
ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

DOTTORATO DI RICERCA IN

Ingegneria Elettronica, Telecomunicazioni e
Tecnologie dell’Informazione

Ciclo: XXXII

Settore Concorsuale: 09 / F2

Settore Scientifico Disciplinare: ING-INF / 03

ARCHITECTING A
BLOCKCHAIN-BASED
FRAMEWORK FOR THE
INTERNET OF THINGS

Presentata da:
Muhammad Salek Ali

Supervisore:
Fabio Antonelli

Co-Supervisore:
Prof. Massimo Vecchio

Coordinatore Dottorato:
Prof.ssa Alessandra

Costanzo

Esame finale anno 2020

http://www.unibo.it
https://www.unibo.it/sitoweb/muhammadsalek.ali2/
https://create-net.fbk.eu/people/detail/fabio-antonelli/
https://scholar.google.com/citations?user=trvIsO8AAAAJ&hl=en
https://www.unibo.it/sitoweb/alessandra.costanzo/en
https://www.unibo.it/sitoweb/alessandra.costanzo/en

iii

“... O my Lord! Increase me in knowledge.”

(Quran 20:114)

v

Dedicated to my father.

vii

Abstract
Architecting a Blockchain-Based Framework for the

Internet of Things

by Muhammad Salek Ali

While the Internet of Things (IoT) continues to connect an exponentially in-
creasing number of devices to the Internet, handling massive amounts of
sensitive data economically and securely remains a challenge. Current IoT
solutions are mostly based on centralized infrastructures, which necessitate
high-end servers for handling and transferring data. Centralized solutions
incur high costs associated to maintaining centralized servers, and do not
provide built-in guarantees against security threats and trust issues. There-
fore, it is an essential research problem to mitigate the aforementioned prob-
lems by developing new methods for IoT decentralisation.

In recent years, blockchain technology, the underlying technology of Bitcoin,
has attracted research interest as the potential missing link towards build-
ing a truly decentralized, trustless and secure environment for the IoT. Nev-
ertheless, employing blockchain in the IoT has significant issues and chal-
lenges. While designing blockchain-based solutions, one must contend with
an auditability/privacy trade-off. Blockchains inherently provide a publicly
verifiable record of all transactions that occur in a network, which can be a
hindrance to user privacy, especially in IoT applications. Meanwhile, trans-
actions in blockchain networks are finalized only after achieving algorithmic
consensus among blockchain peers. With the high volume of data generation
events taking place, and the latency introduced through consensus mecha-
nisms, blockchains cannot scale up to meet the requirements of the IoT.

This thesis presents the design and implementation of a blockchain-based
decentralized IoT framework that can leverage the inherent security char-
acteristics of blockchains, while addressing the challenges associated with
developing such a framework. This decentralized IoT framework aims to
employ blockchains in combination with other peer-to-peer mechanisms to
provide: access control; secure IoT data transfer; peer-to-peer data-sharing
business models; and secure end-to-end IoT communications, without de-
pending upon a centralized intermediary for authentication or data han-
dling. This framework uses a multi-tiered blockchain architecture with a
control-plane/data-plane split, in that the bulk data is transferred through
peer-to-peer data transfer mechanisms, and blockchains are used to enforce
terms and conditions and store relevant timestamped metadata. Implemen-
tations of the blockchain-based framework have been presented in a multi-
tude of use-cases, to observe the framework’s viability and adaptability in
real-world scenarios. In its agricultural use-case, we learned which consen-
sus mechanisms would be better suited for the multiple blockchain tiers. We

viii

also learned how the framework can be used to enable traceability in agri-
cultural supply chains, and to foster cooperation among agricultural farms
to pump groundwater in a sustainable fashion.

We applied the blockchain-based framework in two use-cases that provide
monetary services in exchange for IoT data. We demonstrated the malleabil-
ity of the framework in multiple e-business models, and through our per-
formance analysis we highlighted the feasibility of users to engage with the
framework. Finally, we implemented a modified version of the framework
to a remote health monitoring use-case to demonstrate the capability of the
framework in securing end-to-end IoT data communications. With all the
potential applications of the blockchain-based framework within the IoT, this
thesis takes a step towards the goal of a truly decentralized IoT.

ix

Acknowledgements
All my praise is to the Almighty, who has given me good fortune and has
shown me far more kindness than I deserve. During my time as a PhD can-
didate, I have travelled far and wide, and have had experiences I will cherish
for all my days to come. I have developed a fondness for the city of Trento,
its picturesque scenery, its mountains, lakes and rivers. Though I had some
growing pains getting accustomed to some of the paperwork involved in liv-
ing there, the time I spent in Trento will remain with me as nothing but happy
memories.

I thank my advisor, Fabio Antonelli, for the freedom he gave me to conduct
my research work in the direction I wanted. Conversely, I want to thank my
co-advisor Massimo Vecchio, for always pointing me in the right direction,
for helping me find my niche, and for helping me consolidate the theme of
my PhD research. This Yin-Yang in supervision has helped me grow in my
capacity as an engineer and researcher.

I thank my collaborators and colleagues at CREATE-NET, FBK. Working with
you all has been a privilege and I hope we can continue our collaboration. I
am thankful to my dear friends during this time, Koustabh, Nicola, Abdul-
lah, Waqas, Husein, and the Friday prayer group. My friends have all made
my time in Trento truly memorable. My best friend of all, Ahmad Katal may
have been oceans away from me during this time, but thankfully our friend-
ship has pulled me from the brink multiple times.

I thank Salil Kanhere, for hosting me at UNSW, Sydney, as a visiting re-
searcher, and to the blockchain research group at UNSW. This was my first
time in Australia, and the entire group made me feel very welcomed. I truly
appreciate the collaborative energy exuded by the group, especially Guntur,
my collaborator in the remote health monitoring project.

Now, my family. I thank my wife, in all honesty, for her patience in dealing
with me during this time. She has helped me cope with my anxieties and has
provided me support in times when I felt at my lowest. I hope I prove to be
a good husband, and a good father. I thank my brothers for our unbreakable
bond, us three together. Saleh brings me pride with his professionalism, and
has never yet failed to make me laugh. Saad is my shining pride, and my
close confidant.

I am profoundly thankful to my parents, for all that they have done to raise
me, to cultivate my curiosity, and to make me capable of taking on this jour-
ney. I thank my mother for her unquestioning support and for always being
by my side, no matter how difficult I may be as a child. You deserve the
world. I thank my father for his untiring work ethic, the sweat on his brow
and his fortitude in the face of all the challenges he has faced in life. I cannot
pay him back for all that he has done for me, but I will strive to make his
efforts worthwhile. This work is dedicated to his name: Sir Muhammad Ali.

Thank you.

x

xi

Contents

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 "Trust" in Traditional IoT Architectures 1
1.2 Blockchains and Decentralized Services 2
1.3 A Blockchain-Based Framework for the IoT 4
1.4 Contributions . 5

I Blockchain-IoT Concepts 7

2 Blockchain Working Principles 9
2.1 Blockchain Structure . 10
2.2 Transactions and Digital Signatures 11
2.3 Smart Contracts . 12
2.4 Consensus Algorithms . 13

2.4.1 Permissionless Blockchains 14
Proof of Work . 15
Proof of Stake . 16
Proof of X . 17

2.4.2 Permissioned Blockchains 18
Practical Byzantine Fault Tolerance 18
Tendermint . 19
Federated BFT . 19

2.4.3 Performance and Scalability in Consensus Algorithms 20

3 The Blockchain-IoT Convergence 21
3.1 Issues and Challenges In the IoT 21
3.2 Decentralizing the IoT through Blockchains 23
3.3 Integration Schemes for Blockchains and IoT 26
3.4 Related Work . 30

3.4.1 Privacy in IoT . 30
3.4.2 Security in IoT via Blockchains 33

Providing Access Control Through Blockchains 34
Maintaining Data Integrity Through Blockchains . . . 34
Ensuring Confidentiality Through Blockchains 35
Improving IoT Availability With Blockchains 36

xii

3.4.3 ID Management . 36
3.4.4 IoT Data Management 38

II The Proposed Blockchain-Based IoT Framework 41

4 Designing the Blockchain-Based IoT Framework 43
4.1 Architecture . 45

4.1.1 Core Components of the Blockchain-IoT Framework . 45
4.1.2 Tiered Blockchain Architecture 47

The Edge-Tier Blockchain 48
The Core-Tier Blockchain 50

4.2 Entities Involved . 51
4.3 Core-Tier and Edge-Tier Smart Contracts for Access Control . 53
4.4 Consensus Algorithms for the Core-Tier and Edge-Tier 54
4.5 Technical Challenges Addressed by Proposed Framework . . 56

4.5.1 Decentralized Access Control for IoT Resources 56
4.5.2 Innovative IoT-Based Business Models 57
4.5.3 Scalable Deployments for the IoT 57
4.5.4 Securing the IoT Edge 58

4.6 Use-Case: Smart Agriculture 58
4.6.1 Traceability in Agri-Food Supply Chains 58
4.6.2 Sustainability in Agricultural Groundwater Irrigation . 61

4.7 Summary . 63

5 Decentralized IoT Data Transfer And Monetization Services 65
5.1 Decentralized IoT Data Marketplace 66

5.1.1 Edge-tier Privileges Smart Contract 68
5.1.2 Core-Tier Register Contract 68
5.1.3 Core-Tier Marketplace Contracts 69

5.2 Blockchain-Based Connected Vehicle Insurance 71
5.2.1 Edge-Tier Blockchains for Data Integrity 72
5.2.2 Functions at the Core-Tier Blockchain 73

5.3 Security Analysis . 76
5.3.1 Security Considerations and Analysis 76

Confidentiality . 76
Integrity . 76
Availability . 77

5.3.2 Threat Model . 77
Scenario 1: Data modification in edge-tier blockchains 77
Scenario 2: Sniffing data sent from an edge-tier block-

chain . 78
Scenario 3: Launching a Denial-of-Service (DoS) attack

on the core-tier blockchain 78
Scenario 4: Launching a Denial-of-Service (DoS) attack

on an edge-tier blockchain through a corrupted
device: . 78

5.4 Performance Analysis . 79

xiii

5.4.1 Hardware and Software Used 81
5.4.2 Computational Overhead 82
5.4.3 Transaction Processing Speed 82
5.4.4 Network Overhead . 82
5.4.5 Transaction fees . 84

5.5 Summary . 85

6 Secure and Privacy-Preserving End-to-End IoT Communications 87
6.0.1 Tor Network . 88

6.1 Architecture of the RHM System 89
Privacy and scalability benefits 91

6.2 Remote Health Monitoring Use-Cases 91
6.3 Security Analysis . 94

Scenario 1: Compromised .onion Addresses 94
Scenario 2: Launching a Denial-of-Service (DoS) Attack

on the Remote Healthcare Blockchain 94
Scenario 3: Sniffing Data Sent from a Tor Exit Relay . . 94
Scenario 4: Sniffing Data Transfer Parameters from the

Doctor’s Smart Contract 95
Scenario 5: Impersonators and Malpractitioners in the

Hospital’s Smart Contract 95
6.4 Performance Analysis . 95

6.4.1 Computational Overhead 97
6.4.2 Helthcare Data Propagation Time 97

6.5 Summary . 98

III Conclusions and Future Work 99

7 Conclusions 101

8 Future Work 103

A Core-Tier Smart Contracts 105
A.1 Blockchain-Based Connected Vehicle Insurance 105
A.2 Decentralized IoT Data Marketplace - Snippet 108

Bibliography 111

xv

List of Figures

2.1 Graphical representation of the blockchain. 10
2.2 Block header including Merkle tree of transactions 11
2.3 Adjustment of Difficulty Level in the Bitcoin Blockchain . . . 15

3.1 Blockchain integration schemes for the IoT. All arrows indicate
interactions. 29

3.2 Traditional Security Mechanism Architecture in IoT. 33

4.1 Traditional centralized architecture of edge computing IoT. . . 44
4.2 The two-tiered public/private blockchain architecture. 49
4.3 Entities involved in the architecture of the proposed framework. 52
4.4 Block processing time in a privately deployed Ethereum block-

chain. 55
4.5 Despite high transaction throughput in Tendermint, there is an

observable upper limit to the number of validators that can be
accommodated [148]. 56

4.6 Simplified version of the Agri-Food supply chain management
process. 59

4.7 Architecture of the edge-tier solution. Here, the blockchain
itself is backbone of the entire solution instead of a cloud storage. 60

4.8 Groundwater pumping game without cooperation regulation
and with cooperation regulation. 62

4.9 The multi-tiered blockchain architecture, with the core-tier block-
chain for cooperative groundwater pumping. 63

5.1 Components of the proposed framework, as they are used in
the IoT data marketplace use case. Here, IBGW represents the
seller, while the requester is the buyer. 67

5.2 Sequence diagram of a buyer requesting data and a seller ful-
filling the request. All interactions with the smart contract rep-
resent transactions. Dashed arrows represent interactions that
are instantaneous and free of charge. 70

5.3 Components of the proposed framework, as they appear in the
connected vehicle insurance use case. 71

5.4 Sequence of functions at the core-tier blockchain. All interac-
tions with the smart contract represent transactions. Dashed
arrows represent getter functions with no fees. 75

5.5 The Ethereum Rinkeby dashboard. 80
5.6 Testbed used for conducting the performance analysis. 81

xvi

5.7 Transaction finality times in (a) making a sale in the data mar-
ketplace use-case, (b) updating insurance premium, and (c)
processing an insurance claim in the vehicle insurance use-case. 83

5.8 Network traffic overhead generated by using Metamask on
Chrome, Geth, and with private blockchain hash storage in
BigchainDB. 83

6.1 The proposed blockchain-based RHM architecture. 90
6.2 Sequence diagram of a remote health-monitoring instance, where

a patient registers with the doctor and avails remote health-
monitoring services. All interactions with the smart contract
represent transactions. Dashed arrows represent off-chain in-
teractions over Tor hidden services. 92

6.3 Message delivery times when delivering remote health moni-
toring data from Sydney to Frankfurt. 97

6.4 Message delivery times when delivering remote health moni-
toring data from Sydney to Frankfurt. 98

xvii

List of Tables

3.1 Node Types in Blockchain Networks 26

4.1 Performance in terms of latency, network traffic, and CPU load. 61

5.1 Functions in the Edge-Tier Privileges Contract. 69
5.2 Functions written in the Register Contract. 69
5.3 Functions written in the Marketplace Contract. 69
5.4 Functions of the Connected-Vehicle Insurance Smart Contract 73
5.5 Parameters for evaluating the performance of the proposed

framework in two use-cases. 79
5.6 Gas usage and transaction fees for executing functions in the

data marketplace smart contract. 85
5.7 Gas usage and transaction fees for executing functions in the

vehicle insurance smart contract. 85

1

Chapter 1

Introduction

The ‘Internet of Things’ (IoT), as defined by the IEEE IoT Initiative is an "ap-
plication domain that integrates different technological and social fields" [1].
The IoT is made up of internetworked objects which collect sensory data
and automate various tasks within localized systems, as well as in large
global systems, which comprise geographically distributed subsystems. The
IoT has found its applications within various segments of the industry, and
through the introduction of wearable devices, expanding Internet access and
the affordability of embedded computers, the IoT is steadily growing world-
wide [2].

In current IoT (and the Internet in general) architectures, users implicitly
trust third party entities and hidden services for handling data collected by
IoT devices, and for issuing security certificates. Over the Internet during
the last decade, a shift has occurred from local desktop applications to re-
mote web services which store data remotely. Indeed, many security threats
have emerged that seek to exploit and compromise these centralized points
of trust [3]. These attacks were seen not only in the IoT through botnets [4,
5], but also the Internet at large through adversarial attacks on centralized
servers [6]. The data collected by IoT devices contains confidential and pri-
vate information, therefore there are acute privacy implications in the event
of a security leak within centralized services.

1.1 "Trust" in Traditional IoT Architectures
"The City’s central computer told you? R2-D2, you know better than to trust a strange computer."

C3PO - The Empire Strikes Back, 1980

In traditionally centralized IoT infrastructures, all IoT data collected is up-
loaded to the cloud, and applications hosted on the cloud process the data
and send commands back to IoT devices. Subsequently, this drives up the
need for high-performance networking resources, which may still not keep
up with the increasing volume of data, and prove to be a bottleneck for the
growth of the IoT.

Existing centralized infrastructures necessitate the maintenance of high-end
servers, under the control of third-party entities. In order to avail services

2 Chapter 1. Introduction

over centralized network architectures, IoT users are made to trust third-
party entities to handle their data, and are forced to risk their privacy being
compromised. Centralized IoT architectures face the following challenges:

• The entire network risks being paralyzed with centralized servers being
single points of failure [7].

• IoT users have no insight in how their IoT data is used by third-party
entities, and have no accountability mechanisms for exercising control
over their data. Data stored in centralized servers are subject to analysis
and customer behaviour profiling [8]. Data stored in centralized servers
can also be tampered with, either for misrepresentation or censorship
of IoT users.

• A centralized approach to the IoT is not efficient in time-critical appli-
cations where large amounts of data are to be sent for IoT automation
functions.

To improve the responsivity of the IoT, computational capabilities are being
brought closer to the IoT edge through fog and edge computing. A compu-
tationally capable IoT edge, due to its proximity to the IoT users, can reduce
latency in IoT data processing and end-to-end communications, and can thus
provide an improved Quality of Service (QoS). Despite "trust" having moved
closer to the IoT edge, trust is still not fully decentralized, especially in cases
where the edge computing services are owned or managed by multiple dif-
ferent entities. In extension to this, another challenge is providing uniform
decentralized security mechanisms that span the entirety of the IoT edge.
The movement of trust from third party service providers to the end users is
also called decentralisation, which is the end-goal in fundamentally rethink-
ing how network architectures are designed. In recent years, decentralized
blockchain networks have gained attention towards developing a truly de-
centralized and secure fabric for the IoT.

1.2 Blockchains and Decentralized Services
"Online identity and reputation will be decentralized. We will own the data that belongs to us."

William Mougayar

Blockchain technology was formally theorized by S. Nakamoto [9] and im-
plemented for the Bitcoin cryptocurrency. Digital currency, unlike traditional
currency falls under the risk of being spent twice by the same stakeholder,
therefore cryptocurrency networks have an inherent need for preventative
measures. Blockchains provide a solution to double-spending without cen-
tralized authorities. Blockchains are decentralized, peer-to-peer ledgers that
store logs of transactions that happen in a network. These logs are grouped
into blocks, which are linked together through their hash, in a chain of blocks.
Blockchains are replicated over all the peers in a network, and a shared state
is maintained through algorithmic consensus. Blockchain networks do not

1.2. Blockchains and Decentralized Services 3

have central points of failure, and all peers can verify the validity of trans-
actions being carried out (hence rooting out double-spending). Blockchains
are an append-only data structure, and through the virtue of their replicated
shared state, their contents cannot be altered or tampered with.

Beyond exchanging digital tokens, blockchains have found their applications
within an array of industries including, but not limited to, logistics, auditing,
insurance and digital governance systems. Blockchains offer a promising
paradigm shift towards providing decentralized services without the need
to "trust" any third-party entities. Research is being actively conducted to
apply blockchains to decentralize specific services within the IoT [10]. The
idea of a "blockchain-based" IoT is picking up steam within research, due to
the following potential benefits:

• A decentralized blockchain-based IoT enhances fault tolerance and elim-
inates singular points of failures [11].

• With decentralized identity management, authorisation and authenti-
cation features, decentralized peer to peer network architectures foster
IoT device autonomy.

• Logs stored in the blockchains are immutable, with guaranteed au-
ditability. Thus blockchains create a "trustless" enviroment for data ex-
change in the IoT. Blockchain network peers can verify the integrity of
the data or software they receive through blockchain transactions.

• Through smart contracts, blockchains gain the functionality of program-
mable logic [12], and can enforce terms and conditions over IoT inter-
actions. Smart contracts form the basis of decentralized applications in
blockchain networks.

• Blockchains enable data and device monetisation in a truly democratic
fashion, whether by renting out device utility, monetizing data, or even
through microtransactions, all without centralized banks or governing
bodies.

Despite these benefits, blockchains are in their early stages of development,
and there is mounting research attention being paid towards design trade-
offs, to combat the scalability and performance issues that blockchains can
incur (Chapter 3). Our work in developing a blockchain-based IoT frame-
work aims to demonstrate that blockchains offer an important piece to the
puzzle of decentralizing the IoT, and providing secure, decentralized IoT ser-
vices.

4 Chapter 1. Introduction

1.3 A Blockchain-Based Framework for the IoT

The benefits of decentralized blockchain-based services motivated our de-
sign of a blockchain-based IoT framework which removes all centralized
points of trust from the core of IoT service provision. The challenges asso-
ciated with the blockchain-IoT convergence are mainly those of privacy and
scalability [10, 13]. The framework provides one step further towards the
goal of a decentralized networking medium for the IoT.

The IoT generates data in high volumes and with high frequencies. If all
the IoT data generation events were to be logged onto a blockchain, the stor-
age requirements for hosting replicas of the blockchain would explode. Fur-
thermore, reaching consensus while recording every IoT data transaction log
would add latency high enough to choke up the network. Not only can a
single blockchain solution scale up to meet the needs of the IoT, it also has
privacy implications since all timestamped logs of IoT data generation events
will be accessible to all the peers hosting a replica of the blockchain. Further-
more, some of the mainstream blockchain consensus mechanisms are com-
putationally expensive, and IoT devices are resource-constrained, so they are
not capable enough to partipate in blockchain consensus.

To combat these challenges, we have designed a blockchain-based IoT frame-
work, built on blockchains, in tandem with other decentralized data storage
and transfer mechanisms. The framework was built with the following spec-
ifications in mind:

• Users should be able to privately share or monetize their data with en-
tities of their choosing, without trusting any third-party intermediaries
for auditability and authentication.

• Users should be able to transfer data using decentralized data transfer
mechanisms with cryptographic guarantees in confidentiality.

• Users should be able to feasibly engage with the framework, with low
networking overheads and transaction processing fees. The framework
should be able to scale to a large number of geographically distributed
users.

In this thesis, we present the basic working principles of the blockchain,
along with the various consensus algorithms being used (Chapter 2). We
discuss the challenges involved in integrating blockchains into the IoT, and
review the existing literature so far that aims to contribute to the goal of
blockchain-IoT convergence (Chapter 3).

Our understanding of blockchain technology in general, and of recent re-
search efforts, informed the design and implementation of our blockchain-
based IoT framework. The design involves a two-tier blockchain architec-
ture, with permissionless and permissioned blockchains working together to
privately log IoT data within specific verticals, and conducting confidential
transactions of batches of IoT data. The IoT data itself is transferred to in-
tended destinations using "off-chain" decentralized data storage and transfer

1.4. Contributions 5

mechanisms, and none of the data is made accessible to members of the pub-
lic.

For secure end-to-end IoT data streaming, we modify the architecture and
use Tor hidden services while enforcing terms and conditions on the block-
chain. Following the same design principle as before, the framework splits its
data plane and control plane functionalities. It relies on off-chain data trans-
fer mechanisms for handling the bulk data streaming, and uses the block-
chain for control functionalities, including negotiations and logging.

1.4 Contributions

In this thesis, we have made the following contributions:

• We have presented the design of a decentralized, private-by-design
framework for the IoT using blockchains and peer-to-peer data storage
and transfer mechanisms. Our design removes centralized trust points
in IoT service provision in a scalable manner. Through our design, we
observe that blockchains provide trustless networking environments,
however, a separation between control plane and data plane function-
alities is essential for practical implementations (Chapter 4).

• We have taken theory into implementation, and have demonstrated a
real-world implementation over an agri-food supply chain for trace-
ability, along with performance metrics we observed in our implemen-
tation. Implementing the framework over multiple agri-food supply
chains, the framework is used to apply game-theoretical cooperation
for sustainable groundwater irrigation in smart farming applications
(Chapter 4).

• We have demonstrated the malleability of the framework in various IoT
business models through implementing it in two use-cases: an open
IoT data marketplace, and a connected-vehicle insurance system. Both
these use-cases make use of the tiered blockchain architecture and de-
centralized data storage and transfer mechanisms to exchange batches
of data, in exchange for monetary services and benefits (Chapter 5).
We conducted a performance analysis on real-world implementations
to highlight the feasibility of the framework in terms of computational
and networking overheads, along with transaction fees.

• We have presented a use-case of the framework in remote health moni-
toring. The use-case involves sending streams of data (instead of batches)
from patients to their doctors, with privacy built into the solution by
design (Chapter 6). Our performance analysis highlights the minimal
delay in transferring real-time health data over diametrically opposite
geographical locations, all while not relying on any centralized author-
ities.

7

Part I

Blockchain-IoT Concepts

9

Chapter 2

Blockchain Working Principles

This chapter contains text taken from the published work:
"Applications of blockchains in the Internet of Things: A comprehensive survey."

IEEE Communications Surveys & Tutorials 21, no. 2 (2018): 1676-1717.

Blockchain-based systems are the product of cryptography, public key in-
frastructure and economic modelling, applied upon peer-to-peer network-
ing and distributed consensus to achieve distributed database synchroniza-
tion [14] [15]. The blockchain is a distributed data structure, and is dubbed
a distributed "ledger" in its utility of recording transactions occurring within
a network [9]. With cryptocurrencies being one application of the record-
keeping feature of blockchains, the distributed ledger has the potential to be
applied in networks where any form of data exchange takes place. In a peer-
to-peer blockchain-based network, all participating peers maintain identical
copies of the ledger. A canonical shared state of the blockchain is maintained
through decentralized consensus among the peers. Some of the core features
of blockchain-based systems are as follows:

1. Decentralization: in centralized network infrastructures, data exchanges
(i.e., transactions) are validated and authorized by trusted central third-
party entities. This incurs costs in terms of centralized server main-
tenance, as well as performance cost bottlenecks. In blockchain-based
infrastructures, two nodes can engage in transactions with each other
without the need to place trust upon a central entity to maintain records
or perform authorization.

2. Immutability: since all new entries made in the blockchain are agreed
upon by peers via decentralized consensus, the blockchain is censorship-
resistant and any attempt to alter the contents of the blockchain in a
peer node is easily detected and corrected.

3. Auditability: all peers hold a copy of the blockchain, and can thus ver-
ify the validity of all timestamped transaction records.

4. Fault tolerance: All blockchain peers contain identical replicas of the
ledger records. Any faults that occur in the blockchain network can be
identified through decentralized consensus, and data leakages can be
mitigated using the replicas stored in blockchain peers.

10 Chapter 2. Blockchain Working Principles

In this chapter, we will discuss the core working principles of a blockchain-
based network ecosystem. These include the building blocks of the block-
chain itself as a data structure, as well as the algorithms used to achieve de-
centralized consensus. Having a comprehensive idea of these principles will
enable further in-depth discussion on the recent advancements of blockchain
in the IoT research space. This section will start out with a general view of
how blockchains work, followed by specifics on how decentralized consen-
sus is achieved in different blockchain platforms.

2.1 Blockchain Structure

The blockchain is made up of blocks containing details of transactions that
have occurred within the network. The transaction information can be re-
garding token transfers occurring in a network, or any manner of data ex-
change. Each block is divided in two parts, the header and the body. Trans-
actions are stored within the body of the block. The header of each block con-
tains the identifier of the previous block, therefore the blocks are connected
in a chain similar to a linked list, as shown in Figure 2.1. The first block in
the chain is called the "genesis" block [10].

The identifier of each block is obtained by taking its cryptographic hash,
which is why having each block linked to the previous block helps the block-
chain achieve immutability of its contents. If a hacker were to alter the con-
tents of a past block, its identifier would no longer be valid, and a domino
effect would render the parent block hashes in the subsequent blocks invalid
as well. Therefore, to successfully alter the contents of a single block, the at-
tacker would have to alter the headers in all successive blocks, and have this
alteration take place in the majority of the nodes in the network, so as to have
the peers reach consensus on this altered blockchain.

Other than the block’s own identifier, and the identifier of the previous block,
the header contains a timestamp of when the block was published, and the
Merkle tree root [16] for all the transactions stored within the body of the
block. The Merkle tree root significantly reduces the effort required to ver-
ify transactions within a block. The blockchain is a linearly growing data

Block 1

header

Hash of previous

block header

Block 2

header

Hash of previous

block header

Block 3

header

Hash of previous

block header

Block 1

body

Block 3

body

Block 3

body

Transactions are stored here! Transactions are stored here!Transactions are stored here!

FIGURE 2.1: Graphical representation of the blockchain.

2.2. Transactions and Digital Signatures 11

structure, with higher transaction activity inflating the sizes of newer blocks.
As part of all consensus algorithms, peers verify transactions recorded in a
newly published block. The transactions within a block all have a transac-
tion ID, whereby each transaction ID is the cryptographic hash of the cor-
responding transaction’s information stored in the block. The transaction
IDs are hashed together in pairs and a hash tree is built within the block,
as shown in Figure 2.2. The root of this tree is stored in the block header.
To verify a transaction, a local copy of all the transactions is not required,
and verification can be carried out by simply using the Merkle tree branch
containing the transaction in question. A tampered transaction would pro-
duce altered hashes within its branch and would be detected without much
computational effort.

In the event of multiple nodes in the blockchain network producing valid
blocks at the same time, the blockchain can fork, and maintaining a single
canonical version of the blockchain becomes an issue. Mainstream block-
chain networks [9] [17] resolve this issue by only considering the longest fork
as canon, and all orphaned forks are discarded. Other fields included in the
block header contain information specific to the consensus algorithm used
within the blockchain network.

Block n

Body

BlockHash

PrevBlockHash

Nonce Timestamp

MerkleRoot

Block (n-1) Block (n+1)

Header

H(hA|hB) H(hC|hD)

H(A) H(B) H(C) H(D)

A B C D

Block Transactions

FIGURE 2.2: Block header including Merkle tree of transactions

2.2 Transactions and Digital Signatures

Each peer yr on the blockchain has a public/private keypair {kr
p, kr

s} which
is used for addressing, and creating digital signatures on each transaction,
for guaranteed non-repudiation. Since these keypairs are not associated to
real-life identities, blockchains offer "pseudonymity" to its users [13]. Signed
transactions are made for transferring cryptocurrency tokens, or interacting
with the Application Binary Interface (ABI) of functions written in deployed

12 Chapter 2. Blockchain Working Principles

smart contracts. Each peer yr on the blockchain has a public/private keypair
{kr

p, kr
s}which is used for addressing, and creating digital signatures on each

transaction, for guaranteed non-repudiation. Since these keypairs are not
associated to real-life identities, blockchains offer "pseudonymity" to its users
[13]. Signed transactions are made for transferring cryptocurrency tokens, or
interacting with the Application Binary Interface (ABI) of functions written
in deployed smart contracts.

Transactions can also take place in between two separate blockchains via
sidechaining. Sidechains [10] are blockchains synchronized with and run-
ning in parallel to an existing blockchain, referred to as the "main chain".
Tokens can be transferred from the main chain to the sidechain and back,
whereby the sidechain uses the tokens it has in an isolated use-case scenario.
Sidechains therefore enhance functionality of the main chain and provide a
testing ground for blockchain application development.

