

ALMA MATER STUDIORUM‐Università di Bologna
DEIS ‐ Dipartimento di Elettronica, Informatica e Sistemistica, sede di Cesena
Dottorato di Ricerca in Ingegneria Elettronica, Informatica e delle Telecomunicazioni

Ciclo XX

Ingegneria di Sistemi Auto‐organizzanti
con il Paradigma Multiagente

Autore

Ing. Luca Gardelli

Coordinatore

Prof. Ing. Paolo Bassi

Relatore

Prof. Ing. Antonio Natali

Correlatori

Prof. Ing. Andrea Omicini
Dott. Ing. Mirko Viroli

Anno Accademico 2007/2008

Settore Scientifico Disciplinare: ING‐INF/05

Abstract

Self-organisation is increasingly being regarded as an effective approach to tackle
modern systems complexity. The self-organisation approach allows the develop-
ment of systems exhibiting complex dynamics and adapting to environmental
perturbations without requiring a complete knowledge of the future surrounding
conditions.

However, the development of self-organising systems (SOS) is driven by dif-
ferent principles with respect to traditional software engineering. For instance,
engineers typically design systems combining smaller elements where the compo-
sition rules depend on the reference paradigm, but typically produce predictable
results. Conversely, SOS display non-linear dynamics, which can hardly be cap-
tured by deterministic models, and, although robust with respect to external
perturbations, are quite sensitive to changes on inner working parameters.

In this thesis, we describe methodological aspects concerning the early-design
stage of SOS built relying on the Multiagent paradigm: in particular, we refer
to the A&A metamodel, where MAS are composed by agents and artefacts, i.e.
environmental resources. Then, we describe an architectural pattern that has
been extracted from a recurrent solution in designing self-organising systems:
this pattern is based on a MAS environment formed by artefacts, modelling
non-proactive resources, and environmental agents acting on artefacts so as to
enable self-organising mechanisms. In this context, we propose a scientific ap-
proach for the early design stage of the engineering of self-organising systems:
the process is an iterative one and each cycle is articulated in four stages, mod-
elling, simulation, formal verification, and tuning. During the modelling phase
we mainly rely on the existence of a self-organising strategy observed in Nature
and, hopefully encoded as a design pattern. Simulations of an abstract sys-
tem model are used to drive design choices until the required quality properties
are obtained, thus providing guarantees that the subsequent design steps would
lead to a correct implementation. However, system analysis exclusively based
on simulation results does not provide sound guarantees for the engineering of
complex systems: to this purpose, we envision the application of formal verifica-
tion techniques, specifically model checking, in order to exactly characterise the
system behaviours. During the tuning stage parameters are tweaked in order to
meet the target global dynamics and feasibility constraints.

In order to evaluate the methodology, we analysed several systems: in this
thesis, we only describe three of them, i.e. the most representative ones for
each of the three years of PhD course. We analyse each case study using the
presented method, and describe the exploited formal tools and techniques.

Contents

Italian Summary - Introduzione in Italiano iii

1 Introduction 1
1.1 Research Context and Motivation 1
1.2 Overview and Contributions . 2
1.3 Structure of the Thesis . 3

2 Background 5
2.1 Self-Organisation and Emergence 5

2.1.1 The Definition of Self-Organisation 5
2.1.2 The Definition of Emergence 7
2.1.3 Self-Organisation Vs. Emergence 7
2.1.4 Example: Trail Formation in Ants 8

2.2 The Multiagent Paradigm and the A&A Metamodel 9
2.2.1 Introduction to the Multiagent Paradigm 9
2.2.2 The Role of Environment in Self-Organising Systems . . . 10
2.2.3 Engineering MAS Environment Using the A&A Metamodel 10

3 Design Patterns for SOS 12
3.1 Motivations and Overview . 12
3.2 Reference Architectural Pattern 13
3.3 Reference Pattern Scheme . 14
3.4 Basic Patterns for Self-Organising Systems 15

3.4.1 Collective Sorting Pattern 15
3.4.2 Evaporation Pattern . 16
3.4.3 Aggregation Pattern . 17
3.4.4 Diffusion Pattern . 19

4 Methodology 22
4.1 Motivation and Context . 22
4.2 Overview of the Approach . 23
4.3 Modelling . 24
4.4 Simulation . 25
4.5 Verification . 26
4.6 Tuning . 26

i

CONTENTS ii

5 Formal Languages and Tools 28
5.1 Simulation with Stochastic π-Calculus and SPiM 28

5.1.1 From Process Algebra to Stochastic π-Calculus 29
5.1.2 SPiM: the Stochastic Pi-Machine 30

5.2 Stochastic Simulation with Maude 31
5.2.1 Overview of Maude . 31
5.2.2 A Stochastic Simulation Framework 32

5.3 Probabilistic Model Checking with PRISM 33
5.3.1 Model Checking . 33
5.3.2 The PRISM Software . 34

6 Case studies 36
6.1 Detection of Anomalous Behaviour 36

6.1.1 Emergent Harmful Sequences of Actions and Intrusion
Detection . 37

6.1.2 A Basic Architecture for Intrusion Detection in an Agents
& Artefacts Environments 38

6.1.3 Modelling the Solution . 40
6.1.4 Simulation and Tuning . 43

6.2 Collective Sorting . 46
6.2.1 Problem Statement . 46
6.2.2 Identifying a Suitable Approach in Nature 47
6.2.3 Step 1: Modelling Collective Sorting 48
6.2.4 Step 2: Simulating Collective Sorting 49
6.2.5 Step 3: Tuning Collective Sorting 51
6.2.6 Evaluation of Reactiveness 54

6.3 Plain Diffusion . 55
6.3.1 Problem Statement . 55
6.3.2 Modelling Plain Diffusion 57
6.3.3 Simulating Plain Diffusion 59
6.3.4 Verifying Plain Diffusion 61
6.3.5 Tuning Plain Diffusion . 64
6.3.6 About Scalability of the Strategy 67

7 Related Works 71
7.1 Design Patterns for Self-organising Systems 71
7.2 AOSE Methodologies for Self-organising Systems 72
7.3 Formal Tools for Self-Organising Systems 73

8 Conclusion and Future Works 74
8.1 Summary and Contributions . 74
8.2 Limitations of the Approach . 75
8.3 Future Works . 75

A Maude Specifications 77

Bibliography 85

List of Publications 96

Biography 100

Italian Summary -
Introduzione in Italiano

Contesto di Ricerca e Motivazioni

L’auto-organizzazione costituisce un approccio efficiente per affrontare la com-
plessità dei sistemi moderni, come testimoniato dal crescente interesse della
comunità scientifica. Un approccio auto-organizzante permette lo sviluppo
di sistemi che esibiscono dinamiche complesse e che si adattano alle pertur-
bazioni ambientali senza richiedere una conoscenza completa delle condizioni
circostanti. Un sistema sviluppato seguendo i principi dell’auto-organizzazione
produce pattern e dinamiche globali attraverso l’interazione locale dei suoi com-
ponenti [SFH+04, MMTZ06]. Molti sistemi biologici possono essere model-
lati efficacemente utilizzando un approccio auto-organizzante: esempi noti in-
cludono la ricerca di cibo e l’ordinamento delle larve nelle colonie di formiche,
la costruzione di nidi nelle colonie di termiti, e pattern geometrici negli alveari
di api [BDT99, CDF+01, SB06]. I meccanismi auto-organizzanti osservati in
Natura hanno ispirato lo sviluppo di molti sistemi artificiali, ad esempio, per
la coordinazione decentralizzata di veicoli autonomi (AGV) [WSHL05, PBS05],
per la riduzione della congestione nelle reti a commutazione di pacchetto [SA94],
per la pianificazione delle lavorazioni e il controllo della pittura di veicoli [CS04],
infrastrutture peer-to-peer auto-organizzanti [BMM02], e localizzazione basata
su feromone digitale supportato da una rete di tag RFID [MZ07]. Inoltre,
i principi dell’auto-organizzazione sono attualmente al centro di progetti di
ricerca che potrebbero avere rilevanza industriale in un futuro prossimo: esempi
notevoli includono Amorphous Computing [AAC+00], Autonomic Computing
[Hor01, KC03] e NASA Swarm Robotics [RHTR06].

Lo sviluppo di sistemi auto-organizzanti (SOS) è guidato da principi di-
versi rispetto all’ingegneria tradizionale. Tipicamente, gli ingegneri proget-
tano sistemi come composizione di elementi più semplici, sia nel caso di astra-
zioni software che di dispositivi fisici, dove le regole di composizione dipendono
dal paradigma di riferimento, ma che comunque producono risultati predici-
bili. Al contrario, i sistemi auto-organizzanti mostrano dinamiche non-lineari,
le quali possono essere difficilmente catturate da modelli deterministici, e che
sebbene robusti nei confronti di perturbazioni esterne, sono piuttosto sensi-
bili ai cambiamenti di parametri interni. In particolare, l’ingegneria di si-
stemi auto-organizzanti pone due grandi sfide [GVO08]: Come dobbiamo pro-
gettare le singole entità in modo tale da produrre il comportamento globale
desiderato? Inoltre, come possiamo fornire garanzie sull’emergenza di pattern

iii

ITALIAN SUMMARY - INTRODUZIONE IN ITALIANO iv

specifici? Sebbene l’esistenza di questi problemi sia generalmente riconosciuta,
la comunità scientifica non ha ancora fornito adeguati strumenti di supporto
all’ingegneria di SOS—ad eccezione di alcune esplorazioni nel contesto dei si-
stemi Multiagente (MAS) [DW07, BCGP04, BCD+06].

Panoramica e contributi

Mentre la simulazione è sfruttata efficacemente nell’analisi di sistemi complessi,
le sue potenzialità nell’ingegneria del software sono tipicamente sottovalutate
[Tic98]. Sebbene ci siano esempi dell’uso di simulazione nello sviluppo di soft-
ware, questi approcci coinvolgono la simulazione dopo che lo sviluppo del soft-
ware è già stato terminato: in sostanza le simulazioni sono impiegate per fornire
una caratterizzazione statistica delle prestazioni. In questa tesi, si vuole pro-
muovere l’utilizzo di tecniche di simulazione fin dai primi stadi del sviluppo
software: in questa direzione di ricerca, esiste un insieme molto ridotto di
contributi [vM93, Uhr02, DWHS06, BGP07]. La simulazione ci permette di
osservare l’andamento qualitativo delle dinamiche di un sistema e di ottenere
un primo insieme di parametri operativi primi di implementare il sistema. Se
specifichiamo il modello utilizzando linguaggi formali possiamo eseguire ulte-
riori analisi utilizzando strumenti di verifica formale come il model checking
[CGL94, RKNP04].

In particolare, in questa tesi, consideriamo aspetti metodologici riguardanti
la fase preliminare di progettazione di sistemi auto-organizzanti costruiti utiliz-
zando il paradigma multiagente: nel caso specifico, faremo riferimento al meta-
modello ad agenti e artefatti (A&A) [RVO06], dove gli artefatti rappresentano le
risorse ambientali. Quindi, descriviamo un pattern architetturale che è stato sin-
tetizzato da soluzioni ricorrenti nella progettazione di sistemi auto-organizzanti
[GVO07a]: questo pattern si basa su un ambiente MAS formato da artefatti,
che modellano risorse non proattive, e agenti ambientali che agendo sugli arte-
fatti permettono la realizzazione di meccanismi auto-organizzanti. In questo
contesto, proponiamo un approccio scientifico per condurre la fase preliminare
della progettazione di sistemi auto-organizzanti: in particolare, l’approccio è ar-
ticolato in quattro fasi, modellazione, simulazione, verifica formale e regolazione
dei parametri. Durante la fase di modellazione si fa riferimento all’esistenza di
strategie auto-organizzanti osservate in natura ed eventualmente codificate come
pattern di progettazione [BCD+06, GVO07a, DWH07]. Le simulazioni di un si-
stema astratto vengono utilizzate per guidare le scelte di progettazione fino a
che si ottengono le proprietà richieste: in questo modo aumenta la probabilità
che gli ulteriori passi porteranno ad una implementazione corretta.

L’analisi di sistemi esclusivamente basata sui risultati di simulazioni non
fornisce solide garanzie per l’ingegneria di sistemi complessi. A questo scopo,
valutiamo l’uso di tecniche di verifica formale: in modo particolare model check-
ing [CGL94] ci permette una caratterizzazione precisa dei comportamenti in
esame. Data la specifica formale, un model checker probabilistico determina
se una proprietà è verificata o meno oppure l’effettivo valore di probabilità: le
proprietà sono specificate utilizzando differenti versioni di logiche temporali, in
accordo con il tipo di modello, ad esempio, probabilistico, stocastico oppure non-
deterministico [RKNP04]. Sfortunatamente, l’applicabilità di tecniche di model
checking è limitata dal problema dell’esplosione dello spazio degli stati [CGL94]:

ITALIAN SUMMARY - INTRODUZIONE IN ITALIANO v

nonostante ciò, in quei casi, il model checking può comunque essere utilizzato
per validare i risultati delle simulazioni su piccole istanze del problema.

Dalla sua prima formulazione [GVO05c], il metodo è stato enormemente
evoluto grazie all’esplorazione di diversi sistemi. In questa tesi, descriviamo tre
casi di studio che riteniamo rappresentativi per ognuno dei tre anni del corso di
dottorato: in particolare, ogni caso di studio è stato analizzato utilizzando uno
strumento differente.

Detection of Anomalous Behaviour Sebbene un insieme di azioni siano si-
cure quando eseguite individualmente su un sistema, combinazioni di queste
azioni possono creare effetti dannosi. Questo caso di studio è il riferi-
mento per le pubblicazioni relative al primo anno di dottorato, ad esempio
[GVO06a, GVO06b]. È stato analizzato attraverso simulazioni stocastiche,
utilizzando Stochastic π-Calculus [MPW92a, Pri95] e SPiM [PC04, Phi07]:
inoltre, rappresenta lo stadio preliminare di sviluppo del metodo.

Collective Sorting Dato un ambiente con diversi tipi di oggetti, si richiede
una strategia distribuita per raggruppare insieme oggetti simili, separan-
doli da quelli differenti. Questo è il caso di studio di riferimento per il se-
condo e parte del terzo anno di dottorato, ad esempio [CGV07, GVCO08].
È stato valutato utilizzando il nostro ambiente di simulazione stocastica
sviluppato con Maude [Mau07]: inoltre, rappresenta uno stadio interme-
dio dell’evoluzione del metodo.

Plain Diffusion Dato un insieme di nodi interconnessi che ospitano dati, si
vogliono distribuire i dati in modo omogeneo tra i nodi. Questo è il caso
di studio di riferimento per le pubblicazioni relative a parte del terzo
anno di dottorato [GVO08]. Il caso di studio è stato analizzato attraverso
simulazione e model checking stocastico utilizzando lo strumento PRISM
[PRI07, KNP04]: inoltre, rappresenta lo stadio corrente di evoluzione del
metodo.

Rispetto al contesto di ricerca attuale, il contributo della tesi è duplice:
(i) proponiamo un approccio sistematico per l’ingegneria di sistemi MAS auto-
organizzanti1 utilizzando pattern di progettazione, simulazione e strumenti for-
mali nella fase preliminare di progettazione; (ii) abbiamo analizzato tre casi di
studio fornendo soluzioni auto-organizzanti alternative a quelle esistenti.

Struttura della Tesi

Descriviamo ora la struttura della tesi: si noti che i contributi originali della
tesi sono principalmente concentrati nei capitoli 3, 4 e 6.

Capitolo 1 - Introduction Si presentano una panoramica della tesi, il con-
testo di ricerca, le motivazioni e gli effettivi contributi.

Capitolo 2 - Background In modo da comprendere la restante parte della
tesi, presentiamo alcuni concetti e definizioni fondamentali: in particolare,
si discutono le definizioni di sistema auto-organizzante e emergenza e si
introducono i sistemi multiagente ed il metamodello A&A.

1Sebbene la metodologia sia stata concepita per MAS auto-organizzanti, crediamo che
possa essere applicata con successo ad altri paradigmi.

ITALIAN SUMMARY - INTRODUZIONE IN ITALIANO vi

Capitolo 3 - Design Patterns for Self-Organising Systems Si discute il
ruolo dei pattern di progettazione per lo sviluppo di sistemi auto-organiz-
zanti. In particolare, introduciamo un pattern architetturale che è parte
fondamentale nel nostro approccio. Si discutono anche alcuni semplici
pattern in accordo con lo schema di riferimento.

Capitolo 4 - A Systematic Approach for Engineering SOS Si descrive il
metodo per l’ingegneria di MAS auto-organizzanti: l’approccio è di tipo
iterativo ed ogni ciclo è composto da quattro fasi, precisamente, model-
lazione, simulazione, verifica e regolazione dei parametri. Si noti che, dalla
prima formulazione, l’approccio è evoluto enormemente: infatti, mentre
inizialmente consisteva principalmente nell’uso di simulazione, ora include
anche aspetti di verifica formale e di pattern di progettazione.

Capitolo 5 - Formal Languages and Tools Prima di discutere i casi di stu-
dio, si effettua una panoramica dei linguaggi e strumenti formali impiegati,
precisamente, SPiM, Maude e PRISM. In particolare, questi strumenti
forniscono funzionalità differenti e sono stati utilizzati in momenti diversi
dello sviluppo del metodo.

Capitolo 6 - Case Studies Si discutono i casi di studio che hanno caratte-
rizzato i tre anni di dottorato. In particolare, si discute un caso di studio
per ogni anno di corso, precisamente, Detection of Anomalous Behaviour,
Collective Sorting e Plain Diffusion: ogni caso di studio è stato analizzato
per mezzo di uno strumento differente ed è rappresentativo di un diverso
momento dello sviluppo del metodo. Tutti i casi di studio sono strategie
distribuite ed utilizzano differenti meccanismi auto-organizzanti.

Capitolo 7- Related Works Si discutono i lavori correlati all’ingegneria di si-
stemi auto-organizzanti, principalmente da un punto di vista metodologico:
inoltre, si valuta l’uso in letteratura di strumenti formali per l’analisi o
progettazione di sistemi auto-organizzanti.

Capitolo 8 - Conclusion and Future Works Si conclude riassumendo i con-
tenuti, i contributi, le limitazioni e i possibili sviluppi futuri della tesi.

Chapter 1

Introduction

1.1 Research Context and Motivation

Self-organisation is increasingly being regarded as an effective approach to tackle
modern systems complexity. The self-organisation approach allows the develop-
ment of systems exhibiting complex dynamics and adapting to environmental
perturbations without requiring a complete knowledge of the future surround-
ing conditions. A system developed according to the self-organisation principles
produce global patterns and dynamics via local interaction of its components
[SFH+04, MMTZ06]. Many biological systems can be effectively modelled us-
ing a self-organisation approach: well known examples include food foraging
in ant colonies, nest building in termites societies, comb pattern in honey-
bees, brood sorting in ants [BDT99, CDF+01, SB06]. Self-organising mech-
anisms observed in Nature have inspired the development of many artificial sys-
tems, such as decentralised coordination for automated guided vehicles (AGV)
[WSHL05, PBS05], congestion avoidance in circuit switched telecommunica-
tion networks [SA94], manufacturing scheduling and control for vehicle painting
[CS04], self-organising peer-to-peer infrastructures [BMM02], and pheromone-
based localization supported by a network of RFID tags [MZ07]. Furthermore,
principles of self-organisation are currently investigated in several research ini-
tiatives that may have industrial relevance in a near future: notable examples in-
clude Amorphous Computing [AAC+00], Autonomic Computing [Hor01, KC03]
and NASA Swarm Robotics [RHTR06].

However, the development of self-organising systems (SOS) is driven by dif-
ferent principles with respect to traditional engineering. For instance, engineers
typically design systems as the composition of smaller elements, being either
software abstractions or physical devices, where composition rules depend on
the reference paradigm (e.g. the object-oriented one), but typically produce
predictable results. Conversely, SOS display non-linear dynamics, which can
hardly be captured by deterministic models, and, although robust with respect
to external perturbations, are quite sensitive to changes on inner working param-
eters. In particular, engineering SOS poses two big challenges [GVO08]: How
do we design the individual entities to produce the target global behaviour?
And, can we provide guarantees of any sort about the emergence of specific
patterns? Even though the existence of these issues is generally acknowledged,

1

CHAPTER 1. INTRODUCTION 2

few efforts have been devoted to the study of an engineering support either from
methodologies and tools—except for a few explorations in the MAS (multiagent
system) community [DW07, BCGP04, BCD+06].

1.2 Overview and Contributions

While simulation is effectively exploited in complex systems analysis, its poten-
tialities in software engineering are typically overlooked [Tic98]: although there
are examples of simulation in software development, these approaches involve
simulation after the software has been already designed and developed, that
is simulations are performed afterwards for profiling purposes. Conversely, we
promote the use of simulation techniques at the early stages of software develop-
ment, and a few works in this direction exist [vM93, Uhr02, DWHS06, BGP07].
Simulation allows us to preview overall qualitative system dynamics and de-
vise a coarse set of working parameters before actually implementing the sys-
tem. If we specify a model using formal languages we can then perform fur-
ther analysis resorting to formal verification techniques such as model checking
[CGL94, RKNP04].

Specifically, in this thesis, we describe methodological aspects concerning
the early-design stage of SOS built relying on the agent-oriented paradigm:
in particular we refer to the A&A metamodel [RVO06], where MAS are com-
posed by agents and artefacts, i.e. environmental resources. Then, we describe
an architectural pattern that has been extracted from a recurrent solution in
designing self-organising systems [GVO07a]: this pattern is based on a MAS
environment formed by artefacts, modelling non-proactive resources, and en-
vironmental agents acting on artefacts so as to enable self-organising mecha-
nisms. In this context, we propose a scientific approach for the early design
stage of the engineering of self-organising systems: in particular, the approach
is articulated in four stages, modelling, simulation, formal verification, and tun-
ing. During the modelling phase we mainly rely on the existence of a self-
organising strategy observed in nature and, hopefully encoded as a design pat-
tern [BCD+06, GVO07a, DWH07]. Simulations of an abstract system model are
used to drive design choices until the required quality properties are obtained,
thus providing guarantees that the subsequent design steps would lead to a
correct implementation. However, system analysis exclusively based on simula-
tion results does not provide sound guarantees for the engineering of complex
systems: to this purpose, we envision the application of formal verification tech-
niques, specifically model checking [CGL94], in order to exactly characterise the
system behaviours. Given a formal specification a probabilistic model checker
determines whether a specific property is satisfied or not or the actual likeli-
hood value: properties are specified using different flavours of temporal logic,
depending on the model type, e.g. probabilistic, stochastic or non-deterministic
[RKNP04]. Unfortunately, the applicability of model checking techniques is
hindered by the explosion of state space [CGL94]: nonetheless, in those cases
model checking still a valuable tool for validating simulation results on small
problem instances.

From its first formulation [GVO05c], the method has been greatly evolved
through the exploration of several case studies and tools. In this thesis, we
describe three case studies that we feel representative for each of the three years

CHAPTER 1. INTRODUCTION 3

of PhD course: in particular, each case study has been analysed using a different
tool which supported the method in its state of advancement.

Detection of Anomalous Behaviour Despite a set of actions may be safe
when executed individually upon a system, combinations of these actions
may create unexpected damaging effects. This is the reference case study
for the publications related to the PhD activities of the first year, e.g. see
[GVO06a, GVO06b]. It has been analysed via stochastic simulation, rely-
ing on Stochastic π-Calculus [MPW92a, Pri95] and SPiM [PC04, Phi07]:
furthermore, it represents the early development stage of our methodology.

Collective Sorting Given an environment with several kinds of items, we want
to devise a distributed algorithm for clustering together similar items while
separating different ones. This is the reference case study for the publi-
cations related to the PhD activities of the second and part of the third
year, e.g. see [CGV07, GVCO08]. It has been analysed using our stochas-
tic simulation framework developed on top of the Maude tool [Mau07]:
furthermore, it represents an intermediate evolution of our methodology.

Plain Diffusion Given a networked set of nodes hosting information, we have
to homogeneously distribute the information across the nodes. This is the
reference case study for the publications related to the PhD activities of
part of the third year [GVO08]. It has been analysed via simulation and
model checking using the PRISM tool [PRI07, KNP04]: furthermore, it
represents the current stage of the methodology.

With respect to the current research setting, the main contribution of the
thesis is twofold: (i) we describe systematic approach for the engineering self-
organising MAS1 using design patterns, simulation and formal tools in the early
design phase of the development of self-organising systems; (ii) we analyse three
case studies providing alternative self-organising solutions.

1.3 Structure of the Thesis

We now provide an overview of the thesis structure and summaries for each
chapter. It is worth noting that the original contributions of this thesis are
mainly concentrated in Chapters 3, 4 and 6.

Chapter 1 - Introduction We provide an overview of the thesis, set the re-
search context, describe the motivations and the actual contributions.

Chapter 2 - Background In order to understand and follow the rest of the
thesis, we provide some necessary background information: in particular,
we discuss definitions and examples of both self-organisation and emer-
gence, and provide an introduction to multiagent systems and the A&A
metamodel.

Chapter 3 - Design Patterns for Self-Organising Systems Here we dis-
cuss the role of design patterns for the development of self-organising

1Although the methodology has been conceived for self-organising MAS, we believe it might
be successfully applied to other paradigms as well.

CHAPTER 1. INTRODUCTION 4

systems. In particular, we introduce an architectural pattern which is
a fundamental element in our approach. Furthermore, we discuss a few
simple design patterns with respect to our reference pattern scheme.

Chapter 4 - A Systematic Approach for Engineering SOS We describe
our approach to the engineering of self-organising MAS: the approach is
an iterative one and each cycle is articulated in four steps, namely, mod-
elling, simulation, verification and tuning. It is worth noting that, from its
first formulation, the approach has been evolved and refined to its current
form: indeed, while initially mainly relied on simulation techniques, now
it involves also formal verification techniques.

Chapter 5 - Formal Languages and Tools Before discussing the case stud-
ies, we provide an overview of the formal languages and tools used to
analyse them, namely SPiM, Maude and PRISM. In particular, these
tools provide different facilities and have been used at different stages of
development of the method.

Chapter 6 - Case Studies We discuss the case studies that have characterised
the three years of PhD activity. In particular, we discuss a case study for
each year, namely, Detection of Anomalous Behaviour, Collective Sorting
and Plain Diffusion: each case study has been analysed with a differ-
ent tool and is representative of a particular stage of development of the
method. While all the case studies are distributed strategies, they are
fundamentally unrelated and uses different self-organising mechanisms.

Chapter 7- Related Works We discuss the works related to the engineer-
ing of self-organising systems, mainly from a methodological viewpoint:
furthermore, we survey the uses of formal methods for the analysis of
self-organising systems.

Chapter 8 - Conclusion and Future Works We conclude summarising the
thesis, highlighting the contributions and the limitations, and listing fu-
ture works.

Chapter 2

Background

In this chapter, we introduce the fundamental concepts and definitions that will
be used throughout the thesis.

First, we provide a description of self-organisation and emergence, starting
from historical roots and discussing current definitions. Then, we continue by
introducing the multiagent paradigm, where systems are conceived in terms of
agents and environmental abstractions: in particular, we describe the Agents
& Artefacts metamodel, which is our reference metamodel when designing and
modelling self-organising MAS.

2.1 Self-Organisation and Emergence

In this section, we point out the main conceptual elements of self-organisation
and emergence, as well as provide a brief historical background: this section is
mainly based on the following works [Gol99, DWH05].

2.1.1 The Definition of Self-Organisation

The term self-organisation suggests the idea of internal processes creating and
supporting organisation: the actual definition of self-organisation is not so far
from this intuitive explanation. The first explicit formulation of the idea that
order and structure can spontaneously arise is due to the French philosopher
and mathematician René Descartes: quoting from [Des37]

[Consider] what would happen in a new world, if God were now to
create somewhere in the imaginary spaces matter sufficient to com-
pose one, and were to agitate variously and confusedly the different
parts of this matter, so that there resulted a chaos as disordered as
the poets ever feigned, and after that did nothing more than lend his
ordinary concurrence to nature, and allow her to act in accordance
with the laws which he had established. [..] Thereafter, I showed
how the greatest part of the matter of this chaos must, in accordance
with these laws, dispose and arrange itself in such a way as to
present the appearance of heavens;

5

CHAPTER 2. BACKGROUND 6

Although the basic concept was already contained in Descartes writings, the
first appearance of the term self-organisation seems to be dated three centuries
later, specifically in a 1947 paper by the English psychiatrist William Ross
Ashby. Ashby defined self-organisation as the ability of a system to change its
own internal organisation, rather being changed from an external force [Ash47].

In this definition the focus is placed on the self aspect, that is the con-
trol flow driving the system must be internal: unfortunately nothing is said
about the distribution of control across system components. Sometime, when
it is possible to identify a component that controls the re-organisation of com-
ponents, it is called weak self-organisation. Conversely, when the control is
distributed across multiple entities it is called strong self-organisation. This
distinction between weak and strong self-organisation still in debate and liter-
ature provide different viewpoints. Although the differentiation between weak
and strong self-organisation might seem appealing, in our opinion weak self-
organisation can easily degenerate in the kind of pan-ism allowing to infer that
almost every system is self-organising. Indeed, starting from a passive system it
is sufficient to couple it with another system acting as a controller to have weak
self-organisation: it is worth noting that every automatic system falls into this
definition. From now on, when talking about self-organisation, we will implicitly
refer to the case of internal distributed control.

