The general-purpose definition of the approach is

integrated with an implementation plan that takes into account a variety of literature

sources to verify the effectiveness of the applied methodology, in order to iteratively

converge towards the solution that strikes the most appropriate balance between

data utility and privacy, possibly quantifying the effects of a breach.

The first set of research questions, regarding the suitability of existing techniques

to protect privacy in the public transport scenario, has thus being answered in a

substantially negative way.

The second wave of research questions, on the possible definition of a more effec-

tive framework to devise privacy-enhanced data management processes, has been

partially addressed. The present study meets its main limitations here: the negative

findings from the review phase, and the realization that similar initiatives actually

deal with less demanding requisites, were useful in highlighting the deficiencies of

current approaches and lead to devise suggestions on how the framework could be

structured, yet its concrete development will be the subject of future work.

59

Chapter 5

SMAll: A Global Federated Market

for MaaS Operators

Multi-modal travelling is a common phenomenon. Commuters, tourists, and trav-

elling workers are used to compose trips out of legs covered with disparate means:

bike, car (personal, rented, hailed, or shared), bus, train, boats, and planes. Usually,

each ”hop” requires interaction with a different operator and, mostly, with a differ-

ent information system, since mobility resources are administrated and owned by a

scattered plethora of mobility operators. As noted in [151], this is due to regulatory

and logistic constraints that favour site-specific solutions. Hence, the experience of

multi-modal travelling results often into a discontinuous flow of interaction, scat-

tered over many applications, having a negative effect on both mobility providers

and customers. The former suffer opportunity costs due to the loss of potential clients

that could not find or know about their services. On the other side, the customers

undergo many inconveniences, culminating in a sensible waste of time. Reasons

comprise:

• uneven experience: customers may have to plan their trips over separate systems

and different media with inconsistent interfaces and flow of interaction (e.g.,

calling a taxi via phone and then continuing the trip on train, whose ticket was

booked online);

• access issues: although multi-modal planning services have become freely avail-

able (e.g., mapping services provided by Google and Microsoft), customers

still need to find out what provides information on their trips. They have to

60 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

Legend

City Bus
Operator

User
MaaS

Operator
Crowdsourcing

Operator

Bus DelaysDBBusiness
Policies

Bus GPS
Positioning

Payment TimetablesReal-time
Position

In-house
services

Real-time
Position
Pub/Sub
Service

Timetable
Proxy

eTicketing
System

DB

Car Hailing
Proxy

Car Hailing Company

Hailing
Service

Route Network
Disruption Notifier

Journey
Planner

SMAll

SMAll

SMAll

Service
SMAll
Helper
Service

Service
SMAll
Compliant
Service

Federation

Timetables

Timetable
Proxy

external
invocation

Bus GPS
Proxy

Trip
Handler

Service
Registry / Discovery

National Train
Operator

plan
trip

forward
request

subscription

Dispatcher

orchestrate
services

eTicketing
Analysis
Service

FIGURE 5.1: Representation of the SMALL architecture.

look for places, phone numbers, and dedicated applications or websites to re-

trieve information and book the trips.

• interaction issues: once customers found what means provide information on

their trips, they have to negotiate how to get those information, dealing with

multiple authentication systems, extracting data from different representations,

and aggregating them to obtain a comprehensive plan of the whole travel.

Each step increases the risk of introducing inconsistencies or missing key pieces

of information.

In addition to the time lost by customers and missed opportunities of mobility providers,

there are strong concerns regarding data replication and security. When users interact

with multiple, separate systems within the same travel (i.e., to plan/book one of its

legs), they are likely to replicate information that is already present in another sys-

tem. However, since they have to manually replicate such data (e.g., their IDs, dates

of the trip, or personal needs), they could introduce discrepancies among legs. As

an example, consider the steps from a multi-modal travel-planning application to

the actual booking of the travel. Although the travel-planner holds information on

each leg of the travel, the customer has to manually replicate a subset of such data

when she books each leg, managed by a different operator. Also the security of the

data of the travellers plays an important role [29]. Customers have to provide their

Chapter 5. SMAll: A Global Federated Market for MaaS Operators 61

personal data to systems that guarantee uneven security measures, making difficult

or even impossible to assess the level of security of the whole process.

Mobility as a Service a possible solution to the issues illustrated above is the cre-

ation of a unifying framework for mobility that supports the coordination of dif-

ferent transportation systems. Such an idea has been envisioned and described in

several works in the last decade [120, 121, 151, 73]. Recently, this idea has materi-

alised in some practical applications inspired by the concept of Mobility as a Service

(MaaS) [155]

Analogously to the case of Cloud Computing (conveyor of the everything-as-a-

service paradigm), MaaS hides a dynamic infrastructure of different travel agencies

into a consistent interface: this makes MaaS users experience travelling as provided

by a single agency. Ideally, a MaaS provider, also called MaaS operator, shall provi-

sion its users with information and procedures for discovering, planning, booking,

and guiding journeys, combining any variety of means of transportation. To the

final user, the provisioning of mobility resources (i.e., information on transportation

and the actual transits) is transparent wrt the actual provider of the service. Since

mobility resources are administrated and owned by disparate mobility providers,

we argue that the leading economic model of MaaS markets is that of federations

of providers, each trading its mobility resources. In such a federated market, MaaS

operators dynamically partner with each other whilst preserving their individual

autonomy and without a centralised regulation authority which, in the case of trans-

portation, would be practically impossible to appoint.

Contributions in this chapter we present several contributions. First, we introduce

the MaaS Stack (section 5.2): this is the first tiered view that provides a structure for

the, so far, informal concept of MaaS. The MaaS Stack originates from our discus-

sions with companies interested in entering the market of Mobility as a Service, as

well as from investigations conducted within the EU EIT Digital project SMAll1. We

deem our view useful to isolate and clarify which elements must be in place for

mobility operators to join the MaaS market, possibly becoming themselves MaaS

operators.

1Project description: https://goo.gl/WKnnSW

62 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

The second contribution is the presentation of a microservice-oriented platform

called Smart Mobility for All (SMAll)2,3 (5.3), developed to support the creation of a

federation-based MaaS market and which is structured according to the principles

of the MaaS Stack. SMAll facilitates the publication, automatic retrieval, and orches-

tration of functionalities for mobility, provided by different mobility operators.

The platform builds on the concept of Federated Cloud Computing [160, 25] and

maintains an open approach wrt the possible members of the federation: MaaS oper-

ators, traditional transport agencies, and other players that trade information linked

to mobility, like weather forecasts or crowd-sourcing communities [90].

SMAll is developed following the microservices paradigm [54] and members are

strongly supported in publishing their functionalities as microservices. As remarked

in section 5.3.1, such architectural choice positively impacts on both SMAll and the

resources deployed by members, which enjoy great flexibility, gradual deployment

and continuous integration, eased software maintenance and, most important, effi-

cient scalability according to dynamic demands.

Next, using the SMAll platform we will propose two real world use case sce-

nario of SMAll applications. A Federation of Platooning Operators for smart truck

mobility, and Cloud-of-Things interpretation of Smart Mobility.

Another important contribution will be an extensive security analysis of the main

security issues in such architecture. We will explain why we mainly focused on

insider threat attacks and in this part the contributions will be of two types. We will

first produce a taxonomy concerning a general architecture approach, based on the

previously predefined MaaS stack, and we will also show a more specific analysis

on the two use cases implemented.

As a consequence, lastly we will show the proposed solutions for this scenarios,

consisting in a overlay network for data management and a business policy enforce-

ment.

5.1. Context Scenario 63

Legend

Administration
Console

Regional Government Università di Bologna Bus Agency

Review
Panel

Tracking
Scheduler

Tracking
Database GPS API

Administrator Tracker Bus Agency

Bus
Scheduling

Database

M Service

Integration

Delay
Calculator

SMAll

S External Component

FIGURE 5.2: Representation of the BusCheck Pilot.

5.1 Context Scenario

In this section, we overview the concept of MaaS and illustrate the main features of

SMAll with a representative instantiation of our platform, depicted in Figure 5.1. In

the remainder of this dissertation, we use the term service to indicate an application

deployed within or outside SMAll, while we use the term microservice to indicate

an instance of a service within SMAll4. In Figure 5.1, the coloured entities outside

of the boundaries of SMAll (bordered with double lines) are providers of mobility

resources and MaaS operators. These are public transportation agencies, private

companies, and online communities. By entering the platform, each member can be

dynamically federated with the other agents already present. Once in SMAll, mem-

bers can deploy their own functionalities as microservices, e.g., in Figure 5.1, the City

Bus operator deploys three services: the first two are Bus GPS Proxy and Timetable

Proxy, which function as wrappers for some pre-existing applications deployed in-

house by the operator. The third service, Bus Delays, is completely contained in the

platform and orchestrates the other two services of the Bus Operator to calculate the

delays of buses by comparing the actual GPS position of the rides with the expected

scheduling from the timetables.

SMAll provides helpers (e.g., Registry / Discovery and Dispatcher) to publish,

discover, compose, and regulate the usage of the deployed microservices. Consid-

ering the example above, although all the microservices belong to the Bus Operator,

all the invocations from the Bus Delays service are routed and managed by the Dis-

patcher. The Dispatcher also enforces the usage Business Policies defined by the

2Wiki: https://github.com/small-dev/SMAll.Wiki/wiki
3Deployable platform: https://hub.docker.com/u/smallproject/
4Hence, to a service correspond one or more copies of the same microservice that implements its

functionalities.

64 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

owner of the invoked service, e.g., it can refuse to proxy the invocation to the ad-

dressee as well as to delay frequent requests if they exceed the rates established by

the owner.

Business Policies are fundamental for marketing on-demand services. As an

example, consider the case in which the City Bus Operator integrates the crowd-

sourced data on Route Network Disruption in its Bus Delays service (e.g., to forecast

day-long delays on the interested routes). With SMAll, using such crowd-sourced

data does not require the presence of pre-existing contracts of usage between the Bus

Operator and the Crowdsourcing Operator. By accepting the business policies for-

malised by the Crowdsourcing Operator, the Bus Operator can dynamically access

(and pay for) the Disruption information.

Finally, different SMAll installations can be federated as well, so that region-wide

instances can constitute a federation of international- and world-wide platforms.

Consider, for example, a MaaS operator that wants to provide transportation solu-

tions to its users travelling abroad. It would be unthinkable for the MaaS operator

to foresee and stipulate contracts of usage in advance with all the possible foreign

transport agencies. On the contrary, with SMAll a MaaS operator can automatise

the dynamic aggregation of foreign federated services for its users, letting them ac-

cess transport solutions of other operators. Moreover, like the other members of the

platform, also MaaS operators can deploy services.

For example, in Figure 5.1 the MaaS Operator deploys a Journey Planner and a

Trip Handler. The latter, in particular, is the service that orchestrates the dynamic

multi-modal trips for the users of the MaaS Operator. To do that, Trip Handler in-

teracts with the Dispatcher to reach and orchestrate the other federated services: it

uses information on scheduling, availability, disruptions, and the position of buses,

trains, and on-demand cars to dynamically plan a multi-modal trip, booking and

paying the rides for the user.

5.1.1 SMAll: Smart Mobility for All

In this section, we illustrate the proposed approach with a real-world use case de-

veloped within the recent EU EIT Digital project SMAll. As part of the project, we

5.2. The MaaS Stack 65

investigated the suitability — in terms of development, interoperability, and scal-

ability — of SMAll wrt the creation of new smart mobility applications, possibly

integrating pre-existing services.

As a real-world example, we report one of such applications, which we imple-

mented as a pilot, called BusCheck. The pilot, commissioned by the Department of

Transportation of the government of the Emilia-Romagna (ER) region (Italy), aims at

recoding and displaying the quality of service of the buses in the Bologna province.

Figure 5.2 represents the architectural view of our solution, composed of interact-

ing services (continuous boxes) and external functionalities (dotted boxes) owned

and provided by three organisations: the ER regional government, the University of

Bologna, and TPER, the bus agency of the Bologna area. In Figure 5.2, we omit Reg-

istry, Discovery, and Dispatcher helpers that enable interaction among the deployed

services (explained in section 5.3.1).

As shown in Figure 5.2, BusCheck emerges from the composition of four ser-

vices deployed within SMAll (double-line in Figure 5.2): i) Administrator is a ser-

vice owned by the ER government and used by operators to schedule and issue

the tracking of buses. Operators interact with the service through a in-house client

GUI outside SMAll. ii) Tracker is a service developed and maintained by the Univer-

sity of Bologna. It implements the actual logic to track buses. The service relies on

two sub-services: a Tracking Scheduler that, based on the timetables of the tracked

bus, triggers the retrieval of its real-time position; a Delay Calculator that computes

the divergence between the expected and actual positions of the tracked bus. iii)

BusAgency is a service maintained by the Bus Agency. It exposes to the Tracker the

static and real-time data on all the vehicles of the bus agency. iv) Database is a service

owned by the ER government that interacts with the Tracker, receiving data on de-

lays and serving them internally to regional operators for both real-time and static

inspection.

5.2 The MaaS Stack

For the clarification of the concept of MaaS, we deem useful to define it as a tiered

structure, called the MaaS Stack. We use such partition in section 5.3 to analyse the

66 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

M
aaS

 S
tack Tier III - M

aaS
 O

perator

M
aaS

 S
tack Tier II - B

usiness Intelligence

MaaS Stack Tier I - eMobility Operator

eM
obility O

perator A

eM
obility O

perator B

eM
obility O

perator C
Federation

Clearing Roaming Access Control Service Level Agreement Business Intelligence

Travel User

User Identity /
Profile Management PaymentRoute Planning Travel

Monitoring
Travel

 Guidance Ticketing Booking

Information

Geographical Maps

Transport Networks

Routes, Timetables, etc.

Context

Infrastructure

Objects

Static / Planned Real-time

Environmental Conditions

Network Status

Vehicle Features, Position, Availability, Weather, Prices, etc.

Business
Intelligence

FIGURE 5.3: The MaaS Stack

elements of MaaS markets and the solutions we integrated in SMAll.

Figure 5.3 represents the MaaS Stack, comprising 3 tiers (dashed lines): eMobil-

ity Operator, Business Intelligence, and MaaS Operator. Inside the tiers, we identify 4

macro-layers of services (rounded rectangles), each building on top of the others:

the Information layer contains basic services like timetables and real-time positions;

Travel and User services build on Information ones to offer more advanced features

to users; Business Intelligence services analyse data on performance and usages of the

aforementioned services, providing insight to their owners; Federation services let

operators trade their solutions and form dynamic partnerships.

In the next sections we analyse in depth the tiers of the MaaS Stack and the layers

that characterise them.

5.2.1 Towards Mobility as a Service

Recently, traditional transport agencies have been publishing the data of their trans-

portation solutions. Airline companies [139], train operators [143], and city-to-region-

wide bus operators have been compelled to open the data regarding their trans-

port systems to integrate with (de-facto) standards [76]. Beside traditional transport

agencies, new companies entered the transportation market offering functionalities

for mobility such as mapping, travel guidance, multi-modal journey planning and

booking. The latests novelty on the transportation market scene are hailing compa-

nies like Uber [189] and Lyft [115]: “virtual” agencies that offer software function-

alities to enable transport solutions. This scenario characterises the first tier of the

5.2. The MaaS Stack 67

MaaS Stack where isolated entities, called eMobility operators, provide functionalities

for mobility called eMobility services..

5.2.2 MaaS Stack Tier I | eMobility Operators

Definition 1 (eMobility Service). A software functionality for mobility, provided in a

machine-readable form.

For example, an eMobility service could give access to airline/train/bus sched-

ules in machine-readable formats [76, 77, 35]. Support for machine-readable formats

is key to enable the dynamic composition of services, so that information can be au-

tomatically processed, enriched, aggregated, etc., and exposed to other services in

the same fashion. Figure 5.3 shows the layered taxonomy of eMobility services in

the MaaS Stack. The mobility-specific services fall into two macro-categories: Infor-

mation and Travel ones; then, there are what we define User services, such as user

identity management, user preferences, payment circuits, etc., which are not specific

to mobility. A listing of the fundamental services in these categories includes the

following.

Information services allow users to access basic data needed for transportation pur-

poses.

Static / Planned data is stable or seldom updated, regarding elements like

maps, infrastructures (e.g., bus stops, parking, rails, docks), and timeta-

bles of transport services.

Real-time data report the status of the system. This ranges from unexpected

infrastructural unavailability to current weather conditions, GPS position

of vehicles, available seats/spots, traffic, delays, strikes, etc..

As depicted in Figure 5.3, Information services can be stacked as well. We

illustrate the concept considering the Static / Planned information stack: the

basic data on vehicles regarding e.g., Routes and Timetables provide a base for

the static Transport Network. This holds also for Geographical Maps with respect

to the transport network.

68 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

User services provide functionalities loosely related to transportation but necessary

to interact with users.

User Identity / Profile Management services allow to authenticate and autho-

rise users, and also include functions to manage their preferences and his-

torical records.

Payment services handle transactions to pay transportation solutions and (pos-

sibly) the access to eMobility services.

Travel services mainly build upon Information ones.

Journey Planning services find journeys, possibly multi-modal, between two

points. They work on static data, possibly integrating real-time one for

dynamic results.

Travel Guidance assist the user with real-time travelling information wrt her

position (e.g., turn-by-turn guidance).

Travel Monitoring services track the position of the user and notify other sub-

scribed applications of check-ins/-outs and other events related to her

movements.

Booking services use Information and Payment services to place a reservation

for the user (e.g., seats, spots, etc.).

Ticketing integrates Booking services to create and deliver transportation tick-

ets (i.e., access tokens) to users.

In the first tier of the MaaS Stack, we consider only single eMobility operators

(i.e., operators that do not use and integrate the services of other operators).

Definition 2 (eMobility Operator). An entity that owns, administrates, and exposes eMo-

bility services.

Intuitively, an eMobility operator is any entity (company, association, etc.) that

publishes and orchestrates a set of eMobility services directly administrated by itself.

An example of tier I eMobility operator is the National Train Operator in Figure 5.1:

it exposes services to buy tickets online and to publish timetables and the real-time

5.2. The MaaS Stack 69

position of vehicles in machine-readable standards. Our definition of eMobility op-

erators comprises also providers of services not directly linked to transportation so-

lutions, for example weather forecasts: indeed, they provide an important informa-

tion on mobility and can enter the MaaS market as well.

5.2.3 MaaS Stack Tier II | Business Intelligence

The second tier of the MaaS Stack still focuses on single eMobility operators but

it enriches the taxonomy of eMobility services with the category of Business Intelli-

gence [37]. This category of services is separated from first-tier ones for two reasons:

first they are not meant for users but rather for eMobility operators, and second, they

span over all first-tier services by monitoring and analysing their usages. The aim of

Business Intelligence services is to provide insight on the performances of eMobility

services.

In Figure 5.1, an example of second-tier Business Intelligence service is the eT-

icketing Analysis Service. The service can access the data of the eTicketing System

and, e.g., can suggest new pricing policies to the National Train Operator as well as

reporting rarely used routes that could be merged/discarded. More generally, other

examples of Business Intelligence services comprise reporting on the usage of the

published eMobility services, analysis of the quality of transit systems (e.g., relat-

ing the discrepancies between scheduled trips and real-time delays), monitoring the

profitability, sustainability, and reliability of the provided services and determining

trends and making predictions on future usage, for capacity planning and policy

definition.

5.2.4 MaaS Stack Tier III | MaaS Operators

As mentioned in section 5, the market of eMobilty operators is a very scattered one.

The concept of Mobility as a Service originates from the economic opportunity of

bridging the gaps between operators, both cutting down overhead for users and

enabling synergistic strategies among transport providers. For the creation and suc-

cess of such a MaaS market, it is imperative that eMobility operators can trade and

70 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

use said services on-demand. Such high degree of flexibility (and trust) is typical of

federations [160, 25].

Definition 3 (MaaS Operator). An eMobility operator

federated with other eMobility operators. A MaaS operator provides to its users eMobility

and transit services of other operators as its own. The usage of such foreign services under-

goes formal business policies.

In the context of MaaS, when eMobility operators federate, they accept to adopt

common technologies and formal business policies. Such technology standards and

regulations are critical for a marketplace where eMobility and transportation ser-

vices are traded like stocks, i.e., dynamically (not regulated by long-term, static con-

tracts) and on-demand. Federated operators establish business policies to mechanise

the trading of their services. The aim is to let users integrate eMobility services and

transportation solutions of “foreign” operators into their travelling experience. The

principle, already envisioned in [151], resembles that of roaming of GSM phone net-

works [141], where users connect through the services of another phone company

when travelling outside the geographical coverage area of the home network.

Definition 4 (MaaS Roaming). Users of a MaaS operator can transparently use eMobility

and transit services of other, federated operators.

As an example, consider the MaaS Operator in Figure 5.1. Being federated with

the National Train Operator and The City Bus Operator, it can offer multi-modal

journeys that span different means of transportation (rail and road) and have wide-

to-narrow scopes (inter-city and intra-city). For example, the MaaS Operator can

leverage the available business policies so that its users can plan and purchase a trip

(through its journey planner) associated with an eTicket bought from the National

Train Operator which also comprises 5 trips of the City Bus Operator. The synergy

benefits all partners: the MaaS Operator provides (and it is paid for) a comprehen-

sive service to its users; the National Train Operator acquires users and can charge

for the access to its eTicketing system; the City Bus Operator acquires new users that

(probably) would otherwise have taken a taxi due to the overhead of looking for the

right route and where to buy the needed tickets. Our example introduces the last

5.3. The SMAll Architecture 71

fundamental element of the third tier of the MaaS Stack: Clearing services, i.e., eMo-

bility services that account for roaming usages and compensate operators according

to the established business policies. This is of course the glue between the SMAll

architecture and the previous use case scenario described in 4.1), a clearing system

result of a vertical service enabled with the SMAll architecture.