2.3 Smart Contracts

The term smart contract was coined by Nick Szabo, with the objective of
"securing relationships on public networks" [12]. In blockchain networks,
smart contracts perform the function of carrying out transactions in a prede-
termined fashion, agreed upon by parties participating in the contract. As
such, smart contracts are the digital equivalent of traditional economic con-
tracts between various engaging entities, but without the need for authoris-
ing intermediaries.

When deployed, smart contract code is stored in the blockchain, and the
functions written in the smart contract can be invoked by authorized partici-
pants. Invoking functions in smart contracts incurs an execution fee, since an
invocation itself is considered a transaction that is logged in the blockchain.
The amount of the execution fee depends upon the amount of computation
carried out by a smart contract function. Execution fees incentivize peers
publishing new blocks and mitigate flooding attacks on the network.

Smart contracts can be utilized to perform a variety of functions within a
blockchain network, such as:

1. Allowing ‘multi-signature’ transactions, whereby a transaction requires
a specified amount of signatures to be issued [18].

2. Enabling automated transactions triggered by specific events. This fa-
cilitates request-response type transactions, for decentralized data ac-
cess within a blockchain-based system. A smart contract can also be
triggered when a message is sent to the smart contract’s address [19].

3. Providing utility to other smart contracts. For example, in Ethereum,
inheritance can be written into smart contracts, where one contract can
invoke functions written in another contract.

2.4. Consensus Algorithms 13

4. Allowing storage space for application-specific information, such as
membership records, lists or boolean states.

While Bitcoin had very limited scripting capabilities [20], newer blockchain
platforms like Ethereum [17] and Hyperledger Fabric [21] use more flexible
and Turing-complete smart contract scripting languages. Deployed smart
contracts are stored within the blockchain, so they are visible to all partici-
pants in the network. Security lapses can occur if a participant exploits any
bugs or loopholes in a deployed contract, therefore it becomes critical to prac-
tice stringency in the design process. Most notably, in June 2016, the DAO at-
tack in the Ethereum network resulted in the attacker unlawfully siphoning
off Ether worth 60 Million USD, with transactions that were valid according
to the exploited smart contract [22].

With secure and well-written smart contracts, many applications provide
various functionalities, utilities and algorithmic processing in blockchain net-
works. For example, Hawk is a smart contract-based platform designed to
anonymize transactions [23], while RootStock (RSK)1 uses smart contracts
within sidechains connected to the main Bitcoin blockchain.

2.4 Consensus Algorithms

Consensus algorithms aim to securely update replicated shared states and
are the essential piece of the puzzle in the working principles of the block-
chain. In the blockchain, a system based on "state machine replication", con-
sensus protocols ensure all replicas of the shared state are synchronized and
in agreement at any given point in time.

According to [24] and [25], deterministic consensus in fully asynchronous
communication models cannot tolerate any faults, thus assumptions for par-
tial synchrony are required, with maximum thresholds for the latency of
propagating transactions. Earlier works on consensus protocols [26] involved
cryptography and partial synchrony [27], and precursor designs and propos-
als of digital currency (including BitGold2 and BitMoney3 were the building
blocks that went into developing "decentralized" consensus algorithms used
in blockchain networks.

Core principles applied in designing consensus algorithms are safety, live-
ness and fault tolerance. Safety is the extent to which a system can tolerate
failures, say in an (n, f) fault tolerant system, where n represents the total
number of processes, the system should be able to tolerate at most f faults.
Safety is the ability to mitigate corrupted or out-of-order messages so that all
non-faulty nodes reach consensus on results that are valid to the rules of the
state machine. Liveness of a fault tolerant system means that in despite the

1https://www.rsk.co/
2http://unenumerated.blogspot.de/2005/12/bit-gold.html
3http://www.weidai.com/bmoney.txt

https://www.rsk.co/
http://unenumerated.blogspot.de/2005/12/bit-gold.html
http://www.weidai.com/bmoney.txt

14 Chapter 2. Blockchain Working Principles

presence of f faults, all correctly participating nodes should be able to move
forward with their distributed processes.

Maintaining fault tolerance in a consensus protocol becomes difficult in sce-
narios where it is possible for nodes to stop participating at any moment,
or by nodes acting maliciously. This fault is termed the "Byzantine Generals
Problem" [28], using the example of generals taking command of different
parts of the Byzantine army. The generals rely on messengers to maintain
a synchronized battle plan. The messengers can be caught by the enemy,
causing the messages to be lost. More importantly, the messengers or even
some of the generals may be corrupted and may cause to maliciously sabo-
tage the battle plan. Therefore, the problem is, how do the generals maintain
a synchronized battle plan without traitorous participants getting the upper
hand? Similarly, in a distributed system running a consensus protocol, a
node can fall under a Byzantine fault as a result of software bugs, or by being
compromised. Byzantine faults occur when a node sends false messages and
misleads the other nodes participating in the consensus protocol. A number
of algorithms are proposed in literature [29], and in use today, that address
Byzantine faults, by making varying assumptions on specific use-cases, net-
work performance and maliciousness of compromised nodes.

2.4.1 Permissionless Blockchains

Publicly deployed blockchains that accommodate anonymous participants
are termed "permissionless", and reaching consensus using votes in a per-
missionless blockchain is problematic. If a permissionless blockchain were
to use voting to achieve consensus, participants can use multiple accounts
on the blockchain to launch a Sybil attack [30], and can drive decisions in
their favour. Therefore, in permissionless blockchain implementations, the
consensus algorithms are based on a lottery-based selection of a single node
that publishes a new block onto the blockchain. To ensure security in pub-
lic blockchains where anonymous participants are required to transact in a
trustless manner, block creation needs to be "expensive" so that the resources
of one entity are insufficient to bias the consensus decisions in its favour. In
public blockchains, the throughput can be evaluated using the parameters
of block-size and block-interval, where block-interval is the average time re-
quired to publish a new block [31]. The transaction throughput can thus be
theoretically calculated by:

Ω(Sb, Ti) =
[Sb / χ]

Ti
(2.1)

where Sb represents block-size, Ti represents the average block-interval, and
χ is the average transaction size.

2.4. Consensus Algorithms 15

Proof of Work
The first public blockchain consensus protocol was the Proof-of-Work (PoW)
consensus, as seen in Bitcoin [9]. In the Bitcoin network, any node can par-
ticipate in publishing new blocks to the blockchain, by showing that it has
performed a computationally expensive amount of work, the proof of which
forms the basis of the PoW consensus algorithm. Publishing new blocks un-
der the proof of work algorithm is called "mining", and miners engage in a
race to find a nonce that, when hashed with the hash of a block, produces a re-
sultant smaller than a predefined threshold. The proportional inverse of this
threshold is called the "difficulty level", which is stored in the block header,
and gets adjusted with increasing number of participants, to maintain an
average block processing time [20][32]. Figure 2.3 shows the adjustment in
difficulty level for the Bitcoin network in the last eight years4. Here, the cal-
culated nonce is the proof of work a miner does, which the miner adds to
the block header, and broadcasts their block to the network. This enables all
participating nodes to verify the block published by the miner. Subsequently,
the miner claims the processing fees associated with the transactions stored
within the block as a reward for mining. In PoW consensus, the computation-
ally expensive block creation and transaction fees secure the network against
DDoS attacks and false block creation.

In a fully synchronized system, it would be easier to maintain the correct
block sequence in the case of two nodes publishing a block almost concur-
rently [bmoney]. Such a system is not feasible in geographically spread-out
networks since total synchrony cannot be assumed or guaranteed. Consider
the case where after a block n, a node in Australia mines a valid block n + 1,
and at the same time, a node in Sweden mines another valid block n + 1′.

4https://blockchain.info/charts/difficulty

FIGURE 2.3: Adjustment of Difficulty Level in the Bitcoin
Blockchain

https://blockchain.info/charts/difficulty

16 Chapter 2. Blockchain Working Principles

This creates a temporary fork, where one fork has n + 1 after n, and the other
has (n + 1)′ after n. Beyond this point, more blocks are added to these forks,
and the fork with the most work committed to it is hence considered canon,
and the other fork is orphaned.

Proof of work based consensus is, however, vulnerable in scenarios where a
user takes control of 51% of processing power in the network [33]. Therefore,
proof of work consensus provides fault tolerance as long as the total compu-
tational power is n ≥ 2 f + 1 where f is the computational power occupied
by a single malicious user.

PoW blockchains like Bitcoin and Ethereum delay the ’finality’ of a block
decision, so the blockchain can be rolled back to a past block height in the
event of a 51% attack. After a block is ‘finalized’ it is considered irreversible.
In both Ethereum and Bitcoin blockchains, a transaction is finalized after 6
confirmations. 6 confirmations take 60 minutes in Bitcoin [20], and 2 minutes
in Ethereum [32].

Proof of Stake
The Proof-of-Stake (PoS) algorithm aims to cut back on the ever-increasing
electricity consumption of PoW blockchain networks [34]. As an alternative
to computationally expensive puzzle solving, proof of stake aims to stake
peers’ economic share in the network (e.g., as seen in Peercoin5). Here, the
term "miners" is replaced with "validators," and similar to the proof of work
algorithm, one of the validators is chosen to publish a block onto the block-
chain. The difference lies in how the validator is chosen. In proof of stake,
a validator is selected in a pseudorandom fashion, with the probability of
being selected proportional to the validator’s share in the network (as seen
in NXT6 and Blackcoin7). Naive Proof of Stake consensus mechanisms are
prone to attacks like the "nothing at stake" attack, and require further consid-
erations for it to be consensus-safe [35]. Block finality in PoS blockchains is
faster compared to PoW blockchains, since there is no computational puzzle
solving involved in choosing the validator.

Naive implementations of proof of stake are vulnerable to the infamous "noth-
ing at stake" attack [35]. This form of attack arises from the fact that in the
event of a fork, it costs nothing to create new blocks on both branches of the
fork. In proof of work, it is computationally expensive to create a block, so
any forks that occur do not last long, since it is outgrown by the valid chain
and orphaned. In naive proof of stake however, a fork does not get settled
easily, since it costs nothing to create new blocks, and validators can validate
both branches of the fork to claim validation rewards. In this situation, even
if 1% of the validators is malicious, they can tip the balance in their favour
and choose to validate the branch of their choosing, either to censor transac-
tions or commit double-spending.

5https://peercoin.net
6https://nxtwiki.org/wiki/Whitepaper:Nxt
7http://blackcoin.co/blackcoin-pos-protocol-v2-whitepaper.pdf

https://peercoin.net
https://nxtwiki.org/wiki/Whitepaper:Nxt
http://blackcoin. co/blackcoin-pos-protocol-v2-whitepaper. pdf

2.4. Consensus Algorithms 17

In Ethereum’s Slasher8 implementation of proof of stake, peers join the val-
idator pool by locking up some or all of their tokens in a deposit. Therefore,
the nodes become bonded validators and show commitment towards main-
taining the integrity of the blockchain. Here, the blockchain keeps track of
the share validators stake to publish new blocks. Ethereum’s Casper [36],
the most advanced implementation of the proof of stake algorithm, punishes
malicious nodes for validating multiple branches in the fork by subtracting
the funds they stake. As an asynchronous consensus protocol, Ethereum’s
Casper achieves a fault tolerance of n ≥ 3 f + 1.

Proof of X
Further alternative consensus algorithms for public blockchain deployments
came about, and are classified as "Proof of X". In [37], the author present an
exhaustive study of these algorithms.

Proof of activity [38] was proposed as an alternative to Bitcoin mining, de-
signed to deliver consensus by combining aspects of the proof of work and
proof of stake. The objective is to reward stakeholders that actively partici-
pate in the network. Peers start off with mining potential blocks, similar to
proof of work. Decred 9 uses proof of activity to achieve distributed consen-
sus. Computational puzzle solving in proof of activity only involves find-
ing a proof of work against the block header, without the transactions in the
block. Beyond this point, a random group of validators are chosen to vote on
the validity of the mined block header. Similar to proof of stake, the prob-
ability of the validators of being chosen is proportional to their share in the
network. The block is considered valid if all the validators vouch for its va-
lidity. If some of the validators are offline, the next mined block is chosen,
along with a new set of validators, till a block is voted as valid. Transaction
fees in this case are split between the miner and validators. Criticism of pr-
oof of activity includes concerns pertinent to both proof of work and proof of
stake. It requires higher computational power, and a naive implementation
can be prone to nothing at stake attacks.

Hyperledger Sawtooth10 is an open-source project with its own consensus al-
gorithm called proof of elapsed time. Proof of elapsed time runs in a Trusted
Execution Environment (TEE), like Intel’s Software Guard Extensions (SGX)
[39]. A trusted voting model built on the SGX helps elect a validator for pub-
lishing a new block. Proof of elapsed time is another lottery based consensus
algorithm, however it foregoes the need for expensive computational puz-
zle solving. Nodes in the Sawtooth blockchain network request for a wait
time from a trusted function within the SGX. The validator with the shortest
wait time is selected the leader as soon as its waiting time runs out. Another
trusted function attests to the fact that the validator did indeed wait an al-
lotted amount of time before publishing a new block. This second function

8https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
9https://docs.decred.org/research/overview/

10https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.
html

https://blog.ethereum.org/2014/01/15/slasher-a-punitive-proof-of-stake-algorithm
https://docs.decred.org/research/overview/
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html
https://sawtooth.hyperledger.org/docs/core/releases/latest/introduction.html

18 Chapter 2. Blockchain Working Principles

thus provides a proof of the validator being chosen after its allotted time had
elapsed. The probability of being elected here is proportional to the resources
(general-purpose processors running TEE) contributed to the network.

2.4.2 Permissioned Blockchains

In "permissioned" blockchain deployments such as private and consortium
blockchains, only a limited number of known participants carry a copy of the
entire blockchain [40]. Maintaining consensus therefore is much straightfor-
ward and doesn’t require costly proofs for publishing a new block. Since par-
ticipants are known, there is no risk of a Sybil attack, therefore voting mech-
anisms are used to achieve consensus. By this virtue, permissioned block-
chains have a much higher performance than permissionless blockchains.

Practical Byzantine Fault Tolerance
The Practical Byzantine Fault Tolerance (PBFT) algorithm, as described in
[41] involves multiple rounds of voting by all nodes of the network, in order
to commit state changes. The PBFT algorithm includes an optimized, en-
crypted message exchange for making global voting more practical. To solve
the Byzantine Generals problem via multiple rounds of voting, this algorithm
requires n ≥ 3 f + 1 nodes to tolerate f failing nodes. Hyperledger Fabric [42]
is a permissioned blockchain application platform being developed under
the Linux Foundation’s Hyperledger project. Hyperledger Fabric is designed
for private or consortium blockchains, and supports smart contracts written
in multiple programming languages, called chaincode. In PBFT consensus,
one node is chosen to be the "leader," who assembles a set of ordered transac-
tions into a block and broadcasts it to the network. The validating peers in the
network calculate a hash of the block and broadcast it. Validating peers ob-
serve the hashes they receive from the rest of the network, which can be seen
as "votes," over multiple rounds. If 2/3 votes are in favour of the candidate
block, the peers add it to their copy of the blockchain. PBFT consensus pro-
vides high throughput and low latency in validating transactions, however,
the overhead incurred by broadcasting blocks and votes in PBFT consensus
makes it unable to scale beyond a network with tens of validators. Hyper-
ledger Fabric also uses a variation of PBFT called Sieve11, which is designed
to perform consensus while executing non-deterministic chaincode. In sce-
narios involving non-deterministic chaincode, Sieve runs the chaincode first
and speculates the outputs. Sieve then gets rid of minor divergences in the
chaincode’s output, or gets rid of entire processes resulting in greatly diverg-
ing outputs. Subsequently, Sieve maintains consensus in state-changes to the
blockchain as was the case in PBFT.

11https://github.com/diegomasini/hyperledger-fabric/blob/master/docs/FAQ/
consensus_FAQ.md

https://github.com/diegomasini/hyperledger-fabric/blob/master/docs/FAQ/consensus_FAQ.md
https://github.com/diegomasini/hyperledger-fabric/blob/master/docs/FAQ/consensus_FAQ.md

2.4. Consensus Algorithms 19

Tendermint
Tendermint [43] is a Byzantine Fault Tolerant consensus algorithm, which,
similar to PBFT, provides an n ≥ 3 f + 1 fault tolerance. Tendermint uses pr-
oof of stake in combination with principles of PBFT to provide security, high
throughput and low block processing times of 1-3 seconds. While in PBFT, a
leader node used to get chosen pseudorandomly, Tendermint uses the lottery
based properties of proof of stake, and chooses the leader node with prob-
ability proportional to the stakeholders’ share in the network. After leader
selection, Tendermint performs multiple rounds of voting to reach consensus
on a new block. Tendermint requires a supermajority, or 2/3 of its validators
to maintain 100% uptime, and if more than 1/3 go offline, the network may
stop progressing and lose liveness. Transactions are ordered, and assuming
if less than a third of all validators are faulty, Tendermint provides a safety
guarantee that no conflicting blocks are created and no forks appear in the
blockchain. Tendermint is compatible for public or private chains, however,
it does not enjoy the same level of scalability as proof of work or proof of
stake blockchains. Transaction finality in Tendermint is approximately 1 sec-
ond [43].

Federated BFT
Blockchain implementations in Ripple [44] and Stellar [45] extended the tra-
ditional Byzantine Fault Tolerance and made it open-ended for participation
in scenarios involving a consortium or federation of nodes.

Ripple consensus begins with a unique node list (UNL), which is a list of ac-
tive validator nodes in the network. Each node has a UNL with 100+ nodes
in it, and each UNL has to overlap by at least 40% with the UNLs stored by
other nodes. Ripple carries out multiple rounds of voting, where nodes as-
semble transactions into candidate blocks and broadcast them to the nodes
in their UNL. Nodes then broadcast votes on each candidate block. Each
round of voting helps nodes refine their candidate block, and a new block
is added to the ledger once it receives a supermajority vote of 80%. Thus,
even though Ripple carries out multiple rounds of votes, it provides a fault
tolerance of n ≥ 5 f + 1. Consensus in the entire network is based on consen-
sus within subnetworks, so Ripple allows open-ended participation of users,
market entities and gateways to other subnetworks.

Stellar introduces the idea of quorums in blockchain networks, where a quo-
rum is a set of nodes used to reach consensus. A node in such a network can
be part of multiple quorum slices, where each quorum slice securely reaches
consensus through voting. Stellar opts for a safety over liveness property,
in the event of malicious behaviour in the network, the blockchain does not
progress till the malicious behaviour is resolved.

20 Chapter 2. Blockchain Working Principles

2.4.3 Performance and Scalability in Consensus Algorithms

Permissionless blockchains are forced to have slower block creation speeds,
in order to take into account the propagation speeds of nodes within the net-
work. On the other hand, permissioned blockchains have much lower la-
tency, but suffer from a severe scalability issue. The networking overhead in-
curred from voting mechanisms limits permissioned blockchains to scale to
only hundreds of nodes. The worst case complexity for permissioned block-
chains is O(N2) compared to the O(N) worst case complexity of permission-
less blockchains. This limits the usability of permissioned blockchains for the
IoT. Therefore, there is a steep trade-off between performance and scalability
from PoW consensus to PBFT consensus [46].

Through the virtues of publicly anonymous accessibility and decentraliza-
tion, permissionless blockchains are better suited to industry-wide IoT ap-
plications. Permissioned blockchains are more suited to enterprise solutions
due to their higher degree of control and permission granting capabilities.
Sharding12 mechanisms in Ethereum and Tendermint can lead to leveraging
the benefits of higher performance and scalability for IoT applications.

12https://github.com/ethereum/wiki/wiki/Sharding-FAQ

https://github.com/ethereum/wiki/wiki/Sharding-FAQ

21

Chapter 3

The Blockchain-IoT Convergence

This chapter contains text taken from the published work:
"Applications of blockchains in the Internet of Things: A comprehensive survey."

IEEE Communications Surveys & Tutorials 21, no. 2 (2018): 1676-1717.

The term "Internet of Things" was coined in 1999 by K. Ashton as a bridge
to link supply chain RFID’s to the Internet. However, according to another
authoritative source, the first proof-of-concept for the IoT came to life in 1982,
when a group of students turned a Coke machine installed at the Carnegie
Mellon University into what may be considered the first smart, connected
appliance [47].

Today, the term is used as an umbrella keyword for covering various aspects
related to the extension of the Internet and the Web into the physical realm,
by means of the widespread deployment of spatially distributed devices with
embedded identification, sensing and/or actuation capabilities [48]. How-
ever, the IoT is far more than a marketable label, rather it can be seen as
a technology that is, sometimes drastically, transforming all industries and
markets, enhancing and extending the digitalization enabled by information
and communication technology (ICT) towards the broader impact offered by
the capability to sense, communicate and actuate on the whole physical en-
vironment where such IoT devices and applications are deployed.

3.1 Issues and Challenges In the IoT

During the last two years, IoT platforms themselves are proliferating; These
span from horizontal platforms able to accommodate quite generic use cases
within different domains to vertical approaches able to address very specific
market needs (e.g., cities, spaces, manufacturing, etc.). Clearly, the combina-
tions of functional specializations offered by such platforms are also varie-
gated: device management, enabling applications, data analytics, cloud stor-
age, connectivity, only to mention a few examples. Last but not least, they
come with different licensing models, either proprietary or open source. The
result of this Babylon is an over-crowded and fragmented market. Moreover,
while there is a common understanding on the fact that the IoT technology
could play the role of enabler for several business opportunities, there exists

22 Chapter 3. The Blockchain-IoT Convergence

a set of technical challenges that, despite being already identified, are slow-
ing down a truly global IoT adoption. The following are brief introductions
to these challenges:

Cybersecurity it is considered the most critical and challenging barrier for
the IoT. With respect to typical Web security, IoT security is subject to several
new factors and conditions that amplify potential threats. First of all, IoT
devices are commonly isolated hardware solutions that, depending on their
deployment conditions, are subject to tampering in ways that may be un-
predictable by manufacturers. IoT devices are then typically interconnected
with other devices making it complex to manage device-to-device interac-
tions and to protect them from malicious data manipulation. Moreover, IoT
devices have typically limited computational power: this limitation hinders
the adoption of highly sophisticated security frameworks. Once IoT devices
are connected with each other and with the Internet, they become an inter-
connected and complex system which is difficult to immunize against mod-
ern security threats. For this reason, such systems become exponentially
exposed to several web attacks (password security attacks, message spoof-
ing/alteration, traffic analysis, Distributed Denial of Service, Sybil attack,
eavesdropping, etc.). On the other hand, a generic "one-size-fits-all" security
model is difficult to implement. To properly address security in IoT there is
a need for novel security models foreseeing the development of specific poli-
cies and best practices capable of combining security-by-design approaches
with specific technical countermeasures designed at different technological
stacks, as well as novel organizational processes capable of addressing infor-
mation security for IoT in a more holistic way [49].

Privacy the huge amount of data generated by IoT devices may offer de-
tailed information about the context where device owners/users live, and
about their habits. This data may be collected without any explicit user con-
sent and exposed to third parties when shared by supporting IoT platforms,
depriving users about control on which data and to whom his personal data
is given access [50]. While administrative policies exist for providing pri-
vacy to IoT users, the challenge is to develop solutions that ensure privacy
by design.

Massive Data Management the volume of data generated by IoT devices
can be enormous and difficult to manage in terms of elaboration, communi-
cation/transmission, and storage. Scalable infrastructures are necessary to
efficiently handle this massive growing volume of data [51].

Lack of Standardization and Interoperability the landscape of standards
for the IoT is full of open solutions, supported by independent and multina-
tional governance bodies, alliances or organizations (e.g., IEEE, ETSI, IETF,

3.2. Decentralizing the IoT through Blockchains 23

W3C, OMG, OneM2M, ITU-T, OASIS IEC, etc.). These standards cover differ-
ent aspects of IoT products, services, systems, from communication technolo-
gies to architectures. Some of them follow a neutral, cross-domain approach,
while others are applicable only to specific vertical domains. Unfortunately,
the uncontrolled proliferation of standards, further exacerbated by the lack of
commonly accepted standards, only leads to fragmentation and can even be-
come a real barrier for the IoT adoption and for the possibility of performing
real integration in multiple application domains [52].

Lack of Skills the complexity and the heterogeneity of the technologies in-
volved in an IoT domain require specific skills for the design, implementa-
tion, but also for the operations of the deployed solutions. Such skills are
typically difficult to build or acquire by organizations. In this case, the IoT
ecosystem plays a critical role, as it could guarantee that the right skills are
offered and acquired in a proper and effective way [53].

3.2 Decentralizing the IoT through Blockchains

Simplifying the concept as much as possible, the aim of the IoT is to have
smart objects communicate over the Internet to collect comprehensive data
and provide personalized automation services, with little deliberate human
interaction [53]. Towards this aim, current IoT platforms are built on a cen-
tralized model where a central server or broker provides services like data
handling, device coordination, and authorization. This approach necessi-
tates high-end servers and proves to be unsuitable for scenarios where ob-
jects are required to autonomously exchange data. In a centralized model,
centralized servers authorize objects to communicate with each other, so the
increasing number of devices communicating with each other over the Inter-
net steadily increase set requirements for the servers. Other issues associated
with a centralized model are of security [54, 55], data privacy [56] and the
trust inherently required in using centralized servers [57].

Following the recognition of the opportunities blockchains offer and their po-
tential impact, researchers and developers have taken to create decentralized
applications for the IoT. The inherent features of blockchains as discussed
previously, make them a natural fit to developing a secure distributed fabric
for the Internet of Things and distributed cloud computing in general. Based
on these features, the following are the potential benefits and motivations for
developing a blockchain-based decentralized IoT framework:

• Resilience: IoT applications require integrity in the data being trans-
ferred and analyzed, therefore IoT frameworks need to be resilient to
data leaks and breakage. Blockchain networks store redundant replicas
of records over blockchain peers, which help maintain data integrity
and can provide resilience to IoT frameworks.

24 Chapter 3. The Blockchain-IoT Convergence

• Adaptability: Currently, the heterogeneity of IoT devices and protocols
limit their interoperability, and since blockchains are semantics inde-
pendent distributed databases, using blockchains as the network con-
trol mechanism for the IoT will add a greater degree of adaptability
to it. Blockchains are proven to work over heterogeneous hardware
platforms, and a blockchain-based IoT framework holds the promise
to adapt to varying environments and use cases to meet the growing
needs and demands of IoT users.

• Fault tolerance: The Internet of Things represents a proliferation of al-
ways available smart devices that collect data and provide automated
functionality. Network control mechanisms for the IoT require high
availability, which may not always be the case in architectures involv-
ing centralized servers. Blockchains are Byzantine fault tolerant record-
keeping mechanisms that can identify failures through distributed con-
sensus protocols.

• Security and privacy: One of the most important challenges faced by the
IoT, as discussed before is network security. To ensure confidentiality
and data protection, blockchains have pseudonymity in its addressing
and distributed consensus for record immutability. Data modification
attacks cannot be mounted in public blockchains since the blockchain
does not exist in a singular location. Furthermore, the cost added to
making new transactions (either monetary or computational) protect
the network against flooding attacks and DDoS attacks.

• Trust: Blockchains enable trust between transacting parties. The "trust-
less" features of blockchains remove the need for users to trust central-
ized entities to handle their IoT data, thus preventing malicious third
party entities from accumulating users’ private data. Blockchains allow
faster settlements for automated contracts without the need for trusted
intermediaries.

• Reduced maintenance costs: Centralized IoT infrastructures face a signif-
icant disadvantage in their high server maintenance costs, which not
only add monetary cost, but also adds to the communication costs in
device-to-device communications. Centralized cloud storage services
use geographically spaced data centers which are large central points
of failure. Centralized cloud services introduced much lower prices
for storage and computing, which led to their widespread adoption.
However, blockchains have the potential to significantly reduce costs
incurred by maintaining dedicated servers. Public blockchains appli-
cations do not require dedicated servers, and utilize the computational
and storage capabilities of its participants. Since the participants re-
ceive incentives for their contributions, blockchains stand to be the next
step in democratizing the IoT. Blockchain-based data storage platforms
like Sia1 demonstrate the reduced costs in storing data using block-
chains. In Sia, instead of using dedicated servers, users rent out any

1https://sia.tech/technology

https://sia.tech/technology

3.2. Decentralizing the IoT through Blockchains 25

available storage space they have, which others utilize to store data.
While the cost for storing 1 Terabyte per month on Amazon S32 is $25,
the cost of blockchain-based data storage in Sia is $2 per Terabyte per
month.

• IoT e-business models: In current IoT service provision, users surrender
their data to centralized service providers in exchange for IoT services,
however, data being exchanged over public blockchains can have the
added benefit of enabling users to engage in a new data marketplace
and monetize their IoT data. Blockchain-based solutions also incen-
tivize users to make IoT resources available for others to use on de-
mand, in exchange for cryptocurrency.

Blockchains show promise in several industry verticals, and startups are locked
in a race to develop blockchain-based distributed applications for different
use case scenarios. As discussed before, a significant part of these applica-
tions have direct link to the IoT. An example of these applications can be seen
in the insurance industry.

An example of the numerous industry verticals for a blockchain-based IoT
are smart grids. Blockchains have the potential to facilitate trade of energy
between producers and consumers. In a blockchain-based smart-grid sys-
tem, each participant has a unique identifier which can be authenticated
without relying on a third-party service provider, thus bridging transact-
ing entities in a democratic fashion. Blockchain-based records and cryp-
tocurrency can be used for negotiating, effectuating trade and maintaining
records, as proposed in [58, 59, 60, 61, 62]. .

Another use case for integrating blockchains with IoT is in smart-insurance.
In the insurance sector, many companies have taken up IoT applications to
collect data for aiding them in calculating insurance premiums and process-
ing insurance claims. Several management processes within insurance can
be automated using smart contracts, while maintaining compliance to legal
requirements. Considering the benefits of the combination of the IoT and
blockchains, eventually insurance use cases will migrate from telematics to
real-time IoT cryptocurrency applications 3.

Other industry verticals where blockchains and IoT can bring potential ben-
efits include healthcare, supply chains, energy trading smart-grids, smart
home applications, connected vehicle fleet management and robot swarm co-
ordination. Peer-to-peer decentralized applications in these areas can bring
about a revolution in ubiquitous service provision and distributed oversight
of all IoT data transactions.

2https://aws.amazon.com/s3/
3https://www.ibm.com/blockchain/industries/insurance

https://aws.amazon.com/s3/
https://www.ibm.com/blockchain/industries/insurance

26 Chapter 3. The Blockchain-IoT Convergence

3.3 Integration Schemes for Blockchains and IoT

Centralized cloud services have made major contributions in the growth of
IoT, but in data transparency, there is an inherent need of trust and a lack of
absolute confidence. Centralized cloud services act much like a black box for
IoT services, and IoT users do not have control and total confidence in how
the data they share will be used. Furthermore, centralized cloud services are
vulnerable to faults and lethal security attacks. In the evolution of IoT, the
network edge is getting more functionality as compared to the cloud, as seen
in fog and mist architectures [63]. The IoT can benefit from the decentralized
network paradigms offered by blockchains, so further developments to the
IoT can continue while eliminating the need for trust in centralized services.
However, blockchains are still in their early stages of research and develop-
ment, and there are still multiple research challenges towards integrating IoT
and blockchains in a seamless manner.