For what it concerns the organisation part there are different viewpoints:
organisation may be interpreted as spatial arrangement of components, system
statistical entropy, differentiation of tasks among system components, the es-
tablishment information pathways, and the like. It can be observed that all
this cases include some sort of relation between components either, topological,
structural or functional.

Hence, we call a system self-organising if it is able to re-organise itself by
managing the relations between components, either topological, structural or
functional, upon environment perturbations solely via the interactions of its com-
ponents, with no requirement of external forces. This definition implies four key
features found in every self-organising system

Autonomy As previously discussed for the term self, the control must be lo-
cated within the system and should be shielded from environmental forces:
it is worth noting that here we do not mean closed systems, since most of
the systems will rely on the environment resources in the shape of infor-
mation, energy, and matter.

Organisation In the literature self-organising systems are often described as
increasing their own organisation: actually, we see no point for this con-
tinual increase. Indeed, it is often the case that self-organising systems
stabilises in sub-optimal solutions and their organisation varies over time
both decreasing and increasing. Hence, we prefer just to say that there
should be some re-organisation, not necessarily towards a better solution.

Dynamic Self-organisation should always be intended as a process and not as
a final state.

Adaptive Perturbations may happen within the system as well as in the envi-
ronment: a self-organising system should be able to compensate for these

CHAPTER 2. BACKGROUND 7

perturbations. Centralized systems characterized by having a single-point-
of-failure can hardly be considered self-organising because of the high sen-
sitivity with respect to perturbations.

2.1.2 The Definition of Emergence

Intuitively, the notion of emergence is linked to novelty and an abstraction
gap between the system components and the observed property. For instance,
according to the definition discussed in [M0̈4], a phenomenon is emergent if and
only if we have

(i) a system of entities in interaction whose expression of the states
and dynamics is made in an ontology or theory D, (ii) the produc-
tion of a phenomenon, which could be a process, a stable state, or
an invariant, which is necessarily global regarding the system of en-
tities, (iii) the interpretation of this global phenomenon either by an
observer or by the entities themselves via an inscription mechanism
in another ontology or theory D’.

Although the origin of the term emergence can be traced back to Greeks, the
first scientific investigation of emergence is due to philosophers of the British
Emergentism in the 1870s, including J. S. Mill, but flourished only in the 1920s
with the work of Alexander and Broad. Mill (1872) recognized that the notion
of emergence was highly relevant to chemistry: indeed, chemistry and Biochem-
istry provide a wide range of examples involving emergent phenomena, indeed
many chemical compounds exhibit properties that cannot be inferred from the
individual components. For instance, consider the aromatic character of the ben-
zene molecule: this property cannot be found in any of the components, but it
arises as the product of the particular atoms configuration [Lui06]. The English
philosopher G. H. Lewes (1875) distinguished in chemical reactions between
resultants and emergents: while resultants were reducible to their reactants,
emergents displayed properties not explainable in terms of the components.

Sometimes emergence is explained resorting to holism, and hence used in
contraposition with reductionism. While, it is true that emergent properties are
not reducible to the individual components, but can be understood considering
the system as a whole, i.e. analysing the relations and interactions between
parts, emergence is not only about that, but a more comprehensive concept.
Furthermore, while holism and reductionism are concerned with system struc-
ture, emergence deals with system properties, that is an orthogonal dimension
to structure [Lui06]. Hence, assimilating emergence to holism can be a source
of confusion and should therefore treated with care.

2.1.3 Self-Organisation Vs. Emergence

In the literature there are plenty of misleading definitions of self-organisation
and emergence: the most common misconception is about mixing self-organisation
and emergence together in the same definition. This probably happens because
there are many systems that are both self-organising and exhibit emergent prop-
erties [DWH05, DW07]. From previous discussion, it should be evident that
self-organisation and emergence are different concepts, although often appear-
ing together [DWH05].

CHAPTER 2. BACKGROUND 8

Now we analyse two definitions, one about self-organisation and the other
about emergence in order to highlight common misconceptions. For instance,
consider the following definition of emergence provided in [Gol99]:

Emergence [..] refers to the arising of novel and coherent structures,
patterns, and properties during the process of self-organisation in
complex systems. Emergent phenomena are conceptualized as oc-
curring on the macro level, in contrast to the micro-level components
and processes out of which they arise.

It is worth noting that this definition of emergence depends upon the definition
of self-organisation, i.e. emergence is produced by self-organisation. Consider
now the definition of self-organisation provided in [CDF+01]:

Self-organisation is a process in which pattern at the global level
of a system emerges solely from numerous interactions among the
lower-level components of the system. Moreover, the rules specifying
interactions among the system’s components are executed using only
local information, without reference to the global pattern.

Here the definition of self-organisation depends upon the definition of emergence
and, as previously, self-organisation produces emergence.

Recursiveness in scientific definitions should be avoided because is a source of
great confusion. Nonetheless, in the self-organisation and emergence literature,
there are plenty of definitions similar to the quoted ones.

2.1.4 Example: Trail Formation in Ants

In order to clarify the concepts of self-organisation and emergence, we describe
trail formation in ant colonies: the following discussion is mainly based on
[CDF+01]. As soon as an ant find a food source, other ants arrive and join the
food foraging task: soon, a trail is formed connecting the food source to the
nest. As long as the food source is not exhausted, the trail is maintained and
evolves towards the shortest path. When the food source is exhausted, the ants
discard the former trail and try to discover new food sources.

This skill of ants to coordinate for achieving a global goal has always puz-
zled researchers. In 1959, the entomologist P.P. Grassé proposed the theory of
stigmergy [Gra59], which explained coordination observed in social insects:

The coordination of tasks and the regulation of constructions are
not directly dependent from the workers, but from constructions
themselves. The worker does not direct its own work, he is driven
by it. We name this particular stimulation stigmergy.

In particular, Grassé pointed out that the environment plays the important
role of shared coordination media. Later, it has been discovered that ants lay
chemical substances, called pheromone, in the environment: the pheromone
act as a marker for a specific activity. When an ant carries food, it deposits
pheromone on its way back to the nest: other ants can perceive pheromone
gradients, hence finding a trail. Ants join an existing trail to reach either the
nest or the food source: when carrying food the ant tends to reinforce the
existing pheromone trail. Conversely, the environment tend to evaporate the

CHAPTER 2. BACKGROUND 9

pheromone, providing the negative feedback that closes the feedback loop: when
the food source is exhausted, the pheromone trail is no longer reinforced and
eventually disappears.

This system is a clear example of both self-organisation and emergence:
it is self-organising since the trail is caused by indirect coordination between
autonomous entities, the ants. It is emergent since, to explain the trail formation
process it is necessary to consider the complex dynamics generated by the simple
actions of perceiving and depositing pheromone: furthermore, the trail tend to
approximate the shortest path, fact that is even more difficult to explain.

Since the discovery of this coordination mechanisms, ants have become a
reference case study for self-organisation and have inspired several algorithms
[DS04, DBS06] as well as industrial applications [PBS05, WSHL05, SA94, MZ07].

2.2 The Multiagent Paradigm and the A&A Meta-
model

2.2.1 Introduction to the Multiagent Paradigm

In the last decade, software systems have changed dramatically, leading to new
engineering challenges: currently, most of the systems are concurrent and the
distribution of components is rapidly increasing. Furthermore, we are becoming
more and more dependant on software functionalities for many key aspect of
everyday life, and as a consequence software must be always on. Multiagent
system (MAS) is a promising paradigm to face the complexity of modern ICT
systems: quoting from [ZO04]

Agent-based computing promotes designing and developing applica-
tions in terms of autonomous software entities (agents), situated in
an environment, and that can flexibly achieve their goals by interact-
ing with one another in terms of high-level protocols and languages.

In particular, we can identify three interesting aspects: (i) autonomy is necessary
when designing or analysing distributed systems; (ii) flexibility of interaction is
needed because of the very unpredictable environmental conditions; (iii) the
notion of agent provide a unified view with artificial intelligence [RN02]. Then,
an agent has the following characteristics [ZJW03, ZO04]

• autonomy: an agent is proactively oriented towards its goal, instead of
being driven by external forces;

• situatedness: an agent can perceive and affect the environment where it is
immersed, whether it is a computational environment or a physical one;

• sociality: an agent does not live in isolation, rather it is likely to coordinate
with other agents to achieve a global or individual goal.

A multiagent system it is not just a collection of interacting agents: indeed, the
environment plays an important role in multiagent systems providing agents
with services ranging from basic life-cycle to advanced coordination aspects
[WOO07, VHR+07].

Because of the new focus and challenges in multiagent systems, it is re-
quired to evolve software engineering practices to consider agent-specific issues,

CHAPTER 2. BACKGROUND 10

that is Agent-Oriented Software Engineering (AOSE) [ZO04]. In the AOSE re-
search context has been developed several methodologies such as Gaia [ZJW03],
ADELFE [BCGP04] and SODA [MODR06]: each methodology was initially con-
cerned with specific issues and has been later extended to encompass more as-
pects of the whole engineering process. We now consider the basic aspects when
engineering self-organising systems, and then discuss a suitable MAS meta-
model.

2.2.2 The Role of Environment in Self-Organising Sys-
tems

From the analysis of natural self-organising systems [BDT99, CDF+01, SB06],
and existing experience in prototyping artificial ones [WSHL05, PBS05, CGV07,
GVO07a, MZ05, MZ07], it is recognised that the environment plays a crucial role
in the global SOS dynamics. A typical explanatory example is the case of stig-
mergy: as pointed out by [Gra59], among social insects the workers are driven by
the environment in their activity. Indeed, in animal societies self-organisation
is typically achieved by the interplay of individuals and the environment, such
as the deposition of pheromone by ants or the movement of wooden chips by
termites [CDF+01]. In particular, these interactions are responsible for the es-
tablishment and sustainment of a feedback loop: in the case of ant colonies,
positive feedback is provided by ants depositing pheromones, while negative
feedback is provided by the environment through evaporation [CDF+01].

When moving to artificial systems, and to MAS in particular, there are a few
questions that need to be answered. The first one is where is the right loci for
embedding self-organising mechanisms. The above discussion promotes the dis-
tribution of concerns between active components and the environment—in the
MAS context, between agents and the environment. This partially frees agents
from the burden of system complexity, and provides a more natural mapping for
those behaviours that are not goal-oriented. The second question concerns which
are the minimum requirements for an environment to support self-organisation.
From the definition of self-organisation provided by [CDF+01] we can identify
some basic requirements: (i) the environment must support indirect interac-
tions between the components of a system, (ii) the environment must support
some notion of locality, and (iii) such locality should affect interactions, e.g. pro-
moting local ones. Moreover, specific self-organising mechanisms may require
an active environment, i.e. the presence of active processes in the environment
evolving the environment to a proper state: e.g. in pheromone-based systems,
the environment may either provide a reactive evaporation service, or proactively
act upon pheromone-like components to emulate the effect of evaporation.

2.2.3 Engineering MAS Environment Using the A&A Meta-
model

Software conceived according to the MAS paradigm is modelled as a composi-
tion of agents, as autonomous entities situated in an environment, either com-
putational or physical, interacting each other and with environmental resources
to achieve either individual or social goals [WOO07, VHR+07]. Traditionally,
the environment consists in the deployment context which provides communi-
cation services and access to physical resources: in this context, MAS engineers

CHAPTER 2. BACKGROUND 11

Figure 2.1: A&A metamodel featuring and agents as proactive goal-driven en-
tities, and artefacts as encapsulating services to be exploited by agents through
a usage interface.

design agents while the environment is just an output of the analysis stage.
Recently, the environment has been recognised as an actual design dimension
[WOO07, VHR+07]: then, MAS engineers can hide system complexity behind
environmental services, freeing agents of specific responsibilities. In this article,
we adopt the latter notion of environment, i.e. the part of MAS outside agents
that engineers should design to reach the objectives of the application at hand.

In order to describe the environment, we have to provide suitable abstrac-
tions for environmental entities. As pointed out by [MOV07], despite most
of the current AOSE methodologies and metamodels provide little – or some-
times completely absent – environment support, it is useful to adopt the A&A
metamodel, where a MAS is modelled by two fundamental abstractions: agents
and artefacts [RVO06]. Agents are autonomous pro-active entities encapsulat-
ing control, driven by their internal goal/task—left side of Figure 2.1. When
developing a MAS, sometimes entities do not require neither autonomy nor pro-
activity to be correctly characterised. This is typical of entities that serve as
tools to provide specific functionalities: these entities are the so-called artefacts.
Artefacts are passive, reactive entities providing services and functionalities to
be exploited by agents through a usage interface—right side of Figure 2.1. It
is worth noting that artefacts typically realise those behaviours that cannot or
do not require to be characterised as goal-oriented [RVO06]. Artefacts medi-
ate agent interactions, support coordination in social activities, and embody
the portion of the environment that can be designed and controlled to support
MAS activities.

Chapter 3

Design Patterns for
Self-Organising Systems

In this chapter, we discuss the role of design patterns for self-organising sys-
tems engineering. In particular, we present an architectural pattern encoding a
recurrent solution for self-organising MAS: the pattern plays a key role in our
methodology which is described in the next chapter.

The content of this chapter is mainly based on the following publications
[GVO07b, GVO07a], although the underlying ideas can be found in several
articles of ours. In particular, the architectural pattern has been first introduced
in [GVCO07], while [GVCO08, GVO08] are the most recent works including
aspects related to the pattern.

3.1 Motivations and Overview

When designing self-organising systems, it is becoming common practice to ex-
ploit existing models of natural systems, particularly social insects [BDT99].
The alternative approach consists in identifying the behaviours of individual
agents eventually leading to the desired global dynamics: this direction has
proven to be unsatisfactory, since it is mostly unfeasible for non-trivial systems.
Hence, to our knowledge, the only reliable approach is to reverse engineer the
strategies developed in Nature. In many articles, when it comes to discussing
design choices it often appears a formula of the kind “this design has been in-
spired by ..”: without any further detail, we assume that the authors have little
control over their design process. Moreover, since the process of drawing inspi-
ration is both time consuming and prone to error, we look for more systematic
approaches.

To this purpose, we promote the use and development, since few works exist
about this topic [BCD+06, DWH07, GVO07b, GVO07a], of design patterns
for self-organising systems to establish a mapping between artificial systems
problems and natural systems solutions. First introduced in 1977 by Alexander
in architecture [AIS+77], later the concept of design pattern became popular
in computer science with the object-oriented paradigm [GHJV95]. A design
pattern provides a reusable solution to a recurrent problem in a specific domain:
it is worth noting that a pattern does not describe an actual design, rather it

12

CHAPTER 3. DESIGN PATTERNS FOR SOS 13

encodes an abstract model of the solution using specific entities of the paradigm
in use. The use of design patterns offers several advantages, such as, reducing
design-time by exploiting off-the-shelf solutions, and promoting collaboration by
providing a shared language. Specifically, in the case of self-organising systems,
patterns play a key role in driving the designer choices among the subtleties of
complex systems dynamics.

To promote the acceptance of new patterns, as well as to reduce ambiguity, it
is necessary to frame a pattern with respect to a shared scheme, ensuring a good
degree of coherence of the whole pattern catalogue. For example, patterns for
the object-oriented paradigm are described according to the scheme provided
in [GHJV95]: as pointed out in [Lin03], since the agent paradigm cannot be
effectively characterised using only object-oriented abstractions, patterns for
MAS should be described using specific schemata. However, pattern schemata
for MAS, like the one in [Lin03], do not adequately capture the peculiarities of
self-organising systems, namely, which are the forces responsible for the feedback
loop, and which notion of locality/topology is needed: to our knowledge, no
specific pattern scheme has been proposed for self-organising MAS.

In this chapter, we start discussing our reference architectural pattern when
designing self-organising MAS, appeared in [GVCO07] for the first time. Then,
we briefly discuss a pattern scheme for self-organising MAS introduced in [GVO07a]
and evaluate a few behavioural design patterns. It is worth noting that design
patterns play a role in the modelling phase of our methodological approach,
which is the subject matter of the next chapter.

3.2 Reference Architectural Pattern

The components of modern computational systems need often to interact with
an environment populated by legacy systems. Hence, the environment can be
either completely or partially given: this is subject to investigation during the
analysis phase [MOV07]. In the MAS context, during the design phase, resources
are assigned to artefacts, providing a uniform way for agents to exploit resources.
Unfortunately, in a scenario involving legacy systems, we may only have partial
control on the environment, thus making it difficult to embed self-organising
mechanisms within artefacts. Then, to inject self-* properties in MAS, we need
to add a layer on top of existing environmental resources.

To this purpose, we rely on the notion of environmental agent : such agents
are responsible for managing artefacts to achieve the target self-* property.
Hence, environmental agents are seen distinct from standard agents, also called
user agents, which exploit artefact services to achieve individual and social goals.
This recurrent solution has been encoded in the form of architectural pattern
[GVO07a] with reference to the A&A metamodel. As shown in Figure 3.1,
environmental agents act upon artefacts through a management interface: this
interface may be public, i.e. accessible to all agents or, most likely, restricted
and allowing access to operations typically granted to system administrators. A
similar approach to achieve self-organisation, involving managers and managed
entities, has been adopted also in the Autonomic Computing community [KC03].

Adopting the architecture encoded in this pattern provides several advan-
tages. When working with legacy environmental resources – e.g. provided by an
existing infrastructure – relying on additional environmental agents is the only

CHAPTER 3. DESIGN PATTERNS FOR SOS 14

Figure 3.1: Architectural pattern featuring environmental agents as artefact
administrators.

viable solution to add new properties and behaviour, due to a limited control on
environmental resources. When developing systems from scratch, the use of this
pattern allows different mechanisms to be isolated, thus achieving a finer con-
trol on the overall system. Furthermore, we are able to identify and suppress
conflicting dynamics that may arise when exploiting different self-organising
mechanisms at the same time [GVO07a]. It is worth noting that environmen-
tal agents differentiate from user agents because they play a special role in the
system, bound within the environment as perceived by user agents. This is not
in contradiction with previous works such as [ORV06, RVO06], but rather one
step beyond: in fact, here user agents perceive the environment exactly in the
same way, that is, populated only by artefacts, whereas environmental agents
cannot interact with user agents, since they are somehow “encapsulated” within
MAS environment.

This pattern can be successfully applied to embed self-organising mecha-
nisms in MAS environments, especially to environmental services that do not
natively support all the self-organisation features required. From a method-
ological viewpoint, when dealing with self-organising MASs relying on the A&A
metamodel and the architectural pattern, the designer focuses its attention to
the development of strategies for environmental agents. Indeed, environmental
agents are the locus for encapsulating self-organising mechanisms, since we may
not have control over environmental resources.

3.3 Reference Pattern Scheme

The literature provides several pattern schemata for different paradigms and
metamodels, e.g. [GHJV95, Lin03]. In a first attempt to devise design patterns,
we relied on the scheme for MAS patterns described in [Lin03]. We soon rec-
ognized the failure to capture essential self-organisation aspects, namely forces
involved in the feedback loop and topology notion. The following pattern scheme
extends the one described in [Lin03] and has been first introduced in [GVO07a]:
the scheme is summarised in Table 3.1, where the novel items are emphasised.
Particularly relevant to this work are the feedback loop and locality elements:

CHAPTER 3. DESIGN PATTERNS FOR SOS 15

Name The name of the pattern
Aliases Alternative names
Problem The problem solved by the pattern
Forces Trade-offs in system dynamics
Entities Entities participating to the pattern
Dynamics Interactions between entities
Feedback Loop Interactions responsible for the feedback loop
Locality Describe the type of locality required
Dependencies Environmental requirements
Example An abstract example of usage
Implementation Hints on implementation
Known Uses Existing applications using the pattern
Consequences Effects on the overall system design
See Also References to other patterns

Table 3.1: This pattern scheme extends the one described in [Lin03] and has
been first introduced in [GVO07a].

Feedback loop Describes the processes or actions involved in the establish-
ment of a feedback loop, i.e. the actions providing positive and negative
feedback. For example, in a digital pheromone infrastructure, the positive
feedback consists in the agent depositing pheromones, while the environ-
ment provides the negative feedback in the form of pheromone evapora-
tion.

Locality Requirements in terms of spatial topology or action-perception ranges:
if the environment has a notion of continuous space, perception range is
specified as a float value; if the environment has a graph topology, ranges
are specified as the number of hops.

3.4 Basic Patterns for Self-Organising Systems

In this section, we describe a few design patterns already presented in [GVO07b,
GVO07a]. Although these patterns describe very basic dynamics, they model
fundamental aspects of many self-organising systems: furthermore, we prefer to
consider simple patterns first and then develop more complex patterns relying
on the basic ones.

3.4.1 Collective Sorting Pattern

Social insects tend to arrange items in their surroundings according to spe-
cific criteria, e.g. broods and larvae sorting in ant colonies [DGF+91, BDT99,
CDF+01]. Collective sorting strategies may play an important role in artificial
systems as well: for instance, grouping together related information helps to
manage batch processing.

We consider our previous exploration of Collective Sorting dynamics in a
MAS context [CGV07, GVCO07, GVCO08] in order to synthesise a pattern.

CHAPTER 3. DESIGN PATTERNS FOR SOS 16

Figure 3.2: Collective sorting (a) an initial state (b) the final state.

From any arbitrary initial state, the goal of Collective Sorting is to group to-
gether similar information in the same node, while separating different kinds
of information: Figure 3.2 displays a visual example of the system dynamics.
Sometimes the deployment scenario does not allow to reach this goal: e.g. in a
network having two nodes and three kinds of information, two kinds are going
to coexist on the same node. Due to random initial situation and asynchronous
interactions the whole system can be modelled as stochastic. Hence, it is not
generally known a priori where a specific cluster will appear: clusters location is
an emergent properties of the system [CGV07], which indeed supports robust-
ness and unpredictable environmental conditions. Table 3.2 summarises the
features of the collective sorting pattern.

3.4.2 Evaporation Pattern

In social insects colonies, coordination is often achieved by the use of chemical
substances, usually in the form of pheromones: pheromones act as markers
for specific activities, e.g. food foraging [BDT99, CDF+01]. Specifically, these
substances are regulated by environmental processes called aggregation, diffusion
in space and evaporation over time: each process has its own relevance, hence
it is analysed as a separate pattern. This class of mechanisms for indirect
coordination mediated by the environment is called stigmergy [Gra59], and it
has been widely applied in the engineering of artificial systems [MZ05, MZ07,
PBS05, WSHL05]: for more details about stigmergy see Section .

Evaporation is a process observed in everyday life, although with different
implications: e.g. from scent intensity it is possible to guess the parameters
of its source, such as size and distance. In the case of insect colonies, marker
concentration tracks activities: e.g. absence of pheromone implies no activity
or no discovered food source. In ant food foraging [BDT99, CDF+01] when a
food source is exhausted, the pheromone trail is no longer reinforced and slowly
fades away.

Evaporation has a counterpart in artificial systems that is related to informa-
tion obsolescence [ROV+07, Par06]. For instance, consider a news web portal:
while newer information is inserted at the top of the page, older information
fades as time passes, which can be visually translated into a movement towards
the end of the page. In general, evaporation can be considered a mechanism
to reduce information amount, based on a time relevance criterion. It is worth
noting that evaporation fades information over time eventually erasing it, if no
reinforcement is provided: Figure 3.3 displays the dynamics of evaporation.

CHAPTER 3. DESIGN PATTERNS FOR SOS 17

Name Collective Sorting

Aliases Brood Sorting, Collective Clustering

Problem MAS environments that do not explicitly impose constraints
on information repositories may suffer from the overhead of
available information.

Forces Optimal techniques require more computation while reduc-
ing communication costs: on the other hand, heuristics allow
background computation but increase communication costs.

Entities The pattern involves artefacts, user agents and environmen-
tal agents.

Dynamics User agents inject information in the artefacts. The arte-
facts have to provide specific content inspection primitives
depending on the implementation. Environmental agents
monitor artefacts for new information, and depending on
artefacts content may decide to move an information to a
neighboring artefacts.

Feedback Loop Positive feedback is determined by environmental agents
moving items to the appropriate cluster, while negative feed-
back happens when an item is misplaced.

Locality Either continuous and discrete topology are suitable. Larger
perception range improve strategy efficiency, but perception
of immediate neighborhood is sufficient, but requires mem-
ory of items encountered.

Dependencies It requires an environment compliant to the A&A meta-
model.

Example See Figure 3.2 for a visual example.

Implementation Environmental agents may perform periodic inspection or
been triggered by an insertion action: both approaches are
suitable and choice depends on performance requirements.
Moving information requires an aggregated view upon arte-
facts content, e.g. using counters or spatial entropy mea-
sures: in the case this is not feasible or too expensive, content
sampling techniques can be used, see [CGV07] for a detailed
discussion.

Known Uses Explorations in robotics for sorting a physical environment
[BDT99].

Consequences Collective Sorting may not work when used in combination
with other patterns that spread information across the MAS:
in particular collective sorting opposes to Diffusion (Section
3.4.4).

See Also -

Table 3.2: A summary of the features of the collective sorting pattern according
to the reference scheme.

3.4.3 Aggregation Pattern

Pheromone deposited in the environment is spontaneously aggregated, i.e. sep-
arate quantities of pheromone are perceived as an individual quantity but with
greater intensity [BDT99, CDF+01]: Figure 3.4 provides a visual example for
the aggregation pattern. Aggregation is a mechanism of reinforcement and is
also observable in human social tasks [ROV+07, Par06]. The ranking mecha-
nism is a typical example [ROV+07]: when browsing the Internet someone finds

CHAPTER 3. DESIGN PATTERNS FOR SOS 18

Figure 3.3: Evaporation (a) an initial state (b) the final state with no reinforce-
ment.

Name Evaporation

Aliases None to our knowledge.

Problem MAS environments can soon become overwhelmed by infor-
mation deployed by agents.

Forces Higher evaporation rates release memory, but require more
computation: furthermore, evaporated information cannot
be recovered!

Entities The pattern involves artefacts, user agents and environmen-
tal agents.

Dynamics User agents inject information in the artefacts. The arte-
facts assign a time-stamp/counter to the received infor-
mation. Environmental agents erase obsolete informa-
tion/information whose counter reached zero: eventually, all
the information is removed.

Feedback Loop User agents deposit items in the environment while environ-
mental agent evaporate them.

Locality Perceptions and actions happen only locally. Either contin-
uous and discrete topologies are suitable.

Dependencies It requires an environment compliant to the A&A meta-
model.

Example See Figure 3.3 for a visual example.

Implementation Environmental agents may perform periodic inspection or
been triggered by a specific event: both approaches are suit-
able and choice depends on performance requirements.

Known Uses A fundamental element of stigmergy [CDF+01] and dig-
ital pheromone based application [MZ05, MZ07, PBS05,
WSHL05].

Consequences -

See Also When used in combination with Aggregation (Section 3.4.3)
or Diffusion (Section 3.4.4), it allows for building complex
behaviours: in particular, Evaporation + Aggregation + Dif-
fusion is the Stigmergy pattern.

Table 3.3: A summary of the features of the evaporation pattern according to
the reference scheme.

an interesting fact, he/she can leave a (reinforcement) comment that is typically
anonymously and automatically aggregated with comments of other users.

It is then evident that, while evaporation is driven by the environment,

CHAPTER 3. DESIGN PATTERNS FOR SOS 19

aggregation is driven by the user agent. When used in combination with evap-
oration, aggregation lets the designer close a positive/negative feedback loop,
allowing for auto-regulated system in self-organisation and Autonomic Comput-
ing [KC03] styles.

Figure 3.4: Aggregation (a) an initial state (b) the final state.

3.4.4 Diffusion Pattern

When pheromone is deposited into the environment it spontaneously tends to
diffuse into neighboring locations according to local concentrations [BDT99,
CDF+01]. This process, called diffusion, is omnipresent in nature and hence
is studied in several fields under different names, e.g. osmosis in chemistry.
Starting from any arbitrary state, diffusion eventually distribute the information
equally across all nodes, providing an distributed averaging system [BCD+06]:
Figure 3.5 displays a visual example of diffusion.

While aggregation and evaporation processes act locally, diffusion requires a
notion of topology. Furthermore, in diffusion the initial quantity of information
is conserved but spatially spread: other forms of diffusion may be conceived to
produce stable gradients [MZ05].

Figure 3.5: Diffusion dynamics (a) an initial state (b) the desired final state.

CHAPTER 3. DESIGN PATTERNS FOR SOS 20

Name Aggregation

Aliases None to our knowledge.

Problem Large scale MAS suffer from the amount of information de-
posited by agents, which has to be sifted in order to synthe-
sise macro information.

Forces Higher aggregation rates provide results closer to the actual
environment status, but require more computation.

Entities The pattern involves artefacts, user agents and environmen-
tal agents.

Dynamics User agents inject information in the artefacts. Environmen-
tal agents look for new information and aggregate it with
older information to produce a coherent result.

Feedback Loop User agents deposit items in the environment while environ-
mental agents synthesise an aggregated info.

Locality Perceptions and actions happen only locally. Either contin-
uous and discrete topologies are suitable.

Dependencies It requires an environment compliant to the A&A meta-
model.

Example See Figure 3.4 for a visual example.

Implementation Environmental agents may perform periodic inspection or
been triggered by a specific event: both approaches are suit-
able and choice depends on performance requirements. It
is worth noting that aggregation is a very simple task and
could be automatically handled by artefacts, when properly
programmed: on the other hand, it is easier to have separate
agents for different functionalities, which can be individually
paused or stopped.

