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Preface 

Thesis outline 

Much of the work presented in this thesis comes from prior publications. In some cases, 

chapters are heavily based on scientific publications, in other cases prior work is only 

mentioned in passing. Naturally, not all of the ideas and work presented are my own. 

Besides the presented background material, many of the results and ideas in this thesis 

have been developed through collaboration with various colleagues, especially my tutor 

Maria Abbondanza Pantaleo and with my colleagues Valentina Indio, Annalisa Astolfi and 

Milena Urbini.  

In particular, much of the data presented here have been adapted from these three 

scientific manuscript: 

 Maria A. Pantaleo, Giuseppe Tarantino, Claudio Agostinelli, Milena Urbini, 

Margherita Nannini, Maristella Saponara, Chiara Castelli, Silvia Stacchiotti, Elena 

Fumagalli, Lidia Gatto, Donatella Santini, Antonio De Leo, Teresa Marafioti, Ayse 

Akarca, Elena Sabattini, Andrea Pession, Andrea Ardizzoni, Valentina Indio & 

Annalisa Astolfi (2019): Immune microenvironment profiling of gastrointestinal 

stromal tumors (GIST) shows gene expression patterns associated to immune 

checkpoint inhibitors response, OncoImmunology, doi: 

10.1080/2162402X.2019.1617588. © 2019 The Author(s). Published with license by 

Taylor & Francis Group, LLC. 

 Indio, V.; Astolfi, A.; Tarantino, G.; Urbini, M.; Patterson, J.; Nannini, M.; Saponara, 

M.; Gatto, L.; Santini, D.; Do Valle, I.F.; Castellani, G.; Remondini, D.; Fiorentino, M.; 

Von Mehren, M.; Brandi, G.; Biasco, G.; Heinrich, M.C.; Pantaleo, M.A. Integrated 

Molecular Characterization of Gastrointestinal Stromal Tumors (GIST) Harboring the 

Rare D842V Mutation in PDGFRA Gene. Int. J. Mol. Sci. 2018, 19, 732. 

 Nannini M, Tarantino G, Indio V, Ravegnini G, Astolfi A, Urbini M, De Leo A, Santini 

D, Ceccarelli C, Gruppioni E, Altimari A, Castellucci P, Fanti S, Di Scioscio V, Saponara 

M, Gatto L, Pession A, Martelli PL, Casadio R, Pantaleo MA. Molecular modelling 

evaluation of exon 18 His845_Asn848delinsPro PDGFRα mutation in a metastatic 

GIST patient responding to imatinib. Sci Rep. 2019 Feb 18;9(1):2172. doi: 

10.1038/s41598-018-38028-x. 
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These are Open Access articles distributed under the terms of the Creative Commons 

Attribution-NonCommercial-NoDerivatives License (To view a copy of this license, visit 
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Abstract 

The complex molecular biology involved in gastrointestinal stromal tumors (GIST) 

progressive disease led to a growing urgency and interest in developing new strategies to 

overcome TKI resistance. In this study, we have used Next generation sequencing data and 

several bioinformatics approaches to investigate the GITS infiltrating immune-cell 

subpopulations and to perform an integrated molecular characterization of D842V mutant 

GIST, with the aim evaluating the potential of an anti-PD-L1 treatment in combination with 

tyrosine kinase inhibitors (TKI) and to identify new possible target. Gene expression profile 

and immunohistochemistry (IHC) of a cohort of 31 GIST KIT and PDGFRA mutated 

supported the presence of immune infiltrate in GIST, with dominance of CD4+ and CD8+ T 

cells and M2 macrophages showing a remarkable similarity with melanoma 

microenvironment. The expanded IFN-γ-induced immune signature (EIIS) genes were 

expressed in most of GIST samples and positively correlated with PD-L1 abundance (p < 

.0001). Moreover, the median TIS score for GIST was between the 65th and 70th percentile 

of the Cancer Genome Atlas dataset, in the same range of tumors responding to anti-PD-

1/PD-L1. Analysis of the Gene Expression Omnibus database GIST samples pre- and post-

treatment confirmed that imatinib downregulates PD-L1 and IRF1 expression through the 

inhibition of KIT and PDGFRA, thus contributing to counteract the suppressed adaptive 

immune response against GIST. The presence of a rich immune infiltrate in GIST along with 

the presence of TIS and EIIS suggests that GIST may benefit from immunotherapy along 

with tyrosine kinase inhibitors. Analysis of whole exome sequencing data of 19 D842V 

mutant GIST samples did not show any actionable recurrent molecular events, beyond 

D842V, of therapeutic significance. Molecular modeling however, suggests that the D842V 

mutant protein binds imatinib with lower affinity with respect to wild-type structure, 

showing higher stability during the interaction with other type I TKIs (like crenolanib).  

Prerequisite knowledge 

The thesis aims to be fairly self contained, however some knowledge of mathematics, 

statistics and theoretical computer science is assumed. From mathematics the reader 

should be familiar with linear algebra, calculus, basic set theory and logic. 
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INTRODUCTION 

 

Gastrointestinal stromal tumors (GIST) despite being the most common mesenchymal 

malignant form of the digestive tract, belong to rare tumors with an incidence equal to 1.5 

new cases / 100,000 inhabitants / year. GISTs are a subgroup of soft-tissue sarcoma tumors 

characterized in about 85% of cases by mutations of the KIT proto-oncogene (KIT) or the 

Platelet derived growth factor receptor alpha (PDGFRA) genes with consequent 

constitutive activation of downstream signaling cascade (Figure 1; Figure 2). KIT and 

PDGFRA are members of the type III class of tyrosine kinase receptors that are targets of 

tyrosine kinase inhibitors (TKI) [1,2,3]. The use of KIT/PDGFRA tyrosine kinase inhibitors 

(TKIs; imatinib, sunitinib, and regorafenib) has revolutionized the medical treatment of 

GIST patients. It is known that the sensitivity to TKIs is strictly correlated with the various 

types of KIT/PDGFRA mutations, with the longest progression-free and overall survival 

associated to patients whose GIST harbors exon 11 mutations [4,5,6,7,8,9]. Among PDGFRA 

mutant GIST, different mutations have been described with a variable spectrum of 

sensitivity to TKIs. Some PDGFRA mutations (e.g., V561D or deletion DIMH842-845) are 

associated to a clear sensitivity to imatinib that is the first line treatment, in vitro and in 

clinical studies, whereas other alterations confer treatment resistance in vitro (e.g., 

PDGFRA D842V, PDGFRA D842Y, or PDGFRA DI842-843IM). Patients KIT / PDGFRA WT (10-

15% of GIST) and PDGFRA patients with a D842V mutation are resistant to Imatinib [4,8]. 

Unfortunately, patients who respond to Imatinib also develop resistance to treatment after 

a median time of 24 months. For this reason, second and third generation TKI such as 

sunitinib and regorafenib targeting also kinases involved in tumor-related angiogenesis, 

were developed and approved for imatinib-refractory GIST treatment. However, the 

benefit of these second and third generations of TKI is very limited because patients again 

develop resistance after a median time of 4–6 months. Recently, new pan-TKI inhibitors 

demonstrated good and interesting results in the prolongation of survivals in early phase 

trials [10,11]. However, the molecular background of GIST resistant to TKI is very complex 

due to the acquisition of new mutations and several genome alterations and currently 

there are no effective, approved treatments available for patients with PDGFRA D842V 

mutant GIST. Patients’ prolonged life expectancy associated with the complex biology 
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involved in progressive disease led to a growing urgency and interest in developing new 

strategies to overcome the TKI resistance. Thanks to the introduction of the Next 

generation sequencing (NGS) techniques it became possible to sequence the entire human 

genome, the exome (Exome-seq) or the transcriptome (RNA-seq) with relatively short 

times and costs. Together these technologies have the potential to identify all the genetic 

anomalies (mutations, fusions between genes, insertions, deletions, rearrangements) of 

cancer cells in a sensitive and efficient way. They also allow us to study over- and down-

expressed genes and enriched or turned off pathways. In addition, the re-introduction of 

immunotherapy in oncology with the monoclonal antibodies against the immunological 

checkpoints PD-1 and CTLA-4 revolutionized the treatment of cancer improving survival 

rates. Many studies on predictive factors of treatment response such as PD-1/PD-L1 

expression, tumor mutational burden (TMB), immunogenic antigens or tumor-infiltrating 

immune cell presence and activation are under evaluation. Only few studies, in preclinical 

and clinical setting, were conducted investigating the immunological profile of GIST. The 

identification and characterization by NGS of molecular alterations in GIST tumors and the 

evaluation of alternative treatments that can allow us to overcome resistance represents 

the rationale of the present thesis, which in recent years has been developed into two 

analytical phases. As a first step we dissect the immunological landscape of GIST to provide 

further rationale for immune-based approach and eventually develop basis to improve the 

treatment of GIST. Secondly, we proceeded with the study of the molecular background of 

the subgroup of primary and metastatic D842V mutant GIST using whole exome 

sequencing (WES) analysis, in order to describe the molecular signature and to pinpoint 

any additional genomic event potentially relevant for the treatment of these patients.  

 

Gastrointestinal stromal tumor  

GIST represents only 0.2% of all neoplasms of the gastrointestinal tract. They are the most 

common mesenchymal malignant form of the digestive tract but since their incidence is 

equal to 1.5 new cases of 100,000 inhabitants per year, they are classified as rare 

neoplasms. The age of onset is quite wide and in most cases GIST arise within the 

gastrointestinal tract wall, in particular 50-60% originate from the stomach, 20-30% from 

the small intestine, 5-10% from rectum, colon or esophagus. Typically, the advanced 

disease is characterized by hepatic and/or peritoneal spread. The pathological diagnosis of 
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GIST is based on the combination of morphological evaluation, immunohistochemistry 

(IHC) and molecular analysis. In IHC, more than 90% of GISTs show widespread cytoplasmic 

positivity for KIT (CD117) [12]. Furthermore, one third of the cases shows positivity to 

DOG1, which today is considered a new sensitive and specific marker for GISTs [13]. Other 

immunophenotypic markers, variably expressed but not specific for GISTs are CD34, 

smooth muscle actin, h-caldesmon and, rarely, desmin. Finally, the molecular analysis of 

the KIT and PDGFRA mutation status is helpful for the diagnostic confirmation. At the 

molecular level, about 85% of adult sporadic GISTs are characterized by the presence of 

mutations against genes encoding the KIT or PDGFRA receptor tyrosine kinases, with 

consequent constitutive activation of the downstream signaling cascade (Figure 2) . While 

the remaining 10-15% of cases are defined GIST WT as they do not carry mutations against 

KIT or PDGFRA [14]. 

 

Figure 1. Schematic representation of the KIT and PDGFRA receptors with highlighted percentages 

of mutations for exons. Image adapted from http://www.gistsupport.org/about-gist/mutation-

analysis-kit-and-pdgfra/ 

 

GIST-KITmut: 70-80% of GISTs are characterized by the presence of mutations against KIT, 

proto-oncogene belonging to the family of type III tyrosine kinase receptors. At the 

structural level, KIT consists of an extracellular portion with 5 Ig-like domains, a 

transmembrane domain and an intracellular portion containing two tyrosine kinase 

domains: the first has a binding pocket for ATP and the second has a phosphotransferase 

region (activation loop) [15]. Following binding to its ligand, SCF, there is dimerization and 

autophosphorylation of the receptor with a resulting activation of downstream effector 
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molecules, such as the RAS / MAPK, JAK / STAT, PI3K / AKT pathways involved in the 

transmission of proliferative stimuli and anti-apoptotic [16]. All the mutations found in KIT 

in GISTs lead to constitutive activation of the receptor. Most mutations involve the trans-

membrane portion of the receptor, encoded by exon 11. These mutations include in-frame 

deletions, insertions, substitutions, or combinations of these [17]. Deletions are associated 

with lower progression-free survival [18,19,20]. In particular, deletions involving codon 557 

and/or 558 seem to confer a more aggressive biological behavior [21]. 

GIST-PDGFRAmut: Platelet-Derived Growth Factor Receptor Alpha (PDGFRA) mutations 

occur in approximately 5–7% of cases. PDGFRA belongs to the type III tyrosine kinase (TK) 

receptor family. This family is characterized by a specific molecular structure comprising an 

extracellular (EC) domain and a cytoplasmic domain with a juxtamembrane (JM) region and 

a TK domain.  The EC and cytoplasmatic domain are connected by a transmembrane region. 

The activation of the receptor occurs as a result of the binding of ligands in the EC domain 

that lead to dimerization and to a phosphorylation cascade of tyrosine residues in multiple 

downstream signalling molecules. Inside the TK domain an activation loop (A-loop) has 

been described, and it conformationally regulates the ATP-binding pocket and leads to 

kinase activation. Oncogenic PDGFRA mutations activate receptor TKs, resulting in a 

constitutive phosphorylation. Mutations in the EC domain lead to spontaneous receptor 

dimerization. Mutations in the cytoplasmic domain instead mainly affect the A-loop 

encoded by exon 18 (~5%), or more rarely the JM domain encoded by exon 12 (~1%), or 

the ATP binding domain encoded by exon 14 (<1%). Over half of all PDGFRA mutations are 

represented by the substitution at position 842 in the A-loop of an aspartic acid (D) with a 

valine (V), recognized as D842V, conferring primary resistance to imatinib in vitro as well 

as in clinical observations due to the conformation of the kinase domain, which negatively 

affects imatinib binding. Most of the PDGFRA mutated GISTs have clinical-pathological and 

molecular characteristics that distinguish them from the GIST KITmut. In particular, they are 

GIST mainly with gastric localization and generally have a low potential for malignancy [22; 

23]. Therefore, both the location and the nature of the mutation affect the affinity or 

binding of imatinib to the kinase and thus are important for imatinib sensitivity. 
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Figure 2. Transcription factors and pathways activated by KIT and PDGFRA receptors.Image taken 

from the work of Lancet of Rubin et al. DOI:https://doi.org/10.1016/S0140-6736(07)60780-6 

 

Another group of GIST consists of the PDGFRA/KITwt but it is not the object of study of this 

work. 