Achieving absolute decentralisation in the IoT using blockchains is problem-
atic, considering the vastly varying devices involved in the IoT. Most devices
on the IoT edge have resource constraints, and cannot host a copy of the
blockchain or engage in validating new blocks for the blockchain. Therefore,
it is important to decide upon what roles the different entities in the IoT edge
(devices, gateways, etc) will take.

Table 3.1 indicates the possible roles the participants of a blockchain network
can assume. Full nodes are participants in the blockchain network that host
the entire copy of the blockchain. Full nodes can issue transactions to the
blockchain, and can choose to act as a validator for adding new blocks onto
the blockchain. Light nodes running a "light-client" application can issue
transactions to the blockchain, and can host a copy of the block headers from
the blockchain. Light nodes can verify the validity of transactions through
the block headers, however they do not publish new blocks to the block-
chain. Light nodes are used as an easier entry point to the blockchain, using
limited computational resources. A transaction-issuer running a "light wal-
let" application is a participant that does not maintain a copy of the block-
chain or engage in block validation, however it simply issues transactions to
the blockchain. In some blockchain platforms, the potential downside of hav-
ing a light wallet transaction-issuer is that it performs transactions through
a light or full node. This can be a node in the same local network as the

TABLE 3.1: Node Types in Blockchain Networks

Node Type Storage Validator

Full Node Full Blockchain Yes

Light Node Block headers No

Transaction Issuer None No

3.3. Integration Schemes for Blockchains and IoT 27

transaction-issuer, or in the case of the Ethereum platform, a third party ser-
vice like Infura 4 and Metamask5. The former is a more suitable choice since
using third party services nullifies the point of decentralization.

Choosing the right consensus algorithm can prove to be detrimental in inte-
grating blockchains with the IoT. Proof-of-Work based mining remains un-
feasible in context of the IoT due to its high computational requirements and
high block processing time. In some cases, researchers have attempted to
relax the validation requirements of PoW based consensus [64], however,
this can lead to compromises in the security afforded to IoT networks by
blockchains. PoW consensus with relaxed requirements can be securely im-
plemented in consortium blockchain deployments, since all members of the
blockchain are known. In single-enterprise solutions, or use-cases where the
blockchain-connected nodes or gateways are known and in the order of hun-
dreds, voting-based consensus like PBFT can be used, to maintain security
and low block processing times. For public blockchain deployments, alter-
nate consensus algorithms including Proof-of-Stake and other Proof-of-X al-
gorithms are seen as more suitable for blockchain deployments within the
context of the IoT.

Keeping in mind the resource constraints faced by IoT devices, it becomes
necessary to employ some design considerations about the extent of their
involvement in a blockchain network. Most IoT devices do not have crypto-
graphic capabilities, and do not meet the computational and storage require-
ments for engaging in blockchain consensus algorithms. To account for these
limitations, IoT edge devices only take on the role of simple transaction is-
suers. Even in the case of light-nodes, most IoT edge devices do not carry
sufficient storage capabilities to host the "headers only" version of the block-
chain. IoT edge devices or gateways running as simple transaction-issuers
have verifiable blockchain-identities without the need to host an entire copy
of the blockchain. Therefore, such edge devices are more manageable within
blockchain networks and can continue making contributions to the block-
chain, while other full nodes in the blockchain network can carry out decen-
tralized consensus and block validation.

In recent literature, we have surveyed a variety of integration schemes that
aim to account for IoT edge device constraints in a blockchain-based IoT, with
varying requirements of cryptographic capabilities for the IoT edge devices.
The following is a discussion of the alternate paradigms as seen in recent
literature for integrating blockchains and IoT:

• Gateway devices as end-points to the blockchain: in this integration
scheme, all communications go through the blockchain, while the IoT
gateways act as end-points to the blockchain network. In this case, the
IoT devices will be registered to the gateway device, and the gateway

4www.infura.io
5www.metamask.io

www.infura.io
www.metamask.io

28 Chapter 3. The Blockchain-IoT Convergence

issues transactions to the blockchain. This approach enables traceabil-
ity of all communications involving a specific IoT gateway and IoT ser-
vice. This integration scheme can also be used to authenticate commu-
nications between devices connected to separate blockchain-enabled
gateways [65]. In this approach, not all of the data transferred needs
to be stored on the blockchain. The blockchain itself can be used as a
control mechanism, with smart contracts acting as programmable logic,
while data transfer can occur over peer-to-peer technologies like Bit-
Torrent and IPFS 6. However, recording all IoT interaction events on
the blockchain will increase bandwidth and storage requirements, and
currently scalability is a well known research challenge towards the in-
tegration of blockchains and IoT. Fig. 3.1(a) is an illustration of this ap-
proach. The degree of decentralization achieved through this approach
is not as fine-grained as in the case where devices issue transactions
directly to the blockchain.

• Devices as transaction-issuers to the blockchain: this integration sch-
eme is seen in [66], however, in our discussion we are assuming that
the IoT devices are not in fact carrying a copy of the blockchain, but are
simply issuing transactions to the blockchain, as shown in Fig. 3.1(b).
Similar to the previous approach, all IoT interaction events are logged
onto the blockchain for secure accountability. In this approach, IoT de-
vices can be provided with cryptographic functionality. The trade-off
here is higher degree of autonomy of IoT devices and applications, ver-
sus increased computational complexity of IoT hardware.

• Interconnected edge devices as end-points to the blockchain: in this
approach [66], IoT gateways and devices issue transactions to the block-
chain and can communicate with eachother off-chain, as seen in Fig. 3.1(c).
While introducing the need for routing and discovery protocols, this
approach ensures low latency between the IoT devices and the choice
to log specific interactions on the blockchain. This integration scheme
would be more suited to scenarios where interactions are much more
frequent and high throughput, low latency, reliable IoT data is required.

• Cloud-blockchain hybrid with the IoT edge: this approach is an ex-
tension to the previous integration scheme, whereby IoT users have
a choice to use the blockchain for certain IoT interaction events, and
the remaining events occur directly between IoT devices [66]. This ap-
proach leverages the benefits of decentralized record-keeping through
blockchains as well as real time IoT communication. Fig. 3.1(d) is an
illustration of this hybrid integration scheme.The challenge posed by
this approach is to optimize the split between the interactions that oc-
cur in real-time and the ones that go through the blockchain. Hybrid
approaches can utilize fog computing to overcome the limitations of
blockchain-based IoT networks.

6www.ipfs.io

www.ipfs.io

3.3. Integration Schemes for Blockchains and IoT 29

(a) Gateway devices as BC end-points. (b) IoT edge devices as transaction issuers to
the blockchain.

(c) Interconnected edge devices as
blockchain end-points.

(d) A hybrid cloud/blockchain approach.

FIGURE 3.1: Blockchain integration schemes for the IoT. All ar-
rows indicate interactions.

Which integration scheme to implement depends upon the requirements of
the IoT application. For instance, when there is a need for immutable record-
keeping and relatively lower number of interactions are taking place, the
first two interaction schemes make more sense. In applications that require
higher performance, using a blockchain alone may not be adequate, and it
would make sense to use a hybrid integration scheme. In IoT use-cases nei-
ther IoT devices or gateways should ever be used as full-nodes, since the
storage and computational overheads will not be able to justify the potential
benefits. Furthermore, in the case of some applications, an integration with
blockchains may not be necessary. In order to ascertain which application
scenarios justify a blockchain integration, the methodology presented in [67]

30 Chapter 3. The Blockchain-IoT Convergence

can be used.

Current centralized IoT models are linked to specific drawbacks and limita-
tions that can be canceled or mitigated by the decentralization properties of
the blockchains [68]. Blockchains lay the groundwork for developing decen-
tralized IoT platforms that enable secure data exchanges, and trustless record
keeping of the messages exchanged between devices without the need for
maintaining high-end servers. In the following sections, we will see how the
blockchain technology can play a relevant role in addressing and overcoming
some of the aforementioned challenges in different areas of the IoT.

3.4 Related Work

The aim of IoT is to have smart objects communicate over the Internet to
collect comprehensive data and provide personalized automation services
with little deliberate human interaction [69]. Towards this aim, current IoT
platforms are built on a centralized model where a central server or broker
provides services like data handling, device coordination and authorization.
This approach necessitates high-end servers and proves to be unsuitable for
scenarios where objects are required to autonomously exchange data. In
a centralized model, centralized servers authorize objects to communicate
with each other, so the increasing number of devices communicating with
each other over the Internet steadily increase set requirements for the servers.
Other issues associated with a centralized model are of security [54, 55], data
privacy [56, 7] and the trust inherently required in using centralized servers
[57].

The specific challenges posed by the current centralized model of IoT make it
a suitable challenge domain where the decentralization properties of block-
chains can yield relevant benefits. Blockchains lay the groundwork for de-
veloping decentralized IoT platforms that enable secure data exchanges, and
trust-less record keeping of the messages exchanges between devices with-
out the need for maintaining high-end servers.

This section will outline the issues and disadvantages of centralized IoT ar-
chitectures, and make a case for the benefits of decentralizing IoT architec-
tures using blockchains. Following that, we will address different research
directions for blockchain use cases in IoT, and discuss the solutions proposed
for each use case in recent research efforts.

3.4.1 Privacy in IoT

Within the centralized and hyperconnected nature of homes and cities today,
we see concerns related to user data privacy. The privacy issues in IoT are
immense, considering the sheer amount of data being collected, transferred,
stored, and undoubtedly sold. Data collection in IoT has diverse purposes,
for example, an organization may lease equipment and collect usage data for

3.4. Related Work 31

billing purposes. The organization can draw inferences about user’s prefer-
ences and habits from the data itself as well as the associated metadata [70].
Customers in this position place their trust in the organizations providing
the Internet-based applications, and have little knowledge of what data is
being transmitted, or if their data is being shared or sold to third party enti-
ties [71]. The worst-case scenario here would be mass-surveillance programs
[8], whereby entities collecting user data can collaborate with ‘Big Brother’
entities and collect data not relevant to the provided service.

Apart from authentication and secure cloud computing, in order to prevent
violations of privacy, the challenges involved are implementing policies that
ensure data confidentiality, integrity, ownership and governance [72]. [73]
advocates for "privacy-by-design," and emphasizes the need for empower-
ing users, and giving them the ability to control the data that is collected and
shared. Such a design aims to implement access control policies to evaluate
requests and decide whether to allow access to data or not. Towards meeting
the challenge of data ownership, [74] proposes transparency in data transfer.
Transparency enables users to keep track of the parties that utilize the data
collected by their IoT devices. To combat the privacy violation by a rogue
sensor network, current solutions in privacy involve users going through a
privacy broker [75], which itself if an intermediary entity between the user
and the sensor network. Similar to advances promoting anonymity in block-
chains, group signatures [76] and ring signatures [77] are a proposed solution
for IoT privacy. [78, 79, 80, 81] apply group signatures to mobile and vehicu-
lar ad-hoc networks (MANETs and VANETs). The concept remains the same:
the user transfers data as part of a group, so as to mask the user’s identity.
Another proposed solution for privacy and anonymity in IoT is k-anonymity
[82], which is an approach meant to prevent identity disclosure by anonymiz-
ing data transmitted. K-anonymity however, does not prevent attribute dis-
closure and has received critique [83]. To address this, an attribute-based
signature was proposed to further the idea of data anonymization [84].

For issues related to privacy, decentralization is being explored, and [85] pro-
poses a decentralized anonymous authentication protocol, based on crypto-
graphic Zero-Knowledge Proof of Knowledge (ZKPK). However, this proto-
col has received criticism: the protocol is susceptible to attack when an adver-
sary impersonates an actual user in the data collection aspect of the protocol
[86]. Blockchains lay down the foundations of decentralizing networks, and
carrying out data transfers securely, without the need of any authorizing and
authenticating intermediaries. The immutable record-keeping attributes of
blockchains provide a viable solution for governing IoT micropayments and
data sharing, so privacy-preserving network design for IoT using blockchain
and smart contracts is a fertile and active area of research.

In enabling microtransactions over the Internet, blockchains provide pseudo-
anonymity for IoT users and devices to engage in data transactions or device
commissioning [87]. FairAccess [88] is a distributed authorization frame-
work that leverages pseudonymity in blockchain networks. Huckle et al.
discuss the possibilities of resource sharing over IoT using blockchains [89].

32 Chapter 3. The Blockchain-IoT Convergence

Furthering that idea, Hardjono et al. [90] propose privacy preservation in
commissioning IoT devices over the cloud, using permissioned blockchains.
Even though the proposed architecture uses permissioned blockchains, users
have the ability to commission IoT devices anonymously without the need
for an authenticating intermediary. PlaTIBART [91] is a platform that uses
off-chain computation to decrease latency in blockchain-based transactive
applications for the IoT, while maintaining privacy using private blockchain
implementation. [92] uses attribite-based encryption for sensor data to en-
able privacy in IoT ecosystems. PISCES [93] is a framework for monetizing
IoT user data with privacy-by-design, using Privacy Validation Chain (PVC),
which allows users to control and monitor where their data is shared, and for
what purpose.

For cloud computing, the proposed solution outlined in [94] introduces soft-
ware-defined cloud computing with blockchain based access control for a
distributed solution for privacy. Another privacy-preserving access model is
described in [95] where blockchains and fine-grained access-control policies
allow users to govern their own data.

The most promising solution for private-by-design IoT data transfer is inter-
blockchain communications. The ICON loopchain7 and COSMOS8 project
aim to interconnect blockchains to open them up to multiple use-cases, in-
cluding IoT. Dorri et al. [64] introduce a privacy-preserving architecture
where smart home owners can log IoT events in a private sidechain and use
cloud storage for IoT data. Users can then choose to share any amount of
their encrypted data with others over a public overlay blockchain, according
to access-control policies written into the block headers. Smart contracts for
access-control was an idea introduced in Hawk [23], which implements pro-
grammatic access-control mechanisms via smart contracts. [96] uses peer-to-
peer storage to address storage-based scalability issues of blockchain, how-
ever, they do not implement interconnected blockchains for horizontal scal-
ability. [97] expands upon these proposals by using IPFS as a distributed
storage medium for IoT data, and smart contracts to enforce access-control.

While power grids are experiencing changes due to a boom in renewable en-
ergy solutions, decentralized IoT applications are emerging that help man-
age transactive microgrids. Here, blockchains are being researched for use
in smart grid applications, where energy sharing applications require pri-
vacy, decentralized control and monetization mechanisms. [58] uses group
signatures and off-chain encrypted anonymous message streams to provide
privacy in energy trading applications. More recently, [59] was proposed as
a solution towards enabling energy prosumers to tokenize and trade units of
energy with consumers, while protecting the prosumers’ personal informa-
tion. [60] uses smart contracts to enable privacy and decide tariffs for energy
sharing within smart grids.

7https://icon.foundation/
8https://cosmos.network/

https://icon.foundation/
https://cosmos.network/

3.4. Related Work 33

��v���or�µ�Z}�]Ì]vP��v�]�Ç�

���o]���]}v

d��v��}��

E��Á}�l

�����>]vl

^��µ�]�Ç

^��À]��

�o]��

���o]���]}v

d��v��}��

E��Á}�l

�����>]vl

�}�

���o]���]}v

d��v��}��

E��Á}�l

�����>]vl

FIGURE 3.2: Traditional Security Mechanism Architecture in
IoT.

3.4.2 Security in IoT via Blockchains

As the physical world joins the Internet, the attack surface from known and
new threats expands exponentially, resulting in complex security implica-
tions [98]. The goal of the IoT is to automate functions while maintaining
protection against the threat of a varying range of security attacks. An essen-
tial security challenge of the IoT comes from its ever expanding edge. In an
IoT network, nodes at the edge are potential points of failure where attacks
such as Distributed Denial-of-Service (DDoS) can be launched [99]. Within
the IoT edge, a set of corrupted nodes and devices can act together to collapse
the IoT service provision, as seen recently in botnet attacks [4].

Another threat to the availability of IoT service provisioning comes from its
heavily centralized configuration [100]. A central point of failure not only is a
threat to availability, but also to confidentiality and authorization [101]. Fur-
thermore, confidentiality attacks arise from identity spoofing and analyzing
routing and traffic information.

The IoT faces confidentiality attacks that arise from identity spoofing and an-
alyzing routing and traffic information, as well as integrity attacks such as
modification attacks and Byzantine routing information attacks [102]. Data
integrity in the centralized IoT configuration is challenged by injection at-
tacks in applications where decision making is based on incoming data streams.
IoT data alteration, data theft and downtime can result in varying degrees of
loss. Traditional security solutions in the IoT are centralized, involving third
party security services, as seen in Fig. 3.2. Even within fog architectures,
maintaining uniform standards for security is logistically difficult. Using
blockchains for security policy enforcement and maintaining publicly au-
ditable record of IoT interactions, without depending on a third party, can
prove to be highly benefitial to the IoT.

With virtues of decentralized public-key infrastructure, fault-tolerant design,
auditability and inbuilt protection against DDoS attacks, blockchains have
demonstrated their capabilities in delivering security to transactive networks

34 Chapter 3. The Blockchain-IoT Convergence

like Bitcoin. A blockchain-based IoT solution is resistant to false authenti-
cation since all devices issuing transactions have dedicated blockchain ad-
dresses. The consensus protocols used in public blockchains prevent mali-
cious actors from launching denial of service attacks since making multiple
empty transactions incurs transaction fees [103]. Thus blockchains have the
potential to disrupt IoT security mechanisms and provide improved security
solutions to the IoT stack.

Providing Access Control Through Blockchains

Recent research has seen several proposed solutions for enforcing access con-
trol policies in the IoT without relying on a third party service. Solutions like
[104] provide a secure public key infrastructure that is more fault tolerant
than centralized solutions.

Zhang et al. [87] introduce a tokenized approach to performing access con-
trol in the IoT through blockchains and smart contracts. The main idea is to
use customized cryptocurrency to buy temporary access privileges for physi-
cal or digital assets. Another tokenized approach to access control is outlined
in [105], where users are assigned different roles, and access control policies
written into smart contracts can be used to grant or revoke access privileges
for an IoT user’s data. Similarly, [106] and Enigma [107] store chunks of
encrypted data in the blockchain and uses a tokenized approach and smart
contract policies for allowing and revoking access to stored IoT data. An-
other access control model is proposed in [108], whereby IoT users can grant
and revoke access to stored IoT data through smart contracts. Hamza et al.
[109] use an overlay blockchain to provide an access control mechanism for
big data. They use programmable smart contracts to inform authorization
decisions for big data access requests.

Shafagh et al. [110] propose an blockchain-based access control solution for
data stored in off-chain Decentralized Hash Tables (DHT). The blockchain in
this solution stores access privileges for different users for any stored data in
the DHT. DHT nodes lookup the blockchain records to make access control
decisions. Dorri et al. [111] provide a lightweight scalable blockchain con-
sensus mechanism for securing and anonymizing IoT users, and allowing
them to monitor their data remotely.

Maintaining Data Integrity Through Blockchains

To launch a modification attack in a blockchain-enabled IoT architecture, an
adversary would attempt to alter the records in the blockchain, or create false
blocks in the blockchain, either containing false transactions, or censoring
transactions that have occurred. This is near impossible in public imple-
mentations of the blockchain, where canonical records of the blockchain are
maintained by means of distributed consensus. This further makes the case
for decentralizing the IoT using blockchains, since properties inherent to the
blockchain prevent attacks that compromise data integrity [112].

3.4. Related Work 35

Biswas et al. [113] propose a blockchain-based smart city solution whereby
the integrity of the stored data is guaranteed through the blockchain’s inher-
ent immutability features. Enigma [107] and Shafagh et al. [110] propose data
storage solutions based on Decentralized Hash Tables (DHT) and immutable
blockchain records. Data requests go to DHT nodes while the blockchain
ensures integrity of access control policies and the stored data itself.

A blockchain-based data integrity service is outlined in [114], where query-
based integrity checks can be performed without third-party verification.
Here, the blockchain is used as an added layer for providing security and
integrity to data objects stored on the cloud. Issuing queries and verifying
the blockchain records are used to detect any loss of data integrity.

Secure software updates for the IoT by applying blockchains in IoT is re-
ceiving research attention. In [115], embedded IoT devices receive secure
firmware updates in a blockchain network. The proposed scheme uses peer-
to-peer technology for delivering firmware updates and ensures the integrity
of the firmware installed in embedded devices. Similarly, the authors of [116]
and [117] use permissioned blockchains to store software updates within
transactions, so IoT devices can receive updates in a secure, peer-to-peer
fashion.

Ensuring Confidentiality Through Blockchains

The blockchain has inherent addressing involving public/private key pairs,
therefore, blockchain-based applications have built in authorization and con-
fidentiality features since each transaction is signed by the issuer’s private
key. Axon et al. [104] leverage a blockchain-based PKI to manage IoT de-
vices. They used smart contracts that issued commands to the IoT devices
using their blockchain addresses. These commands range from changing
working policies, to recording energy usage information onto the blockchain.

Aitzan et al. [58] propose a confidentiality solution for energy transacting
smart grids. The aim is to not only keep the information shared between two
parties confidential, but to also hide the identity of the energy producers.
In this regard, the authors suggest a mechanism for generating and altering
blockchain addresses for the energy producers, so as to hide the producer’s
identity altogether. The solution does not aim for complete decentralization
because it uses Distribution System Operators (DSOs) to manage security
among the producers and consumers as an automated intermediary.

Alphand et al. [118] proposed a solution which is a platform for IoT security
management. It is built on a blockchain that enforces authorization policies
and maintains interaction records, and the OSCAR (Object Security Architec-
ture for the IoT) [119] security model, using a group key scheme. The authors
use OSCAR to set up authorized multi-signature groups, and the blockchain
for flexibly setting authorization rules and maintaining an immutable records
of all access events.

36 Chapter 3. The Blockchain-IoT Convergence

Cha et al. [65] use an Ethereum blockchain to maintain confidentiality be-
tween IoT gateways within private blockchains. The gateway maintains in-
formation pertinent to the devices and all interactions with the IoT remain
confidential under blockchain-based signatures.

[90] is an approach for commissioning cloud-based IoT resources. It uses a
permissioned blockchain, and all data transferred to and from a commission-
ing party are kept confidential under blockchain-based PKI.

Improving IoT Availability With Blockchains

The proposed blockchain-based security solutions discussed above provide
improved availability in the IoT by decentralization properties inherent in
blockchains. Solutions that provide on-chain data storage have built-in fea-
tures for availability, since there are no central points of failure. Off-chain
storage solutions have improved availability of its interaction records, how-
ever the availability of the stored data is dependent upon the off-chain stor-
age mechanisms used.

Chakraborty et al. [120] proposed a blockchain solution to handle security
issues with resource-constrained IoT devices. The authors have computa-
tionally capable gateways participate as validators in a blockchain network,
which has inherent decentralization and fault-tolerance properties that guar-
antee liveness of the solution.

Bahga et al. [121] has IoT devices with blockchain addresses in a blockchain
network. The aim is to develop a blockchain-based manufacturing and smart
factory system. Since each device is on the blockchain, users can issue man-
ufacturing commands directly to the devices as transactions. The authors
present a machine maintenance and diagnostics use case. The decentralized
nature of connected devices help the network stay live in the event of multi-
ple faults in machines, and in the event of a fault, the remaining live devices
can report it.

3.4.3 ID Management

In the traditional Internet, identity management solutions such as SAML
[122] and OpenID [123] incorporate authentication methods, to prove iden-
tities and to provide secure channels. Open ID and SAML provide a decen-
tralized method for authentication, but do not enable two parties to engage
without an authorizing third party. A SAML or OpenID identity provider
is required so that users can sign up for online services. While there is no
single central authority for OpenID or SAML, third party identity providers
perform authentication and therefore, users are mandated to place their trust
on third party entities for authentication.

In cases where users are not involved, devices authenticate themselves with
tokens or security certificates. Furthermore, in many cases, the protocols
used in IoT do not necessarily fit the TCP/IP stack. Over the course of the

3.4. Related Work 37

development of IoT, certain protections have been put in place to prevent
identity abuse. OAuth 2.0 [124] is an open authorization framework that has
been widely used for IoT applications. OAuth uses tokens to grant or re-
voke access to specific online applications. Despite its merits in managing
IoT device identities, the common issue of traditional identity management
solutions is the lack of guaranteed trust and reliance upon third party autho-
rizing entities. In the case of OAuth, this is the Authorization Server, that
controls the issuance and revocation of tokens.

For current identity management protocols in the IoT, interoperability is an
ongoing challenge. Interoperability becomes difficult in the presence of mul-
tiple protocol options, cross-platform architectures, and variations in seman-
tics and conformance.

A blockchain-based IoT ecosystem would provide identification for every
device, that can be used as a watermark over all the transactions a device
makes. The IoT, and as an extension, the Internet, can benefit greatly by
blockchain identity management solutions. The most pronounced benefits
are distributed trust and security since blockchains render centralized au-
thenticating servers irrelevant.

While multiple startup companies have identity management applications in
varying stages of development, proposed solutions have emerged in recent
research publications for managing identities of connected devices in the IoT.
[104] highlights the potential benefits of PKI without single points of failure
by using blockchains. This study demonstrates varying levels of privacy-
awareness that can be achieved with blockchain-based PKI.

The authors of [59], [125] and [126] propose identity management systems
based on blockchains for transacting energy systems. Applications like these
contribute to the vision of an open model energy sharing system, and to the
goal of developing smart grids with renewable energy.

In [127], the proposed solution for hosting IoT devices on the cloud calls for
identity management, and the authors detail their findings on performance
analysis in blockchain deployment over IBM Bluemix. They use blockchain-
based addressing to host virtual IoT resources, that users can transact with
using their specific blockchain address. Kravitz et al. [128] use permissioned
blockchains to propose a solution for distributed identity management. Since
all participants in a permissioned blockchain have to be known, a participant
makes their identity known and linked to their blockchain address, which
can then be used for IoT interactions. This does not allow for anonymity,
but for specific enterprise-level IoT applications, it is a viable decentralized
identity management mechanism. Huh et al. [129] implemented an identity
management system for interconnected devices using Ethereum smart con-
tracts. They implement smart contract programmability for managing keys
in a fine-grained fashion.

38 Chapter 3. The Blockchain-IoT Convergence

Lee et al. [130] propose a blockchain-based identity and authentication man-
agement system for mobile users as well as IoT devices. Their proposed solu-
tion involves generating and maintaining blockchain identities as a service,
without any considerations for interactions or communications through the
blockchain. The blockchain-based identities in this case are only meant for
decentralized authentication purposes. Urien et al. [131] propose a unique
identity management solution for a blockchain-based IoT. They developed
cryptocurrency smart cards (CCSC) based on javacard secure elements. The
smart card, developed on the JC3.04 standard platform provides improved
security compared to 32 byte keys typically used in blockchain networks.

Identity management is a challenge being actively worked upon in block-
chain research and development. Early contributions like [132] aimed to pro-
vide a distributed domain naming system for the Internet using blockchains.
Several startups are developing solutions for blockchain-based identity man-
agement for online entities, including IoT devices. ShoCard [133] is an iden-
tity verification platform built on a public blockchain, where users can ver-
ify their blockchain ID simply by passing their card over a sensor. Thus,
ShoCard provides an identity solution for humans by leveraging IoT and
blockchains. A startup that aims to provide identity management for IoT de-
vices is Uniquid9, a platform for access and identity management for devices,
cloud services, and humans. Furthermore, Chronicled10 is a company that is
using the IoT and blockchain to provide digital identity to physical products,
while Riddle and Code11 offers its own hardware and software stack to pro-
vide any physical object with a unique tamper-proof identity. These solutions
are independent of tokens, certificates or IP addressing and instead rely on
blockchain addressing that has tamper-proof logging for every interaction a
specific address is involved with.

3.4.4 IoT Data Management

Research challenges in IoT remain open for storing and handling data pro-
duced by smart objects which surpass the human population. Recent re-
search efforts have attempted to develop frameworks and mechanisms to
manage the sheer volume of data generated in the IoT.

Data management in the IoT involves online data aggregation while provid-
ing event logs, auditing and storage, for offline query-processing and data
analysis. Thus data management systems are required to have live dual op-
erations in communication as well as storage. Any data management sys-
tem for the IoT should be able to abstract complex semantics for high-level
IoT applications, since unprocessed IoT data faces non-uniformity and weak
semantics [134]. In many IoT architectures, semantic processing for data

9https://uniquid.com/
10https://chronicled.com/
11https://www.riddleandcode.com

https://uniquid.com/
https://chronicled.com/
https://www.riddleandcode.com

3.4. Related Work 39

is done via middleware, a layer considered between network and applica-
tion layer [135]. In addition to this, many IoT application domains are time-
critical, therefore processing IoT data in a timely manner is important while
considering the constrained capabilities of IoT devices.

Traditional data management solutions generally follow a design trend where
IoT data is handled in centralized architectures. Some proposed solutions
suggest a partially decentralized architecture by using either clusters of dis-
tributed database services [136], or by using sub-servers to enable better scal-
ability [137, 138]. These solutions do address the bottleneck of centralized
data management systems, however, they do not provide trustless data man-
agement for the IoT.

While latency and scalability remain an open challenge for data storage within
blockchains, using blockchains to design data management frameworks for
IoT has the benefits of globally enforced data integrity and a non-dependence
on semantics for logging IoT data creation events. With distributed storage
mechanisms like IPFS working alongside blockchains, the bulk of IoT data
can be stored off-chain, while maintaining immutable logs and links to the
data within the blockchain. Blockchain based solutions are envisioned to be
at least partially distributed, where the IoT data of users is kept private and
secure, without third-party handling for service provision.

Multiple works in recent research leverage blockchain features to improve
data management for the IoT. [139] leverage the immutability and auditabil-
ity of blockchain records, while storing collected data from drones using tra-
ditional cloud service. [110] leverage auditability of blockchain records to
facilitate sharing of stored data without authorizing intermediaries. Azaria
et al. [140] propose a framework for storing medical records, using block-
chain solely for maintaining records and querying, while using existing IoT
data storage mechanisms for hosting IoT data. The motivation for this ap-
proach is to keep data storage responsibilities off-chain, so as to not bloat the
blockchain.

Similar solutions with off-chain storage hold the most promise towards a
distributed data management mechanism for the IoT, since taking storage
off-chain bypasses the scalability issues in blockchains. FairAccess is a multi-
layered framework that focuses on privacy, reliability and integrity in its de-
sign as a blockchain-enabled IoT architecture. [105] [88] For storage, they
aim to add a separate storage layer where and off-chain, decentralized stor-
age medium enables IoT data storage. [64] is a multi-tiered architecture,
where private blockchains use cloud based solutions for storing and retriev-
ing blocks.

Enigma [107] also uses off-chain storage, and utilizes a network of nodes run-
ning a distributed-hash table for storing IoT data. The data is accessible via
the blockchain, with access-control policies written into the blockchain. Simi-
larly, approaches to data storage and decentralized access-control is outlined
in [95] for IoT, and in [141] for Big Data.

