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Abstract

Large scale wireless ad-hoc networks of computers, sensors, PDAs etc.
(i.e. nodes) are revolutionizing connectivity and leading to a paradigm shift
from centralized systems to highly distributed and dynamic environments.
An example of ad-hoc networks are sensor networks, which are usually com-
posed by small units able to sense and transmit to a sink elementary data
which are successively processed by an external machine. Recent improve-
ments in the memory and computational power of sensors, together with
the reduction of energy consumptions, are rapidly changing the potential of
such systems, moving the attention towards data-centric sensor networks.
A plethora of routing and data management algorithms have been proposed
for the network path discovery ranging from broadcasting/flooding-based ap-
proaches to those using global positioning systems (GPS).

We studied W-Grid, a novel decentralized infrastructure that organizes
wireless devices in an ad-hoc manner, where each node has one or more vir-
tual coordinates through which both message routing and data management
occur without reliance on either flooding/broadcasting operations or GPS.
The resulting ad-hoc network does not suffer from the dead-end problem,
which happens in geographic-based routing when a node is unable to locate
a neighbor closer to the destination than itself.

W-Grid allow multi-dimensional data management capability since nodes’
virtual coordinates can act as a distributed database without needing neither
special implementation or reorganization. Any kind of data (both single and
multi-dimensional) can be distributed, stored and managed. We will show
how a location service can be easily implemented so that any search is reduced
to a simple query, like for any other data type.

W-Grid has then been extended by adopting a replication methodology.
We called the resulting algorithm WR-Grid. Just like W-Grid, WR-Grid
acts as a distributed database without needing neither special implementa-
tion nor reorganization and any kind of data can be distributed, stored and
managed. We have evaluated the benefits of replication on data manage-
ment, finding out, from experimental results, that it can halve the average
number of hops in the network. The direct consequence of this fact are a
significant improvement on energy consumption and a workload balancing
among sensors (number of messages routed by each node). Finally, thanks
to the replications, whose number can be arbitrarily chosen, the resulting
sensor network can face sensors disconnections/connections, due to failures
of sensors, without data loss.

Another extension to W-Grid is W*-Grid which extends it by strongly im-
proving network recovery performance from link and/or device failures that



ii

may happen due to crashes or battery exhaustion of devices or to temporary
obstacles. W*-Grid guarantees, by construction, at least two disjoint paths
between each couple of nodes. This implies that the recovery in W*-Grid oc-
curs without broadcasting transmissions and guaranteeing robustness while
drastically reducing the energy consumption.

An extensive number of simulations shows the efficiency, robustness and
traffic load of resulting networks under several scenarios of device density
and of number of coordinates. Performance analysis have been compared to
existent algorithms in order to validate the results.
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Chapter 1

Introduction

Recent advances in information communication technology have led to the
rapid development of small, powerful, multi-function devices with multi stan-
dard radio interfaces including Bluetooth, Wi-Fi and Wi-Max. For example,
ad-hoc networks are being designed where devices/nodes can directly com-
municate within a limited space both indoor, such as a building, and outdoor,
such as a metropolitan area, without the need of a fixed pre-configured in-
frastructure and rigid data/communication protocols. These wireless ad-hoc
networks of computers, sensors, PDAs etc. (i.e. nodes) are revolutionizing
connectivity and leading to a paradigm shift from centralized systems to
highly distributed and dynamic environments.

Compared to wired networks, wireless networks have unique characteris-
tics. In wireless networks, nodes failure may cause frequent network topology
changes, which are rare in wired networks. In contrast to the stable link ca-
pacity of wired networks, wireless link capacity continually varies because of
the impacts from transmission power, receiver sensitivity and interference.
Additionally, wireless networks have power restrictions and bandwidth limi-
tations.

Wireless networks can be classified into infrastructure networks and ad
hoc networks according to their dependence on fixed infrastructures. In an
infrastructure network, nodes have wired access points (or base stations)
within their transmission range. The access points compose the backbone
for an infrastructure network. In contrast, wireless ad hoc networks are
autonomously self-organized networks without infrastructure support. In a
wireless ad hoc network the network may experiences rapid and unpredictable
topology changes because nodes in a wireless ad hoc network normally have
limited transmission ranges, some nodes cannot communicate directly with
each other. Hence, routing paths in ad hoc networks potentially contain mul-
tiple hops, and every node has the responsibility to act as a router. Hence,

1



2 CHAPTER 1. INTRODUCTION

the goal is to enable self-organizing ad-hoc networks, composed of wireless
devices including sensors, which are virtually free from configuration and ad-
ministration costs, and to support location and time sensitive applications
in variety of domains. Wireless ad hoc networks are appropriate for applica-
tions either in hostile environments where no infrastructure is available, or
temporarily established applications which are cost crucial. In recent years,
application domains of ad hoc networks gain more and more importance
in non-military public organizations and in commercial and industrial areas.
The typical application scenarios include the rescue missions, the law enforce-
ment operations, the cooperating industrial robots, the traffic management,
and the educational operations in campus.

A plethora of routing algorithms have been proposed for the network path
discovery ranging from broadcasting/flooding-based approaches to those us-
ing global positioning systems (GPS) to discover the routing path towards
the destination. Broadcast algorithms, while simple to implement, are not
scalable due to the enormous overhead caused by congestion in large net-
works. On the other hand, solutions based on GPS, which rely on exact
geographic position for each node, does not work in indoor environments
and does not function correctly in extremely dense networks or in adverse
climatic conditions. Technical and economic feasibility constraints also pre-
vent from attaching a GPS receiver to each node in very large network (i.e.
made of thousand of devices). For these reasons our solution does not rely
on GPS or any other positioning system. The routing problem has also been
addressed in cases of both total absence and partial availability of geographic
location information by generating virtual coordinates to approximate real
ones.

Our solution may be classified within this set of approaches in that it also
uses virtual coordinates, but it is distinctive in that it does not aim to ap-
proximate real coordinates. We propose a novel decentralized infrastructure
that self-organizes wireless devices in an ad-hoc network, where each node
has one or more virtual coordinates through which both message routing
and data management occur without reliance on either flooding/broadcast-
ing operations or GPS. The resulting ad-hoc network does not suffer from
the dead-end problem, which happens in geographic-based routing when a
node is unable to locate a neighbor closer to the destination than itself.

The W-Grid generates, in decentralized manner, virtual coordinates for
each network device which reflect its local connectivity with other devices
and uses this information to support message routing. These virtual coordi-
nates also delineate the data space partition for which a device is assigned
management responsibility, meaning that it is possible to distribute across
the W-Grid network any kind of data. In order to proof this feature we will

2



CHAPTER 1. INTRODUCTION 3

give a short description of a location service. Basically W-Grid [21] [17] is
a binary tree index cross-layering both routing and data management fea-
tures, in that (1) it allows efficient message routing and, at the same time,
(2) the virtual coordinates determine a data indexing space partition for the
management of multi-dimensional data. Each node has one or more virtual
coordinates on which the order relation is defined and through which the
routing occurs, and each virtual coordinate represents a portion of the data
indexing space for which a device is assigned the management responsibil-
ity. Differently from algorithms based on geographic routing (see Chapter 2),
W-Grid routing is not affected by dead-ends. To proof the routing and multi-
dimensional data management features we will give a short description of a
location service in which finding the location of a specific device reduces to
a query over a distributed database.

W-Grid can also simply act as the routing network layer upon which
existing indexing structures can be applied. For instance we think about the
ones that were developed in the past for centralized environments (e.g. [7]
and [26], see [5] for an extensive survey) and which have been extended in
the last years to work in distributed environments, especially in wired overlay
peer-to-peer networks [30] [33] [32] on top of TCP/IP layer of well-organized
physical networks.

The multi-dimensional data management capability will be described
showing, as an example, how the location service reduces to a simple query,
like for any other data type. Extensive performance analysis and experiments
have been conducted and the results compared to GPSR, which is consid-
ered the most efficient routing solution not using broadcast operations. Our
approach shows significant performance gains.

We consider W-Grid to be used in wireless ad-hoc and sensor networks
where, though nodes are not inherently mobile, each device can also discon-
nect from the network (e.g. failures).

1.1 WR-Grid: Data replication in W-Grid

Since large-scale sensor networks would be expected to serve a substantial
number of queries simultaneously for several applications (e.g. humidity,
temperature, light etc. for weather monitoring application; temperature,
light, presence of chemicals etc. for precision agriculture application and so
on.), it has been proven that multi-dimensional data indexing structure can
greatly improve query processing efficiency [15]. Data indexing can efficiently
work if there is an underlying level of the network performing physical routing
without propagating each message to the entire network. The routing service

3



4 CHAPTER 1. INTRODUCTION

could exploit Global Positioning System (GPS), however, due to its high cost,
huge power consumption and unavailability in some environments, GPS is
not always a good solution for sensor networks. In fact, in environments
where the satellite signal can be obstructed or in indoor environments, the
GPS device is unable to provide localization and, consequently, the routing.
WR-Grid extends the infrastructure developed in [19] with data replication.
The infrastructure allows multi-dimensional data management and routing,
and it is based on the generation and indexing of virtual coordinates. The
replication strategy offers improvements and new features with respect to
the preceding solution. As will be illustrated in the experimental results
the replication reduces the average number of hops in the network up to
50%, improving significantly both the energy consumption and the workload
balancing among sensors.

1.2 W*-Grid: W-Grid for Sensor networks

Recent improvements in the memory and computational power of sensors,
together with the reduction of energy consumptions, are moving researches
towards the development of data-centric sensor networks. In this kind of
networks nodes are smart enough either to store some data and to perform
basic processing allowing the network itself to supply higher level information
closer to the network user expectations. In other words, sensors no longer
transmit each elementary data sensed, rather they cooperate in order to
assemble them in more complex and synthetic information, which will be
locally stored and transmitted according to queries and/or events defined by
users and external applications.

Energy saving in wireless sensor networks is essential due to limitations in
battery lifetime in both MAC and network layers; the routing protocol should
avoid complex evaluations of possible paths and should require a minimal
knowledge of the network organization. The W-Grid [19] [18] routing scheme
satisfies both previously described requirements, in fact its routing protocol
needs information about only one-hop away devices and the choice of the
next hop requires a bit-a-bit comparison of simple binary strings. In order to
improve sensors’ failure robustness we implemented W*-Grid. In W*-Grid,
whenever a sensor or a link crash or turns off, neighbor sensors are able to
recover [19] the network failure without any broadcasting. In this way the
network is able to tolerate an arbitrary number of single disconnections.

The solution allows network recovery without ever broadcasting/flooding
messages, just because, in principle, it is very expensive and difficult to
control. The approach is based on a novel decentralized technique for the

4



CHAPTER 1. INTRODUCTION 5

assignment of virtual coordinates to nodes that guarantees, by construction,
at least two disjoint paths between each couple of nodes, namely two walks
without a common node. This innovation drastically reduces the network
traffic, while guaranteeing robustness and efficiency. Of course when the
network is partitioned or when two subnetworks are just connected thanks
to a single link, it is physically impossible to guarantee two disjoint paths
between any couple of nodes.

5
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Chapter 2

Related Works

An important and essential issue for wireless ad hoc networks is routing pro-
tocol design that is a major technical challenge due to the dynamism of the
network. Routing is a fundamental issue for any networks. A lot of routing al-
gorithms have been proposed for wired networks and some of them have been
widely used. Dynamic routing approaches are prevalent in wired networks.
Distance Vector routing [34] and Link State routing [34] are two of the most
popular dynamic routing algorithms used in wired networks. In Distance
Vector routing, every router maintains a routing table (i.e. vector), in which
it stores the distance information to all reachable destinations. A router
exchanges distance information with its neighbors periodically to update its
routing table. Routing Information Protocol (RIP) [9] is based on Distance
Vector Routing. In Link State routing algorithm, each node periodically no-
tifies its current status of links to all routers in the network. Whenever a link
state change occurs, the respective notifications will be flooded throughout
the whole network and all routers must re-compute their routes according to
the new topology information. In this way, a router gets to know at least
a partial picture of the whole network. While in wired networks, Distance
Vector and Link State routing algorithms perform well, however, the dynam-
icity of ad hoc networks affect their functionality. In mobile ad hoc networks,
when using a Distance Vector routing or Link State based routing protocol
designed for wired networks, frequent topology changes will greatly increase
the control overhead. Without remedy, the overhead may overuse scarce
bandwidth of mobile ad hoc networks.

7



8 CHAPTER 2. RELATED WORKS

2.1 Routing protocols

One of the most popular method to distinguish wireless ad hoc network rout-
ing protocols is based on how routing information is acquired and maintained
by nodes. Thus, routing protocol for ad-hoc networks are typically subdi-
vided into two main categories: Table-driven (also known as proactive) and
On-Demand (or Reactive).

2.1.1 Table-driven Routing Protocol

In a proactive routing protocol nodes participating in the Table-driven net-
work continuously evaluate routes to all reachable nodes so that a source
node can get a routing path immediately if it needs one. In these routing
protocols nodes need to maintain a consistent view of the network topology
and whenever the network topology changes, updates must be propagated
to notify the change. Most proactive routing protocols for ad hoc networks
inherit properties of wired networks ones but, in order to adapt to the dy-
namic features of wireless ad hoc networks some modifications have been
made. Since in these routing algorithms, wireless nodes proactively update
network state and maintain a route regardless of whether data traffic exists
or not, the overhead to maintain up-to-date network topology information is
high. Examples of proactive routing protocols are the Destination Sequence
Distance Vector (DSDV) [27] and the Wireless Routing Protocol (WRP) [24].

The Destination Sequence Distance Vector (DSDV) routing pro-
tocol. The Destination Sequence Distance Vector (DSDV) [27] is a proactive
unicast wireless ad hoc network routing protocol. Like WRP, DSDV is also
based on the traditional Bellman-Ford algorithm. However, their mecha-
nisms to improve routing performance in wireless ad hoc networks are quite
different. In routing tables of DSDV, an entry stores the next hop towards
a destination, the cost metric for the routing path to the destination and a
destination sequence number that is created by the destination. Sequence
numbers are used in DSDV to distinguish stale routes from fresh ones and
avoid formation of route loops. The route updates of DSDV can be either
time-driven or event-driven. Every node periodically transmits updates in-
cluding its routing information to its immediate neighbors. While a signif-
icant change occurs from the last update, a node can transmit its changed
routing table in an event-triggered style.

The Wireless Routing Protocol (WRP). The Wireless Routing Pro-
tocol [24] is a proactive unicast routing protocol for wireless ad hoc networks.
WRP uses improved Bellman-Ford Distance Vector routing algorithm. To
adapt to the dynamic features of wireless ad hoc networks, some mecha-

8



CHAPTER 2. RELATED WORKS 9

nisms are introduced to ensure the reliable exchange of update messages and
reduces route loops. Using WRP, each node maintains a distance table, a
routing table, a link-cost table and a Message Retransmission List (MRL).
An entry in the routing table contains the distance to a destination node,
the predecessor and the successor along the paths to the destination, and a
tag to identify its state, i.e., is it a simple path, a loop or invalid. Storing
predecessor and successor in the routing table helps to detect routing loops
and avoid counting-to-infinity problem, which is the main shortcoming of the
original distance vector routing algorithm. A node creates an entry for each
neighbor in its link-cost table. The entry contains cost of the link connecting
to the neighbor, and the number of timeouts since an error-free message was
received from that neighbor. In WRP, nodes exchange routing tables with
their neighbors using update messages. The update messages can be sent
either periodically or whenever link state changes happen. On receiving an
update message, the node modifies its distance table and looks for better
routing paths according to the updated information. In WRP, a node checks
the consistency of its neighbors after detecting any link change. A consistency
check helps to eliminate loops and speed up convergence. One shortcoming
of WRP is that it needs large memory storage and computing resource to
maintain several tables. Moreover, as a proactive routing protocol, it has a
limited scalability and is not suitable for large ad hoc networks.

2.1.2 Reactive routing protocols

Reactive routing protocols for wireless ad hoc networks are also called ”on-
demand” routing protocols. In a reactive routing protocol, routing paths are
searched only when needed. A route discovery operation invokes a route-
determination procedure. The discovery procedure terminates either when
a route has been found or no route available after examination for all route
permutations. In a wireless ad hoc network, active routes may be discon-
nected, therefore, route maintenance is an important operation. Compared
to the proactive routing protocols for ad hoc networks, less control over-
head is a distinct advantage of the reactive routing protocols. Thus, reactive
routing protocols have better scalability than proactive routing protocols in
wireless ad hoc networks. However, when using reactive routing protocols,
source nodes may suffer from long delays for route searching before they can
forward data packets. The Dynamic Source Routing (DSR) [12] and Ad hoc
On-demand Distance Vector routing (AODV) [28] are examples for reactive
routing protocols for ad hoc networks.

The Dynamic Source Routing (DSR) Protocol. The Dynamic
Source Routing (DSR) [12] is a reactive unicast routing protocol that utilizes

9



10 CHAPTER 2. RELATED WORKS

source routing algorithm. In source routing algorithm, each data packet con-
tains complete routing information to reach its dissemination. Additionally,
in DSR each node uses caching technology to maintain route information
that it has learnt. There are two major phases in DSR, the route discovery
phase and the route maintenance phase. When a source node wants to send a
packet, it firstly consults its route cache. If the required route is available, the
source node includes the routing information inside the data packet before
sending it. Otherwise, the source node initiates a route discovery opera-
tion by broadcasting route request packets. A route request packet contains
addresses of both the source and the destination and a unique number to
identify the request. Receiving a route request packet, a node checks its
route cache. If the node does not have routing information for the requested
destination, it appends its own address to the route record field of the route
request packet. Then, the request packet is forwarded to its neighbors. To
limit the communication overhead of route request packets, a node processes
route request packets that both it has not seen before and its address is not
presented in the route record field. If the route request packet reaches the des-
tination or an intermediate node has routing information to the destination,
a route reply packet is generated. When the route reply packet is generated
by the destination, it comprises addresses of nodes that have been traversed
by the route request packet. Otherwise, the route reply packet comprises
the addresses of nodes the route request packet has traversed concatenated
with the route in the intermediate nodes route cache. After being created,
either by the destination or an intermediate node, a route reply packet needs
a route back to the source. There are three possibilities to get a backward
route. The first one is that the node already has a route to the source. The
second possibility is that the network has symmetric (bi-directional) links.
The route reply packet is sent using the collected routing information in the
route record field, but in a reverse order as shown in Figure 1. In the last
case, there exists asymmetric (uni-directional) links and a new route discov-
ery procedure is initiated to the source. The discovered route is piggybacked
in the route request packet. In DSR, when the data link layer detects a link
disconnection, a ROUTE ERROR packet is sent backward to the source. Af-
ter receiving the ROUTE ERROR packet, the source node initiates another
route discovery operation. Additionally, all routes containing the broken link
should be removed from the route caches of the immediate nodes when the
ROUTE ERROR packet is transmitted to the source. DSR has increased
traffic overhead by containing complete routing information into each data
packet, which degrades its routing performance.

The Ad Hoc On-demand Distance Vector Routing (AODV) pro-
tocol. The Ad Hoc On-demand Distance Vector Routing (AODV) proto-

10
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col [28] is a reactive unicast routing protocol for ad hoc networks. As a
reactive routing protocol, AODV only needs to maintain the routing infor-
mation about the active paths. In AODV, routing information is maintained
in routing tables at nodes. Every node keeps a next-hop routing table, which
contains the destinations to which it currently has a route. A routing ta-
ble entry expires if it has not been used or reactivated for a pre-specified
expiration time. Moreover, AODV adopts the destination sequence number
technique used by DSDV in an on-demand way. In AODV, when a source
node wants to send packets to the destination but no route is available, it
initiates a route discovery operation. In the route discovery operation, the
source broadcasts route request (RREQ) packets. A RREQ includes ad-
dresses of the source and the destination, the broadcast ID, which is used
as its identifier, the last seen sequence number of the destination as well
as the source nodes sequence number. Sequence numbers are important to
ensure loop-free and up-to-date routes. To reduce the flooding overhead, a
node discards RREQs that it has seen before and the expanding ring search
algorithm is used in route discovery operation. The RREQ starts with a
small TTL (Time-To-Live) value. If the destination is not found, the TTL
is increased in following RREQs.