5.3 The SMAll Architecture

5.3.1 A Market of Microservices

Following the lesson of Cloud Computing [26] (and the related SaaS/PaaS/IaaS

stack), we argue that MaaS providers will require tools and infrastructures to harness

the heterogeneous landscape of eMobility operators. We choose microservices [54]

as the enabling technology for an on-demand marketplace after the observation that

operators (e.g., the Bus Operator in Figure 5.1) already have a collection of legacy

software systems that address some specific issues (e.g., the Bus GPS Positioning

and the Timetables services) and that other operators (e.g., the National Train Oper-

ator in Figure 5.1) are willing to pay to access them. In practice, operators would like

to include specific external functionalities (e.g., a bus tracking service) in their own

services rather than use (and pay for) a bundle of unneeded functionalities (e.g., a

real-time planner that includes the mentioned bus tracking capability). Microservice

architectures achieve such degree of granularity.

In chapters 2 we already motivated the choice of microservice philosophy. Mi-

croservice architectures bring fundamental features for on-demand provisioning,

among which: independent development cycles, per-usage resource allocation (lim-

iting the allocation for unneeded bundled functionalities), and freedom to use task-

specific technologies.

As expected, microservices come with some trade-off: loosely-coupled microser-

vices communicate via message passing, which requires proper routing and may

suffer latencies and failures; many requests can overload a service, hence it should

prevent outages by limiting them and/or scaling accordingly; microservices are het-

erogeneous but their data-formats and Application Programming Interfaces (APIs)

should be homogeneous to foster compositionality.

72 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

For these reasons, SMAll strives for standardization of data-formats and APIs.

Moreover, it provides infrastructural tools to cope with most of the aforementioned

issues: orchestration abstractions to streamline the composition of available services

(via the Jolie programming language [98, 137]); data-format conversion functionali-

ties; service registries and dispatchers to both store the definition and address of all

the services deployed on the platform and to route requests to them; business intel-

ligence outlets for auditing and performance indicators on the usage of services.

We now proceed to address the main characteristics of MaaS federated markets,

describing the elements of SMAll that deal with them. In doing so, we follow the

MaaS Stack from the bottom up. We first focus the needs of single eMobility oper-

ators within the first two tiers, broadening our view to MaaS operators in the third

tier.

5.3.2 Tier I and II

Whilst tier I and II are stacked and their respective services differ from a user per-

spective (travellers for the first tier, operators for the second one), at the architectural

level they share the same needs and components. Hence, in this section, we consider

them together.

Concerning these two tiers, we fixed some basic requirements in the design of

SMAll that we deem necessary within a platform for single-tenant microservice de-

ployment:

• sandboxing [75, 157] for development and security;

• scaling both horizontally (i.e., create and remove copies of the same service)

and vertically (i.e., increase and decrease the resources available to a microser-

vice);

• publication and discovery of services and the related Application Program-

ming Interfaces (APIs);

• orchestration of services.

Below, we detail the mentioned requirements and discuss the elements of the

SMAll platform that address them.

5.3. The SMAll Architecture 73

Deployment — Sandboxing and Scaling virtualisation is the standard solution

for cloud-based deployment of services [26]. The administrator of a service creates

an isolated virtual machine, i.e., sandboxed, wrt the others and deploys her service

on it. Then, single virtual machines can be scaled vertically and, by managing the

number of copies of the same machine, horizontally.

However, virtual machines have several shortcomings: they entail important costs

due to the need for dedicated resources, these resources could be wasted in idle cy-

cles, and preparing and deploying full virtual images takes sensible time.

Hence, in SMAll we chose containerisation [127] as suitable solution that balances

costs, time, and ease of development with a flexible and secure deployment. On

these regards, SMAll can integrate techniques to optimise the deployment of mi-

croservices based on a description of the target configuration [66].

Beside deployment, microservices are mainly involved in orchestration, to which

we dedicate the next two paragraphs. In the first, we describe why and how services

should be indexed into a registry for discovery. In the second, we show how to

support the orchestration of discovered services.

Orchestration — Registry and Discovery in cloud-based platforms like SMAll, the

address of a microservice is dynamically determined at the time of the deployment

and can even change during the life-cycle of the microservice (e.g., due to migra-

tions). For this reason, SMAll does not provide the direct address of a deployed

microservice.

Instead, following a pattern called registry-and-discovery — adopted by other cloud

platforms [145, 147, 7, 9, 197] — when a programmer deploys a service in SMAll, she

also registers it, with its description and APIs, into a Registry. As reply, the Registry

returns a unique identifier of the microservice, which works as its reference address.

A registered service becomes visible to (allowed) users through the Discovery

service, i.e., a SMAll helper dedicated to query the Registry to find services that

match the requirements expressed by a user.

Indeed, SMAll supports users and access policies to let the owner of a service define

which member can discover (and interact with) it. This is useful also within the

borders of a single eMobility operator, where different departments deploy services

74 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

Dispatcher

Authentication (api_key)

Authorization (api_key)

Service Level Agreements

Data-format conversion

Routing
Bus GPS Proxy

Format: XML/SOAP

Format: JSON/HTTP

ID: BD

getPosition @ BGP

response getPosition

getPosition @ BGP

response getPosition

Bus Delays

ID: BGP

Support Patterns (cache, breakers)

Logging

FIGURE 5.4: Example workflow of the SMAll Dispatcher.

handling confidential information, to avoid dangerous leakages [29].

Finally, regarding API definition, in SMAll we chose to support RESTful [63] and

Jolie ones. On the one hand, we chose to support RESTful interfaces for compatibil-

ity, given the current adoption of RESTful technologies. On the other hand, we argue

Jolie interfaces to be more flexible than RESTful ones (e.g., they are not constrained

within HTTP verbs). Moreover, Jolie interfaces enjoy desirable features like out-

bound and in-bound checking for compatibility wrt the specified API [136]. Hence,

when present, we preserve Jolie interfaces of microservices and provide tools5 for

the automatic conversion to RESTful ones.

Orchestration — Routing The last feature we consider here is routing of requests

to registered services, which in SMAll is embodied by the Dispatcher service. As

an example of interaction with the Dispatcher, consider Figure 5.4 that depicts the

invocation of the Bus GPS Proxy from the Bus Delays service (Figure 5.1).

In Bus Delays the programmer writes the orchestration code, labelling the invoca-

tions to the Bus GPS Proxy with its identifier BGP — as mentioned, programmers can

5The Jolie REST router: https://github.com/jolie/jester

5.3. The SMAll Architecture 75

obtain microservice identifiers at deployment-time or through the Discovery.

At runtime, each invocation done by the Bus Delays service passes through the Dis-

patcher, which interprets the label assigned to the invocation and redirects it to the

actual deployment address of the Bus GPS Proxy. The Dispatcher handles the rout-

ing of the response back to the invoker.

The Dispatcher also plays a central role in the development of microservices

in SMAll (similar to API Gateways [148, 7]) and supports the advanced features,

like access policies and service level agreements, of the third tier of the MaaS Stack.

These features (rectangles in Figure 5.4) comprise:

• Authentication and Authorisation, forwarding only requests allowed to interact

with the invoked service;

• Service Level Agreements which e.g., regulate the rate of calls per time unit and

certify the respect of availability and responsiveness contracts;

• Support Design Patterns for microservices, like circuit breakers [138], caches,

etc., which normally would require a direct integration within (and modifica-

tion of) the microservices, as done e.g., with Netflix Hystrix [146];

• Logging, which is useful for debugging and security;

• Data and Channel conversion for the seamless integration of heterogeneous ser-

vices, e.g., in Figure 5.4 the request of the Bus Delays service uses HTTP and

JSON while the Bus GPS Proxy uses XML over SOAP.

5.3.3 Tier III

The third tier contains the most advanced features of SMAll, devoted to the creation

of a global MaaS market.

We note that SMAll encompasses two types of federations.

The first one is at the level of eMobility operators, which can trade and access their

services (becoming MaaS operators). These federations are defined dynamic because

i) they exist at runtime, according to the automatic enforcement of the Access Poli-

cies and Service Level Agreements of the invoked service and ii) they live as long as

their related transaction between the parties.

76 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

The second type of federation concerns SMAll instances. Here, the federation is

static, i.e., the owners of SMAll instances define agreements regarding the inter-

communication technologies [93], the security, reliability, and availability of their

link, and the security requirements within their platforms.

With federated SMAll instances, eMobility operators belonging to distinct instances

can trade their services and establish dynamic federations that span different geo-

graphic contexts.

The fundamental components that allow SMAll to form a unique market of eMo-

bility services are the Discovery and the Dispatcher. Indeed, once these two compo-

nents are aware of the presence of other instances of SMAll, they are able to automat-

ically route discovery queries and service invocations towards the other federated

platforms. To do this, both components forward their (respective discovery and in-

vocation) requests towards their equivalent in the targeted platform. The forwarded

request is handled as coming within the targeted platform. This is the context where

the advanced features of the Dispatcher heavily come into play to enforce Access

Control and Service Level Agreements.

Finally, dynamic federations of eMobility operators enable the support for roam-

ing, the hallmark of Mobility as a Service, i.e., that MaaS users can integrate into

their travelling experience the eMobility services and the transportation solutions

of other operators. Clearing services are the last piece that completes the picture

in SMAll, as they compensate usages of transport solutions as well as of eMobility

services, according to the contract agreements.

5.4 Problems: Insider Threats

Statistically, insider threats are one of the most expensive security issues for busi-

ness companies [142]. One prominent reason of these expensive outcomes is that

companies did not foresee all possible malicious insider activities [182]. Indeed, the

problem is not the lack of proper countermeasures as much as the difficulty of iden-

tifying a malicious insider in the first place. Literature abounds with guidelines and

principles aimed at providing general descriptions of the context and the identity

of the insiders [64, 40]. However, experts agree that the strong contextual variance

5.4. Problems: Insider Threats 77

of threats [171] makes providing a general yet precise identification of all possible

insiders difficult.

Thus, we deem useful to share the experience we gained in the context of services

for mobility (both at software and physical level). Moreover, our background on the

development of SMAll provides insights on the possible threats deriving from feder-

ated cloud architectures, built for deploying, publishing, and trading services. Fed-

erated clouds have been already analyzed in literature [102, 150, 192], however we

deem important to include the related threats in the frame of the emerging Mobility-

as-a-Service scenario.

In section 5.4.1–5.4.3, we illustrate, for each tier of the MaaS Stack (cf. Fig. 5.2), the

insiders, the related attacks, and the possible countermeasures, as found in the state

of the art and as implemented in SMAll. In Fig. 5.5 we report a table that summarizes

our findings. Agents and threats are classified according to the categories identified

by Casey in [34] and the CERT technical report [177]. We dedicate the last paragraph

of this Section to a brief description of the methodology we followed to recognize

the threats and the respective countermeasures.

Methodology As mentioned, adopting a narrow definition of insider may hinder

the identification of threats specific to particular contexts. Therefore, in our investi-

gation, we prefer to look at insiders from a general point of view [18]:

A trusted entity that is given the power to violate one or more rules in a given

security policy [. . .] the insider threat occurs when a trusted entity abuses that

power.

This definition hints that an insider is determined by the role played as member

of a system and related to the deployed control rules and the pursuable malicious

goal(s).

In our context, the most classic scenario is one where the insider is within the service

of the victim, e.g., a programmer that manipulates the behavior and the data of a

service.

However, orchestrations spanning many providers, hallmark of the SMAll platform,

lead to subtle yet relevant threats. Consider the case of federated partners. On one

hand, the provider of a service exposes itself to threats posed by members that use

78 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

Tier Agent Agent Type Insider Threat Event Type
Fake Data Injection Sabotage
Service Behavior Manipulation Product Alteration, Sabotage

Unauthorized Guests Competitor, Theft, Activist Man-in-the-middle Attack Misuse
Developers Competitor, Partner, Disgruntled Insider User Impersonation Sabotage, Espionage, Misuse
Service Administrators Partner, Disgruntled Insider, Untrained/Distracted Insider, Supplier Insider Impersonation Sabotage, Espionage, Misuse
Service Managers Partner, Disgruntled Insider, Untrained/Distracted Insider, Supplier Crowdsourcing Attacks Sabotage, Financial Fraud

Agent after privilege
escalation Activist, Competitor

Data Leakage
- Accidental
- Data Theft
- Resale of Data and Access
- Business Intelligence Data Theft

IP Theft, Opportunistic Data Theft, Physical Theft,
Accidental Leak

Data Manipulation, Trustability, Tampering of Data
Provenance, Data Trustworthiness

Financial Fraud, Product Alteration

Service Behavior Manipulation Financial Fraud, Product Alteration
Composition of Unverified Services and Data Misuse, Sabotage, Espionage, Product Alteration
Denial of Service Sabotage
Service Workflow Manipulation Misuse, Sabotage, Espionage, Product Alteration

MaaS Competitor Nation State, Partner, Supplier

Helper Service Competitors, Nation State, Partner, Supplier

Data Analysis:
- Pattern Extraction
- Data Mining
- Data Exploitation trough data crossing

Accidental Leak, Opportunistic Data Theft
Espionage, Financial Fraud

1 & 2

User Competitor, Untrained/Distracted Insider, Outward Sympathizer

3

Federated MaaS
Member Competitors Nation State Partner Supplier

FIGURE 5.5: Summary table relating the tiers of the MaaS Stack to
their concerning insider threats.

its service — security issues span from misuse of information extracted from the

service to over-usages that entail unforeseen costs or outages — on the other hand,

an agent that orchestrates services of other partners is a man-in-the-middle able to

leak private information, counterfeit data or use its vantage point to extract strategic

patterns from partners.

Regarding countermeasures, we structured our analysis of the possible alterna-

tives following the review compiled by Hunker and Probst [92], encompassing the

three approaches: i) Prevention, comprising the definition of strong access control

rules, data management systems (including data masking and data camouflage),

and mechanisms to guarantee data provenance and data trustworthiness; ii) Detec-

tion, that usually goes hand-in-hand with dissuasion mechanisms such as techniques

of data management and service invocation that make abuses extremely expensive

in terms of computing power; iii) Mitigation, that exploits auditing and monitoring

techniques, often based on machine learning, to automatically react to insiders’ ac-

tivities.

5.4.1 MaaS Stack | Tier I

As reported in section 5.2, the first tier of the MaaS Stack focuses on single eMobility

operators and categorizes their services.

In this tier, the ecosystem of services has a flat structure and all members play the

same role of providers, without any interaction between each other. Here, insiders

5.4. Problems: Insider Threats 79

can be pinpointed within two types: i) users authorized to interact with services and

ii) managers (also seen as owners) of the services. In the reminder, we call Users

the members of the first type and Managers the members of the second one. The

distinction between the two types is trivial: while Users have limited access to data

and functionalities of a service, Managers can have full or partial control (depending

on the responsibility level) over the life-cycle of the service and its resources. Users

allowed to interact with SMAll services can basically pose two types of threats: i)

perform fake data injection (for crowdsourcing-based services) and ii) sharing the

access to the services or to the respective data.

Users can also exploit vulnerabilities to acquire Manager privileges (configuring an

Insider Impersonation threat). However, we do not include a discussion on these kind

of attacks as they coincide with those described for Managers. Regarding Managers,

their main threats comprise:

• manipulation of the behavior of a service, i.e., the computations done by a

service;

• manipulation of the workflow among services, i.e., the direction and sequence

of information flow among services;

• stealing data, metadata, and performing malicious analyses;

• exposing sensitive information.

Following the first tier of the MaaS Stack, we describe the possible insider attacks

of each category of services.

Information

The category of Information spans from basic services that publish raw data (e.g.,

timetables or the position of vehicles) to higher-level services that elaborate raw

data to extract new information (e.g., the expected delay of buses whose calculation

requires the position of a vehicle and its scheduled plan). As already mentioned,

the Information category is the point of conjunction between high-level services for

MaaS — and, by extension, MaaS markets — and sensing devices in Cloud of Things.

Indeed, most of the real-time data used by this services is generated by embedded,

80 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

portable or even wearable [62] devices/sensors. Since in this work we separate the

analysis on services and on CoTs, here we consider only threats at the level of ser-

vices, dedicating section 5.5.1 to the analysis of threats on CoTs.

Notably, since Information services orchestrate other services to calculate and

publish these refined data, they are subject to Service Workflow Manipulation and

Composition of Unverified Services and Data threats. We omit to present these issues

in this Section and defer the discussion to section 5.4.1.

Data Leakage Data leakage is the accidental distribution of private or sensitive

data to unauthorized entities [174, 33]. In SMAll, both Users and Managers can cause

data leakage. Users can share data to other, non-authorized Users. Similarly, Users

can also share their access to services, which could lead to data leakage but also

to other type of threats like User Impersonation. As expected, data leakage becomes

even more serious when considered for Managers that can share or steal sources

unreachable by users.

Countermeasures Data leakage poses a serious issue in open networks where the

transition of data is not regulated nor monitored in their path. In these regards,

SMAll holds a privileged position. In fact, all communications among the services

in the platform happen through the Dispatcher (cf. Fig 5.1), which can log the quality

and quantity of information required by all Users. Obviously, this guarantee ceases

when data exits the platform. The same tracing system applies also to Managers.

Crowdsourcing Attacks Users can perform insider attacks on crowdsourcing ser-

vices. These services handle data streamed from sensors and devices or through

direct signaling of the users. An example is a crowdsourcing service where users

can report architectural limits for people with disabilities [130]. In this case, insiders

can feed the service with fabricated data to alter the normal behavior of services,

e.g., by directing users through specific pathways.

Countermeasures For the sake of completeness and clarity, let us start from the

literature regarding “classic” threat scenarios. Cho et al. [39] examined how insider

attacks can exploit security holes in a trusted network of sensor nodes. This work

is of interest for our platform because it shows how even trust-based approaches, in

5.4. Problems: Insider Threats 81

architectures that have to unify many nodes, are not guaranteed to prevent attacks.

In [69], the authors described how access control policies for a database manage-

ment system can be exploited by insiders when the control restrictions to be enforced

may come from different authorities. Shatnawi et al. [175] made a similar analysis

but based on the detection of malicious usage of a data source, which is equivalent

to our case of a malicious influence of data source services exposed by the SMAll

platform.

An interesting work that can be applied to our architecture is [181]. Here the au-

thors implemented a pool of honeypots to catch insiders. A honeypot is an informa-

tion system resource whose value lies in unauthorized or illicit use of that resource.

The high flexibility of honeypots — able to play a huge variety of SMAll-compliant

services — is essential to make insiders expose themselves. Another useful method

that can be easily built within SMAll is a reporting system for crowdsensing and

crowdsourced data, implemented in [131]. The reporting system is based on the

mapping of what the authors called Point of Interest (POI). Each POI and its related

data can be added to the system by means of one or more reports. Reports are clas-

sified in three different source classes, accordingly to the reputation of the user that

collects the data.

Service Behavior and Data Manipulation As expected, insider threats posed by

Managers constitute a more complex scenario.

This type of insiders can access and modify the raw data of services as well as ma-

nipulating their logic to present altered results.

Notably, since in our context the physical world mixes with that of software services,

we extend the role of Managers not only to the developers that can modify the actual

code of the service but also to conductors and other operators: agents that can access

and manipulate the physical devices that feed the services.

The manipulation of these services can have many purposes from the point of

view of an insider. For example, during the development of SMAll we interacted

with many industrial partners, among which there were some public transportation

companies that provided real-time positioning of their vehicles. However, some of

these companies did not report the actual position of buses and instead published

82 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

fake positions to mirror the exact planned schedule. In another case the service

worked intermittently. In the first case, the company provided fake data to protect

itself against possible penalties due to delays, in the second case the positioning

service went down for certain rides due to drivers that disabled the in-vehicle posi-

tioning devices either for fraudulent purposes (to avoid being scrutinized) or even

for shallow reasons such as to disable annoying automatic voice announcements.

Countermeasures Interesting works tackle the issue of how to predict insiders ac-

tivities. Machine learning techniques have proven to be very effective in the detec-

tion of attacks by identifying anomalies in network traffic [119]. Furthermore, ma-

chine learning algorithms have been successfully used to detect past and ongoing

attacks based on analyses of changes on the writing style of the users [86].

Althebyan [5] implemented a prediction model based on graph theory approaches,

to push alert once a detection risk mechanism finds that users are performing actions

that might lead to compromise the system services.

Studies also exist aimed at discovering malicious command execution. Among

the most relevant works, Kamra et al. [101] and Mathew et al. [123] focus on the anal-

ysis of anomalous commands executed on databases. In particular, they proposed

a syntax analysis system to detect anomalous queries; the former analyzed the sub-

mitted SQL queries, while the latter focused on data retrieved from queries. Doss

and Tejay [53] conducted a similar investigation as a field study within an enterprise,

where analysts were monitored while performing their jobs. Again, these results can

be readily applied in our architecture, especially considering that tier I services will

in any case be monitored by probes needed to build Business Intelligence services of

the second tier.

In principle, the SMAll service deployment interface can verify the correctness of

an application before accepting it. In practice, this operation is very hard to perform.

One indicator of correctness is the compliance to a template of acceptable interfaces

for the kind of service the application provides. However, it is very difficult to define

templates strict enough to allow sensible compliance checks, but general enough to

avoid hindering the deployment of legitimate services.

5.4. Problems: Insider Threats 83

Another important detection strategy that we considered is to implement a mech-

anism that could guarantee, in every moment, a reproducibility of the results of a

service. With provenance certifications of raw data and their propagation to results,

it is possible to implement a reference monitor to verify compliance between results

and expected values. In case of conflicts between the declared results and the actual

ones, SMAll could discover what has been tampered with: the source data, or the

service logic. This detection can also feed a data trustworthiness rating system.

Finally, another way to check correctness is to look at the actual behavior of the

application, as it is common in anti-malware checks. These techniques are far from

infallible, and their scope falls much shorter than what is required in our setting.

Indeed, in this context a malicious behavior can be a subtle deviation from the cor-

rect calculation [140], which is far more difficult than the detection of traditional

malicious behaviors (e.g., damaging or self-replicating ones). Promising techniques,

which can benefit from the execution of all the services on the SMAll platform, are

those based on the aggregation of multi-domain information [57, 6].