40 Chapter 3. The Blockchain-IoT Convergence

The proposed architecture in [97] uses the IPFS distributed storage mecha-
nism, with the hash of the stored files recorded in the blockchain. IPFS files
are addressed using the hash of the file itself, so data integrity is ensured. Nu-
gent et al. [142] use Ethereum’s Swarm12 protocol for storing records of clin-
ical trials off-chain, while using smart contracts to store and retrieve stored
files. The aim for this approach is to enable transparency in record-keeping
for clinical trials.

Researchers at CSIRO Australia propose a data integrity service powered by
blockchain [114]. The service provides querying to query integrity of IoT data
stored in the cloud, without the need for a third party to perform any veri-
fication. Blockchains with cloud-based persistent data storage is also being
leveraged to host IoT resources on edge hosts. [127] proposes an architecture
that uses IBM Bluemix and a permissioned blockchain to allow IoT resource
sharing, as well as tracking usage and resource authorization.

12https://swarm-guide.readthedocs.io

https://swarm-guide.readthedocs.io

41

Part II

The Proposed Blockchain-Based
IoT Framework

43

Chapter 4

Designing the Blockchain-Based
IoT Framework

This chapter contains text taken from the following published works:

"IoT Data Privacy via Blockchains and IPFS."
In Proceedings of the 7th International Conference on the Internet of Things, p. 14. ACM, 2017.

"Enabling a Blockchain-Based IoT Edge."
IEEE Internet of Things Magazine 1, no. 2 (2018): 24-29.

"Blockchain-Based Traceability in Agri-Food Supply Chain Management:
A Practical Implementation."

In 2018 IoT Vertical and Topical Summit on Agriculture - Tuscany, pp. 1-4. IEEE, 2018.

A capable IoT edge allows edge nodes to meet service demands by limiting
bandwidth consumption and latency. While this model allows for rapid and
flexible deployment of IoT applications, the edge computation nodes oper-
ate under varying third-party entities, thus making it difficult to ensure a
uniform level of security throughout the IoT edge. Fig. 4.1 illustrates a three-
layer representation of edge-computing based IoT. The intelligent gateways
at the edge computing layer are much closer to the end users themselves,
and are interconnected to perform end-to-end IoT communications with as
low latency as possible. Such gateways can even perform data handling and
analytics locally, without relying heavily on cloud servers [143]. Most IoT
applications have requirements in terms of transmission, computation and
storage. The edge computing layer provides faster response-times for IoT
applications, whereas the cloud server provides higher computation power
and larger storage; thus the IoT benefits from both edge and cloud servers.

The edge is built on varied technologies like peer-to-peer systems, network
virtualization and wireless networking. Virtualized container-based func-
tionality within the IoT edge has proven to be a huge step forwards in IoT-
edge application development, interoperability and adoption [144]. As con-
tainerized IoT applications become more prevalent, real-time IoT services
and analytics are drawing nearer to the edge, without reliance on centralized
cloud-based orchestration. As the IoT grows, the IoT and edge computing
will become inseparable. In the adoption of edge-computing IoT, the most
important issues that demand consideration are security and privacy.

44 Chapter 4. Designing the Blockchain-Based IoT Framework

Cloud
Servers

Edge Computing
Intelligent GWs

IoT-
Devices

FIGURE 4.1: Traditional centralized architecture of edge com-
puting IoT.

Despite the lofty goals of decentralization, edge computing raises some un-
foreseen opportunities for malicious behaviour. One of the typical security
related problems in edge computing is authenticating gateways on different
levels. For example, in IoT energy management systems, adversaries can
compromise smart meters by falsifying data and spoofing IP addresses, thus
rendering such systems vulnerable. Equivalent decentralized security strate-
gies are difficult to enforce, considering IoT edge nodes may be managed by
different entities. To truly empower the IoT users, and in extension the IoT
edge, blockchains offer a fundamental rethinking of how private-by-design
solutions can be implemented over decentralized networks.

In light of the challenges surrounding the blockchain-IoT convergence, there
are ample research opportunities towards developing a functional and scal-
able blockchain-based IoT edge. To truly reap the benefits of a blockchain-
based IoT edge, our contribution is a horizontally scalable blockchain frame-
work over the IoT edge. This approach involves multiple locally deployed
blockchains for multiple IoT edge segments, industry verticals, or even fed-
erated networks. Horizontally scaling blockchains and blockchain solutions
is paramount for blockchains to truly arrive onto the IoT edge. The idea
is to have multiple blockchains, or multiple blockchain segments, maintain
communication records and enforce service level agreements on the entire
surface area of the IoT edge. These multiple blockchains consist of permis-
sioned blockchains maintaining privately held records within its edge seg-
ment, and an overlay permissionless blockchain as a negotiation medium for
blockchain segments to securely exchange data with one another.

4.1. Architecture 45

4.1 Architecture

The proposed framework is built on a tiered architecture of public and pri-
vate blockchains, and is based on a decentralized application stack of smart
contracts for network control, and peer-to-peer data storage and delivery
mechanisms [145]. In this section, we outline the decentralized technolo-
gies used in developing the proposed blockchain-based IoT framework, as
well as the network architecture designed to mitigate the privacy and scala-
bility concerns associated with the blockchain-IoT convergence. Blockchains,
along with decentralized storage mechanisms used in a multi-tiered architec-
ture forms the basis of the proposed framework for monetizing IoT data, and
securely availing IoT services involving monetary transactions.

4.1.1 Core Components of the Blockchain-IoT Framework

The proposed blockchain-based IoT framework is built on a tiered architec-
ture of public and private blockchains, and is based on a decentralized ap-
plication stack of Ethereum smart contracts [17] for network control, IPFS1

for IoT data storage and BigchainDB [146] as an immutable and auditable
database. In this section, we will discuss the basic working principles of
blockchains and the key elements of a blockchain-based decentralized appli-
cation stack.

For the proposed framework, the basic components required are the block-
chain platforms: Ethereum and Hyperledger Burrow, along with smart con-
tracts for programming the blockchains, and decentralized file storage for
hosting the application data.

Hyperledger Burrow2 is a Linux Foundation project under the Hyperledger
umbrella of blockchains. Hyperledger Burrow received its original contri-
butions from the developers of the Monax3 platform. Hyperledger Burrow
inherits the high throughput by virtue of the Tendermint consensus engine,
and is tailored for permissioned blockchain deployments. Furthermore, Hy-
perledger Burrow provides a modular blockchain client with smart contract
programmability built into it as per the specifications of the Ethereum Virtual
Machine (EVM).

Ethereum is a blockchain platform that enables developers to deploy their
own permissionless blockchain deployments, or to create distributed appli-
cations that run on already deployed Ethereum blockchains. The design
choice to use Ethereum platform was based on its "programmability" and by-
design security features. Both Ethereum and Hyperledger Burrow interpret
smart contract written in Solidity, and utilize the EVM for its smart contract
functionality. The core elements of the Ethereum platform are briefly de-
scribed in the following, while, for a more comprehensive introduction, the
interested reader is referred to [17].

1www.ipfs.io
2https://www.hyperledger.org/projects/hyperledger-burrow
3https://www.monax.io

www.ipfs.io
https://www.hyperledger.org/projects/hyperledger-burrow
https://www.monax.io

46 Chapter 4. Designing the Blockchain-Based IoT Framework

• Ethereum Virtual Machine: the core of the Ethereum platform is the so-
called Ethereum Virtual Machine (EVM), which executes smart contract
code over the blockchain network. A smart contract is simply a piece
of code stored in the blockchain itself and able to enforce programmatic
terms and conditions over transactions occurring in the network. Every
node in the Ethereum network runs the EVM, therefore, the publicly
deployed main Ethereum network is considered a "world computer".
In our framework, for private-by-design IoT data transactioning, we
use smart contracts to enable IoT users to decide when and how much
data to share with entities of their choosing, in exchange for monetary
incentives and/or services.

• Transactions and Addressing: in Ethereum, addressing is based on
hashed public-private key pairs. Since the latter are not associated to
real-life identities, Ethereum is able to guarantee "pseudonymity" to its
users [13]. Information related to transactions occurring in Ethereum
are broadcasted to all nodes. Transactions can be made for transfer-
ring Ether (the official Ethereum cryptocurrency, ETH in the following)
or delivering message data from one address to another, or interacting
with the Application Binary Interface (ABI) of functions written in de-
ployed smart contracts.

• Smart Contracts: A smart contract is simply a piece of code stored in
the blockchain itself and able to enforce programmatic terms and con-
ditions over transactions occurring in the network. In our proposed
framework, for private-by-design IoT data transactioning, we use smart
contracts to enable IoT users to decide when and how much data to
share with entities of their choosing, in exchange for monetary incen-
tives and/or services.

• Consensus Algorithm: For our framework, we used proof-of-authority
(PoA), a variation of PoW, which limits mining only to delegated block
validators. In the framework, the compromise for scalability is that
the block validation is not fully decentralized and open to the public,
however, with a sufficiently large validator pool, the immutability of
the blockchain contents will remain secure. For private blockchains,
we used a variation of the voting-based Practical Byzantine Fault Tol-
erance (PBFT) consensus algorithm [41]. Under PBFT, new candidate
blocks are validated through multiple rounds of voting among block
validators, instead of expending computational effort. PBFT is compu-
tationally efficient, with a fault tolerance of n ≥ 3 f + 1, where n is the
total number of validating nodes, and f is the number of compromised
or faulty nodes. PBFT is only suitable for private deployments, where
participants are known to one another. Furthermore, PBFT blockchains
are only suitable for private deployments since the high network over-
head generated severely limits the scalability of the validator pool.

For applications involving data storage and transfer, relying on a blockchain
as-is is highly inefficient, since storing data onto the blockchain will bloat

4.1. Architecture 47

it, and cause high network overheads [147]. Therefore, for distributed file
storage, off-chain decentralized file storage mechanisms are an important
addition to the decentralized application stack. Common examples of such
storage systems are the BitTorrent protocol4, IPFS and Provable5 .

IPFS (Interplanetary File System) is a peer-to-peer network and protocol for
storing and sharing data. Using IPFS is particularly advantageous in our
case, since files stored on IPFS are content-addressed. In order to deliver a
file from one point to another, one needs only to send the cache-friendly hash
of the file in an Ethereum transaction, so as to let the other person retrieve it
through IPFS. This delivery mechanism is better suited for sharing batches
of IoT data, and since the hash of the IPFS files are what identify them, this
decentralized data sharing mechanism has built-in guarantees for end-to-end
data integrity.

BigchainDB is a distributed database with blockchain characteristics [146].
BigchainDB boasts scalability and immutable record-keeping, and in our frame-
work, we use BigchainDB to complement the decentralized application stack
of Ethereum and IPFS. BigchainDB is essential for the framework, to main-
tain data integrity in private blockchains. We maintain a database of the
block hashes from private blockchains that contain users’ personal IoT data
in BigchainDB. The entries to the database serve as an immutable record of
the private blockchain contents, and users can provide these records as au-
ditable proof of the integrity of their private blockchain contents.

The Tor Network6 is another essential piece of the puzzle, for decentralized
data transfer. While IPFS and BigchainDB together provide an accountable
decentralized stack for exchanging batches of data, many blockchain ap-
plications have inherent requirements for data streaming. In near-realtime
streaming applications, which are common in the IoT, incurring transactions
repeatedly and retrieving data in batches over IPFS proves to be counter-
productive and greatly increases the involved latency. Using the public block-
chains specifically as a means for providing decentralized record-keeping
and access control, while employing messaging streams over Tor adds secure
end-to-end communications to the repertoire of the proposed framework’s
functionalities. Chapter 6 contains a detailed discussion on the usage of Tor
within the proposed framework for secure end-to-end data communications.

4.1.2 Tiered Blockchain Architecture

In networks generating data, a blockchain can be used to create an immutable
log of all data generation and access events, while smart contracts can be
used to program responses to certain events or to enforce access control poli-
cies [97]. Then, this log can be used for transparency and accountability.

4http://www.bittorrent.org/beps/bep_0003.html
5https://provable.xyz/
6https://www.torproject.org/

http://www.bittorrent.org/beps/bep_0003.html
https://provable.xyz/
https://www.torproject.org/

48 Chapter 4. Designing the Blockchain-Based IoT Framework

However, this poses unique challenges in the IoT domain, in the form of a pri-
vacy/scalability trade-off. First, while permissioned blockchains retain pri-
vacy of their contents by limiting access to permissioned nodes, the consen-
sus mechanisms involved in permissioned blockchains severely limit their
scalability. Second, while permissionless blockchains have an improved scal-
ability in terms of the number of participants, its contents are available to the
public, which can impede user privacy[147]. Besides scalability in terms of
the number of participants, a single monolithic blockchain cannot scale up to
meet the storage requirements of a blockchain-based IoT. The IoT generates
an unprecedentedly large amount of data, with a sharply high frequency of
data generation events. If all the data generated by the IoT were to be en-
crypted and stored onto the blockchain, the storage requirements for each
full node on the IoT edge would explode.

To overcome these limitations, we have designed our framework upon hier-
archical, multi-tiered blockchain architecture; whereby inter-communicating
permissioned and permissionless blockchains aim to bring together various
segments of the IoT edge, without overwhelming each blockchain network.

The edge-tier as seen in Fig. 4.2 is composed of a federation of logically sepa-
rate blockchains, deployed across multiple IoT edge segments; with IoT edge
computing nodes and gateways acting as blockchain participant nodes. Thus
each IoT edge segment can have its own ledger, terms of engagement and ac-
cess control policies. Various IoT industry verticals can be accounted for in
separate edge-tier blockchain deployments. For example, an edge-tier block-
chain for a singular industry vertical, like a smart factory, would be used to
keep data confidential within the blockchain network. IoT devices in this sce-
nario would need not participate in the consensus algorithm, but would only
issue transactions to the blockchain. IoT applications with mobility require-
ments can have IoT devices use cellular networks to issue transactions to
their respective edge-tier blockchains. Implementing transaction fees within
edge-tier blockchains may not cost anything in terms of money, however, it
can effectively secure edge-tier blockchains from flooding attacks in the event
that a mobile IoT device is compromised.

The Edge-Tier Blockchain

The edge-tier blockchain deployments are permissioned blockchains, where
resource-intensive consensus protocols like Proof-of-Work are not necessary.
Any nodes from outside the blockchain network only gain access after receiv-
ing permission from its existing participants. Private blockchain consensus
algorithms like PBFT have voting mechanisms that generate higher network
overhead than public blockchain consensus algorithms like Proof-of-Work.
While Ethereum, a public blockchain platform based on Proof-of-Work re-
quires roughly 300kbps to run a full node, private blockchain platforms like

4.1. Architecture 49

Core
Tier

Edge
Tier

IoT-edge
segment

n-1

Core-tier blockchain node

Edge-tier blockchain node
Inter-blockchain gateway node

IoT-edge
segment

n+1IoT-edge
segment n

FIGURE 4.2: The two-tiered public/private blockchain architec-
ture.

Tendermint have steadily increasing network traffic overheads with increas-
ing number of nodes [10]. Therefore, private edge-tier networks require lim-
its on member nodes, and need to be deployed in localised networks. Addi-
tionally, design considerations are to be made towards ensuring the integrity
of the contents of edge-tier blockchains. Since private-permissioned block-
chains do not achieve the same degree of decentralization and immutabil-
ity as public-permissionless blockchains, it becomes necessary to be able to
prove the contents of an edge-tier blockchains are unmodified. As a proof
of edge-tier integrity, it is important to either use the core-tier blockchains
to periodically store a hash of some recently added blocks in each edge-tier
blockchain, or use a separately deployed public blockchain as a repository
for hashes of all edge-tier blocks. In our framework, we use BigchainDB as a
verifiable repository of edge-tier block hashes.

The IoT edge gateway devices participating in the edge-tier blockchain (with
Linux operating systems including Ubuntu, Debian and Raspbian, each with
support for Docker), integrate with IoT devices (sensors and actuators) and

50 Chapter 4. Designing the Blockchain-Based IoT Framework

register each data transfer and communication/actuation event into the edge-
tier blockchain. In the edge-tier of this hierarchical architecture, specific
nodes serve as gateways between the edge-tier and the core-tier blockchains.
These inter-blockchain gateways are a building block to developing block-
chain applications that span multiple edge-tier blockchains via the core-tier
blockchain.

The Core-Tier Blockchain

The core-tier blockchain, as seen in Fig. 4.2, is deployed where the server/
cloud side of a traditional architecture would be, however, the core-tier serves
as a decentralized fabric for regulating the edge-tier itself, as well as the com-
munications between multiple edge-tier blockchains. The core-tier block-
chain can be used as an authentication and negotiation layer between two
edge-tier blockchains, or even between an edge-tier blockchain and a node
requesting access to the edge-tier blockchain. The core-tier blockchain is de-
ployed publicly, in a "permissionless" fashion, such that any IoT edge seg-
ment or a member of the public could join the core-tier blockchain openly
and without permission. The core-tier blockchain can employ consensus
algorithms like Proof-of-Work, which are necessary to secure deployments
with unknown participants. The core-tier blockchain consists of a network
of nodes with a higher computational capabilities than the nodes at the edge-
tier. Alternative permissionless blockchain consensus algorithms like Proof-
of-Stake can ensure secure transactioning at the core-tier, without requiring
high computational complexity. However, keeping node churn in mind,
Proof-of-Work may indeed be a better choice, since block validating nodes
are not chosen at random, and nodes actively producing computational work
may validate blocks. Any nodes that leave the core-tier blockchain can rejoin
and synchronize with the updated blockchain, without effecting the block-
chain availability since there is no single point of failure.

Towards enabling real-time communications between two edge-tier block-
chains, the core-tier blockchain can be used as an authenticating medium, fol-
lowing which communications can commence between two inter-blockchain
gateways through off-chain communication channels. Using the core-tier
blockchain for real-time applications is not feasible due to the latency and
transaction processing speeds of publicly deployed permissionless block-
chains in general. The transaction processing speed of permissionless block-
chains does not make them suitable to handle real-time communications in
higher volumes. Therefore, the idea here is to not inflate the core-tier block-
chain with end-to-end communications, and to use it effectively as a decen-
tralized security mechanism for off-chain communication channels.

The scope of this work is not to address inter-blockchain communications on
a protocol-level, however, blockchain applications developed on platforms
like Ethereum and Hyperledger can interact at application-level. Applica-
tions that listen for specific events in one blockchain can trigger scripts that

4.2. Entities Involved 51

issue transactions onto the other blockchain. Therefore, the vision of a hor-
izontally scaling blockchain-edge architecture is an attainable goal, for pro-
viding decentralized security to multiple IoT industry verticals.

4.2 Entities Involved

In the tiered blockchain architecture of our proposed framework, the entities
involved are: the IoT gateways that users own; and requester nodes interact-
ing with a users’ IoT gateway, the smart contracts involved and finally, the
decentralized data storage and transfer mechanisms. The distant node can
be someone simply buying a user’s IoT data, or someone providing a mon-
etary service, or someone authorized to remotely monitor a gateway’s IoT
data. Between the local IoT gateway and the requester node are the Ethereum
smart contract that defines the digital terms and conditions for monetizing
IoT data, and IPFS for privately storing and sharing IoT data. Transactions
involving cryptocurrency and IoT data are made in ETH over the Ethereum
public chain.

• Local IoT Gateway: the local IoT gateway is a node more computation-
ally capable than typical IoT devices. In applications where batches of
edge-tier IoT data is to be exchanged over the core-tier blockchain, it
is responsible for maintaining a copy of the edge-tier blockchain that
contains the time-stamped logs of sensor data coming from IoT de-
vices that were registered through it. The local IoT gateway, acting as
an "Inter-blockchain Gateway (IBGW)" is also connected to the core-
tier blockchain. Upon receiving access requests, it reads specific access
privileges written in the edge-tier blockchain, and uses IPFS to trans-
fer selected blocks from the edge-tier blockchain to a requester node in
an IPFS file. For improved robustness, edge-tier blockchains can have
multiple IBGW’s connecting it to the core-tier blockchain. In applica-
tions where streams of IoT data are to be exchanged, the local IoT gate-
way engages in negotiations over the core-tier blockchain and delivers
the streaming data over Tor.

• Requester Node: it is a peer on the core-tier blockchain that either buys
data from an edge-tier blockchain or provides monetary services based
on the data sent to it by an IoT user. This may be another edge-tier
blockchain’s IBGW, requesting data from another edge-tier industrial
vertical. The requester node retrieves IPFS files sent from an edge-tier
blockchain’s IBGW, provided that the terms and conditions written into
the core-tier smart contract are fulfilled. The terms and conditions on
sharing data are decided between the requester node and the intended
IoT gateway. The terms and conditions include the price, duration, vol-
ume and nature of data to be shared. In applications involving data
streams, the requester node and the intended IoT gateway will engage
in data transfer over Tor.

52 Chapter 4. Designing the Blockchain-Based IoT Framework

• Smart Contract: a smart contract code lives in the blockchain as an au-
tonomous entity, also fitted with its own blockchain address. The latter
is then used by a blockchain node (either a local gateway or a distant
node) to invoke specific function methods written in the smart contract
itself. Hence, the function methods are a digital parallel to the terms
and conditions written in a traditional monetary contract. Through
the functions of the smart contracts, both on the core-tier and edge-tier
blockchains, nodes on the core-tier blockchain can issue requests and
negotiate the terms, and IoT users can set their access control policies.

• Decentralized Storage and Transfer: the decentralized storage in the
blockchain-based application stack, including IPFS and BigchainDB act
as a key component for sharing data from edge-tier blockchains and
providing the requester node with a mechanism for verifying the in-
tegrity of the edge-tier blockchain contents. Since permissioned block-
chains do not have absolute censorship resistance, the block hash records
in BigchainDB serve as a means to verify the integrity of the edge-
tier blocks being shared. Similarly, in applications involving streaming
data, the decentralized transfer medium will be the end-to-end messag-
ing service on Tor.

Core-tier BC
Smart Contract

Edge-tier
BC Smart
Contract

Requester
Node

IBGW

FIGURE 4.3: Entities involved in the architecture of the pro-
posed framework.

4.3. Core-Tier and Edge-Tier Smart Contracts for Access Control 53

Fig. 4.3 illustrates the entities involved in the proposed framework. Here,
IPFS represents a part of the the decentralized storage and transfer stack,
which can also include BigchainDB and Tor, depending upon the application.

4.3 Core-Tier and Edge-Tier Smart Contracts for Ac-
cess Control

Smart contracts deployed on both the edge-tier and core-tier blockchains con-
tain digitized terms and conditions for enforcing access control policies. How
these smart contracts can be tailored specifically for different use-case scenar-
ios are discussed in detail in Chapters 5 and 6.

IoT gateways interested in engaging with data requesters (either for data
monetization or availing other data services) deploy smart contracts into the
core-tier blockchain. The core-tier smart contract will be the point of contact
and medium of negotiation for the requester and the intended IoT gateway.
Each smart contract maintains records of requester nodes who are allowed
access to the edge-tier data. These policies may allow open access to any
requester willing to pay, or may have fine-grained policies on the basis of
individual requesters.

To maintain requester records within the blockchain, our initial experiments
involved using the array data structure within the Ethereum Virtual Ma-
chine. Simply using arrays proved to be problematic since appending objects
to the array each time resulted in steadily increasing transaction fees. There-
fore, the design decision to use the mapping data structure made more sense,
since updates incurred a fixed transaction fee. All transaction fees were kept
to a minimum since the algorithmic complexity of the functions in the smart
contracts are kept at O(1).

The following snippet shows how a "Requester" object with different attributes
can be added onto the mapping structure within the smart contract. These
attributes can include information on the level of access granted to the re-
quester, or details about monetary requirements for granting access to a spe-
cific requester.

struct Requester {
bool Attribute1;
uint Attribute2;
string Attribute3;

}

mapping (address => Requester) public Requestermap;

54 Chapter 4. Designing the Blockchain-Based IoT Framework

Objects such as these are maintained in the edge-tier blockchain as well,
where IoT users can flexibly dictate their access control policies for each re-
quester in particular. These fine-grained policies include the volume, time
period, and nature of data that a requester is allowed to access. Requester
objects on the edge-tier blockchain allow IoT users to dictate their terms for
selective expression, and the requesters objects maintained in the core-tier
smart contract protect requesters from issuing unauthorized payments for
data access.

Requesters issue requests by invoking a function in the intended IBGW’s
core-tier smart contract. The core-tier smart contract can then pre-emptively
prevent any payments from going through if the requester is not authorized
to access the intended edge-tier blockchain’s data. In case a payment does go
through, the core-tier smart contract holds the payment till the agreements
are met. If access is not granted, the smart contract returns the payment to
the requester.

4.4 Consensus Algorithms for the Core-Tier and
Edge-Tier

A major part of designing the framework was to decide which blockchain
platform to use at each tier of the hierarchical architecture. Preliminary block-
chain network deployments were used to study the performance metrics of
various blockchain platforms. On the public blockchain tier, the clear de-
cision was to employ the Ethereum platform, for its virtues in smart con-
tract programmability and secure public deployments. The Ethereum cryp-
tocurrency mainchain stands as proof of its immutability and security on the
protocol level. The only weakness in a public Ethereum blockchain that an
adversary can exploit are loopholes in a smart contract, therefore it is imper-
ative to use best practices in scripting smart contracts.

For the framework to have a uniform smart contract language and interpre-
tation, the first step was to consider the viability of Ethereum on the private
blockchain tier. When deploying a custom Ethereum blockchain, a "diffi-
culty" level must be set for the PoW consensus algorithm. A high enough
difficulty level is necessary in Ethereum public deployments, to ensure that
no single entity can amass significant enough computing power to launch a
51% attack. Within private blockchain networks, all peers are known, there-
fore there is no need for a high difficulty level.

A private Ethereum blockchain network was deployed over five core-i7 nodes,
and the block processing time was observed for the first 1600 blocks. Among
some preliminary results in understanding the real-world performance of
Ethereum private networks, Fig. 4.4 shows very low block processing times
obtained on a private Ethereum blockchain deployment. Since the difficulty
level is set very low, the processing time is very fast. However, the mining
process involved in Ethereum did result in a maximum CPU usage in all 5

4.4. Consensus Algorithms for the Core-Tier and Edge-Tier 55

FIGURE 4.4: Block processing time in a privately deployed
Ethereum blockchain.

nodes involved. With the constant usage of computational power, two major
security concerns made Ethereum unsuited for the private blockchain tier.

Firstly, the blockchain is not truly permissioned, since anyone who knows
the correct network ID can join the blockchain network, and only exist lim-
ited means to limit access to an Ethereum blockchain. The only means to
prevent peers from mining on the Ethereum blockchain is to deploy a proof-
of-authority (PoA) variant of the Ethereum blockchain, whereby only autho-
rized nodes can mine on the blockchain and generate tokens.

On the other hand, among permissioned blockchains, the most suited con-
sensus algorithms were PBFT, PoET, and the Tendermint consensus protocol.
Sec. 4.6.1 discusses a use-case with PoET on the private blockchain tier, with
Hyperledger Sawtooth, and Chapter 5 uses Hyperledger Burrow in its pri-
vate edge-tier. The preference on Hyerledger Burrow is due to the fact that
the smart contract scripting language is the same as Ethereum, therefore a
uniform smart contract logic can be applied for both core-tier and edge-tier
blockchains. Hyperledger Burrow uses Tendermint as its consensus engine,
and Fig. 4.5, taken from [148], highlights the high transaction throughput
of Tendermint consensus. It also shows its observably limited scalability in
terms of number of validators it can accommodate. Therefore, Hyperledger
Burrow blockchains are well suited for logging data generation and access
events within an edge segment of the IoT.

56 Chapter 4. Designing the Blockchain-Based IoT Framework

102 103 104 105

Transaction Throughput (txs/second)

0

2

4

6

8

10

P
e
r-

B
lo

ck
 L

a
te

n
cy

 (
se

co
n
d
s)

2 vals
4 vals
8 vals
16 vals
32 vals
64 vals

102 103 104 105

Block size (number of transactions)

0

2000

4000

6000

8000

10000

12000

14000

16000

T
ra

n
sa

ct
io

n
 T

h
ro

u
g
h
p
u
t

(t
x
s/

se
co

n
d
)

2 vals
4 vals
8 vals
16 vals
32 vals
64 vals

Figure 9.1: Latency-throughput trade-off. Larger blocks incur diminish-
ing returns in transaction throughput, with an ultimate capacity at around
10,000 txs/s

67

FIGURE 4.5: Despite high transaction throughput in Tender-
mint, there is an observable upper limit to the number of val-

idators that can be accommodated [148].

4.5 Technical Challenges Addressed by Proposed
Framework

This section outlines the technical challenges addressed through by-design
features of the proposed blockchain-based IoT framework, as well as the de-
sign choices and trade-offs involved in its development.

4.5.1 Decentralized Access Control for IoT Resources

The proposed framework enables decentralized access control for IoT data.
Tokenized approaches for blockchain-based access control allow any partic-
ipant in the blockchain network to access digital assets in exchange for a
predetermined amount of cryptocurrency tokens. In contrast, the access con-
trol technique proposed here allows users to decide whether they want their
digital assets open to any paying member of the blockchain, or only allow re-
stricted access to peers of their choosing. Empowering IoT users to exercise
control over how much of their data is expressed to whom is a step in the
direction of delivering IoT services with data privacy built in by design.

The access control mechanism is built on smart contracts in both the public
and private tiers of blockchains. Users can choose to keep their data open
to all paying blockchain peers, however, the smart contracts allow users to
maintain records of all users who are allowed access to specific chunks of

4.5. Technical Challenges Addressed by Proposed Framework 57

IoT data. Within their edge-tier contract, IoT users can dictate policies on the
extent of their selective expression of data to other parties.

The proposed framework relies on pseudonymous addressing, therefore, for
added anonymity, users can utilize multiple addresses to reasonably obfus-
cate their identity within the core-tier blockchain network. Using multiple
addresses effectively masks the identity of IoT users, without hindering the
accountability features of the blockchain. In the event of an investigation,
users can provide a trail of transactions signed off under all of the addresses
they have chosen to use in the past.

4.5.2 Innovative IoT-Based Business Models

In developing a blockchain-based decentralized access model for the IoT,
we open up room for innovation in developing innovative business mod-
els. Whereas earlier tokenized approaches form the basis for marketplaces
for selling data, allowing fine-grained control of the data being exchanged in
terms of money or services allows the blockchain-IoT framework to be adapt-
able for multiple business models. Chapter 5 demonstrates this idea, with
two use-cases where smart contracts can be tailored to any business model
that promises monetary services from IoT data without the users having to
surrender any of their data that is irrelevant to the service being provided.

The design choice in using a separate layer for decentralized storage allows
the business model to flexibly design the terms of engagement over the block-
chain, without being able to access any of the IoT users’ confidential data
without their express permission. The smart contract within the private block-
chain is where users can apply their permissions, and can decide how they
engage with a particular business, while respecting their terms written in
their smart contact instances deployed over the public blockchain.