Treatment of advanced disease 

The discovery and introduction in clinical practice of tyrosine kinase inhibitors (TKI) have 

represented a remarkable progress in the treatment of GIST modifying radically the history 

and prognosis of patients suffering from this disease. The first line treatment is represented 

by the Imatinib. An inhibitor of the tyrosine kinase receptors KIT, PDGFRA and Bcr / Abl, 

approved by the FDA in February 2001 for inoperable or metastatic localized GISTs. 

Imatinib binds the kinase receptor to the ATP pocket preventing the hydrolysis of the 

tyrosine kinase domain and blocking all downstream signal transduction pathways [24]. 

Approximately 80% of GISTs show a primary response to Imatinib. However, response 

levels are closely influenced by the mutational status of KIT and PDGFRA. Tumors with 

mutation in exon 11 of KIT are the most responsive to Imatinib (70-85% of responses) as 

the receptor undergoes a conformational change that favors the binding of the drug [25]. 

Instead, tumors with mutation in exon 9 have an intermediate response level (25-48%), 

while those with mutation in exon 13 or 17 are not very responsive [25,26]. Furthermore, 
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approximately 10-15% of patients are primarily resistant to treatment with Imatinib, or 

develop resistance within 6 months of starting treatment. These are mainly cases with the 

D842V mutation in exon 18 of PDGFRA. Finally, around 40-50% of initially responsive cases 

may develop secondary resistance phenomena [27]. Generally they occur within 24 months 

of starting treatment with Imatinib and can develop as a result of different mechanisms, 

like pharmacokinetic variables or the acquisition of structural and functional abnormalities 

in KIT and PDGFRA receptors or the acquisition of chromosomal alterations. For this reason, 

the Sunitinib as a second-line treatment for cases not responsive to Imatinib was 

introduced. The Sunitinib has a broader spectrum of action. Indeed, it is a multitirosin 

kinase inhibitor approved in 2006, capable of inhibiting: KIT, PDGFRA, PDGFRβ, VEGFR1, 

VEGFR2 and VEGFR3, FLT3, CSF-1R and RET. Unfortunately, in these cases, the duration of 

response to treatment with Sunitinib is however limited (generally one year) [28]. Another 

TKI used for the treatment of GIST is the Regorafenib. It is a multitirosin kinase inhibitor 

capable of inhibiting: KIT, PDGFR, VEGFR1, VEGFR2, VEGFR3, RET, FGF1R, B-RAF and MAPK. 

It was introduced thanks to a multicenter phase III trial (GRID Trial) conducted on 199 

progressing metastatic patients pre-treated with Imatinib and Sunitinib. A significant 

advantage of the Regorafenib treatment arm in terms of disease-free survival (4.8 vs. 0.9 

months, p <0.0001) compared to placebo was demonstrated in this series [29]. Based on 

these data, Regorafenib was introduced as a third-line treatment, in case of progression 

after treatment with Imatinib and Sunitinib. However, even in this case the benefit 

introduced is poor because again patients after five months of treatments develop a 

resistance. Due to the enormous variability in the treatment response and to the high 

frequency of onset of resistance, arise the need to develop new studies to understand the 

molecular causes of these phenomena and to exploit the potential of new therapeutic 

approaches. 

 

Next Generation Sequencing (NGS) 

In the last decade many progress in the molecular characterization of tumors has been 

made thanks to the advent of new-generation genomic sequencing technologies (NGS). The 

NGS technologies have accelerated the production of data, also leading to a consequent 

reduction in costs. The main innovation consisted in moving from sequencing techniques 

targeted to a few genes in a few samples, to the possibility of studying thousands of genes 
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at a time with massive sequencing of entire exomes and even of the entire genome. 

Generally samples are fragmented and amplified, obtaining DNA library that will then be 

immobilized on a solid support or on marbles in order to sequence all the fragments in 

parallel [30]. In the sequencing process, the incorporation signals of the different nuceotids 

are converted to read. Sequences of a few hundred bases that appear in a given 

chromosomal region. This "base-calling" procedure also detects a series of parameters, 

such as signal intensity, background noise and the presence of non-specific signals, to 

generate the nucleotide sequence and assign quality scores to each base (quality scores). 

These are related to the probability of error and are a useful tool to eliminate bases or 

exclude reads that show low quality. The reads are then aligned on the reference genome 

and then thanks to specific bioinformatics pipelines data are analyzed to identify molecular 

alterations. the Whole-Exome Sequencing (WES) allows us to analyze only the coding 

regions of the genome, that is the exome, reducing the complexity, the size of data and the 

costs of the analysis. With WES data is possible to identify single nucleotide variants (SNV) 

and insertions or deletions (INDELs) in the coding regions; furthermore it is possible to 

estimate the copy number alteration (gain or loss), using the reads coverage data in the 

sequenced regions. Whole-Transcriptome Sequencing (RNA-seq) instead allows 

sequencing the entire transcriptome starting from mRNA library. It allows to quantify the 

gene expression profile, to identify the presence of rearrangements of fusion genes and to 

evaluate alternative splicing. Furthermore it is possible, with specific bioinformatics 

pipelines, to identify the SNV and INDELs even if with lower accuracy with respect to the 

WES technique. The main limitation of the transcriptome analysis is represented by the 

impossibility to identify the presence of variants in the regions not expressed in the sample. 

These massive sequencing techniques are today the ideal tools for the characterization of 

the alterations present in the different tumor types, allowing for comprehensive analyzes 

at relatively low costs and in a short time. 

 

Molecular Docking 

The explosion of the next generation sequencing technology has resulted in an increasing 

number of new therapeutic targets for drug discovery. At the same time, high-throughput 

protein purification, crystallography and nuclear magnetic resonance spectroscopy 

techniques have been developed and contributed to many structural details of proteins 
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and protein–ligand complexes. These advances allow the computational strategies to 

permeate all aspects of drug discovery today. These computational strategies have the 

advantages of low cost and effective screening. One of the most common methods is the 

Molecular Docking. Indeed it has acquired an increasingly importance for pharmaceutical 

research. Early clarification of ligand-receptor binding mechanism was the lock-and-key 

theory proposed by Fischer [31] in which the ligand fits into the receptor like lock and key. 

Then the induced-fit theory created by Koshland [32] takes the lock-and-key a step further. 

According to this theory the active site of the protein is continually reshaped by interactions 

with ligands as the ligands interact with the protein. The docking process involves two basic 

steps: the sampling of the ligand in the active site of the protein, sampling algorithms 

should be able to reproduce the experimental binding mode; and the assessment of the 

binding affinity [33]. For the sampling, is important to know the location of the binding site 

because it increase a lot the efficiency, this is often achieved using a know ligand. Various 

sampling algorithms have been developed and widely used in molecular docking software. 

Among the most used there are the stochastic methods like Monte Carlo (MC) and genetic 

algorithm, which search the conformational space by randomly modifying a ligand 

conformation or a population of ligands. The conformations are then ranked using a scoring 

function. The scoring functions are used to delineate the correct poses from the incorrect 

ones. These functions however compute just an estimation of the binding affinity between 

the protein and ligand, adopting various assumptions and simplifications. Successful 

application examples show that computational approaches have the power to screen hits 

from a huge database and design novel small molecules. Obviously, we have to consider 

that we are dealing with simulations, the realistic interactions between small molecules 

and receptors are still relied on experimental technology. Today patients with 

metastatic/advanced D842V mutant GIST do not benefit from standard TKIs therapy 

therefore the docking analysis could be used for the screening of all the new TKIs for the 

identification of novel treatment strategy. In particular in this study we have evaluated the 

potential of the crenolanib a promising anti-proliferative TKI that is a potent inhibitor of 

PDGFRA and PDGFRB. 
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The re-introduction of Immunotherapy in Oncology 

Immunotherapy is a cancer treatment that boosts our Immune system to fight cancer. Our 

immune system protects us from disease, killing bacteria and viruses. One main type of 

immune cell that does this is called a T cell. T cells have proteins on them that turn ON the 

immune response and other proteins that turn it OFF. These proteins called checkpoints. 

Drugs that block checkpoint proteins are called checkpoint inhibitors. These drugs works 

releasing the brake on the T-cell turning the immune system back ON and making the T 

cells able to find and attack the cancer cells. Recently, the re-introduction of the Tcell-based 

immunotherapy in oncology with the monoclonal antibodies against the immunological 

checkpoints PD-1 and CTLA-4 revolutionized the treatment of cancer improving the survival 

rates in Melanoma and in the Non Small Cell Lung Carcinoma (NSCLC). However, these 

molecules do not work in all patients: at present, in fact, we do not have specific criteria to 

identify ideal patients who will respond to this specific therapy. Many studies on predictive 

factors of treatment response such as PD-1/PD-L1 expression, tumor mutational burden 

(TMB), immunogenic antigens or tumor-infiltrating immune cell presence and activation 

are under evaluation. Responses to immunotherapy preferentially occur in tumors with a 

preexisting antitumor T-cell response. For this reason, we can define three possibilities for 

immune phenotypes in tumors (Figure 3). There are “cold” tumors (T cell noninflamed) 

called cold tumors or immune desert tumors in which the army of T cells is not present and 

there is a total lack of immune response in the tumor. The second situation is one in which 

we can distinguish an army of cells ready to attack the tumor but which is not found entirely 

within the tumor. This means that there is a pre-existing immune response but the T cells 

are unable to enter the tumor microenvironment. In this situation, inhibiting PD-L1 alone 

may not be sufficient to stimulate T cell-mediated immunity. The third possibility is that of 

an T-cell inflamed (or hot) tumor with an army of cancer cell cells, this is what happens in 

some tumors like melanoma and lung cancer. The immunotherapeutic approaches with 

PD-L1 and CTLA4 inhibitors have been reported indirectly before for patients with a pre-

existing immune response. However, inhibition of PD-L1 or CTLA4 can stimulate T cell-

mediated immunity, but does not address other tumor escape mechanisms. Clearly these 

are simplifications, the real situation is a phenotypic spectrum that goes from the immunity 

tumor all inflamed.  
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Figure 3. Phenotypic spectra of tumors and specific treatment strategies. Image obtained from 

https://www.researchcancerimmunotherapy.com/approach-development/treatment-strategies 

 

Only few studies, in preclinical and clinical setting, were conducted investigating the 

immunological profile of GIST. Available data showed that tumor-infiltrating immune cells 

are present in GIST, and seem to play a role in disease outcome and in increasing the 

antitumor activity of imatinib. Indeed, In a transgenic mouse GIST model imatinib could 

polarize tumor-associated macrophages (TAM) to an M2-like phenotype [34]. The TAM 

were described in the microenvironment of GIST, in particular M2 macrophages were most 

enriched in metastatic and in imatinib-treated cases. Tumor-infiltrating lymphocytes (TIL) 

are the second most enriched immune cell population in GIST samples [34,35,36,37].Few 

data on PD-1/PD-L1 expression in GIST are available showing that PD-L1 tumor expression 

by immunohistochemistry (IHC) was higher in GIST than in other sarcoma and PD-L1 

expression at the mRNA level was heterogeneous across tumors [36,37,38,39]. With regard 

to GIST patients, a clinical trial on the combination of KIT and CTLA-4 blockade with 

dasatinib and ipilimumab in GIST reported no synergistic activity, but the number of 

patients was limited to derive any conclusion [40]. 
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AIM OF THE WORK 

 

About 85% of the gist is characterized by mutations of genes encoding the tyrosine kinase 

receptors KIT and PDGFRA. Patients with an exon 11 mutation of KIT are sensitive to 

treatment with Imatinib which is the first-line tyrosine kinase inhibitor. While KIT and 

PDGFRA patients wt and patients with d842v mutation are resistant to treatment. In 

addition, even sensitive patients after a median treatment time of 24 months develop 

resistance. For this reason, second and third generation TKI have been developed, such as 

sunitinib and regorafenib, which, however, have led to a reduced benefit as patients, after 

an average treatment period of 5 months, develop resistance. Patients’ prolonged life 

expectancy associated with the complex biology involved in progressive disease led to a 

growing urgency and interest in developing new strategies to overcome the TKI resistance. 

For this reason, we developed different analysis adopting several bioinformatics procedure 

to evaluate the potential of novel treatments: 

1. The first one was to dissect the immunological landscape of GIST KIT and PDGFRA 

muated (about 85% of GIST) to characterize the GIST microenvironment and to 

provide further rationale for immune-based approach. Since the current medical 

treatment of GIST relies on multiple and different generations of TKI, it is mandatory 

that any new treatment approach is conceived in combination with a TKI and 

therefore evaluating the potential of the checkpoint inhibitors treatment in 

combination with Imatinib in GIST samples. 