Travel

Services in the Travel category orchestrate Information ones to provide highly coor-

dinated functionalities to users. Since the services in this category heavily rely on

composition to provide their functionalities, their main concerns regard their work-

flow.

Service Workflow Manipulation Managers can modify the expected flow of in-

formation among services for many purposes. As an example, consider the Man-

ager of a service called Bus ETA that predicts bus arrivals. In its calculations, Bus

ETA uses three source-services, respectively for traffic, GPS positioning, and weather

forecasts. Although the Manager preserves the logic (i.e., the behavior) of the Bus

ETA service, by simply changing the workflow, i.e., the bindings of the Bus ETA to

the other services, she can make (some) of the sources unreachable, either completely

disabling the Bus ETA service or modifying the resulting output due to missing data.

Countermeasures SMAll already provide tools to contrast service workflow ma-

nipulations through the helper services Dispatcher and Business Policies (Fig 5.1).

84 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

Indeed, when Managers deploy their services in SMAll, they also define the related

access rules (stored and retrieved in the Business Policies service). Then, all work-

flow compositions pass through the Dispatcher service that logs them and enforces

the established access policies. In this way, unexpected workflows are detected,

logged, and (depending on the access rules) forbidden. The monitoring capabil-

ities of the Dispatcher can also be enhanced with features like the one presented

in [170], which predicates the provision of enclaves (in our case, provided as a ser-

vice) to reduce the surface area of data exfiltration of workflows; in [207, 208], where

anomalous traffic is detected by mapping user input activities (e.g., their requests)

to their generated chain of events on the interested microservices, or more in general

by finding causal relationship among network events in large datasets; and in [60],

where the Dispatcher can use machine learning engines, similar to the ones used in

dynamic malware analysis, to detect malicious workflows. Finally, based on service

specifications, we can create workflow graphs for strategic mitigation [190].

Another promising approach comes from the field of Choreographic Program-

ming [135]. The use of choreographies to implement workflows among services is

relatively new [72]. We deem choreographies an effective prevention tool that lets

partners agree on a formal definition of their workflows, which can be later com-

piled into their respective, compliant services. Moreover, in the dynamic context

of SMAll, tools like [48] can aid partners in updating their agreed workflows even

at runtime (i.e., without stopping their running services). These updates would be

still conditioned to a general agreement and maintain the same guarantees of the

original services.

Mitigation techniques can be also developed following e.g., [74]. The idea would

be to develop a SMAll helper service that monitors workflows and, once an attack

by an insider is discovered, it appropriately redirects the workflow to avoid further

damage.

Composition of Unverified Services and Data In the context of mobility, verified

information is of paramount importance. However, in a service-oriented architec-

ture, the tricky part to deal with is that a service invocation can be seen as a col-

lection of workflows. These workflows can compose many levels of services, each

5.4. Problems: Insider Threats 85

processing and modifying the data before its final destination. These services inher-

ently include the logic of the composed services and, by extension, also the possible

manipulations executed by insiders. As an example, consider a journey planner that

uses a real-time traffic report service to avoid traffic jams and roadblocks. Since the

journey planner directly integrates the information from the traffic report service,

manipulating information of the latter alters the solutions of the journey planner,

diverting travelers towards certain pathways. This case presents an interesting nu-

ance: the insider is not a direct Manager of the considered service (i.e., the journey

planner), instead it is the Manager of a composed service (the traffic report) that

twists its contribution to alter the behavior of the planner. In this context also trusta-

bility, provenance, and trustworthiness of data and/or services should be consid-

ered as possible targets of attacks. For example, tampering with data provenance is

a source of attack [178] that in a MaaS scenario can see malicious operators claiming

to publish genuine data of a competitor, actually forging them.

Interfering with the certification of data trustworthiness is another possible vec-

tor. In this case, it is very difficult to block attacks in which, e.g., the creator ad-

vertises a data source of given quality, but then exposes a degraded version to keep

the advantage of more precise/timely information for herself. A related trustwor-

thiness scenario is that of an insider who succeeds in registering a rogue service. For

example, a modified travel planner could deflect routes to favor or damage certain

businesses; a modified delay-checking application could hide or amplify violations

of agreed service levels.

Countermeasures A service must support the provision of different sources of data

along with their associated metadata (e.g., used to verify their provenance). How-

ever, SMAll shall also provide techniques, embodied by helper services, to trans-

form those data into verified information. There are different approaches that pro-

vide a solution to the problem of recognizing the source of a data stream. Literature

agrees [79] that the requirements for a provenance management system are: Verifi-

ability: a provenance system should be able to verify a process in terms of the ac-

tors (or services) involved, their actions, and their relationship with one another;

Accountability: an actor (or service) should be held accountable for its actions in

86 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

a process. Thus, a provenance system should record in a non-repudiable manner

any provenance generated by a service; Reproducibility: a provenance system should

be able to repeat a process and possibly reproduce a process from the provenance

stored; Preservation: a provenance system should have the ability to maintain prove-

nance information for an extended period of time. This is essential for applications

run in an enterprise system; Scalability: given the large amounts of data that an enter-

prise system handles, a provenance system needs to be scalable; Generality: a prove-

nance system should be able to record provenance from a variety of applications;

Customizability: a provenance system should allow users to customize it by setting

metadata such as time, events of recording, and the granularity of provenance.

In these regards, it would be useful to deploy technologies to certify the metadata

related to a data stream and manage its validity during time and re-elaboration [187].

According to works like [180], this problem could be solved only with the creation

of a public-private key system for data stream certification. A good reference is

the system developed in [198], describing a cryptographic provenance verification

approach for ensuring data properties and integrity for single hosts. Specifically, the

authors designed and implemented an efficient cryptographic protocol that enforces

keystroke integrity. This kind of protocols can be integrated as a helper service in

SMAll. However, public-key schemes are known for their significant computational

load, thus existing techniques may not be suitable for high-rate, high-volume data

sources. Moreover, there could be the need for an algorithm for the provenance

of composed data. In some cases, data originated from the composition of raw (or

otherwise lower ranked) sources should be accompanied by suitable metadata for

verifying the provenance of the input values, in a cryptographically strong way. In

the context of SMAll, it could be important and useful to capture and understand

the propagation of data.

The combination of metadata- with key-propagation management can guarantee

a good level of trust in provenance management systems. Works in the direction

of [83] discuss how to support provenance awareness in spatial data infrastructure

and investigates key issues including provenance modeling, capturing, and sharing,

useful to implement key propagation systems.

5.4. Problems: Insider Threats 87

Finally, we address trustability, provenance, and trustworthiness of services and/or

data.

Trustability needs to be measured by indicators for data quality and service be-

havior. Values for these indicators come from a variety of considerations on ba-

sic data sources. However, it is challenging to define algorithms for source eval-

uation based on data resulting from services aggregating and orchestrating other

sources [61, 55]. Ascertaining provenance means ensuring that the source of data

is verifiable, i.e., that it corresponds to the one declared in the process of creation.

Trustworthiness is intended as the possibility to ascertain the correctness of the in-

formation provided by a data source, which is loosely related to provenance [47].

Ideally, but infrequently, data samples can be independently measured by different

users, thus allowing cross-checking and error correction. For original data, i.e., pro-

vided by its creator, the trustworthiness score is usually derived from the reputation

of the creator. Clearly, guaranteeing data quality, provenance and trustworthiness

is not enough, it is necessary to ensure that the computation is correct and that no

useful results are hidden (completeness).

User

The last category of services of tier I is not specific to mobility but it contains essen-

tial functionalities for the other two categories. The most representative case is that

of User Profiling and Management. User profiling is not required to create services

for mobility, but it has become essential to ensure usability, to provide user assis-

tance, and to even anticipate and plan for the next movements of the user (cf. Google

Now6).

Data theft Here, the most obvious threat regards the possibility of stealing infor-

mation derived from the profile dataset, such as preferences, recordings of move-

ments, orders and payments.

Countermeasures In our setting, a possible approach is to empower the user with

control over its profile and the related access policies [8].

6https://www.google.com/search/about/learn-more/now/

88 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

5.4.2 MaaS Stack | Tier II

Business Intelligence

SMAll second tier of the MaaS Stack adds a new category next to the ones of the first

tier: Business Intelligence, i.e., services exclusively dedicated to provide insight on

the usage and performances of services of the first tier.

This services can implement any kind of data mining algorithm useful for moni-

toring the profitability, sustainability, and reliability of the provided services, as well

as for determining trends and making predictions on future usage, for capacity plan-

ning and policy definition. Most of this algorithm and services do not usually works

on the physical devices but they are part of a Cloud Architecture.

Business Intelligence Data SMAll Business Intelligence analyses are important

source of sensitive information for insiders (also in this case Managers with privi-

leged access) that could expose relevant data to third parties. Indeed, without Busi-

ness Intelligence services it would be very difficult or even impossible for insiders

to obtain such data, that otherwise would require the access to massive amounts of

private information over long periods.

Managers of Business Intelligence services can apply targeted analyses to infer

reserved information, such as policies and business strategies of their company. An

example of this type of attack is what we simulated in [30], where by just analyzing

the database of validated tickets of a public transport company of the urban area of

Bologna, we were able to reconstruct the distribution of the various types of tickets

in the different zones of the city.

Countermeasures SMAll serves the purpose of mediating the access to relevant

data for Business Intelligence. Every operator wishing to obtain statistics or perfor-

mance indicators about its own services can freely create instances of the platform-

approved analytics services.

Regarding mitigation, the most effective way to hinder the possibility to misuse

Business Intelligence services is to properly sanitize the datasets and to control the

workflow of this information. SMAllse techniques [133] aim to prevent insiders from

5.4. Problems: Insider Threats 89

correlating Business Intelligence services with external data sources to derive hidden

patterns or de-anonymize sensitive information.

5.4.3 MaaS Stack | Tier III

The third tier of the MaaS Stack is that of MaaS operators, i.e., eMobility operators

that use services of other companies, traded within a federated market. In our case,

SMAll gives support to such a market but the creation of dynamic federations of

MaaS operators rises specific threats within SMAll (and MaaS markets in general).

In this scenario the main issues to consider are:

• Data service management to avoid manipulation, impersonation, and sensitive

pattern discovery (Prevention and Detection);

• Service workflow management to monitor invocation trends of services (Miti-

gation and Detection);

• Service quality and trustability management to verify the correctness of the

service results (Prevention and Detection).

Indeed, the PaaS layer in SMAll differs from most PaaS solutions. Tradition-

ally PaaS provides offer execution environments that isolate tenants. On the con-

trary, SMAll is built to ease the publication, integration, and orchestration of services

owned by different operators.

A simple example to clarify this characteristic is a one-stop ticketing application

that orchestrates:

• a dynamic planner service providing routing options;

• a user profile manager to sort them according to user preferences;

• a real-time availability seat reservation service;

• a set of services for payment.

The hierarchy of the ticketing service spans many layers, e.g., it integrates the dy-

namic planner that, in turns, orchestrates many services for static (mapping, timeta-

bles) and real-time data (delays, planned extraordinary events, disruptions). The

90 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

composition of services forms a tree of dependencies that reaches the level of raw-

data information services, possibly branching within the domains of different com-

panies.

Since SMAll aims at supporting this kind of interoperability, we argue that it

shall also assume responsibility for the trustworthiness and reliability of the services;

this is unusual for traditional PaaS [118]. Moreover, access control policies can be

heterogeneous, exchanged data can have different sensitivity levels, and the agents

can be competing operators.

Clearly, the main insider threat for this scenario comes from the service providers

themselves, the MaaS operators. The malicious goals can be of various kinds, span-

ning from the de-legitimization of services of competing operators, to the theft of

stored information such as policies or business strategies, to insiders that apply min-

ing techniques to infer these information using the data available from their vantage

point.

We now proceed by focusing our analysis on the relevant insider threats within

the categories of the third tier of the MaaS Stack.

Roaming and Clearing

SMAll aims at providing interoperability between different operators. In this con-

text, interoperability means that it is possible to implement ticketing systems which

seamlessly work on different operators across their zones of influence. As men-

tioned in § 5.2, this concept (and the category of services that supports it) takes the

name of Roaming. Usually, to support at a business level the roaming for users

among operators, business agreements should be put into place to implement a

Clearing system for the redistribution of profits between transport operators. In this

Section, we consider threats as directed to the Clearing category since it comprises

also the threats to the Roaming one.

Pattern Extraction As analyzed in [30], the need for Clearing services is satisfied

through a centralized (federation-wise) system able to collect all the different data

sources from different operators and to perform economic evaluations. A central-

ized clearing system scenario is typically based on a central database that collects

5.4. Problems: Insider Threats 91

all the ticket validation data from every public transport operator. This database is

used both to perform economic evaluations to redistribute profits and to store a per-

manent proof of the validity of this evaluation. The clearing system must fulfill an

effective trade-off between public verifiability of the correctness of its operation and

protection of sensitive data provided by operators. As the last cited work shows,

an insider can perform data mining analysis and pattern discovery on the tickets

datasets in order to retrieve sensitive information about business strategies and per-

form unfair competition.

Countermeasures To counteract Pattern Extraction, it is possible to deploy sanitiza-

tion techniques [134] able to mask the data enough to deny the possibility to perform

pattern analysis. These sanitization techniques balance the needs of masking sensi-

tive data and keeping enough properties and information to perform the economic

evaluations. In order to do what we described, we could assemble an anonymization

system, that combines masking techniques for the raw dataset (once deployed in the

centralized database clearing system) and a differential privacy engine able to intro-

duce a certain amount of noise and prevent exploit techniques as cross-combining

data with external ones.

Access Control and Service Level Agreement

Service Level Agreement (SLA) and Access Control (AC) services in SMAll are meant

to throttle the invocation of tier I services provided by an operator on the basis of

commercial agreements with other operators. It is possible to see SLA as a contract

ruling the quantity or rate of invocation of each service, and AC as a contract ruling

the quality or the set of provided data or services. Obviously, malicious insiders may

try to circumvent these limitations.

Countermeasures When a SLA or an AC policy is in place, all service invocations

must be tracked (or even proxied) by an infrastructural service provided by SMAll.

This makes evading enforcement difficult. The most common vulnerability in this

context is not tied to policy enforcement, however, but rather to policy specification.

To this end, SMAll could restrict acceptable policies to those drafted with an inter-

nal helper service, following a standard framework, and formally verifying their

92 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

soundness before applying them. Access control models and formal policy specifi-

cation languages have been around for some time [167, 49], and they have evolved

into sophisticated, standardized models like ABAC [91, 166]. Inadequate (but con-

sistent) policy definitions due to poor understanding of the federation interactions

or to carelessness cannot be tackled at this level; logging and auditing facilities in-

tegrated in SMAll provide valuable feedback at run-time about the effectiveness of

installed policies.

Business Intelligence

Similarly to tier II, in tier III we have a category of services dedicated to business

intelligence. The difference with respect to the services of the second tier is that

here the analyses span data belonging to a multitude of operators. Indeed, as it

happens for clearing services, the business intelligence services of the third tier relate

to the management of data, statistics, and administration of services shared among

operators. The availability of such aggregated data can give free access to companies

(seen as federated insiders) to data and analyses of competitors. Referring again the

case of the dynamic route planner as a running example, the service can use real-

time data of different companies to take into account the average delays of transport

vehicles in the calculation of its solutions. The averaged delays are the result of a

business intelligence service that collects all the delays of a route within a specific

area that involves several operators and calculates the delays. Finally, the recorded

delays are collected into a shared dataset accessible by all the participants.

In this example, an insider can use the collected dataset to find out where the

competitors operate with bigger delays and profit from this information by exposing

their faults to the regional administration. Insiders can also expose cartels where

operators systematically provide a bad service during rush hours to favor a specific

company (e.g., because they hold some economic interest in it). Finally, the insiders

can also find out if an operator hides delays making analysis on the correspondent

road conditions (e.g., showing that buses could not sustain certain speeds since their

routes were jammed).

5.5. Use Case 93

Countermeasures All the countermeasures for this kind of attacks are based on a

trade-off between the amount of sensitive data preserved and utility of the queries.

Different anonymization and sanitization techniques have been proposed for com-

plex datasets, but since in SMAll Business Intelligence services share the results of

queries, we need to introduce a measure that indicates the maximum amount of

anonymized information such that the queries still work.

Different works proposed metrics for the evaluation of the amount of privacy

preserved in specific dataset. A measure introduced in [144] defined an evaluation

metric about the presence of pattern in a dataset called δ-presence. We can use this

metric to evaluate the presence of a specific patterns in the shared dataset. Another

interesting work in this direction is [85] which operates by complementing existing

techniques with post randomization methods.

5.5 Use Case

5.5.1 Cloud of Things for MaaS

After our general analysis of insider threats in MaaS, we concentrate on Cloud of

Things (CoT): one of the main enabling technologies for MaaS. We mentioned the

role of Cloud Platforms in MaaS and the threats linked to their ubiquity and contin-

uous connectivity in section 5. Recognizing that a solution at the low level of CoTs

could positively impact the security of MaaS services, we deepen here our analysis

on insider threats of CoTs, in the context of MaaS.

In general, the Internet of Things [10, 80] and the system of networks of IoT de-

vices that constitutes the, so called, Cloud of Things [12, 87], relies on the idea of a

world-wide network of interconnected entities. Concretely, these entities are het-

erogeneous elements interacting over disparate systems of networks: the definition

extends to comprise human beings and computers as well as general-purpose en-

vironmental sensors (light, humidity, temperature, sound) to specific devices like

road traffic monitors or GPS trackers. Making all these entities interact with each

other had and is having sensible, successful applications in multiple domains like

automotive, health-care, logistics, environmental monitoring, and many others.

94 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

CoTs play an important role in enabling many of the modern features of MaaS

services, indeed, entities within the context of CoT share three common denomina-

tors [161]. They are:

• locatable at multiple layers, spanning from their position within an intercon-

nected network to their actual geographical location;

• addressable in such a way that they accept connections from other entities;

• readable other entities can query them to obtain some information.

If on the one hand these properties constitute the promising characteristic of CoT,

on the other hand they make CoT-based networks open to many kinds of malicious

attacks conducted by a plethora of possible adversaries.

Cloud of Things and MaaS: Insider Threats

Considering the categories of threats analyzed in section 5.4, we summarize a brief

account of the possible attacks in the context of CoT linked to insider activities:

• Data Leakage entities can accidentally release private or sensitive data to unau-

thorized entities. Malevolent attackers could also gain information from “al-

ternative” usage of sensors, e.g., by employing temperature, light or audio

sensors to check the presence of people;

• Crowdsourcing Attacks and Data Manipulation where entities that publish infor-

mation feed fabricated data to change the behavior of the services that rely on

them;

• Device Misbehavior insiders can exploit weaknesses in the protocol of interac-

tion of entities, e.g., sensors and actuators, to cause malfunctions and hardware

failure.

Given the threats above, we investigated whether the networking architecture of

CoT entities and its working protocols could mitigate and counteract some of the

vulnerabilities analyzed in Section 5.4.

The idea has already been speculated in literature, for example, in [161] the au-

thors dissect the issue as driven by the two principles of location of intelligence and

5.5. Use Case 95

degree of collaboration. The first indicates where the intelligence resides in the net-

work, i.e., if edges of the network provide services rather than simple data. The

second regards the degree of interconnections among heterogeneous entities, i.e., if

they are mainly partitioned based on their nature (sensors for probing, servers for

collection and manipulation of data, etc.) or if they interact on a peer-to-peer basis.

Combined, these two factors characterize the architecture of the network in-

terconnecting the considered entities. Mainstream solutions follow a centralizing

approach, leaning towards "simple" entities that mainly collect information at the

edges of the network and centralized, possibly hierarchical, hubs that aggregate,

manipulate, and redistribute available data.

At the other end of the spectrum, there are decentralized systems that leave some

freedom at the edges of the network, allowing entities to take some decisions. En-

tities can also constitute partitions with some emerging intelligence (e.g., regarding

probing times, correction of sensing, etc.) without a direct control and sharing no

information with a central, high-level entity.

From an insider threat standpoint, we argue that the centralizing approach con-

stitutes the most dangerous configuration. Indeed, following such an approach, en-

tities at the edge of the network are passive elements. They are open to any kind

of query. Malicious ones could be used to infer private information and even cause

malfunctions on the devices, e.g., by consuming their batteries or causing hardware

failures due to overuse. Moreover, the approach is prone to the well-known issue

called “central point of failure” where users of the network must connect to the cen-

tral hubs, which in turn could be compromised to cause denials of service as well as

to reveal sensible information of all users.

On such observation, we investigated networks characterized by a weakened

degree of centralization and an increased collaboration among the entities. In such

architectures, entities at the edges can process local information and provide it to

both central hubs as well as to other peers. These decentralized networks enjoy a

stronger degree of security as nodes can refuse to collaborate in requests that are

deemed dangerous or deviate from established, secure protocols of interaction. In

addition, if proper dynamic reconfiguration techniques are applied, even in case of

malfunctioning central hubs, the local services remain accessible.

96 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

5.5.2 Federated Platooning

Generally platooning comprises a number of vehicles equipped with state-of-the-art

driving support systems one that closely following and collaborate each other. This

forms a platoon driven by smart technology, and mutually communicating. Vehi-

cle platooning and especially truck platooning is innovative and full of promise and

potential for the transport sector.

There are many ways to do platooning. One possibility is to instrument the vehicles

with new and powerful hardware that work as a structure to implement the vehicle

collaboration. This solution as several limits; hardware cost, upgrading cost and the

main one difficulties on the automatic collaboration between different platooning

platform which have to share the same standards and models.

Softwarize this process without the addition of new hardware overcome this limits

but is not easy to do. As we pointed out previously the collaboration between pla-

tooning system of different region can exploit the power of platooning but there is a

need of central authority in charge to enable and validate a federation of platform.

A federated platform of platooning system can improve traffic safety. Platooning is

a cost-saver, fuel consumption saver which means less CO2 emissions. And, lastly,

platooning efficiently boosts traffic flows thereby reducing tail-backs. Meanwhile

the short distance between vehicles means less space taken up on the road. At the

same time the impact platooning goes far beyond the transport sector. Automated

driving and smart mobility also offer realistic chances to optimise the labour market,

logistics and industry.