4.5.3 Scalable Deployments for the IoT

Scalability is a significant challenge in the research space for integrating block-
chains in the IoT. The tiered blockchain architecture allows users, or even
organizations to maintain their private blockchains, with private records of
their IoT devices, and engage with eachother over a public blockchain. One
of the key contributions to scalability afforded by this architecture is in the
split of responsibilities upon each tier. While private blockchains maintain
records of data generation and internal interaction events, the public block-
chain is solely responsible for effectuating and logging data interactions be-
tween two private blockchain owners. This split of responsibilities signifi-
cantly reduces the overhead on the public blockchain, and makes the design
of the architecture more edge-centric. Private blockchain owners can choose
to join or leave the public blockchain network in a modular fashion.

58 Chapter 4. Designing the Blockchain-Based IoT Framework

4.5.4 Securing the IoT Edge

The gateway devices in the edge-tier blockchain network are responsible
for registering IoT devices connected to them, and the edge-tier blockchain
only allows devices registered as transaction issuers to log data to the pri-
vate blockchain. Being registered simply as a transaction-issuer instead of
a light client relaxes computational requirements of IoT devices in partici-
pating in the private blockchain. In the case of a private blockchain with
compromised edge devices, a botnet attack becomes significantly difficult to
launch because of the modular design of the hierarchical architecture. Any
private blockchain network with compromised devices is safe from flooding
attacks since transaction fees put a limit to how many incoming transactions
are allowed from each device.

4.6 Use-Case: Smart Agriculture

4.6.1 Traceability in Agri-Food Supply Chains

For this use-case, we implemented an edge-tier blockchain as a fully decen-
tralized traceability system for Agri-Food supply chain management [149].
Specifically, this use-case was implemented on the Hyperledger Sawtooth7

platform. By directly producing and consuming valuable information from
the IoT devices along the whole supply chain and storing such data directly
in its underlying blockchain, this edge-tier use-case demonstrated transpar-
ent and auditable asset traceability. To assess the feasibility of the proposed
solution, we engineered and deployed the so-called from-farm-to-fork agri-
food use-case: a classical food traceability scenario fostering certified trace-
ability of food along the whole supply chain, i.e., from agricultural produc-
tion (the farm-side) to consumption (the fork-side). Then, we assessed the
performance of the edge-tier solution through three performance metrics,
namely latency, CPU load, and network usage.

The unique constrains and requirements of the modern Agri-Food industry
pose some major challenges to achieve a transparent, auditable and reliable
supply chain management process . Some of these challenges are the het-
erogeneity of the involved actors, stakeholders and business models, their
different levels of confidentiality, the lack of interoperability among the in-
volved systems and, most notably, the complete lack of a clear data gov-
ernance [150]. Fig. 4.6 depicts a simplified version of such process, whose
involved actors are briefly introduced in the following:

1. provider: providers of raw materials, such as seeds and nutrients, but
also pesticides, chemicals, etc;

2. producer: usually the farmer, responsible of the actions from seeding/-
planting to harvesting;

7https://www.hyperledger.org/projects/sawtooth

https://www.hyperledger.org/projects/sawtooth

4.6. Use-Case: Smart Agriculture 59

FIGURE 4.6: Simplified version of the Agri-Food supply chain
management process.

3. processor: this actor may perform various actions, from simple pack-
aging to more complex processes (e.g., pressing of the olives);

4. distributor: this actor is responsible of moving the output of the pro-
cessor (e.g., the product) from processor’s site to retailers;

5. retailer: this actor is responsible of selling the products, representing it
either small local stores or big supermarkets;

6. consumer: the final element of the chain.

Along the whole process, authorities provide standards, regulations, laws,
rules and policies that the involved actors have to comply with.

We propose an edge-tier blockchain solution (shown in Fig. 4.7) that provides
a "trustless" environment for storing immutable supply chain logs whereas a
centralized solution would have relied on cloud storage.

The proposed edge-tier solution uses gateways and mini-PC boards as full
nodes, hence extending the resistance, decentralization, security and trust of
the whole network. The main modules implemented in this solution are:

• API: a REST Application Programming Interface exposing the capabili-
ties of the edge-tier blockchain to other applications, with a high level of
abstraction, allowing easy integration with existing software systems;

• Controller: a component responsible of transforming the high-level
function calls into the corresponding low-level calls for the blockchain
layer, and viceversa (i.e., querying and converting the data records stored
in the blockchain, into high-level information for the upper layer).

• Blockchain: The main component of the system, containing all the
business logic, implemented through smart-contracts on the blockchain,
as a gateway to the blockchain itself. Depending on the selected block-
chain, this module will vary in complexity, according to the program
capabilities of the selected blockchain, as well as the capabilities of the
client interfaces for that blockchain.

60 Chapter 4. Designing the Blockchain-Based IoT Framework

FIGURE 4.7: Architecture of the edge-tier solution. Here, the
blockchain itself is backbone of the entire solution instead of a

cloud storage.

Then, to coherently define the high-level functionality of our edge-tier so-
lution, we had a bottom-up approach through which we extracted the set
of requirements starting from a complete use-case, namely from-farm-to-fork.
The latter is, indeed, a classical food traceability use-case that fosters certified
traceability of food along the whole supply chain, from agricultural produc-
tion to consumption. In other words, the edge-tier blockchain shall provide
consumers with complete history of the food they are buying. The only pre-
condition is that all the participants (including the IoT devices) are regis-
tered users of the edge-tier blockchain, meaning that they have the correct
public/private key-pairs to digitally sign each operation on the distributed
ledger.

We assessed the performance of our edge-tier Agri-Food supply chain solu-
tion implementing the functionality of an IoT sensing device producing dig-
ital values that are directly stored in the blockchain. The stored data can be
then retrieved, while it is possible to implement smart-contracts that are au-
tonomously executed upon the occurrence of certain conditions on the data
produced by the sensor itself. Since the solution is blockchain-agnostic, we
implemented the underlying blockchain module over two different, private,
six-nodes-based implementations, namely Ethereum and Hyperledger Saw-
tooth to quantify the performance of both platforms.

Both blockchain networks were configured with their default settings, and
deployed in dedicated virtual machines equipped with 4GB of RAM, 2 In-
tel(R) Core(TM) i5-6440HQ CPUs 2.60GHz and 20GB of hard disk. We opted
for a Linux Ubuntu 16-04 basic distribution for the OS, only installing the
packages needed to deploy the corresponding blockchain node. A series of

4.6. Use-Case: Smart Agriculture 61

TABLE 4.1: Performance in terms of latency, network traffic,
and CPU load.

latency network tx network rx CPU load

[seconds] [bytes] [bytes] [%]

Ethereum 16.55 528’108 682’415 46.78

Sawtooth 0.021 19’303 20’641 6.75

100 tests where run independently for each scenario. During each test, the
application simply set the value of a sensor, as done by an environmental
IoT sensing device through a gateway, and issued a transaction in the block-
chain. For each test we measured the time necessary to set the value in the
blockchain (latency), the processing power of each node (CPU load), and
the network usage (in terms of bytes transmitted and received); the average
values are summarized in Table 4.1. From these results, we observe that Hy-
perledger Sawtooth ultimately has better performances with respect to the
Ethereum counterpart.

4.6.2 Sustainability in Agricultural Groundwater Irrigation

As an extension to the agricultural edge-tier blockchain solution, an use-case
over the core-tier blockchain can help mitigate selfish groundwater pumping
among different farms.

Gamification comes part and parcel to the success of public blockchain net-
works, as is the case with the largest cryptocurrency networks, Bitcoin and
Ethereum. Game theory solutions differ from conventional system optimiza-
tion, since game theory takes into account the behaviours of the involved
individuals and their self-interests when optimizing the outcome of the so-
lution. In real world scenarios, results obtained from engaging participants
are not always optimum as a whole for the system, since each participant
makes economic decisions based pn individual information and criteria. As-
suming a multi-participant solution, conventional cost or utility optimization
is insufficient, since there are more human variables involved. PoW based
blockchains incentivize participants to validate (or "mine") new blocks on
the blockchain with monetary rewards. Adding this game theoretical incen-
tive is what contributes to the public decentralization and robustness of the
Bitcoin and Ethereum networks.

In agricultural scenarios involving groundwater irrigation, regulations and
costly metering solutions exist to limit overpumping [151], which can lead to
devastating environmental and socioeconomic effects [152]. With the IoT en-
riching the agricultural sector, a blockchain-based IoT solution can be benefi-
cial towards Fig. 4.8(a) shows the payoff matrix for a groundwater pumping
scenario with two farmers in a Prisoner’s Dilemma structure. The two farm-
ers share an aquifer over a period of 25 years. The payoff corresponds to
the revenue each farmer receives from crop sales. Each farmer must choose

62 Chapter 4. Designing the Blockchain-Based IoT Framework

PR1 PR2

PR1 3,3 1,4

PR2 4,1 2,2

Farmer 2

Fa
rm

er
 1

PR1 PR2

PR1 3,3 4,1

PR2 1,4 2,2

Farmer 2

Fa
rm

er
 1

(a) Ordinal payoffs.

PR1 PR2

PR1 3,3 1,4

PR2 4,1 2,2

Farmer 2
Fa

rm
er

 1
PR1 PR2

PR1 3,3 4,1

PR2 1,4 2,2

Farmer 2

Fa
rm

er
 1

(b) Payoffs with regulations.

FIGURE 4.8: Groundwater pumping game without cooperation
regulation and with cooperation regulation.

between the cooperative pumping rate (PR1), or the higher, non-cooperative
pumping rate (PR2). If farmers both pump at the cooperative rate, the ground-
water levels do not drop and they can enjoy long-term groundwater irriga-
tion with a high payoff. However, if they both pump at PR1, the groundwa-
ter level will drop, resulting in low long-term payoffs. However, for either
farmer, the highest payoff comes from the scenario where he pumps at the
higher rate and the other pumps at a cooperative rate. Since each farmer
finds PR2 to be a dominant strategy, a (PR2, PR2) outcome is more likely
based on a non-cooperative game [153], and is in fact typical in non-regulated
groundwater aquifers.

The lack of trust in a groundwater aquifer system leads farmers to pump
at the higher rate, leading to lower long-term payoffs, which is termed a
"tragedy of the commons" [154]. The problem is compounded further with
more farms pumping.

However, the scenario changes when penalties are imposed upon non-cooperative
farmers. If, let’s say the farmers who exceed the agreed upon pumping rate
lose their pumping privileges, the groundwater pumping game changes to
what is shown in Fig. 4.8(b). Here, the payoffs for non-cooperative pumping
are greatly reduced based on the new terms and conditions (and their en-
forcement). In this new game, the dominant strategy is cooperation, and the
Pareto-optimal (PR1, PR1) outcome is likely.

Fig. 4.9 visualizes the agricultural use-case as applied within the multi-tier
blockchain architecture. Each edge-tier blockchain represents an agri-food
supply chain, which additionally contains groundwater pumping sensor data.
For accountability, the groundwater pumping data is uploaded to the core-
tier blockchain through the groundwater pumping smart contract. In the
event where a farmer has overpumped the groundwater, all participants in
the core-tier blockchain can observe it, and can swiftly enact penalties upon
the non-cooperative farmer. Besides the immutable groundwater pumping
records present in the core-tier blockchain, further accountability can be added

4.7. Summary 63

Agri-Food
Blockchain 1

Agri-Food
Blockchain 3

Agri-Food
Blockchain 2

Core-Tier BC
GW pumping SC

FIGURE 4.9: The multi-tiered blockchain architecture, with the
core-tier blockchain for cooperative groundwater pumping.

by issuing access request to specific edge-tier blockchains to monitor ground-
water pumping events. Thus, the core-tier blockchain eliminates the need for
trust, and enables "trustlesss" and decentralized groundwater pumping with
cooperative pumping rates.

4.7 Summary

To summarize, this chapter has discussed the design and working principles
of the proposed blockchain-based IoT framework. The framework is built
a horizontally scalable, multi-tiered blockchain architecture, with a decen-
tralized stack of blockchains and other decentralized data storage solutions.
While scalability on a protocol level remain an open challenge, this frame-
work presents an architectural solution for scaling up blockchain-based se-
curity. The utilization of both permissioned and permissionless blockchains
allow IoT edge users to selectively express their IoT data to third parties
over a secure fabric negotiation and monetization. Smart contracts within
the permissioned and permissionless blockchains work together to provide
fine-grained acccss control to IoT users. These smart contracts can be flexi-
bly modified to meet newer, innovative business models. Also discussed is
a use-case scenario within the agricultural sector, where permissioned block-
chains are used as a decentralized traceability system for agri-food supply

64 Chapter 4. Designing the Blockchain-Based IoT Framework

chains, and both the permissionless and permissioned blockchains work to-
gether to provide a decentralized solution for cooperative groundwater irri-
gation. This use-case demonstrates not only the capability of the framework
to provide decentralized accountability, it also gives an overview of the ac-
cess control policies that can be enforced in the framework. The following
chapter discusses in great detail how these access control policies and smart
contracts can be tailored to specific e-business models.

65

Chapter 5

Decentralized IoT Data Transfer
And Monetization Services

This chapter contains text taken from the published works:

"IoT Data Privacy via Blockchains and IPFS."
In Proceedings of the 7th International Conference on the Internet of Things, p. 14. ACM, 2017.

The proposed blockchain-based framework is first and foremost an application-
agnostic private-by-design solution for performing transactions involving
IoT data and cryptocurrency, with fine-grained access control policies. In
this section, we will outline the decentralized access control mechanism in-
volved in the framework. We will use two use-cases to discuss the usage
of the proposed framework in real-world scenarios. These use-cases further
highlight how specifics of the edge-tier and core-tier smart contracts can be
tailored for specific business models and IoT applications.

Typically, tokenized approaches for blockchain-based access control allow
any participant in the blockchain network to access digital assets in exchange
for a predetermined amount of cryptocurrency tokens [105]. In contrast, the
access control technique presented in this paper empowers IoT users to de-
cide whether they want their digital assets open to any public paying mem-
ber of the blockchain network, or whether they only want to allow restricted
access to requesters of their choosing.

The design trade-off in designing blockchain-based access control is between
absolute anonymity and public accountability. The decentralized access con-
trol mechanism proposed here is privacy-preserving to the extent where users
are in full control of how much of their data is expressed to third-party en-
tities. The smart contracts proposed do not inherently anonymize users on
the blockchain. The proposed framework relies on pseudonymous address-
ing, therefore, for added anonymity, users can utilize multiple addresses to
reasonably obfuscate their identity within the blockchain network. Using
multiple addresses effectively masks the identity of IoT users, without hin-
dering the accountability features of the blockchain. In the event of an inves-
tigation, users can provide a trail of transactions signed off under all of the
addresses they have chosen to use in the past. Here, let Y = {y0, y1, . . . , yn}
be the requester nodes, such that each requester node yr has a public/private

66 Chapter 5. Decentralized IoT Data Transfer And Monetization Services

keypair {kr
p, kr

s}. Additionally, let C = {c0, c1, . . . , cn} be the set of edge-tier
blockchains, and X = {x0, x1, . . . , xm} be the set of IBGW nodes, such that:

∀ci∃Xi ⊂ X : (ci 3 Xi) (5.1)

where 3 denotes ownership. The IBGWs owned by a specific edge-tier block-
chain ci are the points of contact over the core-tier blockchain, between re-
quester nodes and the edge-tier blockchain. A requester yr would conduct
transactions with ci through xj such that xj ∈ Xi.

∀xj∃sr
j = 〈yr, xj〉 : (r, j ≥ 0) ∧ (r ≤ p) ∧ (j ≤ m) (5.2)

Upon receiving access request from yr, or to obtain remuneration or mone-
tary services from yr, an IBGW xj is made responsible for performing data de-
livery through IPFS. Firstly, xj queries access privileges written in the edge-
tier smart contract. If access privileges are given, or requirements for ac-
cess privileges are met, xj will query blocks from the requested time interval
stored in the edge-tier blockchain. Then, xj adds these blocks to an IPFS file,
and encrypts the IPFS file hash with yr’s public key.

∀yr∃〈kr
p, kr

s〉 : dkr
s(ekr

p(ht)) = ht (5.3)

ht = IPFS($j) (5.4)

where $j denotes the requested blocks of the edge-tier blockchain, and ht
is the hash value returned by IPFS for transaction t. Access policies can be
made further fine-grained by allowing access to specific edge-tier transac-
tions. In this case, in addition to the edge-tier block hashes, the edge-tier
blockchain owners will need to upload the private block headers (contain-
ing each block’s Merkle Tree) to BigChainDB, so requesters can verify each
edge-tier transaction being sent.

The following is a discussion on how the aforementioned access control and
data delivery mechanism is applied in two distinct use-case scenarios. The
smart contracts on both the edge-tier and core-tier are programmed to tailor
the framework to these use-cases.

5.1 Decentralized IoT Data Marketplace

To illustrate how the proposed framework would be used in a real world sce-
nario, we first draw the use case of a decentralized IoT data marketplace. The
objective is to allow users to monetize (i.e., to sell) their IoT data and engage
with anonymous buyers in a "trustless" way, without the need of interme-
diary parties for authentication and authorization. Besides giving IoT users
the flexibility to exercise control when transacting with anonymous buyers,

5.1. Decentralized IoT Data Marketplace 67

Core-tier
Register Contract +

Marketplace
Contracts

Edge-tier
Privileges

Smart
Contract

Requester
Node

IBGW

FIGURE 5.1: Components of the proposed framework, as they
are used in the IoT data marketplace use case. Here, IBGW rep-

resents the seller, while the requester is the buyer.

it gives buyers a way to ensure the data they are receiving has not been doc-
tored or tampered with. Along with providing verifiability to the buyers,
the architecture can also be used to put a decentralized reputation system in
place which is a blockchain-based parallel to online marketplaces of physi-
cal goods. The distributed reputation system aims to incentivize trade with
reputed sellers, and discourage creating multiple seller accounts or selling
fraudulent data.

On the public core-tier blockchain, the register contract is where edge-tier
sellers can advertise their offerings. Through their IBGWs, edge-tier own-
ers can deploy marketplace contracts at the core-tier, where requesters can
invoke functions to interact with the IBGW. On each edge-tier blockchain,
the privileges contract enable users to either let the entire contents of the pri-
vate blockchain to be openly available to any paying requester, or to define
fine-grained privileges and service level agreements for specific requesters.
Fig. 5.1 shows the components, as they are used in this use case, while in the
following we describe the two contracts in more details.

68 Chapter 5. Decentralized IoT Data Transfer And Monetization Services

5.1.1 Edge-tier Privileges Smart Contract

The private edge-tier blockchain not only helps in keeping IoT data private
within federations, or smart-city communities, they also allow users to ex-
ercise fine-grained control over whom they want to share their data with,
and at what price. For edge-tier blockchains deployed over consortia with
sufficiently large validator pools, the edge-tier blockchain itself provides as-
surity of data integrity. For smaller edge-tier deployments, the hash of each
block gets stored into BigChainDB, which serves as a verifiable public repos-
itory which can be looked up to verify the integrity of the data. The privi-
leges contract has three functions. The OPENFORALL() function sets a flag
which indicates whether the edge-tier blockchain has agreed upon letting
the contents of their blockchain become available to any paying requester on
the core-tier blockchain. The SETPRIVILEGES() function allows participants
within an edge-tier blockchain to define access privileges for specific core-
tier addresses in a fine-grained fashion. The IBGW looks up these privileges
and responds to incoming requests accordingly. In case a requester has no
access privileges, and the OpenForAll flag is not TRUE, the IBGW does not
respond and the request times out at the requester’s end.

5.1.2 Core-Tier Register Contract

The register contract is where IoT data buyers go to choose which seller they
want to interact with. Edge-tier owners willing to monetize their data can
store their marketplace contract’s addresses in the register contract as a form
of advertisement, through the REGISTERMARKETPLACE() function. Here,
Y = {y0, y1, . . . , yn} are the requester nodes, and X = {x0, x1, . . . , xm} are
the IBGWs with deployed marketplace smart contracts on the core-tier block-
chain. A requester yr can invoke the VIEWSELLERS() function, look up the
listings on the register contract and engage with the marketplace contract of
xj. In case the owner entities of an edge-tier blockchain turn off their OPEN-
FORALL flag, the IBGW for that edge-tier blockchain will issue a transaction
to update advertisment details on the register contract, to timely inform po-
tential requesters. Table 5.2 is a list of the functions written in the register
contract, along with their input and output parameters.

The register contract also serves the purpose of maintaining a record of de-
centralized reputation for the sellers. Legitimate buyers use their transac-
tion IDs to give sellers a rating based on the data they buy. The reputation
system discourages sellers to register with new accounts, since sellers with
higher ratings will be favoured by buyers. To finalize each data transaction,
requesters will leave a rating through the REVIEWSELLER() function.

5.1. Decentralized IoT Data Marketplace 69

TABLE 5.1: Functions in the Edge-Tier Privileges Contract.

Functions
Input
Parameters

Output
Parameters

OPENFORALL()
BOOL open, UINT price
STRING metadata

, VOID

SETPRIVILEGES()
ADDRESS requester,
STRING metadata

VOID

TABLE 5.2: Functions written in the Register Contract.

Functions
Input
Parameters

Output
Parameters

REGISTERMARKETPLACE()
ADDRESS contract,
STRING metadata

VOID

REVIEWSELLER()
ADDRESS contract,
STRING txID,
UINT rating

VOID

VIEWSELLERS() VOID ARRAY sellers

TABLE 5.3: Functions written in the Marketplace Contract.

Functions
Input
Parameters

Output
Parameters

CHECKPRICE() INT hours INT price

REQUESTDATA()
STRING from,
STRING to,
MSG.VALUE price

VOID

SENDDATA() STRING IPFShash VOID

REQUESTPENDING() VOID
BOOL pending,
ADDRESS buyer

BANREQUESTER() ADDRESS customer VOID

5.1.3 Core-Tier Marketplace Contracts

Each seller entity has their own marketplace smart contract deployed on the
core-tier blockchain, which is advertised in the register contract. Buyers en-
gage with seller entities through their specific marketplace contracts. Ta-
ble 5.3 contains details on the functions written in each of the marketplace
smart contracts.

• Requesting Data: in a scenario where a requester yr looks up a mar-
ketplace contract address from the register contract, yr will invoke the
REQUESTDATA() function written in the marketplace contract. If yr is
requesting data from xj for the first time, yr’s blockchain address is reg-
istered within xj’s marketplace contract. Thus, owners of the edge-tier
blockchain can maintain records of the number of sales conducted with
yr. Through input arguments of the REQUESTDATA() function, yr can

70 Chapter 5. Decentralized IoT Data Transfer And Monetization Services

RequestData(TimeFrame)
Buyer makes a data request
+ pays Ether value

Store private
BC blocks

Store encrypted hash of
IPFS file to buyer object

Read IPFS file hash

Read IPFS file contents

Transfers Ether value

Requester Seller’s Marketplace Seller’s IBGW IPFSSmart Contract

FIGURE 5.2: Sequence diagram of a buyer requesting data and
a seller fulfilling the request. All interactions with the smart
contract represent transactions. Dashed arrows represent inter-

actions that are instantaneous and free of charge.

specify time intervals for which they want to request IoT data. Last, but
not least, while issuing an IoT data request, yr includes the ETH value
for the requested data within the ‘value’ field of the method invocation.

• Responding to Data Requests: in the event of an incoming data request
from yr, the IBGW checks access privileges written in the edge-tier priv-
ileges smart contract to see if privileges are given and the payment is
correct. If so, the IBGW invokes the SENDDATA() method in the con-
tract and adds the encrypted IPFS file hash to yr’s customer object in
the xj smart contract, so yr can retrieve it and decrypt it. This hash
will allow yr to access the requested data. Fig. 5.2 shows the sequence
diagram of an interaction between yr and xj.

• Other Functions: other functions written in the contract are the ones
that supplement the data transactioning procedure. The CHECKPRICE()
function is a free-of-charge read-only function that Bob can invoke to
inquire the price of the data being sold over a specific period of time,
while the BANREQUESTER() function allows Alice to ban certain buy-
ers, hence preventing them from making further requests for data.

5.2. Blockchain-Based Connected Vehicle Insurance 71

5.2 Blockchain-Based Connected Vehicle Insurance

As connected vehicle technology continues to evolve, telematics-based insur-
ance is gaining momentum, promising it to provide insurances based on data
collected from connected vehicles [155]. In usage-based insurance (UBI), the
insurance company may analyze how well a driver uses a vehicle, adjust-
ing premium payments accordingly. UBI has recently experienced substan-
tial growth [156], and insurance companies are experimenting with various
data collection techniques. In general, data collection through mobile phones
proves to be less reliable and accurate, therefore most companies providing
UBI opt for proprietary solutions, where a blackbox installed inside the vehi-
cle collects data pertaining, for instance, to the actual GPS location, accelera-
tion and overall usage. The data collected is then analyzed and used to assess
customers’ driving behaviours. This approach not only requires users to in-
voluntarily surrender their personal driving data to third-party entities but,
despite the existent, severe regulatory guidelines, there is absolutely no guar-
antee that such a blackbox collects only the strictly necessary data required
for the purpose.

Considering the privacy implications of currently existing black-box solu-
tions, there is a need for a private-by-design solution able to, not only give

Core-tier Connected
Vehicle Insurance

Smart Contract

Edge-tier
SC Insurance

Company

IBGW

FIGURE 5.3: Components of the proposed framework, as they
appear in the connected vehicle insurance use case.

72 Chapter 5. Decentralized IoT Data Transfer And Monetization Services

users complete control over what and when they share with third-party enti-
ties, but also to facilitate fast insurance claims and premium payments. Our
proposed framework is suited for this problem, since it facilitates selective
expression of IoT data and ensures integrity of data sent to insurance compa-
nies. For the connected vehicle insurance use case, the architecture remains
the same as before, such that Y = {y0, y1, . . . , yn} are the insurance compa-
nies, and X = {x0, x1, . . . , xm} are the IBGWs for edge-tier vehicle blockchain
networks.

One important design consideration in the vehicle insurance use-case is that
while a proof-of-work consensus may be beneficial to provide distributed se-
curity for the marketplace use-case, it would not be suitable for the vehicle
insurance use-case. At the core-tier, it would be preferable to use a proof-of-
authority blockchain with a significantly large validator pool, spanning mul-
tiple insurance companies. This is to prevent insurance customers from pub-
licly validating blocks at the core-tier, since mining tokens will be a detriment
to the business model. Fig. 5.3 shows the components of the framework.

Insurance companies deploy insurance smart contracts that customers can
register their vehicles to. The flexibility afforded to the insurance company is
that it can deploy multiple contracts in case it needs to offer various insurance
premium packages. Customers can then choose which specific smart contract
from an insurance company they want to interact with. In order to update
insurance premiums or issuing insurance claims, edge-tier owners privately
share IPFS files that contain edge-tier blocks, through the insurance smart
contracts.

Table 5.4 contains details of the functions written in an insurance provider’s
smart contract. Together, the edge-tier and core-tier blockchains come into
play while offering the services decribed as follows.

5.2.1 Edge-Tier Blockchains for Data Integrity

As discussed in Sec. 5.1, the privileges smart contract within the edge-tier
blockchain is meant to set access privileges for third party data requesters.
In this use-case, drivers will only want their data available to the insur-
ance company when updating their insurance premium and making insur-
ance claims. Here of course, since the edge-device is mobile and is uiliz-
ing mobile infrastructure for networking, the aim was to keep networking
overheads at a bare minimum. Since there is only one entity inolved at the
edge-tier, a bare-bones blockchain without consensus mechanisms is used,
simply to locally store data in a structured manner. The privileges smart
contract operates as described in Sec. 5.1, however, the main reason for struc-
turing the data as in a blockchain, is to let the IBGW store block hashes onto
BigChainDB. With BigChainDB’s significantly large validator pool, hashes
stored onto BigChainDB serve as a time-stamped proof of non-repudiation
and integrity of the data stored locally. An insurance company can verify the
integrity of the blocks a user sends to either process insurance claims or to
update a user’s insurance premium.

5.2. Blockchain-Based Connected Vehicle Insurance 73

TABLE 5.4: Functions of the Connected-Vehicle Insurance
Smart Contract

Functions
Input

Parameters

Output

Parameters

STARTCOVERAGE() MSG.VALUE payment VOID

SENDCLAIMDATA() STRING IPFShash VOID

SENDPREMIUMDATA() STRING IPFShash VOID

REQUESTPENDING() ADDRESS customer BOOL pending

ISINSURED() ADDRESS customer BOOL insured

CHECKPAYMENT() ADDRESS customer BOOL overdue

UPDATEPREMIUM()
ADDRESS customer,

INT newPremium
VOID

MAKEPAYMENT() MSG.VALUE payment VOID

PROCESSCLAIM()
MSG.VALUE claim,

ADDRESS customer
VOID

5.2.2 Functions at the Core-Tier Blockchain

In this use-case, the core-tier blockchain will have methods to register new
customers, to make insurance premiums, processing insurance claims, and
more. For registration and activation of vehicle insurance coverage, a cus-
tomer invokes the STARTCOVERAGE() method of the smart contract. The in-
puts arguments of this method are the customer’s blockchain address, as well
as an initial payment to start the insurance coverage. If a car-owner pays the
correct amount as initial payment, he is registered as a new customer in the
insurance company’s smart contract. The customer object within the smart
contract code comes with multiple attributes, including a string variable for
storing the last hash of the IPFS file that a customer sent to the insurance
company. Again, since values of stored variables are publicly accessible to
all blockchain peer nodes, the IPFS file hash is encrypted with the insurance
company’s public address, so as to allow only the insurance company to ob-
tain the decrypted hash.

• Paying Insurance Premium: usually, to encourage safe driving, con-
nected vehicle insurances offer flexible premiums, where safe drivers
have lower insurance premiums to pay. To deliver the same function-
ality in a decentralized private-by-design fashion, we wrote conditions
in the MAKEPAYMENT() method for users to obtain an updated insur-
ance premium value from the insurance company before making the
payment. Fig. 5.4(a) shows the sequence of steps required for mak-
ing an insurance premium payment. To obtain an updated insurance
premium value, users select from their own private blockchain, blocks
from a required time-frame to send to the insurance company. This
could be, for instance, the last month, or the last year, but clearly it

74 Chapter 5. Decentralized IoT Data Transfer And Monetization Services

completely depends on the insurance policy. The selected blocks are
added to IPFS, the file hash is encrypted and stored in the contract it-
self, using the SENDPREMIUMDATA() method. This time, while there
is no ETH being transferred, transaction fees will be incurred, since the
transaction is resulting in a state update within the blockchain. The in-
surance company can read the hash from the customer object within the
smart contract and can then retrieve the associated IPFS file. After ana-
lyzing the contents of the file, the insurance company issues a new cost
for the insurance premium, invoking the UPDATEPREMIUM() method.
Upon retrieving this update, the customer can perform the appropriate
payment.

