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ABSTRACT 

 

Comprehending how drugs interact with biological macromolecules to form a complex with 

consequent biological response is particularly relevant in drug design to guide a rational design of 

new active compounds. The establishment and the duration of the protein-ligand binding complex 

is principally determined by thermodynamics and kinetics of the dynamical process of molecular 

recognition. Thus, an accurate characterization of the free energy governing the formation of the 

protein-ligand complex is of fundamental importance to deeply understand each contribution to the 

establishment of the molecular complex. 

 

Experimental biophysical techniques, such as ITC (Isothermal Titration Calorimetry), NMR 

(Nuclear Magnetic Resonance) and SPR (Surface Plasmon Resonance) proved to be efficient in 

characterizing both thermodynamics and kinetics of protein-ligand binding. However, a detailed 

description of the whole binding process on a mechanistic level, with the characterization of all the 

metastable states is not possible since only a quantitative estimation is allowed.  

Conversely, from the computational point of view, plain molecular dynamics (MD), which has 

been increasingly considered as the method of choice to investigate the entire dynamic process 

upon complex formation and to predict the associated thermodynamic and kinetic observables, 

cannot be applied in a routinely drug discovery pipeline because of the high computational cost. In 

particular, in order to reconstruct a reliable free energy associated to the protein-ligand binding 

process, all the configurational space has to be extensively sampled, taking longer than the time 

commonly available in a usual campaign of drug discovery.  

 

In this context, this PhD thesis wants to address specific aspects of the protein-ligand binding 

process. In particular, it will deal with dynamic docking, thermodynamics and kinetics of protein-

ligand binding by devising respectively three different computational protocols. We developed a 

dynamic docking protocol based on potential-scaled (sMD) simulations, in which both the protein 

and the ligand are let completely flexible in order to predict the protein-ligand binding pose within 

a reasonable computational time (Chapter 3.1). Then, we further investigated the applicability of 

sMD in describing the kinetic behavior of a series of drug-like molecules and we devised a fully 

automated method to analyze the unbinding trajectories, detecting common features (Chapter 3.2). 

Finally, we develop a semi-automated protocol based on path collective variables (PCVs) combined 

with well-tempered metadynamics (well-tempered MetaD) to estimate free energies along a 

binding path (Chapter 3.3).    
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LIST OF ACRONYMS  

 

ITC Isothermal Titration Calorimetry 

SPR Surface Plasmon Resonance 

NMR Nuclear Magnetic Resonance 

HTS High-Throughput Screening 

MD Molecular Dynamics 

FES Free-Energy Surface 

MM-PBSA Molecular Mechanics Poisson-Boltzmann Surface Area 

MM-GBSA Molecular Mechanics Generalized-Born Surface Area 

GPU Graphical Processor Unit 

GSK3! Glycogen Synthase Kinase 3! 

HSP90" Heat Shock Protein 90" 

PBC Periodic Boundary Conditions 

PME Particle-Mesh Ewald 

CV Collective Variable 

US Umbrella Sampling 

SMD Steered Molecular Dynamics 

MetaD Metadynamics 

REMD Replica Exchange Molecular Dynamics 

aMD Accelerated Molecular Dynamics 

McMD Multicanonical Molecular Dynamics 

PT Parallel Tempering 

sMD Potential-scaled Molecular Dynamics 

PES Potential Energy Surface 

PCVs Path Collective Variables 

MSD Mean Square Deviation 

RMSD Root Mean Square Deviation 

MSM Markov State Model 

HTMD High Throughput Molecular Dynamics 

SuMD Supervised Molecular Dynamics 

BS-MetaD Bias-Exchange Metadynamics 

RMD Reconnaissance Metadynamics 

SITMD Selective Integrated-Tempering-Sampling Molecular Dynamics 

ENM Elastic Network Model 

VMD Visual Molecular Dynamics 
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COM Center of Mass 

RMSIP Root Mean Square Inner Product 

PCA Principal Component Analysis 

MDS  MultiDimensional Scaling method 
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1 INTRODUCTION 
 
 

1.1 Molecular Recognition as the basis for drug action 
 

Molecular recognition refers to process in which macromolecules, such as proteins, bind small 

molecules through noncovalent interactions to form a binary complex. This mechanism, which 

regulates several biological processes and plays a central role in disease and homeostasis, deals 

with two important attributes that describe the protein-ligand interaction: specificity and affinity. 

Specificity is related to the capability of proteins to prefer those binding partners that are highly 

specific than those that are less specific, while affinity is related to the strength of the protein-ligand 

complex.1 Molecular recognition is thus of fundamental importance in the development of drugs, 

especially during the lead optimization phase, since affinity and specificity determine whether a 

molecule has the potential to become a drug.  

Traditionally, the activity of drug-like molecules has been expressed in terms of the equilibrium 

dissociation constant, #$, or by half-maximal inhibitory concentration %&'(, both often performed 

under closed in vitro conditions. #$ measured in vitro, can be, in certain specific cases, directly 

correlated to the in vivo efficacy of a ligand. However, most frequently, this relation does not 

directly hold, particularly when the in vivo efficacy is mostly determined by the duration of the 

pharmacological effect. Indeed, sometimes the time for which the biological target is occupied by 

a ligand, commonly referred to as drug target residence time, )*, that corresponds to the inverse of 

the dissociation rate constant ()* = 1/./00), could be more appropriate to describe the efficacy 

than binding affinity.2 This aspect recently propelled the need of including the kinetic profiles, 

expressed in terms of the association rate constant, ./1, and the dissociation rate constant, ./00, in 

drug discovery programs, especially during the drug optimization phase.2 It is therefore of the 

utmost importance for a deep knowledge of drug action that the processes responsible for the 

protein-ligand interactions are well characterized mechanistically and quantitatively in energetic 

terms.3  

 

In the first section of this thesis, a brief introduction about the physiochemical mechanisms that 

control the protein-ligand association is given. In particular, a general description of the most 

important concepts related to the molecular recognition, such as binding kinetics and 

thermodynamics, free-energy, entropy-enthalpy compensation are provided. Then a description of 

the three existing theories, the lock-and-key, induced fit and conformational selection theories, 

describing the protein-ligand binding are introduced in order to underline the fundamental 

importance of considering protein flexibility to study biological processes. The final part of this 

Introduction section is dedicated to experimental and computational methods applied to investigate 

the protein-ligand binding mechanism.  
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1.2 Thermodynamics and kinetics of biological complexes 
 

The first attempt to provide a systematic description for the temperature dependence of equilibrium 

constants of a reaction was proposed in 1889 by Svante Arrhenius. In particular, according to 

Arrhenius equation, the rate constant k of a chemical reaction can be calculated as: 

 

. = 345
67
89:                                                                                                                                       (1) 

                                                                                                                        

Where ;< is the activation energy of the process, = is the temperature, and the pre-exponential term 

A, is a constant that describes the number of times two molecules collide, and it is characteristic for 

each chemical reaction since it is a function of the collision radius between two interacting particles 

and the reduced mass of the system. Despite the Arrhenius equation has been used to determine 

activation energies for chemical reactions, it can be exploited only to the kinetics of gas reactions 

in which the transformation to form the product does not involve any intermediate. The transition 

state theory, as coincidentally formulated in 1935 by Henry Eyring, Meredith Gwynne Evans and 

Michael Polanyi, was developed to describe more accurately the kinetic behavior of the chemical 

systems. According to this theory, it is possible to gain insight into rates of reactions by 

investigating the activated complexes, the so-called transition states. In situations of chemical 

equilibrium between reactants and activated transition state complexes, the former could convert 

into products and the kinetic theory could be applied to obtain the rate of this conversion.  

According to transition state theory applied to a fully solvated protein-ligand complex, along a 

single binding path, the dynamics of the transition depends only on the slowest step involved (the 

one associated to the highest energy). However, reaching an accurate description of the potential 

energy surface (PES) of the system, especially for the transition states, is far from trivial and, as a 

result, the absolute reaction rate constants are difficult to obtain.4  

It is important to underline that the binding or unbinding kinetics is not defined by only one 

transition state but different pathways are possible, with different transition states associated, can 

contribute to the observable ./1 and ./00 values, so understand which transition state, among all 

the transition pathways, represents the limiting one could become tricky.5 Despite these 

considerations, transition state theory is of fundamental importance in describing protein-ligand 

interactions and in determining thermodynamics quantities such as Gibbs energy of activation, 

enthalpy and entropy (Figure 1).  

In a first order reaction, the noncovalent association between a protein ? and a ligand @ in solution 

to form the biomolecular complex ?@ can be described as the equilibrium: 

 

? + @	
./1
⇄
./00

?@                                                                                                                                     (2) 
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Where ./1 and ./00 are the kinetics rate constants that account for both the binding and unbinding 

reaction. The units of ./1 and ./00 are M-1 s-1 and s-1, respectively. At equilibrium this two-state 

mechanism is perfectly symmetrical. In particular the binding reaction is balanced by the reverse 

unbinding reaction according to: 

 

./1[?][@] = ./00[?@]                                                                                                                      (3) 

 

Where the equilibrium concentration of all the species involved in the reaction are represented by 

the square brackets. The binding affinity is then described by the dissociation constant #$ (in unit 

of M): 

 

#$ =
[F][G]
[FG]

                                                                                                                                           (4) 

 

In this situation, #$ corresponds to the ligand concentration at which half of the receptor binding 

sites are occupied.  #$ is directly associated to the free energy difference between the bound and 

unbound states, ∆I$. According to equation (3) and equation (4), the thermodynamics constant #$ 

is linked to the kinetics constants ./1, ./00, as follow: 

 

#$ =
KLMM
KLN

                                                                                                                                          (5) 

 

Therefore, it is interesting to understand how complexes with the same affinity could have, at least 

in principle, very different transition states. Indeed, varying the transition state decreases or 

increases both kinetic rates without altering the energy difference between both the bound and 

unbound states. This because the rate constants ./1 and ./00 depend on the transition state along 

the binding pathway that separates the bound and unbound states: 

 

./1//00 =
K9O
P
4
∆QLN/LMM

‡

S:                                                                                                                        (6) 

 

According to the above equation, the kinetic constants, ./1, ./00, are proportional to the 

exponential of the energies of activation of the respective transitions state, ∆I/1//00
‡ , through a 

pre-exponential factor that combines the Boltzmann’s  constant .T, the Planck’s constant ℎ , and 

the absolute temperature =.  
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Figure 1. Simplified free-energy profile of the protein-ligand complex ?@	formation between a protein ? and 

a ligand @. TS represents the transition state. The thermodynamics of binding is quantified by the free energy 

difference between both the bound and unbound states (∆GW), and the kinetics is determined by the 

dissociation and the association rate constants, kXY, ./00. These quantities are related to the free-energy 

differences between minima and the transition state TS, ∆I/00
‡  and ∆I/1

‡ , respectively.   

 

 

As already discussed, much consideration has been given to the impact of including kinetics 

information in the optimization phase of the drug discovery process, since models based both on 

kinetic constants and binding affinity can be more reliable. 

The protein-ligand binding process in a solvent is an example of thermodynamic system so it is 

possible to describe the driving forces that dictate the association of the two entities using the laws 

of thermodynamics. In particular, as any spontaneous process, the establishment of the protein-

ligand complex ?@ occurs only when the change in Gibbs free energy, ∆I$, of the system is 

negative, once the system reaches an equilibrium state at constant pressure and temperature. At the 

steady state, ∆I$ can also be defined as the variation of the unbound to the bound state of two state 

functions of the system: enthalpy (Z) and entropy ([) with the following equation: 

 

∆I$ = 	∆Z − =∆[	                                                                                                                               (7) 

 

For a binding process, the binding enthalpy, ∆Z, reflects the energy change of the system when the 

ligand binds to the protein, resulting from the formation of noncovalent interactions between them.6 

Change in binding enthalpy is a global propriety of the entire system. This means that the change 

upon biding involves also contributions from the solvent, in particular the formation of new 

interactions between the ligand and the protein coincides with the disruption of interactions 

between ligand and solvent, protein and solvent and a new solvent reorganization near the complex 
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surface.1 Entropy is a measure of the disorder or randomness of the overall system (including the 

ligand, protein and surrounding solvent). ∆[ is a global thermodynamic observable of a system 

which is positive when the overall degree of freedom of the system increase and, on the contrary, 

the negative sign indicates decrease in degrees of freedom of the system. The binding entropy, ∆[, 

is determined by: 

 

∆[ = 	∆[]/^_ +	∆[`/10 +	∆[*/a                                                                                                         (8) 

 

Where ∆[]/^_ reflects the solvent entropy change in the accessible surface area of the protein and 

ligand upon complexation; ∆[`/10 represents changes in the conformational entropy reflecting the 

changes in the conformational degree of freedom of protein and ligand upon binding and ∆[*/a 

represents the loss of rotational-translational degrees of freedom of protein and ligand upon 

binding.7  

As introduced before, the sign and magnitude of ∆I$ are determined by the variation of entropy 

and enthalpy. Thus, ∆H and ∆[ can be considered as the driving forces for the protein-ligand 

binding event. In particular, negative enthalpy change, which is associated with the establishment 

of new noncovalent interactions between association partners, is accompanied by a negative 

entropy change caused by the loss of degrees of freedom of protein and ligand. This phenomenon, 

where variation of ∆I$ is caused by mutual variation in ∆Z and ∆[, is called the entropy-enthalpy 

compensation.8 Different mechanisms can contribute to the entropy-enthalpy compensation, 

including the structural and thermodynamic proprieties of the solvent, the protein flexibility and 

the molecular structure of the ligand.  

 

 

1.3 Protein-ligand binding models 
 

The mechanisms underlying biomolecular recognition have been deeply investigated, in order to 

understand these processes and define new active compounds in a drug discovery context.9–13 Three 

different models have been introduced for ligand recognition, the “lock-and-key”,9 “induced fit”11 

and “conformational selection”13–16 (Figure 2).  

 

According to the lock-and-key model (Figure 2A), the protein and the ligand are considered rigid 

and they possess specific complementary shapes that match exactly into one another, like a key 

into a lock, with almost no change in protein conformation. The binding event is based on the 

grounds that desolvation of the protein and the ligand during the process leads to changes in entropy 

contribution. In particular, the collision between the protein and the ligand causes a complete 

displacement of the water network surrounding the protein and ligand interaction interfaces, 
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causing a positive enthalpy change, while the release of water increases the solvent entropy. 

According to this model, that considers the protein as rigid, there is no change in conformational 

entropy. Therefore, the solvent entropy should be large enough to compensate the positive enthalpy 

change due to the desolvation process and also the negative entropy caused by the loss of rotational 

and translational motions of the ligand. The lock-and-key model fails to explain the experimental 

evidence that a protein is also able to bind to a ligand even in the case where their initial shapes do 

not fit perfectly.  

 

Conversely, the induced fit model, considering the flexibility of both the interacting binding 

partners, the ligand and the protein binding site, is able to provide a plausible explanation (Figure 

2B). According to induced fit model, during the interaction with the ligand, the protein undergoes 

a conformational change only in the binding site, neglecting major conformational changes that 

could involve the whole protein structure. The absence of the initial perfect surface complementary 

between protein and ligand results in multiple tentative collisions to establish favorable contacts 

(negative enthalpy change), that should be strong enough to provide the encounter complex enough 

strength so that induced fit takes place in a reasonable time.1 Particularly, in order to maintain the 

stability of the protein-ligand complex, the negative enthalpy change contribution, resulting from 

the establishment of interactions between protein and ligand should be greater than the sum of the 

positive enthalpy change resulting from the disruption of the interaction with the solvent, the 

negative entropy change resulting from reducing the conformational freedoms of the interacting 

surfaces, ∆[`/10, and the rotational-translational degrees of freedom of the binding partners, ∆[*/a. 

 

Furthermore, the lock-and-key and induced fit models consider the protein, under given 

experimental conditions, as a single and stable conformation. Instead, most proteins are intrinsically 

dynamic, and the conformational selection model considers their flexibility (Figure 2C). In 

accordance with this model, the native state of a protein exists as an ensemble of different 

conformations, all coexisting in equilibrium with different population distributions, and the ligand 

binds the one that is more selectively altering the equilibrium toward this state. It is difficult for the 

conformational selection model to understand which state of the system, entropy or enthalpy, 

contributes the most to the lowering of the system’s free energy. In particular, it seems like the 

selective binding of the ligand to a specific conformational state of the protein is dominated by the 

solvent entropy gain due to the desolvation effect (as occurs in lock-and-key-model), while, the 

following conformational adjustments of the protein is dominated by the system enthalpy decrease 

due to the formation of newly interactions between interacting partners.  

It is important to underline that, because these three conceptual models for biomolecular 

recognition have been observed experimentally, they may exist simultaneously or in a sequential 
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manner, and also that even more complicated mechanisms than those presented here may be 

possible.17 

 

 

 

 

Figure 2. Schematic illustrations of the three different protein-ligand binding models: the lock-and-key (A), 

the induced fit (B), and the conformational selection (C). The protein is represented in blue while the ligand 

is represented in orange. 

 

 

1.4 Experimental and computational strategies to characterize protein-
ligand interactions 

 

Several experimental and computational techniques could be used to investigate different aspects 

of protein-ligand binding. In this regard, isothermal titration calorimetry (ITC), nuclear magnetic 

resonance (NMR) and surface plasmon resonance (SPR) are briefly introduced in the first part of 

this paragraph as experimental methods to characterize protein-ligand binding while, in the second 

part, molecular docking and binding free energy calculations are discussed as theoretical 

approaches.   

 

 

1.4.1 Experimental methods 
 

ITC is a biophysical technique that allows a direct estimation of the heat exchange during the 

complex formation at constant temperature; this is probably the gold standard in determining the 

energies driving the binding process.18 ITC allows simultaneous determination of binding affinity 

KW, stoichiometry n, enthalpy change ∆Z, calculation of free energy change ∆I$ and entropy 
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change ∆[ in one single experiment. A typical ITC experiment is a three steps procedure. In the 

first step, the ligand is titrated into a solution containing the biomolecular target of interest. 

The second step consists in measuring the heat absorbed or released that is associated with the 

binding event. In particular, the temperature imbalance between the reference and sample cells, due 

to protein-ligand binding event, is measured and compensated by modulating the feedback power 

applied to the cell heater. During the last step the primary ITC data, that are the power applied to 

the sample cell as a function of time, are processed and fit to obtain the binding curve representing 

the heat of reaction per injection as a function of the ratio of the total ligand concentration to the 

protein concentration. Finally fitting the binding curve, the binding constant #d = 1/#$, the 

binding enthalpy ∆Z, and the stoichiometry of the binding event n are obtained. Consequently, 

knowing the binding constant, the standard Gibbs free energy ∆GW, the binding entropy ∆[ can be 

derived. The heat exchange revealed by ITC is the total heat effect in the sample cell consequent 

the ligand addition, including the heat adsorbed or released during the binding event as well as the 

heat effects due to the dilution of the ligand and protein, the mixing of two different solutions, the 

different temperature between the sample and references cells, and so on. Therefore, evaluating the 

heat change due to the contribution of binding only is far from trivial.  

 

NMR spectroscopy is a particularly efficient method exploited to get information about protein-

ligand interactions at atomic resolution.19 Several NMR spectroscopy approaches exist to study 

protein-ligand complex which can be categorized into two general group: protein observed or 

ligand observed techniques. 

In protein observed methods, a spectrum of protein is obtained, and the ligand is titrated, thus 

providing information about residues of the protein directly involved in the interaction with the 

ligand. Conversely, in ligand observed techniques, the spectrum of ligand is obtained, and the 

protein is added. The overall NMR spectra depends on the lifetime of the protein-ligand complex 

which is given by the residence time ()*). In particular, for strong complexes the lifetime of the 

protein-ligand complex is much longer than the difference in chemical shifts between the signals 

obtained for the unbound and bound form, thus two separate NMR signals are obtained. On the 

contrary, when weak complexes are involved, the lifetime of the complex is too short to observe 

the two signals independently and a single NMR signal is obtained.  

 

SPR spectroscopy20 is a popular technique used for the estimation of association and dissociation 

rate constants during protein-ligand binding or unbinding events. SPR is an optical-based method 

that assesses the change in the refractive index near the sensor surface. It is a label-free technique, 

which is advantageous in comparison with the radioligand binding assays that have been previously 

used for the biochemical characterization of the formation of specific drug-target complexes. In the 
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most widespread configuration, the sensor surface is a thin gold film on a glass support, which is 

positioned on the bottom of the flow cell through which an aqueous solution flow.  

The receptor molecules are immobilized on the sensor surface and the ligand (analyte in SPR 

terminology), is injected into the aqueous solution. As the analyte binds to the immobilized 

receptor, an increase in the refractive index is observed. Once all the binding sites are occupied, a 

running buffer without analyte is injected through the flow cell to let the ligand molecules dissociate 

from the target protein. As the analyte dissociates, a decrease in the refractive index is measured. 