Known Uses A fundamental element of stigmergy [CDF+01] and dig-
ital pheromone based application [MZ05, MZ07, PBS05,
WSHL05]. In e-commerce applications customers feedback
is usually aggregated, e.g. average ranking, in order to guide
other customers.

Consequences -

See Also When used in combination with Evaporation (Section 3.4.2)
or Diffusion (Section 3.4.4), it allows the synthesis of more
complex behaviours: in particular, Evaporation + Aggrega-
tion + Diffusion is the Stigmergy pattern.

Table 3.4: A summary of the features of the aggregation pattern according to
the reference scheme.

CHAPTER 3. DESIGN PATTERNS FOR SOS 21

Name Diffusion

Aliases Plain Diffusion, Osmosis.

Problem In MAS where agents have limited perception radius, the rea-
soning process may suffer from the lack of knowledge about
neighboring nodes.

Forces Higher diffusion radius brings information further away from
its source, providing a guidance also to distant agents: as a
consequence, the infrastructure load increases, both in terms
of computation and memory occupation. Furthermore, dif-
fused information does not reflect the current status of the
environment hence providing false hints.

Entities The pattern involves artefacts, user agents and environmen-
tal agents.

Dynamics User agents inject information in the artefacts. A weight is
assigned to the information from artefacts or user agents.
Environmental agents diffuse information decreasing the
weights in local node and correspondingly increasing the
weights in neighboring nodes.

Feedback Loop User agents deposit items in the environment while environ-
mental agent scatter them to neighboring locations.

Locality User agents perceptions and actions happens only locally,
while environmental agents need to perceive and act at least
at one hop of distance. Either continuous and discrete
topologies are suitable.

Dependencies It requires an environment compliant to the A&A meta-
model.

Example See Figure 3.5 for a visual example.

Implementation Environmental agents may perform periodic inspection or
been triggered by a specific event: both approaches are suit-
able and choice depends on performance requirements.

Known Uses A fundamental element of stigmergy [CDF+01] and dig-
ital pheromone based application [MZ05, MZ07, PBS05,
WSHL05]. In e-commerce applications the see-also hint is a
typical example of information diffusion were the topology
is built upon a similarity criterion of products.

Consequences Diffusion may not work when used in combination with other
patterns that spread information across the MAS: in partic-
ular diffusion opposes to Collective Sorting (Section 3.4.1).

See Also When used in combination with Evaporation (Section 3.4.2)
or Aggregation (Section 3.4.3), it allows the synthesis of more
complex behaviours: in particular, Evaporation + Aggrega-
tion + Diffusion is the Stigmergy pattern.

Table 3.5: A summary of the features of the diffusion pattern according to the
reference scheme.

Chapter 4

A Systematic Approach for
Engineering Self-Organising
Systems

In this chapter, we describe our methodological approach for engineering self-
organising MAS according to the A&A metamodel and our architectural pat-
tern. Initially, it was mostly a simulation-driven approach exploiting formal
tools and languages, e.g. see [GVC06b]: then, it has been evolved to an it-
erative approach articulated in four stages, namely (1) modelling, (2) simu-
lation, (3) verification, and (4) tuning, exploiting formal languages and tools
at each step, e.g. see [GVO08]. This chapter is mainly based on the publi-
cations [GVO05a, GVO05c, GVO05b, GVO06a, GVC06b, GVO06b, GVC06a,
GVCO07, GVCO08, GVO08]: each publication provides a snapshot of the
methodology at a different stage of development. The most recent publication
containing the latest stage of development of the methodology is [GVO08].

4.1 Motivation and Context

Currently, the development of agent-oriented systems is supported by several
software engineering methodologies. Most methodologies were initially con-
ceived to cover specific issues, and then evolved to encompass the whole software
process: for instance, the Gaia methodology [ZJW03] was mostly concerned
with intra-agents problems, while the initial target of the SODA methodology
[MODR06] was to tackle the social, inter-agent dimension. Conversely, other
methodologies restricted the domain of applicability to a specific class of MAS,
like ADELFE for the Adaptive MAS theory [BCGP04].

Concerns like embedding self-organising mechanisms within an existing MAS,
or engineering SOS from scratch, raise peculiar issues that are not typical or
so crucial in current AOSE methodologies. Indeed, as pointed out in [MOV07],
even core elements such as the environment is currently explicitly supported by
only a few of the existing AOSE methodologies. Furthermore, AOSE method-
ologies, as well as object-oriented ones, tend to focus on design-time aspects
rather than run-time ones: in fact, it is common practice to assume that once

22

CHAPTER 4. METHODOLOGY 23

a system has been designed, its structure will not change and will behave ac-
cording to the specifications. The Autonomic Computing proposal suggests
to consider run-time issues at design-time: then, aspects such as maintenance
become a functional requirement of the problem to be solved [KC03], thus in-
creasing the degree of autonomy and adaptiveness of the target system. Along
this line, we promote the use of techniques that allow us to preview and analyse
global system dynamics at design-time: indeed, when dealing with SOS, more
attention should be devoted to observe the emergence of desired properties early
in the design stage rather than waiting for the final implementation. In par-
ticular, when developing SOS, we have to answer the following question: how
can we design the individual environmental agent’s behaviour in order to ensure
the emergence of the desired properties? To tackle this issue, two approaches
are typically exploited: (i) devising an ad-hoc strategy by decomposition that
will solve the specific problem; (ii) observing a system that achieves similar re-
sults, and trying to reverse-engineer its strategy. It is generally acknowledged
that the former approach is applicable only to a limited set of simple scenarios:
due to the non-linearity in entity behaviours, global system dynamics becomes
quite difficult to be predicted. Instead, in the self-organisation community, the
latter approach is commonly regarded as more fruitful: in nature, it is pos-
sible to recognise patterns that are effectively applicable to artificial systems
[BCD+06, DW07, GVO07a, BDT99]. Since it is quite unlikely to find a pattern
that completely fits a given problem, it is common practice to rely on some
modified and adjusted version—in the next section we will elaborate on the
implications of these modifications.

Then, once a suitable strategy has been identified and adapted, how can we
guarantee that it will behave as expected? Given the specifications of a SOS,
how to ensure the emergence of the desired global dynamics is still an open issue.
While automatic verification of properties is typically a viable approach with
deterministic models, verification becomes more difficult and soon intractable
when moving to stochastic models: then, it is useful to resort to a different ap-
proach, possibly mixing formal tools and empirical evaluations, so as to support
the analysis of the behaviour and qualities of a design.

Before describing our approach in the next section, we would like to point out
that it is not our goal to develop a brand-new complete methodology for MAS
engineering. Instead, we would rather aim at integrating our approach within
existing AOSE methodologies, and addressing the peculiar issues raised by self-
organising MAS. For instance, by considering Gaia [ZJW03], our approach could
be seen as a way to direct early design phases: on the one hand, this could
help the developer in defining responsibilities for agents and services of the
environment by taking inspiration from patterns found in natural systems; on
the other hand, it could make it possible to preview the global dynamics of the
MAS and tune its behaviour before committing to a specific design solution.

4.2 Overview of the Approach

Our approach for the engineering of self-organising MAS relies on the previously
described A&A metamodel and architectural pattern. Since we embed self-
organising mechanisms into environmental agents, according to the architectural
pattern, our method is mainly focused on the behaviour of such agents. Our

CHAPTER 4. METHODOLOGY 24

method should not be considered a full methodology, i.e. encompassing aspects
from requirements to maintenance: conversely, we heavily rely on existing MAS
methodologies for many development stages. Indeed, we mainly concentrate
in the early design phase, bridging the gap between analysis and the actual
design phase: this is probably the most delicate phase when dealing with self-
organisation and emergence because of the complexity in dynamics.

Our methodology could be summarised by the statement “bringing science
back into computer science” [Tic98]: indeed, it is heavily based on existing tools
commonly used in scientific analysis, especially for complex systems, but that
are typically not used in software development. Specifically, our approach is
iterative, that is, cycles are performed before committing to a specific design:
during each cycle four steps are performed

1. modelling proposing a model for the system to engineer based on existing
design patterns;

2. simulation analysing global qualitative dynamics in different scenarios be-
fore continuing with quantitative analysis;

3. verification verifying that the properties of interest holds and identifying
working conditions;

4. tuning adjusting system behaviour and devising a coarse set of parameters
for the actual system.

Across the whole process we rely on the use of formal tools and techniques, in
order to provide unambiguous specifications and enable automatic processing.
At this development stage of the method, we exploit the PRISM tool [PRI07,
KNP04], a Probabilistic Symbolic Model Checker developed at University of
Birmingham that provides model-checking capabilities along with simulation
and model editing integrated within the same software: more details about the
tool can be found in Section 5.3. We now continue detailing issues related to
each of the steps.

4.3 Modelling

In the modelling phase we develop an abstract model of the system, providing
a characterisation for (i) environmental agents, (ii) artefacts, and eventually
(iii) user agents. As far as artefacts are concerned, we can provide an accurate
model of their behaviour with respect to the usage interface and set of services
exposed—though it is often the case that a detailed description of the inner
working is not available. Conversely, the repertoire of user agents’ behaviour
may be too vast to be accurately modelled: indeed, in open environments, it
is basically impossible to entirely foresee the dynamics of agents to come—self-
organisation is precisely used to adapt to unpredicted situations. Then, it is
necessary to abstract from their peculiarity, resorting to probabilistic or stochas-
tic models of user agents’ behaviour. Models for these agents are developed in
terms of usage of resources, i.e. with respect to the observable behaviour and by
abstracting away from inner processes such as planning and reasoning. The ac-
curacy of the user-agent internal model is not so crucial, since self-organisation

CHAPTER 4. METHODOLOGY 25

is built on top of indirect interactions mediated by the environment: hence, it
is sufficient to know how user agents perceive and modify their environment.

Once a suitable model for user agents and artefacts is provided, we move to
the core part of modelling, that is, the characterisation of environmental agents.
A suitable model for environmental agents is typically built on top of the services
provided by artefacts, and functionally coupled with user agents’ behaviour in
order to establish and sustain a feedback loop: indeed, a feedback loop is a
necessary element in every self-organising system. Consider for example the case
of ant colonies, where ants deposit pheromone which diffuses and evaporates in
the environment: then, by perceiving pheromone gradient, ants can coordinate
their movement without a priori knowledge of the path to follow.

To find a candidate model for environmental agents, we can take inspi-
ration from known SOS and look for a model exhibiting or approximating
the target dynamics. This step implies the existence of some sort of design-
pattern catalogue, a required tool for an engineer of SOS. Although this sort
of catalogue does not exist yet, several efforts by different research groups
are moving along this direction. Indeed, several patterns with important ap-
plications in artificial systems have already been identified and characterised
[BDT99, BCD+06, DW07, GVO07a]: for more details on the topic refer to
Chapter 3. Hence, even though patterns that perfectly match the target sys-
tem dynamics can hardly be found, it is still feasible to identify some patterns
approximating such a dynamics; however, this typically requires typically re-
quiring changes of some sort. Given the complex behaviour that characterises
SOS, modifications should be done with care since they require expertise in
mechanisms underlying SOS.

Although the model may be provided in several notations, we favour the use
of formal languages. In fact, formal languages allow both to devise unambiguous
specifications and to perform further automatic analysis, such as simulation and
verification: we will discuss more about simulation and verification in the next
two sections.

4.4 Simulation

We use simulation tools to quickly and easily preview system dynamics before
actually performing quantitative analysis. Before performing simulations, we
have to define two key aspects: (i) providing a set of suitable parameters for
the model, and (ii) choosing the test instances, i.e. the initial states we consider
representative and challenging for the system.

When dealing with self-organising MAS we mostly rely on stochastic sim-
ulation in order to capture both timing and probability aspects. Parameters
for this kind of simulation are typically expressed in terms of rates of action
defined according to suitable statistical distributions: the exponential distribu-
tion is typically used because of the memoryless property, i.e. to generate new
events it is not necessary to know the whole event history but only the current
state. Furthermore, the use of exponential distribution allows the mapping to
Continuous-Time Markov Chains, which are commonly used in simulation and
performance analysis. Then, rates should reflect the conditions in the deploy-
ment scenario, otherwise the simulations results would be meaningless. While
parameters for artefacts can be accurately measured, user agents provide a ma-

CHAPTER 4. METHODOLOGY 26

jor challenge since we cannot foresee all their possible behaviours. Hence, we
have to make assumptions about artefact behaviours both from the qualitative
(e.g. rational exploitation of resources) and quantitative (e.g. rate of actions
and rate of arrivals/departures) standpoint: once the parameters of artefacts
and agents are defined, we devise an initial set of parameters for environmental
agents.

Testing the dynamics of the system in different scenarios and worst case
scenarios is very important for a reliable evaluation of the quality and robustness
of the model. Typically, we tend to make observations first in very extreme
conditions, strictly dependent on the application at hand, since they quickly
reveal the presence of faults in the model: then, we continue the analysis with
more real scenarios. In the simulation stage we do not perform quantitative
analysis, which is instead a major concern in the verification and tuning stage:
this is especially true during the first iteration cycle, since we still do not have
sufficiently characterised the system model.

4.5 Verification

Among the available verification approaches, we are interested in the one called
model checking: model checking is a formal technique for automatically ver-
ifying the properties of a target system against its model [EMCGP99]. The
model checker accepts a formal specification of the system and a list of prop-
erties expressed in a suitable variant of temporal logic: then, the properties
are automatically evaluated from the model checker for every system execution.
Hence, with respect to simulation that test only a subset of all possible exe-
cutions, model checking provides more reliable results: the main drawback of
model checking is known as the state explosion problem which does not allow
to perform model checking for a problem instance having a large states space.
As far as tools are concerned, we currently rely on the PRISM-Probabilistic
Symbolic Model Checker [PRI07], a software developed at University of Birm-
ingham. More details about model checking and the PRISM tool can be found
in Section 5.3.

In our approach, model checking is exploited to provide strong guarantees
about the emergence of global properties, and in general for precisely charac-
terising the dynamics of the systems. From the viewpoint of the model checker,
emergent properties are not different from ordinary properties. Conversely,
from the designer viewpoint emergent properties are quite challenging: a model
checker needs properties formulated according to modelled states, but because
the very nature of emergent properties, modelled states cannot be automatically
mapped to the emergent property. Hence, the designer should shift from the
global to the individual dynamics and identify the micro properties that are a
symptom of the emergent property. This practice will become more clear in
Section 6.3 when applying the method to a case study.

4.6 Tuning

In the tuning phase, environmental agents’ behaviour and working parameters
are successively adjusted until the desired dynamics are observed. The tuning

CHAPTER 4. METHODOLOGY 27

process is performed exploiting both simulation and verification tools to devise
a coarse set of working parameters for the actual system: this process still
not automatised, hence it can be quite time-consuming. It is worth noting
that setting parameters to arbitrary values may lead to unrealistic scenarios.
Furthermore, the working rate of environmental agents may affect the actual
working rate of artefacts: in a realistic scenario, computational resources are
typically limited, hence increasing the working rate of environmental agents
may require a decrease in the service rate of artefacts. Without considering this
problem, the dynamics of the deployed system may significantly deviate from
the expected ones.

At the end of the tuning process, we may realise that the devised set of
parameters does not satisfy performance expectations, features unrealistic val-
ues with respect to the execution environment, or deviates the system from the
desired behaviour. In any of these scenarios, we cannot proceed to the actual
design phase since the system is not likely to behave properly when deployed.
Hence, it is required to perform another iteration for reconsidering the mod-
elling choices or evaluating other approaches. Conversely, when a model meets
the target dynamics and the parameters lie within the admissible ranges, we
can proceed by providing a more accurate statistical characterisation of the sys-
tem behaviours: this can be performed either by simulation, when the problem
instance is too big or does not require strong guarantees, or by model checking
which produces more accurate results.

Chapter 5

Formal Languages and
Tools

In this chapter, we describe the most relevant formal languages/techniques and
the respective software tools evaluated during the activities that lead to this
thesis. Specifically, we discuss them in the same order as we first evaluated
them:

• stochastic simulation with stochastic π-calculus [MPW92a, Pri95] and the
Stochastic Pi-Machine (SPiM) [Phi07, PC04]: these techniques and tools
have been used in the following publications [GVO05a, GVO05c, GVO05b,
Gar05, GVO06a, GVO06b, GVC06a] and have been evaluated with respect
to the case study Detection of Anomalous Behaviour, see Section 6.1;

• stochastic simulation with the Maude tool: these techniques and tools
have been used in the following publications [CGV06b, CGV06c, CGV06a,
VCG07, CGV07, GVCO07, GVCO08] and have been evaluated with re-
spect to the case study Collective Sorting, see Section 6.2;

• simulation and model checking [EMCGP99, KNP07] using the Probabilis-
tic Symbolic Model Checker (PRISM) [KNP04, PRI07]: these techniques
and tools have been used in the following publication [GVO08] and have
been evaluated with respect to the case study Plain Diffusion 6.3.

In particular, the use of model checking techniques and the PRISM tool reflects
the current state of our research and support the advancements in our method-
ological approach. In the next chapter, we will discuss a case study for each of
the presented formal tools.

5.1 Simulation with Stochastic π-Calculus and
SPiM

In this section, we describe the stochastic π-calculus and the Stochastic Pi-
Machine (SPiM), a software tool to run stochastic simulations from system spec-
ifications written in Stochastic π-Calculus: we do not discuss here the formal
semantics of π-Calculus and SPiM because it is out of the scope of this thesis.

28

CHAPTER 5. FORMAL LANGUAGES AND TOOLS 29

5.1.1 From Process Algebra to Stochastic π-Calculus

Process Algebra is a class of formal languages for modelling concurrent systems,
in particular providing support for interaction and composition of processes.

Among the various Process Algebra, we provide here an overview of the π-
Calculus, a calculus of processes having changing structure [Mil99, MPW92a,
MPW92b]: in particular, π-Calculus extends a previous Process Algebra, Calcu-
lus of Communicating Systems (CCS), by adding support for channel mobility.
According to [Mil99, MPW92a], the π-Calculus syntax can be summarized by

P ::= 0 | P1 + P2 | ȳx.P | y(x).P |τ.P | P1|P2 | (νx)P | [x = y]P | !P (5.1)

• 0 is the empty process, and it’s called inaction, often omitted;

• the silent prefix τ means that a silent action is performed;

• the replication !P means that you can have as many copies – but a finite
number – as you wish, i.e. P |P |P |..;

• summation P1 + P2 means that the process behaves like P1 or P2 in a
non-deterministic fashion;

• the prefix ȳx is a sort of output port, so ȳx.P means send x across y
channel and then behave like P ;

• the prefix y(x) is a sort of input port, so y(x).P means receive a value
across y channel, name it x and then behave like P ;

• the composition P1|P2 means that the two processes are executed in par-
allel;

• the restriction (νx)P means that the process behaves like P except for the
fact that any action across x channel is prohibited;

• [x = y]P means that the process behaves like P if y matches x, otherwise
0.

As an example to illustrate π-Calculus syntax, we consider a simple client-
server system: we are interested in modelling the interactions between Client
and Server mediated by a Queue.

C ≡ push().C
S ≡ pop().S
Q ≡ (push+ pop).Q

Sys ≡ (C | S | Q)

As it can be noticed, the specification is very simple and consists in three pro-
cesses running in parallel modelling respectively a client, a server and a queue.

Although very useful to model the system behaviour, π-Calculus does not
allows the evaluation of quantitative aspects, which are very important to profile
performance and reliability. The solution proposed by Stochastic π-Calculus
[Pri95] is to add probabilistic distributions to actions: the duration of an action
is an aleatory variable drawn according to the probabilistic distribution. To

CHAPTER 5. FORMAL LANGUAGES AND TOOLS 30

this purpose, the exponential distribution is a common choice because of the
memoryless property, i.e. an action duration does not depends on system history
but only current state: the exponential distribution P = 1− e−rt is completely
defined by the parameter r which is called rate. Hence, stochastic π-calculus
labels actions with rate, modelling an aleatory action duration: furthermore, the
use of rates rules out non-determinism. Indeed, in a choice the fastest action is
chosen while the others are discarded, according to a race condition [Pri95]: it
is worth noting that since the action duration is aleatory, each time the selected
action may differ.

The use of exponential distributions in stochastic π-calculus allows the con-
struction of Markov Chains [BH01]: Markov Chains are commonly used for
numerical analysis of systems mainly for performance evaluation, simulation
and formal verification.

5.1.2 SPiM: the Stochastic Pi-Machine

The Stochastic Pi-Machine (SPiM) is a software for simulating systems modelled
in Stochastic π-Calculus: specifically, SPiM implements a variant of the calculus
[Phi07, PC04]. Initially developed for investigating biological systems [PC04],
SPiM can be used to simulate any systems that can be modelled in Stochastic
π-Calculus.

Basically, SPiM accepts a stochastic π-calculus specification and produces
a simulation trace based on user directives, e.g. duration and sampling. For
programming convenience, SPiM language uses a different syntax with respect
to the original π-Calculus: for further details please refer to the SPiM Language
Manual [Phi07].

The stochastic selection strategy has been implemented following the Gille-
spie’s algorithm [Gil77, PC04]: basically, an action is selected and the respec-
tive duration is computed depending on the rates and the number of processes
willing to perform that action. Because of that simulation algorithm, we may
experience some unexpected results when modelling systems other than chem-
ical reactions or biological processes. In artificial systems, the duration of an
action depends on the rate itself, and not on the number of components: indeed,
a server does not work faster as the number of clients increases.

As an example to illustrate SPiM syntax, we consider a simple client-server
system: we are interested in observing the dynamics of the requests queue, i.e.
the pending job submission.

directive sample 0.01
directive plot ?count as "Job"

new push@1.0 : chan
new pop@1.0 : chan
new count@1000.0 : chan

let Client() = !push; Client()
let Server() = !pop; Server()
let QM() =
do ?push; (QM() | ?count)
or ?pop; (QM() | !count)

CHAPTER 5. FORMAL LANGUAGES AND TOOLS 31

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Q
u
e
u
e

S
i
z
e

Time

Figure 5.1: A simulation run of the client-server specification showing the queue
size evolution.

run 1 of (Client(); Server(); QM())

The specification starts with two directives sample and plot respectively in-
dicating the duration of the simulation and the quantities to trace. Then, it
follows the declaration of channels: push models the client request, pop mod-
els the server response and count serves as a counter for pending requests, i.e.
queue size. Then, it comes the actual processes specification: the Client()
sends a signal on the push channel and continues; the Server() sends a signal
on the pop channel and continues; the queue manager QM() waits for signals on
the channels push or pop, then continues and in parallel either sends or waits
for a signal on the channel count. Using channels in the shape of counters by
matching the actions !count and ?count is a common practice. SPiM allows
to trace only the number processes or the number of channels waiting for com-
munication: as previously stated, due to the simulation algorithm, counting
processes may cause unexpected results. The last instruction simply starts one
instance for each of the defined processes.

Given the previous specification, it is then possible to run simulations, even-
tually tuning channels rate to evaluate qualitative system dynamics. For in-
stance, Figure 5.1 shows the evolution of the queue size: notice that, because of
the stochastic nature of the system, bursts of activity may occur.

5.2 Stochastic Simulation with Maude

5.2.1 Overview of Maude

Maude is a high-performance reflective language supporting both equational
and rewriting logic for specifying a wide range of applications [Mau07, CDE+07].

CHAPTER 5. FORMAL LANGUAGES AND TOOLS 32

Rewriting logic is a logic of concurrent change that can naturally deal with state
and with concurrent computations.

Maude should be intended as a metalanguage to provide domain-specific
languages. Maude basic programming statements are equations and rules, both
having a simple rewriting semantics in which instances of the left hand side pat-
tern are replaced by corresponding instances of the right hand side [CDE+07].

In the course of finding a general simulation tool for stochastic systems,
we considered Maude a particularly appealing framework, for it allows to
directly model a system in terms of transition rules, or to prototype a new
domain-dependent language to have more expressiveness and compact specifi-
cations. This is therefore a natural starting point for addressing the simulation
of stochastic aspects in coordination: other languages require the designer to
model systems in terms the available abstractions, e.g. channels and processes
in π-Calculus [MPW92a], which might not be suitable in the general case. On
the other hand, Maude cannot be used off the self, since it requires additional
efforts for the definition of a custom language. Since Maude does not natively
support stochastic aspects, we have developed a stochastic simulation frame-
work on top of it. In the next section, we provide an overview of the simulation
framework: for more details the reader can refer to [CGV07]. The full specifi-
cation of the simulation framework is listed in Appendix A.

5.2.2 A Stochastic Simulation Framework

The idea of our library is to model a stochastic system by a labelled transition
system where transitions are of the kind S

r:a−−→ S′, meaning that the system
in state S can move to state S′ by action a, where r is the (global) rate of
action a in state S. The rate of an action in a given state can be understood as
the number of times an action could occur in a time-unit (if the system would
rest in state S), namely, its occurrence frequency. This idea is inspired by the
activity mechanism of stochastic π-Calculus [Pri95, PC04], where each channel
is given a fixed local rate, and the global rate of an interaction is computed as
the channel rate multiplied by the number of processes willing to send a message
and the number of processes willing to receive a message.

Our model is hence similar to that approach, for the way the global rate is
computed is custom, and ultimately depends on the application at hand, e.g. the
global rate can be fixed, or can depend on the number of system sub-processes
willing to execute an action. Given a transition system of this kind and an initial
state, a simulation is simply executed by: (i) checking each time the available
actions and their rate; (ii) picking one of them probabilistically (the higher the
rate, the more likely the action occurs); (iii) accordingly changing the system
state; and finally (iv) advancing the time counter following an exponential dis-
tribution, so that the average frequency is the sum of the action rates. This
technique is again similar to the one adopted in SPiM [PC04].

The framework implementation is organised in three Maude modules:

• STOCHASTIC-SELECTION contains the definition of the functions handling
probabilities and randomness;

• STANDARD-CARRIER provides all the definitions a specific system has to
implement in order to be simulated by this tool;

CHAPTER 5. FORMAL LANGUAGES AND TOOLS 33

• STOCHASTIC-TRACES contains the definition of the simulation engine.

We are not describing here the whole implementation of the simulation frame-
work, hence, the interested reader should refer to [CGV07].

We consider now the simple example of the Na − Cl chemical reaction to
briefly explain the process of creating a system specification to simulate.
mod NA-CL is
pr FLOAT .
pr INT .
pr CONVERSION .
pr STANDARD-CARRIER .

sort NaClState .
subsort NaClState < State .

op <_,_,_,_> : Nat Nat Nat Nat -> State .

ops ionization deionization : -> Action .

vars Na Na+ Cl Cl- : Nat .

eq < Na,Na+,Cl,Cl- > ==> =
(ionization # (float(Na * Cl) * 1.0) -> [< p Na,s Na+,p Cl,s Cl- >]);
(deionization # (float(Na+ * Cl-) * 2.0) -> [< s Na,p Na+,s Cl,p Cl- >]) .

endm

This system is characterised by a state of the kind <Na,Na+,Cl,Cl->, where
Na is the number of sodium atoms, Na+ the number of sodium ions, Cl is the
number of chlorine atoms, Cl- the number of chlorine ions. Two kinds of con-
stant actions are then defined: ionize stands for ionization and deionize for
deionization. Finally, the transition system is expressed by a single equation,
associating to any state two possible effects: one in which ionization decrements
Na and Cl (by prefix predecessor function p) and increments Na+ and Cl- (by
prefix successor function s), and the other that behaves in the opposite way.
Note that, according to the Gillespie’s selection algorithm in [Gil77], the rate
of ionization and deionization is here proportional to the product of the two
reactants, multiplied by a constant value: that is, we here enforce deionization
factor as being twice that of ionization. Below, it is displayed a sample simu-
lation trace, showing that the system reaches a dynamical equilibrium around
<60,40,60,40>.
[300 : < 100,0,100,0 > @ 0.0],
[299 : < 99,1,99,1 > @ 5.2282294378567067e-5],
[298 : < 98,2,98,2 > @ 6.9551290710937174e-5],
[297 : < 97,3,97,3 > @ 8.5491215950091466e-5],
..
[7 : < 61,39,61,39 > @ 3.9845251139158447e-2],
[6 : < 60,40,60,40 > @ 3.9980318990300842e-2],
[5 : < 59,41,59,41 > @ 4.029131950475788e-2],
[4 : < 58,42,58,42 > @ 4.0294167525983679e-2],
[3 : < 57,43,57,43 > @ 4.0424914101137542e-2],
[2 : < 58,42,58,42 > @ 4.0506028901053114e-2],
[1 : < 59,41,59,41 > @ 4.0661029058233995e-2],
[0 : < 60,40,60,40 > @ 4.0695684943167353e-2]

5.3 Probabilistic Model Checking with PRISM

In this section, we provide a brief overview of model checking techniques and
describe the facilities provided by the PRISM software tool.

5.3.1 Model Checking

Model checking is a formal technique for automatically verifying the properties
of a target system against its model [EMCGP99]. The model to be verified is

CHAPTER 5. FORMAL LANGUAGES AND TOOLS 34

expressed in a formal language, typically in a transition system fashion: the
model checker accepts the finite state system specification and translate it into
an internal representation, e.g. Binary Decision Diagrams (BDD) [EMCGP99].
Properties to be verified are expressed using a suitable variant of temporal logic,
e.g. Linear Temporal Logic (LTL) [EMCGP99]: then, the properties are auto-
matically evaluated from the model checker for every system execution. The
main drawback of model checking is the state explosion problem: since states
space typically grows in a combinatorial way, the number of states quickly be-
come untractable as the system grows. Modern techniques allows the reduction
of this problem, and verification of models with large states space has been
carried out successfully [CGL94]: nonetheless, state explosion is still the main
limitation of model checking and abstraction is often required.