Enabling Platooning

We argue that an enabling architecture for such platform must be mobility service

enabler platform, and we argue that our proposed, developed platform SMAll can

support the creation of a federation-based service and markets where operators

can publish, automatically retrieve, and orchestrate functionalities for mobility, pro-

vided by different operators.

The platform builds on the concept of Federated Cloud Computing and maintains

5.5. Use Case 97

FIGURE 5.6: Example of platoon formation over federated SMAll in-
stances.

an open approach with respect to the possible members of the federation, which cor-

respond to any player that trades services and information linked to mobility.

To better illustrate our proposition, we report in Figure 5.6 a schematic represen-

tation of possible scenarios of a Federated Platooning with SMAll Architecture and

proceed to comment them. In the figure we consider three SMAll instances, covering

different geographical areas. We mark each SMAll instance with a colour, (orange

for SMAll1, green for SMAll2, and blue for SMAll3) where SMAll1 and SMAll2

coverages partially overlap, while the pertinence area of SMAll3 is distant from the

other two (and not represented in the figure). To simplify, in the figure we assumed

a 1:1 correspondence between each SMAll instance and a platooning operator that

belongs to that instance (in reality, many operators can belong to the same SMAll

instance).

Let us first concentrate on the convoy pointed by label A©: the simplest case of a

platooning service, which captures the basic occurrence in the literature where a

98 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

dedicated infrastructure or in-vehicle devices are coordinated by a centralised au-

thority. Indeed, the scenario pictured by A© makes two assumptions: i) that users

of the convoy belong to the same operator and ii) that they travel in the pertinence

area of that operator (which corresponds to the pertinence area of the related SMAll

instance).

The scenario pointed by label B© removes the two assumptions of A©: here ve-

hicles in the convoy are users of different operators and some of these (marked in

orange) are outside of the pertinence area of their operator. In this case, the two op-

erators in SMAll1 and SMAll2 coordinated the formation of a mixed convoy. In B©,

the business policies for service usage negotiation, defined by each operator, medi-

ate between possibly conflicting formation-control logics deployed by each operator.

To better understand this concept, let us suppose that the two operators, in SMAll1

and SMAll2, consider in their respective platoon formation algorithms the two con-

straints of cruise speed and fuel consumption. For example, the operator in SMAll1

could offer to its users solutions that maximise cruise speed while the one in SMAll2

favours fuel savings. Thanks to mechanised composition plans, defined as business

policies in SMAll, the two operators can reach a dynamic distributed consensus over

a mediated solution that satisfies the threshold parameters of their convoy formation

algorithms.

To draw a parallel, this is similar to the negotiations conducted among mobile phone

operators to allow their users to roam within their networks, without having to stip-

ulate a specific contract with each operator. Here, the difference is that such a ne-

gotiation is dynamic, so that users of each operator can choose whether to accept or

not the platooning plan negotiated by the two operators.

Moreover, while platoon formation essentially relies on a static plan where ve-

hicles join and leave a formation at pre-determined times, the mechanised federa-

tion of SMAll instances allow for a higher degree of flexibility: platooning users can

decide to switch between different convoys while travelling, as exemplified by the

vehicle leaving the column in B© to join the convoy in C©. In this final scenario, the

column pointed by label C©, composed of the two users of the operator in SMAll3,

is outside of the pertinence area of their home SMAll instance. Also in this case,

5.5. Use Case 99

although the column is composed only of vehicles of the same operator, the platoon-

ing plan results from a negotiation between the two operator respectively in SMAll3

and SMAll1, where the latter manages platoon formation in its area of pertinence.

Finally, thanks to the collaboration between all operators, the three vehicles 1©, 2©,

and 3© can dynamically join the pre-formed convoy in C©.

In such a landscape, thanks to clearing services, given a travel plan, users can

directly evaluate the actual gains (possibly expressed directly as monetary trans-

actions) of many configurations, e.g., whether to join the tail of a formation or be-

come the head of it, or switching between columns. This aspect holds also for users

already in formation, which can agree to let other users join their formation and

share the costs of the convoy. Beside direct user interaction, clearing costs and the

related policies can be also part of the logic of composition among operators to se-

lect/propose optimal plans to their users.

Now that we presented the architectural characteristics of federated platooning op-

erators, we shall analyze the possible security concerns of such a globalised col-

laboration. These span from the illicit acquisition of sensitive data of users to the

deployment of malicious platooning plans, which could easily block the traffic of

extensive areas, as well as threatening the safety of roads in general. To this aim,

in the next section, we expose the main security threats of federated platooning and

propose possible mitigations and countermeasures.

Insider Threats in Platooning

Once the main elements of platooning and federated platoon formation have been

defined, it is possible to analyze the security concerns of such a global collaboration.

These span from the illicit acquisition of sensitive data of users to the deployment of

malicious platooning plans, which could result in a variety of consequences, rang-

ing from inflicting economic losses to competitors, to affecting traffic over extensive

areas, and even to threatening the safety of roads.

A federated environment natively foresees sharing one’s own sensitive informa-

tion, and access to others’ information in a controlled way, for example to know basic

data such as the kind of vehicles on the road, the most common routing choices, but

in some cases also enough details to make tracking a vehicle or a driver possible.

100 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

This kind of sharing is the core enabler for the desired aggregation services. Conse-

quently, security concerns are greatly expanded as the attack surface is enlarged and

diversified with respect to a closed-world model of operation. This kind of threats

are not entirely specific of such platooning federated platforms; they would appear

as an intrinsic aspect of any approach to coordinate services of independent trans-

port agencies. Thus, they are interesting to address because results can be applied to

a wider set of scenarios, and at the same time the analysis can be built upon previous

works. For example, in [30] Callegati et al. we showed how the members of a public

transportation consortium can exploit its clearing system to infer strategic private

information.

In the remainder, we show how these kinds of attacks are relevant in a federated

freight scenario: we describe the main issues introduced by platooning and evaluate

their effects from an economic point of view, showing practical abuse cases, and

highlighting the key vulnerabilities. In 5.6 we present two, layered, composable

technical solutions to mitigate the identified threats.

A discuessed in 5.4 the possible security problems of any platform based on con-

trolled sharing of sensitive data are manifold and include threats such as: compro-

mising the infrastructure where data is stored with the aim of subtracting it, inter-

cepting data in transit by exploiting unsafe communication protocols, injecting fal-

sified or malicious data by exploiting authentication weaknesses, and many others;

these types of attack are not specific to our case study, but instead they are mainly

related to the correct design and implementation of a data management infrastruc-

ture, a topic already widely covered in literature [36, 162, 109, 183], and for this

reason they will not be discussed in this work.

The problem is not only the lack of proper countermeasures but also the diffi-

culty of identifying a malicious insider in the first place [152].

Experts [168] agree that the strong contextual variance of threats makes providing a

general yet precise identification of all possible insiders difficult. Besides the mem-

bers of the federation (here, the platooning operators), federated contexts contain

two additional broad categories of insiders: i) legitimate users, which could lever-

age access to service providers and make a malicious use of information extracted

5.5. Use Case 101

from services or cause over-usages that entail unforeseen costs or outages; ii) or-

chestrating agents, which are needed to coordinate any complex architecture, can

act as men-in-the-middle, accessing and/or leaking private information, as well as

counterfeiting, throttling, hijacking or selecting data of legitimate users.

Hereinafter, we follow a categorization between privacy leakage attacks, where

there is a theft of sensitive information, and disruption attacks, where an attacker

interferes with the behavior or the structure of the system. We decided to focus only

on these two categories of concerns for several reasons.

First, we must remember that we are analyzing the concerns from an insider threat

point of view. For this reason, we assume that we already have a certain level of

permission within our infrastructure. This is why all targeted user attacks for ini-

tial access to the infrastructure are not particularly interesting. Second, we do not

take into account attacks on the exploit of the infrastructure for lateral goals, since,

although important, they are not the main cases of insider threat that can be found.

Privacy Leakage All the issues described in this section are a consequence of the

kind of information that the clearing/platooning system needs to share and use.

Examples of relevant categories of data and meta-data include:

• vehicle movements details: origin, destination, middle stops, average time,

average speed, etc.

• details of shipped items: origin, destination, weight, package category, etc.

• route planning and execution constraints: clearing instructions applied to the

current convoy, speed limits, etc.

While needed to enable operators’ participation in platoon formation, the same

information can be used by insiders together with external data sources to compose

a targeted picture of sensitive aspects regarding a victim. The kinds of "retrievable"

information are categorized in the following, based on the insider’s target.

User Attacks A single user’s privacy exploit is an attack that an insider can do in

many ways. There are various effective methods to retrieve information about an

individual driver even if it is not explicitly shared. If any database contains pseudo-

identifiers, for example, the vehicle’s serial number, they can be exploited to obtain

102 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

the existing association between the vehicle id and the driver. For example, in [28]

we demonstrated how to skim the various entries of a database, crossing them with

external data from Open Source and publicly available OSINT tools and proceeding

by exclusion to find the corresponding driver.

The process is described in principle in [31], where in a similar scenario of a data

clearing system for urban public transport it was possible to trace a specific user’s

real identity by performing this kind of correlations. Knowing the precise move-

ments and journeys of a vehicle driver is not only a powerful weapon against the

vehicle driver’s personal privacy; this information can be also used by competing

companies to intercept the rivals’ demand / supply patterns.

Business Policies Attacks For delivering companies, a fundamental competitive

advantage derives from the methods and procedures with which they distribute the

transport vehicles along their shipping routes. Indeed, it is shown [68, 153] that an

efficient allocation of means of transport and drivers can reduce costs and manage-

ment burdens. This information is strictly guarded by any company.

However, as explained above, to feed the necessary data into the clearing system,

individual vehicle data must be (possibly partially) shared to calculate the correct re-

distribution of profits. In turn, illicit access or leakages of these data allow attackers

to trace the distribution rules of the vehicles, as shown by us in [31], where through

sequential analysis with clustering data mining algorithms the authors extracted the

distribution of buses of a transport company present in a clearing system.

Unfair competition Lastly, we consider another type of sensitive information that

an insider is able to retrieve. If information on vehicle routes and items carried is

not properly anonymized, it is possible for insiders to cross them together and with

external sources to interpolate financial details. Knowing which routes are the most

profitable, what prices and which kinds of contracts companies offer on the same

routes, makes it easy for unfair competitors to size contracts and deals [31].

Destructive Attacks The second category of attacks that an insider can launch goes

beyond accessing an unauthorized resource and focuses on deriving advantages

from the disruption of competitor’s services.

5.5. Use Case 103

An insider can try to achieve this result by injecting information in the clearing

/ platooning system. Carefully crafted malicious information may be the cause of a

breakdown of competing services and businesses.

Routing corruption Let us consider a federated platooning system that holds all

the data of the trucks and the shipped items of its members—as mentioned above,

needed to calculate the correct redistribution of the profits and the management of

platooning tasks. An insider might, in this case, inject malicious information aimed

at excluding a specific route, causing denial-of-service targeted at one or more vehi-

cle of a specific company. This exclusion can be achieved in several ways:

• declaring as additional meta-data fake speed limits to make the vehicle (think

of time-guaranteed delivery trucks) late or to make a route plan inaccurately

(in)convenient;

• posting false or incorrectly located traffic updates to force the competitor to

change direction and redirect it to a wrong and / or inconvenient path;

• inserting non-existent routes that will force the vehicle to backtrack and recal-

culate along the way.

Competition starving The previous attack describes a targeted denial-of-service

scenario, in which an insider attempts to block a competitor’s specific service. The

insider might wish, and be able, to do something more subtle. Instead of making a

brutal intervention that causes a detectable disruption of a trip, the attacker could

make a campaign of small, well-distributed manipulations that slowly impoverish

the adversary economically. Such insertions, if successful, have the peculiarity that

they cannot be immediately discovered, emerging only after a thorough and time-

consuming analysis of the dataset. This kind of attack can be executed in several

ways, for example:

• by performing the same kind of injections as described in the previous sce-

nario, but introducing an error so small as to make it unlikely to be noticed as

such, yet causing losses that end up having a disruptive cumulative effect;

104 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

Gateway
U1

A1

I am in zone XYZ,
who are my admins?

{ A1 }

Join/Move Phase Gossip Phase

U1

U3

U2

U4

I know about
Bus A

I know about
Bus A

I know about
Parking Lot B

Inquiry Phase (Intra Zone)

A1

U1

U3

U2

U4

How much Bus A
is delayed?

1

Get GPS
position

2

Ask real-time
status 3.2

3.1

Response

4

Inquiry Phase (Inter Zone)

A2

U5

1

Gateway

Are there
free spots in

Parking Lot B
(zone XYZ)?

A1

Forward
Request

XYZ

Forward
Request

U4
Ask

real-time
status

2 3

4
1

2

FIGURE 5.7: Phases of the Gossip Network.

• by making actual orders that force the competitor to deploy more vehicles (e.g.,

from a truck fleet) with lower profit margins, and possibly leveraging their

presence to save more fuel from platooning.

5.6 Novel approaches to mitigation

In this section, we propose two layered technical solutions to tackle the data man-

agement issues outlined in the previous section. These two approaches stem from

the observation that, from the point of view of data flow, it is not strictly necessary

to have a centralized architecture to enable an effective exchange of information.

On the other hand, information systems that support federation can be exploited to

enforce correct behaviors of its members.

In the following, we first detail a decentralized overlay network for data safety

and trustworthiness, then we describe the features of a dynamic federation platform,

needed to monitor and interrupt deviant behaviors of federated members.

5.6.1 Overlay Network

A possible alternative to centralized data dispatching is to implement an overlay

network created by the same entities of the federation. In this section we propose a

solution based on a gossip protocol [81, 22], with the intent of mitigating the risk of

sensitive information theft (eliminating the need of a centralized controller), and the

risk of malicious data injection (implementing a trustworthiness source system that

can guarantee the provenance of data).

Before describing the details of our proposed architecture, we provide a brief

account on gossip-based networks, whose principles are at the basis of our overlay

5.6. Novel approaches to mitigation 105

network. Gossip communication is a style of computer-to-computer communication

protocol inspired by the form of gossip seen in social networks. Modern, large-

scale distributed systems often use gossip protocols to solve problems that might

be difficult to solve in other ways [97], e.g., because the underlying network either

has an inconvenient structure or is extremely large. Computer systems typically

implement this type of protocol with a form of random “peer selection”: with a

given frequency, each machine picks another machine at random and shares any hot

rumors.

In our gossip protocol, users choose to gossip some information anonymously to

a local administrators. Although anonymous, gossips are signed by a ranking grade

owned by each user. In turn, local administrators aggregate (in a weighted man-

ner) the gossips they received regarding the same objects (roads, point of interest,

etc.) and re-gossip that information to users. By aggregating data (received within a

certain time span), administrators mitigate the diffusion of false information in the

network, mediating (or ruling out) contrasting information.

In our gossip protocol, nodes disseminate knowledge of their surroundings — e.g.,

a user is on a route and notifies the status of that road. Moving nodes periodically

probe the network to join the partition to which they geographically belong, follow-

ing a background dissemination approach. This recalls anti-entropy approaches that

focus on providing a system-wide consistent observation as aggregate of many local

responses.

Thanks to the gossip protocol, we also anonymize the identity of users that query

for information. In a traditional network, users would query a central server to

retrieve some information, exposing their query (and themselves, by extension) to

possible privacy attacks. On the contrary, in our setting it is the gossip protocol that

is responsible for spreading information that might become relevant in the future to

users. Hence we accept a trade-off of some overhead information to gain a privacy-

by-design guarantee.

The concepts above are exemplified in Figure 5.7. From left to right, when users

want to join for the first time or move between zones, they query known gateways

to obtain the address of the administrator of the geographical region to which they

currently belong. Administrators act as local zone authorities to route information

106 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

about the same zone, and they can also provide (as gossip) their trustworthy data to

users. In the gossip phase, users disseminate to administrators information regard-

ing their surroundings. In Figure 5.7, U1 and U3 declare to know something about

the route A congestion (e.g., rough road, slow traffic), while U4 has some informa-

tion about a specific incident on Route B (e.g., closed roadways). The remaining

phase regards the inquiry of available data. Users periodically receive aggregate

(and possibly enriched) gossips from the local administrator and query the knowl-

edge they acquired through gossiping to extract relevant information.

Figure 5.8 shows the two planes, over the physical one, that characterize the pro-

posed overlay network. From the physical plane, users join the middle Neighbor-

hood plane where they generate new gossip (in the Figure, the thicker the arrow, the

more trustable the peer). On top, we find the Inquiry plane, where gossip spreads

and where users inquiry their acquired knowledge.

A real world use case application for this overlay network can be a rough-road

check. A service that exposes the real-time information about the road conditions is

typically based on an algorithm that calculates an estimate, considering some previ-

ous information and the GPS position of the vehicle. This information is then saved

on a centralized storage where the delay is calculated. As described above, however,

this methodology introduces security problems on the storage of data and quality of

service, entailed by relying exclusively on the users GPS location, which could pos-

sibly be inaccurate. With the proposed approach, we show how it is possible to

improve the safety and performance of this type of service.

In Figure 5.8, U1 (Inquiry Plane) has been informed of the condition of the route

it is currently following, so it could decide to perform a route deviation. This hap-

pened because it joined its local Neighborhood network, where other users (the blue

and yellow cars that are further ahead on the route) have been gossiping 1© (Neigh-

borhood Plane) about its same route. In its turn, the administrator collected the

gossips, aggregated them, and re-gossiped the information to the users 2©.

Although users U2 and U3 remain anonymous, U1 can rate the quality of the

aggregated information; a metric that can feed the system to assign the degree of

trustability to users, as specified in the previous paragraph7. Besides security, the

7Assignment of rankings to users can be spread back through gossip.

5.6. Novel approaches to mitigation 107

system enjoys a finer grade of precision on the reporting of the information as the

machine-generated data from the administrator is integrated with user-generated,

close-to-the-source information.

5.6.2 Automatic Business Policies and Contracts Enforcement

In 5.5.2 we detailed how the platooning federation relies on the collaboration be-

tween operators, and how this gives the opportunity to malicious agents to adopt

damaging behaviors. To prevent this, we want to introduce a mechanism to enforce

the respect of the agreed behavior in the federation.

This is a common problem in all kinds of Service Oriented Architectures (SOA),

as explicitly addressed in OASIS’s SOA Reference Model [117]. According to OA-

SIS definitions, policies define constraints for single services, and our approach is

to let each provider and each consumer of services deal with data-related policies

without forcing a centralization which could become the most valuable target for

attacks. Contracts, on the other hand, "represent an agreement between two or more

participants [...] a service contract is a measurable assertion that governs the require-

ments and expectations of two or more parties. Unlike policy enforcement, which is

usually the responsibility of the policy owner, contract enforcement may involve re-

solving disputes between the parties to the contract. The resolution of such disputes

may involve appeals to higher authorities. Like policies, contracts may be expressed

in a form that permits automated interpretation."

Our proposal is to let that higher authority be represented by the platform en-

abling the federation. Rather than merely acting as an enabler, the information sys-

tem supporting the federation shall connect each member based on the behavior that

each operator declared and agreed to respect to join the federation. The support en-

compasses automated checking of contracts for compliance to general principles at

design and deploy time, and the enforcement of contract provisions at run time. It is

a part of a more comprehensive strategy for SOA management, as outlined in [169].

This shift moves federation from a static coalition of companies into a federated

market, where operators dynamically partner with each other and trade and use

services of one another on-demand, knowing that the agreed terms of usage will be

respected. As remarked, this last guarantee is enforced by the platform itself, which

108 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

will monitor the flow of requests and responses among the members, detect possible

behaviors that deviate from the declared policy and limit or block the cooperation

with an offending member.

In practice, contract specification is done when the platoon operator wants to

join a federation. In this sense, enabling platforms shall provide respectively:

• a formal model with which to interpret policies and contracts;

• a set of specific requirements to satisfy in order to guarantee a safe environ-

ment;

• a set of policies regarding the use and the misuse of the services exposed;

In this context, business policies can have different purposes. For example, they

can establish rules to mechanize the trading of the services of federated members,

as well as to establish standards used in their interaction, like security and commu-

nication protocols, and define the terms of the quality of service. Automated policy

processing allows automated contract design, to enable dynamic participation to the

federation activities. In turn, contract enforcement at run time ensures all parties that

everyone is held accountable against the designed contracts.

Beside security, we underline how these business policies are particularly important

in the context of platooning operators, where each of them controls a specific, re-

stricted area, while the platooning plan of a convoy usually spans areas controlled

by many operators. With automatized business policies platooning operators can

collaborate in synthesizing a common platooning plan, possibly comprising a mixed

set of their users.

A prototypical example of one such platform has been made in our work in [32],

where we employ machine-processable business policies to federate remote instances

in a federated platform and where transport operators that agree to the same (or

better, to compatible) business policies can partner with each other and trade each

other’s transport services.

5.7. Conclusions 109

5.7 Conclusions

In this chapter, we presented the concept of Mobility as a Service and how MaaS

operators shall facilitate the dynamic provisioning of multi-modal transportation to

their users. To support such flexibility we developed a federated marketplace of

services called SMAll, aimed at harmonizing data flows and service invocations.

This kind of federated platform is particularly sensitive to insider threats, which

emerge at different layers, targeting both the constituent components provided by

users and operators and the services provided by the platform itself.

The MaaS Stack, our tiered proposed view on the components of MaaS mar-

kets, allowed us to treat in isolation the security issues of each tier. Often, these

issues turn out to be instances of well-known threats in the fields of cloud comput-

ing, service-oriented architectures, supply chain management, and trusted business

partnerships.

In principle, the platform allows to implement context specific versions of the

solutions proposed in the literature regarding the aforementioned fields, as well as

novel solutions inspired by their cross-fertilization. We argue that the central role of

SMAll in mediating every interaction and in collecting their traces makes the plat-

form fit to host solutions to the presented security issues of MaaS markets.