2.1.3 Hybrid routing protocols

Hybrid routing protocols are proposed to combine the merits of both proac-
tive and reactive routing protocols and overcome their shortcomings. Nor-
mally, hybrid routing protocols for wireless ad hoc networks exploit hierar-
chical network architectures. Proper proactive routing approach and reactive
routing approach are exploited in different hierarchical levels, respectively.
An example of hybrid routing protocols for wireless ad hoc networks is the
Zone Routing Protocol (ZRP).

The Zone Routing Protocol (ZRP). The Zone Routing Protocol
(ZRP) [8] is a hybrid routing protocol for ad hoc networks. The hybrid
protocols are proposed to reduce the control overhead of proactive routing
approaches and decrease the latency caused by route search operations in re-
active routing approaches. In ZRP, the network is divided into routing zones
according to distances between nodes. Given a hop distance d and a node N ,
all nodes within hop distance at most d from N belong to the routing zone of
N . Peripheral nodes of N are Ns neighboring nodes in its routing zone which
are exactly d hops away from N . In ZRP, different routing approaches are
exploited for inter-zone and intra-zone packets. The proactive routing ap-
proach, i.e., the Intra-zone Routing protocol (IARP), is used inside routing
zones and the reactive Inter-zone Routing Protocol (IERP) is used between
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routing zones, respectively. The IARP maintains link state information for
nodes within specified distance d. Therefore, if the source

2.1.4 Geographic routing protocols

A completely different approach is used by geographic routing protocols such
as [13] [14]. The idea in geographical routing is to use a node’s location as its
address, and to forward packets with the goal of reducing as much as possible
the physical distance to the destination. Geographic routing achieves good
scalability since each node only needs to be aware of neighbors’ position and
because it does not rely on flooding to exploit network topology. However
it suffers of dead end problems, especially under low density environment
or scenarios with obstacles or holes. Problems are caused by the inherent
greedy nature of the algorithm that can lead to situation in which a packet
gets stuck at a local optimal node that appears closer to the destination than
any of its known neighbors. In order to solve this flaw, correction methods
such as perimeter routing, that tries to exploit the well-known right hand
rule, have been implemented. However, some packet losses still remain and
furthermore using perimeter routing causes loss of efficiency both in terms
of average path length and of energy consumption. Another limitation of
geographic routing is that it needs nodes to know their physical position.
Usually authors assume that they embed GPS but it must be said that GPS
receivers are expensive and energy inefficient compared to the devices that
could participate in ad-hoc networks. Besides, GPS reception might be easily
obstructed by climatic conditions or obstacles and doesn’t work indoor.

Recently, virtual coordinates were proposed to exploit the advantages of
geographic routing in absence of location information [29] [23] [2]. The mo-
tivation is that in many applications it is not necessary to know the exact
coordinates but is often sufficient to have virtual coordinates that approx-
imate real ones. Unfortunately virtual coordinate systems suffer the same
dead end problem of standard geographic routing. W-Grid employs virtual
coordinates like these last algorithms but it is based on a different approach
which does not approximate real coordinates and eliminates the risk of dead-
ends.

2.2 Network Structure Organization

Another classification method is based on the roles which nodes may have
in a routing scheme. In a uniform routing protocol, all nodes have same
role, importance and functionality. Examples of uniform routing protocols

12
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include Wireless Routing Protocol (WRP), Dynamic Source Routing (DSR),
Ad hoc On-demand Distance Vector routing (AODV) and Destination Se-
quence Distance Vector (DSDV) routing protocol. Uniform routing protocols
normally assume a flat network structure. In a non-uniform routing proto-
col for ad hoc networks, some nodes carry out distinct management and/or
routing functions. Normally, distributed algorithms are exploited to select
those special nodes. In some cases, non-uniform routing approaches are re-
lated to hierarchical network structures to facilitate node organization and
management. Non-uniform routing protocols further can be divided accord-
ing to the organization of nodes and how management and routing functions
are performed. Following these criteria, non-uniform routing protocols for ad
hoc networks are divided into zone based hierarchical routing; cluster-based
hierarchical routing and core-node based routing. In zone based routing pro-
tocols, different zone constructing algorithms are exploited for node organi-
zation, e.g some zone constructing algorithms uses geographical information.
Also zones may overlap or not depending on the constructing method. Ex-
ploiting zone division effectively reduces the overhead for routing information
maintenance. Mobile nodes in the same zone know how to reach each other
with smaller cost compared to maintaining routing information for all nodes
in the whole network. In some zone based routing protocols, specific nodes
act as gateway nodes and carry out inter-zone communication. The Zone
Routing Protocol (ZRP) is a zone based hierarchical routing protocols for
ad hoc networks. A cluster based routing protocol uses specific clustering
algorithm for clusterhead election. Mobile nodes are grouped into clusters
and clusterheads take the responsibility for membership management and
routing functions. Clusterhead Gateway Switch Routing (CGSR) [3] will be
introduced in Section 5 as an example of cluster based wireless ad hoc net-
work routing protocols. Some cluster based ad hoc network routing protocols
potentially support a multi-level cluster structure, such as the Hierarchical
State Routing (HSR) [11]. In core-node based routing protocols for ad hoc
networks, critical nodes are dynamically selected to compose a ”backbone”
for the network. The backbone nodes carry out special functions, such as
routing paths construction and control/data packets propagation.

The Clusterhead Gateway Switch Routing (CGSR). The Clus-
terhead Gateway Switch Routing (CGSR) [3] is a hierarchical routing pro-
tocol. The cluster structure improves performance of the routing protocol
because it provides effective membership and traffic management. Besides
routing information collection, update and distribution, cluster construction
and clusterhead selection algorithms are important components of cluster
based routing protocols. CGSR uses similar proactive routing mechanism as
DSDV. Using CGSR, nodes are aggregated into clusters and a cluster-head

13
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is elected for each cluster. Gateway nodes are responsible for communica-
tion between two or more clusterheads. Nodes maintain a cluster member
table that maps each node to its respective cluster-head. A node broadcasts
its cluster member table periodically. After receiving broadcasts from other
nodes, a node uses the DSDV algorithm to update its cluster member table.
In addition, each node maintains a routing table that determines the next
hop to reach other clusters. In a dynamic network, cluster based schemes
suffer from performance degradation due to the frequent elections of a clus-
terhead. To improve the performance of CGSR, a Least Cluster Change
(LCC) algorithm is proposed. Only when changes of network topology cause
two clusterheads merging into one or a node being out of the coverage of
all current clusters, LCC is initiated to change current state of clusters. In
CGSR, when forwarding a packet, a node firstly checks both its cluster mem-
ber table and routing table and tries to find the nearest clusterhead along
the routing path.

2.3 Data Management

With regard to MAC protocol for wireless sensor networks we can distinguish
existing solutions in two main categories. The first category includes IEEE
802.11 protocol [1] and protocols based on it. The main problem with IEEE
802.11 is that it consumes energy by continuous idle listening. For this
reason proposals such as S-MAC [37] and T-MAC [38] try to reduce different
sources of energy consumption, for instance by limiting overhearing or by
using periodic sleeping and listening (802.11 Power Saving mode) to reduce
idle listening. Another category is represented by TDMA-based protocols,
however, since these protocols require centralized control of nodes, they are
not suitable for the type of networks we want to manage. However, also the
previously described variations of IEEE 802.11 require a certain coordination
among nodes in order to define sleep periods and usually this coordination
is given by a sink node with particular tasks different from the rest of the
network. As a result also this kind of protocols are not applicable. Existing
routing protocols have been developed by following different approaches.

Basically routing is necessary whenever a data sensed (we also say gen-
erated) must be transmitted elsewhere in the network, including an external
machine, proactively or reactively according to periodic tasks or queries sub-
mitted to the network system. As stated before, we do not consider sensor
networks which simply transmit data externally at a remote base station, we
focus on advances wireless sensor networks in which data or events are kept
at sensors, are indexed by attributes and represented as relations in a virtual
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distributed database. For instance in [15, 10, 36], data generated at a node
is assumed to be stored at the same node, and queries are either flooded
throughout the network [10].

In a GHT [31], data is hashed by name to a location within the network,
enabling highly efficient rendezvous. GHTs are built upon the GPSR [13]
protocol and leverage some interesting properties of that protocol, such as the
ability to route to a sensors nearest to a given location, together with some of
its limits, such as the risk of dead ends. Dead end problems, especially under
low density environment or scenarios with obstacles or holes, are caused by
the inherent greedy nature of the algorithm that can lead to situation in
which a packet gets stuck at a local optimal sensors that appears closer to
the destination than any of its known neighbors. In order to solve this flaw,
correction methods such as perimeter routing, that tries to exploit the right
hand rule, have been implemented. However, some packet losses still remain
and furthermore using perimeter routing causes loss of efficiency both in
terms of average path length and of energy consumption. Besides, another
limitation of geographic routing is that it needs sensors to know their physical
position adding localization costs to the system. In DIFS [6], Greenstein et
al. have designed a spatially distributed index to facilitate range searches
over attributes.

Like us, in [15] and [35] authors have built a distributed index for multi-
dimensional range queries of attributes but they require nodes to be aware
of their physical location and of network perimeter; moreover they exploit
GPSR for routing which is subjected to dead-ends and loss of packets. Our
solution also behaves like a distributed index, but its indexing feature is
cross-layered with routing, meaning that no physical position nor any exter-
nal routing protocol is necessary, routing information is given by the index
itself. In [15] and [35] data space partitions follow the physical positions of
nodes, which means that even if data are uniformly distributed in the multi-
dimensional space (ideal condition) the storage load per node is, in general,
unbalanced, because it depends on the physical network topology; this leads
to an unbalanced energy consumption among nodes and consequently to a
rapid network break-up caused by premature turning off of most loaded sen-
sors. In W-Grid the storage load balancing has been achieved thanks to two
key points: (i) the multi-dimensional data space partitions occur according
to the actual data distribution and (ii) each partions has the same maximum
bucket size. Besides, data partitions in [15] and [35] are disjoint, while in
W-Grid they are nested.

As in peernet [4] our virtual coordinates are binary strings, however, our
coordinate generation method does not need to define a priori a coordinate
length. This means that in W-Grid it is always possible to assign new coor-
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dinates when new nodes join the network. Besides, we do not impose only
one coordinate per node because this increases both the risk of unbalanced
networks and the average number of hops. Finally peernet is not designed
to manage, index and querying distributed multi-dimensional data.
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Chapter 3

W-Grid

The main idea is to map nodes on a binary tree so that the resulting coor-
dinate space reflects the underlying connectivity among them. Basically we
aim to set parent-child relationships to the nodes which can sense each other,
in this way we are always able to route messages, in the worst cases simply
following the paths indicated by the tree structure. Using virtual coordinates
that do not try to approximate node’s geographic position we eliminate any
risk of dead-ends.

We consider the case of nodes equipped with a wireless device. Each one
is, at the same time, client of the network (e.g. sending messages, request
services), responsible for managing others nodes communications (e.g. rout-
ing and forwarding messages) and supplier of information and services. For
this reason from now on we will refer to them as nodes, sensors or peers
indistinctly.

Basically W-Grid can be viewed as a binary tree index cross-layering both
routing and data management features in that, (1) by implicitly generating
coordinates and relations among nodes allows efficient message routing and,
at the same time, (2) the coordinates determine a data indexing space par-
tition for the management of multi-dimensional data. Each node has one or
more virtual coordinates on which the order relation is defined and through
which the routing occurs, and at the same time each virtual coordinate rep-
resents a portion of the data indexing space for which a device is assigned
the management responsibility. W-Grid virtual coordinates are generated
on a one-dimensional space and the devices do not need to have knowledge
of their physical location. Thus, differently from algorithms based on geo-
graphic routing (see chapter 2), W-Grid routing is not affected by dead-ends.
Since in sensor networks the most important operations are data gathering
and querying it is necessary to guarantee the best efficiency during these
tasks.
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In the next sections we will introduce a formal description of the main
W-Grid features.

3.1 Virtual Coordinates Generation

When a node, let us say n turns on for the first time, it starts a wireless
channel scan (beaconing) searching for any existing W-Grid network to join
(namely any neighbor device that already holds W-Grid virtual coordinates).
If none W-Grid network is discovered, n creates a brand new virtual space
coordinate and elects itself as root by getting the virtual coordinate ” ∗ ”1.
On the contrary, if beaconing returns one or more devices which hold already
a W-Grid coordinate, n will join the existing network by getting a virtual
coordinate.

Coordinate Setup. Whenever a node needs a new W-Grid coordinate,
an existing one must be split. The term ”split” may seem misleading at the
moment, but its meaning will become straightforward clear in Section 3.6.
A new coordinate is given by an already participating node ng, and we say
that its coordinate c is split by concatenating a 0 or a 1 to it. The result
of a split to c will be c′ = c + 1 and c′′ = c + 0. Then, one of the new
coordinates is assigned to the joining node, while the other one is kept by
the giving node. No more splits can be performed on the original coordinate
c since this would generate duplicates. In order to guarantee coordinates’
univocity even in case of simultaneous requests, each asking node must be
acknowledged by the giving one ng. Thus, if two nodes ask for the same
coordinate to split, only one request will succeed, while the other one will be
canceled.

Coordinate Selection. At coordinate setup, if there are more neigh-
bors which already participate the W-Grid network, the joining sensor must
choose one of them from which to take a coordinate. The selection strategy
we adopt is to choose the shortest coordinate2 in terms of number of bits. If
two or more strings have the same length the sensor randomly chooses one
of them. Experiments have shown that this policy of coordinate selection
reduces as much as possible the average coordinates length in the system.

In Figure 3.1 there is a small example of a W-Grid network. In the tree
structure, parent-child relationships can be set only by nodes that are capable
of bi-directional direct communication. This property is called integrity of
coordinates and it is crucial for the network efficiency:

1It is conventional to label ” ∗ ” the root node
2among the ones that still can be split, see Coordinate Setup
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Figure 3.1: Physical (a) and logical (b) network. Empty circles represent
split coordinates, full black circles are coordinates that can still be split.

Definition 1 Let c be a coordinate at node n that has been split into c′

and c′′. Then we say that c is integral if c′ or c′′ is held by a node n′ ∈
NEIGH(n), where NEIGH(n) is the set of its neighbors.

If each coordinate satisfies this constraint, it will be possible to route
any message, at least by following the paths indicated by the tree structure,
without dead-ends.

3.2 Assigning Multiple Coordinates to Peers

Nodes progressively get new coordinates from their physical neighbors in
order to establish parentships with them. The number of coordinates at nodes
may vary, in W-Grid that measure is always used as a parameter. The policies
for coordinates may be: (1) a fixed number of coordinates per node (e.g. a
given k) or (2) one coordinate per physical neighbor. Extensive experiments
have showed that assigning different coordinates per node improves routing
efficiency, in fact having more than one coordinate means that a node is
placed in different positions of the tree structure and this has two positive
effects on the system.

Firstly, the probability that two nodes physically close have very different
virtual coordinates, which may happen when a multi-dimensional space (in
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Figure 3.2: A small example of a network with W-Grid coordinates and
routing of a message (from node n17 to node n13).

which nodes are spread) is mapped into a mono-dimensional space, is highly
reduced. Besides, this implies that for each couple of nodes there will be sev-
eral different paths that allow packet routing, improving network robustness
against unexpected failures of nodes. During the coordinate setup, if the
number of neighbors holding virtual coordinates is more than one, let us say
k, nj must choose one node among n1, .., nk and ask for a coordinate. The
selection strategy we adopt is to choose the shortest coordinate (in terms of
number of bits). If two or more strings have the same lengths the nodes will
choose the one that is more distant from all the other candidates. The choice
of the shortest possible c aims to reduce as much as possible the length of
the coordinates in the system.

In W-Grid we map a multi-dimensional space in a one dimension space.
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Whenever the number of dimensions of a space is reduced, some points of
the space lose proximity. Since W-Grid virtual coordinates space is one-
dimensional, while nodes are spread on a two-dimensional space (for simplic-
ity consider nodes to at the same height), it means that two nodes physically
close in the real space can be far away in the virtual space (e.g. they have
very different virtual coordinates). As routing is performed through virtual
coordinates surely it will lose efficiency whenever these situations occurs. We
came to the conclusion that it is possible to widely reduce inefficiencies be
assigning more different coordinates to each node. In fact, having more than
one coordinate means that a node is placed in different positions of the tree
structure and reduces the probability that two nodes physically close are very
distant according to the order relation.

In Figure 3.2 each node is assigned a number of virtual coordinates equal
to the number of their neighbors. Simulations returned that this coordinates
generation policy ensures the best results in terms of combination between
network efficiency and quantity of information stored at nodes. In fact there
is a trade-off between these two measures since a higher number of coordi-
nates per node translates into best routing performances but also implies
larger routing tables and needs more storage capability at nodes.

In order to improve readability of the figure, for each node are shown
only the coordinates that have not been split. The only exceptions are the
coordinates interested by routing from node n17 to node n13. This in useful
to understand that split coordinates are stored at nodes and are used for
routing. For instance node n1, the root of the coordinate space, holds also
coordinates ∗, ∗0 and ∗00; namely through multiple splits of root coordinate
∗ we obtained ∗001.

3.3 Formal Model

The sensor network is represented as a graph S:

S = (D, L)

in which D is the set of participating devices and L is the set of physical
connectivity between couples of devices:

L = {(di, dj) : two − way connection between di and dj}

Each device is assigned one or more (virtual) coordinate(s). We define C
as the set of existing coordinates. Each coordinate ci is represented as a
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string of bits starting with ⋆. According to the regular expression formalism
coordinates are defined as follows:

C = {c : c = ⋆(0 | 1)∗}

E.g. ⋆01001 is a valid W-Grid coordinate. Given a coordinate ci and a bit b
their concatenation will be indicated as cib. E.g. considering ci = ⋆0100, b =
0 then cib = ⋆01000. Given a bit b its complementary b is defined. E.g 1 = 0.

Some functions are defined on C:

length(c) : C → N (3.1)

Given a coordinate c, length(c) returns the number of bits in c. (⋆ excluded).
E.g. length(⋆01001) = 5.

bit(c, k) : (C,N− {0}) → {0, 1} (3.2)

Given a coordinate c and a positive integer k ≤ length(c), bit(c, k) returns
the k-th bit of c. Position 0 is out of the domain since it is occupied by ⋆.

pref(c, k) : (C,N) → C (3.3)

Given a coordinate c and a positive integer k ≤ length(c), pref(c, k) returns
the first k bits of c. E.g. pref(⋆01001, 3) = ⋆010. We define the complemen-
tary(buddy) of a coordinate c as:

c = pref(c, length(c) − 1)bit(c, length(c)) (3.4)

E.g. ⋆01001) = ⋆01000.

father(c) : (C − {⋆}) → C

father(c) = pref(c, length(c) − 1) (3.5)

lChild(c), rChild(c) : (C) → C

lChild(c) = c0 (3.6)

rChild(c) = c1 (3.7)

E.g. Given a coordinate ci = ⋆011, father(⋆011) = ⋆01, rChild(⋆011) =
⋆0111, lChild(⋆011) = ⋆0110.

A function M maps each coordinate c to the device holding it:

M : C → D

22



CHAPTER 3. W-GRID 23

A W-Grid network is represented as a graph:

W = (C, P )

P is the set of parentships between coordinates.