Although model checking was initially targeted to deterministic systems, ad-
vancements in the last decade consider also probabilistic as well as stochastic
aspects [KNP07, RKNP04]. A probabilistic model checker uses a temporal logic
extended with the suitable operators for expressing probabilities, e.g. Proba-
bilistic Computational Tree Logic (PCTL) and Continuous Stochastic Logic
(CSL) [KNP07, RKNP04]. Beyond boolean answers, a probabilistic model
checker allows the computation of the actual probability value for the tested
property.

In our approach, model checking techniques are exploited to provide strong
guarantees about the emergence of global properties, and in general for pre-
cisely characterise the dynamics of the systems. From the viewpoint of the
model checker, emergent properties are not qualitatively different from ordinary
properties. Conversely, from the designer viewpoint the encoding of emergent
properties is quite challenging: a model checker needs properties formulated
according to modelled states, but because the very nature of emergent proper-
ties, modelled states cannot be automatically mapped to the emergent property.
Hence, the designer should shift from the global to the individual dynamics and
identify the micro properties that are a symptom of the emergent property.

5.3.2 The PRISM Software

PRISM-Probabilistic Symbolic Model Checker is a software tool developed at
University of Birmingham [PRI07, KNP04]: PRISM provides integrated editing
and probabilistic model checking capabilities, and basic simulation tools mainly
for debugging purpose. The PRISM modelling language is based on Reactive
Modules and models are specified in a transition systems fashion. The language
is able to represent either probabilistic, non-deterministic and stochastic sys-
tems using, respectively, Discrete-Time Markov Chains (DTMC), Markov Deci-
sion Processes (MDP) and Continuous-Time Markov Chains (CTMC) [KNP04,
KNP07]. Components of a system are specified using modules, while the system
state is encoded as a set of finite-values variables. Furthermore, modules are al-
lowed to interact using synchronisation in a process algebra style, i.e. labelling
commands with actions: module composition is achieved using the standard
parallel composition of Communicating Sequential Processes (CSP) process al-
gebra.

As an example consider the specification of a stochastic cyclic counter having
base 100

CHAPTER 5. FORMAL LANGUAGES AND TOOLS 35

ctmc
module counter

value : [0..99] init 0;
[] value < 99 -> 1.0 : (value’=value+1);
[] value = 99 -> 1.0 : (value’=0);

endmodule

where ctmc declares that the specification models a Continuous Time Markov
Chain, the module definition is wrapped into the block module .. endmodule,
value is a variable ranging between 0 and 99 initialised to 0, and a transition is
expressed according to the syntax [] guard -> rate : (variable-update).
For more features and details about the PRISM language syntax please refer to
the PRISM documentation [PRI07].

Given the previous specification it is possible to use the PRISM built-in sim-
ulator to observe the system dynamics. The simulator engine makes it possible
either to perform step-by-step simulation, or to specify the number of steps
to be executed: in particular, the step-by-step mode which is very useful for
debugging purposes. The simulator traces the values for each variable in the
model, in this case only value: it is worth noting that the variable range does
not affect simulation performance, conversely to model checking, but can pro-
duce unexpected results since ranges affect transition guards. PRISM does not
provide any plotting capability, however it allows simulation traces to be ex-
ported in different formats, so this is not a major concern and can be easily
overcome using third-party plotting software. Unfortunately, PRISM does not
allow experiments to be run, i.e. multiple simulations spanning values for several
parameters.

PRISM model checking facilities are very robust: it provides three model
checking engines, namely, MTBDD, Sparse and Hybrid, having different mem-
ory and computational costs. Properties are expressed according to the temporal
logics Probabilistic Computational Tree Logic (PCTL) for DTMC and MDP
models, and Continuous Stochastic Logic (CSL) for CTMC models [KNP04,
KNP07]. Beyond boolean properties, PRISM allows the computation of actual
probability values as well as values for reward-based properties. For instance,
referring back to the cyclic counter, the simple property “Which is the steady
state probability for the counter to contain the value 10?” is encoded in the
CSL formula S=? [value=10], and obviously the result is 0.01. Another exam-
ple, “Which is the probability for the counter to reach the value 80 within 75
time units?” is encoded in the PCTL formula P=? [true U<=75 A=80], and
the result approximated to four decimals is 0.2968.

A very compelling feature of PRISM, because of the CPU intensive nature
of model checking algorithms, is the ability to run model checking experiments.
Once the values for parameters range have been defined, the tool automatically
performs verification in all the combinations of parameters values.

Another interesting feature is the possibility to evaluate properties with sim-
ulation instead of model checking: this allows to extend model checking results
when the instance becomes to large to be formally verified. The user is allowed
to set several parameters, e.g. confidence, sample, in order to obtain the desired
approximation level.

Chapter 6

Case studies

In this chapter, we discuss three case studies, namely, Detection of Anomalous
Behaviour, Collective Sorting and Plain Diffusion: each case study is represen-
tative of several aspects

Detection of Anomalous Behaviour It is the reference case study for the
publications related to the PhD activities of the first year [GVO05a,
GVO05c, GVO05b, Gar05, GVO06a, GVO06b]. It has been analysed via
stochastic simulation, relying on Stochastic π-Calculus and SPiM (see Sec-
tion 5.1): furthermore, it represents the early development stage of our
methodology.

Collective Sorting It is the reference case study for the publications related
to the PhD activities of the second and part of the third year [CGV06b,
CGV06c, CGV06a, VCG07, GVCO07, CGV07, GVCO08]. It has been
analysed using the stochastic simulation framework developed on top of
the Maude tool (see Section 5.2): furthermore, it represents an interme-
diate evolution of our methodology.

Plain Diffusion It is the reference case study for the publications related to
the PhD activities of part of the third year [GVO08]. It has been analysed
via simulation and model checking using the PRISM tool (see Section 5.3):
furthermore, it represents the current stage of the methodology.

6.1 Detection of Anomalous Behaviour

In this section, we analyse the case of a basic Intrusion Detection System for mul-
tiagent systems that detects anomalies in agents’ behaviour. A self-organisation
approach is adopted to dynamically balance the resources required to detection
depending on the entity of intruders’ attack. For the formal specification and
the simulation, we rely on stochastic π-calculus [MPW92a, Pri95] and the SPiM
tool [Phi07, PC04], see Section 5.1.

36

CHAPTER 6. CASE STUDIES 37

6.1.1 Emergent Harmful Sequences of Actions and Intru-
sion Detection

Every artificial resource implies a usage protocol, i.e. a collection of usage pat-
terns: for example, a pattern for an agent using a DVD player might consist in
(i) turning-on the device, (ii) inserting the DVD, (iii) pushing the play button,
(iv) pushing the stop button, (v) removing the DVD, and (vi) turning-off the
device. If the user behaves differently than what the pattern prescribes, it may
get no result, e.g. when pushing the stop button before the play button. But
in some cases non-functional requirements may enter the picture: it is possible
that combinations of actions complying with usage protocol may result in a
damage for the system, e.g. when repeatedly turning on and off a light. More-
over, as the usage protocol gets complicated and the number of combinations
grows, it becomes quite difficult, from an engineering viewpoint, to specify or
even foretell all the harmful sequences. While we believe that the most critical
sequences of actions should be handled at design time, i.e. statically or via a pat-
tern database, it is in general too expensive to account for all the possibilities,
and some alternative approach might be worth pursuing.

The field of information security is in fact witnessing this scenario. With
respect to the early days of computer, security techniques are now more sophis-
ticated and are supported by publicly available automated tool: accordingly,
the efficiency and subtlety of attacks is increasing. Traditional techniques, such
as authentication, authorisation, and role-based access control are mostly static
mechanisms and work as barriers, and are recognised as no longer sufficient to
protect our information systems [FHS97]. A relatively recent approach to avoid
these drawbacks is Intrusion Detection (ID), which tries to discover unsafe ac-
cesses to networked electronic devices and, in general, anomalies in the use of
computational resources [MCA00]. ID techniques have been widely inspired
from the mechanisms regulating the human immune system [FHS97]: several
properties of such a system have been regarded as desirable also for information
system security, like distribution, adaptiveness, protection at multiple levels,
uniqueness of the immune response. ID techniques are partitioned onto two
categories:

Signature-based (Also called pattern-based) They require a database of signa-
tures, i.e. sequences of actions symptomatic of a malicious activity. Signa-
tures are synthesised by observing previous attacks, hence, this approach
cannot discover new threats. The main advantage of this approach is the
low false alarm rate.

Anomaly-based They try to discover anomalies in the use of resources, by ob-
serving and modelling normal system usage, and thus detecting abnormal
ones by comparison. This approach is able to detect novel attacks and
relies on automated techniques developed in decision theory and artificial
intelligence. The main drawback of this approach is that the false alarm
rate could be significant.

As far as emergence and self-organisation are concerned, we shall in the following
focus on anomaly-based approaches.

CHAPTER 6. CASE STUDIES 38

Figure 6.1: Comparison between the normal behaviour of agents and the be-
haviour of a specific agent.

6.1.2 A Basic Architecture for Intrusion Detection in an
Agents & Artefacts Environments

In this section, we describe an architecture for implementing an intrusion de-
tection layer on top an environment compliant to the A&A metamodel.

In our hypothetical MAS, agents dynamically join the society and then in-
teract with resources modelled as artefacts: we assume the environment already
provides authentication and authorization policies. We want to add a further se-
curity level accounting for dynamic and emergent aspects, such as e.g. detecting
novel and unpredicted attacks though an anomaly-based IDS.

Consider an artefact exposing a usage interface composed of 5 possible ac-
tions, which we refer to as A, B, C, D, and E. An anomaly-based IDS needs
first to trace agents’ behaviour “for a while”: gathered data are then used to
build a profile of what is for agents a “normal way” to interact with that partic-
ular artefact. For instance, a basic profiling approach consists in gathering the
relative percentage of actions, thus providing a statistical characterisation—see
Figure 6.1 (left). At the same time, it is possible to profile the individual agent
behaviour when interacting with that artefact—see Figure 6.1 (right).

Note that this approach makes sense under two hypotheses: (i) the number
of traces is such that the data is statistically significant, and (ii) the percentage
of agents exhibiting abnormal behaviour is not relevant during the initial obser-
vation stage. Then, it is possible to program ID so as to analyse the deviation
of the specific agent behaviour from the average one, which is considered to be a
symptom of intrusion or abnormal activity: some criteria is then applied as soon
as sufficient data has been gathered for each agent. When an agent is detected,
the intrusion response system properly reacts, e.g. banning the agent from the
society. Several criteria for detection can be defined and used in combination:

• total deviation should be less than a given threshold (e.g. 20%);

• deviation on individual critical actions should be less than a given thresh-
old (e.g. 5%);

• an agent can behave abnormally no longer than a given interval (e.g. 2
minutes).

Obviously, these criteria—and any more sophisticated approach evaluated in
literature—influence false alarm and missed detection rates. However, here
we are not concerned with performance issues at that level, and suppose both

CHAPTER 6. CASE STUDIES 39

Figure 6.2: The basic architecture of the anomaly detection systems: the basic
entities are agents and artefacts.

these factors are zero. Instead, we focus on designing the proper strategy for
inspecting an agent abnormal behaviour, so as to reduce the overhead required
for the IDS to effectively react to certain attacks.

In a possible implementation of the IDS for an A&A based environment, we
would use three different artefacts:

Resource artefact Providing the actual service exploited by the agent, and
exposing the usage interface;

Logging artefact Maintaining a coherent and updated characterisation of agents’
behaviour, gathered from the interactions occurring with the resource arte-
fact;

Reporting artefact Reporting the suspicious behaviours as discovered by in-
spector agents.

Two kinds of agents are then hosted: client agents requesting services and
whose behaviour is monitored, and inspector agents responsible for applying
the policies of the IDS. In our specific case, an inspector compares the average
signature with the individual ones and report any anomaly to the reporting
artefact.

For obvious reasons of performance, it is not possible to inspect all agents
at each step, thus this is to be done through periodical sampling. Inspection
is characterised by two parameters: the rate of inspection of each inspector
agent, and the number of inspectors that are active simultaneously. Note that
it is functionally equivalent to have one inspector working at rate krinsp or k
inspectors working at rate rinsp: while from an implementation viewpoint, as
pointed out in [FHS97], having several entities makes the system more robust.
The basic architecture of the system is depicted in Figure 6.2.

As this system should not be overloaded with the ID task for reasons of
reliability, the system should self-regulate, raising its defences, otherwise releas-
ing computational resources delegated to monitoring. Given this architecture,

CHAPTER 6. CASE STUDIES 40

we seek for a strategy to adapt inspection rate to the actual intruders in the
system, satisfying the following basic requirements:

• if there are no intruders the rate of inspection should be at a minimum
value;

• if intruders enter the system, the inspection should work at higher rate,
resulting in the detection of more anomalies;

• detected agents are banned, causing a decrease in the number of intruders:
inspection rate should also correspondingly decrease, since the attack is
being contained;

• if new intruders arrive then the system should raise again the inspection
rate etc.

In the next section we illustrate how to apply our methodological approach1 to
carefully design one such strategy with given performance characteristics.

6.1.3 Modelling the Solution

The first step consists in finding an adequate abstract model of the system to
implement, exhibiting the emergent properties required for the problem at hand.
One possibility is to use the “catalogue” of self-organising systems studied so
far, looking for a model whose global dynamics matches the desired one. Among
the many natural systems explored in the literature, it is easy to recognise that
interesting similarities are exhibited by the prey-predator system [Ber92, SB06].

This model attempts to describe the coupled evolution of populations of
preys and predators in biological systems. Intuitively, the model states that the
evolution of a population depends on the product of the number of preys and
predators, the population of predators grows as they kill preys, while it tend to
vanish as preys diminish. The system evolution can be describe by the couple
of equations {

dN/dt = aN − bNP
dP/dt = cNP − dP , (6.1)

where N and P are respectively the amount of preys and predators, a and d are
the rate of changes in isolation, b and c the rates of changes due to prey-predator
interaction. The above set of equations leads to three possible cases, depending
on these parameters (see Figure 6.3):

1. there is a dynamic equilibrium between preys and predators, and both
populations evolve in a periodical fashion;

2. preys population grows faster than the one of predators, leading to an
overpopulated environment;

3. preys population grows too slow to survive predators, leading to extinction
of both populations.

1Notice that we are here referring to the early version of the approach as described by first
papers, e.g. [GVO06a, GVO06b]

CHAPTER 6. CASE STUDIES 41

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20

P
o
p
u
la

ti
o
n
 s

iz
e

Time

Prey
Predator

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20

P
o
p
u
la

ti
o
n
 s

iz
e

Time

Prey
Predator

 0

 20

 40

 60

 80

 100

 0 5 10 15 20

P
o
p
u
la

ti
o
n
 s

iz
e

Time

Prey
Predator

Figure 6.3: Qualitative dynamics of a prey-predator system in the case of dy-
namic equilibrium (left), overpopulation (centre) and extinction (right).

This model has similarities with the IDS we want to realise, for agents with
abnormal behaviour very much resemble preys caught by inspector agents acting
as predators—agents with correct behaviour form instead a population immune
from predators. Moreover, we recognise the former of the three cases above as
the one we intend to reproduce, since it is the situation where the population of
intruders can be kept under control with the minimum allocation of resources
for the IDS, and is the situation where detection really self-regulate with respect
to the amount of anomaly.

Therefore, we proceed by modelling a system where the population of inspec-
tor agents grows as intruders are found, and diminishes in the opposite case.
In particular, abnormally behaving agents enter the system according to vari-
ous dynamics—we simulate and analyse some in the following—and are killed
as soon as they are found by some inspecting agent. On the other hand, the
system starts with one inspector agent, which clones itself as it perceives an
abnormal activity; each such a cloned agent would possibly clone itself, but has
a specific lifetime (expressed in terms of number of inspections) after which it
dies. Hence, our solution provides both the positive feedback due to anomaly
detection and the negative feedback due to limited lifetime, thus resembling the
mechanisms of human immune system cells [FHS97].

In order to simulate the model of our system we need to develop an ex-
ecutable specification: to this purpose, we rely on stochastic π-calculus, and
accordingly write the specification with the syntax of the SPiM tool, see Section
5.1 for more details.

Normally behaving agents They properly interact with resources and, when
requested, reply to inspection;

Abnormally behaving agents They improperly interact with resources and,
when requested, reply to inspection;

Inspector agents They periodically inspect agents and clone themselves adap-
tively driven by the perceived abnormal activity.

We first consider the specification of a normal agent. This is expressed as a
π-calculus process AgentN. The process recursively spends some time in an idle
state—modelling interaction with the resource artefact—or possibly receives a
signal on the inspect() channel, which is replied with with a signal on the

CHAPTER 6. CASE STUDIES 42

channel isNormal()—modelling inspection. In SPiM syntax this is expressed
by the following process definition:

let AgentN() =
do delay@serviceRate; AgentN()
or ?inspect; !isNormal; AgentN()

Symbols “?” and “!” stand for receiving and sending a stimulus, inspect and
isNormal are channels with instantaneous communication, delay is a chan-
nel with rate serviceRate, “;” is sequential composition, and the two final
AgentN() statements realise recursive calls.

Similarly, the behaviour of an abnormal agent is realised through a process
AgentA interacting with resources and receiving a signal on the inspect channel,
replying with a signal on the channel isAbnormal. In the latter case, the process
halts (no behaviour is specified as continuation), modelling the agent being
banned from the system. This is expressed by the following definition:

let AgentA() =
do delay@serviceRate; AgentA()
or ?inspect; !isAbnormal

The basic definition of an inspector is a bit more articulated, and is as follows:

let Inspector() =
delay@inspectionRate;
!inspect;
do ?isAbnormal; (InspectorCloned(lifeTime) |

!cInspector |
?cAbnormal |
Inspector())

or ?isNormal; Inspector()

We first have exactly one occurrence of an inspector agent that never dies, which
we use to guarantee that the service is always available. Such an inspector
interacts according to a rate specified by the rate inspectionRate of channel
delay. Each time it first signals on the channel inspect, which is perceived by
one agent—either normal or abnormal as seen above—modelling its inspection.
If the agent is recognised as abnormal—channel isAbnormal is stimulated—a
new inspector is created and counters useful for simulation are updated. In any
case, the behaviour Inspector is recursively called. The above counters are
realised with processes which increment a value when they receive a message,
and decrease it if they are able to send a message: counter cInspector and
cAbnormal respectively track the number of inspectors and abnormal agents.

Process InspectorCloned realises an inspector similarly to Inspector, but
the difference here is that such an inspector dies after lifeTime iterations, hence
it is of this kind:

let InspectorCloned(life:int) =

if life >0 then

delay@inspectionRate;

!inspect;

do ?isAbnormal; (InspectorCloned(life-1) |

InspectorCloned(lifeTime) |

CHAPTER 6. CASE STUDIES 43

!cInspector |

?cAbnormal)

or ?isNormal; InspectorCloned(life-1)

else ?cInspector;

Process InspectorCloned has one integer parameter representing its lifetime.
If this is greater than zero the behaviour is similar to a standard inspector, the
only difference is that recursion makes lifetime decrease by one. If this is zero,
the counter of inspectors is decreased, and the process ends.

By combining all these definitions and completing them with the declaration
of channels, names and directives, we obtain the complete SPiM specification,
as reported in Figure 6.4.

The first part of the specification sets simulation steps and values to be dis-
played (counter of abnormal agents and inspectors). Then, some constants are
set, followed by the definition of channels along with their rate–rate 1000000.0 is
used to simulate an instantaneous interaction. After the definition of processes
seen above, the specification ends with the starting process, which in this case
is made up of 1000 normal agents, and 1 inspector. For a detailed explanation
of syntax and semantics the interested readers can refer to [Phi07].

6.1.4 Simulation and Tuning

Given the system specification above, the next step is to evaluate the global dy-
namics and tune the parameters: in particular we are interested in the dynamics
of the population of inspectors (predators) and abnormal agents (preys). Differ-
ent values for that parameters really lead to different performance values, hence
it is generally necessary to run different simulations until hopefully reaching the
desired quality of system behaviour.

For instance, supposing the inspection rate is 6 (that is, 6 inspections per
time unit), and the lifetime of inspectors is 30, we obtain an instance of the IDS
which reacts to a continuous attack in Figure 6.5. Here, normal agents are
1000, while abnormal agents are initially zero and are introduced periodically
with a fixed rate, namely, 1 agent per time unit. As we see from the chart, the
population of abnormal agents grows until around 40 elements, that is 4% of
the entire agent population, but after a while inspectors are cloned and cause
abnormal agents to die. The system reaches an equilibrium, where an average
of 0.5% of inspector agents are able to bound abnormal agents to an average of
3%.

Changing the above parameters leads to different results. Supposing it is
the designer’s goal to limiting further abnormal agents, possibly requiring more
inspectors, hence more overhead of the ID process: namely, keeping the popu-
lation of abnormal agents to 2% with a number of inspectors around 1%. This
is achieved by increasing inspectors lifetime, from 30 to 40, as shown in Figure
6.6.

Other interesting simulations that can be used to detect some features of
this IDS instance vary in the kind of attack. For instance, we can simulate how
the IDS would react to an impulse-like, massive attack, where an high number
of abnormal agents suddenly appear. The chart in Figure 6.7 shows the result
with an initial population with 10% of abnormal agents.

Again, the population of inspectors immediately starts growing, causing ab-
normal agents to reduce until disappearing after 20 time units; promptly, in-

CHAPTER 6. CASE STUDIES 44

(* Directives for Simulator *)

directive sample 500.0

directive plot !cAbnormal as "AgentA"; !cInspector as "Inspector"

(* Global Constants and Parameters *)

val arrivalRate = 1.0

val inspectionRate = 6.0

val serviceRate = 1.0

val lifeTime = 40

(* Channels for Signaling Purpose *)

new inspect@1000000.0:chan

new isNormal@1000000.0:chan

new isAbnormal@1000000.0:chan

(* Channels for Counting Events *)

new cAbnormal@1000000.0:chan

new cNormal@1000000.0:chan

new cInspector@1000000.0:chan

(* Agents Specifications *)

let AgentN() = do delay@serviceRate; AgentN()

or ?inspect; !isNormal; AgentN()

let AgentA() = do delay@serviceRate; AgentA()

or ?inspect; !isAbnormal

let Inspector() = delay@inspectionRate;

!inspect;

do ?isAbnormal; (InspectorCloned(lifeTime) |

!cInspector |

?cAbnormal |

Inspector())

or ?isNormal; Inspector()

and InspectorCloned(life:int) = if life >0 then

delay@inspectionRate;

!inspect;

do ?isAbnormal;

(InspectorCloned(life-1) |

InspectorCloned(lifeTime) |

!cInspector |

?cAbnormal)

or ?isNormal; InspectorCloned(life-1)

else ?cInspector;

(* Periodically Introduce Abnormal Agents in the System *)

let Welcome() = delay@arrivalRate; (AgentA() | !cAbnormal | Welcome())

(* Set up Initial Conditions *)

run 1000 of (AgentN() | !cNormal)

run 1 of (Inspector() | !cInspector)

run 1 of Welcome()

Figure 6.4: Complete specification of the system for the SPiM tool.

spectors reduce as well to the initial conditions. To tune the system in order to
achieve different reaction performances, new simulations have to be run.

As we find a set of suitable parameters we can proceed to the actual im-
plementation: otherwise we would have to test different parameters, and if the
global dynamics would not reach the requirements it is necessary to get back to
the abstract system model changing/adapting its general strategy.

CHAPTER 6. CASE STUDIES 45

 0

 10

 20

 30

 40

 50

 60

 0 100 200 300 400 500

A
g
e
n
t
s

N
u
m
b
e
r

Time (sec)

Abnormal Agents
Inspector Agents

Figure 6.5: Dynamics of abnormal agents and inspectors with lifetime set to 30.

 0

 10

 20

 30

 40

 50

 0 100 200 300 400 500

A
g
e
n
t
s

N
u
m
b
e
r

Time (sec)

Abnormal Agents
Inspector Agents

Figure 6.6: Dynamics of abnormal agents and inspectors with lifetime set to 40.

CHAPTER 6. CASE STUDIES 46

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

A
g
e
n
t
s

N
u
m
b
e
r

Time (sec)

Abnormal Agents
Inspector Agents

Figure 6.7: System behaviour in response to an impulse of abnormal behaviour.

6.2 Collective Sorting

In this section we analyse the case study of collective sorting [VCG07, CGV07,
GVCO08], a distributed sorting algorithm inspired by the sorting behaviour
observed in social insects colonies [DGF+91, BDT99]. We refer to an environ-
ment where artefacts have the shape of tuple spaces, namely, where agents are
allowed to insert and retrieve tuples based on their content: this is a typical
scenario of agent mediated interaction, and is general enough to support a wide
range of applications, including stigmergy-based MAS [WOO07, PBS05]. Sim-
ulation results have been obtained using our stochastic framework developed
on top of the Maude tool [Mau07]: for more details about Maude see Section
5.2. For convenience, the complete collective sorting specifications, including
the stochastic simulation framework, can be found in Appendix A.

6.2.1 Problem Statement

A typical problem of tuple-space-based environments is that it is generally dif-
ficult to retrieve the tuples of interest when they could be inserted in any tuple
space of the net. A possible solution is hence to allow agents to find tuples based
on similarity, by grouping together similar tuples in the same tuple space while
separating different tuples: in this way, if a tuple is found on a tuples space,
similar ones are likely found in the same space later. Furthermore, an ordered
environment allows for better batch processing of “items”, e.g. for applying
aggregation techniques, checking consistency, and so on.

Collective sorting amounts at providing an environment that offers a “back-

CHAPTER 6. CASE STUDIES 47

ground” sorting service. Given a set of N tuple spaces and a statically-defined
clustering of tuples into N kinds, collective sorting amounts at moving tuples
toward the fully-sorted situation where each space hosts only tuples of the same
kind. Though, sorting should proceed in dynamic and unpredictable situations
where user agents of the MAS keep interacting with tuple spaces, that is, moving,
inserting, and dropping tuples. Therefore, the tuple space that will eventually
aggregate a certain kind is not to be decided a priori: it should be rather im-
plicitly and probabilistically selected as tuples start aggregating in one space
rather than another due to the effect of multiple tuple movements—namely, in
a self-organisation style. This approach is meant to tackle robustness (which
is seen as more important than performance): we need sorting to be a prop-
erty eventually emerging in spite of external interactions—of course, the more
user agents keep altering the tuple configuration, the more resources should be
devoted to sorting in order to converge.

In conformity to the architecture described in Section 3.2, the sorting task
is hence assigned to a set of environmental agents, whose goal is to keep the
environment ordered as much as possible: in this section we apply the proposed
approach to provide a sound model of the behaviour of such agents. Taking
inspiration from the similar problem of brood sorting [DGF+91, BDT99] mani-
fested in ant colonies, in step 1 we identify a possible model for the behaviour of
environmental agents. In step 2, we discuss the outcomes of several simulations
of system behaviour, showing that the solution is not completely adequate for
it not always leads to full-sorting. In step 3, we hence tune the system model
by introducing a mechanism in the style of simulated annealing : further simu-
lations show the adequacy of the new model, and emphasise the behaviour of
sorting during user agents interactions.

6.2.2 Identifying a Suitable Approach in Nature

Collective sorting in distributed tuple spaces is reminiscent of a classical problem
in robotics known as segregation, where robots roam the ground with the goal
of finding items, group and separate them.

In that context, solutions are typically searched in Nature, which is a rich
source of simple but robust strategies. The segregation behaviour is already
manifested by social insects in brood sorting [DGF+91, BDT99]. When organ-
ising brood and larvae, ants are subject to the problem of grouping and keeping
them separately from an initial situation where they are randomly situated in
the ground. Although ants actual “behaviour” is still not fully understood,
there are several models that are able to mimic the dynamics of the system.
Ants wander randomly and their behaviour is modelled by two probabilities,
the probability to pick up Pp and drop Pd an item: the idea is that an ant (i)
picks up an item if its concentration is low with respect to previous experience,
(ii) starts wander randomly, and (iii) drops the item where its concentration is
higher with respect to where it was picked.

The ant-based solution to the brood sorting problem is an intrinsically self-
organised one: namely, ants are guided by spatially-local observations and are
motivated by the only need of picking items up where concentration is low, and
dropping them where it is higher: numerous such interactions make full sorting
(i.e. the segregation pattern) emerge at the global level. Though the sorting
performance is sub-optimal – it cannot compare with solutions based on global

CHAPTER 6. CASE STUDIES 48

observations – it is intrinsically robust: it promptly reacts to changes in the
environment (e.g. new brood, larvae, or ants are dynamically added or removed),
to faults like an environment split (e.g. a barrier splitting the ground in two
parts), and to local malfunctioning (e.g. some ant behaving in a completely
different way). Hence, it is interesting to seek for a solution for the collective
sorting problem which is inspired by the ant-based solution to brood sorting.

However, as already discussed, the above solution should be significantly
adapted, since the application scenarios of brood sorting and collective sorting
have key differences. First of all, instead of being a continuous environment, our
scenario features a set ofN tuple spaces, each being a concentrated, conceptually
unlimited bag of tuples. Secondly, our environmental agents do not likely move
and carry tuples with them, but rather, for obvious performance reasons, they
should reside in one of the N sites and send tuples away when needed. Finally,
instead of perceiving items based on a range of locality, agents should be able
to look for tuples in either the local tuple space, or a remote tuple space—the
latter operation obviously being more expensive.