 

2. The second one was to examine the molecular background of the GIST subgroup of 

primary and metastatic D842V mutant using whole exome sequencing (WES) 

analysis, in order to describe the molecular signature and to pinpoint any additional 

genomic event potentially relevant for the treatment of these patients. Exploiting 

also the in silico evaluation of the effects of the D842V mutation on the PDGFRA 

protein structure to evaluate the potential of novel available TKI. 
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MATERIALS AND METHODS 

 

Patients and tumor samples 

Both the studies were approved by the local institutional ethical committee of Azienda 

Ospedaliero-Universitaria Policlinico S.Orsola-Malpighi (approval number 

113/2008/U/Tess, 30 September 2008 approval code, approval date) and all patients 

provided written informed consent. Regarding the study of the molecular background of 

primary and metastatic D842V PDGFRA mutant GIST on a total of 19 tumor samples and 

their matched normal counterpart (peripheral blood or stomach) was performed the 

Whole Exome Sequencing (WES). The 19 tumors collected belong to 14 unique patients: 12 

patients with one single tumor sample, one patient with two samples (T04 and T05 

corresponding to patient P04), one patient with five samples (T07, T08, T09, T10, and T11 

corresponding to patient P06). Patient’s multiple samples analyzed correspond to different 

geographically distinct specimens available. Instead, to investigate the immune landscape 

of GIST KIT and PDGFRA mutant a total of 31 tumor samples were retrospectively collected 

and analyzed. All cases were revised by two pathologists with expertise in GIST diagnosis, 

and all samples were characterized by the presence of KIT or PDGFRA mutation. 

KIT/PDGFRA WT GIST cases were excluded. Twenty-six samples were from primary tumors 

and five from metastases. In 26/31 patients, the analysis was done in absence of TKI 

therapy and only in 5 patients after TKI therapy (2 cases after imatinib and 3 cases after 

imatinib and sunitinib). Fresh tumor tissue was snap-frozen in liquid nitrogen and stored at 

−80°C until RNA extraction. This retrospective dataset was obtained coupling samples 

analyzed with two different analysis. In particular for 19 specimens the analysis was done 

on HG-U133Plus 2.0 Affymetrix arrays while in 12 tumors by Whole-Transcriptome RNA 

Sequencing on Illumina  platform. , the analysis was done on HG-U133Plus 2.0 Affymetrix 

arrays while in 12 tumors by Whole-Transcriptome RNA Sequencing on Illumina platform. 

The tumor and clinical characteristics of both the dataset are reported in Table 1 and Table 

2 for the GIST KIT/PDGFRA mutant and for the GIST subgroup PDGFRA mutant D842V 

respectively. 
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Table 1. 31 GIST Patients analyzed with Microarray and RNA-seq 

Patient Sample Sex Age Tissue 

sample 

Site size MI KIT/PDGFRA 

mutation 

Platform 

P01 GIST002 F 85 Primary Stomach 8 <5 KIT exon 11 V560D Microarray 

P02 GIST004 M 79 Primary Stomach 5 7 KIT exon 9 ins 502–

503 

Microarray 

P03 GIST005 M 68 Primary Stomach 7 4 PDGFRA exon 12 

del/ins SPDGHE566–

571RIQ 

Microarray 

P04 GIST008 M 62 Primary Stomach 2 4 KIT exon 11 V559D Microarray 

P05 GIST009 M 54 Primary Stomach 3 <5 KIT exon 11 ins 

TQLPYDHKWEFP 

574–585 

Microarray 

P06 GIST011 M 77 Metastasis Stomach 20 >10 KIT exon 11 del 

WK557–558 

RNA-seq 

P07 GIST012 F 66 Primary Stomach 4 <5 PDGFRA exon 14 

K646E 

Microarray 

P08 GIST013 M 46 Primary Ileum 7 <5 KIT exon 11 V559D Microarray 

P09 GIST015 F 64 Primary Stomach 5.5 <5 PDGFRA exon 18 del 

DIMH842-845 

Microarray 

P10 GIST016 F 62 Primary Stomach 3.7 NA KIT exon 11 L576P Microarray 

P11 GIST018 M NA NA NA >5 NA KIT exon 11 V559G Microarray 

P12 GIST020 M 38 Metastasis Ileum NA NA KIT exon 11 del 

MYEQW552–557 

Microarray 

P13 GIST022 F 76 NA Stomach NA NA PDGFRA exon18 

D842V 

Microarray 

P14 GIST025 M 84 NA NA NA NA KIT exon 11 del/ins 

WKV557–559F 

Microarray 

P15 GIST026 M 49 Metastasis Stomach NA NA PDGFRA exon 12 

V561D 

Microarray 

P16 GIST121 M 71 Primary Stomach 5.5 4 KIT exon 11 V559D Microarray 

P17 GIST124 M 73 Metastasis Stomach 17 >10 KIT exon 11 ins 

1765–1766 

RNA-seq 

P18 GIST125 F 48 Primary Stomach 6 5 KIT exon 11 W557R Microarray 

P19 GIST129 M 59 Primary Stomach 5 5 KIT exon 11 del/ins 

YEVQWKV553–559L 

Microarray 

P20 GIST130 F 79 Primary Stomach 7 >10 KIT exon 9 ins 502-

503 

Microarray 

P21 GIST131 M 68 Metastasis Ileum 6 3 KIT exon 11 del 

VYIDPTQLPY569-578 

RNA-seq 

P22 GIST135 F 61 Primary Stomach 3.5 6 KIT exon 11 del 

WKVVE557-561 

Microarray 

P23 GIST136 M 76 Primary Stomach 4.5 6 PDGFRA exon 18 

D842V 

RNA-seq 

P24 GIST138 F 75 Primary Stomach 7 8 PDGFRA exon 18 

D842V 

RNA-seq 

P25 GIST140 F 45 Primary Stomach 2 2 PDGFRA exon 18 

D842V 

RNA-seq 
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P26 GIST142 M 68 Primary Stomach 3 5 PDGFRA exon 18 

D842V 

RNA-seq 

P27 GIST150 F 58 Primary Stomach 7 68 KIT exon 11 del 

PMYE551-554 

RNA-seq 

P28 GIST165 M 51 Primary Stomach 12 <2 PDGFRA exon 18 

D842V 

RNA-seq 

P29 GIST174 M 61 Primary Stomach 6 14 KIT exon 11 L576P RNA-seq 

P30 GIST178 F 70 Primary Stomach 10 >5 KIT exon 11 V559D RNA-seq 

P31 GIST188 F 62 Primary Duodenum 4 >5 KIT exon 11 del 

NGNNYVYIDPTQL564-

576 

RNA-seq 

 

Table 2. Patients and Tumor samples of the GIST PDGFRA D842V mutant 

Patient Sample Sex Age Tissue 

sample 

Site size MI KIT/PDGFRA 

mutation 

Platform 

P01 T01 M 62 Metastasis Stomach 11 300 PDGFRA exon 

18 D842V 

WES 

P02 T02 F 74 Metastasis Stomach 16.2 5 PDGFRA exon 

18 D842V 

WES 

P03 T03 M 51 Metastasis Stomach 5 55 PDGFRA exon 

18 D842V 

WES 

P04 T04 M 51 Metastasis Stomach 6.2 7 PDGFRA exon 

18 D842V 

WES 

T05 M 51 Metastasis Stomach 6.2 7 PDGFRA exon 

18 D842V 

WES 

P05 T06 M 53 Primary NA NA NA PDGFRA exon 

18 D842V 

WES 

P06 T07 M 56 Metastasis Stomach 30 high PDGFRA exon 

18 D842V 

WES 

T08 M 56 Metastasis Stomach 30 high PDGFRA exon 

18 D842V 

WES 

T09 M 56 Metastasis Stomach 30 high PDGFRA exon 

18 D842V 

WES 

T10 M 56 Metastasis Stomach 30 high PDGFRA exon 

18 D842V 

WES 

T11 M 56 Metastasis Stomach 30 high PDGFRA exon 

18 D842V 

WES 

P07 T12 F 63 NA Stomach 10.5 19 PDGFRA exon 

18 D842V 

WES 

P08 T13 M 76 Primary Stomach NA NA PDGFRA exon 

18 D842V 

WES 

P09 T14 M 30 Primary Stomach NA NA PDGFRA exon 

18 D842V 

WES 

P10 T15 F 50 Primary Stomach 1.8 2 PDGFRA exon 

18 D842V 

WES 

P11 T16 F 75 Primary Stomach 7 8 PDGFRA exon 

18 D842V 

WES 
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P12 T17 M 68 Primary Stomach 3 5 PDGFRA exon 

18 D842V 

WES 

P13 T18 M 76 Primary Stomach 4.5 6 PDGFRA exon 

18 D842V 

WES 

P14 T19 M 51 Primary Stomach 12 2 PDGFRA exon 

18 D842V 

WES 

 

 

 

Whole Exome Sequencing (WES) 

WES was done on 19 DNA isolated from fresh frozen and FFPE tumor tissue og GIST D842V 

mutant and from matched normal peripheral blood or stomach DNA. Whole exome 

libraries were developed applying different protocols and using two different sequencing 

platforms: Nextera Rapid Capture Exome Enrichment (Illumina) was adopted on five out of 

19 samples that were sequenced on Illumina HiScanSQ at 2 × 100 bp read length; eight out 

of 19 libraries were prepared with Nimblegen SeqCap v02 (Roche, Pleasanton, CA, USA), 

and six out of 19 with Nimblegen SeqCap v03 (Roche, Pleasanton, CA, USA) and were run 

on HiSeq2000 Illumina platform at 100 bp in single-end. For all the three capturing 

methods, the exome enrichment was performed according to manufacturer’s protocols. 

The figure below (Figure 4) shows the operations that have been implemented in the 

analysis pipeline. 
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Figure 4. Pipeline of analysis of Whole exome sequencing data. 

 

The first step was the conversion from the Bcl obtained with the Illumina platforms to the 

fastqfiles. This step was performed with the software bcl2fastq of Illumina. After the 

conversion shorts reads were processed to remove sequencing adapters and to filter or 

trim the reads for sequence quality (minimum Phred quality of 10 and minimum length of 

trimmed sequence of 30). Both these steps were performed with AdapterRemoval v.1.5.4 

tool [41]. The cleaned reads were then mapped on the Human reference genome hg19 

using the Burrows–Wheeler Aligner (BWA v0.7.12) [42]. The whole exome data were then 

analyzed with the aim to detect point mutations and copy number variations. First, the 

realignment around insertions and deletions (InDels) and the base quality recalibration 
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were performed with Genome Analysis Toolkit v3.3-0 (GATK) [43]. For WES tumor samples, 

Mutect v1.1.7 [44] and GATK v3.3-0 (HaplotypeCaller function) were then used to call the 

single nucleotide variants (SNVs) and InDels respectively, adopting the default parameters 

for both algorithms. Among the total set of called variants, we selected those with total 

depth > 10, Ratio > 0.2 (ratio between the depth of coverage of the alternate event and the 

total depth of coverage), within coding exons and having a non-silent effect on protein 

sequence (non-synonymous and nonsense SNVs, frameshift and non-frameshift InDels). 

The alterations were filtered on databases of human variability (dbSNP: 

https://www.ncbi.nlm.nih.gov/SNP/), 1000Genomes: 

http://www.internationalgenome.org/; EVS: http://evs.gs.washington.edu/EVS/; ExAC: 

http://exac.broadinstitute.org/) in order to discard polymorphism and keep novel or very 

rare variants (population frequency < 0.01). All the gene-based and filter-based annotation 

steps were performed with Annovar v2015Jun16 software tool [45]. Finally, the resulting 

list of variants were differentiated between somatic or germline by calling the alternate 

events on the normal counterpart alignments using Samtools v1.4 mpileup function. The 

somatic variants were handled with SnpSift dbNSFP v4.1 [46], an integrated database of 

functional computational tools to predict the alteration effects of on protein function and 

stability. Moreover, on paired tumor/normal WES data, the analysis of amplifications and 

large deletions was performed applying two different tools, Control FREEC v7.2 [47] and 

ADTEX v2.0 [48]. A consensus method was realized with the aim of selecting the 

overlapping regions given by the two algorithms (overlap of gain or loss ≥ 80%) followed by 

a downstream filtering procedure that takes into account the uncertainty value given by 

Control FREEC (uncertainty < 80%). Finally, the Database of human Genomic Variants 

(http://dgv.tcag.ca/dgv/app/home) was adopted to screen out the polymorphic copy 

number variants. 

 

Creation and processing of the PDGFRA D842V structure for docking analysis 

The crystalized structure of the human tyrosine kinase domain of the PDGFRA wild type 

receptor (PDB: 5K5X) present in the protein data bank (PDB: https://www.rcsb.org/) was 

used as template for the building by homology of the D842V mutant. The Building by 

homology was performed with Modeller v9.8 [49]. Instead, the 3D model of the PDGFRA 

receptor in its active conformation was built adopting as template the kinase domain of 

https://www.ncbi.nlm.nih.gov/SNP/
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the human receptor KIT (PDB: 1PKG). Since there were not any crystalyzed PDGFRA in its 

active conformation, we use the KIT receptor as template that shares a sequence identity 

of 61%. The next step was he generation of the pairwise alignment using ClustalW2 in the 

PIR format that was used to create 20 different models with modeller. The 3D structure 

with the lower energy was then selected for the docking procedure.  