The time-dependent resonance unit (RU) curve is processed and fitted to determine the association 

and dissociation rates, ./1 and ./00. The equilibrium dissociation constant #$ is quantified by 

fitting the resonance unit sinusoidal curve as a function of the analyte concentration. Moreover, the 

binding enthalpy can be estimated by van’t Hoff analysis.21 It is important to note that by 

immobilizing the protein, the conformational and roto-translational entropies may be affected 

impacting on the evaluation of the association rate constants. 

 

 

1.4.2 Computational methods 
 

Even if experimental techniques can investigate thermodynamic profiles for a ligand-protein 

complex, the operations for measuring the binding affinity are laborious, time-consuming, and 

expensive. In a modern rational drug design campaign, to find a set of lead molecules, high-

throughput screening (HTS) of a large library of hundreds or thousands of samples is involved. 

Thus, it is hardly feasible or even possible to achieve this goal using only experimental methods. 

The opportunity to predict completely in silico ligand binding modes and to investigate binding 

processes to identify and optimize new lead candidates motivates the Scientific Community to put 

great efforts in developing new computational techniques. Molecular docking can predict, for 

instance, very quickly which ligand fits best into the binding pocket of the protein target and assess 

the binding affinity of the complex. More accurate predictions of binding affinity could be obtained 

through molecular dynamics simulations, which take in account all thermodynamically relevant 

phenomena such as the protein flexibility and explicit inclusion of the solvent. 

 

 

1.4.2.1 Molecular Docking 
 

Molecular docking is a well-established computational strategy for predicting in silico the binding 

modes and affinities of molecular recognition events.22 Thank to the constant growth of available 

protein structures and to the improvement in computational resources, molecular docking has been 

proven to be an important methodology  for drug discovery campaigns.23 This procedure allows to 

dock compounds rapidly, allowing the selection for moving forward biological tests of those 
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compounds that are likely to have an action against the target of interest, thus saving time and costs. 

However, this computational speed occurs at the cost of accuracy, especially when protein 

rearrangements are required upon ligand binding.24,25 Indeed, protein flexibility is not treated 

extensively; additionally water molecules, which can be crucial for reproducing the specific 

protein-ligand complexes, are very difficult to treat explicitly. However, thanks to the methodology 

advances several different software have been developed to include explicit water molecules into 

docking and virtual screening studies26 such as:  GRID,27 HINT,28 Superstar,29 JAWM,30 

WaterMap,31 Water PMF32 and Water FLAP.33 Therefore, an accurate evaluation of the 

thermodynamic and kinetic quantities is not allowed.  

At the time of the earliest implementations of molecular docking, around 1982 when the first 

molecular docking was reported by Kunts et al.22, both ligand and protein were treated as rigid 

bodies but, nowadays, full flexibility of the ligand and partial flexibility of the receptor are 

implemented by almost all docking programs.34 

 A typical docking algorithm consists of two main components: the search algorithm and the 

scoring function. The former component, which can be either stochastic or deterministic, is 

responsible for searching through different ligand conformations and orientations (poses) within a 

given target receptor’s binding site. As already introduced, the early docking implementations dealt 

with a unique rigid conformation of the protein due to limited computational resources. However, 

proteins are intrinsically dynamic and, most of times, there is a mutual adaption between protein 

and ligand in order to maximize favorable interactions upon binding.35 In principle, according to 

the more recent interpretation of molecular recognition models, the degrees of freedom of protein 

and ligand should be sampled simultaneously, but this is still too computational demanding, so a 

number of different strategies were developed to provide a solution. 

These can be split into two main groups: single-structure methods or ensemble methods. Single-

structure methods are related to the induced-fit model in which only the binding pocket is perturbed 

by on-the-fly local changes after ligand binding conformational search. Alternatively, in ensemble 

methods, an ensemble of previously generated conformations is exploited in a series of independent 

docking procedures mimicking the conformational selection model. Anyway, information provided 

by induced-fit approaches and multiple protein conformations is difficult to manage and it must be 

properly used to be effectively exploited.36,37 

Scoring functions are approximate mathematical methods used to assess the binding affinity 

(generally through estimating the strength of noncovalent interactions) in a protein ligand complex. 

In order to reduce the algorithm’s complexity, since many different physical interactions (including 

those with the solvent) as well as the entropic effects need to be considered in a reliable estimation 

of binding free energy, a number of simplifications are introduced at the cost of accuracy.38 The 

most important scoring functions available for protein-ligand docking can be divided in three 
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general classes: the force-field-based, the empirical-based and the knowledge-based (also known 

as statistical potentials) scoring functions.  

In the force-field-based approaches, binding affinities are estimated by using functional forms and 

parameters, defined as force-fields, derived from experiments and quantum mechanical 

calculations. In order to reduce the complexity, usually only the enthalpic contribution, mostly due 

to the strengths of intramolecular noncovalent interactions between interacting partners, is taken 

into account. The desolvation energies of the ligand and of the protein are sometimes re-estimated 

using implicit (or continuum) solvation methods such as Molecular Mechanics Poisson-Boltzmann 

surface area (MM-PBSA)39,40 and the generalized-Born surface area version (MM-GBSA).41,42 

Empirical scoring functions are based on the parametrization of different types of interactions, 

usually via regression methods, as favorable or unfavorable energy terms contributions to the 

binding affinity.43 The knowledge-based scoring functions assume that statistical observations of 

intramolecular close contacts between protein and ligand that occur more frequently than those 

expected by a random distribution are likely to be energetically favorable and therefore contribute 

favorably to binding affinity. Thus, these contacts are used to derive the statistical potentials. All 

these three scoring functions, known as classical scoring functions, assume an additive functional 

form to represent the linear relationship between the binding affinity and those features that 

describe the protein-ligand complex. By contrast, Machine learning scoring functions, which use 

pattern recognition algorithms to discriminate mathematical relationships between empirical 

observations, do not make suppositions about the form of the functional.44,45 

  

In summary, molecular docking represents a valid method to identify crystallographic binding 

modes and to select new promising compounds from entire libraries of molecules, especially when 

protein flexibility does not play a fundamental role in the binding process. Instead, when large 

rearrangements are involved in the protein-ligand binding process, molecular docking suffers from 

severe limitations. Moreover, molecular docking does not provide the necessary accuracy to 

calculate a reliable estimation of binding free energy and it cannot be used to estimate kinetics 

quantities. In principle, all these problems could be overwhelm by molecular dynamics (MD) 

simulations and related methods.46 

 

 

1.4.2.2 Molecular Dynamics (MD) simulations 
 

MD simulations describe the physical evolution of the system in time solving Newton’s equations 

of motion, immersed in a thermic bath, where forces between the interacting particles and their 

potential energies are calculated using molecular mechanics force fields. During the last decade, 

thanks to the advent of faster architectures and development of more specific computation 

algorithms, MD simulations have become a valid alternative to traditional molecular docking in 
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drug design since the exploration of the entire protein-ligand process at full atomistic level is 

allowed, in principle. Moreover, the possibility to investigate the entire protein-ligand binding 

process could shed light on metastable states sampled by the ligand, protein conformational 

rearrangements during or consecutive the ligand binding, alternative binding sites, and also the 

contribution of the water during binding.47 Additionally, provided that simulations of the binding 

process are long enough to observe the entire mechanism, from the drug completely solvated water 

(unbound state) to the formation of protein-ligand complex (bound state), thermodynamics and 

kinetics observables can be accurately evaluated through the estimation of the free-energy surface 

(FES) as described in the following section of this thesis (2.2 Estimation of MD-derived 

observables).46,48 However, multiple binding events have to be observed along the simulation in 

order to collect an adequate statistics to correctly calculate thermodynamics and kinetic quantities. 

This usually require milliseconds simulations making the process too computationally expensive 

to be routinely used instead of traditional molecular docking methods especially in the first part, 

when novel compounds have to identified or during the hit-to-lead optimization.  

In order to reduce the computational cost required, a number of different enhanced sampling 

techniques have been developed during the last years. These methods accelerate MD simulations, 

increasing the probability of observing binding process, by applying biasing forces or altering the 

potential energy function. Thanks to these techniques combined with the ever-increasing 

computational power, MD simulations are gaining everyday more attention in drug discovery 

process, replacing the standard molecular docking with the new concept commonly referred as 

“dynamic docking”.25,48  

 

 
 

1.5 Summary of the contribution 
 
 
MD has been increasingly considered as a promising computational technique to study protein 

ligand-binding since the entire mechanism can be investigated and, in principle, the associated 

thermodynamic and kinetic observables can be estimated. However, due to the significant 

computational effort involved, the direct application of plain MD to study protein-ligand binding 

is often not possible or highly inefficient, at least from a drug discovery perspective. 

 

In this contribution, we explored possible different protocols, depending on the specific issue to 

address, based on enhanced sampling MD simulations to gain insights into thermodynamics and 

kinetics associated to the protein-ligand binding process.  

In particular, three different aspects of protein-ligand binding are considered: prediction of ligand 

binding mode into the target binding site, estimation of residence time for a congeneric series of 
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compounds binding to the same biological target and the computation of the FES of the entire 

mechanism of ligand binding.  

 

In the first application, a semi-automated protocol based on an enhanced sampling technique, the 

scaled-potential MD (sMD), is developed in order to predict protein-ligand binding poses. This 

protocol was validated on its ability to reproduce the crystal binding poses of a set of five different 

compounds binding two relevant pharmacological targets (the Glycogen Synthase Kinase 3!, 

GSK3!, and the N-terminal domain of Heat Shock Protein 90", HSP90"). 

 

As for the second test case, we exploited sMD to perform a series of unbinding simulations of a 

series of congeneric compounds, inhibitors of HSP90", in order to prioritize them according to 

their average computational exit times. Moreover, we devised a protocol based on dimensionality 

reduction and clustering analysis to qualitatively compare pathway followed by the ligands during 

unbinding simulations.  

 

Finally, in the last test case, we devised a semi-automated strategy to compute a guess path along 

with the FES of the whole protein-ligand binding process. To achieve this, we took advantage of a 

machine learning algorithm introduced by Ferrarotti et al,49 known as principal path to identify a 

binding path from pre-existing MD-binding simulations. In addition, we reconstructed the FES 

exploiting the well-known well-tempered Metadynamics algorithm. 
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2 THEORETICAL AND METHODOLOGICAL 
BACKGROUNDS 

 
 
During the last decades, MD simulations have been optimized properly in order to capture 

accurately the full protein-ligand binding process in agreement with experimental results. This is 

due to increasing computer power, the advent of graphical processor unit (GPU) architectures, and 

MD software that can efficiently run on these innovative infrastructures.50 As already discussed in 

Introduction, in pioneering studies by Buch et al.51 , Shan et al.52 and Dror et al.53, several 

spontaneous protein-ligand binding events reproducing the complexes resolved by X-ray 

crystallography, were observed. However, as it was previously discussed, several different 

trajectories are needed to obtain adequate statistics and to sample exhaustively the conformational 

space. This makes the whole process computationally demanding and not frequently affordable, 

especially in fast-paced drug discovery, when MD simulations are used for kinetic prediction of 

ligands with long residence time.46 However, powerful alternatives to the plain MD simulations 

have been developed in order to accelerate the observations of rare events on affordable 

timescales.54 Most of these approaches, usually referred as “enhanced sampling methods”, can 

provide also the statistical weights of the sampled configuration, allowing the reconstruction of the 

thermodynamics of the system consistent with the one obtained by a plain MD simulation.  

In this section, we provide some theoretical background on methods and combination thereof we 

employed to study protein-ligand binding process and related thermodynamics and kinetics 

proprieties of biologically relevant systems.  

 

 

2.1 Molecular Dynamics (MD) simulations 
 

Molecular dynamics, MD, is a computational technique aimed at studying the time-dependent 

evolution of a molecular system, under the action of the forces generated by a potential that 

provides opportune approximations of the physics and chemistry under investigation. This is 

obtained by solving the second-order differential equations represented by Newton’s second law: 

 

ef()) = ifjf()) = 	−
kl(m(a))
kmn(a)

                                                                                                                (9) 

 

Where ef()) is the force acting on ith atom of mass mp, at time t. jf()) is the acceleration and x(t) 

represents a configuration of the system described by three-dimensional coordinates of the N 

interacting atoms at time t. Commonly, in computational drug discovery, molecule’s atoms are 

treated as a sphere particles according to molecular mechanics principle. This is possible through 

the Born-Oppenheimer approximation.55 According to this formalism, the most important 
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contribution to the system dynamics is associated to nuclear motions, which are considerably 

heavier than electrons in term of mass. This allows to average out the electronic contribution in 

Schr edinger’s wave function equation that describes the system. The result is that an empirical 

potential energy function is introduced q(r())) that represents the Force Field (FF): 
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The FF accounts for bonded and non-bonded contributions. In equation (10) the first three terms 

represent bonded terms describing variations in potential energies as a function of bond stretching, 

bending and torsion among atoms directly involved in bonding relationships. Bond stretching and 

bending, represented by summation over bond lengths (l) and angles (") respectively, are both 

described by harmonic potentials with reference values v( and "( and force constants of .^ and .ï. 

Torsions of dihedral angles are described by a cosine series of M terms, and other parameters are 

additionally considered that take in account the periodicity. In particular,  describes the 

multiplicity for the kth term of the series, �(,fK is the corresponding phase angle, and qfK is the 

energy barrier. Non-bonded terms describe forces acting among atoms that are not directly bound 

and consist of van der Waals and Coulomb interactions (fourth and fifth term in equation (10) 

respectively). These forces vary with the inverse power of the distance between considered atoms 

ñfÜ. In particular, van der Waals interactions are generally described by a 12-6 Lennard-Jones 

potential, where εpò defines the depth of the energy well, whereas ñ(,fÜ is the minimum energy 

distance that equals the sum of the van der Waals radii of the two interacting atoms considered. 

The last term in equation (10) describes the electrostatic energy that is defined by the Coulomb 

potential. ôf and ôÜ are the partial charges of the pair of considered atoms, Ö( is the permittivity of 

free space and, finally, Ö* is the dielectric constant (1 in vacuum). The empirical determination of 

reference values for bond lengths, angles, dihedral together with the different degree of accuracy 

used to describe the non-bonded interactions limits the applicability of the FF. However, multiple 

FF with constantly increasing accuracy are now available, so one can always take in account the 

FF best fitting to the specific considered molecular system. In a normal MD simulation, given a 

certain FF and potential q(r())), it is possible to derive the acceleration  over the atoms with 

respect to positions x at time t. Even if a classical FF speeds up calculations compared to quantum 

mechanics (QM), equation (10) still it requires integration over time. Thus, to simulate biological 

macromolecules it is necessary to split the integration of the equation of motion into discrete time 

intervals, known as time-steps (δt), where forces are assumed to be constant. As an example of an 

integrator, the velocity-Verlet is one of the most widely adopted algorithm in MD simulations. The 

Velocity-Verlet integrator calculates positions at time () + ú)) through the following equation: 
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rf() + ú)) = 	rf()) + ùf())ú) +
å
u
jf())                                                                                            (11) 

 

Where rf()), ùf()) are the coordinates and velocities at time t respectively, accelerations  jf()) are 

calculated taking the first derivative of the potential energy with respect to positions with opposite 

sign as shown in equation (11). Velocities are then calculated according to equation: 

 

ùf() + ú)) = 	ùf()) +
å
u
[jf()) 	+	jf() + ú))]ú)                                                                             (12) 

 

The accuracy of integrators heavily depends on the value of the chosen time-step, that must be 

chosen small enough to track the dynamics of the system.  

Only a “small” δt guarantees reliable forces over time and consequently, continuous trajectories. 

Ideally, the value of the time-step should be comparable to the time scale of the fastest motion 

among those that are being studied. For example, stretching and bending of bonds involving 

hydrogen atoms are subjected to very fast motions so a correct value of time-step should be 0.1 fs. 

This time step is very small and a strategy to increase it is to constrain the fastest degrees of freedom 

subjected to very fast motions thanks to ad-hoc algorithms (i.e., stretching and bending of bonds 

involving the hydrogen atoms).56 In this way, it is possible to neglect these motions and thus 

consider a time-step 10 times larger, heavily reducing the computational cost. Other strategies are 

possible: for example, implementing a protocol to repartition the hydrogens mass over adjacently 

bound heavy atoms, allowing a time step of 4 fs.57,58 Alternatively these masses are not considered 

at all and replaced with virtual sites without mass,58 whose positions are updated relatively to heavy 

atoms at each step.  

An important aspect that any numerical integrator must satisfy when used in an MD simulation, is 

the preservation of the energy conservation law. In particular, the integrator must keep the 

Hamiltonian of the system constant, given by the sum of the potential and kinetic energy. According 

to the following equation: 

 

Z(r, û) = q(r) 	+ 	#(û)                                                                                                                  (13) 

 

the Hamiltonian Z(r, û) provides the total energy of the system and depends upon coordinates (x) 

and momenta (p). From these considerations, because the macroscopic variables that define the 

statistical NVE ensemble are considered constant, MD naturally follows the motion of a 

microscopic isolated system, without exchanging energy with the surroundings. Most of the MD 

simulations are performed within the canonical ensemble, where the number of particles (N), 

volume (V) and temperature (T) are conserved, or within the isothermal-isobaric ensemble, where 

N, V and pressure (P) are conserved. Constant temperature is maintained through a thermostat.59 

Thermostats are algorithms that allow fluctuations in kinetic energy as if the simulated system were 
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immersed in a thermostatic bath. Constant pressure is controlled by the so-called barostat 

algorithms,60,61 that is by opportunely scaling the system volume. In order to limit the finite size 

effects due to the use of a simulation box, periodic boundary conditions (PBC) are also commonly 

used in MD simulations. With the employment of PBC conditions, the system is placed in a unit 

cell that is replicated in different directions resulting in a periodic lattice of identical subunits. In 

this way, molecules of the system that are close to the edge interact with the atoms of the 

neighboring box. In order to limit the computational cost of the non-bonded terms calculations, a 

spherical cut-off with a radius usually at least 11 Angstrom has to be used. In particular, the forces 

are divided into short- and long-range contributions depending on the distance value as below or 

over the above mentioned threshold. 

The long-ranged electrostatic interactions, because they decay as ñ5å, are usually calculated over 

the a lattice through particle-mesh Ewald (PME) method.62 While short-range electrostatics is 

computed in the real-space, a grid-based approach is used in the reciprocal space to calculate long-

range electrostatic taking advantage of fast Fourier transform.62 

 

Generally, MD simulation setup consists of three important steps: minimization, equilibration and 

production. During the minimization step, the initial structure of the system is relaxed to the nearest 

local minimum (potential energy).61 During the equilibration step, the system is brought at 

physiological temperature and pressure conditions. The initial velocities are assigned to the atoms 

according to a Maxwell-Boltzmann probability distribution at the desired temperature. This step 

should be gentle enough to avoid artifacts in the protein structure, so generally, it is a good practice 

to run few steps in the NVT ensemble, in the first heating steps. Once the temperature reaches an 

acceptable value (e.g. 300 K), a switch to the NPT ensemble is necessary to relax the system.  

By use of these methods, MD simulations on systems of relevant pharmaceutical interest can be 

performed from the microsecond to millisecond time scale in order to observe events such as drug 

binding to its target and to estimate the kinetics and free energy associated with protein ligand 

binding.   