• Processing Insurance Claims: applying for an insurance claim takes
similar steps as making an insurance premium payment, as shows in
Fig. 5.4(b). In the event of an accident, the customer adds blocks from
its private blockchain collected during the time of the accident to IPFS.
The customer applies for an insurance claim and stores the encrypted
file hash into the contract, invoking the SENDCLAIMDATA() method.
Then, the insurance company retrieves the IPFS file, analyzes the re-
ceived data and eventually pays the adequate amount for the insur-
ance claim to the customer. In the event of a customer not paying the
insurance premium after a grace period following the due date, the in-
surance company has the option to deactivate the customer’s insurance
coverage, by setting the customer.PolicyActive attribute to ‘false’.

• Checking Payment Status: finally, an important function is to enable
insurance companies to check if customers are making timely payments
for their insurance premiums. The CHECKPAYMENT() method written
in the smart contract checks if the customer has not gone over the dead-
line for making an insurance premium payment. If the customer has
indeed gone over the deadline, then the insurance company can deac-
tivate the customer’s insurance policy.

5.2. Blockchain-Based Connected Vehicle Insurance 75

 IBGW IPFS Insurance Smart Contract Insurace Company

Store private
BC blocks

Store encrypted hash of IPFS file
+ request insurance premium update

Read IPFS file hash

Read IPFS file

Update insurance premium

Pay insurance premium

(a) Customer paying insurance premium.

IBGW IPFS Insurance Smart Contract Insurace Company

Store private
BC blocks

Store encrypted hash of IPFS file
+ request insurance claim

Read IPFS file hash

Read IPFS file

Pay insurance claim

Transfer claim funds

(b) Customer making insurance claim.

FIGURE 5.4: Sequence of functions at the core-tier blockchain.
All interactions with the smart contract represent transactions.

Dashed arrows represent getter functions with no fees.

76 Chapter 5. Decentralized IoT Data Transfer And Monetization Services

5.3 Security Analysis

In this section, we outline the security analysis we performed on the pro-
posed blockchain-based framework using the aforementioned use-cases. In
this discussion we include a threat model, as well as a discussion on the de-
sign considerations in place to guarantee security for conducting transactions
in the proposed framework.

5.3.1 Security Considerations and Analysis

Here, we will discuss design considerations of DamonChainthat address three
major security requirements, namely confidentiality, integrity, and availabil-
ity. Briefly, confidentiality guarantees that only authorized users have access
to the data; integrity ensures that a message received at the destination is the
exact message sent by the source (i.e. it has not been tampered with or al-
tered); availability refers to the availability of the service or data whenever is
needed.

Confidentiality

As mentioned, the Ethereum blockchain uses public-private key pairs, while
Daminchain relies on smart contracts to share data to distant nodes in the
blockchain network. Every transaction made on the public blockchain is val-
idated through distributed consensus and requires the transaction issuer’s
private-key signature, which can be verified using the issuer’s public key.
Moreover, the hash of the IPFS file containing the IoT user’s data is encrypted
with the public key of the requester, therefore only the requester is able to
decrypt it and retrieve the IPFS file. Together with private-key signatures on
transactions, and encrypted IPFS file hashes, confidentiality is ensured.

Integrity

Maintaining data integrity on public blockchains comes with the inherent
features of publicly deployed blockchains. Indeed, each peer node of a public
blockchain network has its own replica of the whole blockchain content, and
to commit new transactions on a blockchain, distributed consensus among
the majority of nodes is needed. Therefore, integrity in a public blockchain
is guaranteed by design. DamonChain maintains time-stamped records of
sensor data in a private blockchain. This implementation strategy enables
users to send blocks within specific time-frames to a distant node on the
blockchain network. However, there is a valid argument that, since a private
blockchain is totally centralized, it cannot alone guarantee nor immutabil-
ity nor integrity of its records [157]. To guarantee verifiable data integrity
in the private blockchains tier, DamonChain uses the immutable database
characteristics of BigchainDB, so as to maintain auditable records of all the
block headers of the private blockchain. Indeed, BigchainDB is a distributed
database maintained by a publicly distributed network federation. The lo-
cal IoT gateway does not need to be a participating node in the federation,

5.3. Security Analysis 77

and can simply issue data transactions to BigchainDB. An earlier considera-
tion in the design of DamonChain was to simply have the gateway upload
all the generated IoT data and events to the BigchainDB back-end. However,
this simplistic approach would require much more frequent uploads, also
incurring heavy network overheads. Hence, to minimize the volume and
frequency of data uploads, the local IoT gateway simply uploads the hash of
each block that gets added to the private blockchain, while each block rep-
resents multiple data generation events bundled together. When an IoT user
engages with a distant node on the public blockchain network, the IoT user
grants the distant node read-only privileges to the hashes of the blocks up-
loaded to BigchainDB. Therefore, while users have the choice to send their
data to the extent they want and when they want, distant nodes have a way
to verify that the data stored in the private blockchain has not been tampered
with.

Availability

An attack against availability of a system is called Denial of Service (DoS).
Briefly, vast amounts of fake requests are sent to a target, in order to over-
whelm it and make it unavailable to legitimate users. Such an attack is of-
ten performed through a network of infected devices (i.e. a botnet) in a dis-
tributed manner, hence the name Distributed DoS (DDoS) [158]. The public
blockchain used by DamonChain is a distributed system which has monetary
cost for signing transactions (i.e. transaction fees). It follows that, from an
economic perspective, to perform a (D)DoS attack on this framework is very
expensive. Moreover, generally speaking, the collective computing power
available in blockchain makes it extremely hard to launch successful DoS at-
tacks. Indeed, in order to overwhelm the entire blockchain system, multiple
nodes across a significant number of various institutions must be attacked.
At the time of writing, the average daily hash-rate of the main Ethereum pub-
lic blockchain is 275 TH/s. This means that, to successfully perform a 51%
attack, either to alter the blockchain contents, or to hinder the network avail-
ability, adversaries would have to amass more than 137.5 TH/s of hashing
power1.

5.3.2 Threat Model

Scenario 1: Data modification in edge-tier blockchains

While data integrity and immutability is an inherent feature of public block-
chains, privately deployed edge-tier blockchains do not have built-in guar-
antees for data integrity. IoT data is collected and pushed into the edge-tier
blockchains, which can be selectively expressed to third parties for monetary
services. In this scenario, a malicious edge-tier owner entity modifies edge-
tier blocks $j, since it is computationally feasible within private blockchains.

1https://etherscan.io/chart/hashrate

https://etherscan.io/chart/hashrate

78 Chapter 5. Decentralized IoT Data Transfer And Monetization Services

In order to circumvent this threat, the IBGW of the edge-tier blockchain au-
tomatically keeps uploading the hashes of $j to a BigChainDB repository,
which is available to third-party requesters. Since each block is linked to its
predecessor, modifying a single block will alter all subsequent block hashes,
and the hashes of the actual blocks sent to the requester, ekr

p(ht), will not
match up with the block hashes stored in the BigChainDB repository.

Scenario 2: Sniffing data sent from an edge-tier blockchain

Keeping the vehicle insurance use-case in mind, let’s assume an insurance
company y′r, acting as an adversary, is interested in getting access to the data
of the customer ci where yr ∈ Si while y′r /∈ Si. y′r needs ht in order to get
access to the ci’s data. ht is encrypted with kr

p, it can be only decrypted with
kr

s and the insurance companies do not share their private keys, y′r is not able
to get access to the customers of other companies.

Scenario 3: Launching a Denial-of-Service (DoS) attack on the core-tier
blockchain

Briefly, vast amounts of fake requests are sent to a target, in order to over-
whelm it and make it unavailable to legitimate users. Such an attack is of-
ten performed through a network of infected devices (i.e., a botnet) in a dis-
tributed manner, hence the name Distributed DoS (DDoS) [158]. The public
blockchain used by the proposed framework is a distributed system which
has monetary cost for signing transactions (i.e., transaction fees). It follows
that, from an economic perspective, to perform a (D)DoS attack on this frame-
work is very expensive. Moreover, generally speaking, the collective com-
puting power available in blockchain makes it extremely hard to launch suc-
cessful DoS attacks. Indeed, in order to overwhelm the entire blockchain sys-
tem, multiple nodes across a significant number of various institutions must
be attacked. At the time of writing, the average daily hash-rate of the main
Ethereum public blockchain is 275 TH/s. This means that, to successfully
perform a 51% attack, either to alter the blockchain contents, or to hinder the
network availability, adversaries would have to amass more than 137.5 TH/s
of hashing power.

Scenario 4: Launching a Denial-of-Service (DoS) attack on an edge-tier
blockchain through a corrupted device:

In various IoT use-cases, there is the possibility of an edge-tier device be-
ing compromised by an adversary. While each IoT device can only issue
transactions to the edge-tier blockchain, a DoS attack can be fatal for private
organization or federation edge-tier blockchains. To mitigate this threat, we
have used a tokenized approach at the edge-tier level. At the edge-tier, we
are using the Tendermint consensus engine with a custom token. While these
tokens do not carry any real monetary value, implementing transaction fees
ensures that there is a limit to how many transactions a compromised device
can issue. Each device is given a limited required amount of tokens T to be

5.4. Performance Analysis 79

TABLE 5.5: Parameters for evaluating the performance of the
proposed framework in two use-cases.

Parameter Value

Core-tier Testnet Ethereum Rinkeby

Edge-tier Testnet Hyperledger Burrow

Transactions on public blockchain 300 per minute

Transactions on private blockchain 1000 per minute

Gas price 0.000000001 ETH

able to issue transactions over a period of time. If the transaction fees for
a single transaction are Ft, the maximum number of transactions a compro-
mised device will be able to make is T/Ft.

5.4 Performance Analysis

This section details the performance analysis based on the experiments we
conducted to validate the proposed framework. The proposed framework
was developed and deployed on a Proof-of-Authority (PoA) based block-
chain. To calculate the real-world transaction processing fees incurred by the
smart contracts, we have used values equivalent to Ethereum, where each
state altering transaction requires an amount of "gas" depending upon the
complexity of the transaction. The price for each unit of gas at the time of
writing this paper was noted to be 1 Gwei (equivalent to 0.000000001 ETH).
The results were obtained with a Raspberry pi 3 board serving the function
of an IBGW within the architecture of the proposed framework. Table 5.5
shows the experimental parameters used for our evaluation.

For the performance analysis, we assessed the feasibility of the blockchain-
IoT framework using the following metrics:

• The computational and networking overheads of the IBGW for partici-
pating in the core-tier blockchain,

• The latency involved in signing transactions involving IoT data and
cryptocurrency,

• The transaction fees incurred while participating in the blockchain-IoT
framework.

The functions written in both smart contract implementations were kept at
O(1) algorithmic complexity to minimize computational overheads and as-
sociated transaction fees.

80 Chapter 5. Decentralized IoT Data Transfer And Monetization Services

The core-tier of the framework was developed and deployed on the Ethereum
Rinkeby2 testnet. This is a public test network operating with a proof-of-
authority consensus protocol called "Clique", instead of the classical proof-
of-work based consensus used by the Ethereum mainchain. Since the tokens
in Ethereum test networks hold no real-world monetary value, issuing trans-
actions does not have a real-world "cost". Therefore, a proof-of-authority
consensus algorithm serves better security measures to prevent signing false
blocks and performing DoS attacks.

In a proof-of-authority-based consensus protocol, a number of chosen "seal-
ers", or pre-approved nodes are made responsible for mining and adding
new blocks to the blockchain. Any node that attempts to join the Clique has
to be approved by the pool of existing authority nodes. The approved au-
thority nodes are only allowed a limited number of signatures when signing
new blocks, so as to prevent forks from going on for too long or even over-
taking the canonical chain.

The Ethereum test networks are useful to test decentralized applications in
public blockchain environments, using cryptocurrency with no real-world
monetary value. With the added security of the Clique consensus, we chose
the Rinkeby testnet for deploying and testing our proof of concept implemen-
tation. Fig. 5.5 shows the dashboard of the Ethereum Rinkeby network, with
real-time statistics and miner information. As illustrated on the dashboard,
the miner clique is spread all over the world, and with international partici-
pation by full nodes and light nodes, Rinkeby provides a rich and robust test
bed for gauging real-world performance.

2https://www.rinkeby.io

FIGURE 5.5: The Ethereum Rinkeby dashboard.

https://www.rinkeby.io

5.4. Performance Analysis 81

FIGURE 5.6: Testbed used for conducting the performance anal-
ysis.

5.4.1 Hardware and Software Used

We considered the case where one laptop (Dell Inspiron core-i7) represents
the distant node and a single-board computer (Raspberry Pi 3 Model B+)
represents the IoT user’s local gateway, as shown in Fig. 5.6. The laptop has
an 8GB memory with 1TB storage space, while the single-board computer
has a 1GB SDRAM and 32GB of storage.

We used the Remix Ethereum IDE3 for writing, compiling, debugging and
locally testing the smart contract. Remix Ethereum is an in-browser IDE
for Solidity, the language for writing smart contracts in Ethereum. After lo-
cally testing the smart contract functionality, we deployed it to the Rinkeby
Ethereum test network.

We used Metamask4 and the Ethereum CLI client Geth5 to connect to the
Rinkeby Ethereum test network and manage the accounts used for our ex-
periments. The Remix Ethereum IDE served as a front-end for interacting
with the deployed contract on both the nodes involved in the implementa-
tion.

Details of the publicly deployed contracts and the transactions we carried
out can be accessed by monitoring the following addresses on the Rinkeby
test network:

0xb45d0cc4883ae0c18469904181d68775436b2eb7
0x82A4958337eCE6E358851F073AF123662b8Ce194

3http://remix.ethereum.org/
4https://metamask.io/
5https://www.ethereum.org/cli

http://remix.ethereum.org/
https://metamask.io/
https://www.ethereum.org/cli

82 Chapter 5. Decentralized IoT Data Transfer And Monetization Services

For the performance analysis, we considered the computational and net-
working overheads of the local IoT gateway for participating in the public
Ethereum testnet, as well as the latency involved in signing transactions in-
volving IoT data and cryptocurrency. The functions written in both smart
contract implementations were kept at O(1) algorithmic complexity to min-
imize computational overheads and associated transaction fees.

5.4.2 Computational Overhead

We used the web browser plugin Metamask6 and the light-client Geth7 im-
plementation for our decentralized applications. The light-client implemen-
tation allows IBGW to issue transactions without needing to store a full copy
of the core-tier blockchain. Additionally, since our nodes do not mine and
validate new blocks, the computational overhead on the IBGW is negligible.

5.4.3 Transaction Processing Speed

Over the multilayered blockchain architecture, our observations are that the
deciding factor of the throughput is the transaction finality time. Our im-
plementation in Ethereum appends new blocks over the core-tier blockchain
each 14 seconds. We compared the transaction finality time of single mono-
lithic blockchain implementation of Bitcoin, versus our layered implementa-
tion on an Ethereum test network. In our experiments, we verified that the
transactions we made were finalised at the rate of 32 seconds on average, and
90 seconds at the most.

Fig. 5.7 shows the transaction processing times observed in our experiments
for three separate operations. In the case of IoT data marketplace, to carry
out one single sale of data, it would involve two transactions. Therefore, the
average processing time is 64 seconds. In the case of connected vehicle in-
surance (not taking into account the time needed by the insurance company
to analyze the received data) the time taken in transactions for making pre-
mium payments is approximately 96 seconds (since this process involves 3
transactions) and 64 seconds for processing insurance claims (involving this
process 2 transactions). It is worth noting that core-tier blockchain imple-
mentations with lower block publishing times, the throughput will further
increase.

5.4.4 Network Overhead

The tiered network architecture of the proposed framework significantly cuts
down the network overhead which would have been generated in the case
where all IoT data generation events were logged on a public blockchain.
The added benefit of using Metamask to push transactions is that there is no
incoming traffic from the core-tier network for updating a local copy of the

6https://metamask.io/
7https://www.ethereum.org/cli

https://metamask.io/
https://www.ethereum.org/cli

5.4. Performance Analysis 83

Tr
a
n
sa

ct
io

n
 f

n
a
lit

y
 t

im
e
s

50s

100s

500s

1000s

5000s

10000s

A B C

Layered BC
average

Layered BC
worst-case

Single BC
Bitcoin

FIGURE 5.7: Transaction finality times in (a) making a sale
in the data marketplace use-case, (b) updating insurance pre-
mium, and (c) processing an insurance claim in the vehicle in-

surance use-case.

k
b
p
s

0

0.25

0.5

0.75

1

Metamask + Chrome Geth LightClient BigchainDB

Upload

Download

Total

FIGURE 5.8: Network traffic overhead generated by using
Metamask on Chrome, Geth, and with private blockchain hash

storage in BigchainDB.

core-tier blockchain. Therefore, the overall network overhead experienced
by the IBGW includes the periodic upload of each edge-tier block hash to
BigchainDB through the HTTP POST API, along with the transactions that
need to be made over the core-tier blockchain.

To analyze the network overhead of our application, we compared the traf-
fic generated when using Metamask on a Google Chrome front-end, and the
traffic generated in running an Ethereum light client on Geth. The mem-
ory and storage requirements of running a full Ethereum node are far and

84 Chapter 5. Decentralized IoT Data Transfer And Monetization Services

beyond the hardware limitations of a RaspberryPi IoT gateway, so the light
client is a more suitable option. By storing edge-tier block hashes onto the
BigchainDB testnet at a speed of 1 transaction per minute, we maintained a
17 bps traffic for maintaining data integrity in the private blockchain. For
interacting with the public blockchain, we considered the traffic generated in
running Metamask as well as the Ethereum light client on Geth, while exe-
cuting 1 read function per second.

Fig. 5.8 illustrates the overall traffic rates generated over a 24 hour period.
We observed that since we do not maintain a full node on the core-tier pub-
lic blockchain, the cost of decentralized authentication and authorization is
minimal to the overall network traffic. Additionally, while the overall net-
work traffic overhead from light-client Geth is very small, simply running
Metamask on Chrome further decreases the network overhead. This is be-
cause the light-client implementation consistently maintains a record of the
block headers in the core-tier blockchain.

5.4.5 Transaction fees

Each Ethereum transaction requires "gas" for execution, which has a fixed
price in ETH. Therefore, the number of computational steps involved in any
given transaction dictates how much gas is required to execute it. Our aim
for the smart contract function design was to reduce as much sa possible the
algorithmic complexity and minimize the transaction costs that the insurer
and customer would have to pay when interacting with the smart contract.

For our experiments on a publicly deployed Ethereum cryptocurrency net-
work, we deployed our smart contract on the Rinkeby test network and made
observations on the transaction fees. At the time we obtained these results,
the conversion rate from USD to ETH was recorded at 380 USD per ETH.
The standard gas price in the Rinkeby testnet is 1 Gwei (corresponding to
0.000000001 ETH) per unit of gas. Once again, it is worth to recall that reading
functions in the smart contract that simply return stored values on the block-
chain are free of cost and instantaneous. These functions allow customers to
view their updated insurance premiums and monitor the time of their last
payment, and they allow the insurance company to check if customers have
made timely premium payments and monitor customers’ payment informa-
tion. All functions that either transfer funds from one side to another, or alter
the stored state of a smart contract’s object variable have associated transac-
tion fees, in order to incentivize miners and secure the network.

IoT Data Marketplace Table 5.6 shows the transaction fees incurred when
executing the smart contract functions which update the stored state of the
smart contract’s object attributes. We can observe that for making a single
sale of IoT data, a registered buyer would have to pay 1 cent as transaction
fee, and the cost to the seller would be 3 cents.

5.5. Summary 85

TABLE 5.6: Gas usage and transaction fees for executing func-
tions in the data marketplace smart contract.

Functions Invoked By When it is Invoked Gas Usage USD

DEPLOYCONTRACT() Local IoT GW One-time 746108 0.2835

REQUESTDATA() Requester First data request (registration) 63251 0.024

REQUESTDATA() Requester All subsequent data requests 27978 0.011

SENDDATA() Local IoT GW In the event of a data request 79136 0.03

BANREQUESTER() Local IoT GW One-time 28601 0.01

TABLE 5.7: Gas usage and transaction fees for executing func-
tions in the vehicle insurance smart contract.

Functions Invoked By When it is Invoked Gas Usage USD

DEPLOYCONTRACT() Insurer One-time 1258610 0.478

STARTCOVERAGE() Customer One-time 103605 0.04

SENDCLAIMDATA() Customer In case of an accident 92832 0.035

PROCESSCLAIM() Insurer In case of an accident 22587 0.0086

SENDPREMIUMDATA() Customer Once in a decided time period 92832 0.035

MAKEPAYMENT() Customer Once in a decided time period 23045 0.0087

UPDATEPREMIUM() Insurer Once in a decided time period 38805 0.015

CHECKPAYMENT() Insurer Once in a decided time period 23933 0.009

Connected Vehicle Insurance Table 5.7 shows the transaction fees incurred
when interacting with functions in the smart contract. Note that the CHECK-
PAYMENT() function only incurs a function if a customer has not made timely
premium payments and the company decides to terminate their insurance
policy. Read-only functions in the connected vehicle insurance contract that
do not require transaction fees are not included in this table. We can infer
the overall transaction cost for making a premium payment, both for the cus-
tomer and the insurer. For making an insurance premium, a customer sends
data for obtaining an insurance premium update and pays the premium after
the insurer updates it. Therefore, the cost to the customer is 4.37 cents and,
to the insurer the cost is 1.5 cents. Similarly, for making and processing an
insurance claim, the transaction cost to the customer is 0.87 cents and 0.86
cents to the insurer.

5.5 Summary

In this chapter, we discussed the technical details about the access control
mechanisms within our private-by-design, blockchain-based framework. The
use-cases discussed in this chapter specifically entailed exchanging IoT data

86 Chapter 5. Decentralized IoT Data Transfer And Monetization Services

in return for monetary services without involving trusted third party in-
termediaries. We demonstrated the capabilities of the proposed solution
through a full-fledged implementation and made important observations by
conducting a performance analysis. Results showed that, in terms of com-
putational and networking overhead, the cost of achieving decentralized IoT
data monetization can be very low. Moreover, the performance analysis in-
cluded detailed observations on the transaction processing fees and transac-
tion throughput. To conclude, by designing and implementing a two-tiered
blockchain architecture, we have taken steps towards achieving privacy and
scalability in developing a decentralized IoT platform, and by implementing
two real use cases, we have demonstrated the malleability of the proposed
framework. This chapter discusses use-cases where batches of IoT data are
either monetized or exchanged in return for insurance services. The follow-
ing chapter delves into decentralized access control and accountability mech-
anisms for sharing streams of data within a health monitoring context.

87

Chapter 6

Secure and Privacy-Preserving
End-to-End IoT Communications

With the growing research interest in integrating blockchains into the IoT,
healthcare is one of the most significant industries where a number of suit-
able use-cases have been identified. These include applications in medical
record keeping, pharmaceutical supply chains, health insurance, health re-
search analytics and remote health monitoring [159]. Remote health moni-
toring (RHM) enables doctors to monitor patients’ physiological conditions
from their homes, while freeing up expensive healthcare facilities and hos-
pitals to those in urgent need. For the patients, RHM provides a more com-
fortable and cost-effective alternative to on-site monitoring. Non-invasive
wearable sensor technologies are proven to be viable diagnostic tools for
monitoring patients’ physiological signs and activities remotely, in real time
[160]. Naturally, wearable sensors and the data generated by them to fa-
cilitate RHM have been the subject of research and development in RHM
systems.

Following the file transfer and monetization capabilities of the proposed block-
chain based IoT framework, we adapt the framework and tailor it to a scal-
able and private-by-design remote health monitoring use-case. Leveraging
blockchain’s capabilities in decentralized accountability, authorization and
authentication, our proposed solution is designed to securely share patients’
sensitive data with doctors, without having the data pass through third party
services.

In this solution, we use the core-tier as we did before: a medium for negoti-
ation and accountability. The core-tier blockchain is represented within this
chapter as a remote healthcare blockchain. The remote healthcare blockchain
can either be deployed in a permissionless or permissioned fashion, how-
ever, for this implementation, we have opted to use the PoA based Ethereum
blockchain, similar to the implementation in Chapter 5. At the edge-tier, in-
stead of using separate blockchains, we utilized the decentralized Tor net-
work for streaming data from patients to doctors in a peer-to-peer fashion.
Here, the patients will have their own IoT gateways, that do not maintain an
edge-tier blockchain. Since the data is to be sent to the doctor in real-time,

88Chapter 6. Secure and Privacy-Preserving End-to-End IoT Communications

therefore the patient’s local IoT gateway and the doctor’s node have a Tor-
based data delivery mechanism in between them. Local storage with data
hashes stored in BigchainDB is optional, in the cases where batches of data
are to be sent to healthcare providers, however in this chapter, to demon-
strate the secure health data streaming capabilities, we rely exclusively on
Tor-based hidden services for streaming health data.

To demonstrate and analyze the proposed solutions’s application in real-
world RHM scenarios, we developed a real-world implementation, and ex-
plored three RHM use cases:

• Cardiac patient monitoring; patients that require monitoring on a long-
term basis,

• Sleep apnoea testing; patients that require monitoring over a short pe-
riod of time,

• EEG monitoring for epilepsy; patients that require monitoring on an
emergency basis in the event of a seizure.

Our implementation is built on Ethereum’s Rinkeby test network, which pro-
vided an adequate platform for testing our solution’s applicability in a block-
chain network spread worldwide. For delivering patients’ health monitoring
data, we have implemented Tor hidden services. We chose Tor instead of
other peer-to-peer data delivery solutions due to the fact that through Tor,
we are able to transfer the data without any unnecessary metadata which is
not relevant to the application.

6.0.1 Tor Network

Tor is a decentralized, privacy enhancing system designed to prevent traffic
analysis attacks [161]. Tor provides a layer of privacy protection on top of
TCP, while maintaining high throughput and low latency, which makes it
ideal for data transfer applications. Since its initial release, researchers have
conducted analyses on Tor’s performance [162] and security [163].

Tor provides a layer of privacy protection for TCP through a three-hop rout-
ing path, using a layered encryption strategy as seen in onion routing mech-
anisms. Onion routing involves enested layers of encryption within the ap-
plication layer, like the layers of its namesake. Tor encrypts the data to be
sent, as well as the destination identifier, multiple times. The encrypted data
is then sent through a virtual circuit which consists of randomly selected Tor
relay nodes. Three hops are the default configuration within onion routing,
however, this can be increased or decreased. Each relay decrypts and unrav-
els one layer of encryption, reveals the address of the next relay, and passes
the remaining data to it. The final relay decrypts the last layer of encryp-
tion and sends the data to its intended destination, without knowing the IP
address of the source.

Additional considerations for end-to-end encryption are required since the
entrance Tor router can directly observe the originator of a particular request

6.1. Architecture of the RHM System 89

through the Tor network, and the exit node can examine the unencrypted
payload, and the destination server. No single node can observe the sender
and receiver. To achieve low latency, Tor does not re-order packets within the
Tor network.

Ricochet1 is an anonymous peer-to-peer instant messaging system that op-
erates on Tor hidden services, which is used to relay messages without rely-
ing on centralized messaging servers. Being run on Tor hidden services, Tor
follows rendezvous specifications [164] with self-authenticating hostnames.
When establishing a Tor hidden service, a 1,02-bit RSA key pair is gener-
ated, and a SHA-1 digest of the public key is calculated. The .onion address
is then the base32-encoded first half of the SHA-1 digest. Users would be
able to access this hidden service through the .onion address, for example:
2qxw7mf2xnfh4mqr.onion. In Ricochet, the contact ID follows the following
format: ricochet : 2qxw7mf2xnfh4mqr.

6.1 Architecture of the RHM System

While blockchain addressing does provide pseudonymity, inferences can be
made about accounts that generate specific kinds of data. In the IoT, preva-
lent privacy issues pertain to third-party entities monitoring user behaviour
and preferences, and logging all IoT data generation events on a public block-
chain will lead to privacy breaches [10]. Furthermore, for smart healthcare
applications, maintaining healthcare records and transferring monitoring data
over a single publicly deployed blockchain severely limits scalability. Con-
sidering the high frequency and volume of data generated in health mon-
itoring applications on a nationwide scale, the added latency of the con-
sensus algorithm will be a bottleneck to record every data transfer event.
Other than this, it is worth recalling that blockchains are linearly growing
data structures. Therefore, to log every single data transfer event on a public
blockchain will cause an explosion in the storage requirements of blockchain
full-nodes.

To address these limitations, we have implemented an architecture consist-
ing of a public blockchain at the core of the health monitoring system, with
Tor hidden services connecting patients to their doctors, as illustrated in
Fig. 6.1. This architecture allows patients to register themselves with a par-
ticular healthcare provider, and engage in agreements about the nature of the
data shared directly with the healthcare professional. The healthcare block-
chain stands to provide accountability, identity management and healthcare
information management for patients. None of the patients’ actual health
monitoring data is stored on the blockchain, and the agreements on the na-
ture of the data being shared is kept encrypted. In the event of an investi-
gation or an insurance claim, the healthcare provider can present details of
the agreements between the patient and the doctor, while the patient’s mon-
itoring data remains private. In our implementation of the remote health

1https://ricochet.im/

https://ricochet.im/

90Chapter 6. Secure and Privacy-Preserving End-to-End IoT Communications

Healthcare Blockchain
(permissioned or
permissionless)

FIGURE 6.1: The proposed blockchain-based RHM
architecture.

monitoring blockchain solution, we have used the Proof-of-Authority (PoA)
variant of the PoW consensus algorithm, to prevent unauthorized entities
to mine on the network. Limiting the mining pool in this case is advanta-
geous since patients and healthcare providers must have a limited number
of tokens within the RHM blockchain. If unauthorized entities were to mine
blocks on the blockchain, they could launch a denial of service attack with all
the tokens gained in their mining rewards.

The public healthcare blockchain consists of hospitals, and doctors who are
registered with specific hospitals. While registering with a specific doctor,
the patient and doctor both exchange their .onion addresses, which are kept
encrypted in the blockchain’s transaction payloads. The patient transmits
their health monitoring data to the doctor via Ricochet, and logs the starting
and stopping timestamp onto the public blockchain, along with the overall
size of data transmitted during that time. These logs provide accountable
proof of the patient having transmitted their healthcare data in accordance
to the doctor’s request. The doctor’s request for data and subsequent recom-
mendations, all encrypted, provide evidence of the medical advice given to
the patient.

6.2. Remote Health Monitoring Use-Cases 91

Privacy and scalability benefits

Using off-chain data transfer mechanisms, and using blockchains simply for
negotiations and record-keeping in remote health greatly reduces the load
on the blockchain system. With the overall number of interactions with
the blockchain greatly reduced on a per-patient basis, the health monitor-
ing blockchain system can scale up to a nationwide level. Furthermore, with
advancements in "sharding" [EthSharding] on the Ethereum platform, it will
eventually become possible to scale up the health-monitoring blockchain na-
tionwide, with different shards being accountable for different regions. Us-
ing hidden Tor services and the Ricochet protocol greatly adds to the privacy
that is built into the proposed solution. None of the patients’ health data is
accessible to anyone in the health-monitoring system except the doctor it is
intended to be shared with. With end-to-end encryption, the patients’ health
data is not accessible to anyone over the Tor network. The solution does not
involve third party servers in relaying patient data, and none of the data is
stored onto the blockchain. By using Tor hidden services, we ensure that no
metadata is transmitted to the other side which is not primary to the appli-
cation itself.