 

Autodock and the Lamarkian Genetic Algorithm 

AutoDock (version 4.2.6) [50] is a suite of automated docking tools that is designed to 

predict how small molecules, such as substrates or drug candidates, bind to a receptor of 

known 3D structure. It involves of two main programs: AutoDock for docking of the ligand 

to a set of grids describing the target protein; and AutoGrid for pre-calculating these grid 

maps of interaction energies. Autodock performs well in predicting relative quantities and 

rankings of series of similar molecules. Like the majority of the docking software it lies on 

two related steps: The sampling of the ligand in the ligand binding pocket of the protein; 

and the creation of the ranking of these conformations via a scoring functions. Autodock 

allows to indicate between different sampling algorithms. Instead, for the assessment of 

the binding affinity it use the classical force-field-based scoring functions with some 

extensions. As sampling algorithm of the docking analysis, was used the lamarkian genetic 

algorithm (LGA). This algorithm like the Monte Carlo is a stochastic process. The idea of the 

genetic algorithm stems from Darwin’s theory of evolution. Degrees of freedom of the 

ligand are programmed as binary strings called “genes”. These genes make up the 

“chromosome” which actually represents the pose of the ligand. Mutation and crossover 

are two kinds of genetic operators in GA. Mutation makes random changes to the genes 

while crossover exchange genes between two chromosomes. When genetic operators 

affect the genes, the consequence is a new ligand structure (Schematic representation in 

Figure 5). New structures will be assessed by scoring function, and the ones that survived 

(i.e., exceeded a threshold) can be used for the next generation.  
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Figure 5. This figure illustrates genotypic and phenotypic search. Genotypes are mapped to 

phenotypes by a developmental mapping function. Sufficient iterations of the local search arrive at 

a local minimum. 

 

The lamarkian extension combine a local search (LS) with a global one to perform even an 

energy minimization. The LS method has the advantage that it does not require gradient 

information about the local energy landscape, facilitating torsional space search. The 

hybrid of the GA method with the adaptive LS method together form the so-called 

lamarckian genetic algorithm (LGA) which has enhanced performance relative to the GA 

alone. 

 

In silico docking procedure 

The Rigid Molecular Docking of crenolanib to the modeled PDGFRA was performed with 

Autodock v4.2. The pdb file was converted in the pdbqt format after the determination of 

the optimal energetic-states of protonation. This format possesses necessary information 

for the Docking like the partial charges, and the torsional freedom. Subsequently in order 

to identify the features of the receptor site, the potential grid maps were created using the 

program autogrid, fixing the search on the residues of the active site (Figure 6). The creation 

of the grid is a fundamental step because it allows to register the energetic values of the 

van der Waals and electrostatic interactions of each atom between ligand and target. This 
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helps in speeding up the calculations but it impedes to take into account the flexibility of 

the active site. 

 

 

Figure 6. Creation of the potential grid maps on the LBP. 

 

The 3D grid box (dimensions 60 × 60 × 60 unit in number of grid points; grid spacing 0.375 

Å) centered into the kinase ATP binding pocket was created using autogrid v4.2. In addition, 

the crenolanib coordinates were generated with PRODRG server [51] and five active torsion 

angles were set. The Crenolanib was docked using the Lamarkian genetic algorithm (LGA), 

performing 1500 LGA runs. A generation consists of five stages: mapping and fitness 

evaluation, selection, crossover, mutation, and elitist selection, in that order. In the LGA, 

each generation is followed by local search, being performed on a user-defined proportion 

of the population. This algorithm, like many other docking algorithms, consists of two steps:  

the sampling of the space and the scoring of the complexes ligand-protein obtained. In 

order to obtain a global minimum, it mimics the evolutionary process creating clusters of 

conformations. As a compromise between being too selective or not enough selective I 

have used a RMSD value of cluster tolerance of 1.0 Å. This value has a huge importance for 

the creation of the clusters and for the accuracy of the analysis. Also the analysis was 

performed with an initial population of 300 conformations, a cutoff of 27,000 generations, 

and with rates of mutation and crossover set to 0.02 and 0.8, respectively. Then for the 
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ligand the best pose of the best cluster was chosen in terms of “Binding energy”, that can 

be described as the difference between the benefit of the ligand to be in the binding site 

rather than in the solvent. 

 

 

Gene Expression Profiles 

As regards the analysis of gene expression, a retrospective dataset previously used in 

another scientific work by Nannini et al. [52] was used. Gene expression data as described 

before were obtained from RNA-seq and Microarray analysis. In detail, RNeasy Mini Kit 

(Qiagen, Milan, Italy) was used to extract the whole RNA from tumor samples. For the RNA-

seq samples, the cDNA libraries were created starting from 250 ng total RNA with TruSeq 

RNA Sample Prep Kit v2 (Illumina, San Diego, CA, USA) ensuing the manufacturer’s protocol. 

The HiScanSQ sequencer (Illumina) was used to generate sequences at 75bp in paired-end 

mode obtaining an average of 61 million mapped reads for sample, reaching an average 

depth of coverage of 44X. The gene expression was quantified using kallisto adopting the 

transcript per million (TPM) normalization. In particular, Kallisto allow to rapidly quantify 

the abundances of transcripts performing a pseudoalignment that determine the 

compatibility of reads with targets.  Pseudoalignment of reads preserves the main 

information needed for quantification making kallisto not only fast but also accurate. For 

microarray subset, the RNA was quality-controlled and labeled as indicated by the 

Affymetrix expression technical manual and then hybridized to HG-U133Plus 2.0 arrays. 

Gene expression data were normalized and quantified by the RMA algorithm using the R 

package oligo of R-bioconductor. 

 

 

Prediction of Infiltrating Immune subpopulations 

The analytical tool CIBERSORT (Cell-type Identification By Estimating Relative Subsets Of 

RNA Transcripts) was used for the analysis of 31 tumors samples that were studied either 

with Affymetrix Array (19 samples) or Illumina whole transcriptome sequencing (12 

samples) as described in Table 2. CIBERSORT is a machine learning method based on 

support vectors machine, trained using gene expression profiles of pure immune 
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subpopulations isolated by flow cytometry. In such a way that from the complex and 

convoluted transcriptomic profile of the tumor mass succeeds to identify the immune 

infiltrate if present and to quantify in a relative and absolute manner 22 immune 

subpopulations (Schematic representation of training and testing procedure of CIBERSORT 

in Figure 7). 

 

Figure 7. This figure shows how cibersort has been trained and what can be done with this 

software. This figure was adapted from the https://cibersort.stanford.edu home figure. 

 

Even if the CIBERSORT algorithm was originally developed using microarray data, it was 

declared as “platform agnostic” [53] and, therefore, applicable to both Affymetrix and 

Illumina data. The analysis was performed distinctly for the two set of data obtained with 

different techniques (microarray and RNA-seq). For each set, an unsupervised hierarchical 

clustering analysis was implemented using the CIBERSORT absolute estimation with the aim 

to assess the variability of the main cells subpopulations in the tumor microenvironment. 

Instead, the CIBERSORT relative abundance results were compared between GIST and 18 

different solid tumors previously investigated by Gentles et al. [54]. For this purpose, we 

adopted the microarray subset of GIST because the reference authors based their study on 

https://cibersort.stanford.edu/
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microarray data as well. More specifically, the 22 immune subpopulations were grouped 

into 11 cell classes following the representation given by Gentles et al. then the similarity 

between GIST and other solid tumor was assessed applying two different unsupervised 

approaches: the hierarchical clustering method and PCA (R-bioconductor, stats package). 

All the hierarchical clustering were performed adopting the ComplexHeatmap package in 

R-bioconductor (distance: Euclidean, clustering method: average linkage). 

 

 

Making RNA-seq and Microarray gene expression data comparable 

For both microarray and RNA-seq samples, the transcriptome data were also adopted to 

measure the expression of specific signatures known to be related to the cancer immune 

landscape. Since these are two different techniques, in order to use the gene expression 

data together we had to normalize and log2 transform the data either with quantile 

normalization or log2 TPM calculation respectively for microarray and RNA-seq data. Also 

an additional normalization was performed by subtracting the arithmetic mean of the log2 

expression data of ten housekeeping gene expression (Table 3). 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝐺𝐸𝑁𝐸 =  log2 𝑥 −
∑ log2 𝑥𝑖

10
ℎ𝑘=1

10
 

This set of genes was previously recognized as low variance within a huge set of cancer 

types and was adopted as a normalization factor for each sample [55]. The gene expression 

data were used to assess the expression of expanded IFN-γ-induced immune signature 

(EIIS), a 18 genes signature defined by Ayers et al. (Table 3) [55]. The total EIIS score for 

each sample was calculated by averaging the expression values of the 18 genes. The 

achieved scores were correlated with the corresponding PD-L1 expression by sample using 

the R package stats. 

 

 

Table 1. Housekeeping genes and genes belonging to the expanded IFN-g induced signature (EIIS) 

defined by Ayers et al. 

Housekeeping genes The expanded IFN-γ-induced signature (EIIS) 
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Gene name  Gene 

name 

Gene description  

ABCF1  CCL5 C-C motif chemokine ligand 5  

G6PD  CD2 CD2 molecule  

NRDE2  CD3D CD3d molecule  

OAZ1  CD3E CD3e molecule  

POLR2A  CIITA class II major histocompatibility complex transactivator  

SDHA  CXCL10 C-X-C motif chemokine ligand 10  

STK11IP  CXCL13 C-X-C motif chemokine ligand 13  

TBC1D10B  CXCR6 C-X-C motif chemokine receptor 6  

TBP  GZMB granzyme B  

UBB  GZMK granzyme K  

  HLA-

DRA 

major histocompatibility complex, class II, DR alpha  

  HLA-E major histocompatibility complex, class I, E  

  IDO1 indoleamine 2,3-dioxygenase 1  

  IL2RG interleukin 2 receptor subunit gamma  

  LAG3 lymphocyte activating 3  

  NKG7 natural killer cell granule protein 7  

  STAT1 signal transducer and activator of transcription 1  

  TAGAP T cell activation RhoGTPase activating protein  

 

 

T cell-Inflamed Score (TIS) and analysis of public data 

We have also evaluated the T-cell inflamed score (TIS) (Table 4). This signature quantify, 

using various technology platforms, different but highly correlated gene transcripts 

associated with the presence of an adaptive immune response that is peripherally 

suppressed. Measuring a phenotype that seems to be necessary, although not sufficient, 

for clinical benefit from PD-1/PD-L1 blockade. It consist of genes related to antigen 

presentation, chemokine expression, cytotoxic activity, and adaptive immune resistance. 

Starting from a huge tumor data set spanning nine cancer types (KEYNOTE-012 and -028 

studies), the authors defined the TIS as a 18 genes signature they determined the TIS score 

as a linear function defined as:  
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𝑇𝐼𝑆 = ∑ 𝑥𝑖𝑤𝑖

18

𝑖=1
  

where xi is the ith gene’s expression value obtained as described above and wi is a 

predefined weight for the ith gene derived by Ayers et al. using logistic regressions models 

(weights are available in the google document of the patent of Ayers and collaborators). 

Lately, Danaher et al. computed the TIS score exploiting the gene expression data of the 

tumors included in TCGA [56]. They found that median TIS scores were higher in tumor 

types with higher rates of response to PD-1/PD-L1 inhibitors (e.g., melanoma, renal cell 

cancer), and cancers with high mutation load (e.g., non-small cell lung cancer [NSCLC]), 

however within each tumor type there was considerable inter-sample variability (Figure 8).  

Table 2. The T cell Inflamed 18 gene signature defined by Ayers et al. 

Gene name Gene description  

CCL5 C-C motif chemokine ligand 5  

CD27 CD27 molecule  

CD274 CD274 molecule  

CD276 CD276 molecule  

CD8A CD8a molecule  

CMKLR1 chemerin chemokine-like receptor 1  

CXCL9 C-X-C motif chemokine ligand 9  

CXCR6 C-X-C motif chemokine receptor 6  

HLA-DQA1 major histocompatibility complex, class II, DQ alpha 1  

HLA-DRB1 major histocompatibility complex, class II, DR beta 1  

HLA-E major histocompatibility complex, class I, E  

IDO1 indoleamine 2,3-dioxygenase 1  

LAG3 lymphocyte activating 3  

NKG7 natural killer cell granule protein 7  

PDCD1LG2 programmed cell death 1 ligand 2  

PSMB10 proteasome subunit beta 10  

STAT1 signal transducer and activator of transcription 1  

TIGIT T cell immunoreceptor with Ig and ITIM domains  
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Figure 8. TIS scores in all TCGA patients obtained by Danaher et al. 

 

Following the approach of Danaher and colleagues, we assessed the TIS score in our GIST 

series with respect to the TCGA cancer subtypes. The whole TCGA was obtained as 

transcript per million from the Google Cloud Pilot RNA-Sequencing public available web 

platform (https://osf.io/gqrz9/). In which they have processed over 10,000 RNA-

Seqeuencing samples from the Cancer Genome Atlas using kallisto. Further source of open 

data were explored with the aim of identify imatinib effect on PD-L1 and IRF1 expression. 