P = {(ci, cj) : cj = ci(0 | 1)}

E.g. pi = (⋆010, ⋆0101). We define the complementary(buddy) of a par-
entship p = (ci, cj) as:

p = (ci, cj) (3.8)

E.g. p = (⋆010, ⋆0101), p = (⋆010, ⋆0100). A graph W is a valid W-Grid
network if all the following properties are satisfied:

1. ∀p = (ci, cj) ∈ P, (M(ci) = M(cj)) ∨ ((M(ci), M(cj)) ∈ L)

2. ∀p = (ci, cj) ∈ P : M(ci) 6= M(cj) ⇒ ∃ p = (ci, cj) ∈ P : M(ci) =
M(cj)

3.4 W-Grid dynamic rules

W-Grid network is generated according to this few simple rules:
1. The first node that joins the networks (that initiate a coordinate space)
gets the coordinate ⋆. A node that holds a W-Grid coordinate is marked as
active. A function last is defined:

last(d) : (D) → C

which returns the last coordinate received by d. If d is not active the
function returns {∅}. After the first node, let us say n1, has joined the
network, last(n1) = ⋆.
2. ∀ l = (di, dj) ∈ L : last(di) 6= {∅} two parentships are generated:

• p = (last(di), c
′): M(c′) = dj

• p

Where c′ = lChild(last(di)) | rChild(last(di)). Namely c′ corresponds to the
non-deterministic choice of one of the children of c.

Nodes progressively get new coordinates from their physical neighbors in
order to establish parentships with them. The number of coordinates at nodes
may vary, in W-Grid that measure is always used as a parameter. The policies
for coordinates may be: (1) a fixed number of coordinates per node (e.g. a
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given k) or (2) one coordinate per physical neighbor. Coordinates getting is
also called ”split”. The actors of the split procedure are an asking node and
a giving node. A coordinate ci is split by concatenating a bit to it and then,
one of the new coordinates is assigned to the joining node, while the other
one is kept by the giving node. Obviously, an already split coordinate ci can
not be split anymore since this would generate duplicates. Besides, in order
to guarantee coordinates’ univocity even in case of simultaneous requests,
each asking node must be acknowledged by the giving node. Thus, if two
nodes ask for the same coordinate to split, only one request will succeed,
while the other one will be temporarily rejected and postponed. Coordinate
discovering is gradually performed by implicit overhearing of neighbor sensors
transmissions.

3.5 Routing algorithm

W-Grid maps nodes on an indexing binary tree T in order to build a totally
ordered set over them. Each node of the tree is assigned a W-Grid virtual
coordinate (c) which is represented by a binary string and has a value v(c):

∀ c ∈ T, v(c) ∈ C

where C is a totally ordered set since:

∀ c1, c2 ∈ T : c2 ∈ l(c1) → v(c2) < v(c1)

∀ c1, c2 ∈ T : c2 ∈ r(c1) → v(c2) > v(c1)

where r(c) and l(c) represents the right sub-tree and the left sub-tree of a
coordinate c ∈ T respectively. And:

∀ c1, c2 ∈ T : F (c1, c2) = 0 → v(c1) < v(c2)

∀ c1, c2 ∈ T : F (c1, c2) = 1 → v(c1) > v(c2)

where F (c1, c2) is a function that returns the bit of coordinate c1 at position
i + 1 where i corresponds to the length of the common prefix between c1

and c2. For instance given two coordinates c1 = 110100 and c2 = 1110,
F (c1, c2) = 03 therefore c2 > c1.

As we stated before, the coordinate creation algorithm of W-Grid gener-
ates an order among the nodes and its structure is represented by a binary
tree. The main benefit of such organization is that messages can always be

3While F (c2, c1) = 1, therefore F (c1, c2) = F (c2, c1)
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delivered to any destination coordinate, in the worst case by traveling across
the network by following parent-child relationship. The routing of a message
is based on the concept of distance among coordinates. The distance between
two coordinates c1 and c2 is measured in logical hops and correspond to the
sum of the number of bits of c1 and c2 which are not part of their common
prefix. For instance:

d(*0011, *011) = 5

Obviously it may happen that physical hops distance is less then the
logical.

Given a message and a target binary string ct each node ni forwards it
to the neighbor that present the shortest distance to ct. It is important
to notice that each node needs neither global nor partial knowledge about
network topology to route messages, its routing table is limited to information
about its direct neighbors’ coordinates. This means scalability with respect
to network size.

W-Grid metric has a very interesting feature. Given a virtual coordinate
c and a distance d, there are several ci ∈ C which are distant d from c. For
instance, given ∗0011 and distance 3:

d(∗0011, ∗0) = 3
d(∗0011, ∗000) = 3

d(∗0011, ∗00100) = 3
etc.

In general given a coordinate c of length l, the number of coordinates
whose distance from c is d is given by:

max(1,l−1)∑

α=max(1,l−d)

2∆−1 where ∆ = d − (l − α) (3.9)

From (3.9) we can say that for each coordinate and distance there exist
a set of coordinates at that distance that we call c(d) (distance set). Thus,
at each hop during the routing, a node s distant d from the destination has
at least one neighbor that improves by one the distance (in logical hops)
from the destination4. However, it is also possible that other neighbors of s
belong to c(d − 1). This means a certain robustness to nodes failures and
also the possibility of adopting specific and changeable policies for routing
(for instance by forwarding to the node with most battery power left, in case
of more nodes with the same distance from the target).

4Effects of the integrity of the coordinates
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Figure 3.3: Correspondence between coordinates and data space partitions

3.6 Data Management in W-Grid

W-Grid organizes peers in a tree structure and distributes data (tuple or
records with any kind of information) among them by hashing the values of
the record attributes into binary strings and storing them at peers whose W-
Grid coordinates match the strings. Since W-Grid ci are binary strings, we
can see from Figure 3.3 that they correspond to leaf nodes of a binary tree.
Therefore a W-Grid network acts directly as a distributed database. This
means that each coordinate represent a portion (i.e. region) of the global
data space as depicted in Figure 3.3. Regions are generated according to
data distribution and the use of a bucket size for each data region, together
with a load balancing algorithm, allow to balance nodes storage load [19].

Obviously coordinates that have been split (the empty circles in Fig-
ures 3.1 and 3.3) cannot contain any data.

Let us describe a brief example of an environment monitoring application
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in which sensors survey temperature (T ) and pressure (P ), to which we refer
as d1 and d2. Each event is inserted in the distributed database implicitly
generated by W-Grid, reporting for instance date and time of occurrence.
Without loss of generality we can define a domain for T and P let us say
Dom(d1) = [−40, 60] and Dom(d2) = [700, 1100]. We present two examples:
(i) an exact-match and (ii) a range query submitted to the network.

(i) Return the times at which sensors surveyed a temperature of 26 Celsius
degrees and a pressure of 1013mbar. The linearization [22, 25] the two-
dimensional data values results in a binary string which indicates the path to
be followed in the network to get to the sensor storing the data. Then, any
sensor can be taken as starting point for the query to get to the destination.
In this case the result of the linearization is5:

ct = ∗11011000

As described in [22, 25] the length of the destination string can be adjusted,
without affecting the hops that were previously covered, during the routing
if we find that sensors with longest string exist.

(ii) Return the times at which sensors surveyed a temperature ranging
from 26 to 30 Celsius degrees and pressure ranging from 1013 to 1025mbar.
After calculating the correspondent binary string for the four corners of the
range query, namely:

(26,1013) (26,1025) (30,1013) (30,1025)
c1 = *11011000 c2 = *11011001
c3 = *11011010 c4 = *11011011

all we have to do is querying sensors whose coordinates have ∗110110 as
prefix.

One of the most important features that a distributed database must
satisfy is a balanced storage load among the different nodes, especially in
case of not uniform distributions of data. In fact, if the managed information
do not distribute uniformly in the domain space it can happen that virtual
coordinates store different number of data. Therefore nodes that manage
more data will likely receive a higher number of queries than the others
causing bottlenecks and loss of efficiency for the entire network. Due to the
coordinates integrity constraint, related coordinates must belong to nodes
that can directly contact each other. This means that each node can split

5By standardizing 26 and 1013 to their domains we get 0,76 and 0,78 respectively.
We multiply both of them by 24 to get a string of length 8. The binary conversion of
the multiplications are 1010 and 1100 respectively. Then, by crossing bit by bit the two
string we get *11011000.
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coordinates only a limited number of times, also according to which kind
of coordinate creation policy is adopted. However, it is easy to understand
that nodes managing shorter coordinates (likely the first nodes joining the
network) will split about the same times of any other nodes but with the
difference that their initial region are much bigger than the ones of other
nodes. It is easy to infer that this translates into a very unbalanced storage
load situation.

In order to improve the data distribution balance we implemented the
Storage Load Balancing (SLOB) Algorithm that will be described in sec-
tion 3.7. Then in section 3.7.1 we will show its effects on a real problem,
namely the definition of a location service that provides information about
the position, yet in terms of W-Grid virtual coordinates, of any participant.
Basically, the location service is a usual exact match query on distributed
data where there is a correspondence between data and nodes location.

3.7 Storage Load Balancing in W-Grid

To address the load balancing problem, existing in most of data structures
that manage multi-dimensional data, we incorporate the concept of bucket
size b namely the maximum number of data that a region (i.e. a coordinate)
can manage. The value for b can be the same for each peer or, in environ-
ments where devices have different characteristics, it can be proportional for
instance to the storage and/or communication bandwidth capabilities.

Whenever a node receives a new data it checks wether the space repre-
sented by the coordinate that must store the data is full or not. In case it is
full the coordinate is split, but, differently from what it happens when a new
node joins the network, in this case both the resulting subspaces are stored
at the peer.

The bucket size guarantees that each coordinate contains at most the
same quantity of information. However, this trick does not balance the stor-
age load on its own. In fact, peers holding spaces with a higher number of
data will split more frequently that the others. The result will be that those
peers will manage more coordinates if we do not find a way for them to give
away the ones in excess, which is exactly the goal of Storage Load Balancing
Algorithm (SLOB). On periodic beaconing each peer evaluates the average
storage load and the correspondent Root Mean Square Error (avgNeighLoad
and neighLoadRMSE in algorithm 1) of its neighbors. The storage load of a
node is meant as the number of coordinates held excluding split coordinates
(not considered since there can be no data in them).

The purpose of this evaluation is discovering local unbalanced situations
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Algorithm 1 Storage LOad Balancing Algorithm

MyLoad ⇐ storage load at peer
scan neighbors and return avgNeighLoad, neighLoadRMSE and
mostLoadedNeighbor
if
(avgNeighLoad−MyLoad) > avgThreshold OR (avgNeighLoad > Load
& RMSE > RMSEThreshold) then

get one c from mostLoadedNeighbor
end if

and moving a small step towards better balancing. In practice, a peer pi

compares its own load with the average, if the load is lower and the difference
between the two measures is higher than a certain threshold (avgThreshold in
algorithm 1) pi takes one coordinate from the neighbor that has the highest
storage load. A coordinate is taken anyway if the load is the same as the
average but the RMSE is higher than a given threshold (RMSEThreshold
in algorithm 1). The algorithm is as much simple as it is powerful since
adding a local rule is able to create a global behavior that makes converge
the network storage load toward a balanced situation.

3.7.1 Location service

Supposing that each peer ni that composes the network is univocally identi-
fied by a public IDi (such as the e-mail address, the MAC Address or any
other unique ID) we can think about inserting in the distributed database,
implicitly defined by W-Grid, information about peers location (W-Grid co-
ordinates) using as key (both for insertion and search) the peers IDs. In this
way, a node (ns) that need to communicate with another node (nr) simply
searches the network for the IDr and will discover where nr can be found.
After this, ns will be able to send a message to the recipient simply using
the W-Grid routing algorithm.

In order to show W-Grid capability of managing multi-dimensional data
we will define the node ID as a pair (prefix,number) where Domprefix =
[0, 9999] and Domnumber = [0, 9999999]. We use a hashing function (please
refer to [20] and [25] for details) to translate IDs into a binary string of
arbitrary length.

For instance, if ns needs to contact the peer nr identified by IDd =
(7601, 452789623) it can find6:

6By standardizing 7601 and 452789623 to their domains we get 0,76 and 0,45 respec-
tively. We multiply both of them by 24 to get a string of length 8. The binary conversion
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cd = ∗10011100

1. The IDi is scaled into the interval [0, 1[.

S(IDi) = 452789623/1000000000 = 0, 452789623

2. The scaled value is multiplied for 2l. l corresponds to the desired
virtual coordinate length, let us suppose a value of 6 for it

0, 452789623 ∗ 26 = 28, 9785

3. The integer part of the calculated value is converted into bi-
nary.

28 = 11100

4. The resulting string may need to be extended. If the length of
the string if less than the desired one zeroes are appended on the top
of it plus the char ”*” which starts every coordinate

*011100

∗10011100 corresponds to the virtual coordinate holding nd location infor-
mation, however it is not guaranteed that coordinate actually exists in the
network. In fact, we estimated a length of 8 bits but, since we work in a
distributed environment, we are not able to predict the exact depth of the
tree structure. Thus the computed string may need to be extended or it can
happen that we must stop at a parent portion when traveling towards it.
However, it is not really important which length l is chosen by the sender of
the message since at any time any crossed peer can extend7 the destination
string without affecting previous steps. Therefore we are sure that every data
inserted in the network can be retrieved even with no global knowledge about
the network (and implicit W-Grid structure). This location service example
is just one of the possible data management applications implementable in
W-Grid. In fact, it is possible to manage each kind of one-dimensional or
multi-dimensional data by translating them into binary string with the use
of hashing algorithms.

of the multiplications are 1010 and 0110 respectively. Then, by crossing bit by bit the
two string we get the c where destination node location is stored *10011100.

7See [25] for details
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3.7.2 Local Learning

Local Learning (LL) a new feature we introduced in order to improve routing
efficiency. The term learning is quite explicit with regard of what we aim
to. The idea is to exploit messages routing and allow crossed nodes to learn
something about the network so that they can use this knowledge for future
routings. Local is referred to the fact that what nodes learn regards only
their direct neighbors.

In a wireless environment unicast is never actually unicast, in fact, when-
ever a node communicates with one of its neighbors the communication is
overheard by all of them, what it happens is that only the recipient of the
communication will listen it. In the same way, each routing request ex-
changed among couples of nodes are heard by their respective neighbors.
Our idea is that overhearing neighbors do not simply ignore the informations
heard but they process them instead, finding for help to the routing nodes.
It may happen that a node apparently farthest from the destination is aware
of a node that would shorten the path, by giving back this information to
its neighbor that was routing a message through another node it is possi-
ble that at the next routing the helping node will be chosen, and the path
will be shorten. Simulation results show that the network gains in routing
performances under this conditions.

3.7.3 Real Distance

We also added the Real Distance (RD) feature to W-Grid. Whenever a node
nj gets a coordinate from node ni the new coordinate will be one bit longer
that the father one. However ni might have already split and while this
information is known by nj that will know about all the coordinates of it
the same is not for nj ’s neighbors which are not neighbors of ni. Actually
those neighbor could find useful such kind of information in order to get
more precise distance values during routing. For this reasons routing table
entry will also contain this integer value which represent the real distance
among couple of nodes. In Chapter 4 we evaluated network performance
with respect to this feature.

3.8 Nodes Failure

In ad-hoc networks nodes usually have scarce resource and they especially
suffer of power constraints. This can lead to nodes failures that could affect
routing efficiency. In W-Grid some robustness is guaranteed by multiple
coordinates at each peer and by the adopted routing metric. In fact, it is
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Figure 3.4: Effects of node failure (n3) during routing of a packet from node
n1 to n2

possible to route through different paths. If a broken path is discovered
the packet can change direction (e.g. next hop) and follow a different path,
according to another coordinate. However it may happen that a path breaks
due to a node failure and no alternative way can be chosen.

In Figure 3.4 we present the case of a packet that must be routed to coor-
dinate ∗11. During the routing a dead-end occurs, node n5 cannot find any
neighbor that improves its distance from the destination. This means that
a link has broken since W-Grid total order relation guarantees the delivery
in any case. When this happens the node deletes the coordinate that caused
the dead-end and performs a ”local broadcast” searching for the parent of
the missing coordinate (∗11 in our example). We use the term ”local broad-
cast” since it is very likely that the searched coordinate will be close to the
broadcasting node since it is a close relative of it. This means that the broad-
cast packet time-to-live will be small and its effects on network traffic will
be limited. Once the coordinate has been found, the holding node fixes the
relationship with the affected node by giving it a new coordinate, in our case
through n4 and n7. It is important to specify that every recovery operation
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is lazy and triggered only on routing failures, in order to avoid any network
efficiency loss.

3.8.1 Lazy recovery

In W-Grid we added a lazy recovery feature. In fact, besides active recovery
we let the network try to fix situations not solved through the traffic normally
generated by queries. Lazy recovery act as follows: whenever a node cannot
recovery it gets in a recovery failed state. When a node is in this state it
will first of all notice all its neighbors about it and its neighbors will do the
same. Then, each node informed about this temporary state will add all
of its coordinate to every query that it will be asked to route and that is
evaluated to cross the node8 in recovery failed state. The node in recovery
failed state will scan each attached coordinate in the query message looking
for a coordinate which is parent of the broken one, so that it can perform a
recovery.

3.9 W*-Grid: Node Dependencies and Fail-

ure Recovery

The scope of W*-Grid extension is to guarantee network robustness to nodes
(in particular sensors) or link failures while reducing network traffic and
energy consumption. In W-Grid each single node failure cause all the direct
children of the dead node/link to send a broadcast message searching for
their grandfather (namely the father of the dead node), or for their closest
ancestor, in order to find an alternative path to it and to place aliases (e.g.
new coordinates) to be used for future routings directed towards the broken
links. Although this solution works well it is quite expensive since, in order to
be sure of finding the searched node, it is necessary to propagate the message
several times, causing a high network traffic and overhead.

For this reason, taking inspiration from Menger theorem [16] we intro-
duced a novel approach for generating the coordinate which builds several
independent paths between a device di and its ancestors and viceversa. This
means, for instance, that each node and its grandfather are jointed by at
least two paths which do not share any node so that if one of di’s fathers
becomes unreachable along one path then the routing can be performed by
following a different path (see Figure 3.5).

8each node can estimate if the query is likely to cross the orphan node by comparing
query destination and the node
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Figure 3.5: Grandfather discovery performed by node n4 in case of father
(node n3) failure and aliases establishment

Given a walk w joining two devices d1 and d2 we define the sets of crossed
node as:

CR(w) = {di ∈ D : di ∈ w ∧ di 6= d1 ∧ di 6= d2}

Two walks w1 and w2 from device d1 to d2 are independent if CR(w1) ∩
CR(w2) = ∅. If we are able to create W*-Grid coordinates in a way that
between a device di and its grandfather(s) there exist independent walks than
we are able to guarantee that whenever a father of d1 becomes unreachable
another walk to d1 grandfather that do not cross the unreachable father will
exist. Walks independence is obtained by slightly changing the procedure
that gives new coordinates to nodes.

In order to explain how W*-grid proceed we must first introduce the
concept of nodes dependence. Given two devices d1 and d2 we say that d2

depends on d1 (d1 → d2) if:

∀ci1 ∈ d1∃cj2 ∈ d2 : father(ci1) = cj2

Namely, each coordinate in d2 has been given by d1 coordinates split. If
d1 → d2 in case of d1 failure d2 loses all the fathers of its coordinates, as a
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Figure 3.6: Coordinate generation with dependencies evaluation

consequence it will likely lose the links with its grandfather, making impos-
sible to recovery the network from the failure. The situation in which a node
depends on another nodes should therefore be avoided. The physical network
may sometimes create situation of dependencies which are not avoidable, for
instance, in Figure 3.6a) nodes d2 and d3 are dependent from d1. Nodes in-
dependence is forced, when possible, by the following little expedient. When
a device di need a coordinate from dj it gathers dj last received coordinates
(namely the ones candidate to split) into a set we define LASTdj

.

LAST (dj) = {last(di) : (dj, di) ∈ L}

Before choosing which coordinate in LAST (dj) will be split, di removes, from
LAST (dj), all the coordinates that do not solve its dependencies with dj or
any other of its neighbors and that do not add independence to it. The
coordinates ci that must be taken out from LAST are:

ci : ∃cj ∈ di, length(pref(ci, cj)) = length(cj)

and:
ci : ∃cj ∈ NEIGH(i), length(pref(ci, cj)) = length(cj)

Where NEIGH(i) is the set of all the coordinates held by di neighbors,
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included dj . If, due to dependence constraint LAST = ∅ than di does not
take any coordinate.