6.2.3 Step 1: Modelling Collective Sorting

We consider N environmental agents, also called sorting agents, each situated in
a different site hosting one of the N tuple spaces: each agent is hence assigned to
one tuple space, which is seen as the tuple space local to the agent—interacting
with it is hence less expensive than with other tuple spaces. Similarly to ants,
an agent performs a partial system observation, namely, an observation of the
private tuple space (where the item is possibly picked up) and an observation of
some remote tuple space chosen randomly (where the item is possibly dropped).
If according to such observations it can be inferred that some tuple is better
sent to the remote tuple space, then the agent removes the tuple locally and
inserts it remotely. This observation-action cycle is executed with a fixed sorting
agent rate r, whereas the global sorting agent rate would be N ∗r—which is the
number of moving attempts per time unit. This scenario is depicted in Figure
6.8.

Therefore, each agent has the general goal of moving away tuples from its
local tuple space if they are not forming a collection. In particular, the agent
protocol we consider is as follows:

1. a remote tuple space R is drawn randomly;

2. a “uniform rd” operation is performed on L, yielding a tuple of kind KL;

3. a “uniform rd” operation is performed on R, yielding a tuple of kind KR;

4. if KL 6= KR a tuple of kind KR is moved from L (if any exists there) to
R.

Uniform rd operation, also called urd, is the operation by which the agent reads
any tuple from the tuple space—i.e., any tuple has the same probability of being
retrieved. If urd operation on a tuple space yields a tuple of kind K, it means
that – probabilistically – tuples of kind K are those occurring most, and hence,
K is the best candidate so far for finally aggregating on that space. Accordingly,
at the time third task is executed, the agent knows that space L is aggregating

CHAPTER 6. CASE STUDIES 49

Figure 6.8: Basic architecture for collective sorting.

KL while space R is aggregating KR. The rationale of fourth task is hence that
if KR and KL are different, then the agent can fruitfully send a tuple of kind KR

from L to R, so that both KR in R and KL in L will correspondingly aggregate
more.

This completes the description of a first candidate solution, which can be
turned into any stochastic specification language [PRI07, Phi07]—we relied on
the stochastic simulation library for the Maude term rewriting language dis-
cussed in [CGV07], though any other could be used.

6.2.4 Step 2: Simulating Collective Sorting

The observation and then the decision taken by the agent are affected by prob-
ability, hence the correctness of this distributed algorithm is to be checked by
simulation, in order to verify, first of all, whether complete ordering is reached
starting from any initial situation—even the most chaotic one. As an example,
consider as initial configuration a very chaotic one, where each tuple space has
the same number of tuples of any kind, and e.g. N = 4. We represent this
system state by the syntax:

T1[25,25,25,25],T2[25,25,25,25],T3[25,25,25,25],T4[25,25,25,25]

expressing the fact that each tuple space Ti has 25 tuples of each kind (named
K1, K2, K3, and K4 in the following). An example of simulation trace is pictorially
represented in Figure 6.9 (a), reporting the dynamics of the “winning” tuple in
each tuple space—namely, the tuple that eventually aggregates there. Note that
tuples reach their full aggregation level at different points in time, in mostly an

CHAPTER 6. CASE STUDIES 50

Figure 6.9: Charts of a simulation trace: (a) Winning Tuple; (b) Tuple space
T1; (c) Entropy in each tuple space.

CHAPTER 6. CASE STUDIES 51

unpredictable way. The chart in Figure 6.9 (b) displays instead the evolution
of the tuple space T1 taken as an example: notice that only tuples of kind K1
aggregate there despite its initial concentration was the same as other tuples.
In particular, e.g., at some point around step 1000 there is a bifurcation which
promotes aggregation of tuple kind K1 instead of K2.

It is interesting to analyse also the trend of the entropy of each tuple space
as a way to estimate the degree of order in the system through a single value:
since the strategy we simulate is trying to increase the inner order of the system
we expect the entropy to decrease to zero, as actually shown in Figure 6.9 (c).
The entropy associated to a tuple space is computed in the standard manner
[CGV07], considering the concentration of each tuple kind, and the total entropy
is normalised so it ranges between 0 and 1. Each chart reports the number of
protocol instances (moving attempts) executed by agents: supposing the single
agent rate is 0.25, then the global agent rate is 1.0—there is an average of 1
simulation step per time unit—meaning that full sorting is reached after around
3000 time units. Other simulations performed with a different number of tuples
and tuple spaces show similar qualitative results.

In general, the outcome of a simulation should highlight the system perfor-
mance, but it can sometime show flaws in the design. In our case, though it
first appeared that the proposed model always leads to complete sorting from
any initial configuration of tuples, more thorough simulations show that there
are certain stable states attracting the system trajectory and having positive
entropy, that is, characterised by a non-complete degree of sorting. A state
of this kind is called local minimum (for the entropy). An example of such a
minimum is the following state, obtained by traces shown in Figure 6.10 (a) and
(b):

T1[100,0,0,0],T2[0,69,0,0],T3[0,31,0,0]),T4[0,0,100,100]

Tuple kind K2 is the only one aggregating in both spaces T2 and T3, and at the
same time, kinds K3 and K4 aggregate both in space T4. It is easy to recognise
that once this state is reached, no agent will ever move a tuple, since in no space
a tuple is found that aggregates less than elsewhere. Moreover, one such state is
an attractor, for simulations starting from states sufficiently near to it appear to
converge back to this local minimum. This makes the strategy of environmental
agents inadequate, and thus requires a tuning of the model in order to find a
suitable solution.

6.2.5 Step 3: Tuning Collective Sorting

There is a main reason why the local minimum analysed above cannot be es-
caped: the strategy we developed does not explicitly avoid the case where the
same tuple aggregates in two different tuple spaces. In fact, due to step 4 of
the agent protocol, nothing is done when KL = KR. Hence, it can happen
that a same tuple fully aggregates on two different tuple spaces, and dually,
two remaining tuples aggregate in the same one as shown in the local minimum
above.

These two issues can actually find a common solution by more carefully
analysing the brood sorting problem for social insects. There, an ant takes
an item and releases it where a new place is found where such an item has a

CHAPTER 6. CASE STUDIES 52

Figure 6.10: Charts of a simulation trace to a local minimum: (a) Tuple kind
k2 aggregating in spaces T2 and T3; (b) Both kinds k3 and k4 aggregating in
space T4.

greater concentration, expressed as quantity of brood over a unit of space. That
is, implicitly the ant is able to compare the amount of brood with respect to a
standard quantity, which in that specific case is represented by the amount of
vacuum.

To implement a mechanism supporting this idea, we add to tuple spaces
another kind of tuple called noise, which – for simplicity – we initially suppose
to be constant throughout sorting. Now an observation by a uniform rd can
also be “perturbed”, yielding a tuple noise. As in previous model, if the local
and remote observations are different, a tuple is moved anyway from the local
space to the remote space. Though, if an observation is perturbed by reading
noise, the correctness of moving is now probabilistically altered. However, the
probability of picking a tuple in T3 is expected to be higher than in T2, and
this should promote tuples of kind K2 leaving T3 more quickly. As a result, this
mechanism might be expected to globally result in complete sorting.

This mechanism would actually resemble the concept of simulated annealing
[KGV83]. There, a perturbation is added to an optimisation algorithm in order
to avoid the risk of finding non-optimal solutions: such a perturbation is initially
high and is made fading continuously as the system searches solutions, until

CHAPTER 6. CASE STUDIES 53

completely disappearing.
In our case, the occurrence of noise tuples models such a perturbation: what

should be the dynamics of noise through time, then? One possibility would be
to set an initial amount of noise equal in all tuple spaces, and either leave it
unaltered during system life-cycle or decrease it at a fixed rate. However, this
choice would require to set noise amount at design-time, whose optimal value
would depend on the average occupation of tuple spaces during system execution
[VCG07]: this situation is not appealing since we want our approach to work
independently of the number of tuples in the system. What we actually look for
is a fully-adaptive noise mechanism, where noise is initially very low, it increases
as the system is approaching to a local minimum, and it decreases if such a
minimum is escaped. In this way, we could expect the system performance to
be only slightly affected if the system stays sufficiently far from local minima,
and on the other hand, the noise production may become significant only in
unfortunate cases where local minima are approached.

To achieve this result, we will manage noise as follows: (i) initially only one
noise tuple occurs in each tuple space; (ii) each time two tuple spaces seem
to aggregate the same tuple, noise is increased; and (iii) when some tuple is
correctly transferred – without involving a perturbed observation due to noise
– noise is decreased. Accordingly, we change the environmental agent design by
relying on the following protocol:

1. a remote tuple space R is drawn randomly;

2. a uniform rd operation is performed on L, yielding a tuple of kind KL;

3. a uniform rd operation is performed on R, yielding a tuple of kind KR;

4. if KL 6= KR 6= noise a tuple of kind KR is moved from L to R;

5. if KL 6= KR = noise a tuple of kind KL is moved from L to R;

6. if noise 6= KR = KL noise is increased by one in L;

7. if 6= KL 6= KR 6= noise noise is decreased by one in L.

Now both KL and KR could be noise. Fourth and fifth task say that differences
in observations in L and R should always cause transfer: if KR is not noise,
a KR tuple is moved to R, otherwise, a KL tuple is moved to R. Sixth task
increases noise if L and R are aggregating the same (non-noise) tuple KR = KL,
and finally seventh task decreases noise if a non-perturbed transfer is actually
executed.

Considering now the worst case of a symmetric local minimum:

T1[100,100,0,0],T2[0,0,50,0],T3[0,0,50,0],T4[0,0,0,100]

we expect that noise starts increasing in both tuple spaces T2 and T3. At some
point, movement of tuples K3 will occur between T2 and T3 for some noise is
observed. Because of a bifurcation effect, if either space T2 or T3 will have a
greater concentration of tuples K3 with respect to noise, that would cause more
tuples to be transferred there, and that space will eventually fully aggregate
tuples K3. Accordingly, the other tuple space will be emptied, it will loose noise
tuples, and it will finally become target of tuples of kind K1 and/or K2. This

CHAPTER 6. CASE STUDIES 54

Figure 6.11: Charts of a simulation trace escaping from a local minimum: (a)
Situation in space T2: winning tuple and noise in evidence; (b) Situation in
space T1: kind K3 leaves the space.

is actually what can be observed from the traces in Figure 6.11 (a) and (b),
showing how the local minimum is escaped in spaces T2 and T1: in both cases
we see that as noise tuples increase, the system escapes the local minimum
configuration, and after that, noise tuples fade.

More simulations performed on this solution actually show that: (i) using
noise slightly affects performance, for typically systems stay away from local
minima and generate little noise; (ii) starting from a local minimum, the system
is always able to escape it; (iii) full sorting is always eventually reached; (iv)
these results are independent from the number of tuple spaces (and kinds) N .

6.2.6 Evaluation of Reactiveness

Now that a promising solution is found it is interesting to get back to simulation:
in this section we report the final results we obtained, and evaluate interesting
system parameters to be used in subsequent steps of the MAS design.

A main reason why the collective sorting problem for tuple spaces has been
solved using a self-organising approach is to tackle unpredictable interactions
with the environment. The typical usage scenario includes user agents that
exploit the coordination service provided by the tuple spaces, that is, they keep
inserting and removing tuples. The details of this behaviour cannot be known

CHAPTER 6. CASE STUDIES 55

a priori, hence, sorting should be able to react to changes of the surrounding
conditions, in a fully-adaptive way. What we show in this section is how the
ratio between user agent rate and sorting agent rate, called perturbation/sorting
ratio, influences the result of sorting. To this end, we keep the global sorting
rate fixed to 1.0 and include in the simulation a change rate for user agents, that
is, at that rate a user agent randomly moves a tuple from one space to another.
Starting from an initially sorted configuration of tuples (400 tuples, N = 4),
depending on that rate we easily expect that either (i) full-sorting is almost
always maintained, (ii) a certain level of (partial) sorting can be maintained,
and (iii) the system becomes more and more unsorted as time passes. The
evolution through such situations is reported in Figure 6.12, where each chart
provides the evolution of entropy in time at a different rate.

As shown in the summary Figure 6.13, the key factor is the perturba-
tion/sorting ratio, which gives a clear indication of the adequacy of sorting
resources, in terms of the maximum level of entropy they can guarantee. Along
with the environmental agent behaviour identified, the bound to perturba-
tion/sorting ration set to 0.5 is a critical system parameter that only simu-
lation could reveal, and that should be exploited in subsequent design steps—
which we do not discuss here. E.g., a form of load-balancing is required to be
sure the resources of sorting are adequate with respect to the current degree
of disorder, and can self-adapt to it—increasing on a by-need basis and then
decrease. Techniques related to the prey-predator approach as studied e.g. in
[GVO07a, GVCO07] could be evaluated in the subsequent steps of design.

6.3 Plain Diffusion

In this section we describe a self-organising strategy for achieving a plain dif-
fusion behaviour: the solution is analysed according to the methodological
approach described in Chapter 4 and the PRISM tool described in Section
5.3. We decided to consider the case study of plain diffusion mainly for two
reasons: on the one hand, our solution to plain diffusion is very simple but
exhibits all the key features of self-organisation, hence allowing us for an ef-
fective explanation of our methodological approach; on the other hand, plain
diffusion is a key element of many chemical and biological phenomena, e.g. in
chemotaxis [Mur02] or in pheromone diffusion in ant colonies [CDF+01]. Fur-
thermore, plain diffusion has been recognised as an important design pattern
for self-organising artificial systems allowing to produce gradients and averag-
ing quantities [BCD+06, GVO07a]: indeed, despite its simplicity, the diffusion
mechanism plays a key role in every digital pheromone-based application, e.g.
in the case of Autonomous Guided Vehicles [PBS05, WSHL05], and in many
distributed systems strategies such as in load-balancing [CDU06].

6.3.1 Problem Statement

Consider a networked set of nodes having an arbitrary topology and where each
node is labelled with a non-negative quantity. We want to devise a strategy that
from an arbitrary initial state eventually evolves into a dynamical state where
each node is labelled with the same quantity. In particular, we want the strategy
to be self-organising, i.e. where each node is autonomous and transfer quantities

CHAPTER 6. CASE STUDIES 56

Figure 6.12: Evolution of entropy with different perturbation/sorting ratio

Figure 6.13: Maximum entropy depending on perturbation/sorting ratio

CHAPTER 6. CASE STUDIES 57

A
QA

E
QE

D
QD

C
QC

F
QF

B
QB

Figure 6.14: The reference network topology: this network is interesting because
it exhibits features found in real topologies such as cycles, hubs and nodes with
limited connectivity.

according to local knowledge: in this way our strategy will be independent from
the network topology, the distribution of quantities and the overall amount of
quantities. A node knows the identities of neighbouring nodes and the local
quantity, while it has no information about network size and quantities in other
nodes.

In order to evaluate our proposal, we have to test it against an actual in-
stance of network. Specifically, we choose the 6-nodes topology displayed in
Figure 6.14 since it exhibits features commonly found in actual networks: these
features include cycles, hubs and nodes with limited connectivity. We believe
that the 6 node topology is enough large to clarify the approach, which is our
main objective here: scalability issues are discussed later in Section 6.3.6. For
the sake of clarity, from now on when considering system states we use the
compact notation ((A,QA), .., (F,QF)). The required dynamics for strategy are
the following: each node i having a local quantity Qi have to eventually reach
a state where Qavg =

∑N
i=1 Qi

N . It is worth noting that because of the limited
knowledge available to each node the strategy will never converge since it has
no criteria regarding the halting condition: the best result we can achieve is to
establish a dynamic equilibrium close to the average value.

6.3.2 Modelling Plain Diffusion

In this section we provide a solution to the previously described problem with
respect to the agents and artefacts meta-model and architectural pattern. The
mapping between the network and the A&A equivalent architecture is straight-
forward, and basically amounts to replace a node with an artefact and its envi-
ronmental agent, see Figure 6.15. More precisely,

• each node is represented by an artefact acting as a data repository;

• each artefact is managed by a dedicated environmental agent;

CHAPTER 6. CASE STUDIES 58

A

B

C

D

E

F

Figure 6.15: The picture shows the agents and artefacts diagram equivalent to
the previous network topology: it is worth noting that since agents/artefacts
relation is not symmetric, two association are required making the diagram
appears more cluttered.

• the connections represent neighbourhood information that can be encoded
either within environmental agents or artefacts: both approaches are vi-
able thus modelling different constraints.

The constraints and possible actions then becomes

• an environmental agent can put/remove an item only in the local artefact
and remote artefacts in its neighbourhood;

• an environmental agent knows the number of items contained within the
local artefact;

• an environmental agent knows a limited set of artefacts, we call neigh-
bouring artefacts;

• the agent does know neither the overall number of artefacts nor the the
overall number of items in the system.

In our approach the first step consists in finding an existing pattern: we recognise
that the problem can actually be assimilated to Plain Diffusion, which has been
recognised as an important design pattern in [BCD+06, GVO07a]. However, the
solution proposed in [BCD+06] requires the exchange of information between
nodes, which is in contrast with our requirements. Hence, we propose a different
approach for achieving plain diffusion: to this purpose, we start considering the
two nodes network ((A, 20), (B, 10)) where B has twice as many items as A.
Since they actually do not know the number of items of the other node the only
way to reach an equilibrium is via dynamic exchange criteria: unfortunately if
nodes exchange items at the same speed the balance remains unchanged. Hence,
as a first proposal we suggest that nodes send items at a speed proportional to
the number of items possessed. We notice that this basic strategy do not work

CHAPTER 6. CASE STUDIES 59

for the network ((A, 20), (B, 10), (C, 20)) where A and C are connected only to
B: indeed, we expect a gradient from this situation since B receives items both
from A an C. In order to compensate for this gradient, the working rate of each
agent should be proportional not only to the number of items but also to the
number of neighbouring nodes. Hence, the formula for the agent send rate ri
becomes

ri =
Qi ∗ Si

P
(6.2)

where Qi is the local number of items, Si is the local star, i.e. number of neigh-
bouring nodes, and P is a global parameter that scales the overall workload.

From the requirements and the basic strategy we now provide a formal model
using the PRISM modelling language: the whole specification is listed in Figure
6.16. Since PRISM language allows the definition of stochastic transition sys-
tems [PRI07], we have to reinterpret the system dynamics in terms of transitions.
To the purpose of our model, in this case, we abstract from artefacts details:
since in the plain diffusion model we are only interested into artefacts content,
this information can be encoded in a simple variable. Conversely, agents are
encoded in modules, that is, a collection of transitions: hence, agents manip-
ulate local and neighbouring artefacts by simply modifying the corresponding
variable. With respect to the topology defined in Figure 6.14, the definition of
the environmental agent A is

module agentA
[] tA > 0 & tB < MAX & tC < MAX & tD < MAX ->
rA : (tA’=tA-1) & (tB’=tB+1) +
rA : (tA’=tA-1) & (tC’=tC+1) +
rA : (tA’=tA-1) & (tD’=tD+1) +
rA : (tA’=tA-1) & (tE’=tE+1);
endmodule

where tA is the local artefact, tB, tC, tD are neighbouring artefacts, rA is the
rate of the transition defined by rA = tA / base_rate. Each transition mod-
els the motion of an item from the local artefact to a neighbouring one: the
choice between neighbours is probabilistic and in this case all the transitions
are equiprobable. It is worth noting that the rate formula does not explicitly
take into account the number of neighbouring nodes: indeed, this factor is im-
plicitly encoded in the transition rules. Since the model is interpreted as a
Markov Chain the overall rate is the sum of all the transitions rates: in the
previous code sample we have four top-level possible transitions with rate rA,
hence the overall working rate of agentA is 4rA. The definition of the other
agents is very similar to the one of agentA but for the number of neighbouring
artefacts.

6.3.3 Simulating Plain Diffusion

In order to qualitatively evaluate the dynamics of the system, in this section
we run some simulations: PRISM allows the execution of simulations directly
from the formal specification as long as we provide values for all the parameters.
In our model the only parameter is the base_rate: this parameter allows the
tuning of the system speed according to deployment requirements. Since at the
moment we are not interested in performance issues we set it to the arbitrary

CHAPTER 6. CASE STUDIES 60

ctmc

const int MAX = 54;

const double base_rate = 100;

formula rA = tA / base_rate;

formula rB = tB / base_rate;

formula rC = tC / base_rate;

formula rD = tD / base_rate;

formula rE = tE / base_rate;

formula rF = tF / base_rate;

global tA : [0..MAX] init 14;

global tB : [0..MAX] init 0;

global tC : [0..MAX] init 8;

global tD : [0..MAX] init 16;

global tE : [0..MAX] init 12;

global tF : [0..MAX] init 4;

module agentA

[] tA > 0 & tB < MAX & tC < MAX & tD < MAX ->

rA : (tA’=tA-1) & (tB’=tB+1) + rA : (tA’=tA-1) & (tC’=tC+1) +

rA : (tA’=tA-1) & (tD’=tD+1) + rA : (tA’=tA-1) & (tE’=tE+1);

endmodule

module agentB

[] tB > 0 & tA < MAX ->rB : (tB’=tB-1) & (tA’=tA+1);

endmodule

module agentC

[] tC > 0 & tA < MAX & tF < MAX->

rC : (tC’=tC-1) & (tA’=tA+1) + rC : (tC’=tC-1) & (tF’=tF+1);

endmodule

module agentD

[] tD > 0 & tA < MAX & tE < MAX->

rD : (tD’=tD-1) & (tA’=tA+1) + rD : (tD’=tD-1) & (tE’=tE+1);

endmodule

module agentE

[] tE > 0 & tA < MAX & tD < MAX ->

rE : (tE’=tE-1) & (tA’=tA+1) + rE : (tE’=tE-1) & (tD’=tD+1);

endmodule

module agentF

[] tF > 0 & tC < MAX ->rF : (tF’=tF-1) & (tC’=tC+1);

endmodule

Figure 6.16: The PRISM specification of the plain diffusion strategy for the ref-
erence 6-node network topology: it is worth noting that each module represents
a node in the network and the respective environmental agent.

CHAPTER 6. CASE STUDIES 61

value of 100. We consider now a few scenarios modelling extreme deployment
scenarios to evaluate the robustness and adaptiveness of the solution.

The first instance we consider has all the items clustered into a single node,
specifically node A, the hub: using the compact notation the system initial sate
is ((A, 600), (B, 0), (C, 0), (D, 0), (E, 0), (F, 0)). As it can be observed from
Figure 6.17, all the nodes eventually reach the average value of 100 and then
stay close to it: in particular, the node F requires more time to reach the value
because it is two hops far from node A, while all the other nodes are just one
hop far.

The next instance we consider is the one having all the items clustered into
the peripherical node F: specifically, the system initial state is ((A, 0), (B, 0),
(C, 0), (D, 0),(E, 0), (F, 600)). As it can be observed from Figure 6.18, all
the nodes eventually converge to the average value of 100: in particular, node
C converges quickly because it is one hop far from the node F, while all the
other nodes are two hops far. It is also worth noting that before node C reach
dynamic equilibrium it goes over the average value: this phenomenon is due
to the fact that node A works many times faster than node C which slowly
diffuses items to neighbouring nodes. With respect to the previous instance,
this configuration requires almost twice as much time to establish a dynamic
equilibrium: such a big variance depends on the fact that while on the previous
instance the items were clustered in a node with 4 neighbours, in this instance
the items were clustered in a peripherical node with only one neighbour, causing
a bottleneck.

The next instance we consider is the one having items spread across the
nodes, specifically ((A, 50), (B, 150), (C, 200), (D, 0),(E, 50), (F, 150)). As it
can be observed from Figure 6.19, all the nodes eventually reach the average
value of 100 and stay close to it: since this configuration was more ordered than
the previous ones it reaches dynamic equilibrium faster.

The next instance we consider models the situation where a node is dynam-
ically added to the network: specifically the initial state is ((A, 120), (B, 120),
(C, 120), (D, 120), (E, 120), (F, 0)) where the nodes from A to E have the same
number of items and F is the newly-added node. As it can be observed from
Figure 6.20, the nodes move from the average value of 120 to the new average
value of 100 due to the connection of a new node: it is worth noting that the
speed of the adaptation is strongly dependent on the number of connections of
the new node, but also weakly dependent on the network topology.

Since in all the simulated scenarios the strategy seems to behave properly
we now move to the verification of the desired properties.

6.3.4 Verifying Plain Diffusion

The verification process consists in testing whether the properties of interest
hold or not: this process is performed relying on stochastic model checking
techniques [KNP07, RKNP04]. As anticipated in Section 5.3, model checking
techniques suffer from the state explosion problem: considering an instance
of the same size as done for the simulations it is just unfeasible. Hence, we
consider a far smaller instance, specifically, the system instance having 36 items
and expecting an average value of 6 items per node: in this section, we always
refer to the initial configuration ((A, 4), (B, 0), (C, 10), (D, 12), (E, 6), (F,
4)). Although being a small instance, it is already computationally intensive:

CHAPTER 6. CASE STUDIES 62

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

I
t
e
m
s

Time
tA tB tC tD tE tF

Figure 6.17: The evolution of the instance ((A, 600), (B, 0), (C, 0), (D, 0), (E,
0), (F, 0)): as it can be noticed the node F converges more slowly because it is
two hops far from node A, while all the other nodes are just one hop far.

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200 1400 1600 1800

I
t
e
m
s

Time
tA tB tC tD tE tF

Figure 6.18: The evolution of the instance ((A, 0), (B, 0), (C, 0), (D, 0), (E, 0),
(F, 600)): as it can be noticed, node C converges more quickly because it is one
hop far from the node F, while all the other nodes are two hops far.

CHAPTER 6. CASE STUDIES 63

 0

 50

 100

 150

 200

 0 200 400 600 800 1000 1200 1400 1600 1800

I
t
e
m
s

Time
tA tB tC tD tE tF

Figure 6.19: The evolution of the instance ((A, 50), (B, 150), (C, 200), (D, 0),
(E, 50), (F, 150)): as it can be noticed all the nodes eventually converge to the
average value.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200 1400 1600 1800

I
t
e
m
s

Time
tA tB tC tD tE tF

Figure 6.20: The evolution of the instance ((A, 120), (B, 120), (C, 120), (D,
120), (E, 120), (F, 0)) modelling the dynamic connection of a new node: as it
can be noticed, the average value is moved from 120 to 100 and all the nodes
eventually reach the new average value.

CHAPTER 6. CASE STUDIES 64

specifically, the instance is defined by 749398 states and by 7896096 transitions,
and it takes about 15 seconds just to compile the model using the PRISM Hybrid
Engine2.

We are here interested in verifying a few system properties: the first prop-
erty is about the quality of the strategy with respect to its goal, i.e. produce
an average value. Since the strategy modelled is stochastic, we can provide a
statical characterisation of this property: in particular, we can devise the prob-
ability3 distribution for a node to be in a specific state, that is, being assigned
a particular value. In Continuous Stochastic Logic, this property is equivalent
to the statement “Which is the steady-state probability for the variable X to
assume the value Y?”: since we want a probability distribution and not a single
value, we run an experiment where Y span the range 0..36. Using the PRISM
syntax, this property translates to S=? [tA=Y] where S is the steady state op-
erator, tA is the variable containing the actual value and Y is the unbounded
constant ranging in the interval 0..36. The chart in Figure 6.21 displays the
results of the model checking experiment over the specific node tA: the experi-
ment took about 3 hours using the Hybrid Engine and Jacobi iterative method.
Experiments over the other nodes showed an identical probability distribution,
providing evidence of the correctness of the strategy and the independence from
initial node value and placement in the network. As we expected, the maximum
probability peak is in correspondence of the average value, although being only
the 17.59%: the system has a probability of 49.68% of being in the range 6± 1,
while has a probability of 73.91% of being in the range 6± 2. It is worth noting
that the chart is not symmetrical with respect to the average value because of
the asymmetry of the admissible range.

The next test we consider is about the time for reaching the average value:
specifically, considering the previous test instance ((A, 4), (B, 0), (C, 10), (D,
12), (E, 6), (F, 4)) we evaluate the time for tB, having an initial value of 0,
to reach the average value of 6. Since CSL does not provide a time operator,
we still have to reason in terms of probability: hence, the query is “Which is
the probability for the node tB to be equal to 6 within Y time steps?”. Using
the PRISM syntax, this formula becomes P=? [true U<=Y tB=6] where P is
the probability operator, true U<=Y means to be verified in the next Y time
steps, and Y is an unbounded constant. The chart in Figure 6.22 displays the
results of model checking for Y spanning the range 0..600 at step size equal to
10. Although valid only for node tB, this type of chart is very useful since it
provides a solid basis for tuning and in-depth performance evaluation.

6.3.5 Tuning Plain Diffusion

Since the modelled strategy already exhibits global dynamics compliant to our
requirements there is no need for tuning but for performance issues. In the
simulation and verification sections we assumed the arbitrary value of 100 for the
base_rate parameter: if we want to give guarantees with respect to deployment
conditions we have to consider a meaningful parameter value. For example, we

2The computer used for all the simulations and verifications has the followings processing
capabilities: CPU Intel P4 Hyper Threading 3.0 GHz, RAM 2 GB DDR, System Bus 800
MHz.

3It is worth noting that model checking techniques provide exact probability values rather
than estimation as for simulation.