 

 

2.2 Estimation of MD-derived observables 
 

According to statistical mechanics principles it is possible to quantitively estimate important 

thermodynamics observables computed from MD runs, such as internal energy, pressure and heat 

capacity. Among these, as already discussed in the Introduction, the key thermodynamic quantity 

in drug discovery is the protein-ligand standard binding free energy,46 ∆I$° , defined as the free 

energy difference between the unbound and bound states.63 ∆I$°  can be directly compared to the 

experimental dissociation constant KW through the following equation: 



 23 

 

∆I$° = 	.T=v} †
°¢
£°
§                                                                                                                             (14) 

 

Where &° is a constant defining the standard concentration (1 M by convention) that makes the 

argument of the logarithm dimensionless. 64 Because the  standard binding free energy depends on 

the dissociation equilibrium constant #$ and the reference value of &°, this conventional 

concentration must be properly considered to compare computational free-energy estimation with 

experimental data.64 Together with other quantities related to entropy, free-energy is the 

thermodynamic observable whose estimation suffers the most from the limitations and underlying 

approximations of the sampling. Because of the probability of visiting microstates in the canonical 

ensemble is proportional to the Boltzmann factor according to: 

 

û(r) ∝ 45l(m)/(K9O)                                                                                                                              (15) 

 

It is evident that thigh-in-energy configurations are much less frequently sampled than low-energy 

states. In addition, if barriers larger than .T= units need to be crossed, the sampling of the 

configurational space will be severely limited, which is a prerequisite to achieve reliable free-

energy estimate. For this reason, moving across different states, separated by significant free-

energy barriers, can be viewed as a rare event relative to the time scales accessible to plain MD 

simulations. Equation (15) can be expressed as a function of the probability rate between bound 

and unbound states as: 

 

∆I$° = 	−.T=v} †
î¶LßN¢(m)
îßN¶LßN¢(m)

§ +	.T=v} †
£¶L®

£°
§                                                                                    (16) 

 

Where ûd/©1$(r) and û©1d/©1$(r) are the probability of finding the protein in the bound or 

unbound states, respectively. The second term is a correction term to obtain the standard binding 

free energy. This term considers as well as the reference concentration of the standard state, C° and 

the concentration of the interacting species included in the simulation box &d/m. The MD approach, 

together with Monte Carlo methods, are the most accepted techniques to generate a Boltzmann 

distributed set of configurations, finding application in studying biomolecular systems. However, 

assessing free energy as a probability ratio according to equation (16) is far from trivial, since many 

re-crossing events between the bound and unbound states, separated by energy barriers larger than  

.T=  units, are required to achieve proper statistical confidence. For plain MD simulation, this is 

even harder since it is already pretty rare to observe a single binding event in a reasonable 

computational time. 
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As it was already widely discussed in Introduction chapter, the main advantage of MD-based 

methods is the possibility of characterizing the mechanistic steps of the entire protein-ligand 

binding process.  

In particular, provided that adequate sampling is obtained, kinetic observables such as the 

association and dissociation constants (./1 and ./00) can also be determined by using equations 

(5-6). 

During the last decade, kinetics received increasing attention in the drug discovery field, following 

the perspective article of Copeland published in 20062 where the concept of residence time define 

as the reciprocal of the ./00 is thoroughly discussed: 

 

)* = 	
å

KLMM
                                                                                                                                           (17) 

 

His discussion starts from the evidence that t´ is related to the in vivo biological effects triggered 

by the ligand. In other words, the efficiency of a drug is explicated only when the drug is bound to 

its physiological target, whose cellular function is consequently modified.65,66 Thus, from a 

pharmaceutically standpoint, accurately predicting the )* can be more important than the 

determining the equilibrium constant to predict the final in vivo drug efficacy. Therefore, 

optimizing )* via rational design is of fundamental importance for computational drug discovery. 

However, plain MD simulations are not appropriate to recover transition rates for drugs; this is due 

to the long timescales involved in the dissociation of protein-ligand complexes, which can last from 

millisecond to minutes or more. 

 
 

2.3 Enhanced sampling methods 
 

Thanks to improvements in hardware and software, it is now possible to perform long MD 

simulations able to observe in detail the full protein-ligand binding process, at least in some cases. 

However, due to the huge time scale needed to adequately sample the configurational space 

involving the binding event, it is not possible to routinely exploit plain MD in the drug discovery 

process, making the plain MD binding more like academic exercise. Indeed, most of the times, 

simulating the whole process of ligand binding to its target requires the exploration of a large 

number of degrees of freedom, and also the ligand may spend a lot of time in irrelevant regions in 

the bulk solvent before finding the way to the binding site. As result, the system gets trapped in a 

local minimum of the FES, without being able to overcome the energy barrier and explore other 

regions, including that associate with the absolute minimum corresponding to the protein-ligand 

crystallographic complex. 
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To overcome this limitation, a number of strategies, the so-called “enhanced sampling methods”, 

have been developed.46,67 As suggested by the name, they improve the exploration of the 

configurational space.67 Broadly speaking, these methods usually fall in two general categories. On 

one side, one has methods that rely on collective variables (CVs) biasing. The main advantage of 

using these strategies is that the sampling is enhanced toward the event of interest by biasing the 

MD simulations along chosen CVs, that are functions of atomic coordinates. Among these methods, 

the most well-known are umbrella sampling68 (US), steered MD69 (SMD), and metadynamics70 

(MetaD). On the other side, one has tempering methods, in which sampling is enhanced along all 

of the degrees of freedom of the system. Replica exchange MD71 (REMD), accelerated MD72 

(aMD), multicanonical MD73 (McMD), Parallel tempering (PT),71 and potential-scaled MD74,75 

(sMD) belong to this second class. 

In this work, we took advantage of both classes of enhanced sampling methods so, in the following, 

a brief description of the theory behind the employed techniques is provided. 

 

 

2.3.1 Potential-Scaled MD (sMD) 
 
sMD belongs to the non-CV based class of methods.74,75 In this method the PES of the system is 

scaled by a factor λ that belongs to the interval (0,1]. When  

λ equals to 1, then the PES corresponds to that obtained from a plain MD. As one goes to lower 

values of λ, approaching the 0 value, the energy profile is increasingly smoothed. In Figure 3 it is 

depicted the effect of λ on the PES. As a result, the energy barriers between different states are 

lowered and thus transitions between them are facilitated. This behavior is the analogous to 

sampling at high temperatures. Under sMD conditions, the canonical probability distribution for a 

given state of the system is modified to: 

 

û∗(r) = 	 45Æl(m)/K9O                                                                                                                         (18)                                                                                                            

Where V(x) is the potential energy along a reaction coordinate r, .T is the Boltzmann constant and 

T is the temperature.  
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Figure 3. Effects of the scaling factor in the PES of the system. As more aggressive λ values are applied, the 

potential energy profile increasingly smoothed. 

 

 

In this implementation from Sinko et al., a population-based reweighting scheme was proposed to 

reconstruct the canonical distribution of populations: 

 

û(r) = 	û∗(r)å/Æ                                                                                                                                (19) 

 

In principle it is possible to consider other reweighting schemes, including for instance an energy 

term. However, it was shown that the population-based strategy is more accurate, as energetic terms 

are subjected to larger energy fluctuations that introduce large errors.74 

 

 

2.3.2 Well-tempered metadynamics 
 

MetaD is a well-known enhanced sampling method for studying rare events.70 In MetaD the 

sampling is enhanced by adding a history-dependent bias potential constructed by depositing 

Gaussian kernels on selected degrees of freedom or CVs, that essentially describe slow degrees of 

freedom of the system. The bias potential added through MetaD is expressed by means of the 

following function: 

 

q±(≤(r), )) = ≥∑ exp	∂−
à](m)5]†m∑a∏π§ã

∫

uªº∫
Ωa

a∏	æ	øQ,uøQ	                                                                          (20) 

 

where, w is the height of the Gaussian distributions, ¿] is the width of the Gaussian potentials, and 

¡±  is the time frequency at which Gaussian potentials are deposited along the CVs of a microscopic 

coordinate x of the system, s(x). These three parameters determine the accuracy and efficiency of 
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the free energy reconstruction. If the Gaussians are large, the FES will be explored at a fast pace, 

but the reconstructed profile will be affected by large errors. Instead, if the Gaussian are small or 

are deposited infrequently, the reconstruction will be more accurate, but it will take a longer time. 

The bias potential fills the minima in the FES, allowing the system to efficiently explore the space 

defined by the CVs. Figure 5 reports an example how MetaD acts with a one-dimensional bias 

potential. 

 

 

Figure 5. Pictorial representation of the MetaD method. The bias is gradually deposited at increasing time 

intervals τ along a r. Assuming that a simulation starts from the deepest basin, the gradual filling due to 

Gaussian deposition allows crossing the barriers and visiting the second deepest basin. The less profound 

basin is sampled after the other two basins are filled and the system is able to cross the barrier separating 

from them. Once all of the relevant minima have been visited, the system is free to sample along the entire 

reaction coordinate. At this point, minus the total bias accumulated gives the free energy.  

 

 

In MetaD it is assumed that for a sufficiently long simulation, the system is able to freely diffuse 

in the CV space. One can reconstruct the free energy √(≤(r)) in such CV space as: 

 

lim
a→«

q±(≤(r), )) = 	−√∑≤(r)π + &                                                                                                         (21) 

 

Where C is an irrelevant additive constant. The main drawbacks of using MetaD are related to 

assessing the convergence of the simulation and choosing the CVs to bias.76 As for the first one, 

once all the basins are visited, and while the simulation keeps running, the bias continues being 

deposited. This has the effect of overfilling the underlying FES and encouraging the system to visit 

high-energy regions of the CVs space. Thus, for a reliable FES estimate, the simulation should be 

stopped as soon as the system starts diffusing in the CVs space. A solution to this problem is 

provided by well-tempered MetaD.77 While in standard MetaD Gaussians of constant height w are 

deposited over time, in well-tempered MetaD the bias deposition rate decreases over simulation 
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time. As a result, the overfilling mentioned above is less pronounced. Now, the Gaussian height 

becomes a function of the simulation time, according to: 

 

≥()) = 	≥(45lQ(](m),a)/K9∆O                                                                                                           (22) 

 

Where w( is the initial Gaussian height, q±(≤(r), )) is the total bias deposited at time  and ∆T is 

the range of the temperature at which the CVs are sampled. Each time the system is brought inside 

a new basin, the initial Gaussian height ≥( is restored and the simulation time-dependent scaling 

of the hills restarted. As the result, the bias potential tends to smoothly converge in the long time 

limit. Particularly important is the choice of the entity of decrease in Gaussian height per time unit. 

w should not become too small before a basin is completely filled, otherwise the system would 

remain stuck inside the basin with no possibility to overcame barriers. This can be controlled by 

setting for the simulation a specific parameter, the bias factor, defined as: 

 

  = 	 OÀ	ÃO
O

                                                                                                                                              (23) 

 

Where ∆= is the upper limit of the temperature range to which the sampling of the CVs is confined. 

Thus, in the long-time limit, the total bias potential smoothly converges without fully compensating 

the underlying free energy as reported: 

 

q±∑≤(r)π = 	−
∆O

OÀ∆O
√∑≤(r)π + &                                                                                                       (24) 

 

The second drawback that is encountered when MetaD is employed is the identification of an 

appropriate set of CVs.  As already discussed, all of the slow degrees of freedom of the system 

should to be included by the CVs. Otherwise, the simulation will not converge, and the system will 

remain stuck at a certain position until the rare event involving the hidden CV eventually takes 

place. It is for this reason that choosing a proper set of CVs is far from trivial and knowledge about 

the system under study is required. In order to reduce the possibility of neglecting relevant degrees 

of freedom, several strategies can be applied.  Among those relying on the use of CVs, one is using 

bias-exchange MetaD78 in which multiple replicas of the system are simulated in parallel, and a 

different CV is biased in each replica. Another approach, specifically devised to manage 

particularly complex reaction pathways, is the use of path collective variable CVs (PCVs) .79 
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2.3.3 Steered MD (SMD) 
 

In SMD simulations, a time-dependent external force is applied to a specific set of CVs in order to 

facilitate the sampling of the event of interest, which usually is achieved by MD simulation in not 

affordable computational time. In other words, SMD operates by pulling one or more CVs to guide 

the system from an initial configuration to a final one. In particular, an harmonic time dependent 

potential Õ(r, )) acting on a CV s(r) is added to the standard Hamiltonian: 

 

Õ(r, )) = 	 K
u
[≤(r) 	−	≤(()) − ù)]u                                                                                                         (25) 

 

Where s( is the value of the CV at time 0, t is the time, and k is the strength of the external force 

applied. The value of the applied constraint force F is thus: 

  

√()) = 	−.[≤(r) − ≤(()) − ù)]                                                                                                          (26) 

 

And finally, the external work ∆Œ performed on the system is derived from the F(t) by integrating 

the power along the time of the entire process: 

 

∆Œ = ù ∫ √())–)aMnN7t
aâ

                                                                                                                      (27) 

 

Since ∆W is the cumulative change of the Hamiltonian in time and it related also to the change in 

energy of the system, it is potentially possible to calculate the free energy by guiding the system 

out of equilibrium between two states of interest by using methods based on the Jarkzynski 

equality.80–82  

 

 

2.3.4 The MD-Binding Approach 
 

As briefly introduced, the MD-Binding approach is here exploited to generate plausible protein-

ligand binding trajectories at a reasonable computational cost. The MD-binding approach is a novel 

method, introduced by Spitaleri et al. in 201883 and available in BiKi Life Sciences,84.  In this 

method an artificial electrostatic bias between the interacting partners (the ligand and a set of 

residues of the binding site) is introduced in order to guide the ligand to the binding site preventing 

the ligand to spend a lot of time in the bulk solvent. This idea comes from the well-known fact for 

which electrostatic interactions play a central role in the context of molecular recognition.85 

The attractive external electrostatic bias acts between a subset of the residues of the binding site 

and the ligand with a functional form: 
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Where A and B are the two interacting partners, the ligand and the protein, and a and b are the 

atoms indices in A and B, respectively,  ñ<,d is the distance between them. C is a modulation 

parameter, and –(ñ<,d, ”) is a function that modifies the effect of the bias according to the distance 

r and the parameter ” (see below). The charges, ÷<, ÷d, conventionally have opposite sign, are 

unitary and are spread among all the atoms of each set of atoms to let the system move as natural 

as possible without forcing unusual interactions.83 The other key aspect of the MD-binding 

approach is the adaptivity of the bias. The adaptive bias lets the ligand to gradually approach, as 

gently as possible, to its naturally occurring binding mode avoiding unphysical pathways. The 

adaptive behavior of the external bias is reached by modulating the intensity of the external force 

to be always a fraction of the intensity of the physical forces naturally felt by the ligand. Moreover, 

the biasing force is gradually lowered as the process moves forward, which means that the ligand 

is moving toward its binding site. Finally, the biasing force cannot be turned back on, once switched 

completely off, even if the ligand leaves the binding site moving further to the solvent.  

Mathematically, all these conditions are satisfied by modulating the coefficient C of Formula 28, 

along the simulation. In particular the modulus of the additive forces acting on the subset of ligand 

atoms is kept at a fraction of the modulus of the overall force created by the gradient of the regular 

potential energy of the system. In addition, –(ñ<,d, ”) of Formula 28 assumes the form of an 

exponential decay function according to: 
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Æ
)                                                                                                                       (29)       

                                           

The switch-off is obtained via a scaling pre-factor   that modulates the biasing force, calculated 

via a switching function as it follows: 
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åÀ◊ÿŸ	(5]]∗($f]a5aP))

                                                                                                                    (30) 

 

Where ss and th are two parameters and dist is evaluated as follows: 

 

–⁄≤) = 	i⁄}m∈’i⁄}¤∈T‹–≤(r, ›)                                                                                                       (31) 

 

Where fi‹  is a subset of atoms of the selected residues of the binding site (B), known as switch-off 

atoms, –≤(r, ›) is the pairwise distance between the two atoms x and y. According to this equation, 
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the bias is switched-off when any atom of the ligand A falls below a predefined distance from any 

atom of fi‹ .  

The advantage of using the MD-Binding approach to investigate protein-ligand event is the 

possibility of depicting the binding process as a whole, from the initial state in which the ligand is 

fully solvated in the bulk, to the final bound state without neglecting metastable states in reduced 

time compared with long unbiased MD simulations.    

 

 

2.4 Path Collective Variables (PCVs) 
 

As already discussed, nowadays it is possible to observe rare events such as the protein-ligand 

binding process at fully atomistic level leveraging enhanced sampling methods. One of the major 

drawback of enhanced sampling methods that rely on the use of the CVs is that a particular attention 

should be paid to the identification of these to properly guide the sampling.76 Ideally the chosen set 

of CVs has to be representative of the process of interest and capable of describing it exhaustively 

without neglecting other fundamental variables that have to be considered in order to characterize 

the process in all its aspects. In principle, it is necessary to be deeply familiar with the process of 

interest in order to consider the best set of CVs, but this is the most of times infeasible. Indeed, 

every chosen CV has several requirements: 

 

• It has to be a function of the coordinates of the system 

• It has to be defined by a continuous mathematical function with continuous and analytical 

derivatives 

• It needs to include all the slow modes of the system 

• It has to be able of discriminating among initial, intermediate and final states 

 
 

Moreover the number of employed CVs needs to be limited in order to save computational 

time.67,70,86  

To overcame the difficulty of managing highly dimensional phase spaces and reduce the choice 

between multiple possible CVs, the PCVs formalism has been developed.79 Consider a transition 

between state A and B, and suppose one is able to describe this reaction with a series of frames 

capturing the system at intermediate states along the reaction of interest. One can exploit this 

frameset to guide sampling along the “path” by means of the following CVs: 
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For any microscopic configuration X the variable ≤ can range between 0 and P, where ? represents 

the number of frames comprised in the frameset. The difference (fl − fl(⁄)) is the distance between 

the configuration fl of the system and the one adopted in frame i. It is common practice to use as 

distance metric the mean square deviation (MSD) and the CV, to be meaningful, requires the frames 

to be equidistant in the MSD space. Whenever the microscopic configuration sits on, that is 

corresponds to, a specific frame i, then all of the other terms in the summation disappear and ≤(fl) =

⁄. Thus, in practice, ≤ describes the progression along the frameset. As for the second parameter, z 

can be though as orthogonal to s, and expresses the distance from the putative pathway. While one 

advances along the putative pathway, z allows exploring adjacent regions of the phase space. In the 

above functions, λ is a tunable parameter that ensures a continuous progression. It is proportional 

to the inverse of the average MSD between subsequent frames in the frameset. As a rule of thumb, 

the following formula it has been suggested: 

 

” = 	 u.Ï(F5å)
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                                                                                                                         (34) 

 

In summary, the highly dimensional space is reduced to a 1-dimensional description exploiting as 

CVs the progression along the pathway. The main advantage from combining s to Ê is a more 

permissive exploration of the configurational space around the guess route. As such, in the 

reconstructed FES, the minimum free energy pathway can be then recognized. There is no general 

rule to obtain the required frameset, but it has to respond to specific requisites. First of all, 

consecutive frames need to describe unidirectional progression towards the final state. No loops 

leading back and forth should be present. Secondly, equal spacing between frames is required. 

Finally, an appropriate number of frames should be chosen, so that the distance between subsequent 

frames is not excessive. Indeed, the resolution of the reconstructed FES is going to reflect the 

amplitude of the achieved spacing.  

 

 

2.5 Analysis of multiple conformations: Cluster Analysis 
 

Methods based on MD simulations have proven to be able to reproduce at atomistic level of detail 

the dynamics of complex biological system, such as protein folding and drug-receptor interaction. 

With the improvement of computer power, increasingly long trajectories consisting of large amount 

of data are collected. MD trajectories are sequences of data that specify the history of the atomic 

motions in terms of a sequential time-dependent set of configurations and the relative derived 

properties.87 In the context of protein ligand binding, identifying those configurations that are 
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sampled by the system more frequently is of fundamental importance, since they (in good part) 

could be conformationally redundant. Data-mining techniques represent powerful tools to extract 

patterns and gain useful information from long MD trajectories. Among these techniques, cluster 

analysis88 is one of the most widely used methods that allows to organize points of any data 

collection in different groups, called clusters, built according to a function measuring pairwise 

distances. The elements of a cluster are hence more similar to each other than those belong to other 

clusters. When clustering is applied to MD trajectories, the idea is to group similar configurations 

of the system sampled during the simulation. Since the sampling follows the Boltzmann 

distribution, where substates associated to low energy are more populated than those associated to 

high energy, clusters of configurations are differently populated. The parameters that have to be 

taken into account when clustering is applied to MD trajectories, are the choice of atoms subject to 

clustering, the pairwise metric used to compare elements, and finally the clustering algorithm. It is 

important to note that it is practically impossible to identify a perfect algorithm that produce a series 

of homogeneously clusters as the problem is NP-complete and thus unfeasible. Thus, in general, 

the quality of a clustering algorithm can be evaluated by its ability of identify the minimum number 

of clusters that preserve their internal homogeneity.  

A wide number of different clustering methods has been developed and demonstrated to be very 

useful to identify the most visited states in MD trajectories. Among these, the most used clustering 

techniques can be classified as hierarchical and non-hierarchical. 

 

 

2.5.1 Hierarchical algorithms 
 

Hierarchical clustering algorithms can be agglomerative or divisive. In the first case they merge 

elements initially placed in different separate clusters, in successively larger clusters (bottom-up). 

In the second they begin with a single cluster encompassing the whole elements and proceed to 

divide it into successively smaller clusters (top-down). The results are reported in a descending or 

ascending “tree” diagram called dendrogram (see Figure 6), which is built as the algorithm iterates 

the process. The final output of a clustering algorithm can be derived from cutting the dendrogram 

at a chosen level and analyzing the corresponding number of clusters obtained. 