Especially we used the GSE15966 dataset (GEO), consisting of 18 coupled GIST samples pre- 

and post-imatinib treatment obtained with microarray platform [57]. The LOESS 

normalized expression data of the coupled GIST samples was achieved with GEO2R tool 

and the differential expression of PD-L1 and IRF1 between pre- and post-imatinib-treated 

GIST was estimated by a paired t-test analysis. 

 

 

Immunohistochemistry 

Immunohistochemistry validation was performed on eight GIST FFPE samples by a 

collaboration with the group of prof. Claudio Agostinelli of the University of Bologna. 

Antibodies used were the following: anti-CD8 (dilution 1:100, clone 144b, Dako), anti-TIA-

1 (dilution 1:300, clone 2G9, Immunotech), FOXP3 (dilution 1:100, clone SP97, Abnova), 
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anti-CD163 (dilution 1:100 clone 10D6, Leica), and anti-PD-L1 (dilution 1:100, clone E1L3N, 

Cell Signaling). The immunostained slides were scanned at 200× magnification by Olympus 

Dot-slide microscope digital system equipped with image analysis software VS-ASW and 

then assessed in representative areas: each microenvironment marker was independently 

scored both in the core of the tumor and in the invasive margin of tumor. Results were first 

reported as mean number of positive tumor-infiltrating immune cells/high power field and 

than mathematically referred to 1 mm2. The PD-L1 immunostaining in neoplastic cells was 

scored as 1+ when <5% positive cells were counted; 2+ when the percentage of stained 

cells was >5% and <50%; and 3+ when the number of stained cells was >50%. 
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RESULTS 

 

GIST immune microenvironment 

The abundance of 22 immune cell subpopulations infiltrating the tumor was assessed on 

31 GIST retrospectively collected samples, in which gene expression profiles (GEP) were 

previously obtained with microarray (19 samples) and RNA-seq (12 samples) techniques. 

The two analysis conducted separately highlighted the prevalence of T cells, both CD4+ and 

CD8+, and M2 macrophages (Figure 9). Overall, the absolute abundance estimation of 

tumor-infiltrating cells revealed some degree of variability, therefore we investigate if this 

difference was due to the different molecular classes or to the platform employed but we 

did not find a significative difference neither between the KIT/ PDGFRA and between 

Microarray/RNA-seq samples in our dataset (Supplementary Figure 1). In addition, 

Cibersort results obtained with the two different methods, on a small set of samples 

analyzed with both the platform, are highly correlated (Pearson r = 0.82–0.89) and cluster 

together (Supplementary Figure 2). Regarding the abundance of the immune 

subpopulations we found that macrophages negatively correlated with T cells presence 

(CD4+ and CD8+ together) supporting the presence of an infiltrating immune 

microenvironment and likely of an adaptive mechanism of immune escape, as described in 

other oncological settings (Figure 10). 
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Figure 9. Heatmap representing the composition of the immune infiltrate signatures by microarray 

(a) and RNA-seq (b) data with CIBERSORT analysis (absolute abundance). Hierarchical clustering 

was performed on the infiltrating immune populations using Euclidean distance as a metric of 

similarity and average linkage as clustering method. The gray bars indicate the total absolute 

score for each sample. KIT- and PDGFRA-mutant GIST are labeled in cyan and yellow respectively. 

Tissue samples are labeled in green for primary tumors and purple for metastasis. The tumor site 

instead is represented with pink and brown boxes for stomach and intestine respectively. Figure 

presented in the work of Pantaleo et al. OncoImmunology, 8:9, DOI: 

10.1080/2162402X.2019.1617588 
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Figure 10. Correlation between Macrophages and T cell CD3+ (CD4+ and CD8+). Data derived from 

the two analytical methods microarray and RNA-seq are colored in blue and violet respectively. 

Figure presented in the work of Pantaleo et al. OncoImmunology, 8:9, DOI: 

10.1080/2162402X.2019.1617588 

We compared the rate of tumor-infiltrating leukocyte populations between GISTs and 

several types of solid tumors from AJ Gentle et al. Nat. Med. 2015 using unsupervised 

methods. GIST samples showed a tumor microenvironment similar to that of metastatic 

and primary melanoma, one of the tumors that mostly benefits from immunotherapeutic 

approaches (Figure 11A). The hierarchical clustering technique highlight that GIST display a 

high abundance of infiltrating CD8+ T cells, similarly to primary and metastatic melanoma, 

where it is known to be predominantly. This evidence was also supported by another 

unsupervised approach like the principal component analysis (PCA) (Figure 11B). 
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Figure 11. (a) Unsupervised hierarchical clustering of the tumor-infiltrating composition of GIST 

and other solid tumor types. The heatmap shows that CD8+ T cells are particularly enriched in GIST 

and melanoma (primary and metastatic). (b) Principal component analysis of CIBERSORT results of 

GIST (in purple) and other solid tumors. Figure presented in the work of Pantaleo et al. 

OncoImmunology, 8:9, DOI: 10.1080/2162402X.2019.1617588 

The IHC analysis supported the significant presence of an intra- and peri-tumoral immune 

infiltrate in GIST identifying as the most abundant subpopulations the T cells CD8+ and M2 

macrophages CD163+ (Figure 12). The number of CD8+ lymphocytes and CD163+ elements 

on average were 17.5 mm2 and 27.2 mm2 respectively (Supplementary Table 1). These 

immune populations were also detected at the invasive margin of the tumors 

(Supplementary Table 2). It was observed that T cell CD8+ express markers of cytotoxicity 

like the Tia-1 (Figure 12). The Natural Killer subpopulation CD16+/granulysin(GNLY)+ was 

also detected in most of the GIST samples (5 of 8 samples) both in the core and in the 

invasive margin of the tumors (Supplementary Table 1; Supplementary figure 3). Intra-

tumoral FOXP3+ T-regulatory lymphocytes were revealed in 4/8 cases. Furthermore, the 

IHC study revealed a PD-L1 protein expression on neoplastic cells in 50% of the samples 

analyzed (score +2) (Supplementary Table 1). 
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Figure 12. Immunohistochemical characterization of GIST samples. In the upper row, one high-

CD8+ GIST shows high number of Tia-1+ (x100) (inset: x400) cell of microenvironment, presence of 

M2 CD163+ macrophages (x100) (inset: x400), and PD-L1 positivity (x100) (inset: x400) in the 

neoplastic population. The lower row shows one low-CD8+ sample that is characterized instead by 

a very low number Tia-1+ (x100) cells, presence of M2 CD163+ macrophages (x100), and PD-L1 

negativity (x100) in the neoplastic population. The comparison between the two GIST groups high-

CD8+ versus low-CD8+ highlights significant differences in the CD8 and TIA1 proteins expression (p 

= 0.01 and p = 0.02 respectively); differently, there are no significant differences in terms of CD163 

and PD-L1 (p = 0.37 and p = 0.71 respectively). Figure presented in the work of Pantaleo et al. 

OncoImmunology, 8:9, DOI: 10.1080/2162402X.2019.1617588 

 

GIST express immune signatures predictive of immune checkpoint inhibitor response 

Gene expression data were also interrogated in order to evaluate the expression in the 31 

GIST samples of several genes representing different immune parameters like the 

expanded IFN-γ-induced immune signature (EIIS). It was important to verify the presence 

of this signature because it was recently identified as a predictor of immunotherapy 

response in head and neck squamous cell carcinoma and melanoma (Table 3). This 

signature includes 18 genes associated to cytolitic activity, inflammatory cytokines, T-cell 

markers, antigen presentation, and immunomodulatory factors. We found that this 

signature was clearly expressed in the majority of GIST samples and, interestingly, it 

positively correlated with PD-L1 expression (p < 0.0001) (Figure 13AB). Remarkably, even 
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in melanoma samples from the Cancer Genome Atlas (TCGA), the EIIS signature correlates 

with PD-L1 expression (Figure 17D). 

 

 

 

Figure 13. Figure 4. (a) Heatmap representing the positive correlation between the expanded IFN-

γ-induced immune signature and PD-L1 expression (cyan bars) in GIST sample. (b) Scatterplot 

between the average expression of the EIIS per sample and the PDL1 expression. (c) Positive 

correlation between PD-L1 and both CD8A and CD8B expressions. (d) EIIS correlation with PD-L1 



Pag. 38 of 71 
 

expression in Skin cutaneous melanoma (SKCM) samples of the TCGA. Figures adapted from the 

work of Pantaleo et al. OncoImmunology, 8:9, DOI: 10.1080/2162402X.2019.1617588 

 

Moreover, the PD-L1 transcript abundance also positively correlated with the expression 

of CD8 receptor alpha and beta chains (respectively p < 0.0001 and p = 0.0003) that are 

expressed on cytotoxic T cells (Figure 13C). Gene expression data were also investigated to 

quantify another immune signature related to clinical response to checkpoint inhibitor 

treatments, the T-cell-inflamed signature (TIS) proposed by Ayers et al. as an improvement 

of the EIIS described above. This signature measures the presence of an adaptive immune 

response that was previously shown to be enriched in patients responsive to PD-1 inhibitor 

treatment (Table 4). Adopting the TIS algorithm we compared the TIS value between our 

GIST series and other tumors from TCGA dataset. Results showed that GIST have a high 

median TIS score (8.22), a score very close to tumor types with the highest response rates 

to anti-PD-1/PD-L1 inhibitors, such as head and neck squamous cell carcinoma (8.10), lung 

squamous cell carcinoma (8.26), and kidney clear cell carcinoma (8.79) (Figure 14).  

 

 

Figure 14. T-cell-inflamed signature score of GIST and other solid tumor types from TCGA. ACC: 

adrenocortical carcinoma; BLCA: bladder urothelial carcinoma; BRCA: breast invasive carcinoma; 

CESC: cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOL: 

cholangiocarcinoma; COAD: colon adenocarcinoma; DLBC: lymphoid neoplasm diffuse large B-cell 

lymphoma; ESCA: esophageal carcinoma, GBM: glioblastoma multiforme; HNSC: head and neck 

squamous cell carcinoma; KICH: kidney chromophobe; KIRC: kidney renal clear cell carcinoma; 

KIRP: kidney renal papillary cell carcinoma; LAML: acute myeloid leukemia; LGG: brain lower grade 
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glioma; LIHC: liver hepatocellular carcinoma; LUAD: lung adenocarcinoma; LUSC: lung squamous 

cell carcinoma, MESO: mesothelioma; OV: ovarian serous cystadenocarcinoma; PAAD: pancreatic 

adenocarcinoma; PCPG: pheochromocytoma and paraganglioma; PRAD: prostate 

adenocarcinoma; READ: rectum adenocarcinoma; SARC: sarcoma; SKCM: skin cutaneous 

melanoma; STAD: stomach adenocarcinoma; TGCT: testicular germ cell tumors; THCA: thyroid 

carcinoma; THYM: thymoma (THYM); UCS: uterine carcinosarcoma; UVM: uveal melanoma. Figure 

presented in the work of Pantaleo et al. OncoImmunology, 8:9, DOI: 

10.1080/2162402X.2019.1617588 

 

Imatinib downregulates PD-L1 expression in GIST samples 

Since the existing medical treatment of GIST relies on several generations of TKI, it is 

mandatory that any novel treatment approach is conceived in combination with a TKI. It 

was previously showed by Seifert et al. that imatinib can exert immune modulatory effects 

and that PD-1/PD-L1 blockade enhances the antitumor efficacy of imatinib in murine GIST 

model. Also it was demonstrated that JAK inhibitors and imatinib cause a reduction of the 

expression of PD-L1 in vitro in GIST882 and GIST-T1 cell lines. For this reason, we 

investigated the possible modulatory effect of imatinib on the expression of the immune 

checkpoint inhibitors targets in a The Gene Expression Omnibus database (GEO) dataset of 

GIST tumor samples pre- and post-imatinib treatment. Since have been reported several 

evidences in the STRING database of the interaction between KIT and PDGFRA with STAT1 

(Figure 15) it is conceivable that their signaling may control the expression of PD-L1 through 

the phosphorylation of STAT1 and the upregulation of IRF1 (Figure 16), as it was described 

in melanoma [58]. 
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Figure 15. STRING interactions networks of  PDGFRA and KIT.  Know interactions are represented 

with cyan and purple connection, respectively for interactions obtained from curated database 

and determined experimentally. Instead, predicted ones in green red and blue. The red ellipse was 

adopted to highlight the know interactions between PDGFRA and KIT with STAT1. 

 

 

Figure 16. Proposed model of PD-L1 modulation by imatinib. Figure presented in the work of 

Pantaleo et al. OncoImmunology, 8:9, DOI: 10.1080/2162402X.2019.1617588 
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Analysis conducted on public available GIST data revealed that IRF1 and PD-L1 were 

significantly repressed in imatinib-treated with respect to pre-treatment samples (Figure 

17). Together with the previous data reached by in vitro studies, these data from patient 

samples confirmed the hypothesis of a repressive role of imatinib on PD-L1 expression, 

supporting a view in which both TKI and checkpoint inhibitors cooperate in the stimulation 

of an adaptive immune response against GIST. 

 

 

Figure 17.  IRF1 and PD-L1 normalized expression between pre- and post-imatinib-treated GIST 

samples of the GEO dataset GSE15966. Figure presented in the work of Pantaleo et al. 