CHAPTER 6. CASE STUDIES 65

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 5 10 15 20 25 30 35 40

P
r
o
b
a
b
i
l
i
t
y

Items

Figure 6.21: The chart displays the distribution of the probability for a node
to contain a specific number of items: further experiments show that the chart
is the same for each node. Notice that the probability peak is located in corre-
spondence with the average value, that is 6. The chart is not symmetrical due
to the asymmetry in the range of values.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

P
r
o
b
a
b
i
l
i
t
y

Time

Figure 6.22: The chart displays the probability for the node tB to reach the
average value from zero: this chart is very useful for the tuning process since it
provide a solid basis for performance evaluation.

CHAPTER 6. CASE STUDIES 66

can establish a requirement for all the nodes to have a probability greater or
equals to 90% to reach the average value within T time units under specific
workloads conditions: then, by performing several tests we can devise the actual
value for the base_rate parameter that meets the target requirement.

In order to evaluate the performances, we consider the worst scenario which
consists in all the items clustered in the peripherical node F: specifically the
initial state is ((A, 0), (B, 0), (C, 0), (D, 0), (E, 0), (F, 36)). As time constraint,
we want the system to reach dynamic equilibrium before 200 time units, while for
the probability constraint we set the lower bound to 90%. Hence, by adjusting
the value of base_rate, we have to test the following property for all nodes: “Is
the probability of reaching dynamic equilibrium condition within 200 time units
greater or equals to 90% ?”. Using the PRISM syntax this property becomes
P>=0.9 [true U<=200 tA=6] for the node tA.

We start by considering the farthest node tB, since the property must hold
for all nodes, testing first the farthest node saves us a lot of computation: as
a first exploration, with respect to the property P=? [true U<=200 tB=6], we
plot the probability values within the range 10..100. As it can be observed from
chart in Figure 6.23, the trend of the probability is non-linear: nonetheless, we
can guess that the desired value for base_rate lies in the range 30..40. Hence,
we repeat the experiment zooming in the range 30..40 with unitary step: the
results are plotted in Figure 6.24. As we can observe the value for base_rate
that produce the probability value closest to 90% is 37. Hence, we fixed this
value for the base rate and tested if the property is also satisfied for the other
nodes: since the node tB is the farthest one, as we expected the property is
satisfied also for node tA, tC, tD, tE, but not for tF. Hence, we investigated
the property for node tF and results are plotted in Figure 6.25: as can be
observed the property holds for node tF when base_rate=31 and not 37. This
phenomena can be explained by the fact that we requested a 90% probability
for the nodes to reach the target value: hence, there is a 10% probability for
each node not to have reach the target value, which summed up in the source
node cause this delay.

Hence, from all the experiment we obtain that the value for the base_rate
parameter to satisfy the property of ≥ 90% probability of convergence within
200 time units is 31: our first guess was that the bottleneck should have been the
farthest node, conversely it proved out to be the source node. The parameter
base_rate=31 means that initially the system send about 1 item per unit of
time per connection, and decreases while converging to about 1 item per 5 units
of time per connection.

Concerning the number of transfers, because of the very nature of the strat-
egy, it is not trivial to evaluate the number of transfers: indeed, they depends
upon neighbourhood, local number of items which changes over time. If there
was no dependence from the number of neighbours, assuming a static topology,
the global transfer rate could have been evaluated by the simple formula

rg =
Tot.Items

baserate
(6.3)

Conversely, because of the dependence from number of neighbours the instan-

CHAPTER 6. CASE STUDIES 67

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

P
r
o
b
a
b
i
l
i
t
y

base rate

Figure 6.23: The chart displays the probability values for the node tB according
to the CSL formula P =? [true U <= 200 tB = 6]: we can guess that the
desired value is within the range 30..40.

taneous global rate is given by the formula

rg(t) =
N∑

i=1

Itemsi(t)×Neighboursi

baserate
(6.4)

where i = 1..N is the node selector: this formula explicitly depends from time,
and requires either a simulation or real data to be computed.

6.3.6 About Scalability of the Strategy

In this section we briefly consider scalability of the proposed strategy: specifi-
cally, we are interested here in the scalability with respect to the total number
of items within the network. The initial state for each trial consists in all
the items placed within node A, i.e. A=X, B=C=D=E=F=0. Since we are
using model checking tools to perform such evaluation, we will limit the num-
ber of items to 48: furthermore, to avoid fractional average values we consider
only quantities multiple of the number of nodes, specifically the set of values
{6, 12, 18, 24, 30, 36, 42, 48}.

The property we are interested in evaluating is the time required to converge
with a probability ≥ 90%: unfortunately PRISM does not allow time queries,
hence, we have to run several experiments in order to profile probability of con-
vergence with respect to time. The property we want to verify can be translated
into P=? [true U<=T tA=X/6], where T represents the time value and X is the
total number of items. Notice that we do not have a formula for describing
global convergence, hence, we have to provide a formula for convergence of a

CHAPTER 6. CASE STUDIES 68

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 30 32 34 36 38 40

P
r
o
b
a
b
i
l
i
t
y

base rate

Figure 6.24: The chart displays the probability values for the node tB according
to the CSL formula P =? [true U <= 200 tB = 6] within the range 30..40 of
base rate.

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 26 28 30 32 34 36 38 40

P
r
o
b
a
b
i
l
i
t
y

base rate

Figure 6.25: The chart displays the probability values for the node tF according
to the CSL formula P =? [true U <= 200 tF = 6] within the range 25..40 of
base rate.

CHAPTER 6. CASE STUDIES 69

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250

P
r
o
b
a
b
i
l
i
t
y

Time
6 12 18 24 30 36 42 48

Figure 6.26: The chart displays the probability values for the node tA to reach
the average value with respect to time and from different initial states.

single node: we consider the source node since, from previous experiments, we
know this is the most restrictive constraint. The charts in Figure 6.26 and 6.27
display the probability for the node tA to reach the average value with respect
to time: from these charts it is possible to extrapolate, although with some ap-
proximations, the time values for each initial state having a probability ≥ 90%
reach the average value. Data extracted from previous charts is depicted in Fig-
ure 6.28: as it can be easily noticed the trend is sub-linear. It is worth to point
out that these results have been obtained with respect to the specific network
topology and initial distribution of items: hence, the characterization provided
here is far from being complete, although we are confident to obtain similar re-
sults with different distributions of items. Conversely, different topologies may
heavily affect the scalability of the approach.

CHAPTER 6. CASE STUDIES 70

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 75 80 85 90 95 100 105 110 115

P
r
o
b
a
b
i
l
i
t
y

Time
6 12 18 24 30 36 42 48

Figure 6.27: The chart displays the probability values for the node tA to reach
the average value with respect to time and from different initial states: this
chart zoom into the range [75..115] with a finer time step.

 75

 80

 85

 90

 95

 100

 105

 110

 115

 10 15 20 25 30 35 40 45

T
i
m
e

Items

Figure 6.28: The chart represents the scalability with respect to the initial
number of items contained in the node tA: it is worth noting that the trend is
sub-linear. Since, the results depend on the network topology and distribution
of items, further investigation is needed to provide a complete characterization
of the strategy.

Chapter 7

Related Works

While there is plenty of literature about the analysis of self-organising and emer-
gent mechanisms, the interest in engineering aspects grew only recently: indeed,
the first edition of the International Workshop Engineering Self-Organising Ap-
plications (ESOA) dates back to 2003, the first edition of the International Con-
ference Self-Adaptive and Self-Organising Systems (SASO) dates back to 2007,
and the first issue of ACM Transactions on Autonomous and Adaptive Systems
dates back to 2006. In this chapter we only summarise those works about self-
organising systems that are strictly related to methodological aspects, including
design patterns and formal techniques. Unfortunately, providing a broad survey
about these topics is out of the scope of this thesis and would require a ded-
icated effort because of the amount of material: hence, we consider here only
those design patterns, AOSE methodologies and formal tools that have been
applied to the engineering of self-organising systems. Similarly, concerning the
case studies there is a whole literature that would be worth discussing: however,
since solving the case studies is not the focus of this thesis, we will not discuss
those aspects here, though a several related works are cited and discussed along
each case study.

7.1 Design Patterns for Self-organising Systems

Design pattern literature flourished in the last decade with the object-oriented
paradigm [GHJV95]: concerning multiagent systems, there are several contri-
butions, but little attention has been payed to self-organising systems. To our
knowledge, beyond our contributions, there exist only two works in that spe-
cific context [BCD+06, DWH07]. It is worth noting that there is plenty of
literature about applications of self-organising systems inspired by biological
systems: unfortunately, despite the great insights presented in works such as
[BDT99, CDF+01], none of them encode successful solutions in a reusable form,
and takes a lot of experience for a computer scientist to extract the actual
strategy. Conversely, in [BCD+06, DWH07] the authors successfully establish
a mapping between existing natural system and its counterpart in computer
science, easing the designer task: in particular, the authors’ goal is to facilitate
the adoption of biology-inspired ideas in distributed systems engineering.

In [BCD+06] the authors proposed several design patterns (i) Plain Diffusion,

71

CHAPTER 7. RELATED WORKS 72

(ii) Replication, (iii) Stigmergy, (iv) Chemotaxis and (v) Reaction-Diffusion: in
particular, the authors present first the simpler ones, i.e. Plain Diffusion, Repli-
cation and Stigmergy, and then discuss the composite ones, i.e. Chemotaxis
and Reaction-Diffusion. We have adopted the same approach because it allows
a better organisation of patterns and identification of interplays between simple
patterns: indeed, the advantages of using simple patterns individually is often
overlooked. Particularly relevant to our work is the plain diffusion pattern,
though we provided an alternative solution with respect to [BCD+06]. Con-
cerning the pattern schema, the authors rely on the one provided in [GHJV95],
missing the chance to better highlight key features for self-organisation. Con-
cerning the applications, the authors provided a thorough discussion: in par-
ticular, they focussed on networks problems, namely, Power Optimization in
MANETs, Unstructured Overlay Topology Management, Structured Overlay
Topology Management.

In [DWH07], the authors provide a thorough description of two complex pat-
terns about decentralised coordination mechanisms, namely, gradient fields and
market-based control: in particular, patterns are described at the conceptual
level, hence there is not identification of actual software components. Con-
cerning the pattern granularity, the patterns described in [DWH07] are quite
coarse and it is possible to identify finer patterns, organising the patterns in
a hierarchy. Concerning the pattern schema, the authors rely on an existing
pattern schema non-specific for self-organising systems. The work is contextu-
alised with respect to the case study of Autonomous Guided Vehicles (AGV)
[DW07, DWH07, WSHL05].

7.2 AOSE Methodologies for Self-organising Sys-
tems

There are few attempts to devise methodological approaches for the engineering
of self-organising systems with emergent properties, and only one of them is a
comprehensive methodology.

In [DW07, DWSHR05], the authors present a specific approach called equation-
free macroscopic analysis. The approach allows the investigation of macroscopic
properties of systems specified in terms of micro components without the need
to devise evolution equations: required data is extracted from short simulations
at micro level and combined with standard numerical techniques to perform
system analysis. Quoting from [DWSHR05]

Simulation measurements are analysed, but, in contrast to mere
observation, the numerical analysis algorithms acquire the results
themselves by steering the simulation process towards the algorithms
goal. The advantage is that the results are calculated on the fly and
only those simulations are executed that are actually needed to ob-
tain a specific result. The results are therefore of equal scientific
value as the equation-based analysis, while reducing the computa-
tional effort drastically compared to mere simulations.

This approach could be considered an hybrid between purely formal and purely
empirical, combining advantages of both worlds: the outcome of this approach

CHAPTER 7. RELATED WORKS 73

is similar to the outcome of our simulation and verification stages. It is worth
noting that the approach has been applied in an industrial case study about
Autonomous Guided Vehicles (AGV) [DW07, DWSHR05, WSHL05].

From what it concerns more comprehensive approaches, to our knowledge,
ADELFE is the only AOSE methodology providing support for self-organisation
[BCGP04], more precisely for the Adaptive MAS theory (AMAS). In the AMAS
theory agents pursue their local goal while trying to keep cooperative relations
with other agents embedded in the system [BCGP04]: ADELFE extends the
Rational Unified Process (RUP) and uses UML notation and a software tool to
provide graphic design capabilities. ADELFE describe an engineering process
driving the designers from the analysis to the fast-prototyping stage. Although
ADELFE eventually identify the need for verification of the adopted model,
there is no evidence on how to perform it pragmatically: recently, the authors
evaluated the integration of simulation techniques in their methodology [BGP07]
to better support the design stage and the analysis of agents’ behaviours. Prior
to that investigation, ADELFE focussed more on aspects related to design-time,
such as entities and responsibilities, rather than the actual system dynamics.

7.3 Formal Tools for Self-Organising Systems

To our knowledge, up to now there have been few attempts in using formal
languages and tools for engineering self-organising systems with emergent prop-
erties. This is probably due the common misconception that emergent systems
are not formalisable: while it is true that is quite difficult to capture emergent
systems in formal compact models, we have provided some evidence of formalis-
ability and a few works exist on the literature. Indeed, most of the literature in-
volving formal methods and self-organisation is about providing formal models,
but we found no use of model checking or other advanced analysis techniques.
In particular, to our knowledge, none of the languages and tools presented in
Chapter 5 have previously been used to formalise or verify self-organising sys-
tems.

Beyond establishing a methodological approach, the equation-free macro-
scopic analysis [DW07, DWSHR05] described in the previous section is heavily
based on formal methods.

An example of evaluation of formal tools for SOS has been performed in
[RHTR06] for the Autonomous Nano-Technology Swarm (ANTS) mission: the
mission will explore the asteroid belt using swarms of cooperative autonomous
spacecraft, hence, with limited or no human control involved. Hence, the authors
felt the need for more guarantees about the quality of the emergent properties:
in this work the authors identifies several requirements for a formal language to
support their project and survey a few formal tools, including process algebras.

A less recent example include the attempt to model behaviours observed
in ant colonies using the Weighted Synchronous Calculus of Communicating
Systems (WSCCS) [Tof91], a process algebra extending CCS, the same that is
extended by π-Calculus. In [Tof91] the author also proven some properties of the
modelled systems, but without resorting to automatic techniques such as model
checking. A similar approach is followed in [SBB01], where the authors first
build WSCCS specifications and perform Markov Chain analysis for devising
probabilities values.

Chapter 8

Conclusion and Future
Works

In this chapter we conclude the thesis by summarising the contributions, the
limitations and by listing future works.

8.1 Summary and Contributions

The contributions of this thesis are twofold: (i) we described a systematic ap-
proach for engineering self-organising multiagent systems, and (ii) we applied
the method to several case studies and devised a solution for each of them.

For what it concerns the method, we developed a practical approach for the
early stage of design, since we felt this aspect was currently overlooked in exist-
ing AOSE methodologies. The approach is a practical one since it deeply relies
on experimentation techniques used in scientific analysis rather on traditional
structural decomposition: indeed, quoting from [Tic98], we feel that computer
scientist should experiment more, especially when dealing with self-organisation
and emergence. Specifically, our approach is iterative, that is, cycles are per-
formed before actually committing to a specific design: during each cycle four
steps are performed

modelling proposing a model for the system to engineer based on existing
design patterns extracted by natural systems: in particular, the approach
relies on an architectural pattern we proposed for the A&A metamodel,
but a similar one has been proposed in the Autonomic Computing context
[KC03];

simulation analysing global qualitative dynamics in different scenarios before
continuing with quantitative analysis;

verification verifying that the properties of interest holds and identifying work-
ing conditions;

tuning adjusting system behaviour and devising a coarse set of parameters for
the actual system.

74

CHAPTER 8. CONCLUSION AND FUTURE WORKS 75

The approach can be successfully supported by formal languages and tools: in-
deed, formal languages allow the unambiguous specification of systems precisely
selecting features to be modelled. Once modelled, it is then possible to further
analyse the system via simulation or formal verification without the need of
recoding the system model. To this purpose, tools like PRISM [PRI07, KNP04]
have proven to be very valuable.

For what it concerns the applicability of the approach, we presented three
case studies reflecting the successive developments of our approach. In partic-
ular, collective sorting is a distributed algorithm for clustering together similar
items while separating different ones: we provided a novel solution to this prob-
lem in the context of tuples spaces [GVCO08]. Plain diffusion is a distributed
strategy for distributed homogeneously items across a network: we provided an
alternative solution to this problem that has been completely characterised in
[GVO08] and reflects the current advancements of the method.

8.2 Limitations of the Approach

Although the approach described helped us in gaining new insights in self-
organisation and emergence, it has some limitations too:

• Since it is difficult to devise self-organising emergent strategies from scratch,
we assume the existence of a pattern encoding the desired strategy, which
in many situations may not be the case: hence, modifications to the pat-
terns may be needed, but this requires a lot of expertise [GVO08].

• We always considered one self-organising strategy at a time: things get
complicated when more self-organising strategies coexist: indeed, the com-
bination of self-organising mechanisms acting on the same environment
may produce unexpected results [GVO07a].

• The approach exploits formal verification techniques, which become unfea-
sible for large problem instances, although abstraction techniques broaden
its applicability.

• Because of the very nature of emergent properties, it may be difficult to
characterise an emergent property for verification in terms of the micro dy-
namics: expertise is required to identify those micro-conditions triggering
the emergence of the desired property [GVO08].

8.3 Future Works

We identify several potential future developments for the methodology: first, it
should be better integrated with existing AOSE methodologies, and eventually
specialise those activities that differs when dealing with SOS. More investigation
is needed in order to evaluate self-organising strategies not observed in Nature,
since relying on existing models is the main limitation of the approach.

Concerning the software, we feel that a better support should be provided at
the tool level: although being valuable, the PRISM tool has some limitations.
In particular, it does not provide any facility for the tuning phase and the

CHAPTER 8. CONCLUSION AND FUTURE WORKS 76

modelling language it is quite low-level: e.g. expressiveness comparable to a
process algebra such as π-Calculus [MPW92a] would be desirable.

For what it concerns design patterns, the patterns described are far from
being considered a catalogue: further effort should be devoted to identify more
patterns and devise more complex patterns on top of the simpler ones. Further-
more, by their very nature, design patterns tend to emphasise design-time issues
and software structure. Conversely, self-organising systems and emergence it is
all about system dynamics: hence, it may be worthy considering to devise an
alternative form for encoding patterns and strategies.

Appendix A

Maude Specifications for
the Collective Sorting
Strategy

mod RANDOM-UTILITIES is

pr COUNTER .

pr RANDOM .

pr CONVERSION .

op randrange : Nat -> Nat . *** A RANDOM NUMBER IN A RANGE

op rand : -> [Float] . *** A RANDOM FLOAT IN 0 - 1

*** IMPLEMENTATION

eq rand = float(random(counter)/ 4294967295) .

eq randrange(N:Nat) = floor(rat (rand) * N:Nat) .

endm

mod STOCHASTIC-SELECTION is

pr RANDOM-UTILITIES .

pr LIST{Float} .

sort Event .

op now : -> Float . *** CONSTANT RATE for FAST ACTIONS

op @ : [Nat] [Float] -> Event [ctor] . *** AN EVENT

op next : List{Float} -> Event . *** RANDOM EVENT GENERATION

endm

mod STOCHASTIC-SELECTION-IMPLEMENTATION is

pr STOCHASTIC-SELECTION .

*** Internals

vars L L’ : List{Float} .

vars F F’ F’’ : Float .

var N : Nat .

eq now = 1000000000.0 .

eq next(nil) = @(-1 , 0.0) .

ceq next(L) = @($sample(L,F), $dtime(F)) if F := $sum(L) /\ F =/= 0.0 [owise] .

eq next(L) = @(-1 , 0.0) [owise] .

op $sample : List{Float} Float -> [Nat] .

ceq $sample(L , F) = $ssample(rand, F’ ,0, L’) if (F’ L’) := $normalize(L,F) .

op $dtime : Float -> Float .

eq $dtime(F) = (1.0 / F) * log(1.0 / rand) .

op $ssample : Float Float Nat List{Float} -> [Nat] .

ceq $ssample (F , F’ , N , L) = N if F < F’ .

ceq $ssample (F , F’ , N , nil) = s N if F >= F’ .

eq $ssample (F , F’ , N , (F’’ L)) = $ssample(F , F’ + F’’, s N , L) [owise] .

op $sum : List{Float} -> Float .

eq $sum(nil) = 0.0 .

eq $sum(F L) = F + $sum (L) .

op $normalize : List{Float} Float -> List{Float} .

eq $normalize(nil , F) = nil .

eq $normalize((F’ L) , F) = ((F’ / F) $normalize(L , F)) [owise] .

endm

77

APPENDIX A. MAUDE SPECIFICATIONS 78

set clear rule off .

fmod STANDARD-CARRIER is

pr FLOAT .

pr BOOL .

pr NAT .

sort State Action States Effect Effects Observation .

subsort State < States .

subsort Effect < Effects .

op __ : States States -> States [ctor assoc comm] .

op nil : -> Effects .

op _;_ : Effects Effects -> Effects [ctor assoc id: nil] .

op _#_->[_] : Action Float States -> Effect [ctor] .

op _==> : State -> Effects .

op temp : State -> Bool .

op quit : Nat State Float -> Bool .

op obs : Nat State Float -> Observation .

endfm

fth CARRIER is

pr FLOAT .

pr BOOL .

pr NAT .

sort State Action States Effect Effects Observation .

subsort State < States .

subsort Effect < Effects .

op __ : States States -> States [ctor assoc comm] .

op nil : -> Effects .

op _;_ : Effects Effects -> Effects [ctor assoc id: nil] .

op _#_->[_] : Action Float States -> Effect [ctor] .

op _==> : State -> Effects .

op temp : State -> Bool .

op quit : Nat State Float -> Bool .

op obs : Nat State Float -> Observation .

endfth

mod STOCHASTIC-TRACES-TYPES{ X :: CARRIER } is

pr STOCHASTIC-SELECTION-IMPLEMENTATION .

sort Step Observations Trace Steps Evt Evts .

subsort X$Observation < Observations .

subsort Step < Steps .

subsort Evt < Evts .

op [_:_@_] : Nat X$State Float -> Step [ctor format (ni d d d d d d d)] .

op evt(_,_,_) : Nat X$Observation Float -> Evt [ctor format (ni d d d d d d d d)] .

op _,_ : Observations Observations -> Observations [ctor assoc id: empty format (d d n d)] .

op empty : -> Observations [ctor] .

op _<_> : Step Observations -> Trace [ctor format (d d ni ni d)].

op <_>_ : Observations Step -> Trace [ctor format (d ni ni d d)].

op nil : -> Steps .

op _+_ : Steps Steps -> Steps [ctor assoc id: nil] .

op nil : -> Evts .

op __ : Evts Evts -> Evts [ctor assoc id: nil] .

endm

mod STOCHASTIC-TRACES-FUNCTIONS{ X :: CARRIER } is

pr STOCHASTIC-SELECTION .

pr STOCHASTIC-TRACES-TYPES{X} .

op activities : X$Effects -> List{Float} .

op newState : Nat X$Effects -> X$State .

op one : X$States -> X$State .

op evalEffects : [X$Effects] -> X$Effects .

*** INTERNALS

var S : X$State .

var LS : X$States .

var Es : X$Effects .

var E : X$Effect .

var A : X$Action .

vars N N1 : Nat .

vars F F1 : Float .

eq evalEffects(Es) = Es .

op $size : X$States -> Nat .

op $get : X$States Nat -> X$States .

op activities : X$Effects -> List{Float} .

eq activities(nil) = nil .

eq activities((A # F -> [LS]) ; Es) = F activities(Es) .

op newState : Nat X$Effects -> X$State .

eq newState(0 , (A # F -> [LS])) = one(LS) .

eq newState(0 , E ; Es) = newState(0, E) .

APPENDIX A. MAUDE SPECIFICATIONS 79

eq newState(s N , (E ; Es)) = newState(N, Es) [owise].

eq one (S) = S .

eq one (LS) = $get(LS , randrange($size(LS))) [owise] .

eq $size (S) = 1 .

eq $size (S LS) = s $size (LS) [owise] .

eq $get (S , 0) = S .

eq $get (S LS , 0) = S .

eq $get (S LS , s N) = $get (LS , N) [owise] .

endm

mod STOCHASTIC-TRACES-ENGINE{ X :: CARRIER } is

pr STOCHASTIC-TRACES-FUNCTIONS{X} .

var O : X$Observation .

var OO : [X$Observation] .

var S S’ S1 S2 : X$State .

var P : Step .

var SS SS1 : [X$State] .

var Es : [X$Effects] .

vars N N1 N’ : Nat .

vars NN : [Nat] .

vars F F1 F2 : Float .

vars FF FF’ FF1 : [Float] .

vars L : Observations .

op f : X$State -> X$State .

eq f(S) = newState(0,evalEffects(S ==>)) .

op move : Step -> Step .

ceq move([(s N) : S @ F]) = [N : SS @ FF] if

Es := evalEffects(S ==>) /\

@(NN , FF’) := next(activities(Es)) /\

NN =/= -1 /\

FF := F + FF’ /\

SS := newState(NN , Es) .

eq move([(s N) : S @ F]) = [(s N) : S @ F] [owise] .

op trace : Trace -> Trace .

ceq trace([N : S @ F]< L >) = trace([N : SS @ FF]< L >)

if temp(S)

/\ [(N) : SS @ FF] := move([(s N) : S @ F]) .

ceq trace([s N : S @ F]< L >) = trace([N : SS @ FF] < L , O >)

if not temp(S)

/\ not quit(N, S, F)

/\ O := obs(s N, S, F)

/\ [(N) : SS @ FF] := move([(s N) : S @ F]) .

ceq trace([s N : S @ F]< L >) = trace([0 : S @ F] < L , O >)

if not temp(S)

/\ quit(N, S, F)

/\ O := obs(s N, S, F) .

ceq trace([0 : S @ F] < L >) = < L , O > [0 : S @ F]

if not temp(S)

/\ O := obs(0,S,F) .

op last : Trace -> Evt .

ceq last([N : S @ F]< L >) = last([N : SS @ FF]< L >)

if temp(S)

/\ [(N) : SS @ FF] := move([(s N) : S @ F]) .

ceq last([s N : S @ F]< L >) = last([N : SS @ FF] < O >)

if not temp(S)

/\ not quit(N, S, F)

/\ O := obs(s N, S, F)

/\ [(N) : SS @ FF] := move([(s N) : S @ F]) .

ceq last([s N : S @ F]< L >) = evt(N , O , F)

if not temp(S)

/\ quit(N, S, F)

/\ O := obs(s N, S, F) .

ceq last([0 : S @ F] < L >) = evt(0 , O , F)

if not temp(S)

/\ O := obs(0,S,F) .

op series : Nat Step -> Evts .

eq series (0 , P) = nil .

eq series (s N , P) = last(P < empty >) series(N , P) .

endm

mod COLLECTIVE-SORTING-TYPES is

pr CONVERSION .

pr QID .

var F : Float .

APPENDIX A. MAUDE SPECIFICATIONS 80

ops rl rh rho : -> Float .

eq rl = 0.025 .

eq rh = 0.25 .

eq rho = 0.1 .

op decrease : Float -> Float .

ceq decrease(F) = F - rho * (rh - rl) if F - rho * (rh - rl) > rl .

eq decrease(F) = rl [owise] .

sort TupleType Tuple TupleMSet Space QList Items Rate DataSpace .

subsort Qid < TupleType .

op ? : -> TupleType .

*** TUPLES

op _[_] : TupleType Nat -> Tuple [ctor] .

subsort Tuple < TupleMSet .

op empty : -> TupleMSet [ctor] .

op _|_ : TupleMSet TupleMSet -> TupleMSet [ctor assoc comm id: empty prec 6] .

*** TUPLE SPACE

op <_@_> : Nat TupleMSet -> Space [ctor format (n d d d d d)] .

*** QID LIST, THAT IS, TUPLE KINDS

subsort TupleType < QList .

op nilql : -> QList [ctor] .

op _,_ : QList QList -> QList [ctor assoc id: nilql prec 7] .

sort Total .

subsort Total < Tuple .

op tot : Nat -> Total [ctor] .

*** STATE-ITEMS

op init : -> Items [ctor] .

op [_] : Nat -> Items [ctor] .

op [_] : TupleType -> Items [ctor] .

op {_} : Nat -> Items [ctor] .

op #_# : Nat -> Items [ctor] .

op #_# : Float -> Items [ctor] .

op {_} : DataSpace -> Items [ctor] .

op _;_ : Items Items -> Items [ctor assoc prec 8] .

*** RATES

op r : Nat Float -> Rate [ctor] .

*** DATASPACE

subsort Items Space < DataSpace . *** Rate

op empty : -> DataSpace [ctor] .

op _|_ : DataSpace DataSpace -> DataSpace [ctor assoc comm prec 10] .

endm

mod COLLECTIVE-SORTING-FUNCTIONS is

pr COLLECTIVE-SORTING-TYPES .

pr STOCHASTIC-SELECTION-IMPLEMENTATION .

pr LIST{Nat} .

var Q Q1 : TupleType .

var QL QL1 : QList .

var N N’: Nat .

var MT : TupleMSet .

var F QT T : Float .

var L : List{Float} .

var LN : List{Nat} .

op one : Nat -> Nat .

eq one(N:Nat) = randrange(N:Nat).

op size : QList -> Nat .

eq size(nilql) = 0 .

eq size(Q , QL) = s size(QL) .

op length : List{Float} -> Nat .

eq length(nil) = 0 .

eq length(F L) = s length(L) .

op get : QList Nat -> Qid .

eq get ((Q , QL) , 0) = Q .

eq get ((Q , QL) , s N:Nat) = get (QL , N:Nat) .

eq get(nilql, N:[Nat]) = ’noKind [owise] .

op choose : QList -> Qid .

eq choose (Q) = Q .

eq choose (QL) = get(QL , one(size(QL))) [owise] .

op occurringTuples : TupleMSet -> QList .

eq occurringTuples (tot(N:Nat)) = nilql .

eq occurringTuples ((Q [0]) | MT) = occurringTuples(MT) .

eq occurringTuples ((Q [N:Nat]) | MT) = (Q , occurringTuples(MT)) [owise] .

op noNoise : QList -> QList .

eq noNoise((? , QL)) = noNoise(QL) .

eq noNoise((Q , QL)) = (Q, noNoise(QL)) .