These operations rely on the use of an appropriate metric (a measure of distance between pairs of 

observations), and a linkage criterion which specifies the dissimilarity of sets as a function of the 

pairwise distances of observations in the sets. In this work to analyze MD simulations we used the 

Root Mean Square Deviation (RMSD) as metric. Among the possible linkage criteria, the most 

commonly used are single-linkage, average-linkage, centroid-distance and complete-linkage. 

Single-linkage defines the distance between clusters as the shortest intercluster point-to-point 

distance; average-linkage, measures cluster-to-cluster distance as the average of all the distances 

between each point of the two clusters; centroid-linkage is similar to single linkage but the 
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intercluster distance is calculated between the cluster centroids; complete-linkage identifies cluster-

to-cluster distance as the largest point-to-point intercluster distance between two clusters. A 

distance threshold is then defined, under which the conformations are considered as belonging to 

the cluster. In hierarchical algorithms, the number of clusters cannot be decided a priori, the 

clustering procedure can simply be stopped when a meaningful number of clusters has been 

reached. 

 

 

 

Figure 6. Hierarchical dendrogram. Clusters are represented in different color by cutting the dendrogram at 

the level of the grey line. The two rows on the left and right of the dendrogram schematize the agglomerative 

and divisive clustering approaches. 

 

 

2.5.2 Non-hierarchical algorithms 
 

Non-hierarchical algorithms define a classification by partitioning a dataset in a set of separate, 

non-overlapping clusters without hierarchical relationships among them. The most used algorithms 

to cluster MD trajectories are k-means and k-medoids.89,90 k-means clustering partitions n objects 

in a number k defined a priory of clusters. The k centroids are determined in an iterative way; at 

each iteration every sample is assigned to the nearest centroid, which coordinates corresponds to 

the mean of the coordinates of the objects in the same cluster; this iteration is self-consistently 

iterated till convergence. As pairwise metric it is convenient to use the Euclidean distance of 

RMSD. Because the algorithm operates with means, which identifies coordinates that have minimal 

sum of squared deviations from it, k-means algorithm minimizes a distance-based cost function, 

which is the sum squared errors, SSE and is by defined: 
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Where k is the number of clusters, } is the number of configurations, r is the ith element of the cth 

cluster with mean m. One of the main drawbacks of k-means algorithm is that is very sensitive to 
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outliers and to the clusters initialization. A variant of k-means is represented by the k-medoids 

algorithm. k-medoids differs from k-means in considering as centroids the most centrally located 

real object of each cluster. 

 

 

2.6 Applications of MD-based techniques to the study of the protein-

ligand binding process 

 

2.6.1 Plain MD  

 

The earliest attempt to simulate the spontaneous protein-ligand binding event using unbiased MD 

simulations was made by Shan et al. in 2011, where two Src kinase inhibitors were randomly placed 

together with their target protein in a simulation box and let them free to diffuse to their binding 

site.52 In this work, aside from reproducing several times complexes nearly identical to those 

resolved by X-ray crystallography, the authors also identified an unknown allosteric pocket, 

highlighting the potential of MD simulations as promising tool in standard drug discovery 

programs. Likewise, Buch and co-workers used long plain MD simulations to completely 

reconstruct in terms of the pathway and related energetics, the benzamidine to trypsin binding 

process.51 Other examples were conducted for membrane receptors (the β-adrenergic GPCRs 

coupled to agonist and antagonist small molecules53 and spontaneous binding of tiotropium and 

acetylcholine to M2/M3 muscarinic receptors91) and in recent times, for the purine nucleoside 

phosphorylase enzyme and its inhibitor, the transition state analog DADMe-immucilin-H.92 

Furthermore, the same method applied to the context of fragment-to-lead development 

demonstrated the wide range of the unbiased MD simulations applicability.93 In this case as well 

Authors were able to reproduce all the crystallographic poses of carboxy-tiophene fragments 

present in the X-ray structure of AmpC β-lactamase; distinct binding modes were discriminated 

from both thermodynamic and kinetic standpoint, through analysis of the simulation.94 Particularly 

important is the work of Dror and co-workers, where they studied the M2 muscarinic acetylcholine 

receptor along with a number of experimentally identified allosteric modulators for which no 

crystal structure was available, demonstrating how dynamic docking could be useful for revealing 

binding sites and poses of binders without no a priori information.95  

In this section are included also those methods that rely on discontinuous trajectories indicated as 

“discontinuous approaches” since the dynamics is not enhanced through the use of external forces 

beyond the normal force field.  

 

Adaptive sampling methods are a class of unbiased MD approaches based on the Markov State 

Model (MSM) framework. 96,97 These methods aim at saving computational time by replacing few 
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long plain MD simulations with many short ones, which start from under-sampled states identified 

along the binding process. In first implementations,  human supervision was necessary to manually 

select from where restarting a simulation, but in 2014, Doerr and De Fabritiis introduced a 

completely automated protocol for reconstructing the binding process for the trypsin-benzamidine 

complex, achieving a converged binding affinity one order of magnitude faster than classical 

sampling.98 This strategy is also implemented in a freely available environment (High Throughput 

MD, HTMD99, where other adaptive sampling algorithms can be considered) and used it to study 

the cooperative mechanism of recognition of ionic cofactors and substrate in the myo-inositol 

monophosphatase enzyme,100 and the binding process of the lipid inhibitor ML056 to sphingosine-

1-phosphate receptor.101  

 

Totally different approach is the supervised molecular dynamics (SuMD) protocol introduced by 

Sabbadin and Moro.102 In suMD protocol, simulations that seem not to reproduce the binding event 

are discarded on-the-fly through the use of a tabu-like algorithm. In practice, at defined time 

intervals of short simulations windows, the distance between center of masses of the binding site 

and the ligand is recorded and, fitted in a linear function. When the slope of the resulting line is 

negative, the distance between center of masses is getting shorter and the ligand is moving toward 

its binding site, and the simulation is let free to evolve. Conversely, when the slope is positive, the 

simulation is stopped, and a new run is restarted from the previous saved coordinates through 

velocity reassignment. Finally, when the distance between protein and ligand is lower a certain 

user-defined value, continuous plain MD simulations is restored. The method has been applied to 

a number of complexes of both globular and membrane proteins,103,104 demonstrating to be able to 

reproduce X-ray structure in nanoseconds timescales. However, to correctly apply suMD, a priori 

knowledge of the binding pocket is required, thus excludes the possibility to discover new binding 

sites like in long plain MD simulations. Moreover, because of the discontinuous nature of the 

simulations, the binding path followed by the ligand the most of times is not close to the minimum 

free energy pathway.25 

 

Another class of methods are multiscale approaches. Here the idea is to limit the full atomistic 

resolution MD simulation only to those configurations in which the ligand is close to the binding 

site of the protein. Recently Zeller et al. introduced a multiscale approach to dynamic docking that 

also allows the calculation of kinetics of the binding process using as a test case two inhibitors of 

the H1N1 neuraminidase.105 In this work, Brownian Dynamics was applied when the distance 

between binding site and ligand was greater than a properly defined value. In this region, ligands 

and protein are treated as rigid entities that undergo translational and rotational diffusion in implicit 

continuum solvent, limiting the applicability only for those cases where the binding pathway does 

not involve large conformational changes. 
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2.6.2 Enhanced sampling methods relying on CVs 

 

One of the earliest attempts to characterize the ligand process exploiting an enhanced sampling 

method was conducted by Gervasio et al. in 2005.106 The authors used MetaD, in which a history-

dependent bias is added on a set of CVs to the underlying dynamics in order to discourage the 

system from exploring previously visited regions of the CV space (for further detail see section of 

Methods), to successfully reproduce the binding mode and the associated experimental binding free 

energy of four protein ligand complexes (!-trypsin/benzamidine,	!-trypsin/chlorobenzamidine, 

immunoglobulin McPC-603/phosphocoline, cyclin-dependent kinase 2 (CDCK)/staurosporine). 

Later, Provasi et al. successfully applied MetaD on the study of the binding process of the 

nonselective  antagonist naloxone to the alkaloid binding pocket of a delta opioid receptor, 

succeeding in correctly estimating the association constant from the reconstructed free energy 

profile.107 This was made possible by confining the unbound state of the ligand using a conically-

shaped restraint in order to efficiently limit the configurational space accessible to the ligand in the 

bulk region. The same concept was exploited by Limongelli et al. in 2013, in the development of 

the so-called funnel MetaD, where the ligand confinement in the unbound state was achieved by a 

funnel-shaped restraint.108 Despite the successful results in reproducing the mechanism of ligand 

binding, MetaD suffers from the common limits of other CV-based methods, one of this is the need 

to choose an optimal set of CVs.86 This makes difficult to apply MetaD to simulate systems 

characterized by a high degree of complexity.  

In 2007, Laio et al. developed a new technique that combines concepts of MetaD and replica 

exchange, the bias-exchange metadynamics (BS-MetaD), with the intention of overcoming the 

limits of the traditional MetaD.78 In BS-MetaD multiple MetaD simulations are performed in 

parallel and exchanged at interval period of time and each replica is biased with a time-dependent 

potential acting on a different CV. This alleviates the problem of CVs selection. In 2009, Pietrucci 

et al. employed BS-MetaD methods to describe the binding process of a small peptide to the HIV-

1 protease.109 Despite the simulation required 2 µs to converge, the author were able to accurately 

compute the free energy associated with ligand binding and unbinding as a function of 7 CVs and 

derive the kinetics of the process using a discrete-states kinetic model.  

Reconnaissance metadynamics110 (RMD) provides a valid alternative to BS-MetaD since a larger 

set of CVs is considered. RMD is a machine-learning approach where the algorithm adjusts the 

bias potential applied using data obtained from short plain MD simulations. This procedure helps 

the user to select the a priori set of CVs, providing a way to efficiently explore unknown 

mechanisms. In 2012 RMD was applied by Soderhjelm to identify and score protein-ligand binding 

poses of the well-known trypsin/benzamidine system.110  
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A largely different approach was proposed by Spitaleri et al. in 2018.83 Under the assumption that 

the driving force of a the protein-ligand binding process can be modeled by an electrostatic force 

due to ligand and binding site opposite charges, Authors developed the MD-binding approach by 

applying an adaptative, electrostatics bias between the binding partners. The method was applied 

on a set of protein-ligand binding complexes of pharmacological interest in order to reproduce the 

ligand binding process in relative short (20 ns) simulation time and multiple replicas.83 

 

 

2.6.3 Enhanced sampling methods based on tempering  

 

Replica-Exchange MD111 (REMD) is one of the most widely used tempering methods to enhance 

conformational sampling and consists on running independently several replicas in parallel of the 

same system, at different temperatures. At regular intervals, exchanges between adjacent pairs of 

replicas are accepted according to a Metropolis acceptance criterion. However, for this to happen, 

a large number of replicas is required to ensure a significant overlap of potential energies sampled 

at adjacent temperatures. A valid alternative is provided by Hamiltonian REMD (H-REMD), in 

which the different replicas are simulated at the same temperature while the system’s force field is 

modified, ensuring a greater probability of exchanges between replica by varying only part of the 

systems among replicas.112 This method was adopted by Luitz et al. to reproduce the binding modes 

for three different protein-ligand system: human FKBP protein (FKBP-52) in complex with the 

high affinity compound FK506 and with the lower affinity ligand SB3, the peptide-binding domain 

of murine MHC class 1 molecule in complex with a viral antigen, through explicit solvent 

simulations.113 

 

Another tempering method is represented by accelerated MD (aMD). aMD improves the 

configurational space sampling by locally adding a non-negative boost potential to the system’s 

potential energy that are below a certain threshold value, while leaving the rest unaltered.72 Kappel 

et al. recently adopted aMD to simulate ligand binding process to the M3 muscarinic receptor.114 

In particular, long-timescale aMD simulations (hundred-nanosecond timescale) are used to identify 

the metastable ligand-binding sites of three molecules in a significantly shorter time than plain MD: 

the full agonist acetylcholine (ACh), the partial agonist arecoline, and the antagonist tiotropium. 

 

In Multicanonical MD (McMD) a random walk sampling through the energy space is made possible 

by a bias applied to the system.73 In this method, higher energy states and lower energy states have 

an equal probability of being sampled because regions at different temperatures defined by the bias 

are simulated simultaneously. An advantage of the McMD method is that the canonical ensemble 

can be reconstructed by a reweighting procedure at standard temperature 300 K easily. In 2007, 
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Kamiya et al. adopted McMD to successfully dock the inhibitor tri-N-acetyl-d-glucosamine.115 

Later, Bekker et al. performed long McMD simulations to identify the correct binding mode of the 

inhibitor CS3 to cyclin-dependent kinase 2 and after, to predict the binding free energy by TI in 

accordance with the experimental data.116  

 

Selective integrated-tempering-sampling MD (SITMD) method, which is based on the integrated 

tempering sampling method, modifies the energy distribution in a simulation system through the 

introduction of a sum-over-temperature non-Boltzmann distribution factor.87 This method, that is 

often used for protein conformational sampling, offers the possibility to selectively enhance he 

sampling of a particular object in a system. Recently, SITMD was successfully tested to explore 

the binding process for a trypsin-benzamidine complex by Shao et al.117 by enforcing random 

walking for the ligand in the solvent and on the protein surface to facilitate its search for the binding 

site.   
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3 ORIGINAL CONTRIBUTIONS 
 

3.1 Fully Flexible Docking via Reaction-Coordinate-Independent 

Molecular Dynamics Simulations 

 

3.1.1 Introduction 

 

Predicting the geometry of protein-ligand binding complexes represents an essential issue for 

structure-based drug design in order to speed up the process of identification and development of 

new drug candidates.118 Molecular docking has become the method of choice to address this task 

because it is highly efficient and relatively straightforward to use.119,120 Despite these advantages, 

common docking programs typically suffer from fundamental issues and limitations, especially 

when protein flexibility plays a relevant role during the association process or when the 

contribution of water molecules is essential.121,122 For practical reasons, mostly due to 

computational resources, most docking programs ignore target rearrangement upon binding and 

also hydration. At best, they account for it through approximations.35 The use of scoring functions, 

used as surrogates of binding free energy estimators, is another well-known source of inaccuracies 

by introducing several approximations123–125 or by adopting convenient phenomenological 

descriptions (empirical and knowledge-based scoring functions).126 To reliably predict protein-

ligand binding geometries and related thermodynamics quantities, it is necessary to capture the full 

conformational flexibility of both binding partners and explicit solvent models. In this respect, MD 

simulations can provide a valuable alternative to conventional docking calculations since a 

complete description of the entire process of binding is obtained at different degrees of accuracy.127 

Thanks to the rapid development of hardware and software it is now possible, in principle, to 

observe the entire drug-binding process at a fully atomistic description via plain MD.46,51,54,68 

However, reaching an adequate sampling of the configurational space is still to computationally 

demanding and not affordable in a hit-to-lead or lead optimization steps of drug discovery 

process.46 Over the years, several research groups have addressed these limitations using enhanced 

sampling methods in order to accelerate the investigation of rare events on affordable time 

scales.54,67 These methods usually fall into two general categories: those that rely on collective 

variable (CV) biasing68,70,128, and those are based on tempering71–74,129; which seem to be more 

suitable since they act by heating all degrees of freedom of the system or by modifying the 

Hamiltonian.46 Here, we propose a general framework (Figure 7) for dynamic docking based on 

the sMD method.74 
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Figure 7. Schematic illustration of the dynamic docking workflow that consists of the following steps: 1) 

System setup, 2) Production and 3) Analysis. For further information see section 3.1.2 Methods. 

 

 

As such, our approach is fully independent of any reaction coordinate or CV. It is unsupervised, 

fully automated, and can easily be implemented in several MD-based codes. The protocol was 

validated against its ability to reproduce the experimental binding modes of two pharmaceutically 

relevant systems: 

 

• The glycogen synthase kinase 3! (GSK-3!), 

• The N-terminal domain of heat shock protein 90-" (HSP90"), for which two different 

degrees of flexibility at the level of the binding site upon ligand binding exist. (Figure 8).  

 

In particular, several studies show how the ATP-binding site of GSK-3! is adaptive, suggesting an 

open and closed state depending on the size of the ligand in order to increase the number of 

contacts.130 On the contrary, the mechanism by which the N-terminal domain of HSP90" plasticity 

affects small molecule binding is not completely clear. It seems that the molecular recognition and 

binding of the residues composing the pocket with different small molecules involve both induced-

fit and conformational selection mechanism. Indeed, the apo N-terminal domain of HSP90" may 

exist in different conformations, especially in a specific region at the entrance of the binding site 

where a particularly flexible segment is present, that undergo to internal motions upon ligand 

binding event modifying the population distribution towards more stable conformations.131 
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Figure 8. Crystal structures of the two test case. A) Apo form of GSK3! (PDB code: 1H8F). Highly 

conserved structural features, common to other kinases, that undergo conformational change through 

interactions with small molecules are depicted with different colors: helix	"&in yellow, the activation 

segment is shown in red; the hinge region is represented in green and the glycine-rich loop is colored in blue. 

B) Both the crystal structures of apo-HSP90" are reported. The main difference is in the loop part of "-helix3 

which adopts two different conformations here shown in different colors: “in” in blue and “out” in red (PDB 

code: 1YER and 1YES respectively).  

 

 

GSK-3! is a proline-directed serine/threonine kinase involved in several physiological processes 

including glycogen metabolism and microtubule stability.132 HSP90" is molecular chaperone with 

important roles in maintaining the functional stability of several client proteins.133 Specifically, five 

ligands were considered for each system. Our procedure reproduced the experimental binding 

modes for all the cases examined. Moreover, is shown how the method can be used prospectively 

by exploiting a sufficient number of repeated simulations and taking advantage of appropriate data 

analysis. 

 

 

3.1.2 Methods 

 

Essentially, the overall protocol for dynamic docking here proposed and represented schematically 

in Figure 7, consists of the following three phases: 

 

• System setup: starting from the apo structure of a protein, a 100 ns of plain MD simulations 

is performed in order to capture the internal motions of protein in aqueous environment 

under standard conditions when the ligand in not present. This information is required to 

implement the Elastic Network Model (ENM), whose function is preserving the whole 
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structure of the protein during the sMD simulations. At the same time, flat-bottomed 

cylindrical restraints are defined to limit the configurational space accessible to the 

unbound ligand. 

 

• Production: a series of 10 sMD simulations with an intermediate scaling factor of ” = 0.5, 

lasting up to 100 ns each, are performed starting from the equilibrated apo structure of the 

protein and with the ligand placed 25 Å from the binding site in a random orientation.    

 

• Data Analysis: identification of the most probable binding mode based on either a 

reference structure (retrospective analysis) or cluster analysis (prospective analysis).  

 

 

3.1.2.1 System Setup 

 

3.1.2.1.1 Identification of ligand-binding pockets 

 

First of all, a fundamental prerequisite to correctly employ dynamic docking protocol is the 

identification of the pocket where the ligand is supposed to bind. To define the binding pocket, we 

take advantage of NanoShaper134 a molecular surface tool available graphically in the 

BikiLifeScience Suite,135 that applies a ray casting and grid-based method to find cavities and in 

general surfaces in a biological entity. In particular NanoShaper defines ligand-binding pockets on 

the initial PDB as the difference between two solvent excluded surface enclosed volumes generated 

with different probe radii. For HSP90 (PDB code: 1YER and 1YES),136 the two radii used to 

compute the ATP-binding pocket were 1.4 Å and 4 Å, respectively, while for GSK3β (PDB code: 

1H8F)137 radii of 1.8 Å and 4 Å were employed.  

 

 

3.1.2.1.2 Plain MD simulations setup 

 

Preparation of each protein structure was performed through the “Protein Preparation Wizard” 

module of the Maestro interface (version 9.3.5) in Schrödinger suite.138 The protein preparation 

process involved addition of hydrogen atoms, deletion of all crystal waters, and capping of protein 

termini. Plain MD were performed using version 4.6.5 of the GROMACS139 software. The Amber 

ff99SB-ILDN force field140 was employed to model the proteins. Solvation was achieved adding 

TIP3P141 water molecules in a cubic box extending at least 12 Å beyond the protein surface. A 

proper number of water molecules was replaced with counterions for system neutralization (6 Cl- 

for GSK3β, 7 Na+ for HSP90α). Each system was energy minimized for 5000 steps of steepest 
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descent followed by gradual heating up to 300 K in an NVT equilibration, with steps of 100 K over 

300 ps. Then, each system was equilibrated in the NPT ensemble at 300 K and 1 atm for 1 ns using 

a Parinello-Rahman barostat.142 A cutoff of 10 Å and the PME method62 were used for computing 

short-range interactions and long-range interactions, respectively. Constant temperature conditions 

were provided by using the v-rescale thermostat.143 A time step of 2 fs was employed and all bonds 

to hydrogen atoms were constrained using the LINCS algorithm.144 Production runs were carried 

out in the NVT ensemble at 300 K. 