OncoImmunology, 8:9, DOI: 10.1080/2162402X.2019.1617588 

 

Mutational landscape of GIST PDGFRA D842V 

The study involved a total number of 19 tumor samples, obtained from 14 unique patients 

with PDGFRA D842V mutant GIST. To explore the mutational landscape of the D842V 

mutant GIST, we performed the WES analysis on these tumor samples and on the matched 

normal counterpart. Our customized bioinformatics pipeline lead to the identification of 

316 high-confidence somatic rare variants, including coding single nucleotide variants 

(SNVs)(Supplementary table 2), frameshift and non-frameshift insertions and deletions 

(InDels), and variants at ±3 on the splice sites (average = 17, min–max = 3–26). Mutational 

burden was calculated and reported in Figure 18. The majority of the samples display a low 

degree of somatic mutations per Mb on captured coding exome ~0.5, which is comparable 

to the mutational load of chronic lymphocytic leukemia (CLL), neuroblastoma, and 

glioblastoma. Moreover, two samples (T06 and T14) showed a very low mutational load, 

similar to acute lymphocytic leukemia (ALL) and medulloblastoma.  
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Figure 18. Mutational burden of D842V mutant GIST. The histogram bars indicate the number of 

somatic mutations per magabases (Mb) of coding regions. Figure presented in the work of Indio et 

al. On Int. J. Mol. Sci. 2018, 19(3), 732; https://doi.org/10.3390/ijms19030732 

 

The only recurrent somatic mutation was the one on the exon 18 of PDGFRA, the D842V 

mutant previously identified by molecular testing procedures. The results revealed also 

three other significantly mutated genes: the transmembrane protein TMEM140, the TEA 

Domain Transcription Factor 2 (TEAD2), and the Olfactory Receptor Family 1 Subfamily J 

Member 2 (OR1J2). All the three mutated genes were recurrent in five of the 19 samples. 

However the samples were five distinct geographically metastases of the same patient 

(samples T07–11 corresponding to patient P06). Although not significantly characterized, 

somatic mutations of GRIN2B (Glutamate Receptor, Ionotropic, N-Methyl D-Aspartate 2B) 

were found in two different samples (N622D on T06, and V42L on T07). For the patients 

with multiple samples of metastasis the T07–11 (five metastases) and T04–05 (two 

metastases) the tumor clonal evolution was also estimated (Figure 19). 
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Figure 19.  Graphic representation of clonal evolution of metastatic tumors T07–11 and T04–05. 

The full filled squares indicate the somatic mutations in the corresponding gene (blue and pink 

respectively for patients P06 and P04). Figure presented in the work of Indio et al. On Int. J. Mol. 

Sci. 2018, 19(3), 732; https://doi.org/10.3390/ijms19030732 

 

All the other somatic events were private variants that we can consider as passenger 

mutations. Genes with somatic variants were mapped with the TARGET catalogue (tumor 

alterations relevant for genomics-driven therapy, 

http://archive.broadinstitute.org/cancer/cga/target). This lead to the identification of 

three relevant alterations: the Y272C on IDH1 (T02), the R465H on FBXW7 (T07–11), and 

two different mutations on TP53 (c.993 + 1G > A at exon 10 splice site and a C135G) on 

sample T13. Interestingly one patient presented a somatic mutation in the succinate 

dehydrogenase complex subunit B (SDHB), the mutation T60A, and in addition possess the 

http://archive.broadinstitute.org/cancer/cga/target
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R38P germline variant in the subunit D of the same complex (SDHD). Both mutations were 

previously described in the archive of ClinVAr (https://www.ncbi.nlm.nih.gov/clinvar/) as 

germline variants in GIST, hereditary paraganglioma, and pheochromocytoma. In 

particular, the T60A in SDHB was annotated as uncertain significance, while the R38P in 

SDHD was extensively described as pathogenic. Copy number alterations were assessed 

from WES data (Figure 20). We confirmed the commonly known regions of losses in GIST 

located on chromosome 1, 14, and 22. We identify at least one of these aberrations in ~90% 

of tumor samples (corresponding to all patients except P05). 

 

Figure 20. Percentage of samples with copy number gains (red) and losses (blue) for each 

chromosome. Figure presented in the work of Indio et al. On Int. J. Mol. Sci. 2018, 19(3), 732; 

https://doi.org/10.3390/ijms19030732 

 

Furthermore we found a focal deletion of dystrophin gene (DMD) on chromosome X in the 

42% of tumor samples (corresponding to four patients: P03, P06, P07, and P08). This 

particular aberration is known to be associated with the metastatic tumors [59] 

Docking affinity results 

Due to the lack of other driver molecular events in the GIST D842V subgroup, we examined 

the efficacy of the D842V substitution at the protein level, with the goal to define the role 

of this oncogenic modification within the peptide sequence. The single amino acid 

substitution of aspartic acid with valine at 842 position (D842V) is known to be related with 

the resistance to first-line and second-line tyrosine kinase inhibitors (such as imatinib and 

sunitinib). Since the crystallized structure of the tyrosine kinase domain of PDGFRA (Figure 
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21A) was recently released (PDB: 5K5X) [60], a protein structure model was created 

specifically for the D842V mutant and the structure of the complex c-Kit–imatinib (PDB: 

1T46) was also used to extrapolate the imatinib 3D structure and the information of the 

KIT-binding pocket (structural alignment between PDGFRA and KIT with the Imatinib in the 

figure 21B). The mutation D842V is located in the activation loop (A-loop), known to cover 

a conserved motif Asp836-Phe837-Gly83 (DFG). This motif may adopt the “in” or “out” 

conformations corresponding respectively to the active and inactive form of the PDGFRA 

kinase domain. It was observed by several X-ray crystallographic studies of protein–ligand 

interactions that imatinib binds to the inactive form (DFG-out) of the Type III 

transmembrane receptor protein tyrosine kinase (RPTK) subfamily including c-Kit and 

PDGFRA [61]. Our predicted model also shows that the mutation D842V leads to the loss 

of polar interactions concerning the residues His845, Ile843, Met844, and Asp846 (Figure 

21C,D) that are essential for the stability of the activation loop and for the stabilization of 

the DFG-out conformation. The consequence is the shift from the DFG-out to the DFG-in 

form triggering the kinase and making imatinib unable to bind the receptor. To 

comprehend the molecular basis for the efficacy of the crenolanib against the PDGFRA 

D842V mutant kinase, we simulated through molecular docking analysis the binding of 

crenolanib to the modeled PDGFRA in DFG-in conformation. The in silico analysis revealed 

eight different docking clusters (Table 5) of crenolanib at the ATP binding site with a RMSD 

> 2Å, and the top scoring docked model was selected (Run 54 , Table 6, Figure 21E).  

  

Table 3. List of Cluster rank in increasing order of binding energy. 

Cluster 

 Rank  

Lowest Binding 

 Energy    

 Run  Mean Binding 

 Energy      

 Num in 

Clus 

1 -13,19 54 -12,25 37 

2 -12,2 100 -10,93 28 

3 -11,29 90 -10,34 20 

4 -11,05 44 -11,01 2 

5 -10,65 98 -10,39 5 

6 -10,51 76 -10,3 4 

7 -10,02 14 -9,82 3 

8 -9,11 82 -9,11 1 
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Table 4. List of the Run performed in increasing order of binding energy. 

Rank Subrank Run 

Energy 

Binding 

RMSD 

Cluster 

RMSD 

Reference 

Pattern 

1 1 54 -13,19 0 0,92 

1 2 26 -13,18 0,85 1 

1 3 89 -13,12 1,16 1,23 

1 4 62 -13,08 0,91 1,13 

1 5 9 -13,06 0,93 1,23 

1 6 96 -13,01 1,06 1,29 

1 7 38 -13,01 0,95 1,22 

1 8 66 -13,01 1,06 1,26 

1 9 75 -12,99 0,96 0,97 

1 10 5 -12,98 0,91 1,08 

1 11 24 -12,91 0,65 1 

1 12 25 -12,89 1,22 1,3 

1 13 91 -12,68 1,2 1,36 

1 14 57 -12,66 0,89 0,96 

1 15 68 -12,63 1,2 1,29 

1 16 64 -12,58 0,85 1 

1 17 80 -12,43 1,05 1,31 

1 18 29 -12,25 0,88 0,97 

1 19 34 -12,24 1,36 1,32 

1 20 6 -12,21 1,14 1,21 

1 21 63 -12,2 1,28 1,47 

1 22 4 -12,18 1,18 1,32 

1 23 16 -12,17 1,2 1,43 

1 24 10 -12,04 0,92 0,97 

1 25 3 -12 0,95 1,19 

1 26 81 -11,94 1,19 1,06 

1 27 40 -11,93 1,17 1,18 

1 28 20 -11,87 1,03 1,23 

1 29 15 -11,82 1,44 1,32 
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1 30 65 -11,78 1,43 1,4 

1 31 11 -11,75 1,31 1,28 

1 32 46 -11,74 1,09 1,36 

1 33 55 -11,7 1,32 1,23 

1 34 88 -11,65 1,15 1,17 

1 35 27 -10,75 1,28 1,31 

1 36 17 -9,91 1,73 1,43 

1 37 48 -9,69 1,8 2,06 

2 1 100 -12,2 0 5,83 

2 2 83 -11,53 1,64 5,54 

2 3 13 -11,51 1,72 5,91 

2 4 93 -11,4 1,61 5,79 

2 5 36 -11,32 1,72 5,39 

2 6 99 -11,28 1,67 5,89 

2 7 18 -11,24 1,19 5,32 

2 8 85 -11,17 2 5,84 

2 9 52 -11,12 1,55 5,61 

2 10 37 -11,1 0,94 5,67 

2 11 35 -11,1 1,55 5,63 

2 12 71 -11,04 1,97 5,76 

2 13 79 -11,02 1,99 5,96 

2 14 69 -10,99 1,95 5,2 

2 15 47 -10,96 1,75 5,96 

2 16 41 -10,93 1,33 5,82 

2 17 61 -10,88 1,8 5,74 

2 18 28 -10,82 1,98 5,14 

2 19 87 -10,74 1,76 5,57 

2 20 8 -10,73 1,65 5,85 

2 21 56 -10,6 1,63 5,51 

2 22 7 -10,6 1,68 5,54 

2 23 30 -10,53 1,56 5,73 

2 24 49 -10,5 1,91 5,08 

2 25 72 -10,41 1,73 5,08 

2 26 1 -10,32 1,91 5,25 

2 27 58 -10,11 1,84 5,16 
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2 28 21 -9,93 1,95 5,26 

3 1 90 -11,29 0 5,14 

3 2 23 -10,99 1,54 5,34 

3 3 45 -10,97 1,69 5,55 

3 4 39 -10,67 1,23 5,15 

3 5 84 -10,57 1,21 5,08 

3 6 51 -10,52 1,95 5,52 

3 7 97 -10,47 1,73 5,37 

3 8 92 -10,47 1,45 5,3 

3 9 43 -10,47 1,7 5,32 

3 10 33 -10,35 1,04 5,36 

3 11 77 -10,27 1,11 5,28 

3 12 60 -10,2 1,33 5,52 

3 13 2 -10,2 1,41 5,09 

3 14 78 -10,16 1,51 5,27 

3 15 31 -10,16 1,6 5,43 

3 16 32 -10,13 1,13 5,31 

3 17 86 -9,96 1,83 5,23 

3 18 70 -9,92 1,91 5,2 

3 19 50 -9,76 1,69 5,36 

3 20 19 -9,37 1,77 5,55 

4 1 44 -11,05 0 5,68 

4 2 67 -10,97 1,24 5,65 

5 1 98 -10,65 0 5,8 

5 2 53 -10,47 1,85 5,77 

5 3 42 -10,36 1,75 5,75 

5 4 95 -10,25 1,59 5,56 

5 5 73 -10,21 1,16 5,52 

6 1 76 -10,51 0 4,45 

6 2 94 -10,37 1,12 4,38 

6 3 74 -10,23 1,02 4,08 

6 4 59 -10,1 1,12 4,01 

7 1 14 -10,02 0 5,58 

7 2 12 -9,91 1,22 5,79 

7 3 22 -9,54 1,41 5,73 
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8 1 82 -9,11 0 5,67 

 

 

Figure 21. Figure 5. (A) Schematic representation of the platelet-derived growth factor receptor 

alpha receptor (PDGFRA); (B) Structure alignment performed using the jCE algorithm between the 

crystallized structure of c-Kit-Imatinib complex (PDB ID 1T46) in purple and the structure of 

PDGFRA (PDB ID 5K5X) in gold. PDGFRA (PDB: 5K5X) in gold. Highlighted in green is the Activation 

loop; (C) Polar interactions of the 842 residue with wild-type Aspartic Acid; (D) Polar interactions 

of the 842 residue carrying the mutated Valine amino acid; (E) Representation of the best docked 

pose of crenolanib in the PDGFRA ATP binding site. Figure presented in the work of Indio et al. On 

Int. J. Mol. Sci. 2018, 19(3), 732; https://doi.org/10.3390/ijms19030732 

 

The docking analysis suggests that crenolanib, unlike imatinib and sunitinib, targets the 

active conformation of tyrosine kinase subunit of PDGFRA, in which the activation loop is 

phosphorylated, binding the ATP active residues without involving the adjacent allosteric 

site that is available only in the inactive conformation (suitable for the type II kinase 

inhibitors like imatinib and sunitinib). 