In addition to our general treatment on insider threats related to the context of

MaaS markets, we also show-cased two real world case scenarios; the perspective

of the Cloud of Things, presenting an architecture that constraints the quality and

quantity of data that an insider could obtain from users, also optimizing the routing

of requests to only those users able to answer them; and federated platooning, i.e., a

freight organization system where a consortium of platooning operators collaborate

and coordinate their users to constitute freights.

From our threat analysis, we detailed novel technical solutions to the predom-

inant threats of trustworthiness of data flows and deviant behaviors of federation

members. In particular we showed a over-layered architecture able to manage the

real data flow in a safe way, and a policy enforcement methodology to prevent ma-

licious and fraudulent behaviors and the service platform.

110 Chapter 5. SMAll: A Global Federated Market for MaaS Operators

Legend

Physical
Plane

Neighbourhood
Plane

(Availability)

Inquiry Plane
(Retrieval)

Bus A

Parking
Lot B

U1

U2

U3

U4

U1

U2

U3
U4

Trustability
wrt object

U1

A1

A1

User

Administrator
A1

3.1

A

1

3.2

2

I

II

III

Covered
Reachable
Area

1
I A

Inquiry Direction

Inquiry Steps

FIGURE 5.8: Depiction of the Overlay Gossip Network.

111

Chapter 6

TechNETium: a SDN tool to Verify

Security Network Policies

The upcoming 5G promises to the next big thing in networking, making networks

able to adapt to the specific requirements of vertical applications; while the most

common examples consider machine-to-machine applications such as autonomous

driving and massive IoT, social applications will be significantly affected by the im-

proved interactivity and capacity, e.g. enabling immersive real-time gaming and

broadband multimedia communications.

These improvements are achieved through the concept of network slicing, according

to which a single network infrastructure may be partitioned in virtual sub-networks

tailored to the specific requirement of a vertical application, thus achieving an opti-

mal tradeoff between cost (shared) and performance (dedicated).

Network slicing requires a very high level of flexibility of the network infrastruc-

ture, that is supported by emerging technologies such as the intensive exploitation

of Network Function Virtualization (NFV) and the centralized control of the network

forwarding functions, i.e. Software Defined Networking (SDN).

These technologies are a real innovation in networking and allow innovative ap-

proaches to the solution of many problems.

6.0.1 Contributions

This chapter focuses on the network security issues, that are indeed very relevant to

the aforementioned vertical applications. It shows how the formal verification of the

networking forwarding rules, which can be achieved by interacting with the SDN

112 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

network controller may be used to detect possible security issues in the network

data path.

Formal network verification requires a formal representation of the network and a

software architecture working together to efficiently verify the policies and proper-

ties of the network. At the state of the art, there are a few tools and techniques to

achieve this result. An example of a software package which can verify formal poli-

cies is Netplumber; it can verify many different properties, but the complexity of

the underlying methodology (header space analysis) causes important performance

issues. Using techniques such as Atomic Predicates, the fundamental property of

reachability can instead be verified in microseconds, i.e. orders of magnitude more

efficiently than with header space analysis. The main drawback of this approach is

the lack of native expressiveness for policies other than reachability.

The contributions given in this chapter focus on the development of an SDN-based

architecture able to meet and solve this challenges. We called this architecture Tech-

NETium: an original software platform which exploit atomic predicates and binary

decision diagrams to verify network reachability. TechNETium can be used to ex-

press complex policies by compiling high-level rules into compositions of reachabil-

ity verification, enabling the creation of auxiliary policies such as FullReachability

(the verification of bilateral communication between nodes) and ToWayPoint (used

to enforce traffic flows trough a specific intermediate node), which is something new,

to the best of our knowledge in the literature.

This chapter is organized as follows: the principles behind TechNETium are dis-

cussed in section 6.2, and a use case is presented on a SDN network based on the

ONOS controller in section 6.3. Then we presented results showing a significant

performance improvement when compared with other tools in the literature in sec-

tion 6.2.4, in addition to several possible use case example of such architecture in

section 6.4.

6.1. Context Scenario 113

6.1 Context Scenario

6.1.1 SDN and formal verification

FIGURE 6.1: SDN Layer Architecture

The SDN architecture can be seen as a set of different levels (each with specific tasks)

and interfaces for communication between levels. Figure 6.1 shows the 3 levels and

API point representation of a common SDN Architecture:

On the Infrastructure layer we can find the forwarding devices (hardware or soft-

ware) that can be used. There are different standards for this level, but the most com-

mon is certainly OpenFlow, which defines specifications for devices (called Open-

Flow switches) which maintain a set of tables designed to filter packets based on

some fields.

The Southbound API is the interface that allows communication between the

Infrastructure layer and the Control layer. This API are a crucial tool for SDN, al-

though they are strongly linked to underlying elements. It defines a series of event

messages for communication between switches and controller, in addition to gener-

ating statistics generated by the switches and collected by the controller.

The Control layer represents the brain of the network. Here are one or more con-

trollers (or NOS), which provide a global view of the network, essential services, and

common APIs for developers. Thanks to this level, applications do not have to deal

with network implementation details. There are different types of controllers, and

one of the criteria for which they can be distinguished from one another is whether

or not they are distributed.

114 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

A distributed controller can also handle networks a lot articulated. In addition, dis-

tributed controllers must address the issue of data consistency, and often this is guar-

anteed only in relative time long. One of the main advantages of distribution, how-

ever, is certainly the resistance to failures. If a node fails, replication makes it not a

problem.

Centralized controller : a centralized controller has full network control, but

it represents a single point of failure, and may not be able to to set up complex net-

works with a large number of nodes. Often centralized controllers take advantage of

multi-threading for better performance. Another criterion for which two controllers

can be differentiated is the implementation model policy implementation:

Reactive: a reactive controller requires the forwarding devices to consult the

controller whenever a decision is needed. This may turn out to be a problem, above

all if the flows arriving to the network are short (hence of for each new flow the

switch must call the controller), or it would lead to scalability problems in the case

of large networks.

Proactive: a protective approach ensures that policies are implemented at the be-

ginning, without the explicit request of the switches. In addition to communication

through the southbound and northbound APIs, the controllers, in the in case there

are more than one in the network, they communicate with each other through APIs

dedicated, called westbound eastbound APIs.

Northbound API This level allows external applications to use the controller’s

core services to configure, monitor, and manage the network. Unlike the south-

bound interface, there is no common standard, but in general we use REST API, or

languages of specific programming such as Frenetic, and NetCore.

Application layer Here are all the applications that interact with the network.

Thanks to the abstraction provided by the control layer, it is very easy to develop

and implement new ones software in SDN. Applications communicate the controller

with the northbound APIs, and not therefore they need to know the implementation

details of the network.

6.1. Context Scenario 115

6.1.2 Formal Data Plane Verification

In recent years we have seen a huge development of security tools based on formal

verification in various use case scenarios. In particular network verification gained

a lot of interest [15, 89, 2, 132]. It is built around an automated detection of viola-

tions of network reachability invariants on the data plane, possibly while they are

happening in real-time.

A recent work by Beckett et al. [15] proposes a tool called Minesweeper follow-

ing the study of several tools developed by the research community with the goal

of finding network misconfigurations. The studies are classified in two categories:

control plane oriented, i.e., able to discover flawed configurations proactively, and

data plane oriented, i.e., able to discover misconfigurations reactively, by observing

the events happening in the network while traffic is flowing. Both categories have

pros and cons. Proactive approaches are particularly useful to predict potential net-

work misconfigurations that might lead to security issue (e.g., BGP prefix hijacking).

But security breaches in the most general sense are hard to predict a priori, therefore,

the reactive approach is essential to detect unwanted (dynamic) network behavior

occurring as a consequence of malicious activity.

Following the same line, we argue that both proactive and reactive approaches should

be adopted and combined to exploit synergies between them at best. The SDN

paradigms provides the perfect platform to pursue this goal, because in a SDN network what

happens in the data plane is the outcome of what is produced in the control plane but, at the

same time, the control plane has a view of what is happening in the data plane.

6.1.3 SDN and formal verification

The spread of the SDN has sparked a debate about the security of software defined

solutions. Here we will not address the whole of this large subject, concentrating

our attention on some issues regarding the correctness of topology and routing.

Studies like [3, 108] have analyzed the attack surface highlighting the vulnerabilities

and security requirements of the architecture. In [3] it is suggested the combined

adoption of proactive and reactive approaches, however works like [126] emphasize

the importance of reactive solutions for verification of invariants in the data plane:

116 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

the problem consists in checking if certain security policies (policy) are respected

starting from the Forwarding Information Base, that is from the rules of forwarding and

from the topology of the network.

This is a complex problem, since it requires analysing the behavior of all possible

packet headers. The header space, as it is called in [104], can be very large (the IP

header being at least 160 bit long), therefore, since the union and intersection of

packets are computationally expensive operations (complexity (O (2n)) in the worst

case, where n is the number of bits in the header [201]), verification of properties in

a network with thousands of devices can take a very long time.

To improve performance, Yang and Lam in [201] propose to reduce the space

to be explored: instead of working on individual headers, thy use sets of packets

which are equivalent from the viewpoint of forwarding, called classes of equivalence

or Forwarding Equivalence Class (FEC), and a symbolic representation is adopted to

reduce computational complexity.

Experiments conducted by the same researchers, as well as other research groups

[20], support their idea. The code of these experiments is available at [203].

6.1.4 The Atomic Predicates Verifier

As it can be seen from [201, 204, 205] AP Verifier is not specifically designed for soft-

ware defined networks, however works such as [194, 94, 114] show that this method-

ology is also applicable in the of the SDNs.

The methodology is explained below by analyzing the following steps:

1. Definition of a model of the network suitable for verification.

2. Definition of atomic predicates.

3. Algorithm for calculating atomic predicates

4. Check the network using atomic predicates.

5. System update in real time.

In step 1 the model of the network adopted in the system is defined, in steps 2

and 3 the theoretical bases necessary to carry out the verification and updates re-

ferred to in steps 4 and 5 are set.

6.1. Context Scenario 117

Specifically, we get to show that each network predicate can be uniquely repre-

sented as the logical dis-junction of a set of atomic predicates; moreover, since each

element has an integer identifier, it is possible to represent the state of the network

by a set of integers, thus obtaining a symbolic representation.

In this new space, indicated by [94] like quotient space, the operations of union

and intersection of headers map to operations of union and intersection of sets of

integers, thus improving temporal performances with respect to [104], which uses

ternary bit vectors instead.

The network is modeled as a direct graph of devices, so the links are unidirec-

tional.

Each device has a set of full duplex physical ports and a list of rules applied ac-

cording to the longest prefix match criterion. Inside a device the ports are all connected

together.

There are two types of rules:

• Access Control Lists (ACL), consisting of a predicate of match and action.

• Forwarding Rules or forwarding consist of a match predicate, based on a prefix

and its length, and an output port.

The boolean functions, or predicates, used for the match of the packets are rep-

resented by Binary Decision Diagrams (BDD), an acyclic direct graph data structure

whose nodes represent Boolean variables; each node of a BDD has an low child and an

high child and the arcs linked to child nodes represent the assignment of the false and

true value to the node variable, respectively. The evaluation of a predicate proceeds

recursively by choosing the child up or down based on the value of the variable, up

to the result of the evaluation reaching a terminal node true or false [1].

The choice of BDD is the result of a comparative analysis carried out in [204],

which takes into consideration three other data structures: packet sets [65], Firewall

Decision Diagrams (FDD) [78] and finally the wildcard expressions [104]; the results of

the study show that BDDs enjoy the following properties:

1. Uniqueness of representation: the representation of a set of packages with

BDD or FDD is unique, while there are multiple wildcard expression and packet

set for the same set.

118 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

2. efficiency in compute calculation: the computation of the BDD and FDD com-

plement is very simple because it is enough to exchange terminal nodes of the

graph, while for the other data structures one could have an increase in size.

3. small size: to represent a set of packages identified by a header suffix, the

FDDs and emphs packet sets require structures whose dimensions are expo-

nential with respect to the suffix length. It is shown instead that the BDD rep-

resentation of an ACL rule has at most (2 + 2h) nodes where (h) is the length

of the headers, while for a forwarding rule we have at most (2 + n nodes with

(n) equal to the number of bits in an IP. The linear dependency of the dimen-

sions from the length of the headers makes memory consumption and compu-

tational complexity manageable, since the logical conjunction and disjunction

requires a time proportional to the size of the BDD [204].

In algorithm [201] the algorithms used to extract BDDs from ACLs and forward-

ing tables are illustrated. In the following section, the theory of atomic predicates

is explained in more detail, and some improvements for its application to network

verification are proposed.

6.2 Atomic Predicates for Transformations

6.2.1 Definition of Atomic Predicates

The fundamental idea of the method of atomic predicates consists in the representa-

tion of port predicates through the equivalence classes that are forwarded through

the corresponding port. The representation with BDD is flanked by the set of equiv-

alence classes that pass through the predicate gate. This is possible because within

each device the packets belonging to an FEC are forwarded on a single port, there-

fore the predicates are seen as disjoint sets of equivalence classes. At this point a

further step is taken: the equivalence classes are uniquely associated with integer

identifiers. It follows that the set of identifiers of the equivalence classes that pass

through a port is equivalent to the original information of the predicate and can be

used for calculating the properties of the network. The equivalence between these

6.2. Atomic Predicates for Transformations 119

representations is demonstrated in [201, 204, 205] and is indicated in [156] as equiva-

lence of Yang and Lam.

In this way the disjunction and conjunction operations on the predicates are mapped

on union and intersection operations on sets of integers, with a considerable reduc-

tion in complexity.

Definition 5. Atomic Predicates Considered P as a set of Predicates, the corresponding

Atomic Predicates set {a1, a2, . . . , ak} follow this rules:

1. For each i = 1...k; ai 6= f alse.

2.
∨k

i=1 ai = true.

3. ai ∧ aj = f alse se i 6= j.

4. Every predicates p ∈ P is the results of logical disjunction of a unique set of atomic

predicates:

p =
∨

i∈S(p)

ai, where S(p) ⊆ {1, ...,k} (6.1)

This implies that p can be represented as S(p) and there a direct correspondence from

disjunction and conjunction operator p1 awn p2 and the union and intersection oper-

ation S(p1) and S(p2).

5. k is the minimum natural integer {p1, p2, ..., pk} that follow those 4 conditions.

Theorem 1. Atomic Predicates and Equivalence Classes

It has been proven [201] that in a given a set of Predicates P , the P Atomic Predicates set is

the minimum set of equivalence class of every packet.

120 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

FIGURE 6.2: Atomic predicates Verifier - Differences between header
space and quotient space

In the example shown in Figure 6.2, taken from [20], we illustrate the differences

between atomic predicates and analysis in header space:

For simplicity, suppose we have 2-bit long headers. In the image we have two

routers that adopt longest match semantics: in the first one there is only one rule

that involves the forwarding of all the input (wildcard expression (**)) of the p0 port

on the p1 port, in the second router is specified that the traffic with prefix (1 *) must

be forwarded to port 3, the rest of the traffic must flow to the p2 port instead.

Using NetPlumber [105] we would have 3 rule nodes, one for each rule, an intra-

table dependency in the second router table and an pipe filter for port 2 of the type:

(** - 1 *). Furthermore, the difference between the two prefixes, which in this sim-

ple case is (0 *), must be computed at runtime, requiring an expensive operation of

intersection between wildcard expressions.

6.2. Atomic Predicates for Transformations 121

We will now evaluate the verification with atomic predicates. First, the port pred-

icates are calculated from the forwarding rules, then the FECs that are only two are

calculated: the set of packages that are forwarded to p2 ((** - 1 *), or (0 *)), labeled

with “ 2 "and the set of packets forwarded to p3, labeled with“3" . After that each

port predicate is represented as the union of the FECs:

1. ∗∗ = {2,3}

2. 1∗ = {3}

3. ∗ ∗ −1∗ = {2}

As again pointed out by [20] and by the tables in [201, 204] the approach to atomic

predicates is in most cases 1 or 2 orders of magnitude faster than header space anal-

ysis in calculating reachability, which has been our choice for the data plane verifi-

cation tool.

6.2.2 Calculation of atomic predicates

Once demonstrated that atomic predicates correspond to equivalence classes, we

need a way to extrapolate them quickly from a set of port predicates. For this pur-

pose we need the following two formulas and the algorithm inspired by [201].

Theorem 2. Atomic Predicates, Cardinality Set 1 Given a Predicate p we denote A({p})

as the set of atomic predicates of the set compose only by the predicate p and:

A({p}) =

{true} se p = true or f alse

{p,¬p} else
(6.2)

Theorem 3. Atomic Predicates of the union of two sets of predicates Given P1 =

{b1,b2, . . . ,bm} e P2 = {c1, c2, . . . , cn} 2 Atomic Predicates set. AP = {a1, a2, . . . , ak} is the

result of:

{ai = bi1 ∧ ci2 |ai 6= f alse, i1 = {1, ...,m}, i2 = {1, . . . ,n}} (6.3)

AP = A({P1 ∪ P2}) in [201].

The following algorithm applies the given formulas given to calculate the atomic predi-

cates of a set of one element and the union of two sets to obtain the atomic predicates of an

arbitrary set of predicates.

122 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

Algorithm 1 Atomic Predicates calculation algorithm
Input: set of predicates {p1, p2, . . . , pN}

Output: atomic predicates input set, A({p1, p2, . . . , pN})

1: for i = 1 to N do

2: Compute A({pi}) using (6.2)

3: end for

4: for i = 2 to N do

5: Compute A({p1, ..., pi}) using (6.3) with A({p1, ..., pi−1}) e A({pi})

6: end for

7: return A({p1, . . . , pN});

Note that it is possible to apply the formulas (6.2) and (6.3) within a single cycle.

The system maintains two distinct sets of predicates: one for ACLs, one for forward-

ing rules. Each of these two sets can be calculated through the algorithm following

two criteria that provide different performances.

1. criteria for sorting of the MBF ACL:

• Random selection: ACLs are processed in random order.

• Smallest ACL first: first select the ACLs with a smaller number of rules.

2. Criteria for ordering the forwarding rules:

• Random selection: the rules are processed in random order.

• Selection by box: the rules related to the same are processed together

middlebox.

loop and black holes detection

As already seen, the loops are detected during the construction of the policy tree.

We consider exclusively the packet-drops due to the absence of forwarding rules in

the routers, not the ACL that explicitly discard the traffic. If the difference between

the set of all the atomic predicates and the union of all the atomic predicates of a

forwarding table is empty, then the table has no black holes, because it means that

all the traffic received is treated. Or:

6.2. Atomic Predicates for Transformations 123

S(true)−
k⋃

i=1

S(Fi) = ∅ =⇒ No black holes in the table (6.4)

Where S(true) is the set of every atomic predicates and k is the number of port

indicates on the table.

Network slicing

A slice network is a set of ports and a set of forwarding and access control rules.

Given two slice Slice1 and Slice2 we consider T1 and T2 the sets of gates, SF1 and SF2

the sets of forwarding rules and SA1 and SA2 the sets of the ACL rules of the two

slice; these overlap if and only if:

T1 ∩ T2 6= ∅ ∨ SA1 ∩ SA2 6= ∅ ∨ SF1 ∩ SF2 6= ∅ (6.5)

6.2.3 Graph updates

Updating links

Alterations in the state of the topology do not modify the atomic predicates, however

the police tree could vary and an update is therefore necessary:

• Link down:retrieve the nodes from the policy tree hashtable and delete the

entire subtree from the table from the link.

• Link up: retrieve the nodes from the policy tree hashtable and extend the tree

by searching depth first starting from the port involved.

Update of rules

When the rules are updated, three operations must be performed:

1. Verifies that the port predicates are altered and possible recalculation.

2. Updating atomic predicates.

3. Updating the reachability tree item.

Operations 2 and 3 can be carried out concurrently.

124 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

Update of port predicates

To make updating possible, the rules are organized in a forest. Each tree is con-

structed by iterating over the forwarding table of a device and setting the rules

whose prefix is contained in the current prefix as daughters of the current rule. In

this way a set of tuples is saved in each tree:

< Pre f ixi, Lengthi, Porti, Ri >

Where Pre f ix, Length are used for the match, Port is the output interface, while Ri

is given by the predicate obtained by eliminating the rules prefixes daughters from

Pre f ixi according to the following formula:

Ri = Pre f ixi ∧ (
∨

j∈C(i)

¬Pre f ixj) (6.6)

Where C(i) is the set of child rules of the rule (i).

The predicate of the port x, Px, is obtained then as the disjunction of the predi-

cates Ri of the rules that direct the forwarding on it:

Px =
∨

porti=portx

Ri (6.7)

Let’s see how the tree is used in the event of rule updates:

1. rule deletion: if the rule i is deleted, its children are assigned to the parent rule

j, and the tree is updated by replacing it in Rj the predicate of the removed rule

i.

Rj← Rj ∨ Ri

If the rule i forwards packets to the port x and the parent rule j forwards to

the port y, it must be removed from the port predicate Px. The predicate of the

6.2. Atomic Predicates for Transformations 125

deleted rule Ri and add it instead to Py:

Px← Px ∧ ¬Ri

Py← Py ∨ Ri

2. Adding a rule: if a rule is added i, it is first added to the reference tree accord-

ing to the criteria seen above. If the rule j is the parent of i, the match predicate

of the new rule must be removed from the parent rule:

Rj← Rj ∧ ¬Pre f ixi

The predicates of port are then modified in a dual manner to the previous case:

Px← Px ∨ Ri

Py← Py ∧ ¬Ri

Updating of atomic predicates

There are of course two cases:

1. Addition of a predicate: just apply the formula (6.3), to calculate the atomic

predicates of the union of two sets.

2. Deletion of a predicate Pj: the old set of atomic predicates is still representa-

tive of the set of port predicates, but some predicates could be redundant.

To minimize the set of atomic predicates we consider all the atomic predicates

that represented Pj: of these the ones that are not used in the description of other

gate predicates are eliminated. The complete algorithm is described in [204].