In Figure 3.6b) it is shown the effect of this change in coordinates split.
As we stated before, nodes d2 and d3 are both dependent from d1, for this
reason they do not get coordinates from each other until a new device d4 joins
the network and allow them to discover coordinates that make them inde-
pendent from d1. If d2 and d3 did not evaluate dependencies they would have
exchanged coordinates likely reaching the limit in their coordinate number
and preventing them to get other, more useful, coordinates in the future.

3.10 WR-Grid: Replication in W-Grid

In this section we will focus on data replication, which is the contribution of
WR-Grid, an extension of W-Grid. In sensor networks the most important
operations are data gathering and querying, therefore is necessary to guar-
antee the best efficiency during these tasks. In particular, data sensed by the
network should be always available for users’ queries and query execution
latency must be minimized. In order to achieve these results we introduced
replication of data in WR-Grid. Data replication is obtained by generating
multiple virtual coordinate spaces (namely multiple trees T ). In this way,
each information is replicated on every existing space, resulting in more than
one benefit for network performances:

• higher resistance to sensors failure. Having multiple virtual spaces
implies the existence of different paths for each coordinate and the
possibility of changing routing space in case of dead-end;

• reduction of query path length and latency. Multiple realities
mean multiple order relationship and therefore a reduction of the prob-
ability that two nodes physically close have very different virtual co-
ordinates. Which may happen whenever a multi-dimensional space is
translated into a one-dimensional space.

For what concerns replication implementation in WR-Grid, we must say that
the changes to the algorithm are few. Supposing that each sensor is given an
unique identifier ID(s), each reality is uniquely identified by the root node
ID. Each coordinate c is coupled with its reality identifier so that each couple
(ID, c) will be unique. During coordinate creation, sensors take a coordinate
from every reality they discover from neighbors. At periodic beaconing, if
any new reality is discovered a new coordinate from that reality is taken,
allowing a progressive spread of the various realities to every participant of
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the network. During routing toward a target coordinate, sensors will evaluate
their distance with respect to each reality and will route on the reality that
takes closer to the target. Nothing else changes from what described in
Chapter 3.

It is well known, from database literature, that replication has also draw-
backs. Generally it has a negative impact in case of data updates, since it
needs each existing replica to be affected by changes in order to maintain
consistency. However we can observe that usually sensor networks are more
like a stream of information in which older surveys can be replaced by newer
ones or just stored with the newer one to maintain historical information.
We can say that updates represent a limited problem and we can therefore
focus on new data insertion. Since it is costly (in terms of network traf-
fic) to replicate each tuple/record in each reality, analysis will be presented
in Chapter 4 in order to find out the best replication configuration which
guarantees query efficiency at reasonable costs.
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Chapter 4

Experimental results

In order to evaluate the performances of W-Grid algorithm we implemented
a Network Simulator in Java. We simulated network deployment upon areas
having different dimensions and with various nodes densities (obtained by
adjusting nodes transmission range). Nodes were randomly generated in but
avoiding partitions in the network.

We let nodes to perform periodic beaconing. The beaconing is asyn-
chronous, namely each peer is independent from the others, as it happens
in real networks. Coordinate creation is gradual, the simulation randomly
choose one node that beacons first and elects itself as root of a new vir-
tual coordinate space. Then, as described in Chapter 3 we let that periodic
beaconing builds the W-Grid network.

4.1 Average Path Length Comparisons

Simulation set 1. Nodes perform periodic beaconing (every 300ms) and
generate messages at a parameterizable frequency. The beaconing is asyn-
chronous, namely each peer is independent from the others, as it happens
in real networks and we supposed a radio transmission range of 100 meters.
Coordinate creation is gradual, the simulation randomly choose one node
that beacons first and elects itself as root of a new virtual coordinate space.
Then, as described in Chapter 3 we let that periodic beaconing builds the
W-Grid network.

Once that every node had got its virtual coordinates the simulator gen-
erated 50000 messages between randomly chosen couples of sender/recipi-
ent nodes. Each message was routed according to our algorithm, following
the virtual coordinates, and at the same time it was routed using GPSR
algorithm (exploiting [x,y] physical positions of nodes). Obviously the com-
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Figure 4.1: Average path length comparison between W-Grid and GPSR

APL(in hops) RMSE Lost messages
Area(nodes number) WG GPSR WG GPSR WG GPSR

800×800(120) 6,13 7,49 3,11 8,44 - 2,77%
1000×1000(200) 8,05 9,02 4,45 13,00 - 2,26%
1200×1200(290) 9,75 9,64 4,47 12,74 - 2,01%
1400×1400(400) 11,54 10,87 4,99 14,52 - 3,59%
1600×1600(520) 13,96 13,71 5,86 14,99 - 4,52%
1800×1800(660) 14,81 14,14 6,41 12,15 - 7,88%
2000×2000(820) 17,43 16,57 8,44 13,20 - 8,47%

Table 4.1: Results for different area dimensions (50 simulations each; 50000
messages sent)

parison is prohibitive, since GPSR can stay very close to the ideal routing
algorithm also because it uses physical position of nodes. But our intention
was to prove that W-Grid can return good performances anyway, especially
considering that it doesn’t require any kind of information about geographic
position of nodes. This means not only a vaster and heterogeneous space
of application, not limited only by GPS (or any other position estimation
equipment) embedded devices, but also an easier deployment in every con-
dition and everywhere. However, W-Grid returned amazing performances,
especially considering that it doesn’t require any kind of information about
geographic position of nodes. This means not only a vaster and heteroge-
neous space of application, not limited only by GPS (or any other position
estimation equipment) embedded devices, but also an easier deployment in
every condition and everywhere. Figure 4.1 and Table 4.1 show that the
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Figure 4.2: Query APL in a network with an average of 8 neighbors per node.

number of hops (APL) is almost equal in W-Grid and GPSR, but if we con-
sider the natural advantage of GPSR that knows physical positions of the
nodes we can say that the results are very good since, in some configurations
our algorithm presents better performances, due to the perimeter issue of
GPSR that may cause longest paths. Besides, it is important to say that
W-Grid doesn’t fail any message delivery and it performances are almost
the same in the different runs per area showing that it is not affected by
network topology. On the other side GPSR presents a notable percentage of
routing failures and its performances are variable and dependent from nodes
positions.

Simulation set 2. The simulation model consists of a square area 800×
800m, in this area 205 nodes are randomly spread. Each node has its own
ID and a radio range varying from 73m to 123m (ideal transmission) in order
to get different densities, namely 4, 8 and 12 neighbors per node respectively.
For each scenario we ran 5 simulations and in each simulation we submitted
20000 queries to the system and then tested network robustness by turning
off each node of the network one at a time. The simulator performed the
following tasks:

• Random placement of nodes in a user-defined area;

• Generation of W-Grid coordinates at node exploiting implicit overhear-
ing;
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Figure 4.3: Query APL in a network with an average of 8 neighbors per node.
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Figure 4.5: Contour showing storage load at nodes when SLOB algorithm is
not running

• Random generation of 20000 queries;

For each simulation run we observed the variation in queries APL, namely
the number of hops necessary to resolve a query, between W-Grid with Local
Learning (LL) and Real Distance (RD) and GPSR.

Figures 4.2, 4.3 and 4.4 show that the number of hops (APL) is similar in
W-Grid and GPSR especially when LL is applied. Besides, the flat look of
the averages with respect with the number of coordinates shows that W-Grid
behavior is stable according to that variable.

4.2 Load Balancing evaluation

The second aspect we focused on was load balancing at nodes in terms of
data managed. Observing our implementation of location service we ran
different simulation with and without using our SLOB algorithm. From
Figures 4.5 and 4.6 we can see that its impact is really positive on storage
load distribution among nodes. We used a bucket size b = 1 so that the
system aims to achieve a perfect storage load balance with each peer that
hold exactly one data. We can clearly see that in simulations where the
algorithm is not used the percentage of nodes that store at least one data is
less than 10%. Each node of this 10% manages on average 15,04 data and
the root mean square error is 24,44. The situation is really unbalanced and
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Figure 4.6: Contour showing storage load at nodes when SLOB algorithm is
running

the most loaded node can have up to 200 data in worst cases. On the other
side, by applying the algorithm we can take up to 90% (about 500 nodes out
of 560) the number of nodes that store at least one data. In this case nodes
manage about 1,14 data each and the root mean square error is 0,36.

4.3 Effects of Replication

We ran our Java simulator in order to evaluate the impact of multiple realities
policy. We ran simulation on an area of 1500 by 1500 meters in which about
200 nodes with a supposed radio transmission of 100 meters were spread.
Coordinate creation is gradual, the simulator randomly choose one or more
nodes to elect as root of realities, then, as described in Chapter 3 we let
periodic beaconing to build the WR-Grid network. Beside coordinate creation
we simulated the survey of events (3000 in each run) by nodes and their
consequent insertion in the network.

We also simulated the execution of queries of randomly chosen data from
randomly chosen nodes. Simulation reported information about the number
of hops covered by queries (query path length), the number of data stored
per node (storage load) and the number of times each node is request to
route a query (workload) during the simulation. We analyzed average and
Mean Square Error of those measures with different numbers of replicas in
the system and different query/insertion ratios (10/1, 5/1). Figure 4.7 shows
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Figure 4.7: APL for different numbers of realities in the network

that as the number of realities increases the routing performances of WR-
Grid improves considerably (average hops are halved compared to W-Grid).
This is the demonstration that multiple realities reduce the probability that
two nodes physically close are distant according to the order relationship. It
is important to notice that this benefit follows a logarithmic curve, therefore,
once that a certain number of coordinate (we can say around 10) is reached,
it is no more convenient to increase it.

In Figure 4.8 and 4.9 can be observed a consequence of the improvement
in routing efficiency. Since the average hops per query is reduced also the
average node workload is reduced. At the same time it is possible to see
that the MSE of that measure decreases, meaning a better balance in the
workload per node. By observing Figure 4.9 we can say that multiple realities
improve storage load balancing too and surely this has a positive effect on
nodes energy consumption since it implies a more balanced request load per
node.

On the other side replication implies higher cost at insertion time, more
precisely, in case of n realities each event must be inserted in n different
indexes. Therefore the number of replica should be limited to the smallest
necessary in order to guarantee data availability and routing efficiency. From
our simulations and showed graphs we can say that a number of 4-6 realities
is the best choice. With a higher number the increase of routing efficiency
and balancing cannot be justified by the increase of replication costs.
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Figure 4.8: Sensors workload for different numbers of replicas and different
Query/insertion ratio (10/1 and 5/1)
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Figure 4.9: MSE of nodes workload for different numbers of replicas.

4.4 Recovery failures

The simulation model consists of a square area 800× 800m, in this area 205
nodes are randomly spread. Each node has its own ID and a radio range
varying from 73m to 123m (ideal transmission) in order to get different den-
sities, namely 4, 8 and 12 neighbors per node respectively. For each scenario
we ran 5 simulations and in each simulation we submitted 20000 queries to
the system and then tested network robustness by turning off each node of
the network one at a time. The simulator performed the following tasks:

• Random placement of nodes in a user-defined area;

• Generation of W-Grid coordinates at node exploiting implicit overhear-
ing;

• Random generation of 20000 queries;

• Turning off of nodes at the delivery of queries, as previously described.

For each simulation run we observed:

• The variation in queries APL (Average Path Length), namely the num-
ber of hops necessary to resolve a query, between W-Grid with LL and
RD and GPSR.

• The ratio of succeeded recovery in W-Grid scenarios;

In order to show W*-Grid robustness in case of single node failure while
saving energy by avoiding message broadcast to recovery from failure we
run another set of simulations. We gathered results regarding the network
routing performances, in term of average path length, and robustness.
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The second measure we evaluate is the ratio of failure recovery which is
correctly performed according to the different node densities and the number
of coordinates. We simulate two different recovery strategies:

• Active recovery;

• Lazy recovery.

Lazy recovery is performed whenever a node could not solve a failure
situation with the active recovery. We present the results obtained with both
strategies.

In Figures 4.10, 4.11 and 4.12 five curves are represented. We basically
compare W-Grid efficiency with coordinates dependencies against the W-
Grid solution exploiting message broadcast. The broadcast has been tried
with different TTLs and obviously its performances improve as TTL in-
creases. The fifth curve represents an unlimited broadcast which has been
simulated whenever W-Grid could not be able to perform recovery. Figures
show that almost every time that W-Grid was not able to perform recovery,
unlimited broadcast was not able as well, meaning that W-Grid failed just
because the network was partitioned due to device failure. Figures 4.13, 4.14
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Figure 4.10: Recovery success ratio with an average of 4 neighbors per node.

and 4.15 show the lazy recovery procedure that exploits routing of queries to
discover lost relatives. Simulations returned that lazy recovery might help
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Figure 4.11: Recovery success ratio with an average of 8 neighbors per node.

W-Grid to get closer to the unlimited broadcast performances. In Fig-
ure 4.16 we can see that the percentage of successfull query keeps really
high even when the network is in an instable state due to recoveries failed.
Figures 4.17, 4.18 and 4.19 the network traffic generated by W-Grid active
failure recovery strategies compared with broadcast applicated to W-Grid
(with different level of broadcast propagations). Figures show that W-Grid
heavily reduces the number of messages required for recovery. We don’t show
the cost required by lazy recovery since it actually doesn’t add any message
in the network. Please remember that lazy recovery exploits messages that
traverse the network due to queries. Lazy recovery require some nodes to
inspect messages for a certain time interval. These inspection, however, re-
quire insignificant amount of time with compare to the transmission latency.
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Figure 4.12: Recovery success ratio with an average of 12 neighbors per node.
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Figure 4.13: Recovery failure ratio with an average of 4 neighbors per node
after lazy recovery.
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Figure 4.14: Recovery failure with an average of 8 neighbors per node after
lazy recovery.
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Figure 4.15: Recovery failure ratio with an average of 12 neighbors per node
after lazy recovery.
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Figure 4.16: Percentage of successfull query in case of recovery failure.
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Figure 4.17: Network traffic generated by recovery in a network with an
average of 4 neighbors per node.
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Figure 4.18: Network traffic generated by recovery in a network with an
average of 8 neighbors per node.
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Figure 4.19: Network traffic generated by recovery in a network with an
average of 12 neighbors per node.
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Chapter 5

Conclusions

We studied W-Grid, a novel decentralized infrastructure that self-organizes
wireless devices in an ad-hoc network, where each node has one or more vir-
tual coordinates through which both message routing and data management
occur without reliance on either flooding/broadcasting operations or GPS.
The resulting network does not suffer from the dead-end problem, which hap-
pens in geographic-based routing when a node is unable to locate a neighbor
closer to the destination than itself.

We extended W-Grid to make it a fault tolerant cross-layer infrastruc-
ture W*-Grid for routing and multi-dimensional data management in ad-hoc
sensor networks. We explained the modifications in the model thanks to
which W*-Grid recovers from nodes and/or connectivity failures without
using broadcasting/multi-cast transmissions. The main contribution of W*-
Grid is that, in case of failures, the resulting wireless multi-hop networks
drastically reduce the energy consumption while guaranteeing robustness
and preserving the same W-Grid performance and properties. This result
has been achieved by defining a novel decentralized technique for the assign-
ment of coordinates, according to which, by construction, between each node
and its ancestors (and vice versa) exists at least two disjoint paths, namely
two paths which do not share any node. We also worked on R-Grid which
extends W-Grid by adopting a replication methodology. WR-Grid acts as
a distributed database without needing neither special implementation nor
reorganization and any kind of data can be distributed, stored and managed.

An extensive number of simulations showed significant performance when
compared with GPSR and performance measures of W*-Grid remain un-
changed, such as the average path length under several device densities, or
get better, such as the reduction of both network traffic and the total number
of coordinates in the system. We have also evaluated the benefits of repli-
cation on data management with WR*-Grid, discovering from experimental

55



56 CHAPTER 5. CONCLUSIONS

result that it can halve the average number of hops in the network. The
direct consequence of these results are a significant improvement on energy
consumption and a workload balancing among sensors (number of messages
routed by each node). Finally, thanks to the replications, whose number can
be arbitrarily chosen, the resulting sensor network tolerates sensors discon-
nections/connections due to failures of sensors.
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Appendix A

W-Grid Simulator Code

Interface WGActor

1 package i t . unibo . d e i s . gmonti . ne t s imu la to r . wgrid ;
2

3 import java . u t i l . ArrayList ;
4

5 import i t . unibo . d e i s . gmonti . ne t s imu la to r . mobilenode .
MobileNodeActor ;

6

7 public interface WGActor extends MobileNodeActor {
8

9 public St r ing getWGBinaryId ( ) ;
10 public ArrayList<WGReality> getWGRealit ies ( ) ;
11 public int getWGNodeMaxLengthVC( ) ;
12 public double getWGPacketsWalkedDistance ( ) ;
13 public int getWGReceivedPackets ( ) ;
14

15 // advanced ge t methods
16 public WGReality getWGReality ( int r e a l i t y ) ;
17 public WGReality getWGReality (WGReality r e a l i t y ) ;
18 public int getWGReal i t iesSize ( ) ;
19 public int getWGCoordinatesSize ( int r e a l i t y ) ;
20 public ArrayList <? extends WGActor> getNeighbors ( ) ;
21 public boolean hasNeighbor ( int id ) ;
22

23 // s e t methods
24 public void addToWGRealities (WGReality r ) ;
25 public void checkWGNodeMaxLengthVC ( ) ;
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26 public void addToWGPacketsWalkedDistance(double d) ;
27 public void incWGReceivedPackets ( ) ;
28

29 // recovery methods
30 public boolean r e cove ryFa i l ed ( ) ;
31 }
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Class WGReality

50 package i t . unibo . d e i s . gmonti . ne t s imu la to r . wgrid ;
51

52 import java . u t i l . ArrayList ;
53

54 public class WGReality {
55 private int r oo t Id ;
56 private ArrayList<WGCoordinate> coo rd ina t e s ;
57 private ArrayList<WGCoordinate> g ivab l eCoord ina t e s ;
58 private int maxLengthVC ;
59 private ArrayList<WGRoutingTableEntry> rout ingTable ;

//Routing t a b l e : l i s t o f
WGridRoutingTableEntries

60 public WGActor mostLoadedNeighbor ;
61 public int mostLoadedNeighborLoad ;
62 public int mostLoadedNeighborNeighborLoad ;
63

64 private ArrayList<Shortener> l o c a l s ; //Local
Learning (LL)

65

66 public WGReality ( int root ){
67 r oo t Id = root ;
68 coo rd ina t e s = new ArrayList<WGCoordinate>() ;
69 g ivab l eCoord ina t e s = new ArrayList<WGCoordinate

>() ;
70 maxLengthVC = 0 ;
71 rout ingTable = new ArrayList<WGRoutingTableEntry

>() ;
72 l o c a l s = new ArrayList<Shortener >() ;
73 mostLoadedNeighbor = null ;
74 mostLoadedNeighborLoad = 0 ;
75 mostLoadedNeighborNeighborLoad = 0 ;
76 }
77

78 //Get methods
79 public int getRootId ( ) {
80 return r oo t Id ;
81 }
82 public ArrayList<WGCoordinate> getCoord inates ( ) {
83 ArrayList<WGCoordinate> r e s u l t = new ArrayList<
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WGCoordinate>() ;
84 for (WGCoordinate c : coo rd ina t e s )
85 r e s u l t . add ( c ) ;
86 return r e s u l t ;
87 }
88 public ArrayList<WGCoordinate>

getNotSpl i tCoo rd inat e s ( ) {
89 ArrayList<WGCoordinate> r e s u l t = new ArrayList<

WGCoordinate>() ;
90 for (WGCoordinate c : coo rd ina t e s )
91 i f ( ! c . ha sSp l i t ( ) )
92 r e s u l t . add ( c ) ;
93 return r e s u l t ;
94 }
95 public ArrayList<WGCoordinate> g e tSp l i tCoo rd i na t e s ( )

{
96 ArrayList<WGCoordinate> r e s u l t = new ArrayList<

WGCoordinate>() ;
97 for (WGCoordinate c : coo rd ina t e s )
98 i f ( c . ha sSp l i t ( ) )
99 r e s u l t . add ( c ) ;