 

 

3.1.2.1.3 sMD simulations setup 

 

Ligands were parameterized according to the general AMBER force field (GAFF)145,146 for organic 

molecules using the Antechamber and parmchk tools implemented in Ambertools.147 The Gaussian 

03148 package was engaged for geometrical optimization and calculation of the electrostatic 

potential of each ligand, applying the 6-31G* basis set at the Hartree-Fock level of theory. Partial 

charges were then calculated using the RESP method149 as implemented in Antechamber. Using an 

in house script written in tcl for the Visual Molecular Dynamics (VMD) software,150 each ligand 

was randomly placed at 25 Å from the binding pocket center of mass (COM) in line with the base 

of the cylindrical restraints defined using PLMUED 2.1 software151 (see further). The same energy 

minimization and equilibration procedures reported for the plain MD setup were followed. The 

Amber ff99SB-ILDN force field was employed for the proteins, and sMD production was executed 

in the NVT ensemble at 300 K. All of the simulations were performed using an in-house version 

of GROMACS 4.6.7 modified to perform sMD. 

 

 

3.1.2.1.3.1 Elastic Network Model (ENM) 

 

Our ENM was implemented as a set of harmonic potentials of uniform and isotropic force constant 

.fÜ  acting between pairs of & atoms of the whole backbone, with exception of those residues that 

constitute the binding pocket, within a cut-off distance Ò`.  

The total harmonic potential of the ENM, qÚÛÄ(r) (where (r)	represents the configurational space 

of the system) is given by: 

 

qÚÛÄ(r) = 	
å
u
∑ .fÜ(rfÜ − rfÜ( )umnäÙıˆ                                                                                               (36) 
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In equation 36, rfÜ is the displacement between the ⁄aP and the ˜aP & from their equilibrium 

distance rfÜ(  obtained from 100 ns of plain MD simulations as previously mentioned. The 

g_distMat152 tool for GROMACS was used to compute the average equilibrium-distance matrix 

between & atoms from a 100 ns-long plain MD simulations. An in-house tcl script running under 

VMD was used to generate and to visualize the ENM basing on the & equilibrium-distance matrix 

and the parameter values (Ò`, .fÜ) specified by the user.  

The resulting total potential energy function q∗(r) scaled by sMD consists of two terms: the 

potential energy function proper of the force field q(r), and the potential energy function related 

to ENM  qÚÛÄ(r), as reported by the equation: 

 

q∗(r) = 	”(q(r) + qÚÛÄ(r))                                                                                                        (37) 

 

The idea is to preserve the normal dynamics of the whole system and, at the same time, to enhance 

fluctuations of the residues composing the binding pocket in order to facilitate possible 

rearrangements of those residues that interact with the ligand upon binding. The ENM was 

validated through short sMD simulations of 10 ns. To this end, we compared the &-Root-Mean-

Square Fluctuations (&-RMSF) obtained from trial sMD simulations and plain MD, which was 

acting as a reference. The ENM was considered satisfying when similar RMSF profiles could be 

obtained. Sets of parameters providing reasonable overlap were: Ò` = 1.0	}i and .fÜ =

100	.˘	i˙v5å}i5u for both GSK3β and the N-terminal domain of HSP90α. A more thorough 

validation of the dynamics of the systems was performed by comparing the essential 

conformational sub-space. To quantify the difference, we computed the Root Mean Square Inner 

Product (RMSIP) between the first 10 eigenvectors obtained from each simulation as a measure of 

the overlap of the configurational explored by the two sets of simulations: 

 

Ò˚[%? = 	 å
¸
∑ ∑ (˝f’˝ÜT)¸

Üæå
¸
fæå                                                                                                           (38) 

 

where ̋ f
’ e ̋ Ü

T are the ⁄aP and ̃ aP eigenvectors obtained from Principal Component Analysis (PCA) 

to be compared, respectively, and D is the number of eigenvectors considered (in our case D = 10). 

RMSIP ranges from 0 to 1: the value is 1 if sampled subspaces are identical, and 0 if the sampled 

subspaces are completely orthogonal. In our simulations, the first 10 eigenvectors were sufficient 

to describe a significant fraction (more than 55%) of the total motion for both systems. The obtained 

RMSIP values of 0.74 for GSK3β and 0.70 for N-terminal domain of HSP90 demonstrated the high 

overlap between the essential subspace visited by the two sets of simulations. 
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3.1.2.1.3.2 Cylindrical Volumetric Confinement 

 

The rationale of flat-bottomed restraints is to discourage the ligand from moving outside the volume 

of a cylinder centered on the binding site. The axis of the cylinder runs along the norm of the 

binding pocket, with one extremum extending within the pocket and the other one extending in the 

bulk, far enough to allow the ligand to be entirely solvated (25 Å from the COM of the binding 

pocket). The cylinder is constructed as follows. First, the norm of the binding pocket on the crystal 

structures is defined as the axis connecting the COM of the atoms composing the binding site and 

the COM of those atoms comprised in the entrance region of the pocket. NanoShaper was employed 

to unambiguously identify the two groups of atoms. Then, in order to avoid large fluctuations of 

the cylinder position during the sMD simulations, we defined the cylinder axis basing on the more 

stable portions of the protein as revealed from trial sMD simulations (&-RMSF < 1.5 Å). To this 

aim, we selected two groups among such atoms whose COMs lied along the previously defined 

norm (p1 and p2 in Figure 9). The whole procedure was carried out through an in-house python 

script. 

 

 

 

 

Figure 9. A) Representation of the cylindrical volumetric confinement. The norm of the binding pocket 

identifies the axis of the cylinder, which is defined as the line passing through two p1 and p2. p1 and p2 are 

the COMs, of two groups of C"-atoms belonging to stable portions of the proteins. The length of the cylinder, 

–∥, corresponds to the distance between the projection of the ligand COM on the axis of the cylinder and the 

COM of the binding pocket; while the radius of the cylinder, –ˇ, is the distance between ligand COM and its 

projection on the same axis. B) Definition of the metastable states from the time series of –∥ and –ˇ. A 

metastable state is identified as any stable ligand configuration, described by its COM position with the 

respect to the cylinder, maintained for at least 10 ns. Example taken from run 7 of 2YI0, “in” conformational 

state of the protein. 
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The shape of the cylinder is defined by two flat-bottomed restraints with a force constant of 300 kJ 

mol-1 nm-2 each. In particular, the distance between the projection of the ligand COM on the axis 

and the point p1 defines the length of the cylinder (–∥ in Figure 9A), while the distance between the 

ligand COM and its projection on the axis define the radius of the cylinder (–ˇ in Figure 9A). As 

previously mentioned, –∥ was set to 25 Å from the COM of binding pocket. Conversely, the radius 

of the cylinder (–ˇ) was chosen as a trade-off between computational efficiency and the ability of 

not affecting the binding event. Specifically, on the one hand we wanted to avoid excluding any 

regions of the protein surrounding the binding site entrance that might interact with the ligand and 

contribute significantly to the binding process (larger values for –ˇ). On the other hand, we wanted 

to maintain the volume accessible to sampling as much limited as possible (smaller values for –ˇ). 

We tested different values for –ˇ through trial simulations, which finally led us to determine an 

optimal radius of 8.1 Å for both systems. These flat-bottomed restraints were implemented 

exploiting the MATHEVAL facilities provided by the PLUMED 2.1 software. An example of the 

plumed file used is below.  

 

Plumed file 

 
WHOLEMOLECULES STRIDE=1 ENTITY0=protein ENTITY1=ligand 
 
p1 : COM ATOMS=index of the CA-atoms protein whose center of mass is p1  
p2 : COM ATOMS=index of the CA-atoms protein whose center of mass is p2 
lig : COM ATOMS=index of heavy atoms of the ligand 
 
alpha : ANGLE ATOMS=lig,p1,p2 
d : DISTANCE ATOMS=lig,p1 
 
MATHEVAL … 
LABEL=d_parallel 
ARG=alpha,d 
VAR=a,d 
FUNC=cos(a)*d 
PERIODIC=NO 
… MATHEVAL 
 
MATHEVAL … 
LABEL=d_perpendicular 
ARG=alpha,d 
VAR=a,d 
FUNC=sin(a)*d 
PERIODIC=NO 
… MATHEVAL 
 
#length of the cylinder 
UPPER_WALLS ARG=d_parallel AT=length in nm KAPPA=300.0 LABEL=uwall1 
 
#radius of the cylinder  
UPPER_WALLS ARG=d_perpendicular AT=radius in nm KAPPA=300.0 LABEL=uwall2 
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3.1.2.1.4 Production 

 

A series of 10 sMD production runs, lasting up to 100 ns each, were performed for each of the 5 

protein-ligand complexes in order to ensure that the ligand binding event took place. For HSP90, 2 

different conformational states of the protein (loop-in, loop-out) were considered. This resulted in 

a total number of 150 simulations (50 for loop-in HSP90, 50 for loop-out HSP90, and 50 for 

GSK3β). 

 

 

3.1.2.1.5 Data Analysis 

 

3.1.2.1.5.1 Retrospective Analysis 

 

In order to assess whether ligand binding took place within the production runs of 100 ns of sMD 

simulations, we monitored the RMSD of ligand heavy atoms with respect to the crystal structure 

after optimal alignment on & protein atoms. The crystal binding pose was considered reproduced 

when a RMSD of 2.8 Å or less was observed and maintained for at least 10 ns (Figure 10). A 

metastable state was considered reached when a RMSD greater than 2.8 Å was maintained for at 

least 10 ns.  

 

 

Figure 10. Time evolution of a ligand’s RMSD from the corresponding crystal structure in a typical 

productive run. The experimental binding mode is considered reproduced if a RMSD lower than 2.8 Å was 

observed and maintained for at least 10 ns (green profile). A metastable state is taken in account when a 

RMSD greater than 2.8 Å was preserved for at least 10 ns (orange profile). No productive run is characterized 

by a not stable RMSD. Example taken from run5 of 2YI5, “out” conformational state of the protein.     
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3.1.2.1.5.2 Prospective Analysis 

 

The previous approach can be exploited only when the crystal structure of the bound complex is 

available. Thus, we devised a procedure to identify relevant binding poses even in the absence of 

experimental data. First, we filtered the trajectory of each sMD production run in order to consider 

only relevant metastable states, that is relatively stable ligand configurations preserved for at least 

10 ns. From a geometric standpoint, a metastable state was defined in terms of the position of ligand 

COM with respect to the axis of the cylinder ( –∥ and –ˇ ). The ligand position was considered 

stable when the average values of –∥ and –ˇ varied at most of 0.5 Å during 10 ns of simulation, 

and 90% of the total fluctuations fell below 2.0 Å (Figure 9B, right panel).  

For each protein-ligand system, the 10 ns of each run were joined together in a concatenated 

trajectory, on which the RMSD matrix was computed by least square fitting on the protein 

backbone & atoms and stored. The RMSD matrix was then processed by means of a hierarchical 

clustering algorithm,87 using the average-linkage method as implemented in R version 3.3.2.153 The 

hierarchical clustering algorithm (bottom-up) combines existing clusters, creating a hierarchical 

structure that reflects the order in which the clusters are merged. For our clustering procedure, we 

employed a cut-off value of 2.0 Å. To discard those conformations that were not frequently sampled 

during the simulations, we discarded those clusters which population fell below 2% of the total 

number of structures retained for the analysis. The representative of the most populated cluster 

represents the ligand binding pose predicted. 

 

 

3.1.3 Results and discussion 

 

The dynamic docking protocol here proposed, is basically based on performing repeated sMD 

simulations of protein-ligand complexes started from the unbound states and applying a tunable 

ENM to preserve the overall protein-folding and a cylindrical volumetric confinement in order to 

improve the exploration of the configurational space in the regions that are more relevant for the 

binding process saving computational resources. In sMD simulations, the sampling is enhanced by 

modifying the potential energy function of the force field by a scaling factor ” between 0, in which 

all the interactions are switched off, and 1, which corresponds to plain MD. By properly choosing 

”, it is possible to efficiently cross energy barriers, thus accelerating the transitions between 

different configurational states of the system. As the result, simulating under scaled potential 

energy conditions means that all the degrees of freedom of the system are enhanced in a nonspecific 

way causing protein unfolding. Here, an intermediate scaling factor equal to 0.5 is used in order to 

adopt a more generalizable strategy, resulting as the best trade-off between accuracy and the 

possibility of observing binding events in the 100 ns of simulation. As reported in Figure 11 using 
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a scaling factor of ”=0.5, large fluctuations in the protein structure were observed, which were not 

detected for the same system in plain MD simulations. To preserve the overall protein-folding 

during sMD simulations an isotropic ENM was introduced. This ENM acted on all the C" atoms 

except those belonging to the binding site which was kept fully flexible (see paragraph 3.1.2.1.3.1 

of Methods for further details). As already mentioned in Methods, the ENM was parametrized 

through a reasonable iterate procedure of optimization so as to satisfy the average C" pair distances 

measured by hundreds of nanoseconds of plain MD simulations of the protein in the unbound state.  

 

 

 

Figure 11. Comparison of the C"-RMSF profile calculated between plain MD simulations (red) and sMD 

simulations with a scaling factor of 0.5 (blue). Residues forming the binding pocket are represented with the 

gray color for both the protein structures. Residues composing the loop in HSP90" structure are shown in 

orange. 

 

 

As first test case, as already mentioned in the introduction, we employed GSK3β, a well-known 

pharmaceutical target. This proline-directed serine/threonine kinase plays a major role in several 

physiological processes, including glycogen metabolism and microtubule stability.132 From a 

pathological standpoint, GSK3β is mostly involved in neurodegenerative conditions, such as 

Alzheimer’s disease.154 GSK3β is a two-domain enzyme: a N-terminal lobe (N-lobe), mostly 

consisting of β-sheets, and a large C-terminal lobe (C-lobe), essentially formed of α-helices. The 

ATP binding pocket is buried deeply within the two lobes.130,155 We focused on five different 

reference crystal structures of human GSK3β in complex with selective inhibitors characterized by 

different receptor binding affinities. In particular, we selected four crystal structures of GSK3β in 

complex with pyrazine-derived inhibitors156 (PDB code: 4ACD, 4ACC, 4ACG, 4ACD) and one 

structure in complex with a thiazole-derived inhibitor157 (PDB code: 1Q5K) (Table 1). As already 

briefly introduced, the ATP-binding site of GSk3!, as the consequence of ligand interaction, may 
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undergo to different conformational changes of the most flexible features common to other kinases 

that are: the activation segment, the hinge region, the glycine-rich loop, and the helix "C130 (Figure 

8A) 

 

 

Table 1. Structures and biological activities of the five known inhibitors for GSK3!. 

 

PDB Structure 
Biological Activity: 

!" (nM) 

1Q5K 

 

38 

4ACH 

 

20 

4ACC 

 

20 

4ACG 

 

4.9 

4ACD 

 

0.22 

 

 

In order to correctly set the parameters for ENM, we performed a series of short sMD simulations 

at fixed scaling factor of 0.5 with ENM imposed, using different combinations of cut-off distance 

Ò`	,	and force constant .fÜ (in Figure 12 is shown how  different ENM models applied to GSK3! 

can adjust the dynamics when sMD simulation is performed). 
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Figure 12. Effect of .fÜ and Ò` values on the structure of apo-GSK3! protein. Comparison of RMSF profile, 

of the C"-atoms of the backbone as a function of residue number during 100 ns of plain MD (red profile) 

and 10 ns of sMD with ENM (blue profile). The RMSIP value for each set of parameters, computed between 

the first 10 eigenvectors obtained from plain MD and sMD simulations, is reported in in the top of each 

graph.   

 

 

Set of parameters that provide a reasonable overlap, in terms of the RMSF, of the whole protein 

structure with the exception of the residues composing the active site was: Ò` = 1.0	}i and .fÜ =

100	.˘	i˙v5å}i5u.  

In Figure 13, the outcome of the perspective analysis is reported for each run of all the individual 

protein-ligand complexes. 
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Figure 13. A) Pictorial representation of the ENM applied to GSK3!. B) Retrospective analysis of the 10 

independent runs performed on GSK3!. Productive runs are represented in green, while runs where no stable 

state was reached within 100 ns of simulations refer to red bars. Runs ending in metastable states other than 

the experimental binding mode are reported in orange.    

 

 

As indicated, in four out of the five studied complexes a 100% success rate was achieved. In other 

words, this means that in these cases, all of the 10 sMD runs correctly reproduced the experimental 

binding mode of the crystallography structure within 100 ns of sampling. In the cases of 4ACG, 

the success rate was reduced to 40%. 

In order to characterize the metastable states sampled along the different trajectories, we performed 

cluster analysis of the aggregate trajectory (Figure 14). As reported, the center of the most 

populated cluster for 4ACG (cluster 1, population 25.7%) was only 2.64 Å away (in terms of 

RMSD) from the reference crystal structure and, surprisingly, all the pivot interactions with the 

protein were well reproduced. Indeed, the relatively high RMSD was mostly imputed to a different 

conformation adopted by the solvent expose piperazine moiety of the molecule (Figure 14) with no 

specific key interaction with molecular target.  
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Figure 14. Validation of dynamic docking protocol for its ability to reproduce the experimental binding 

modes based on cluster analysis. Results of the cluster analysis of the metastable states for all the investigated 

complex for GSK3! are described in the pie charts, with color based on the RMSD between the representative 

structure of the cluster with respect to the corresponding crystal structure. For the best and the worst 

performing complexes (PDB code: 4ACH and 4ACG, respectively) the representative configurations from 

the top three populated clusters are represented. Each representative configuration is shown superimposed to 

the crystal structure (white) and color-coded according to its RMSD.    

 

 

As the second test case, we considered the N-terminal domain of HSP90", a molecular chaperone 

that takes part in many different processes with the aim of maintaining the functional stability of 

several client proteins.133 HSP90" is also involved in many complex pathologies such as cancer, 

Alzheimer’s and Parkinson’s158 diseases among others,159  highlighting its relevance as a 

pharmaceutical target.160 The N-terminal domain of HSP90α contains an ATP-binding site to which 

most of the known inhibitors bind, and is thus the most studied portion of the protein.133  

As already introduced, there is a considerable flexibility observed in this site, which is characterized 

by an antiparallel β-sheet at the bottom and by three helices as its walls, one of which, the α3, is 

located at the entrance of the binding site. In several studies, this last helix has been observed to 

adopt distinct and ligand-specific conformations, including partly misfolded states in the middle 
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portion (residues 103 to 107). In particular, two main conformations are adopted by this region in 

the apo protein (“in” and “out” states, see Figure 8 B).136,161  

Because crystal structures of these two limiting conformations are available in the PDB (codes: 

1YES, 1YER)136 we decided to consider both in order to apprehend if the ligand may be more 

selective to one specific conformation adopted by the protein than the other. We focused on five 

different reference crystal structures of human N-terminal domain of HSP90" in complex with 

selective inhibitors (Table 2). In particular, we selected three crystal structures in complex with 

thiadiazole-derived inhibitors (PDB codes: 2YI7, 2YI5, 2YI0),162 one with a isoxazole-derive 

inhibitor (PDB code: 2UWD),163 and one with a pyrazole-derived inhibitor (PDB code: 2BSM).164  

 

 

Table 2. Structures and biological activities of the five known inhibitors for HSP90". 

 

PDB Structure 
Biological Activity: !$ 

(nM) 

2BSM 

 

78 

2YI5 

 

39 

2YI0 

 

7.5 

2UWD 

 

5 

2YI7 

 

4.8 

 

 

The intrinsic dynamics of the apo N-terminal domain of HSP90" for each residue was calculated 

as the average of 100 ns of plain MD on both conformations available (1YES and 1YER). We 

follow the same procedure as the previous case to test different values of ENM parameters as show 

in Figure 15.   
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Figure 15. Effect of .fÜ and Ò` values on the structure of apo-HSP90" protein. Comparison of the RMSF 

profile, of the C"-atoms of the backbone as a function of residue number during 100 ns of plain MD (red 

profile) and 10 ns of sMD with ENM (blue profile). Residues forming the binding pocket are represented in 

gray, while residues forming the loop at the entrance of the binding pocket are colored in orange. The RMSIP 

value for each set of parameters, computed between the first 10 eigenvectors obtained from plain MD and 

sMD simulations, is reported in in the top of each graph.   

 

 

The Set of parameters that provide a reasonable overlap, in terms of the RMSF, of the whole protein 

structure with the exception of the residues composing the active site was: Ò` = 1.0	}i and .fÜ =

100	.˘	i˙v5å}i5u. In Figure 16 are reported the results of the retrospective analysis for the five 

ligands starting from apo form of HSP90" with both the “in” and “out” states. In this case, the 

results are more complicated to understand than the previous test case. 
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Figure 16. A) Pictorial representation of the ENM applied to the N-terminal domain of HSP90". B) 

Retrospective analysis of the 10 independent runs performed on GSK3!. Productive runs are represented in 

green, while runs where no stable state was reached within 100 ns of simulations refer to red bars. Runs 

ending in metastable states other than the experimental binding mode are reported in orange. Example taken 

from “in” conformational state of the protein.      