6.2.4 Improvements Introduced

With the update algorithm we are able to maintain a temporary tree in the event of

a rule update. Reachability queries thus can be answered anytime without waiting

for the atomic predicates to be updated. Updating, taking 10 ms on average in our

126 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

test-beds, occurs concurrently. The temporary tree is expanded with the new unre-

solved predicates, causing a slight decrease in efficiency as for [106].

If the unsolved predicates are in a number less than a certain threshold (config-

urable) and there are no changes of atomic predicates it is sufficient to calculate the

AP representation of the new predicates. Vice versa if the number of unresolved

predicates exceeds the threshold or if the set of atomic predicates has changed, the

temporary tree is eliminated and a new one is calculated.

Essential for the functioning of the system is the concept of forwarding equivalence

class, already applied in [106] and cited in [105] for the implementation of a dis-

tributed version of NetPlumber. The demonstration that the representation in atomic

predicates is a representation of the network equivalent to the original one is equally

fundamental. These two principles have inspired numerous further studies includ-

ing [20, 99, 156, 194, 94, 114, 210, 88].

Some limitations emerge at this point. First of all, the network model excludes a

priori any device that modifies packets, cutting out widespread cases such as NAT,

MPLS, IP-in-IP tunnels. However, the theory has been extended to include some

types of changes in [202], although, to the best of our knowledge, a version of this

upgraded library is not yet available. Furthermore, as we have seen, the forwarding

rules only use the IP address to construct the match predicates. A solution for the

application of the method to the SDN consists in the use of the headers indicated in

the OpenFlow specification [185], instead of just the IP address.

Finally, considering the BDDs, [20] suggests the use of a more efficient data structure

for the representation of predicates, attributing to BDDs an overhead due to the ex-

cessive number of calls to library functions. It is also known from [1] that the BDDs

are sensitive to the ordering of the variables: an incorrect ordering can lead to a sen-

sible efficiency reduction of the system.

For these reasons, an important part of the work presented in this chapter has been

focused on improving the current state of the art tools to attenuate or remove such

limitations. Our contributions include:

1. HashTable: a "reverse" tree is kept in a hash-table for each reachability tree.

This table correlates a port and the reachability tree nodes that refer to it, to

6.3. TechNETium, a verification data plane tool 127

update trees more quickly.

2. Ports along the route: all common ports are kept in the path from s a d, to ease

loop detection.

3. Complementary set of atomic predicates: if a set of atomic predicates, used to

represent a predicate, becomes larger than half of S(true), save the complement

of the set with respect to S(true) instead of the original set, to save space.

4. OpenFlow Integration: is it possible now to feed the BDD with OpenFlow

rules taken from the SDN controller (as it is shown in the next section using

ONOS).

5. Multiple Match Key Forwarding Rule: Thanks to the OpenFlow and ONOS

integration we are also able to use three different type of matching keys for the

forwarding rules: exact-ip, ternary, and long-prefix match.

6. Improved domain atomic predicates to integer translation: We rewrote the

algorithm for the domain conversion from to integer tree implementing a cache

that keep track of the last conversions.

6.3 TechNETium, a verification data plane tool

In this section we will show TechNETium our security policy checker tool.

A core security design of our tool is Model Driven Development (MDD) [52, 45,

11], an approach that adopts Unified Modeling Language (UML) as domain-specific

modeling language. The goal of MDD is to model entities, relations and behaviors

of the elements of the system as high-level abstractions.

In the Model Driven Development approach, the definition of the specific domain

of the problem to be modeled is required. In TechNETium, this involves both secu-

rity and networking verification tools. We herein summarize the general concepts

behind the MDD implementation useful to understand our contributions; further

details can be found in our work in [126].

. TechNETium exploits a network model-checking based on policies. By policy we

128 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

mean a variant aspect of any network (forwarding) mechanism, i.e., a desirable high-

level goal expressed in the form of a rule or a configuration. We build a network

model to formally check if those policies are met. The basic idea is to create and

maintain a model of the network and a set of policies that such model must satisfy.

Consequently, the model allows to continuously verify whether or not the policy set

is satisfied on the network.

As specified in the previous section, we consider the SDN paradigm as the enabler

for this technology, since it natively exhibits the separation between the data plane

level and the control plane.

The aim of TechNETium is to be totally portable and architecture-independent. For

this purpose, it is written in Java; however, to perform a first test we choose a specific

architecture on which to deploy it: ONOS[16]. This choice was motivated by several

factors. First of all, ONOS offers a large set of APIs and methods for managing the

network, a necessary requirement to be able to quickly obtain data about network

topology elements such as: devices, links, ports, hosts and forwarding rules.

ONOS is also one of the best open source controllers in terms of performance [16].

• High Throughput: up to 1M requests/second

• Low Latency: 10 - 100 ms event processing

• Global Network State Size: up to 1TB of data

• High Availability

ONOS has been also proven one of the best controller for DoS attack tolerance [4]

compared to the main open source alternatives.

TechNETium is a architecture composed of two main modules that work on two lev-

els of an SDN architecture stack. At the Data Plane level, through the predicates of

a typical SDN controller, generates a representation of the network model using the

previously described atomic predicate technique. The result of this graph will there-

fore represent a snapshot of all the possible paths of a data traffic divided according

to the flow rules of the switches.

The Control Plane level module, on the other hand, will input a "high level" security

policy defined and described by the user and / or network administrator, and will

6.3. TechNETium, a verification data plane tool 129

perform the verification of this by computing it on the atomic predicate graph, in the

form of Reachability and ToWayPoint queries.

6.3.1 Atomic Predicates BDD generator

The first part of TechNETium creates the atomic predicates trees. Following what

has been described in section 6.2 according to the atomic predicates theory, we need

two distinct sets of data to generate it:

• Physical data related to switches and hosts (links, ports, interfaces);

• All the installed flow rules.

From these two sets a PolicyGraph is then created. It represents the whole set of

possible paths of a packet within the network, according to the currently installed

flow rules. As underlined in 6.2 we have been inspired by the AP Verifier tool de-

scribed in [205], but we introduced many improvements in terms of performance

and efficiency.

The BBD generator has been integrated as a core service of the ONOS Engine. In

this way we can easily query the extended classes of the Topology module of ONOS

to query it and obtain the dataset of the network devices, links and hosts and the

correspondent flow rules, to create the BDD tree of atomic predicates.

6.3.2 Policy Checker Application

Once the BDD tree has been created, it is possible to verify the security network

policy. The strength of TechNETium is that a policy is simply seen as a property

of the network. A property can then be formally verified on its representation as

BDD. However, to make the whole process automatic and user-customizable, Tech-

NETium can interpret the high-level policy defined by the user by breaking it down

into elementary graph operations. The user is enabled to define a policy as de-

sired properties regarding the routing of network traffic through the various nodes,

while the policy verification is efficiently implemented as a sequence of Reachability

checks. In our case study, the policy manager has been created as an ONOS appli-

cation, with its own graphical interface allowing to insert the security policy and to

130 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

launch the verification.

To validate our approach we implemented the Reachability policy (obviously) and

we provided two examples showing how to define composite policies based on

Reachability, namely the FullReachability and ToWayPoint policies:

• FullReachability (A,B) holds true if there is Reachability from A to B AND from

B to A

• ToWayPoint (A,B,C) holds true if every existing path from A to C must pass

through B.

The Reachability policy can be verified as a property of the BDD tree. The atomic

predicates representation allows us to calculate the set of packets that can reach a

destination port starting from source port using the following algorithm:

Algorithm 2 Reachability algorithm from port s to port d
Input: S(F1), . . . ,S(Fj): quotient space representation of forwarding predicates

among the path s and d (F1, F2, ..., Fj)

Input: S(A1), . . . ,S(Ak): quotient space representation of access control predicates

among path between s and d (A1, A2, ..., Ak)

Output: set of packets that can effectively reach d from s

1: SF← SF ∩ S(F1) ∩ . . . ∩ S(Fj)

2: if SF = ∅ then

3: return f alse

4: end if

5: SA← SA ∩ S(A1) ∩ . . . ∩ S(Ak)

6: if SA = ∅ then

7: return f alse;

8: end if

9: return SF, SA

We can then use the verification algorithm to calculate the reachability tree of a

given port by performing a depth-first search by injecting all packets (SA and SF)

into the port. A search branch is interrupted at a port x if:

1. (SA or SF) becomes empty.

6.3. TechNETium, a verification data plane tool 131

2. The port x is an output port and it is not connected to any input port.

3. The port x is the entry port of a box without exit ports. The port x has already

been visited (loop detected).

In this example (taken from [201]) we have both forwarding and ACL rules, indi-

cated for a port such as SF and SA or as two separate integer lists from “;” following

“forwarding_ap ; acl_ap”.

FIGURE 6.3: Atomic Predicates Verifier - Example reachability net-
work

The network has six atomic predicates for forwarding and two for access control.

The input port port1 accepts all packets as input and forwards the predicates 4,5,6

to the port port2 and the predicates 1,2,3 to the port port3.

FIGURE 6.4: Atomic Predicates Verifier - Port reachability tree port1
for the network shown in the figure (6.3)

The reachability tree saves in each node: a port, and the identifiers of the predi-

cates that can reach the port (forwarding) and of the predicates that can pass through

it (ACL).

In any case the backtracking is performed and the search is carried out until there are

no more ports to analyze. At the end we get a tree whose nodes are given by a port

number and the set of packets that can arrive there.

The FullReachability and the ToWayPoint policy as a consequence are decomposed

132 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

as high-level policies to a set of reachability ones. This because when a model check-

ing tool is able to construct the reachability graph of a system, it can in principle

answer any reachability question by simply examining this graph [27].

The FullReachability policy is just a simple example of this kind of decomposition.

It express the Reachability from A to B in a duplex way, for this reason is it simply

calculated as:

FullReachability(A, B) = Reachability(A, B) ∧ Reachability(B, A) (6.8)

and no need for an additional reachability graph is necessary.

The ToWayPoint policy is more complex and it calls for a modification of the reacha-

bility graph. In order to be expressed in terms of Reachability, ToWayPoint is defined

as follows. Considering:

α 6= β,ω 6= α,ω 6= β (6.9)

The figure 6.5 shows an extract of the policy verification management interface.

Once the policies are defined and installed it is possible to launch the verification.

FIGURE 6.5: Policy Verifier ONOS Interface

These policies, however simple, can be considered the first step for a network

administrator to define his security policies for network management. In fact, con-

sidering the most common network attacks such as distributed / reflection denial of

6.4. Test and Evaluation 133

service, network administrators can use this policy in a proactive or reactive mode:

Reactively, e.g. by isolating an entire network or sub-network or single node from

which malicious traffic originates, and verifying their effective isolation with reach-

ability policies.

Proactively, e.g. by redirecting a suspicious traffic flow on a specific subnet, or a

honey-net, where NFVs can be installed with diagnostic / deep packet inspection

tools to analyse the aforementioned traffic in more detail. An example of such use

case scenario has been shown in our in work [125].

6.4 Test and Evaluation

 10000

 100000

 1x106

 1x107

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
 [
μ

s]

%

Link Graph creation
Node Graph creation
Rule Graph creation

FIGURE 6.6: Average BDD creation time.

In this section we will describe some of the main experiments/test we performed.

The goals of such tests were mainly 3:

• Showing the performances of the network graph creation.

• Showing the performance difference for reachability verification with related

works such NetPlumber.

• Showing the performance difference for generic policy verification with related

works such NetPlumber.

134 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

 100

 1000

 10000

 100000

 1x106

 1x107

 0 10 20 30 40 50 60 70 80 90 100

Ti
m

e
 [
μ

s]

%

Link Reachability
Node Reachability
Rule Reachability

FIGURE 6.7: Policy time check after a link up / link down upgrade
and node, links and forwarding rules increase.

The experiments were performed on several virtualbox dual-core virtual ma-

chines with 4 GB of Ram and Ubuntu Linux 18.04 operating system. The network

sample that we used is the i2 Standford Network1.

This network is composed of 161 Nodes, 11450 Links, and 77451 Forwarding

Rules.

The first set of tests has been made to verify the performances on the BDD graph cre-

ation. We executed TechNETium increasing the amount of 3 different items: links,

nodes and rules. As a result of these numbers, we have therefore measured the cre-

ation time of the BDD fee.

On graphs 6.6 we can see the required time for TechNETium to create the BDD in

3 different ways. Increasing the number of nodes, of links, and of forwarding rules

given as a incremental percentage of the total network. As we predicted, the growth

of creation time is roughly linear in the number of links and nodes.

Considering the forwarding rules, instead, the time increases linearly up to 60% of

1https://uit.stanford.edu/service/network/internet2

6.4. Test and Evaluation 135

	100

	10000

	1x106

	1x108

	1x1010

	1x1012

	0 	2000 	4000 	6000 	8000 	10000 	12000 	14000

Ti
m
e	
[μ
s]

Number	of	reachabilities

Hassel
TechNETium

	100

	10000

	1x106

	1x108

	1x1010

	1x1012

	0 	2000 	4000 	6000 	8000 	10000 	12000 	14000

Ti
m
e	
[μ
s]

Number	of	full	reachabilities

Hassel
TechNETium

 100

 1000

 10000

 100000

 1x106

 1x107

 1x108

 1x109

 1x1010

 1x1011

 0 200 400 600 800 1000

Ti
m

e
 [
μ

s]

Number of To Waypoint

Hassel
TechNETium

FIGURE 6.8: Policy time check after a link up / link down upgrade
and node, links and forwarding rules increase.

the rules, then it stabilizes. This is due to the fact that we increase the forwarding

rules shuffling them at every step but in a equivalent number for each device. For

this reason, after a certain threshold the complexity of the network due to the calcu-

lation of all possible paths of a packet becomes constant.

The second set of tests that we performed aimed to calculate the policy verification

time while upgrading the reachability graph. We calculated the time required to ver-

ify the same policy changing the network graph as we previously did it, increasing

the number of nodes, links and forwarding rules.

Graphs 6.7 shows the results of such tests. The left graph shows the time to verify

an increasing number of Reachability policies when adding or removing one link.

These events modify the reachability graph, yet the verification time still increases

linearly with the number of policies only. This is a relevant test that demonstrates

that the atomic predicates techniques implemented by TechNETium is efficient with

respect to graph updates, which is one of the main requirements for this kind of

tools.

136 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

The graph on the right confirms this result generalizing the test approach. The ver-

ification time linearly increases with the cardinalities of the sets of nodes, links, and

forwarding rules. There is only an anomalous behavior after the inclusion of the

70% of forwarding rules set. In this case the behavior is due to the fact that, as the

forwarding rules increase, many more direct links are configured so that the reacha-

bility is much more likely to be successful in less time.

Finally we tested the performance difference between the NetPlumber tool (based on

Hassel header space analysis) and TechNETium with atomic predicates. Those tests

aims to proof that the BDD based policy verification on a large scale is definitely

more efficient. For this reason we tested the three developed policies (Reachabil-

ity, FullReachability and ToWayPoint) increasing the policies number between 1 and

1000.

From graphs 6.8 we can therefore infer some important data. Policy verification

with TechNETium is 3 orders of magnitude more efficient. The growth is also lin-

ear for both, therefore the performance difference grows with the number of policies

to be verified. Furthermore, linear growth is different. While NetPlumber shows

a growth, albeit small, in the verification times with the increase in the number of

policies due to the size of the reachability graph this is much less evident on Tech-

NETium, whose growth is much less pronounced.

This analysis is valid for Reachability and FullReachability but it is even more evi-

dent in the case of the ToWayPoint policy. In fact, in this policy a reachability test

including a unreachable node is part of the policy definition (as defined in 6.3). Ver-

ifying a false reachability property for NetPlumber is very expensive in the worst

case, while on the tree of atomic predicates, being a logical AND, the complexity in

the worst case does not change.

6.5 Future Works

Future developments of this work include several improvements at every stack level.

From the application point of view we are currently working on a better user im-

prove the Policy creation and its management, with an improved and simpler graphic

6.6. Conclusions 137

interface where policies are defined already at the application level through a "lan-

guage of reachabilities".

From a development point of view another interesting future development can be

the deployment of TechNETium into other SDN controller as Ryu, OpenDayLight

and POX.

Finally additionally, recent years have seen how P4 language is becoming increas-

ingly popular among SDN data plane solutions. P4 is a language to configure switches.

Precisely, P4 is an open source programming language that lets end users describe

how networking gear should process the packet. It controls processor chips and net-

work forwarding devices. The main paradigm change is to switch from a bottoms-

up approach where fixed-function switches are built-in, to a programmable top-

down approach where the user decide which functionalities wants and install.

The possibilities it offers to be able to modify the data plane and display new in-

formation and aggregated data at the switch level offer numerous opportunities to

plan significant improvements in performance and usability. For this reason we are

currently working on a integration of TechNETium into a programmable data plane

P4-based. The main idea will be to use the advantages of PDP to produce, expose

and use additional metadata information produced by the data plane.

6.6 Conclusions

In this chapter we presented TechNETium, a architecture that exploits several tech-

niques such as atomic predicates transformation[204], SDN and model driven devel-

opment[45] to formally verify custom security policies. The architecture is composed

of two parts:

1. The Atomic Predicates graph generator, that builds the Atomic Predicates Graph

which represent the state of the network.

2. The Policy Manager, which enable the user to define its own security policy.

TechNETium will then compile the output of this phase in a sequence of reach-

ability policies and verify them.

138 Chapter 6. TechNETium: a SDN tool to Verify Security Network Policies

In order to validate our architecture we deployed it into a well known SDN con-

troller, ONOS and we performed several tests to proof the improvements of the per-

formances compared to the state of the art tools.

We argued that an abstracted development model approach for the policy manage-

ment level is necessary to exploit the power of SDN, and we show-cased it imple-

menting two additional custom policies. We argued with some use case that this

architecture is suited for a typical system network administrator who wants to for-

mally verify his own custom policies.

Related work includes similar tools with different techniques for the network verifi-

cation level [88, 2, 132]. As we already discussed NetPlumber[103] is the tool which

has been create with our same goal, but we showed that we definitely improved the

performances. Veriflow [106] do not focus on custom policies but only on network

invariant in order to detect network changes. MineSwepper [15] otherwise use an

SMT solver to analyse all possible routing paths in order to verify network proper-

ties, but without the possibility to implement custom ones. The most similar tool

in the literature is obviously AP Verifier[205]. As we pointed out TechNETium has

been inspired by this tool, it uses the atomic predicates techniques and the main

algorithm for the reachability graph creation. As specified in 6.2.4 we introduced

several improvements defined by the same authors of AP Verifier and we also built

the Policy Manager module. To the best of our knowledge, there isn’t in the liter-

ature such tool which include a Formal Verification network tool based on Atomic

Predicate technique, with a Policy Manager integrated into an SDN controller cre-

ated with a Model Driven Development Approach.

139

Chapter 7

Conclusions

This thesis illustrates the main outcomes of the research activities conducted through-

out the three years of the Ph.D. program. An original cybersecurity analysis of the

main threats in service enabler architectures.

In chapter 2 I started with a review of the state-of-the-art of the current new service

oriented software architecture.

After that, I defined an analysis path, based on a top-down approach of the software

architecture based on the orchestration level of the enabled services.

Next, I developed a real-world use case for each level identified, that is:

• a Clearing System in chapter 4.1.

• a Service Enabler Platform called SMAll in 5.

• a Software Defined Full-Stack Architecture in 6.2 called techNETium.

The main contributions consists of an analysis of all the major threats and vul-

nerability on such architectures. In order to do that I firstly studied a categorization

of the architecture components.

For this reason in 4.1.2 I proposed a snapshot management system to organize the

clearing system components. In 5.2 I proposed a MaaS Stack for a generic mobility

service enabling platform and, finally, in 6.3 I developed application layer for secu-

rity policy definition in a software defined network environment.

I supported and proved these contributions with practical attacks on the use cases

developed. As a consequence, I also proposed a set of architectural solutions for

aforementioned threats.

140 Chapter 7. Conclusions

I believe that this work opens up a plethora of novel possibilities in research as well

as in any entity interested in building new service enabler software architecture.

141

Bibliography

[1] S. B. Akers. “Binary Decision Diagrams”. In: IEEE Trans. Comput. 27.6 (1978),

pp. 509–516. ISSN: 0018-9340. DOI: 10.1109/TC.1978.1675141. URL: https:

//doi.org/10.1109/TC.1978.1675141.

[2] Adnan Akhunzada et al. “Secure and dependable software defined networks”.

In: Journal of Network and Computer Applications 61 (2016), pp. 199–221.

[3] Adnan Akhunzada et al. “Secure and Dependable Software Defined Net-

works”. In: J. Netw. Comput. Appl. 61.C (Feb. 2016), pp. 199–221. ISSN: 1084-

8045. DOI: 10.1016/j.jnca.2015.11.012. URL: http://dx.doi.org/10.

1016/j.jnca.2015.11.012.

[4] T. Alharbi, S. Layeghy, and M. Portmann. “Experimental evaluation of the

impact of DoS attacks in SDN”. In: 2017 27th International Telecommunication

Networks and Applications Conference (ITNAC). 2017, pp. 1–6. DOI: 10.1109/

ATNAC.2017.8215424.

[5] Qutaibah Althebyan. Design and analysis of knowledge-base centric insider threat

models. ProQuest, 2008.

[6] Qutaibah Althebyan et al. “Mitigating insider threats in a cloud using a knowl-

edgebase approach while maintaining data availability”. In: ICITST. IEEE.

2015, pp. 226–231.

[7] Amazon. API Gateway. https://aws.amazon.com/api-gateway/. (Visited on

09/2016).

[8] Kai Kuikkaniemi Antti Poikola and Harri Honko. MyData A Nordic Model for

human-centered personal data management and processing. Tech. rep. Ministry of

Transport Finland, 2010.

[9] Apache. Zookeeper. https://zookeeper.apache.org/. (Visited on 09/2016).

142 Bibliography

[10] Kevin Ashton. “That ’internet of things’ thing”. In: RFiD Journal 22.7 (2009),

pp. 97–114.