100 return r e s u l t ;
101 }
102 public ArrayList<WGCoordinate>

ge tA l lNotSp l i tCoo rd ina t e s ( ) {
103 ArrayList<WGCoordinate> r e s u l t = new ArrayList<

WGCoordinate>() ;
104 for (WGCoordinate c : coo rd ina t e s )
105 i f ( ! c . ha sSp l i t ( ) )
106 r e s u l t . add ( c ) ;
107 for (WGCoordinate c : g ivab l eCoord ina t e s )
108 r e s u l t . add ( c ) ;
109 return r e s u l t ;
110 }
111 public ArrayList<WGCoordinate>

getNotEmptyCoordinates ( ) {
112 ArrayList<WGCoordinate> r e s u l t = new ArrayList<

WGCoordinate>() ;
113 for (WGCoordinate c : coo rd ina t e s )
114 i f ( ! c . ha sSp l i t ( ) && c . getManagingDataSize ( )

>0)
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115 r e s u l t . add ( c ) ;
116 for (WGCoordinate c : g ivab l eCoord ina t e s )
117 i f ( c . getManagingDataSize ( ) >0)
118 r e s u l t . add ( c ) ;
119 return r e s u l t ;
120 }
121 public int ge tCoord ina t e sS i z e ( ) {
122 return getCoord inates ( ) . s i z e ( ) ;
123 }
124 public int ge tNotSp l i tCoo rd ina t e sS i z e ( ) {
125 return getNotSpl i tCoo rd inat e s ( ) . s i z e ( ) ;
126 }
127 public int ge tA l lNotSp l i tCoo rd i na t e sS i z e ( ) {
128 return ge tA l lNotSp l i tCoo rd ina t e s ( ) . s i z e ( ) ;
129 }
130 public int getNotEmptyCoordinatesSize ( ) {
131 return getNotEmptyCoordinates ( ) . s i z e ( ) ;
132 }
133 public ArrayList<WGCoordinate> getGivab leCoord inates

( ) {
134 ArrayList<WGCoordinate> r e s u l t = new ArrayList<

WGCoordinate>() ;
135 for (WGCoordinate c : g ivab l eCoord ina t e s )
136 r e s u l t . add ( c ) ;
137 return r e s u l t ;
138 }
139 public ArrayList<WGCoordinate> ge tA l lCoo rd ina t e s ( ) {
140 ArrayList<WGCoordinate> r e s u l t = new ArrayList<

WGCoordinate>() ;
141 for (WGCoordinate c : coo rd ina t e s )
142 r e s u l t . add ( c ) ;
143 for (WGCoordinate c : g ivab l eCoord ina t e s )
144 r e s u l t . add ( c ) ;
145 return r e s u l t ;
146 }
147 public WGActor getMostLoadedNeighbor ( ) {
148 return mostLoadedNeighbor ;
149 }
150 public int getMostLoadedNeighborLoad ( ) {
151 return mostLoadedNeighborLoad ;
152 }
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153 public int getMostLoadedNeighborNeighborLoad ( ) {
154 return mostLoadedNeighborNeighborLoad ;
155 }
156 public void setMostLoadedNeighbor (WGActor a ){
157 mostLoadedNeighbor = a ;
158 }
159 public void setMostLoadedNeighborLoad ( int l ) {
160 mostLoadedNeighborLoad = l ;
161 }
162 public void setMostLoadedNeighborNeighborLoad ( int l )

{
163 mostLoadedNeighborNeighborLoad = l ;
164 }
165 public int getMaxLentghVC( ) {
166 return maxLengthVC ;
167 }
168 public ArrayList<WGRoutingTableEntry>

getRoutingTable ( ) {
169 return rout ingTable ;
170 }
171 public void checkMaxLengthVC ( ) {
172 for (WGCoordinate c : coo rd ina t e s )
173 i f ( c . getVC ( ) . l ength ( ) > maxLengthVC)
174 maxLengthVC = c . getVC ( ) . l ength ( ) ;
175 for (WGCoordinate c : g ivab l eCoord ina t e s )
176 i f ( c . getVC ( ) . l ength ( ) > maxLengthVC)
177 maxLengthVC = c . getVC ( ) . l ength ( ) ;
178 for (WGRoutingTableEntry r t e : rout ingTable )
179 i f ( r t e . getVC ( ) . l ength ( ) > maxLengthVC)
180 maxLengthVC = r t e . getVC ( ) . l ength ( ) ;
181 }
182 public double getSpacePort ion ( ) {
183 double r e s u l t = 0d ;
184 ArrayList<WGCoordinate> nsc =

getA l lNotSp l i tCoo rd ina t e s ( ) ;
185 for (WGCoordinate c : nsc ) {
186 r e s u l t += 1d/Math . pow(2d , c . getVC ( ) . l ength ( )

−1) ;
187 }
188 return r e s u l t ;
189 }
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190

191 public WGCoordinate getCoordinateFromVC( St r ing s ) {
192 for (WGCoordinate c : coo rd ina t e s )
193 i f ( c . getVC ( ) . equa l s ( s ) )
194 return c ;
195 for (WGCoordinate c : g ivab l eCoord ina t e s )
196 i f ( c . getVC ( ) . equa l s ( s ) )
197 return c ;
198 return null ;
199 }
200

201 public int getRout ingTableS ize ( ) {
202 return rout ingTable . s i z e ( ) ;
203 }// ge tRout ingTab le
204 public ArrayList<WGActor> ge tD i s t inc tNe ighbo r s ( ) {
205 ArrayList<WGActor> ne ighbors = new ArrayList<

WGActor>() ;
206 for (WGRoutingTableEntry r t e : rout ingTable ){
207 boolean has = fa l se ;
208 for (WGActor mgn : ne ighbors ){
209 i f (mgn . getMobileNodeId ( ) == r t e .

getReferredNodeId ( ) )
210 has = true ;
211 }
212 i f ( ! has )
213 ne ighbors . add ( r t e . getReferredNode ( ) ) ;
214 }
215 return ne ighbors ;
216 }
217 public ArrayList<WGRoutingTableEntry>

getRoutingTableEntriesForNode ( int nodeId ){
218 ArrayList<WGRoutingTableEntry> e n t r i e s = new

ArrayList<WGRoutingTableEntry>() ;
219 for (WGRoutingTableEntry r t e : rout ingTable ){
220 i f ( r t e . getReferredNodeId ( ) != nodeId )
221 continue ;
222 e n t r i e s . add ( r t e ) ;
223 }
224 return e n t r i e s ;
225 }
226 public WGRoutingTableEntry getRoutingTableEntry (
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WGActor n , WGCoordinate c ) {
227 for (WGRoutingTableEntry r t : rout ingTable ){
228 i f ( r t . getReferredNodeId ( ) == n . getMobileNodeId ( )

&& c . getVC ( ) == r t . getVC ( ) )
229 return r t ;
230 }
231 return null ;
232 }
233 public ArrayList<WGActor> checkIfHasOnePerNeighbor (

WGActor no ) {
234 ArrayList<WGActor> miss ing = new ArrayList<

WGActor>() ;
235 for (WGActor n : g e tD i s t inc tNe ighbo r s ( ) ){
236 i f (n . getWGReal i t iesSize ( ) == 0)
237 continue ;
238 boolean has = fa l se ;
239 for (WGCoordinate c : coo rd ina t e s ){
240 i f ( c . getNodeFatherId ( ) == n .

getMobileNodeId ( ) )
241 has = true ;
242 }
243 i f ( ! has )
244 miss ing . add (n) ;
245 }
246 return miss ing ;
247 }
248 public int coord inatesPerNeighbor ( int n) {
249 int r e s = 0 ;
250 for (WGCoordinate c : coo rd ina t e s ){
251 i f ( c . ha sSp l i t ( ) )
252 continue ;
253 i f ( c . getNodeFatherId ( ) == n)
254 r e s++;
255 }
256 return r e s ;
257 }
258

259 // s e t methods
260 public void addCoordinate (WGCoordinate c ) {
261 coo rd ina t e s . add ( c ) ;
262 c . makeNotGivable ( ) ;
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263 }
264 public void addGivableCoordinate (WGCoordinate c ) {
265 g ivab l eCoord ina t e s . add ( c ) ;
266 c . makeGivable ( ) ;
267 }
268 public boolean s e t S p l i t (WGCoordinate c , WGActor

askingNode ){
269 c . s e t S p l i t ( askingNode ) ;
270 i f ( c . i sG ivab l e ( ) ) {
271 c . makeNotGivable ( ) ;
272 coo rd ina t e s . add ( c ) ;
273 return g ivab l eCoord ina t e s . remove ( c ) ;
274 }
275 return true ;
276 }
277 public boolean moveCoordinate (WGActor n ,

WGCoordinate coord ) {
278 WGReality g iv ingNodeRea l i ty = coord . getOwner ( ) .

getWGReality ( this ) ;
279 i f ( ! g iv ingNodeRea l i ty . g ivab l eCoord ina t e s . remove (

coord ) )
280 return fa l se ;
281 coord . setOwner (n) ;
282 addCoordinate ( coord ) ;
283 return true ;
284 }
285 public void c l earRout ingTable ( ) {
286 rout ingTable . c l e a r ( ) ;
287 }
288 public void addToRoutingTable (WGRoutingTableEntry

r t e ) {
289 rout ingTable . add ( r t e ) ;
290 }
291 public boolean removeFromRoutingTable ( int nodeId ,

S t r ing vc ) {
292 int i ;
293 for ( i = 0 ; i < rout ingTable . s i z e ( ) ; i++)
294 i f ( rout ingTable . get ( i ) . getReferredNodeId ( ) ==

nodeId && rout ingTable . get ( i ) . getVC ( ) .
equa l s ( vc ) )

295 break ;
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296 i f ( i == rout ingTable . s i z e ( ) )
297 return fa l se ;
298 rout ingTable . remove ( i ) ;
299 return true ;
300 }
301 public void addShortener (WGActor n , S t r ing s ){
302 l o c a l s . add (new Shortener (n , s ) ) ;
303 }
304 public St r ing toSt r ing ( ) {
305 return ”” + roo t Id ;
306 }
307 }
308 // Inner c l a s s Shortener
309 class Shortener {
310 St r ing coo rd ina t e ;
311 int nodeId ;
312 WGActor node ;
313

314 Shortener (WGActor n , S t r ing s ){
315 coo rd ina t e = s ;
316 node = n ;
317 nodeId = n . getMobileNodeId ( ) ;
318 }
319 }
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Class WGCoordinate

350 package i t . unibo . d e i s . gmonti . ne t s imu la to r . wgrid ;
351

352 import java . u t i l . ArrayList ;
353

354 public class WGCoordinate {
355

356 private int r e a l i t y I d ;
357 private St r ing VC;
358 private int nBit ;
359 private boolean near ing ;
360 private WGActor owner ;
361 private int nodeFatherId ;
362 private WGActor nodeFather ;
363 private boolean i sG ivab l e ;
364 private boolean ha sSp l i t ;
365 private int chi ldNodeId ;
366 private WGActor chi ldNode ;
367

368 // sensor par t
369 private ArrayList<Str ing> managingData ;
370

371 /∗∗
372 ∗ @param VC the s t r i n g rap r e s en t a t i on o f the VC
373 ∗ @param rootID the f a t h e r o f the system
374 ∗/
375 public WGCoordinate ( int r , S t r ing c , WGActor ow ,

WGActor f a th e r ) {
376 r e a l i t y I d = r ;
377 VC = c ;
378 nBit = 0 ;
379 near ing = fa l se ;
380 owner = ow ;
381 nodeFather = f a th e r ;
382 i f ( f a th e r != null )
383 nodeFatherId = f a th e r . getMobileNodeId ( ) ;
384 else
385 nodeFatherId = −1;
386 i sG ivab l e = fa l se ;
387 ha sSp l i t = fa l se ;

67



68 APPENDIX A. W-GRID SIMULATOR CODE

388 chi ldNodeId = −1;
389 chi ldNode = null ;
390 }
391

392 public WGCoordinate ( int r , S t r ing c , WGActor ow ,
WGActor fa ther , boolean isG ) {

393 r e a l i t y I d = r ;
394 VC = c ;
395 nBit = 0 ;
396 near ing = fa l se ;
397 owner = ow ;
398 nodeFather = f a th e r ;
399 i f ( f a th e r != null )
400 nodeFatherId = f a th e r . getMobileNodeId ( ) ;
401 else
402 nodeFatherId = −1;
403 i sG ivab l e = isG ;
404 ha sSp l i t = fa l se ;
405 chi ldNodeId = −1;
406 chi ldNode = null ;
407 }
408 public int ge tRea l i t y Id ( ) {
409 return r e a l i t y I d ;
410 }
411 public St r ing getVC ( ) {
412 return VC;
413 }
414 public int getNBit ( ) {
415 return nBit ;
416 }
417 public void setNBit ( int nb) {
418 nBit = nb ;
419 }
420 public boolean getNear ing ( ) {
421 return near ing ;
422 }
423 public void setNear ing (boolean sn ) {
424 near ing = sn ;
425 }
426 public WGActor getOwner ( ) {
427 return owner ;
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428 }
429 public void setOwner (WGActor now){
430 owner = now ;
431 }
432 public WGActor getNodeFather ( ) {
433 return nodeFather ;
434 }
435 public int getNodeFatherId ( ) {
436 return nodeFatherId ;
437 }
438 public boolean i sG ivab l e ( ) {
439 return i sG ivab l e ;
440 }
441 public void makeGivable ( ) {
442 i sG ivab l e = true ;
443 }
444 public void makeNotGivable ( ) {
445 i sG ivab l e = fa l se ;
446 }
447 public boolean ha sSp l i t ( ) {
448 return ha sSp l i t ;
449 }
450 public int getChildNodeId ( ) {
451 return chi ldNodeId ;
452 }
453 public WGActor getChildNode ( ) {
454 return chi ldNode ;
455 }
456 public void s e t S p l i t (WGActor ch i l d ) {
457 ha sSp l i t = true ;
458 i f ( ch i l d != null ){
459 chi ldNodeId = ch i l d . getMobileNodeId ( ) ;
460 chi ldNode = ch i l d ;
461 }
462 else {
463 chi ldNodeId = −1;
464 chi ldNode = null ;
465 }
466 }
467 public ArrayList<Str ing> getManagingData ( ) {
468 return managingData ;
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469 }
470 public void addToManagingData ( St r ing s ) {
471 managingData . add ( s ) ;
472 }
473 public int getManagingDataSize ( ) {
474 return managingData . s i z e ( ) ;
475 }
476 public void removeFromManagingData ( St r ing s ){
477 managingData . remove ( s ) ;
478 }
479 public boolean hasWGData( St r ing s ){
480 for ( S t r ing t : managingData )
481 i f ( t . equa l s ( s ) )
482 return true ;
483 return fa l se ;
484 }
485 public St r ing maxCommonPrefix (WGCoordinate c ) {
486 St r ing r e s u l t = null ;
487 int i = 0 ;
488 while ( i < VC. length ( ) && i < c .VC. l ength ( ) ) {
489 i f (VC. charAt ( i ) == c .VC. charAt ( i ) )
490 r e s u l t += VC. charAt ( i ) ;
491 i++;
492 }
493 return r e s u l t ;
494 }
495 public int maxCommonPrefixLength (WGCoordinate c ) {
496 St r ing r e s u l t = null ;
497 int i = 0 ;
498 while ( i < VC. length ( ) && i < c .VC. l ength ( ) )
499 i f (VC. charAt ( i ) == c .VC. charAt ( i ) ) {
500 r e s u l t += VC. charAt ( i ) ;
501 i++;
502 }
503 return i ;
504 }
505 public St r ing maxCommonPrefix ( S t r ing s ) {
506 St r ing r e s u l t = null ;
507 int i = 0 ;
508 while ( i < VC. length ( ) && i < s . l ength ( ) ) {
509 i f (VC. charAt ( i ) == s . charAt ( i ) )
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510 r e s u l t += VC. charAt ( i ) ;
511 i++;
512 }
513 return r e s u l t ;
514 }
515 public int maxCommonPrefixLength ( St r ing s ) {
516 St r ing r e s u l t = null ;
517 int i = 0 ;
518 while ( i < VC. length ( ) && i < s . l ength ( ) )
519 i f (VC. charAt ( i ) == s . charAt ( i ) ) {
520 r e s u l t += VC. charAt ( i ) ;
521 i++;
522 }
523 return i ;
524 }
525 }
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Class WGrid

550 package i t . unibo . d e i s . gmonti . ne t s imu la to r . wgrid ;
551

552 // import i t . unibo . d e i s . gmonti . eventmanager .EM;
553 import i t . unibo . d e i s . gmonti . em .EM;
554 import i t . unibo . d e i s . gmonti . ne t s imu la to r .NS;
555 import i t . unibo . d e i s . gmonti . ne t s imu la to r . NSParameters ;
556 import i t . unibo . d e i s . gmonti . ne t s imu la to r . n sac to r .

NSActorManager ;
557

558 import java . u t i l . ArrayList ;
559 import java . u t i l . I t e r a t o r ;
560

561 public class WGrid {
562

563 public stat ic f ina l int ONE PER NEIGHBOR = −1;
564

565 // Per iod ic event needed to update rou t ing t a b l e and
in some case s e t t i n g new coord ina te s

566 public stat ic boolean beaconing (WGActor actor ,
ArrayList <? extends WGActor> rece iv ingNodes ,

567 int numberOfReal i t ies , int coordsPerNode , int
coordsPerBeacon , int coordsPerNeighbor ,
boolean checkDependencies ,

568 int SLOB, double avgThreshold , double
sqmThreshold ) {

569 boolean createdWGCoordinate = fa l se ;
570 ArrayList<WGActor> tempNeighbors = new ArrayList<

WGActor>() ;
571

572 // p h y s i c a l beaconing
573 for (WGActor rece iv ingNode : rece iv ingNodes ){//

For each node in the rad io range , updates the
rou t ing t a b l e . . .