APPENDIX A. MAUDE SPECIFICATIONS 81

eq noNoise(nilql) = nilql .

op sample : List{Float} -> [Nat] .

ceq sample(L) = $sample(L , F) if F := $sum(L) /\ F =/= 0.0 .

eq sample(L) = one(length (L)) [owise] .

op quantities : QList TupleMSet -> List{Float} .

eq quantities(nilql, MT) = nil .

eq quantities((Q, QL) , (Q [N:Nat]) | MT) = (float(N:Nat) quantities(QL , MT)) .

eq quantities((Q, QL) , MT) = (0.0 quantities(QL , MT)) [owise] .

op log2 : Float -> Float .

eq log2(F) = log(F) / log(2.0) .

op info : Float Float -> Float .

eq info(QT , F) = ((F / QT) * log2(QT / F)) .

op entropy : Float List{Float} -> Float .

eq entropy(QT , nil) = (0.0) .

ceq entropy(QT , F L) = info(QT , F) + entropy(QT , L) if F > 0.0 .

eq entropy(QT , F L) = 0.0 + entropy(QT , L) [owise] .

op sp-entropy : List{Float} -> Float .

eq sp-entropy(F L) = entropy($sum(F L) , F L) / log2(float (length(F L))) .

op occursQ : TupleType QList -> Bool .

eq occursQ(Q , nilql) = false .

eq occursQ(Q , (Q , QL)) = true .

eq occursQ(Q , (Q1 , QL)) = occursQ (Q , QL) [owise] .

op out : DataSpace -> Bool .

eq out(S:DataSpace) = out (S:DataSpace , nilql) .

op out : DataSpace QList -> Bool .

ceq out (< N:Nat @ MT > | S:DataSpace , QL) = false if

QL1 := noNoise(occurringTuples(MT)) /\

size(QL1) >= 2 .

ceq out (< N:Nat @ MT > | S:DataSpace , QL) = false if

Q1 := noNoise(occurringTuples(MT)) /\

occursQ(Q1, QL) .

ceq out (< N:Nat @ MT > | S:DataSpace , QL) = out (S:DataSpace , (Q1 , QL)) if

Q1 := noNoise(occurringTuples(MT)) [owise] .

eq out (< N:Nat @ MT > | S:DataSpace , QL) = out (S:DataSpace , QL) [owise] .

eq out (S:DataSpace , QL) = true [owise] .

op ts-is-ok : List{Float} Float -> Bool .

eq ts-is-ok(nil,T) = true .

eq ts-is-ok(0.0 L,T) = ts-is-ok(L,T) .

ceq ts-is-ok(F L,T) = ts-is-ok(L,T)

if F == T /\

F > 0.0 .

eq ts-is-ok(F L,T) = false [owise] .

op out-new : DataSpace -> Bool .

ceq out-new (S:DataSpace | # T #) = true

if N:Nat := count-kind(S:DataSpace) /\

float(N:Nat) == T .

eq out-new (S:DataSpace | # T #) = false [owise] .

op count-kind : DataSpace -> Nat .

eq count-kind(< N’:Nat @ MT | tot(N:Nat) > | S:DataSpace) = N:Nat + count-kind(S:DataSpace) .

eq count-kind(S:DataSpace) = 0 [owise] .

endm

mod COLLECTIVE-SORTING is

pr COLLECTIVE-SORTING-FUNCTIONS .

pr STANDARD-CARRIER .

pr NAT .

pr LIST{Nat} .

vars F F0 F1 F2 F3 : Float .

vars N N’ N’’ N’’’ N1 N2 N3 Tot Tot’ : Nat .

var NN : [Nat] .

vars Q Q1 Q2 : TupleType .

var QQ : [TupleType] .

vars MT MT1 MT2 MT3 : TupleMSet .

vars QL : QList .

vars DS DS’ : DataSpace .

*** SYNTAX OF ACTIONS AND STATES

op choose : -> Action .

op chooseO : -> Action .

op ttype : -> Action .

op in1 : -> Action .

op in2 : -> Action .

op move : -> Action .

APPENDIX A. MAUDE SPECIFICATIONS 82

subsort DataSpace < State .

*** SEMANTICS

eq (init | DS | {N}) ==> =

(choose # 1.0 -> [[one(N)] | DS | {N}]) .

*** CHOOSING OTHER SPACE

eq ([N1] | DS | {N}) ==> = (chooseO # now -> [([N1];[one(N - 1)]) | DS | {N}]) .

eq (([N1];[N1]) | DS | {N}) ==> = (chooseO # now -> [([N1];[N - 1]) | DS | {N}]) .

*** CHOOSING A TUPLE TYPE QQ

*** CHOOSING A TUPLE FROM N1 :

ceq ([N1];[N2] | < N1 @ MT > | DS) ==> = (in1 # now -> [

([N1];[N2];[QQ] | < N1 @ MT > | DS)])

if QL := occurringTuples(MT) /\ QQ := get(QL , sample (quantities(QL, MT))) [owise].

*** CHOOSING A TUPLE FROM N2

ceq ([N1];[N2];[Q] | < N2 @ MT > | DS) ==> = (in2 # now -> [

([N1];[N2];[Q];[QQ] | < N2 @ MT > | DS)])

if QL := occurringTuples(MT) /\ QQ := get(QL , sample (quantities(QL, MT))) [owise] .

*** MOVING OR DISCARDING

op pred _ : Nat -> Nat .

eq pred 0 = 0 .

eq pred s N = N .

op move : TupleType TupleType -> Bool .

ceq move (Q1,Q2) = true if Q1 =/= Q2 .

***ceq move (Q1,Q2) = true if Q2 == ’noKind /\ Q1 =/= ’noKind .

***ceq move (Q1,?) = true if Q1 =/= ? .

eq move (Q1,Q2) = false [owise] .

***op noise : TupleType TupleType Nat -> Nat .

***eq noise(Q1,Q2,N) = N .

op noise : TupleType TupleType Nat Bool -> Nat .

ceq noise(Q1,Q2,N,false) = N + 1 if Q1 == Q2 /\ Q1 =/= ? /\ Q2 =/= ? /\ Q1 =/= ’noKind /\ Q2 =/= ’noKind .

ceq noise(Q1,Q2,N,true) = N - 1 if Q1 =/= Q2 /\ N > 1 /\ Q1 =/= ? /\ Q2 =/= ? /\ Q1 =/= ’noKind /\ Q2 =/= ’noKind .

ceq noise(?,Q2,N,true) = N - 1 if N > 1 /\ Q2 =/= ? /\ Q2 =/= ’noKind .

ceq noise(’noKind,Q2,N,true) = N - 1 if N > 1 /\ Q2 =/= ? /\ Q2 =/= ’noKind .

ceq noise(Q2,?,N,true) = N if Q2 =/= ? /\ Q2 =/= ’noKind .

ceq noise(Q2,’noKind,N,true) = N - 1 if N > 1 /\ Q2 =/= ? /\ Q2 =/= ’noKind .

eq noise(Q1,Q2,N,B:Bool) = N [owise] .

var Mov : Bool .

ceq ([N1];[N2];[Q1];[Q2] | # N3 #

| < N1 @ (Q2 [s N]) | (? [N’’]) | MT | tot(Tot) >

| < N2 @ (Q2 [N’]) | MT1 | tot(Tot’) > | DS) ==> = (move # now -> [

(init | # s N3 #

| < N1 @ (Q2 [N]) | (? [N’’’]) | MT | tot(updateNum((Q2 [N]) | MT)) >

| < N2 @ (Q2 [s N’]) | MT1 | tot(updateNum((Q2 [s N’]) | MT1)) > | DS)])

if Mov := move(Q1,Q2) /\ Mov == true /\ N’’’ := noise(Q1,Q2,N’’,Mov) .

ceq ([N1];[N2];[Q2];[?] | # N3 #

| < N1 @ (Q2 [s N]) | (? [N’’]) | MT | tot(Tot) >

| < N2 @ (Q2 [N’]) | MT1 | tot(Tot’) > | DS) ==> = (move # now -> [

(init | # s N3 #

| < N1 @ (Q2 [N]) | (? [N’’’]) | MT | tot(updateNum((Q2 [N]) | MT)) >

| < N2 @ (Q2 [s N’]) | MT1 | tot(updateNum((Q2 [s N’]) | MT1)) > | DS)])

if Mov := move(Q2,?) /\ Mov == true /\ N’’’ := noise(Q2,?,N’’,Mov) .

ceq ([N1];[N2];[?];[Q2] | # N3 #

| < N1 @ (Q2 [s N]) | (? [N’’]) | MT | tot(Tot) >

| < N2 @ (Q2 [N’]) | MT1 | tot(Tot’) > | DS) ==> = (move # now -> [

(init | # s N3 #

| < N1 @ (Q2 [N]) | (? [N’’’]) | MT | tot(updateNum((Q2 [N]) | MT)) >

| < N2 @ (Q2 [s N’]) | MT1 | tot(updateNum((Q2 [s N’]) | MT1)) > | DS)])

if Mov := move(?,Q2) /\ Mov == true /\ N’’’ := noise(?,Q2,N’’,Mov) .

ceq ([N1];[N2];[?];[Q2] | # N3 #

| < N1 @ (Q2 [0]) | (? [N’’]) | MT | tot(Tot) >

| < N2 @ (Q2 [N’]) | MT1 | tot(Tot’) > | DS) ==> = (move # now -> [

(init | # N3 #

| < N1 @ (Q2 [0]) | (? [N’’’]) | MT | tot(Tot) >

| < N2 @ (Q2 [N’]) | MT1 | tot(Tot’) > | DS)])

if Mov := move(?,Q2) /\ Mov == true /\ N’’’ := N’’ .

ceq ([N1];[N2];[Q1];[’noKind] | # N3 #

| < N1 @ (Q1 [s N]) | (? [N’’]) | MT | tot(Tot) >

| < N2 @ (Q1 [N’]) | MT1 | tot(Tot’) > | DS) ==> = (move # now -> [

(init | # s N3 #

| < N1 @ (Q1 [N]) | (? [N’’’]) | MT | tot(updateNum((Q1 [N]) | MT)) >

| < N2 @ (Q1 [s N’]) | MT1 | tot(updateNum((Q1 [s N’]) | MT1)) > | DS)])

if Q1 =/= ’noKind /\ N’’’ := noise(Q1,’noKind,N’’,true) .

ceq ([N1];[N2];[Q1];[Q2] | # N3 #

| < N1 @ (Q2 [0]) | (? [N’’]) | MT >

APPENDIX A. MAUDE SPECIFICATIONS 83

| < N2 @ (Q2 [N’]) | MT1 > | DS) ==> = (move # now -> [

(init | # N3 #

| < N1 @ (Q2 [0]) | (? [N’’’]) | MT >

| < N2 @ (Q2 [N’]) | MT1 > | DS)])

if move(Q1,Q2) /\ N’’’ := N’’ .

ceq ([N1];[N2];[Q1];[Q2]

| < N1 @ (? [N’’]) | MT >

| DS) ==> = (move # now -> [

(init

| < N1 @ (? [N’’’]) | MT >

| DS)])

if Mov := move(Q1,Q2) /\ Mov == false /\ N’’’ := noise(Q1,Q2,N’’,Mov) .

op updateNum : TupleMSet -> Nat .

ceq updateNum((Q2 [N]) | MT) = 1 + updateNum(MT)

if N > 0 /\ Q2 =/= ? .

eq updateNum(empty) = 0 .

eq updateNum((? [N]) | MT) = 0 + updateNum(MT) .

ceq updateNum((Q2 [0]) | MT) = 0 + updateNum(MT) if Q2 =/= ? .

*** TEMP

eq quit(N, DS, F) = out-new(DS) .

eq temp(init | DS) = false .

eq temp(DS) = true [owise] .

***eq temp(DS) = false .

*** OBS

subsort State < Observation .

***subsort Nat < Observation .

sorts TSView-List TSView .

subsort TSView < TSView-List .

op nilTSList : -> TSView-List .

op _,_ : TSView-List TSView-List -> TSView-List [ctor assoc id: nilTSList] .

op ts : Nat Nat Nat -> TSView .

op t : Nat TSView-List -> Observation .

op o : State -> Observation .

eq o (< N’ @ T:TupleMSet | (?[N’’]) > | S:State | # N #) = t(N,getPattern(< N’ @ T:TupleMSet | (?[N’’]) > | S:State)) .

***eq o (S:State) = S:State .

***eq o (S:State) = 0 [owise] .

***eq o (S:State) = S:State .

eq obs (N:Nat , S:State, F:Float) = o(S:State) .

op getPattern : State -> TSView-List .

eq getPattern(< N’ @ T:TupleMSet | (?[N’’]) | tot(N) > | S:State) = ts(N’,N,N’’), getPattern(S:State) .

eq getPattern(S:State) = nilTSList [owise] .

op SS-2 : -> State .

eq SS-2 = (init | {2} |

< 0 @ (’a[250])|(’b[250])|(?[0]) | tot(2) > |

< 1 @ (’a[250])|(’b[250])|(?[0]) | tot(2) > | # 0 # | # 2.0 #) .

op SS-3 : -> State .

eq SS-3 = (init | {3} |

< 0 @ (’a[25])|(’b[25])|(’c[25])|(?[0]) | tot(3) > |

< 1 @ (’a[25])|(’b[25])|(’c[25])|(?[0]) | tot(3) > |

< 2 @ (’a[25])|(’b[25])|(’c[25])|(?[0]) | tot(3) > |

0 # | # 3.0 #) .

op SS-4 : -> State .

eq SS-4 = (init | {4} |

< 0 @ (’a[25])|(’b[25])|(’c[25])|(’e[25])|(?[0]) | tot(4) > |

< 1 @ (’a[25])|(’b[25])|(’c[25])|(’e[25])|(?[0]) | tot(4) > |

< 2 @ (’a[25])|(’b[25])|(’c[25])|(’e[25])|(?[0]) | tot(4) > |

< 3 @ (’a[25])|(’b[25])|(’c[25])|(’e[25])|(?[0]) | tot(4) > | # 0 # | # 4.0 #) .

op SS-4-local-min : Nat -> State .

eq SS-4-local-min(N) = (init | {4} |

< 0 @ (’a[50])|(’b[0])|(’c[0])|(’e[0])|(?[N]) | tot(1) > |

< 1 @ (’a[50])|(’b[0])|(’c[0])|(’e[0])|(?[N]) | tot(1) > |

< 2 @ (’a[0])|(’b[100])|(’c[100])|(’e[0])|(?[N]) | tot(2) > |

< 3 @ (’a[0])|(’b[0])|(’c[0])|(’e[100])|(?[N]) | tot(1) > | # 0 # | # 4.0 #) .

op SS-5 : -> State .

eq SS-5 = (init | {5} |

< 0 @ (’a[25])|(’b[25])|(’c[25])|(’d[25])|(’e[25])|(?[0]) | tot(5) > |

< 1 @ (’a[25])|(’b[25])|(’c[25])|(’d[25])|(’e[25])|(?[0]) | tot(5) > |

< 2 @ (’a[25])|(’b[25])|(’c[25])|(’d[25])|(’e[25])|(?[0]) | tot(5) > |

< 3 @ (’a[25])|(’b[25])|(’c[25])|(’d[25])|(’e[25])|(?[0]) | tot(5) > |

< 4 @ (’a[25])|(’b[25])|(’c[25])|(’d[25])|(’e[25])|(?[0]) | tot(5) > | # 0 # | # 5.0 #) .

APPENDIX A. MAUDE SPECIFICATIONS 84

op SS-5-bis : -> State .

eq SS-5-bis = (init | {5} | # 1333 # | # 5.0 # |

< 0 @ tot(1) | (’a[0]) | (’b[0]) | (’c[125]) | (’d[0]) | (’e[0]) | (?[0]) > |

< 1 @ tot(2) | (’a[0]) | (’b[74]) | (’c[0]) | (’d[0]) | (’e[43]) | (?[0]) > |

< 2 @ tot(1) | (’a[0]) | (’b[51]) | (’c[0]) | (’d[0]) | (’e[0]) | (?[0]) > |

< 3 @ tot(1) | (’a[0]) | (’b[0]) | (’c[0]) | (’d[125]) | (’e[0]) | (?[0]) > |

< 4 @ tot(2) | (’a[125]) | (’b[0]) | (’c[0]) | (’d[0]) | (’e[82]) | (?[0]) >) .

op SS-6 : -> State .

eq SS-6 = (init | {4} |

< 0 @ (’a[10])|(’b[10])|(’c[10])|(’d[10])|(’e[10])|(’f[10])|(?[0])| tot(6) > |

< 1 @ (’a[10])|(’b[10])|(’c[10])|(’d[10])|(’e[10])|(’f[10])|(?[0])| tot(6) > |

< 2 @ (’a[10])|(’b[10])|(’c[10])|(’d[10])|(’e[10])|(’f[10])|(?[0])| tot(6) > |

< 3 @ (’a[10])|(’b[10])|(’c[10])|(’d[10])|(’e[10])|(’f[10])|(?[0])| tot(6) > | # 0 # | # 40.0 #) .

op SS-7 : -> State .

eq SS-7 = (init | {4} |

< 0 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(?[0]) > |

< 1 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(?[0]) > |

< 2 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(?[0]) > |

< 3 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(?[0]) > | # 0 #) .

op SS-10 : -> State .

eq SS-10 = (init | {4} |

< 0 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(’h[13])|(’i[13])|(’l[13])|(?[0]) > |

< 1 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(’h[13])|(’i[13])|(’l[13])|(?[0]) > |

< 2 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(’h[13])|(’i[13])|(’l[13])|(?[0]) > |

< 3 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(’h[13])|(’i[13])|(’l[13])|(?[0]) > | # 0 #) .

op SS-13 : -> State .

eq SS-13 = (init | {4} |

< 0 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(’h[13])|

(’i[13])|(’l[13])|(’m[13])|(’n[13])|(’o[13])|(?[0]) > |

< 1 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(’h[13])|

(’i[13])|(’l[13])|(’m[13])|(’n[13])|(’o[13])|(?[0]) > |

< 2 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(’h[13])|

(’i[13])|(’l[13])|(’m[13])|(’n[13])|(’o[13])|(?[0]) > |

< 3 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(’h[13])|

(’i[13])|(’l[13])|(’m[13])|(’n[13])|(’o[13])|(?[0]) > |

0 #) .

op SS-16 : -> State .

eq SS-16 = (init | {4} |

< 0 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(’h[13])|

(’i[13])|(’l[13])|(’m[13])|(’n[13])|(’o[13])|(’p[13])|(’q[13])|(’r[13])|(?[0]) > |

< 1 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(’h[13])|(’i[13])|

(’l[13])|(’m[13])|(’n[13])|(’o[13])|(’p[13])|(’q[13])|(’r[13])|(?[0]) > |

< 2 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(’h[13])|(’i[13])|

(’l[13])|(’m[13])|(’n[13])|(’o[13])|(’p[13])|(’q[13])|(’r[13])|(?[0]) > |

< 3 @ (’a[13])|(’b[13])|(’c[13])|(’d[13])|(’e[13])|(’f[13])|(’g[13])|(’h[13])|(’i[13])|

(’l[13])|(’m[13])|(’n[13])|(’o[13])|(’p[13])|(’q[13])|(’r[13])|(?[0]) > | # 0 #) .

endm

view COLLECTIVE-SORTING from CARRIER to COLLECTIVE-SORTING is

endv

mod CS-STOCHASTIC-TRACES is

pr STOCHASTIC-TRACES-ENGINE{COLLECTIVE-SORTING} .

endm

set print format on .

Bibliography

[AAC+00] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George
Homsy, Jr. Thomas F. Knight, Radhika Nagpal, Erik Rauch, Ger-
ald Jay Sussman, and Ron Weiss. Amorphous computing. Com-
mununications of the ACM, 43(5):74–82, May 2000.

[AIS+77] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max
Jacobson, Ingrid Fiksdahl-King, and Shlomo Angel. A Pattern
Language: Towns, Buildings, Construction. Oxford University
Press, New York, 1977.

[Ash47] William Ross Ashby. Principles of self-organizing dynamic sys-
tems. Journal of General Psychology, 37:125–128, 1947.

[BCD+06] Ozalp Babaoglu, Geoffrey Canright, Andreas Deutsch, Gianni A.
Di Caro, Frederick Ducatelle, Luca M. Gambardella, Niloy Gan-
guly, Márk Jelasity, Roberto Montemanni, Alberto Montresor, and
Tore Urnes. Design patterns from biology for distributed comput-
ing. Transactions on Autonomous and Adaptive Systems (TAAS),
1(1):26–66, September 2006.

[BCGP04] Carole Bernon, Valérie Camps, Marie-Pierre Gleizes, and Gauthier
Picard. Designing agents’ behaviors and interactions within the
framework of ADELFE methodology. In Engineering Societies
in the Agents World, volume 3071 of LNCS (LNAI), pages 311–
327. Springer, 2004. 4th International Workshops, ESAW 2003,
London, UK, October 29-31, 2003, Revised Selected and Invited
Papers.

[BDT99] Eric Bonabeau, Marco Dorigo, and Guy Theraulaz. Swarm In-
telligence: From Natural to Artificial Systems. Santa Fe Institute
Studies in the Sciences of Complexity. Oxford University Press,
198 Madison Avenue, New York, New York 10016, United States
of America, 1999.

[Ber92] Alan A. Berryman. The origins and evolution of predator-prey
theory. Ecology, 73(5):1530–1535, October 1992.

[BGP07] Carole Bernon, Marie-Pierre Gleizes, and Gauthier Picard. En-
hancing self-organising emergent systems design with simula-
tion. In Gregory M.P. O’Hare, Alessandro Ricci, Michael J.
O’Grady, and Oǧuz Dikenelli, editors, Engineering Societies in the

85

BIBLIOGRAPHY 86

Agents World VII, volume 4457 of LNCS (LNAI), pages 284–299.
Springer, September 2007. 7th International Workshop, ESAW
2006 Dublin, Ireland, September 6-8, 2006 Revised Selected and
Invited Papers.

[BH01] Ed Brinksma and Holger Hermanns. Process algebra and markov
chains. In E. Brinksma, H. Hermanns, and J.-P. Katoen, editors,
Lectures on Formal Methods and Performance Analysis : First
EEF/Euro Summer School on Trends in Computer Science Berg
en Dal, The Netherlands, July 3-7, 2000, Revised Lectures, volume
2090 of LNCS, pages 183–231. Springer, 2001.

[BMM02] Ozalp Babaoglu, Hein Meling, and Alberto Montresor. Anthill:
a framework for the development of agent-based peer-to-peer sys-
tems. In 22nd International Conference on Distributed Comput-
ing Systems (ICDCS02), pages 15–22, Vienna, Austria, July 2002.
IEEE Computer Society.

[CDE+07] Manuel Clavel, Francisco Durán, Steven Eker, Patrick Lincoln,
Narciso Mart́ı-Oliet, José Meseguer, and Carolyn Talcott. Maude
Manual. University of Illinois ad Urbana-Champaign, 2.3 edition,
July 2007. Available online at http://maude.cs.uiuc.edu.

[CDF+01] Scott Camazine, Jean-Louis Deneubourg, Nigel R. Franks, James
Sneyd, Guy Theraulaz, and Eric Bonabeau. Self-Organization in
Biological Systems. Princeton Studies in Complexity. Princeton
University Press, 41 William Street, Princeton, New Jersey 08540,
United States of America, 2001.

[CDU06] Geoffrey Canright, Andreas Deutsch, and Tore Urnes.
Chemotaxis-inspired load balancing. Complexus, 3(1-3):8–23,
August 2006.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model
checking and abstraction. Transactions on Programming Lan-
guages and Systems (TOPLAS), 16(5):1512–1542, September
1994.

[CGV06a] Matteo Casadei, Luca Gardelli, and Mirko Viroli. A case of self-
organising environment for MAS: the collective sort problem. In
Barbara Dunin-Kȩplicz, Andrea Omicini, and Julian Padget, ed-
itors, 4th European Workshop on Multi-Agent Systems (EUMAS
2006), volume 223, Lisbon, Portugal, December 2006. CEUR.

[CGV06b] Matteo Casadei, Luca Gardelli, and Mirko Viroli. Collective
sorting tuple spaces. In Andrea Omicini Flavio De Paoli, An-
tonella Di Stefano and Corrado Santoro, editors, Dagli oggetti agli
agenti: Sistemi Grid, P2P e Self-*, AI*IA/TABOO Joint Work-
shop (WOA 2006), pages 173–180, Catania - Italy, September
2006. Technical University of Aachen.

BIBLIOGRAPHY 87

[CGV06c] Matteo Casadei, Luca Gardelli, and Mirko Viroli. Simulating
emergent properties of coordination in Maude: the collective sort-
ing case. In Carlos Canal and Mirko Viroli, editors, 5th Interna-
tional Workshop on the Foundations of Coordination Languages
and Software Architectures (FOCLASA), pages 57–75, CONCUR
2006, Bonn, Germany, August 2006. University of Malaga, Spain.

[CGV07] Matteo Casadei, Luca Gardelli, and Mirko Viroli. Simulating
emergent properties of coordination in Maude: the collective sort
case. Electronic Notes in Theoretical Computer Science (ENTCS),
175(2):59–80, June 21 2007. Proceedings of the Fifth Interna-
tional Workshop on the Foundations of Coordination Languages
and Software Architectures (FOCLASA 2006).

[CS04] Vincent A. Cicirello and Stephen F. Smith. Wasp-like agents for
distributed factory coordination. Autonomous Agents and Multi-
Agent Sytems, 8(3):237–266, May 2004.

[DBS06] Marco Dorigo, Mauro Birattari, and Thomas Stützle. Ant Colony
Optimization: Artificial ants as a computational intelligence tech-
nique. IEEE Computational Intelligence Magazine, 1(4):28–39,
2006.

[Des37] René Descartes. Discourse on the Method of Rightly Conducting
the Reason, and Searching for Truth in the Sciences. Leyde, 1637.
Available online at Project Gutenberg http://www.gutenberg.org.

[DGF+91] J.L. Deneubourg, S. Goss, N. Franks, A. Sendova-Franks, C. De-
train, and L. Chrétien. The dynamics of collective sorting: Robot-
like ants and ant-like robots. In Jean-Arcady Meyer and Stew-
art W. Wilson, editors, From Animals to Animats: Proceedings
of the First International Conference on Simulation of Adaptive
Behavior, Classics, pages 356–363. MIT Press, Cambridge, Mas-
sachusetts 02142, USA, February 1991.

[DS04] Marco Dorigo and Thomas Stützle. Ant Colony Optimization.
MIT Press, Cambridge, MA, July 2004.

[DW07] Tom De Wolf. Analysing and engineering self-organising emergent
applications. PhD in computer science, Faculteit Ingenieursweten-
schappen — Katholieke Universiteit Leuven, Celestijnenlaan 200
A - 3001 Leuven - Belgium, May 2007.

[DWH05] Tom De Wolf and Tom Holvoet. Emergence versus self-
organisation: Different concepts but promising when combined.
In S. Brueckner, G. Di Marzo Serugendo, A. Karageorgos, and
R. Nagpal, editors, Engineering Self Organising Systems: Method-
ologies and Applications, volume 3464 of LNCS (LNAI), pages
1–15. Springer, May 2005.

[DWH07] Tom De Wolf and Tom Holvoet. Design patterns for decentralised
coordination in self-organising emergent systems. In Sven Brueck-
ner, Salima Hassas, Mrk Jelasity, and Daniel Yamins, editors, En-
gineering Self-Organising Systems, volume 4335 of LNCS (LNAI),

BIBLIOGRAPHY 88

pages 28–49. Springer, 2007. Fourth International Workshop,
ESOA 2006, Future University-Hakodate, Japan, 2006, Revised
Selected Papers.

[DWHS06] Tom De Wolf, Tom Holvoet, and Giovanni Samaey. Development
of self-organising emergent applications with simulation-based nu-
merical analysis. In Sven A. Brueckner, Giovanna Di Marzo Seru-
gendo, David Hales, and Franco Zambonelli, editors, Engineer-
ing Self-Organising Systems, volume 3910 of LNCS (LNAI), pages
138–152. Springer, May 2006. Third International Workshop,
ESOA 2005, Utrecht, The Netherlands, July 2005, Revised Se-
lected Papers.

[DWSHR05] Tom De Wolf, Giovanni Samaey, Tom Holvoet, and Dirk Roose.
Decentralised autonomic computing: Analysing self-organising
emergent behaviour using advanced numerical methods. In Second
International Conference on Autonomic Computing (ICAC’05),
pages 52–63, Seattle,Washington, USA, June 2005. IEEE.

[EMCGP99] Jr. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.
Model Checking. The MIT Press, 1999.