[11] Swaminathan Balasubramanian et al. Selecting a development associate for work

in a unified modeling language (uml) environment. US Patent App. 13/546,301.

2014.

[12] Debasis Bandyopadhyay and Jaydip Sen. “Internet of Things: Applications

and Challenges in Technology and Standardization”. In: Wireless Personal Com-

munications 58.1 (2011), pp. 49–69.

[13] MICHAEL BARBARO and TOM ZELLER. A Face Is Exposed for AOL Searcher

No. 4417749. 2006. URL: https://www.nytimes.com/2006/08/09/technology/

09aol.html (visited on 10/30/2019).

[14] N.C. Batista, R. Melício, and V.M.F. Mendes. “Services enabler architecture for

smart grid and smart living services providers under industry 4.0”. In: Energy

and Buildings 141 (2017), pp. 16 –27. ISSN: 0378-7788. DOI: https://doi.org/

10.1016/j.enbuild.2017.02.039. URL: http://www.sciencedirect.com/

science/article/pii/S0378778816316358.

[15] Ryan Beckett et al. “A general approach to network configuration verifica-

tion”. In: Proceedings of the Conference of the ACM Special Interest Group on Data

Communication. ACM. 2017, pp. 155–168.

[16] Pankaj Berde et al. “ONOS: towards an open, distributed SDN OS”. In: Pro-

ceedings of the third workshop on Hot topics in software defined networking. ACM.

2014, pp. 1–6.

[17] Deepavali Bhagwat et al. “An annotation management system for relational

databases”. In: The VLDB Journal 14.4 (2005), pp. 373–396.

[18] Matt Bishop. “Position: Insider is relative”. In: Proceedings of Workshop on New

security paradigms. ACM. 2005, pp. 77–78.

[19] Matt Bishop et al. “Relationships and data sanitization: A study in scarlet”.

In: Proceedings of the 2010 New Security Paradigms Workshop. ACM. 2010, pp. 151–

164.

Bibliography 143

[20] Nikolaj Bjørner et al. “ddNF: An Efficient Data Structure for Header Spaces”.

In: Hardware and Software: Verification and Testing. Ed. by Roderick Bloem and

Eli Arbel. Cham: Springer International Publishing, 2016, pp. 49–64. ISBN:

978-3-319-49052-6.

[21] Scanbot Blog. Government digitization trends. 2019. URL: https://scanbot.

io/blog/government-digitization-trends/ (visited on 10/30/2019).

[22] Stephen Boyd et al. “Randomized Gossip Algorithms”. In: IEEE/ACM Trans.

Netw. 14.SI (June 2006), pp. 2508–2530. ISSN: 1063-6692.

[23] Justin Brickell and Vitaly Shmatikov. “The cost of privacy: destruction of

data-mining utility in anonymized data publishing”. In: Proceedings of the 14th

ACM SIGKDD international conference on Knowledge discovery and data mining.

ACM. 2008, pp. 70–78.

[24] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. “FST TCS 2000”. In:

ed. by Sanjiv Kapoor and Sanjiva Prasad. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2000. Chap. Data Provenance: Some Basic Issues, pp. 87–93. ISBN:

978-3-540-44450-3. DOI: 10.1007/3-540-44450-5_6. URL: http://dx.doi.

org/10.1007/3-540-44450-5_6.

[25] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. “Intercloud: Utility-

oriented federation of cloud computing environments for scaling of applica-

tion services”. In: AAPP. Springer, 2010, pp. 13–31.

[26] Rajkumar Buyya et al. “Cloud computing and emerging IT platforms: Vision,

hype, and reality for delivering computing as the 5th utility”. In: FGS 25.6

(2009), pp. 599 –616. ISSN: 0167-739X. DOI: http://dx.doi.org/10.1016/

j.future.2008.12.001. URL: http://www.sciencedirect.com/science/

article/pii/S0167739X08001957.

[27] Béatrice Bérard et al. “Systems and Software Verification: Model-Checking

Techniques and Tools”. In: (Jan. 2001).

[28] Franco Callegati et al. “Data security issues in maas-enabling platforms”. In:

Research and Technologies for Society and Industry Leveraging a better tomorrow

(RTSI), 2016 IEEE 2nd International Forum on. IEEE. 2016, pp. 1–5.

144 Bibliography

[29] Franco Callegati et al. “Insider Threats in Emerging Mobility-as-a-Service

Scenarios”. In: HICSS. AIS Electronic Library (AISeL), 2017. URL: http://

aisel.aisnet.org/hicss-50/eg/insider_threat/4.

[30] Franco Callegati et al. “Privacy-Preserving Design of Data Processing Sys-

tems in the Public Transport Context”. In: Pacific Asia Journal of the Association

for Information Systems 7.4 (2015).

[31] Franco Callegati et al. “Privacy-preserving design of data processing systems

in the public transport context”. In: Pacific Asia Journal of the Association for

Information Systems 7.4 (2015).

[32] Franco Callegati et al. “Smart Mobility for All: A Global Federated Market

for Mobility-as-a-Service Operators”. In: 20th International Conference on Intel-

ligent Transportation. 2017.

[33] Sabrina Capitani Di Vimercati, Sara Foresti, and Pierangela Samarati. “Data

Protection in Cloud Scenarios”. In: Revised Selected Papers of the 10th Interna-

tional Workshop on Data Privacy Management, and Security Assurance-Volume

9481. Springer-Verlag New York, Inc. 2015, pp. 3–10.

[34] Tim Casey. A Field Guide to Insider Threat. Tech. rep. Intel, 2015.

[35] CEN. Service Interface for Real Time Information. (Visited on 08/2016).

[36] D. Chen and H. Zhao. “Data Security and Privacy Protection Issues in Cloud

Computing”. In: ICCSEE. Vol. 1. 2012, pp. 647–651. DOI: 10.1109/ICCSEE.

2012.193.

[37] Hsinchun Chen, Roger HL Chiang, and Veda C Storey. “Business Intelligence

and Analytics: From Big Data to Big Impact.” In: MIS quarterly 36.4 (2012),

pp. 1165–1188.

[38] Rui Chen et al. “Publishing set-valued data via differential privacy”. In: Pro-

ceedings of the VLDB Endowment 4.11 (2011), pp. 1087–1098.

[39] Youngho Cho, Gang Qu, and Yuanming Wu. “Insider threats against trust

mechanism with watchdog and defending approaches in wireless sensor net-

works”. In: SPW. IEEE. 2012, pp. 134–141.

Bibliography 145

[40] William R Claycomb and Alex Nicoll. “Insider threats to cloud computing:

Directions for new research challenges”. In: ACSAC. IEEE. 2012, pp. 387–394.

[41] José Cordeiro et al. ICEIS. Vol. 3. Springer Science & Business Media, 2008.

[42] Graham Cormode et al. “Empirical privacy and empirical utility of anonymized

data”. In: 2013 IEEE 29th International Conference on Data Engineering Work-

shops (ICDEW). IEEE. 2013, pp. 77–82.

[43] George F Coulouris, Jean Dollimore, and Tim Kindberg. Distributed systems:

concepts and design. pearson education, 2005.

[44] Rick Crawford et al. “Sanitization models and their limitations”. In: Proceed-

ings of the 2006 workshop on New security paradigms. ACM. 2006, pp. 41–56.

[45] Alberto Rodrigues Da Silva. “Model-driven engineering: A survey supported

by the unified conceptual model”. In: Computer Languages, Systems & Struc-

tures 43 (2015), pp. 139–155.

[46] M. C. Dacier et al. “Security Challenges and Opportunities of Software-Defined

Networking”. In: IEEE Security Privacy 15.2 (2017), pp. 96–100. ISSN: 1540-

7993. DOI: 10.1109/MSP.2017.46.

[47] Chenyun Dai et al. “SDM”. In: ed. by Willem Jonker and Milan Petković.

Berlin, Heidelberg: Springer, 2008. Chap. An Approach to Evaluate Data Trust-

worthiness Based on Data Provenance, pp. 82–98. ISBN: 978-3-540-85259-9.

DOI: 10.1007/978-3-540-85259-9_6. URL: http://dx.doi.org/10.1007/

978-3-540-85259-9_6.

[48] Mila Dalla Preda et al. “AIOCJ: A choreographic framework for safe adaptive

distributed applications”. In: SLE. Springer. 2014, pp. 161–170.

[49] Nicodemos Damianou et al. “The Ponder Policy Specification Language”. In:

IWPDSN. POLICY ’01. London, UK, UK: Springer-Verlag, 2001, pp. 18–38.

ISBN: 3-540-41610-2. URL: http://dl.acm.org/citation.cfm?id=646962.

712108.

[50] T. Dargahi et al. “A Survey on the Security of Stateful SDN Data Planes”. In:

IEEE Communications Surveys Tutorials 19.3 (2017), pp. 1701–1725. DOI: 10.

1109/COMST.2017.2689819.

146 Bibliography

[51] Andrew DeOrio et al. “Machine Learning-based Anomaly Detection for Post-

silicon Bug Diagnosis”. In: Proceedings of the Conference on Design, Automa-

tion and Test in Europe. DATE ’13. Grenoble, France: EDA Consortium, 2013,

pp. 491–496. ISBN: 978-1-4503-2153-2. URL: http://dl.acm.org/citation.

cfm?id=2485288.2485411.

[52] Elisabetta Di Nitto et al. Model-driven Development and Operation of Multi-cloud

Applications: The Modaclouds Approach. Springer, 2017.

[53] Gary Doss and Guvirender Tejay. “Developing insider attack detection model:

a grounded approach”. In: ISI. IEEE. 2009, pp. 107–112.

[54] Nicola Dragoni et al. “Microservices: Yesterday, Today, and Tomorrow”. In:

Present and Ulterior Software Engineering. Ed. by Manuel Mazzara and Bertrand

Meyer. Cham: Springer International Publishing, 2017, pp. 195–216. ISBN:

978-3-319-67425-4. DOI: 10.1007/978- 3- 319- 67425- 4_12. URL: https:

//doi.org/10.1007/978-3-319-67425-4_12.

[55] Schahram Dustdar et al. “Quality-aware Service-oriented Data Integration:

Requirements, State of the Art and Open Challenges”. In: SIGMOD Rec. 41.1

(Apr. 2012), pp. 11–19. ISSN: 0163-5808. DOI: 10.1145/2206869.2206873. URL:

http://doi.acm.org/10.1145/2206869.2206873.

[56] Cynthia Dwork, Aaron Roth, et al. “The algorithmic foundations of differen-

tial privacy”. In: Foundations and Trends R© in Theoretical Computer Science 9.3–4

(2014), pp. 211–407.

[57] H. Eldardiry et al. “Multi-Domain Information Fusion for Insider Threat De-

tection”. In: SPW. 2013, pp. 45–51. DOI: 10.1109/SPW.2013.14.

[58] Thomas Erl. Service-Oriented Architecture: Analysis and Design for Services and

Microservices. 2nd. Upper Saddle River, NJ, USA: Prentice Hall Press, 2016.

ISBN: 0133858588, 9780133858587.

[59] Thomas Erl. SOA Principles of Service Design (paperback). Prentice Hall Press,

2016.

[60] Michael D Ernst. “Static and dynamic analysis: Synergy and duality”. In:

WODA 2003: ICSE Workshop on Dynamic Analysis. Citeseer. 2003, pp. 24–27.

Bibliography 147

[61] C. Falge, B. Otto, and H. Österle. “Data Quality Requirements of Collabo-

rative Business Processes”. In: HICSS. 2012, pp. 4316–4325. DOI: 10.1109/

HICSS.2012.8.

[62] S. Fickas, G. Kortuem, and Z. Segall. “Software organization for dynamic

and adaptable wearable systems”. In: Digest of Papers. First International Sym-

posium on Wearable Computers. 1997, pp. 56–63. DOI: 10.1109/ISWC.1997.

629920.

[63] Roy Thomas Fielding. “Architectural styles and the design of network-based

software architectures”. PhD thesis. UC Irvine, 2000.

[64] Lori Flynn, Greg Porter, and Chas DiFatta. “Cloud Service Provider Meth-

ods for Managing Insider Threats: Analysis Phase II, Expanded Analysis and

Recommendations”. In: (2014).

[65] Eric G. W. Wong. “Validating Network Security Policies via Static Analysis of

Router ACL Configuration”. In: (Dec. 2006), p. 169.

[66] Maurizio Gabbrielli et al. “Self-Reconfiguring Microservices”. In: Theory and

Practice of Formal Methods. Springer, 2016, pp. 194–210.

[67] Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, and Adam Smith.

“Composition attacks and auxiliary information in data privacy”. In: Proceed-

ings of the 14th ACM SIGKDD international conference on Knowledge discovery

and data mining. ACM. 2008, pp. 265–273.

[68] Damianos Gavalas, Charalampos Konstantopoulos, and Grammati Pantziou.

“Design and management of vehicle sharing systems: a survey of algorithmic

approaches”. In: arXiv preprint arXiv:1510.01158 (2015).

[69] Michael Gertz and Sushil Jajodia. Handbook of database security: applications and

trends. Springer, 2007.

[70] Moein Ghasemzadeh et al. “Anonymizing trajectory data for passenger flow

analysis”. In: Transportation research part C: emerging technologies 39 (2014),

pp. 63–79.

148 Bibliography

[71] Gabriel Ghinita, Yufei Tao, and Panos Kalnis. “On the anonymization of sparse

high-dimensional data”. In: 2008 IEEE 24th International Conference on Data

Engineering. IEEE. 2008, pp. 715–724.

[72] Saverio Giallorenzo. “Real-World Choreographies”. PhD thesis. Università

degli studi di Bologna, 2016.

[73] Dino Giuli et al. “Toward a Cooperative Approach for Continuous Innova-

tion of Mobility Information Services”. In: IEEE Systems Journal 7.4 (2013),

pp. 669–680.

[74] Henry G Goldberg et al. “Explaining and Aggregating Anomalies to Detect

Insider Threats”. In: HICSS. IEEE. 2016, pp. 2739–2748.

[75] Li Gong et al. “Going Beyond the Sandbox: An Overview of the New Security

Architecture in the Java Development Kit 1.2.” In: USENIX - USITS. 1997,

pp. 103–112.

[76] Google. Google Transit Feed Specification. https://developers.google.com/

transit/. (Visited on 06/2016).

[77] Google. Google Transit Feed Specification | Realtime Transit. https://developers.

google.com/transit/gtfs-realtime/. (Visited on 08/2016).

[78] M. G. Gouda and X. A. Liu. “Firewall design: consistency, completeness,

and compactness”. In: 24th International Conference on Distributed Computing

Systems, 2004. Proceedings. 2004, pp. 320–327. DOI: 10.1109/ICDCS.2004.

1281597.

[79] Paul Groth, Michael Luck, and Luc Moreau. “A protocol for recording prove-

nance in service-oriented grids”. In: Principles of Distributed Systems. Springer,

2004, pp. 124–139.

[80] Jayavardhana Gubbi et al. “Internet of Things (IoT): A vision, architectural

elements, and future directions”. In: Future generation computer systems 29.7

(2013), pp. 1645–1660.

[81] Zygmunt J. Haas, Joseph Y. Halpern, and Li Li. “Gossip-based Ad Hoc Rout-

ing”. In: IEEE/ACM Trans. Netw. 14.3 (June 2006), pp. 479–491. ISSN: 1063-

6692.

Bibliography 149

[82] Mark Hall et al. “The WEKA data mining software: an update”. In: ACM

SIGKDD explorations newsletter 11.1 (2009), pp. 10–18.

[83] Lianlian He et al. “Adding geospatial data provenance into SDI—a service-

oriented approach”. In: Selected Topics in Applied Earth Observations and Remote

Sensing, IEEE Journal of 8.2 (2015), pp. 926–936.

[84] Yeye He and Jeffrey F Naughton. “Anonymization of set-valued data via top-

down, local generalization”. In: Proceedings of the VLDB Endowment 2.1 (2009),

pp. 934–945.

[85] Thomas S Heydt-Benjamin et al. “Privacy for public transportation”. In: IW-

PET. Springer. 2006, pp. 1–19.

[86] Shuyuan Mary Ho et al. “Demystifying insider threat: Language-action cues

in group dynamics”. In: HICSS. IEEE. 2016, pp. 2729–2738.

[87] Jan Holler et al. From Machine-to-machine to the Internet of Things: Introduction

to a New Age of Intelligence. Academic Press, 2014.

[88] Alex Horn, Ali Kheradmand, and Mukul Prasad. “Delta-net: Real-time Net-

work Verification Using Atoms”. In: 14th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 17). Boston, MA: USENIX Associa-

tion, 2017, pp. 735–749. ISBN: 978-1-931971-37-9. URL: https://www.usenix.

org/conference/nsdi17/technical-sessions/presentation/horn-alex.

[89] Alex Horn, Ali Kheradmand, and Mukul R Prasad. “Delta-net: Real-time

Network Verification Using Atoms.” In: NSDI. 2017, pp. 735–749.

[90] Jeff Howe. “The rise of crowdsourcing”. In: Wired magazine 14.6 (2006), pp. 1–

4.

[91] Vincent C Hu et al. “Guide to attribute based access control (ABAC) defini-

tion and considerations (draft)”. In: NIST Special Publication 800.162 (2013).

[92] Jeffrey Hunker and Christian W Probst. “Insiders and Insider Threats-An

Overview of Definitions and Mitigation Techniques.” In: JoWUA 2.1 (2011),

pp. 4–27.

[93] Kasun Indrasiri. “Microservices in pratice - key architectural concepts of an

MSA”. In: Wso2 White Paper (2016).

150 Bibliography

[94] T. Inoue et al. “An efficient framework for data-plane verification with ge-

ometric windowing queries”. In: 2016 IEEE 24th International Conference on

Network Protocols (ICNP). 2016, pp. 1–10. DOI: 10.1109/ICNP.2016.7784412.

[95] Raj Jain and Subharthi Paul. “Network virtualization and software defined

networking for cloud computing: a survey”. In: IEEE Communications Maga-

zine 51.11 (2013), pp. 24–31.

[96] P. Jamshidi et al. “Microservices: The Journey So Far and Challenges Ahead”.

In: IEEE Software 35.3 (2018), pp. 24–35. DOI: 10.1109/MS.2018.2141039.

[97] Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. “Gossip-based Ag-

gregation in Large Dynamic Networks”. In: ACM Trans. Comput. Syst. 23.3

(Aug. 2005), pp. 219–252. ISSN: 0734-2071.

[98] Jolie Team. Jolie Programming Language. http://jolie-lang.org. (Visited on

06/2016).

[99] Garvit Juniwal, Sanjit A. Seshia, and George Varghese. “Quantitative Net-

work Analysis”. In: 2015.

[100] Audun Jøsang, Roslan Ismail, and Colin Boyd. “A survey of trust and repu-

tation systems for online service provision”. In: Decision Support Systems 43.2

(2007), pp. 618 –644. ISSN: 0167-9236. DOI: http://dx.doi.org/10.1016/j.

dss.2005.05.019. URL: http://www.sciencedirect.com/science/article/

pii/S0167923605000849.

[101] Ashish Kamra, Evimaria Terzi, and Elisa Bertino. “Detecting anomalous ac-

cess patterns in relational databases”. In: The VLDB Journal 17.5 (2008), pp. 1063–

1077.

[102] Miltiadis Kandias, Nikos Virvilis, and Dimitris Gritzalis. “The Insider Threat

in Cloud Computing”. In: Critical Information Infrastructure Security: 6th In-

ternational Workshop, CRITIS 2011, Lucerne, Switzerland, September 8-9, 2011,

Revised Selected Papers. Ed. by Sandro Bologna et al. Springer, 2013, pp. 93–

103. ISBN: 978-3-642-41476-3. DOI: 10.1007/978-3-642-41476-3_8. URL:

http://dx.doi.org/10.1007/978-3-642-41476-3_8.

Bibliography 151

[103] Peyman Kazemian. NetPlumber, Bitbucket repository. https : / / bitbucket .

org/peymank/hassel-public/branch/hassel-dev. 2013.

[104] Peyman Kazemian, George Varghese, and Nick McKeown. “Header Space

Analysis: Static Checking for Networks”. In: Proceedings of the 9th USENIX

Conference on Networked Systems Design and Implementation. NSDI’12. San Jose,

CA: USENIX Association, 2012, pp. 9–9. URL: http://dl.acm.org/citation.

cfm?id=2228298.2228311.

[105] Peyman Kazemian et al. “Real Time Network Policy Checking Using Header

Space Analysis”. In: Presented as part of the 10th USENIX Symposium on Net-

worked Systems Design and Implementation (NSDI 13). Lombard, IL: USENIX,

2013, pp. 99–111. ISBN: 978-1-931971-00-3. URL: https://www.usenix.org/

conference/nsdi13/technical-sessions/presentation/kazemian.

[106] Ahmed Khurshid et al. “VeriFlow: Verifying Network-Wide Invariants in

Real Time”. In: Presented as part of the 10th USENIX Symposium on Networked

Systems Design and Implementation (NSDI 13). Lombard, IL: USENIX, 2013,

pp. 15–27. ISBN: 978-1-931971-00-3. URL: https://www.usenix.org/conference/

nsdi13/technical-sessions/presentation/khurshid.

[107] D. Kreutz et al. “Software-Defined Networking: A Comprehensive Survey”.

In: Proceedings of the IEEE 103.1 (2015), pp. 14–76. ISSN: 0018-9219. DOI: 10.

1109/JPROC.2014.2371999.

[108] Diego Kreutz, Fernando M.V. Ramos, and Paulo Verissimo. “Towards Se-

cure and Dependable Software-defined Networks”. In: Proceedings of the Sec-

ond ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking.

HotSDN ’13. Hong Kong, China: ACM, 2013, pp. 55–60. ISBN: 978-1-4503-

2178-5. DOI: 10.1145/2491185.2491199. URL: http://doi.acm.org/10.

1145/2491185.2491199.