574 tempNeighbors . add ( rece iv ingNode ) ;
575 WGrid . updateWGRoutingTable ( actor ,

r ece iv ingNode ) ;
576 }
577 ArrayList<WGRoutingTableEntry> r tForLocator =

WGrid . s e tCoord ina t e s ( actor , numberOfReal i t ies
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, coordsPerNode ,
578 coordsPerBeacon , coordsPerNeighbor ,

checkDependencies ) ;
579 i f ( r tForLocator . s i z e ( ) > 0)
580 createdWGCoordinate = true ;
581

582 // t r i e s to ba lance the number o f coord ina te s
among the nodes

583 i f (SLOB != NSParameters .WLB OFF) {
584 i f (WGrid . checkLoad ( actor , avgThreshold ,

sqmThreshold ) )
585 createdWGCoordinate = true ;
586 }
587 for (WGReality nodeReal i ty : a c to r . getWGRealit ies

( ) )
588 nodeReal i ty . checkMaxLengthVC ( ) ;
589 ac to r . checkWGNodeMaxLengthVC ( ) ;
590 return createdWGCoordinate ;
591 }
592 // load ba l anc ing (SLOB)
593 private stat ic boolean checkLoad (WGActor actor ,

double avgThreshold , double sqmThreshold ){
594 boolean addedCoord = fa l se ;
595 for (WGReality nodeReal i ty : a c to r . getWGRealit ies

( ) ) {
596 int nodeRea l i tyId = nodeReal i ty . getRootId ( ) ;
597 // c a l c u l a t e the average number o f coord ina te s

managed by ne i ghbor s
598 ArrayList<Double> va lue s = new ArrayList<

Double >() ;
599 ArrayList<Object> avgResult = ca lcu la teAvg (

actor , nodeReal i tyId , va lue s ) ;
600 double myLoad = ( ( Double ) avgResult . get (0 ) ) .

doubleValue ( ) ;
601 i f ( ( NodeLoad ) avgResult . get (1 ) == null )
602 continue ;
603 double avg = ( ( Double ) avgResult . get (2 ) ) .

doubleValue ( ) ;
604 double sqm = getNumCoordsSqm ( values , avg ) ;
605 i f (myLoad < avg ) {
606 i f ( ( avg − myLoad > avgThreshold ) | | ( avg −

73



74 APPENDIX A. W-GRID SIMULATOR CODE

myLoad < avgThreshold && sqm >
sqmThreshold ) ) {

607 WGActor givingNode = ( ( NodeLoad )
avgResult . get (1 ) ) . node ;

608 WGReality g iv ingNodeRea l i ty = givingNode
. getWGReality ( nodeReal i ty ) ;

609 ArrayList<WGCoordinate> candidateCoords
= g iv ingNodeRea l i ty .
getGivab leCoord inates ( ) ;

610 i f ( candidateCoords . s i z e ( ) == 0)
611 candidateCoords = g iv ingNodeRea l i ty .

getNotSpl i tCoo rd inat e s ( ) ;
612 WGCoordinate g ivingCoord = WGrid .

chooseCoordinate ( actor ,
nodeReal i tyId , candidateCoords ) ;

613 i f ( g ivingCoord == null )
614 continue ;
615 i f ( g ivingCoord . i sG ivab l e ( ) ) {
616 //remove r t e from r e a l i t y and add the

new r t e to the o ther node
617 WGRoutingTableEntry newRte = new

WGRoutingTableEntry ( actor ,
nodeReal i tyId , g ivingCoord ) ;

618 g iv ingNodeRea l i ty . addToRoutingTable (
newRte ) ;

619 nodeReal i ty . removeFromRoutingTable (
givingNode . getMobileNodeId ( ) ,
g iv ingCoord . getVC ( ) ) ;

620 //add coord ina te to the node and
remove i t from the o ther node

621 i f ( ! nodeReal i ty . moveCoordinate ( actor
, g iv ingCoord ) )

622 throw new RuntimeException ( ”
Exception at load balancing ,
cannot move coo rd ina t e ” +
givingCoord . getVC ( ) + ”from
node ” + givingCoord . getOwner
( ) + ” to node ” + acto r .
getMobileNodeId ( ) ) ;

623 }
624 else {
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625 WGrid . f u l l S p l i t ( givingNode ,
givingCoord , nodeReal i tyId , a c to r
) ;

626 return true ;
627 }
628 }
629 }
630 }
631 return addedCoord ;
632 }
633

634 private stat ic void updateWGRoutingTable (WGActor
actor , WGActor neighbor ){

635 for (WGReality ne i ghbo rRea l i t y : neighbor .
getWGRealit ies ( ) ){// ge t i t s r e a l i t i e s

636 int nodeRea l i tyId = ne ighborRea l i t y . getRootId
( ) ;

637 WGReality nodeReal i ty = acto r . getWGReality (
ne i ghbo rRea l i t y ) ;

638 i f ( nodeReal i ty == null ){// i f the r e a l i t y in
unknown , ge t i t

639 WGReality newReality = new WGReality (
nodeRea l i tyId ) ;

640 // f o r each coord ina te o f the neighbor , put
i t in the rou t ing t a b l e

641 for (WGCoordinate c : ne i ghbo rRea l i t y .
g e tA l lCoo rd ina t e s ( ) ){

642 WGRoutingTableEntry newRte = new
WGRoutingTableEntry ( neighbor ,
nodeReal i tyId , c ) ;

643 newReality . addToRoutingTable ( newRte ) ;
644 }
645 ac to r . addToWGRealities ( newReality ) ;
646 }
647 else {// i f the r e a l i t y i s known , update i t
648 WGRoutingTableEntry newRte ;
649 for (WGCoordinate c : ne i ghbo rRea l i t y .

g e tA l lCoo rd ina t e s ( ) ){
650 WGReality myrea l i ty = acto r . getWGReality

( ne i ghbo rRea l i t y ) ;
651 boolean found = fa l se ;
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652 for (WGRoutingTableEntry r t e : myrea l i ty
. getRoutingTable ( ) ){

653 i f ( r t e . getVC ( ) == c . getVC ( ) ){
654 r t e . update ( ) ;
655 found = true ;
656 break ;
657 }
658 }
659 i f ( ! found ) {
660 newRte = new WGRoutingTableEntry (

neighbor , nodeReal i tyId , c ) ;
661 nodeReal i ty . addToRoutingTable (newRte )

;
662 }
663 }
664 }
665 }
666 }// updateRoutingTab le
667

668 //When a node has no ne i ghbor s wi th w−g r i d
coord ina te s i t s e t s i t s e l f as roo t

669 public stat ic void setMyselfAsRoot (WGActor act ){
670 WGReality r = new WGReality ( act . getMobileNodeId ( )

) ;
671 WGCoordinate newC = new WGCoordinate ( act .

getMobileNodeId ( ) , ”∗” , act , act ) ;
672 r . addCoordinate (newC) ;
673 act . addToWGRealities ( r ) ;
674 act . mobi leNodeIsAct ive ( true ) ;
675 }
676

677 // coord ina te c rea t i on
678 protected stat ic ArrayList<WGRoutingTableEntry>

s e tCoord ina t e s (WGActor actor , int
numberOfReal i t ies , int coordsPerNode ,

679 int coordsPerBeacon , int coordsPerNeighbor ,
boolean checkDependencies ){

680 // i f a number o f roo t i s not s p e c i f i e d any node
t ha t has no ne ighbor with coord ina te must
e l e c t

681 // i t s e l f as root , the v a r i a b l e isRoot i s needed

76



APPENDIX A. W-GRID SIMULATOR CODE 77

to check t h a t
682 boolean i sRoot = true ;
683 ArrayList<WGRoutingTableEntry> r tForLocator = new

ArrayList<WGRoutingTableEntry>() ;
684

685 // a f t e r having updated the r . t . the node must
scan each known r e a l i t y to check i f i t needs
any coord ina te

686 for (WGReality nodeReal i ty : a c to r . getWGRealit ies
( ) ) {

687 // i f i t en te r s ac tor loop i t means t h a t the
node does not have to become root o f a new
r e a l i t y

688 ArrayList<WGRoutingTableEntry>
coordsPerRea l i ty = new ArrayList<
WGRoutingTableEntry>() ;

689 int takenCoordPerReal ity = 0 ;
690 i sRoot = fa l se ;
691 int coord inatesPerBeaconing = 0 ;
692 int nodeRea l i tyId = nodeReal i ty . getRootId ( ) ;
693 //Case o f k−coord ina tes , check i f K has been

reached
694 i f ( coordsPerNode != WGrid .ONE PER NEIGHBOR &&

nodeReal i ty . g e tNotSp l i tCoo rd ina t e sS i z e ( )
< coordsPerNode ) {

695 while ( nodeReal i ty .
g e tNotSp l i tCoo rd ina t e sS i z e ( ) <
coordsPerNode ) {

696 // i f the maximum number o f coord ina te s
per beaconing has been f i x e d and i s
reached then break the loop

697 i f ( coordsPerBeacon != 0 &&
coord inatesPerBeacon ing ==
coordsPerBeacon )

698 break ;
699 /∗ArrayLis t t h a t w i l l conta in the

choosab l e coord ina tes , g i v a b l e ones
w i l l be p re f e r r ed , alway accord ing
to choos ing p o l i c i e s ( see
chooseCoordinate method ) ∗/

700 ArrayList<WGCoordinate>
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candidateCoord inates = new ArrayList
<WGCoordinate>() ;

701 //Populate a r r a y l i s t wi th ne i ghbor s ’
coord ina te s

702 for (WGActor neighbor : a c to r .
getNeighbors ( ) ){

703 // i f a maximum number o f coord ina te s
g e t t a b l e from each node has been
s e t

704 // then s k i p ne i ghbor s t h a t have
reached the l im i t

705 i f ( coordsPerNeighbor != 0 &&
nodeReal i ty .
coord inatesPerNeighbor ( neighbor .
getMobileNodeId ( ) ) >=
coordsPerNeighbor )

706 continue ;
707 // o the rw i s e ga the r the a v a i l a b l e

coords ( not s p l i ones )
708 WGReality ne i ghRea l i t y = neighbor .

getWGReality ( nodeRea l i tyId ) ;
709 i f ( ne i ghRea l i t y != null ) {
710 candidateCoord inates . addAll (

ne i ghRea l i t y .
g e tA l lNotSp l i tCoo rd ina t e s ( ) ) ;

711 }
712 }
713 //Remove coord ina te s c h i l d r en o f mine
714 WGrid . checkChi ldConst ra int (

candidateCoordinates , nodeReal i ty ) ;
715 //Check f o r coord ina te s dependency , i f

r e qu i r ed by user
716 i f ( checkDependencies ) {
717 WGrid . checkForDependencies ( actor ,

candidateCoordinates , nodeReal i ty )
;

718 }
719 i f ( candidateCoord inates . s i z e ( ) > 0) {
720 WGCoordinate candidateCoord = WGrid .

chooseCoordinate ( actor ,
nodeReal i tyId ,
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candidateCoord inates ) ;
721 coordsPerRea l i ty . add (WGrid .

addCoordinate ( actor ,
candidateCoord , nodeRea l i tyId ) ) ;

722 coord inatesPerBeacon ing++;
723 }
724 else
725 break ;
726 }
727 }
728 else {
729 i f ( coordsPerNode == WGrid .ONE PER NEIGHBOR

) {
730 ArrayList<WGActor> missingNodes =

nodeReal i ty . checkIfHasOnePerNeighbor
( ac to r ) ;

731 i f ( missingNodes . s i z e ( ) > 0) {
732 for (WGActor neighbor : missingNodes )

{
733 //ConsolePanel . g e t I n s t an c e () .

pr intToConsole (” Scorro i
v i c i n i da cui devo prendere
. . . ” ) ;

734 ArrayList<WGCoordinate>
candidateCoord inates = new
ArrayList<WGCoordinate>() ;

735 WGReality ne i ghRea l i t y = neighbor .
getWGReality ( nodeRea l i tyId ) ;

736 i f ( ne i ghRea l i t y != null )
737 candidateCoord inates . addAll (

ne i ghRea l i t y .
g e tA l lNotSp l i tCoo rd ina t e s ( )
) ;

738 //Remove coord ina te s c h i l d r en o f
mine

739 checkChi ldConst ra int (
candidateCoordinates ,
nodeReal i ty ) ;

740 //Check f o r coord ina te s dependency
, i f r e qu i r ed by user

741 i f ( checkDependencies )
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742 WGrid . checkForDependencies (
actor , candidateCoordinates
, nodeReal i ty ) ;

743 i f ( candidateCoord inates . s i z e ( ) >
0) {

744 WGCoordinate candidateCoord =
WGrid . chooseCoordinate (
actor , nodeReal i tyId ,
candidateCoord inates ) ;

745 coordsPerRea l i ty . add (WGrid .
addCoordinate ( actor ,
candidateCoord ,
nodeRea l i tyId ) ) ;

746 }
747 else
748 continue ;
749 }
750 }
751 }
752 }
753 for (WGRoutingTableEntry r t e :

coordsPerRea l i t y ){
754 r tForLocator . add ( r t e ) ;
755 takenCoordPerReal ity++;
756 }
757 }
758 i f ( i sRoot )
759 i f ( numberOfReal i t ies == 0 && acto r .

getWGReality ( a c to r . getMobileNodeId ( ) ) ==
null )

760 WGrid . setMyselfAsRoot ( ac to r ) ;
761 return r tForLocator ;
762 }
763

764 private stat ic void checkChi ldConst ra int ( ArrayList<
WGCoordinate> candidateCoordinates , WGReality
nodeReal i ty ) {

765 int i = 0 ;
766 while ( i < candidateCoord inates . s i z e ( ) ) {
767 for (WGCoordinate c : nodeReal i ty .

g e tA l lCoo rd ina t e s ( ) ) {
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768 i f ( candidateCoord inates . get ( i ) . getVC ( ) .
startsWith ( c . getVC ( ) ) ) {

769 candidateCoord inates . remove ( i ) ;
770 i−−;
771 break ;
772 }
773 }
774 i++;
775 }
776 }
777

778 private stat ic WGRoutingTableEntry addCoordinate (
WGActor actor , WGCoordinate candidateCoord , int
nodeRea l i tyId ){

779 WGReality nodeReal i ty = acto r . getWGReality (
nodeRea l i tyId ) ;

780 i f ( candidateCoord . i sG ivab l e ( ) ){
781 //remove r t e from r e a l i t y and add the new r t e

to the o ther node
782 WGRoutingTableEntry newRte = new

WGRoutingTableEntry ( actor , nodeReal i tyId ,
candidateCoord ) ;

783 candidateCoord . getOwner ( ) . getWGReality (
nodeRea l i tyId ) . addToRoutingTable (newRte ) ;

784 nodeReal i ty . removeFromRoutingTable (
candidateCoord . getOwner ( ) . getMobileNodeId
( ) , candidateCoord . getVC ( ) ) ;

785 //add coord ina te to the node and remove i t
from the o ther node

786 i f ( ! nodeReal i ty . moveCoordinate ( actor ,
candidateCoord ) )

787 throw new RuntimeException ( ”Exception at
s p l i t , cannot move coo rd ina t e ” +
candidateCoord + ” from node ” +
candidateCoord . getOwner ( ) + ” to node ”
+ acto r . getMobileNodeId ( ) ) ;

788 return newRte ;
789 }
790 else // s p l i t candidateCoord
791 return WGrid . f u l l S p l i t ( candidateCoord . getOwner

( ) , candidateCoord , nodeReal i tyId , a c to r ) ;
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792 }
793

794 // coord ina te s e l e c t i o n
795 private stat ic void checkForDependencies (WGActor

actor , ArrayList<WGCoordinate> candidateCoords ,
WGReality nodeReal i ty ) {

796 ArrayList<WGCoordinate> ne ighborsCoord inates =
new ArrayList<WGCoordinate>() ;

797 for (WGActor neighbor : a c to r . getNeighbors ( ) ){
798 i f ( neighbor . getMobileNodeId ( ) == nodeReal i ty .

getRootId ( ) )
799 continue ;
800 WGReality ne i ghRea l i t y = neighbor . getWGReality

( nodeReal i ty ) ;
801 i f ( ne i ghRea l i t y != null ) {
802 for (WGCoordinate c : ne i ghRea l i t y .

g e tA l lCoo rd ina t e s ( ) ) {
803 ne ighborsCoord inates . add ( c ) ;
804 }
805 }
806 }
807 for (WGCoordinate c : a c to r . getWGReality (

nodeReal i ty ) . g e tA l lCoo rd ina t e s ( ) ) {
808 ne ighborsCoord inates . add ( c ) ;
809 }
810 int i = 0 ;
811 while ( i < candidateCoords . s i z e ( ) ) {
812 WGCoordinate cc = candidateCoords . get ( i ) ;
813 i++;
814 for (WGCoordinate c : ne ighborsCoord inates ){
815 i f ( cc . i sRelatedWith ( c . getVC ( ) ) && c .

getOwner ( ) != cc . getOwner ( ) ) {
816 candidateCoords . remove(−− i ) ;
817 break ;
818 }
819 }
820 }
821 }
822

823 private stat ic WGCoordinate chooseCoordinate (WGActor
actor , int nodeReal i tyId , ArrayList<
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WGCoordinate> candidateCoords ){
824 WGReality nodeReal i ty = acto r . getWGReality (

nodeRea l i tyId ) ;
825 ArrayList<CoordinateTableEntry>

notGivableCoordTable= new ArrayList<
CoordinateTableEntry >() ;

826 ArrayList<CoordinateTableEntry> givableCoordTable
= new ArrayList<CoordinateTableEntry >() ;

827 // scan rou t ing t a b l e l o o k i n g f o r the node t ha t
would re turn the s ho r t e r CV

828 // r e s u l t w i l l s t o r e the cand ida te s vc ( the
s ho r t e r ones )

829 int maxLength = 0 ;
830 int minLength = 255 ;
831 int maxLoad = 0 ;
832 int maxHeterogenity = 0 ;
833 int minHeterogenity = 0 x 7 f f f f f f f ;
834 ArrayList<Integer > h e t e r o g e n e i t i e s = new

ArrayList<Integer >() ;
835 ArrayList<Integer > l eng ths = new ArrayList<

Integer >() ;
836 ArrayList<Integer > l o ads = new ArrayList<Integer

>() ;
837 // f i r s t t r y to ge t a g i v a b l e coord
838 for (WGCoordinate coord : candidateCoords ){
839 // to avoid excep t i on because l en g t h o f

f r e e s pa c e i s g r e a t e s t than
binaryNodeIdLength

840 i f ( coord . getVC ( ) . l ength ( )−1 >= NSParameters .
g e t In s tance ( ) . getBinaryIdLength ( ) )

841 continue ;
842 CoordinateTableEntry ce = new

CoordinateTableEntry ( coord ) ;
843 i f ( coord . i sG ivab l e ( ) )
844 givableCoordTable . add ( ce ) ;
845 else
846 notGivableCoordTable . add ( ce ) ;
847 int l ength = coord . getVC ( ) . l ength ( ) ;
848 i f ( l ength > maxLength)
849 maxLength = length ;
850 i f ( l ength < minLength )
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851 minLength = length ;
852 l eng ths . add ( l ength ) ;
853 int heterogene i tyVa lue = 0 ;
854 i f ( nodeReal i ty . getCoord inates ( ) . s i z e ( )==0){//

i f the node doesn ’ t a l r eady have any coord
, c a l c u l a t e d i s t an c e among a v a i l a b l e
coords

855 for (WGCoordinate c1 : candidateCoords )
856 heterogene i tyVa lue += 255 − WGTools .

maxCommonPrefLength ( coord . getVC ( ) , c1
. getVC ( ) ) ;

857 }
858 else {// e l s e i f the node a l r eady manage some

coords , e v a l ua t e d i s t an c e between each o f
them and a v a i l a b l e ones

859 for (WGCoordinate c1 : nodeReal i ty .
getNotSpl i tCoord inat es ( ) )

860 heterogene i tyVa lue += 255 − WGTools .
maxCommonPrefLength ( coord . getVC ( ) , c1
. getVC ( ) ) ;

861 }
862 h e t e r o g e n e i t i e s . add ( heterogene i tyVa lue ) ;
863 i f ( heterogene i tyVa lue > maxHeterogenity )
864 maxHeterogenity = heterogene i tyVa lue ;
865 i f ( heterogene i tyVa lue < minHeterogenity )
866 minHeterogenity = heterogene i tyVa lue ;
867 }
868 // c a l c u l a t e s l e n g t h va lue ( s c a l e d in to range

[ 0 , 1 ] )
869 int lengthRange = maxLength − minLength ;
870 i f ( lengthRange != 0 && NSParameters . g e t In s tance

( ) . getLengthFactor ( ) != 0) {
871 int i = 0 ;
872 for ( CoordinateTableEntry ce :

g ivableCoordTable ){
873 double l engthValue = ( (double ) (maxLength −

l eng ths . get ( i ) ) /(double ) lengthRange ) ∗
NSParameters . g e t In s tance ( ) .
getLengthFactor ( ) ;

874 ce . setValue ( lengthValue ) ;
875 i++;
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876 }
877 for ( CoordinateTableEntry ce :

notGivableCoordTable ){
878 double l engthValue = ( (double ) (maxLength −

l eng ths . get ( i ) ) /(double ) lengthRange ) ∗
NSParameters . g e t In s tance ( ) .
getLengthFactor ( ) ;

879 ce . setValue ( lengthValue ) ;
880 i++;
881 }
882 }
883 // c a l c u l a t e s h e t e r o g ene i t y va lue
884 int heterogeneityRange = maxHeterogenity −

minHeterogenity ;
885 i f ( heterogeneityRange != 0 && NSParameters .

g e t In s tance ( ) . getHeterogene i tyFactor ( ) != 0)
{

886 int i = 0 ;
887 for ( CoordinateTableEntry ce :

g ivableCoordTable ){
888 double heterogene i tyVa lue = ( ( double ) (

h e t e r o g e n e i t i e s . get ( i ) −
minHeterogenity ) / (double )
heterogeneityRange ) ∗ NSParameters .
g e t In s tance ( ) . getHeterogene i tyFacto r ( ) ;

889 ce . setValue ( heterogene i tyVa lue ) ;
890 i++;
891 }
892 for ( CoordinateTableEntry ce :

notGivableCoordTable ){
893 double heterogene i tyVa lue = ( ( double ) (

h e t e r o g e n e i t i e s . get ( i ) −
minHeterogenity ) / (double )
heterogeneityRange ) ∗ NSParameters .
g e t In s tance ( ) . getHeterogene i tyFacto r ( ) ;

894 ce . setValue ( heterogene i tyVa lue ) ;
895 i++;
896 }
897 }
898 // c a l c u l a t e s coord ina te load va lue
899 i f (maxLoad != 0 && NSParameters . g e t In s tance ( ) .
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getLoadFactor ( ) != 0) {
900 for ( CoordinateTableEntry ce :

notGivableCoordTable ){
901 int i = 0 ;
902 double loadValue = ( loads . get ( i ) / maxLoad)

∗ NSParameters . g e t In s tance ( ) .
getLoadFactor ( ) ;

903 ce . setValue ( loadValue ) ;
904 i++;
905 }
906 for ( CoordinateTableEntry ce :

g ivableCoordTable ){
907 int i = 0 ;
908 double loadValue = ( loads . get ( i ) / maxLoad)

∗ NSParameters . g e t In s tance ( ) .
getLoadFactor ( ) ;

909 ce . setValue ( loadValue ) ;
910 i++;
911 }
912 }
913 // e x t r a c t from coordTable the most va lued coord

accord ing to the choosed p o l i c y
914 i f ( g ivableCoordTable . s i z e ( ) > 0)
915 return CoordinateTableEntry . ex t r a c t (

g ivableCoordTable ) . getCoordinate ( ) ;
916 else
917 i f ( notGivableCoordTable . s i z e ( ) > 0)
918 return CoordinateTableEntry . ex t r a c t (

notGivableCoordTable ) . getCoordinate ( ) ;
919 else
920 throw new RuntimeException ( ”ArrayList i s

empty , cannot choose any coo rd ina t e ! ” ) ;
921 }
922 // ( end ) coord ina te s e l e c t i o n
923

924 // coord ina te s p l i t
925 private stat ic WGRoutingTableEntry f u l l S p l i t (WGActor

actor , WGCoordinate c , int nodeReal i tyId ,
WGActor askingNode ){

926 i f ( c . ha sSp l i t ( ) ) //bug check ing
927 throw new RuntimeException ( ”Coordinate ” + c .