 

 

In particular, none of the individual complexes achieved a 100% success rate but, in the best 

scenario, only the 55% success rate was showed (2YI7). The less satisfying success rate (30%) was 

achieved in the worst situation (2BSM).  This less satisfactory performances most likely reflected 

a more complex problem related to the inherent flexibility of the binding site. In spite of this, the 

binding mode of the crystal structure was replicated at least twice in all the studied complexes. 

Furthermore, the conformation of the helix "3	in the related crystal complex of reference was 

visited at last once for each system, with the exception of 2BSM, demonstrating that the procedure 

is robust enough to provide rather reliable results independently from the initial configuration of 

the protein. Although this suboptimal performance might weaken the reliability of our framework 

when employed prospectively, the obtained results show that this is not the case. Indeed, stable 

metastable states could be hardly reached by most of the unsuccessful runs. In other words, on 

average, “wrong binding modes” turned out to be transient states and, therefore, they affected only 

marginally the correct identification of the experimental geometry among the most populated 

clusters. This behavior is nicely captured by Figure 17, where we show the results of the metastable 

states cluster analysis for the best and worst performing investigated complexes (2YI7 and 2BSM, 

repsectively). 
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Figure 17. Validation of dynamic docking protocol for its ability to reproduce the experimental binding 

modes based on cluster analysis. Results of the cluster analysis of the metastable states for all the investigated 

complex for HSP90" are described in the pie charts, with color based on the RMSD between the 

representative structure of the cluster with respect to the corresponding crystal structure. For the best and the 

worst performing complexes (PDB codes: 2YI7 and 2BSM, respectively) the representative configurations 

from the top three populated clusters are represented. Each representative configuration is shown 

superimposed to the crystal structure (white) and color-coded according to its RMSD.    

 

 

In the former, the most populated cluster (population: 44.6%) shows a binding mode with a RMSD 

lower than 1.7 Å from the experimental structure. Despite the lower success rate, in the case of 

2BSM, the binding mode identified by our protocol was still found among the top ranked clusters 

(RMSD of 0.91 Å, populations 30.6%). Most importantly, this cluster was unambiguously 

separated in terms of relative population from the best ranked “wrong binding mode” (population 

13.2%). Hence, we can safely conclude that, as long as the correct geometry is reproduced at least 

once in repeated sMD runs, our framework has a very good potential to successfully identify it 

among the most populated clusters 
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3.1.4 Conclusions 

 

Summarizing, we presented an efficient framework to predict protein-ligand binding geometries 

through MD-based simulations. Remarkably, the overall protocol is based on commonly affordable 

time-scales, which are accessible to the vast majority of current research groups. Key ingredients 

of our approach are a CV-free enhanced sampling method, such as sMD, a tunable ENM and a 

cylindrical volumetric confinement. We showed that the proposed protocol is able to successfully 

identify the experimental binding modes among the top ranked clusters for all of the investigated 

cases. Being conceptually simple, moderately flexible, and of straightforward implementation in 

several MD-based platforms, we believe that this approach has a great potential in structure-based 

drug discovery, where a balanced tradeoff between accuracy and speed is essential. 
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3.2 Predicting residence time and drug unbinding pathway through 

sMD 

 

3.2.1 Introduction 

 

As already introduced in the Introduction section of this thesis, residence time, which corresponds 

to the period of time a drug stays in contact with its biological target, is potentially considered a 

key parameter at the early stages of drug discovery as important as affinity since is better correlates 

with in vivo efficacy.2 Evaluating on- and off- rates at an experimental level requires expensive 

setup and time-consuming testing of new molecules in complex kinetic assays.165 Concerning the 

prediction of binding kinetics through in-silico approaches, MD simulation is the method of choice 

to study the protein-ligand binding or unbinding process at a fully atomistic level.25,166 However, 

simulating rare events such protein-ligand binding reaching an ideal trade-off between accuracy 

and efficiency is still far from a trivial task. In this respect, to accelerate the sampling of rare events 

in order to obtain an adequate statistics, multiscale simulations167–169 and enhanced sampling 

methods have been introduced. 

Although enhanced sampling methods are mainly used to obtain a thermodynamic characterization 

of the process, nowadays interest has been raised about recovering kinetic information from these 

methods. Among enhanced sampling methods which introduce an external biasing force acting on 

selected degrees of freedom, MetaD has been successfully applied to the trypsin-benzamidine 

system,170 to describe the mechanistic unbinding process and the relative kinetics of Dasatinib from 

c-Src kinase171 and to predict residence times for a series of congeneric compounds from the p38 

MAP kinase.172 Recently, Gobbo et al. introduced a novel approach based on adiabatic bias MD 

with an electrostatics-like collective variable to correctly rank a ligand series of glucokinase. 

Subsequently, the same approach was applied in a prospectively way to successfully predict 

residence time for a congeneric series of GSK3! inhibitors.173 Among enhanced sampling methods 

based on tempering, ¡RAMD technique, in which forces are randomly assigned to the ligand 

promoting its expulsion from the binding pocket without specifying any CV,174 was used by Kokh 

et al. to rank different compounds according to their dissociation time.175 Moreover, sMD has been 

shown to be efficient in ranking congeneric series of ligands according to their residence 

times.4,165,176 Recently, sMD has also been exploited to predict, without any a priori experimental 

information, the unbinding kinetics for a series of hDAAO inhibitors by Bernetti et al.177  

In the current research described in the following, sMD was used to characterize the kinetic 

behavior of seven drug-like compounds, inhibitors of HSP90". In particular, first a ranking of these 

ligands based on computed residence times is provided, then relevant features of the unbinding 

process are extracted through dimensionality reduction techniques and cluster analysis of the 

trajectories. 
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3.2.2 Methods  

 

3.2.2.1 sMD simulation  

 

All the protein-ligand system were setup using the BiKi software, version 1.3.5.135 Every inhibitor 

molecule was geometrically optimized via a quantum mechanical approach computed at HF/6-

31G* level of theory with NewChem.178  Partial charges were derived using the RESP149 method 

as implemented in Antechamber. The Amber99SBildn140 and GAFF145,146 force fields were used to 

treat respectively the protein and ligands. When the crystal structure of the protein-ligand complex 

was not available, the scaffold of the ligand was located in the binding pocket in agreement with 

the scaffold of its congeneric molecule for which the experimental structure exists. The protein-

ligand complexes were placed in the geometrical center of a parallelepiped-shaped box of 7.58 nm 

length and all the boxes were solvated with TIP3P141 water molecules. In order to preserve the 

electro-neutrality of the system, some water molecules were replaced with sodium ions. All the 

initial coordinates of each system were minimized in a 5000 step minimization run, using the 

steepest descendent method. A classical equilibration procedure of four steps was applied. In 

particular, the first three steps were run for 100 ps in the NVT ensemble, starting at a temperature 

of 100 K, increasing during the following steps up to 300 K. Positional restraints were applied to 

the heavy atoms of the protein backbone using an isotropic force constant of 1000 kJ/mol nm2.  

The fourth equilibration step was carried out for 1 ns in the NPT ensemble at 300 K and 1 atm. An 

integration step of 1 fs was employed in the first and in the final equilibration steps, while the 

remaining steps were performed using an integration step of 2 fs. The pressure-coupling was carried 

out using the Parrinello-Rahman barostat.142 All simulations were performed using a customized 

Gromacs 4.6.1179–181 version that was able to perform sMD, using the velocity Verlet algorithm182 

for the integration of equations of motion. The neighbor list cutoff within the Verlet cutoff scheme 

was set to 1.1 nm. PBC were applied and PME method62 was used to treat Coulombic interactions 

with a grid size of 0.16 nm. The cutoff for long-range Coulomb interactions was set to 1.1 nm and 

short-range van der Waals interactions were treated with the same range cutoff of 1.1 nm. The 

Lincs algorithm144 was used to restraint all the bonds of protein and ligands while the SEATTLE 

algorithm183 was used for water molecules.  

A series of 25 partially unrestrained repeated sMD production runs were performed for each 

complex, for a total of 175 simulations, until the occurrence of the unbinding event. A Python script 

running with VMD was employed to uniquely define the unbinding event and stop the simulations. 

In particular, the ligand was considered unbound when the distance between the protein COM and 

ligand COM achieved 30 Å.150 sMD simulations were performed using a scaling factor ” of 0.45. 

In order to preserve the overall protein fold during the simulations, harmonic positional restraints 

were applied to the heavy atoms of the backbone. The residues composing the binding site, located 



 62 

within 5 Å from the bound ligand, were not restrained at all in order to allow rearrangements in this 

region upon ligand unbinding.   

The average unbinding times, corresponding to the computational residence times ¡`<^`, along with 

standard errors, standard deviations and bootstrapped standard errors, were calculated from the exit 

binding times for each ligand. We followed the procedure as described by Mollica et al.165 to 

correlate the normalized computational residence times with the normalized experimental residence 

times  ¡Çmî. With the bootstrapping method, several virtual samples set (unbinding times) of the 

equal size to the original one, are generated and the mean is calculated. By these averages it is 

possible to estimate the standard deviation of the mean itself. R studio was used to perform the 

Bootstrapping procedure.184  

 

 

3.2.2.2 Postprocessing of unbinding trajectories and measure of similarity between 

different pathways 

 

In order to assess similarities and difference between different unbinding pathways, a clean-up 

stage of the trajectories followed by the projection of these into a low-D dimensional space is 

required. Notably, the low-D dimensional space is capable of well-describing relevant features of 

the unbinding event that occur in the high-dimensional configurational space. During the cleanup 

stage of the data analysis, the trajectories are postprocessed in order to store only those frames 

whose RMSD of all heavy atoms of the ligand after alignment on the protein’s alpha carbons, is 

equal or greater to a given threshold compared to the previous frames stored. Specifically:  

 

• If the RMSD calculated between the current frame of a specific trajectory (˜&;i =

1,2,3,… . , ˚) and all the N previously saved frames (⁄1;} = 1,2,3,… . ,*) is greater or 

equal to the given threshold ú, then the current frame is saved 

• If the RMSD between the current frame ˜& and one frame belonging to the stored 

trajectories ⁄1	is lower than ú, the ⁄1 is replaced by the running frame ˜& and all the 

subsequent structures of the stored trajectory are discarded (Figure 18 A). 

 

In this work, we considered an RMSD threshold value of 2.0 Å for compounds 1 and 7 and 2.5 Å 

for the remaining compounds. The choice of using different values for ú reflects the evidence that 

compounds with a greater amount of degrees of freedom (compound 2 and 5) require an higher 

RMSD threshold to better describe their unbinding pathway. The final results of the cleanup stage 

is that only productive transitions are preserved while common useless features such as loops and/or 

dead ends along the unbinding pathway are filtered out (Figure 18 B). Once the trajectory is 

postprocessed, the low-D dimensional space was constructed through the Isomap algorithm185, a 
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nonlinear dimensionality reduction technique, as implemented in Pysomap python library (Figure 

18 C). Since Isomap attempts to preserve the geodesic distance of the high dimensional space (high-

D space), it represents a superior approach, compared to other multidimensional scaling methods 

MDS (both metric and nonmetric) which consider only the Euclidean distance of the high-D space, 

because both the pairwise distances and the intrinsic geometry of the high-D space are preserved.  

The Isomap algorithm consists of three-steps. Considering the manifold ˚ of the high-D space, the 

first step defines which points are neighbors on ˚ based on the distances –m(⁄, ˜) between pairs of 

points ⁄, ˜ in the input space fl. 

 

 

 

 

Figure 18. A) Schematic representation of the cleanup stage of trajectories. B) Illustration of a loop feature 

in a hypothetical trajectory that is removed during the cleanup stage. C) After cleanup stage, the pairwise 

distance obtained in the configurational space of the ligand is computed using all the frames of each preserved 

trajectory (matrix D in the illustration) and embedded in the low-D space through Isomap. Then, each 

unbinding pathway is projected un the low-D space. Finally, for each pair of unbinding pathways, the Fréchet 

distance is computed and stored in a symmetric matrix (F in the scheme) that can be further exploited for 

subsequent cluster analysis.     

 

 

A weighted graph G over the data points, where the weight of the edges is –m(⁄, ˜), is defined. In 

the second step, in order to determine the geodesic distances –Ä(⁄, ˜) between all pairs of points on 

˚, the shortest path distances –±(⁄, ˜) in the graph are calculated. In the final step the classical 
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MDS algorithm is applied to the matrix of graph distances to get a d-dimensional Euclidean space. 

Here, we used the distance between the ligand’s heavy atom coordinates computed over all pairs 

of trajectory frames as a metric.185 We decided to embed each postprocessed trajectory into a 3D 

space using the 10 k-nearest neighbor method; this strategy was defined via a trial and error 

procedure and a comparison of the features of the unbinding pathways projected in the low-D space. 

Even though a high density of points in the high-D space is a fundamental prerequisite for the 

ability of Isomap to correctly reproduce the geodesic distances, it becomes very difficult to handle 

with Isomap big data such as MD trajectories. Thus we used a landmark variant of Isomap that 

helps to reduce the entire data set, considering only a fraction of the entire unbinding trajectories 

to build the initial embedding.186 In this specific case, we used a landmark-like approach, in which 

only the states in the high-D spaced describing a gradual advancement from the bound to the final 

state in which ligands are completely solvated were considered. This procedure turns out to be 

particularly advantageous because the embedding is built only on the sub-manifold that better 

describes in terms of mechanistic information the unbinding events. Moreover, since sMD is 

equivalent to incrementing the temperature, the trajectories obtained through sMD are extremely 

noisy. As such, this procedure could be used to filter out all those features in the high-D space that 

corrupt the continuous advancement along the considered path such as: detours, dead-ends, loops 

etc.187  

Once the unbinding pathways were projected into the low-D space built by Pysomap, the pairwise 

similarity between different paths was measured using the Fréchet distance, as implemented in the 

Similarity Measures library of R.188 The discrete Fréchet distance is a measure of similarity between 

curves that considers the position and the order of the points along two curves of different lengths. 

In particular, the discrete Fréchet distance between two paths, [K and [^, is defined as the infimum 

over all parametrization " and ! of the maximum distance ) of the same curves as reported by 

 

√([K, [^) = inf
,d

max
a∈[(,å]

[–([K∑"())π, [^(!())))]                                                                                  (39) 

 

Where – is the Euclidean distance between frames of the parametric curves  [K(") and [^(!) 

estimated in the low-D space. Using the Fréchet distance as dissimilarity metric, we were able to 

apply cluster analysis to group similar unbinding trajectories. Here we employed two cluster 

algorithms as implemented in R version 3.3.2 depending on the purpose of the analysis.184 In 

particular, an agglomerative hierarchical clustering algorithm with the complete linkage method 

was used to group similar unbinding trajectories in k different clusters. The representative pathway 

of each cluster is represented by the one whose distance with all the other pathways in the cluster 

is minimum. 
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3.2.3 Results and Discussion 

 

3.2.3.1 Test Case: HSP90. 

 

As for a previous research, we selected the N-terminal domain of HSP90" as a test case in complex 

with seven different inhibitors since experimental SPR measurements were available. Moreover, 

for five of these inhibitors the crystal structure of the complex was available (compounds 2, 4, 6 

and 7). As described in Methods section, the bound states of the remaining compounds (compounds 

1 and 5) was modeled directly in silico, because of their minor structural transformations with 

respect to existing X-ray complexes. All the small molecules considered in this work are reported 

in Table 3 with the corresponding experimental binding affinity (equilibrium dissociation constant, 

#$) and kinetic (association and dissociation rate constants, ./1 and ./00 respectively, and the 

experimental residence time ¡Çmî) observables. 

 

As shown in Table 3, compounds 1 and 2 exhibit a quinazoline scaffold, compounds 3, 4, 5 and 6 

have an indazole-like structure while compound 7 is a pyrazole-containing, resorcinol-like 

inhibitor. Despite the considered molecules possess very different scaffolds, all these molecules 

bind to the ATP-binding site of the N-terminal domain of HSP90" in a similar manner. To simulate 

the unbinding process through sMD simulations, we considered the initial state as the one with the 

ligand bound to its molecular target. 25 sMD independent runs for each protein-ligand complex 

were performed using a scaling factor of 0.45 in order to observe the unbinding event within few 

hundreds of nanoseconds for all the studied compounds. In order to preserve the overall structure 

of the protein during the sMD simulations, we applied weak positional restraints to all the backbone 

heavy atoms with the exception for those that form the binding pocket as described in Methods.  
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Table 3. Structures of the compounds investigated  

 

compound scaffold substitution 
!$ 

(nM) 
/01 (M-1s-1) /022 (s-1) 3456 (s) 

1 

 

H 2152.00 2.56 ∙ 105 5.52 ∙ 10-1 1.81 

2  

 

13.00 5.28 ∙ 104 6.80 ∙ 10-4 1470.59 

3 

 

 
18.73 1.30 ∙ 105 2.43 ∙ 10-3 412.20 

4  
 

42.00 2.14 ∙ 104 9.10 ∙ 10-4 1098.90 

5  
 

485.00 2.72 ∙ 104 1.32 ∙ 10-2 75.76 

6  

 

195.30 1.65 ∙ 103 2.94 ∙ 10-4 3402.52 

7 

 

 98.00 1.13 ∙ 106 1.11 ∙ 10-1 9.01 

 

 

 

3.2.3.2 Ligand ranking based on the computed residence times 
 

The computational residence time (¡`<^`) for each compound was calculated as the average of the 

exit times observed for each ligand in all the independent 25 runs as reported in Table 4. 
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Table 4. Simulated exit times (in ns) for 25 independent sMD runs per compound. 

   

 compound 

run 1 2 3 4 5 6 7 

1 2.41 630.88 39.54 30.82 66.85 42.52 15.36 

2 14.42 42.51 498.30 219.15 155.57 10.76 51.11 

3 9.90 11.35 28.05 202.74 46.55 272.98 48.10 

4 8.18 65.43 214.79 159.59 30.89 64.87 197.61 

5 4.83 593.35 222.52 258.10 443.51 183.97 50.52 

6 3.68 395.19 56.02 109.90 8.37 33.59 2.84 

7 9.03 89.87 348.91 25.54 80.12 154.69 83.37 

8 4.20 680.39 355.95 234.69 36.33 321.98 60.90 

9 3.73 238.33 518.74 236.35 251.85 164.20 56.94 

10 48.14 121.58 44.92 302.92 230.63 215.66 90.57 

11 10.55 122.81 100.20 323.71 250.29 245.73 43.46 

12 1.87 182.66 92.98 167.72 210.86 30.09 29.91 

13 3.01 77.89 22.00 75.37 244.84 95.16 20.13 

14 6.19 21.16 12.45 61.28 14.19 127.50 127.44 

15 0.87 357.65 350.19 91.99 14.63 31.68 108.11 

16 8.67 290.36 87.33 98.24 430.86 146.02 135.91 

17 19.97 54.65 140.17 104.71 81.47 499.04 122.37 

18 7.93 164.76 304.36 212.15 226.66 173.06 146.95 

19 15.72 764.19 163.69 325.87 46.09 92.45 56.88 

20 2.41 931.93 81.15 327.71 26.20 288.59 80.39 

21 3.17 253.82 106.96 159.14 143.63 557.94 80.72 

22 1.12 606.88 39.78 380.76 165.34 169.36 58.13 

23 2.56 299.98 231.65 445.89 312.10 43.59 76.72 

24 7.46 227.88 167.67 289.37 9.75 216.01 65.90 

25 1.60 52.22 15.85 399.29 6.82 105.68 121.19 

Average 8.06 291.11 169.81 209.72 141.38 171.48 77.30 

 

 

As it is reported in Table 5, where all the computed residence times are compared with the related 

experimental residence times ( ¡`<^` and ¡Çmî, respectively) for each of the seven compounds, we 

were able to estimate the exit times for all the compounds, with the exception of compound 6, in 

overall agreement with experimental data.  
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Table 5. Experimental and calculated residence times (¡Çmî and ¡`<^`) for each compound. 