[109] Ronald L. Krutz and Russell Dean Vines. Cloud Security: A Comprehensive

Guide to Secure Cloud Computing. Wiley Publishing, 2010. ISBN: 0470589876,

9780470589878.

[110] Heiner Lasi et al. “Industry 4.0”. In: Business & Information Systems Engineer-

ing 6.4 (2014), pp. 239–242.

152 Bibliography

[111] N. Li, T. Li, and S. Venkatasubramanian. “t-Closeness: Privacy Beyond k-

Anonymity and l-Diversity”. In: 2007 IEEE 23rd International Conference on

Data Engineering. 2007, pp. 106–115. DOI: 10.1109/ICDE.2007.367856.

[112] Hyo-Sang Lim, Yang-Sae Moon, and Elisa Bertino. “Provenance-based trust-

worthiness assessment in sensor networks”. In: IWDMSN. ACM. 2010, pp. 2–

7.

[113] Fang Liu et al. “NIST cloud computing reference architecture”. In: NIST spe-

cial publication 500.2011 (2011), p. 292.

[114] Y. Liu, C. Lei, and H. Zhang. “MR-Verifier: Verifying Open Flow Network

Properties Based on MapReduce”. In: 2015 International Conference on Cyber-

Enabled Distributed Computing and Knowledge Discovery. 2015, pp. 546–553.

DOI: 10.1109/CyberC.2015.57.

[115] Lyft. Lyft.com. https://www.lyft.com/. (Visited on 06/2016).

[116] A. Machanavajjhala et al. “L-diversity: privacy beyond k-anonymity”. In:

22nd International Conference on Data Engineering (ICDE’06). 2006, pp. 24–24.

DOI: 10.1109/ICDE.2006.1.

[117] C. Matthew MacKenzie et al. Reference Model for Service Oriented Architecture

1.0. Tech. rep. OASIS, 2006. URL: http://docs.oasis-open.org/soa-rm/v1.

0/.

[118] Stuart E. Madnick et al. “Overview and Framework for Data and Information

Quality Research”. In: J. Data and Information Quality 1.1 (June 2009), 2:1–2:22.

ISSN: 1936-1955. DOI: 10.1145/1515693.1516680. URL: http://doi.acm.

org/10.1145/1515693.1516680.

[119] Matthew Vincent Mahoney. “A Machine Learning Approach to Detecting At-

tacks by Identifying Anomalies in Network Traffic”. AAI3081393. PhD thesis.

Melbourne, FL, USA, 2003.

[120] Mark W Maier. “Architecting principles for systems-of-systems”. In: INCOSE.

Vol. 6. 1. Wiley Online Library. 1996, pp. 565–573.

[121] Mark W Maier. “Research challenges for systems-of-systems”. In: 2005 IEEE

SMC. Vol. 4. IEEE. 2005, pp. 3149–3154.

Bibliography 153

[122] Ross A. Malaga. “Web-Based Reputation Management Systems: Problems

and Suggested Solutions”. In: ECR 1.4 (), pp. 403–417. ISSN: 1572-9362. DOI:

10 . 1023 / A : 1011557319152. URL: http : / / dx . doi . org / 10 . 1023 / A :

1011557319152.

[123] Sunu Mathew et al. “A data-centric approach to insider attack detection in

database systems”. In: RAID. Springer. 2010, pp. 382–401.

[124] David Kupfer Matthias Finger Nadia Bert. Mobility-as-a-Service: from the Helsinki

experiment to a European model? Tech. rep. Observer European Transport Reg-

ulation, 2015.

[125] A. Melis et al. “A Policy Checker Approach for Secure Industrial SDN”. In:

2018 2nd Cyber Security in Networking Conference (CSNet). 2018, pp. 1–7. DOI:

10.1109/CSNET.2018.8602927.

[126] Andrea Melis et al. “A Policy Checker Approach for Secure Industrial SDN”.

In: 2018 2nd Cyber Security in Networking Conference (CSNet). 2018, pp. 1–7.

[127] Dirk Merkel. “Docker: Lightweight Linux Containers for Consistent Devel-

opment and Deployment”. In: Linux J. 2014.239 (Mar. 2014). ISSN: 1075-3583.

URL: {\url{http://dl.acm.org/citation.cfm?id=2600239.2600241}}.

[128] Ralph C. Merkle. “CRYPTO”. In: ed. by Carl Pomerance. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1988. Chap. A Digital Signature Based on a Con-

ventional Encryption Function, pp. 369–378. ISBN: 978-3-540-48184-3. DOI:

10.1007/3- 540- 48184- 2_32. URL: http://dx.doi.org/10.1007/3-

540-48184-2_32.

[129] Adam Meyerson and Ryan Williams. “On the complexity of optimal k-anonymity”.

In: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium

on Principles of database systems. ACM. 2004, pp. 223–228.

[130] Silvia Mirri et al. “A Microservice Architecture Use Case for Persons with

Disabilities”. In: CVSJ. Hindawi. 2016, p. 5.

[131] Silvia Mirri et al. “A Service-Oriented Approach to Crowdsensing for Acces-

sible Smart Mobility Scenarios”. In: Proceedings ICCTS. IEEE. 2016, p. 5.

154 Bibliography

[132] Saber Mirzaei and Flavio Esposito. “An alloy verification model for consensus-

based auction protocols”. In: Distributed Computing Systems Workshops (ICD-

CSW), 2015 IEEE 35th International Conference on. IEEE. 2015, pp. 17–22.

[133] Bhoomika R Mistry and Amish Desai. “Privacy preserving heuristic approach

for association rule mining in distributed database”. In: ICIIECS. IEEE. 2015,

pp. 1–7.

[134] David Molnar et al. Automatic context-sensitive sanitization. US Patent 8,898,776.

2014.

[135] Fabrizio Montesi. “Choreographic Programming”. PhD thesis. IT University

of Copenhagen, 2013.

[136] Fabrizio Montesi. “Process-aware web programming with Jolie”. In: Science

of Computer Programming 130 (2016), pp. 69–96.

[137] Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. “Service-oriented

programming with jolie”. In: Web Services Foundations. Springer, 2014, pp. 81–

107.

[138] Fabrizio Montesi and Janine Weber. “Circuit Breakers, Discovery, and API

Gateways in Microservices”. In: CoRR abs/1609.05830 (2016). URL: http://

arxiv.org/abs/1609.05830.

[139] Steven Morrison and Clifford Winston. The evolution of the airline industry.

Brookings Institution Press, 1995.

[140] A. Moser, C. Kruegel, and E. Kirda. “Limits of Static Analysis for Malware

Detection”. In: ACSAC. 2007, pp. 421–430. DOI: 10.1109/ACSAC.2007.21.

[141] Michel Mouly, Marie-Bernadette Pautet, and Thomas Foreword By-Haug.

The GSM system for mobile communications. Telecom publishing, 1992.

[142] Hyeran Mun et al. “Yet another intrusion detection system against insider

attacks”. In: Proc. of SCIS (2008).

[143] Andrew Nash et al. “RailML–a standard data interface for railroad applica-

tions”. In: Computers in Railways IX, WIT Press, Southampton (2004), pp. 233–

240.

Bibliography 155

[144] Mehmet Ercan Nergiz, Maurizio Atzori, and Chris Clifton. “Hiding the pres-

ence of individuals from shared databases”. In: SIGMOD. ACM. 2007, pp. 665–

676.

[145] Netflix. Eureka. https://github.com/Netflix/eureka. (Visited on 09/2016).

[146] Netflix. Hystrix. https://github.com/Netflix/hystrix. (Visited on 09/2016).

[147] Netflix. Ribbon. https://github.com/Netflix/ribbon. (Visited on 09/2016).

[148] Netflix. Zuul. https://github.com/Netflix/zuul. (Visited on 09/2016).

[149] Sam Newman. Building microservices: designing fine-grained systems. " O’Reilly

Media, Inc.", 2015.

[150] Nicola Nostro et al. “Insider threat assessment: A model-based methodol-

ogy”. In: ACM SIGOPS 48.2 (2014), pp. 3–12.

[151] James M Parker. “Applying a system of systems approach for improved trans-

portation”. In: SAPIENS 3.2 (2010).

[152] Sean Peisert et al. “Quis Custodiet Ipsos Custodes?: A New Paradigm for

Analyzing Security Paradigms with Appreciation to the Roman Poet Juve-

nal”. In: Proceedings of the 2009 Workshop on New Security Paradigms Workshop.

NSPW ’09. Oxford, United Kingdom: ACM, 2009, pp. 71–84. ISBN: 978-1-

60558-845-2. DOI: 10.1145/1719030.1719041. URL: http://doi.acm.org/

10.1145/1719030.1719041.

[153] J. Pfrommer et al. “Dynamic Vehicle Redistribution and Online Price Incen-

tives in Shared Mobility Systems”. In: IEEE Transactions on Intelligent Trans-

portation Systems 15.4 (2014), pp. 1567–1578. ISSN: 1524-9050. DOI: 10.1109/

TITS.2014.2303986.

[154] J. Weston Phippen. Who Drives a Driverless Car? URL: http://www.theatlantic.

com/national/archive/2016/02/google-driverless-car/462153/ (visited

on 02/10/2016).

[155] S. Pippuri, S. Hietanen, and K. Pyyhtiä. MaaS Finland. http://maas.fi/.

(Visited on 03/10/2016).

156 Bibliography

[156] Gordon D. Plotkin et al. “Scaling Network Verification Using Symmetry and

Surgery”. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages. POPL ’16. St. Petersburg, FL,

USA: ACM, 2016, pp. 69–83. ISBN: 978-1-4503-3549-2. DOI: 10.1145/2837614.

2837657. URL: http://doi.acm.org/10.1145/2837614.2837657.

[157] Vassilis Prevelakis and Diomidis Spinellis. “Sandboxing Applications.” In:

USENIX Annual Tech. Conf., FREENIX Track. 2001, pp. 119–126.

[158] D. B. Rawat and S. R. Reddy. “Software Defined Networking Architecture,

Security and Energy Efficiency: A Survey”. In: IEEE Communications Surveys

Tutorials 19.1 (2017), pp. 325–346. ISSN: 1553-877X. DOI: 10.1109/COMST.2016.

2618874.

[159] Paul Resnick et al. “Reputation Systems”. In: Commun. ACM 43.12 (Dec. 2000),

pp. 45–48. ISSN: 0001-0782. DOI: 10.1145/355112.355122. URL: http://doi.

acm.org/10.1145/355112.355122.

[160] Benny Rochwerger et al. “The reservoir model and architecture for open fed-

erated cloud computing”. In: IBM JRD 53.4 (2009), pp. 4–1.

[161] Rodrigo Roman, Jianying Zhou, and Javier Lopez. “On the features and chal-

lenges of security and privacy in distributed internet of things”. In: Computer

Networks 57.10 (2013), pp. 2266–2279.

[162] Sherif Sakr et al. “A survey of large scale data management approaches in

cloud environments”. In: IEEE Communications Surveys & Tutorials 13.3 (2011),

pp. 311–336.

[163] Pierangela Samarati. “Protecting respondents identities in microdata release”.

In: IEEE transactions on Knowledge and Data Engineering 13.6 (2001), pp. 1010–

1027.

[164] Kaj Pyyhtiä Sami Pippuri Sampo Hietanen. MaaS Finland. URL: http://maas.

fi/ (visited on 03/10/2016).

[165] ITS-Finland Sampo Hietanen CEO. ‘Mobility as a Service’ – the new transport

model? Tech. rep. MaaS Finland, 2014.

Bibliography 157

[166] Ravi Sandhu. “Attribute-Based Access Control Models and Beyond.” In: ASI-

ACCS. 2015, p. 677.

[167] Ravi S Sandhu et al. “Role-based access control models yz”. In: IEEE computer

29.2 (1996), pp. 38–47.

[168] A. Sarkar et al. “Insider Attack Identification and Prevention in Collection-

Oriented Dataflow-Based Processes”. In: IEEE Systems Journal 11.2 (2017),

pp. 522–533. ISSN: 1932-8184. DOI: 10.1109/JSYST.2015.2477472.

[169] T.G.J. Schepers, Maria Eugenia Iacob, and Pascal van Eck. “A lifecycle ap-

proach to SOA Governance”. In: SAC ’08. Special track on Enterprise Infor-

mation Systems. ACM Press, 2008, pp. 1055–1061. ISBN: 978-1-59593-753-7.

DOI: 10.1145/1363686.1363932.

[170] Bob G Schlicher, Lawrence P MacIntyre, and Robert K Abercrombie. “To-

wards Reducing the Data Exfiltration Surface for the Insider Threat”. In: HICSS.

IEEE. 2016, pp. 2749–2758.

[171] Bruce Schneier. Secrets and lies: digital security in a networked world. John Wiley

& Sons, 2011.

[172] S. Scott-Hayward, G. O’Callaghan, and S. Sezer. “Sdn Security: A Survey”.

In: 2013 IEEE SDN for Future Networks and Services (SDN4FNS). 2013, pp. 1–7.

DOI: 10.1109/SDN4FNS.2013.6702553.

[173] Ravi Seethamraju. “Adoption of software as a service (SaaS) enterprise re-

source planning (ERP) systems in small and medium sized enterprises (SMEs)”.

In: Information systems frontiers 17.3 (2015), pp. 475–492.

[174] Asaf Shabtai, Yuval Elovici, and Lior Rokach. A survey of data leakage detection

and prevention solutions. Springer, 2012.

[175] Nahla Shatnawi, Qutaibah Althebyan, and Wail Mardini. “Detection of In-

siders Misuse in Database Systems”. In: ICECS. Vol. 1. 2011.

[176] Siddle. I Know Where You Were Last Summer: London’s public bike data is telling

everyone where you’ve been. 2014. URL: https://vartree.blogspot.com/2014/

04/i-know-where-you-were-last-summer.html (visited on 10/30/2019).

158 Bibliography

[177] George Silowash et al. Common sense guide to mitigating insider threats 4th edi-

tion. Tech. rep. DTIC Document, 2012.

[178] Yogesh L. Simmhan, Beth Plale, and Dennis Gannon. “A Survey of Data

Provenance in e-Science”. In: SIGMOD Rec. 34.3 (Sept. 2005), pp. 31–36. ISSN:

0163-5808. DOI: 10.1145/1084805.1084812. URL: http://doi.acm.org/10.

1145/1084805.1084812.

[179] Yogesh L Simmhan, Beth Plale, and Dennis Gannon. “A survey of data prove-

nance in e-science”. In: ACM Sigmod Record 34.3 (2005), pp. 31–36.

[180] Yogesh L Simmhan, Beth Plale, and Dennis Gannon. “A survey of data prove-

nance techniques”. In: Computer Science Department, Indiana University, Bloom-

ington IN 47405 (2005).

[181] Lance Spitzner. “Honeypots: Catching the insider threat”. In: CSAC. IEEE.

2003, pp. 170–179.

[182] Vasilis Stavrou et al. “Business Process Modeling for Insider Threat Moni-

toring and Handling”. In: Trust, Privacy, and Security in Digital Business: 11th

International Conference, TrustBus 2014, Munich, Germany, September 2-3, 2014.

Proceedings. Ed. by Claudia Eckert, Sokratis K. Katsikas, and Günther Pernul.

Cham: Springer International Publishing, 2014, pp. 119–131. ISBN: 978-3-319-

09770-1. DOI: 10.1007/978-3-319-09770-1_11. URL: http://dx.doi.org/

10.1007/978-3-319-09770-1_11.

[183] S. Subashini and V. Kavitha. “A survey on security issues in service delivery

models of cloud computing”. In: Journal of Network and Computer Applications

34.1 (2011), pp. 1 –11. ISSN: 1084-8045. DOI: http://dx.doi.org/10.1016/

j.jnca.2010.07.006. URL: http://www.sciencedirect.com/science/

article/pii/S1084804510001281.

[184] Manolis Terrovitis, Nikos Mamoulis, and Panos Kalnis. “Privacy-preserving

anonymization of set-valued data”. In: Proceedings of the VLDB Endowment 1.1

(2008), pp. 115–125.

[185] The Open Networking Foundation. OpenFlow Switch Specification v 1.5.1. 2015.

Bibliography 159

[186] J. Thönes. “Microservices”. In: IEEE Software 32.1 (2015), pp. 116–116. DOI:

10.1109/MS.2015.11.

[187] Wei-Tek Tsai et al. “Data provenance in SOA: security, reliability, and in-

tegrity”. In: Service Oriented Computing and Applications 1.4 (2007), pp. 223–

247.

[188] Zhen Tu et al. “Beyond k-anonymity: protect your trajectory from semantic

attack”. In: 2017 14th Annual IEEE International Conference on Sensing, Commu-

nication, and Networking (SECON). IEEE. 2017, pp. 1–9.

[189] Uber. Uber.com. https://www.uber.com/. (Visited on 06/2016).

[190] Vijaya Bhaskar Velpula and Dayanandam Gudipudi. “Behavior-anomaly-based

system for detecting insider attacks and data mining”. In: IJRTE 1.2 (2009),

pp. 261–266.

[191] M. Villamizar et al. “Evaluating the monolithic and the microservice architec-

ture pattern to deploy web applications in the cloud”. In: 2015 10th Computing

Colombian Conference (10CCC). 2015, pp. 583–590. DOI: 10.1109/ColumbianCC.

2015.7333476.

[192] Sabrina De Capitani di Vimercati, Sara Foresti, and Pierangela Samarati. “Data

security issues in cloud scenarios”. In: International Conference on Information

Systems Security. Springer International Publishing. 2015, pp. 3–10.

[193] Marco Viviani. Mobility as a service. 2015. URL: http://www.webnews.it/

2015/08/07/mobility-as-a-service/ (visited on 03/10/2016).

[194] H. Wang et al. “Practical Network-Wide Packet Behavior Identification by AP

Classifier”. In: IEEE/ACM Transactions on Networking 25.5 (2017), pp. 2886–

2899. ISSN: 1063-6692. DOI: 10.1109/TNET.2017.2720637.

[195] Pingshui Wang and Jiandong Wang. “L-diversity algorithm for incremental

data release”. In: Applied Mathematics & Information Sciences 7.5 (2013), p. 2055.

[196] Ye Wang, Bing-rong Lin, and Shantanu Rane. Privacy Preserving Statistical

Analysis on Distributed Databases. US Patent App. 13/804,701. Sept. 2014.

[197] WSO2. WSO2 API Manager. http://wso2.com/api-management/. (Visited on

09/2016).

160 Bibliography

[198] K. Xu et al. “Data-Provenance Verification For Secure Hosts”. In: IEEE Trans-

actions on Dependable and Secure Computing 9.2 (2012), pp. 173–183. ISSN: 1545-

5971. DOI: 10.1109/TDSC.2011.50.

[199] Yabo Xu et al. “Publishing sensitive transactions for itemset utility”. In: 2008

Eighth IEEE International Conference on Data Mining. IEEE. 2008, pp. 1109–

1114.

[200] Q. Yan et al. “Software-Defined Networking (SDN) and Distributed Denial of

Service (DDoS) Attacks in Cloud Computing Environments: A Survey, Some

Research Issues, and Challenges”. In: IEEE Communications Surveys Tutori-

als 18.1 (2016), pp. 602–622. ISSN: 1553-877X. DOI: 10.1109/COMST.2015.

2487361.

[201] H. Yang and S. S. Lam. “Real-time verification of network properties using

Atomic Predicates”. In: 2013 21st IEEE International Conference on Network Pro-

tocols (ICNP). 2013, pp. 1–11. DOI: 10.1109/ICNP.2013.6733614.

[202] H. Yang and S. S. Lam. “Scalable Verification of Networks With Packet Trans-

formers Using Atomic Predicates”. In: IEEE/ACM Transactions on Network-

ing 25.5 (2017), pp. 2900–2915. ISSN: 1063-6692. DOI: 10.1109/TNET.2017.

2720172.

[203] Hongkun Yang and Simon S. Lam. Networking Research Lab website. http :

//www.cs.utexas.edu/users/lam/NRL/.

[204] Hongkun Yang and Simon S. Lam. Real-time Verification of Network Proper-

ties Using Atomic Predicates. Tech. rep. Computer Science Dept., University of

Texas at Austin, Austin, TX, USA, 2013.

[205] Hongkun Yang and Simon S. Lam. “Real-time Verification of Network Prop-

erties Using Atomic Predicates”. In: IEEE/ACM Transactions on Networking

24.2 (2016), pp. 887–900.

[206] Bendert Zevenbergen et al. “Ethical privacy guidelines for mobile connectiv-

ity measurements”. In: Available at SSRN 2356824 (2013).

Bibliography 161

[207] H. Zhang et al. “User Intention-Based Traffic Dependence Analysis for Anomaly

Detection”. In: 2012 IEEE Symposium on Security and Privacy Workshops. 2012,

pp. 104–112. DOI: 10.1109/SPW.2012.15.

[208] Hao Zhang, Danfeng Daphne Yao, and Naren Ramakrishnan. “Detection of

Stealthy Malware Activities with Traffic Causality and Scalable Triggering

Relation Discovery”. In: Proceedings of the 9th ACM Symposium on Information,

Computer and Communications Security. ASIA CCS ’14. Kyoto, Japan: ACM,

2014, pp. 39–50. ISBN: 978-1-4503-2800-5. DOI: 10.1145/2590296.2590309.

URL: http://doi.acm.org/10.1145/2590296.2590309.

[209] Dongfang Zhao et al. “Distributed data provenance for large-scale data-intensive

computing”. In: CLUSTER. IEEE. 2013, pp. 1–8.

[210] Jinghan Zhou et al. “APF: Fast Network All-pair Reachability Calculation”.

In: Proceedings of the 2018 Symposium on Architectures for Networking and Com-

munications Systems. ANCS ’18. Ithaca, New York: ACM, 2018, pp. 172–173.

ISBN: 978-1-4503-5902-3. DOI: 10.1145/3230718.3232112. URL: http://doi.

acm.org/10.1145/3230718.3232112.

[211] Shao Ying Zhu et al. Guide to Security in SDN and NFV: Challenges, Opportuni-

ties, and Applications. Springer, 2017.