6.2 Remote Health Monitoring Use-Cases

The proposed blockchain-based remote health-monitoring solution provides
a medium for negotiation and accountability, identity management and a pri-
vate and secure means to transmit health monitoring data. In this section, we
will outline the decentralized accountability mechanism involved, as well as
the working principles of the patient-doctor relationship under the proposed
solution. We have looked at three main use-case scenarios where the solu-
tion can be applicable, out of many more. Firstly, the cardiac patients who
require longer term monitoring, secondly, sleep apnoea studies that require
short term monitoring over specific periods of time, and thirdly epileptic pa-
tients who may need to transmit EEG data in the event of a seizure, on an
emergency basis.

Firstly, each hospital has a smart contract where doctors "register" themselves
with verifiable registration information. "Registration" entails doctors en-
listing themselves in a mapping data structure within the hospital’s smart
contract, which can be looked up by patients to find the doctor they are to
register with. This mapping will include the doctor’s public-facing informa-
tion, as well as an address to the doctor’s own smart contract, where the
patients can register themselves. Fig. 6.2 is an illustration of the step-by-step
sequence of events that take place when a patient registers with a doctor and
avails remote health monitoring services.

Here, let H = {h0, h1, . . . , hn} be the set of hospitals, each being member par-
ticipants on the remote healthcare blockchain. Also, let Y = {y0, y1, . . . , yn}
be the set of doctors, and X = {x0, x1, . . . , xm} be the set of patients, such
that:

92Chapter 6. Secure and Privacy-Preserving End-to-End IoT Communications

FIGURE 6.2: Sequence diagram of a remote health-monitoring
instance, where a patient registers with the doctor and avails
remote health-monitoring services. All interactions with the
smart contract represent transactions. Dashed arrows represent

off-chain interactions over Tor hidden services.

∀hi∃Yi ⊂ Y : (hi 3 Yi) (6.1)

∀yi∃Xi ⊂ X : (yi 3 Xi) (6.2)

where 3 signifies registration. While the doctors and patients each have a
public-private keypair {kp, ks} for issuing transactions on the blockchain, for
each doctor-patient pair, there will exist a pair of .onion addresses. When a
patient xj invokes the REGISTER() method in the smart contract of a doctor
yr, the patient encrypts their own .onion address oj with the doctor’s pub-
lic blockchain key, and sends it to the doctor via the REGISTER() method.
Similarly, in return, the doctor’s blockchain node sends over a specific .onion
address for the patient.

∀yr∃〈kr
p, kr

s〉 : dkr
s(ekr

p(oj)) = oj (6.3)

∀xj∃〈k
j
p, kj

s〉 : d
kj

s
(e

kj
p
(or)) = or (6.4)

The reason for having two .onion addresses for each doctor-patient relation-
ship is to enable the doctor’s node to end transmission on a specific .onion
address if someone transmits data for a longer period of time than what is
decided.

With knowledge of the patient’s condition and following off-chain corre-
spondence, a doctor issues a request for data, with parameters based on the
urgency or timespan of health-monitoring required. The time period for data
transmission is set, the limits for the volume of data to be sent are set, and

6.2. Remote Health Monitoring Use-Cases 93

this time-stamped request logged onto the blockchain serves as an account-
able proof of the request.

Following the doctor’s request for data, patients transmit their health moni-
toring data over Tor hidden services addressed in Ricochet to the .onion ad-
dress provided to them by their doctor. The starting time of transmission
is logged on to the blockchain, which serves as proof of authentication and
time log of the start of data transfer. At the end of the data transfer, the pa-
tients log an end of transfer onto the blockchain, which includes a hash of
the bulk of data which is sent to the doctor, for verifiability. The time logs
will indicate how well a patient has fulfilled the doctor’s request and the im-
mutable contents of the blockchain will provide a hashed proof of the data
sent. Following the remote health monitoring, a doctor can provide recom-
mendations, all without having the patients’ data go through a third party
server or data management system.

Cardiac Patients Long-term RHM: For cardiac patients, the doctor’s will issue
a request for health monitoring data for a longer period of time. This longer
period may include further data transfer parameters like specific times of the
day, a specific volume of data during the day, whichever suits the patients’
case best. In this case, the doctor will have to have a specific node listening
over the hidden service for a longer period of time. Within the node, at the
doctor’s end, there will be safeguards to ensure that no malicious flooding of
data is taking place, and only a specified amount of data is being received.
In this particular case, real-time analytics can be employed at the patient’s
end, with gentle reminders to the patient for being careful during periods of
exertion or stress. Predictive models at the doctor’s end can help the doctor
modify the course of healthcare being provided to the patient, in a peer-to-
peer fashion.

Sleep Apnoea Patients Short-term RHM: For sleep apnoea patients, relevant
research efforts have shown that home testing may lead to fewer false nega-
tives, since patients are sleeping within the comfort of their own beds [165].
For transferring short-term sleep apnoea test data, doctors can request data
over a smaller period of time. Here, the specific .onion address on the doc-
tor’s end will cease listening at the end of the specified time period. Such an
application of peer-to-peer remote health-care monitoring will allow patients
access to doctors beyond their geographical region, and will further the cause
of medical globalisation.

Epileptic Patients Sporadic RHM: In the event of an epileptic seizure, patients
are rushed to the hospital for a prompt EEG, so doctors can gain insight into
the epileptic event. With the improving robustness of home EEG equipment
[166], it is possible for doctors to receive data as early as possible following
an epileptic seizure. In this case, typically doctors monitor epileptic events
that take place over a specified amount of time, and recommend treatment
options. The doctor will have a .onion address listening over a period of time,
with specified limits of data to be transferred per day. Preventing excessive

94Chapter 6. Secure and Privacy-Preserving End-to-End IoT Communications

amounts of data being transferred helps mitigate the network being flooded,
and serves the purpose of all genuine patients. Under the proposed solution,
patients can transfer near real-time data taken from home EEG equipment, to
provide doctors with relevant data in time, without rushing or discomforting
the patient.

6.3 Security Analysis

In this section, we outline the security analysis we performed on our pro-
posed blockchain-based remote health monitoring solution based on multi-
ple attack scenarios.

Scenario 1: Compromised .onion Addresses

For each doctor-patient relationship, the .onion addresses and blockchain
keys both serve as multi-factor authentication for engaging in remote health
monitoring. The .onion address provided to patients by their doctors comes
via a blockchain transaction, which has the doctor’s blockchain signature. On
the other end, if a patient’s .onion address is compromised, any data trans-
ferred to the doctor will either not have a start of transfer log on the block-
chain, or the data hash stored on the blockchain at the end of the transfer will
not match the corrupt data that was actually sent.

Scenario 2: Launching a Denial-of-Service (DoS) Attack on the Remote
Healthcare Blockchain

The public blockchain used by the proposed solution is a distributed system
which has a tokenized cost for signing transactions (i.e., transaction fees). All
entities involved have only a limited supply of the blockchain’s token, which
mitigates the chance of performing a (D)DoS attack on the solution. The re-
mote healthcare blockchain uses PoA consensus, where only hospitals and
healthcare companies are entitled to mine on the blockchain. The hospitals
and healthcare companies who maintain the consortium transfer tokens to all
entities involved within a limit depending upon multiple factors, for exam-
ple, what insurance a patient has, or whether the entity is a patient or a high
ranking oncologist. Moreover, generally speaking, the collective computing
power available in the consortium will make it extremely hard to launch suc-
cessful DoS attacks.

Scenario 3: Sniffing Data Sent from a Tor Exit Relay

While issuing requests and delivering data through Tor hides any metadata
regarding the location of the source or destination, an issue arises with the
last relay node. While the final relay node may not know where the health-
care monitoring data has come from, it can observe the destination, and can

6.4. Performance Analysis 95

make inferences on the sensitive health data. To combat this, we have incor-
porated Ricochet into our solution to provide end-to-end encryption based
on the Ricochet address of the destination entity. This way, none of the data
is exposed to any off-chain entity, as well as any entity on the remote health-
care blockchain.

Scenario 4: Sniffing Data Transfer Parameters from the Doctor’s Smart
Contract

Let’s assume an entity on the remote healthcare blockchain y′r, acting as an
adversary, is interested in getting access to the information of the patient xj
stored in the smart contract of a doctor yr. This information can include the
patient’s identity, the volume of data sent to the doctor, as well as the nature
of data which was sent. This information, hj is encrypted with kr

p, thus it can
only be decrypted with kr

s, and with the doctor not having had their account
compromised, y′r will not be able to get access to the patient’s information.

Scenario 5: Impersonators and Malpractitioners in the Hospital’s Smart
Contract

The hospital maintains a register of doctors within its smart contract, with
verifiable information regarding their medical licenses and identification. Any
new entries made to the hospital’s register go through a verification stage,
where the members of the consortium all verify the medical license of the
doctor, and based on a vote, the entry is allowed to be appended to the hospi-
tal’s mapping data structure. In the event of malpractice, the hospital simply
drops the entry of the doctor in question from its smart contract. The smart
contract function used for removing these entries requires digital signatures
from the hospital, therefore no unauthorized member from the blockchain
can access this function.

6.4 Performance Analysis

This section details the performance analysis based on the experiments we
conducted to validate the proposed solution. The proposed framework was
developed and deployed on a Proof-of-Authority (PoA) based blockchain.
The solution was implemented on the Ethereum Rinkeby platform, which
provides an accurate insight into how well the solution will perform in real-
life deployments. As discussed in Sec. 6.3, the involved entities all get a lim-
ited amount of tokens to engage with the system, which hold no real-world
monetary value. We used Rinkeby’s native tokens to visualize the transaction
fees incurred when interacting with smart contract functions.

In Sec. 5.4, we discussed the feasibility of the blockchain-IoT framework with
transaction finality times, computational overhead, and transaction fees. In
this chapter, the aim is to maintain a near real-time data delivery from the

96Chapter 6. Secure and Privacy-Preserving End-to-End IoT Communications

patients to their doctors. For the performance analysis in this use-case, we
have considered the following performance metrics:

• The computational overheads on the patient and doctor nodes for par-
ticipating in the remote healthcare blockchain,

• The propagation delay involved in delivering health monitoring data
over Tor.

The most notable aspect of the performance analysis was to compare the per-
formance of our data delivery mechanism against centralized solutions and
existing blockchain-based solutions. We used Telegram’s API as a centralized
service to compare the data delivery performances. For blockchain-based so-
lutions, we used Ethereum’s Whisper2 protocol.

Ethereum’s whisper is a communications protocol for distributed applica-
tions within the Ethereum blockchain application stack. Whisper claims to
achieve ‘darkness’ in that it delivers messages while preventing any meta-
data to go through. The aim of whisper was anonymity, and while Whisper
does indeed function very well in centralized clusters such as the one used
by Status3, it does not succeed in delivering messages over public PoA block-
chains. The reason in this is the fact that Ethereum blockchain nodes are not
economically incentivized to run the whisper protocol. So in a network such
as Rinkeby, you may not have an end-to-end route where all peers in between
have whisper enabled. Therefore, for whisper, we have used theoretical val-
ues as a comparison.

Messages in whisper are broadcasted over a message bus without traditional
"routing". Within a whisper message’s envelope, some of the parameters
required are the TTL, the ”PowTime” and ”PowTarget”, as seen in the snippet
below:

message:= whisperv6.NewMessage{
Payload: []byte("123"),
PublicKey: publicKey,
TTL: 60,
PowTime: 2,
PowTarget: 2.5
}

The last two parameters signify the amount of time given to perform proof-
of-work on each message. This is whisper’s way of preventing flooding at-
tacks, and within public networks at scale, this is what would cause a greater
delay. For this analysis, we have only considered a PowTime of 2 seconds
on whisper, to be compared to the actual propagation times seen though the
Telegram API and our solution based on Tor hidden services.

2https://github.com/ethereum/wiki/wiki/Whisper
3https://status.im/

https://github.com/ethereum/wiki/wiki/Whisper
https://status.im/

6.4. Performance Analysis 97

6.4.1 Computational Overhead

As was the case in Sec. 5.4, we used the web browser plugin Metamask4 and
the light-client Geth5 implementation for our decentralized application. The
light-client implementation allows patients and doctors to issue transactions
without needing to store a full copy of the remote healthcare blockchain. Ad-
ditionally, since our nodes do not mine and validate new blocks, the compu-
tational overhead on the Metamask implementations is negligible.

6.4.2 Helthcare Data Propagation Time

To compare message delivery times, we set up virtual machines on the Google
Compute Engine service. We connected these VMs to the Ethereum Rinkeby
network and Tor. While delivering messages, we observed the time taken
through a centralized solution (Telegram) and our proposed solution. As al-
ready mentioned, we have only considered 2 seconds of PowTime for Whis-
per (worth bearing in mind that these 2 seconds do not include any actual
propagation time).

Fig. 6.3 shows the message delivery times between two nodes, one in Sydney
and another in Frankfurt. Not only does this highlight the potential in glob-
alizing healthcare, it shows that the solution proposed in this work performs
comparatively to the centralized solution at a near real-time level. This ex-
periment confirms the hypothesis of a slightly higher delivery time than the
centralized solution, but a marked improvement over whisper on a public
Ethereum network.

M
es

sa
ge

 d
el

iv
er

y
tim

e
(m

ill
is

ec
on

ds
)

0

500

1000

1500

2000

1 4 7 1 1 1 1 2 2 2 3 3 3 4 4 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8 9 9 9 1

Ethereum Whisper Telegram Ethereum + Tor

Sydney - Frankfurt

FIGURE 6.3: Message delivery times when delivering remote
health monitoring data from Sydney to Frankfurt.

A more interesting outcome presents itself in Fig. 6.4, where say, a patient
from Sydney wants to transfer health monitoring data to a doctor in Syd-
ney. In this case, the centralized solution clearly has a double delivery time
in milliseconds, owing to the fact that the centralized service does not have

4https://metamask.io/
5https://www.ethereum.org/cli

https://metamask.io/
https://www.ethereum.org/cli

98Chapter 6. Secure and Privacy-Preserving End-to-End IoT Communications

Av
er

ag
e

de
liv

er
y

tim
e

(m
ill

is
ec

on
ds

)

0

500

1000

1500

2000

20 40 60 80 100
Ethereum Whisper Telegram Ethereum + Tor

Sydney - Sydney

FIGURE 6.4: Message delivery times when delivering remote
health monitoring data from Sydney to Frankfurt.

servers in Australia, and our proposed solution is making use of a decentral-
ized infrastructure already in place. This experiment has helped highlight
not only the capabilities of our proposed solution, but also the benefits of a
decentralized architecture as a whole.

6.5 Summary

Today, a blockchain-IoT convergence is seen as a potential step forwards to-
wards democratic and decentralized healthcare systems. However, the re-
search area of blockchain-IoT convergence still remains nascent, though it
is expected to yield several interesting outcomes for the future. In this chap-
ter, the private-by-design, blockchain-based framework is adapted for secure
end-to-end streaming in a remote health monitoring use-case. The remote
health monitoring solution was built on the Ethereum blockchain platform,
and Tor hidden services provided off-chain data delivery capabilities.

We demonstrated the proposed solution through a full-fledged implementa-
tion and made important observations by conducting a performance analy-
sis. Our results showed that, in terms of message delivery times, the solution
performed comparably to centralized solutions when the centralized servers
were halfway in between the patient and the doctor. Moreover, our analysis
showed that in scenarios where the centralized servers were distant, our so-
lution had an improved performance due to its non-reliance on centralized
servers. To conclude, by designing and implementing an on-chain and off-
chain, we have taken steps towards achieving a private-by-design solution
for remotely monitoring patients’ health.

99

Part III

Conclusions and Future Work

101

Chapter 7

Conclusions

After achieving a truly democratic and decentralized fabric for conducting
monetary transactions, blockchains are being hailed as the conduit to decen-
tralizing the IoT. In traditional IoT architectures, centralized third parties pro-
vide essential services including authentication, authorization, access control
and data management. Decentralized services with blockchains have the po-
tential to fundamentally alter IoT service provision without reliance on cen-
tralized intermediaries. This thesis presents a blockchain-based framework
for the IoT, which aims to provide secure decentralized IoT data transaction-
ing, and mitigate the scalability and privacy issues in single blockchain solu-
tions.

The blockchain-IoT framework presented in this thesis involves a control-
plane/data-plane split within a tiered blockchain architectue, for scaling up
blockchain-based security and securing the IoT edge’s large attack surface.
The framework is agnostic of blockchain platform used, as long as there is
a permissionless blockchain at the core-tier and permissioned blockchains at
the edge-tier. Thus within this multi-tiered blockchain architecture, multiple
blockchains can interact with each other on the application-level to secure
multiple IoT industry verticals.

The proposed architecture, when applied to an agricultural use-case demon-
strates its application in supply chain traceability in general, along with sus-
tainability in groundwater pumping through cooperation of multiple farms.
The traceability system was implemented in Ethereum and Hyperledger Saw-
tooth, to highlight the framework’s agnostic nature to the underlying block-
chain platform. For the purpose of an edge-tier supply chain traceability
solution, we found a permissioned blockchain implementation better suited.
On the core-tier, connecting multiple farms together, a permissionless Ether-
eum blockchain provides a cooperational medium for farmers to reap higher
long-term economic rewards, while maintaining sustainable groundwater ir-
rigation.

The smart contracts deployed over the multiple tiers of the blockchain-based
framework allow it to be tailored to multiple e-business models involving the
exchange of batches of IoT data. To demonstrate this, we implemented the
framework over two distinct use-cases: a decentralized IoT data marketplace

102 Chapter 7. Conclusions

where users can monetize their data, and a connected vehicle insurance sys-
tem where insurance services are delivered based on sensor data. Our imple-
mentations over the Ethereum Rinkeby test network and Hyperledger Bur-
row enabled us to observe how the framework would perform in real-world
scenarios. Our results highlighted the feasibility for users to engage with the
framework, over an existing decentralized core-tier blockchain. In terms of
networking overheads, computational overheads and transaction processing
fees, the cost of achieving decentralized IoT data monetization can be very
low.

We demonstrated the applicability of the framework in securing end-to-end
communications through a remote health monitoring use-case. This data
streaming functionality does not make use of edge-tier blockchains, however,
periodic hashes of the data being streamed can be stored within BigchainDB
as proof of integrity. In this use-case the control plane/data plane split is
maintained, with the control plane being at the core-tier blockchain, and the
data plane being Tor hidden services. We made important observations in
our real-life implementation by conducting a performance analysis. Our
results showed that, in terms of message delivery times, the solution per-
formed on par with centralized solutions when the centralized servers were
halfway in between the patient and the doctor. Moreover, our analysis showed
that in scenarios where the centralized servers were distant, our solution had
an improved performance due to its non-reliance on centralized servers.

To conclude, the blockchain-based IoT framework presented in this thesis
takes steps towards building a scalable and secure fabric for IoT data com-
munications without the need for centralized trusted authorities. The frame-
work relies on combinations of on-chain/off-chain solutions as well as tiered
blockchain architectures for scalability. The framework is applicable in mul-
tiple IoT use-case scenarios, and can be tailored to fit newer, innovative e-
business models. The vision of a decentralized IoT is one with device democ-
racy, data ownership, and non-reliance on centralized authorities. Block-
chains continue to inspire research progress towards realizing this vision,
by offering a potential, fundamental paradigm shift on how the Internet of
Things will be orchestrated in the future.

103

Chapter 8

Future Work

With research being an ongoing stream of collaborative consciousness, it is
vital to identify where the flow can take us next. Within this work, we have
presented contributions in designing decentralized architectures for the IoT
using blockchains in combination with other decentralized mechanisms.

The architecture remains agnostic of the underlying consensus mechanisms
used, as long as the core-tier blockchain uses a public consensus mechanism,
and the edge-tier blockchain uses a private consensus mechanism. Ongo-
ing work on blockchain consensus at the protocol level, in conjunction with
our proposed framework can improve the adaptability and scalability of a
blockchain-based IoT.

For improved scalability, it would be an interesting direction to have an-
other hierarchical tier for the multi-tier blockchain architecture. A consor-
tium of core-tier blockchains would improve the scalability by a consider-
able margin. The key challenge, and a great feat, would be to implement
inter-blockchain routing at the higher-tier consortium, without resorting to
centralized routing hubs.

Within an Ethereum implementation, after the "sharding" mechanism reaches
adequate robustness, it would be interesting to see how the core-tier block-
chain’s scalability would improve when deployed in shards over a global test
network.

In the remote health monitoring use-case, a further improvement would be
to have a message buffering mechanism for offline delivery, since the Tor
hidden service Ricochet requires both patient and doctor to be online during
the data stream. The obvious trade-off would be in absolute decentralization
versus using an autonomous broker for offline message delivery services.

105

Appendix A

Core-Tier Smart Contracts

A.1 Blockchain-Based Connected Vehicle Insurance

pragma solidity ^0.4.17;

contract BcCarInsurance {

struct Customer {
bool PolicyActive;
bool isBanned;
uint LastPayment;
uint Premium;
string ClaimData;
string PremiumData;
bool updatePending;
uint LastUpdate;
bool claimPending;

}

address owner;
mapping (address => Customer) public Customermap;

uint PremiumPeriod = 180 days;
uint InitialPayment = 0.1 ether;

// Constructor
function BcCarInsurance() public payable{
owner = msg.sender;

}

// Destructor
function remove() public{
if (msg.sender == owner){
selfdestruct(owner);

}
}

106 Appendix A. Core-Tier Smart Contracts

// customer starts an insurance policy + makes initial payment
function StartPolicy() payable public {
Customer storage cust = Customermap[msg.sender];
// don’t accept banned customers
require(!cust.isBanned);
// see if initial payment is correct
require(msg.value == InitialPayment);

cust.LastPayment = now;
cust.PolicyActive = true;
cust.ClaimData = "claimzero";
cust.PremiumData = "PremiumDataZero";

}

// customer sends encrypted IPFS hash to insurance company for
filing insurance claim (HAS COST)

function SendClaimData(string ipfsfile) public {
Customer storage cust = Customermap[msg.sender];
require(keccak256(cust.ClaimData) != keccak256(ipfsfile));
require(cust.PolicyActive == true);

cust.ClaimData = ipfsfile;
cust.claimPending = true;

}

// customer sends encrypted IPFS hash to insurance company for
calculating premium (HAS COST)

function SendPremiumData(string ipfsfile) public {
Customer storage cust = Customermap[msg.sender];
require(keccak256(cust.PremiumData)!=keccak256(ipfsfile));
require(cust.PolicyActive == true);
cust.PremiumData = ipfsfile;
cust.updatePending = true;

}

// insurance company periodically checks if premium or claim data
is updated (COSTS NOTHING)

function isPending(address customer) public constant returns (bool
pending){

require(msg.sender == owner);
Customer storage cust = Customermap[customer];
return cust.updatePending

|| cust.claimPending;
}

// checks if a customer is currently insured (COSTS NOTHING)
function isInsured(address customer) public constant returns (bool

insured) {
require(msg.sender == owner);
Customer storage cust = Customermap[customer];
return cust.PolicyActive &&

A.1. Blockchain-Based Connected Vehicle Insurance 107

!cust.isBanned &&
cust.LastPayment + PremiumPeriod >= now;

}

// insurance company periodically performs checks if customers
have made payment within required interval (MAY HAVE COST)

function CheckPayment(address customer) public {
require(msg.sender == owner);
Customer storage cust = Customermap[customer];
if (cust.PolicyActive && cust.LastPayment + PremiumPeriod < now) {
cust.PolicyActive = false;
cust.isBanned = true;

}
}

// insurance company updates customer’s insurance premium (HAS
COST - include cost in premium)

function updatePremium(address customer, uint newPremium) public {
require(msg.sender == owner);
Customer storage cust = Customermap[customer];
cust.Premium = newPremium;
cust.updatePending = false;
cust.LastUpdate = now;

}

// customer pays insurance premium
function MakePayment() public payable{
Customer storage cust = Customermap[msg.sender];
// only accept correct amount
require(msg.value == cust.Premium);
// only let payment through if premium is updated
require(cust.LastUpdate + PremiumPeriod > now);
// check if payment is overdue
CheckPayment(msg.sender);
// only accept payment if customer is insured
require(isInsured(msg.sender));

cust.LastPayment = now;
}

// insurance company processes claims based on customer’s data
function ProcessClaim(address customer) public payable{
require(msg.sender == owner);
require(isInsured(customer));
Customer storage cust = Customermap[customer];
customer.transfer(msg.value);
cust.claimPending = false;

}
}

108 Appendix A. Core-Tier Smart Contracts

A.2 Decentralized IoT Data Marketplace - Snippet

pragma solidity ^0.4.17;

contract DataMarketplace {

struct Customer {
bool membershipActive;
bool isBanned;
string fileHash;
bool pending;

}

address owner;
mapping (address => Customer) public Customermap;

uint pricePerHour = 0.01 ether;

// Constructor
function DataMarketplace() public payable{
owner = msg.sender;

}

// Destructor
function remove() public{
if (msg.sender == owner){
selfdestruct(owner);

}
}

// check price of a piece of requested data
function CheckPrice(uint hourNum) public constant returns (uint

price){
return hourNum*pricePerHour;

}

// customer issues request for data
function RequestData(uint hourNum) payable public {
Customer storage cust = Customermap[msg.sender];
// don’t accept banned customers
require(!cust.isBanned);
// see if initial payment is correct
require(msg.value == CheckPrice(hourNum));
require(cust.pending=false);
if (!cust.membershipActive){
cust.membershipActive = true;

}
cust.pending = true;

}

A.2. Decentralized IoT Data Marketplace - Snippet 109

// response to data requests
function SendData(string ipfsfile, address customer) public {
require(msg.sender == owner);
Customer storage cust = Customermap[customer];
require(keccak256(cust.fileHash) != keccak256(ipfsfile));
require(cust.membershipActive == true);
cust.fileHash = ipfsfile;
cust.pending = false;

}

// periodic checks for pending requests
function isPending(address customer) public constant returns (bool

pending){
require(msg.sender == owner);
Customer storage cust = Customermap[customer];
return cust.pending

}

// ban a customer from making further requests
function banHammer(address customer) public {
require(msg.sender == owner);
Customer storage cust = Customermap[customer];
cust.isBanned = true;

}

}

111

Bibliography

[1] R. Minerva, A. Biru, and D. Rotondi. Towards a Definition of the In-
ternet of Things (IoT). Technical report, IEEE IoT Initiative, 2015. Rev.
1.

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash.
Internet of things: a survey on enabling technologies, protocols, and
applications. IEEE Communications Surveys & Tutorials, 17(4):2347–2376,
2015.

[3] F. A. Alaba, M. Othman, I. A. Targio Hashem, and F. Alotaibi. Internet
of things security: a survey. Journal of Network and Computer Applica-
tions, 88:10–28, 2017.

[4] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas. Ddos in the iot:
mirai and other botnets. Computer, 50(7):80–84, 2017.

[5] E. Bertino and N. Islam. Botnets and internet of things security. Com-
puter, 50(2):76–79, 2017.

[6] P. Cardullo. Hacking multitude and big data: some insights from the
turkish ‘digital coup. Big Data & Society, 2(1), 2015.

[7] T. Borgohain, U. Kumar, and S. Sanyal. Survey of security and pri-
vacy issues of Internet of Things. Technical report, Harvard Univer-
sity, 2015.

[8] G. Greenwald and E. MacAskill. Nsa prism program taps in to user
data of apple, google and others. The Guardian, 7(6):1–43, 2013.

[9] S. Nakamoto. Bitcoin: a peer-to-peer electronic cash system.
[10] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H.

Rehmani. Applications of blockchains in the internet of things: a com-
prehensive survey. IEEE Communications Surveys & Tutorials, 21(2):1676–
1717, 2018.

[11] P. Brody, V. Pureswaran, S. Panikkar, and S. Nair. Empowering the
edge practical insights on a decentralized internet of things. IBM In-
stitute for Business Value. Technical Report, 2015.

[12] N. Szabo. Formalizing and securing relationships on public networks.
First Monday, 2(9), 1997.

[13] A. Biryukov, D. Khovratovich, and I. Pustogarov. Deanonymisation of
clients in bitcoin p2p network. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, pages 15–29. ACM,
2014.

[14] M. Pilkington. Blockchain technology: principles and applications. Re-
search Handbook on Digital Transformations, 2015.

112 Bibliography

[15] R. Beck, J. S. Czepluch, N. Lollike, and S. Malone. Blockchain-the gate-
way to trust-free cryptographic transactions. In Twenty-Fourth Euro-
pean Conference on Information Systems (ECIS), Istanbul, Turkey, 2016.

[16] R. C. Merkle. A digital signature based on a conventional encryption
function. In Advances in Cryptology — CRYPTO ’87, pages 369–378,
1987.

[17] G. Wood. Ethereum: a secure decentralised generalised transaction
ledger. Ethereum Project Yellow Paper, 151, 2014.

[18] S. Omohundro. Cryptocurrencies, smart contracts, and artificial intel-
ligence. AI matters, 1(2):19–21, 2014.

[19] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor. Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 254–269. ACM, 2016.

[20] F. Tschorsch and B. Scheuermann. Bitcoin and beyond: a technical sur-
vey on decentralized digital currencies. IEEE Communications Surveys
& Tutorials, 18(3):2084–2123, 2016. ISSN: 1553-877X.

[21] V. Dhillon, D. Metcalf, and M. Hooper. The hyperledger project. In
Blockchain Enabled Applications, pages 139–149. 2017.

[22] N. Atzei, M. Bartoletti, and T. Cimoli. A survey of attacks on ethereum
smart contracts (sok). In Proceedings of the 6th International Conference
on Principles of Security and Trust, pages 164–186, 2017.

[23] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: the
blockchain model of cryptography and privacy-preserving smart con-
tracts. In 2016 IEEE Symposium on Security and Privacy, pages 839–858,
2016.

[24] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of dis-
tributed consensus with one faulty process. Journal of the ACM (JACM),
32(2):374–382, 1985.

[25] D. Dolev, C. Dwork, and L. Stockmeyer. On the minimal synchro-
nism needed for distributed consensus. Journal of the ACM (JACM),
34(1):77–97, 1987.

[26] D. Malkhi and M. Reiter. Byzantine quorum systems. Distributed Com-
puting:203–213, 1998.

[27] L. Law, S. Sabett, and J. Solinas. How to make a mint: the cryptogra-
phy of anonymous electronic cash. National Security Agency Office of
Information Security Research and Technology, Cryptology Division, 1996.

[28] L. Lamport, R. Shostak, and M. Pease. The byzantine generals prob-
lem. ACM Transactions on Programming Languages and Systems (TOPLAS),
4(3):382–401, 1982.

[29] M. Correia, G. S. Veronese, N. F. Neves, and P. Verissimo. Byzantine
consensus in asynchronous message-passing systems: a survey. Inter-
national Journal of Critical Computer-Based Systems (IJCCBS), 2(2):141–
161, 2011. ISSN: 1757-8779.

[30] J. R. Douceur. The sybil attack. In International Workshop on Peer-to-Peer
Systems, pages 251–260. Springer, 2002.