 

  Computed quantities 

compound 3456 ± 8 39:;9 ±8 ±84 ±8<= 

1 1.81 ± 0.18 8.06 ± 9.68 ±1.94 ± 1.77 

2 1470.59 291.11 ± 259.04 ± 52.88 ± 49.96 

3 412.2 ± 13.43 169.81 ± 150.50 ± 30.72 ± 29.20 

4 1098.9 ± 320.64 209.72 ± 115.53 ± 23.58 ± 22.53 

5 75.76 ± 3.91 141.38 ± 133.01 ± 27.15 ± 25.86 

6 3402.25 ± 177.06 171.48 ± 138.89 ± 28.35 ± 26.61 

7 9.01 77.30 ± 44.88 ± 9.16 ± 8.69 

 

 

Indeed, the structure of compound 6 is the most different with respect to the other three compounds 

that present the indazole-like structure as scaffold (compounds 3,4,5). In particular, compound 6 

shares a piperidine moiety with compound 4, with in addition a methoxy group. The addition of a 

polar oxygen of the methoxy group in this position, makes this region very similar, in terms of 

polarity, to the compound 5 that possesses the morpholine ring. From computational results, it 

seems that the addition of the methoxy group accelerates the dissociation of the ligand from the 

protein, similarly as for compound 5, in contrast to experimental data. Because all these substituents 

of this series (compounds 3-6) tend to occupy similar regions of the binding site, the bulkier 

substituent groups are capable to make additional interactions with the hydrophobic part of the 

pocket. In particular, according to experimental results, the methoxy substituent of the compound 

6 adapts the methyl group to the hydrophobic pocket resulting in a more stable complex with respect 

to the compound 5, whose polar oxygen in the morpholine ring is more exposed to the solvent and 

consequently unfavorable to interact with the hydrophobic pocket, and compound 4. In our 

simulation, compound 6 was predicted as an in-between condition of compounds 4 and 5. However, 

this disagreement could be due to limitations of the force-field in discriminating these small details 

that might have been intensified by the choice of an aggressive scaling factor.  

Furthermore, evaluating the degree of correlation between simulations and experiments for all the 

entire set of compounds (compounds 1-7), it appears clear from the plot in Figure 19 that the 

estimation of the computational residence time for compound 6 affected the correlation. In 

particular, we performed a linear regression procedure in which the effect of the scaling factor was 

considered by normalizing both experimental and computational residence times according to: 

à
øn
>®?

ø@7®
>®? ã

Æ
and àøn

ˆ7tˆ

ø@7®
ˆ7tˆ ã respectively. 
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Figure 19. Normalized computed residence times plotted against normalized experimental residence times. 

Error bars correspond to the standard deviations reported in Table 5, ¿. A) Results obtained considering the 

entire data set of compounds. Pearson correlation coefficients of R = 0.73 and R2 = 0.53 were obtained. B) 

Results obtained excluding the compound 6, considered an outlier. Now, the ranking for the remaining 6 

compounds was reproduced correctly. Spearman rank correlation of 1 with a Pearson correlation coefficient 

R2 = 0.89.   

 

 

Considering the entire set of compounds resulted in a Spearman A of 0.89, while p-values were 

significant (P < 0.05). Pearson’s product-moment correlation resulted in an R of 0.73 and R2 of 

0.53 (Figure 19 A). Exploration of the studentized residuals, resulting in a value of t > 3 identified 

compound 6 as an outlier. The same linear regression procedure was applied to the same set of 

compounds excluding it (Figure 19 B). Now, the Spearman rank correlation gave a A	of 1, while p-

values remained significant (P < 0.01). Now, Pearson’s product-moment correlation resulted in an 

R of 0.94 and R2 = 0.89.  

 

 

3.2.3.3 Similarity analysis of unbinding pathways 
 

As introduced before, characterizing the possible pathways that a small molecule can follow to bind 

a specific target binding site and, in this way, to modulate it biological activity is of primary 

importance for drug discovery. However, multiple and different routes can be involved in 

unbinding processes, mostly due to different shape and size of the binding pocket and the residues 

faced along the path, the degrees of freedom of both the ligand and the protein. Here we tried to 

recognize and classify different routes from sMD simulations in order to recover, if possible, 

significant mechanistic details about the unbinding event and describe structure-kinetics 
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correlations. As described in Methods, we embed in a 3D space the Cartesian coordinates of the 

ligand’s heavy atoms along each trajectory, taking advantage of the dimensionality reduction 

technique Isomap. The similarity between different trajectories was assessed in the low-D space 

calculating the discrete Fréchet distance, which is the metric employed in the following cluster 

analysis. Determining the similarities between different trajectories in the low-D space is relatively 

straightforward compared to analyze each trajectory in the high-D space. Notably, through this 

analysis of similarity in the low-D space based on the Fréchet distance of all the 25 sMD runs for 

each ligand, we were able to quickly identify different unbinding routes. In Figure 20 is shown an 

example of the strategy devised, using the trajectories of compounds 1.  

All the significant configurations visited by the compound 1 in all the 25 different unbinding 

trajectories were used as an input for the dimensionality reduction procedure (clean-up stage and 

Isomap). Thus, each trajectory could be followed in the new low-D space identified by the 

projection of all the configurations in this space. Finally, all the Fréchet distances evaluated 

between all of the trajectories are stored in a similarity matrix on which a hierarchical clustering 

was performed in order to identify similar pathways. In this specific case, according to Figure 20 

we could identify, for instance, two pairs of paths that resulted to be very different in the low-D 

space (couple 1: path 3 and 16, couple 2: path14 and 18). In particular, from the dendrogram 

exhibiting the hierarchical relationships between trajectories, three major clusters could be 

identified cutting the dendrogram at height of 9. Paths 4 and 18 belong to the same largest cluster, 

while paths 3 and 16 are part of the second cluster. Moreover, path 3 and 16 resulted to be analogous 

for compound 1 (Fréchet distance equal to 1.81) and similar considerations holds for paths 14 and 

18 (Fréchet distance equal to 1.38). This similarity could be observed in the low-D space (pathways 

3 and 16 in orange scale, pathways 4 and 18 in blue scale). Investigating the configurations sampled 

by the ligand in these unbinding pathways in the high-D space is a further evidence of these 

similarities and differences. In particular, in the Figure 20 C-D, the coordinates of the COM of the 

ligand were traced in the high-D space for both couple of unbinding trajectories 14 and 18, 3 and 

16. In Figure 20 C is illustrated that two different configurations sampled along the unbinding 

process by the compound 1 for each of the two pathways (14 and 18) perfectly overlap. A similar 

pattern could be detected for trajectories 3 and 16 in the same Figure 20 D. Additionally, by 

comparing Figure 20 C and Figure 20 D, it can be seen that even though the COM trace in the high-

D space is comparable for pathways 3, 16 and 14, 18, these two groups of pathways are very 

different in the low-D space, demonstrating their mechanistic dissimilarity. Indeed, the ligand in 

these two clusters of trajectories leaves the binding site in completely different orientations: with 

the quinazoline ring first in pathways 14 and 18, with the 1,3-dihydroisoindol-2-yl ring first in 

pathways 3 and 16. Concluding, the low Fréchet distance represents a valid measure to compare 

and identify high similarities within a set of unbinding trajectories.   
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Figure 20. Dimensionality reduction and dendrogram interpretation of the unbinding pathways of compound 

1. A) All the ligand configurations (grey points) are represented in the low-D space. Projections of trajectories 

3 and 16 and 14 and 18 are identified with different colors: in orange scale and blue scale, respectively. B) 

Heatmap of the Fréchet distances between all the 25 sMD independent runs colored according the similarity 

level. In particular, high similarity (low values) is indicated in white, while low similarity (high values) is 

indicated in blue. The result of the hierarchical cluster analysis is reported on the top and on the left side of 

the heatmap in form of a dendrogram. C) In left panel are reported the ligand COM coordinates along the 

unbinding pathway in the high-D space from the initial bound pose (black dot) to the bulk solvent. In right 

panel are represented two sample configurations visited during the unbinding process in pathways 14 and 18. 

D) Same description depicted for section C, but relative to trajectories 3 and 16.   

 

 

3.2.4 Conclusions 
 

Here, we investigated the efficiency of sMD simulations to predict the residence time for a series 

of structurally different HSP90" inhibitors. Particularly, the experimental residence times of this 

series of compounds cover a wide-range of 3 order of magnitude (from 2 s up to almost 1 h). First 

of all, we were able to rank in a reliable way the investigated series of compounds, apart from one 

inhibitor that emerged to be an outlier of our procedure. Statistical significance and robustness of 

the observed events (25 sMD simulations for each inhibitors) was evaluated by bootstrapping 

analysis. Moreover, we demonstrated that even little changes in chemical structure can be correctly 

ranked according to the experimental evidence. For instance, the two structurally related 



 72 

compounds 4 and 5, in which to the indazole scaffold is added a piperidine substituent in the former 

and a morpholine group in the latter, present a different affinity of 1 order of magnitude. Secondly, 

we developed a fully automated data analysis approach in order to easily identify similar features 

on the ensemble of unbinding pathways. Despite the quite low scaling factor of 0.45 here used, the 

procedure seems to be encouraging since we were able to unambiguously identify similar pathways 

in the high-D space. An interesting aspect that could be investigated in the future, at more 

conservative scaling factors, is the correlation between unbinding routes and computational 

residence times. Indeed, it is reasonable to expect that, as long as the kinetic model is capable to 

properly predict the residence times for the investigated compounds, some features reflecting the 

mechanistic aspect of the unbinding pathway could be derived. Moreover, this piece of information 

could be further exploited to guide other sampling strategies in order to identify minimum free 

energy paths and the related potentials of mean force since the pathways described in the low-D 

space can be directly used as PCVs on which perform biased-MD simulations. This would lead to 

a better characterization of the ligand unbinding process in qualitative but also quantitative terms. 

In particular, it would be possible to identify the relevant metastable states visited by the ligand 

along the unbinding path and quantify the free energy.  
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3.3 A Semi-automatic protocol to identify path collective variables to 
perform well-tempered metadynamics and to compute the protein-
ligand binding potential of mean force.    

 

 

3.3.1 Introduction 

Of fundamental importance in the drug discovery field is the identification of small molecule 

ligands that are able to bind and modulate the activity of biological macromolecules involved in 

pathological conditions. In the simplest and general description, binding of small molecules to 

biological target is described, most of times, as a two-state, all-or-none process in which the ligand 

is either free in the solvent or locked in the binding site. However, an accurate characterization of 

the thermodynamics and kinetics leading the formation of complexes is required to deeply 

apprehend the molecular principles driving all biological interactions. In particular, 

thermodynamics and kinetics the properties of any protein-ligand complex are a function of the 

potential energy landscape through an averaging process that depends on the statistical mechanics 

ensemble used. Even if thermodynamics and kinetics are usually described separately, as widely 

discussed in the Introduction section, they are both linked to free energy. In particular, 

thermodynamics provides the driving force of protein-ligand binding that is identified by the 

binding free energy or the equilibrium dissociation constant. The protein-ligand complex is stably 

formed only when the change in Gibbs free energy (binding free energy), ∆Id, is negative at 

equilibrium conditions. Because the protein-ligand association is quantified in terms of the 

magnitude of the negative ∆Id, this reflects the stability of the protein-ligand system or of the 

binding affinity between the interacting partners, typically referred to #$. Kinetic rates, namely 

./1 and ./00, depend respectively on the free energy difference between the more stable bound 

and unbound states and the transition states, which are complicated to observe and quantify 

computationally. Nowadays, kinetic and thermodynamic parameters describing the protein-ligand 

binding process are gaining growing importance as a fundamental information to keep in account 

in drug discovery, especially in the lead optimization phase, where a rational optimization of these 

quantities is desired in order to improve the binding proprieties.5,189 Consequently, an accurate 

prediction of the free energy profile associated to the protein-ligand binding event could be of a 

certain importance for modern drug design.  

Nowadays, several different biophysical experimental techniques are able to determine 

thermodynamic and kinetic quantities, but they encounter some difficulties in characterizing in 

detail complex reaction pathways, especially when several different metastable states are involved 

in the process. In this context, computer simulations, especially MD, could be extremely helpful 

since an all-atom description of the protein-ligand binding event is provided. Moreover, in the limit 
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of an ergodic simulation, information about metastable states and also about transition states can 

be evaluated and the related affinity and rates would be calculated. However, the main drawback 

of plain MD simulations is related to the high computational resources needed to simulate such rare 

event as protein-ligand binding with an adequate statistic. Because of these difficulties is still 

impossible to routinely use plain MD in the drug discovery pipeline. Among all the enhanced 

sampling methods, which have been developed in order to provide a valid alternative to simple 

plain MD,67 MetaD70 allows an efficient exploration of the phase space guiding the sampling along 

reaction coordinates (CVs).  However, identifying a proper set of CVs is a far from trivial task and 

the efforts required become greater as the complexity of the investigated process increases.76 

Moreover, this aspect is further exacerbated in the case of the molecular recognition process, in 

which many degrees of freedom are involved. In this context, the simplest way to detect a proper 

set of CVs is to proceed by trial and errors, changing set of CVs in several different MetaD 

simulations and evaluating a posteriori the suitable combination of variables. This way of 

proceeding is rather inefficient and prevents any technological diffusion of the approach. The PCVs 

has been specifically introduced to manage complex reaction pathways such as protein-ligand 

binding since it is possible to describe the whole process in a configurational space from the initial 

to the final states introducing only two variables that describe the position of the system along the 

preassigned path and the distance from it.79 The basic idea is to guide MetaD sampling along a 

preassigned pathway, which represents the progression along the ligand binding process, while 

exploring adjacent regions of the phase space that are orthogonal to the initial guess path.190–192 

Even though multiple pathways can be contemplated, the most optimal path, the one in which the 

minimum free energy lies, is unique. From this path, it is possible to know the detail information 

about the binding process. Although being important, finding an optimal path with a high reaction 

rate or low free energy barriers is far from trivial.  

 

Herein, we present our semi-automated strategy to accelerate the construction and the optimization 

process of the guess path in order to estimate the free energy along it. The guess path is obtained 

in two main steps. First, a sequence of waypoints along the path is placed by a machine learning 

algorithm, introduced by Ferrarotti et al. in 2018,49 producing a smooth string known as principal 

path, including relevant intermediate states visited by the ligand along its way to the binding site, 

from an initial noisy binding trajectory. Second, an optimization protocol requiring a series of 

subsequent SMD simulations is applied to uniform the spacing between consecutive frames in the 

path, which is a necessary technical condition to apply the PCVs.79 Taking advantage of such guess 

path, the FES explored by the ligand during the dissociation event could be reconstructed through 

PCVs-based well-tempered MetaD. By setting a wall on the z(x) variable, we let the ligand free to 

explore several different routes to access to the binding site inside a prescribed phase space. 
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Because of this freedom, we might be able to identify the path closest to the minimum free energy 

path that could be characterized in terms of its related intermediate metastable and transition states. 

Despite the efficiency and its ability of sMD in reproducing the experimental ligand binding mode 

and accurately predicting relative off-rates of protein-ligand complexes, sMD trajectories, obtained 

using a scaling factor lower than 0.5, could not be exploited to extract reliable pathways close to 

the minimum free energy path since the mechanistic and energetic details are heavily approximated. 

This because, in sMD the ligand follows partially unphysical (un)binding routes as the simulation 

are performed at high temperature (lower scaling factor). Thus, in order to efficiently reproduce the 

protein-ligand binding event we exploited the MD-Binding approach, saving computational time 

while preserving the accuracy.83 Using electrostatics as the bias to induce protein-ligand 

recognition and binding via an adaptive behavior, the binding trajectory generated by MD-Binding 

approach are expected to be potentially comparable to plain MD simulations. In particular, showing 

mechanistic commonalities with the trajectories obtained via plain MD simulations, the ligand, 

during a MD-Binding simulation, could follow physical binding routes close to the minimum free 

energy path allowing our protocol to correctly identify a guess path on which reconstruct a reliable 

FES. 

Here, in the present work we considered a reliable MD-Binding trajectory of an ATP-competitive 

inhibitor of GSK3! to construct a putative guess path on which we are running a PCVs well-

tempered MetaD simulation. In the results and discussion section, we describe the protocol applied 

to reconstruct the guess path. In addition, some preliminary results of the well-tempered MetaD 

simulation are presented and the assessment of the convergence is deeply discussed.  

 

 

3.3.2 Methods 

 

3.3.2.1 Binding trajectory generation 
 

In this work, we considered the ATP-competitive inhibitor of GSK3! 7YG (3-amino-6-(4-{[2-

(dimethylamino)ethil]sulfomoyl}phenyl)-n-pyridin-3-ylpyrazine-2-carboxamide), whose 

experimental binding affinity was available in literature.156  

The source PDB was 4ACC and only the chain A retained; all the processing was done through 

BiKi Life Sciences 1.3.5. The ligand was parameterized via RESP charges. The attraction group 

from the protein side was: “( (resname ILE and resid 28) or (resname ASN and resid 30) or (resname 

VAL and resid 36) or (resname LYS and resid 51) or (resname VAL and resid 76) or (resname 

LEU and resid 98) or (resname ASP and resid 99) or (resname TYR and resid 100) or (resname 

VAL and resid 101) or (resname THR and resid 104) or (resname LEU and resid 154) or (resname 

ASP and resid 166))  and not hydrogen “ according to the box renumbering (starting from residue 
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1).  The swich-off selection was “(resname LEU and resid 98) and backbone”. The system was 

simulated for 20 ns and 20 replicas were run.  

 

 

3.3.2.2 Principal paths in data space by regularized kernel k-means  
 
The principal path, as formulated by Ferrarotti et al.49, connects two points, defined a priori, in data 

space and tries to pass through the local mid of the data distribution, capturing the most abstract 

morphing path between these points. Although this algorithm is formally a regularized version of 

the k-means clustering algorithm (described in Methods section), its purpose is completely 

different. This algorithm is based on the idea that, given a dataset and two reference points, 

≥(	, ≥ÛˆBÂ, in a vector space fl	 ∈ 	Ò$ (where –	 ∈ 	*À), representing the starting and ending points 

of a path, a smooth string between them can be found by exploiting the data distribution. The final 

path identified is different from the well-known definition of shortest path introduced by Dijkstra 

since the concept of the smoothness is not considered.193 In particular, the principal path concept is 

more similar to the definition of the minimum free energy path in the field of statistical mechanics, 

which is minimal in energetic terms but not automatically in terms of Euclidean distance. Formally, 

if we consider a set of points fl = {rÜ 	∈ 	Ò$}, ˜ = 1,… . ,* and two points ≥(, ≥ÛˆÀå 	∈ 	Ò
$,	the 

path connecting these two points is defined as an ordered set Œ of *`	waypoints ≥	 ∈ 	Ò$. The 

principal path is found by minimizing the standard k-means cost function with the addition of a 

quadratic regularization term that restrains the distance between consecutive waypoints and 

controls the level of smoothness of the path. The cost function is formalized as: 

 

min
E

F

u
∑ ∑ Grf − ≥ÜG

uú(Hf, ˜) +
Æ
u
∑ ‖≥fÀå − ≥f‖u
Ûˆ
fæ(

Ûˆ
Üæå

Û
fæå                                                                (40) 

 

Where ú(Hf, ˜) is the Kronecker delta that gives the membership of the ith sample to jth 

cluster/waypoint. The first term coincides with the standard k-means cost function and the second 

term introduces a set of harmonic restrains applied to consecutive waypoints. The two 

hyperparameters  , ” regulate the trade-off between data fitting and smoothness of the path as 

shown in Figure 21.  
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Figure 21. In figure is depicted the hyper-parameter influence in the shape of the path. Data are represented 

as blue dots, and waypoints as crosses. The irregular blue path represents a configuration where   is 

prominent showing an overfitting effect. The green path refers to a configuration where ” is prominent. The 

red path refers the principal path whit the right trade-off between   and ”.  