  



Pag. 50 of 71 
 

DISCUSSION 

 

In this study, PDGFRA and KIT mutant GIST were investigated by exploring serveral 

bioinformatics application using WES, RNA-seq and molecular modelling data to evaluate 

novel treatment strategy. In particular, the KIT/PDGFRA mutant GIST cohort analyzed with 

RNAseq and Microarray allowed us to characterized the tumor microenvironment and to 

evaluate the potential of the Immunotherapy treatment. Our evaluation showed a 

significative presence of immune infiltrates in GIST samples with a predominance of T cells, 

both CD4+ and CD8+, and M2 macrophages. Interestingly, even if our previous analysis 

identify a low mutational burden the immune profile emerges as closely similar to that of 

other solid tumor types in particular of melanoma, one of the most striking clinical 

responders to immunotherapy. Our results were confirmed by a recent work by Vitiello A 

et al. on the immune profiling of GIST that reported as main subpopulations the 

Macrophages M2 and the T cell CD8+. They also reported a difference of immune cell 

infiltrate, immunological activity and expression of immune-related genes between 

PDGFRA- and KIT-mutant GIST. In our series, there was no significant correlation between 

TIL amount and clinical and tumor features, and the limited amount of samples did not 

allow to derive clinical correlations from the study results. Additionally, a significant data 

resulting from our work is the expression in GIST tumor samples of two gene signatures, 

the EIIS and TIS, that were recently identified as predictors of immune checkpoint inhibitors 

response in multiple tumor types. The EIIS was expressed in the majority of GIST samples 

and, interestingly, it positively correlated with PD-L1 expression. As I have described before 

this signature was considered a predictor of immunotherapy response in head and neck 

squamous cell carcinoma, melanoma, and gastric cancer. In our series, we found a positive 

correlation between the EIIS and PD-L1 expression and a positive correlation between PD-

L1 expression and CD8A/CD8B genes supporting an adaptive mechanism of immune 

escape, as described in other oncological subtypes. In addition, even if the TMB was low, 

GIST showed high expression of the TIS signature and therefore high values of TIS score 

that were very close to tumor categories in which high rates of response to PD-1/PD-L1 

inhibitors were seen. The TIS score was recently assessed together with the TMB to assess 

the predictive power in clinical response to anti-PD-1/PD-L1 therapy, stratifying human 

cancers into different clusters [62] and it was seen that these two predicting method 
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captures distinct tumor and microenvironment features. Finally, our analysis on public 

available data of GIST pre and post treatment with imatinib together with the ones 

obtained in vitro (GIST882 and GIST-T1 cell lines) and in vivo murine models by Saifert et 

al. have shown the Immune-modulatory effect of imatinib that can inhibit PD-L1 

expression. Indeed, multiple reports have shown that imatinib may modulate the immune 

activity in several ways, ranging from the increase in the number and activation of CD8+ T 

cells and NK cells to the decrease of Tregs and of IDO expression in the tumor. Moreover, 

imatinib can synergize with immunotherapy since the treatment with anti-PD-1 or anti-PD-

L1 in the Kit V558Δ/+ GIST murine model increases the effect of imatinib by enhancing CD8+ 

T-cell function. The results of our study on the presence of the immune microenvironment 

in GIST along with the expression of specific signatures, that are known to be predictive of 

response to checkpoint inhibitors, suggest that GIST may benefit from immunotherapy 

together with TKI. Each tumor in the D842V mutant cohort instead, was analyzed 

independently to highlight point mutations, and copy number variants and alteration at the 

protein level. Whole exome analysis revealed that no actionable molecular events occurs 

in this population and confirmed that the only recurrent somatic exomic mutation was the 

D842V. Many other genes variants were found but were determined to be private genetic 

events. Even the Copy number analysis lead to the identification of actionable variants. 

Indeed, a percentage of 42% of samples (corresponding to four unique patients) showed a 

focal deletion of dystrophin gene (on chromosome X). Deletions of dystrophin in 

KIT/PDGFRA mutant GIST have been previously reported and usually are associated with 

more advanced clinical stages of disease such as metastatic tumors. In this study, the 

deletion of DMD occurred mainly in tumors with a high mitotic index of the primary tumor 

and in metastatic lesions. Therefore, the main finding of the study on the GIST D842V 

dataset remains the key role of D842V mutation in this GIST subpopulation as the main and 

only relevant event of cancer development. These findings highlight the importance on the 

development of drugs such as the crenolanib that directly inhibit D842V kinase form.  It 

was shown by Heinrich in vitro studies that crenolanib proved to act at least as a 100-fold 

more potent inhibitor than imatinib on PDGFRA D842V kinase demonstrating a good 

tolerability profile in phase I clinical studies on advanced solid tumors [63]. In addition a 

phase II study was recently completed to evaluate the antitumor efficacy and 

pharmacokinetics of crenolanib in patients with D842V mutant GIST, and a phase III trial of 

crenolanib versus placebo in combination with best supportive care in patients with D842V 
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mutant GIST is ongoing. Our analysis lead to the discovery by in silico modelling of eight 

different docking clusters of crenolanib at the ATP binding site. We identify that Crenolanib 

unlike imatinib and sunitinib binds the active residues without involving the adjacent 

allosteric site that is available only in the inactive conformation (suitable for the type II 

kinase inhibitors like imatinib and sunitinib). This suggests that crenolanib targets the active 

conformation of the tyrosine kinase domain of PDGFRA in which the activation loop is 

phosphorylated. Therefore, patients carrying this variant should be considered for 

treatment with a type I tyrosine kinase inhibitor that targets the ATP binding site when the 

kinase is in the active conformation such as the crenolanib or the blu-285 that is another 

type I TKI [64]. Today however, novel immunological approaches are emerging that exploit 

different immune-modulatory molecules to synergize with imatinib and future clinical trials 

should be encouraged. In fact, despite new TKIs, BLU-285 and crenolanib demonstrated 

good and interesting results in the prolongation of survival in early phase trials in the future 

it is expected that TKI resistance improves and thus more efforts are necessary in order to 

find a cure beyond or along with TKI for long-term advanced GIST.  In conclusion, our study 

define a comprehensive picture of the GIST microenvironment, suggesting a potential 

susceptibility to respond to PD-1/PDL1 inhibitors and adds new data useful to build a robust 

basis for an immunotherapy approach in GIST treatment. In addition, we provides clues on 

how to target the GIST subgroup D842V mutant.   
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SUPPLEMENTARY DATA 

 

Supplementary Table 1. IHC quntification of CD8, TIA1, FOXP3, CD163 and PD-L1. Table presented 

in the work of Pantaleo et al. OncoImmunology, 8:9, DOI: 10.1080/2162402X.2019.1617588 

 intratumoral immune cells    

ID CD8+/m

m2 

TIA1/m

m2 

FOXP3+/m

m2 

CD163+/m

m2 

CD16+GNLY+/

mm2 

cells/m

m2 

PD-L1 

tumor

al 

cells(t

) 

PD

-L1 

t% 

GIST0

09 

58.1 39.9 0.21 9.8 0 68.1 <1% 0% 

GIST0

11 

5.6 0.7 0 6.3 1.4 13.3 >1% 

<50% 

30

% 

GIST0

13 

79.1 51.8 0 14 7 100.1 <1% 0% 

GIST1

24 

24.5 12.6 6.23 39.2 8.4 78.3 >1% 

<50% 

10

% 

GIST1

31 

7 3.5 0 37.1 0 44.1 <1% 0% 

GIST1

50 

17.5 14.7 4.12 40.6 2.8 65.0 <1% 0% 

GIST1

74 

5.6 1.4 0 49 0 54.6 >1% 

<50% 

5% 

GIST1

78 

88.9 23.1 2.01 26.6 6.3 123.8 >1% 

<50% 

45

% 

 immune cells at the invasive margine of the tumor    

ID CD8+/m

m2 

TIA1/m

m2 

FOXP3+/m

m2 

CD163+/m

m2 

CD16+GNLY+/

mm2 

   

GIST0

09 

2.2 1 0 25.3 0    

GIST0

11 

2.6 0.2 0 3.2 5.6    

GIST0

13 

71.5 4.4 0 57.6 2.1    

GIST1

24 

15.0 0.5 0 54.7 1.4    

GIST1

31 

8.3 0.9 0 9.3 0    

GIST1

50 

13.9 0.5 0.1 54.1 4.9    

GIST1

74 

10.7 0.9 0.4 27.2 0    
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GIST1

78 

45.8 2.7 0 13.2 3.5    

 

 

Supplementary Table 2. High confidence somatic SNV and Indel on 19 tumor samples. Table 

presented in the work of Indio et al. On Int. J. Mol. Sci. 2018, 19(3), 732; 

https://doi.org/10.3390/ijms19030732 

SAMPLE 

ID 

GENE CDNA PROTEIN 

T01 ADRA1A c.G694C p.V232L 

T01 CDC20B c.C670A p.H224N 

T01 FLNB c.A1496T p.E499V 

T01 FLNB c.G1495A p.E499K 

T01 HEATR5A c.A6055G p.S2019G 

T01 LRIG1 c.T1475A p.F492Y 

T01 PAG1 c.C775A p.P259T 

T01 PDGFRA c.A2525T p.D842V 

T01 POLE c.C775T p.R259C 

T01 SLC19A3 c.C232T p.R78C 

T01 SZT2 c.8976delC p.F2992fs 

T01 TWISTNB c.G40A p.A14T 

T01 USP54 c.C3656T p.T1219I 

T02 ADAMTS19 c.C1430T p.A477V 

T02 BCDIN3D c.C128T p.P43L 

T02 CALY c.C119T p.P40L 

T02 CDK20 c.G556C p.D186H 

T02 CNGA1 c.A992T p.K331M 

T02 CNOT1 c.4630_4631insTT p.L1544fs 

T02 COPA c.G497A p.G166D 

T02 CYFIP1 c.822delG p.K274fs 

T02 DMD c.G1114A p.V372M 

T02 DMXL1 c.C2684A p.S895X 

T02 EGR1 c.A1001G p.H334R 

T02 ELF4 c.C1346T p.A449V 

T02 FAM3B c.T677G p.I226R 

T02 FKTN c.T775C p.F259L 

T02 GPR98 c.C16780T p.R5594C 
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T02 IDH1 c.A815G p.Y272C 

T02 IRF1 c.C847T p.P283S 

T02 LCA5L c.1101_1102insT p.L367fs 

T02 MUC2 c.C6280T p.L2094F 

T02 NPR1 c.C2846T p.A949V 

T02 PCSK2 c.G1511A p.R504H 

T02 PDGFRA c.A2525T p.D842V 

T02 PLXNA4 c.G841A p.V281M 

T02 SLC7A2 c.C1945T p.H649Y 

T02 TNRC18 c.A5029T p.R1677W 

T02 VCAN c.A8737G p.M2913V 

T03 ABCB5 c.C566T p.S189L 

T03 CARD9 c.G292A p.E98K 

T03 CCSER1 c.C544T p.P182S 

T03 DAGLB c.G436A p.A146T 

T03 DEAF1 c.T1127C p.V376A 

T03 HCN2 c.G1760C p.G587A 

T03 LRRC16A c.G1393T p.E465X 

T03 MCUR1 c.T649G p.F217V 

T03 PDGFRA c.A2525T p.D842V 

T03 PPP1R3A c.C143T p.S48F 

T03 PTCHD4 c.G2061A p.W687X 

T03 QTRTD1 c.G121C p.D41H 

T03 ROPN1 c.C458T p.S153L 

T03 SLC17A4 c.G620A p.S207N 

T03 XYLT1 c.G2604A p.M868I 

T03 ZNF420 c.T1655A p.I552N 

T04 ABCC3 c.C3047T p.A1016V 

T04 C15orf52 c.C1520A p.P507H 

T04 C3orf30 c.1421delA p.Q474fs 

T04 CACNA1G c.T5159C p.F1720S 

T04 CIDEB c.337_338del p.113_113del 

T04 DCHS1 c.G551C p.G184A 

T04 DHRS3 c.C581G p.S194X 

T04 EPC2 c.C1219T p.Q407X 

T04 GRM4 c.C43G p.R15G 

T04 KRTAP4-11 c.G227A p.R76H 

T04 LAMA1 c.C3055A p.H1019N 
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T04 LRRTM4 c.A998T p.N333I 