[31] M. Liu, R. Yu, Y. Teng, V. Leung, and M. Song. Performance optimiza-
tion for blockchain-enabled industrial internet of things (iiot) systems:

Bibliography 113

a deep reinforcement learning approach. IEEE Transactions on Indus-
trial Informatics, 2019.

[32] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and
S. Capkun. On the security and performance of proof of work block-
chains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 3–16, 2016.

[33] D. Bradbury. In blocks [security bitcoin]. Engineering Technology, 10(2):68–
71, 2015. ISSN: 1750-9637.

[34] K. J. O’Dwyer and D. Malone. Bitcoin mining and its energy footprint.
In 25th IET Irish Signals Systems Conference 2014 and 2014 China-Ireland
International Conference on Information and Communications Technologies
(ISSC 2014/CIICT 2014), pages 280–285, 2014.

[35] N. Houy. It will cost you nothing to’kill’a proof-of-stake cryptocur-
rency. Available at SSRN 2393940, 2014.

[36] A. Jain, S. Arora, Y. Shukla, T. Patil, and S. Sawant-Patil. Proof of
stake with casper the friendly finality gadget protocol for fair valida-
tion consensus in ethereum. International Journal of Scientific Research
in Computer Science, Engineering and Information Technology, 3(3):291–
298, 2018.

[37] L. S. Sankar, M. Sindhu, and M. Sethumadhavan. Survey of consen-
sus protocols on blockchain applications. In 2017 4th International Con-
ference on Advanced Computing and Communication Systems (ICACCS),
pages 1–5. IEEE, 2017.

[38] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld. Proof of activity: ex-
tending bitcoin’s proof of work via proof of stake. SIGMETRICS Per-
formance Evaluation Review, 42(3):34–37, Dec. 2014. ISSN: 0163-5999.

[39] V. Costan and S. Devadas. Intel sgx explained. IACR Cryptology ePrint
Archive, 2016:86, 2016.

[40] M. Walport. Distributed ledger technology: beyond blockchain. UK
Government Office for Science, 2016.

[41] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

[42] E. Androulaki, C. Cachin, A. De Caro, A. Kind, and M. Osborne. Cryp-
tography and protocols in hyperledger fabric. In Real-World Cryptog-
raphy Conference, 2017.

[43] J. Kwon. Tendermint: consensus without mining. Draft v. 0.6, fall, 1:11,
2014.

[44] D. Schwartz, N. Youngs, and A. Britto. The ripple protocol consensus
algorithm. Ripple Labs Inc White Paper, 5, 2014.

[45] D. Mazieres. The stellar consensus protocol: a federated model for
internet-level consensus. Stellar Development Foundation, 2015.

[46] M. Vukolić. The quest for scalable blockchain fabric: proof-of-work vs.
bft replication. In International Workshop on Open Problems in Network
Security, pages 112–125. Springer, 2015.

[47] L. D. Xu, E. L. Xu, and L. Li. Industry 4.0: state of the art and future
trends. International Journal of Production Research, 56(8):2941–2962, 2018.

114 Bibliography

[48] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac. Internet of
things: vision, applications and research challenges. Ad Hoc Networks,
10(7):1497–1516, 2012.

[49] A. Barki, A. Bouabdallah, S. Gharout, and J. Traore. M2m security:
challenges and solutions. IEEE Communications Surveys & Tutorials,
18(2):1241–1254, 2016.

[50] J. Zhou, Z. Cao, X. Dong, and A. V. Vasilakos. Security and privacy for
cloud-based iot: challenges. IEEE Communications Magazine, 55(1):26–
33, 2017.

[51] M. Mohammadi and A. Al-Fuqaha. Enabling cognitive smart cities us-
ing big data and machine learning: approaches and challenges. IEEE
Communications Magazine, 56(2):94–101, 2018.

[52] V. Gazis. A survey of standards for machine-to-machine and the inter-
net of things. IEEE Communications Surveys & Tutorials, 19(1):482–511,
2017.

[53] D. S. Nunes, P. Zhang, and J. Sa Silva. A survey on human-in-the-loop
applications towards an internet of all. IEEE Communications Surveys
& Tutorials, 17(2):944–965, 2015.

[54] M. Ammar, G. Russello, and B. Crispo. Internet of things: a survey
on the security of iot frameworks. Journal of Information Security and
Applications, 38:8–27, 2018.

[55] K. Zhao and L. Ge. A survey on the internet of things security. In Com-
putational Intelligence and Security (CIS), 2013 9th International Confer-
ence on Computational Intelligence and Security, pages 663–667. IEEE,
2013.

[56] J. S. Kumar and D. R. Patel. A survey on internet of things: secu-
rity and privacy issues. International Journal of Computer Applications,
90(11), 2014.

[57] Z. Yan, P. Zhang, and A. V. Vasilakos. A survey on trust manage-
ment for internet of things. Journal of network and computer applications,
42:120–134, 2014.

[58] N. Z. Aitzhan and D. Svetinovic. Security and privacy in decentral-
ized energy trading through multi-signatures, blockchain and anony-
mous messaging streams. IEEE Transactions on Dependable and Secure
Computing, 2016.

[59] A. Laszka, A. Dubey, M. Walker, and D. Schmidt. Providing privacy,
safety, and security in iot-based transactive energy systems using dis-
tributed ledgers. In Proceedings of the Seventh International Conference
on the Internet of Things, page 13. ACM, 2017.

[60] F. Knirsch, A. Unterweger, G. Eibl, and D. Engel. Privacy-preserving
smart grid tariff decisions with blockchain-based smart contracts. In
Sustainable Cloud and Energy Services, pages 85–116. Springer, 2018.

[61] J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain. En-
abling localized peer-to-peer electricity trading among plug-in hybrid
electric vehicles using consortium blockchains. IEEE Transactions on
Industrial Informatics, 13(6):3154–3164, 2017. ISSN: 1551-3203.

Bibliography 115

[62] Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang. Consortium block-
chain for secure energy trading in industrial internet of things. IEEE
Transactions on Industrial Informatics, 14(8):3690–3700, 2018. ISSN: 1551-
3203.

[63] P. Garcia Lopez, A. Montresor, D. Epema, A. Datta, T. Higashino, A.
Iamnitchi, M. Barcellos, P. Felber, and E. Riviere. Edge-centric comput-
ing: vision and challenges. SIGCOMM Comput. Commun. Rev., 45(5):37–
42, Sept. 2015. ISSN: 0146-4833.

[64] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram. Blockchain for
iot security and privacy: the case study of a smart home. In 2017 IEEE
international conference on pervasive computing and communications work-
shops (PerCom workshops), pages 618–623. IEEE, 2017.

[65] S.-C. Cha, J.-F. Chen, C. Su, and K.-H. Yeh. A blockchain connected
gateway for ble-based devices in the internet of things. IEEE Access,
2018.

[66] A. Reyna, C. Martín, J. Chen, E. Soler, and M. Díaz. On blockchain
and its integration with iot. challenges and opportunities. Future Gen-
eration Computer Systems, 2018.

[67] K. Wüst and A. Gervais. Do you need a blockchain? 2018 Crypto Valley
Conference on Blockchain Technology (CVCBT):45–54, 2018.

[68] K. Christidis and M. Devetsikiotis. Blockchains and smart contracts
for the internet of things. IEEE Access, 4:2292–2303, 2016.

[69] H. Tschofenig and J. Arkko. Report from the Smart Object Workshop.
Apr. 2012. URL: RFC6574. last accessed: February 8, 2020.

[70] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini. Security, pri-
vacy and trust in internet of things: the road ahead. Computer networks,
76:146–164, 2015.

[71] J. A. Stankovic. Research directions for the internet of things. IEEE
Internet of Things Journal, 1(1):3–9, 2014.

[72] O. Vermesan and P. Friess. Internet of things: converging technologies for
smart environments and integrated ecosystems. River Publishers, 2013.

[73] R. Roman, P. Najera, and J. Lopez. Securing the internet of things.
Computer, 44(9):51–58, 2011.

[74] R. H. Weber. Internet of things: privacy issues revisited. Computer Law
& Security Review, 31(5):618–627, 2015.

[75] G. V. Lioudakis, E. A. Koutsoloukas, N. Dellas, S. Kapellaki, G. N.
Prezerakos, D. I. Kaklamani, and I. S. Venieris. A proxy for privacy:
the discreet box. In EUROCON, 2007. The International Conference on"
Computer as a Tool", pages 966–973. IEEE, 2007.

[76] D. Chaum and E. Van Heyst. Group signatures. In Workshop on the
Theory and Application of of Cryptographic Techniques, pages 257–265.
Springer, 1991.

[77] F. Li, Z. Zheng, and C. Jin. Secure and efficient data transmission in
the internet of things. Telecommunication Systems, 62(1):111–122, 2016.

[78] K. El Defrawy and G. Tsudik. Prism: privacy-friendly routing in sus-
picious manets (and vanets). In 2008 IEEE International Conference on
Network Protocols, pages 258–267. IEEE, 2008.

RFC 6574

116 Bibliography

[79] A. Wasef and X. Shen. Efficient group signature scheme supporting
batch verification for securing vehicular networks. In 2010 IEEE Inter-
national Conference on Communications, pages 1–5. IEEE, 2010.

[80] X. Zhu, S. Jiang, L. Wang, and H. Li. Efficient privacy-preserving au-
thentication for vehicular ad hoc networks. IEEE Transactions on Vehic-
ular Technology, 63(2):907–919, 2014.

[81] L. Malina, A. Vives-Guasch, J. Castellà-Roca, A. Viejo, and J. Hajny.
Efficient group signatures for privacy-preserving vehicular networks.
Telecommunication Systems, 58(4):293–311, 2015.

[82] L. Sweeney. K-anonymity: a model for protecting privacy. Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 10
-(05):557–570, 2002.

[83] J. Domingo-Ferrer and V. Torra. A critique of k-anonymity and some
of its enhancements. In 2008 Third International Conference on Availabil-
ity, Reliability and Security, pages 990–993. IEEE, 2008.

[84] J. Su, D. Cao, B. Zhao, X. Wang, and I. You. Epass: an expressive
attribute-based signature scheme with privacy and an unforgeability
guarantee for the internet of things. Future Generation Computer Sys-
tems, 33:11–18, 2014.

[85] A. Alcaide, E. Palomar, J. Montero-Castillo, and A. Ribagorda. Anony-
mous authentication for privacy preserving iot target-driven applica-
tions. Computers & Security, 37:111–123, 2013.

[86] X.-J. Lin, L. Sun, and H. Qu. Insecurity of an anonymous authentica-
tion for privacy-preserving iot target-driven applications. Computers
& Security, 48:142–149, 2015.

[87] Y. Zhang and J. Wen. The iot electric business model: using blockchain
technology for the internet of things. Peer-to-Peer Networking and Ap-
plications, 10(4):983–994, 2017.

[88] A. Ouaddah, A. A. Elkalam, and A. A. Ouahman. Towards a novel
privacy-preserving access control model based on blockchain technol-
ogy in iot. In Europe and MENA Cooperation Advances in Information and
Communication Technologies, pages 523–533. Springer, 2017.

[89] S. Huckle, R. Bhattacharya, M. White, and N. Beloff. Internet of things,
blockchain and shared economy applications. Procedia Computer Sci-
ence, 98:461–466, 2016.

[90] T. Hardjono and N. Smith. Cloud-based commissioning of constrained
devices using permissioned blockchains. In Proceedings of the 2nd ACM
International Workshop on IoT Privacy, Trust, and Security, pages 29–36.
ACM, 2016.

[91] M. A. Walker, A. Dubey, A. Laszka, and D. C. Schmidt. Platibart: a
platform for transactive iot blockchain applications with repeatable
testing. In Proceedings of the 4th Workshop on Middleware and Applica-
tions for the Internet of Things, pages 17–22. ACM, 2017.

Bibliography 117

[92] Y. Rahulamathavan, R. C.-W. Phan, M. Rajarajan, S. Misra, and A.
Kondoz. Privacy-preserving blockchain based iot ecosystem using at-
tribute based encryption. In 2017 IEEE International Conference on Ad-
vanced Networks and Telecommunications Systems (ANTS), pages 1–6.
IEEE, 2017.

[93] N. Foukia, D. Billard, and E. Solana. Pisces: a framework for privacy
by design in iot. In Privacy, Security and Trust (PST), 2016 14th Annual
Conference on Privacy, Security and Trust (PST), pages 706–713. IEEE,
2016.

[94] P. K. Sharma, M.-Y. Chen, and J. H. Park. A software defined fog node
based distributed blockchain cloud architecture for iot. IEEE Access,
2017.

[95] G. Zyskind, O. Nathan, et al. Decentralizing privacy: using blockchain
to protect personal data. In Security and Privacy Workshops (SPW), 2015
IEEE, pages 180–184. IEEE, 2015.

[96] M. Conoscenti, A. Vetro, and J. C. De Martin. Peer to peer for pri-
vacy and decentralization in the internet of things. In 2017 IEEE/ACM
39th International Conference on Software Engineering Companion (ICSE-
C), pages 288–290. IEEE, 2017.

[97] M. S. Ali, K. Dolui, and F. Antonelli. Iot data privacy via blockchains
and ipfs. In Proceedings of the Seventh International Conference on the In-
ternet of Things, page 14. ACM, 2017.

[98] J. Granjal, E. Monteiro, and J. S. Silva. Security for the internet of
things: a survey of existing protocols and open research issues. IEEE
Communications Surveys & Tutorials, 17(3):1294–1312, 2015.

[99] H. Suo, J. Wan, C. Zou, and J. Liu. Security in the internet of things: a
review. In 2012 international conference on computer science and electron-
ics engineering, volume 3, pages 648–651. IEEE, 2012.

[100] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami. Internet of things
(iot): a vision, architectural elements, and future directions. Future
generation computer systems, 29(7):1645–1660, 2013.

[101] S. Sicari, A. Rizzardi, C. Cappiello, D. Miorandi, and A. Coen-Porisini.
Toward data governance in the internet of things. In New advances in
the internet of things, pages 59–74. Springer, 2018.

[102] M. U. Farooq, M. Waseem, A. Khairi, and S. Mazhar. A critical analysis
on the security concerns of internet of things (iot). International Journal
of Computer Applications, 111(7), 2015.

[103] H. Halpin and M. Piekarska. Introduction to security and privacy on
the blockchain. In 2017 IEEE European Symposium on Security and Pri-
vacy Workshops (EuroS&PW), pages 1–3. IEEE, 2017.

[104] L. M. Axon and M. Goldsmith. PB-PKI: a privacy-aware blockchain-
based PKI. Technical report, University of Oxford, 2016.

[105] A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman. Fairaccess: a
new blockchain-based access control framework for the internet of
things. Security and Communication Networks, 9(18):5943–5964, 2016.

[106] O. Novo. Blockchain meets iot: an architecture for scalable access man-
agement in iot. IEEE Internet of Things Journal, 2018.

118 Bibliography

[107] H. Shrobe, D. L. Shrier, and A. Pentland. Chapter 15 enigma: decentral-
ized computation platform with guaranteed privacy. In New Solutions for
Cybersecurity. MITP, 2018, pages 425–454.

[108] T. Le and M. W. Mutka. Capchain: a privacy preserving access control
framework based on blockchain for pervasive environments. In 2018
IEEE International Conference on Smart Computing (SMARTCOMP), pages 57–
64. IEEE, 2018.

[109] H. Es-Samaali, A. Outchakoucht, and J. P. Leroy. A blockchain-based
access control for big data. International Journal of Computer Networks
and Communications Security, 5(7):137, 2017.

[110] H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy. Towards
blockchain-based auditable storage and sharing of iot data. In Pro-
ceedings of the 2017 on Cloud Computing Security Workshop, pages 45–
50. ACM, 2017.

[111] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram. Lsb: a light-
weight scalable blockchain for iot security and anonymity. Journal of
Parallel and Distributed Computing, 2019.

[112] J. H. Park and J. H. Park. Blockchain security in cloud computing: use
cases, challenges, and solutions. Symmetry, 9(8):164, 2017.

[113] K. Biswas and V. Muthukkumarasamy. Securing smart cities using
blockchain technology. In IEEE 18th International Conference on High
Performance Computing and Communications; IEEE 14th International Con-
ference on Smart City; IEEE 2nd International Conference on Data Science
and Systems, pages 1392–1393, 2016.

[114] B. Liu, X. L. Yu, S. Chen, X. Xu, and L. Zhu. Blockchain based data in-
tegrity service framework for iot data. In 2017 IEEE International Con-
ference on Web Services (ICWS), pages 468–475. IEEE, 2017.

[115] B. Lee and J.-H. Lee. Blockchain-based secure firmware update for
embedded devices in an internet of things environment. The Journal of
Supercomputing, 73(3):1152–1167, 2017.

[116] A. Boudguiga, N. Bouzerna, L. Granboulan, A. Olivereau, F. Quesnel,
A. Roger, and R. Sirdey. Towards better availability and accountabil-
ity for iot updates by means of a blockchain. In IEEE European Sym-
posium on Security and Privacy Workshops (EuroS&PW), pages 50–58,
2017.

[117] M. Steger, A. Dorri, S. S. Kanhere, K. Römer, R. Jurdak, and M. Karner.
Secure wireless automotive software updates using blockchains: a pr-
oof of concept. In Advanced Microsystems for Automotive Applications
2017, pages 137–149. Springer, 2018.

[118] O. Alphand, M. Amoretti, T. Claeys, S. Dall’Asta, A. Duda, G. Ferrari,
F. Rousseau, B. Tourancheau, L. Veltri, and F. Zanichelli. Iotchain: a
blockchain security architecture for the internet of things. In Wire-
less Communications and Networking Conference (WCNC), 2018 IEEE,
pages 1–6. IEEE, 2018.

[119] M. Vučinić, B. Tourancheau, F. Rousseau, A. Duda, L. Damon, and R.
Guizzetti. Oscar: object security architecture for the internet of things.
Ad Hoc Networks, 32:3–16, 2015.

Bibliography 119

[120] R. B. Chakraborty, M. Pandey, and S. S. Rautaray. Managing compu-
tation load on a blockchain–based multi–layered internet–of–things
network. Procedia Computer Science, 132:469–476, 2018.

[121] A. Bahga and V. K. Madisetti. Blockchain platform for industrial inter-
net of things. Journal of Software Engineering and Applications, 9(10):533,
2016.

[122] J. Hughes and E. Maler. Security assertion markup language (saml)
v2. 0 technical overview. OASIS SSTC Working Draft sstc-saml-tech-
overview-2.0-draft-08:29–38, 2005.

[123] D. Recordon and D. Reed. OpenID 2.0: a platform for user-centric
identity management. In Proc. of the Second ACM workshop on Digital
identity management, pages 11–16, 2006.

[124] D. Hardt. The oauth 2.0 authorization framework, 2012.
[125] F. Imbault, M. Swiatek, R. de Beaufort, and R. Plana. The green block-

chain: managing decentralized energy production and consumption.
In 2017 IEEE International Conference on Environment and Electrical En-
gineering and 2017 IEEE Industrial and Commercial Power Systems Europe
(EEEIC/I&CPS Europe), pages 1–5. IEEE, 2017.

[126] S. Kikitamara, M. van Eekelen, and D. I. J.-P. Doomernik. Digital Iden-
tity Management on Blockchain for Open Model Energy System. Master’s
thesis, Radboud Universiteit, 2017.

[127] M. Samaniego and R. Deters. Hosting virtual iot resources on edge-
hosts with blockchain. In Computer and Information Technology (CIT),
2016 IEEE International Conference on Computer and Information Technol-
ogy (CIT), pages 116–119. IEEE, 2016.

[128] D. W. Kravitz and J. Cooper. Securing user identity and transactions
symbiotically: iot meets blockchain. In Global Internet of Things Sum-
mit, pages 1–6, 2017.

[129] S. Huh, S. Cho, and S. Kim. Managing iot devices using blockchain
platform. In 19th International Conference on Advanced Communication
Technology (ICACT), pages 464–467, 2017.

[130] J.-H. Lee. Bidaas: blockchain based id as a service. IEEE Access, 6:2274–
2278, 2018.

[131] P. Urien. Towards secure elements for trusted transactions in block-
chain and blochchain IoT (BIoT) Platforms. In Fourth International Con-
ference on Mobile and Secure Services (MobiSecServ), pages 1–5, 2018.

[132] H. A. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A. Naraya-
nan. An empirical study of namecoin and lessons for decentralized
namespace design. In WEIS, 2015.

[133] D. Shrier, W. Wu, and A. Pentland. Blockchain & infrastructure (iden-
tity, data security). MIT Connection Science:1–18, 2016.

[134] F. Wang, S. Liu, P. Liu, and Y. Bai. Bridging physical and virtual worlds:
complex event processing for rfid data streams. In International Confer-
ence on Extending Database Technology, pages 588–607. Springer, 2006.

[135] M. Ma, P. Wang, and C.-H. Chu. Data management for internet of
things: challenges, approaches and opportunities. In Green Comput-
ing and Communications (GreenCom), 2013 IEEE and Internet of Things

120 Bibliography

(iThings/CPSCom), IEEE International Conference on and IEEE Cyber, Phys-
ical and Social Computing, pages 1144–1151. IEEE, 2013.

[136] X. Hao, P. Jin, and L. Yue. Efficient storage of multi-sensor object-
tracking data. IEEE Transactions on Parallel and Distributed Systems,
27(10):2881–2894, 2016.

[137] T. Lu, J. Fang, and C. Liu. A unified storage and query optimization
framework for sensor data. In Web Information System and Application
Conference (WISA), 2015 12th, pages 229–234. IEEE, 2015.

[138] I. P. Zarko, K. Pripuzic, M. Serrano, and M. Hauswirth. Iot data man-
agement methods and optimisation algorithms for mobile publish/-
subscribe services in cloud environments. In Networks and Communi-
cations (EuCNC), 2014 European Conference on networks and communica-
tions (EuCNC), pages 1–5. IEEE, 2014.

[139] X. Liang, J. Zhao, S. Shetty, and D. Li. Towards data assurance and
resilience in iot using blockchain. MILCOM 2017-2017 IEEE Military
Communications Conference (MILCOM):261–266, 2017.

[140] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman. Medrec: using block-
chain for medical data access and permission management. In Open
and Big Data (OBD), International Conference on Open and Big Data (OBD),
pages 25–30. IEEE, 2016.

[141] E. S. Hamza, A. OUTCHAKOUCHT, and J. P. LEROY. A blockchain-
based access control for big data. International Journal of Computer Net-
works and Communications Security, 5(7):137–147, 2017.

[142] T. Nugent, D. Upton, and M. Cimpoesu. Improving data transparency
in clinical trials using blockchain smart contracts. F1000Research, 5,
2016.

[143] N. Ansari and X. Sun. Mobile edge computing empowers internet of
things. IEICE Transactions on Communications, 101(3):604–619, 2018.

[144] K. Dolui and C. Kiraly. Towards multi-container deployment on iot
gateways. In 2018 IEEE Global Communications Conference (GLOBECOM),
pages 1–7. IEEE, 2018.

[145] M. S. Ali, M. Vecchio, and F. Antonelli. Enabling a blockchain-based
iot edge. IEEE Internet of Things Magazine, 1(2):24–29, 2018.

[146] T. McConaghy, R. Marques, A. Müller, D. De Jonghe, T. McConaghy,
G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto. BigchainDB:
a Scalable Blockchain Database. Technical report, BigChainDB, 2016.

[147] Z. Zheng, S. Xie, H.-N. Dai, and H. Wang. Blockchain challenges and
opportunities: a survey. Work Pap.–2016, 2016.

[148] E. Buchman. Tendermint: Byzantine fault tolerance in the age of block-
chains. Master’s thesis, The University of Guelph, 2016.

[149] M. P. Caro, M. S. Ali, M. Vecchio, and R. Giaffreda. Blockchain-based
traceability in agri-food supply chain management: a practical im-
plementation. In 2018 IoT Vertical and Topical Summit on Agriculture-
Tuscany (IOT Tuscany), pages 1–4. IEEE, 2018.

[150] C. Brewster, I. Roussaki, N. Kalatzis, K. Doolin, and K. Ellis. Iot in
agriculture: designing a europe-wide large-scale pilot. IEEE Commu-
nications Magazine, 55(9):26–33, 2017.

Bibliography 121

[151] A. Ursitti, G. Giannoccaro, M. Prosperi, E. De Meo, and B. de Gen-
naro. The magnitude and cost of groundwater metering and control
in agriculture. Water, 10(3):344, 2018.

[152] A. D. Roy and T. Shah. Socio-ecology of groundwater irrigation in
india. Intensive use of groundwater challenges and opportunities:307–335,
2002.

[153] H. A. Loáiciga. Analytic game—theoretic approach to ground-water
extraction. Journal of Hydrology, 297(1-4):22–33, 2004.

[154] G. Hardin. The tragedy of the commons. science, 162(3859):1243–1248,
1968.

[155] S. Husnjak, D. Peraković, I. Forenbacher, and M. Mumdziev. Telemat-
ics system in usage based motor insurance. Procedia Eng., 100:816–825,
2015.

[156] S. Derikx, M. de Reuver, and M. Kroesen. Can privacy concerns for in-
surance of connected cars be compensated? Electronic markets, 26(1):73–
81, 2016.

[157] V. Gramoli. On the danger of private blockchains. In Workshop on Dis-
tributed Cryptocurrencies and Consensus Ledgers (DCCL), 2016.

[158] J. Mirkovic and P. Reiher. A taxonomy of ddos attack and ddos de-
fense mechanisms. ACM SIGCOMM Computer Communication Review,
34(2):39–53, 2004.

[159] C. Agbo, Q. Mahmoud, and M. Eklund. Blockchain technology in
healthcare: a systematic review. In Healthcare, volume 7 of number 2,
page 56. Multidisciplinary Digital Publishing Institute, 2019.

[160] M. J. Deen. Information and communications technologies for elderly
ubiquitous healthcare in a smart home. Personal and Ubiquitous Com-
puting, 19(3-4):573–599, 2015.

[161] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second gen-
eration onion router. Technical report, Naval Research Lab Washing-
ton DC, 2004.

[162] R. Wendolsky, D. Herrmann, and H. Federrath. Performance compar-
ison of low-latency anonymisation services from a user perspective.
In International Workshop on Privacy Enhancing Technologies, pages 233–
253. Springer, 2007.

[163] K. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. Sicker. Low-
resource routing attacks against tor. In Proceedings of the 2007 ACM
workshop on Privacy in electronic society, pages 11–20. ACM, 2007.

[164] A. Biryukov, I. Pustogarov, and R.-P. Weinmann. Trawling for tor hid-
den services: detection, measurement, deanonymization. In 2013 IEEE
Symposium on Security and Privacy, pages 80–94. IEEE, 2013.

[165] M. T. Saletu, S. T. Kotzian, A. Schwarzinger, S. Haider, J. Spatt, and B.
Saletu. Home sleep apnea testing is a feasible and accurate method to
diagnose obstructive sleep apnea in stroke patients during in-hospital
rehabilitation. Journal of Clinical Sleep Medicine, 14(09):1495–1501, 2018.

[166] E. Ratti, S. Waninger, C. Berka, G. Ruffini, and A. Verma. Comparison
of medical and consumer wireless eeg systems for use in clinical trials.
Frontiers in human neuroscience, 11:398, 2017.

122 Bibliography

This work is licensed under a Creative Com-
mons “Attribution-ShareAlike 4.0 International”
license.

https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en
https://creativecommons.org/licenses/by-sa/4.0/deed.en

	Abstract
	Acknowledgements
	Introduction
	"Trust" in Traditional IoT Architectures
	Blockchains and Decentralized Services
	A Blockchain-Based Framework for the IoT
	Contributions

	I Blockchain-IoT Concepts
	Blockchain Working Principles
	Blockchain Structure
	Transactions and Digital Signatures
	Smart Contracts
	Consensus Algorithms
	Permissionless Blockchains
	Proof of Work
	Proof of Stake
	Proof of X

	Permissioned Blockchains
	Practical Byzantine Fault Tolerance
	Tendermint
	Federated BFT

	Performance and Scalability in Consensus Algorithms

	The Blockchain-IoT Convergence
	Issues and Challenges In the IoT
	Decentralizing the IoT through Blockchains
	Integration Schemes for Blockchains and IoT
	Related Work
	Privacy in IoT
	Security in IoT via Blockchains
	Providing Access Control Through Blockchains
	Maintaining Data Integrity Through Blockchains
	Ensuring Confidentiality Through Blockchains
	Improving IoT Availability With Blockchains

	ID Management
	IoT Data Management

	II The Proposed Blockchain-Based IoT Framework
	Designing the Blockchain-Based IoT Framework
	Architecture
	Core Components of the Blockchain-IoT Framework
	Tiered Blockchain Architecture
	The Edge-Tier Blockchain
	The Core-Tier Blockchain

	Entities Involved
	Core-Tier and Edge-Tier Smart Contracts for Access Control
	Consensus Algorithms for the Core-Tier and Edge-Tier
	Technical Challenges Addressed by Proposed Framework
	Decentralized Access Control for IoT Resources
	Innovative IoT-Based Business Models
	Scalable Deployments for the IoT
	Securing the IoT Edge

	Use-Case: Smart Agriculture
	Traceability in Agri-Food Supply Chains
	Sustainability in Agricultural Groundwater Irrigation

	Summary

	Decentralized IoT Data Transfer And Monetization Services
	Decentralized IoT Data Marketplace
	Edge-tier Privileges Smart Contract
	Core-Tier Register Contract
	Core-Tier Marketplace Contracts

	Blockchain-Based Connected Vehicle Insurance
	Edge-Tier Blockchains for Data Integrity
	Functions at the Core-Tier Blockchain

	Security Analysis
	Security Considerations and Analysis
	Confidentiality
	Integrity
	Availability

	Threat Model
	Scenario 1: Data modification in edge-tier blockchains
	Scenario 2: Sniffing data sent from an edge-tier blockchain
	Scenario 3: Launching a Denial-of-Service (DoS) attack on the core-tier blockchain
	Scenario 4: Launching a Denial-of-Service (DoS) attack on an edge-tier blockchain through a corrupted device:

	Performance Analysis
	Hardware and Software Used
	Computational Overhead
	Transaction Processing Speed
	Network Overhead
	Transaction fees

	Summary

	Secure and Privacy-Preserving End-to-End IoT Communications
	Tor Network
	Architecture of the RHM System
	Privacy and scalability benefits

	Remote Health Monitoring Use-Cases
	Security Analysis
	Scenario 1: Compromised .onion Addresses
	Scenario 2: Launching a Denial-of-Service (DoS) Attack on the Remote Healthcare Blockchain
	Scenario 3: Sniffing Data Sent from a Tor Exit Relay
	Scenario 4: Sniffing Data Transfer Parameters from the Doctor's Smart Contract
	Scenario 5: Impersonators and Malpractitioners in the Hospital's Smart Contract

	Performance Analysis
	Computational Overhead
	Helthcare Data Propagation Time

	Summary

	III Conclusions and Future Work
	Conclusions
	Future Work
	Core-Tier Smart Contracts
	Blockchain-Based Connected Vehicle Insurance
	Decentralized IoT Data Marketplace - Snippet

	Bibliography