[FHS97] Stephanie Forrest, Steven A. Hofmeyr, and Anil Somayaji. Com-
puter immunology. Communications of the ACM, 40(10):88–96,
October 1997.

[Gar05] Luca Gardelli. Self-organization and coordination for multi-agent
systems. Technical report, European Science Foundation (ESF)
MiNEMA Scientific Programme, November 2005. MiNEMA Ex-
change Grants Publications (no. 805)- Visit to Katholieke Univer-
siteit Leuven.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns : elements of reusable object-oriented software.
Professional Computing. Addison-Wesley, One Lake Street, Upper
Saddle River, NJ, 07458, USA, December 1995.

[Gil77] Daniel T. Gillespie. Exact stochastic simulation of coupled chem-
ical reactions. The Journal of Physical Chemistry, 81(25):2340–
2361, 1977.

[Gol99] Jeffrey Goldstein. Emergence as a construct: History and issues.
Emergence, 1(1):49–72, 1999.

[Gra59] Pierre-Paul Grassé. La reconstruction du nid et les coordinations
interindividuelles chez bellicositermes natalensis et cubitermes sp.
la théorie de la stigmergie: Essai d’interprétation du comporte-
ment des termites constructeurs. Insectes Sociaux, 6(1):41–80,
March 1959.

[GVC06a] Luca Gardelli, Mirko Viroli, and Matteo Casadei. Engineering
the environment of self-organising multi-agent systems exploiting
formal analysis tools. In Congresso AICA 2006, Cesena - Italy,

BIBLIOGRAPHY 89

September 2006. AICA - Associazione Italiana per l’Informatica e
il Calcolo Automatico.

[GVC06b] Luca Gardelli, Mirko Viroli, and Matteo Casadei. On engineering
self-organizing environments: Stochastic methods for dynamic re-
source allocation. In Danny Weyns, H. Van Dyke Parunak, and Fa-
bien Michel, editors, 3rd International Workshop on Environments
for Multi-Agent Systems (E4MAS 2006), pages 96–101, AAMAS
2006, Hakodate, Japan, May 2006.

[GVCO07] Luca Gardelli, Mirko Viroli, Matteo Casadei, and Andrea Omicini.
Designing self-organising MAS environments: The collective sort
case. In Danny Weyns, H. Van Dyke Parunak, and Fabien Michel,
editors, Environments for Multi-Agent Systems III, volume 4389
of LNCS (LNAI), pages 254–271. Springer, February 2007. 3rd
International Workshop (E4MAS 2006), Hakodate, Japan, 8 May
2006. Selected Revised and Invited Papers.

[GVCO08] Luca Gardelli, Mirko Viroli, Matteo Casadei, and Andrea Omicini.
Designing self-organising environments with agents and artefacts:
A simulation-driven approach. International Journal of Agent-
Oriented Software Engineering (IJAOSE), 2(2):171–195, 2008.
Special Issue on Multi-Agent Systems and Simulation.

[GVO05a] Luca Gardelli, Mirko Viroli, and Andrea Omicini. Engineering
self-organizing MAS with coordination artifacts and ACCs. In
Jean-Marie Jacquet and Gian Pietro Picco, editors, 7th Interna-
tional Conference on Coordination Languages and Models (CO-
ORDINATION 2005), Namur, Belgium, April 2005. Poster.

[GVO05b] Luca Gardelli, Mirko Viroli, and Andrea Omicini. On the role of
simulation in the engineering of self-organising systems: Detecting
abnormal behaviour in MAS. In Flavio Corradini, Flavio De Paoli,
Emanuela Merelli, and Andrea Omicini, editors, AI*IA/TABOO
Joint Workshop “Dagli oggetti agli agenti: simulazione e anal-
isi formale di sistemi complessi” (WOA 2005), pages 85–90,
Camerino, MC, Italy, November 2005. Pitagora Editrice Bologna.

[GVO05c] Luca Gardelli, Mirko Viroli, and Andrea Omicini. On the role of
simulations in engineering self-organizing MAS: the case of an in-
trusion detection system in TuCSoN. In Sven Brueckner, Giovanna
Di Marzo Serugendo, David Hales, and Franco Zambonelli, editors,
3rd International Workshop on Engineering Self-Organising Appli-
cations (ESOA 2005), pages 161–175, AAMAS 2005, Utrecht, The
Netherlands, July 2005.

[GVO06a] Luca Gardelli, Mirko Viroli, and Andrea Omicini. Exploring the
dynamics of self-organising systems with stochastic π-calculus:
Detecting abnormal behaviour in MAS. In Robert Trappl, editor,
Cybernetics and Systems 2006, volume 2, pages 539–544, Vienna,
Austria, April 2006. Austrian Society for Cybernetic Studies. 18th
European Meeting on Cybernetics and Systems Research (EMCSR

BIBLIOGRAPHY 90

2006), 5th International Symposium From Agent Theory to The-
ory Implementation (AT2AI-5).

[GVO06b] Luca Gardelli, Mirko Viroli, and Andrea Omicini. On the role of
simulations in engineering self-organising MAS: The case of an
intrusion detection system in TuCSoN. In Sven A. Brueckner,
Giovanna Di Marzo Serugendo, David Hales, and Franco Zam-
bonelli, editors, Engineering Self-Organising Systems, volume 3910
of LNCS (LNAI), pages 153–166. Springer Berlin / Heidelberg,
April 2006. Third International Workshop, ESOA 2005, Utrecht,
The Netherlands, July 25, 2005, Revised Selected Papers.

[GVO07a] Luca Gardelli, Mirko Viroli, and Andrea Omicini. Design patterns
for self-organising systems. In Hans-Dieter Burkhard, Gabriela
Lindemann, Rineke Verbrugge, and László Z. Varga, editors,
Multi-Agent Systems and Applications V, volume 4696 of LNCS
(LNAI), pages 123–132. Springer, Heidelberg, 2007. 5th Interna-
tional Central and Eastern European Conference on Multi-Agent
Systems, CEEMAS 2007, Leipzig, Germany, September 25–27,
2007, Proceedings. In Press.

[GVO07b] Luca Gardelli, Mirko Viroli, and Andrea Omicini. Design pat-
terns for self-organizing multiagent systems. In Tom De Wolf,
Fabrice Saffre, and Richard Anthony, editors, 2nd International
Workshop on Engineering Emergence in Decentralised Autonomic
System (EEDAS) 2007, pages 62–71, ICAC 2007, Jacksonville,
Florida, USA, June 2007. CMS Press, University of Greenwich,
London, UK.

[GVO08] Luca Gardelli, Mirko Viroli, and Andrea Omicini. Agents, Simu-
lation and Applications., chapter Simulation for the Development
of Self-Organising Multi-Agent Systems. Taylor & Francis, 2008.
To Appear.

[Hor01] Paul Horn. Autonomic computing manifesto. Available online
at http://www.research.ibm.com/autonomic/manifesto/, October
2001.

[KC03] Jeffrey O. Kephart and David M. Chess. The vision of autonomic
computing. Computer, 36(1):41–50, January 2003.

[KGV83] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by
simulated annealing. Science, 220(4598):671–680, May 1983.

[KNP04] Marta Kwiatkowska, Gethin Norman, and David Parker. Proba-
bilistic symbolic model checking with PRISM: A hybrid approach.
International Journal on Software Tools for Technology Transfer
(STTT), 6(2):128–142, September 2004. Special section on tools
and algorithms for the construction and analysis of systems.

[KNP07] Marta Kwiatkowska, Gethin Norman, and David Parker. Stochas-
tic model checking. In Marco Bernardo and Jane Hillston, edi-
tors, Formal Methods for the Design of Computer, Communication

BIBLIOGRAPHY 91

and Software Systems: Performance Evaluation (SFM’07), volume
4486 of LNCS (Tutorial Volume), pages 220–270. Springer, June
2007. 7th International School on Formal Methods for the Design
of Computer, Communication, and Software Systems, SFM 2007,
Bertinoro, Italy, May 28-June 2, 2007.

[Lin03] Jürgen Lind. Patterns in agent-oriented software engineering.
In Fausto Giunchiglia, James Odell, and Gerhard Weiß, editors,
Agent-Oriented Software Engineering III, volume 2585 of LNCS,
pages 47–58. Springer, February 2003. 3rd International Workshop
on Agent Oriented Software Engineering (AOSE 2002), Bologna,
Italy, July 15, 2002, Revised Papers and Invited Contributions.

[Lui06] Pier Luigi Luisi. The Emergence of Life: From Chemical Origins
to Synthetic Biology. Cambridge University Press, The Edinburgh
Building, Cambridge CB2 2RU, UK, 2006.

[M0̈4] Jean-Pierre Müller. Emergence of collective behaviour and prob-
lem solving. In Andrea Omicini, Paolo Petta, and Jeremy Pitt, ed-
itors, Engineering Societies in the Agents World IV, volume 3071
of LNCS (LNAI), pages 1–21. Springer, June 2004. 4th Interna-
tional Workshops, ESAW 2003, London, UK, October 29-31, 2003,
Revised Selected and Invited Papers.

[Mau07] Maude. The Maude system, November 2007. Developed at Uni-
versity of Illinois at Urbana-Champaign. Version 2.3 available on-
line at http://maude.cs.uiuc.edu.

[MCA00] John McHugh, Alan Christie, and Julia Allen. Defending yourself:
The role of intrusion detection systems. IEEE Software, 17(5):42–
51, September/October 2000.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-
Calculus. Cambridge University Press, The Edinburgh Building,
Cambridge CB2 2RU, UK, June 1999.

[MMTZ06] Marco Mamei, Ronaldo Menezes, Robert Tolksdorf, and Franco
Zambonelli. Case studies for self-organization in computer sci-
ence. Journal of Systems Architecture, 52(8-9):443–460, August-
September 2006 2006.

[MODR06] Ambra Molesini, Andrea Omicini, Enrico Denti, and Alessandro
Ricci. SODA: A roadmap to artefacts. In Oğuz Dikenelli, Marie-
Pierre Gleizes, and Alessandro Ricci, editors, Engineering Soci-
eties in the Agents World VI, volume 3963 of LNCS (LNAI), pages
49–62. Springer, June 2006. 6th International Workshop (ESAW
2005), Kuşadası, Aydın, Turkey, 26–28 October 2005. Revised,
Selected & Invited Papers.

[MOV07] Ambra Molesini, Andrea Omicini, and Mirko Viroli. Environ-
ment in agent-oriented software engineering methodologies. In-
ternational Journal on Multiagent and Grid Systems, 2007. In
Press. Special Issue on Engineering Environments for Multiagent
Systems.

BIBLIOGRAPHY 92

[MPW92a] Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes I. Information and Computation, 100(1):1–40,
September 1992.

[MPW92b] Robin Milner, Joachim Parrow, and David Walker. A calculus of
mobile processes II. Information and Computation, 100(1):41–77,
September 1992.

[Mur02] James D. Murray. Mathematical Biology: An Introduction, vol-
ume 17 of Interdisciplinary Applied Mathematics. Springer, 3rd
edition, 2002.

[MZ05] Marco Mamei and Franco Zambonelli. Programming stigmergic
coordination with the TOTA middleware. In 4th International
Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS’05), pages 415–422, New York, NY, USA, July 2005.
ACM Press.

[MZ07] Marco Mamei and Franco Zambonelli. Pervasive pheromone-based
interaction with rfid tags. Transactions on Autonomous and Adap-
tive Systems (TAAS), 2(2):Number 4, June 2007.

[ORV06] Andrea Omicini, Alessandro Ricci, and Mirko Viroli. Agens Faber:
Toward a theory of artefacts for MAS. Electronic Notes in Theo-
retical Computer Sciences, 150(3):21–36, May 2006. 1st Interna-
tional Workshop “Coordination and Organization” (CoOrg 2005),
COORDINATION 2005, Namur, Belgium, 22 April 2005. Proceed-
ings.

[Par06] H. Van Dyke Parunak. A survey of environments and mecha-
nisms for human-human stigmergy. In Danny Weyns, H. Van Dyke
Parunak, and Fabien Michel, editors, Environments for Multi-
Agent Systems II, volume 3830 of LNCS (LNAI), pages 163–186.
Springer, February 2006. 2nd International Workshop, E4MAS
2005, Utrecht, The Netherlands, July 25, 2005, Selected Revised
and Invited Papers.

[PBS05] H. Van Dyke Parunak, Sven A. Brueckner, and John Sauter. Dig-
ital pheromones for coordination of unmanned vehicles. In Danny
Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, Envi-
ronments for Multi-Agent Systems, volume 3374 of LNCS (LNAI),
pages 246–263. Springer, February 2005. 1st International Work-
shop on Environments for Multiagent Systems, E4MAS 2004. New
York NY, USA. July 19, 2004. Revised Selected Papers.

[PC04] Andrew Phillips and Luca Cardelli. A correct abstract machine
for the stochastic pi-calculus. In Concurrent Models in Molecular
Biology (Bioconcur’04), London, August 2004.

[Phi07] Andrew Phillips. The stochastic pi-machine (SPiM). Version 0.044
available online at http://research.microsoft.com/˜aphillip/spim/,
November 2007.

BIBLIOGRAPHY 93

[Pri95] Corrado Priami. Stochastic π-calculus. The Computer Journal,
38(7):578–589, 1995.

[PRI07] PRISM. PRISM: Probabilistic symbolic model checker, November
2007. Developed at University of Birmingham, UK. Version 3.1.1
available online at http://www.prismmodelchecker.org.

[RHTR06] Christopher A. Rouff, Michael G. Hinchey, Walter F. Truszkowski,
and James L. Rash. Experiences applying formal approaches in the
development of swarm-based space exploration systems. Interna-
tional Journal on Software Tools for Technology Transfer (STTT),
8(6):587–603, November 2006. Special Section On Leveraging Ap-
plications of Formal Methods.

[RKNP04] J.J. M.M. Rutten, Marta Kwiatkowska, Gethin Norman, and
David Parker. Mathematical Techniques for Analyzing Concur-
rent and Probabilistic Systems, volume 23 of CRM Monograph.
American Mathematical Society, 201 Charles Street, Providence,
Rhode Island 02904-2294, USA, 2004.

[RN02] Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Mod-
ern Approach. Prentice Hall Series in Artificial Intelligence. Pear-
son Education, Inc., Upper Saddle River, New Jersey 07458, USA,
2nd edition, December 2002.

[ROV+07] Alessandro Ricci, Andrea Omicini, Mirko Viroli, Luca Gardelli,
and Enrico Oliva. Cognitive stigmergy: Towards a framework
based on agents and artifacts. In Danny Weyns, H. Van Dyke
Parunak, and Fabien Michel, editors, Environments for Multi-
Agent Systems III, volume 4389 of LNCS (LNAI), pages 124–140.
Springer, February 2007. 3rd International Workshop (E4MAS
2006), Hakodate, Japan, 8 may 2006. Selected Revised and In-
vited Papers.

[RVO06] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. Program-
ming MAS with artifacts. In Rafael P. Bordini, Mehdi Das-
tani, Jürgen Dix, and Amal El Fallah Seghrouchni, editors, Pro-
gramming Multi-Agent Systems, volume 3862 of LNCS (LNAI),
pages 206–221. Springer, March 2006. 3rd International Work-
shop (PROMAS 2005), AAMAS 2005, Utrecht, The Netherlands,
July 26, 2005. Revised and Invited Papers.

[SA94] S. Steward and S. Appleby. Mobile software agents for control
of distributed systems based on principles of social insect be-
haviour. In International Conference on Communications Systems
(ICCS’94), volume 2, pages 549–553, Singapore, November 1994.
IEEE.

[SB06] Ricard V. Solé and Jordi Bascompte. Self-Organization in Com-
plex Ecosystems. Number 42 in Monographs in population Bi-
ology. Princeton University Press, 41 William Street, Princeton,
New Jersey 08540, United States of America, 2006.

BIBLIOGRAPHY 94

[SBB01] D. J. T. Sumpter, G. B. Blanchard, and D. S. Broomhead.
Ants and agents: A process algebra approach to modelling ant
colony behaviour. Bulletin of Mathematical Biology, 63(5):951–
980, September 2001.

[SFH+04] Giovanna Di Marzo Serugendo, Noria Foukia, Salima Hassas,
Anthony Karageorgos, Soraya Kouadri Mostéfaoui, Omer F.
Rana, Mihaela Ulieru, Paul Valckenaers, and Chris Van Aart.
Self-organisation: Paradigms and applications. In Giovanna
Di Marzo Serugendo, Anthony Karageorgos, Omer F. Rana, and
Franco Zambonelli, editors, Engineering Self-Organising Systems:
Nature-Inspired Approaches to Software Engineering, volume 2977
of LNCS (LNAI), pages 1–19. Springer, May 2004. International
Workshop on Engineering Self-Organizing Applications (ESOA
2003). Melbourne, Australia, July 2003.

[Tic98] Walter F. Tichy. Should computer scientists experiment more?
IEEE Computer, 31(5):32–40, May 1998.

[Tof91] Chris Tofts. Describing social insect behaviour using process alge-
bra. Transactions on Social Computing Simulation, pages 227–283,
1991.

[Uhr02] Adelinde M. Uhrmacher. Simulation for agent-oriented software
engineering. In W.H. Lunceford and E. Page, editors, First In-
ternational Conference on Grand Challenges, San Antonio, TX,
USA, January 2002. SCS, San Diego.

[VCG07] Mirko Viroli, Matteo Casadei, and Luca Gardelli. A self-organising
solution to the collective sort problem for distributed tuple spaces.
In 22th ACM Symposium on Applied Computing (SAC’07), pages
354–359, New York, NY, USA, March 2007. ACM Press. Special
Track on Coordination Models, Languages and Applications.

[VHR+07] Mirko Viroli, Tom Holvoet, Alessandro Ricci, Kurt Schelfthout,
and Franco Zambonelli. Infrastructures for the environment of
multiagent systems. Autonomous Agents and Multi-Agent Sys-
tems, 14(1):49–60, February 2007. Special Issue on Environments
for Multi-agent Systems.

[vM93] Anneliese von Mayrhauser. The role of simulation in software en-
gineering experimentation. In Experimental Software Engineering
Issues: Critical Assessment and Future Directions, volume 706 of
LNCS, pages 177–179. Springer, 1993.

[WOO07] Danny Weyns, Andrea Omicini, and James Odell. Environment
as a first-class abstraction in multi-agent systems. Autonomous
Agents and Multi-Agent Systems, 14(1):5–30, February 2007. Spe-
cial Issue on Environments for Multi-agent Systems.

[WSHL05] Danny Weyns, Kurt Schelfthout, Tom Holvoet, and Tom Lefever.
Decentralized control of E’GV transportation systems. In 4th In-
ternational Joint Conference on Autonomous Agents and Multi-

BIBLIOGRAPHY 95

agent Systems (AAMAS 2005), July 25-29, 2005, Utrecht, The
Netherlands, pages 67–74, New York, NY, USA, July 2005. ACM.

[ZJW03] Franco Zambonelli, Nicholas R. Jennings, and Michael J.
Wooldridge. Developing multiagent systems: The Gaia methodol-
ogy. ACM Transactions on Software Engineering and Methodology
(TOSEM), 12(3):317–370, July 2003.

[ZO04] Franco Zambonelli and Andrea Omicini. Challenges and research
directions in agent-oriented software engineering. Autonomous
Agents and Multi-Agent Systems, 9(3):253–283, November 2004.
Special Issue: Challenges for Agent-Based Computing.

List of Publications

Book Chapters

Luca Gardelli, Mirko Viroli, and Andrea Omicini. In Danny Weyns and Ade-
line M. Uhrmacher, editors, Agents, Simulation and Applications. Simulation
for the Development of Self-Organising Multi-Agent Systems. Taylor & Francis,
2008. To Appear.

Articles in Journals

Luca Gardelli, Mirko Viroli, Matteo Casadei, and Andrea Omicini. Designing
self-organising environments with agents and artifacts: A simulation-driven ap-
proach. International Journal of Agent-Oriented Software Engineering (IJAOSE),
2(2):171-195, 2008.

Matteo Casadei, Luca Gardelli, and Mirko Viroli. Simulating emergent prop-
erties of coordination in Maude: the collective sort case. Electronic Notes in
Theoretical Computer Science (ENTCS), 175(2):59-80, June 21 2007. Proceed-
ings of the Fifth International Workshop on the Foundations of Coordination
Languages and Software Architectures (FOCLASA 2006).

Articles in Springer LNCS

Luca Gardelli, Mirko Viroli, and Andrea Omicini. Design patterns for self-
organising systems. In Hans-Dieter Burkhard, Gabriela Lindemann, Rineke
Verbrugge, and László Z. Varga, editors, Multi-Agent Systems and Applications
V, volume 4696 of LNCS (LNAI), pages 123-132. Springer, Heidelberg, 2007.
5th International Central and Eastern European Conference on Multi-Agent
Systems, CEEMAS 2007, Leipzig, Germany, September 25-27,2007, Proceed-
ings.

Luca Gardelli, Mirko Viroli, Matteo Casadei, and Andrea Omicini. Designing
self-organising MAS environments: The collective sort case. In Danny Weyns,
H. Van Dyke Parunak, and Fabien Michel, editors, Environments for Multi-
Agent Systems III, volume 4389 of LNCS (LNAI), pages 254-271. Springer,

96

BIBLIOGRAPHY 97

February 2007. 3rd International Workshop (E4MAS 2006), Hakodate, Japan,
8 May 2006. Selected Revised and Invited Papers.

Alessandro Ricci, Andrea Omicini, Mirko Viroli, Luca Gardelli, and Enrico
Oliva. Cognitive stigmergy: Towards a framework based on agents and arti-
facts. In Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, En-
vironments for Multi-Agent Systems III, volume 4389 of LNCS (LNAI), pages
124-140. Springer, February 2007. 3rd International Workshop (E4MAS 2006),
Hakodate, Japan, 8 may 2006. Selected Revised and Invited Papers.

Luca Gardelli, Mirko Viroli, and Andrea Omicini. On the role of simulations in
engineering self-organising MAS: The case of an intrusion detection system in
TuCSoN. In Sven A. Brueckner, Giovanna Di Marzo Serugendo, David Hales,
and Franco Zambonelli, editors, Engineering Self-Organising Systems, volume
3910 of LNCS (LNAI), pages 153-166. Springer Berlin / Heidelberg, April 2006.
Third International Workshop, ESOA 2005, Utrecht, The Netherlands, July 25,
2005, Revised Selected Papers.

Contributions at Conferences or Workshops

Luca Gardelli, Mirko Viroli, and Andrea Omicini. Design patterns for self-
organizing multiagent systems. In Tom De Wolf, Fabrice Saffre, and Richard
Anthony, editors, 2nd International Workshop on Engineering Emergence in De-
centralised Autonomic System (EEDAS) 2007, pages 62-71, ICAC 2007, Jack-
sonville, Florida, USA, June 2007. CMS Press, University of Greenwich, Lon-
don, UK.

Mirko Viroli, Matteo Casadei, and Luca Gardelli. A self-organising solution
to the collective sort problem for distributed tuple spaces. In 22th ACM Sym-
posium on Applied Computing (SAC’07), pages 354-359, New York, NY, USA,
March 2007. ACM Press. Special Track on Coordination Models, Languages
and Applications.

Matteo Casadei, Luca Gardelli, and Mirko Viroli. A case of self-organising
environment for MAS: the collective sort problem. In Barbara Dunin-Kȩplicz,
Andrea Omicini, and Julian Padget, editors, 4th European Workshop on Multi-
Agent Systems (EUMAS 2006), volume 223, Lisbon, Portugal, December 2006.
CEUR.

Matteo Casadei, Luca Gardelli, and Mirko Viroli. Collective sorting tuple spaces.
In Andrea Omicini Flavio De Paoli, Antonella Di Stefano and Corrado Santoro,
editors, Dagli oggetti agli agenti: Sistemi Grid, P2P e Self-*, AI*IA/TABOO
Joint Workshop (WOA 2006), pages 173-180, Catania - Italy, September 2006.
Technical University of Aachen.

Matteo Casadei, Luca Gardelli, and Mirko Viroli. Simulating emergent prop-
erties of coordination in Maude: the collective sorting case. In Carlos Canal
and Mirko Viroli, editors, 5th International Workshop on the Foundations of

BIBLIOGRAPHY 98

Coordination Languages and Software Architectures (FOCLASA), pages 57-75,
CONCUR 2006, Bonn, Germany, August 2006. University of Malaga, Spain.

Luca Gardelli, Mirko Viroli, and Matteo Casadei. On engineering self-organizing
environments: Stochastic methods for dynamic resource allocation. In Danny
Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, 3rd International
Workshop on Environments for Multi-Agent Systems (E4MAS 2006), pages 96-
101, AAMAS 2006, Hakodate, Japan, May 2006.

Alessandro Ricci, Andrea Omicini, Mirko Viroli, Luca Gardelli, and Enrico
Oliva. Cognitive Stigmergy: A Framework Based on Agents and Artifacts. In
Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, 3rd Inter-
national Workshop on Environments for Multi-Agent Systems (E4MAS 2006),
pages 44-60, AAMAS 2006, Hakodate, Japan, May 2006.

Luca Gardelli, Mirko Viroli, and Matteo Casadei. Engineering the environ-
ment of self-organising multi-agent systems exploiting formal analysis tools. In
Congresso AICA 2006, Cesena - Italy, September 2006. AICA - Associazione
Italiana per l’Informatica e il Calcolo Automatico.

Luca Gardelli, Mirko Viroli, and Andrea Omicini. Exploring the dynamics of
self-organising systems with stochastic π-calculus: Detecting abnormal behaviour
in MAS. In Robert Trappl, editor, Cybernetics and Systems 2006, volume 2,
pages 539-544, Vienna, Austria, April 2006. Austrian Society for Cybernetic
Studies. 18th European Meeting on Cybernetics and Systems Research (EM-
CSR 2006), 5th International Symposium From Agent Theory to Theory Im-
plementation (AT2AI-5).

Alessandro Ricci, Andrea Omicini, Mirko Viroli, Luca Gardelli, and Enrico
Oliva. Cognitive Stigmergy: A Framework Based on Agents and Artifacts. In
Marie-Pierre Gleizes, Gal A. Kaminka, Ann Nowé, Sascha Ossowski, Karl Tuyls,
and Katja Verbeeck, editors, 3rd European Workshop on Multi-Agent Systems
(EUMAS 2005), pages 332-343, Brussels, Belgium, December 2005. Koninklijke
Vlaamse Academie van Belie voor Wetenschappen en Kunsten.

Luca Gardelli, Mirko Viroli, and Andrea Omicini. On the role of simulation
in the engineering of self-organising systems: Detecting abnormal behaviour in
MAS. In Flavio Corradini, Flavio De Paoli, Emanuela Merelli, and Andrea
Omicini, editors, AI*IA/TABOO Joint Workshop Dagli oggetti agli agenti:
simulazione e analisi formale di sistemi complessi (WOA 2005), pages 85-90,
Camerino, MC, Italy, November 2005. Pitagora Editrice Bologna.

Luca Gardelli, Mirko Viroli, and Andrea Omicini. On the role of simulations in
engineering self-organizing MAS: the case of an intrusion detection system in
TuCSoN. In Sven Brueckner, Giovanna Di Marzo Serugendo, David Hales, and
Franco Zambonelli, editors, 3rd International Workshop on Engineering Self-
Organising Applications (ESOA 2005), pages 161-175, AAMAS 2005, Utrecht,
The Netherlands, July 2005.

Luca Gardelli, Mirko Viroli, and Andrea Omicini. Engineering self-organizing

BIBLIOGRAPHY 99

MAS with coordination artifacts and ACCs. In Jean-Marie Jacquet and Gian
Pietro Picco, editors, 7th International Conference on Coordination Languages
and Models (COORDINATION 2005), Namur, Belgium, April 2005. Poster.

Technical Reports

Luca Gardelli. Self-organization and coordination for multi-agent systems. Tech-
nical report, European Science Foundation (ESF) MiNEMA Scientific Pro-
gramme, November 2005. MiNEMA Exchange Grants Publications (no. 805)-
Visit to Katholieke Universiteit Leuven.

Biography

Luca Gardelli was born on June 22th, 1980 in Cesena (FC), Italy. In 2002,
he received his Laurea Triennale degree cum laudae on Computer Science En-
gineering from the Alma Mater Studiorum—Università di Bologna, Italy:
the thesis title was Designing a Web Site for Mobile Phone Services and was
supervised by Prof. Andrea Omicini. In 2004, he received his Laurea Spe-
cialistica degree cum laudae on Computer Science Engineering from the Alma
Mater Studiorum—Università di Bologna: the thesis title was Target Track-
ing in Sensor Networks: a Multiagent Approach and was supervised by Prof.
Andrea Omicini. In 2005, he started working as a PhD student at the aliCE
research group of the DEIS, Department of Electronics, Computer Science and
Systems at the Alma Mater Studiorum—Università di Bologna. During his
PhD course, he wrote several articles: specifically, two articles for international
journals, a book chapter, a technical report, four articles published in Springer
LNCS, and thirteen contributions among conferences and workshops. Further-
more, he participated to the MiNEMA project funded by European Science
Foundation (ESF): between November and December 2005, under the super-
vision of Prof. Tom Holvoet, he collaborated with the DistriNet (Distributed
Systems and computer Networks) research group of the Department of Com-
puter Science at the Katholieke Universiteit Leuven in Belgium.

100

	frontespizio
	blank1
	abstract
	blank2
	gardelli-phdthesis