 

 

3.3.2.3 Equidistant waypoints algorithm 
 

When applied to MD trajectory data in order to identify those configurations that define the PCVs, 

the path finding algorithm identifies the real frames of the original simulation closest to the 

calculated principal path, thus making the distance (RMSD) between neighbouring frames not 

uniform. As reported in the original paper introducing PVCs, consecutive frames have to be as 

equidistant as possible to ensure a proper mapping between the formal variable s and the underlying 

metric, especially when a bias simulation is performed.79 From this standpoint, the states obtained 

from the path finding algorithm were not well-suited to provide a functional PCVs, since the 

distribution of the configurations is not equally distributed in space (Figure 21). Consequently, we 

devised a protocol based on steered MD simulations128,194 to uniform the spacing in terms of RMSD 

between pairs of successive windows by placing additional and equidistant configurations 

according to the need (Algorithm 1). The RMSD was computed using PLUMED 2.5151 on the 

ligand coordinates and the heavy atoms of the protein residues located within a distance of 4 Å 

from the ligand in the binding site in the bound state. The system was aligned on a selection of 

25	& atoms that resulted to be particularly stable during a plain MD simulation and uniformly 

distributed on the protein structure. The target RMSD threshold between consecutive frames along 

the path was set equal to 1 Å.  
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Algorithm 1 Equidistant waypoints algorithm 

Input  
θ( initial path 
t  distance threshold between consecutive frames 
 
Output 
θY final path 
 
Function equidistant_waypoints_algorithm(θ(,t) 
α = θ([0] 
θY = [] 
λ = α 
 
for a in range(0,|θ(| − 2): 

β = 	θ([a+ 1] 
γ =	θ([a+ 2]	 

      σ = RMSD(λ, β)   
  
      while  σ < t:   

a = a+1 
β = 	θ([a+ 1] 

            γ =	θ([a+ 2] 
            σ = RMSD(λ, β) 
      g	 = σ/t 
 

while g ≥ 1: 
Χ	 = 	SMD(λ, β, γ, t) 

            ñ,φ = RMSD_nearest(λ,Χ, t) 
 
            if |r− t|	< 0.001: 
                  θY. jûû4}–(φ) 
                  λ	 = 	φ 
                  g = g− 1   
                  

else: 
while |r	- t| > 0.001: 

                  ΧZ	 = continue_SMD(λ, β, γ, t) 
                        r,φ = RMSD_nearest(λ,ΧZ	, β) 

 
θY. jûû4}–(φ) 

                  λ	 = 	φ 
                  g = g− 1 
 
SMD = SMD simulation to drag β to a RMSD distance of t from λ, while preserving the RMSD 

distance from γ.  

Continue_SMD = extend the previous SMD simulation. 

RMSD_nearest = from the SMD trajectory (X), return the RMSD (r) of each frame (φ).  
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3.3.2.4 Free energy profile and binding free energy 
 

The GSK-3! protein and ions were modelled according to the Amber ff14.195 The ligand 7YG was 

parametrized according to the general Amber force field (GAFF).145 Partial charges were assigned 

through RESP procedure.149 In particular, geometrical optimization and further calculation of the 

electrostatic potential were carried out via quantum mechanics using the 6-31G* basis set at the 

Hartree-Fock level of theory. The TIP3P model was used for treating water141 and an appropriate 

number of ions were added to neutralize the system. The simulation was performed using the 

2016.5 version of the GROMACS MD simulation engine196 patched with the 2.5 version of 

PLUMED.151 Production runs were performed in NVT statistical ensemble using a 2 fs time-step. 

A cut-off of 12 Å was used for non-bonded interactions, while long-range electrostatics was treated 

with the Particle-Mesh Ewald scheme employing a grid spacing of 1.2 Å.62 The temperature of 300 

K was controlled using the V-rescale thermostat while bond lengths for chemical bonds involving 

hydrogens were restrained to their equilibrium values with the LINCS algorithm.144  

 

Gaussians with a nominal height of 0.2 kcal/mol were used together with a bias factor of 15 units. 

The width of the Gaussians was set to 0.2 and 0.01 nm2 along ≤	and Ê, respectively, and the space 

along the Ê dimension was limited to 0.05 nm2. The Gaussians deposition time was set to 500 

molecular dynamics steps. Having optimized the RMSD between pairs of consecutive frames to 

0.1 nm (1 Å), the λ parameter determining the smooth description of the path, was set to 230.0 

according to equation (34). 

 

As described by Doudou S. et al,197 according to statistical mechanics the standard free energy 

change of binding ΔId°  between the bound and unbound states is given by: 

 

∆Id° = −Ò=v} †“ºn]>
“¶ßt8

§ − Ò=v} †l¶ßt8
l°

§                                                                                                                      (42) 

 

Where ÷]faÇ and ÷d©^K denote the partition functions for the bound and unbound regions, 

respectively, qd©^K is the sampled unbound volume and q°	is the standard-state volume. Their ratio 

is computed by integrating the potential of mean force in the site and bulk region respectively via: 

 

“ºn]>
“¶ßt8

=
∫ Çmîºn]> †5^(º,_)S: §$]$`

∫ Çmî¶ßt8 †5^(º,_)S: §$]$`
                                                                                                                   (43) 

 

Where √(≤, Ê) is the FES as reconstructed by well-tempered MetaD as a function of s(x) and z(x) 

and defined to be zero at its lowest point. 
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3.3.3 Results and Discussion 
 

3.3.3.1 MD-Binding simulation  
 

As already introduced, in order to identify a putative guess path close to the minimum free energy 

path along which to reconstruct the binding free energy, the MD-binding approach within the BiKi 

suite was applied to investigate protein-ligand association event of the ligand 7YG to GSK3!.  

Over 20 replicas we selected the one which exhibited the lower RMSD with respect to the co-

crystal structure. 

 

The final MD-binding trajectory was first post-processed in order to discard all the configurations 

that are not relevant for the association process under investigation. In particular, we kept into 

account only the part of the trajectory that ranges from the frame in which the ligand is correctly 

docked into the binding site to the frame in which the ligand is completely solvated. The solvated 

state was identified as the first frame in which the ligand lost all the contacts with the protein within 

a distance of 6 Å.  

 

 

3.3.3.2 Path generation and optimization 
 

In order to calculate the principal path with the regularized k-means algorithm, an input *	 × 	– 

matrix need to be calculated. In this work, we defined the *	 × 	– matrix as the coordinates of the 

heavy atoms of the ligand and the protein residues located within a distance of 4 Å from the ligand 

in the binding site in the bound state sampled during the post-processed trajectory, fl. In particular, 

in every row of fl are reported the coordinates in 3D-dimensional space of all the heavy atoms of 

the ligand and the residues of the protein (–) in a specific frame of the trajectory (* is the total 

number of frames).  

By applying the path finding algorithm, we detect the milestone frames that define a smooth string 

of real coordinates from the initial noisy trajectory. The smoothing parameter, calculated as the 

ratio between   and ” (s =  /	”), used to identify the principal path was set to 3500 as shown in 

Figure 22 and defined via visual inspection of the projected path. 
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Figure 22. Principal path resulted considering a smoothing factor of 3500. Configurations of the ligand and 

residues of protein composing the binding site (residues at 4 Å from the ligand in bound state) are represented 

in the low-dimensional space as blue dots. Configurations that lie on the principal path are represented as 

green circle. The bound and unbound states are represented as star with different colours.  

 

 

Once the configurations of the initial trajectory that define the preliminary principal path were 

detected, it is necessary to perform the optimization step in order to obtain a PCVs in which the 

distance between consecutive frames is constant. As already described in Methods of this Chapter, 

this step is achieved by exploiting a series of SMD simulations between each pair of the initial 

configurations in order to identify those configurations that are at specific distance in terms of 

RMSD along the original path. In this specific case, the principal path algorithm identified 70 

configurations of the original MD-Binding trajectory to define the preliminary path. As shown in 

Figure 23 left panel, the RMSD between neighbour frames was not constant ranging from about 

0.8 to over 4 Å. After the optimization phase, the final PCVs is composed of 102 configurations 

with a constant RMSD of 1 Å between adjacent frames (Figure 23, right panel).   
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Figure 23. RMSD between adjacent frames before (left) and after (right) the application of the sMD based 

optimization protocol. In the top panels, the variation of the RMSD along the s(x) is reported.  

 

 

3.3.3.3 Well-tempered MetaD simulations 

 

Well-tempered MetaD was initialized from the bound state of the protein-ligand complex. The 

following results refer to the statistics collected during the first microsecond of simulation.  

The convergence of well-tempered MetaD with PCVs is commonly assessed by checking the 

achievement of the diffusive behavior of the system along the PCVs in addition to the height of the 

Gaussian hills deposited. Reaching convergence is necessary to reconstruct a reliable FES by 

ensuring the complete exploration of the configurational space along the PCVs by the system. 

However, in real case studies such as protein-ligand binding, reaching convergence is far from a 

trivial task, because of the high number of slow degrees of freedom involved in the process.  

In Figure 24 A, we report the evolution of the system along the s variable during the simulation 

time (i.e. 1 microsecond). As transitory time, we considered the first 350 ns during which the 

system moved from the bound state (s=102) to the bulk at least twice, thus exploring all the s space 

along the path.  

 

Well-tempered MetaD is supposed to be converged when the Gaussian heights deposited are almost 

zero.  

In our case, after the equilibration time, the system reached an almost diffusive regime along s 

(Figure 24 A) whereas the Gaussians are continuously changing while progressively decreasing in 

time (Figure 24 B). As a consequence, the convergence of well-tempered MetaD cannot be assess 

by simply considering the Gaussian heights or the diffusivity along s separately. To support this 

hypothesis, we reported 3 representative one-dimensional profiles of the free energy at different 

simulation times obtained by integrating over z(x) variable and projected along the s(x) variable by 

using the standard plumed tools (Figure 24 C). 
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Figure 24. Preliminary results of well-tempered MetaD of the first 1 bs of simulation. A) System progression 

along the s variable of PCVs in function of time. B) Gaussian heights in function of time. C) One-dimensional 

profiles of the free energy at different times (350 ns, 700 ns, 1000ns), obtained by integrating over z variable 

and projected along s. 

 

 

By looking at the first profile, we noticed that immediately after the equilibration time (350 ns) the 

free-energy difference between bound and unbound states results to be between 14-18 kcal/mol.  

The second profile was computed when the system reaches the diffusive regime along s fulfilling 

a necessary precondition for MetaD convergence. However, Gaussian heights are not stable to 

almost zero value suggesting that the system is still sampling the potential energy surface.  

Conversely, by proceeding with the statistics until 1 microsecond, the diffusive regime along s is 

lost, due to the ligand stucked into the binding site, but the Gaussian heights progressively decrease 

the zero value, which is another necessary precondition for assessing the convergence of well-

tempered MetaD. In this last case, it is interesting to notice how the free energy difference between 

the bound and unbound states deviates from the experimental value. 

Thus, from these considerations, we find that evaluating the Gaussian heights and the diffusivity 

along the collective variable are both necessary preconditions to assess the convergence of well-

tempered MetaD simulation, but they are not sufficient when considered alone as done in other 

works.191 However, meeting these two conditions in a real case study requires a huge computational 

effort and the deep knowledge of the slow degrees of freedom involved in the process under 

investigation, a not realistic scenario. 
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From this point, we proceed our study trying to find an alternative way to determine a reliable 

binding free energy with the available data.   

In order to correctly calculate the binding free energy ΔId°  according to equation (42), it is necessary 

to identify those configurations that refer to the unbound state and those that could be ascribed to 

the bound state of the ligand. When the PCVs are considered, this objective results in finding an 

optimal value of the s variable able to discriminate between the docked and solvated states of the 

ligand.  

With the aim of understanding the robustness of free energy estimates we quantitatively evaluated 

how the ΔId°  changes as a function of the s value chosen to compute the partition functions in 

equation (43). For simplicity, we avoided to include the second term of equation (42), relative to 

the ratio of sampled volume to the standard volume, since it represents a small contribution to the 

total  ΔId° . As expected, the profile reaches a plateau region (i.e. almost constant ΔId° ) in 

correspondence with the complete solvated state of the ligand due to the fact that these 

configurations are energetically comparable (s between 10-50). As shown in Figure 25, where 

profiles at different simulation times after the equilibration phase are reported, the trend of all the 

curves is consistent, in particular in the s region corresponding to the unbound state. This evidence 

could stand for the fact that the system has completely explored the path along s at least once.  

 

 

 

Figure 25. Profiles at different simulation times (between 350 ns to 1 bs) of the ΔId calculated as a function 

of s value chosen to define the unbound and bound region along the path.   

 

 

To support this analysis and to better characterize the optimal s frame discriminating the 

bound/unbound states, we also evaluated the solvation shell around the ligand during the binding 

path (Figure 26, above panel). According to this profile, it is possible to identify three main regions 

corresponding to the bound state (s frames between 85 and 102), pre-bound state (s frames 50-85) 

and the unbound state (s frames 1-50). As expected, there is a clear consistency between the profiles 

reported in Figure 25 and the unbound region identified observing the water shell around the ligand. 

Thus, we are quite confident to identify in s = 50 to be a reasonable threshold value to discriminate 
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the bound and unbound states of the ligand, which corresponds to the separation between the 

completely unbound and the pre-bound state (Figure 26).   

 

 

 

Figure 26. Qualitative evaluation of the water shell surrounding the ligand along s variable of PCVs. In the 

above panel, are reported the number of atoms water at 3 Å of the ligand for each s frame of the PCVs. In 

the bottom panel, different configurations of the system are reported to better visualize relevant frames that 

identify the three main regions: completely bound state (s = 102), frame separating the bound to prebound 

state (s = 85), frame separating the prebound to completely unbound state (s = 50), and a chosen configuration 

to represent the completely unbound state (s = 20). 

 

 

By comparing these profiles at difference times (Figure 25), we noticed that the computed ΔId° 		is 

sampling a range of values around the experimental value without gradually converging to it. This 

is another confirmation that the convergence is still not achieved.  

However, with the available data, an estimation of the ΔId° 		can be given by considering the average 

ΔId° 		at s = 50 computed on the free energy profiles at different simulation times which profile is 

reported in Figure 27. Thus, by applying this procedure, the binding free energy, ΔId° 	, results to be 

8.6 kcal/mol, which differs from the experimental value by 2 kcal/mol.   
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Figure 27. Average of different profiles at simulation time between 350 ns to 1 bs of the ΔId calculated as 

a function of s value chosen to define the unbound and bound region along the path.   

 

 

In conclusion, we would like to observe some summarizing points:  

• Well-tempered metadynamics on the s and z variables in a protein-ligand binding problem 

does not exhibit any convergence in 1 us 

• This may be due to a sub-optimal definition of the s variable, but it represents a realistic 

scenario in which the a priori knowledge on the system is limited 

Despite the lack of convergence, it is interesting to note that the MetaD free energy results oscillates 

around the true experimental value as time proceed. This means that either the collective variable 

is not optimal or the well-tempered mechanism, despite the theory, does not converge to a constant 

FES but instead oscillates around the expected value. 

Despite the well-tempered MetaD simulation has not reached the expected convergence and the 

system is still oversampling the bound state thus leading to a continuously decreasing ΔId° 	, we 

think that taking into account the average of the ΔId° 	 at different simulation times might be an 

acceptable approximation of the ΔId° 		value at a converged regime in realistic scenario where the 

domain knowledge and the computing time is limited.   

 

 

3.3.4 Conclusion 

 

In this study, we introduced a semi-automatic protocol to generate an optimal “guess path” which 

can be exploited as PCVs by enhanced sampling techniques to guide the sampling along and around 

it.  This “guess path” is essentially a set of consecutive frames of the system captured at different 

time steps along the process under investigation.  

Herein, we took advantage of this semi-automatic protocol to construct a guess path for the inhibitor 

7YG binding to GSK3!, in order to exploit it for subsequent PCVs well-tempered MetaD 
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simulation. The associated FES reconstructed as a negative image of the Gaussians deposited 

during time, would allow calculating the ΔId° .  

To generate the path, we perform a preliminary MD-Binding simulation in order to observe the 

binding event at least once within a reasonable time. Basing on the resulting trajectory, the principal 

path algorithm introduced by Ferrarotti et al.49 was applied to identify a prior guess path which pass 

through the local distribution of whole set of configurations. The resulting frameset is then post-

processed through a series of short consecutive SMD simulations to ensure a uniform distance, in 

terms of RMSD, between adjacent frames.  

Although the results of the PCVs well-tempered MetaD simulation here reported are only 

preliminary, we tried to interpret them in a rigorous way in order to identify some general key 

aspects that could be used to predict a reliable ΔId° 	even if the convergence is not reached.  
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4 CONCLUSIONS 
 
Characterizing the molecular recognition process is of utmost importance for drug discovery since 

it is involved in many biological processes with consequent pharmaceutical implications. In 

particular, a deep knowledge of protein-ligand interactions is essential for a successful drug design. 

Capturing the whole binding process on a mechanistic level could be much interesting since, 

ideally, every contribution to the establishment of the molecular complex could be exploited in the 

development of new drugs.  

Thus, significant efforts have been made over the years into the investigation of the protein-ligand 

binding process leading to the development of both experimental and computational techniques 

able to quantify kinetics and thermodynamics of bio-molecular complexes.  

Several experimental techniques such as ITC, NMR and SPR demonstrated to be efficient in 

studying and quantifying both thermodynamic and kinetic observables. However, these are 

sometimes expensive and time-consuming. Moreover, a detailed atomic-level description of the 

complex reaction pathways, with the characterization of all the metastable states is not possible 

since only a quantitative estimation is allowed.    

From the computational point of view, despite multiple successes of molecular docking in 

predicting the structures of many protein-ligand complexes, the dynamics of binding have been 

ignored by computational investigations. However, during last decade, there has been growing 

interest in developing models describing the entire dynamic process upon complex formation, 

elucidating how ligand binding can modify the structure and function of the biological target which 

is of fundamental importance to correctly interpret the binding event.   

In this perspective, MD has been increasingly considered as the computational method of choice to 

investigate the entire protein-ligand binding process and, in theory, estimate the related 

thermodynamic and kinetic observables. However, due to the significant computational effort 

involved in a plain MD protocol, achieving an accurate and comprehensive description of the 

process and the related estimation of thermodynamic and kinetic parameters for larger sets of 

compounds is not feasible yet.   

Therefore, different enhanced sampling strategies have been developed in order to overcome the 

limitations of plain MD, mostly due to the timescales problem, and to allow a complete 

characterization of the investigated process.  

 

Here, we devised three different protocols according to the specific aspect of protein-ligand binding 

process that we were interested in: dynamical docking, estimation of kinetic observables and 

reconstruction of the free energy surface associated to the binding process.  
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First of all, we developed a dynamic docking protocol based on sMD simulations, in which the 

protein is let completely flexible in order to predict the protein ligand binding pose with a 

reasonable computational effort. Briefly, in this semi-automatic protocol, the ligand is initially 

placed in the bulk in a random configuration, at the basis of a cylindrical volumetric confinement 

which extends from the binding pocket to the solvent. A series of ten independent sMD was 

performed and, through a cluster analysis of all the metastable states visited along the trajectory, 

we were able to successfully identify the experimental binding mode among the top ranked clusters. 

In particular, we tested our approach on the prediction of a series of five different compounds 

binding two relevant pharmacological protein; the GSK3! and the N-terminal domain of HSP90", 

for which the experimental crystal structures were available.  

Provided the importance of leveraging kinetic observables in the drug discovery process and the 

necessity of developing methods to routinely predict drug residence time, in the second application 

we further investigated the applicability of sMD in describing the kinetic behavior of a series of 

drug-like molecules. Specifically, we considered a series of congeneric ligand of the N-terminal 

domain of HSP90" presenting a wide range (from less than 2s up to almost 1h) of experimental 

residence times. Here, without any a priori information about the unbinding mechanism, we 

investigated the capability of sMD simulations to estimate the residence times and the unbinding 

pathways.     

We demonstrated that, even if it is difficult to differentiate in single runs structurally similar 

ligands, we were able to properly rank them, in agreement with experimental results, reaching a 

statistical significance and robustness by applying bootstrapping analysis.  

Moreover, we devised a fully automated method to analyze the unbinding trajectories, detecting 

similar features. The resulting pathway describing the unbinding process, in the future could be 

further exploited as a collective variable to guide more accurate biased-MD methods, with the 

purpose of identifying the minimum free energy path and the related potential of mean force. In 

this way a more reliable characterization of the mechanism underlying protein-ligand unbinding 

process, with the quantification of the involved barriers and the identification of the metastable 

states encountered would be possible.  

However, the binding and unbinding routes resulting from sMD simulations could not be 

considered as reliable pathways close to the minimum free energy path since it is equivalent to 

perform the simulation at high temperature in which the ligand could explore all the phase space.  

In order to extract from a MD simulation a reliable (un)binding path on which to reconstruct the 

free energy surface and gain into the thermodynamics and kinetics related with the binding event, 

we took advantage of the MD-Binding method which approaches the accuracy of plain MD.  
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This approach was devised in the third application, where we applied a machine learning algorithm 

to extract a principal binding path from a MD-Binding simulation of an ATP-competitive inhibitor 

of GSK3!. The underlying idea is to guide well-tempered MetaD sampling, a well-established 

enhanced sampling method, exploring all the metastable states along the principal path identified, 

and recover the free energy surface related to completely characterize the binding process with the 

estimation of the affinity in terms of the difference of the standard binding free energy ΔId° 	. Despite 

only preliminary results of the first microseconds of PCVs well-tempered MetaD simulation are 

reported, we propose an analysis to anyway try to give an estimate of ΔId° 	even if the convergence 

is not completely reached. This is particularly important practically as in order to effectively use 

such tools in real-world drug discovery projects it is necessary to work with a limited amount of 

computing time. Thus, it is interesting to try to get “numbers” even from not completely rigorous 

simulations and compare them to experimental values. While this strategy is not scientifically 

completely rigorous from an engineering and applicative viewpoint is rather useful.  
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