86



APPENDIX A. W-GRID SIMULATOR CODE 87

getVC ( ) +” has a l ready been s p l i t ” ) ;
928 WGReality nodeReal i ty = acto r . getWGReality (

nodeRea l i tyId ) ;
929 WGRoutingTableEntry r e s u l t = null ;
930 //new coord ina te s ( budd ies )
931 WGCoordinate newC1 = new WGCoordinate (

nodeReal i tyId , c . getVC ( )+”0” , c . getOwner ( ) , c .
getOwner ( ) ) ;

932 WGCoordinate newC2 = new WGCoordinate (
nodeReal i tyId , c . getVC ( )+”1” , c . getOwner ( ) , c .
getOwner ( ) ) ;

933 // d i s t r i b u t i o n o f l o c a t i n g nodes among the
budd ies

934 I t e r a t o r <Str ing> i t = c . getManagingData ( ) .
i t e r a t o r ( ) ;

935 while ( i t . hasNext ( ) ) {
936 St r ing s = i t . next ( ) ;
937 i f (WGTools . maxCommonPref ( s , newC1 . getVC ( ) ) .

l ength ( ) == newC1 . getVC ( ) . l ength ( ) ){
938 newC1 . addToManagingData ( s ) ;
939 i t . remove ( ) ;
940 }
941 else {
942 i f (WGTools . maxCommonPref ( s , newC2 . getVC ( ) ) .

l ength ( ) == newC2 . getVC ( ) . l ength ( ) ) {
943 newC2 . addToManagingData ( s ) ;
944 i t . remove ( ) ;
945 }
946 }
947 }
948 // s e t c as s p l i t coord ina te , //c becomes not

g i v a b l e
949 i f ( ! nodeReal i ty . s e t S p l i t ( c , askingNode ) )
950 throw new RuntimeException ( ”Exception at s p l i t

, cannot s p l i t coo rd ina t e ”+c . getVC ( ) ) ;
951 i f ( c . i sG ivab l e ( ) ){
952 /∗ i f c i s g i v a b l e the s p l i t i s due to an

ove r f l ow
953 add budd ies to node Rea l i t y ( to g i v a b l e coords

l i s t ) ∗/
954 nodeReal i ty . addGivableCoordinate (newC1) ;
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955 nodeReal i ty . addGivableCoordinate (newC2) ;
956 // check i f o ve r f l ow s i t u a t i o n i s recovered on

both budd ies
957 i f (newC1 . getManagingDataSize ( ) > NSParameters

. g e t In s tance ( ) . getBucketS ize ( ) ){
958 WGrid . f u l l S p l i t ( actor , newC1 , nodeReal i tyId ,

null ) ;
959 }
960 i f (newC2 . getManagingDataSize ( ) > NSParameters

. g e t In s tance ( ) . getBucketS ize ( ) ){
961 WGrid . f u l l S p l i t ( actor , newC2 , nodeReal i tyId ,

null ) ;
962 }
963 }
964 else {// e l s e check i f i t i s an ove r f l ow or a new

Coordinate c rea t i on
965 int b i t = WGTools . r e tu rnB i t ( ) ;
966 i f ( askingNode == null ) {// case o f ove r f l ow //

checked : OK
967 i f ( b i t == 0) {
968 nodeReal i ty . addCoordinate (newC1) ;
969 nodeReal i ty . addGivableCoordinate (newC2) ;
970 }
971 else {
972 nodeReal i ty . addGivableCoordinate (newC1) ;
973 nodeReal i ty . addCoordinate (newC2) ;
974 }
975 // check i f o ve r f l ow s i t u a t i o n i s recovered

on both budd ies
976 i f (newC1 . getManagingDataSize ( ) >

NSParameters . g e t In s tance ( ) .
getBucketS ize ( ) )

977 WGrid . f u l l S p l i t ( actor , newC1 ,
nodeReal i tyId , null ) ;

978 i f (newC2 . getManagingDataSize ( ) >
NSParameters . g e t In s tance ( ) .
getBucketS ize ( ) )

979 WGrid . f u l l S p l i t ( actor , newC2 ,
nodeReal i tyId , null ) ;

980 }
981 else {//new coord ina te
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982 WGCoordinate givingCoord , s t i l l Co o r d ;
983 WGReality askingNodeReal i ty = askingNode .

getWGReality ( nodeRea l i tyId ) ;
984 i f ( b i t == 0) {
985 givingCoord = newC1 ;
986 s t i l l Co o r d = newC2 ;
987 }
988 else {
989 s t i l l Co o r d = newC1 ;
990 givingCoord = newC2 ;
991 }
992 givingCoord . setOwner ( askingNode ) ;
993 //add coord ina te to the r e s p e c t i v e node
994 nodeReal i ty . addCoordinate ( s t i l l Co o r d ) ;
995 askingNodeReal i ty . addCoordinate ( g ivingCoord

) ;
996 // update rou t ing t a b l e
997 r e s u l t = new WGRoutingTableEntry ( askingNode

, nodeReal i tyId , g ivingCoord ) ;
998 nodeReal i ty . addToRoutingTable ( r e s u l t ) ;
999 askingNodeReal i ty . addToRoutingTable (new

WGRoutingTableEntry ( actor ,
nodeReal i tyId , s t i l l Co o r d ) ) ;

1000 }
1001 }
1002 nodeReal i ty . checkMaxLengthVC ( ) ;
1003 ac to r . checkWGNodeMaxLengthVC ( ) ;
1004 return r e s u l t ;
1005 }
1006

1007 private stat ic ArrayList<Object> ca lcu la teAvg (
WGActor actor , int nodeReal i tyId , ArrayList<
Double> va lue s ) {

1008 double avg = 0d ;
1009 double myLoad = 0d ;
1010 double load = 0d ;
1011 double value = 0d ;
1012 // Resu l t a r rayL i s t conta ins :
1013 //1) My load
1014 //2) Most loaded node
1015 //3) Avg load
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1016 ArrayList<Object> r e s u l t = new ArrayList<Object
>(3) ;

1017 WGReality nodeReal i ty = acto r . getWGReality (
nodeRea l i tyId ) ;

1018 i f ( NSParameters . g e t In s tance ( ) . useWGLoadBalancing
( ) == NSParameters .WLB NE COORDINATES NUMBER)

1019 value = (double ) nodeReal i ty .
getNotEmptyCoordinatesSize ( ) ;

1020 i f ( NSParameters . g e t In s tance ( ) . useWGLoadBalancing
( ) == NSParameters .WLB COORDINATES NUMBER)

1021 value = (double ) nodeReal i ty .
g e tA l lNotSp l i tCoo rd ina t e sS i z e ( ) ;

1022 i f ( NSParameters . g e t In s tance ( ) . useWGLoadBalancing
( ) == NSParameters .WLB DATA SPACE)

1023 value = nodeReal i ty . getSpacePort ion ( ) ;
1024 // ac tor so f a r i s myLoad
1025 r e s u l t . add ( value ) ;
1026 load += value ;
1027 myLoad = value ;
1028 va lue s . add ( value ) ;
1029 // check each ne igbors , c a l c u l a t e avgLoad and so r t

nodes t h a t have a h i ghe r load than mine
1030 ArrayList<NodeLoad> mostLoaded = new ArrayList<

NodeLoad>() ;
1031 WGReality ne i ghbo rRea l i t y = null ;
1032 for (WGActor n : nodeReal i ty . g e tD i s t inc tNe ighbo r s

( ) ) {
1033 i f ( ! n . i sMobi leNodeAct ive ( ) )
1034 continue ;
1035 ne ighbo rRea l i t y = n . getWGReality ( nodeRea l i tyId

) ;
1036 i f ( ne i ghbo rRea l i t y == null )
1037 continue ;
1038 i f ( NSParameters . g e t In s tance ( ) .

useWGLoadBalancing ( ) == NSParameters .
WLB NE COORDINATES NUMBER)

1039 value = (double ) ne i ghbo rRea l i t y .
getNotEmptyCoordinatesSize ( ) ;

1040 i f ( NSParameters . g e t In s tance ( ) .
useWGLoadBalancing ( ) == NSParameters .
WLB COORDINATES NUMBER)
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1041 value = (double ) ne i ghbo rRea l i t y .
g e tA l lNotSp l i tCoo rd ina t e sS i z e ( ) ;

1042 i f ( NSParameters . g e t In s tance ( ) .
useWGLoadBalancing ( ) == NSParameters .
WLB DATA SPACE)

1043 value = ne ighborRea l i t y . getSpacePort ion ( ) ;
1044 i f ( va lue > myLoad) {
1045 int i = 0 ;
1046 while ( i < mostLoaded . s i z e ( ) && mostLoaded .

get ( i ) . load > value ) {
1047 i++;
1048 }
1049 mostLoaded . add ( i ,new NodeLoad (n , load ) ) ;
1050 }
1051 }
1052 WGrid . checkChildConstraintOnBal (mostLoaded ,

nodeReal i ty ) ;
1053 WGrid . extractMostLoadedNodesl (mostLoaded ) ;
1054 i f ( mostLoaded . s i z e ( ) == 0) {
1055 r e s u l t . add ( null ) ;
1056 }else {
1057 r e s u l t . add ( mostLoaded . get (WGRandom. ge t In s tance

( ) . next Int (mostLoaded . s i z e ( ) ) ) ) ;
1058 }
1059 WGCoordinate coord = null ;
1060 WGActor n = null ;
1061 i f ( ( NodeLoad ) r e s u l t . get (1 ) != null ) {
1062 for (WGCoordinate c : nodeReal i ty .

g e tA l lCoo rd ina t e s ( ) ) {
1063 i f ( c . getNodeFatherId ( ) == ( ( NodeLoad )

r e s u l t . get (1 ) ) . node . getMobileNodeId ( ) )
{

1064 coord = c ;
1065 }
1066 }
1067 i f ( coord != null ) {
1068 St r ing vc = coord . getVC ( ) ;
1069 int i = 0 ;
1070 WGReality nr = nodeReal i ty ;
1071 while ( vc . l ength ( ) > 1 && i < 3) {
1072 while ( coord . getNodeFatherId ( ) == acto r .
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getMobileNodeId ( ) && vc . l ength ( ) >1)
{

1073 vc = vc . sub s t r i ng (0 , vc . l ength ( )−1) ;
1074 }
1075 i f ( vc . l ength ( ) ==1)
1076 break ;
1077 coord = nr . getCoordinateFromVC( vc ) ;
1078 n = coord . getNodeFather ( ) ;
1079 nr = n . getWGReality ( nodeRea l i tyId ) ;
1080 i f ( nr != null ) {
1081 vc = vc . sub s t r i ng (0 , vc . l ength ( )−1) ;
1082 coord = nr . getCoordinateFromVC( vc ) ;
1083 } else
1084 break ;
1085 i++;
1086 }
1087 i f ( i == 3) {
1088 boolean neighbor = fa l se ;
1089 for (WGActor n1 : nodeReal i ty .

g e tD i s t inc tNe ighbo r s ( ) ) {
1090 i f ( n1 . getMobileNodeId ( ) == n .

getMobileNodeId ( ) ) {
1091 neighbor = true ;
1092 break ;
1093 }
1094 }
1095 i f ( ! ne ighbor ) {
1096 i f ( NSParameters . g e t In s tance ( ) .

useWGLoadBalancing ( ) ==
NSParameters .
WLB NE COORDINATES NUMBER)

1097 value = (double ) nr .
getNotEmptyCoordinatesSize ( ) ;

1098 i f ( NSParameters . g e t In s tance ( ) .
useWGLoadBalancing ( ) ==
NSParameters .
WLB COORDINATES NUMBER)

1099 value = (double ) nr .
g e tA l lNotSp l i tCoo rd i na t e sS i z e
( ) ;

1100 i f ( NSParameters . g e t In s tance ( ) .
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useWGLoadBalancing ( ) ==
NSParameters .WLB DATA SPACE)

1101 value = nr . getSpacePort ion ( ) ;
1102 i f ( va lue > 0d) {
1103 load += value ;
1104 va lue s . add ( value ) ;
1105 }
1106 }
1107 }
1108 }
1109 }
1110 avg = ( (double ) load /(double ) va lue s . s i z e ( ) ) ;
1111 r e s u l t . add ( avg ) ;
1112 return r e s u l t ;
1113 }
1114

1115 private stat ic double getNumCoordsSqm ( ArrayList<
Double> values , double avg ) {

1116 double sqm = 0d ;
1117 for ( Double value : va lue s )
1118 sqm += Math . pow( value − avg , 2) ;
1119 sqm = Math . sq r t ( sqm/(double ) va lue s . s i z e ( ) ) ;
1120 return sqm ;
1121 }
1122

1123 /∗mostloaded ho l d s a l l the nodes which have h i ghe r
load than current node ,

1124 ac tor method t runca te the l i s t to the most loaded
one ( s ) ∗/

1125 private stat ic void extractMostLoadedNodesl (
ArrayList<NodeLoad > mostLoaded ) {

1126 double maxLoad = 0d ;
1127 i f ( mostLoaded . s i z e ( ) == 0)
1128 return ;
1129 maxLoad = mostLoaded . get (0 ) . load ;
1130 int i = 1 ;
1131 while ( i < mostLoaded . s i z e ( ) && mostLoaded . get ( i )

. load == maxLoad)
1132 i++;
1133 while ( i < mostLoaded . s i z e ( ) )
1134 mostLoaded . remove ( i ) ;
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1135 }
1136

1137 //Used a d i f f e r e n t name f o r t h i s method s ince java
does not d i s t i n g u i s h between a r ra yL i s t s o f
d i f f e r e n t t ype s

1138 private stat ic void checkChildConstraintOnBal (
ArrayList<NodeLoad > mostLoaded , WGReality
nodeReal i ty ) {

1139 int index = 0 ;
1140 while ( index < mostLoaded . s i z e ( ) ) {
1141 WGReality ne i ghRea l i t y = mostLoaded . get ( index )

. node . getWGReality ( nodeReal i ty ) ;
1142 i f ( ne i ghRea l i t y == null )
1143 continue ;
1144 ArrayList<WGCoordinate> candidateCoord inates =

ne ighRea l i t y . g e tA l lNotSp l i tCoo rd ina t e s ( ) ;
1145 int i = 0 ;
1146 while ( i < candidateCoord inates . s i z e ( ) ) {
1147 for (WGCoordinate c : nodeReal i ty .

g e tA l lCoo rd ina t e s ( ) ) {
1148 i f ( candidateCoord inates . get ( i ) . getVC ( ) .

startsWith ( c . getVC ( ) ) ) {
1149 candidateCoord inates . remove ( i ) ;
1150 i−−;
1151 break ;
1152 }
1153 }
1154 i++;
1155 }
1156 // i f none o f the coord ina te s s a t i s f i e s

c on s t r a i n t take node out from most loaded
array

1157 i f ( candidateCoord inates . s i z e ( ) == 0) {
1158 mostLoaded . remove ( index ) ;
1159 }else
1160 index++;
1161 }
1162 }
1163

1164 public stat ic void sendQuery (WGActor actor , S t r ing
rec ip ientVC ) {
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1165 WGPacket d = new WGPacket(WGPacket .QUERY, actor ,
a c to r . getWGRealit ies ( ) . get (0 ) . getRootId ( ) ,
rec ip ientVC ) ;

1166 r e c e i v e ( actor , d ) ;
1167 return ;
1168 }
1169

1170 public stat ic void r e c e i v e (WGActor actor , WGPacket d
) {

1171 ac to r . incWGReceivedPackets ( ) ;
1172 ArrayList next = WGrid . route ( actor , d ) ;
1173 WGActor nextNode = (WGActor) next . get (0 ) ;
1174 int nextRea l i ty = ( In t eg e r ) next . get (1 ) ;
1175 St r ing nextVC = ( St r ing ) next . get (2 ) ;
1176 int myReality = ( In t eg e r ) next . get (3 ) ;
1177 St r ing myVC = ( St r ing ) next . get (4 ) ;
1178 i f (d . getLastCrossedNodeId ( ) != acto r .

getMobileNodeId ( ) )
1179 d . addToHistory (new WGPacketHistoryEntry( actor ,

myReality , myVC) ) ;
1180 i f (d . getPacketType ( ) == WGPacket .RECOVERY PACKET

) {
1181 i f ( nextNode . getMobileNodeId ( ) == acto r .

getMobileNodeId ( ) ){
1182 for (WGCoordinate c : a c to r . getWGReality (d .

getRout ingRea l i tyId ( ) ) .
g e tSp l i tCoo rd i na t e s ( ) ){

1183 i f ( c . getVC ( ) . equa l s (d . getDestinationVC
( ) . sub s t r i ng (0 , d . getDestinationVC ( )
. l ength ( )−1) ) ){

1184 d . s e tS t a tu s (WGPacket .DELIVERED) ;
1185 d . s e tRec i p i en t Id ( ac to r . getMobileNodeId ( )

) ;
1186 d . handle ( ) ;
1187 return ;
1188 }
1189 }
1190 d . s e tS t a tu s (WGPacket .DROPPED) ;
1191 d . handle ( ) ;
1192 return ;
1193 }
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1194 return WGrid . r e c e i v e ( nextNode , d ) ;
1195 }
1196 i f (d . getPacketType ( ) == WGPacket .DATA INSERTION)

{
1197 i f ( nextNode . getMobileNodeId ( ) == acto r .

getMobileNodeId ( ) ){
1198 WGCoordinate targetCoord = acto r .

getWGReality ( nextRea l i ty ) .
getCoordinateFromVC(nextVC) ;

1199 i f ( targetCoord == null | | targetCoord .
ha sSp l i t ( ) | | ! d . getDestinationVC ( ) .
startsWith ( targetCoord . getVC ( ) ) ){