T04 MRPL51 c.C277T p.R93X 

T04 PDGFRA c.A2525T p.D842V 

T04 PPP1R10 c.A226C p.N76H 

T04 RAB2A c.A55G p.K19E 

T04 RACGAP1 c.A41G p.Q14R 

T04 RBM26 c.2188_2189insA p.Q730fs 

T04 TRIP10 c.G475A p.D159N 

T05 ABCC3 c.C3047T p.A1016V 

T05 ANKMY2 c.68-2->TT nn 

T05 C3orf30 c.1421delA p.Q474fs 

T05 CACNA1G c.T5159C p.F1720S 

T05 CHDH c.G229A p.V77M 

T05 CIDEB c.337_338del p.113_113del 

T05 KIF26A c.C2129T p.A710V 

T05 KRTAP4-11 c.G227A p.R76H 

T05 LAMA1 c.C3055A p.H1019N 

T05 LRP6 c.C4376G p.P1459R 

T05 MIR205HG c.252_254del p.84_85del 

T05 PDGFRA c.A2525T p.D842V 

T05 RAB2A c.A55G p.K19E 

T05 SMG6 c.T1963G p.F655V 

T05 SMTN c.C2765T p.S922F 

T05 TRIP10 c.G475A p.D159N 

T06 ASPN c.156_157insTGA p.E52delinsDE 

T06 GALNT12 c.C1087G p.H363D 

T06 GRIN2B c.A1864G p.N622D 

T06 HGC6.3 c.C239T p.P80L 

T06 OR4N4 c.A515T p.N172I 

T06 PDGFRA c.A2525T p.D842V 

T06 PEG3 c.C1713G p.S571R 

T06 SDHB c.A178G p.T60A 

T07 AHNAK2 c.14154_14155insT p.K4718fs 

T07 ANKAR c.C1283A p.P428Q 

T07 BIRC6 c.A13362C p.K4454N 

T07 CACNA2D3 c.T1879C p.Y627H 

T07 COL20A1 c.T509A p.F170Y 

T07 FANCM c.G745A p.G249S 
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T07 FANCM c.G1463C p.S488T 

T07 FBXW7 c.G1040A p.R347H 

T07 FXYD6-

FXYD2 

c.A398G p.N133S 

T07 GPNMB c.G58C p.D20H 

T07 GRIN2B c.G124T p.V42L 

T07 KIAA1009 c.A3236G p.D1079G 

T07 MUC17 c.A1793G p.N598S 

T07 NAE1 c.249+2T>A nn 

T07 NRG2 c.C1546A p.H516N 

T07 OR1J2 c.C113T p.T38M 

T07 OR2AG2 c.A520G p.I174V 

T07 PDGFRA c.A2525T p.D842V 

T07 ROR2 c.C1498A p.Q500K 

T07 RPGR c.C1163T p.A388V 

T07 SMC2 c.C746T p.S249L 

T07 STX19 c.A881C p.K294T 

T07 SVEP1 c.9565_9566del p.3189_3189del 

T07 TEAD2 c.C189A p.C63X 

T07 TMEM140 c.186_187del p.62_63del 

T07 TTC29 c.T920A p.L307Q 

T08 AHNAK2 c.14154_14155insT p.K4718fs 

T08 ANKAR c.C1283A p.P428Q 

T08 BIRC6 c.A13362C p.K4454N 

T08 C1D c.T28A p.Y10N 

T08 CACNA2D3 c.T1879C p.Y627H 

T08 COL20A1 c.T509A p.F170Y 

T08 FAM90A1 c.T83G p.V28G 

T08 FANCM c.G745A p.G249S 

T08 FANCM c.G1463C p.S488T 

T08 FBXW7 c.G1040A p.R347H 

T08 GPNMB c.G58C p.D20H 

T08 NAE1 c.249+2T>A nn 

T08 NRG2 c.C1546A p.H516N 

T08 OR1J2 c.C113T p.T38M 

T08 OR2AG2 c.A520G p.I174V 

T08 PCLO c.G13547T p.R4516I 

T08 PDGFRA c.A2525T p.D842V 
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T08 RPGR c.C1163T p.A388V 

T08 SMC2 c.C746T p.S249L 

T08 SMC3 c.A2135T p.D712V 

T08 STX19 c.A881C p.K294T 

T08 SVEP1 c.9565_9566del p.3189_3189del 

T08 TEAD2 c.C189A p.C63X 

T08 TMEM140 c.186_187del p.62_63del 

T08 TTC29 c.T920A p.L307Q 

T08 TTPAL c.G334C p.V112L 

T09 AHNAK2 c.14154_14155insT p.K4718fs 

T09 ANKAR c.C1283A p.P428Q 

T09 BIRC6 c.A13362C p.K4454N 

T09 C1D c.T28A p.Y10N 

T09 CACNA2D3 c.T1879C p.Y627H 

T09 COL20A1 c.T509A p.F170Y 

T09 FAM90A1 c.T83G p.V28G 

T09 FANCM c.G745A p.G249S 

T09 FANCM c.G1463C p.S488T 

T09 FBXW7 c.G1040A p.R347H 

T09 GPNMB c.G58C p.D20H 

T09 NAE1 c.249+2T>A nn 

T09 NRG2 c.C1546A p.H516N 

T09 OR1J2 c.C113T p.T38M 

T09 OR2AG2 c.A520G p.I174V 

T09 PCLO c.G13547T p.R4516I 

T09 PDGFRA c.A2525T p.D842V 

T09 RPGR c.C1163T p.A388V 

T09 SMC2 c.C746T p.S249L 

T09 STX19 c.A881C p.K294T 

T09 TEAD2 c.C189A p.C63X 

T09 TMEM140 c.186_187del p.62_63del 

T09 TTC29 c.T920A p.L307Q 

T09 TTPAL c.G334C p.V112L 

T10 CACNA2D3 c.T1879C p.Y627H 

T10 COL20A1 c.T509A p.F170Y 

T10 CORO7 c.G409A p.A137T 

T10 FAM90A1 c.T83G p.V28G 

T10 FBXW7 c.G1040A p.R347H 
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T10 GSDMD c.C1430A p.S477X 

T10 OR1J2 c.C113T p.T38M 

T10 OR2AG2 c.A520G p.I174V 

T10 PDGFRA c.A2525T p.D842V 

T10 RGN c.G250T p.E84X 

T10 RPGR c.C1163T p.A388V 

T10 SMC2 c.C746T p.S249L 

T10 SMIM1 c.61_77del p.21_26del 

T10 STX19 c.A881C p.K294T 

T10 SVEP1 c.9565_9566del p.3189_3189del 

T10 TEAD2 c.C189A p.C63X 

T10 TMEM140 c.186_187del p.62_63del 

T10 TTC29 c.T920A p.L307Q 

T10 ZNF527 c.A43T p.T15S 

T11 CACNA2D3 c.T1879C p.Y627H 

T11 COL20A1 c.T509A p.F170Y 

T11 FAM90A1 c.T83G p.V28G 

T11 FBXW7 c.G1154A p.R385H 

T11 HELZ c.A3949C p.S1317R 

T11 MLIP c.G709T p.E237X 

T11 NUP210L c.G3316T p.G1106C 

T11 OR1J2 c.C113T p.T38M 

T11 OR8K5 c.A617T p.N206I 

T11 PDGFRA c.A2525T p.D842V 

T11 SMC2 c.C746T p.S249L 

T11 STX19 c.A881C p.K294T 

T11 SVEP1 c.9565_9566del p.3189_3189del 

T11 TEAD2 c.C189A p.C63X 

T11 TMEM140 c.186_187del p.62_63del 

T11 TTC29 c.T920A p.L307Q 

T12 AHRR c.G1772C p.R591T 

T12 ARHGDIB c.T321A p.Y107X 

T12 C15orf40 c.396_397insTT p.L132fs 

T12 CABIN1 c.C4408T p.P1470S 

T12 CELF1 c.G604C p.G202R 

T12 COL5A1 c.C1888T p.R630W 

T12 DTNB c.G1448A p.R483Q 

T12 EPX c.C1522T p.R508W 
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T12 GOLGA4 c.A5542T p.T1848S 

T12 LIMA1 c.G491A p.C164Y 

T12 NETO2 c.C148T p.R50X 

T12 NUBP2 c.G292A p.V98M 

T12 PDGFRA c.A2525T p.D842V 

T12 SHISA9 c.G1136A p.R379Q 

T12 TNFRSF10B c.G878A p.R293K 

T12 WDR36 c.T1982G p.L661W 

T12 ZNF679 c.G70A p.E24K 

T13 BCOR c.C976A p.P326T 

T13 CTNND2 c.A3632G p.N1211S 

T13 CWF19L2 c.G2000T p.S667I 

T13 FAM122B c.217delG p.E73fs 

T13 INO80D c.C2473T p.P825S 

T13 INSR c.T2947G p.S983A 

T13 KEL c.C1262T p.T421M 

T13 KRTAP12-2 c.G340A p.V114M 

T13 MDN1 c.G1981A p.E661K 

T13 NLGN2 c.C1226T p.T409I 

T13 OR2A4 c.G719T p.C240F 

T13 OR4C12 c.G902T p.R301I 

T13 OR6B3 c.C766T p.L256F 

T13 PDGFRA c.A2525T p.D842V 

T13 SBK1 c.C593T p.T198M 

T13 TACR3 c.G1304A p.S435N 

T13 TOPAZ1 c.A1703G p.N568S 

T13 TP53 c.T403G p.C135G 

T13 TP53 c.993+1G>A  nn 

T13 ZNF197 c.T1145C p.I382T 

T14 EEF2 c.C1479G p.N493K 

T14 HNRNPA2B1 c.A106G p.S36G 

T14 PDGFRA c.A2525T p.D842V 

T15 AGAP3 c.G2006C p.R669P 

T15 ARID1B c.C1741T p.P581S 

T15 ASIC4 c.G1711A p.D571N 

T15 BICD2 c.C50A p.A17E 

T15 CACNG5 c.A773C p.Y258S 

T15 CCDC80 c.A1054C p.T352P 
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T15 CT47B1 c.702_728del p.234_243del 

T15 DRD5 c.C825A p.S275R 

T15 ITGA3 c.C1582T p.R528W 

T15 MOV10 c.C1265A p.P422H 

T15 NUBP1 c.A620G p.K207R 

T15 PDGFRA c.A2525T p.D842V 

T15 ZFHX3 c.7815_7816insCGGCGGCGG p.G2605delinsGGGG 

T16 ADAM19 c.A313T p.T105S 

T16 ADRBK2 c.G1976A p.R659H 

T16 ARID2 c.C2626T p.Q876X 

T16 BCAT1 c.A886G p.I296V 

T16 F8 c.5247delC p.F1749fs 

T16 GPR112 c.C6122T p.T2041I 

T16 IL2RG c.G295A p.V99I 

T16 KCTD4 c.C98T p.T33I 

T16 KLK5 c.G280A p.G94R 

T16 PDGFRA c.A2525T p.D842V 

T16 PIKFYVE c.G3964T p.V1322L 

T16 RMND1 c.A676G p.I226V 

T16 SCUBE1 c.G1132A p.V378I 

T17 FAM73A c.G68T p.G23V 

T17 FOXA3 c.A724C p.T242P 

T17 GALNT9 c.C661T p.R221W 

T17 GIMAP8 c.G1240A p.E414K 

T17 IQSEC3 c.G1399A p.A467T 

T17 MATR3 c.754delG p.D252fs 

T17 NFXL1 c.T2414C p.I805T 

T17 PDGFRA c.A2525T p.D842V 

T17 PDP1 c.A944G p.N315S 

T17 PHIP c.G2159T p.S720I 

T17 SCN11A c.G1942T p.V648F 

T17 TMPRSS13 c.A233G p.Q78R 

T17 UCK2 c.C257T p.P86L 

T18 ARHGAP15 c.A653C p.H218P 

T18 CAPNS1 c.G554A p.R185Q 

T18 EDEM3 c.A1744G p.M582V 

T18 ENAH c.651_668del p.217_223del 

T18 JAG2 c.C2720T p.A907V 
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T18 KRTAP9-9 c.G422A p.R141H 

T18 LCE4A c.129_130insAGCTCTGGGGGCTGCTGT p.S43delinsSSSGGCC 

T18 MGRN1 c.A761G p.Y254C 

T18 NIPA2 c.G1006C p.E336Q 

T18 NT5C2 c.C1334T p.S445F 

T18 NXF3 c.G1547T p.S516I 

T18 PDGFRA c.A2525T p.D842V 

T18 PLCB1 c.C1031T p.S344F 

T18 PLXND1 c.4994-1G>C nn 

T18 RNF165 c.G336T p.Q112H 

T18 ZADH2 c.T1063G p.Y355D 

T19 C11orf49 c.C217A p.H73N 

T19 CACNG2 c.G484A p.G162R 

T19 CD163 c.G536A p.R179Q 

T19 EHBP1 c.G1829A p.R610H 

T19 FAM46A c.102_131del p.34_44del 

T19 IMP3 c.A460G p.M154V 

T19 KCNN3 c.242_243insAGCAGC p.P81delinsQQP 

T19 KIAA1211 c.A2132T p.K711M 

T19 PDGFRA c.A2525T p.D842V 

T19 PTPRU c.C1897T p.R633W 

T19 TGFB1I1 c.C530T p.S177F 

T19 USP19 c.G1108T p.A370S 
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Supplementary Figure 1. Cibersort absolute score stratified by GIST molecular subtype (A) and by 

platform type (B). Figure presented in the work of Pantaleo et al. OncoImmunology, 8:9, DOI: 

10.1080/2162402X.2019.1617588 

 

 

 

Supplementary Figure 2. Clustering of Cibersort immune cell population deconvolution done on 

three samples analysed by both microarray and RNAseq techniques. Figure presented in the work 

of Pantaleo et al. OncoImmunology, 8:9, DOI: 10.1080/2162402X.2019.1617588 
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Supplementary Figure 3. IHC. Picture of the double immunostaining performed by using the 

following monoclonal antibodies: anti-granulysin (blue) (GNLY) and anti-CD16 (brown). The 

GNLY+/CD16+ NK cell was indicated by the black arrow (x400). 
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