1200 d . s e tS t a tu s (WGPacket .DROPPED) ;
1201 d . handle ( ) ;
1202 return ;
1203 }
1204 else {
1205 d . s e tS t a tu s (WGPacket .DELIVERED) ;
1206 d . s e tRec i p i en t Id ( ac to r . getMobileNodeId ( ) ) ;
1207 targetCoord . addToManagingData (d .

getDestinationVC ( ) ) ;
1208 i f ( targetCoord . getManagingDataSize ( ) >

NSParameters . g e t In s tance ( ) .
getBucketS ize ( ) && NSParameters .
g e t In s tance ( ) . useWGLoadBalancing ( ) !=
NSParameters .WLB OFF){

1209 WGrid . f u l l S p l i t ( actor , targetCoord ,
nextReal i ty , null ) ;

1210 }
1211 d . handle ( ) ;
1212 return ;
1213 }
1214 return WGrid . r e c e i v e ( nextNode , d ) ;
1215 }
1216 i f (d . getPacketType ( ) == WGPacket .QUERY){
1217 St r ing coord = ”” ;
1218 //Real d i s t an c e (RD)
1219 i f (d . g e tH i s t o r yS i z e ( ) > 1){
1220 int as = 0 ;
1221 f loat to tNear ing = avgNearing ∗ numNearing ;
1222 for ( int i = 0 ; i < d . g e tH i s t o r yS i z e ( ) −1;
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i++){
1223 WGPacketHistoryEntry p1 = d .

getHistoryEntry ( i ) ;
1224 WGPacketHistoryEntry p2 = d .

getHistoryEntry ( i +1) ;
1225 i f ( p1 . g e tRea l i t y Id ( ) == p2 . ge tRea l i t y Id

( ) ) {
1226 as = WGTools . WGDistance( p1 .

getCoordinate ( ) , p2 . getCoordinate
( ) ) ;

1227 to tNear ing += as ;
1228 numNearing++;
1229 }
1230 }
1231 avgNearing = totNear ing / numNearing ;
1232 }
1233 // l o c a l l e a rn i n g (LL)
1234 int d i s tance = ( In t eg e r ) next . get (5 ) ;
1235 boolean l o c a l = fa l se ;
1236 WGActor tempNext = null ;
1237 int minDistance = 0 x 7 f f f f f f f ;
1238 int tempDistance = 0 x 7 f f f f f f f ;
1239 for (WGActor n : a c to r . getNeighbors ( ) ){
1240 i f ( ! a c to r . i sMobi leNodeAct ive ( ) )
1241 continue ;
1242 i f (n . getMobileNodeId ( ) == nextNode .

getMobileNodeId ( ) )
1243 continue ;
1244 WGReality nr = n . getWGReality (d .

getRout ingRea l i tyId ( ) ) ;
1245 for (WGRoutingTableEntry r t e : nr .

getRoutingTable ( ) ) {
1246 i f ( ! r t e . getReferredNode ( ) .

i sMobi leNodeAct ive ( ) )
1247 continue ;
1248 i f ( r t e . getReferredNode ( ) . hasNeighbor (

nextNode . getMobileNodeId ( ) ) )
1249 continue ;
1250 tempDistance = WGTools . WGDistance( r t e .

getVC ( ) , d . getDestinationVC ( ) ) ;
1251 i f ( tempDistance < di stance −1 &&
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tempDistance < minDistance ) {
1252 l o c a l = true ;
1253 minDistance = tempDistance ;
1254 tempNext = n ;
1255 coord = r t e . getVC ( ) ;
1256 }
1257 i f ( r t e . getNBit ( ) > 0) {
1258 int i = r t e . getNBit ( ) ;
1259 while ( i < r t e . getVC ( ) . l ength ( ) ){
1260 // S t r ing s = r t e . getVC () . s u b s t r i n g

(0 , r t e . getNBit ( ) ) ;
1261 tempDistance = WGTools . WGDistance(

r t e . getVC ( ) . sub s t r i ng (0 , r t e .
getNBit ( ) ) ,d . getDestinationVC
( ) ) +1;

1262 i f ( tempDistance < di stance −1 &&
tempDistance < minDistance ) {

1263 l o c a l = true ;
1264 minDistance = tempDistance ;
1265 tempNext = n ;
1266 coord = r t e . getVC ( ) ;
1267 }
1268 i++;
1269 }
1270 }
1271 }
1272 }
1273 i f ( l o c a l ){// i f a l o c a l has been found s t o r e

i t
1274 nextNode = tempNext ;
1275 nextVC = coord ;
1276 }
1277 i f ( nextNode . getMobileNodeId ( ) == acto r .

getMobileNodeId ( ) ){
1278 WGCoordinate targetCoord = acto r .

getWGReality ( nextRea l i ty ) .
getCoordinateFromVC(nextVC) ;

1279 i f ( targetCoord == null | | nextRea l i ty ==−1
| | ! d . getDestinationVC ( ) . startsWith (

nextVC) | | d . getDestinationVC ( ) .
startsWith (nextVC)&&targetCoord .

98



APPENDIX A. W-GRID SIMULATOR CODE 99

ha sSp l i t ( ) ) {
1280 d . s e tS t a tu s (WGPacket .DROPPED) ;
1281 d . handle ( ) ;
1282 return ;
1283 }
1284 else {
1285 i f ( targetCoord . hasWGData(d .

getDestinationVC ( ) ) ){
1286 d . s e tS t a tu s (WGPacket .DELIVERED) ;
1287 d . s e tRec i p i en t Id ( ac to r .

getMobileNodeId ( ) ) ;
1288 }
1289 else
1290 d . s e tS t a tu s (WGPacket .DROPPED) ;
1291 d . handle ( ) ;
1292 return ;
1293 }
1294 }
1295 return WGrid . r e c e i v e ( nextNode , d ) ;
1296 }
1297 }
1298

1299 //used during a dataPacket rou t ing to f i n d the next
node i f no l e a rn in g can be used

1300 private stat ic ArrayList route (WGActor actor ,
WGPacket d){

1301 // r e s u l t conta ins :
1302 // (0) b e s t succe s so r node
1303 // (1) r e a l i t y o f c l o s e s t VC to d e s t i n a t i o n
1304 // (2) coord o f c l o s e s t VC to d e s t i n a t i o n
1305 // (3) r e a l i t y o f my c l o s e s t VC to d e s t i n a t i o n
1306 // (4) coord o f my c l o s e s t VC to d e s t i n a t i o n
1307 // (5) l o g i c a l d i s t an c e
1308 ArrayList<Object> r e s u l t = new ArrayList<Object

>(5) ;
1309 WGRoutingTableEntry next = null ; //new

WGRoutingTableEntry ( actor , nodeRea l i ty Id , vc ) ;
1310 int myDistance = 0 x f f f f f f f ;
1311 int myRealityId = −1;
1312 int minDistance = myDistance ;
1313 St r ing myVC = ”” ;
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1314 i f (d . getRecipientVCs ( ) != null && d .
getRecipientVCs ( ) . s i z e ( ) >0){

1315 // coord ina te s are known
1316 for (WGReality r : a c to r . getWGRealit ies ( ) ) {
1317 for (WGCoordinate c : r . g e tA l lCoo rd ina t e s ( ) )

{
1318 i f (d . getRav ( r . getRootId ( ) ) != null ){
1319 i f (d . getRavD( r . getRootId ( ) ) <=

WGTools . WGDistance( c . getVC ( ) , d .
getDestinationVC ( ) ) )

1320 continue ;
1321 }
1322 // f i n d my vc with max common p r e f i x wi th

d e s t i n a t i o n
1323 for (WGRoutingTableEntry r r t e : d .

getRecipientVCs ( ) ) {
1324 i f ( r r t e . g e tRea l i t y Id ( ) != r .

getRootId ( ) )
1325 continue ;
1326 int tempDistance = WGTools . WGDistance

( c . getVC ( ) , r r t e . getVC ( ) ) ;
1327 i f ( tempDistance < myDistance ) {
1328 myDistance = tempDistance ;
1329 myRealityId = r . getRootId ( ) ;
1330 myVC = c . getVC ( ) ;
1331 }
1332 }
1333 }
1334 }
1335 minDistance = myDistance ;
1336 for (WGReality r : a c to r . getWGRealit ies ( ) ){
1337 for (WGRoutingTableEntry r t e : r .

getRoutingTable ( ) ) {
1338 i f (d . getRav ( r . getRootId ( ) ) != null ){
1339 i f (d . getRavD( r . getRootId ( ) ) <=

WGTools . WGDistance( r t e . getVC ( ) , d
. getDestinationVC ( ) ) )

1340 continue ;
1341 }
1342 i f ( ! r t e . getReferredNode ( ) .

i sMobi leNodeAct ive ( ) )
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1343 continue ;
1344 for (WGRoutingTableEntry r r t e : d .

getRecipientVCs ( ) ){
1345 i f ( r r t e . g e tRea l i t y Id ( ) != r .

getRootId ( ) )
1346 continue ;
1347 int tempDistance = WGTools . WGDistance

( r t e . getVC ( ) , r r t e . getVC ( ) ) ;
1348 i f ( tempDistance < minDistance ) {
1349 minDistance = tempDistance ;
1350 next = r t e ;
1351 }
1352 }
1353 }
1354 }
1355 }
1356 else { // coord ina te s are unknown , must t r a v e l

toward dest inat ionVC
1357 int r ou t i ngRea l i t y Id = d . getRout ingRea l i tyId ( )

;
1358 i f ( r ou t i ngRea l i t y Id != −1) {
1359 WGReality nodeReal i ty = acto r . getWGReality (

r ou t i ngRea l i t y Id ) ;
1360 for (WGCoordinate c : nodeReal i ty .

g e tA l lCoo rd ina t e s ( ) ){
1361 // f i n d my vc with max common p r e f i x wi th

d e s t i n a t i o n
1362 i f (d . getPref ixToAvoid ( ) . startsWith ( ”∗” )

&& c . getVC ( ) . startsWith (d .
getPref ixToAvoid ( ) ) )

1363 continue ;
1364 int tempDistance = WGTools . WGDistance( c .

getVC ( ) , d . getDestinationVC ( ) ) ;
1365 i f ( tempDistance < myDistance ) {
1366 myDistance = tempDistance ;
1367 myVC = c . getVC ( ) ;
1368 myRealityId = rou t i ngRea l i t y Id ;
1369 }
1370 }
1371 minDistance = myDistance ;
1372 for (WGRoutingTableEntry r t e : nodeReal i ty .
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getRoutingTable ( ) ) {
1373 /∗ I t i s neccessary to work , i n f a c t on ly

the node t ha t s t a r t e d
1374 the beaconing has c e r t a i n l y ad jus t ed i t s

r . t . . I t s ne i ghbor s might have not
. . . ∗/

1375 i f ( ! r t e . getReferredNode ( ) .
i sMobi leNodeAct ive ( ) )

1376 continue ;
1377 i f (d . getPref ixToAvoid ( ) . startsWith ( ”∗” )

&& r t e . getVC ( ) . startsWith (d .
getPref ixToAvoid ( ) ) )

1378 continue ;
1379 i f (d . getNodeToAvoid ( ) == r t e .

getReferredNodeId ( ) )
1380 continue ;
1381

1382 int tempDistance = WGTools . WGDistance(
r t e . getVC ( ) ,d . getDestinationVC ( ) ) ;

1383 i f ( tempDistance < minDistance ) {
1384 minDistance = tempDistance ;
1385 next = r t e ;
1386 }
1387 i f ( r t e . getNBit ( ) > 0) {
1388 int i = r t e . getNBit ( ) ;
1389 while ( i < r t e . getVC ( ) . l ength ( ) ){
1390 // S t r ing s = r t e . getVC () . s u b s t r i n g

(0 , r t e . getNBit ( ) ) ;
1391 tempDistance = WGTools . WGDistance(

r t e . getVC ( ) . sub s t r i ng (0 , r t e .
getNBit ( ) ) ,d . getDestinationVC
( ) ) +1;

1392 i f ( tempDistance < minDistance ) {
1393 minDistance = tempDistance ;
1394 next = r t e ;
1395 }
1396 i++;
1397 }
1398 }
1399 }
1400 }
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1401 else {
1402 for (WGReality r : a c to r . getWGRealit ies ( ) )

{
1403 for (WGCoordinate c : r . g e tA l lCoo rd ina t e s

( ) ) {
1404 i f (d . getRav ( r . getRootId ( ) ) != null ) {
1405 i f (d . getRavD ( r . getRootId ( ) ) <=

WGTools . WGDistance( c . getVC ( ) ,
d . getDestinationVC ( ) ) )

1406 continue ;
1407 }
1408 // f i n d my vc with max common p r e f i x wi th

d e s t i n a t i o n
1409 int tempDistance = WGTools . WGDistance

( c . getVC ( ) , d . getDestinationVC ( ) )
;

1410 i f ( tempDistance < myDistance ) {
1411 myDistance = tempDistance ;
1412 myRealityId = r . getRootId ( ) ;
1413 myVC = c . getVC ( ) ;
1414 }
1415 }
1416 }
1417 minDistance = myDistance ;
1418 for (WGReality r : a c to r . getWGRealit ies ( ) ){
1419 for (WGRoutingTableEntry r t e : r .

getRoutingTable ( ) ) {
1420 i f (d . getRav ( r . getRootId ( ) ) != null ) {
1421 i f (d . getRavD ( r . getRootId ( ) ) <=

WGTools . WGDistance( r t e . getVC ( )
, d . getDestinationVC ( ) ) )

1422 continue ;
1423 }
1424 i f ( ! r t e . getReferredNode ( ) .

i sMobi leNodeAct ive ( ) )
1425 continue ;
1426 int tempDistance = WGTools . WGDistance

( r t e . getVC ( ) ,d . getDestinationVC ( )
) ;

1427 i f ( tempDistance < minDistance ) {
1428 minDistance = tempDistance ;
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1429 next = r t e ;
1430 }
1431 }
1432 }
1433 }
1434 }
1435 i f ( minDistance < myDistance ) {
1436 r e s u l t . add ( next . getReferredNode ( ) ) ;
1437 r e s u l t . add ( next . g e tRea l i t y Id ( ) ) ;
1438 r e s u l t . add ( next . getVC ( ) ) ;
1439 r e s u l t . add ( myRealityId ) ;
1440 r e s u l t . add (myVC) ;
1441 r e s u l t . add ( minDistance ) ;
1442 }
1443 else {
1444 r e s u l t . add ( ac to r ) ;
1445 r e s u l t . add ( myRealityId ) ;
1446 r e s u l t . add (myVC) ;
1447 r e s u l t . add ( myRealityId ) ;
1448 r e s u l t . add (myVC) ;
1449 r e s u l t . add ( myDistance ) ;
1450 }
1451 return r e s u l t ;
1452 }
1453

1454 // learned rou t ing t a b l e
1455 public stat ic boolean hasNeighbor (WGActor actor , int

n) {
1456 for (WGReality r : a c to r . getWGRealit ies ( ) ) {
1457 for (WGRoutingTableEntry r t e : r .

getRoutingTable ( ) ) {
1458 i f ( r t e . getReferredNodeId ( ) == n)
1459 return true ;
1460 }
1461 }
1462 return fa l se ;
1463 }
1464

1465 }
1466

1467 // Inner c l a s s used to e va l ua t e the coord ina te s among
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which node must choose one
1468 class CoordinateTableEntry{
1469 WGCoordinate coo rd ina t e ;
1470 double value ;
1471

1472 CoordinateTableEntry (WGCoordinate c ){
1473 coo rd ina t e = c ;
1474 value = 0d ;
1475 }
1476 CoordinateTableEntry ( CoordinateTableEntry c t e ){
1477 coo rd ina t e = cte . getCoordinate ( ) ;
1478 value = cte . getValue ( ) ;
1479 }
1480 public WGCoordinate getCoordinate ( ) {
1481 return coo rd ina t e ;
1482 }
1483 public double getValue ( ) {
1484 return value ;
1485 }
1486 public void setValue (double v ) {
1487 value += v ;
1488 }
1489 stat ic CoordinateTableEntry ex t r a c t ( ArrayList<

CoordinateTableEntry> coordTable ) {
1490 for ( int k = 1 ; k < coordTable . s i z e ( ) ; k++)
1491 for ( int i = 0 ; i < coordTable . s i z e ( )−k ; i++){
1492 CoordinateTableEntry cte1 = coordTable . get (

i ) ;
1493 CoordinateTableEntry cte2 = coordTable . get (

i +1) ;
1494 i f ( cte1 . getValue ( ) > cte2 . getValue ( ) ) {
1495 CoordinateTableEntry tempCte = new

CoordinateTableEntry ( cte1 ) ;
1496 coordTable . s e t ( i , c te2 ) ;
1497 coordTable . s e t ( i +1,tempCte ) ;
1498 }
1499 }
1500 ArrayList<CoordinateTableEntry> r e s u l t = new

ArrayList<CoordinateTableEntry >() ;
1501 double maxValue = coordTable . get ( coordTable . s i z e

( )−1) . getValue ( ) ;
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1502 r e s u l t . add ( coordTable . get ( coordTable . s i z e ( )−1) ) ;
1503 int i = coordTable . s i z e ( ) −2;
1504 while ( i >0 && coordTable . get ( i ) . getValue ( ) ==

maxValue ) {
1505 r e s u l t . add ( coordTable . get ( i ) ) ;
1506 i−−;
1507 }
1508 return r e s u l t . get (WGRandom. ge t In s tance ( ) . next Int (

r e s u l t . s i z e ( ) ) ) ;
1509 }
1510 }
1511

1512 // Inner c l a s s NodeLoad
1513 class NodeLoad{
1514 NodeLoad (WGActor n , double l ) {
1515 node = n ;
1516 load = l ;
1517 }
1518 WGActor node ;
1519 double load ;
1520 }
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Class WGtools

1550 public class WGTools{
1551 /∗∗
1552 ∗ Retuns the d i s t an c e between two W−g r i d coord ina te s
1553 ∗ @param coord1 The f i r s t coord ina te .
1554 ∗ @param coord2 The second coord ina te .
1555 ∗ @return The d i s t an c e between the two W−g r i d

coord ina te s .
1556 ∗/
1557

1558 public stat ic int WGDistance( St r ing coord1 , S t r ing
coord2 ) {

1559 int mcpLength = WGTools . maxCommonPref ( coord1 ,
coord2 ) . l ength ( ) ;

1560 return ( coord1 . l ength ( )−mcpLength ) + ( coord2 .
l ength ( )−mcpLength ) ;

1561 }// d i s t an c e
1562

1563 public stat ic St r ing findVC ( int x , int y , int maxX,
int maxY, int l ength ) {

1564 St r ing vc = ”∗” ;
1565 St r ing sx = ”” , sy = ”” ;
1566 int l x = length / 2 + length % 2 ;
1567 int l y = length / 2 ;
1568 int powX = ( int )Math . pow(2 , l x ) ;
1569 int powY = ( int )Math . pow(2 , l y ) ;
1570 int i = ( int ) ( ( ( double ) x / maxX) ∗ powX) ;
1571 do{
1572 sx = i % 2 + sx ;
1573 i = i / 2 ;
1574 }
1575 while ( i != 0) ;
1576 while ( sx . l ength ( )<l x )
1577 sx = ”0” + sx ;
1578 int j = ( int ) ( ( ( double ) y / maxY)∗powY) ;
1579 do{
1580 sy = j % 2 + sy ;
1581 j = j / 2 ;
1582 }
1583 while ( j != 0) ;
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1584 while ( sy . l ength ( )<l y )
1585 sy = ”0” + sy ;
1586 while ( sx . l ength ( ) >0){
1587 vc += sx . charAt (0 ) ;
1588 sx = sx . sub s t r i ng (1 ) ;
1589 i f ( sy . l ength ( ) > 0){
1590 pi += sy . charAt (0 ) ;
1591 sy = sy . sub s t r i ng (1 ) ;
1592 }
1593 }
1594 return vc ;
1595 }
1596

1597 }
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